Deleted Added
full compact
swap_pager.c (58934) swap_pager.c (59249)
1/*
2 * Copyright (c) 1998 Matthew Dillon,
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1990 University of Utah.
5 * Copyright (c) 1991, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * New Swap System
41 * Matthew Dillon
42 *
43 * Radix Bitmap 'blists'.
44 *
45 * - The new swapper uses the new radix bitmap code. This should scale
46 * to arbitrarily small or arbitrarily large swap spaces and an almost
47 * arbitrary degree of fragmentation.
48 *
49 * Features:
50 *
51 * - on the fly reallocation of swap during putpages. The new system
52 * does not try to keep previously allocated swap blocks for dirty
53 * pages.
54 *
55 * - on the fly deallocation of swap
56 *
57 * - No more garbage collection required. Unnecessarily allocated swap
58 * blocks only exist for dirty vm_page_t's now and these are already
59 * cycled (in a high-load system) by the pager. We also do on-the-fly
60 * removal of invalidated swap blocks when a page is destroyed
61 * or renamed.
62 *
63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64 *
65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94
66 *
1/*
2 * Copyright (c) 1998 Matthew Dillon,
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1990 University of Utah.
5 * Copyright (c) 1991, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * New Swap System
41 * Matthew Dillon
42 *
43 * Radix Bitmap 'blists'.
44 *
45 * - The new swapper uses the new radix bitmap code. This should scale
46 * to arbitrarily small or arbitrarily large swap spaces and an almost
47 * arbitrary degree of fragmentation.
48 *
49 * Features:
50 *
51 * - on the fly reallocation of swap during putpages. The new system
52 * does not try to keep previously allocated swap blocks for dirty
53 * pages.
54 *
55 * - on the fly deallocation of swap
56 *
57 * - No more garbage collection required. Unnecessarily allocated swap
58 * blocks only exist for dirty vm_page_t's now and these are already
59 * cycled (in a high-load system) by the pager. We also do on-the-fly
60 * removal of invalidated swap blocks when a page is destroyed
61 * or renamed.
62 *
63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64 *
65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94
66 *
67 * $FreeBSD: head/sys/vm/swap_pager.c 58934 2000-04-02 15:24:56Z phk $
67 * $FreeBSD: head/sys/vm/swap_pager.c 59249 2000-04-15 05:54:02Z phk $
68 */
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/conf.h>
73#include <sys/kernel.h>
74#include <sys/proc.h>
75#include <sys/buf.h>
76#include <sys/vnode.h>
77#include <sys/malloc.h>
78#include <sys/vmmeter.h>
79#include <sys/sysctl.h>
80#include <sys/blist.h>
81#include <sys/lock.h>
82
83#ifndef MAX_PAGEOUT_CLUSTER
84#define MAX_PAGEOUT_CLUSTER 16
85#endif
86
87#define SWB_NPAGES MAX_PAGEOUT_CLUSTER
88
89#include "opt_swap.h"
90#include <vm/vm.h>
91#include <vm/vm_object.h>
92#include <vm/vm_page.h>
93#include <vm/vm_pager.h>
94#include <vm/vm_pageout.h>
95#include <vm/swap_pager.h>
96#include <vm/vm_extern.h>
97#include <vm/vm_zone.h>
98
99#define SWM_FREE 0x02 /* free, period */
100#define SWM_POP 0x04 /* pop out */
101
102/*
103 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks
104 * in the old system.
105 */
106
107extern int vm_swap_size; /* number of free swap blocks, in pages */
108
109int swap_pager_full; /* swap space exhaustion (task killing) */
110static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
111static int nsw_rcount; /* free read buffers */
112static int nsw_wcount_sync; /* limit write buffers / synchronous */
113static int nsw_wcount_async; /* limit write buffers / asynchronous */
114static int nsw_wcount_async_max;/* assigned maximum */
115static int nsw_cluster_max; /* maximum VOP I/O allowed */
116static int sw_alloc_interlock; /* swap pager allocation interlock */
117
118struct blist *swapblist;
119static struct swblock **swhash;
120static int swhash_mask;
121static int swap_async_max = 4; /* maximum in-progress async I/O's */
122
123extern struct vnode *swapdev_vp; /* from vm_swap.c */
124
125SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
126 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
127
128/*
129 * "named" and "unnamed" anon region objects. Try to reduce the overhead
130 * of searching a named list by hashing it just a little.
131 */
132
133#define NOBJLISTS 8
134
135#define NOBJLIST(handle) \
136 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
137
138static struct pagerlst swap_pager_object_list[NOBJLISTS];
139struct pagerlst swap_pager_un_object_list;
140vm_zone_t swap_zone;
141
142/*
143 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure
144 * calls hooked from other parts of the VM system and do not appear here.
145 * (see vm/swap_pager.h).
146 */
147
148static vm_object_t
149 swap_pager_alloc __P((void *handle, vm_ooffset_t size,
150 vm_prot_t prot, vm_ooffset_t offset));
151static void swap_pager_dealloc __P((vm_object_t object));
152static int swap_pager_getpages __P((vm_object_t, vm_page_t *, int, int));
153static void swap_pager_init __P((void));
154static void swap_pager_unswapped __P((vm_page_t));
155static void swap_pager_strategy __P((vm_object_t, struct buf *));
156
157struct pagerops swappagerops = {
158 swap_pager_init, /* early system initialization of pager */
159 swap_pager_alloc, /* allocate an OBJT_SWAP object */
160 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */
161 swap_pager_getpages, /* pagein */
162 swap_pager_putpages, /* pageout */
163 swap_pager_haspage, /* get backing store status for page */
164 swap_pager_unswapped, /* remove swap related to page */
165 swap_pager_strategy /* pager strategy call */
166};
167
168/*
169 * dmmax is in page-sized chunks with the new swap system. It was
170 * dev-bsized chunks in the old.
171 *
172 * swap_*() routines are externally accessible. swp_*() routines are
173 * internal.
174 */
175
176int dmmax;
177static int dmmax_mask;
178int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */
179int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */
180
181static __inline void swp_sizecheck __P((void));
182static void swp_pager_sync_iodone __P((struct buf *bp));
183static void swp_pager_async_iodone __P((struct buf *bp));
184
185/*
186 * Swap bitmap functions
187 */
188
189static __inline void swp_pager_freeswapspace __P((daddr_t blk, int npages));
190static __inline daddr_t swp_pager_getswapspace __P((int npages));
191
192/*
193 * Metadata functions
194 */
195
196static void swp_pager_meta_build __P((vm_object_t, vm_pindex_t, daddr_t));
197static void swp_pager_meta_free __P((vm_object_t, vm_pindex_t, daddr_t));
198static void swp_pager_meta_free_all __P((vm_object_t));
199static daddr_t swp_pager_meta_ctl __P((vm_object_t, vm_pindex_t, int));
200
201/*
202 * SWP_SIZECHECK() - update swap_pager_full indication
203 *
204 * update the swap_pager_almost_full indication and warn when we are
205 * about to run out of swap space, using lowat/hiwat hysteresis.
206 *
207 * Clear swap_pager_full ( task killing ) indication when lowat is met.
208 *
209 * No restrictions on call
210 * This routine may not block.
211 * This routine must be called at splvm()
212 */
213
214static __inline void
215swp_sizecheck()
216{
217 if (vm_swap_size < nswap_lowat) {
218 if (swap_pager_almost_full == 0) {
219 printf("swap_pager: out of swap space\n");
220 swap_pager_almost_full = 1;
221 }
222 } else {
223 swap_pager_full = 0;
224 if (vm_swap_size > nswap_hiwat)
225 swap_pager_almost_full = 0;
226 }
227}
228
229/*
230 * SWAP_PAGER_INIT() - initialize the swap pager!
231 *
232 * Expected to be started from system init. NOTE: This code is run
233 * before much else so be careful what you depend on. Most of the VM
234 * system has yet to be initialized at this point.
235 */
236
237static void
238swap_pager_init()
239{
240 /*
241 * Initialize object lists
242 */
243 int i;
244
245 for (i = 0; i < NOBJLISTS; ++i)
246 TAILQ_INIT(&swap_pager_object_list[i]);
247 TAILQ_INIT(&swap_pager_un_object_list);
248
249 /*
250 * Device Stripe, in PAGE_SIZE'd blocks
251 */
252
253 dmmax = SWB_NPAGES * 2;
254 dmmax_mask = ~(dmmax - 1);
255}
256
257/*
258 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
259 *
260 * Expected to be started from pageout process once, prior to entering
261 * its main loop.
262 */
263
264void
265swap_pager_swap_init()
266{
267 int n;
268
269 /*
270 * Number of in-transit swap bp operations. Don't
271 * exhaust the pbufs completely. Make sure we
272 * initialize workable values (0 will work for hysteresis
273 * but it isn't very efficient).
274 *
275 * The nsw_cluster_max is constrained by the bp->b_pages[]
276 * array (MAXPHYS/PAGE_SIZE) and our locally defined
277 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are
278 * constrained by the swap device interleave stripe size.
279 *
280 * Currently we hardwire nsw_wcount_async to 4. This limit is
281 * designed to prevent other I/O from having high latencies due to
282 * our pageout I/O. The value 4 works well for one or two active swap
283 * devices but is probably a little low if you have more. Even so,
284 * a higher value would probably generate only a limited improvement
285 * with three or four active swap devices since the system does not
286 * typically have to pageout at extreme bandwidths. We will want
287 * at least 2 per swap devices, and 4 is a pretty good value if you
288 * have one NFS swap device due to the command/ack latency over NFS.
289 * So it all works out pretty well.
290 */
291
292 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
293
294 nsw_rcount = (nswbuf + 1) / 2;
295 nsw_wcount_sync = (nswbuf + 3) / 4;
296 nsw_wcount_async = 4;
297 nsw_wcount_async_max = nsw_wcount_async;
298
299 /*
300 * Initialize our zone. Right now I'm just guessing on the number
301 * we need based on the number of pages in the system. Each swblock
302 * can hold 16 pages, so this is probably overkill.
303 */
304
305 n = cnt.v_page_count * 2;
306
307 swap_zone = zinit(
308 "SWAPMETA",
309 sizeof(struct swblock),
310 n,
311 ZONE_INTERRUPT,
312 1
313 );
314
315 /*
316 * Initialize our meta-data hash table. The swapper does not need to
317 * be quite as efficient as the VM system, so we do not use an
318 * oversized hash table.
319 *
320 * n: size of hash table, must be power of 2
321 * swhash_mask: hash table index mask
322 */
323
324 for (n = 1; n < cnt.v_page_count / 4; n <<= 1)
325 ;
326
327 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK);
328 bzero(swhash, sizeof(struct swblock *) * n);
329
330 swhash_mask = n - 1;
331}
332
333/*
334 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
335 * its metadata structures.
336 *
337 * This routine is called from the mmap and fork code to create a new
338 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object
339 * and then converting it with swp_pager_meta_build().
340 *
341 * This routine may block in vm_object_allocate() and create a named
342 * object lookup race, so we must interlock. We must also run at
343 * splvm() for the object lookup to handle races with interrupts, but
344 * we do not have to maintain splvm() in between the lookup and the
345 * add because (I believe) it is not possible to attempt to create
346 * a new swap object w/handle when a default object with that handle
347 * already exists.
348 */
349
350static vm_object_t
351swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
352 vm_ooffset_t offset)
353{
354 vm_object_t object;
355
356 if (handle) {
357 /*
358 * Reference existing named region or allocate new one. There
359 * should not be a race here against swp_pager_meta_build()
360 * as called from vm_page_remove() in regards to the lookup
361 * of the handle.
362 */
363
364 while (sw_alloc_interlock) {
365 sw_alloc_interlock = -1;
366 tsleep(&sw_alloc_interlock, PVM, "swpalc", 0);
367 }
368 sw_alloc_interlock = 1;
369
370 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
371
372 if (object != NULL) {
373 vm_object_reference(object);
374 } else {
375 object = vm_object_allocate(OBJT_DEFAULT,
376 OFF_TO_IDX(offset + PAGE_MASK + size));
377 object->handle = handle;
378
379 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
380 }
381
382 if (sw_alloc_interlock < 0)
383 wakeup(&sw_alloc_interlock);
384
385 sw_alloc_interlock = 0;
386 } else {
387 object = vm_object_allocate(OBJT_DEFAULT,
388 OFF_TO_IDX(offset + PAGE_MASK + size));
389
390 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
391 }
392
393 return (object);
394}
395
396/*
397 * SWAP_PAGER_DEALLOC() - remove swap metadata from object
398 *
399 * The swap backing for the object is destroyed. The code is
400 * designed such that we can reinstantiate it later, but this
401 * routine is typically called only when the entire object is
402 * about to be destroyed.
403 *
404 * This routine may block, but no longer does.
405 *
406 * The object must be locked or unreferenceable.
407 */
408
409static void
410swap_pager_dealloc(object)
411 vm_object_t object;
412{
413 int s;
414
415 /*
416 * Remove from list right away so lookups will fail if we block for
417 * pageout completion.
418 */
419
420 if (object->handle == NULL) {
421 TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
422 } else {
423 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
424 }
425
426 vm_object_pip_wait(object, "swpdea");
427
428 /*
429 * Free all remaining metadata. We only bother to free it from
430 * the swap meta data. We do not attempt to free swapblk's still
431 * associated with vm_page_t's for this object. We do not care
432 * if paging is still in progress on some objects.
433 */
434 s = splvm();
435 swp_pager_meta_free_all(object);
436 splx(s);
437}
438
439/************************************************************************
440 * SWAP PAGER BITMAP ROUTINES *
441 ************************************************************************/
442
443/*
444 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space
445 *
446 * Allocate swap for the requested number of pages. The starting
447 * swap block number (a page index) is returned or SWAPBLK_NONE
448 * if the allocation failed.
449 *
450 * Also has the side effect of advising that somebody made a mistake
451 * when they configured swap and didn't configure enough.
452 *
453 * Must be called at splvm() to avoid races with bitmap frees from
454 * vm_page_remove() aka swap_pager_page_removed().
455 *
456 * This routine may not block
457 * This routine must be called at splvm().
