Deleted Added
full compact
mmu_oea64.c (282264) mmu_oea64.c (285148)
1/*-
2 * Copyright (c) 2008-2015 Nathan Whitehorn
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 2008-2015 Nathan Whitehorn
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea64.c 282264 2015-04-30 01:24:25Z jhibbits $");
28__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea64.c 285148 2015-07-04 19:00:38Z jhibbits $");
29
30/*
31 * Manages physical address maps.
32 *
33 * Since the information managed by this module is also stored by the
34 * logical address mapping module, this module may throw away valid virtual
35 * to physical mappings at almost any time. However, invalidations of
36 * mappings must be done as requested.
37 *
38 * In order to cope with hardware architectures which make virtual to
39 * physical map invalidates expensive, this module may delay invalidate
40 * reduced protection operations until such time as they are actually
41 * necessary. This module is given full information as to which processors
42 * are currently using which maps, and to when physical maps must be made
43 * correct.
44 */
45
46#include "opt_compat.h"
47#include "opt_kstack_pages.h"
48
49#include <sys/param.h>
50#include <sys/kernel.h>
51#include <sys/conf.h>
52#include <sys/queue.h>
53#include <sys/cpuset.h>
54#include <sys/kerneldump.h>
55#include <sys/ktr.h>
56#include <sys/lock.h>
57#include <sys/msgbuf.h>
58#include <sys/malloc.h>
59#include <sys/mutex.h>
60#include <sys/proc.h>
61#include <sys/rwlock.h>
62#include <sys/sched.h>
63#include <sys/sysctl.h>
64#include <sys/systm.h>
65#include <sys/vmmeter.h>
66
67#include <sys/kdb.h>
68
69#include <dev/ofw/openfirm.h>
70
71#include <vm/vm.h>
72#include <vm/vm_param.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_page.h>
75#include <vm/vm_map.h>
76#include <vm/vm_object.h>
77#include <vm/vm_extern.h>
78#include <vm/vm_pageout.h>
79#include <vm/uma.h>
80
81#include <machine/_inttypes.h>
82#include <machine/cpu.h>
83#include <machine/platform.h>
84#include <machine/frame.h>
85#include <machine/md_var.h>
86#include <machine/psl.h>
87#include <machine/bat.h>
88#include <machine/hid.h>
89#include <machine/pte.h>
90#include <machine/sr.h>
91#include <machine/trap.h>
92#include <machine/mmuvar.h>
93
94#include "mmu_oea64.h"
95#include "mmu_if.h"
96#include "moea64_if.h"
97
98void moea64_release_vsid(uint64_t vsid);
99uintptr_t moea64_get_unique_vsid(void);
100
101#define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR)
102#define ENABLE_TRANS(msr) mtmsr(msr)
103
104#define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4))
105#define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff)
106#define VSID_HASH_MASK 0x0000007fffffffffULL
107
108/*
109 * Locking semantics:
110 *
111 * There are two locks of interest: the page locks and the pmap locks, which
112 * protect their individual PVO lists and are locked in that order. The contents
113 * of all PVO entries are protected by the locks of their respective pmaps.
114 * The pmap of any PVO is guaranteed not to change so long as the PVO is linked
115 * into any list.
116 *
117 */
118
119#define PV_LOCK_COUNT PA_LOCK_COUNT*3
120static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
121
122#define PV_LOCKPTR(pa) ((struct mtx *)(&pv_lock[pa_index(pa) % PV_LOCK_COUNT]))
123#define PV_LOCK(pa) mtx_lock(PV_LOCKPTR(pa))
124#define PV_UNLOCK(pa) mtx_unlock(PV_LOCKPTR(pa))
125#define PV_LOCKASSERT(pa) mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
126#define PV_PAGE_LOCK(m) PV_LOCK(VM_PAGE_TO_PHYS(m))
127#define PV_PAGE_UNLOCK(m) PV_UNLOCK(VM_PAGE_TO_PHYS(m))
128#define PV_PAGE_LOCKASSERT(m) PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
129
130struct ofw_map {
131 cell_t om_va;
132 cell_t om_len;
133 uint64_t om_pa;
134 cell_t om_mode;
135};
136
137extern unsigned char _etext[];
138extern unsigned char _end[];
139
140/*
141 * Map of physical memory regions.
142 */
143static struct mem_region *regions;
144static struct mem_region *pregions;
145static u_int phys_avail_count;
146static int regions_sz, pregions_sz;
147
148extern void bs_remap_earlyboot(void);
149
150/*
151 * Lock for the SLB tables.
152 */
153struct mtx moea64_slb_mutex;
154
155/*
156 * PTEG data.
157 */
158u_int moea64_pteg_count;
159u_int moea64_pteg_mask;
160
161/*
162 * PVO data.
163 */
164
165uma_zone_t moea64_pvo_zone; /* zone for pvo entries */
166
167static struct pvo_entry *moea64_bpvo_pool;
168static int moea64_bpvo_pool_index = 0;
169static int moea64_bpvo_pool_size = 327680;
170TUNABLE_INT("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
171SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
172 &moea64_bpvo_pool_index, 0, "");
173
174#define VSID_NBPW (sizeof(u_int32_t) * 8)
175#ifdef __powerpc64__
176#define NVSIDS (NPMAPS * 16)
177#define VSID_HASHMASK 0xffffffffUL
178#else
179#define NVSIDS NPMAPS
180#define VSID_HASHMASK 0xfffffUL
181#endif
182static u_int moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
183
184static boolean_t moea64_initialized = FALSE;
185
186/*
187 * Statistics.
188 */
189u_int moea64_pte_valid = 0;
190u_int moea64_pte_overflow = 0;
191u_int moea64_pvo_entries = 0;
192u_int moea64_pvo_enter_calls = 0;
193u_int moea64_pvo_remove_calls = 0;
194SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
195 &moea64_pte_valid, 0, "");
196SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
197 &moea64_pte_overflow, 0, "");
198SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
199 &moea64_pvo_entries, 0, "");
200SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
201 &moea64_pvo_enter_calls, 0, "");
202SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
203 &moea64_pvo_remove_calls, 0, "");
204
205vm_offset_t moea64_scratchpage_va[2];
206struct pvo_entry *moea64_scratchpage_pvo[2];
207struct mtx moea64_scratchpage_mtx;
208
209uint64_t moea64_large_page_mask = 0;
210uint64_t moea64_large_page_size = 0;
211int moea64_large_page_shift = 0;
212
213/*
214 * PVO calls.
215 */
216static int moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo,
217 struct pvo_head *pvo_head);
218static void moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo);
219static void moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo);
220static struct pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
221
222/*
223 * Utility routines.
224 */
225static boolean_t moea64_query_bit(mmu_t, vm_page_t, uint64_t);
226static u_int moea64_clear_bit(mmu_t, vm_page_t, uint64_t);
227static void moea64_kremove(mmu_t, vm_offset_t);
228static void moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
29
30/*
31 * Manages physical address maps.
32 *
33 * Since the information managed by this module is also stored by the
34 * logical address mapping module, this module may throw away valid virtual
35 * to physical mappings at almost any time. However, invalidations of
36 * mappings must be done as requested.
37 *
38 * In order to cope with hardware architectures which make virtual to
39 * physical map invalidates expensive, this module may delay invalidate
40 * reduced protection operations until such time as they are actually
41 * necessary. This module is given full information as to which processors
42 * are currently using which maps, and to when physical maps must be made
43 * correct.
44 */
45
46#include "opt_compat.h"
47#include "opt_kstack_pages.h"
48
49#include <sys/param.h>
50#include <sys/kernel.h>
51#include <sys/conf.h>
52#include <sys/queue.h>
53#include <sys/cpuset.h>
54#include <sys/kerneldump.h>
55#include <sys/ktr.h>
56#include <sys/lock.h>
57#include <sys/msgbuf.h>
58#include <sys/malloc.h>
59#include <sys/mutex.h>
60#include <sys/proc.h>
61#include <sys/rwlock.h>
62#include <sys/sched.h>
63#include <sys/sysctl.h>
64#include <sys/systm.h>
65#include <sys/vmmeter.h>
66
67#include <sys/kdb.h>
68
69#include <dev/ofw/openfirm.h>
70
71#include <vm/vm.h>
72#include <vm/vm_param.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_page.h>
75#include <vm/vm_map.h>
76#include <vm/vm_object.h>
77#include <vm/vm_extern.h>
78#include <vm/vm_pageout.h>
79#include <vm/uma.h>
80
81#include <machine/_inttypes.h>
82#include <machine/cpu.h>
83#include <machine/platform.h>
84#include <machine/frame.h>
85#include <machine/md_var.h>
86#include <machine/psl.h>
87#include <machine/bat.h>
88#include <machine/hid.h>
89#include <machine/pte.h>
90#include <machine/sr.h>
91#include <machine/trap.h>
92#include <machine/mmuvar.h>
93
94#include "mmu_oea64.h"
95#include "mmu_if.h"
96#include "moea64_if.h"
97
98void moea64_release_vsid(uint64_t vsid);
99uintptr_t moea64_get_unique_vsid(void);
100
101#define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR)
102#define ENABLE_TRANS(msr) mtmsr(msr)
103
104#define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4))
105#define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff)
106#define VSID_HASH_MASK 0x0000007fffffffffULL
107
108/*
109 * Locking semantics:
110 *
111 * There are two locks of interest: the page locks and the pmap locks, which
112 * protect their individual PVO lists and are locked in that order. The contents
113 * of all PVO entries are protected by the locks of their respective pmaps.
114 * The pmap of any PVO is guaranteed not to change so long as the PVO is linked
115 * into any list.
116 *
117 */
118
119#define PV_LOCK_COUNT PA_LOCK_COUNT*3
120static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
121
122#define PV_LOCKPTR(pa) ((struct mtx *)(&pv_lock[pa_index(pa) % PV_LOCK_COUNT]))
123#define PV_LOCK(pa) mtx_lock(PV_LOCKPTR(pa))
124#define PV_UNLOCK(pa) mtx_unlock(PV_LOCKPTR(pa))
125#define PV_LOCKASSERT(pa) mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
126#define PV_PAGE_LOCK(m) PV_LOCK(VM_PAGE_TO_PHYS(m))
127#define PV_PAGE_UNLOCK(m) PV_UNLOCK(VM_PAGE_TO_PHYS(m))
128#define PV_PAGE_LOCKASSERT(m) PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
129
130struct ofw_map {
131 cell_t om_va;
132 cell_t om_len;
133 uint64_t om_pa;
134 cell_t om_mode;
135};
136
137extern unsigned char _etext[];
138extern unsigned char _end[];
139
140/*
141 * Map of physical memory regions.
142 */
143static struct mem_region *regions;
144static struct mem_region *pregions;
145static u_int phys_avail_count;
146static int regions_sz, pregions_sz;
147
148extern void bs_remap_earlyboot(void);
149
150/*
151 * Lock for the SLB tables.
152 */
153struct mtx moea64_slb_mutex;
154
155/*
156 * PTEG data.
157 */
158u_int moea64_pteg_count;
159u_int moea64_pteg_mask;
160
161/*
162 * PVO data.
163 */
164
165uma_zone_t moea64_pvo_zone; /* zone for pvo entries */
166
167static struct pvo_entry *moea64_bpvo_pool;
168static int moea64_bpvo_pool_index = 0;
169static int moea64_bpvo_pool_size = 327680;
170TUNABLE_INT("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
171SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
172 &moea64_bpvo_pool_index, 0, "");
173
174#define VSID_NBPW (sizeof(u_int32_t) * 8)
175#ifdef __powerpc64__
176#define NVSIDS (NPMAPS * 16)
177#define VSID_HASHMASK 0xffffffffUL
178#else
179#define NVSIDS NPMAPS
180#define VSID_HASHMASK 0xfffffUL
181#endif
182static u_int moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
183
184static boolean_t moea64_initialized = FALSE;
185
186/*
187 * Statistics.
188 */
189u_int moea64_pte_valid = 0;
190u_int moea64_pte_overflow = 0;
191u_int moea64_pvo_entries = 0;
192u_int moea64_pvo_enter_calls = 0;
193u_int moea64_pvo_remove_calls = 0;
194SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
195 &moea64_pte_valid, 0, "");
196SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
197 &moea64_pte_overflow, 0, "");
198SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
199 &moea64_pvo_entries, 0, "");
200SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
201 &moea64_pvo_enter_calls, 0, "");
202SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
203 &moea64_pvo_remove_calls, 0, "");
204
205vm_offset_t moea64_scratchpage_va[2];
206struct pvo_entry *moea64_scratchpage_pvo[2];
207struct mtx moea64_scratchpage_mtx;
208
209uint64_t moea64_large_page_mask = 0;
210uint64_t moea64_large_page_size = 0;
211int moea64_large_page_shift = 0;
212
213/*
214 * PVO calls.
215 */
216static int moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo,
217 struct pvo_head *pvo_head);
218static void moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo);
219static void moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo);
220static struct pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
221
222/*
223 * Utility routines.
