Deleted Added
full compact
uma_core.c (212750) uma_core.c (213910)
1/*-
2 * Copyright (c) 2002-2005, 2009 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * Copyright (c) 2004-2006 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * uma_core.c Implementation of the Universal Memory allocator
31 *
32 * This allocator is intended to replace the multitude of similar object caches
33 * in the standard FreeBSD kernel. The intent is to be flexible as well as
34 * effecient. A primary design goal is to return unused memory to the rest of
35 * the system. This will make the system as a whole more flexible due to the
36 * ability to move memory to subsystems which most need it instead of leaving
37 * pools of reserved memory unused.
38 *
39 * The basic ideas stem from similar slab/zone based allocators whose algorithms
40 * are well known.
41 *
42 */
43
44/*
45 * TODO:
46 * - Improve memory usage for large allocations
47 * - Investigate cache size adjustments
48 */
49
50#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 2002-2005, 2009 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * Copyright (c) 2004-2006 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * uma_core.c Implementation of the Universal Memory allocator
31 *
32 * This allocator is intended to replace the multitude of similar object caches
33 * in the standard FreeBSD kernel. The intent is to be flexible as well as
34 * effecient. A primary design goal is to return unused memory to the rest of
35 * the system. This will make the system as a whole more flexible due to the
36 * ability to move memory to subsystems which most need it instead of leaving
37 * pools of reserved memory unused.
38 *
39 * The basic ideas stem from similar slab/zone based allocators whose algorithms
40 * are well known.
41 *
42 */
43
44/*
45 * TODO:
46 * - Improve memory usage for large allocations
47 * - Investigate cache size adjustments
48 */
49
50#include <sys/cdefs.h>
51__FBSDID("$FreeBSD: head/sys/vm/uma_core.c 212750 2010-09-16 16:13:12Z mdf $");
51__FBSDID("$FreeBSD: head/sys/vm/uma_core.c 213910 2010-10-16 04:14:45Z lstewart $");
52
53/* I should really use ktr.. */
54/*
55#define UMA_DEBUG 1
56#define UMA_DEBUG_ALLOC 1
57#define UMA_DEBUG_ALLOC_1 1
58*/
59
60#include "opt_ddb.h"
61#include "opt_param.h"
62
63#include <sys/param.h>
64#include <sys/systm.h>
65#include <sys/kernel.h>
66#include <sys/types.h>
67#include <sys/queue.h>
68#include <sys/malloc.h>
69#include <sys/ktr.h>
70#include <sys/lock.h>
71#include <sys/sysctl.h>
72#include <sys/mutex.h>
73#include <sys/proc.h>
74#include <sys/sbuf.h>
75#include <sys/smp.h>
76#include <sys/vmmeter.h>
77
78#include <vm/vm.h>
79#include <vm/vm_object.h>
80#include <vm/vm_page.h>
81#include <vm/vm_param.h>
82#include <vm/vm_map.h>
83#include <vm/vm_kern.h>
84#include <vm/vm_extern.h>
85#include <vm/uma.h>
86#include <vm/uma_int.h>
87#include <vm/uma_dbg.h>
88
89#include <machine/vmparam.h>
90
91#include <ddb/ddb.h>
92
93/*
94 * This is the zone and keg from which all zones are spawned. The idea is that
95 * even the zone & keg heads are allocated from the allocator, so we use the
96 * bss section to bootstrap us.
97 */
98static struct uma_keg masterkeg;
99static struct uma_zone masterzone_k;
100static struct uma_zone masterzone_z;
101static uma_zone_t kegs = &masterzone_k;
102static uma_zone_t zones = &masterzone_z;
103
104/* This is the zone from which all of uma_slab_t's are allocated. */
105static uma_zone_t slabzone;
106static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */
107
108/*
109 * The initial hash tables come out of this zone so they can be allocated
110 * prior to malloc coming up.
111 */
112static uma_zone_t hashzone;
113
114/* The boot-time adjusted value for cache line alignment. */
115static int uma_align_cache = 64 - 1;
116
117static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
118
119/*
120 * Are we allowed to allocate buckets?
121 */
122static int bucketdisable = 1;
123
124/* Linked list of all kegs in the system */
125static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
126
127/* This mutex protects the keg list */
128static struct mtx uma_mtx;
129
130/* Linked list of boot time pages */
131static LIST_HEAD(,uma_slab) uma_boot_pages =
132 LIST_HEAD_INITIALIZER(uma_boot_pages);
133
134/* This mutex protects the boot time pages list */
135static struct mtx uma_boot_pages_mtx;
136
137/* Is the VM done starting up? */
138static int booted = 0;
139
140/* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */
141static u_int uma_max_ipers;
142static u_int uma_max_ipers_ref;
143
144/*
145 * This is the handle used to schedule events that need to happen
146 * outside of the allocation fast path.
147 */
148static struct callout uma_callout;
149#define UMA_TIMEOUT 20 /* Seconds for callout interval. */
150
151/*
152 * This structure is passed as the zone ctor arg so that I don't have to create
153 * a special allocation function just for zones.
154 */
155struct uma_zctor_args {
156 char *name;
157 size_t size;
158 uma_ctor ctor;
159 uma_dtor dtor;
160 uma_init uminit;
161 uma_fini fini;
162 uma_keg_t keg;
163 int align;
164 u_int32_t flags;
165};
166
167struct uma_kctor_args {
168 uma_zone_t zone;
169 size_t size;
170 uma_init uminit;
171 uma_fini fini;
172 int align;
173 u_int32_t flags;
174};
175
176struct uma_bucket_zone {
177 uma_zone_t ubz_zone;
178 char *ubz_name;
179 int ubz_entries;
180};
181
182#define BUCKET_MAX 128
183
184struct uma_bucket_zone bucket_zones[] = {
185 { NULL, "16 Bucket", 16 },
186 { NULL, "32 Bucket", 32 },
187 { NULL, "64 Bucket", 64 },
188 { NULL, "128 Bucket", 128 },
189 { NULL, NULL, 0}
190};
191
192#define BUCKET_SHIFT 4
193#define BUCKET_ZONES ((BUCKET_MAX >> BUCKET_SHIFT) + 1)
194
195/*
196 * bucket_size[] maps requested bucket sizes to zones that allocate a bucket
197 * of approximately the right size.
198 */
199static uint8_t bucket_size[BUCKET_ZONES];
200
201/*
202 * Flags and enumerations to be passed to internal functions.
203 */
204enum zfreeskip { SKIP_NONE, SKIP_DTOR, SKIP_FINI };
205
206#define ZFREE_STATFAIL 0x00000001 /* Update zone failure statistic. */
207#define ZFREE_STATFREE 0x00000002 /* Update zone free statistic. */
208
209/* Prototypes.. */
210
211static void *obj_alloc(uma_zone_t, int, u_int8_t *, int);
212static void *page_alloc(uma_zone_t, int, u_int8_t *, int);
213static void *startup_alloc(uma_zone_t, int, u_int8_t *, int);
214static void page_free(void *, int, u_int8_t);
215static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
216static void cache_drain(uma_zone_t);
217static void bucket_drain(uma_zone_t, uma_bucket_t);
218static void bucket_cache_drain(uma_zone_t zone);
219static int keg_ctor(void *, int, void *, int);
220static void keg_dtor(void *, int, void *);
221static int zone_ctor(void *, int, void *, int);
222static void zone_dtor(void *, int, void *);
223static int zero_init(void *, int, int);
224static void keg_small_init(uma_keg_t keg);
225static void keg_large_init(uma_keg_t keg);
226static void zone_foreach(void (*zfunc)(uma_zone_t));
227static void zone_timeout(uma_zone_t zone);
228static int hash_alloc(struct uma_hash *);
229static int hash_expand(struct uma_hash *, struct uma_hash *);
230static void hash_free(struct uma_hash *hash);
231static void uma_timeout(void *);
232static void uma_startup3(void);
233static void *zone_alloc_item(uma_zone_t, void *, int);
234static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip,
235 int);
236static void bucket_enable(void);
237static void bucket_init(void);
238static uma_bucket_t bucket_alloc(int, int);
239static void bucket_free(uma_bucket_t);
240static void bucket_zone_drain(void);
241static int zone_alloc_bucket(uma_zone_t zone, int flags);
242static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
243static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
244static void *slab_alloc_item(uma_zone_t zone, uma_slab_t slab);
245static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
246 uma_fini fini, int align, u_int32_t flags);
247static inline void zone_relock(uma_zone_t zone, uma_keg_t keg);
248static inline void keg_relock(uma_keg_t keg, uma_zone_t zone);
249
250void uma_print_zone(uma_zone_t);
251void uma_print_stats(void);
252static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
253static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
254
255SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
256
257SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
258 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
259
260SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
261 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
262
263/*
264 * This routine checks to see whether or not it's safe to enable buckets.
265 */
266
267static void
268bucket_enable(void)
269{
270 if (cnt.v_free_count < cnt.v_free_min)
271 bucketdisable = 1;
272 else
273 bucketdisable = 0;
274}
275
276/*
277 * Initialize bucket_zones, the array of zones of buckets of various sizes.
278 *
279 * For each zone, calculate the memory required for each bucket, consisting
280 * of the header and an array of pointers. Initialize bucket_size[] to point
281 * the range of appropriate bucket sizes at the zone.
282 */
283static void
284bucket_init(void)
285{
286 struct uma_bucket_zone *ubz;
287 int i;
288 int j;
289
290 for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) {
291 int size;
292
293 ubz = &bucket_zones[j];
294 size = roundup(sizeof(struct uma_bucket), sizeof(void *));
295 size += sizeof(void *) * ubz->ubz_entries;
296 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
297 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
298 UMA_ZFLAG_INTERNAL | UMA_ZFLAG_BUCKET);
299 for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT))
300 bucket_size[i >> BUCKET_SHIFT] = j;
301 }
302}
303
304/*
305 * Given a desired number of entries for a bucket, return the zone from which
306 * to allocate the bucket.
307 */
308static struct uma_bucket_zone *
309bucket_zone_lookup(int entries)
310{
311 int idx;
312
313 idx = howmany(entries, 1 << BUCKET_SHIFT);
314 return (&bucket_zones[bucket_size[idx]]);
315}
316
317static uma_bucket_t
318bucket_alloc(int entries, int bflags)
319{
320 struct uma_bucket_zone *ubz;
321 uma_bucket_t bucket;
322
323 /*
324 * This is to stop us from allocating per cpu buckets while we're
325 * running out of vm.boot_pages. Otherwise, we would exhaust the
326 * boot pages. This also prevents us from allocating buckets in
327 * low memory situations.
328 */
329 if (bucketdisable)
330 return (NULL);
331
332 ubz = bucket_zone_lookup(entries);
333 bucket = zone_alloc_item(ubz->ubz_zone, NULL, bflags);
334 if (bucket) {
335#ifdef INVARIANTS
336 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
337#endif
338 bucket->ub_cnt = 0;
339 bucket->ub_entries = ubz->ubz_entries;
340 }
341
342 return (bucket);
343}
344
345static void
346bucket_free(uma_bucket_t bucket)
347{
348 struct uma_bucket_zone *ubz;
349
350 ubz = bucket_zone_lookup(bucket->ub_entries);
351 zone_free_item(ubz->ubz_zone, bucket, NULL, SKIP_NONE,
352 ZFREE_STATFREE);
353}
354
355static void
356bucket_zone_drain(void)
357{
358 struct uma_bucket_zone *ubz;
359
360 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
361 zone_drain(ubz->ubz_zone);
362}
363
364static inline uma_keg_t
365zone_first_keg(uma_zone_t zone)
366{
367
368 return (LIST_FIRST(&zone->uz_kegs)->kl_keg);
369}
370
371static void
372zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
373{
374 uma_klink_t klink;
375
376 LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
377 kegfn(klink->kl_keg);
378}
379
380/*
381 * Routine called by timeout which is used to fire off some time interval
382 * based calculations. (stats, hash size, etc.)
383 *
384 * Arguments:
385 * arg Unused
386 *
387 * Returns:
388 * Nothing
389 */
390static void
391uma_timeout(void *unused)
392{
393 bucket_enable();
394 zone_foreach(zone_timeout);
395
396 /* Reschedule this event */
397 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
398}
399
400/*
401 * Routine to perform timeout driven calculations. This expands the
402 * hashes and does per cpu statistics aggregation.
403 *
404 * Returns nothing.
405 */
406static void
407keg_timeout(uma_keg_t keg)
408{
409
410 KEG_LOCK(keg);
411 /*
412 * Expand the keg hash table.
413 *
414 * This is done if the number of slabs is larger than the hash size.
415 * What I'm trying to do here is completely reduce collisions. This
416 * may be a little aggressive. Should I allow for two collisions max?
417 */
418 if (keg->uk_flags & UMA_ZONE_HASH &&
419 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
420 struct uma_hash newhash;
421 struct uma_hash oldhash;
422 int ret;
423
424 /*
425 * This is so involved because allocating and freeing
426 * while the keg lock is held will lead to deadlock.
427 * I have to do everything in stages and check for
428 * races.
429 */
430 newhash = keg->uk_hash;
431 KEG_UNLOCK(keg);
432 ret = hash_alloc(&newhash);
433 KEG_LOCK(keg);
434 if (ret) {
435 if (hash_expand(&keg->uk_hash, &newhash)) {
436 oldhash = keg->uk_hash;
437 keg->uk_hash = newhash;
438 } else
439 oldhash = newhash;
440
441 KEG_UNLOCK(keg);
442 hash_free(&oldhash);
443 KEG_LOCK(keg);
444 }
445 }
446 KEG_UNLOCK(keg);
447}
448
449static void
450zone_timeout(uma_zone_t zone)
451{
452
453 zone_foreach_keg(zone, &keg_timeout);
454}
455
456/*
457 * Allocate and zero fill the next sized hash table from the appropriate
458 * backing store.
459 *
460 * Arguments:
461 * hash A new hash structure with the old hash size in uh_hashsize
462 *
463 * Returns:
464 * 1 on sucess and 0 on failure.
465 */
466static int
467hash_alloc(struct uma_hash *hash)
468{
469 int oldsize;
470 int alloc;
471
472 oldsize = hash->uh_hashsize;
473
474 /* We're just going to go to a power of two greater */
475 if (oldsize) {
476 hash->uh_hashsize = oldsize * 2;
477 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
478 hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
479 M_UMAHASH, M_NOWAIT);
480 } else {
481 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
482 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
483 M_WAITOK);
484 hash->uh_hashsize = UMA_HASH_SIZE_INIT;
485 }
486 if (hash->uh_slab_hash) {
487 bzero(hash->uh_slab_hash, alloc);
488 hash->uh_hashmask = hash->uh_hashsize - 1;
489 return (1);
490 }
491
492 return (0);
493}
494
495/*
496 * Expands the hash table for HASH zones. This is done from zone_timeout
497 * to reduce collisions. This must not be done in the regular allocation
498 * path, otherwise, we can recurse on the vm while allocating pages.
499 *
500 * Arguments:
501 * oldhash The hash you want to expand
502 * newhash The hash structure for the new table
503 *
504 * Returns:
505 * Nothing
506 *
507 * Discussion:
508 */
509static int
510hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
511{
512 uma_slab_t slab;
513 int hval;
514 int i;
515
516 if (!newhash->uh_slab_hash)
517 return (0);
518
519 if (oldhash->uh_hashsize >= newhash->uh_hashsize)
520 return (0);
521
522 /*
523 * I need to investigate hash algorithms for resizing without a
524 * full rehash.
525 */
526
527 for (i = 0; i < oldhash->uh_hashsize; i++)
528 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
529 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
530 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
531 hval = UMA_HASH(newhash, slab->us_data);
532 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
533 slab, us_hlink);
534 }
535
536 return (1);
537}
538
539/*
540 * Free the hash bucket to the appropriate backing store.
541 *
542 * Arguments:
543 * slab_hash The hash bucket we're freeing
544 * hashsize The number of entries in that hash bucket
545 *
546 * Returns:
547 * Nothing
548 */
549static void
550hash_free(struct uma_hash *hash)
551{
552 if (hash->uh_slab_hash == NULL)
553 return;
554 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
555 zone_free_item(hashzone,
556 hash->uh_slab_hash, NULL, SKIP_NONE, ZFREE_STATFREE);
557 else
558 free(hash->uh_slab_hash, M_UMAHASH);
559}
560
561/*
562 * Frees all outstanding items in a bucket
563 *
564 * Arguments:
565 * zone The zone to free to, must be unlocked.
566 * bucket The free/alloc bucket with items, cpu queue must be locked.
567 *
568 * Returns:
569 * Nothing
570 */
571
572static void
573bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
574{
575 void *item;
576
577 if (bucket == NULL)
578 return;
579
580 while (bucket->ub_cnt > 0) {
581 bucket->ub_cnt--;
582 item = bucket->ub_bucket[bucket->ub_cnt];
583#ifdef INVARIANTS
584 bucket->ub_bucket[bucket->ub_cnt] = NULL;
585 KASSERT(item != NULL,
586 ("bucket_drain: botched ptr, item is NULL"));
587#endif
588 zone_free_item(zone, item, NULL, SKIP_DTOR, 0);
589 }
590}
591
592/*
593 * Drains the per cpu caches for a zone.
594 *
595 * NOTE: This may only be called while the zone is being turn down, and not
596 * during normal operation. This is necessary in order that we do not have
597 * to migrate CPUs to drain the per-CPU caches.
598 *
599 * Arguments:
600 * zone The zone to drain, must be unlocked.
601 *
602 * Returns:
603 * Nothing
604 */
605static void
606cache_drain(uma_zone_t zone)
607{
608 uma_cache_t cache;
609 int cpu;
610
611 /*
612 * XXX: It is safe to not lock the per-CPU caches, because we're
613 * tearing down the zone anyway. I.e., there will be no further use
614 * of the caches at this point.
615 *
616 * XXX: It would good to be able to assert that the zone is being
617 * torn down to prevent improper use of cache_drain().
618 *
619 * XXX: We lock the zone before passing into bucket_cache_drain() as
620 * it is used elsewhere. Should the tear-down path be made special
621 * there in some form?
622 */
623 CPU_FOREACH(cpu) {
624 cache = &zone->uz_cpu[cpu];
625 bucket_drain(zone, cache->uc_allocbucket);
626 bucket_drain(zone, cache->uc_freebucket);
627 if (cache->uc_allocbucket != NULL)
628 bucket_free(cache->uc_allocbucket);
629 if (cache->uc_freebucket != NULL)
630 bucket_free(cache->uc_freebucket);
631 cache->uc_allocbucket = cache->uc_freebucket = NULL;
632 }
633 ZONE_LOCK(zone);
634 bucket_cache_drain(zone);
635 ZONE_UNLOCK(zone);
636}
637
638/*
639 * Drain the cached buckets from a zone. Expects a locked zone on entry.
640 */
641static void
642bucket_cache_drain(uma_zone_t zone)
643{
644 uma_bucket_t bucket;
645
646 /*
647 * Drain the bucket queues and free the buckets, we just keep two per
648 * cpu (alloc/free).
649 */
650 while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
651 LIST_REMOVE(bucket, ub_link);
652 ZONE_UNLOCK(zone);
653 bucket_drain(zone, bucket);
654 bucket_free(bucket);
655 ZONE_LOCK(zone);
656 }
657
658 /* Now we do the free queue.. */
659 while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
660 LIST_REMOVE(bucket, ub_link);
661 bucket_free(bucket);
662 }
663}
664
665/*
666 * Frees pages from a keg back to the system. This is done on demand from
667 * the pageout daemon.
668 *
669 * Returns nothing.
670 */
671static void
672keg_drain(uma_keg_t keg)
673{
674 struct slabhead freeslabs = { 0 };
675 uma_slab_t slab;
676 uma_slab_t n;
677 u_int8_t flags;
678 u_int8_t *mem;
679 int i;
680
681 /*
682 * We don't want to take pages from statically allocated kegs at this
683 * time
684 */
685 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
686 return;
687
688#ifdef UMA_DEBUG
689 printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
690#endif
691 KEG_LOCK(keg);
692 if (keg->uk_free == 0)
693 goto finished;
694
695 slab = LIST_FIRST(&keg->uk_free_slab);
696 while (slab) {
697 n = LIST_NEXT(slab, us_link);
698
699 /* We have no where to free these to */
700 if (slab->us_flags & UMA_SLAB_BOOT) {
701 slab = n;
702 continue;
703 }
704
705 LIST_REMOVE(slab, us_link);
706 keg->uk_pages -= keg->uk_ppera;
707 keg->uk_free -= keg->uk_ipers;
708
709 if (keg->uk_flags & UMA_ZONE_HASH)
710 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
711
712 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
713
714 slab = n;
715 }
716finished:
717 KEG_UNLOCK(keg);
718
719 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
720 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
721 if (keg->uk_fini)
722 for (i = 0; i < keg->uk_ipers; i++)
723 keg->uk_fini(
724 slab->us_data + (keg->uk_rsize * i),
725 keg->uk_size);
726 flags = slab->us_flags;
727 mem = slab->us_data;
728
729 if (keg->uk_flags & UMA_ZONE_VTOSLAB) {
730 vm_object_t obj;
731
732 if (flags & UMA_SLAB_KMEM)
733 obj = kmem_object;
734 else if (flags & UMA_SLAB_KERNEL)
735 obj = kernel_object;
736 else
737 obj = NULL;
738 for (i = 0; i < keg->uk_ppera; i++)
739 vsetobj((vm_offset_t)mem + (i * PAGE_SIZE),
740 obj);
741 }
742 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
743 zone_free_item(keg->uk_slabzone, slab, NULL,
744 SKIP_NONE, ZFREE_STATFREE);
745#ifdef UMA_DEBUG
746 printf("%s: Returning %d bytes.\n",
747 keg->uk_name, UMA_SLAB_SIZE * keg->uk_ppera);
748#endif
749 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, flags);
750 }
751}
752
753static void
754zone_drain_wait(uma_zone_t zone, int waitok)
755{
756
757 /*
758 * Set draining to interlock with zone_dtor() so we can release our
759 * locks as we go. Only dtor() should do a WAITOK call since it
760 * is the only call that knows the structure will still be available
761 * when it wakes up.
762 */
763 ZONE_LOCK(zone);
764 while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
765 if (waitok == M_NOWAIT)
766 goto out;
767 mtx_unlock(&uma_mtx);
768 msleep(zone, zone->uz_lock, PVM, "zonedrain", 1);
769 mtx_lock(&uma_mtx);
770 }
771 zone->uz_flags |= UMA_ZFLAG_DRAINING;
772 bucket_cache_drain(zone);
773 ZONE_UNLOCK(zone);
774 /*
775 * The DRAINING flag protects us from being freed while
776 * we're running. Normally the uma_mtx would protect us but we
777 * must be able to release and acquire the right lock for each keg.
778 */
779 zone_foreach_keg(zone, &keg_drain);
780 ZONE_LOCK(zone);
781 zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
782 wakeup(zone);
783out:
784 ZONE_UNLOCK(zone);
785}
786
787void
788zone_drain(uma_zone_t zone)
789{
790
791 zone_drain_wait(zone, M_NOWAIT);
792}
793
794/*
795 * Allocate a new slab for a keg. This does not insert the slab onto a list.
796 *
797 * Arguments:
798 * wait Shall we wait?
799 *
800 * Returns:
801 * The slab that was allocated or NULL if there is no memory and the
802 * caller specified M_NOWAIT.
803 */
804static uma_slab_t
805keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
806{
807 uma_slabrefcnt_t slabref;
808 uma_alloc allocf;
809 uma_slab_t slab;
810 u_int8_t *mem;
811 u_int8_t flags;
812 int i;
813
814 mtx_assert(&keg->uk_lock, MA_OWNED);
815 slab = NULL;
816
817#ifdef UMA_DEBUG
818 printf("slab_zalloc: Allocating a new slab for %s\n", keg->uk_name);
819#endif
820 allocf = keg->uk_allocf;
821 KEG_UNLOCK(keg);
822
823 if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
824 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
825 if (slab == NULL) {
826 KEG_LOCK(keg);
827 return NULL;
828 }
829 }
830
831 /*
832 * This reproduces the old vm_zone behavior of zero filling pages the
833 * first time they are added to a zone.
834 *
835 * Malloced items are zeroed in uma_zalloc.
836 */
837
838 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
839 wait |= M_ZERO;
840 else
841 wait &= ~M_ZERO;
842
843 /* zone is passed for legacy reasons. */
844 mem = allocf(zone, keg->uk_ppera * UMA_SLAB_SIZE, &flags, wait);
845 if (mem == NULL) {
846 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
847 zone_free_item(keg->uk_slabzone, slab, NULL,
848 SKIP_NONE, ZFREE_STATFREE);
849 KEG_LOCK(keg);
850 return (NULL);
851 }
852
853 /* Point the slab into the allocated memory */
854 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
855 slab = (uma_slab_t )(mem + keg->uk_pgoff);
856
857 if (keg->uk_flags & UMA_ZONE_VTOSLAB)
858 for (i = 0; i < keg->uk_ppera; i++)
859 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
860
861 slab->us_keg = keg;
862 slab->us_data = mem;
863 slab->us_freecount = keg->uk_ipers;
864 slab->us_firstfree = 0;
865 slab->us_flags = flags;
866
867 if (keg->uk_flags & UMA_ZONE_REFCNT) {
868 slabref = (uma_slabrefcnt_t)slab;
869 for (i = 0; i < keg->uk_ipers; i++) {
870 slabref->us_freelist[i].us_refcnt = 0;
871 slabref->us_freelist[i].us_item = i+1;
872 }
873 } else {
874 for (i = 0; i < keg->uk_ipers; i++)
875 slab->us_freelist[i].us_item = i+1;
876 }
877
878 if (keg->uk_init != NULL) {
879 for (i = 0; i < keg->uk_ipers; i++)
880 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
881 keg->uk_size, wait) != 0)
882 break;
883 if (i != keg->uk_ipers) {
884 if (keg->uk_fini != NULL) {
885 for (i--; i > -1; i--)
886 keg->uk_fini(slab->us_data +
887 (keg->uk_rsize * i),
888 keg->uk_size);
889 }
890 if (keg->uk_flags & UMA_ZONE_VTOSLAB) {
891 vm_object_t obj;
892
893 if (flags & UMA_SLAB_KMEM)
894 obj = kmem_object;
895 else if (flags & UMA_SLAB_KERNEL)
896 obj = kernel_object;
897 else
898 obj = NULL;
899 for (i = 0; i < keg->uk_ppera; i++)
900 vsetobj((vm_offset_t)mem +
901 (i * PAGE_SIZE), obj);
902 }
903 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
904 zone_free_item(keg->uk_slabzone, slab,
905 NULL, SKIP_NONE, ZFREE_STATFREE);
906 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera,
907 flags);
908 KEG_LOCK(keg);
909 return (NULL);
910 }
911 }
912 KEG_LOCK(keg);
913
914 if (keg->uk_flags & UMA_ZONE_HASH)
915 UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
916
917 keg->uk_pages += keg->uk_ppera;
918 keg->uk_free += keg->uk_ipers;
919
920 return (slab);
921}
922
923/*
924 * This function is intended to be used early on in place of page_alloc() so
925 * that we may use the boot time page cache to satisfy allocations before
926 * the VM is ready.