458 */
459
460static __inline daddr_t
461swp_pager_getswapspace(npages)
462 int npages;
463{
464 daddr_t blk;
465
466 if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
467 if (swap_pager_full != 2) {
468 printf("swap_pager_getswapspace: failed\n");
469 swap_pager_full = 2;
470 swap_pager_almost_full = 1;
471 }
472 } else {
473 vm_swap_size -= npages;
474 swp_sizecheck();
475 }
476 return(blk);
477}
478
479/*
480 * SWP_PAGER_FREESWAPSPACE() - free raw swap space
481 *
482 * This routine returns the specified swap blocks back to the bitmap.
483 *
484 * Note: This routine may not block (it could in the old swap code),
485 * and through the use of the new blist routines it does not block.
486 *
487 * We must be called at splvm() to avoid races with bitmap frees from
488 * vm_page_remove() aka swap_pager_page_removed().
489 *
490 * This routine may not block
491 * This routine must be called at splvm().
492 */
493
494static __inline void
495swp_pager_freeswapspace(blk, npages)
496 daddr_t blk;
497 int npages;
498{
499 blist_free(swapblist, blk, npages);
500 vm_swap_size += npages;
501 swp_sizecheck();
502}
503
504/*
505 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page
506 * range within an object.
507 *
508 * This is a globally accessible routine.
509 *
510 * This routine removes swapblk assignments from swap metadata.
511 *
512 * The external callers of this routine typically have already destroyed
513 * or renamed vm_page_t's associated with this range in the object so
514 * we should be ok.
515 *
516 * This routine may be called at any spl. We up our spl to splvm temporarily
517 * in order to perform the metadata removal.
518 */
519
520void
521swap_pager_freespace(object, start, size)
522 vm_object_t object;
523 vm_pindex_t start;
524 vm_size_t size;
525{
526 int s = splvm();
527 swp_pager_meta_free(object, start, size);
528 splx(s);
529}
530
531/*
532 * SWAP_PAGER_RESERVE() - reserve swap blocks in object
533 *
534 * Assigns swap blocks to the specified range within the object. The
535 * swap blocks are not zerod. Any previous swap assignment is destroyed.
536 *
537 * Returns 0 on success, -1 on failure.
538 */
539
540int
541swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
542{
543 int s;
544 int n = 0;
545 daddr_t blk = SWAPBLK_NONE;
546 vm_pindex_t beg = start; /* save start index */
547
548 s = splvm();
549 while (size) {
550 if (n == 0) {
551 n = BLIST_MAX_ALLOC;
552 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
553 n >>= 1;
554 if (n == 0) {
555 swp_pager_meta_free(object, beg, start - beg);
556 splx(s);
557 return(-1);
558 }
559 }
560 }
561 swp_pager_meta_build(object, start, blk);
562 --size;
563 ++start;
564 ++blk;
565 --n;
566 }
567 swp_pager_meta_free(object, start, n);
568 splx(s);
569 return(0);
570}
571
572/*
573 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager
574 * and destroy the source.
575 *
576 * Copy any valid swapblks from the source to the destination. In
577 * cases where both the source and destination have a valid swapblk,
578 * we keep the destination's.
579 *
580 * This routine is allowed to block. It may block allocating metadata
581 * indirectly through swp_pager_meta_build() or if paging is still in
582 * progress on the source.
583 *
584 * This routine can be called at any spl
585 *
586 * XXX vm_page_collapse() kinda expects us not to block because we
587 * supposedly do not need to allocate memory, but for the moment we
588 * *may* have to get a little memory from the zone allocator, but
589 * it is taken from the interrupt memory. We should be ok.
590 *
591 * The source object contains no vm_page_t's (which is just as well)
592 *
593 * The source object is of type OBJT_SWAP.
594 *
595 * The source and destination objects must be locked or
596 * inaccessible (XXX are they ?)
597 */
598
599void
600swap_pager_copy(srcobject, dstobject, offset, destroysource)
601 vm_object_t srcobject;
602 vm_object_t dstobject;
603 vm_pindex_t offset;
604 int destroysource;
605{
606 vm_pindex_t i;
607 int s;
608
609 s = splvm();
610
611 /*
612 * If destroysource is set, we remove the source object from the
613 * swap_pager internal queue now.
614 */
615
616 if (destroysource) {
617 if (srcobject->handle == NULL) {
618 TAILQ_REMOVE(
619 &swap_pager_un_object_list,
620 srcobject,
621 pager_object_list
622 );
623 } else {
624 TAILQ_REMOVE(
625 NOBJLIST(srcobject->handle),
626 srcobject,
627 pager_object_list
628 );
629 }
630 }
631
632 /*
633 * transfer source to destination.
634 */
635
636 for (i = 0; i < dstobject->size; ++i) {
637 daddr_t dstaddr;
638
639 /*
640 * Locate (without changing) the swapblk on the destination,
641 * unless it is invalid in which case free it silently, or
642 * if the destination is a resident page, in which case the
643 * source is thrown away.
644 */
645
646 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
647
648 if (dstaddr == SWAPBLK_NONE) {
649 /*
650 * Destination has no swapblk and is not resident,
651 * copy source.
652 */
653 daddr_t srcaddr;
654
655 srcaddr = swp_pager_meta_ctl(
656 srcobject,
657 i + offset,
658 SWM_POP
659 );
660
661 if (srcaddr != SWAPBLK_NONE)
662 swp_pager_meta_build(dstobject, i, srcaddr);
663 } else {
664 /*
665 * Destination has valid swapblk or it is represented
666 * by a resident page. We destroy the sourceblock.
667 */
668
669 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
670 }
671 }
672
673 /*
674 * Free left over swap blocks in source.
675 *
676 * We have to revert the type to OBJT_DEFAULT so we do not accidently
677 * double-remove the object from the swap queues.
678 */
679
680 if (destroysource) {
681 swp_pager_meta_free_all(srcobject);
682 /*
683 * Reverting the type is not necessary, the caller is going
684 * to destroy srcobject directly, but I'm doing it here
685 * for consistency since we've removed the object from its
686 * queues.
687 */
688 srcobject->type = OBJT_DEFAULT;
689 }
690 splx(s);
691}
692
693/*
694 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for
695 * the requested page.
696 *
697 * We determine whether good backing store exists for the requested
698 * page and return TRUE if it does, FALSE if it doesn't.
699 *
700 * If TRUE, we also try to determine how much valid, contiguous backing
701 * store exists before and after the requested page within a reasonable
702 * distance. We do not try to restrict it to the swap device stripe
703 * (that is handled in getpages/putpages). It probably isn't worth
704 * doing here.
705 */
706
707boolean_t
708swap_pager_haspage(object, pindex, before, after)
709 vm_object_t object;
710 vm_pindex_t pindex;
711 int *before;
712 int *after;
713{
714 daddr_t blk0;
715 int s;
716
717 /*
718 * do we have good backing store at the requested index ?
719 */
720
721 s = splvm();
722 blk0 = swp_pager_meta_ctl(object, pindex, 0);
723
724 if (blk0 == SWAPBLK_NONE) {
725 splx(s);
726 if (before)
727 *before = 0;
728 if (after)
729 *after = 0;
730 return (FALSE);
731 }
732
733 /*
734 * find backwards-looking contiguous good backing store
735 */
736
737 if (before != NULL) {
738 int i;
739
740 for (i = 1; i < (SWB_NPAGES/2); ++i) {
741 daddr_t blk;
742
743 if (i > pindex)
744 break;
745 blk = swp_pager_meta_ctl(object, pindex - i, 0);
746 if (blk != blk0 - i)
747 break;
748 }
749 *before = (i - 1);
750 }
751
752 /*
753 * find forward-looking contiguous good backing store
754 */
755
756 if (after != NULL) {
757 int i;
758
759 for (i = 1; i < (SWB_NPAGES/2); ++i) {
760 daddr_t blk;
761
762 blk = swp_pager_meta_ctl(object, pindex + i, 0);
763 if (blk != blk0 + i)
764 break;
765 }
766 *after = (i - 1);
767 }
768 splx(s);
769 return (TRUE);
770}
771
772/*
773 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
774 *
775 * This removes any associated swap backing store, whether valid or
776 * not, from the page.
777 *
778 * This routine is typically called when a page is made dirty, at
779 * which point any associated swap can be freed. MADV_FREE also
780 * calls us in a special-case situation
781 *
782 * NOTE!!! If the page is clean and the swap was valid, the caller
783 * should make the page dirty before calling this routine. This routine
784 * does NOT change the m->dirty status of the page. Also: MADV_FREE
785 * depends on it.
786 *
787 * This routine may not block
788 * This routine must be called at splvm()
789 */
790
791static void
792swap_pager_unswapped(m)
793 vm_page_t m;
794{
795 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
796}
797
798/*
799 * SWAP_PAGER_STRATEGY() - read, write, free blocks
800 *
801 * This implements the vm_pager_strategy() interface to swap and allows
802 * other parts of the system to directly access swap as backing store
803 * through vm_objects of type OBJT_SWAP. This is intended to be a
804 * cacheless interface ( i.e. caching occurs at higher levels ).
805 * Therefore we do not maintain any resident pages. All I/O goes
806 * directly to and from the swap device.
807 *
808 * Note that b_blkno is scaled for PAGE_SIZE
809 *
810 * We currently attempt to run I/O synchronously or asynchronously as
811 * the caller requests. This isn't perfect because we loose error
812 * sequencing when we run multiple ops in parallel to satisfy a request.
813 * But this is swap, so we let it all hang out.
814 */
815
816static void
817swap_pager_strategy(vm_object_t object, struct buf *bp)
818{
819 vm_pindex_t start;
820 int count;
821 int s;
822 char *data;
823 struct buf *nbp = NULL;
824
825 if (bp->b_bcount & PAGE_MASK) {
826 bp->b_error = EINVAL;
827 bp->b_ioflags |= BIO_ERROR;
828 bp->b_flags |= B_INVAL;
68 */
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/conf.h>
73#include <sys/kernel.h>
74#include <sys/proc.h>
75#include <sys/buf.h>
76#include <sys/vnode.h>
77#include <sys/malloc.h>
78#include <sys/vmmeter.h>
79#include <sys/sysctl.h>
80#include <sys/blist.h>
81#include <sys/lock.h>
82
83#ifndef MAX_PAGEOUT_CLUSTER
84#define MAX_PAGEOUT_CLUSTER 16
85#endif
86
87#define SWB_NPAGES MAX_PAGEOUT_CLUSTER
88
89#include "opt_swap.h"
90#include <vm/vm.h>
91#include <vm/vm_object.h>
92#include <vm/vm_page.h>
93#include <vm/vm_pager.h>
94#include <vm/vm_pageout.h>
95#include <vm/swap_pager.h>
96#include <vm/vm_extern.h>
97#include <vm/vm_zone.h>
98
99#define SWM_FREE 0x02 /* free, period */
100#define SWM_POP 0x04 /* pop out */
101
102/*
103 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks
104 * in the old system.
105 */
106
107extern int vm_swap_size; /* number of free swap blocks, in pages */
108
109int swap_pager_full; /* swap space exhaustion (task killing) */
110static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
111static int nsw_rcount; /* free read buffers */
112static int nsw_wcount_sync; /* limit write buffers / synchronous */
113static int nsw_wcount_async; /* limit write buffers / asynchronous */
114static int nsw_wcount_async_max;/* assigned maximum */
115static int nsw_cluster_max; /* maximum VOP I/O allowed */
116static int sw_alloc_interlock; /* swap pager allocation interlock */
117
118struct blist *swapblist;
119static struct swblock **swhash;
120static int swhash_mask;
121static int swap_async_max = 4; /* maximum in-progress async I/O's */
122
123extern struct vnode *swapdev_vp; /* from vm_swap.c */
124
125SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
126 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
127
128/*
129 * "named" and "unnamed" anon region objects. Try to reduce the overhead
130 * of searching a named list by hashing it just a little.
131 */
132
133#define NOBJLISTS 8
134
135#define NOBJLIST(handle) \
136 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
137
138static struct pagerlst swap_pager_object_list[NOBJLISTS];
139struct pagerlst swap_pager_un_object_list;
140vm_zone_t swap_zone;
141
142/*
143 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure
144 * calls hooked from other parts of the VM system and do not appear here.
145 * (see vm/swap_pager.h).
146 */
147
148static vm_object_t
149 swap_pager_alloc __P((void *handle, vm_ooffset_t size,
150 vm_prot_t prot, vm_ooffset_t offset));
151static void swap_pager_dealloc __P((vm_object_t object));
152static int swap_pager_getpages __P((vm_object_t, vm_page_t *, int, int));
153static void swap_pager_init __P((void));
154static void swap_pager_unswapped __P((vm_page_t));
155static void swap_pager_strategy __P((vm_object_t, struct buf *));
156
157struct pagerops swappagerops = {
158 swap_pager_init, /* early system initialization of pager */
159 swap_pager_alloc, /* allocate an OBJT_SWAP object */
160 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */
161 swap_pager_getpages, /* pagein */
162 swap_pager_putpages, /* pageout */
163 swap_pager_haspage, /* get backing store status for page */
164 swap_pager_unswapped, /* remove swap related to page */
165 swap_pager_strategy /* pager strategy call */
166};
167
168/*
169 * dmmax is in page-sized chunks with the new swap system. It was
170 * dev-bsized chunks in the old.
171 *
172 * swap_*() routines are externally accessible. swp_*() routines are
173 * internal.
174 */
175
176int dmmax;
177static int dmmax_mask;
178int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */
179int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */
180
181static __inline void swp_sizecheck __P((void));
182static void swp_pager_sync_iodone __P((struct buf *bp));
183static void swp_pager_async_iodone __P((struct buf *bp));
184
185/*
186 * Swap bitmap functions
187 */
188
189static __inline void swp_pager_freeswapspace __P((daddr_t blk, int npages));
190static __inline daddr_t swp_pager_getswapspace __P((int npages));
191
192/*
193 * Metadata functions
194 */
195
196static void swp_pager_meta_build __P((vm_object_t, vm_pindex_t, daddr_t));
197static void swp_pager_meta_free __P((vm_object_t, vm_pindex_t, daddr_t));
198static void swp_pager_meta_free_all __P((vm_object_t));
199static daddr_t swp_pager_meta_ctl __P((vm_object_t, vm_pindex_t, int));
200
201/*
202 * SWP_SIZECHECK() - update swap_pager_full indication
203 *
204 * update the swap_pager_almost_full indication and warn when we are
205 * about to run out of swap space, using lowat/hiwat hysteresis.