224 */
225static boolean_t moea64_query_bit(mmu_t, vm_page_t, uint64_t);
226static u_int moea64_clear_bit(mmu_t, vm_page_t, uint64_t);
227static void moea64_kremove(mmu_t, vm_offset_t);
228static void moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
229 vm_offset_t pa, vm_size_t sz);
229 vm_paddr_t pa, vm_size_t sz);
230
231/*
232 * Kernel MMU interface
233 */
234void moea64_clear_modify(mmu_t, vm_page_t);
235void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
236void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
237 vm_page_t *mb, vm_offset_t b_offset, int xfersize);
238int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
239 u_int flags, int8_t psind);
240void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
241 vm_prot_t);
242void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
243vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
244vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
245void moea64_init(mmu_t);
246boolean_t moea64_is_modified(mmu_t, vm_page_t);
247boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
248boolean_t moea64_is_referenced(mmu_t, vm_page_t);
249int moea64_ts_referenced(mmu_t, vm_page_t);
250vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
251boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
252int moea64_page_wired_mappings(mmu_t, vm_page_t);
253void moea64_pinit(mmu_t, pmap_t);
254void moea64_pinit0(mmu_t, pmap_t);
255void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
256void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
257void moea64_qremove(mmu_t, vm_offset_t, int);
258void moea64_release(mmu_t, pmap_t);
259void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
260void moea64_remove_pages(mmu_t, pmap_t);
261void moea64_remove_all(mmu_t, vm_page_t);
262void moea64_remove_write(mmu_t, vm_page_t);
263void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
264void moea64_zero_page(mmu_t, vm_page_t);
265void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
266void moea64_zero_page_idle(mmu_t, vm_page_t);
267void moea64_activate(mmu_t, struct thread *);
268void moea64_deactivate(mmu_t, struct thread *);
269void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
230
231/*
232 * Kernel MMU interface
233 */
234void moea64_clear_modify(mmu_t, vm_page_t);
235void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
236void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
237 vm_page_t *mb, vm_offset_t b_offset, int xfersize);
238int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
239 u_int flags, int8_t psind);
240void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
241 vm_prot_t);
242void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
243vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
244vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
245void moea64_init(mmu_t);
246boolean_t moea64_is_modified(mmu_t, vm_page_t);
247boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
248boolean_t moea64_is_referenced(mmu_t, vm_page_t);
249int moea64_ts_referenced(mmu_t, vm_page_t);
250vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
251boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
252int moea64_page_wired_mappings(mmu_t, vm_page_t);
253void moea64_pinit(mmu_t, pmap_t);
254void moea64_pinit0(mmu_t, pmap_t);
255void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
256void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
257void moea64_qremove(mmu_t, vm_offset_t, int);
258void moea64_release(mmu_t, pmap_t);
259void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
260void moea64_remove_pages(mmu_t, pmap_t);
261void moea64_remove_all(mmu_t, vm_page_t);
262void moea64_remove_write(mmu_t, vm_page_t);
263void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
264void moea64_zero_page(mmu_t, vm_page_t);
265void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
266void moea64_zero_page_idle(mmu_t, vm_page_t);
267void moea64_activate(mmu_t, struct thread *);
268void moea64_deactivate(mmu_t, struct thread *);
269void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
270void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
270void *moea64_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
271void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
272vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
273void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
271void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
272vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
273void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
274void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
274void moea64_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t ma);
275void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
276boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
277static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
278void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz,
279 void **va);
280void moea64_scan_init(mmu_t mmu);
281
282static mmu_method_t moea64_methods[] = {
283 MMUMETHOD(mmu_clear_modify, moea64_clear_modify),
284 MMUMETHOD(mmu_copy_page, moea64_copy_page),
285 MMUMETHOD(mmu_copy_pages, moea64_copy_pages),
286 MMUMETHOD(mmu_enter, moea64_enter),
287 MMUMETHOD(mmu_enter_object, moea64_enter_object),
288 MMUMETHOD(mmu_enter_quick, moea64_enter_quick),
289 MMUMETHOD(mmu_extract, moea64_extract),
290 MMUMETHOD(mmu_extract_and_hold, moea64_extract_and_hold),
291 MMUMETHOD(mmu_init, moea64_init),
292 MMUMETHOD(mmu_is_modified, moea64_is_modified),
293 MMUMETHOD(mmu_is_prefaultable, moea64_is_prefaultable),
294 MMUMETHOD(mmu_is_referenced, moea64_is_referenced),
295 MMUMETHOD(mmu_ts_referenced, moea64_ts_referenced),
296 MMUMETHOD(mmu_map, moea64_map),
297 MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
298 MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
299 MMUMETHOD(mmu_pinit, moea64_pinit),
300 MMUMETHOD(mmu_pinit0, moea64_pinit0),
301 MMUMETHOD(mmu_protect, moea64_protect),
302 MMUMETHOD(mmu_qenter, moea64_qenter),
303 MMUMETHOD(mmu_qremove, moea64_qremove),
304 MMUMETHOD(mmu_release, moea64_release),
305 MMUMETHOD(mmu_remove, moea64_remove),
306 MMUMETHOD(mmu_remove_pages, moea64_remove_pages),
307 MMUMETHOD(mmu_remove_all, moea64_remove_all),
308 MMUMETHOD(mmu_remove_write, moea64_remove_write),
309 MMUMETHOD(mmu_sync_icache, moea64_sync_icache),
310 MMUMETHOD(mmu_unwire, moea64_unwire),
311 MMUMETHOD(mmu_zero_page, moea64_zero_page),
312 MMUMETHOD(mmu_zero_page_area, moea64_zero_page_area),
313 MMUMETHOD(mmu_zero_page_idle, moea64_zero_page_idle),
314 MMUMETHOD(mmu_activate, moea64_activate),
315 MMUMETHOD(mmu_deactivate, moea64_deactivate),
316 MMUMETHOD(mmu_page_set_memattr, moea64_page_set_memattr),
317
318 /* Internal interfaces */
319 MMUMETHOD(mmu_mapdev, moea64_mapdev),
320 MMUMETHOD(mmu_mapdev_attr, moea64_mapdev_attr),
321 MMUMETHOD(mmu_unmapdev, moea64_unmapdev),
322 MMUMETHOD(mmu_kextract, moea64_kextract),
323 MMUMETHOD(mmu_kenter, moea64_kenter),
324 MMUMETHOD(mmu_kenter_attr, moea64_kenter_attr),
325 MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
326 MMUMETHOD(mmu_scan_init, moea64_scan_init),
327 MMUMETHOD(mmu_dumpsys_map, moea64_dumpsys_map),
328
329 { 0, 0 }
330};
331
332MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
333
334static struct pvo_head *
335vm_page_to_pvoh(vm_page_t m)
336{
337
338 mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
339 return (&m->md.mdpg_pvoh);
340}
341
342static struct pvo_entry *
343alloc_pvo_entry(int bootstrap)
344{
345 struct pvo_entry *pvo;
346
347 if (!moea64_initialized || bootstrap) {
348 if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
349 panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
350 moea64_bpvo_pool_index, moea64_bpvo_pool_size,
351 moea64_bpvo_pool_size * sizeof(struct pvo_entry));
352 }
353 pvo = &moea64_bpvo_pool[
354 atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
355 bzero(pvo, sizeof(*pvo));
356 pvo->pvo_vaddr = PVO_BOOTSTRAP;
357 } else {
358 pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT);
359 bzero(pvo, sizeof(*pvo));
360 }
361
362 return (pvo);
363}
364
365
366static void
367init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
368{
369 uint64_t vsid;
370 uint64_t hash;
371 int shift;
372
373 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
374
375 pvo->pvo_pmap = pmap;
376 va &= ~ADDR_POFF;
377 pvo->pvo_vaddr |= va;
378 vsid = va_to_vsid(pmap, va);
379 pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
380 | (vsid << 16);
381
382 shift = (pvo->pvo_vaddr & PVO_LARGE) ? moea64_large_page_shift :
383 ADDR_PIDX_SHFT;
384 hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
385 pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
386}
387
388static void
389free_pvo_entry(struct pvo_entry *pvo)
390{
391
392 if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
393 uma_zfree(moea64_pvo_zone, pvo);
394}
395
396void
397moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
398{
399
400 lpte->pte_hi = (pvo->pvo_vpn >> (ADDR_API_SHFT64 - ADDR_PIDX_SHFT)) &
401 LPTE_AVPN_MASK;
402 lpte->pte_hi |= LPTE_VALID;
403
404 if (pvo->pvo_vaddr & PVO_LARGE)
405 lpte->pte_hi |= LPTE_BIG;
406 if (pvo->pvo_vaddr & PVO_WIRED)
407 lpte->pte_hi |= LPTE_WIRED;
408 if (pvo->pvo_vaddr & PVO_HID)
409 lpte->pte_hi |= LPTE_HID;
410
411 lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
412 if (pvo->pvo_pte.prot & VM_PROT_WRITE)
413 lpte->pte_lo |= LPTE_BW;
414 else
415 lpte->pte_lo |= LPTE_BR;
416
417 if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
418 lpte->pte_lo |= LPTE_NOEXEC;
419}
420
421static __inline uint64_t
275void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
276boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
277static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
278void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz,
279 void **va);
280void moea64_scan_init(mmu_t mmu);
281
282static mmu_method_t moea64_methods[] = {
283 MMUMETHOD(mmu_clear_modify, moea64_clear_modify),
284 MMUMETHOD(mmu_copy_page, moea64_copy_page),
285 MMUMETHOD(mmu_copy_pages, moea64_copy_pages),
286 MMUMETHOD(mmu_enter, moea64_enter),
287 MMUMETHOD(mmu_enter_object, moea64_enter_object),
288 MMUMETHOD(mmu_enter_quick, moea64_enter_quick),
289 MMUMETHOD(mmu_extract, moea64_extract),
290 MMUMETHOD(mmu_extract_and_hold, moea64_extract_and_hold),
291 MMUMETHOD(mmu_init, moea64_init),
292 MMUMETHOD(mmu_is_modified, moea64_is_modified),
293 MMUMETHOD(mmu_is_prefaultable, moea64_is_prefaultable),
294 MMUMETHOD(mmu_is_referenced, moea64_is_referenced),
295 MMUMETHOD(mmu_ts_referenced, moea64_ts_referenced),
296 MMUMETHOD(mmu_map, moea64_map),
297 MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
298 MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
299 MMUMETHOD(mmu_pinit, moea64_pinit),
300 MMUMETHOD(mmu_pinit0, moea64_pinit0),
301 MMUMETHOD(mmu_protect, moea64_protect),
302 MMUMETHOD(mmu_qenter, moea64_qenter),
303 MMUMETHOD(mmu_qremove, moea64_qremove),
304 MMUMETHOD(mmu_release, moea64_release),
305 MMUMETHOD(mmu_remove, moea64_remove),
306 MMUMETHOD(mmu_remove_pages, moea64_remove_pages),
307 MMUMETHOD(mmu_remove_all, moea64_remove_all),
308 MMUMETHOD(mmu_remove_write, moea64_remove_write),
309 MMUMETHOD(mmu_sync_icache, moea64_sync_icache),
310 MMUMETHOD(mmu_unwire, moea64_unwire),
311 MMUMETHOD(mmu_zero_page, moea64_zero_page),
312 MMUMETHOD(mmu_zero_page_area, moea64_zero_page_area),
313 MMUMETHOD(mmu_zero_page_idle, moea64_zero_page_idle),
314 MMUMETHOD(mmu_activate, moea64_activate),
315 MMUMETHOD(mmu_deactivate, moea64_deactivate),
316 MMUMETHOD(mmu_page_set_memattr, moea64_page_set_memattr),
317
318 /* Internal interfaces */
319 MMUMETHOD(mmu_mapdev, moea64_mapdev),
320 MMUMETHOD(mmu_mapdev_attr, moea64_mapdev_attr),
321 MMUMETHOD(mmu_unmapdev, moea64_unmapdev),
322 MMUMETHOD(mmu_kextract, moea64_kextract),
323 MMUMETHOD(mmu_kenter, moea64_kenter),
324 MMUMETHOD(mmu_kenter_attr, moea64_kenter_attr),
325 MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
326 MMUMETHOD(mmu_scan_init, moea64_scan_init),
327 MMUMETHOD(mmu_dumpsys_map, moea64_dumpsys_map),
328
329 { 0, 0 }
330};
331
332MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
333
334static struct pvo_head *
335vm_page_to_pvoh(vm_page_t m)
336{
337
338 mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
339 return (&m->md.mdpg_pvoh);
340}
341
342static struct pvo_entry *
343alloc_pvo_entry(int bootstrap)
344{
345 struct pvo_entry *pvo;
346
347 if (!moea64_initialized || bootstrap) {
348 if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
349 panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
350 moea64_bpvo_pool_index, moea64_bpvo_pool_size,
351 moea64_bpvo_pool_size * sizeof(struct pvo_entry));
352 }
353 pvo = &moea64_bpvo_pool[
354 atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
355 bzero(pvo, sizeof(*pvo));
356 pvo->pvo_vaddr = PVO_BOOTSTRAP;
357 } else {
358 pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT);
359 bzero(pvo, sizeof(*pvo));
360 }
361
362 return (pvo);
363}
364
365
366static void
367init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
368{
369 uint64_t vsid;
370 uint64_t hash;
371 int shift;
372
373 PMAP_LOCK_ASSERT(pmap, MA_OWNED);
374
375 pvo->pvo_pmap = pmap;
376 va &= ~ADDR_POFF;
377 pvo->pvo_vaddr |= va;
378 vsid = va_to_vsid(pmap, va);
379 pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
380 | (vsid << 16);
381
382 shift = (pvo->pvo_vaddr & PVO_LARGE) ? moea64_large_page_shift :
383 ADDR_PIDX_SHFT;
384 hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
385 pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
386}
387
388static void
389free_pvo_entry(struct pvo_entry *pvo)
390{
391
392 if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
393 uma_zfree(moea64_pvo_zone, pvo);
394}
395
396void
397moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
398{
399
400 lpte->pte_hi = (pvo->pvo_vpn >> (ADDR_API_SHFT64 - ADDR_PIDX_SHFT)) &
401 LPTE_AVPN_MASK;
402 lpte->pte_hi |= LPTE_VALID;
403
404 if (pvo->pvo_vaddr & PVO_LARGE)
405 lpte->pte_hi |= LPTE_BIG;
406 if (pvo->pvo_vaddr & PVO_WIRED)
407 lpte->pte_hi |= LPTE_WIRED;
408 if (pvo->pvo_vaddr & PVO_HID)
409 lpte->pte_hi |= LPTE_HID;
410
411 lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
412 if (pvo->pvo_pte.prot & VM_PROT_WRITE)
413 lpte->pte_lo |= LPTE_BW;
414 else
415 lpte->pte_lo |= LPTE_BR;
416
417 if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
418 lpte->pte_lo |= LPTE_NOEXEC;
419}
420
421static __inline uint64_t
422moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
422moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
423{
424 uint64_t pte_lo;
425 int i;
426
427 if (ma != VM_MEMATTR_DEFAULT) {
428 switch (ma) {
429 case VM_MEMATTR_UNCACHEABLE:
430 return (LPTE_I | LPTE_G);
431 case VM_MEMATTR_WRITE_COMBINING:
432 case VM_MEMATTR_WRITE_BACK:
433 case VM_MEMATTR_PREFETCHABLE:
434 return (LPTE_I);
435 case VM_MEMATTR_WRITE_THROUGH:
436 return (LPTE_W | LPTE_M);
437 }
438 }
439
440 /*
441 * Assume the page is cache inhibited and access is guarded unless
442 * it's in our available memory array.
443 */
444 pte_lo = LPTE_I | LPTE_G;
445 for (i = 0; i < pregions_sz; i++) {
446 if ((pa >= pregions[i].mr_start) &&
447 (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
448 pte_lo &= ~(LPTE_I | LPTE_G);
449 pte_lo |= LPTE_M;
450 break;
451 }
452 }
453
454 return pte_lo;
455}
456
457/*
458 * Quick sort callout for comparing memory regions.
459 */
460static int om_cmp(const void *a, const void *b);
461
462static int
463om_cmp(const void *a, const void *b)
464{
465 const struct ofw_map *mapa;
466 const struct ofw_map *mapb;
467
468 mapa = a;
469 mapb = b;
470 if (mapa->om_pa < mapb->om_pa)
471 return (-1);
472 else if (mapa->om_pa > mapb->om_pa)
473 return (1);
474 else
475 return (0);
476}
477
478static void
479moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
480{
481 struct ofw_map translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
482 pcell_t acells, trans_cells[sz/sizeof(cell_t)];
483 struct pvo_entry *pvo;
484 register_t msr;
485 vm_offset_t off;
486 vm_paddr_t pa_base;
487 int i, j;
488
489 bzero(translations, sz);
490 OF_getprop(OF_finddevice("/"), "#address-cells", &acells,
491 sizeof(acells));
492 if (OF_getprop(mmu, "translations", trans_cells, sz) == -1)
493 panic("moea64_bootstrap: can't get ofw translations");
494
495 CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
496 sz /= sizeof(cell_t);
497 for (i = 0, j = 0; i < sz; j++) {
498 translations[j].om_va = trans_cells[i++];
499 translations[j].om_len = trans_cells[i++];
500 translations[j].om_pa = trans_cells[i++];
501 if (acells == 2) {
502 translations[j].om_pa <<= 32;
503 translations[j].om_pa |= trans_cells[i++];
504 }
505 translations[j].om_mode = trans_cells[i++];
506 }
507 KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
508 i, sz));
509
510 sz = j;
511 qsort(translations, sz, sizeof (*translations), om_cmp);
512
513 for (i = 0; i < sz; i++) {
514 pa_base = translations[i].om_pa;
515 #ifndef __powerpc64__
516 if ((translations[i].om_pa >> 32) != 0)
517 panic("OFW translations above 32-bit boundary!");
518 #endif
519
520 if (pa_base % PAGE_SIZE)
521 panic("OFW translation not page-aligned (phys)!");
522 if (translations[i].om_va % PAGE_SIZE)
523 panic("OFW translation not page-aligned (virt)!");
524
525 CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
526 pa_base, translations[i].om_va, translations[i].om_len);
527
528 /* Now enter the pages for this mapping */
529
530 DISABLE_TRANS(msr);
531 for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
532 /* If this address is direct-mapped, skip remapping */
533 if (hw_direct_map && translations[i].om_va == pa_base &&
534 moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT) == LPTE_M)
535 continue;
536
537 PMAP_LOCK(kernel_pmap);
538 pvo = moea64_pvo_find_va(kernel_pmap,
539 translations[i].om_va + off);
540 PMAP_UNLOCK(kernel_pmap);
541 if (pvo != NULL)
542 continue;
543
544 moea64_kenter(mmup, translations[i].om_va + off,
545 pa_base + off);
546 }
547 ENABLE_TRANS(msr);
548 }
549}
550
551#ifdef __powerpc64__
552static void
553moea64_probe_large_page(void)
554{
555 uint16_t pvr = mfpvr() >> 16;
556
557 switch (pvr) {
558 case IBM970:
559 case IBM970FX:
560 case IBM970MP:
561 powerpc_sync(); isync();
562 mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
563 powerpc_sync(); isync();
564
565 /* FALLTHROUGH */
566 default:
567 moea64_large_page_size = 0x1000000; /* 16 MB */
568 moea64_large_page_shift = 24;
569 }
570
571 moea64_large_page_mask = moea64_large_page_size - 1;
572}
573
574static void
575moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
576{
577 struct slb *cache;
578 struct slb entry;
579 uint64_t esid, slbe;
580 uint64_t i;
581
582 cache = PCPU_GET(slb);
583 esid = va >> ADDR_SR_SHFT;
584 slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
585
586 for (i = 0; i < 64; i++) {
587 if (cache[i].slbe == (slbe | i))
588 return;
589 }
590
591 entry.slbe = slbe;
592 entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
593 if (large)
594 entry.slbv |= SLBV_L;
595
596 slb_insert_kernel(entry.slbe, entry.slbv);
597}
598#endif
599
600static void
601moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
602 vm_offset_t kernelend)
603{
604 struct pvo_entry *pvo;
605 register_t msr;
606 vm_paddr_t pa;
607 vm_offset_t size, off;
608 uint64_t pte_lo;
609 int i;
610
611 if (moea64_large_page_size == 0)
612 hw_direct_map = 0;
613
614 DISABLE_TRANS(msr);
615 if (hw_direct_map) {
616 PMAP_LOCK(kernel_pmap);
617 for (i = 0; i < pregions_sz; i++) {
618 for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
619 pregions[i].mr_size; pa += moea64_large_page_size) {
620 pte_lo = LPTE_M;
621
622 pvo = alloc_pvo_entry(1 /* bootstrap */);
623 pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
624 init_pvo_entry(pvo, kernel_pmap, pa);
625
626 /*
627 * Set memory access as guarded if prefetch within
628 * the page could exit the available physmem area.
629 */
630 if (pa & moea64_large_page_mask) {
631 pa &= moea64_large_page_mask;
632 pte_lo |= LPTE_G;
633 }
634 if (pa + moea64_large_page_size >
635 pregions[i].mr_start + pregions[i].mr_size)
636 pte_lo |= LPTE_G;
637
638 pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
639 VM_PROT_EXECUTE;
640 pvo->pvo_pte.pa = pa | pte_lo;
641 moea64_pvo_enter(mmup, pvo, NULL);
642 }
643 }
644 PMAP_UNLOCK(kernel_pmap);
645 } else {
646 size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
647 off = (vm_offset_t)(moea64_bpvo_pool);
648 for (pa = off; pa < off + size; pa += PAGE_SIZE)
649 moea64_kenter(mmup, pa, pa);
650
651 /*
652 * Map certain important things, like ourselves.
653 *
654 * NOTE: We do not map the exception vector space. That code is
655 * used only in real mode, and leaving it unmapped allows us to
656 * catch NULL pointer deferences, instead of making NULL a valid
657 * address.
658 */
659
660 for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
661 pa += PAGE_SIZE)
662 moea64_kenter(mmup, pa, pa);
663 }
664 ENABLE_TRANS(msr);
665
666 /*
667 * Allow user to override unmapped_buf_allowed for testing.
668 * XXXKIB Only direct map implementation was tested.