927 */
928static void *
929startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
930{
931 uma_keg_t keg;
932 uma_slab_t tmps;
933
934 keg = zone_first_keg(zone);
935
936 /*
937 * Check our small startup cache to see if it has pages remaining.
938 */
939 mtx_lock(&uma_boot_pages_mtx);
940 if ((tmps = LIST_FIRST(&uma_boot_pages)) != NULL) {
941 LIST_REMOVE(tmps, us_link);
942 mtx_unlock(&uma_boot_pages_mtx);
943 *pflag = tmps->us_flags;
944 return (tmps->us_data);
945 }
946 mtx_unlock(&uma_boot_pages_mtx);
947 if (booted == 0)
948 panic("UMA: Increase vm.boot_pages");
949 /*
950 * Now that we've booted reset these users to their real allocator.
951 */
952#ifdef UMA_MD_SMALL_ALLOC
953 keg->uk_allocf = uma_small_alloc;
954#else
955 keg->uk_allocf = page_alloc;
956#endif
957 return keg->uk_allocf(zone, bytes, pflag, wait);
958}
959
960/*
961 * Allocates a number of pages from the system
962 *
963 * Arguments:
964 * bytes The number of bytes requested
965 * wait Shall we wait?
966 *
967 * Returns:
968 * A pointer to the alloced memory or possibly
969 * NULL if M_NOWAIT is set.
970 */
971static void *
972page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
973{
974 void *p; /* Returned page */
975
976 *pflag = UMA_SLAB_KMEM;
977 p = (void *) kmem_malloc(kmem_map, bytes, wait);
978
979 return (p);
980}
981
982/*
983 * Allocates a number of pages from within an object
984 *
985 * Arguments:
986 * bytes The number of bytes requested
987 * wait Shall we wait?
988 *
989 * Returns:
990 * A pointer to the alloced memory or possibly
991 * NULL if M_NOWAIT is set.
992 */
993static void *
994obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
995{
996 vm_object_t object;
997 vm_offset_t retkva, zkva;
998 vm_page_t p;
999 int pages, startpages;
1000 uma_keg_t keg;
1001
1002 keg = zone_first_keg(zone);
1003 object = keg->uk_obj;
1004 retkva = 0;
1005
1006 /*
1007 * This looks a little weird since we're getting one page at a time.
1008 */
1009 VM_OBJECT_LOCK(object);
1010 p = TAILQ_LAST(&object->memq, pglist);
1011 pages = p != NULL ? p->pindex + 1 : 0;
1012 startpages = pages;
1013 zkva = keg->uk_kva + pages * PAGE_SIZE;
1014 for (; bytes > 0; bytes -= PAGE_SIZE) {
1015 p = vm_page_alloc(object, pages,
1016 VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED);
1017 if (p == NULL) {
1018 if (pages != startpages)
1019 pmap_qremove(retkva, pages - startpages);
1020 while (pages != startpages) {
1021 pages--;
1022 p = TAILQ_LAST(&object->memq, pglist);
1023 vm_page_unwire(p, 0);
1024 vm_page_free(p);
1025 }
1026 retkva = 0;
1027 goto done;
1028 }
1029 pmap_qenter(zkva, &p, 1);
1030 if (retkva == 0)
1031 retkva = zkva;
1032 zkva += PAGE_SIZE;
1033 pages += 1;
1034 }
1035done:
1036 VM_OBJECT_UNLOCK(object);
1037 *flags = UMA_SLAB_PRIV;
1038
1039 return ((void *)retkva);
1040}
1041
1042/*
1043 * Frees a number of pages to the system
1044 *
1045 * Arguments:
1046 * mem A pointer to the memory to be freed
1047 * size The size of the memory being freed
1048 * flags The original p->us_flags field
1049 *
1050 * Returns:
1051 * Nothing
1052 */
1053static void
1054page_free(void *mem, int size, u_int8_t flags)
1055{
1056 vm_map_t map;
1057
1058 if (flags & UMA_SLAB_KMEM)
1059 map = kmem_map;
1060 else if (flags & UMA_SLAB_KERNEL)
1061 map = kernel_map;
1062 else
1063 panic("UMA: page_free used with invalid flags %d", flags);
1064
1065 kmem_free(map, (vm_offset_t)mem, size);
1066}
1067
1068/*
1069 * Zero fill initializer
1070 *
1071 * Arguments/Returns follow uma_init specifications
1072 */
1073static int
1074zero_init(void *mem, int size, int flags)
1075{
1076 bzero(mem, size);
1077 return (0);
1078}
1079
1080/*
1081 * Finish creating a small uma keg. This calculates ipers, and the keg size.
1082 *
1083 * Arguments
1084 * keg The zone we should initialize
1085 *
1086 * Returns
1087 * Nothing
1088 */
1089static void
1090keg_small_init(uma_keg_t keg)
1091{
1092 u_int rsize;
1093 u_int memused;
1094 u_int wastedspace;
1095 u_int shsize;
1096
1097 KASSERT(keg != NULL, ("Keg is null in keg_small_init"));
1098 rsize = keg->uk_size;
1099
1100 if (rsize < UMA_SMALLEST_UNIT)
1101 rsize = UMA_SMALLEST_UNIT;
1102 if (rsize & keg->uk_align)
1103 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1104
1105 keg->uk_rsize = rsize;
1106 keg->uk_ppera = 1;
1107
1108 if (keg->uk_flags & UMA_ZONE_REFCNT) {
1109 rsize += UMA_FRITMREF_SZ; /* linkage & refcnt */
1110 shsize = sizeof(struct uma_slab_refcnt);
1111 } else {
1112 rsize += UMA_FRITM_SZ; /* Account for linkage */
1113 shsize = sizeof(struct uma_slab);
1114 }
1115
1116 keg->uk_ipers = (UMA_SLAB_SIZE - shsize) / rsize;
1117 KASSERT(keg->uk_ipers != 0, ("keg_small_init: ipers is 0"));
1118 memused = keg->uk_ipers * rsize + shsize;
1119 wastedspace = UMA_SLAB_SIZE - memused;
1120
1121 /*
1122 * We can't do OFFPAGE if we're internal or if we've been
1123 * asked to not go to the VM for buckets. If we do this we
1124 * may end up going to the VM (kmem_map) for slabs which we
1125 * do not want to do if we're UMA_ZFLAG_CACHEONLY as a
1126 * result of UMA_ZONE_VM, which clearly forbids it.
1127 */
1128 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1129 (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1130 return;
1131
1132 if ((wastedspace >= UMA_MAX_WASTE) &&
1133 (keg->uk_ipers < (UMA_SLAB_SIZE / keg->uk_rsize))) {
1134 keg->uk_ipers = UMA_SLAB_SIZE / keg->uk_rsize;
1135 KASSERT(keg->uk_ipers <= 255,
1136 ("keg_small_init: keg->uk_ipers too high!"));
1137#ifdef UMA_DEBUG
1138 printf("UMA decided we need offpage slab headers for "
1139 "keg: %s, calculated wastedspace = %d, "
1140 "maximum wasted space allowed = %d, "
1141 "calculated ipers = %d, "
1142 "new wasted space = %d\n", keg->uk_name, wastedspace,
1143 UMA_MAX_WASTE, keg->uk_ipers,
1144 UMA_SLAB_SIZE - keg->uk_ipers * keg->uk_rsize);
1145#endif
1146 keg->uk_flags |= UMA_ZONE_OFFPAGE;
1147 if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1148 keg->uk_flags |= UMA_ZONE_HASH;
1149 }
1150}
1151
1152/*
1153 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do
1154 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be
1155 * more complicated.
1156 *
1157 * Arguments
1158 * keg The keg we should initialize
1159 *
1160 * Returns
1161 * Nothing
1162 */
1163static void
1164keg_large_init(uma_keg_t keg)
1165{
1166 int pages;
1167
1168 KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1169 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1170 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1171
1172 pages = keg->uk_size / UMA_SLAB_SIZE;
1173
1174 /* Account for remainder */
1175 if ((pages * UMA_SLAB_SIZE) < keg->uk_size)
1176 pages++;
1177
1178 keg->uk_ppera = pages;
1179 keg->uk_ipers = 1;
1180
1181 keg->uk_flags |= UMA_ZONE_OFFPAGE;
1182 if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1183 keg->uk_flags |= UMA_ZONE_HASH;
1184
1185 keg->uk_rsize = keg->uk_size;
1186}
1187
1188static void
1189keg_cachespread_init(uma_keg_t keg)
1190{
1191 int alignsize;
1192 int trailer;
1193 int pages;
1194 int rsize;
1195
1196 alignsize = keg->uk_align + 1;
1197 rsize = keg->uk_size;
1198 /*
1199 * We want one item to start on every align boundary in a page. To
1200 * do this we will span pages. We will also extend the item by the
1201 * size of align if it is an even multiple of align. Otherwise, it
1202 * would fall on the same boundary every time.
1203 */
1204 if (rsize & keg->uk_align)
1205 rsize = (rsize & ~keg->uk_align) + alignsize;
1206 if ((rsize & alignsize) == 0)
1207 rsize += alignsize;
1208 trailer = rsize - keg->uk_size;
1209 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1210 pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1211 keg->uk_rsize = rsize;
1212 keg->uk_ppera = pages;
1213 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1214 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1215 KASSERT(keg->uk_ipers <= uma_max_ipers,
1216 ("keg_small_init: keg->uk_ipers too high(%d) increase max_ipers",
1217 keg->uk_ipers));
1218}
1219
1220/*
1221 * Keg header ctor. This initializes all fields, locks, etc. And inserts
1222 * the keg onto the global keg list.
1223 *
1224 * Arguments/Returns follow uma_ctor specifications
1225 * udata Actually uma_kctor_args
1226 */
1227static int
1228keg_ctor(void *mem, int size, void *udata, int flags)
1229{
1230 struct uma_kctor_args *arg = udata;
1231 uma_keg_t keg = mem;
1232 uma_zone_t zone;
1233
1234 bzero(keg, size);
1235 keg->uk_size = arg->size;
1236 keg->uk_init = arg->uminit;
1237 keg->uk_fini = arg->fini;
1238 keg->uk_align = arg->align;
1239 keg->uk_free = 0;
1240 keg->uk_pages = 0;
1241 keg->uk_flags = arg->flags;
1242 keg->uk_allocf = page_alloc;
1243 keg->uk_freef = page_free;
1244 keg->uk_recurse = 0;
1245 keg->uk_slabzone = NULL;
1246
1247 /*
1248 * The master zone is passed to us at keg-creation time.
1249 */
1250 zone = arg->zone;
1251 keg->uk_name = zone->uz_name;
1252
1253 if (arg->flags & UMA_ZONE_VM)
1254 keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1255
1256 if (arg->flags & UMA_ZONE_ZINIT)
1257 keg->uk_init = zero_init;
1258
1259 if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC)
1260 keg->uk_flags |= UMA_ZONE_VTOSLAB;
1261
1262 /*
1263 * The +UMA_FRITM_SZ added to uk_size is to account for the
1264 * linkage that is added to the size in keg_small_init(). If
1265 * we don't account for this here then we may end up in
1266 * keg_small_init() with a calculated 'ipers' of 0.
1267 */
1268 if (keg->uk_flags & UMA_ZONE_REFCNT) {
1269 if (keg->uk_flags & UMA_ZONE_CACHESPREAD)
1270 keg_cachespread_init(keg);
1271 else if ((keg->uk_size+UMA_FRITMREF_SZ) >
1272 (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)))
1273 keg_large_init(keg);
1274 else
1275 keg_small_init(keg);
1276 } else {
1277 if (keg->uk_flags & UMA_ZONE_CACHESPREAD)
1278 keg_cachespread_init(keg);
1279 else if ((keg->uk_size+UMA_FRITM_SZ) >
1280 (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1281 keg_large_init(keg);
1282 else
1283 keg_small_init(keg);
1284 }
1285
1286 if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
1287 if (keg->uk_flags & UMA_ZONE_REFCNT)
1288 keg->uk_slabzone = slabrefzone;
1289 else
1290 keg->uk_slabzone = slabzone;
1291 }
1292
1293 /*
1294 * If we haven't booted yet we need allocations to go through the
1295 * startup cache until the vm is ready.
1296 */
1297 if (keg->uk_ppera == 1) {
1298#ifdef UMA_MD_SMALL_ALLOC
1299 keg->uk_allocf = uma_small_alloc;
1300 keg->uk_freef = uma_small_free;
1301#endif
1302 if (booted == 0)
1303 keg->uk_allocf = startup_alloc;
1304 }
1305
1306 /*
1307 * Initialize keg's lock (shared among zones).
1308 */
1309 if (arg->flags & UMA_ZONE_MTXCLASS)
1310 KEG_LOCK_INIT(keg, 1);
1311 else
1312 KEG_LOCK_INIT(keg, 0);
1313
1314 /*
1315 * If we're putting the slab header in the actual page we need to
1316 * figure out where in each page it goes. This calculates a right
1317 * justified offset into the memory on an ALIGN_PTR boundary.
1318 */
1319 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1320 u_int totsize;
1321
1322 /* Size of the slab struct and free list */
1323 if (keg->uk_flags & UMA_ZONE_REFCNT)
1324 totsize = sizeof(struct uma_slab_refcnt) +
1325 keg->uk_ipers * UMA_FRITMREF_SZ;
1326 else
1327 totsize = sizeof(struct uma_slab) +
1328 keg->uk_ipers * UMA_FRITM_SZ;
1329
1330 if (totsize & UMA_ALIGN_PTR)
1331 totsize = (totsize & ~UMA_ALIGN_PTR) +
1332 (UMA_ALIGN_PTR + 1);
1333 keg->uk_pgoff = UMA_SLAB_SIZE - totsize;
1334
1335 if (keg->uk_flags & UMA_ZONE_REFCNT)
1336 totsize = keg->uk_pgoff + sizeof(struct uma_slab_refcnt)
1337 + keg->uk_ipers * UMA_FRITMREF_SZ;
1338 else
1339 totsize = keg->uk_pgoff + sizeof(struct uma_slab)
1340 + keg->uk_ipers * UMA_FRITM_SZ;
1341
1342 /*
1343 * The only way the following is possible is if with our
1344 * UMA_ALIGN_PTR adjustments we are now bigger than
1345 * UMA_SLAB_SIZE. I haven't checked whether this is
1346 * mathematically possible for all cases, so we make
1347 * sure here anyway.
1348 */
1349 if (totsize > UMA_SLAB_SIZE) {
1350 printf("zone %s ipers %d rsize %d size %d\n",
1351 zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1352 keg->uk_size);
1353 panic("UMA slab won't fit.");
1354 }
1355 }
1356
1357 if (keg->uk_flags & UMA_ZONE_HASH)
1358 hash_alloc(&keg->uk_hash);
1359
1360#ifdef UMA_DEBUG
1361 printf("UMA: %s(%p) size %d(%d) flags %d ipers %d ppera %d out %d free %d\n",
1362 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
1363 keg->uk_ipers, keg->uk_ppera,
1364 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free);
1365#endif
1366
1367 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1368
1369 mtx_lock(&uma_mtx);
1370 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1371 mtx_unlock(&uma_mtx);
1372 return (0);
1373}
1374
1375/*
1376 * Zone header ctor. This initializes all fields, locks, etc.
1377 *
1378 * Arguments/Returns follow uma_ctor specifications
1379 * udata Actually uma_zctor_args
1380 */
1381static int
1382zone_ctor(void *mem, int size, void *udata, int flags)
1383{
1384 struct uma_zctor_args *arg = udata;
1385 uma_zone_t zone = mem;
1386 uma_zone_t z;
1387 uma_keg_t keg;
1388
1389 bzero(zone, size);
1390 zone->uz_name = arg->name;
1391 zone->uz_ctor = arg->ctor;
1392 zone->uz_dtor = arg->dtor;
1393 zone->uz_slab = zone_fetch_slab;
1394 zone->uz_init = NULL;
1395 zone->uz_fini = NULL;
1396 zone->uz_allocs = 0;
1397 zone->uz_frees = 0;
1398 zone->uz_fails = 0;
1399 zone->uz_sleeps = 0;
1400 zone->uz_fills = zone->uz_count = 0;
1401 zone->uz_flags = 0;
1402 keg = arg->keg;
1403
1404 if (arg->flags & UMA_ZONE_SECONDARY) {
1405 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1406 zone->uz_init = arg->uminit;
1407 zone->uz_fini = arg->fini;
1408 zone->uz_lock = &keg->uk_lock;
1409 zone->uz_flags |= UMA_ZONE_SECONDARY;
1410 mtx_lock(&uma_mtx);
1411 ZONE_LOCK(zone);
1412 LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1413 if (LIST_NEXT(z, uz_link) == NULL) {
1414 LIST_INSERT_AFTER(z, zone, uz_link);
1415 break;
1416 }
1417 }
1418 ZONE_UNLOCK(zone);
1419 mtx_unlock(&uma_mtx);
1420 } else if (keg == NULL) {
1421 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1422 arg->align, arg->flags)) == NULL)
1423 return (ENOMEM);
1424 } else {
1425 struct uma_kctor_args karg;
1426 int error;
1427
1428 /* We should only be here from uma_startup() */
1429 karg.size = arg->size;
1430 karg.uminit = arg->uminit;
1431 karg.fini = arg->fini;
1432 karg.align = arg->align;
1433 karg.flags = arg->flags;
1434 karg.zone = zone;
1435 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1436 flags);
1437 if (error)
1438 return (error);
1439 }
1440 /*
1441 * Link in the first keg.
1442 */
1443 zone->uz_klink.kl_keg = keg;
1444 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1445 zone->uz_lock = &keg->uk_lock;
1446 zone->uz_size = keg->uk_size;
1447 zone->uz_flags |= (keg->uk_flags &
1448 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1449
1450 /*
1451 * Some internal zones don't have room allocated for the per cpu
1452 * caches. If we're internal, bail out here.
1453 */
1454 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1455 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1456 ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1457 return (0);
1458 }
1459
1460 if (keg->uk_flags & UMA_ZONE_MAXBUCKET)
1461 zone->uz_count = BUCKET_MAX;
1462 else if (keg->uk_ipers <= BUCKET_MAX)
1463 zone->uz_count = keg->uk_ipers;
1464 else
1465 zone->uz_count = BUCKET_MAX;
1466 return (0);
1467}
1468
1469/*
1470 * Keg header dtor. This frees all data, destroys locks, frees the hash
1471 * table and removes the keg from the global list.
1472 *
1473 * Arguments/Returns follow uma_dtor specifications
1474 * udata unused
1475 */
1476static void
1477keg_dtor(void *arg, int size, void *udata)
1478{
1479 uma_keg_t keg;
1480
1481 keg = (uma_keg_t)arg;
1482 KEG_LOCK(keg);
1483 if (keg->uk_free != 0) {
1484 printf("Freed UMA keg was not empty (%d items). "
1485 " Lost %d pages of memory.\n",
1486 keg->uk_free, keg->uk_pages);
1487 }
1488 KEG_UNLOCK(keg);
1489
1490 hash_free(&keg->uk_hash);
1491
1492 KEG_LOCK_FINI(keg);
1493}
1494
1495/*
1496 * Zone header dtor.
1497 *
1498 * Arguments/Returns follow uma_dtor specifications
1499 * udata unused
1500 */
1501static void
1502zone_dtor(void *arg, int size, void *udata)
1503{
1504 uma_klink_t klink;
1505 uma_zone_t zone;
1506 uma_keg_t keg;
1507
1508 zone = (uma_zone_t)arg;
1509 keg = zone_first_keg(zone);
1510
1511 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1512 cache_drain(zone);
1513
1514 mtx_lock(&uma_mtx);
1515 LIST_REMOVE(zone, uz_link);
1516 mtx_unlock(&uma_mtx);
1517 /*
1518 * XXX there are some races here where
1519 * the zone can be drained but zone lock
1520 * released and then refilled before we
1521 * remove it... we dont care for now
1522 */
1523 zone_drain_wait(zone, M_WAITOK);
1524 /*
1525 * Unlink all of our kegs.
1526 */
1527 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1528 klink->kl_keg = NULL;
1529 LIST_REMOVE(klink, kl_link);
1530 if (klink == &zone->uz_klink)
1531 continue;
1532 free(klink, M_TEMP);
1533 }
1534 /*
1535 * We only destroy kegs from non secondary zones.
1536 */
1537 if ((zone->uz_flags & UMA_ZONE_SECONDARY) == 0) {
1538 mtx_lock(&uma_mtx);
1539 LIST_REMOVE(keg, uk_link);
1540 mtx_unlock(&uma_mtx);
1541 zone_free_item(kegs, keg, NULL, SKIP_NONE,
1542 ZFREE_STATFREE);
1543 }
1544}
1545
1546/*
1547 * Traverses every zone in the system and calls a callback
1548 *
1549 * Arguments:
1550 * zfunc A pointer to a function which accepts a zone
1551 * as an argument.
1552 *
1553 * Returns:
1554 * Nothing
1555 */
1556static void
1557zone_foreach(void (*zfunc)(uma_zone_t))
1558{
1559 uma_keg_t keg;
1560 uma_zone_t zone;
1561
1562 mtx_lock(&uma_mtx);
1563 LIST_FOREACH(keg, &uma_kegs, uk_link) {
1564 LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1565 zfunc(zone);
1566 }
1567 mtx_unlock(&uma_mtx);
1568}
1569
1570/* Public functions */
1571/* See uma.h */
1572void
1573uma_startup(void *bootmem, int boot_pages)
1574{
1575 struct uma_zctor_args args;
1576 uma_slab_t slab;
1577 u_int slabsize;
1578 u_int objsize, totsize, wsize;
1579 int i;
1580
1581#ifdef UMA_DEBUG
1582 printf("Creating uma keg headers zone and keg.\n");
1583#endif
1584 mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF);
1585
1586 /*
1587 * Figure out the maximum number of items-per-slab we'll have if
1588 * we're using the OFFPAGE slab header to track free items, given
1589 * all possible object sizes and the maximum desired wastage
1590 * (UMA_MAX_WASTE).
1591 *
1592 * We iterate until we find an object size for
1593 * which the calculated wastage in keg_small_init() will be
1594 * enough to warrant OFFPAGE. Since wastedspace versus objsize
1595 * is an overall increasing see-saw function, we find the smallest
1596 * objsize such that the wastage is always acceptable for objects
1597 * with that objsize or smaller. Since a smaller objsize always
1598 * generates a larger possible uma_max_ipers, we use this computed
1599 * objsize to calculate the largest ipers possible. Since the
1600 * ipers calculated for OFFPAGE slab headers is always larger than
1601 * the ipers initially calculated in keg_small_init(), we use
1602 * the former's equation (UMA_SLAB_SIZE / keg->uk_rsize) to
1603 * obtain the maximum ipers possible for offpage slab headers.
1604 *
1605 * It should be noted that ipers versus objsize is an inversly
1606 * proportional function which drops off rather quickly so as
1607 * long as our UMA_MAX_WASTE is such that the objsize we calculate
1608 * falls into the portion of the inverse relation AFTER the steep
1609 * falloff, then uma_max_ipers shouldn't be too high (~10 on i386).
1610 *
1611 * Note that we have 8-bits (1 byte) to use as a freelist index
1612 * inside the actual slab header itself and this is enough to
1613 * accomodate us. In the worst case, a UMA_SMALLEST_UNIT sized
1614 * object with offpage slab header would have ipers =
1615 * UMA_SLAB_SIZE / UMA_SMALLEST_UNIT (currently = 256), which is
1616 * 1 greater than what our byte-integer freelist index can
1617 * accomodate, but we know that this situation never occurs as
1618 * for UMA_SMALLEST_UNIT-sized objects, we will never calculate
1619 * that we need to go to offpage slab headers. Or, if we do,
1620 * then we trap that condition below and panic in the INVARIANTS case.