206 *
207 * Clear swap_pager_full ( task killing ) indication when lowat is met.
208 *
209 * No restrictions on call
210 * This routine may not block.
211 * This routine must be called at splvm()
212 */
213
214static __inline void
215swp_sizecheck()
216{
217 if (vm_swap_size < nswap_lowat) {
218 if (swap_pager_almost_full == 0) {
219 printf("swap_pager: out of swap space\n");
220 swap_pager_almost_full = 1;
221 }
222 } else {
223 swap_pager_full = 0;
224 if (vm_swap_size > nswap_hiwat)
225 swap_pager_almost_full = 0;
226 }
227}
228
229/*
230 * SWAP_PAGER_INIT() - initialize the swap pager!
231 *
232 * Expected to be started from system init. NOTE: This code is run
233 * before much else so be careful what you depend on. Most of the VM
234 * system has yet to be initialized at this point.
235 */
236
237static void
238swap_pager_init()
239{
240 /*
241 * Initialize object lists
242 */
243 int i;
244
245 for (i = 0; i < NOBJLISTS; ++i)
246 TAILQ_INIT(&swap_pager_object_list[i]);
247 TAILQ_INIT(&swap_pager_un_object_list);
248
249 /*
250 * Device Stripe, in PAGE_SIZE'd blocks
251 */
252
253 dmmax = SWB_NPAGES * 2;
254 dmmax_mask = ~(dmmax - 1);
255}
256
257/*
258 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
259 *
260 * Expected to be started from pageout process once, prior to entering
261 * its main loop.
262 */
263
264void
265swap_pager_swap_init()
266{
267 int n;
268
269 /*
270 * Number of in-transit swap bp operations. Don't
271 * exhaust the pbufs completely. Make sure we
272 * initialize workable values (0 will work for hysteresis
273 * but it isn't very efficient).
274 *
275 * The nsw_cluster_max is constrained by the bp->b_pages[]
276 * array (MAXPHYS/PAGE_SIZE) and our locally defined
277 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are
278 * constrained by the swap device interleave stripe size.
279 *
280 * Currently we hardwire nsw_wcount_async to 4. This limit is
281 * designed to prevent other I/O from having high latencies due to
282 * our pageout I/O. The value 4 works well for one or two active swap
283 * devices but is probably a little low if you have more. Even so,
284 * a higher value would probably generate only a limited improvement
285 * with three or four active swap devices since the system does not
286 * typically have to pageout at extreme bandwidths. We will want
287 * at least 2 per swap devices, and 4 is a pretty good value if you
288 * have one NFS swap device due to the command/ack latency over NFS.
289 * So it all works out pretty well.
290 */
291
292 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
293
294 nsw_rcount = (nswbuf + 1) / 2;
295 nsw_wcount_sync = (nswbuf + 3) / 4;
296 nsw_wcount_async = 4;
297 nsw_wcount_async_max = nsw_wcount_async;
298
299 /*
300 * Initialize our zone. Right now I'm just guessing on the number
301 * we need based on the number of pages in the system. Each swblock
302 * can hold 16 pages, so this is probably overkill.
303 */
304
305 n = cnt.v_page_count * 2;
306
307 swap_zone = zinit(
308 "SWAPMETA",
309 sizeof(struct swblock),
310 n,
311 ZONE_INTERRUPT,
312 1
313 );
314
315 /*
316 * Initialize our meta-data hash table. The swapper does not need to
317 * be quite as efficient as the VM system, so we do not use an
318 * oversized hash table.
319 *
320 * n: size of hash table, must be power of 2
321 * swhash_mask: hash table index mask
322 */
323
324 for (n = 1; n < cnt.v_page_count / 4; n <<= 1)
325 ;
326
327 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK);
328 bzero(swhash, sizeof(struct swblock *) * n);
329
330 swhash_mask = n - 1;
331}
332
333/*
334 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
335 * its metadata structures.
336 *
337 * This routine is called from the mmap and fork code to create a new
338 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object
339 * and then converting it with swp_pager_meta_build().
340 *
341 * This routine may block in vm_object_allocate() and create a named
342 * object lookup race, so we must interlock. We must also run at
343 * splvm() for the object lookup to handle races with interrupts, but
344 * we do not have to maintain splvm() in between the lookup and the
345 * add because (I believe) it is not possible to attempt to create
346 * a new swap object w/handle when a default object with that handle
347 * already exists.
348 */
349
350static vm_object_t
351swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
352 vm_ooffset_t offset)
353{
354 vm_object_t object;
355
356 if (handle) {
357 /*
358 * Reference existing named region or allocate new one. There
359 * should not be a race here against swp_pager_meta_build()
360 * as called from vm_page_remove() in regards to the lookup
361 * of the handle.
362 */
363
364 while (sw_alloc_interlock) {
365 sw_alloc_interlock = -1;
366 tsleep(&sw_alloc_interlock, PVM, "swpalc", 0);
367 }
368 sw_alloc_interlock = 1;
369
370 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
371
372 if (object != NULL) {
373 vm_object_reference(object);
374 } else {
375 object = vm_object_allocate(OBJT_DEFAULT,
376 OFF_TO_IDX(offset + PAGE_MASK + size));
377 object->handle = handle;
378
379 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
380 }
381
382 if (sw_alloc_interlock < 0)
383 wakeup(&sw_alloc_interlock);
384
385 sw_alloc_interlock = 0;
386 } else {
387 object = vm_object_allocate(OBJT_DEFAULT,
388 OFF_TO_IDX(offset + PAGE_MASK + size));
389
390 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
391 }
392
393 return (object);
394}
395
396/*
397 * SWAP_PAGER_DEALLOC() - remove swap metadata from object
398 *
399 * The swap backing for the object is destroyed. The code is
400 * designed such that we can reinstantiate it later, but this
401 * routine is typically called only when the entire object is
402 * about to be destroyed.
403 *
404 * This routine may block, but no longer does.
405 *
406 * The object must be locked or unreferenceable.
407 */
408
409static void
410swap_pager_dealloc(object)
411 vm_object_t object;
412{
413 int s;
414
415 /*
416 * Remove from list right away so lookups will fail if we block for
417 * pageout completion.
418 */
419
420 if (object->handle == NULL) {
421 TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
422 } else {
423 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
424 }
425
426 vm_object_pip_wait(object, "swpdea");
427
428 /*
429 * Free all remaining metadata. We only bother to free it from
430 * the swap meta data. We do not attempt to free swapblk's still
431 * associated with vm_page_t's for this object. We do not care
432 * if paging is still in progress on some objects.
433 */
434 s = splvm();
435 swp_pager_meta_free_all(object);
436 splx(s);
437}
438
439/************************************************************************
440 * SWAP PAGER BITMAP ROUTINES *
441 ************************************************************************/
442
443/*
444 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space
445 *
446 * Allocate swap for the requested number of pages. The starting
447 * swap block number (a page index) is returned or SWAPBLK_NONE
448 * if the allocation failed.
449 *
450 * Also has the side effect of advising that somebody made a mistake
451 * when they configured swap and didn't configure enough.
452 *
453 * Must be called at splvm() to avoid races with bitmap frees from
454 * vm_page_remove() aka swap_pager_page_removed().
455 *
456 * This routine may not block
457 * This routine must be called at splvm().
458 */
459
460static __inline daddr_t
461swp_pager_getswapspace(npages)
462 int npages;
463{
464 daddr_t blk;
465
466 if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
467 if (swap_pager_full != 2) {
468 printf("swap_pager_getswapspace: failed\n");
469 swap_pager_full = 2;
470 swap_pager_almost_full = 1;
471 }
472 } else {
473 vm_swap_size -= npages;
474 swp_sizecheck();
475 }
476 return(blk);
477}
478
479/*
480 * SWP_PAGER_FREESWAPSPACE() - free raw swap space
481 *
482 * This routine returns the specified swap blocks back to the bitmap.
483 *
484 * Note: This routine may not block (it could in the old swap code),
485 * and through the use of the new blist routines it does not block.
486 *
487 * We must be called at splvm() to avoid races with bitmap frees from
488 * vm_page_remove() aka swap_pager_page_removed().
489 *
490 * This routine may not block
491 * This routine must be called at splvm().
492 */
493
494static __inline void
495swp_pager_freeswapspace(blk, npages)
496 daddr_t blk;
497 int npages;
498{
499 blist_free(swapblist, blk, npages);
500 vm_swap_size += npages;
501 swp_sizecheck();
502}
503
504/*
505 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page
506 * range within an object.
507 *
508 * This is a globally accessible routine.
509 *
510 * This routine removes swapblk assignments from swap metadata.
511 *
512 * The external callers of this routine typically have already destroyed
513 * or renamed vm_page_t's associated with this range in the object so
514 * we should be ok.
515 *
516 * This routine may be called at any spl. We up our spl to splvm temporarily
517 * in order to perform the metadata removal.
518 */
519
520void
521swap_pager_freespace(object, start, size)
522 vm_object_t object;
523 vm_pindex_t start;
524 vm_size_t size;
525{
526 int s = splvm();
527 swp_pager_meta_free(object, start, size);
528 splx(s);
529}
530
531/*
532 * SWAP_PAGER_RESERVE() - reserve swap blocks in object
533 *
534 * Assigns swap blocks to the specified range within the object. The
535 * swap blocks are not zerod. Any previous swap assignment is destroyed.
536 *
537 * Returns 0 on success, -1 on failure.
538 */
539
540int
541swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
542{
543 int s;
544 int n = 0;
545 daddr_t blk = SWAPBLK_NONE;
546 vm_pindex_t beg = start; /* save start index */
547
548 s = splvm();
549 while (size) {
550 if (n == 0) {
551 n = BLIST_MAX_ALLOC;
552 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
553 n >>= 1;
554 if (n == 0) {
555 swp_pager_meta_free(object, beg, start - beg);
556 splx(s);
557 return(-1);
558 }
559 }
560 }
561 swp_pager_meta_build(object, start, blk);
562 --size;
563 ++start;
564 ++blk;
565 --n;
566 }
567 swp_pager_meta_free(object, start, n);
568 splx(s);
569 return(0);
570}
571
572/*
573 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager
574 * and destroy the source.
575 *
576 * Copy any valid swapblks from the source to the destination. In
577 * cases where both the source and destination have a valid swapblk,
578 * we keep the destination's.
579 *
580 * This routine is allowed to block. It may block allocating metadata
581 * indirectly through swp_pager_meta_build() or if paging is still in
582 * progress on the source.
583 *
584 * This routine can be called at any spl
585 *
586 * XXX vm_page_collapse() kinda expects us not to block because we
587 * supposedly do not need to allocate memory, but for the moment we
588 * *may* have to get a little memory from the zone allocator, but
589 * it is taken from the interrupt memory. We should be ok.
590 *
591 * The source object contains no vm_page_t's (which is just as well)
592 *
593 * The source object is of type OBJT_SWAP.
594 *
595 * The source and destination objects must be locked or
596 * inaccessible (XXX are they ?)
597 */
598
599void
600swap_pager_copy(srcobject, dstobject, offset, destroysource)
601 vm_object_t srcobject;
602 vm_object_t dstobject;
603 vm_pindex_t offset;
604 int destroysource;
605{
606 vm_pindex_t i;
607 int s;
608
609 s = splvm();
610
611 /*
612 * If destroysource is set, we remove the source object from the
613 * swap_pager internal queue now.
614 */
615
616 if (destroysource) {
617 if (srcobject->handle == NULL) {
618 TAILQ_REMOVE(
619 &swap_pager_un_object_list,
620 srcobject,
621 pager_object_list
622 );
623 } else {
624 TAILQ_REMOVE(
625 NOBJLIST(srcobject->handle),
626 srcobject,
627 pager_object_list
628 );
629 }
630 }
631
632 /*
633 * transfer source to destination.
634 */
635
636 for (i = 0; i < dstobject->size; ++i) {
637 daddr_t dstaddr;
638
639 /*
640 * Locate (without changing) the swapblk on the destination,
641 * unless it is invalid in which case free it silently, or
642 * if the destination is a resident page, in which case the
643 * source is thrown away.
644 */
645
646 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
647
648 if (dstaddr == SWAPBLK_NONE) {
649 /*
650 * Destination has no swapblk and is not resident,
651 * copy source.
652 */
653 daddr_t srcaddr;
654
655 srcaddr = swp_pager_meta_ctl(
656 srcobject,
657 i + offset,
658 SWM_POP
659 );
660
661 if (srcaddr != SWAPBLK_NONE)
662 swp_pager_meta_build(dstobject, i, srcaddr);
663 } else {
664 /*
665 * Destination has valid swapblk or it is represented
666 * by a resident page. We destroy the sourceblock.
667 */
668
669 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
670 }
671 }
672
673 /*
674 * Free left over swap blocks in source.
675 *
676 * We have to revert the type to OBJT_DEFAULT so we do not accidently
677 * double-remove the object from the swap queues.
678 */
679
680 if (destroysource) {
681 swp_pager_meta_free_all(srcobject);
682 /*
683 * Reverting the type is not necessary, the caller is going
684 * to destroy srcobject directly, but I'm doing it here
685 * for consistency since we've removed the object from its
686 * queues.
687 */
688 srcobject->type = OBJT_DEFAULT;
689 }
690 splx(s);
691}
692
693/*
694 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for
695 * the requested page.
696 *
697 * We determine whether good backing store exists for the requested
698 * page and return TRUE if it does, FALSE if it doesn't.
699 *
700 * If TRUE, we also try to determine how much valid, contiguous backing
701 * store exists before and after the requested page within a reasonable
702 * distance. We do not try to restrict it to the swap device stripe
703 * (that is handled in getpages/putpages). It probably isn't worth
704 * doing here.
705 */
706
707boolean_t
708swap_pager_haspage(object, pindex, before, after)
709 vm_object_t object;
710 vm_pindex_t pindex;
711 int *before;
712 int *after;
713{
714 daddr_t blk0;
715 int s;
716
717 /*
718 * do we have good backing store at the requested index ?