669 */
670 if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
671 &unmapped_buf_allowed))
672 unmapped_buf_allowed = hw_direct_map;
673}
674
675void
676moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
677{
678 int i, j;
679 vm_size_t physsz, hwphyssz;
680
681#ifndef __powerpc64__
682 /* We don't have a direct map since there is no BAT */
683 hw_direct_map = 0;
684
685 /* Make sure battable is zero, since we have no BAT */
686 for (i = 0; i < 16; i++) {
687 battable[i].batu = 0;
688 battable[i].batl = 0;
689 }
690#else
691 moea64_probe_large_page();
692
693 /* Use a direct map if we have large page support */
694 if (moea64_large_page_size > 0)
695 hw_direct_map = 1;
696 else
697 hw_direct_map = 0;
698#endif
699
700 /* Get physical memory regions from firmware */
701 mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
702 CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
703
704 if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
705 panic("moea64_bootstrap: phys_avail too small");
706
707 phys_avail_count = 0;
708 physsz = 0;
709 hwphyssz = 0;
710 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
711 for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
712 CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
713 regions[i].mr_start, regions[i].mr_start +
714 regions[i].mr_size, regions[i].mr_size);
715 if (hwphyssz != 0 &&
716 (physsz + regions[i].mr_size) >= hwphyssz) {
717 if (physsz < hwphyssz) {
718 phys_avail[j] = regions[i].mr_start;
719 phys_avail[j + 1] = regions[i].mr_start +
720 hwphyssz - physsz;
721 physsz = hwphyssz;
722 phys_avail_count++;
723 }
724 break;
725 }
726 phys_avail[j] = regions[i].mr_start;
727 phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
728 phys_avail_count++;
729 physsz += regions[i].mr_size;
730 }
731
732 /* Check for overlap with the kernel and exception vectors */
733 for (j = 0; j < 2*phys_avail_count; j+=2) {
734 if (phys_avail[j] < EXC_LAST)
735 phys_avail[j] += EXC_LAST;
736
737 if (kernelstart >= phys_avail[j] &&
738 kernelstart < phys_avail[j+1]) {
739 if (kernelend < phys_avail[j+1]) {
740 phys_avail[2*phys_avail_count] =
741 (kernelend & ~PAGE_MASK) + PAGE_SIZE;
742 phys_avail[2*phys_avail_count + 1] =
743 phys_avail[j+1];
744 phys_avail_count++;
745 }
746
747 phys_avail[j+1] = kernelstart & ~PAGE_MASK;
748 }
749
750 if (kernelend >= phys_avail[j] &&
751 kernelend < phys_avail[j+1]) {
752 if (kernelstart > phys_avail[j]) {
753 phys_avail[2*phys_avail_count] = phys_avail[j];
754 phys_avail[2*phys_avail_count + 1] =
755 kernelstart & ~PAGE_MASK;
756 phys_avail_count++;
757 }
758
759 phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
760 }
761 }
762
763 physmem = btoc(physsz);
764
765#ifdef PTEGCOUNT
766 moea64_pteg_count = PTEGCOUNT;
767#else
768 moea64_pteg_count = 0x1000;
769
770 while (moea64_pteg_count < physmem)
771 moea64_pteg_count <<= 1;
772
773 moea64_pteg_count >>= 1;
774#endif /* PTEGCOUNT */
775}
776
777void
778moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
779{
780 int i;
781
782 /*
783 * Set PTEG mask
784 */
785 moea64_pteg_mask = moea64_pteg_count - 1;
786
787 /*
788 * Initialize SLB table lock and page locks
789 */
790 mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
791 for (i = 0; i < PV_LOCK_COUNT; i++)
792 mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
793
794 /*
795 * Initialise the bootstrap pvo pool.
796 */
797 moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
798 moea64_bpvo_pool_size*sizeof(struct pvo_entry), 0);
799 moea64_bpvo_pool_index = 0;
800
801 /*
802 * Make sure kernel vsid is allocated as well as VSID 0.
803 */
804 #ifndef __powerpc64__
805 moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
806 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
807 moea64_vsid_bitmap[0] |= 1;
808 #endif
809
810 /*
811 * Initialize the kernel pmap (which is statically allocated).
812 */
813 #ifdef __powerpc64__
814 for (i = 0; i < 64; i++) {
815 pcpup->pc_slb[i].slbv = 0;
816 pcpup->pc_slb[i].slbe = 0;
817 }
818 #else
819 for (i = 0; i < 16; i++)
820 kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
821 #endif
822
823 kernel_pmap->pmap_phys = kernel_pmap;
824 CPU_FILL(&kernel_pmap->pm_active);
825 RB_INIT(&kernel_pmap->pmap_pvo);
826
827 PMAP_LOCK_INIT(kernel_pmap);
828
829 /*
830 * Now map in all the other buffers we allocated earlier
831 */
832
833 moea64_setup_direct_map(mmup, kernelstart, kernelend);
834}
835
836void
837moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
838{
839 ihandle_t mmui;
840 phandle_t chosen;
841 phandle_t mmu;
842 ssize_t sz;
843 int i;
844 vm_offset_t pa, va;
845 void *dpcpu;
846
847 /*
848 * Set up the Open Firmware pmap and add its mappings if not in real
849 * mode.
850 */
851
852 chosen = OF_finddevice("/chosen");
853 if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
854 mmu = OF_instance_to_package(mmui);
855 if (mmu == -1 ||
856 (sz = OF_getproplen(mmu, "translations")) == -1)
857 sz = 0;
858 if (sz > 6144 /* tmpstksz - 2 KB headroom */)
859 panic("moea64_bootstrap: too many ofw translations");
860
861 if (sz > 0)
862 moea64_add_ofw_mappings(mmup, mmu, sz);
863 }
864
865 /*
866 * Calculate the last available physical address.
867 */
868 for (i = 0; phys_avail[i + 2] != 0; i += 2)
869 ;
870 Maxmem = powerpc_btop(phys_avail[i + 1]);
871
872 /*
873 * Initialize MMU and remap early physical mappings
874 */
875 MMU_CPU_BOOTSTRAP(mmup,0);
876 mtmsr(mfmsr() | PSL_DR | PSL_IR);
877 pmap_bootstrapped++;
878 bs_remap_earlyboot();
879
880 /*
881 * Set the start and end of kva.
882 */
883 virtual_avail = VM_MIN_KERNEL_ADDRESS;
884 virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
885
886 /*
887 * Map the entire KVA range into the SLB. We must not fault there.
888 */
889 #ifdef __powerpc64__
890 for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
891 moea64_bootstrap_slb_prefault(va, 0);
892 #endif
893
894 /*
895 * Figure out how far we can extend virtual_end into segment 16
896 * without running into existing mappings. Segment 16 is guaranteed
897 * to contain neither RAM nor devices (at least on Apple hardware),
898 * but will generally contain some OFW mappings we should not
899 * step on.
900 */
901
902 #ifndef __powerpc64__ /* KVA is in high memory on PPC64 */
903 PMAP_LOCK(kernel_pmap);
904 while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
905 moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
906 virtual_end += PAGE_SIZE;
907 PMAP_UNLOCK(kernel_pmap);
908 #endif
909
910 /*
911 * Allocate a kernel stack with a guard page for thread0 and map it
912 * into the kernel page map.
913 */
914 pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
915 va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
916 virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
917 CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
918 thread0.td_kstack = va;
919 thread0.td_kstack_pages = KSTACK_PAGES;
920 for (i = 0; i < KSTACK_PAGES; i++) {
921 moea64_kenter(mmup, va, pa);
922 pa += PAGE_SIZE;
923 va += PAGE_SIZE;
924 }
925
926 /*
927 * Allocate virtual address space for the message buffer.
928 */
929 pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
930 msgbufp = (struct msgbuf *)virtual_avail;
931 va = virtual_avail;
932 virtual_avail += round_page(msgbufsize);
933 while (va < virtual_avail) {
934 moea64_kenter(mmup, va, pa);
935 pa += PAGE_SIZE;
936 va += PAGE_SIZE;
937 }
938
939 /*
940 * Allocate virtual address space for the dynamic percpu area.
941 */
942 pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
943 dpcpu = (void *)virtual_avail;
944 va = virtual_avail;
945 virtual_avail += DPCPU_SIZE;
946 while (va < virtual_avail) {
947 moea64_kenter(mmup, va, pa);
948 pa += PAGE_SIZE;
949 va += PAGE_SIZE;
950 }
951 dpcpu_init(dpcpu, 0);
952
953 /*
954 * Allocate some things for page zeroing. We put this directly
955 * in the page table and use MOEA64_PTE_REPLACE to avoid any
956 * of the PVO book-keeping or other parts of the VM system
957 * from even knowing that this hack exists.
958 */
959
960 if (!hw_direct_map) {
961 mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
962 MTX_DEF);
963 for (i = 0; i < 2; i++) {
964 moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
965 virtual_end -= PAGE_SIZE;
966
967 moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
968
969 PMAP_LOCK(kernel_pmap);
970 moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
971 kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
972 PMAP_UNLOCK(kernel_pmap);
973 }
974 }
975}
976
977/*
978 * Activate a user pmap. This mostly involves setting some non-CPU
979 * state.
980 */
981void
982moea64_activate(mmu_t mmu, struct thread *td)
983{
984 pmap_t pm;
985
986 pm = &td->td_proc->p_vmspace->vm_pmap;
987 CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
988
989 #ifdef __powerpc64__
990 PCPU_SET(userslb, pm->pm_slb);
991 __asm __volatile("slbmte %0, %1; isync" ::
992 "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
993 #else
994 PCPU_SET(curpmap, pm->pmap_phys);
995 mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
996 #endif
997}
998
999void
1000moea64_deactivate(mmu_t mmu, struct thread *td)
1001{
1002 pmap_t pm;
1003
1004 __asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
1005
1006 pm = &td->td_proc->p_vmspace->vm_pmap;
1007 CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1008 #ifdef __powerpc64__
1009 PCPU_SET(userslb, NULL);
1010 #else
1011 PCPU_SET(curpmap, NULL);
1012 #endif
1013}
1014
1015void
1016moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1017{
1018 struct pvo_entry key, *pvo;
1019 vm_page_t m;
1020 int64_t refchg;
1021
1022 key.pvo_vaddr = sva;
1023 PMAP_LOCK(pm);
1024 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1025 pvo != NULL && PVO_VADDR(pvo) < eva;
1026 pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1027 if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1028 panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1029 pvo);
1030 pvo->pvo_vaddr &= ~PVO_WIRED;
1031 refchg = MOEA64_PTE_REPLACE(mmu, pvo, 0 /* No invalidation */);
1032 if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1033 (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1034 if (refchg < 0)
1035 refchg = LPTE_CHG;
1036 m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1037
1038 refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
1039 if (refchg & LPTE_CHG)
1040 vm_page_dirty(m);
1041 if (refchg & LPTE_REF)
1042 vm_page_aflag_set(m, PGA_REFERENCED);
1043 }
1044 pm->pm_stats.wired_count--;
1045 }
1046 PMAP_UNLOCK(pm);
1047}
1048
1049/*
1050 * This goes through and sets the physical address of our
1051 * special scratch PTE to the PA we want to zero or copy. Because
1052 * of locking issues (this can get called in pvo_enter() by
1053 * the UMA allocator), we can't use most other utility functions here
1054 */
1055
1056static __inline
423{
424 uint64_t pte_lo;
425 int i;
426
427 if (ma != VM_MEMATTR_DEFAULT) {
428 switch (ma) {
429 case VM_MEMATTR_UNCACHEABLE:
430 return (LPTE_I | LPTE_G);
431 case VM_MEMATTR_WRITE_COMBINING:
432 case VM_MEMATTR_WRITE_BACK:
433 case VM_MEMATTR_PREFETCHABLE:
434 return (LPTE_I);
435 case VM_MEMATTR_WRITE_THROUGH:
436 return (LPTE_W | LPTE_M);
437 }
438 }
439
440 /*
441 * Assume the page is cache inhibited and access is guarded unless
442 * it's in our available memory array.
443 */
444 pte_lo = LPTE_I | LPTE_G;
445 for (i = 0; i < pregions_sz; i++) {
446 if ((pa >= pregions[i].mr_start) &&
447 (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
448 pte_lo &= ~(LPTE_I | LPTE_G);
449 pte_lo |= LPTE_M;
450 break;
451 }
452 }
453
454 return pte_lo;
455}
456
457/*
458 * Quick sort callout for comparing memory regions.
459 */
460static int om_cmp(const void *a, const void *b);
461
462static int
463om_cmp(const void *a, const void *b)
464{
465 const struct ofw_map *mapa;
466 const struct ofw_map *mapb;
467
468 mapa = a;
469 mapb = b;
470 if (mapa->om_pa < mapb->om_pa)
471 return (-1);
472 else if (mapa->om_pa > mapb->om_pa)
473 return (1);
474 else
475 return (0);
476}
477
478static void
479moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
480{
481 struct ofw_map translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
482 pcell_t acells, trans_cells[sz/sizeof(cell_t)];
483 struct pvo_entry *pvo;
484 register_t msr;
485 vm_offset_t off;
486 vm_paddr_t pa_base;
487 int i, j;
488
489 bzero(translations, sz);
490 OF_getprop(OF_finddevice("/"), "#address-cells", &acells,
491 sizeof(acells));
492 if (OF_getprop(mmu, "translations", trans_cells, sz) == -1)
493 panic("moea64_bootstrap: can't get ofw translations");
494
495 CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
496 sz /= sizeof(cell_t);
497 for (i = 0, j = 0; i < sz; j++) {
498 translations[j].om_va = trans_cells[i++];
499 translations[j].om_len = trans_cells[i++];
500 translations[j].om_pa = trans_cells[i++];
501 if (acells == 2) {
502 translations[j].om_pa <<= 32;
503 translations[j].om_pa |= trans_cells[i++];
504 }
505 translations[j].om_mode = trans_cells[i++];
506 }
507 KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
508 i, sz));
509
510 sz = j;
511 qsort(translations, sz, sizeof (*translations), om_cmp);
512
513 for (i = 0; i < sz; i++) {
514 pa_base = translations[i].om_pa;
515 #ifndef __powerpc64__
516 if ((translations[i].om_pa >> 32) != 0)
517 panic("OFW translations above 32-bit boundary!");
518 #endif
519
520 if (pa_base % PAGE_SIZE)
521 panic("OFW translation not page-aligned (phys)!");
522 if (translations[i].om_va % PAGE_SIZE)
523 panic("OFW translation not page-aligned (virt)!");
524
525 CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
526 pa_base, translations[i].om_va, translations[i].om_len);
527
528 /* Now enter the pages for this mapping */
529
530 DISABLE_TRANS(msr);
531 for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
532 /* If this address is direct-mapped, skip remapping */
533 if (hw_direct_map && translations[i].om_va == pa_base &&
534 moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT) == LPTE_M)
535 continue;
536
537 PMAP_LOCK(kernel_pmap);
538 pvo = moea64_pvo_find_va(kernel_pmap,
539 translations[i].om_va + off);
540 PMAP_UNLOCK(kernel_pmap);
541 if (pvo != NULL)
542 continue;
543
544 moea64_kenter(mmup, translations[i].om_va + off,
545 pa_base + off);
546 }
547 ENABLE_TRANS(msr);
548 }
549}
550
551#ifdef __powerpc64__
552static void
553moea64_probe_large_page(void)
554{
555 uint16_t pvr = mfpvr() >> 16;
556
557 switch (pvr) {
558 case IBM970:
559 case IBM970FX:
560 case IBM970MP:
561 powerpc_sync(); isync();
562 mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
563 powerpc_sync(); isync();
564
565 /* FALLTHROUGH */
566 default:
567 moea64_large_page_size = 0x1000000; /* 16 MB */
568 moea64_large_page_shift = 24;
569 }
570
571 moea64_large_page_mask = moea64_large_page_size - 1;
572}
573
574static void
575moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
576{
577 struct slb *cache;
578 struct slb entry;
579 uint64_t esid, slbe;
580 uint64_t i;
581
582 cache = PCPU_GET(slb);
583 esid = va >> ADDR_SR_SHFT;
584 slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
585
586 for (i = 0; i < 64; i++) {
587 if (cache[i].slbe == (slbe | i))
588 return;
589 }
590
591 entry.slbe = slbe;
592 entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
593 if (large)
594 entry.slbv |= SLBV_L;
595
596 slb_insert_kernel(entry.slbe, entry.slbv);
597}
598#endif
599
600static void
601moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
602 vm_offset_t kernelend)
603{
604 struct pvo_entry *pvo;
605 register_t msr;
606 vm_paddr_t pa;
607 vm_offset_t size, off;
608 uint64_t pte_lo;
609 int i;
610
611 if (moea64_large_page_size == 0)
612 hw_direct_map = 0;
613
614 DISABLE_TRANS(msr);
615 if (hw_direct_map) {
616 PMAP_LOCK(kernel_pmap);
617 for (i = 0; i < pregions_sz; i++) {
618 for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
619 pregions[i].mr_size; pa += moea64_large_page_size) {
620 pte_lo = LPTE_M;
621
622 pvo = alloc_pvo_entry(1 /* bootstrap */);
623 pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
624 init_pvo_entry(pvo, kernel_pmap, pa);
625
626 /*
627 * Set memory access as guarded if prefetch within
628 * the page could exit the available physmem area.
629 */
630 if (pa & moea64_large_page_mask) {
631 pa &= moea64_large_page_mask;
632 pte_lo |= LPTE_G;
633 }
634 if (pa + moea64_large_page_size >
635 pregions[i].mr_start + pregions[i].mr_size)
636 pte_lo |= LPTE_G;
637
638 pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
639 VM_PROT_EXECUTE;
640 pvo->pvo_pte.pa = pa | pte_lo;
641 moea64_pvo_enter(mmup, pvo, NULL);
642 }
643 }
644 PMAP_UNLOCK(kernel_pmap);
645 } else {
646 size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
647 off = (vm_offset_t)(moea64_bpvo_pool);
648 for (pa = off; pa < off + size; pa += PAGE_SIZE)
649 moea64_kenter(mmup, pa, pa);
650
651 /*
652 * Map certain important things, like ourselves.
653 *
654 * NOTE: We do not map the exception vector space. That code is
655 * used only in real mode, and leaving it unmapped allows us to
656 * catch NULL pointer deferences, instead of making NULL a valid
657 * address.
658 */
659
660 for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
661 pa += PAGE_SIZE)
662 moea64_kenter(mmup, pa, pa);
663 }
664 ENABLE_TRANS(msr);
665
666 /*
667 * Allow user to override unmapped_buf_allowed for testing.
668 * XXXKIB Only direct map implementation was tested.