1621 */
1622 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab) - UMA_MAX_WASTE;
1623 totsize = wsize;
1624 objsize = UMA_SMALLEST_UNIT;
1625 while (totsize >= wsize) {
1626 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) /
1627 (objsize + UMA_FRITM_SZ);
1628 totsize *= (UMA_FRITM_SZ + objsize);
1629 objsize++;
1630 }
1631 if (objsize > UMA_SMALLEST_UNIT)
1632 objsize--;
1633 uma_max_ipers = MAX(UMA_SLAB_SIZE / objsize, 64);
1634
1635 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - UMA_MAX_WASTE;
1636 totsize = wsize;
1637 objsize = UMA_SMALLEST_UNIT;
1638 while (totsize >= wsize) {
1639 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)) /
1640 (objsize + UMA_FRITMREF_SZ);
1641 totsize *= (UMA_FRITMREF_SZ + objsize);
1642 objsize++;
1643 }
1644 if (objsize > UMA_SMALLEST_UNIT)
1645 objsize--;
1646 uma_max_ipers_ref = MAX(UMA_SLAB_SIZE / objsize, 64);
1647
1648 KASSERT((uma_max_ipers_ref <= 255) && (uma_max_ipers <= 255),
1649 ("uma_startup: calculated uma_max_ipers values too large!"));
1650
1651#ifdef UMA_DEBUG
1652 printf("Calculated uma_max_ipers (for OFFPAGE) is %d\n", uma_max_ipers);
1653 printf("Calculated uma_max_ipers_slab (for OFFPAGE) is %d\n",
1654 uma_max_ipers_ref);
1655#endif
1656
1657 /* "manually" create the initial zone */
1658 args.name = "UMA Kegs";
1659 args.size = sizeof(struct uma_keg);
1660 args.ctor = keg_ctor;
1661 args.dtor = keg_dtor;
1662 args.uminit = zero_init;
1663 args.fini = NULL;
1664 args.keg = &masterkeg;
1665 args.align = 32 - 1;
1666 args.flags = UMA_ZFLAG_INTERNAL;
1667 /* The initial zone has no Per cpu queues so it's smaller */
1668 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1669
1670#ifdef UMA_DEBUG
1671 printf("Filling boot free list.\n");
1672#endif
1673 for (i = 0; i < boot_pages; i++) {
1674 slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE));
1675 slab->us_data = (u_int8_t *)slab;
1676 slab->us_flags = UMA_SLAB_BOOT;
1677 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1678 }
1679 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1680
1681#ifdef UMA_DEBUG
1682 printf("Creating uma zone headers zone and keg.\n");
1683#endif
1684 args.name = "UMA Zones";
1685 args.size = sizeof(struct uma_zone) +
1686 (sizeof(struct uma_cache) * (mp_maxid + 1));
1687 args.ctor = zone_ctor;
1688 args.dtor = zone_dtor;
1689 args.uminit = zero_init;
1690 args.fini = NULL;
1691 args.keg = NULL;
1692 args.align = 32 - 1;
1693 args.flags = UMA_ZFLAG_INTERNAL;
1694 /* The initial zone has no Per cpu queues so it's smaller */
1695 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1696
1697#ifdef UMA_DEBUG
1698 printf("Initializing pcpu cache locks.\n");
1699#endif
1700#ifdef UMA_DEBUG
1701 printf("Creating slab and hash zones.\n");
1702#endif
1703
1704 /*
1705 * This is the max number of free list items we'll have with
1706 * offpage slabs.
1707 */
1708 slabsize = uma_max_ipers * UMA_FRITM_SZ;
1709 slabsize += sizeof(struct uma_slab);
1710
1711 /* Now make a zone for slab headers */
1712 slabzone = uma_zcreate("UMA Slabs",
1713 slabsize,
1714 NULL, NULL, NULL, NULL,
1715 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1716
1717 /*
1718 * We also create a zone for the bigger slabs with reference
1719 * counts in them, to accomodate UMA_ZONE_REFCNT zones.
1720 */
1721 slabsize = uma_max_ipers_ref * UMA_FRITMREF_SZ;
1722 slabsize += sizeof(struct uma_slab_refcnt);
1723 slabrefzone = uma_zcreate("UMA RCntSlabs",
1724 slabsize,
1725 NULL, NULL, NULL, NULL,
1726 UMA_ALIGN_PTR,
1727 UMA_ZFLAG_INTERNAL);
1728
1729 hashzone = uma_zcreate("UMA Hash",
1730 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1731 NULL, NULL, NULL, NULL,
1732 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1733
1734 bucket_init();
1735
1736#if defined(UMA_MD_SMALL_ALLOC) && !defined(UMA_MD_SMALL_ALLOC_NEEDS_VM)
1737 booted = 1;
1738#endif
1739
1740#ifdef UMA_DEBUG
1741 printf("UMA startup complete.\n");
1742#endif
1743}
1744
1745/* see uma.h */
1746void
1747uma_startup2(void)
1748{
1749 booted = 1;
1750 bucket_enable();
1751#ifdef UMA_DEBUG
1752 printf("UMA startup2 complete.\n");
1753#endif
1754}
1755
1756/*
1757 * Initialize our callout handle
1758 *
1759 */
1760
1761static void
1762uma_startup3(void)
1763{
1764#ifdef UMA_DEBUG
1765 printf("Starting callout.\n");
1766#endif
1767 callout_init(&uma_callout, CALLOUT_MPSAFE);
1768 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1769#ifdef UMA_DEBUG
1770 printf("UMA startup3 complete.\n");
1771#endif
1772}
1773
1774static uma_keg_t
1775uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1776 int align, u_int32_t flags)
1777{
1778 struct uma_kctor_args args;
1779
1780 args.size = size;
1781 args.uminit = uminit;
1782 args.fini = fini;
1783 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1784 args.flags = flags;
1785 args.zone = zone;
1786 return (zone_alloc_item(kegs, &args, M_WAITOK));
1787}
1788
1789/* See uma.h */
1790void
1791uma_set_align(int align)
1792{
1793
1794 if (align != UMA_ALIGN_CACHE)
1795 uma_align_cache = align;
1796}
1797
1798/* See uma.h */
1799uma_zone_t
1800uma_zcreate(char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1801 uma_init uminit, uma_fini fini, int align, u_int32_t flags)
1802
1803{
1804 struct uma_zctor_args args;
1805
1806 /* This stuff is essential for the zone ctor */
1807 args.name = name;
1808 args.size = size;
1809 args.ctor = ctor;
1810 args.dtor = dtor;
1811 args.uminit = uminit;
1812 args.fini = fini;
1813 args.align = align;
1814 args.flags = flags;
1815 args.keg = NULL;
1816
1817 return (zone_alloc_item(zones, &args, M_WAITOK));
1818}
1819
1820/* See uma.h */
1821uma_zone_t
1822uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1823 uma_init zinit, uma_fini zfini, uma_zone_t master)
1824{
1825 struct uma_zctor_args args;
1826 uma_keg_t keg;
1827
1828 keg = zone_first_keg(master);
1829 args.name = name;
1830 args.size = keg->uk_size;
1831 args.ctor = ctor;
1832 args.dtor = dtor;
1833 args.uminit = zinit;
1834 args.fini = zfini;
1835 args.align = keg->uk_align;
1836 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
1837 args.keg = keg;
1838
1839 /* XXX Attaches only one keg of potentially many. */
1840 return (zone_alloc_item(zones, &args, M_WAITOK));
1841}
1842
1843static void
1844zone_lock_pair(uma_zone_t a, uma_zone_t b)
1845{
1846 if (a < b) {
1847 ZONE_LOCK(a);
1848 mtx_lock_flags(b->uz_lock, MTX_DUPOK);
1849 } else {
1850 ZONE_LOCK(b);
1851 mtx_lock_flags(a->uz_lock, MTX_DUPOK);
1852 }
1853}
1854
1855static void
1856zone_unlock_pair(uma_zone_t a, uma_zone_t b)
1857{
1858
1859 ZONE_UNLOCK(a);
1860 ZONE_UNLOCK(b);
1861}
1862
1863int
1864uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
1865{
1866 uma_klink_t klink;
1867 uma_klink_t kl;
1868 int error;
1869
1870 error = 0;
1871 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
1872
1873 zone_lock_pair(zone, master);
1874 /*
1875 * zone must use vtoslab() to resolve objects and must already be
1876 * a secondary.
1877 */
1878 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
1879 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
1880 error = EINVAL;
1881 goto out;
1882 }
1883 /*
1884 * The new master must also use vtoslab().
1885 */
1886 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
1887 error = EINVAL;
1888 goto out;
1889 }
1890 /*
1891 * Both must either be refcnt, or not be refcnt.
1892 */
1893 if ((zone->uz_flags & UMA_ZONE_REFCNT) !=
1894 (master->uz_flags & UMA_ZONE_REFCNT)) {
1895 error = EINVAL;
1896 goto out;
1897 }
1898 /*
1899 * The underlying object must be the same size. rsize
1900 * may be different.
1901 */
1902 if (master->uz_size != zone->uz_size) {
1903 error = E2BIG;
1904 goto out;
1905 }
1906 /*
1907 * Put it at the end of the list.
1908 */
1909 klink->kl_keg = zone_first_keg(master);
1910 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
1911 if (LIST_NEXT(kl, kl_link) == NULL) {
1912 LIST_INSERT_AFTER(kl, klink, kl_link);
1913 break;
1914 }
1915 }
1916 klink = NULL;
1917 zone->uz_flags |= UMA_ZFLAG_MULTI;
1918 zone->uz_slab = zone_fetch_slab_multi;
1919
1920out:
1921 zone_unlock_pair(zone, master);
1922 if (klink != NULL)
1923 free(klink, M_TEMP);
1924
1925 return (error);
1926}
1927
1928
1929/* See uma.h */
1930void
1931uma_zdestroy(uma_zone_t zone)
1932{
1933
1934 zone_free_item(zones, zone, NULL, SKIP_NONE, ZFREE_STATFREE);
1935}
1936
1937/* See uma.h */
1938void *
1939uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
1940{
1941 void *item;
1942 uma_cache_t cache;
1943 uma_bucket_t bucket;
1944 int cpu;
1945
1946 /* This is the fast path allocation */
1947#ifdef UMA_DEBUG_ALLOC_1
1948 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
1949#endif
1950 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
1951 zone->uz_name, flags);
1952
1953 if (flags & M_WAITOK) {
1954 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
1955 "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
1956 }
1957
1958 /*
1959 * If possible, allocate from the per-CPU cache. There are two
1960 * requirements for safe access to the per-CPU cache: (1) the thread
1961 * accessing the cache must not be preempted or yield during access,
1962 * and (2) the thread must not migrate CPUs without switching which
1963 * cache it accesses. We rely on a critical section to prevent
1964 * preemption and migration. We release the critical section in
1965 * order to acquire the zone mutex if we are unable to allocate from
1966 * the current cache; when we re-acquire the critical section, we
1967 * must detect and handle migration if it has occurred.
1968 */
1969zalloc_restart:
1970 critical_enter();
1971 cpu = curcpu;
1972 cache = &zone->uz_cpu[cpu];
1973
1974zalloc_start:
1975 bucket = cache->uc_allocbucket;
1976
1977 if (bucket) {
1978 if (bucket->ub_cnt > 0) {
1979 bucket->ub_cnt--;
1980 item = bucket->ub_bucket[bucket->ub_cnt];
1981#ifdef INVARIANTS
1982 bucket->ub_bucket[bucket->ub_cnt] = NULL;
1983#endif
1984 KASSERT(item != NULL,
1985 ("uma_zalloc: Bucket pointer mangled."));
1986 cache->uc_allocs++;
1987 critical_exit();
1988#ifdef INVARIANTS
1989 ZONE_LOCK(zone);
1990 uma_dbg_alloc(zone, NULL, item);
1991 ZONE_UNLOCK(zone);
1992#endif
1993 if (zone->uz_ctor != NULL) {
1994 if (zone->uz_ctor(item, zone->uz_size,
1995 udata, flags) != 0) {
1996 zone_free_item(zone, item, udata,
1997 SKIP_DTOR, ZFREE_STATFAIL |
1998 ZFREE_STATFREE);
1999 return (NULL);
2000 }
2001 }
2002 if (flags & M_ZERO)
2003 bzero(item, zone->uz_size);
2004 return (item);
2005 } else if (cache->uc_freebucket) {
2006 /*
2007 * We have run out of items in our allocbucket.
2008 * See if we can switch with our free bucket.
2009 */
2010 if (cache->uc_freebucket->ub_cnt > 0) {
2011#ifdef UMA_DEBUG_ALLOC
2012 printf("uma_zalloc: Swapping empty with"
2013 " alloc.\n");
2014#endif
2015 bucket = cache->uc_freebucket;
2016 cache->uc_freebucket = cache->uc_allocbucket;
2017 cache->uc_allocbucket = bucket;
2018
2019 goto zalloc_start;
2020 }
2021 }
2022 }
2023 /*
2024 * Attempt to retrieve the item from the per-CPU cache has failed, so
2025 * we must go back to the zone. This requires the zone lock, so we
2026 * must drop the critical section, then re-acquire it when we go back
2027 * to the cache. Since the critical section is released, we may be
2028 * preempted or migrate. As such, make sure not to maintain any
2029 * thread-local state specific to the cache from prior to releasing
2030 * the critical section.
2031 */
2032 critical_exit();
2033 ZONE_LOCK(zone);
2034 critical_enter();
2035 cpu = curcpu;
2036 cache = &zone->uz_cpu[cpu];
2037 bucket = cache->uc_allocbucket;
2038 if (bucket != NULL) {
2039 if (bucket->ub_cnt > 0) {
2040 ZONE_UNLOCK(zone);
2041 goto zalloc_start;
2042 }
2043 bucket = cache->uc_freebucket;
2044 if (bucket != NULL && bucket->ub_cnt > 0) {
2045 ZONE_UNLOCK(zone);
2046 goto zalloc_start;
2047 }
2048 }
2049
2050 /* Since we have locked the zone we may as well send back our stats */
2051 zone->uz_allocs += cache->uc_allocs;
2052 cache->uc_allocs = 0;
2053 zone->uz_frees += cache->uc_frees;
2054 cache->uc_frees = 0;
2055
2056 /* Our old one is now a free bucket */
2057 if (cache->uc_allocbucket) {
2058 KASSERT(cache->uc_allocbucket->ub_cnt == 0,
2059 ("uma_zalloc_arg: Freeing a non free bucket."));
2060 LIST_INSERT_HEAD(&zone->uz_free_bucket,
2061 cache->uc_allocbucket, ub_link);
2062 cache->uc_allocbucket = NULL;
2063 }
2064
2065 /* Check the free list for a new alloc bucket */
2066 if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
2067 KASSERT(bucket->ub_cnt != 0,
2068 ("uma_zalloc_arg: Returning an empty bucket."));
2069
2070 LIST_REMOVE(bucket, ub_link);
2071 cache->uc_allocbucket = bucket;
2072 ZONE_UNLOCK(zone);
2073 goto zalloc_start;
2074 }
2075 /* We are no longer associated with this CPU. */
2076 critical_exit();
2077
2078 /* Bump up our uz_count so we get here less */
2079 if (zone->uz_count < BUCKET_MAX)
2080 zone->uz_count++;
2081
2082 /*
2083 * Now lets just fill a bucket and put it on the free list. If that
2084 * works we'll restart the allocation from the begining.
2085 */
2086 if (zone_alloc_bucket(zone, flags)) {
2087 ZONE_UNLOCK(zone);
2088 goto zalloc_restart;
2089 }
2090 ZONE_UNLOCK(zone);
2091 /*
2092 * We may not be able to get a bucket so return an actual item.
2093 */
2094#ifdef UMA_DEBUG
2095 printf("uma_zalloc_arg: Bucketzone returned NULL\n");
2096#endif
2097
2098 item = zone_alloc_item(zone, udata, flags);
2099 return (item);
2100}
2101
2102static uma_slab_t
2103keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
2104{
2105 uma_slab_t slab;
2106
2107 mtx_assert(&keg->uk_lock, MA_OWNED);
2108 slab = NULL;
2109
2110 for (;;) {
2111 /*
2112 * Find a slab with some space. Prefer slabs that are partially
2113 * used over those that are totally full. This helps to reduce
2114 * fragmentation.
2115 */
2116 if (keg->uk_free != 0) {
2117 if (!LIST_EMPTY(&keg->uk_part_slab)) {
2118 slab = LIST_FIRST(&keg->uk_part_slab);
2119 } else {
2120 slab = LIST_FIRST(&keg->uk_free_slab);
2121 LIST_REMOVE(slab, us_link);
2122 LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
2123 us_link);
2124 }
2125 MPASS(slab->us_keg == keg);
2126 return (slab);
2127 }
2128
2129 /*
2130 * M_NOVM means don't ask at all!
2131 */
2132 if (flags & M_NOVM)
2133 break;
2134
2135 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2136 keg->uk_flags |= UMA_ZFLAG_FULL;
2137 /*
2138 * If this is not a multi-zone, set the FULL bit.
2139 * Otherwise slab_multi() takes care of it.
2140 */
2141 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0)
2142 zone->uz_flags |= UMA_ZFLAG_FULL;
2143 if (flags & M_NOWAIT)
2144 break;
2145 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2146 continue;
2147 }
2148 keg->uk_recurse++;
2149 slab = keg_alloc_slab(keg, zone, flags);
2150 keg->uk_recurse--;
2151 /*
2152 * If we got a slab here it's safe to mark it partially used
2153 * and return. We assume that the caller is going to remove
2154 * at least one item.
2155 */
2156 if (slab) {
2157 MPASS(slab->us_keg == keg);
2158 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2159 return (slab);
2160 }
2161 /*
2162 * We might not have been able to get a slab but another cpu
2163 * could have while we were unlocked. Check again before we
2164 * fail.
2165 */
2166 flags |= M_NOVM;
2167 }
2168 return (slab);
2169}
2170
2171static inline void
2172zone_relock(uma_zone_t zone, uma_keg_t keg)
2173{
2174 if (zone->uz_lock != &keg->uk_lock) {
2175 KEG_UNLOCK(keg);
2176 ZONE_LOCK(zone);
2177 }
2178}
2179
2180static inline void
2181keg_relock(uma_keg_t keg, uma_zone_t zone)
2182{
2183 if (zone->uz_lock != &keg->uk_lock) {
2184 ZONE_UNLOCK(zone);
2185 KEG_LOCK(keg);
2186 }
2187}
2188
2189static uma_slab_t
2190zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
2191{
2192 uma_slab_t slab;
2193
2194 if (keg == NULL)
2195 keg = zone_first_keg(zone);
2196 /*
2197 * This is to prevent us from recursively trying to allocate
2198 * buckets. The problem is that if an allocation forces us to
2199 * grab a new bucket we will call page_alloc, which will go off
2200 * and cause the vm to allocate vm_map_entries. If we need new
2201 * buckets there too we will recurse in kmem_alloc and bad
2202 * things happen. So instead we return a NULL bucket, and make
2203 * the code that allocates buckets smart enough to deal with it
2204 */
2205 if (keg->uk_flags & UMA_ZFLAG_BUCKET && keg->uk_recurse != 0)
2206 return (NULL);
2207
2208 for (;;) {
2209 slab = keg_fetch_slab(keg, zone, flags);
2210 if (slab)
2211 return (slab);
2212 if (flags & (M_NOWAIT | M_NOVM))
2213 break;
2214 }
2215 return (NULL);
2216}
2217
2218/*
2219 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns
2220 * with the keg locked. Caller must call zone_relock() afterwards if the
2221 * zone lock is required. On NULL the zone lock is held.
2222 *
2223 * The last pointer is used to seed the search. It is not required.
2224 */
2225static uma_slab_t
2226zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
2227{
2228 uma_klink_t klink;
2229 uma_slab_t slab;
2230 uma_keg_t keg;
2231 int flags;
2232 int empty;
2233 int full;
2234
2235 /*
2236 * Don't wait on the first pass. This will skip limit tests
2237 * as well. We don't want to block if we can find a provider
2238 * without blocking.
2239 */
2240 flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2241 /*
2242 * Use the last slab allocated as a hint for where to start
2243 * the search.
2244 */
2245 if (last) {
2246 slab = keg_fetch_slab(last, zone, flags);
2247 if (slab)
2248 return (slab);
2249 zone_relock(zone, last);
2250 last = NULL;
2251 }
2252 /*
2253 * Loop until we have a slab incase of transient failures
2254 * while M_WAITOK is specified. I'm not sure this is 100%
2255 * required but we've done it for so long now.
2256 */
2257 for (;;) {
2258 empty = 0;
2259 full = 0;
2260 /*
2261 * Search the available kegs for slabs. Be careful to hold the
2262 * correct lock while calling into the keg layer.
2263 */
2264 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2265 keg = klink->kl_keg;
2266 keg_relock(keg, zone);
2267 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2268 slab = keg_fetch_slab(keg, zone, flags);
2269 if (slab)
2270 return (slab);
2271 }
2272 if (keg->uk_flags & UMA_ZFLAG_FULL)
2273 full++;
2274 else
2275 empty++;
2276 zone_relock(zone, keg);
2277 }
2278 if (rflags & (M_NOWAIT | M_NOVM))
2279 break;
2280 flags = rflags;
2281 /*
2282 * All kegs are full. XXX We can't atomically check all kegs
2283 * and sleep so just sleep for a short period and retry.
2284 */
2285 if (full && !empty) {
2286 zone->uz_flags |= UMA_ZFLAG_FULL;
2287 zone->uz_sleeps++;
2288 msleep(zone, zone->uz_lock, PVM, "zonelimit", hz/100);
2289 zone->uz_flags &= ~UMA_ZFLAG_FULL;
2290 continue;
2291 }
2292 }
2293 return (NULL);
2294}
2295
2296static void *
2297slab_alloc_item(uma_zone_t zone, uma_slab_t slab)
2298{
2299 uma_keg_t keg;
2300 uma_slabrefcnt_t slabref;
2301 void *item;
2302 u_int8_t freei;
2303
2304 keg = slab->us_keg;
2305 mtx_assert(&keg->uk_lock, MA_OWNED);
2306
2307 freei = slab->us_firstfree;
2308 if (keg->uk_flags & UMA_ZONE_REFCNT) {
2309 slabref = (uma_slabrefcnt_t)slab;
2310 slab->us_firstfree = slabref->us_freelist[freei].us_item;
2311 } else {
2312 slab->us_firstfree = slab->us_freelist[freei].us_item;
2313 }
2314 item = slab->us_data + (keg->uk_rsize * freei);
2315
2316 slab->us_freecount--;
2317 keg->uk_free--;
2318#ifdef INVARIANTS
2319 uma_dbg_alloc(zone, slab, item);
2320#endif
2321 /* Move this slab to the full list */
2322 if (slab->us_freecount == 0) {
2323 LIST_REMOVE(slab, us_link);
2324 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2325 }
2326
2327 return (item);
2328}
2329
2330static int
2331zone_alloc_bucket(uma_zone_t zone, int flags)
2332{
2333 uma_bucket_t bucket;
2334 uma_slab_t slab;
2335 uma_keg_t keg;
2336 int16_t saved;
2337 int max, origflags = flags;
2338
2339 /*
2340 * Try this zone's free list first so we don't allocate extra buckets.
2341 */
2342 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
2343 KASSERT(bucket->ub_cnt == 0,
2344 ("zone_alloc_bucket: Bucket on free list is not empty."));
2345 LIST_REMOVE(bucket, ub_link);
2346 } else {
2347 int bflags;
2348
2349 bflags = (flags & ~M_ZERO);
2350 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY)
2351 bflags |= M_NOVM;
2352
2353 ZONE_UNLOCK(zone);
2354 bucket = bucket_alloc(zone->uz_count, bflags);
2355 ZONE_LOCK(zone);
2356 }
2357
2358 if (bucket == NULL) {
2359 return (0);
2360 }
2361
2362#ifdef SMP
2363 /*
2364 * This code is here to limit the number of simultaneous bucket fills
2365 * for any given zone to the number of per cpu caches in this zone. This
2366 * is done so that we don't allocate more memory than we really need.
2367 */
2368 if (zone->uz_fills >= mp_ncpus)
2369 goto done;
2370
2371#endif
2372 zone->uz_fills++;
2373
2374 max = MIN(bucket->ub_entries, zone->uz_count);
2375 /* Try to keep the buckets totally full */
2376 saved = bucket->ub_cnt;
2377 slab = NULL;
2378 keg = NULL;
2379 while (bucket->ub_cnt < max &&
2380 (slab = zone->uz_slab(zone, keg, flags)) != NULL) {
2381 keg = slab->us_keg;
2382 while (slab->us_freecount && bucket->ub_cnt < max) {
2383 bucket->ub_bucket[bucket->ub_cnt++] =
2384 slab_alloc_item(zone, slab);
2385 }
2386
2387 /* Don't block on the next fill */
2388 flags |= M_NOWAIT;
2389 }
2390 if (slab)
2391 zone_relock(zone, keg);
2392
2393 /*
2394 * We unlock here because we need to call the zone's init.
2395 * It should be safe to unlock because the slab dealt with
2396 * above is already on the appropriate list within the keg
2397 * and the bucket we filled is not yet on any list, so we
2398 * own it.
2399 */
2400 if (zone->uz_init != NULL) {
2401 int i;
2402
2403 ZONE_UNLOCK(zone);
2404 for (i = saved; i < bucket->ub_cnt; i++)
2405 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2406 origflags) != 0)
2407 break;
2408 /*
2409 * If we couldn't initialize the whole bucket, put the
2410 * rest back onto the freelist.
2411 */
2412 if (i != bucket->ub_cnt) {
2413 int j;
2414
2415 for (j = i; j < bucket->ub_cnt; j++) {
2416 zone_free_item(zone, bucket->ub_bucket[j],
2417 NULL, SKIP_FINI, 0);
2418#ifdef INVARIANTS
2419 bucket->ub_bucket[j] = NULL;
2420#endif
2421 }
2422 bucket->ub_cnt = i;
2423 }
2424 ZONE_LOCK(zone);
2425 }
2426
2427 zone->uz_fills--;
2428 if (bucket->ub_cnt != 0) {
2429 LIST_INSERT_HEAD(&zone->uz_full_bucket,
2430 bucket, ub_link);
2431 return (1);
2432 }
2433#ifdef SMP
2434done:
2435#endif
2436 bucket_free(bucket);
2437
2438 return (0);
2439}
2440/*
2441 * Allocates an item for an internal zone
2442 *
2443 * Arguments
2444 * zone The zone to alloc for.
2445 * udata The data to be passed to the constructor.
2446 * flags M_WAITOK, M_NOWAIT, M_ZERO.
2447 *
2448 * Returns
2449 * NULL if there is no memory and M_NOWAIT is set
2450 * An item if successful
2451 */
2452
2453static void *
2454zone_alloc_item(uma_zone_t zone, void *udata, int flags)
2455{
2456 uma_slab_t slab;
2457 void *item;
2458
2459 item = NULL;
2460
2461#ifdef UMA_DEBUG_ALLOC
2462 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2463#endif
2464 ZONE_LOCK(zone);
2465
2466 slab = zone->uz_slab(zone, NULL, flags);
2467 if (slab == NULL) {
2468 zone->uz_fails++;
2469 ZONE_UNLOCK(zone);
2470 return (NULL);
2471 }
2472
2473 item = slab_alloc_item(zone, slab);
2474
2475 zone_relock(zone, slab->us_keg);
2476 zone->uz_allocs++;
2477 ZONE_UNLOCK(zone);
2478
2479 /*
2480 * We have to call both the zone's init (not the keg's init)
2481 * and the zone's ctor. This is because the item is going from
2482 * a keg slab directly to the user, and the user is expecting it
2483 * to be both zone-init'd as well as zone-ctor'd.