719 */
720
721 s = splvm();
722 blk0 = swp_pager_meta_ctl(object, pindex, 0);
723
724 if (blk0 == SWAPBLK_NONE) {
725 splx(s);
726 if (before)
727 *before = 0;
728 if (after)
729 *after = 0;
730 return (FALSE);
731 }
732
733 /*
734 * find backwards-looking contiguous good backing store
735 */
736
737 if (before != NULL) {
738 int i;
739
740 for (i = 1; i < (SWB_NPAGES/2); ++i) {
741 daddr_t blk;
742
743 if (i > pindex)
744 break;
745 blk = swp_pager_meta_ctl(object, pindex - i, 0);
746 if (blk != blk0 - i)
747 break;
748 }
749 *before = (i - 1);
750 }
751
752 /*
753 * find forward-looking contiguous good backing store
754 */
755
756 if (after != NULL) {
757 int i;
758
759 for (i = 1; i < (SWB_NPAGES/2); ++i) {
760 daddr_t blk;
761
762 blk = swp_pager_meta_ctl(object, pindex + i, 0);
763 if (blk != blk0 + i)
764 break;
765 }
766 *after = (i - 1);
767 }
768 splx(s);
769 return (TRUE);
770}
771
772/*
773 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
774 *
775 * This removes any associated swap backing store, whether valid or
776 * not, from the page.
777 *
778 * This routine is typically called when a page is made dirty, at
779 * which point any associated swap can be freed. MADV_FREE also
780 * calls us in a special-case situation
781 *
782 * NOTE!!! If the page is clean and the swap was valid, the caller
783 * should make the page dirty before calling this routine. This routine
784 * does NOT change the m->dirty status of the page. Also: MADV_FREE
785 * depends on it.
786 *
787 * This routine may not block
788 * This routine must be called at splvm()
789 */
790
791static void
792swap_pager_unswapped(m)
793 vm_page_t m;
794{
795 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
796}
797
798/*
799 * SWAP_PAGER_STRATEGY() - read, write, free blocks
800 *
801 * This implements the vm_pager_strategy() interface to swap and allows
802 * other parts of the system to directly access swap as backing store
803 * through vm_objects of type OBJT_SWAP. This is intended to be a
804 * cacheless interface ( i.e. caching occurs at higher levels ).
805 * Therefore we do not maintain any resident pages. All I/O goes
806 * directly to and from the swap device.
807 *
808 * Note that b_blkno is scaled for PAGE_SIZE
809 *
810 * We currently attempt to run I/O synchronously or asynchronously as
811 * the caller requests. This isn't perfect because we loose error
812 * sequencing when we run multiple ops in parallel to satisfy a request.
813 * But this is swap, so we let it all hang out.
814 */
815
816static void
817swap_pager_strategy(vm_object_t object, struct buf *bp)
818{
819 vm_pindex_t start;
820 int count;
821 int s;
822 char *data;
823 struct buf *nbp = NULL;
824
825 if (bp->b_bcount & PAGE_MASK) {
826 bp->b_error = EINVAL;
827 bp->b_ioflags |= BIO_ERROR;
828 bp->b_flags |= B_INVAL;
829 biodone(bp);
829 bufdone(bp);
830 printf("swap_pager_strategy: bp %p b_vp %p blk %d size %d, not page bounded\n", bp, bp->b_vp, (int)bp->b_pblkno, (int)bp->b_bcount);
831 return;
832 }
833
834 /*
835 * Clear error indication, initialize page index, count, data pointer.
836 */
837
838 bp->b_error = 0;
839 bp->b_ioflags &= ~BIO_ERROR;
840 bp->b_resid = bp->b_bcount;
841
842 start = bp->b_pblkno;
843 count = howmany(bp->b_bcount, PAGE_SIZE);
844 data = bp->b_data;
845
846 s = splvm();
847
848 /*
849 * Deal with BIO_DELETE
850 */
851
852 if (bp->b_iocmd == BIO_DELETE) {
853 /*
854 * FREE PAGE(s) - destroy underlying swap that is no longer
855 * needed.
856 */
857 swp_pager_meta_free(object, start, count);
858 splx(s);
859 bp->b_resid = 0;
830 printf("swap_pager_strategy: bp %p b_vp %p blk %d size %d, not page bounded\n", bp, bp->b_vp, (int)bp->b_pblkno, (int)bp->b_bcount);
831 return;
832 }
833
834 /*
835 * Clear error indication, initialize page index, count, data pointer.
836 */
837
838 bp->b_error = 0;
839 bp->b_ioflags &= ~BIO_ERROR;
840 bp->b_resid = bp->b_bcount;
841
842 start = bp->b_pblkno;
843 count = howmany(bp->b_bcount, PAGE_SIZE);
844 data = bp->b_data;
845
846 s = splvm();
847
848 /*
849 * Deal with BIO_DELETE
850 */
851
852 if (bp->b_iocmd == BIO_DELETE) {
853 /*
854 * FREE PAGE(s) - destroy underlying swap that is no longer
855 * needed.
856 */
857 swp_pager_meta_free(object, start, count);
858 splx(s);
859 bp->b_resid = 0;
860 biodone(bp);
860 bufdone(bp);
861 return;
862 }
863
864 /*
865 * Execute read or write
866 */
867
868 while (count > 0) {
869 daddr_t blk;
870
871 /*
872 * Obtain block. If block not found and writing, allocate a
873 * new block and build it into the object.
874 */
875
876 blk = swp_pager_meta_ctl(object, start, 0);
877 if ((blk == SWAPBLK_NONE) && (bp->b_iocmd == BIO_WRITE)) {
878 blk = swp_pager_getswapspace(1);
879 if (blk == SWAPBLK_NONE) {
880 bp->b_error = ENOMEM;
881 bp->b_ioflags |= BIO_ERROR;
882 break;
883 }
884 swp_pager_meta_build(object, start, blk);
885 }
886
887 /*
888 * Do we have to flush our current collection? Yes if:
889 *
890 * - no swap block at this index
891 * - swap block is not contiguous
892 * - we cross a physical disk boundry in the
893 * stripe.
894 */
895
896 if (
897 nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
898 ((nbp->b_blkno ^ blk) & dmmax_mask)
899 )
900 ) {
901 splx(s);
902 if (bp->b_iocmd == BIO_READ) {
903 ++cnt.v_swapin;
904 cnt.v_swappgsin += btoc(nbp->b_bcount);
905 } else {
906 ++cnt.v_swapout;
907 cnt.v_swappgsout += btoc(nbp->b_bcount);
908 nbp->b_dirtyend = nbp->b_bcount;
909 }
910 flushchainbuf(nbp);
911 s = splvm();
912 nbp = NULL;
913 }
914
915 /*
916 * Add new swapblk to nbp, instantiating nbp if necessary.
917 * Zero-fill reads are able to take a shortcut.
918 */
919
920 if (blk == SWAPBLK_NONE) {
921 /*
922 * We can only get here if we are reading. Since
923 * we are at splvm() we can safely modify b_resid,
924 * even if chain ops are in progress.
925 */
926 bzero(data, PAGE_SIZE);
927 bp->b_resid -= PAGE_SIZE;
928 } else {
929 if (nbp == NULL) {
930 nbp = getchainbuf(bp, swapdev_vp, (bp->b_iocmd == BIO_READ) | B_ASYNC);
931 nbp->b_blkno = blk;
932 nbp->b_bcount = 0;
933 nbp->b_data = data;
934 }
935 nbp->b_bcount += PAGE_SIZE;
936 }
937 --count;
938 ++start;
939 data += PAGE_SIZE;
940 }
941
942 /*
943 * Flush out last buffer
944 */
945
946 splx(s);
947
948 if (nbp) {
949 if ((bp->b_flags & B_ASYNC) == 0)
950 nbp->b_flags &= ~B_ASYNC;
951 if (nbp->b_iocmd == BIO_READ) {
952 ++cnt.v_swapin;
953 cnt.v_swappgsin += btoc(nbp->b_bcount);
954 } else {
955 ++cnt.v_swapout;
956 cnt.v_swappgsout += btoc(nbp->b_bcount);
957 nbp->b_dirtyend = nbp->b_bcount;
958 }
959 flushchainbuf(nbp);
960 /* nbp = NULL; */
961 }
962
963 /*
964 * Wait for completion.
965 */
966
967 if (bp->b_flags & B_ASYNC) {
968 autochaindone(bp);
969 } else {
970 waitchainbuf(bp, 0, 1);
971 }
972}
973
974/*
975 * SWAP_PAGER_GETPAGES() - bring pages in from swap
976 *
977 * Attempt to retrieve (m, count) pages from backing store, but make
978 * sure we retrieve at least m[reqpage]. We try to load in as large
979 * a chunk surrounding m[reqpage] as is contiguous in swap and which
980 * belongs to the same object.
981 *
982 * The code is designed for asynchronous operation and
983 * immediate-notification of 'reqpage' but tends not to be
984 * used that way. Please do not optimize-out this algorithmic
985 * feature, I intend to improve on it in the future.
986 *
987 * The parent has a single vm_object_pip_add() reference prior to
988 * calling us and we should return with the same.
989 *
990 * The parent has BUSY'd the pages. We should return with 'm'
991 * left busy, but the others adjusted.
992 */
993
994static int
995swap_pager_getpages(object, m, count, reqpage)
996 vm_object_t object;
997 vm_page_t *m;
998 int count, reqpage;
999{
1000 struct buf *bp;
1001 vm_page_t mreq;
1002 int s;
1003 int i;
1004 int j;
1005 daddr_t blk;
1006 vm_offset_t kva;
1007 vm_pindex_t lastpindex;
1008
1009 mreq = m[reqpage];
1010
1011 if (mreq->object != object) {
1012 panic("swap_pager_getpages: object mismatch %p/%p",
1013 object,
1014 mreq->object
1015 );
1016 }
1017 /*
1018 * Calculate range to retrieve. The pages have already been assigned
1019 * their swapblks. We require a *contiguous* range that falls entirely
1020 * within a single device stripe. If we do not supply it, bad things
1021 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1022 * loops are set up such that the case(s) are handled implicitly.
1023 *
1024 * The swp_*() calls must be made at splvm(). vm_page_free() does
1025 * not need to be, but it will go a little faster if it is.
1026 */
1027
1028 s = splvm();
1029 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1030
1031 for (i = reqpage - 1; i >= 0; --i) {
1032 daddr_t iblk;
1033
1034 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1035 if (blk != iblk + (reqpage - i))
1036 break;
1037 if ((blk ^ iblk) & dmmax_mask)
1038 break;
1039 }
1040 ++i;
1041
1042 for (j = reqpage + 1; j < count; ++j) {
1043 daddr_t jblk;
1044
1045 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1046 if (blk != jblk - (j - reqpage))
1047 break;
1048 if ((blk ^ jblk) & dmmax_mask)
1049 break;
1050 }
1051
1052 /*
1053 * free pages outside our collection range. Note: we never free
1054 * mreq, it must remain busy throughout.
1055 */
1056
1057 {
1058 int k;
1059
1060 for (k = 0; k < i; ++k)
1061 vm_page_free(m[k]);
1062 for (k = j; k < count; ++k)
1063 vm_page_free(m[k]);
1064 }
1065 splx(s);
1066
1067
1068 /*
1069 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq
1070 * still busy, but the others unbusied.
1071 */
1072
1073 if (blk == SWAPBLK_NONE)
1074 return(VM_PAGER_FAIL);
1075
1076 /*
1077 * Get a swap buffer header to perform the IO
1078 */
1079
1080 bp = getpbuf(&nsw_rcount);
1081 kva = (vm_offset_t) bp->b_data;
1082
1083 /*
1084 * map our page(s) into kva for input
1085 *
1086 * NOTE: B_PAGING is set by pbgetvp()
1087 */
1088
1089 pmap_qenter(kva, m + i, j - i);
1090
1091 bp->b_iocmd = BIO_READ;
1092 bp->b_iodone = swp_pager_async_iodone;
1093 bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1094 bp->b_data = (caddr_t) kva;
1095 crhold(bp->b_rcred);
1096 crhold(bp->b_wcred);
1097 bp->b_blkno = blk - (reqpage - i);
1098 bp->b_bcount = PAGE_SIZE * (j - i);
1099 bp->b_bufsize = PAGE_SIZE * (j - i);
1100 bp->b_pager.pg_reqpage = reqpage - i;
1101
1102 {
1103 int k;
1104
1105 for (k = i; k < j; ++k) {
1106 bp->b_pages[k - i] = m[k];
1107 vm_page_flag_set(m[k], PG_SWAPINPROG);
1108 }
1109 }
1110 bp->b_npages = j - i;
1111
1112 pbgetvp(swapdev_vp, bp);
1113
1114 cnt.v_swapin++;
1115 cnt.v_swappgsin += bp->b_npages;
1116
1117 /*
1118 * We still hold the lock on mreq, and our automatic completion routine
1119 * does not remove it.
1120 */
1121
1122 vm_object_pip_add(mreq->object, bp->b_npages);
1123 lastpindex = m[j-1]->pindex;
1124
1125 /*
1126 * perform the I/O. NOTE!!! bp cannot be considered valid after
1127 * this point because we automatically release it on completion.
1128 * Instead, we look at the one page we are interested in which we
1129 * still hold a lock on even through the I/O completion.
1130 *
1131 * The other pages in our m[] array are also released on completion,
1132 * so we cannot assume they are valid anymore either.
1133 *
1134 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1135 */
1136
1137 BUF_KERNPROC(bp);
1138 BUF_STRATEGY(bp);
1139
1140 /*
1141 * wait for the page we want to complete. PG_SWAPINPROG is always
1142 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE
1143 * is set in the meta-data.
1144 */
1145
1146 s = splvm();
1147
1148 while ((mreq->flags & PG_SWAPINPROG) != 0) {
1149 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1150 cnt.v_intrans++;
1151 if (tsleep(mreq, PSWP, "swread", hz*20)) {
1152 printf(
1153 "swap_pager: indefinite wait buffer: device:"
1154 " %s, blkno: %ld, size: %ld\n",
1155 devtoname(bp->b_dev), (long)bp->b_blkno,
1156 bp->b_bcount
1157 );
1158 }
1159 }
1160
1161 splx(s);
1162
1163 /*
1164 * mreq is left bussied after completion, but all the other pages
1165 * are freed. If we had an unrecoverable read error the page will
1166 * not be valid.