669 */
670 if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
671 &unmapped_buf_allowed))
672 unmapped_buf_allowed = hw_direct_map;
673}
674
675void
676moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
677{
678 int i, j;
679 vm_size_t physsz, hwphyssz;
680
681#ifndef __powerpc64__
682 /* We don't have a direct map since there is no BAT */
683 hw_direct_map = 0;
684
685 /* Make sure battable is zero, since we have no BAT */
686 for (i = 0; i < 16; i++) {
687 battable[i].batu = 0;
688 battable[i].batl = 0;
689 }
690#else
691 moea64_probe_large_page();
692
693 /* Use a direct map if we have large page support */
694 if (moea64_large_page_size > 0)
695 hw_direct_map = 1;
696 else
697 hw_direct_map = 0;
698#endif
699
700 /* Get physical memory regions from firmware */
701 mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
702 CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
703
704 if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
705 panic("moea64_bootstrap: phys_avail too small");
706
707 phys_avail_count = 0;
708 physsz = 0;
709 hwphyssz = 0;
710 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
711 for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
712 CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
713 regions[i].mr_start, regions[i].mr_start +
714 regions[i].mr_size, regions[i].mr_size);
715 if (hwphyssz != 0 &&
716 (physsz + regions[i].mr_size) >= hwphyssz) {
717 if (physsz < hwphyssz) {
718 phys_avail[j] = regions[i].mr_start;
719 phys_avail[j + 1] = regions[i].mr_start +
720 hwphyssz - physsz;
721 physsz = hwphyssz;
722 phys_avail_count++;
723 }
724 break;
725 }
726 phys_avail[j] = regions[i].mr_start;
727 phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
728 phys_avail_count++;
729 physsz += regions[i].mr_size;
730 }
731
732 /* Check for overlap with the kernel and exception vectors */
733 for (j = 0; j < 2*phys_avail_count; j+=2) {
734 if (phys_avail[j] < EXC_LAST)
735 phys_avail[j] += EXC_LAST;
736
737 if (kernelstart >= phys_avail[j] &&
738 kernelstart < phys_avail[j+1]) {
739 if (kernelend < phys_avail[j+1]) {
740 phys_avail[2*phys_avail_count] =
741 (kernelend & ~PAGE_MASK) + PAGE_SIZE;
742 phys_avail[2*phys_avail_count + 1] =
743 phys_avail[j+1];
744 phys_avail_count++;
745 }
746
747 phys_avail[j+1] = kernelstart & ~PAGE_MASK;
748 }
749
750 if (kernelend >= phys_avail[j] &&
751 kernelend < phys_avail[j+1]) {
752 if (kernelstart > phys_avail[j]) {
753 phys_avail[2*phys_avail_count] = phys_avail[j];
754 phys_avail[2*phys_avail_count + 1] =
755 kernelstart & ~PAGE_MASK;
756 phys_avail_count++;
757 }
758
759 phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
760 }
761 }
762
763 physmem = btoc(physsz);
764
765#ifdef PTEGCOUNT
766 moea64_pteg_count = PTEGCOUNT;
767#else
768 moea64_pteg_count = 0x1000;
769
770 while (moea64_pteg_count < physmem)
771 moea64_pteg_count <<= 1;
772
773 moea64_pteg_count >>= 1;
774#endif /* PTEGCOUNT */
775}
776
777void
778moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
779{
780 int i;
781
782 /*
783 * Set PTEG mask
784 */
785 moea64_pteg_mask = moea64_pteg_count - 1;
786
787 /*
788 * Initialize SLB table lock and page locks
789 */
790 mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
791 for (i = 0; i < PV_LOCK_COUNT; i++)
792 mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
793
794 /*
795 * Initialise the bootstrap pvo pool.
796 */
797 moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
798 moea64_bpvo_pool_size*sizeof(struct pvo_entry), 0);
799 moea64_bpvo_pool_index = 0;
800
801 /*
802 * Make sure kernel vsid is allocated as well as VSID 0.
803 */
804 #ifndef __powerpc64__
805 moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
806 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
807 moea64_vsid_bitmap[0] |= 1;
808 #endif
809
810 /*
811 * Initialize the kernel pmap (which is statically allocated).
812 */
813 #ifdef __powerpc64__
814 for (i = 0; i < 64; i++) {
815 pcpup->pc_slb[i].slbv = 0;
816 pcpup->pc_slb[i].slbe = 0;
817 }
818 #else
819 for (i = 0; i < 16; i++)
820 kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
821 #endif
822
823 kernel_pmap->pmap_phys = kernel_pmap;
824 CPU_FILL(&kernel_pmap->pm_active);
825 RB_INIT(&kernel_pmap->pmap_pvo);
826
827 PMAP_LOCK_INIT(kernel_pmap);
828
829 /*
830 * Now map in all the other buffers we allocated earlier
831 */
832
833 moea64_setup_direct_map(mmup, kernelstart, kernelend);
834}
835
836void
837moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
838{
839 ihandle_t mmui;
840 phandle_t chosen;
841 phandle_t mmu;
842 ssize_t sz;
843 int i;
844 vm_offset_t pa, va;
845 void *dpcpu;
846
847 /*
848 * Set up the Open Firmware pmap and add its mappings if not in real
849 * mode.
850 */
851
852 chosen = OF_finddevice("/chosen");
853 if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
854 mmu = OF_instance_to_package(mmui);
855 if (mmu == -1 ||
856 (sz = OF_getproplen(mmu, "translations")) == -1)
857 sz = 0;
858 if (sz > 6144 /* tmpstksz - 2 KB headroom */)
859 panic("moea64_bootstrap: too many ofw translations");
860
861 if (sz > 0)
862 moea64_add_ofw_mappings(mmup, mmu, sz);
863 }
864
865 /*
866 * Calculate the last available physical address.
867 */
868 for (i = 0; phys_avail[i + 2] != 0; i += 2)
869 ;
870 Maxmem = powerpc_btop(phys_avail[i + 1]);
871
872 /*
873 * Initialize MMU and remap early physical mappings
874 */
875 MMU_CPU_BOOTSTRAP(mmup,0);
876 mtmsr(mfmsr() | PSL_DR | PSL_IR);
877 pmap_bootstrapped++;
878 bs_remap_earlyboot();
879
880 /*
881 * Set the start and end of kva.
882 */
883 virtual_avail = VM_MIN_KERNEL_ADDRESS;
884 virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
885
886 /*
887 * Map the entire KVA range into the SLB. We must not fault there.
888 */
889 #ifdef __powerpc64__
890 for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
891 moea64_bootstrap_slb_prefault(va, 0);
892 #endif
893
894 /*
895 * Figure out how far we can extend virtual_end into segment 16
896 * without running into existing mappings. Segment 16 is guaranteed
897 * to contain neither RAM nor devices (at least on Apple hardware),
898 * but will generally contain some OFW mappings we should not
899 * step on.
900 */
901
902 #ifndef __powerpc64__ /* KVA is in high memory on PPC64 */
903 PMAP_LOCK(kernel_pmap);
904 while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
905 moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
906 virtual_end += PAGE_SIZE;
907 PMAP_UNLOCK(kernel_pmap);
908 #endif
909
910 /*
911 * Allocate a kernel stack with a guard page for thread0 and map it
912 * into the kernel page map.
913 */
914 pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
915 va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
916 virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
917 CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
918 thread0.td_kstack = va;
919 thread0.td_kstack_pages = KSTACK_PAGES;
920 for (i = 0; i < KSTACK_PAGES; i++) {
921 moea64_kenter(mmup, va, pa);
922 pa += PAGE_SIZE;
923 va += PAGE_SIZE;
924 }
925
926 /*
927 * Allocate virtual address space for the message buffer.
928 */
929 pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
930 msgbufp = (struct msgbuf *)virtual_avail;
931 va = virtual_avail;
932 virtual_avail += round_page(msgbufsize);
933 while (va < virtual_avail) {
934 moea64_kenter(mmup, va, pa);
935 pa += PAGE_SIZE;
936 va += PAGE_SIZE;
937 }
938
939 /*
940 * Allocate virtual address space for the dynamic percpu area.
941 */
942 pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
943 dpcpu = (void *)virtual_avail;
944 va = virtual_avail;
945 virtual_avail += DPCPU_SIZE;
946 while (va < virtual_avail) {
947 moea64_kenter(mmup, va, pa);
948 pa += PAGE_SIZE;
949 va += PAGE_SIZE;
950 }
951 dpcpu_init(dpcpu, 0);
952
953 /*
954 * Allocate some things for page zeroing. We put this directly
955 * in the page table and use MOEA64_PTE_REPLACE to avoid any
956 * of the PVO book-keeping or other parts of the VM system
957 * from even knowing that this hack exists.
958 */
959
960 if (!hw_direct_map) {
961 mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
962 MTX_DEF);
963 for (i = 0; i < 2; i++) {
964 moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
965 virtual_end -= PAGE_SIZE;
966
967 moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
968
969 PMAP_LOCK(kernel_pmap);
970 moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
971 kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
972 PMAP_UNLOCK(kernel_pmap);
973 }
974 }
975}
976
977/*
978 * Activate a user pmap. This mostly involves setting some non-CPU
979 * state.
980 */
981void
982moea64_activate(mmu_t mmu, struct thread *td)
983{
984 pmap_t pm;
985
986 pm = &td->td_proc->p_vmspace->vm_pmap;
987 CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
988
989 #ifdef __powerpc64__
990 PCPU_SET(userslb, pm->pm_slb);
991 __asm __volatile("slbmte %0, %1; isync" ::
992 "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
993 #else
994 PCPU_SET(curpmap, pm->pmap_phys);
995 mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
996 #endif
997}
998
999void
1000moea64_deactivate(mmu_t mmu, struct thread *td)
1001{
1002 pmap_t pm;
1003
1004 __asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
1005
1006 pm = &td->td_proc->p_vmspace->vm_pmap;
1007 CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1008 #ifdef __powerpc64__
1009 PCPU_SET(userslb, NULL);
1010 #else
1011 PCPU_SET(curpmap, NULL);
1012 #endif
1013}
1014
1015void
1016moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1017{
1018 struct pvo_entry key, *pvo;
1019 vm_page_t m;
1020 int64_t refchg;
1021
1022 key.pvo_vaddr = sva;
1023 PMAP_LOCK(pm);
1024 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1025 pvo != NULL && PVO_VADDR(pvo) < eva;
1026 pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1027 if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1028 panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1029 pvo);
1030 pvo->pvo_vaddr &= ~PVO_WIRED;
1031 refchg = MOEA64_PTE_REPLACE(mmu, pvo, 0 /* No invalidation */);
1032 if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1033 (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1034 if (refchg < 0)
1035 refchg = LPTE_CHG;
1036 m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1037
1038 refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
1039 if (refchg & LPTE_CHG)
1040 vm_page_dirty(m);
1041 if (refchg & LPTE_REF)
1042 vm_page_aflag_set(m, PGA_REFERENCED);
1043 }
1044 pm->pm_stats.wired_count--;
1045 }
1046 PMAP_UNLOCK(pm);
1047}
1048
1049/*
1050 * This goes through and sets the physical address of our
1051 * special scratch PTE to the PA we want to zero or copy. Because
1052 * of locking issues (this can get called in pvo_enter() by
1053 * the UMA allocator), we can't use most other utility functions here
1054 */
1055
1056static __inline
1057void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1057void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_paddr_t pa) {
1058
1059 KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1060 mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1061
1062 moea64_scratchpage_pvo[which]->pvo_pte.pa =
1063 moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1064 MOEA64_PTE_REPLACE(mmup, moea64_scratchpage_pvo[which],
1065 MOEA64_PTE_INVALIDATE);
1066 isync();
1067}
1068
1069void
1070moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1071{
1072 vm_offset_t dst;
1073 vm_offset_t src;
1074
1075 dst = VM_PAGE_TO_PHYS(mdst);
1076 src = VM_PAGE_TO_PHYS(msrc);
1077
1078 if (hw_direct_map) {
1079 bcopy((void *)src, (void *)dst, PAGE_SIZE);
1080 } else {
1081 mtx_lock(&moea64_scratchpage_mtx);
1082
1083 moea64_set_scratchpage_pa(mmu, 0, src);
1084 moea64_set_scratchpage_pa(mmu, 1, dst);
1085
1086 bcopy((void *)moea64_scratchpage_va[0],
1087 (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1088
1089 mtx_unlock(&moea64_scratchpage_mtx);
1090 }
1091}
1092
1093static inline void
1094moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1095 vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1096{
1097 void *a_cp, *b_cp;
1098 vm_offset_t a_pg_offset, b_pg_offset;
1099 int cnt;
1100
1101 while (xfersize > 0) {
1102 a_pg_offset = a_offset & PAGE_MASK;
1103 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1104 a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1105 a_pg_offset;
1106 b_pg_offset = b_offset & PAGE_MASK;
1107 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1108 b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1109 b_pg_offset;
1110 bcopy(a_cp, b_cp, cnt);
1111 a_offset += cnt;
1112 b_offset += cnt;
1113 xfersize -= cnt;
1114 }
1115}
1116
1117static inline void
1118moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1119 vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1120{
1121 void *a_cp, *b_cp;
1122 vm_offset_t a_pg_offset, b_pg_offset;
1123 int cnt;
1124
1125 mtx_lock(&moea64_scratchpage_mtx);
1126 while (xfersize > 0) {
1127 a_pg_offset = a_offset & PAGE_MASK;
1128 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1129 moea64_set_scratchpage_pa(mmu, 0,
1130 VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1131 a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1132 b_pg_offset = b_offset & PAGE_MASK;
1133 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1134 moea64_set_scratchpage_pa(mmu, 1,
1135 VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1136 b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1137 bcopy(a_cp, b_cp, cnt);
1138 a_offset += cnt;
1139 b_offset += cnt;
1140 xfersize -= cnt;
1141 }
1142 mtx_unlock(&moea64_scratchpage_mtx);
1143}
1144
1145void
1146moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1147 vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1148{
1149
1150 if (hw_direct_map) {
1151 moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1152 xfersize);
1153 } else {
1154 moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1155 xfersize);
1156 }
1157}
1158
1159void
1160moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1161{
1058
1059 KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1060 mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1061
1062 moea64_scratchpage_pvo[which]->pvo_pte.pa =
1063 moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1064 MOEA64_PTE_REPLACE(mmup, moea64_scratchpage_pvo[which],
1065 MOEA64_PTE_INVALIDATE);
1066 isync();
1067}
1068
1069void
1070moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1071{
1072 vm_offset_t dst;
1073 vm_offset_t src;
1074
1075 dst = VM_PAGE_TO_PHYS(mdst);
1076 src = VM_PAGE_TO_PHYS(msrc);
1077
1078 if (hw_direct_map) {
1079 bcopy((void *)src, (void *)dst, PAGE_SIZE);
1080 } else {
1081 mtx_lock(&moea64_scratchpage_mtx);
1082
1083 moea64_set_scratchpage_pa(mmu, 0, src);
1084 moea64_set_scratchpage_pa(mmu, 1, dst);
1085
1086 bcopy((void *)moea64_scratchpage_va[0],
1087 (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1088
1089 mtx_unlock(&moea64_scratchpage_mtx);
1090 }
1091}
1092
1093static inline void
1094moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1095 vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1096{
1097 void *a_cp, *b_cp;
1098 vm_offset_t a_pg_offset, b_pg_offset;
1099 int cnt;
1100
1101 while (xfersize > 0) {
1102 a_pg_offset = a_offset & PAGE_MASK;
1103 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1104 a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1105 a_pg_offset;
1106 b_pg_offset = b_offset & PAGE_MASK;
1107 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1108 b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1109 b_pg_offset;
1110 bcopy(a_cp, b_cp, cnt);
1111 a_offset += cnt;
1112 b_offset += cnt;
1113 xfersize -= cnt;
1114 }
1115}
1116
1117static inline void
1118moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1119 vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1120{
1121 void *a_cp, *b_cp;
1122 vm_offset_t a_pg_offset, b_pg_offset;
1123 int cnt;
1124
1125 mtx_lock(&moea64_scratchpage_mtx);
1126 while (xfersize > 0) {
1127 a_pg_offset = a_offset & PAGE_MASK;
1128 cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1129 moea64_set_scratchpage_pa(mmu, 0,
1130 VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1131 a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1132 b_pg_offset = b_offset & PAGE_MASK;
1133 cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1134 moea64_set_scratchpage_pa(mmu, 1,
1135 VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1136 b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1137 bcopy(a_cp, b_cp, cnt);
1138 a_offset += cnt;
1139 b_offset += cnt;
1140 xfersize -= cnt;
1141 }
1142 mtx_unlock(&moea64_scratchpage_mtx);
1143}
1144
1145void
1146moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1147 vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1148{
1149
1150 if (hw_direct_map) {
1151 moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1152 xfersize);
1153 } else {
1154 moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1155 xfersize);
1156 }
1157}
1158
1159void
1160moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1161{
1162 vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1162 vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1163
1164 if (size + off > PAGE_SIZE)
1165 panic("moea64_zero_page: size + off > PAGE_SIZE");
1166
1167 if (hw_direct_map) {
1168 bzero((caddr_t)pa + off, size);
1169 } else {
1170 mtx_lock(&moea64_scratchpage_mtx);
1171 moea64_set_scratchpage_pa(mmu, 0, pa);
1172 bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1173 mtx_unlock(&moea64_scratchpage_mtx);
1174 }
1175}
1176
1177/*
1178 * Zero a page of physical memory by temporarily mapping it
1179 */
1180void
1181moea64_zero_page(mmu_t mmu, vm_page_t m)
1182{
1163
1164 if (size + off > PAGE_SIZE)
1165 panic("moea64_zero_page: size + off > PAGE_SIZE");
1166
1167 if (hw_direct_map) {
1168 bzero((caddr_t)pa + off, size);
1169 } else {
1170 mtx_lock(&moea64_scratchpage_mtx);
1171 moea64_set_scratchpage_pa(mmu, 0, pa);
1172 bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1173 mtx_unlock(&moea64_scratchpage_mtx);
1174 }
1175}
1176
1177/*
1178 * Zero a page of physical memory by temporarily mapping it
1179 */
1180void
1181moea64_zero_page(mmu_t mmu, vm_page_t m)
1182{
1183 vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1183 vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1184 vm_offset_t va, off;
1185
1186 if (!hw_direct_map) {
1187 mtx_lock(&moea64_scratchpage_mtx);
1188
1189 moea64_set_scratchpage_pa(mmu, 0, pa);
1190 va = moea64_scratchpage_va[0];
1191 } else {
1192 va = pa;
1193 }
1194
1195 for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1196 __asm __volatile("dcbz 0,%0" :: "r"(va + off));
1197
1198 if (!hw_direct_map)
1199 mtx_unlock(&moea64_scratchpage_mtx);
1200}
1201
1202void
1203moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1204{
1205
1206 moea64_zero_page(mmu, m);
1207}
1208
1209/*
1210 * Map the given physical page at the specified virtual address in the
1211 * target pmap with the protection requested. If specified the page
1212 * will be wired down.