2484 */
2485 if (zone->uz_init != NULL) {
2486 if (zone->uz_init(item, zone->uz_size, flags) != 0) {
2487 zone_free_item(zone, item, udata, SKIP_FINI,
2488 ZFREE_STATFAIL | ZFREE_STATFREE);
2489 return (NULL);
2490 }
2491 }
2492 if (zone->uz_ctor != NULL) {
2493 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2494 zone_free_item(zone, item, udata, SKIP_DTOR,
2495 ZFREE_STATFAIL | ZFREE_STATFREE);
2496 return (NULL);
2497 }
2498 }
2499 if (flags & M_ZERO)
2500 bzero(item, zone->uz_size);
2501
2502 return (item);
2503}
2504
2505/* See uma.h */
2506void
2507uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2508{
2509 uma_cache_t cache;
2510 uma_bucket_t bucket;
2511 int bflags;
2512 int cpu;
2513
2514#ifdef UMA_DEBUG_ALLOC_1
2515 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2516#endif
2517 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2518 zone->uz_name);
2519
2520 if (zone->uz_dtor)
2521 zone->uz_dtor(item, zone->uz_size, udata);
2522
2523#ifdef INVARIANTS
2524 ZONE_LOCK(zone);
2525 if (zone->uz_flags & UMA_ZONE_MALLOC)
2526 uma_dbg_free(zone, udata, item);
2527 else
2528 uma_dbg_free(zone, NULL, item);
2529 ZONE_UNLOCK(zone);
2530#endif
2531 /*
2532 * The race here is acceptable. If we miss it we'll just have to wait
2533 * a little longer for the limits to be reset.
2534 */
2535 if (zone->uz_flags & UMA_ZFLAG_FULL)
2536 goto zfree_internal;
2537
2538 /*
2539 * If possible, free to the per-CPU cache. There are two
2540 * requirements for safe access to the per-CPU cache: (1) the thread
2541 * accessing the cache must not be preempted or yield during access,
2542 * and (2) the thread must not migrate CPUs without switching which
2543 * cache it accesses. We rely on a critical section to prevent
2544 * preemption and migration. We release the critical section in
2545 * order to acquire the zone mutex if we are unable to free to the
2546 * current cache; when we re-acquire the critical section, we must
2547 * detect and handle migration if it has occurred.
2548 */
2549zfree_restart:
2550 critical_enter();
2551 cpu = curcpu;
2552 cache = &zone->uz_cpu[cpu];
2553
2554zfree_start:
2555 bucket = cache->uc_freebucket;
2556
2557 if (bucket) {
2558 /*
2559 * Do we have room in our bucket? It is OK for this uz count
2560 * check to be slightly out of sync.
2561 */
2562
2563 if (bucket->ub_cnt < bucket->ub_entries) {
2564 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2565 ("uma_zfree: Freeing to non free bucket index."));
2566 bucket->ub_bucket[bucket->ub_cnt] = item;
2567 bucket->ub_cnt++;
2568 cache->uc_frees++;
2569 critical_exit();
2570 return;
2571 } else if (cache->uc_allocbucket) {
2572#ifdef UMA_DEBUG_ALLOC
2573 printf("uma_zfree: Swapping buckets.\n");
2574#endif
2575 /*
2576 * We have run out of space in our freebucket.
2577 * See if we can switch with our alloc bucket.
2578 */
2579 if (cache->uc_allocbucket->ub_cnt <
2580 cache->uc_freebucket->ub_cnt) {
2581 bucket = cache->uc_freebucket;
2582 cache->uc_freebucket = cache->uc_allocbucket;
2583 cache->uc_allocbucket = bucket;
2584 goto zfree_start;
2585 }
2586 }
2587 }
2588 /*
2589 * We can get here for two reasons:
2590 *
2591 * 1) The buckets are NULL
2592 * 2) The alloc and free buckets are both somewhat full.
2593 *
2594 * We must go back the zone, which requires acquiring the zone lock,
2595 * which in turn means we must release and re-acquire the critical
2596 * section. Since the critical section is released, we may be
2597 * preempted or migrate. As such, make sure not to maintain any
2598 * thread-local state specific to the cache from prior to releasing
2599 * the critical section.
2600 */
2601 critical_exit();
2602 ZONE_LOCK(zone);
2603 critical_enter();
2604 cpu = curcpu;
2605 cache = &zone->uz_cpu[cpu];
2606 if (cache->uc_freebucket != NULL) {
2607 if (cache->uc_freebucket->ub_cnt <
2608 cache->uc_freebucket->ub_entries) {
2609 ZONE_UNLOCK(zone);
2610 goto zfree_start;
2611 }
2612 if (cache->uc_allocbucket != NULL &&
2613 (cache->uc_allocbucket->ub_cnt <
2614 cache->uc_freebucket->ub_cnt)) {
2615 ZONE_UNLOCK(zone);
2616 goto zfree_start;
2617 }
2618 }
2619
2620 /* Since we have locked the zone we may as well send back our stats */
2621 zone->uz_allocs += cache->uc_allocs;
2622 cache->uc_allocs = 0;
2623 zone->uz_frees += cache->uc_frees;
2624 cache->uc_frees = 0;
2625
2626 bucket = cache->uc_freebucket;
2627 cache->uc_freebucket = NULL;
2628
2629 /* Can we throw this on the zone full list? */
2630 if (bucket != NULL) {
2631#ifdef UMA_DEBUG_ALLOC
2632 printf("uma_zfree: Putting old bucket on the free list.\n");
2633#endif
2634 /* ub_cnt is pointing to the last free item */
2635 KASSERT(bucket->ub_cnt != 0,
2636 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2637 LIST_INSERT_HEAD(&zone->uz_full_bucket,
2638 bucket, ub_link);
2639 }
2640 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
2641 LIST_REMOVE(bucket, ub_link);
2642 ZONE_UNLOCK(zone);
2643 cache->uc_freebucket = bucket;
2644 goto zfree_start;
2645 }
2646 /* We are no longer associated with this CPU. */
2647 critical_exit();
2648
2649 /* And the zone.. */
2650 ZONE_UNLOCK(zone);
2651
2652#ifdef UMA_DEBUG_ALLOC
2653 printf("uma_zfree: Allocating new free bucket.\n");
2654#endif
2655 bflags = M_NOWAIT;
2656
2657 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY)
2658 bflags |= M_NOVM;
2659 bucket = bucket_alloc(zone->uz_count, bflags);
2660 if (bucket) {
2661 ZONE_LOCK(zone);
2662 LIST_INSERT_HEAD(&zone->uz_free_bucket,
2663 bucket, ub_link);
2664 ZONE_UNLOCK(zone);
2665 goto zfree_restart;
2666 }
2667
2668 /*
2669 * If nothing else caught this, we'll just do an internal free.
2670 */
2671zfree_internal:
2672 zone_free_item(zone, item, udata, SKIP_DTOR, ZFREE_STATFREE);
2673
2674 return;
2675}
2676
2677/*
2678 * Frees an item to an INTERNAL zone or allocates a free bucket
2679 *
2680 * Arguments:
2681 * zone The zone to free to
2682 * item The item we're freeing
2683 * udata User supplied data for the dtor
2684 * skip Skip dtors and finis
2685 */
2686static void
2687zone_free_item(uma_zone_t zone, void *item, void *udata,
2688 enum zfreeskip skip, int flags)
2689{
2690 uma_slab_t slab;
2691 uma_slabrefcnt_t slabref;
2692 uma_keg_t keg;
2693 u_int8_t *mem;
2694 u_int8_t freei;
2695 int clearfull;
2696
2697 if (skip < SKIP_DTOR && zone->uz_dtor)
2698 zone->uz_dtor(item, zone->uz_size, udata);
2699
2700 if (skip < SKIP_FINI && zone->uz_fini)
2701 zone->uz_fini(item, zone->uz_size);
2702
2703 ZONE_LOCK(zone);
2704
2705 if (flags & ZFREE_STATFAIL)
2706 zone->uz_fails++;
2707 if (flags & ZFREE_STATFREE)
2708 zone->uz_frees++;
2709
2710 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
2711 mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK));
2712 keg = zone_first_keg(zone); /* Must only be one. */
2713 if (zone->uz_flags & UMA_ZONE_HASH) {
2714 slab = hash_sfind(&keg->uk_hash, mem);
2715 } else {
2716 mem += keg->uk_pgoff;
2717 slab = (uma_slab_t)mem;
2718 }
2719 } else {
2720 /* This prevents redundant lookups via free(). */
2721 if ((zone->uz_flags & UMA_ZONE_MALLOC) && udata != NULL)
2722 slab = (uma_slab_t)udata;
2723 else
2724 slab = vtoslab((vm_offset_t)item);
2725 keg = slab->us_keg;
2726 keg_relock(keg, zone);
2727 }
2728 MPASS(keg == slab->us_keg);
2729
2730 /* Do we need to remove from any lists? */
2731 if (slab->us_freecount+1 == keg->uk_ipers) {
2732 LIST_REMOVE(slab, us_link);
2733 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2734 } else if (slab->us_freecount == 0) {
2735 LIST_REMOVE(slab, us_link);
2736 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2737 }
2738
2739 /* Slab management stuff */
2740 freei = ((unsigned long)item - (unsigned long)slab->us_data)
2741 / keg->uk_rsize;
2742
2743#ifdef INVARIANTS
2744 if (!skip)
2745 uma_dbg_free(zone, slab, item);
2746#endif
2747
2748 if (keg->uk_flags & UMA_ZONE_REFCNT) {
2749 slabref = (uma_slabrefcnt_t)slab;
2750 slabref->us_freelist[freei].us_item = slab->us_firstfree;
2751 } else {
2752 slab->us_freelist[freei].us_item = slab->us_firstfree;
2753 }
2754 slab->us_firstfree = freei;
2755 slab->us_freecount++;
2756
2757 /* Zone statistics */
2758 keg->uk_free++;
2759
2760 clearfull = 0;
2761 if (keg->uk_flags & UMA_ZFLAG_FULL) {
2762 if (keg->uk_pages < keg->uk_maxpages) {
2763 keg->uk_flags &= ~UMA_ZFLAG_FULL;
2764 clearfull = 1;
2765 }
2766
2767 /*
2768 * We can handle one more allocation. Since we're clearing ZFLAG_FULL,
2769 * wake up all procs blocked on pages. This should be uncommon, so
2770 * keeping this simple for now (rather than adding count of blocked
2771 * threads etc).
2772 */
2773 wakeup(keg);
2774 }
2775 if (clearfull) {
2776 zone_relock(zone, keg);
2777 zone->uz_flags &= ~UMA_ZFLAG_FULL;
2778 wakeup(zone);
2779 ZONE_UNLOCK(zone);
2780 } else
2781 KEG_UNLOCK(keg);
2782}
2783
2784/* See uma.h */
2785void
2786uma_zone_set_max(uma_zone_t zone, int nitems)
2787{
2788 uma_keg_t keg;
2789
2790 ZONE_LOCK(zone);
2791 keg = zone_first_keg(zone);
2792 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
2793 if (keg->uk_maxpages * keg->uk_ipers < nitems)
2794 keg->uk_maxpages += keg->uk_ppera;
2795
2796 ZONE_UNLOCK(zone);
2797}
2798
2799/* See uma.h */
2800int
2801uma_zone_get_max(uma_zone_t zone)
2802{
2803 int nitems;
2804 uma_keg_t keg;
2805
2806 ZONE_LOCK(zone);
2807 keg = zone_first_keg(zone);
52
53/* I should really use ktr.. */
54/*
55#define UMA_DEBUG 1
56#define UMA_DEBUG_ALLOC 1
57#define UMA_DEBUG_ALLOC_1 1
58*/
59
60#include "opt_ddb.h"
61#include "opt_param.h"
62
63#include <sys/param.h>
64#include <sys/systm.h>
65#include <sys/kernel.h>
66#include <sys/types.h>
67#include <sys/queue.h>
68#include <sys/malloc.h>
69#include <sys/ktr.h>
70#include <sys/lock.h>
71#include <sys/sysctl.h>
72#include <sys/mutex.h>
73#include <sys/proc.h>
74#include <sys/sbuf.h>
75#include <sys/smp.h>
76#include <sys/vmmeter.h>
77
78#include <vm/vm.h>
79#include <vm/vm_object.h>
80#include <vm/vm_page.h>
81#include <vm/vm_param.h>
82#include <vm/vm_map.h>
83#include <vm/vm_kern.h>
84#include <vm/vm_extern.h>
85#include <vm/uma.h>
86#include <vm/uma_int.h>
87#include <vm/uma_dbg.h>
88
89#include <machine/vmparam.h>
90
91#include <ddb/ddb.h>
92
93/*
94 * This is the zone and keg from which all zones are spawned. The idea is that
95 * even the zone & keg heads are allocated from the allocator, so we use the
96 * bss section to bootstrap us.
97 */
98static struct uma_keg masterkeg;
99static struct uma_zone masterzone_k;
100static struct uma_zone masterzone_z;
101static uma_zone_t kegs = &masterzone_k;
102static uma_zone_t zones = &masterzone_z;
103
104/* This is the zone from which all of uma_slab_t's are allocated. */
105static uma_zone_t slabzone;
106static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */
107
108/*
109 * The initial hash tables come out of this zone so they can be allocated
110 * prior to malloc coming up.
111 */
112static uma_zone_t hashzone;
113
114/* The boot-time adjusted value for cache line alignment. */
115static int uma_align_cache = 64 - 1;
116
117static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
118
119/*
120 * Are we allowed to allocate buckets?
121 */
122static int bucketdisable = 1;
123
124/* Linked list of all kegs in the system */
125static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
126
127/* This mutex protects the keg list */
128static struct mtx uma_mtx;
129
130/* Linked list of boot time pages */
131static LIST_HEAD(,uma_slab) uma_boot_pages =
132 LIST_HEAD_INITIALIZER(uma_boot_pages);
133
134/* This mutex protects the boot time pages list */
135static struct mtx uma_boot_pages_mtx;
136
137/* Is the VM done starting up? */
138static int booted = 0;
139
140/* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */
141static u_int uma_max_ipers;
142static u_int uma_max_ipers_ref;
143
144/*
145 * This is the handle used to schedule events that need to happen
146 * outside of the allocation fast path.
147 */
148static struct callout uma_callout;
149#define UMA_TIMEOUT 20 /* Seconds for callout interval. */
150
151/*
152 * This structure is passed as the zone ctor arg so that I don't have to create
153 * a special allocation function just for zones.
154 */
155struct uma_zctor_args {
156 char *name;
157 size_t size;
158 uma_ctor ctor;
159 uma_dtor dtor;
160 uma_init uminit;
161 uma_fini fini;
162 uma_keg_t keg;
163 int align;
164 u_int32_t flags;
165};
166
167struct uma_kctor_args {
168 uma_zone_t zone;
169 size_t size;
170 uma_init uminit;
171 uma_fini fini;
172 int align;
173 u_int32_t flags;
174};
175
176struct uma_bucket_zone {
177 uma_zone_t ubz_zone;
178 char *ubz_name;
179 int ubz_entries;
180};
181
182#define BUCKET_MAX 128
183
184struct uma_bucket_zone bucket_zones[] = {
185 { NULL, "16 Bucket", 16 },
186 { NULL, "32 Bucket", 32 },
187 { NULL, "64 Bucket", 64 },
188 { NULL, "128 Bucket", 128 },
189 { NULL, NULL, 0}
190};
191
192#define BUCKET_SHIFT 4
193#define BUCKET_ZONES ((BUCKET_MAX >> BUCKET_SHIFT) + 1)
194
195/*
196 * bucket_size[] maps requested bucket sizes to zones that allocate a bucket
197 * of approximately the right size.
198 */
199static uint8_t bucket_size[BUCKET_ZONES];
200
201/*
202 * Flags and enumerations to be passed to internal functions.
203 */
204enum zfreeskip { SKIP_NONE, SKIP_DTOR, SKIP_FINI };
205
206#define ZFREE_STATFAIL 0x00000001 /* Update zone failure statistic. */
207#define ZFREE_STATFREE 0x00000002 /* Update zone free statistic. */
208
209/* Prototypes.. */
210
211static void *obj_alloc(uma_zone_t, int, u_int8_t *, int);
212static void *page_alloc(uma_zone_t, int, u_int8_t *, int);
213static void *startup_alloc(uma_zone_t, int, u_int8_t *, int);
214static void page_free(void *, int, u_int8_t);
215static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
216static void cache_drain(uma_zone_t);
217static void bucket_drain(uma_zone_t, uma_bucket_t);
218static void bucket_cache_drain(uma_zone_t zone);
219static int keg_ctor(void *, int, void *, int);
220static void keg_dtor(void *, int, void *);
221static int zone_ctor(void *, int, void *, int);
222static void zone_dtor(void *, int, void *);
223static int zero_init(void *, int, int);
224static void keg_small_init(uma_keg_t keg);
225static void keg_large_init(uma_keg_t keg);
226static void zone_foreach(void (*zfunc)(uma_zone_t));
227static void zone_timeout(uma_zone_t zone);
228static int hash_alloc(struct uma_hash *);
229static int hash_expand(struct uma_hash *, struct uma_hash *);
230static void hash_free(struct uma_hash *hash);
231static void uma_timeout(void *);
232static void uma_startup3(void);
233static void *zone_alloc_item(uma_zone_t, void *, int);
234static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip,
235 int);
236static void bucket_enable(void);
237static void bucket_init(void);
238static uma_bucket_t bucket_alloc(int, int);
239static void bucket_free(uma_bucket_t);
240static void bucket_zone_drain(void);
241static int zone_alloc_bucket(uma_zone_t zone, int flags);
242static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
243static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
244static void *slab_alloc_item(uma_zone_t zone, uma_slab_t slab);
245static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
246 uma_fini fini, int align, u_int32_t flags);
247static inline void zone_relock(uma_zone_t zone, uma_keg_t keg);
248static inline void keg_relock(uma_keg_t keg, uma_zone_t zone);
249
250void uma_print_zone(uma_zone_t);
251void uma_print_stats(void);
252static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
253static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
254
255SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
256
257SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
258 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
259
260SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
261 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
262
263/*
264 * This routine checks to see whether or not it's safe to enable buckets.
265 */
266
267static void
268bucket_enable(void)
269{
270 if (cnt.v_free_count < cnt.v_free_min)
271 bucketdisable = 1;
272 else
273 bucketdisable = 0;
274}
275
276/*
277 * Initialize bucket_zones, the array of zones of buckets of various sizes.
278 *
279 * For each zone, calculate the memory required for each bucket, consisting
280 * of the header and an array of pointers. Initialize bucket_size[] to point
281 * the range of appropriate bucket sizes at the zone.
282 */
283static void
284bucket_init(void)
285{
286 struct uma_bucket_zone *ubz;
287 int i;
288 int j;
289
290 for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) {
291 int size;
292
293 ubz = &bucket_zones[j];
294 size = roundup(sizeof(struct uma_bucket), sizeof(void *));
295 size += sizeof(void *) * ubz->ubz_entries;
296 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
297 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
298 UMA_ZFLAG_INTERNAL | UMA_ZFLAG_BUCKET);
299 for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT))
300 bucket_size[i >> BUCKET_SHIFT] = j;
301 }
302}
303
304/*
305 * Given a desired number of entries for a bucket, return the zone from which
306 * to allocate the bucket.
307 */
308static struct uma_bucket_zone *
309bucket_zone_lookup(int entries)
310{
311 int idx;
312
313 idx = howmany(entries, 1 << BUCKET_SHIFT);
314 return (&bucket_zones[bucket_size[idx]]);
315}
316
317static uma_bucket_t
318bucket_alloc(int entries, int bflags)
319{
320 struct uma_bucket_zone *ubz;
321 uma_bucket_t bucket;
322
323 /*
324 * This is to stop us from allocating per cpu buckets while we're
325 * running out of vm.boot_pages. Otherwise, we would exhaust the
326 * boot pages. This also prevents us from allocating buckets in
327 * low memory situations.
328 */
329 if (bucketdisable)
330 return (NULL);
331
332 ubz = bucket_zone_lookup(entries);
333 bucket = zone_alloc_item(ubz->ubz_zone, NULL, bflags);
334 if (bucket) {
335#ifdef INVARIANTS
336 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
337#endif
338 bucket->ub_cnt = 0;
339 bucket->ub_entries = ubz->ubz_entries;
340 }
341
342 return (bucket);
343}
344
345static void
346bucket_free(uma_bucket_t bucket)
347{
348 struct uma_bucket_zone *ubz;
349
350 ubz = bucket_zone_lookup(bucket->ub_entries);
351 zone_free_item(ubz->ubz_zone, bucket, NULL, SKIP_NONE,
352 ZFREE_STATFREE);
353}
354
355static void
356bucket_zone_drain(void)
357{
358 struct uma_bucket_zone *ubz;
359
360 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
361 zone_drain(ubz->ubz_zone);
362}
363
364static inline uma_keg_t
365zone_first_keg(uma_zone_t zone)
366{
367
368 return (LIST_FIRST(&zone->uz_kegs)->kl_keg);
369}
370
371static void
372zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
373{
374 uma_klink_t klink;
375
376 LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
377 kegfn(klink->kl_keg);
378}
379
380/*
381 * Routine called by timeout which is used to fire off some time interval
382 * based calculations. (stats, hash size, etc.)
383 *
384 * Arguments:
385 * arg Unused
386 *
387 * Returns:
388 * Nothing
389 */
390static void
391uma_timeout(void *unused)
392{
393 bucket_enable();
394 zone_foreach(zone_timeout);
395
396 /* Reschedule this event */
397 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
398}
399
400/*
401 * Routine to perform timeout driven calculations. This expands the
402 * hashes and does per cpu statistics aggregation.
403 *
404 * Returns nothing.
405 */
406static void
407keg_timeout(uma_keg_t keg)
408{
409
410 KEG_LOCK(keg);
411 /*
412 * Expand the keg hash table.
413 *
414 * This is done if the number of slabs is larger than the hash size.
415 * What I'm trying to do here is completely reduce collisions. This
416 * may be a little aggressive. Should I allow for two collisions max?
417 */
418 if (keg->uk_flags & UMA_ZONE_HASH &&
419 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
420 struct uma_hash newhash;
421 struct uma_hash oldhash;
422 int ret;
423
424 /*
425 * This is so involved because allocating and freeing
426 * while the keg lock is held will lead to deadlock.
427 * I have to do everything in stages and check for
428 * races.
429 */
430 newhash = keg->uk_hash;
431 KEG_UNLOCK(keg);
432 ret = hash_alloc(&newhash);
433 KEG_LOCK(keg);
434 if (ret) {
435 if (hash_expand(&keg->uk_hash, &newhash)) {
436 oldhash = keg->uk_hash;
437 keg->uk_hash = newhash;
438 } else
439 oldhash = newhash;
440
441 KEG_UNLOCK(keg);
442 hash_free(&oldhash);
443 KEG_LOCK(keg);
444 }
445 }
446 KEG_UNLOCK(keg);
447}
448
449static void
450zone_timeout(uma_zone_t zone)
451{
452
453 zone_foreach_keg(zone, &keg_timeout);
454}
455
456/*
457 * Allocate and zero fill the next sized hash table from the appropriate
458 * backing store.
459 *
460 * Arguments:
461 * hash A new hash structure with the old hash size in uh_hashsize
462 *
463 * Returns:
464 * 1 on sucess and 0 on failure.
465 */
466static int
467hash_alloc(struct uma_hash *hash)
468{
469 int oldsize;
470 int alloc;
471
472 oldsize = hash->uh_hashsize;
473
474 /* We're just going to go to a power of two greater */
475 if (oldsize) {
476 hash->uh_hashsize = oldsize * 2;
477 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
478 hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
479 M_UMAHASH, M_NOWAIT);
480 } else {
481 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
482 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
483 M_WAITOK);
484 hash->uh_hashsize = UMA_HASH_SIZE_INIT;
485 }
486 if (hash->uh_slab_hash) {
487 bzero(hash->uh_slab_hash, alloc);
488 hash->uh_hashmask = hash->uh_hashsize - 1;
489 return (1);
490 }
491
492 return (0);
493}
494
495/*
496 * Expands the hash table for HASH zones. This is done from zone_timeout
497 * to reduce collisions. This must not be done in the regular allocation
498 * path, otherwise, we can recurse on the vm while allocating pages.
499 *
500 * Arguments:
501 * oldhash The hash you want to expand
502 * newhash The hash structure for the new table
503 *
504 * Returns:
505 * Nothing
506 *
507 * Discussion:
508 */
509static int
510hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
511{
512 uma_slab_t slab;
513 int hval;
514 int i;
515
516 if (!newhash->uh_slab_hash)
517 return (0);
518
519 if (oldhash->uh_hashsize >= newhash->uh_hashsize)
520 return (0);
521
522 /*
523 * I need to investigate hash algorithms for resizing without a
524 * full rehash.
525 */
526
527 for (i = 0; i < oldhash->uh_hashsize; i++)
528 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
529 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
530 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
531 hval = UMA_HASH(newhash, slab->us_data);
532 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
533 slab, us_hlink);
534 }
535
536 return (1);
537}
538
539/*
540 * Free the hash bucket to the appropriate backing store.
541 *
542 * Arguments:
543 * slab_hash The hash bucket we're freeing
544 * hashsize The number of entries in that hash bucket
545 *
546 * Returns:
547 * Nothing
548 */
549static void
550hash_free(struct uma_hash *hash)
551{
552 if (hash->uh_slab_hash == NULL)
553 return;
554 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
555 zone_free_item(hashzone,
556 hash->uh_slab_hash, NULL, SKIP_NONE, ZFREE_STATFREE);
557 else
558 free(hash->uh_slab_hash, M_UMAHASH);
559}
560
561/*
562 * Frees all outstanding items in a bucket
563 *
564 * Arguments:
565 * zone The zone to free to, must be unlocked.
566 * bucket The free/alloc bucket with items, cpu queue must be locked.
567 *
568 * Returns:
569 * Nothing
570 */
571
572static void
573bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
574{
575 void *item;
576
577 if (bucket == NULL)
578 return;
579
580 while (bucket->ub_cnt > 0) {
581 bucket->ub_cnt--;
582 item = bucket->ub_bucket[bucket->ub_cnt];
583#ifdef INVARIANTS
584 bucket->ub_bucket[bucket->ub_cnt] = NULL;
585 KASSERT(item != NULL,
586 ("bucket_drain: botched ptr, item is NULL"));
587#endif
588 zone_free_item(zone, item, NULL, SKIP_DTOR, 0);
589 }
590}
591
592/*
593 * Drains the per cpu caches for a zone.