1167 */
1168
1169 if (mreq->valid != VM_PAGE_BITS_ALL) {
1170 return(VM_PAGER_ERROR);
1171 } else {
1172 return(VM_PAGER_OK);
1173 }
1174
1175 /*
1176 * A final note: in a low swap situation, we cannot deallocate swap
1177 * and mark a page dirty here because the caller is likely to mark
1178 * the page clean when we return, causing the page to possibly revert
1179 * to all-zero's later.
1180 */
1181}
1182
1183/*
1184 * swap_pager_putpages:
1185 *
1186 * Assign swap (if necessary) and initiate I/O on the specified pages.
1187 *
1188 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects
1189 * are automatically converted to SWAP objects.
1190 *
1191 * In a low memory situation we may block in VOP_STRATEGY(), but the new
1192 * vm_page reservation system coupled with properly written VFS devices
1193 * should ensure that no low-memory deadlock occurs. This is an area
1194 * which needs work.
1195 *
1196 * The parent has N vm_object_pip_add() references prior to
1197 * calling us and will remove references for rtvals[] that are
1198 * not set to VM_PAGER_PEND. We need to remove the rest on I/O
1199 * completion.
1200 *
1201 * The parent has soft-busy'd the pages it passes us and will unbusy
1202 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1203 * We need to unbusy the rest on I/O completion.
1204 */
1205
1206void
1207swap_pager_putpages(object, m, count, sync, rtvals)
1208 vm_object_t object;
1209 vm_page_t *m;
1210 int count;
1211 boolean_t sync;
1212 int *rtvals;
1213{
1214 int i;
1215 int n = 0;
1216
1217 if (count && m[0]->object != object) {
1218 panic("swap_pager_getpages: object mismatch %p/%p",
1219 object,
1220 m[0]->object
1221 );
1222 }
1223 /*
1224 * Step 1
1225 *
1226 * Turn object into OBJT_SWAP
1227 * check for bogus sysops
1228 * force sync if not pageout process
1229 */
1230
1231 if (object->type != OBJT_SWAP)
1232 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1233
1234 if (curproc != pageproc)
1235 sync = TRUE;
1236
1237 /*
1238 * Step 2
1239 *
1240 * Update nsw parameters from swap_async_max sysctl values.
1241 * Do not let the sysop crash the machine with bogus numbers.
1242 */
1243
1244 if (swap_async_max != nsw_wcount_async_max) {
1245 int n;
1246 int s;
1247
1248 /*
1249 * limit range
1250 */
1251 if ((n = swap_async_max) > nswbuf / 2)
1252 n = nswbuf / 2;
1253 if (n < 1)
1254 n = 1;
1255 swap_async_max = n;
1256
1257 /*
1258 * Adjust difference ( if possible ). If the current async
1259 * count is too low, we may not be able to make the adjustment
1260 * at this time.
1261 */
1262 s = splvm();
1263 n -= nsw_wcount_async_max;
1264 if (nsw_wcount_async + n >= 0) {
1265 nsw_wcount_async += n;
1266 nsw_wcount_async_max += n;
1267 wakeup(&nsw_wcount_async);
1268 }
1269 splx(s);
1270 }
1271
1272 /*
1273 * Step 3
1274 *
1275 * Assign swap blocks and issue I/O. We reallocate swap on the fly.
1276 * The page is left dirty until the pageout operation completes
1277 * successfully.
1278 */
1279
1280 for (i = 0; i < count; i += n) {
1281 int s;
1282 int j;
1283 struct buf *bp;
1284 daddr_t blk;
1285
1286 /*
1287 * Maximum I/O size is limited by a number of factors.
1288 */
1289
1290 n = min(BLIST_MAX_ALLOC, count - i);
1291 n = min(n, nsw_cluster_max);
1292
1293 s = splvm();
1294
1295 /*
1296 * Get biggest block of swap we can. If we fail, fall
1297 * back and try to allocate a smaller block. Don't go
1298 * overboard trying to allocate space if it would overly
1299 * fragment swap.
1300 */
1301 while (
1302 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1303 n > 4
1304 ) {
1305 n >>= 1;
1306 }
1307 if (blk == SWAPBLK_NONE) {
1308 for (j = 0; j < n; ++j)
1309 rtvals[i+j] = VM_PAGER_FAIL;
1310 splx(s);
1311 continue;
1312 }
1313
1314 /*
1315 * The I/O we are constructing cannot cross a physical
1316 * disk boundry in the swap stripe. Note: we are still
1317 * at splvm().
1318 */
1319 if ((blk ^ (blk + n)) & dmmax_mask) {
1320 j = ((blk + dmmax) & dmmax_mask) - blk;
1321 swp_pager_freeswapspace(blk + j, n - j);
1322 n = j;
1323 }
1324
1325 /*
1326 * All I/O parameters have been satisfied, build the I/O
1327 * request and assign the swap space.
1328 *
1329 * NOTE: B_PAGING is set by pbgetvp()
1330 */
1331
1332 if (sync == TRUE) {
1333 bp = getpbuf(&nsw_wcount_sync);
1334 } else {
1335 bp = getpbuf(&nsw_wcount_async);
1336 bp->b_flags = B_ASYNC;
1337 }
1338 bp->b_iocmd = BIO_WRITE;
1339 bp->b_spc = NULL; /* not used, but NULL-out anyway */
1340
1341 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1342
1343 bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1344 bp->b_bcount = PAGE_SIZE * n;
1345 bp->b_bufsize = PAGE_SIZE * n;
1346 bp->b_blkno = blk;
1347
1348 crhold(bp->b_rcred);
1349 crhold(bp->b_wcred);
1350
1351 pbgetvp(swapdev_vp, bp);
1352
1353 for (j = 0; j < n; ++j) {
1354 vm_page_t mreq = m[i+j];
1355
1356 swp_pager_meta_build(
1357 mreq->object,
1358 mreq->pindex,
1359 blk + j
1360 );
1361 vm_page_dirty(mreq);
1362 rtvals[i+j] = VM_PAGER_OK;
1363
1364 vm_page_flag_set(mreq, PG_SWAPINPROG);
1365 bp->b_pages[j] = mreq;
1366 }
1367 bp->b_npages = n;
1368 /*
1369 * Must set dirty range for NFS to work.
1370 */
1371 bp->b_dirtyoff = 0;
1372 bp->b_dirtyend = bp->b_bcount;
1373
1374 cnt.v_swapout++;
1375 cnt.v_swappgsout += bp->b_npages;
1376 swapdev_vp->v_numoutput++;
1377
1378 splx(s);
1379
1380 /*
1381 * asynchronous
1382 *
1383 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1384 */
1385
1386 if (sync == FALSE) {
1387 bp->b_iodone = swp_pager_async_iodone;
1388 BUF_KERNPROC(bp);
1389 BUF_STRATEGY(bp);
1390
1391 for (j = 0; j < n; ++j)
1392 rtvals[i+j] = VM_PAGER_PEND;
1393 continue;
1394 }
1395
1396 /*
1397 * synchronous
1398 *
1399 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1400 */
1401
1402 bp->b_iodone = swp_pager_sync_iodone;
1403 BUF_STRATEGY(bp);
1404
1405 /*
1406 * Wait for the sync I/O to complete, then update rtvals.
1407 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1408 * our async completion routine at the end, thus avoiding a
1409 * double-free.
1410 */
1411 s = splbio();
1412
1413 while ((bp->b_flags & B_DONE) == 0) {
1414 tsleep(bp, PVM, "swwrt", 0);
1415 }
1416
1417 for (j = 0; j < n; ++j)
1418 rtvals[i+j] = VM_PAGER_PEND;
1419
1420 /*
1421 * Now that we are through with the bp, we can call the
1422 * normal async completion, which frees everything up.
1423 */
1424
1425 swp_pager_async_iodone(bp);
1426
1427 splx(s);
1428 }
1429}
1430
1431/*
1432 * swap_pager_sync_iodone:
1433 *
1434 * Completion routine for synchronous reads and writes from/to swap.
1435 * We just mark the bp is complete and wake up anyone waiting on it.
1436 *
1437 * This routine may not block. This routine is called at splbio() or better.
1438 */
1439
1440static void
1441swp_pager_sync_iodone(bp)
1442 struct buf *bp;
1443{
1444 bp->b_flags |= B_DONE;
1445 bp->b_flags &= ~B_ASYNC;
1446 wakeup(bp);
1447}
1448
1449/*
1450 * swp_pager_async_iodone:
1451 *
1452 * Completion routine for asynchronous reads and writes from/to swap.
1453 * Also called manually by synchronous code to finish up a bp.
1454 *
1455 * For READ operations, the pages are PG_BUSY'd. For WRITE operations,
1456 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY
1457 * unbusy all pages except the 'main' request page. For WRITE
1458 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1459 * because we marked them all VM_PAGER_PEND on return from putpages ).
1460 *
1461 * This routine may not block.
1462 * This routine is called at splbio() or better
1463 *
1464 * We up ourselves to splvm() as required for various vm_page related
1465 * calls.
1466 */
1467
1468static void
1469swp_pager_async_iodone(bp)
1470 register struct buf *bp;
1471{
1472 int s;
1473 int i;
1474 vm_object_t object = NULL;
1475
1476 bp->b_flags |= B_DONE;
1477
1478 /*
1479 * report error
1480 */
1481
1482 if (bp->b_ioflags & BIO_ERROR) {
1483 printf(
1484 "swap_pager: I/O error - %s failed; blkno %ld,"
1485 "size %ld, error %d\n",
1486 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1487 (long)bp->b_blkno,
1488 (long)bp->b_bcount,
1489 bp->b_error
1490 );
1491 }
1492
1493 /*
1494 * set object, raise to splvm().
1495 */
1496
1497 if (bp->b_npages)
1498 object = bp->b_pages[0]->object;
1499 s = splvm();
1500
1501 /*
1502 * remove the mapping for kernel virtual
1503 */
1504
1505 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1506
1507 /*
1508 * cleanup pages. If an error occurs writing to swap, we are in
1509 * very serious trouble. If it happens to be a disk error, though,
1510 * we may be able to recover by reassigning the swap later on. So
1511 * in this case we remove the m->swapblk assignment for the page
1512 * but do not free it in the rlist. The errornous block(s) are thus
1513 * never reallocated as swap. Redirty the page and continue.
1514 */
1515
1516 for (i = 0; i < bp->b_npages; ++i) {
1517 vm_page_t m = bp->b_pages[i];
1518
1519 vm_page_flag_clear(m, PG_SWAPINPROG);
1520
1521 if (bp->b_ioflags & BIO_ERROR) {
1522 /*
1523 * If an error occurs I'd love to throw the swapblk
1524 * away without freeing it back to swapspace, so it
1525 * can never be used again. But I can't from an
1526 * interrupt.
1527 */
1528
1529 if (bp->b_iocmd == BIO_READ) {
1530 /*
1531 * When reading, reqpage needs to stay
1532 * locked for the parent, but all other
1533 * pages can be freed. We still want to
1534 * wakeup the parent waiting on the page,
1535 * though. ( also: pg_reqpage can be -1 and
1536 * not match anything ).
1537 *
1538 * We have to wake specifically requested pages
1539 * up too because we cleared PG_SWAPINPROG and
1540 * someone may be waiting for that.
1541 *
1542 * NOTE: for reads, m->dirty will probably
1543 * be overridden by the original caller of
1544 * getpages so don't play cute tricks here.
1545 *
1546 * XXX it may not be legal to free the page
1547 * here as this messes with the object->memq's.
1548 */
1549
1550 m->valid = 0;
1551 vm_page_flag_clear(m, PG_ZERO);
1552
1553 if (i != bp->b_pager.pg_reqpage)
1554 vm_page_free(m);
1555 else
1556 vm_page_flash(m);
1557 /*
1558 * If i == bp->b_pager.pg_reqpage, do not wake
1559 * the page up. The caller needs to.
1560 */
1561 } else {
1562 /*
1563 * If a write error occurs, reactivate page
1564 * so it doesn't clog the inactive list,
1565 * then finish the I/O.
1566 */
1567 vm_page_dirty(m);
1568 vm_page_activate(m);
1569 vm_page_io_finish(m);
1570 }
1571 } else if (bp->b_iocmd == BIO_READ) {
1572 /*
1573 * For read success, clear dirty bits. Nobody should
1574 * have this page mapped but don't take any chances,
1575 * make sure the pmap modify bits are also cleared.
1576 *
1577 * NOTE: for reads, m->dirty will probably be
1578 * overridden by the original caller of getpages so
1579 * we cannot set them in order to free the underlying
1580 * swap in a low-swap situation. I don't think we'd
1581 * want to do that anyway, but it was an optimization
1582 * that existed in the old swapper for a time before
1583 * it got ripped out due to precisely this problem.
1584 *
1585 * clear PG_ZERO in page.
1586 *
1587 * If not the requested page then deactivate it.
1588 *
1589 * Note that the requested page, reqpage, is left
1590 * busied, but we still have to wake it up. The
1591 * other pages are released (unbusied) by
1592 * vm_page_wakeup(). We do not set reqpage's
1593 * valid bits here, it is up to the caller.
1594 */
1595
1596 pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1597 m->valid = VM_PAGE_BITS_ALL;
1598 vm_page_undirty(m);
1599 vm_page_flag_clear(m, PG_ZERO);
1600
1601 /*
1602 * We have to wake specifically requested pages
1603 * up too because we cleared PG_SWAPINPROG and
1604 * could be waiting for it in getpages. However,
1605 * be sure to not unbusy getpages specifically
1606 * requested page - getpages expects it to be
1607 * left busy.
1608 */
1609 if (i != bp->b_pager.pg_reqpage) {
1610 vm_page_deactivate(m);
1611 vm_page_wakeup(m);
1612 } else {
1613 vm_page_flash(m);
1614 }
1615 } else {
1616 /*
1617 * For write success, clear the modify and dirty
1618 * status, then finish the I/O ( which decrements the
1619 * busy count and possibly wakes waiter's up ).