1213 */
1214
1215int
1216moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1217 vm_prot_t prot, u_int flags, int8_t psind)
1218{
1219 struct pvo_entry *pvo, *oldpvo;
1220 struct pvo_head *pvo_head;
1221 uint64_t pte_lo;
1222 int error;
1223
1224 if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1225 VM_OBJECT_ASSERT_LOCKED(m->object);
1226
1227 pvo = alloc_pvo_entry(0);
1228 pvo->pvo_pmap = NULL; /* to be filled in later */
1229 pvo->pvo_pte.prot = prot;
1230
1231 pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1232 pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | pte_lo;
1233
1234 if ((flags & PMAP_ENTER_WIRED) != 0)
1235 pvo->pvo_vaddr |= PVO_WIRED;
1236
1237 if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1238 pvo_head = NULL;
1239 } else {
1240 pvo_head = &m->md.mdpg_pvoh;
1241 pvo->pvo_vaddr |= PVO_MANAGED;
1242 }
1243
1244 for (;;) {
1245 PV_PAGE_LOCK(m);
1246 PMAP_LOCK(pmap);
1247 if (pvo->pvo_pmap == NULL)
1248 init_pvo_entry(pvo, pmap, va);
1249 if (prot & VM_PROT_WRITE)
1250 if (pmap_bootstrapped &&
1251 (m->oflags & VPO_UNMANAGED) == 0)
1252 vm_page_aflag_set(m, PGA_WRITEABLE);
1253
1254 oldpvo = moea64_pvo_find_va(pmap, va);
1255 if (oldpvo != NULL) {
1256 if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
1257 oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
1258 oldpvo->pvo_pte.prot == prot) {
1259 /* Identical mapping already exists */
1260 error = 0;
1261
1262 /* If not in page table, reinsert it */
1263 if (MOEA64_PTE_SYNCH(mmu, oldpvo) < 0) {
1264 moea64_pte_overflow--;
1265 MOEA64_PTE_INSERT(mmu, oldpvo);
1266 }
1267
1268 /* Then just clean up and go home */
1269 PV_PAGE_UNLOCK(m);
1270 PMAP_UNLOCK(pmap);
1271 free_pvo_entry(pvo);
1272 break;
1273 }
1274
1275 /* Otherwise, need to kill it first */
1276 KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
1277 "mapping does not match new mapping"));
1278 moea64_pvo_remove_from_pmap(mmu, oldpvo);
1279 }
1280 error = moea64_pvo_enter(mmu, pvo, pvo_head);
1281 PV_PAGE_UNLOCK(m);
1282 PMAP_UNLOCK(pmap);
1283
1284 /* Free any dead pages */
1285 if (oldpvo != NULL) {
1286 PV_LOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1287 moea64_pvo_remove_from_page(mmu, oldpvo);
1288 PV_UNLOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1289 free_pvo_entry(oldpvo);
1290 }
1291
1292 if (error != ENOMEM)
1293 break;
1294 if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1295 return (KERN_RESOURCE_SHORTAGE);
1296 VM_OBJECT_ASSERT_UNLOCKED(m->object);
1297 VM_WAIT;
1298 }
1299
1300 /*
1301 * Flush the page from the instruction cache if this page is
1302 * mapped executable and cacheable.
1303 */
1304 if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1305 (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1306 vm_page_aflag_set(m, PGA_EXECUTABLE);
1307 moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1308 }
1309 return (KERN_SUCCESS);
1310}
1311
1312static void
1184 vm_offset_t va, off;
1185
1186 if (!hw_direct_map) {
1187 mtx_lock(&moea64_scratchpage_mtx);
1188
1189 moea64_set_scratchpage_pa(mmu, 0, pa);
1190 va = moea64_scratchpage_va[0];
1191 } else {
1192 va = pa;
1193 }
1194
1195 for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1196 __asm __volatile("dcbz 0,%0" :: "r"(va + off));
1197
1198 if (!hw_direct_map)
1199 mtx_unlock(&moea64_scratchpage_mtx);
1200}
1201
1202void
1203moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1204{
1205
1206 moea64_zero_page(mmu, m);
1207}
1208
1209/*
1210 * Map the given physical page at the specified virtual address in the
1211 * target pmap with the protection requested. If specified the page
1212 * will be wired down.
1213 */
1214
1215int
1216moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1217 vm_prot_t prot, u_int flags, int8_t psind)
1218{
1219 struct pvo_entry *pvo, *oldpvo;
1220 struct pvo_head *pvo_head;
1221 uint64_t pte_lo;
1222 int error;
1223
1224 if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1225 VM_OBJECT_ASSERT_LOCKED(m->object);
1226
1227 pvo = alloc_pvo_entry(0);
1228 pvo->pvo_pmap = NULL; /* to be filled in later */
1229 pvo->pvo_pte.prot = prot;
1230
1231 pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1232 pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | pte_lo;
1233
1234 if ((flags & PMAP_ENTER_WIRED) != 0)
1235 pvo->pvo_vaddr |= PVO_WIRED;
1236
1237 if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1238 pvo_head = NULL;
1239 } else {
1240 pvo_head = &m->md.mdpg_pvoh;
1241 pvo->pvo_vaddr |= PVO_MANAGED;
1242 }
1243
1244 for (;;) {
1245 PV_PAGE_LOCK(m);
1246 PMAP_LOCK(pmap);
1247 if (pvo->pvo_pmap == NULL)
1248 init_pvo_entry(pvo, pmap, va);
1249 if (prot & VM_PROT_WRITE)
1250 if (pmap_bootstrapped &&
1251 (m->oflags & VPO_UNMANAGED) == 0)
1252 vm_page_aflag_set(m, PGA_WRITEABLE);
1253
1254 oldpvo = moea64_pvo_find_va(pmap, va);
1255 if (oldpvo != NULL) {
1256 if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
1257 oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
1258 oldpvo->pvo_pte.prot == prot) {
1259 /* Identical mapping already exists */
1260 error = 0;
1261
1262 /* If not in page table, reinsert it */
1263 if (MOEA64_PTE_SYNCH(mmu, oldpvo) < 0) {
1264 moea64_pte_overflow--;
1265 MOEA64_PTE_INSERT(mmu, oldpvo);
1266 }
1267
1268 /* Then just clean up and go home */
1269 PV_PAGE_UNLOCK(m);
1270 PMAP_UNLOCK(pmap);
1271 free_pvo_entry(pvo);
1272 break;
1273 }
1274
1275 /* Otherwise, need to kill it first */
1276 KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
1277 "mapping does not match new mapping"));
1278 moea64_pvo_remove_from_pmap(mmu, oldpvo);
1279 }
1280 error = moea64_pvo_enter(mmu, pvo, pvo_head);
1281 PV_PAGE_UNLOCK(m);
1282 PMAP_UNLOCK(pmap);
1283
1284 /* Free any dead pages */
1285 if (oldpvo != NULL) {
1286 PV_LOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1287 moea64_pvo_remove_from_page(mmu, oldpvo);
1288 PV_UNLOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1289 free_pvo_entry(oldpvo);
1290 }
1291
1292 if (error != ENOMEM)
1293 break;
1294 if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1295 return (KERN_RESOURCE_SHORTAGE);
1296 VM_OBJECT_ASSERT_UNLOCKED(m->object);
1297 VM_WAIT;
1298 }
1299
1300 /*
1301 * Flush the page from the instruction cache if this page is
1302 * mapped executable and cacheable.
1303 */
1304 if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1305 (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1306 vm_page_aflag_set(m, PGA_EXECUTABLE);
1307 moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1308 }
1309 return (KERN_SUCCESS);
1310}
1311
1312static void
1313moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1313moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1314 vm_size_t sz)
1315{
1316
1317 /*
1318 * This is much trickier than on older systems because
1319 * we can't sync the icache on physical addresses directly
1320 * without a direct map. Instead we check a couple of cases
1321 * where the memory is already mapped in and, failing that,
1322 * use the same trick we use for page zeroing to create
1323 * a temporary mapping for this physical address.
1324 */
1325
1326 if (!pmap_bootstrapped) {
1327 /*
1328 * If PMAP is not bootstrapped, we are likely to be
1329 * in real mode.
1330 */
1331 __syncicache((void *)pa, sz);
1332 } else if (pmap == kernel_pmap) {
1333 __syncicache((void *)va, sz);
1334 } else if (hw_direct_map) {
1335 __syncicache((void *)pa, sz);
1336 } else {
1337 /* Use the scratch page to set up a temp mapping */
1338
1339 mtx_lock(&moea64_scratchpage_mtx);
1340
1341 moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1342 __syncicache((void *)(moea64_scratchpage_va[1] +
1343 (va & ADDR_POFF)), sz);
1344
1345 mtx_unlock(&moea64_scratchpage_mtx);
1346 }
1347}
1348
1349/*
1350 * Maps a sequence of resident pages belonging to the same object.
1351 * The sequence begins with the given page m_start. This page is
1352 * mapped at the given virtual address start. Each subsequent page is
1353 * mapped at a virtual address that is offset from start by the same
1354 * amount as the page is offset from m_start within the object. The
1355 * last page in the sequence is the page with the largest offset from
1356 * m_start that can be mapped at a virtual address less than the given
1357 * virtual address end. Not every virtual page between start and end
1358 * is mapped; only those for which a resident page exists with the
1359 * corresponding offset from m_start are mapped.
1360 */
1361void
1362moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1363 vm_page_t m_start, vm_prot_t prot)
1364{
1365 vm_page_t m;
1366 vm_pindex_t diff, psize;
1367
1368 VM_OBJECT_ASSERT_LOCKED(m_start->object);
1369
1370 psize = atop(end - start);
1371 m = m_start;
1372 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1373 moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1374 (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0);
1375 m = TAILQ_NEXT(m, listq);
1376 }
1377}
1378
1379void
1380moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1381 vm_prot_t prot)
1382{
1383
1384 moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1385 PMAP_ENTER_NOSLEEP, 0);
1386}
1387
1388vm_paddr_t
1389moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1390{
1391 struct pvo_entry *pvo;
1392 vm_paddr_t pa;
1393
1394 PMAP_LOCK(pm);
1395 pvo = moea64_pvo_find_va(pm, va);
1396 if (pvo == NULL)
1397 pa = 0;
1398 else
1399 pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1400 PMAP_UNLOCK(pm);
1401
1402 return (pa);
1403}
1404
1405/*
1406 * Atomically extract and hold the physical page with the given
1407 * pmap and virtual address pair if that mapping permits the given
1408 * protection.
1409 */
1410vm_page_t
1411moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1412{
1413 struct pvo_entry *pvo;
1414 vm_page_t m;
1415 vm_paddr_t pa;
1416
1417 m = NULL;
1418 pa = 0;
1419 PMAP_LOCK(pmap);
1420retry:
1421 pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1422 if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
1423 if (vm_page_pa_tryrelock(pmap,
1424 pvo->pvo_pte.pa & LPTE_RPGN, &pa))
1425 goto retry;
1426 m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1427 vm_page_hold(m);
1428 }
1429 PA_UNLOCK_COND(pa);
1430 PMAP_UNLOCK(pmap);
1431 return (m);
1432}
1433
1434static mmu_t installed_mmu;
1435
1436static void *
1437moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags,
1438 int wait)
1439{
1440 struct pvo_entry *pvo;
1441 vm_offset_t va;
1442 vm_page_t m;
1443 int pflags, needed_lock;
1444
1445 /*
1446 * This entire routine is a horrible hack to avoid bothering kmem
1447 * for new KVA addresses. Because this can get called from inside
1448 * kmem allocation routines, calling kmem for a new address here
1449 * can lead to multiply locking non-recursive mutexes.
1450 */
1451
1452 *flags = UMA_SLAB_PRIV;
1453 needed_lock = !PMAP_LOCKED(kernel_pmap);
1454 pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
1455
1456 for (;;) {
1457 m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1458 if (m == NULL) {
1459 if (wait & M_NOWAIT)
1460 return (NULL);
1461 VM_WAIT;
1462 } else
1463 break;
1464 }
1465
1466 va = VM_PAGE_TO_PHYS(m);
1467
1468 pvo = alloc_pvo_entry(1 /* bootstrap */);
1469
1470 pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
1471 pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
1472
1473 if (needed_lock)
1474 PMAP_LOCK(kernel_pmap);
1475
1476 init_pvo_entry(pvo, kernel_pmap, va);
1477 pvo->pvo_vaddr |= PVO_WIRED;
1478
1479 moea64_pvo_enter(installed_mmu, pvo, NULL);
1480
1481 if (needed_lock)
1482 PMAP_UNLOCK(kernel_pmap);
1483
1484 if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1485 bzero((void *)va, PAGE_SIZE);
1486
1487 return (void *)va;
1488}
1489
1490extern int elf32_nxstack;
1491
1492void
1493moea64_init(mmu_t mmu)
1494{
1495
1496 CTR0(KTR_PMAP, "moea64_init");
1497
1498 moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1499 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1500 UMA_ZONE_VM | UMA_ZONE_NOFREE);
1501
1502 if (!hw_direct_map) {
1503 installed_mmu = mmu;
1504 uma_zone_set_allocf(moea64_pvo_zone,moea64_uma_page_alloc);
1505 }
1506
1507#ifdef COMPAT_FREEBSD32
1508 elf32_nxstack = 1;
1509#endif
1510
1511 moea64_initialized = TRUE;
1512}
1513
1514boolean_t
1515moea64_is_referenced(mmu_t mmu, vm_page_t m)
1516{
1517
1518 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1519 ("moea64_is_referenced: page %p is not managed", m));
1520
1521 return (moea64_query_bit(mmu, m, LPTE_REF));
1522}
1523
1524boolean_t
1525moea64_is_modified(mmu_t mmu, vm_page_t m)
1526{
1527
1528 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1529 ("moea64_is_modified: page %p is not managed", m));
1530
1531 /*
1532 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1533 * concurrently set while the object is locked. Thus, if PGA_WRITEABLE
1534 * is clear, no PTEs can have LPTE_CHG set.
1535 */
1536 VM_OBJECT_ASSERT_LOCKED(m->object);
1537 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1538 return (FALSE);
1539 return (moea64_query_bit(mmu, m, LPTE_CHG));
1540}
1541
1542boolean_t
1543moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1544{
1545 struct pvo_entry *pvo;
1546 boolean_t rv = TRUE;
1547
1548 PMAP_LOCK(pmap);
1549 pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1550 if (pvo != NULL)
1551 rv = FALSE;
1552 PMAP_UNLOCK(pmap);
1553 return (rv);
1554}
1555
1556void
1557moea64_clear_modify(mmu_t mmu, vm_page_t m)
1558{
1559
1560 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1561 ("moea64_clear_modify: page %p is not managed", m));
1562 VM_OBJECT_ASSERT_WLOCKED(m->object);
1563 KASSERT(!vm_page_xbusied(m),
1564 ("moea64_clear_modify: page %p is exclusive busied", m));
1565
1566 /*
1567 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1568 * set. If the object containing the page is locked and the page is
1569 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1570 */
1571 if ((m->aflags & PGA_WRITEABLE) == 0)
1572 return;
1573 moea64_clear_bit(mmu, m, LPTE_CHG);
1574}
1575
1576/*
1577 * Clear the write and modified bits in each of the given page's mappings.
1578 */
1579void
1580moea64_remove_write(mmu_t mmu, vm_page_t m)
1581{
1582 struct pvo_entry *pvo;
1583 int64_t refchg, ret;
1584 pmap_t pmap;
1585
1586 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1587 ("moea64_remove_write: page %p is not managed", m));
1588
1589 /*
1590 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1591 * set by another thread while the object is locked. Thus,
1592 * if PGA_WRITEABLE is clear, no page table entries need updating.
1593 */
1594 VM_OBJECT_ASSERT_WLOCKED(m->object);
1595 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1596 return;
1597 powerpc_sync();
1598 PV_PAGE_LOCK(m);
1599 refchg = 0;
1600 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1601 pmap = pvo->pvo_pmap;
1602 PMAP_LOCK(pmap);
1603 if (!(pvo->pvo_vaddr & PVO_DEAD) &&
1604 (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1605 pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
1606 ret = MOEA64_PTE_REPLACE(mmu, pvo,
1607 MOEA64_PTE_PROT_UPDATE);
1608 if (ret < 0)
1609 ret = LPTE_CHG;
1610 refchg |= ret;
1611 if (pvo->pvo_pmap == kernel_pmap)
1612 isync();
1613 }
1614 PMAP_UNLOCK(pmap);
1615 }
1616 if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
1617 vm_page_dirty(m);
1618 vm_page_aflag_clear(m, PGA_WRITEABLE);
1619 PV_PAGE_UNLOCK(m);
1620}
1621
1622/*
1623 * moea64_ts_referenced:
1624 *
1625 * Return a count of reference bits for a page, clearing those bits.