594 *
595 * NOTE: This may only be called while the zone is being turn down, and not
596 * during normal operation. This is necessary in order that we do not have
597 * to migrate CPUs to drain the per-CPU caches.
598 *
599 * Arguments:
600 * zone The zone to drain, must be unlocked.
601 *
602 * Returns:
603 * Nothing
604 */
605static void
606cache_drain(uma_zone_t zone)
607{
608 uma_cache_t cache;
609 int cpu;
610
611 /*
612 * XXX: It is safe to not lock the per-CPU caches, because we're
613 * tearing down the zone anyway. I.e., there will be no further use
614 * of the caches at this point.
615 *
616 * XXX: It would good to be able to assert that the zone is being
617 * torn down to prevent improper use of cache_drain().
618 *
619 * XXX: We lock the zone before passing into bucket_cache_drain() as
620 * it is used elsewhere. Should the tear-down path be made special
621 * there in some form?
622 */
623 CPU_FOREACH(cpu) {
624 cache = &zone->uz_cpu[cpu];
625 bucket_drain(zone, cache->uc_allocbucket);
626 bucket_drain(zone, cache->uc_freebucket);
627 if (cache->uc_allocbucket != NULL)
628 bucket_free(cache->uc_allocbucket);
629 if (cache->uc_freebucket != NULL)
630 bucket_free(cache->uc_freebucket);
631 cache->uc_allocbucket = cache->uc_freebucket = NULL;
632 }
633 ZONE_LOCK(zone);
634 bucket_cache_drain(zone);
635 ZONE_UNLOCK(zone);
636}
637
638/*
639 * Drain the cached buckets from a zone. Expects a locked zone on entry.
640 */
641static void
642bucket_cache_drain(uma_zone_t zone)
643{
644 uma_bucket_t bucket;
645
646 /*
647 * Drain the bucket queues and free the buckets, we just keep two per
648 * cpu (alloc/free).
649 */
650 while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
651 LIST_REMOVE(bucket, ub_link);
652 ZONE_UNLOCK(zone);
653 bucket_drain(zone, bucket);
654 bucket_free(bucket);
655 ZONE_LOCK(zone);
656 }
657
658 /* Now we do the free queue.. */
659 while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
660 LIST_REMOVE(bucket, ub_link);
661 bucket_free(bucket);
662 }
663}
664
665/*
666 * Frees pages from a keg back to the system. This is done on demand from
667 * the pageout daemon.
668 *
669 * Returns nothing.
670 */
671static void
672keg_drain(uma_keg_t keg)
673{
674 struct slabhead freeslabs = { 0 };
675 uma_slab_t slab;
676 uma_slab_t n;
677 u_int8_t flags;
678 u_int8_t *mem;
679 int i;
680
681 /*
682 * We don't want to take pages from statically allocated kegs at this
683 * time
684 */
685 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
686 return;
687
688#ifdef UMA_DEBUG
689 printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
690#endif
691 KEG_LOCK(keg);
692 if (keg->uk_free == 0)
693 goto finished;
694
695 slab = LIST_FIRST(&keg->uk_free_slab);
696 while (slab) {
697 n = LIST_NEXT(slab, us_link);
698
699 /* We have no where to free these to */
700 if (slab->us_flags & UMA_SLAB_BOOT) {
701 slab = n;
702 continue;
703 }
704
705 LIST_REMOVE(slab, us_link);
706 keg->uk_pages -= keg->uk_ppera;
707 keg->uk_free -= keg->uk_ipers;
708
709 if (keg->uk_flags & UMA_ZONE_HASH)
710 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
711
712 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
713
714 slab = n;
715 }
716finished:
717 KEG_UNLOCK(keg);
718
719 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
720 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
721 if (keg->uk_fini)
722 for (i = 0; i < keg->uk_ipers; i++)
723 keg->uk_fini(
724 slab->us_data + (keg->uk_rsize * i),
725 keg->uk_size);
726 flags = slab->us_flags;
727 mem = slab->us_data;
728
729 if (keg->uk_flags & UMA_ZONE_VTOSLAB) {
730 vm_object_t obj;
731
732 if (flags & UMA_SLAB_KMEM)
733 obj = kmem_object;
734 else if (flags & UMA_SLAB_KERNEL)
735 obj = kernel_object;
736 else
737 obj = NULL;
738 for (i = 0; i < keg->uk_ppera; i++)
739 vsetobj((vm_offset_t)mem + (i * PAGE_SIZE),
740 obj);
741 }
742 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
743 zone_free_item(keg->uk_slabzone, slab, NULL,
744 SKIP_NONE, ZFREE_STATFREE);
745#ifdef UMA_DEBUG
746 printf("%s: Returning %d bytes.\n",
747 keg->uk_name, UMA_SLAB_SIZE * keg->uk_ppera);
748#endif
749 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, flags);
750 }
751}
752
753static void
754zone_drain_wait(uma_zone_t zone, int waitok)
755{
756
757 /*
758 * Set draining to interlock with zone_dtor() so we can release our
759 * locks as we go. Only dtor() should do a WAITOK call since it
760 * is the only call that knows the structure will still be available
761 * when it wakes up.
762 */
763 ZONE_LOCK(zone);
764 while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
765 if (waitok == M_NOWAIT)
766 goto out;
767 mtx_unlock(&uma_mtx);
768 msleep(zone, zone->uz_lock, PVM, "zonedrain", 1);
769 mtx_lock(&uma_mtx);
770 }
771 zone->uz_flags |= UMA_ZFLAG_DRAINING;
772 bucket_cache_drain(zone);
773 ZONE_UNLOCK(zone);
774 /*
775 * The DRAINING flag protects us from being freed while
776 * we're running. Normally the uma_mtx would protect us but we
777 * must be able to release and acquire the right lock for each keg.
778 */
779 zone_foreach_keg(zone, &keg_drain);
780 ZONE_LOCK(zone);
781 zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
782 wakeup(zone);
783out:
784 ZONE_UNLOCK(zone);
785}
786
787void
788zone_drain(uma_zone_t zone)
789{
790
791 zone_drain_wait(zone, M_NOWAIT);
792}
793
794/*
795 * Allocate a new slab for a keg. This does not insert the slab onto a list.
796 *
797 * Arguments:
798 * wait Shall we wait?
799 *
800 * Returns:
801 * The slab that was allocated or NULL if there is no memory and the
802 * caller specified M_NOWAIT.
803 */
804static uma_slab_t
805keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
806{
807 uma_slabrefcnt_t slabref;
808 uma_alloc allocf;
809 uma_slab_t slab;
810 u_int8_t *mem;
811 u_int8_t flags;
812 int i;
813
814 mtx_assert(&keg->uk_lock, MA_OWNED);
815 slab = NULL;
816
817#ifdef UMA_DEBUG
818 printf("slab_zalloc: Allocating a new slab for %s\n", keg->uk_name);
819#endif
820 allocf = keg->uk_allocf;
821 KEG_UNLOCK(keg);
822
823 if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
824 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
825 if (slab == NULL) {
826 KEG_LOCK(keg);
827 return NULL;
828 }
829 }
830
831 /*
832 * This reproduces the old vm_zone behavior of zero filling pages the
833 * first time they are added to a zone.
834 *
835 * Malloced items are zeroed in uma_zalloc.
836 */
837
838 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
839 wait |= M_ZERO;
840 else
841 wait &= ~M_ZERO;
842
843 /* zone is passed for legacy reasons. */
844 mem = allocf(zone, keg->uk_ppera * UMA_SLAB_SIZE, &flags, wait);
845 if (mem == NULL) {
846 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
847 zone_free_item(keg->uk_slabzone, slab, NULL,
848 SKIP_NONE, ZFREE_STATFREE);
849 KEG_LOCK(keg);
850 return (NULL);
851 }
852
853 /* Point the slab into the allocated memory */
854 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
855 slab = (uma_slab_t )(mem + keg->uk_pgoff);
856
857 if (keg->uk_flags & UMA_ZONE_VTOSLAB)
858 for (i = 0; i < keg->uk_ppera; i++)
859 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
860
861 slab->us_keg = keg;
862 slab->us_data = mem;
863 slab->us_freecount = keg->uk_ipers;
864 slab->us_firstfree = 0;
865 slab->us_flags = flags;
866
867 if (keg->uk_flags & UMA_ZONE_REFCNT) {
868 slabref = (uma_slabrefcnt_t)slab;
869 for (i = 0; i < keg->uk_ipers; i++) {
870 slabref->us_freelist[i].us_refcnt = 0;
871 slabref->us_freelist[i].us_item = i+1;
872 }
873 } else {
874 for (i = 0; i < keg->uk_ipers; i++)
875 slab->us_freelist[i].us_item = i+1;
876 }
877
878 if (keg->uk_init != NULL) {
879 for (i = 0; i < keg->uk_ipers; i++)
880 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
881 keg->uk_size, wait) != 0)
882 break;
883 if (i != keg->uk_ipers) {
884 if (keg->uk_fini != NULL) {
885 for (i--; i > -1; i--)
886 keg->uk_fini(slab->us_data +
887 (keg->uk_rsize * i),
888 keg->uk_size);
889 }
890 if (keg->uk_flags & UMA_ZONE_VTOSLAB) {
891 vm_object_t obj;
892
893 if (flags & UMA_SLAB_KMEM)
894 obj = kmem_object;
895 else if (flags & UMA_SLAB_KERNEL)
896 obj = kernel_object;
897 else
898 obj = NULL;
899 for (i = 0; i < keg->uk_ppera; i++)
900 vsetobj((vm_offset_t)mem +
901 (i * PAGE_SIZE), obj);
902 }
903 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
904 zone_free_item(keg->uk_slabzone, slab,
905 NULL, SKIP_NONE, ZFREE_STATFREE);
906 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera,
907 flags);
908 KEG_LOCK(keg);
909 return (NULL);
910 }
911 }
912 KEG_LOCK(keg);
913
914 if (keg->uk_flags & UMA_ZONE_HASH)
915 UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
916
917 keg->uk_pages += keg->uk_ppera;
918 keg->uk_free += keg->uk_ipers;
919
920 return (slab);
921}
922
923/*
924 * This function is intended to be used early on in place of page_alloc() so
925 * that we may use the boot time page cache to satisfy allocations before
926 * the VM is ready.
927 */
928static void *
929startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
930{
931 uma_keg_t keg;
932 uma_slab_t tmps;
933
934 keg = zone_first_keg(zone);
935
936 /*
937 * Check our small startup cache to see if it has pages remaining.
938 */
939 mtx_lock(&uma_boot_pages_mtx);
940 if ((tmps = LIST_FIRST(&uma_boot_pages)) != NULL) {
941 LIST_REMOVE(tmps, us_link);
942 mtx_unlock(&uma_boot_pages_mtx);
943 *pflag = tmps->us_flags;
944 return (tmps->us_data);
945 }
946 mtx_unlock(&uma_boot_pages_mtx);
947 if (booted == 0)
948 panic("UMA: Increase vm.boot_pages");
949 /*
950 * Now that we've booted reset these users to their real allocator.
951 */
952#ifdef UMA_MD_SMALL_ALLOC
953 keg->uk_allocf = uma_small_alloc;
954#else
955 keg->uk_allocf = page_alloc;
956#endif
957 return keg->uk_allocf(zone, bytes, pflag, wait);
958}
959
960/*
961 * Allocates a number of pages from the system
962 *
963 * Arguments:
964 * bytes The number of bytes requested
965 * wait Shall we wait?
966 *
967 * Returns:
968 * A pointer to the alloced memory or possibly
969 * NULL if M_NOWAIT is set.
970 */
971static void *
972page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
973{
974 void *p; /* Returned page */
975
976 *pflag = UMA_SLAB_KMEM;
977 p = (void *) kmem_malloc(kmem_map, bytes, wait);
978
979 return (p);
980}
981
982/*
983 * Allocates a number of pages from within an object
984 *
985 * Arguments:
986 * bytes The number of bytes requested
987 * wait Shall we wait?
988 *
989 * Returns:
990 * A pointer to the alloced memory or possibly
991 * NULL if M_NOWAIT is set.
992 */
993static void *
994obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
995{
996 vm_object_t object;
997 vm_offset_t retkva, zkva;
998 vm_page_t p;
999 int pages, startpages;
1000 uma_keg_t keg;
1001
1002 keg = zone_first_keg(zone);
1003 object = keg->uk_obj;
1004 retkva = 0;
1005
1006 /*
1007 * This looks a little weird since we're getting one page at a time.
1008 */
1009 VM_OBJECT_LOCK(object);
1010 p = TAILQ_LAST(&object->memq, pglist);
1011 pages = p != NULL ? p->pindex + 1 : 0;
1012 startpages = pages;
1013 zkva = keg->uk_kva + pages * PAGE_SIZE;
1014 for (; bytes > 0; bytes -= PAGE_SIZE) {
1015 p = vm_page_alloc(object, pages,
1016 VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED);
1017 if (p == NULL) {
1018 if (pages != startpages)
1019 pmap_qremove(retkva, pages - startpages);
1020 while (pages != startpages) {
1021 pages--;
1022 p = TAILQ_LAST(&object->memq, pglist);
1023 vm_page_unwire(p, 0);
1024 vm_page_free(p);
1025 }
1026 retkva = 0;
1027 goto done;
1028 }
1029 pmap_qenter(zkva, &p, 1);
1030 if (retkva == 0)
1031 retkva = zkva;
1032 zkva += PAGE_SIZE;
1033 pages += 1;
1034 }
1035done:
1036 VM_OBJECT_UNLOCK(object);
1037 *flags = UMA_SLAB_PRIV;
1038
1039 return ((void *)retkva);
1040}
1041
1042/*
1043 * Frees a number of pages to the system
1044 *
1045 * Arguments:
1046 * mem A pointer to the memory to be freed
1047 * size The size of the memory being freed
1048 * flags The original p->us_flags field
1049 *
1050 * Returns:
1051 * Nothing
1052 */
1053static void
1054page_free(void *mem, int size, u_int8_t flags)
1055{
1056 vm_map_t map;
1057
1058 if (flags & UMA_SLAB_KMEM)
1059 map = kmem_map;
1060 else if (flags & UMA_SLAB_KERNEL)
1061 map = kernel_map;
1062 else
1063 panic("UMA: page_free used with invalid flags %d", flags);
1064
1065 kmem_free(map, (vm_offset_t)mem, size);
1066}
1067
1068/*
1069 * Zero fill initializer
1070 *
1071 * Arguments/Returns follow uma_init specifications
1072 */
1073static int
1074zero_init(void *mem, int size, int flags)
1075{
1076 bzero(mem, size);
1077 return (0);
1078}
1079
1080/*
1081 * Finish creating a small uma keg. This calculates ipers, and the keg size.
1082 *
1083 * Arguments
1084 * keg The zone we should initialize
1085 *
1086 * Returns
1087 * Nothing
1088 */
1089static void
1090keg_small_init(uma_keg_t keg)
1091{
1092 u_int rsize;
1093 u_int memused;
1094 u_int wastedspace;
1095 u_int shsize;
1096
1097 KASSERT(keg != NULL, ("Keg is null in keg_small_init"));
1098 rsize = keg->uk_size;
1099
1100 if (rsize < UMA_SMALLEST_UNIT)
1101 rsize = UMA_SMALLEST_UNIT;
1102 if (rsize & keg->uk_align)
1103 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1104
1105 keg->uk_rsize = rsize;
1106 keg->uk_ppera = 1;
1107
1108 if (keg->uk_flags & UMA_ZONE_REFCNT) {
1109 rsize += UMA_FRITMREF_SZ; /* linkage & refcnt */
1110 shsize = sizeof(struct uma_slab_refcnt);
1111 } else {
1112 rsize += UMA_FRITM_SZ; /* Account for linkage */
1113 shsize = sizeof(struct uma_slab);
1114 }
1115
1116 keg->uk_ipers = (UMA_SLAB_SIZE - shsize) / rsize;
1117 KASSERT(keg->uk_ipers != 0, ("keg_small_init: ipers is 0"));
1118 memused = keg->uk_ipers * rsize + shsize;
1119 wastedspace = UMA_SLAB_SIZE - memused;
1120
1121 /*
1122 * We can't do OFFPAGE if we're internal or if we've been
1123 * asked to not go to the VM for buckets. If we do this we
1124 * may end up going to the VM (kmem_map) for slabs which we
1125 * do not want to do if we're UMA_ZFLAG_CACHEONLY as a
1126 * result of UMA_ZONE_VM, which clearly forbids it.
1127 */
1128 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1129 (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1130 return;
1131
1132 if ((wastedspace >= UMA_MAX_WASTE) &&
1133 (keg->uk_ipers < (UMA_SLAB_SIZE / keg->uk_rsize))) {
1134 keg->uk_ipers = UMA_SLAB_SIZE / keg->uk_rsize;
1135 KASSERT(keg->uk_ipers <= 255,
1136 ("keg_small_init: keg->uk_ipers too high!"));
1137#ifdef UMA_DEBUG
1138 printf("UMA decided we need offpage slab headers for "
1139 "keg: %s, calculated wastedspace = %d, "
1140 "maximum wasted space allowed = %d, "
1141 "calculated ipers = %d, "
1142 "new wasted space = %d\n", keg->uk_name, wastedspace,
1143 UMA_MAX_WASTE, keg->uk_ipers,
1144 UMA_SLAB_SIZE - keg->uk_ipers * keg->uk_rsize);
1145#endif
1146 keg->uk_flags |= UMA_ZONE_OFFPAGE;
1147 if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1148 keg->uk_flags |= UMA_ZONE_HASH;
1149 }
1150}
1151
1152/*
1153 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do
1154 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be
1155 * more complicated.
1156 *
1157 * Arguments
1158 * keg The keg we should initialize
1159 *
1160 * Returns
1161 * Nothing
1162 */
1163static void
1164keg_large_init(uma_keg_t keg)
1165{
1166 int pages;
1167
1168 KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1169 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1170 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1171
1172 pages = keg->uk_size / UMA_SLAB_SIZE;
1173
1174 /* Account for remainder */
1175 if ((pages * UMA_SLAB_SIZE) < keg->uk_size)
1176 pages++;
1177
1178 keg->uk_ppera = pages;
1179 keg->uk_ipers = 1;
1180
1181 keg->uk_flags |= UMA_ZONE_OFFPAGE;
1182 if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1183 keg->uk_flags |= UMA_ZONE_HASH;
1184
1185 keg->uk_rsize = keg->uk_size;
1186}
1187
1188static void
1189keg_cachespread_init(uma_keg_t keg)
1190{
1191 int alignsize;
1192 int trailer;
1193 int pages;
1194 int rsize;
1195
1196 alignsize = keg->uk_align + 1;
1197 rsize = keg->uk_size;
1198 /*
1199 * We want one item to start on every align boundary in a page. To
1200 * do this we will span pages. We will also extend the item by the
1201 * size of align if it is an even multiple of align. Otherwise, it
1202 * would fall on the same boundary every time.
1203 */
1204 if (rsize & keg->uk_align)
1205 rsize = (rsize & ~keg->uk_align) + alignsize;
1206 if ((rsize & alignsize) == 0)
1207 rsize += alignsize;
1208 trailer = rsize - keg->uk_size;
1209 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1210 pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1211 keg->uk_rsize = rsize;
1212 keg->uk_ppera = pages;
1213 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1214 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1215 KASSERT(keg->uk_ipers <= uma_max_ipers,
1216 ("keg_small_init: keg->uk_ipers too high(%d) increase max_ipers",
1217 keg->uk_ipers));
1218}
1219
1220/*
1221 * Keg header ctor. This initializes all fields, locks, etc. And inserts
1222 * the keg onto the global keg list.
1223 *
1224 * Arguments/Returns follow uma_ctor specifications
1225 * udata Actually uma_kctor_args
1226 */
1227static int
1228keg_ctor(void *mem, int size, void *udata, int flags)
1229{
1230 struct uma_kctor_args *arg = udata;
1231 uma_keg_t keg = mem;
1232 uma_zone_t zone;
1233
1234 bzero(keg, size);
1235 keg->uk_size = arg->size;
1236 keg->uk_init = arg->uminit;
1237 keg->uk_fini = arg->fini;
1238 keg->uk_align = arg->align;
1239 keg->uk_free = 0;
1240 keg->uk_pages = 0;
1241 keg->uk_flags = arg->flags;
1242 keg->uk_allocf = page_alloc;
1243 keg->uk_freef = page_free;
1244 keg->uk_recurse = 0;
1245 keg->uk_slabzone = NULL;
1246
1247 /*
1248 * The master zone is passed to us at keg-creation time.
1249 */
1250 zone = arg->zone;
1251 keg->uk_name = zone->uz_name;
1252
1253 if (arg->flags & UMA_ZONE_VM)
1254 keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1255
1256 if (arg->flags & UMA_ZONE_ZINIT)
1257 keg->uk_init = zero_init;
1258
1259 if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC)
1260 keg->uk_flags |= UMA_ZONE_VTOSLAB;
1261
1262 /*
1263 * The +UMA_FRITM_SZ added to uk_size is to account for the
1264 * linkage that is added to the size in keg_small_init(). If
1265 * we don't account for this here then we may end up in
1266 * keg_small_init() with a calculated 'ipers' of 0.
1267 */
1268 if (keg->uk_flags & UMA_ZONE_REFCNT) {
1269 if (keg->uk_flags & UMA_ZONE_CACHESPREAD)
1270 keg_cachespread_init(keg);
1271 else if ((keg->uk_size+UMA_FRITMREF_SZ) >
1272 (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)))
1273 keg_large_init(keg);
1274 else
1275 keg_small_init(keg);
1276 } else {
1277 if (keg->uk_flags & UMA_ZONE_CACHESPREAD)
1278 keg_cachespread_init(keg);
1279 else if ((keg->uk_size+UMA_FRITM_SZ) >
1280 (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1281 keg_large_init(keg);
1282 else
1283 keg_small_init(keg);
1284 }
1285
1286 if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
1287 if (keg->uk_flags & UMA_ZONE_REFCNT)
1288 keg->uk_slabzone = slabrefzone;
1289 else
1290 keg->uk_slabzone = slabzone;
1291 }
1292
1293 /*
1294 * If we haven't booted yet we need allocations to go through the
1295 * startup cache until the vm is ready.
1296 */
1297 if (keg->uk_ppera == 1) {
1298#ifdef UMA_MD_SMALL_ALLOC
1299 keg->uk_allocf = uma_small_alloc;
1300 keg->uk_freef = uma_small_free;
1301#endif
1302 if (booted == 0)
1303 keg->uk_allocf = startup_alloc;
1304 }
1305
1306 /*
1307 * Initialize keg's lock (shared among zones).
1308 */
1309 if (arg->flags & UMA_ZONE_MTXCLASS)
1310 KEG_LOCK_INIT(keg, 1);
1311 else
1312 KEG_LOCK_INIT(keg, 0);
1313
1314 /*
1315 * If we're putting the slab header in the actual page we need to
1316 * figure out where in each page it goes. This calculates a right
1317 * justified offset into the memory on an ALIGN_PTR boundary.
1318 */
1319 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1320 u_int totsize;
1321
1322 /* Size of the slab struct and free list */
1323 if (keg->uk_flags & UMA_ZONE_REFCNT)
1324 totsize = sizeof(struct uma_slab_refcnt) +
1325 keg->uk_ipers * UMA_FRITMREF_SZ;
1326 else
1327 totsize = sizeof(struct uma_slab) +
1328 keg->uk_ipers * UMA_FRITM_SZ;
1329
1330 if (totsize & UMA_ALIGN_PTR)
1331 totsize = (totsize & ~UMA_ALIGN_PTR) +
1332 (UMA_ALIGN_PTR + 1);
1333 keg->uk_pgoff = UMA_SLAB_SIZE - totsize;
1334
1335 if (keg->uk_flags & UMA_ZONE_REFCNT)
1336 totsize = keg->uk_pgoff + sizeof(struct uma_slab_refcnt)
1337 + keg->uk_ipers * UMA_FRITMREF_SZ;
1338 else
1339 totsize = keg->uk_pgoff + sizeof(struct uma_slab)
1340 + keg->uk_ipers * UMA_FRITM_SZ;
1341
1342 /*
1343 * The only way the following is possible is if with our
1344 * UMA_ALIGN_PTR adjustments we are now bigger than
1345 * UMA_SLAB_SIZE. I haven't checked whether this is
1346 * mathematically possible for all cases, so we make
1347 * sure here anyway.
1348 */
1349 if (totsize > UMA_SLAB_SIZE) {
1350 printf("zone %s ipers %d rsize %d size %d\n",
1351 zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1352 keg->uk_size);
1353 panic("UMA slab won't fit.");
1354 }
1355 }
1356
1357 if (keg->uk_flags & UMA_ZONE_HASH)
1358 hash_alloc(&keg->uk_hash);
1359
1360#ifdef UMA_DEBUG
1361 printf("UMA: %s(%p) size %d(%d) flags %d ipers %d ppera %d out %d free %d\n",
1362 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
1363 keg->uk_ipers, keg->uk_ppera,
1364 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free);
1365#endif
1366
1367 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1368
1369 mtx_lock(&uma_mtx);
1370 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1371 mtx_unlock(&uma_mtx);
1372 return (0);
1373}
1374
1375/*
1376 * Zone header ctor. This initializes all fields, locks, etc.