1620 */
1621 vm_page_protect(m, VM_PROT_READ);
1622 pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1623 vm_page_undirty(m);
1624 vm_page_io_finish(m);
1625 }
1626 }
1627
1628 /*
1629 * adjust pip. NOTE: the original parent may still have its own
1630 * pip refs on the object.
1631 */
1632
1633 if (object)
1634 vm_object_pip_wakeupn(object, bp->b_npages);
1635
1636 /*
1637 * release the physical I/O buffer
1638 */
1639
1640 relpbuf(
1641 bp,
1642 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1643 ((bp->b_flags & B_ASYNC) ?
1644 &nsw_wcount_async :
1645 &nsw_wcount_sync
1646 )
1647 )
1648 );
1649 splx(s);
1650}
1651
1652/************************************************************************
1653 * SWAP META DATA *
1654 ************************************************************************
1655 *
1656 * These routines manipulate the swap metadata stored in the
1657 * OBJT_SWAP object. All swp_*() routines must be called at
1658 * splvm() because swap can be freed up by the low level vm_page
1659 * code which might be called from interrupts beyond what splbio() covers.
1660 *
1661 * Swap metadata is implemented with a global hash and not directly
1662 * linked into the object. Instead the object simply contains
1663 * appropriate tracking counters.
1664 */
1665
1666/*
1667 * SWP_PAGER_HASH() - hash swap meta data
1668 *
1669 * This is an inline helper function which hashes the swapblk given
1670 * the object and page index. It returns a pointer to a pointer
1671 * to the object, or a pointer to a NULL pointer if it could not
1672 * find a swapblk.
1673 *
1674 * This routine must be called at splvm().
1675 */
1676
1677static __inline struct swblock **
1678swp_pager_hash(vm_object_t object, vm_pindex_t index)
1679{
1680 struct swblock **pswap;
1681 struct swblock *swap;
1682
1683 index &= ~SWAP_META_MASK;
1684 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1685
1686 while ((swap = *pswap) != NULL) {
1687 if (swap->swb_object == object &&
1688 swap->swb_index == index
1689 ) {
1690 break;
1691 }
1692 pswap = &swap->swb_hnext;
1693 }
1694 return(pswap);
1695}
1696
1697/*
1698 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object
1699 *
1700 * We first convert the object to a swap object if it is a default
1701 * object.
1702 *
1703 * The specified swapblk is added to the object's swap metadata. If
1704 * the swapblk is not valid, it is freed instead. Any previously
1705 * assigned swapblk is freed.
1706 *
1707 * This routine must be called at splvm(), except when used to convert
1708 * an OBJT_DEFAULT object into an OBJT_SWAP object.
1709
1710 */
1711
1712static void
1713swp_pager_meta_build(
1714 vm_object_t object,
1715 vm_pindex_t index,
1716 daddr_t swapblk
1717) {
1718 struct swblock *swap;
1719 struct swblock **pswap;
1720
1721 /*
1722 * Convert default object to swap object if necessary
1723 */
1724
1725 if (object->type != OBJT_SWAP) {
1726 object->type = OBJT_SWAP;
1727 object->un_pager.swp.swp_bcount = 0;
1728
1729 if (object->handle != NULL) {
1730 TAILQ_INSERT_TAIL(
1731 NOBJLIST(object->handle),
1732 object,
1733 pager_object_list
1734 );
1735 } else {
1736 TAILQ_INSERT_TAIL(
1737 &swap_pager_un_object_list,
1738 object,
1739 pager_object_list
1740 );
1741 }
1742 }
1743
1744 /*
1745 * Locate hash entry. If not found create, but if we aren't adding
1746 * anything just return. If we run out of space in the map we wait
1747 * and, since the hash table may have changed, retry.
1748 */
1749
1750retry:
1751 pswap = swp_pager_hash(object, index);
1752
1753 if ((swap = *pswap) == NULL) {
1754 int i;
1755
1756 if (swapblk == SWAPBLK_NONE)
1757 return;
1758
1759 swap = *pswap = zalloc(swap_zone);
1760 if (swap == NULL) {
1761 VM_WAIT;
1762 goto retry;
1763 }
1764 swap->swb_hnext = NULL;
1765 swap->swb_object = object;
1766 swap->swb_index = index & ~SWAP_META_MASK;
1767 swap->swb_count = 0;
1768
1769 ++object->un_pager.swp.swp_bcount;
1770
1771 for (i = 0; i < SWAP_META_PAGES; ++i)
1772 swap->swb_pages[i] = SWAPBLK_NONE;
1773 }
1774
1775 /*
1776 * Delete prior contents of metadata
1777 */
1778
1779 index &= SWAP_META_MASK;
1780
1781 if (swap->swb_pages[index] != SWAPBLK_NONE) {
1782 swp_pager_freeswapspace(swap->swb_pages[index], 1);
1783 --swap->swb_count;
1784 }
1785
1786 /*
1787 * Enter block into metadata
1788 */
1789
1790 swap->swb_pages[index] = swapblk;
1791 if (swapblk != SWAPBLK_NONE)
1792 ++swap->swb_count;
1793}
1794
1795/*
1796 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1797 *
1798 * The requested range of blocks is freed, with any associated swap
1799 * returned to the swap bitmap.
1800 *
1801 * This routine will free swap metadata structures as they are cleaned
1802 * out. This routine does *NOT* operate on swap metadata associated
1803 * with resident pages.
1804 *
1805 * This routine must be called at splvm()
1806 */
1807
1808static void
1809swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1810{
1811 if (object->type != OBJT_SWAP)
1812 return;
1813
1814 while (count > 0) {
1815 struct swblock **pswap;
1816 struct swblock *swap;
1817
1818 pswap = swp_pager_hash(object, index);
1819
1820 if ((swap = *pswap) != NULL) {
1821 daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1822
1823 if (v != SWAPBLK_NONE) {
1824 swp_pager_freeswapspace(v, 1);
1825 swap->swb_pages[index & SWAP_META_MASK] =
1826 SWAPBLK_NONE;
1827 if (--swap->swb_count == 0) {
1828 *pswap = swap->swb_hnext;
1829 zfree(swap_zone, swap);
1830 --object->un_pager.swp.swp_bcount;
1831 }
1832 }
1833 --count;
1834 ++index;
1835 } else {
1836 int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1837 count -= n;
1838 index += n;
1839 }
1840 }
1841}
1842
1843/*
1844 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1845 *
1846 * This routine locates and destroys all swap metadata associated with
1847 * an object.
1848 *
1849 * This routine must be called at splvm()
1850 */
1851
1852static void
1853swp_pager_meta_free_all(vm_object_t object)
1854{
1855 daddr_t index = 0;
1856
1857 if (object->type != OBJT_SWAP)
1858 return;
1859
1860 while (object->un_pager.swp.swp_bcount) {
1861 struct swblock **pswap;
1862 struct swblock *swap;
1863
1864 pswap = swp_pager_hash(object, index);
1865 if ((swap = *pswap) != NULL) {
1866 int i;
1867
1868 for (i = 0; i < SWAP_META_PAGES; ++i) {
1869 daddr_t v = swap->swb_pages[i];
1870 if (v != SWAPBLK_NONE) {
1871 --swap->swb_count;
1872 swp_pager_freeswapspace(v, 1);
1873 }
1874 }
1875 if (swap->swb_count != 0)
1876 panic("swap_pager_meta_free_all: swb_count != 0");
1877 *pswap = swap->swb_hnext;
1878 zfree(swap_zone, swap);
1879 --object->un_pager.swp.swp_bcount;
1880 }
1881 index += SWAP_META_PAGES;
1882 if (index > 0x20000000)
1883 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1884 }
1885}
1886
1887/*
1888 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data.
1889 *
1890 * This routine is capable of looking up, popping, or freeing
1891 * swapblk assignments in the swap meta data or in the vm_page_t.
1892 * The routine typically returns the swapblk being looked-up, or popped,
1893 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1894 * was invalid. This routine will automatically free any invalid
1895 * meta-data swapblks.
1896 *
1897 * It is not possible to store invalid swapblks in the swap meta data
1898 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1899 *
1900 * When acting on a busy resident page and paging is in progress, we
1901 * have to wait until paging is complete but otherwise can act on the
1902 * busy page.
1903 *
1904 * This routine must be called at splvm().
1905 *
1906 * SWM_FREE remove and free swap block from metadata
1907 * SWM_POP remove from meta data but do not free.. pop it out
1908 */
1909
1910static daddr_t
1911swp_pager_meta_ctl(
1912 vm_object_t object,
1913 vm_pindex_t index,
1914 int flags
1915) {
1916 struct swblock **pswap;
1917 struct swblock *swap;
1918 daddr_t r1;
1919
1920 /*
1921 * The meta data only exists of the object is OBJT_SWAP
1922 * and even then might not be allocated yet.
1923 */
1924
1925 if (object->type != OBJT_SWAP)
1926 return(SWAPBLK_NONE);
1927
1928 r1 = SWAPBLK_NONE;
1929 pswap = swp_pager_hash(object, index);
1930
1931 if ((swap = *pswap) != NULL) {
1932 index &= SWAP_META_MASK;
1933 r1 = swap->swb_pages[index];
1934
1935 if (r1 != SWAPBLK_NONE) {
1936 if (flags & SWM_FREE) {
1937 swp_pager_freeswapspace(r1, 1);
1938 r1 = SWAPBLK_NONE;
1939 }
1940 if (flags & (SWM_FREE|SWM_POP)) {
1941 swap->swb_pages[index] = SWAPBLK_NONE;
1942 if (--swap->swb_count == 0) {
1943 *pswap = swap->swb_hnext;
1944 zfree(swap_zone, swap);
1945 --object->un_pager.swp.swp_bcount;
1946 }
1947 }
1948 }
1949 }
1950 return(r1);
1951}
1952
861 return;
862 }
863
864 /*
865 * Execute read or write
866 */
867
868 while (count > 0) {
869 daddr_t blk;
870
871 /*
872 * Obtain block. If block not found and writing, allocate a
873 * new block and build it into the object.
874 */
875
876 blk = swp_pager_meta_ctl(object, start, 0);
877 if ((blk == SWAPBLK_NONE) && (bp->b_iocmd == BIO_WRITE)) {
878 blk = swp_pager_getswapspace(1);
879 if (blk == SWAPBLK_NONE) {
880 bp->b_error = ENOMEM;
881 bp->b_ioflags |= BIO_ERROR;
882 break;
883 }
884 swp_pager_meta_build(object, start, blk);
885 }
886
887 /*
888 * Do we have to flush our current collection? Yes if:
889 *
890 * - no swap block at this index
891 * - swap block is not contiguous
892 * - we cross a physical disk boundry in the
893 * stripe.
894 */
895
896 if (
897 nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
898 ((nbp->b_blkno ^ blk) & dmmax_mask)
899 )
900 ) {
901 splx(s);
902 if (bp->b_iocmd == BIO_READ) {
903 ++cnt.v_swapin;
904 cnt.v_swappgsin += btoc(nbp->b_bcount);
905 } else {
906 ++cnt.v_swapout;
907 cnt.v_swappgsout += btoc(nbp->b_bcount);
908 nbp->b_dirtyend = nbp->b_bcount;
909 }
910 flushchainbuf(nbp);
911 s = splvm();
912 nbp = NULL;
913 }
914
915 /*
916 * Add new swapblk to nbp, instantiating nbp if necessary.
917 * Zero-fill reads are able to take a shortcut.
918 */
919
920 if (blk == SWAPBLK_NONE) {
921 /*
922 * We can only get here if we are reading. Since
923 * we are at splvm() we can safely modify b_resid,
924 * even if chain ops are in progress.
925 */
926 bzero(data, PAGE_SIZE);
927 bp->b_resid -= PAGE_SIZE;
928 } else {
929 if (nbp == NULL) {
930 nbp = getchainbuf(bp, swapdev_vp, (bp->b_iocmd == BIO_READ) | B_ASYNC);
931 nbp->b_blkno = blk;
932 nbp->b_bcount = 0;
933 nbp->b_data = data;
934 }
935 nbp->b_bcount += PAGE_SIZE;
936 }
937 --count;
938 ++start;
939 data += PAGE_SIZE;
940 }
941
942 /*
943 * Flush out last buffer
944 */
945
946 splx(s);
947
948 if (nbp) {
949 if ((bp->b_flags & B_ASYNC) == 0)
950 nbp->b_flags &= ~B_ASYNC;
951 if (nbp->b_iocmd == BIO_READ) {
952 ++cnt.v_swapin;
953 cnt.v_swappgsin += btoc(nbp->b_bcount);
954 } else {
955 ++cnt.v_swapout;
956 cnt.v_swappgsout += btoc(nbp->b_bcount);
957 nbp->b_dirtyend = nbp->b_bcount;
958 }
959 flushchainbuf(nbp);
960 /* nbp = NULL; */
961 }
962
963 /*
964 * Wait for completion.
965 */
966
967 if (bp->b_flags & B_ASYNC) {
968 autochaindone(bp);
969 } else {
970 waitchainbuf(bp, 0, 1);
971 }
972}
973
974/*
975 * SWAP_PAGER_GETPAGES() - bring pages in from swap
976 *
977 * Attempt to retrieve (m, count) pages from backing store, but make
978 * sure we retrieve at least m[reqpage]. We try to load in as large
979 * a chunk surrounding m[reqpage] as is contiguous in swap and which
980 * belongs to the same object.
981 *
982 * The code is designed for asynchronous operation and
983 * immediate-notification of 'reqpage' but tends not to be
984 * used that way. Please do not optimize-out this algorithmic
985 * feature, I intend to improve on it in the future.
986 *
987 * The parent has a single vm_object_pip_add() reference prior to
988 * calling us and we should return with the same.
989 *
990 * The parent has BUSY'd the pages. We should return with 'm'
991 * left busy, but the others adjusted.
992 */
993
994static int
995swap_pager_getpages(object, m, count, reqpage)
996 vm_object_t object;
997 vm_page_t *m;
998 int count, reqpage;
999{
1000 struct buf *bp;
1001 vm_page_t mreq;
1002 int s;
1003 int i;
1004 int j;
1005 daddr_t blk;
1006 vm_offset_t kva;
1007 vm_pindex_t lastpindex;
1008
1009 mreq = m[reqpage];
1010
1011 if (mreq->object != object) {
1012 panic("swap_pager_getpages: object mismatch %p/%p",
1013 object,
1014 mreq->object
1015 );
1016 }
1017 /*
1018 * Calculate range to retrieve. The pages have already been assigned
1019 * their swapblks. We require a *contiguous* range that falls entirely
1020 * within a single device stripe. If we do not supply it, bad things
1021 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1022 * loops are set up such that the case(s) are handled implicitly.