1626 * It is not necessary for every reference bit to be cleared, but it
1627 * is necessary that 0 only be returned when there are truly no
1628 * reference bits set.
1629 *
1630 * XXX: The exact number of bits to check and clear is a matter that
1631 * should be tested and standardized at some point in the future for
1632 * optimal aging of shared pages.
1633 */
1634int
1635moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1636{
1637
1638 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1639 ("moea64_ts_referenced: page %p is not managed", m));
1640 return (moea64_clear_bit(mmu, m, LPTE_REF));
1641}
1642
1643/*
1644 * Modify the WIMG settings of all mappings for a page.
1645 */
1646void
1647moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1648{
1649 struct pvo_entry *pvo;
1650 int64_t refchg;
1651 pmap_t pmap;
1652 uint64_t lo;
1653
1654 if ((m->oflags & VPO_UNMANAGED) != 0) {
1655 m->md.mdpg_cache_attrs = ma;
1656 return;
1657 }
1658
1659 lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1660
1661 PV_PAGE_LOCK(m);
1662 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1663 pmap = pvo->pvo_pmap;
1664 PMAP_LOCK(pmap);
1665 if (!(pvo->pvo_vaddr & PVO_DEAD)) {
1666 pvo->pvo_pte.pa &= ~LPTE_WIMG;
1667 pvo->pvo_pte.pa |= lo;
1668 refchg = MOEA64_PTE_REPLACE(mmu, pvo,
1669 MOEA64_PTE_INVALIDATE);
1670 if (refchg < 0)
1671 refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
1672 LPTE_CHG : 0;
1673 if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1674 (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1675 refchg |=
1676 atomic_readandclear_32(&m->md.mdpg_attrs);
1677 if (refchg & LPTE_CHG)
1678 vm_page_dirty(m);
1679 if (refchg & LPTE_REF)
1680 vm_page_aflag_set(m, PGA_REFERENCED);
1681 }
1682 if (pvo->pvo_pmap == kernel_pmap)
1683 isync();
1684 }
1685 PMAP_UNLOCK(pmap);
1686 }
1687 m->md.mdpg_cache_attrs = ma;
1688 PV_PAGE_UNLOCK(m);
1689}
1690
1691/*
1692 * Map a wired page into kernel virtual address space.
1693 */
1694void
1314 vm_size_t sz)
1315{
1316
1317 /*
1318 * This is much trickier than on older systems because
1319 * we can't sync the icache on physical addresses directly
1320 * without a direct map. Instead we check a couple of cases
1321 * where the memory is already mapped in and, failing that,
1322 * use the same trick we use for page zeroing to create
1323 * a temporary mapping for this physical address.
1324 */
1325
1326 if (!pmap_bootstrapped) {
1327 /*
1328 * If PMAP is not bootstrapped, we are likely to be
1329 * in real mode.
1330 */
1331 __syncicache((void *)pa, sz);
1332 } else if (pmap == kernel_pmap) {
1333 __syncicache((void *)va, sz);
1334 } else if (hw_direct_map) {
1335 __syncicache((void *)pa, sz);
1336 } else {
1337 /* Use the scratch page to set up a temp mapping */
1338
1339 mtx_lock(&moea64_scratchpage_mtx);
1340
1341 moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1342 __syncicache((void *)(moea64_scratchpage_va[1] +
1343 (va & ADDR_POFF)), sz);
1344
1345 mtx_unlock(&moea64_scratchpage_mtx);
1346 }
1347}
1348
1349/*
1350 * Maps a sequence of resident pages belonging to the same object.
1351 * The sequence begins with the given page m_start. This page is
1352 * mapped at the given virtual address start. Each subsequent page is
1353 * mapped at a virtual address that is offset from start by the same
1354 * amount as the page is offset from m_start within the object. The
1355 * last page in the sequence is the page with the largest offset from
1356 * m_start that can be mapped at a virtual address less than the given
1357 * virtual address end. Not every virtual page between start and end
1358 * is mapped; only those for which a resident page exists with the
1359 * corresponding offset from m_start are mapped.
1360 */
1361void
1362moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1363 vm_page_t m_start, vm_prot_t prot)
1364{
1365 vm_page_t m;
1366 vm_pindex_t diff, psize;
1367
1368 VM_OBJECT_ASSERT_LOCKED(m_start->object);
1369
1370 psize = atop(end - start);
1371 m = m_start;
1372 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1373 moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1374 (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0);
1375 m = TAILQ_NEXT(m, listq);
1376 }
1377}
1378
1379void
1380moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1381 vm_prot_t prot)
1382{
1383
1384 moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1385 PMAP_ENTER_NOSLEEP, 0);
1386}
1387
1388vm_paddr_t
1389moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1390{
1391 struct pvo_entry *pvo;
1392 vm_paddr_t pa;
1393
1394 PMAP_LOCK(pm);
1395 pvo = moea64_pvo_find_va(pm, va);
1396 if (pvo == NULL)
1397 pa = 0;
1398 else
1399 pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1400 PMAP_UNLOCK(pm);
1401
1402 return (pa);
1403}
1404
1405/*
1406 * Atomically extract and hold the physical page with the given
1407 * pmap and virtual address pair if that mapping permits the given
1408 * protection.
1409 */
1410vm_page_t
1411moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1412{
1413 struct pvo_entry *pvo;
1414 vm_page_t m;
1415 vm_paddr_t pa;
1416
1417 m = NULL;
1418 pa = 0;
1419 PMAP_LOCK(pmap);
1420retry:
1421 pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1422 if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
1423 if (vm_page_pa_tryrelock(pmap,
1424 pvo->pvo_pte.pa & LPTE_RPGN, &pa))
1425 goto retry;
1426 m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1427 vm_page_hold(m);
1428 }
1429 PA_UNLOCK_COND(pa);
1430 PMAP_UNLOCK(pmap);
1431 return (m);
1432}
1433
1434static mmu_t installed_mmu;
1435
1436static void *
1437moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags,
1438 int wait)
1439{
1440 struct pvo_entry *pvo;
1441 vm_offset_t va;
1442 vm_page_t m;
1443 int pflags, needed_lock;
1444
1445 /*
1446 * This entire routine is a horrible hack to avoid bothering kmem
1447 * for new KVA addresses. Because this can get called from inside
1448 * kmem allocation routines, calling kmem for a new address here
1449 * can lead to multiply locking non-recursive mutexes.
1450 */
1451
1452 *flags = UMA_SLAB_PRIV;
1453 needed_lock = !PMAP_LOCKED(kernel_pmap);
1454 pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
1455
1456 for (;;) {
1457 m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1458 if (m == NULL) {
1459 if (wait & M_NOWAIT)
1460 return (NULL);
1461 VM_WAIT;
1462 } else
1463 break;
1464 }
1465
1466 va = VM_PAGE_TO_PHYS(m);
1467
1468 pvo = alloc_pvo_entry(1 /* bootstrap */);
1469
1470 pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
1471 pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
1472
1473 if (needed_lock)
1474 PMAP_LOCK(kernel_pmap);
1475
1476 init_pvo_entry(pvo, kernel_pmap, va);
1477 pvo->pvo_vaddr |= PVO_WIRED;
1478
1479 moea64_pvo_enter(installed_mmu, pvo, NULL);
1480
1481 if (needed_lock)
1482 PMAP_UNLOCK(kernel_pmap);
1483
1484 if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1485 bzero((void *)va, PAGE_SIZE);
1486
1487 return (void *)va;
1488}
1489
1490extern int elf32_nxstack;
1491
1492void
1493moea64_init(mmu_t mmu)
1494{
1495
1496 CTR0(KTR_PMAP, "moea64_init");
1497
1498 moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1499 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1500 UMA_ZONE_VM | UMA_ZONE_NOFREE);
1501
1502 if (!hw_direct_map) {
1503 installed_mmu = mmu;
1504 uma_zone_set_allocf(moea64_pvo_zone,moea64_uma_page_alloc);
1505 }
1506
1507#ifdef COMPAT_FREEBSD32
1508 elf32_nxstack = 1;
1509#endif
1510
1511 moea64_initialized = TRUE;
1512}
1513
1514boolean_t
1515moea64_is_referenced(mmu_t mmu, vm_page_t m)
1516{
1517
1518 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1519 ("moea64_is_referenced: page %p is not managed", m));
1520
1521 return (moea64_query_bit(mmu, m, LPTE_REF));
1522}
1523
1524boolean_t
1525moea64_is_modified(mmu_t mmu, vm_page_t m)
1526{
1527
1528 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1529 ("moea64_is_modified: page %p is not managed", m));
1530
1531 /*
1532 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1533 * concurrently set while the object is locked. Thus, if PGA_WRITEABLE
1534 * is clear, no PTEs can have LPTE_CHG set.
1535 */
1536 VM_OBJECT_ASSERT_LOCKED(m->object);
1537 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1538 return (FALSE);
1539 return (moea64_query_bit(mmu, m, LPTE_CHG));
1540}
1541
1542boolean_t
1543moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1544{
1545 struct pvo_entry *pvo;
1546 boolean_t rv = TRUE;
1547
1548 PMAP_LOCK(pmap);
1549 pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1550 if (pvo != NULL)
1551 rv = FALSE;
1552 PMAP_UNLOCK(pmap);
1553 return (rv);
1554}
1555
1556void
1557moea64_clear_modify(mmu_t mmu, vm_page_t m)
1558{
1559
1560 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1561 ("moea64_clear_modify: page %p is not managed", m));
1562 VM_OBJECT_ASSERT_WLOCKED(m->object);
1563 KASSERT(!vm_page_xbusied(m),
1564 ("moea64_clear_modify: page %p is exclusive busied", m));
1565
1566 /*
1567 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1568 * set. If the object containing the page is locked and the page is
1569 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1570 */
1571 if ((m->aflags & PGA_WRITEABLE) == 0)
1572 return;
1573 moea64_clear_bit(mmu, m, LPTE_CHG);
1574}
1575
1576/*
1577 * Clear the write and modified bits in each of the given page's mappings.
1578 */
1579void
1580moea64_remove_write(mmu_t mmu, vm_page_t m)
1581{
1582 struct pvo_entry *pvo;
1583 int64_t refchg, ret;
1584 pmap_t pmap;
1585
1586 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1587 ("moea64_remove_write: page %p is not managed", m));
1588
1589 /*
1590 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1591 * set by another thread while the object is locked. Thus,
1592 * if PGA_WRITEABLE is clear, no page table entries need updating.
1593 */
1594 VM_OBJECT_ASSERT_WLOCKED(m->object);
1595 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1596 return;
1597 powerpc_sync();
1598 PV_PAGE_LOCK(m);
1599 refchg = 0;
1600 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1601 pmap = pvo->pvo_pmap;
1602 PMAP_LOCK(pmap);
1603 if (!(pvo->pvo_vaddr & PVO_DEAD) &&
1604 (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1605 pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
1606 ret = MOEA64_PTE_REPLACE(mmu, pvo,
1607 MOEA64_PTE_PROT_UPDATE);
1608 if (ret < 0)
1609 ret = LPTE_CHG;
1610 refchg |= ret;
1611 if (pvo->pvo_pmap == kernel_pmap)
1612 isync();
1613 }
1614 PMAP_UNLOCK(pmap);
1615 }
1616 if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
1617 vm_page_dirty(m);
1618 vm_page_aflag_clear(m, PGA_WRITEABLE);
1619 PV_PAGE_UNLOCK(m);
1620}
1621
1622/*
1623 * moea64_ts_referenced:
1624 *
1625 * Return a count of reference bits for a page, clearing those bits.
1626 * It is not necessary for every reference bit to be cleared, but it
1627 * is necessary that 0 only be returned when there are truly no
1628 * reference bits set.
1629 *
1630 * XXX: The exact number of bits to check and clear is a matter that
1631 * should be tested and standardized at some point in the future for
1632 * optimal aging of shared pages.
1633 */
1634int
1635moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1636{
1637
1638 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1639 ("moea64_ts_referenced: page %p is not managed", m));
1640 return (moea64_clear_bit(mmu, m, LPTE_REF));
1641}
1642
1643/*
1644 * Modify the WIMG settings of all mappings for a page.
1645 */
1646void
1647moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1648{
1649 struct pvo_entry *pvo;
1650 int64_t refchg;
1651 pmap_t pmap;
1652 uint64_t lo;
1653
1654 if ((m->oflags & VPO_UNMANAGED) != 0) {
1655 m->md.mdpg_cache_attrs = ma;
1656 return;
1657 }
1658
1659 lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1660
1661 PV_PAGE_LOCK(m);
1662 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1663 pmap = pvo->pvo_pmap;
1664 PMAP_LOCK(pmap);
1665 if (!(pvo->pvo_vaddr & PVO_DEAD)) {
1666 pvo->pvo_pte.pa &= ~LPTE_WIMG;
1667 pvo->pvo_pte.pa |= lo;
1668 refchg = MOEA64_PTE_REPLACE(mmu, pvo,
1669 MOEA64_PTE_INVALIDATE);
1670 if (refchg < 0)
1671 refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
1672 LPTE_CHG : 0;
1673 if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1674 (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1675 refchg |=
1676 atomic_readandclear_32(&m->md.mdpg_attrs);
1677 if (refchg & LPTE_CHG)
1678 vm_page_dirty(m);
1679 if (refchg & LPTE_REF)
1680 vm_page_aflag_set(m, PGA_REFERENCED);
1681 }
1682 if (pvo->pvo_pmap == kernel_pmap)
1683 isync();
1684 }
1685 PMAP_UNLOCK(pmap);
1686 }
1687 m->md.mdpg_cache_attrs = ma;
1688 PV_PAGE_UNLOCK(m);
1689}
1690
1691/*
1692 * Map a wired page into kernel virtual address space.
1693 */
1694void
1695moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1695moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1696{
1697 int error;
1698 struct pvo_entry *pvo, *oldpvo;
1699
1700 pvo = alloc_pvo_entry(0);
1701 pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
1702 pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
1703 pvo->pvo_vaddr |= PVO_WIRED;
1704
1705 PMAP_LOCK(kernel_pmap);
1706 oldpvo = moea64_pvo_find_va(kernel_pmap, va);
1707 if (oldpvo != NULL)
1708 moea64_pvo_remove_from_pmap(mmu, oldpvo);
1709 init_pvo_entry(pvo, kernel_pmap, va);
1710 error = moea64_pvo_enter(mmu, pvo, NULL);
1711 PMAP_UNLOCK(kernel_pmap);
1712
1713 /* Free any dead pages */
1714 if (oldpvo != NULL) {
1715 PV_LOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1716 moea64_pvo_remove_from_page(mmu, oldpvo);
1717 PV_UNLOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1718 free_pvo_entry(oldpvo);
1719 }
1720
1721 if (error != 0 && error != ENOENT)
1722 panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1723 pa, error);
1724}
1725
1726void
1727moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1728{
1729
1730 moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1731}
1732
1733/*
1734 * Extract the physical page address associated with the given kernel virtual
1735 * address.
1736 */
1737vm_paddr_t
1738moea64_kextract(mmu_t mmu, vm_offset_t va)
1739{
1740 struct pvo_entry *pvo;
1741 vm_paddr_t pa;
1742
1743 /*
1744 * Shortcut the direct-mapped case when applicable. We never put
1745 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1746 */
1747 if (va < VM_MIN_KERNEL_ADDRESS)
1748 return (va);
1749
1750 PMAP_LOCK(kernel_pmap);
1751 pvo = moea64_pvo_find_va(kernel_pmap, va);
1752 KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1753 va));
1754 pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1755 PMAP_UNLOCK(kernel_pmap);
1756 return (pa);
1757}
1758
1759/*
1760 * Remove a wired page from kernel virtual address space.
1761 */
1762void
1763moea64_kremove(mmu_t mmu, vm_offset_t va)
1764{
1765 moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1766}
1767
1768/*
1769 * Map a range of physical addresses into kernel virtual address space.
1770 *
1771 * The value passed in *virt is a suggested virtual address for the mapping.
1772 * Architectures which can support a direct-mapped physical to virtual region
1773 * can return the appropriate address within that region, leaving '*virt'
1774 * unchanged. Other architectures should map the pages starting at '*virt' and
1775 * update '*virt' with the first usable address after the mapped region.
1776 */
1777vm_offset_t
1778moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1779 vm_paddr_t pa_end, int prot)
1780{
1781 vm_offset_t sva, va;
1782
1783 if (hw_direct_map) {
1784 /*
1785 * Check if every page in the region is covered by the direct
1786 * map. The direct map covers all of physical memory. Use
1787 * moea64_calc_wimg() as a shortcut to see if the page is in
1788 * physical memory as a way to see if the direct map covers it.
1789 */
1790 for (va = pa_start; va < pa_end; va += PAGE_SIZE)
1791 if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
1792 break;
1793 if (va == pa_end)
1794 return (pa_start);
1795 }
1796 sva = *virt;
1797 va = sva;
1798 /* XXX respect prot argument */
1799 for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1800 moea64_kenter(mmu, va, pa_start);
1801 *virt = va;
1802
1803 return (sva);
1804}
1805
1806/*
1807 * Returns true if the pmap's pv is one of the first
1808 * 16 pvs linked to from this page. This count may
1809 * be changed upwards or downwards in the future; it
1810 * is only necessary that true be returned for a small
1811 * subset of pmaps for proper page aging.
1812 */
1813boolean_t
1814moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1815{
1816 int loops;
1817 struct pvo_entry *pvo;
1818 boolean_t rv;
1819
1820 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1821 ("moea64_page_exists_quick: page %p is not managed", m));
1822 loops = 0;
1823 rv = FALSE;
1824 PV_PAGE_LOCK(m);
1825 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1826 if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
1827 rv = TRUE;
1828 break;
1829 }
1830 if (++loops >= 16)
1831 break;
1832 }
1833 PV_PAGE_UNLOCK(m);
1834 return (rv);
1835}
1836
1837/*
1838 * Return the number of managed mappings to the given physical page
1839 * that are wired.