1377 *
1378 * Arguments/Returns follow uma_ctor specifications
1379 * udata Actually uma_zctor_args
1380 */
1381static int
1382zone_ctor(void *mem, int size, void *udata, int flags)
1383{
1384 struct uma_zctor_args *arg = udata;
1385 uma_zone_t zone = mem;
1386 uma_zone_t z;
1387 uma_keg_t keg;
1388
1389 bzero(zone, size);
1390 zone->uz_name = arg->name;
1391 zone->uz_ctor = arg->ctor;
1392 zone->uz_dtor = arg->dtor;
1393 zone->uz_slab = zone_fetch_slab;
1394 zone->uz_init = NULL;
1395 zone->uz_fini = NULL;
1396 zone->uz_allocs = 0;
1397 zone->uz_frees = 0;
1398 zone->uz_fails = 0;
1399 zone->uz_sleeps = 0;
1400 zone->uz_fills = zone->uz_count = 0;
1401 zone->uz_flags = 0;
1402 keg = arg->keg;
1403
1404 if (arg->flags & UMA_ZONE_SECONDARY) {
1405 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1406 zone->uz_init = arg->uminit;
1407 zone->uz_fini = arg->fini;
1408 zone->uz_lock = &keg->uk_lock;
1409 zone->uz_flags |= UMA_ZONE_SECONDARY;
1410 mtx_lock(&uma_mtx);
1411 ZONE_LOCK(zone);
1412 LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1413 if (LIST_NEXT(z, uz_link) == NULL) {
1414 LIST_INSERT_AFTER(z, zone, uz_link);
1415 break;
1416 }
1417 }
1418 ZONE_UNLOCK(zone);
1419 mtx_unlock(&uma_mtx);
1420 } else if (keg == NULL) {
1421 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1422 arg->align, arg->flags)) == NULL)
1423 return (ENOMEM);
1424 } else {
1425 struct uma_kctor_args karg;
1426 int error;
1427
1428 /* We should only be here from uma_startup() */
1429 karg.size = arg->size;
1430 karg.uminit = arg->uminit;
1431 karg.fini = arg->fini;
1432 karg.align = arg->align;
1433 karg.flags = arg->flags;
1434 karg.zone = zone;
1435 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1436 flags);
1437 if (error)
1438 return (error);
1439 }
1440 /*
1441 * Link in the first keg.
1442 */
1443 zone->uz_klink.kl_keg = keg;
1444 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1445 zone->uz_lock = &keg->uk_lock;
1446 zone->uz_size = keg->uk_size;
1447 zone->uz_flags |= (keg->uk_flags &
1448 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1449
1450 /*
1451 * Some internal zones don't have room allocated for the per cpu
1452 * caches. If we're internal, bail out here.
1453 */
1454 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1455 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1456 ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1457 return (0);
1458 }
1459
1460 if (keg->uk_flags & UMA_ZONE_MAXBUCKET)
1461 zone->uz_count = BUCKET_MAX;
1462 else if (keg->uk_ipers <= BUCKET_MAX)
1463 zone->uz_count = keg->uk_ipers;
1464 else
1465 zone->uz_count = BUCKET_MAX;
1466 return (0);
1467}
1468
1469/*
1470 * Keg header dtor. This frees all data, destroys locks, frees the hash
1471 * table and removes the keg from the global list.
1472 *
1473 * Arguments/Returns follow uma_dtor specifications
1474 * udata unused
1475 */
1476static void
1477keg_dtor(void *arg, int size, void *udata)
1478{
1479 uma_keg_t keg;
1480
1481 keg = (uma_keg_t)arg;
1482 KEG_LOCK(keg);
1483 if (keg->uk_free != 0) {
1484 printf("Freed UMA keg was not empty (%d items). "
1485 " Lost %d pages of memory.\n",
1486 keg->uk_free, keg->uk_pages);
1487 }
1488 KEG_UNLOCK(keg);
1489
1490 hash_free(&keg->uk_hash);
1491
1492 KEG_LOCK_FINI(keg);
1493}
1494
1495/*
1496 * Zone header dtor.
1497 *
1498 * Arguments/Returns follow uma_dtor specifications
1499 * udata unused
1500 */
1501static void
1502zone_dtor(void *arg, int size, void *udata)
1503{
1504 uma_klink_t klink;
1505 uma_zone_t zone;
1506 uma_keg_t keg;
1507
1508 zone = (uma_zone_t)arg;
1509 keg = zone_first_keg(zone);
1510
1511 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1512 cache_drain(zone);
1513
1514 mtx_lock(&uma_mtx);
1515 LIST_REMOVE(zone, uz_link);
1516 mtx_unlock(&uma_mtx);
1517 /*
1518 * XXX there are some races here where
1519 * the zone can be drained but zone lock
1520 * released and then refilled before we
1521 * remove it... we dont care for now
1522 */
1523 zone_drain_wait(zone, M_WAITOK);
1524 /*
1525 * Unlink all of our kegs.
1526 */
1527 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1528 klink->kl_keg = NULL;
1529 LIST_REMOVE(klink, kl_link);
1530 if (klink == &zone->uz_klink)
1531 continue;
1532 free(klink, M_TEMP);
1533 }
1534 /*
1535 * We only destroy kegs from non secondary zones.
1536 */
1537 if ((zone->uz_flags & UMA_ZONE_SECONDARY) == 0) {
1538 mtx_lock(&uma_mtx);
1539 LIST_REMOVE(keg, uk_link);
1540 mtx_unlock(&uma_mtx);
1541 zone_free_item(kegs, keg, NULL, SKIP_NONE,
1542 ZFREE_STATFREE);
1543 }
1544}
1545
1546/*
1547 * Traverses every zone in the system and calls a callback
1548 *
1549 * Arguments:
1550 * zfunc A pointer to a function which accepts a zone
1551 * as an argument.
1552 *
1553 * Returns:
1554 * Nothing
1555 */
1556static void
1557zone_foreach(void (*zfunc)(uma_zone_t))
1558{
1559 uma_keg_t keg;
1560 uma_zone_t zone;
1561
1562 mtx_lock(&uma_mtx);
1563 LIST_FOREACH(keg, &uma_kegs, uk_link) {
1564 LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1565 zfunc(zone);
1566 }
1567 mtx_unlock(&uma_mtx);
1568}
1569
1570/* Public functions */
1571/* See uma.h */
1572void
1573uma_startup(void *bootmem, int boot_pages)
1574{
1575 struct uma_zctor_args args;
1576 uma_slab_t slab;
1577 u_int slabsize;
1578 u_int objsize, totsize, wsize;
1579 int i;
1580
1581#ifdef UMA_DEBUG
1582 printf("Creating uma keg headers zone and keg.\n");
1583#endif
1584 mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF);
1585
1586 /*
1587 * Figure out the maximum number of items-per-slab we'll have if
1588 * we're using the OFFPAGE slab header to track free items, given
1589 * all possible object sizes and the maximum desired wastage
1590 * (UMA_MAX_WASTE).
1591 *
1592 * We iterate until we find an object size for
1593 * which the calculated wastage in keg_small_init() will be
1594 * enough to warrant OFFPAGE. Since wastedspace versus objsize
1595 * is an overall increasing see-saw function, we find the smallest
1596 * objsize such that the wastage is always acceptable for objects
1597 * with that objsize or smaller. Since a smaller objsize always
1598 * generates a larger possible uma_max_ipers, we use this computed
1599 * objsize to calculate the largest ipers possible. Since the
1600 * ipers calculated for OFFPAGE slab headers is always larger than
1601 * the ipers initially calculated in keg_small_init(), we use
1602 * the former's equation (UMA_SLAB_SIZE / keg->uk_rsize) to
1603 * obtain the maximum ipers possible for offpage slab headers.
1604 *
1605 * It should be noted that ipers versus objsize is an inversly
1606 * proportional function which drops off rather quickly so as
1607 * long as our UMA_MAX_WASTE is such that the objsize we calculate
1608 * falls into the portion of the inverse relation AFTER the steep
1609 * falloff, then uma_max_ipers shouldn't be too high (~10 on i386).
1610 *
1611 * Note that we have 8-bits (1 byte) to use as a freelist index
1612 * inside the actual slab header itself and this is enough to
1613 * accomodate us. In the worst case, a UMA_SMALLEST_UNIT sized
1614 * object with offpage slab header would have ipers =
1615 * UMA_SLAB_SIZE / UMA_SMALLEST_UNIT (currently = 256), which is
1616 * 1 greater than what our byte-integer freelist index can
1617 * accomodate, but we know that this situation never occurs as
1618 * for UMA_SMALLEST_UNIT-sized objects, we will never calculate
1619 * that we need to go to offpage slab headers. Or, if we do,
1620 * then we trap that condition below and panic in the INVARIANTS case.
1621 */
1622 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab) - UMA_MAX_WASTE;
1623 totsize = wsize;
1624 objsize = UMA_SMALLEST_UNIT;
1625 while (totsize >= wsize) {
1626 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) /
1627 (objsize + UMA_FRITM_SZ);
1628 totsize *= (UMA_FRITM_SZ + objsize);
1629 objsize++;
1630 }
1631 if (objsize > UMA_SMALLEST_UNIT)
1632 objsize--;
1633 uma_max_ipers = MAX(UMA_SLAB_SIZE / objsize, 64);
1634
1635 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - UMA_MAX_WASTE;
1636 totsize = wsize;
1637 objsize = UMA_SMALLEST_UNIT;
1638 while (totsize >= wsize) {
1639 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)) /
1640 (objsize + UMA_FRITMREF_SZ);
1641 totsize *= (UMA_FRITMREF_SZ + objsize);
1642 objsize++;
1643 }
1644 if (objsize > UMA_SMALLEST_UNIT)
1645 objsize--;
1646 uma_max_ipers_ref = MAX(UMA_SLAB_SIZE / objsize, 64);
1647
1648 KASSERT((uma_max_ipers_ref <= 255) && (uma_max_ipers <= 255),
1649 ("uma_startup: calculated uma_max_ipers values too large!"));
1650
1651#ifdef UMA_DEBUG
1652 printf("Calculated uma_max_ipers (for OFFPAGE) is %d\n", uma_max_ipers);
1653 printf("Calculated uma_max_ipers_slab (for OFFPAGE) is %d\n",
1654 uma_max_ipers_ref);
1655#endif
1656
1657 /* "manually" create the initial zone */
1658 args.name = "UMA Kegs";
1659 args.size = sizeof(struct uma_keg);
1660 args.ctor = keg_ctor;
1661 args.dtor = keg_dtor;
1662 args.uminit = zero_init;
1663 args.fini = NULL;
1664 args.keg = &masterkeg;
1665 args.align = 32 - 1;
1666 args.flags = UMA_ZFLAG_INTERNAL;
1667 /* The initial zone has no Per cpu queues so it's smaller */
1668 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1669
1670#ifdef UMA_DEBUG
1671 printf("Filling boot free list.\n");
1672#endif
1673 for (i = 0; i < boot_pages; i++) {
1674 slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE));
1675 slab->us_data = (u_int8_t *)slab;
1676 slab->us_flags = UMA_SLAB_BOOT;
1677 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1678 }
1679 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1680
1681#ifdef UMA_DEBUG
1682 printf("Creating uma zone headers zone and keg.\n");
1683#endif
1684 args.name = "UMA Zones";
1685 args.size = sizeof(struct uma_zone) +
1686 (sizeof(struct uma_cache) * (mp_maxid + 1));
1687 args.ctor = zone_ctor;
1688 args.dtor = zone_dtor;
1689 args.uminit = zero_init;
1690 args.fini = NULL;
1691 args.keg = NULL;
1692 args.align = 32 - 1;
1693 args.flags = UMA_ZFLAG_INTERNAL;
1694 /* The initial zone has no Per cpu queues so it's smaller */
1695 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1696
1697#ifdef UMA_DEBUG
1698 printf("Initializing pcpu cache locks.\n");
1699#endif
1700#ifdef UMA_DEBUG
1701 printf("Creating slab and hash zones.\n");
1702#endif
1703
1704 /*
1705 * This is the max number of free list items we'll have with
1706 * offpage slabs.
1707 */
1708 slabsize = uma_max_ipers * UMA_FRITM_SZ;
1709 slabsize += sizeof(struct uma_slab);
1710
1711 /* Now make a zone for slab headers */
1712 slabzone = uma_zcreate("UMA Slabs",
1713 slabsize,
1714 NULL, NULL, NULL, NULL,
1715 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1716
1717 /*
1718 * We also create a zone for the bigger slabs with reference
1719 * counts in them, to accomodate UMA_ZONE_REFCNT zones.
1720 */
1721 slabsize = uma_max_ipers_ref * UMA_FRITMREF_SZ;
1722 slabsize += sizeof(struct uma_slab_refcnt);
1723 slabrefzone = uma_zcreate("UMA RCntSlabs",
1724 slabsize,
1725 NULL, NULL, NULL, NULL,
1726 UMA_ALIGN_PTR,
1727 UMA_ZFLAG_INTERNAL);
1728
1729 hashzone = uma_zcreate("UMA Hash",
1730 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1731 NULL, NULL, NULL, NULL,
1732 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1733
1734 bucket_init();
1735
1736#if defined(UMA_MD_SMALL_ALLOC) && !defined(UMA_MD_SMALL_ALLOC_NEEDS_VM)
1737 booted = 1;
1738#endif
1739
1740#ifdef UMA_DEBUG
1741 printf("UMA startup complete.\n");
1742#endif
1743}
1744
1745/* see uma.h */
1746void
1747uma_startup2(void)
1748{
1749 booted = 1;
1750 bucket_enable();
1751#ifdef UMA_DEBUG
1752 printf("UMA startup2 complete.\n");
1753#endif
1754}
1755
1756/*
1757 * Initialize our callout handle
1758 *
1759 */
1760
1761static void
1762uma_startup3(void)
1763{
1764#ifdef UMA_DEBUG
1765 printf("Starting callout.\n");
1766#endif
1767 callout_init(&uma_callout, CALLOUT_MPSAFE);
1768 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1769#ifdef UMA_DEBUG
1770 printf("UMA startup3 complete.\n");
1771#endif
1772}
1773
1774static uma_keg_t
1775uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1776 int align, u_int32_t flags)
1777{
1778 struct uma_kctor_args args;
1779
1780 args.size = size;
1781 args.uminit = uminit;
1782 args.fini = fini;
1783 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1784 args.flags = flags;
1785 args.zone = zone;
1786 return (zone_alloc_item(kegs, &args, M_WAITOK));
1787}
1788
1789/* See uma.h */
1790void
1791uma_set_align(int align)
1792{
1793
1794 if (align != UMA_ALIGN_CACHE)
1795 uma_align_cache = align;
1796}
1797
1798/* See uma.h */
1799uma_zone_t
1800uma_zcreate(char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1801 uma_init uminit, uma_fini fini, int align, u_int32_t flags)
1802
1803{
1804 struct uma_zctor_args args;
1805
1806 /* This stuff is essential for the zone ctor */
1807 args.name = name;
1808 args.size = size;
1809 args.ctor = ctor;
1810 args.dtor = dtor;
1811 args.uminit = uminit;
1812 args.fini = fini;
1813 args.align = align;
1814 args.flags = flags;
1815 args.keg = NULL;
1816
1817 return (zone_alloc_item(zones, &args, M_WAITOK));
1818}
1819
1820/* See uma.h */
1821uma_zone_t
1822uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1823 uma_init zinit, uma_fini zfini, uma_zone_t master)
1824{
1825 struct uma_zctor_args args;
1826 uma_keg_t keg;
1827
1828 keg = zone_first_keg(master);
1829 args.name = name;
1830 args.size = keg->uk_size;
1831 args.ctor = ctor;
1832 args.dtor = dtor;
1833 args.uminit = zinit;
1834 args.fini = zfini;
1835 args.align = keg->uk_align;
1836 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
1837 args.keg = keg;
1838
1839 /* XXX Attaches only one keg of potentially many. */
1840 return (zone_alloc_item(zones, &args, M_WAITOK));
1841}
1842
1843static void
1844zone_lock_pair(uma_zone_t a, uma_zone_t b)
1845{
1846 if (a < b) {
1847 ZONE_LOCK(a);
1848 mtx_lock_flags(b->uz_lock, MTX_DUPOK);
1849 } else {
1850 ZONE_LOCK(b);
1851 mtx_lock_flags(a->uz_lock, MTX_DUPOK);
1852 }
1853}
1854
1855static void
1856zone_unlock_pair(uma_zone_t a, uma_zone_t b)
1857{
1858
1859 ZONE_UNLOCK(a);
1860 ZONE_UNLOCK(b);
1861}
1862
1863int
1864uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
1865{
1866 uma_klink_t klink;
1867 uma_klink_t kl;
1868 int error;
1869
1870 error = 0;
1871 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
1872
1873 zone_lock_pair(zone, master);
1874 /*
1875 * zone must use vtoslab() to resolve objects and must already be
1876 * a secondary.
1877 */
1878 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
1879 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
1880 error = EINVAL;
1881 goto out;
1882 }
1883 /*
1884 * The new master must also use vtoslab().
1885 */
1886 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
1887 error = EINVAL;
1888 goto out;
1889 }
1890 /*
1891 * Both must either be refcnt, or not be refcnt.
1892 */
1893 if ((zone->uz_flags & UMA_ZONE_REFCNT) !=
1894 (master->uz_flags & UMA_ZONE_REFCNT)) {
1895 error = EINVAL;
1896 goto out;
1897 }
1898 /*
1899 * The underlying object must be the same size. rsize
1900 * may be different.
1901 */
1902 if (master->uz_size != zone->uz_size) {
1903 error = E2BIG;
1904 goto out;
1905 }
1906 /*
1907 * Put it at the end of the list.
1908 */
1909 klink->kl_keg = zone_first_keg(master);
1910 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
1911 if (LIST_NEXT(kl, kl_link) == NULL) {
1912 LIST_INSERT_AFTER(kl, klink, kl_link);
1913 break;
1914 }
1915 }
1916 klink = NULL;
1917 zone->uz_flags |= UMA_ZFLAG_MULTI;
1918 zone->uz_slab = zone_fetch_slab_multi;
1919
1920out:
1921 zone_unlock_pair(zone, master);
1922 if (klink != NULL)
1923 free(klink, M_TEMP);
1924
1925 return (error);
1926}
1927
1928
1929/* See uma.h */
1930void
1931uma_zdestroy(uma_zone_t zone)
1932{
1933
1934 zone_free_item(zones, zone, NULL, SKIP_NONE, ZFREE_STATFREE);
1935}
1936
1937/* See uma.h */
1938void *
1939uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
1940{
1941 void *item;
1942 uma_cache_t cache;
1943 uma_bucket_t bucket;
1944 int cpu;
1945
1946 /* This is the fast path allocation */
1947#ifdef UMA_DEBUG_ALLOC_1
1948 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
1949#endif
1950 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
1951 zone->uz_name, flags);
1952
1953 if (flags & M_WAITOK) {
1954 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
1955 "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
1956 }
1957
1958 /*
1959 * If possible, allocate from the per-CPU cache. There are two
1960 * requirements for safe access to the per-CPU cache: (1) the thread
1961 * accessing the cache must not be preempted or yield during access,
1962 * and (2) the thread must not migrate CPUs without switching which
1963 * cache it accesses. We rely on a critical section to prevent
1964 * preemption and migration. We release the critical section in
1965 * order to acquire the zone mutex if we are unable to allocate from
1966 * the current cache; when we re-acquire the critical section, we
1967 * must detect and handle migration if it has occurred.
1968 */
1969zalloc_restart:
1970 critical_enter();
1971 cpu = curcpu;
1972 cache = &zone->uz_cpu[cpu];
1973
1974zalloc_start:
1975 bucket = cache->uc_allocbucket;
1976
1977 if (bucket) {
1978 if (bucket->ub_cnt > 0) {
1979 bucket->ub_cnt--;
1980 item = bucket->ub_bucket[bucket->ub_cnt];
1981#ifdef INVARIANTS
1982 bucket->ub_bucket[bucket->ub_cnt] = NULL;
1983#endif
1984 KASSERT(item != NULL,
1985 ("uma_zalloc: Bucket pointer mangled."));
1986 cache->uc_allocs++;
1987 critical_exit();
1988#ifdef INVARIANTS
1989 ZONE_LOCK(zone);
1990 uma_dbg_alloc(zone, NULL, item);
1991 ZONE_UNLOCK(zone);
1992#endif
1993 if (zone->uz_ctor != NULL) {
1994 if (zone->uz_ctor(item, zone->uz_size,
1995 udata, flags) != 0) {
1996 zone_free_item(zone, item, udata,
1997 SKIP_DTOR, ZFREE_STATFAIL |
1998 ZFREE_STATFREE);
1999 return (NULL);
2000 }
2001 }
2002 if (flags & M_ZERO)
2003 bzero(item, zone->uz_size);
2004 return (item);
2005 } else if (cache->uc_freebucket) {
2006 /*
2007 * We have run out of items in our allocbucket.
2008 * See if we can switch with our free bucket.
2009 */
2010 if (cache->uc_freebucket->ub_cnt > 0) {
2011#ifdef UMA_DEBUG_ALLOC
2012 printf("uma_zalloc: Swapping empty with"
2013 " alloc.\n");
2014#endif
2015 bucket = cache->uc_freebucket;
2016 cache->uc_freebucket = cache->uc_allocbucket;
2017 cache->uc_allocbucket = bucket;
2018
2019 goto zalloc_start;
2020 }
2021 }
2022 }
2023 /*
2024 * Attempt to retrieve the item from the per-CPU cache has failed, so
2025 * we must go back to the zone. This requires the zone lock, so we
2026 * must drop the critical section, then re-acquire it when we go back
2027 * to the cache. Since the critical section is released, we may be
2028 * preempted or migrate. As such, make sure not to maintain any
2029 * thread-local state specific to the cache from prior to releasing
2030 * the critical section.
2031 */
2032 critical_exit();
2033 ZONE_LOCK(zone);
2034 critical_enter();
2035 cpu = curcpu;
2036 cache = &zone->uz_cpu[cpu];
2037 bucket = cache->uc_allocbucket;
2038 if (bucket != NULL) {
2039 if (bucket->ub_cnt > 0) {
2040 ZONE_UNLOCK(zone);
2041 goto zalloc_start;
2042 }
2043 bucket = cache->uc_freebucket;
2044 if (bucket != NULL && bucket->ub_cnt > 0) {
2045 ZONE_UNLOCK(zone);
2046 goto zalloc_start;
2047 }
2048 }
2049
2050 /* Since we have locked the zone we may as well send back our stats */
2051 zone->uz_allocs += cache->uc_allocs;
2052 cache->uc_allocs = 0;
2053 zone->uz_frees += cache->uc_frees;
2054 cache->uc_frees = 0;
2055
2056 /* Our old one is now a free bucket */
2057 if (cache->uc_allocbucket) {
2058 KASSERT(cache->uc_allocbucket->ub_cnt == 0,
2059 ("uma_zalloc_arg: Freeing a non free bucket."));
2060 LIST_INSERT_HEAD(&zone->uz_free_bucket,
2061 cache->uc_allocbucket, ub_link);
2062 cache->uc_allocbucket = NULL;
2063 }
2064
2065 /* Check the free list for a new alloc bucket */
2066 if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
2067 KASSERT(bucket->ub_cnt != 0,
2068 ("uma_zalloc_arg: Returning an empty bucket."));
2069
2070 LIST_REMOVE(bucket, ub_link);
2071 cache->uc_allocbucket = bucket;
2072 ZONE_UNLOCK(zone);
2073 goto zalloc_start;
2074 }
2075 /* We are no longer associated with this CPU. */
2076 critical_exit();
2077
2078 /* Bump up our uz_count so we get here less */
2079 if (zone->uz_count < BUCKET_MAX)
2080 zone->uz_count++;
2081
2082 /*
2083 * Now lets just fill a bucket and put it on the free list. If that
2084 * works we'll restart the allocation from the begining.
2085 */
2086 if (zone_alloc_bucket(zone, flags)) {
2087 ZONE_UNLOCK(zone);
2088 goto zalloc_restart;
2089 }
2090 ZONE_UNLOCK(zone);
2091 /*
2092 * We may not be able to get a bucket so return an actual item.
2093 */
2094#ifdef UMA_DEBUG
2095 printf("uma_zalloc_arg: Bucketzone returned NULL\n");
2096#endif
2097
2098 item = zone_alloc_item(zone, udata, flags);
2099 return (item);
2100}
2101
2102static uma_slab_t
2103keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
2104{
2105 uma_slab_t slab;
2106
2107 mtx_assert(&keg->uk_lock, MA_OWNED);
2108 slab = NULL;
2109
2110 for (;;) {
2111 /*
2112 * Find a slab with some space. Prefer slabs that are partially
2113 * used over those that are totally full. This helps to reduce
2114 * fragmentation.
2115 */
2116 if (keg->uk_free != 0) {
2117 if (!LIST_EMPTY(&keg->uk_part_slab)) {
2118 slab = LIST_FIRST(&keg->uk_part_slab);
2119 } else {
2120 slab = LIST_FIRST(&keg->uk_free_slab);
2121 LIST_REMOVE(slab, us_link);
2122 LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
2123 us_link);
2124 }
2125 MPASS(slab->us_keg == keg);
2126 return (slab);
2127 }
2128
2129 /*
2130 * M_NOVM means don't ask at all!
2131 */
2132 if (flags & M_NOVM)
2133 break;
2134
2135 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2136 keg->uk_flags |= UMA_ZFLAG_FULL;
2137 /*
2138 * If this is not a multi-zone, set the FULL bit.
2139 * Otherwise slab_multi() takes care of it.
2140 */
2141 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0)
2142 zone->uz_flags |= UMA_ZFLAG_FULL;
2143 if (flags & M_NOWAIT)
2144 break;
2145 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2146 continue;
2147 }
2148 keg->uk_recurse++;
2149 slab = keg_alloc_slab(keg, zone, flags);
2150 keg->uk_recurse--;
2151 /*
2152 * If we got a slab here it's safe to mark it partially used
2153 * and return. We assume that the caller is going to remove
2154 * at least one item.
2155 */
2156 if (slab) {
2157 MPASS(slab->us_keg == keg);
2158 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2159 return (slab);
2160 }
2161 /*
2162 * We might not have been able to get a slab but another cpu
2163 * could have while we were unlocked. Check again before we
2164 * fail.