1023 *
1024 * The swp_*() calls must be made at splvm(). vm_page_free() does
1025 * not need to be, but it will go a little faster if it is.
1026 */
1027
1028 s = splvm();
1029 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1030
1031 for (i = reqpage - 1; i >= 0; --i) {
1032 daddr_t iblk;
1033
1034 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1035 if (blk != iblk + (reqpage - i))
1036 break;
1037 if ((blk ^ iblk) & dmmax_mask)
1038 break;
1039 }
1040 ++i;
1041
1042 for (j = reqpage + 1; j < count; ++j) {
1043 daddr_t jblk;
1044
1045 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1046 if (blk != jblk - (j - reqpage))
1047 break;
1048 if ((blk ^ jblk) & dmmax_mask)
1049 break;
1050 }
1051
1052 /*
1053 * free pages outside our collection range. Note: we never free
1054 * mreq, it must remain busy throughout.
1055 */
1056
1057 {
1058 int k;
1059
1060 for (k = 0; k < i; ++k)
1061 vm_page_free(m[k]);
1062 for (k = j; k < count; ++k)
1063 vm_page_free(m[k]);
1064 }
1065 splx(s);
1066
1067
1068 /*
1069 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq
1070 * still busy, but the others unbusied.
1071 */
1072
1073 if (blk == SWAPBLK_NONE)
1074 return(VM_PAGER_FAIL);
1075
1076 /*
1077 * Get a swap buffer header to perform the IO
1078 */
1079
1080 bp = getpbuf(&nsw_rcount);
1081 kva = (vm_offset_t) bp->b_data;
1082
1083 /*
1084 * map our page(s) into kva for input
1085 *
1086 * NOTE: B_PAGING is set by pbgetvp()
1087 */
1088
1089 pmap_qenter(kva, m + i, j - i);
1090
1091 bp->b_iocmd = BIO_READ;
1092 bp->b_iodone = swp_pager_async_iodone;
1093 bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1094 bp->b_data = (caddr_t) kva;
1095 crhold(bp->b_rcred);
1096 crhold(bp->b_wcred);
1097 bp->b_blkno = blk - (reqpage - i);
1098 bp->b_bcount = PAGE_SIZE * (j - i);
1099 bp->b_bufsize = PAGE_SIZE * (j - i);
1100 bp->b_pager.pg_reqpage = reqpage - i;
1101
1102 {
1103 int k;
1104
1105 for (k = i; k < j; ++k) {
1106 bp->b_pages[k - i] = m[k];
1107 vm_page_flag_set(m[k], PG_SWAPINPROG);
1108 }
1109 }
1110 bp->b_npages = j - i;
1111
1112 pbgetvp(swapdev_vp, bp);
1113
1114 cnt.v_swapin++;
1115 cnt.v_swappgsin += bp->b_npages;
1116
1117 /*
1118 * We still hold the lock on mreq, and our automatic completion routine
1119 * does not remove it.
1120 */
1121
1122 vm_object_pip_add(mreq->object, bp->b_npages);
1123 lastpindex = m[j-1]->pindex;
1124
1125 /*
1126 * perform the I/O. NOTE!!! bp cannot be considered valid after
1127 * this point because we automatically release it on completion.
1128 * Instead, we look at the one page we are interested in which we
1129 * still hold a lock on even through the I/O completion.
1130 *
1131 * The other pages in our m[] array are also released on completion,
1132 * so we cannot assume they are valid anymore either.
1133 *
1134 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1135 */
1136
1137 BUF_KERNPROC(bp);
1138 BUF_STRATEGY(bp);
1139
1140 /*
1141 * wait for the page we want to complete. PG_SWAPINPROG is always
1142 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE
1143 * is set in the meta-data.
1144 */
1145
1146 s = splvm();
1147
1148 while ((mreq->flags & PG_SWAPINPROG) != 0) {
1149 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1150 cnt.v_intrans++;
1151 if (tsleep(mreq, PSWP, "swread", hz*20)) {
1152 printf(
1153 "swap_pager: indefinite wait buffer: device:"
1154 " %s, blkno: %ld, size: %ld\n",
1155 devtoname(bp->b_dev), (long)bp->b_blkno,
1156 bp->b_bcount
1157 );
1158 }
1159 }
1160
1161 splx(s);
1162
1163 /*
1164 * mreq is left bussied after completion, but all the other pages
1165 * are freed. If we had an unrecoverable read error the page will
1166 * not be valid.
1167 */
1168
1169 if (mreq->valid != VM_PAGE_BITS_ALL) {
1170 return(VM_PAGER_ERROR);
1171 } else {
1172 return(VM_PAGER_OK);
1173 }
1174
1175 /*
1176 * A final note: in a low swap situation, we cannot deallocate swap
1177 * and mark a page dirty here because the caller is likely to mark
1178 * the page clean when we return, causing the page to possibly revert
1179 * to all-zero's later.
1180 */
1181}
1182
1183/*
1184 * swap_pager_putpages:
1185 *
1186 * Assign swap (if necessary) and initiate I/O on the specified pages.
1187 *
1188 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects
1189 * are automatically converted to SWAP objects.
1190 *
1191 * In a low memory situation we may block in VOP_STRATEGY(), but the new
1192 * vm_page reservation system coupled with properly written VFS devices
1193 * should ensure that no low-memory deadlock occurs. This is an area
1194 * which needs work.
1195 *
1196 * The parent has N vm_object_pip_add() references prior to
1197 * calling us and will remove references for rtvals[] that are
1198 * not set to VM_PAGER_PEND. We need to remove the rest on I/O
1199 * completion.
1200 *
1201 * The parent has soft-busy'd the pages it passes us and will unbusy
1202 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1203 * We need to unbusy the rest on I/O completion.
1204 */
1205
1206void
1207swap_pager_putpages(object, m, count, sync, rtvals)
1208 vm_object_t object;
1209 vm_page_t *m;
1210 int count;
1211 boolean_t sync;
1212 int *rtvals;
1213{
1214 int i;
1215 int n = 0;
1216
1217 if (count && m[0]->object != object) {
1218 panic("swap_pager_getpages: object mismatch %p/%p",
1219 object,
1220 m[0]->object
1221 );
1222 }
1223 /*
1224 * Step 1
1225 *
1226 * Turn object into OBJT_SWAP
1227 * check for bogus sysops
1228 * force sync if not pageout process
1229 */
1230
1231 if (object->type != OBJT_SWAP)
1232 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1233
1234 if (curproc != pageproc)
1235 sync = TRUE;
1236
1237 /*
1238 * Step 2
1239 *
1240 * Update nsw parameters from swap_async_max sysctl values.
1241 * Do not let the sysop crash the machine with bogus numbers.
1242 */
1243
1244 if (swap_async_max != nsw_wcount_async_max) {
1245 int n;
1246 int s;
1247
1248 /*
1249 * limit range
1250 */
1251 if ((n = swap_async_max) > nswbuf / 2)
1252 n = nswbuf / 2;
1253 if (n < 1)
1254 n = 1;
1255 swap_async_max = n;
1256
1257 /*
1258 * Adjust difference ( if possible ). If the current async
1259 * count is too low, we may not be able to make the adjustment
1260 * at this time.
1261 */
1262 s = splvm();
1263 n -= nsw_wcount_async_max;
1264 if (nsw_wcount_async + n >= 0) {
1265 nsw_wcount_async += n;
1266 nsw_wcount_async_max += n;
1267 wakeup(&nsw_wcount_async);
1268 }
1269 splx(s);
1270 }
1271
1272 /*
1273 * Step 3
1274 *
1275 * Assign swap blocks and issue I/O. We reallocate swap on the fly.
1276 * The page is left dirty until the pageout operation completes
1277 * successfully.
1278 */
1279
1280 for (i = 0; i < count; i += n) {
1281 int s;
1282 int j;
1283 struct buf *bp;
1284 daddr_t blk;
1285
1286 /*
1287 * Maximum I/O size is limited by a number of factors.
1288 */
1289
1290 n = min(BLIST_MAX_ALLOC, count - i);
1291 n = min(n, nsw_cluster_max);
1292
1293 s = splvm();
1294
1295 /*
1296 * Get biggest block of swap we can. If we fail, fall
1297 * back and try to allocate a smaller block. Don't go
1298 * overboard trying to allocate space if it would overly
1299 * fragment swap.
1300 */
1301 while (
1302 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1303 n > 4
1304 ) {
1305 n >>= 1;
1306 }
1307 if (blk == SWAPBLK_NONE) {
1308 for (j = 0; j < n; ++j)
1309 rtvals[i+j] = VM_PAGER_FAIL;
1310 splx(s);
1311 continue;
1312 }
1313
1314 /*
1315 * The I/O we are constructing cannot cross a physical
1316 * disk boundry in the swap stripe. Note: we are still
1317 * at splvm().
1318 */
1319 if ((blk ^ (blk + n)) & dmmax_mask) {
1320 j = ((blk + dmmax) & dmmax_mask) - blk;
1321 swp_pager_freeswapspace(blk + j, n - j);
1322 n = j;
1323 }
1324
1325 /*
1326 * All I/O parameters have been satisfied, build the I/O
1327 * request and assign the swap space.
1328 *
1329 * NOTE: B_PAGING is set by pbgetvp()
1330 */
1331
1332 if (sync == TRUE) {
1333 bp = getpbuf(&nsw_wcount_sync);
1334 } else {
1335 bp = getpbuf(&nsw_wcount_async);
1336 bp->b_flags = B_ASYNC;
1337 }
1338 bp->b_iocmd = BIO_WRITE;
1339 bp->b_spc = NULL; /* not used, but NULL-out anyway */
1340
1341 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1342
1343 bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1344 bp->b_bcount = PAGE_SIZE * n;
1345 bp->b_bufsize = PAGE_SIZE * n;
1346 bp->b_blkno = blk;
1347
1348 crhold(bp->b_rcred);
1349 crhold(bp->b_wcred);
1350
1351 pbgetvp(swapdev_vp, bp);
1352
1353 for (j = 0; j < n; ++j) {
1354 vm_page_t mreq = m[i+j];
1355
1356 swp_pager_meta_build(
1357 mreq->object,
1358 mreq->pindex,
1359 blk + j
1360 );
1361 vm_page_dirty(mreq);
1362 rtvals[i+j] = VM_PAGER_OK;
1363
1364 vm_page_flag_set(mreq, PG_SWAPINPROG);
1365 bp->b_pages[j] = mreq;
1366 }
1367 bp->b_npages = n;
1368 /*
1369 * Must set dirty range for NFS to work.
1370 */
1371 bp->b_dirtyoff = 0;
1372 bp->b_dirtyend = bp->b_bcount;
1373
1374 cnt.v_swapout++;
1375 cnt.v_swappgsout += bp->b_npages;
1376 swapdev_vp->v_numoutput++;
1377
1378 splx(s);
1379
1380 /*
1381 * asynchronous
1382 *
1383 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1384 */
1385
1386 if (sync == FALSE) {
1387 bp->b_iodone = swp_pager_async_iodone;
1388 BUF_KERNPROC(bp);
1389 BUF_STRATEGY(bp);
1390
1391 for (j = 0; j < n; ++j)
1392 rtvals[i+j] = VM_PAGER_PEND;
1393 continue;
1394 }
1395
1396 /*
1397 * synchronous
1398 *
1399 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1400 */
1401
1402 bp->b_iodone = swp_pager_sync_iodone;
1403 BUF_STRATEGY(bp);
1404
1405 /*
1406 * Wait for the sync I/O to complete, then update rtvals.
1407 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1408 * our async completion routine at the end, thus avoiding a
1409 * double-free.
1410 */
1411 s = splbio();
1412
1413 while ((bp->b_flags & B_DONE) == 0) {
1414 tsleep(bp, PVM, "swwrt", 0);
1415 }
1416
1417 for (j = 0; j < n; ++j)
1418 rtvals[i+j] = VM_PAGER_PEND;
1419
1420 /*
1421 * Now that we are through with the bp, we can call the
1422 * normal async completion, which frees everything up.
1423 */
1424
1425 swp_pager_async_iodone(bp);
1426
1427 splx(s);
1428 }
1429}
1430
1431/*
1432 * swap_pager_sync_iodone:
1433 *
1434 * Completion routine for synchronous reads and writes from/to swap.
1435 * We just mark the bp is complete and wake up anyone waiting on it.
1436 *
1437 * This routine may not block. This routine is called at splbio() or better.
1438 */
1439
1440static void
1441swp_pager_sync_iodone(bp)
1442 struct buf *bp;
1443{
1444 bp->b_flags |= B_DONE;
1445 bp->b_flags &= ~B_ASYNC;
1446 wakeup(bp);
1447}
1448
1449/*
1450 * swp_pager_async_iodone:
1451 *
1452 * Completion routine for asynchronous reads and writes from/to swap.
1453 * Also called manually by synchronous code to finish up a bp.
1454 *
1455 * For READ operations, the pages are PG_BUSY'd. For WRITE operations,
1456 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY
1457 * unbusy all pages except the 'main' request page. For WRITE
1458 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1459 * because we marked them all VM_PAGER_PEND on return from putpages ).
1460 *
1461 * This routine may not block.
1462 * This routine is called at splbio() or better
1463 *
1464 * We up ourselves to splvm() as required for various vm_page related
1465 * calls.
1466 */
1467
1468static void
1469swp_pager_async_iodone(bp)
1470 register struct buf *bp;
1471{
1472 int s;
1473 int i;
1474 vm_object_t object = NULL;
1475
1476 bp->b_flags |= B_DONE;
1477
1478 /*
1479 * report error
1480 */
1481
1482 if (bp->b_ioflags & BIO_ERROR) {
1483 printf(
1484 "swap_pager: I/O error - %s failed; blkno %ld,"
1485 "size %ld, error %d\n",
1486 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1487 (long)bp->b_blkno,
1488 (long)bp->b_bcount,
1489 bp->b_error
1490 );
1491 }
1492
1493 /*
1494 * set object, raise to splvm().