1840 */
1841int
1842moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1843{
1844 struct pvo_entry *pvo;
1845 int count;
1846
1847 count = 0;
1848 if ((m->oflags & VPO_UNMANAGED) != 0)
1849 return (count);
1850 PV_PAGE_LOCK(m);
1851 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1852 if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
1853 count++;
1854 PV_PAGE_UNLOCK(m);
1855 return (count);
1856}
1857
1858static uintptr_t moea64_vsidcontext;
1859
1860uintptr_t
1861moea64_get_unique_vsid(void) {
1862 u_int entropy;
1863 register_t hash;
1864 uint32_t mask;
1865 int i;
1866
1867 entropy = 0;
1868 __asm __volatile("mftb %0" : "=r"(entropy));
1869
1870 mtx_lock(&moea64_slb_mutex);
1871 for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1872 u_int n;
1873
1874 /*
1875 * Create a new value by mutiplying by a prime and adding in
1876 * entropy from the timebase register. This is to make the
1877 * VSID more random so that the PT hash function collides
1878 * less often. (Note that the prime casues gcc to do shifts
1879 * instead of a multiply.)
1880 */
1881 moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1882 hash = moea64_vsidcontext & (NVSIDS - 1);
1883 if (hash == 0) /* 0 is special, avoid it */
1884 continue;
1885 n = hash >> 5;
1886 mask = 1 << (hash & (VSID_NBPW - 1));
1887 hash = (moea64_vsidcontext & VSID_HASHMASK);
1888 if (moea64_vsid_bitmap[n] & mask) { /* collision? */
1889 /* anything free in this bucket? */
1890 if (moea64_vsid_bitmap[n] == 0xffffffff) {
1891 entropy = (moea64_vsidcontext >> 20);
1892 continue;
1893 }
1894 i = ffs(~moea64_vsid_bitmap[n]) - 1;
1895 mask = 1 << i;
1896 hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1897 hash |= i;
1898 }
1899 if (hash == VSID_VRMA) /* also special, avoid this too */
1900 continue;
1901 KASSERT(!(moea64_vsid_bitmap[n] & mask),
1902 ("Allocating in-use VSID %#zx\n", hash));
1903 moea64_vsid_bitmap[n] |= mask;
1904 mtx_unlock(&moea64_slb_mutex);
1905 return (hash);
1906 }
1907
1908 mtx_unlock(&moea64_slb_mutex);
1909 panic("%s: out of segments",__func__);
1910}
1911
1912#ifdef __powerpc64__
1913void
1914moea64_pinit(mmu_t mmu, pmap_t pmap)
1915{
1916
1917 RB_INIT(&pmap->pmap_pvo);
1918
1919 pmap->pm_slb_tree_root = slb_alloc_tree();
1920 pmap->pm_slb = slb_alloc_user_cache();
1921 pmap->pm_slb_len = 0;
1922}
1923#else
1924void
1925moea64_pinit(mmu_t mmu, pmap_t pmap)
1926{
1927 int i;
1928 uint32_t hash;
1929
1930 RB_INIT(&pmap->pmap_pvo);
1931
1932 if (pmap_bootstrapped)
1933 pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1934 (vm_offset_t)pmap);
1935 else
1936 pmap->pmap_phys = pmap;
1937
1938 /*
1939 * Allocate some segment registers for this pmap.
1940 */
1941 hash = moea64_get_unique_vsid();
1942
1943 for (i = 0; i < 16; i++)
1944 pmap->pm_sr[i] = VSID_MAKE(i, hash);
1945
1946 KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1947}
1948#endif
1949
1950/*
1951 * Initialize the pmap associated with process 0.
1952 */
1953void
1954moea64_pinit0(mmu_t mmu, pmap_t pm)
1955{
1956
1957 PMAP_LOCK_INIT(pm);
1958 moea64_pinit(mmu, pm);
1959 bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1960}
1961
1962/*
1963 * Set the physical protection on the specified range of this map as requested.
1964 */
1965static void
1966moea64_pvo_protect(mmu_t mmu, pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
1967{
1968 struct vm_page *pg;
1969 vm_prot_t oldprot;
1970 int32_t refchg;
1971
1972 PMAP_LOCK_ASSERT(pm, MA_OWNED);
1973
1974 /*
1975 * Change the protection of the page.
1976 */
1977 oldprot = pvo->pvo_pte.prot;
1978 pvo->pvo_pte.prot = prot;
1979 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1980
1981 /*
1982 * If the PVO is in the page table, update mapping
1983 */
1984 refchg = MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_PROT_UPDATE);
1985 if (refchg < 0)
1986 refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
1987
1988 if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
1989 (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1990 if ((pg->oflags & VPO_UNMANAGED) == 0)
1991 vm_page_aflag_set(pg, PGA_EXECUTABLE);
1992 moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
1993 pvo->pvo_pte.pa & LPTE_RPGN, PAGE_SIZE);
1994 }
1995
1996 /*
1997 * Update vm about the REF/CHG bits if the page is managed and we have
1998 * removed write access.
1999 */
2000 if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
2001 (oldprot & VM_PROT_WRITE)) {
2002 refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2003 if (refchg & LPTE_CHG)
2004 vm_page_dirty(pg);
2005 if (refchg & LPTE_REF)
2006 vm_page_aflag_set(pg, PGA_REFERENCED);
2007 }
2008}
2009
2010void
2011moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2012 vm_prot_t prot)
2013{
2014 struct pvo_entry *pvo, *tpvo, key;
2015
2016 CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2017 sva, eva, prot);
2018
2019 KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2020 ("moea64_protect: non current pmap"));
2021
2022 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2023 moea64_remove(mmu, pm, sva, eva);
2024 return;
2025 }
2026
2027 PMAP_LOCK(pm);
2028 key.pvo_vaddr = sva;
2029 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2030 pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2031 tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2032 moea64_pvo_protect(mmu, pm, pvo, prot);
2033 }
2034 PMAP_UNLOCK(pm);
2035}
2036
2037/*
2038 * Map a list of wired pages into kernel virtual address space. This is
2039 * intended for temporary mappings which do not need page modification or
2040 * references recorded. Existing mappings in the region are overwritten.
2041 */
2042void
2043moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2044{
2045 while (count-- > 0) {
2046 moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2047 va += PAGE_SIZE;
2048 m++;
2049 }
2050}
2051
2052/*
2053 * Remove page mappings from kernel virtual address space. Intended for
2054 * temporary mappings entered by moea64_qenter.
2055 */
2056void
2057moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2058{
2059 while (count-- > 0) {
2060 moea64_kremove(mmu, va);
2061 va += PAGE_SIZE;
2062 }
2063}
2064
2065void
2066moea64_release_vsid(uint64_t vsid)
2067{
2068 int idx, mask;
2069
2070 mtx_lock(&moea64_slb_mutex);
2071 idx = vsid & (NVSIDS-1);
2072 mask = 1 << (idx % VSID_NBPW);
2073 idx /= VSID_NBPW;
2074 KASSERT(moea64_vsid_bitmap[idx] & mask,
2075 ("Freeing unallocated VSID %#jx", vsid));
2076 moea64_vsid_bitmap[idx] &= ~mask;
2077 mtx_unlock(&moea64_slb_mutex);
2078}
2079
2080
2081void
2082moea64_release(mmu_t mmu, pmap_t pmap)
2083{
2084
2085 /*
2086 * Free segment registers' VSIDs
2087 */
2088 #ifdef __powerpc64__
2089 slb_free_tree(pmap);
2090 slb_free_user_cache(pmap->pm_slb);
2091 #else
2092 KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2093
2094 moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2095 #endif
2096}
2097
2098/*
2099 * Remove all pages mapped by the specified pmap
2100 */
2101void
2102moea64_remove_pages(mmu_t mmu, pmap_t pm)
2103{
2104 struct pvo_entry *pvo, *tpvo;
2105 struct pvo_tree tofree;
2106
2107 RB_INIT(&tofree);
2108
2109 PMAP_LOCK(pm);
2110 RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2111 if (pvo->pvo_vaddr & PVO_WIRED)
2112 continue;
2113
2114 /*
2115 * For locking reasons, remove this from the page table and
2116 * pmap, but save delinking from the vm_page for a second
2117 * pass
2118 */
2119 moea64_pvo_remove_from_pmap(mmu, pvo);
2120 RB_INSERT(pvo_tree, &tofree, pvo);
2121 }
2122 PMAP_UNLOCK(pm);
2123
2124 RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) {
2125 PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2126 moea64_pvo_remove_from_page(mmu, pvo);
2127 PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2128 RB_REMOVE(pvo_tree, &tofree, pvo);
2129 free_pvo_entry(pvo);
2130 }
2131}
2132
2133/*
2134 * Remove the given range of addresses from the specified map.
2135 */
2136void
2137moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2138{
2139 struct pvo_entry *pvo, *tpvo, key;
2140 struct pvo_tree tofree;
2141
2142 /*
2143 * Perform an unsynchronized read. This is, however, safe.
2144 */
2145 if (pm->pm_stats.resident_count == 0)
2146 return;
2147
2148 key.pvo_vaddr = sva;
2149
2150 RB_INIT(&tofree);
2151
2152 PMAP_LOCK(pm);
2153 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2154 pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2155 tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2156
2157 /*
2158 * For locking reasons, remove this from the page table and
2159 * pmap, but save delinking from the vm_page for a second
2160 * pass
2161 */
2162 moea64_pvo_remove_from_pmap(mmu, pvo);
2163 RB_INSERT(pvo_tree, &tofree, pvo);
2164 }
2165 PMAP_UNLOCK(pm);
2166
2167 RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) {
2168 PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2169 moea64_pvo_remove_from_page(mmu, pvo);
2170 PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2171 RB_REMOVE(pvo_tree, &tofree, pvo);
2172 free_pvo_entry(pvo);
2173 }
2174}
2175
2176/*
2177 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2178 * will reflect changes in pte's back to the vm_page.
2179 */
2180void
2181moea64_remove_all(mmu_t mmu, vm_page_t m)
2182{
2183 struct pvo_entry *pvo, *next_pvo;
2184 struct pvo_head freequeue;
2185 int wasdead;
2186 pmap_t pmap;
2187
2188 LIST_INIT(&freequeue);
2189
2190 PV_PAGE_LOCK(m);
2191 LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2192 pmap = pvo->pvo_pmap;
2193 PMAP_LOCK(pmap);
2194 wasdead = (pvo->pvo_vaddr & PVO_DEAD);
2195 if (!wasdead)
2196 moea64_pvo_remove_from_pmap(mmu, pvo);
2197 moea64_pvo_remove_from_page(mmu, pvo);
2198 if (!wasdead)
2199 LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
2200 PMAP_UNLOCK(pmap);
2201
2202 }
2203 KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
2204 KASSERT(!(m->aflags & PGA_WRITEABLE), ("Page still writable"));
2205 PV_PAGE_UNLOCK(m);
2206
2207 /* Clean up UMA allocations */
2208 LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
2209 free_pvo_entry(pvo);
2210}
2211
2212/*
2213 * Allocate a physical page of memory directly from the phys_avail map.
2214 * Can only be called from moea64_bootstrap before avail start and end are
2215 * calculated.
2216 */
2217vm_offset_t
2218moea64_bootstrap_alloc(vm_size_t size, u_int align)
2219{
2220 vm_offset_t s, e;
2221 int i, j;
2222
2223 size = round_page(size);
2224 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2225 if (align != 0)
2226 s = (phys_avail[i] + align - 1) & ~(align - 1);
2227 else
2228 s = phys_avail[i];
2229 e = s + size;
2230
2231 if (s < phys_avail[i] || e > phys_avail[i + 1])
2232 continue;
2233
2234 if (s + size > platform_real_maxaddr())
2235 continue;
2236
2237 if (s == phys_avail[i]) {
2238 phys_avail[i] += size;
2239 } else if (e == phys_avail[i + 1]) {
2240 phys_avail[i + 1] -= size;
2241 } else {
2242 for (j = phys_avail_count * 2; j > i; j -= 2) {
2243 phys_avail[j] = phys_avail[j - 2];
2244 phys_avail[j + 1] = phys_avail[j - 1];
2245 }
2246
2247 phys_avail[i + 3] = phys_avail[i + 1];
2248 phys_avail[i + 1] = s;
2249 phys_avail[i + 2] = e;
2250 phys_avail_count++;
2251 }
2252
2253 return (s);
2254 }
2255 panic("moea64_bootstrap_alloc: could not allocate memory");
2256}
2257
2258static int
2259moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo, struct pvo_head *pvo_head)
2260{
2261 int first, err;
2262
2263 PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2264 KASSERT(moea64_pvo_find_va(pvo->pvo_pmap, PVO_VADDR(pvo)) == NULL,
2265 ("Existing mapping for VA %#jx", (uintmax_t)PVO_VADDR(pvo)));
2266
2267 moea64_pvo_enter_calls++;
2268
2269 /*
2270 * Add to pmap list
2271 */
2272 RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2273
2274 /*
2275 * Remember if the list was empty and therefore will be the first
2276 * item.
2277 */
2278 if (pvo_head != NULL) {
2279 if (LIST_FIRST(pvo_head) == NULL)
2280 first = 1;
2281 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2282 }
2283
2284 if (pvo->pvo_vaddr & PVO_WIRED)
2285 pvo->pvo_pmap->pm_stats.wired_count++;
2286 pvo->pvo_pmap->pm_stats.resident_count++;
2287
2288 /*
2289 * Insert it into the hardware page table
2290 */
2291 err = MOEA64_PTE_INSERT(mmu, pvo);
2292 if (err != 0) {
2293 panic("moea64_pvo_enter: overflow");
2294 }
2295
2296 moea64_pvo_entries++;
2297
2298 if (pvo->pvo_pmap == kernel_pmap)
2299 isync();
2300
2301#ifdef __powerpc64__
2302 /*
2303 * Make sure all our bootstrap mappings are in the SLB as soon
2304 * as virtual memory is switched on.
2305 */
2306 if (!pmap_bootstrapped)
2307 moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
2308 pvo->pvo_vaddr & PVO_LARGE);
2309#endif
2310
2311 return (first ? ENOENT : 0);
2312}
2313
2314static void
2315moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo)
2316{
2317 struct vm_page *pg;
2318 int32_t refchg;
2319
2320 KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
2321 PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2322 KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
2323
2324 /*
2325 * If there is an active pte entry, we need to deactivate it
2326 */
2327 refchg = MOEA64_PTE_UNSET(mmu, pvo);
2328 if (refchg < 0) {
2329 /*
2330 * If it was evicted from the page table, be pessimistic and
2331 * dirty the page.
2332 */
2333 if (pvo->pvo_pte.prot & VM_PROT_WRITE)
2334 refchg = LPTE_CHG;
2335 else
2336 refchg = 0;
2337 }
2338
2339 /*
2340 * Update our statistics.
2341 */
2342 pvo->pvo_pmap->pm_stats.resident_count--;
2343 if (pvo->pvo_vaddr & PVO_WIRED)
2344 pvo->pvo_pmap->pm_stats.wired_count--;
2345
2346 /*
2347 * Remove this PVO from the pmap list.
2348 */
2349 RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2350
2351 /*
2352 * Mark this for the next sweep
2353 */
2354 pvo->pvo_vaddr |= PVO_DEAD;
2355
2356 /* Send RC bits to VM */
2357 if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2358 (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2359 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2360 if (pg != NULL) {
2361 refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2362 if (refchg & LPTE_CHG)
2363 vm_page_dirty(pg);
2364 if (refchg & LPTE_REF)
2365 vm_page_aflag_set(pg, PGA_REFERENCED);
2366 }
2367 }
2368}
2369
2370static void
2371moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo)
2372{
2373 struct vm_page *pg;
2374
2375 KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
2376
2377 /* Use NULL pmaps as a sentinel for races in page deletion */
2378 if (pvo->pvo_pmap == NULL)
2379 return;
2380 pvo->pvo_pmap = NULL;
2381
2382 /*
2383 * Update vm about page writeability/executability if managed
2384 */
2385 PV_LOCKASSERT(pvo->pvo_pte.pa & LPTE_RPGN);
2386 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2387
2388 if ((pvo->pvo_vaddr & PVO_MANAGED) && pg != NULL) {
2389 LIST_REMOVE(pvo, pvo_vlink);
2390 if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2391 vm_page_aflag_clear(pg, PGA_WRITEABLE | PGA_EXECUTABLE);
2392 }
2393
2394 moea64_pvo_entries--;
2395 moea64_pvo_remove_calls++;
2396}
2397
2398static struct pvo_entry *
2399moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2400{
2401 struct pvo_entry key;
2402
2403 PMAP_LOCK_ASSERT(pm, MA_OWNED);
2404
2405 key.pvo_vaddr = va & ~ADDR_POFF;
2406 return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2407}
2408
2409static boolean_t
2410moea64_query_bit(mmu_t mmu, vm_page_t m, uint64_t ptebit)
2411{
2412 struct pvo_entry *pvo;
2413 int64_t ret;
2414 boolean_t rv;
2415
2416 /*
2417 * See if this bit is stored in the page already.
2418 */
2419 if (m->md.mdpg_attrs & ptebit)
2420 return (TRUE);
2421
2422 /*
2423 * Examine each PTE. Sync so that any pending REF/CHG bits are
2424 * flushed to the PTEs.
2425 */
2426 rv = FALSE;
2427 powerpc_sync();
2428 PV_PAGE_LOCK(m);
2429 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2430 ret = 0;
2431
2432 /*
2433 * See if this pvo has a valid PTE. if so, fetch the
2434 * REF/CHG bits from the valid PTE. If the appropriate
2435 * ptebit is set, return success.