2165 */
2166 flags |= M_NOVM;
2167 }
2168 return (slab);
2169}
2170
2171static inline void
2172zone_relock(uma_zone_t zone, uma_keg_t keg)
2173{
2174 if (zone->uz_lock != &keg->uk_lock) {
2175 KEG_UNLOCK(keg);
2176 ZONE_LOCK(zone);
2177 }
2178}
2179
2180static inline void
2181keg_relock(uma_keg_t keg, uma_zone_t zone)
2182{
2183 if (zone->uz_lock != &keg->uk_lock) {
2184 ZONE_UNLOCK(zone);
2185 KEG_LOCK(keg);
2186 }
2187}
2188
2189static uma_slab_t
2190zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
2191{
2192 uma_slab_t slab;
2193
2194 if (keg == NULL)
2195 keg = zone_first_keg(zone);
2196 /*
2197 * This is to prevent us from recursively trying to allocate
2198 * buckets. The problem is that if an allocation forces us to
2199 * grab a new bucket we will call page_alloc, which will go off
2200 * and cause the vm to allocate vm_map_entries. If we need new
2201 * buckets there too we will recurse in kmem_alloc and bad
2202 * things happen. So instead we return a NULL bucket, and make
2203 * the code that allocates buckets smart enough to deal with it
2204 */
2205 if (keg->uk_flags & UMA_ZFLAG_BUCKET && keg->uk_recurse != 0)
2206 return (NULL);
2207
2208 for (;;) {
2209 slab = keg_fetch_slab(keg, zone, flags);
2210 if (slab)
2211 return (slab);
2212 if (flags & (M_NOWAIT | M_NOVM))
2213 break;
2214 }
2215 return (NULL);
2216}
2217
2218/*
2219 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns
2220 * with the keg locked. Caller must call zone_relock() afterwards if the
2221 * zone lock is required. On NULL the zone lock is held.
2222 *
2223 * The last pointer is used to seed the search. It is not required.
2224 */
2225static uma_slab_t
2226zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
2227{
2228 uma_klink_t klink;
2229 uma_slab_t slab;
2230 uma_keg_t keg;
2231 int flags;
2232 int empty;
2233 int full;
2234
2235 /*
2236 * Don't wait on the first pass. This will skip limit tests
2237 * as well. We don't want to block if we can find a provider
2238 * without blocking.
2239 */
2240 flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2241 /*
2242 * Use the last slab allocated as a hint for where to start
2243 * the search.
2244 */
2245 if (last) {
2246 slab = keg_fetch_slab(last, zone, flags);
2247 if (slab)
2248 return (slab);
2249 zone_relock(zone, last);
2250 last = NULL;
2251 }
2252 /*
2253 * Loop until we have a slab incase of transient failures
2254 * while M_WAITOK is specified. I'm not sure this is 100%
2255 * required but we've done it for so long now.
2256 */
2257 for (;;) {
2258 empty = 0;
2259 full = 0;
2260 /*
2261 * Search the available kegs for slabs. Be careful to hold the
2262 * correct lock while calling into the keg layer.
2263 */
2264 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2265 keg = klink->kl_keg;
2266 keg_relock(keg, zone);
2267 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2268 slab = keg_fetch_slab(keg, zone, flags);
2269 if (slab)
2270 return (slab);
2271 }
2272 if (keg->uk_flags & UMA_ZFLAG_FULL)
2273 full++;
2274 else
2275 empty++;
2276 zone_relock(zone, keg);
2277 }
2278 if (rflags & (M_NOWAIT | M_NOVM))
2279 break;
2280 flags = rflags;
2281 /*
2282 * All kegs are full. XXX We can't atomically check all kegs
2283 * and sleep so just sleep for a short period and retry.
2284 */
2285 if (full && !empty) {
2286 zone->uz_flags |= UMA_ZFLAG_FULL;
2287 zone->uz_sleeps++;
2288 msleep(zone, zone->uz_lock, PVM, "zonelimit", hz/100);
2289 zone->uz_flags &= ~UMA_ZFLAG_FULL;
2290 continue;
2291 }
2292 }
2293 return (NULL);
2294}
2295
2296static void *
2297slab_alloc_item(uma_zone_t zone, uma_slab_t slab)
2298{
2299 uma_keg_t keg;
2300 uma_slabrefcnt_t slabref;
2301 void *item;
2302 u_int8_t freei;
2303
2304 keg = slab->us_keg;
2305 mtx_assert(&keg->uk_lock, MA_OWNED);
2306
2307 freei = slab->us_firstfree;
2308 if (keg->uk_flags & UMA_ZONE_REFCNT) {
2309 slabref = (uma_slabrefcnt_t)slab;
2310 slab->us_firstfree = slabref->us_freelist[freei].us_item;
2311 } else {
2312 slab->us_firstfree = slab->us_freelist[freei].us_item;
2313 }
2314 item = slab->us_data + (keg->uk_rsize * freei);
2315
2316 slab->us_freecount--;
2317 keg->uk_free--;
2318#ifdef INVARIANTS
2319 uma_dbg_alloc(zone, slab, item);
2320#endif
2321 /* Move this slab to the full list */
2322 if (slab->us_freecount == 0) {
2323 LIST_REMOVE(slab, us_link);
2324 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2325 }
2326
2327 return (item);
2328}
2329
2330static int
2331zone_alloc_bucket(uma_zone_t zone, int flags)
2332{
2333 uma_bucket_t bucket;
2334 uma_slab_t slab;
2335 uma_keg_t keg;
2336 int16_t saved;
2337 int max, origflags = flags;
2338
2339 /*
2340 * Try this zone's free list first so we don't allocate extra buckets.
2341 */
2342 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
2343 KASSERT(bucket->ub_cnt == 0,
2344 ("zone_alloc_bucket: Bucket on free list is not empty."));
2345 LIST_REMOVE(bucket, ub_link);
2346 } else {
2347 int bflags;
2348
2349 bflags = (flags & ~M_ZERO);
2350 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY)
2351 bflags |= M_NOVM;
2352
2353 ZONE_UNLOCK(zone);
2354 bucket = bucket_alloc(zone->uz_count, bflags);
2355 ZONE_LOCK(zone);
2356 }
2357
2358 if (bucket == NULL) {
2359 return (0);
2360 }
2361
2362#ifdef SMP
2363 /*
2364 * This code is here to limit the number of simultaneous bucket fills
2365 * for any given zone to the number of per cpu caches in this zone. This
2366 * is done so that we don't allocate more memory than we really need.
2367 */
2368 if (zone->uz_fills >= mp_ncpus)
2369 goto done;
2370
2371#endif
2372 zone->uz_fills++;
2373
2374 max = MIN(bucket->ub_entries, zone->uz_count);
2375 /* Try to keep the buckets totally full */
2376 saved = bucket->ub_cnt;
2377 slab = NULL;
2378 keg = NULL;
2379 while (bucket->ub_cnt < max &&
2380 (slab = zone->uz_slab(zone, keg, flags)) != NULL) {
2381 keg = slab->us_keg;
2382 while (slab->us_freecount && bucket->ub_cnt < max) {
2383 bucket->ub_bucket[bucket->ub_cnt++] =
2384 slab_alloc_item(zone, slab);
2385 }
2386
2387 /* Don't block on the next fill */
2388 flags |= M_NOWAIT;
2389 }
2390 if (slab)
2391 zone_relock(zone, keg);
2392
2393 /*
2394 * We unlock here because we need to call the zone's init.
2395 * It should be safe to unlock because the slab dealt with
2396 * above is already on the appropriate list within the keg
2397 * and the bucket we filled is not yet on any list, so we
2398 * own it.
2399 */
2400 if (zone->uz_init != NULL) {
2401 int i;
2402
2403 ZONE_UNLOCK(zone);
2404 for (i = saved; i < bucket->ub_cnt; i++)
2405 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2406 origflags) != 0)
2407 break;
2408 /*
2409 * If we couldn't initialize the whole bucket, put the
2410 * rest back onto the freelist.
2411 */
2412 if (i != bucket->ub_cnt) {
2413 int j;
2414
2415 for (j = i; j < bucket->ub_cnt; j++) {
2416 zone_free_item(zone, bucket->ub_bucket[j],
2417 NULL, SKIP_FINI, 0);
2418#ifdef INVARIANTS
2419 bucket->ub_bucket[j] = NULL;
2420#endif
2421 }
2422 bucket->ub_cnt = i;
2423 }
2424 ZONE_LOCK(zone);
2425 }
2426
2427 zone->uz_fills--;
2428 if (bucket->ub_cnt != 0) {
2429 LIST_INSERT_HEAD(&zone->uz_full_bucket,
2430 bucket, ub_link);
2431 return (1);
2432 }
2433#ifdef SMP
2434done:
2435#endif
2436 bucket_free(bucket);
2437
2438 return (0);
2439}
2440/*
2441 * Allocates an item for an internal zone
2442 *
2443 * Arguments
2444 * zone The zone to alloc for.
2445 * udata The data to be passed to the constructor.
2446 * flags M_WAITOK, M_NOWAIT, M_ZERO.
2447 *
2448 * Returns
2449 * NULL if there is no memory and M_NOWAIT is set
2450 * An item if successful
2451 */
2452
2453static void *
2454zone_alloc_item(uma_zone_t zone, void *udata, int flags)
2455{
2456 uma_slab_t slab;
2457 void *item;
2458
2459 item = NULL;
2460
2461#ifdef UMA_DEBUG_ALLOC
2462 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2463#endif
2464 ZONE_LOCK(zone);
2465
2466 slab = zone->uz_slab(zone, NULL, flags);
2467 if (slab == NULL) {
2468 zone->uz_fails++;
2469 ZONE_UNLOCK(zone);
2470 return (NULL);
2471 }
2472
2473 item = slab_alloc_item(zone, slab);
2474
2475 zone_relock(zone, slab->us_keg);
2476 zone->uz_allocs++;
2477 ZONE_UNLOCK(zone);
2478
2479 /*
2480 * We have to call both the zone's init (not the keg's init)
2481 * and the zone's ctor. This is because the item is going from
2482 * a keg slab directly to the user, and the user is expecting it
2483 * to be both zone-init'd as well as zone-ctor'd.
2484 */
2485 if (zone->uz_init != NULL) {
2486 if (zone->uz_init(item, zone->uz_size, flags) != 0) {
2487 zone_free_item(zone, item, udata, SKIP_FINI,
2488 ZFREE_STATFAIL | ZFREE_STATFREE);
2489 return (NULL);
2490 }
2491 }
2492 if (zone->uz_ctor != NULL) {
2493 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2494 zone_free_item(zone, item, udata, SKIP_DTOR,
2495 ZFREE_STATFAIL | ZFREE_STATFREE);
2496 return (NULL);
2497 }
2498 }
2499 if (flags & M_ZERO)
2500 bzero(item, zone->uz_size);
2501
2502 return (item);
2503}
2504
2505/* See uma.h */
2506void
2507uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2508{
2509 uma_cache_t cache;
2510 uma_bucket_t bucket;
2511 int bflags;
2512 int cpu;
2513
2514#ifdef UMA_DEBUG_ALLOC_1
2515 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2516#endif
2517 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2518 zone->uz_name);
2519
2520 if (zone->uz_dtor)
2521 zone->uz_dtor(item, zone->uz_size, udata);
2522
2523#ifdef INVARIANTS
2524 ZONE_LOCK(zone);
2525 if (zone->uz_flags & UMA_ZONE_MALLOC)
2526 uma_dbg_free(zone, udata, item);
2527 else
2528 uma_dbg_free(zone, NULL, item);
2529 ZONE_UNLOCK(zone);
2530#endif
2531 /*
2532 * The race here is acceptable. If we miss it we'll just have to wait
2533 * a little longer for the limits to be reset.
2534 */
2535 if (zone->uz_flags & UMA_ZFLAG_FULL)
2536 goto zfree_internal;
2537
2538 /*
2539 * If possible, free to the per-CPU cache. There are two
2540 * requirements for safe access to the per-CPU cache: (1) the thread
2541 * accessing the cache must not be preempted or yield during access,
2542 * and (2) the thread must not migrate CPUs without switching which
2543 * cache it accesses. We rely on a critical section to prevent
2544 * preemption and migration. We release the critical section in
2545 * order to acquire the zone mutex if we are unable to free to the
2546 * current cache; when we re-acquire the critical section, we must
2547 * detect and handle migration if it has occurred.
2548 */
2549zfree_restart:
2550 critical_enter();
2551 cpu = curcpu;
2552 cache = &zone->uz_cpu[cpu];
2553
2554zfree_start:
2555 bucket = cache->uc_freebucket;
2556
2557 if (bucket) {
2558 /*
2559 * Do we have room in our bucket? It is OK for this uz count
2560 * check to be slightly out of sync.
2561 */
2562
2563 if (bucket->ub_cnt < bucket->ub_entries) {
2564 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2565 ("uma_zfree: Freeing to non free bucket index."));
2566 bucket->ub_bucket[bucket->ub_cnt] = item;
2567 bucket->ub_cnt++;
2568 cache->uc_frees++;
2569 critical_exit();
2570 return;
2571 } else if (cache->uc_allocbucket) {
2572#ifdef UMA_DEBUG_ALLOC
2573 printf("uma_zfree: Swapping buckets.\n");
2574#endif
2575 /*
2576 * We have run out of space in our freebucket.
2577 * See if we can switch with our alloc bucket.
2578 */
2579 if (cache->uc_allocbucket->ub_cnt <
2580 cache->uc_freebucket->ub_cnt) {
2581 bucket = cache->uc_freebucket;
2582 cache->uc_freebucket = cache->uc_allocbucket;
2583 cache->uc_allocbucket = bucket;
2584 goto zfree_start;
2585 }
2586 }
2587 }
2588 /*
2589 * We can get here for two reasons:
2590 *
2591 * 1) The buckets are NULL
2592 * 2) The alloc and free buckets are both somewhat full.
2593 *
2594 * We must go back the zone, which requires acquiring the zone lock,
2595 * which in turn means we must release and re-acquire the critical
2596 * section. Since the critical section is released, we may be
2597 * preempted or migrate. As such, make sure not to maintain any
2598 * thread-local state specific to the cache from prior to releasing
2599 * the critical section.
2600 */
2601 critical_exit();
2602 ZONE_LOCK(zone);
2603 critical_enter();
2604 cpu = curcpu;
2605 cache = &zone->uz_cpu[cpu];
2606 if (cache->uc_freebucket != NULL) {
2607 if (cache->uc_freebucket->ub_cnt <
2608 cache->uc_freebucket->ub_entries) {
2609 ZONE_UNLOCK(zone);
2610 goto zfree_start;
2611 }
2612 if (cache->uc_allocbucket != NULL &&
2613 (cache->uc_allocbucket->ub_cnt <
2614 cache->uc_freebucket->ub_cnt)) {
2615 ZONE_UNLOCK(zone);
2616 goto zfree_start;
2617 }
2618 }
2619
2620 /* Since we have locked the zone we may as well send back our stats */
2621 zone->uz_allocs += cache->uc_allocs;
2622 cache->uc_allocs = 0;
2623 zone->uz_frees += cache->uc_frees;
2624 cache->uc_frees = 0;
2625
2626 bucket = cache->uc_freebucket;
2627 cache->uc_freebucket = NULL;
2628
2629 /* Can we throw this on the zone full list? */
2630 if (bucket != NULL) {
2631#ifdef UMA_DEBUG_ALLOC
2632 printf("uma_zfree: Putting old bucket on the free list.\n");
2633#endif
2634 /* ub_cnt is pointing to the last free item */
2635 KASSERT(bucket->ub_cnt != 0,
2636 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2637 LIST_INSERT_HEAD(&zone->uz_full_bucket,
2638 bucket, ub_link);
2639 }
2640 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
2641 LIST_REMOVE(bucket, ub_link);
2642 ZONE_UNLOCK(zone);
2643 cache->uc_freebucket = bucket;
2644 goto zfree_start;
2645 }
2646 /* We are no longer associated with this CPU. */
2647 critical_exit();
2648
2649 /* And the zone.. */
2650 ZONE_UNLOCK(zone);
2651
2652#ifdef UMA_DEBUG_ALLOC
2653 printf("uma_zfree: Allocating new free bucket.\n");
2654#endif
2655 bflags = M_NOWAIT;
2656
2657 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY)
2658 bflags |= M_NOVM;
2659 bucket = bucket_alloc(zone->uz_count, bflags);
2660 if (bucket) {
2661 ZONE_LOCK(zone);
2662 LIST_INSERT_HEAD(&zone->uz_free_bucket,
2663 bucket, ub_link);
2664 ZONE_UNLOCK(zone);
2665 goto zfree_restart;
2666 }
2667
2668 /*
2669 * If nothing else caught this, we'll just do an internal free.
2670 */
2671zfree_internal:
2672 zone_free_item(zone, item, udata, SKIP_DTOR, ZFREE_STATFREE);
2673
2674 return;
2675}
2676
2677/*
2678 * Frees an item to an INTERNAL zone or allocates a free bucket
2679 *
2680 * Arguments:
2681 * zone The zone to free to
2682 * item The item we're freeing
2683 * udata User supplied data for the dtor
2684 * skip Skip dtors and finis
2685 */
2686static void
2687zone_free_item(uma_zone_t zone, void *item, void *udata,
2688 enum zfreeskip skip, int flags)
2689{
2690 uma_slab_t slab;
2691 uma_slabrefcnt_t slabref;
2692 uma_keg_t keg;
2693 u_int8_t *mem;
2694 u_int8_t freei;
2695 int clearfull;
2696
2697 if (skip < SKIP_DTOR && zone->uz_dtor)
2698 zone->uz_dtor(item, zone->uz_size, udata);
2699
2700 if (skip < SKIP_FINI && zone->uz_fini)
2701 zone->uz_fini(item, zone->uz_size);
2702
2703 ZONE_LOCK(zone);
2704
2705 if (flags & ZFREE_STATFAIL)
2706 zone->uz_fails++;
2707 if (flags & ZFREE_STATFREE)
2708 zone->uz_frees++;
2709
2710 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
2711 mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK));
2712 keg = zone_first_keg(zone); /* Must only be one. */
2713 if (zone->uz_flags & UMA_ZONE_HASH) {
2714 slab = hash_sfind(&keg->uk_hash, mem);
2715 } else {
2716 mem += keg->uk_pgoff;
2717 slab = (uma_slab_t)mem;
2718 }
2719 } else {
2720 /* This prevents redundant lookups via free(). */
2721 if ((zone->uz_flags & UMA_ZONE_MALLOC) && udata != NULL)
2722 slab = (uma_slab_t)udata;
2723 else
2724 slab = vtoslab((vm_offset_t)item);
2725 keg = slab->us_keg;
2726 keg_relock(keg, zone);
2727 }
2728 MPASS(keg == slab->us_keg);
2729
2730 /* Do we need to remove from any lists? */
2731 if (slab->us_freecount+1 == keg->uk_ipers) {
2732 LIST_REMOVE(slab, us_link);
2733 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2734 } else if (slab->us_freecount == 0) {
2735 LIST_REMOVE(slab, us_link);
2736 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2737 }
2738
2739 /* Slab management stuff */
2740 freei = ((unsigned long)item - (unsigned long)slab->us_data)
2741 / keg->uk_rsize;
2742
2743#ifdef INVARIANTS
2744 if (!skip)
2745 uma_dbg_free(zone, slab, item);
2746#endif
2747
2748 if (keg->uk_flags & UMA_ZONE_REFCNT) {
2749 slabref = (uma_slabrefcnt_t)slab;
2750 slabref->us_freelist[freei].us_item = slab->us_firstfree;
2751 } else {
2752 slab->us_freelist[freei].us_item = slab->us_firstfree;
2753 }
2754 slab->us_firstfree = freei;
2755 slab->us_freecount++;
2756
2757 /* Zone statistics */
2758 keg->uk_free++;
2759
2760 clearfull = 0;
2761 if (keg->uk_flags & UMA_ZFLAG_FULL) {
2762 if (keg->uk_pages < keg->uk_maxpages) {
2763 keg->uk_flags &= ~UMA_ZFLAG_FULL;
2764 clearfull = 1;
2765 }
2766
2767 /*
2768 * We can handle one more allocation. Since we're clearing ZFLAG_FULL,
2769 * wake up all procs blocked on pages. This should be uncommon, so
2770 * keeping this simple for now (rather than adding count of blocked
2771 * threads etc).
2772 */
2773 wakeup(keg);
2774 }
2775 if (clearfull) {
2776 zone_relock(zone, keg);
2777 zone->uz_flags &= ~UMA_ZFLAG_FULL;
2778 wakeup(zone);
2779 ZONE_UNLOCK(zone);
2780 } else
2781 KEG_UNLOCK(keg);
2782}
2783
2784/* See uma.h */
2785void
2786uma_zone_set_max(uma_zone_t zone, int nitems)
2787{
2788 uma_keg_t keg;
2789
2790 ZONE_LOCK(zone);
2791 keg = zone_first_keg(zone);
2792 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
2793 if (keg->uk_maxpages * keg->uk_ipers < nitems)
2794 keg->uk_maxpages += keg->uk_ppera;
2795
2796 ZONE_UNLOCK(zone);
2797}
2798
2799/* See uma.h */
2800int
2801uma_zone_get_max(uma_zone_t zone)
2802{
2803 int nitems;
2804 uma_keg_t keg;
2805
2806 ZONE_LOCK(zone);
2807 keg = zone_first_keg(zone);
2808 if (keg->uk_maxpages)
2809 nitems = keg->uk_maxpages * keg->uk_ipers;
2810 else
2811 nitems = 0;
2808 nitems = keg->uk_maxpages * keg->uk_ipers;
2812 ZONE_UNLOCK(zone);
2813
2814 return (nitems);
2815}
2816
2817/* See uma.h */
2809 ZONE_UNLOCK(zone);
2810
2811 return (nitems);
2812}
2813
2814/* See uma.h */
2815int
2816uma_zone_get_cur(uma_zone_t zone)
2817{
2818 int64_t nitems;
2819 u_int i;
2820
2821 ZONE_LOCK(zone);
2822 nitems = zone->uz_allocs - zone->uz_frees;
2823 CPU_FOREACH(i) {
2824 /*
2825 * See the comment in sysctl_vm_zone_stats() regarding the
2826 * safety of accessing the per-cpu caches. With the zone lock
2827 * held, it is safe, but can potentially result in stale data.
2828 */
2829 nitems += zone->uz_cpu[i].uc_allocs -
2830 zone->uz_cpu[i].uc_frees;
2831 }
2832 ZONE_UNLOCK(zone);
2833
2834 return (nitems < 0 ? 0 : nitems);
2835}
2836
2837/* See uma.h */
2818void
2819uma_zone_set_init(uma_zone_t zone, uma_init uminit)
2820{
2821 uma_keg_t keg;
2822
2823 ZONE_LOCK(zone);
2824 keg = zone_first_keg(zone);
2825 KASSERT(keg->uk_pages == 0,
2826 ("uma_zone_set_init on non-empty keg"));
2827 keg->uk_init = uminit;
2828 ZONE_UNLOCK(zone);
2829}
2830
2831/* See uma.h */
2832void
2833uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
2834{
2835 uma_keg_t keg;
2836
2837 ZONE_LOCK(zone);
2838 keg = zone_first_keg(zone);
2839 KASSERT(keg->uk_pages == 0,
2840 ("uma_zone_set_fini on non-empty keg"));
2841 keg->uk_fini = fini;
2842 ZONE_UNLOCK(zone);
2843}
2844
2845/* See uma.h */
2846void
2847uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
2848{
2849 ZONE_LOCK(zone);
2850 KASSERT(zone_first_keg(zone)->uk_pages == 0,
2851 ("uma_zone_set_zinit on non-empty keg"));
2852 zone->uz_init = zinit;
2853 ZONE_UNLOCK(zone);
2854}
2855
2856/* See uma.h */
2857void
2858uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
2859{
2860 ZONE_LOCK(zone);
2861 KASSERT(zone_first_keg(zone)->uk_pages == 0,
2862 ("uma_zone_set_zfini on non-empty keg"));
2863 zone->uz_fini = zfini;
2864 ZONE_UNLOCK(zone);
2865}
2866
2867/* See uma.h */
2868/* XXX uk_freef is not actually used with the zone locked */
2869void
2870uma_zone_set_freef(uma_zone_t zone, uma_free freef)
2871{
2872
2873 ZONE_LOCK(zone);
2874 zone_first_keg(zone)->uk_freef = freef;
2875 ZONE_UNLOCK(zone);
2876}
2877
2878/* See uma.h */
2879/* XXX uk_allocf is not actually used with the zone locked */
2880void
2881uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
2882{
2883 uma_keg_t keg;
2884
2885 ZONE_LOCK(zone);
2886 keg = zone_first_keg(zone);
2887 keg->uk_flags |= UMA_ZFLAG_PRIVALLOC;
2888 keg->uk_allocf = allocf;
2889 ZONE_UNLOCK(zone);
2890}
2891
2892/* See uma.h */
2893int
2894uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count)
2895{
2896 uma_keg_t keg;
2897 vm_offset_t kva;
2898 int pages;
2899
2900 keg = zone_first_keg(zone);
2901 pages = count / keg->uk_ipers;
2902
2903 if (pages * keg->uk_ipers < count)
2904 pages++;
2905
2906 kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE);
2907
2908 if (kva == 0)
2909 return (0);
2910 if (obj == NULL)
2911 obj = vm_object_allocate(OBJT_PHYS, pages);
2912 else {
2913 VM_OBJECT_LOCK_INIT(obj, "uma object");
2914 _vm_object_allocate(OBJT_PHYS, pages, obj);
2915 }
2916 ZONE_LOCK(zone);
2917 keg->uk_kva = kva;
2918 keg->uk_obj = obj;
2919 keg->uk_maxpages = pages;
2920 keg->uk_allocf = obj_alloc;
2921 keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC;
2922 ZONE_UNLOCK(zone);
2923 return (1);
2924}
2925
2926/* See uma.h */
2927void
2928uma_prealloc(uma_zone_t zone, int items)
2929{
2930 int slabs;
2931 uma_slab_t slab;
2932 uma_keg_t keg;
2933
2934 keg = zone_first_keg(zone);
2935 ZONE_LOCK(zone);
2936 slabs = items / keg->uk_ipers;
2937 if (slabs * keg->uk_ipers < items)
2938 slabs++;
2939 while (slabs > 0) {
2940 slab = keg_alloc_slab(keg, zone, M_WAITOK);
2941 if (slab == NULL)
2942 break;
2943 MPASS(slab->us_keg == keg);
2944 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2945 slabs--;
2946 }
2947 ZONE_UNLOCK(zone);
2948}
2949
2950/* See uma.h */
2951u_int32_t *
2952uma_find_refcnt(uma_zone_t zone, void *item)
2953{
2954 uma_slabrefcnt_t slabref;
2955 uma_keg_t keg;
2956 u_int32_t *refcnt;
2957 int idx;
2958
2959 slabref = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item &
2960 (~UMA_SLAB_MASK));
2961 keg = slabref->us_keg;
2962 KASSERT(slabref != NULL && slabref->us_keg->uk_flags & UMA_ZONE_REFCNT,
2963 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT"));
2964 idx = ((unsigned long)item - (unsigned long)slabref->us_data)
2965 / keg->uk_rsize;
2966 refcnt = &slabref->us_freelist[idx].us_refcnt;
2967 return refcnt;
2968}
2969
2970/* See uma.h */
2971void
2972uma_reclaim(void)
2973{
2974#ifdef UMA_DEBUG
2975 printf("UMA: vm asked us to release pages!\n");
2976#endif
2977 bucket_enable();
2978 zone_foreach(zone_drain);
2979 /*
2980 * Some slabs may have been freed but this zone will be visited early
2981 * we visit again so that we can free pages that are empty once other
2982 * zones are drained. We have to do the same for buckets.