1495 */
1496
1497 if (bp->b_npages)
1498 object = bp->b_pages[0]->object;
1499 s = splvm();
1500
1501 /*
1502 * remove the mapping for kernel virtual
1503 */
1504
1505 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1506
1507 /*
1508 * cleanup pages. If an error occurs writing to swap, we are in
1509 * very serious trouble. If it happens to be a disk error, though,
1510 * we may be able to recover by reassigning the swap later on. So
1511 * in this case we remove the m->swapblk assignment for the page
1512 * but do not free it in the rlist. The errornous block(s) are thus
1513 * never reallocated as swap. Redirty the page and continue.
1514 */
1515
1516 for (i = 0; i < bp->b_npages; ++i) {
1517 vm_page_t m = bp->b_pages[i];
1518
1519 vm_page_flag_clear(m, PG_SWAPINPROG);
1520
1521 if (bp->b_ioflags & BIO_ERROR) {
1522 /*
1523 * If an error occurs I'd love to throw the swapblk
1524 * away without freeing it back to swapspace, so it
1525 * can never be used again. But I can't from an
1526 * interrupt.
1527 */
1528
1529 if (bp->b_iocmd == BIO_READ) {
1530 /*
1531 * When reading, reqpage needs to stay
1532 * locked for the parent, but all other
1533 * pages can be freed. We still want to
1534 * wakeup the parent waiting on the page,
1535 * though. ( also: pg_reqpage can be -1 and
1536 * not match anything ).
1537 *
1538 * We have to wake specifically requested pages
1539 * up too because we cleared PG_SWAPINPROG and
1540 * someone may be waiting for that.
1541 *
1542 * NOTE: for reads, m->dirty will probably
1543 * be overridden by the original caller of
1544 * getpages so don't play cute tricks here.
1545 *
1546 * XXX it may not be legal to free the page
1547 * here as this messes with the object->memq's.
1548 */
1549
1550 m->valid = 0;
1551 vm_page_flag_clear(m, PG_ZERO);
1552
1553 if (i != bp->b_pager.pg_reqpage)
1554 vm_page_free(m);
1555 else
1556 vm_page_flash(m);
1557 /*
1558 * If i == bp->b_pager.pg_reqpage, do not wake
1559 * the page up. The caller needs to.
1560 */
1561 } else {
1562 /*
1563 * If a write error occurs, reactivate page
1564 * so it doesn't clog the inactive list,
1565 * then finish the I/O.
1566 */
1567 vm_page_dirty(m);
1568 vm_page_activate(m);
1569 vm_page_io_finish(m);
1570 }
1571 } else if (bp->b_iocmd == BIO_READ) {
1572 /*
1573 * For read success, clear dirty bits. Nobody should
1574 * have this page mapped but don't take any chances,
1575 * make sure the pmap modify bits are also cleared.
1576 *
1577 * NOTE: for reads, m->dirty will probably be
1578 * overridden by the original caller of getpages so
1579 * we cannot set them in order to free the underlying
1580 * swap in a low-swap situation. I don't think we'd
1581 * want to do that anyway, but it was an optimization
1582 * that existed in the old swapper for a time before
1583 * it got ripped out due to precisely this problem.
1584 *
1585 * clear PG_ZERO in page.
1586 *
1587 * If not the requested page then deactivate it.
1588 *
1589 * Note that the requested page, reqpage, is left
1590 * busied, but we still have to wake it up. The
1591 * other pages are released (unbusied) by
1592 * vm_page_wakeup(). We do not set reqpage's
1593 * valid bits here, it is up to the caller.
1594 */
1595
1596 pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1597 m->valid = VM_PAGE_BITS_ALL;
1598 vm_page_undirty(m);
1599 vm_page_flag_clear(m, PG_ZERO);
1600
1601 /*
1602 * We have to wake specifically requested pages
1603 * up too because we cleared PG_SWAPINPROG and
1604 * could be waiting for it in getpages. However,
1605 * be sure to not unbusy getpages specifically
1606 * requested page - getpages expects it to be
1607 * left busy.
1608 */
1609 if (i != bp->b_pager.pg_reqpage) {
1610 vm_page_deactivate(m);
1611 vm_page_wakeup(m);
1612 } else {
1613 vm_page_flash(m);
1614 }
1615 } else {
1616 /*
1617 * For write success, clear the modify and dirty
1618 * status, then finish the I/O ( which decrements the
1619 * busy count and possibly wakes waiter's up ).
1620 */
1621 vm_page_protect(m, VM_PROT_READ);
1622 pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1623 vm_page_undirty(m);
1624 vm_page_io_finish(m);
1625 }
1626 }
1627
1628 /*
1629 * adjust pip. NOTE: the original parent may still have its own
1630 * pip refs on the object.
1631 */
1632
1633 if (object)
1634 vm_object_pip_wakeupn(object, bp->b_npages);
1635
1636 /*
1637 * release the physical I/O buffer
1638 */
1639
1640 relpbuf(
1641 bp,
1642 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1643 ((bp->b_flags & B_ASYNC) ?
1644 &nsw_wcount_async :
1645 &nsw_wcount_sync
1646 )
1647 )
1648 );
1649 splx(s);
1650}
1651
1652/************************************************************************
1653 * SWAP META DATA *
1654 ************************************************************************
1655 *
1656 * These routines manipulate the swap metadata stored in the
1657 * OBJT_SWAP object. All swp_*() routines must be called at
1658 * splvm() because swap can be freed up by the low level vm_page
1659 * code which might be called from interrupts beyond what splbio() covers.
1660 *
1661 * Swap metadata is implemented with a global hash and not directly
1662 * linked into the object. Instead the object simply contains
1663 * appropriate tracking counters.
1664 */
1665
1666/*
1667 * SWP_PAGER_HASH() - hash swap meta data
1668 *
1669 * This is an inline helper function which hashes the swapblk given
1670 * the object and page index. It returns a pointer to a pointer
1671 * to the object, or a pointer to a NULL pointer if it could not
1672 * find a swapblk.
1673 *
1674 * This routine must be called at splvm().
1675 */
1676
1677static __inline struct swblock **
1678swp_pager_hash(vm_object_t object, vm_pindex_t index)
1679{
1680 struct swblock **pswap;
1681 struct swblock *swap;
1682
1683 index &= ~SWAP_META_MASK;
1684 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1685
1686 while ((swap = *pswap) != NULL) {
1687 if (swap->swb_object == object &&
1688 swap->swb_index == index
1689 ) {
1690 break;
1691 }
1692 pswap = &swap->swb_hnext;
1693 }
1694 return(pswap);
1695}
1696
1697/*
1698 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object
1699 *
1700 * We first convert the object to a swap object if it is a default
1701 * object.
1702 *
1703 * The specified swapblk is added to the object's swap metadata. If
1704 * the swapblk is not valid, it is freed instead. Any previously
1705 * assigned swapblk is freed.
1706 *
1707 * This routine must be called at splvm(), except when used to convert
1708 * an OBJT_DEFAULT object into an OBJT_SWAP object.
1709
1710 */
1711
1712static void
1713swp_pager_meta_build(
1714 vm_object_t object,
1715 vm_pindex_t index,
1716 daddr_t swapblk
1717) {
1718 struct swblock *swap;
1719 struct swblock **pswap;
1720
1721 /*
1722 * Convert default object to swap object if necessary
1723 */
1724
1725 if (object->type != OBJT_SWAP) {
1726 object->type = OBJT_SWAP;
1727 object->un_pager.swp.swp_bcount = 0;
1728
1729 if (object->handle != NULL) {
1730 TAILQ_INSERT_TAIL(
1731 NOBJLIST(object->handle),
1732 object,
1733 pager_object_list
1734 );
1735 } else {
1736 TAILQ_INSERT_TAIL(
1737 &swap_pager_un_object_list,
1738 object,
1739 pager_object_list
1740 );
1741 }
1742 }
1743
1744 /*
1745 * Locate hash entry. If not found create, but if we aren't adding
1746 * anything just return. If we run out of space in the map we wait
1747 * and, since the hash table may have changed, retry.
1748 */
1749
1750retry:
1751 pswap = swp_pager_hash(object, index);
1752
1753 if ((swap = *pswap) == NULL) {
1754 int i;
1755
1756 if (swapblk == SWAPBLK_NONE)
1757 return;
1758
1759 swap = *pswap = zalloc(swap_zone);
1760 if (swap == NULL) {
1761 VM_WAIT;
1762 goto retry;
1763 }
1764 swap->swb_hnext = NULL;
1765 swap->swb_object = object;
1766 swap->swb_index = index & ~SWAP_META_MASK;
1767 swap->swb_count = 0;
1768
1769 ++object->un_pager.swp.swp_bcount;
1770
1771 for (i = 0; i < SWAP_META_PAGES; ++i)
1772 swap->swb_pages[i] = SWAPBLK_NONE;
1773 }
1774
1775 /*
1776 * Delete prior contents of metadata
1777 */
1778
1779 index &= SWAP_META_MASK;
1780
1781 if (swap->swb_pages[index] != SWAPBLK_NONE) {
1782 swp_pager_freeswapspace(swap->swb_pages[index], 1);
1783 --swap->swb_count;
1784 }
1785
1786 /*
1787 * Enter block into metadata
1788 */
1789
1790 swap->swb_pages[index] = swapblk;
1791 if (swapblk != SWAPBLK_NONE)
1792 ++swap->swb_count;
1793}
1794
1795/*
1796 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1797 *
1798 * The requested range of blocks is freed, with any associated swap
1799 * returned to the swap bitmap.
1800 *
1801 * This routine will free swap metadata structures as they are cleaned
1802 * out. This routine does *NOT* operate on swap metadata associated
1803 * with resident pages.
1804 *
1805 * This routine must be called at splvm()
1806 */
1807
1808static void
1809swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1810{
1811 if (object->type != OBJT_SWAP)
1812 return;
1813
1814 while (count > 0) {
1815 struct swblock **pswap;
1816 struct swblock *swap;
1817
1818 pswap = swp_pager_hash(object, index);
1819
1820 if ((swap = *pswap) != NULL) {
1821 daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1822
1823 if (v != SWAPBLK_NONE) {
1824 swp_pager_freeswapspace(v, 1);
1825 swap->swb_pages[index & SWAP_META_MASK] =
1826 SWAPBLK_NONE;
1827 if (--swap->swb_count == 0) {
1828 *pswap = swap->swb_hnext;
1829 zfree(swap_zone, swap);
1830 --object->un_pager.swp.swp_bcount;
1831 }
1832 }
1833 --count;
1834 ++index;
1835 } else {
1836 int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1837 count -= n;
1838 index += n;
1839 }
1840 }
1841}
1842
1843/*
1844 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1845 *
1846 * This routine locates and destroys all swap metadata associated with
1847 * an object.
1848 *
1849 * This routine must be called at splvm()
1850 */
1851
1852static void
1853swp_pager_meta_free_all(vm_object_t object)
1854{
1855 daddr_t index = 0;
1856
1857 if (object->type != OBJT_SWAP)
1858 return;
1859
1860 while (object->un_pager.swp.swp_bcount) {
1861 struct swblock **pswap;
1862 struct swblock *swap;
1863
1864 pswap = swp_pager_hash(object, index);
1865 if ((swap = *pswap) != NULL) {
1866 int i;
1867
1868 for (i = 0; i < SWAP_META_PAGES; ++i) {
1869 daddr_t v = swap->swb_pages[i];
1870 if (v != SWAPBLK_NONE) {
1871 --swap->swb_count;
1872 swp_pager_freeswapspace(v, 1);
1873 }
1874 }
1875 if (swap->swb_count != 0)
1876 panic("swap_pager_meta_free_all: swb_count != 0");
1877 *pswap = swap->swb_hnext;
1878 zfree(swap_zone, swap);
1879 --object->un_pager.swp.swp_bcount;
1880 }
1881 index += SWAP_META_PAGES;
1882 if (index > 0x20000000)
1883 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1884 }
1885}
1886
1887/*
1888 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data.
1889 *
1890 * This routine is capable of looking up, popping, or freeing
1891 * swapblk assignments in the swap meta data or in the vm_page_t.
1892 * The routine typically returns the swapblk being looked-up, or popped,
1893 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1894 * was invalid. This routine will automatically free any invalid
1895 * meta-data swapblks.
1896 *
1897 * It is not possible to store invalid swapblks in the swap meta data
1898 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1899 *
1900 * When acting on a busy resident page and paging is in progress, we
1901 * have to wait until paging is complete but otherwise can act on the
1902 * busy page.
1903 *
1904 * This routine must be called at splvm().
1905 *
1906 * SWM_FREE remove and free swap block from metadata
1907 * SWM_POP remove from meta data but do not free.. pop it out
1908 */
1909
1910static daddr_t
1911swp_pager_meta_ctl(
1912 vm_object_t object,
1913 vm_pindex_t index,
1914 int flags
1915) {
1916 struct swblock **pswap;
1917 struct swblock *swap;
1918 daddr_t r1;
1919
1920 /*
1921 * The meta data only exists of the object is OBJT_SWAP
1922 * and even then might not be allocated yet.
1923 */
1924
1925 if (object->type != OBJT_SWAP)
1926 return(SWAPBLK_NONE);
1927
1928 r1 = SWAPBLK_NONE;
1929 pswap = swp_pager_hash(object, index);
1930
1931 if ((swap = *pswap) != NULL) {
1932 index &= SWAP_META_MASK;
1933 r1 = swap->swb_pages[index];
1934
1935 if (r1 != SWAPBLK_NONE) {
1936 if (flags & SWM_FREE) {
1937 swp_pager_freeswapspace(r1, 1);
1938 r1 = SWAPBLK_NONE;
1939 }
1940 if (flags & (SWM_FREE|SWM_POP)) {
1941 swap->swb_pages[index] = SWAPBLK_NONE;
1942 if (--swap->swb_count == 0) {
1943 *pswap = swap->swb_hnext;
1944 zfree(swap_zone, swap);
1945 --object->un_pager.swp.swp_bcount;
1946 }
1947 }
1948 }
1949 }
1950 return(r1);
1951}
1952