2983 */
2984 zone_drain(slabzone);
2985 zone_drain(slabrefzone);
2986 bucket_zone_drain();
2987}
2988
2989/* See uma.h */
2990int
2991uma_zone_exhausted(uma_zone_t zone)
2992{
2993 int full;
2994
2995 ZONE_LOCK(zone);
2996 full = (zone->uz_flags & UMA_ZFLAG_FULL);
2997 ZONE_UNLOCK(zone);
2998 return (full);
2999}
3000
3001int
3002uma_zone_exhausted_nolock(uma_zone_t zone)
3003{
3004 return (zone->uz_flags & UMA_ZFLAG_FULL);
3005}
3006
3007void *
3008uma_large_malloc(int size, int wait)
3009{
3010 void *mem;
3011 uma_slab_t slab;
3012 u_int8_t flags;
3013
3014 slab = zone_alloc_item(slabzone, NULL, wait);
3015 if (slab == NULL)
3016 return (NULL);
3017 mem = page_alloc(NULL, size, &flags, wait);
3018 if (mem) {
3019 vsetslab((vm_offset_t)mem, slab);
3020 slab->us_data = mem;
3021 slab->us_flags = flags | UMA_SLAB_MALLOC;
3022 slab->us_size = size;
3023 } else {
3024 zone_free_item(slabzone, slab, NULL, SKIP_NONE,
3025 ZFREE_STATFAIL | ZFREE_STATFREE);
3026 }
3027
3028 return (mem);
3029}
3030
3031void
3032uma_large_free(uma_slab_t slab)
3033{
3034 vsetobj((vm_offset_t)slab->us_data, kmem_object);
3035 page_free(slab->us_data, slab->us_size, slab->us_flags);
3036 zone_free_item(slabzone, slab, NULL, SKIP_NONE, ZFREE_STATFREE);
3037}
3038
3039void
3040uma_print_stats(void)
3041{
3042 zone_foreach(uma_print_zone);
3043}
3044
3045static void
3046slab_print(uma_slab_t slab)
3047{
3048 printf("slab: keg %p, data %p, freecount %d, firstfree %d\n",
3049 slab->us_keg, slab->us_data, slab->us_freecount,
3050 slab->us_firstfree);
3051}
3052
3053static void
3054cache_print(uma_cache_t cache)
3055{
3056 printf("alloc: %p(%d), free: %p(%d)\n",
3057 cache->uc_allocbucket,
3058 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3059 cache->uc_freebucket,
3060 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3061}
3062
3063static void
3064uma_print_keg(uma_keg_t keg)
3065{
3066 uma_slab_t slab;
3067
3068 printf("keg: %s(%p) size %d(%d) flags %d ipers %d ppera %d "
3069 "out %d free %d limit %d\n",
3070 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3071 keg->uk_ipers, keg->uk_ppera,
3072 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free,
3073 (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3074 printf("Part slabs:\n");
3075 LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
3076 slab_print(slab);
3077 printf("Free slabs:\n");
3078 LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
3079 slab_print(slab);
3080 printf("Full slabs:\n");
3081 LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
3082 slab_print(slab);
3083}
3084
3085void
3086uma_print_zone(uma_zone_t zone)
3087{
3088 uma_cache_t cache;
3089 uma_klink_t kl;
3090 int i;
3091
3092 printf("zone: %s(%p) size %d flags %d\n",
3093 zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3094 LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3095 uma_print_keg(kl->kl_keg);
3096 CPU_FOREACH(i) {
3097 cache = &zone->uz_cpu[i];
3098 printf("CPU %d Cache:\n", i);
3099 cache_print(cache);
3100 }
3101}
3102
3103#ifdef DDB
3104/*
3105 * Generate statistics across both the zone and its per-cpu cache's. Return
3106 * desired statistics if the pointer is non-NULL for that statistic.
3107 *
3108 * Note: does not update the zone statistics, as it can't safely clear the
3109 * per-CPU cache statistic.
3110 *
3111 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3112 * safe from off-CPU; we should modify the caches to track this information
3113 * directly so that we don't have to.
3114 */
3115static void
3116uma_zone_sumstat(uma_zone_t z, int *cachefreep, u_int64_t *allocsp,
3117 u_int64_t *freesp, u_int64_t *sleepsp)
3118{
3119 uma_cache_t cache;
3120 u_int64_t allocs, frees, sleeps;
3121 int cachefree, cpu;
3122
3123 allocs = frees = sleeps = 0;
3124 cachefree = 0;
3125 CPU_FOREACH(cpu) {
3126 cache = &z->uz_cpu[cpu];
3127 if (cache->uc_allocbucket != NULL)
3128 cachefree += cache->uc_allocbucket->ub_cnt;
3129 if (cache->uc_freebucket != NULL)
3130 cachefree += cache->uc_freebucket->ub_cnt;
3131 allocs += cache->uc_allocs;
3132 frees += cache->uc_frees;
3133 }
3134 allocs += z->uz_allocs;
3135 frees += z->uz_frees;
3136 sleeps += z->uz_sleeps;
3137 if (cachefreep != NULL)
3138 *cachefreep = cachefree;
3139 if (allocsp != NULL)
3140 *allocsp = allocs;
3141 if (freesp != NULL)
3142 *freesp = frees;
3143 if (sleepsp != NULL)
3144 *sleepsp = sleeps;
3145}
3146#endif /* DDB */
3147
3148static int
3149sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3150{
3151 uma_keg_t kz;
3152 uma_zone_t z;
3153 int count;
3154
3155 count = 0;
3156 mtx_lock(&uma_mtx);
3157 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3158 LIST_FOREACH(z, &kz->uk_zones, uz_link)
3159 count++;
3160 }
3161 mtx_unlock(&uma_mtx);
3162 return (sysctl_handle_int(oidp, &count, 0, req));
3163}
3164
3165static int
3166sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3167{
3168 struct uma_stream_header ush;
3169 struct uma_type_header uth;
3170 struct uma_percpu_stat ups;
3171 uma_bucket_t bucket;
3172 struct sbuf sbuf;
3173 uma_cache_t cache;
3174 uma_klink_t kl;
3175 uma_keg_t kz;
3176 uma_zone_t z;
3177 uma_keg_t k;
3178 int count, error, i;
3179
3180 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3181
3182 count = 0;
3183 mtx_lock(&uma_mtx);
3184 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3185 LIST_FOREACH(z, &kz->uk_zones, uz_link)
3186 count++;
3187 }
3188
3189 /*
3190 * Insert stream header.
3191 */
3192 bzero(&ush, sizeof(ush));
3193 ush.ush_version = UMA_STREAM_VERSION;
3194 ush.ush_maxcpus = (mp_maxid + 1);
3195 ush.ush_count = count;
3196 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3197
3198 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3199 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3200 bzero(&uth, sizeof(uth));
3201 ZONE_LOCK(z);
3202 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3203 uth.uth_align = kz->uk_align;
3204 uth.uth_size = kz->uk_size;
3205 uth.uth_rsize = kz->uk_rsize;
3206 LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3207 k = kl->kl_keg;
3208 uth.uth_maxpages += k->uk_maxpages;
3209 uth.uth_pages += k->uk_pages;
3210 uth.uth_keg_free += k->uk_free;
3211 uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3212 * k->uk_ipers;
3213 }
3214
3215 /*
3216 * A zone is secondary is it is not the first entry
3217 * on the keg's zone list.
3218 */
3219 if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3220 (LIST_FIRST(&kz->uk_zones) != z))
3221 uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3222
3223 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
3224 uth.uth_zone_free += bucket->ub_cnt;
3225 uth.uth_allocs = z->uz_allocs;
3226 uth.uth_frees = z->uz_frees;
3227 uth.uth_fails = z->uz_fails;
3228 uth.uth_sleeps = z->uz_sleeps;
3229 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
3230 /*
3231 * While it is not normally safe to access the cache
3232 * bucket pointers while not on the CPU that owns the
3233 * cache, we only allow the pointers to be exchanged
3234 * without the zone lock held, not invalidated, so
3235 * accept the possible race associated with bucket
3236 * exchange during monitoring.
3237 */
3238 for (i = 0; i < (mp_maxid + 1); i++) {
3239 bzero(&ups, sizeof(ups));
3240 if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
3241 goto skip;
3242 if (CPU_ABSENT(i))
3243 goto skip;
3244 cache = &z->uz_cpu[i];
3245 if (cache->uc_allocbucket != NULL)
3246 ups.ups_cache_free +=
3247 cache->uc_allocbucket->ub_cnt;
3248 if (cache->uc_freebucket != NULL)
3249 ups.ups_cache_free +=
3250 cache->uc_freebucket->ub_cnt;
3251 ups.ups_allocs = cache->uc_allocs;
3252 ups.ups_frees = cache->uc_frees;
3253skip:
3254 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups));
3255 }
3256 ZONE_UNLOCK(z);
3257 }
3258 }
3259 mtx_unlock(&uma_mtx);
3260 error = sbuf_finish(&sbuf);
3261 sbuf_delete(&sbuf);
3262 return (error);
3263}
3264
3265#ifdef DDB
3266DB_SHOW_COMMAND(uma, db_show_uma)
3267{
3268 u_int64_t allocs, frees, sleeps;
3269 uma_bucket_t bucket;
3270 uma_keg_t kz;
3271 uma_zone_t z;
3272 int cachefree;
3273
3274 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
3275 "Requests", "Sleeps");
3276 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3277 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3278 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
3279 allocs = z->uz_allocs;
3280 frees = z->uz_frees;
3281 sleeps = z->uz_sleeps;
3282 cachefree = 0;
3283 } else
3284 uma_zone_sumstat(z, &cachefree, &allocs,
3285 &frees, &sleeps);
3286 if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
3287 (LIST_FIRST(&kz->uk_zones) != z)))
3288 cachefree += kz->uk_free;
3289 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
3290 cachefree += bucket->ub_cnt;
3291 db_printf("%18s %8ju %8jd %8d %12ju %8ju\n", z->uz_name,
3292 (uintmax_t)kz->uk_size,
3293 (intmax_t)(allocs - frees), cachefree,
3294 (uintmax_t)allocs, sleeps);
3295 }
3296 }
3297}
3298#endif
2838void
2839uma_zone_set_init(uma_zone_t zone, uma_init uminit)
2840{
2841 uma_keg_t keg;
2842
2843 ZONE_LOCK(zone);
2844 keg = zone_first_keg(zone);
2845 KASSERT(keg->uk_pages == 0,
2846 ("uma_zone_set_init on non-empty keg"));
2847 keg->uk_init = uminit;
2848 ZONE_UNLOCK(zone);
2849}
2850
2851/* See uma.h */
2852void
2853uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
2854{
2855 uma_keg_t keg;
2856
2857 ZONE_LOCK(zone);
2858 keg = zone_first_keg(zone);
2859 KASSERT(keg->uk_pages == 0,
2860 ("uma_zone_set_fini on non-empty keg"));
2861 keg->uk_fini = fini;
2862 ZONE_UNLOCK(zone);
2863}
2864
2865/* See uma.h */
2866void
2867uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
2868{
2869 ZONE_LOCK(zone);
2870 KASSERT(zone_first_keg(zone)->uk_pages == 0,
2871 ("uma_zone_set_zinit on non-empty keg"));
2872 zone->uz_init = zinit;
2873 ZONE_UNLOCK(zone);
2874}
2875
2876/* See uma.h */
2877void
2878uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
2879{
2880 ZONE_LOCK(zone);
2881 KASSERT(zone_first_keg(zone)->uk_pages == 0,
2882 ("uma_zone_set_zfini on non-empty keg"));
2883 zone->uz_fini = zfini;
2884 ZONE_UNLOCK(zone);
2885}
2886
2887/* See uma.h */
2888/* XXX uk_freef is not actually used with the zone locked */
2889void
2890uma_zone_set_freef(uma_zone_t zone, uma_free freef)
2891{
2892
2893 ZONE_LOCK(zone);
2894 zone_first_keg(zone)->uk_freef = freef;
2895 ZONE_UNLOCK(zone);
2896}
2897
2898/* See uma.h */
2899/* XXX uk_allocf is not actually used with the zone locked */
2900void
2901uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
2902{
2903 uma_keg_t keg;
2904
2905 ZONE_LOCK(zone);
2906 keg = zone_first_keg(zone);
2907 keg->uk_flags |= UMA_ZFLAG_PRIVALLOC;
2908 keg->uk_allocf = allocf;
2909 ZONE_UNLOCK(zone);
2910}
2911
2912/* See uma.h */
2913int
2914uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count)
2915{
2916 uma_keg_t keg;
2917 vm_offset_t kva;
2918 int pages;
2919
2920 keg = zone_first_keg(zone);
2921 pages = count / keg->uk_ipers;
2922
2923 if (pages * keg->uk_ipers < count)
2924 pages++;
2925
2926 kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE);
2927
2928 if (kva == 0)
2929 return (0);
2930 if (obj == NULL)
2931 obj = vm_object_allocate(OBJT_PHYS, pages);
2932 else {
2933 VM_OBJECT_LOCK_INIT(obj, "uma object");
2934 _vm_object_allocate(OBJT_PHYS, pages, obj);
2935 }
2936 ZONE_LOCK(zone);
2937 keg->uk_kva = kva;
2938 keg->uk_obj = obj;
2939 keg->uk_maxpages = pages;
2940 keg->uk_allocf = obj_alloc;
2941 keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC;
2942 ZONE_UNLOCK(zone);
2943 return (1);
2944}
2945
2946/* See uma.h */
2947void
2948uma_prealloc(uma_zone_t zone, int items)
2949{
2950 int slabs;
2951 uma_slab_t slab;
2952 uma_keg_t keg;
2953
2954 keg = zone_first_keg(zone);
2955 ZONE_LOCK(zone);
2956 slabs = items / keg->uk_ipers;
2957 if (slabs * keg->uk_ipers < items)
2958 slabs++;
2959 while (slabs > 0) {
2960 slab = keg_alloc_slab(keg, zone, M_WAITOK);
2961 if (slab == NULL)
2962 break;
2963 MPASS(slab->us_keg == keg);
2964 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2965 slabs--;
2966 }
2967 ZONE_UNLOCK(zone);
2968}
2969
2970/* See uma.h */
2971u_int32_t *
2972uma_find_refcnt(uma_zone_t zone, void *item)
2973{
2974 uma_slabrefcnt_t slabref;
2975 uma_keg_t keg;
2976 u_int32_t *refcnt;
2977 int idx;
2978
2979 slabref = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item &
2980 (~UMA_SLAB_MASK));
2981 keg = slabref->us_keg;
2982 KASSERT(slabref != NULL && slabref->us_keg->uk_flags & UMA_ZONE_REFCNT,
2983 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT"));
2984 idx = ((unsigned long)item - (unsigned long)slabref->us_data)
2985 / keg->uk_rsize;
2986 refcnt = &slabref->us_freelist[idx].us_refcnt;
2987 return refcnt;
2988}
2989
2990/* See uma.h */
2991void
2992uma_reclaim(void)
2993{
2994#ifdef UMA_DEBUG
2995 printf("UMA: vm asked us to release pages!\n");
2996#endif
2997 bucket_enable();
2998 zone_foreach(zone_drain);
2999 /*
3000 * Some slabs may have been freed but this zone will be visited early
3001 * we visit again so that we can free pages that are empty once other
3002 * zones are drained. We have to do the same for buckets.
3003 */
3004 zone_drain(slabzone);
3005 zone_drain(slabrefzone);
3006 bucket_zone_drain();
3007}
3008
3009/* See uma.h */
3010int
3011uma_zone_exhausted(uma_zone_t zone)
3012{
3013 int full;
3014
3015 ZONE_LOCK(zone);
3016 full = (zone->uz_flags & UMA_ZFLAG_FULL);
3017 ZONE_UNLOCK(zone);
3018 return (full);
3019}
3020
3021int
3022uma_zone_exhausted_nolock(uma_zone_t zone)
3023{
3024 return (zone->uz_flags & UMA_ZFLAG_FULL);
3025}
3026
3027void *
3028uma_large_malloc(int size, int wait)
3029{
3030 void *mem;
3031 uma_slab_t slab;
3032 u_int8_t flags;
3033
3034 slab = zone_alloc_item(slabzone, NULL, wait);
3035 if (slab == NULL)
3036 return (NULL);
3037 mem = page_alloc(NULL, size, &flags, wait);
3038 if (mem) {
3039 vsetslab((vm_offset_t)mem, slab);
3040 slab->us_data = mem;
3041 slab->us_flags = flags | UMA_SLAB_MALLOC;
3042 slab->us_size = size;
3043 } else {
3044 zone_free_item(slabzone, slab, NULL, SKIP_NONE,
3045 ZFREE_STATFAIL | ZFREE_STATFREE);
3046 }
3047
3048 return (mem);
3049}
3050
3051void
3052uma_large_free(uma_slab_t slab)
3053{
3054 vsetobj((vm_offset_t)slab->us_data, kmem_object);
3055 page_free(slab->us_data, slab->us_size, slab->us_flags);
3056 zone_free_item(slabzone, slab, NULL, SKIP_NONE, ZFREE_STATFREE);
3057}
3058
3059void
3060uma_print_stats(void)
3061{
3062 zone_foreach(uma_print_zone);
3063}
3064
3065static void
3066slab_print(uma_slab_t slab)
3067{
3068 printf("slab: keg %p, data %p, freecount %d, firstfree %d\n",
3069 slab->us_keg, slab->us_data, slab->us_freecount,
3070 slab->us_firstfree);
3071}
3072
3073static void
3074cache_print(uma_cache_t cache)
3075{
3076 printf("alloc: %p(%d), free: %p(%d)\n",
3077 cache->uc_allocbucket,
3078 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3079 cache->uc_freebucket,
3080 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3081}
3082
3083static void
3084uma_print_keg(uma_keg_t keg)
3085{
3086 uma_slab_t slab;
3087
3088 printf("keg: %s(%p) size %d(%d) flags %d ipers %d ppera %d "
3089 "out %d free %d limit %d\n",
3090 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3091 keg->uk_ipers, keg->uk_ppera,
3092 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free,
3093 (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3094 printf("Part slabs:\n");
3095 LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
3096 slab_print(slab);
3097 printf("Free slabs:\n");
3098 LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
3099 slab_print(slab);
3100 printf("Full slabs:\n");
3101 LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
3102 slab_print(slab);
3103}
3104
3105void
3106uma_print_zone(uma_zone_t zone)
3107{
3108 uma_cache_t cache;
3109 uma_klink_t kl;
3110 int i;
3111
3112 printf("zone: %s(%p) size %d flags %d\n",
3113 zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3114 LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3115 uma_print_keg(kl->kl_keg);
3116 CPU_FOREACH(i) {
3117 cache = &zone->uz_cpu[i];
3118 printf("CPU %d Cache:\n", i);
3119 cache_print(cache);
3120 }
3121}
3122
3123#ifdef DDB
3124/*
3125 * Generate statistics across both the zone and its per-cpu cache's. Return
3126 * desired statistics if the pointer is non-NULL for that statistic.
3127 *
3128 * Note: does not update the zone statistics, as it can't safely clear the
3129 * per-CPU cache statistic.
3130 *
3131 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3132 * safe from off-CPU; we should modify the caches to track this information
3133 * directly so that we don't have to.
3134 */
3135static void
3136uma_zone_sumstat(uma_zone_t z, int *cachefreep, u_int64_t *allocsp,
3137 u_int64_t *freesp, u_int64_t *sleepsp)
3138{
3139 uma_cache_t cache;
3140 u_int64_t allocs, frees, sleeps;
3141 int cachefree, cpu;
3142
3143 allocs = frees = sleeps = 0;
3144 cachefree = 0;
3145 CPU_FOREACH(cpu) {
3146 cache = &z->uz_cpu[cpu];
3147 if (cache->uc_allocbucket != NULL)
3148 cachefree += cache->uc_allocbucket->ub_cnt;
3149 if (cache->uc_freebucket != NULL)
3150 cachefree += cache->uc_freebucket->ub_cnt;
3151 allocs += cache->uc_allocs;
3152 frees += cache->uc_frees;
3153 }
3154 allocs += z->uz_allocs;
3155 frees += z->uz_frees;
3156 sleeps += z->uz_sleeps;
3157 if (cachefreep != NULL)
3158 *cachefreep = cachefree;
3159 if (allocsp != NULL)
3160 *allocsp = allocs;
3161 if (freesp != NULL)
3162 *freesp = frees;
3163 if (sleepsp != NULL)
3164 *sleepsp = sleeps;
3165}
3166#endif /* DDB */
3167
3168static int
3169sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3170{
3171 uma_keg_t kz;
3172 uma_zone_t z;
3173 int count;
3174
3175 count = 0;
3176 mtx_lock(&uma_mtx);
3177 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3178 LIST_FOREACH(z, &kz->uk_zones, uz_link)
3179 count++;
3180 }
3181 mtx_unlock(&uma_mtx);
3182 return (sysctl_handle_int(oidp, &count, 0, req));
3183}
3184
3185static int
3186sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3187{
3188 struct uma_stream_header ush;
3189 struct uma_type_header uth;
3190 struct uma_percpu_stat ups;
3191 uma_bucket_t bucket;
3192 struct sbuf sbuf;
3193 uma_cache_t cache;
3194 uma_klink_t kl;
3195 uma_keg_t kz;
3196 uma_zone_t z;
3197 uma_keg_t k;
3198 int count, error, i;
3199
3200 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3201
3202 count = 0;
3203 mtx_lock(&uma_mtx);
3204 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3205 LIST_FOREACH(z, &kz->uk_zones, uz_link)
3206 count++;
3207 }
3208
3209 /*
3210 * Insert stream header.
3211 */
3212 bzero(&ush, sizeof(ush));
3213 ush.ush_version = UMA_STREAM_VERSION;
3214 ush.ush_maxcpus = (mp_maxid + 1);
3215 ush.ush_count = count;
3216 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3217
3218 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3219 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3220 bzero(&uth, sizeof(uth));
3221 ZONE_LOCK(z);
3222 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3223 uth.uth_align = kz->uk_align;
3224 uth.uth_size = kz->uk_size;
3225 uth.uth_rsize = kz->uk_rsize;
3226 LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3227 k = kl->kl_keg;
3228 uth.uth_maxpages += k->uk_maxpages;
3229 uth.uth_pages += k->uk_pages;
3230 uth.uth_keg_free += k->uk_free;
3231 uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3232 * k->uk_ipers;
3233 }
3234
3235 /*
3236 * A zone is secondary is it is not the first entry
3237 * on the keg's zone list.
3238 */
3239 if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3240 (LIST_FIRST(&kz->uk_zones) != z))
3241 uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3242
3243 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
3244 uth.uth_zone_free += bucket->ub_cnt;
3245 uth.uth_allocs = z->uz_allocs;
3246 uth.uth_frees = z->uz_frees;
3247 uth.uth_fails = z->uz_fails;
3248 uth.uth_sleeps = z->uz_sleeps;
3249 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
3250 /*
3251 * While it is not normally safe to access the cache
3252 * bucket pointers while not on the CPU that owns the
3253 * cache, we only allow the pointers to be exchanged
3254 * without the zone lock held, not invalidated, so
3255 * accept the possible race associated with bucket
3256 * exchange during monitoring.
3257 */
3258 for (i = 0; i < (mp_maxid + 1); i++) {
3259 bzero(&ups, sizeof(ups));
3260 if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
3261 goto skip;
3262 if (CPU_ABSENT(i))
3263 goto skip;
3264 cache = &z->uz_cpu[i];
3265 if (cache->uc_allocbucket != NULL)
3266 ups.ups_cache_free +=
3267 cache->uc_allocbucket->ub_cnt;
3268 if (cache->uc_freebucket != NULL)
3269 ups.ups_cache_free +=
3270 cache->uc_freebucket->ub_cnt;
3271 ups.ups_allocs = cache->uc_allocs;
3272 ups.ups_frees = cache->uc_frees;
3273skip:
3274 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups));
3275 }
3276 ZONE_UNLOCK(z);
3277 }
3278 }
3279 mtx_unlock(&uma_mtx);
3280 error = sbuf_finish(&sbuf);
3281 sbuf_delete(&sbuf);
3282 return (error);
3283}
3284
3285#ifdef DDB
3286DB_SHOW_COMMAND(uma, db_show_uma)
3287{
3288 u_int64_t allocs, frees, sleeps;
3289 uma_bucket_t bucket;
3290 uma_keg_t kz;
3291 uma_zone_t z;
3292 int cachefree;
3293
3294 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
3295 "Requests", "Sleeps");
3296 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3297 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3298 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
3299 allocs = z->uz_allocs;
3300 frees = z->uz_frees;
3301 sleeps = z->uz_sleeps;
3302 cachefree = 0;
3303 } else
3304 uma_zone_sumstat(z, &cachefree, &allocs,
3305 &frees, &sleeps);
3306 if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
3307 (LIST_FIRST(&kz->uk_zones) != z)))
3308 cachefree += kz->uk_free;
3309 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
3310 cachefree += bucket->ub_cnt;
3311 db_printf("%18s %8ju %8jd %8d %12ju %8ju\n", z->uz_name,
3312 (uintmax_t)kz->uk_size,
3313 (intmax_t)(allocs - frees), cachefree,
3314 (uintmax_t)allocs, sleeps);
3315 }
3316 }
3317}
3318#endif