2436 */
2437 PMAP_LOCK(pvo->pvo_pmap);
2438 if (!(pvo->pvo_vaddr & PVO_DEAD))
2439 ret = MOEA64_PTE_SYNCH(mmu, pvo);
2440 PMAP_UNLOCK(pvo->pvo_pmap);
2441
2442 if (ret > 0) {
2443 atomic_set_32(&m->md.mdpg_attrs,
2444 ret & (LPTE_CHG | LPTE_REF));
2445 if (ret & ptebit) {
2446 rv = TRUE;
2447 break;
2448 }
2449 }
2450 }
2451 PV_PAGE_UNLOCK(m);
2452
2453 return (rv);
2454}
2455
2456static u_int
2457moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2458{
2459 u_int count;
2460 struct pvo_entry *pvo;
2461 int64_t ret;
2462
2463 /*
2464 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2465 * we can reset the right ones).
2466 */
2467 powerpc_sync();
2468
2469 /*
2470 * For each pvo entry, clear the pte's ptebit.
2471 */
2472 count = 0;
2473 PV_PAGE_LOCK(m);
2474 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2475 ret = 0;
2476
2477 PMAP_LOCK(pvo->pvo_pmap);
2478 if (!(pvo->pvo_vaddr & PVO_DEAD))
2479 ret = MOEA64_PTE_CLEAR(mmu, pvo, ptebit);
2480 PMAP_UNLOCK(pvo->pvo_pmap);
2481
2482 if (ret > 0 && (ret & ptebit))
2483 count++;
2484 }
2485 atomic_clear_32(&m->md.mdpg_attrs, ptebit);
2486 PV_PAGE_UNLOCK(m);
2487
2488 return (count);
2489}
2490
2491boolean_t
2492moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2493{
2494 struct pvo_entry *pvo, key;
2495 vm_offset_t ppa;
2496 int error = 0;
2497
2498 PMAP_LOCK(kernel_pmap);
2499 key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2500 for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2501 ppa < pa + size; ppa += PAGE_SIZE,
2502 pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2503 if (pvo == NULL || (pvo->pvo_pte.pa & LPTE_RPGN) != ppa) {
2504 error = EFAULT;
2505 break;
2506 }
2507 }
2508 PMAP_UNLOCK(kernel_pmap);
2509
2510 return (error);
2511}
2512
2513/*
2514 * Map a set of physical memory pages into the kernel virtual
2515 * address space. Return a pointer to where it is mapped. This
2516 * routine is intended to be used for mapping device memory,
2517 * NOT real memory.
2518 */
2519void *
1696{
1697 int error;
1698 struct pvo_entry *pvo, *oldpvo;
1699
1700 pvo = alloc_pvo_entry(0);
1701 pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
1702 pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
1703 pvo->pvo_vaddr |= PVO_WIRED;
1704
1705 PMAP_LOCK(kernel_pmap);
1706 oldpvo = moea64_pvo_find_va(kernel_pmap, va);
1707 if (oldpvo != NULL)
1708 moea64_pvo_remove_from_pmap(mmu, oldpvo);
1709 init_pvo_entry(pvo, kernel_pmap, va);
1710 error = moea64_pvo_enter(mmu, pvo, NULL);
1711 PMAP_UNLOCK(kernel_pmap);
1712
1713 /* Free any dead pages */
1714 if (oldpvo != NULL) {
1715 PV_LOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1716 moea64_pvo_remove_from_page(mmu, oldpvo);
1717 PV_UNLOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1718 free_pvo_entry(oldpvo);
1719 }
1720
1721 if (error != 0 && error != ENOENT)
1722 panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1723 pa, error);
1724}
1725
1726void
1727moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1728{
1729
1730 moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1731}
1732
1733/*
1734 * Extract the physical page address associated with the given kernel virtual
1735 * address.
1736 */
1737vm_paddr_t
1738moea64_kextract(mmu_t mmu, vm_offset_t va)
1739{
1740 struct pvo_entry *pvo;
1741 vm_paddr_t pa;
1742
1743 /*
1744 * Shortcut the direct-mapped case when applicable. We never put
1745 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1746 */
1747 if (va < VM_MIN_KERNEL_ADDRESS)
1748 return (va);
1749
1750 PMAP_LOCK(kernel_pmap);
1751 pvo = moea64_pvo_find_va(kernel_pmap, va);
1752 KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1753 va));
1754 pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1755 PMAP_UNLOCK(kernel_pmap);
1756 return (pa);
1757}
1758
1759/*
1760 * Remove a wired page from kernel virtual address space.
1761 */
1762void
1763moea64_kremove(mmu_t mmu, vm_offset_t va)
1764{
1765 moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1766}
1767
1768/*
1769 * Map a range of physical addresses into kernel virtual address space.
1770 *
1771 * The value passed in *virt is a suggested virtual address for the mapping.
1772 * Architectures which can support a direct-mapped physical to virtual region
1773 * can return the appropriate address within that region, leaving '*virt'
1774 * unchanged. Other architectures should map the pages starting at '*virt' and
1775 * update '*virt' with the first usable address after the mapped region.
1776 */
1777vm_offset_t
1778moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1779 vm_paddr_t pa_end, int prot)
1780{
1781 vm_offset_t sva, va;
1782
1783 if (hw_direct_map) {
1784 /*
1785 * Check if every page in the region is covered by the direct
1786 * map. The direct map covers all of physical memory. Use
1787 * moea64_calc_wimg() as a shortcut to see if the page is in
1788 * physical memory as a way to see if the direct map covers it.
1789 */
1790 for (va = pa_start; va < pa_end; va += PAGE_SIZE)
1791 if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
1792 break;
1793 if (va == pa_end)
1794 return (pa_start);
1795 }
1796 sva = *virt;
1797 va = sva;
1798 /* XXX respect prot argument */
1799 for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1800 moea64_kenter(mmu, va, pa_start);
1801 *virt = va;
1802
1803 return (sva);
1804}
1805
1806/*
1807 * Returns true if the pmap's pv is one of the first
1808 * 16 pvs linked to from this page. This count may
1809 * be changed upwards or downwards in the future; it
1810 * is only necessary that true be returned for a small
1811 * subset of pmaps for proper page aging.
1812 */
1813boolean_t
1814moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1815{
1816 int loops;
1817 struct pvo_entry *pvo;
1818 boolean_t rv;
1819
1820 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1821 ("moea64_page_exists_quick: page %p is not managed", m));
1822 loops = 0;
1823 rv = FALSE;
1824 PV_PAGE_LOCK(m);
1825 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1826 if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
1827 rv = TRUE;
1828 break;
1829 }
1830 if (++loops >= 16)
1831 break;
1832 }
1833 PV_PAGE_UNLOCK(m);
1834 return (rv);
1835}
1836
1837/*
1838 * Return the number of managed mappings to the given physical page
1839 * that are wired.
1840 */
1841int
1842moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1843{
1844 struct pvo_entry *pvo;
1845 int count;
1846
1847 count = 0;
1848 if ((m->oflags & VPO_UNMANAGED) != 0)
1849 return (count);
1850 PV_PAGE_LOCK(m);
1851 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1852 if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
1853 count++;
1854 PV_PAGE_UNLOCK(m);
1855 return (count);
1856}
1857
1858static uintptr_t moea64_vsidcontext;
1859
1860uintptr_t
1861moea64_get_unique_vsid(void) {
1862 u_int entropy;
1863 register_t hash;
1864 uint32_t mask;
1865 int i;
1866
1867 entropy = 0;
1868 __asm __volatile("mftb %0" : "=r"(entropy));
1869
1870 mtx_lock(&moea64_slb_mutex);
1871 for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1872 u_int n;
1873
1874 /*
1875 * Create a new value by mutiplying by a prime and adding in
1876 * entropy from the timebase register. This is to make the
1877 * VSID more random so that the PT hash function collides
1878 * less often. (Note that the prime casues gcc to do shifts
1879 * instead of a multiply.)
1880 */
1881 moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1882 hash = moea64_vsidcontext & (NVSIDS - 1);
1883 if (hash == 0) /* 0 is special, avoid it */
1884 continue;
1885 n = hash >> 5;
1886 mask = 1 << (hash & (VSID_NBPW - 1));
1887 hash = (moea64_vsidcontext & VSID_HASHMASK);
1888 if (moea64_vsid_bitmap[n] & mask) { /* collision? */
1889 /* anything free in this bucket? */
1890 if (moea64_vsid_bitmap[n] == 0xffffffff) {
1891 entropy = (moea64_vsidcontext >> 20);
1892 continue;
1893 }
1894 i = ffs(~moea64_vsid_bitmap[n]) - 1;
1895 mask = 1 << i;
1896 hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1897 hash |= i;
1898 }
1899 if (hash == VSID_VRMA) /* also special, avoid this too */
1900 continue;
1901 KASSERT(!(moea64_vsid_bitmap[n] & mask),
1902 ("Allocating in-use VSID %#zx\n", hash));
1903 moea64_vsid_bitmap[n] |= mask;
1904 mtx_unlock(&moea64_slb_mutex);
1905 return (hash);
1906 }
1907
1908 mtx_unlock(&moea64_slb_mutex);
1909 panic("%s: out of segments",__func__);
1910}
1911
1912#ifdef __powerpc64__
1913void
1914moea64_pinit(mmu_t mmu, pmap_t pmap)
1915{
1916
1917 RB_INIT(&pmap->pmap_pvo);
1918
1919 pmap->pm_slb_tree_root = slb_alloc_tree();
1920 pmap->pm_slb = slb_alloc_user_cache();
1921 pmap->pm_slb_len = 0;
1922}
1923#else
1924void
1925moea64_pinit(mmu_t mmu, pmap_t pmap)
1926{
1927 int i;
1928 uint32_t hash;
1929
1930 RB_INIT(&pmap->pmap_pvo);
1931
1932 if (pmap_bootstrapped)
1933 pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1934 (vm_offset_t)pmap);
1935 else
1936 pmap->pmap_phys = pmap;
1937
1938 /*
1939 * Allocate some segment registers for this pmap.
1940 */
1941 hash = moea64_get_unique_vsid();
1942
1943 for (i = 0; i < 16; i++)
1944 pmap->pm_sr[i] = VSID_MAKE(i, hash);
1945
1946 KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1947}
1948#endif
1949
1950/*
1951 * Initialize the pmap associated with process 0.
1952 */
1953void
1954moea64_pinit0(mmu_t mmu, pmap_t pm)
1955{
1956
1957 PMAP_LOCK_INIT(pm);
1958 moea64_pinit(mmu, pm);
1959 bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1960}
1961
1962/*
1963 * Set the physical protection on the specified range of this map as requested.
1964 */
1965static void
1966moea64_pvo_protect(mmu_t mmu, pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
1967{
1968 struct vm_page *pg;
1969 vm_prot_t oldprot;
1970 int32_t refchg;
1971
1972 PMAP_LOCK_ASSERT(pm, MA_OWNED);
1973
1974 /*
1975 * Change the protection of the page.
1976 */
1977 oldprot = pvo->pvo_pte.prot;
1978 pvo->pvo_pte.prot = prot;
1979 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1980
1981 /*
1982 * If the PVO is in the page table, update mapping
1983 */
1984 refchg = MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_PROT_UPDATE);
1985 if (refchg < 0)
1986 refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
1987
1988 if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
1989 (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1990 if ((pg->oflags & VPO_UNMANAGED) == 0)
1991 vm_page_aflag_set(pg, PGA_EXECUTABLE);
1992 moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
1993 pvo->pvo_pte.pa & LPTE_RPGN, PAGE_SIZE);
1994 }
1995
1996 /*
1997 * Update vm about the REF/CHG bits if the page is managed and we have
1998 * removed write access.
1999 */
2000 if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
2001 (oldprot & VM_PROT_WRITE)) {
2002 refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2003 if (refchg & LPTE_CHG)
2004 vm_page_dirty(pg);
2005 if (refchg & LPTE_REF)
2006 vm_page_aflag_set(pg, PGA_REFERENCED);
2007 }
2008}
2009
2010void
2011moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2012 vm_prot_t prot)
2013{
2014 struct pvo_entry *pvo, *tpvo, key;
2015
2016 CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2017 sva, eva, prot);
2018
2019 KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2020 ("moea64_protect: non current pmap"));
2021
2022 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2023 moea64_remove(mmu, pm, sva, eva);
2024 return;
2025 }
2026
2027 PMAP_LOCK(pm);
2028 key.pvo_vaddr = sva;
2029 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2030 pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2031 tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2032 moea64_pvo_protect(mmu, pm, pvo, prot);
2033 }
2034 PMAP_UNLOCK(pm);
2035}
2036
2037/*
2038 * Map a list of wired pages into kernel virtual address space. This is
2039 * intended for temporary mappings which do not need page modification or
2040 * references recorded. Existing mappings in the region are overwritten.
2041 */
2042void
2043moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2044{
2045 while (count-- > 0) {
2046 moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2047 va += PAGE_SIZE;
2048 m++;
2049 }
2050}
2051
2052/*
2053 * Remove page mappings from kernel virtual address space. Intended for
2054 * temporary mappings entered by moea64_qenter.
2055 */
2056void
2057moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2058{
2059 while (count-- > 0) {
2060 moea64_kremove(mmu, va);
2061 va += PAGE_SIZE;
2062 }
2063}
2064
2065void
2066moea64_release_vsid(uint64_t vsid)
2067{
2068 int idx, mask;
2069
2070 mtx_lock(&moea64_slb_mutex);
2071 idx = vsid & (NVSIDS-1);
2072 mask = 1 << (idx % VSID_NBPW);
2073 idx /= VSID_NBPW;
2074 KASSERT(moea64_vsid_bitmap[idx] & mask,
2075 ("Freeing unallocated VSID %#jx", vsid));
2076 moea64_vsid_bitmap[idx] &= ~mask;
2077 mtx_unlock(&moea64_slb_mutex);
2078}
2079
2080
2081void
2082moea64_release(mmu_t mmu, pmap_t pmap)
2083{
2084
2085 /*
2086 * Free segment registers' VSIDs
2087 */
2088 #ifdef __powerpc64__
2089 slb_free_tree(pmap);
2090 slb_free_user_cache(pmap->pm_slb);
2091 #else
2092 KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2093
2094 moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2095 #endif
2096}
2097
2098/*
2099 * Remove all pages mapped by the specified pmap
2100 */
2101void
2102moea64_remove_pages(mmu_t mmu, pmap_t pm)
2103{
2104 struct pvo_entry *pvo, *tpvo;
2105 struct pvo_tree tofree;
2106
2107 RB_INIT(&tofree);
2108
2109 PMAP_LOCK(pm);
2110 RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2111 if (pvo->pvo_vaddr & PVO_WIRED)
2112 continue;
2113
2114 /*
2115 * For locking reasons, remove this from the page table and
2116 * pmap, but save delinking from the vm_page for a second
2117 * pass
2118 */
2119 moea64_pvo_remove_from_pmap(mmu, pvo);
2120 RB_INSERT(pvo_tree, &tofree, pvo);
2121 }
2122 PMAP_UNLOCK(pm);
2123
2124 RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) {
2125 PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2126 moea64_pvo_remove_from_page(mmu, pvo);
2127 PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2128 RB_REMOVE(pvo_tree, &tofree, pvo);
2129 free_pvo_entry(pvo);
2130 }
2131}
2132
2133/*
2134 * Remove the given range of addresses from the specified map.
2135 */
2136void
2137moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2138{
2139 struct pvo_entry *pvo, *tpvo, key;
2140 struct pvo_tree tofree;
2141
2142 /*
2143 * Perform an unsynchronized read. This is, however, safe.
2144 */
2145 if (pm->pm_stats.resident_count == 0)
2146 return;
2147
2148 key.pvo_vaddr = sva;
2149
2150 RB_INIT(&tofree);
2151
2152 PMAP_LOCK(pm);
2153 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2154 pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2155 tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2156
2157 /*
2158 * For locking reasons, remove this from the page table and
2159 * pmap, but save delinking from the vm_page for a second
2160 * pass
2161 */
2162 moea64_pvo_remove_from_pmap(mmu, pvo);
2163 RB_INSERT(pvo_tree, &tofree, pvo);
2164 }
2165 PMAP_UNLOCK(pm);
2166
2167 RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) {
2168 PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2169 moea64_pvo_remove_from_page(mmu, pvo);
2170 PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2171 RB_REMOVE(pvo_tree, &tofree, pvo);
2172 free_pvo_entry(pvo);
2173 }
2174}
2175
2176/*
2177 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2178 * will reflect changes in pte's back to the vm_page.
2179 */
2180void
2181moea64_remove_all(mmu_t mmu, vm_page_t m)
2182{
2183 struct pvo_entry *pvo, *next_pvo;
2184 struct pvo_head freequeue;
2185 int wasdead;
2186 pmap_t pmap;
2187
2188 LIST_INIT(&freequeue);
2189
2190 PV_PAGE_LOCK(m);
2191 LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2192 pmap = pvo->pvo_pmap;
2193 PMAP_LOCK(pmap);
2194 wasdead = (pvo->pvo_vaddr & PVO_DEAD);
2195 if (!wasdead)
2196 moea64_pvo_remove_from_pmap(mmu, pvo);
2197 moea64_pvo_remove_from_page(mmu, pvo);
2198 if (!wasdead)
2199 LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
2200 PMAP_UNLOCK(pmap);
2201
2202 }
2203 KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
2204 KASSERT(!(m->aflags & PGA_WRITEABLE), ("Page still writable"));
2205 PV_PAGE_UNLOCK(m);
2206
2207 /* Clean up UMA allocations */
2208 LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
2209 free_pvo_entry(pvo);
2210}
2211
2212/*
2213 * Allocate a physical page of memory directly from the phys_avail map.
2214 * Can only be called from moea64_bootstrap before avail start and end are
2215 * calculated.
2216 */
2217vm_offset_t
2218moea64_bootstrap_alloc(vm_size_t size, u_int align)
2219{
2220 vm_offset_t s, e;
2221 int i, j;
2222
2223 size = round_page(size);
2224 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2225 if (align != 0)
2226 s = (phys_avail[i] + align - 1) & ~(align - 1);
2227 else
2228 s = phys_avail[i];
2229 e = s + size;
2230
2231 if (s < phys_avail[i] || e > phys_avail[i + 1])
2232 continue;
2233
2234 if (s + size > platform_real_maxaddr())
2235 continue;
2236
2237 if (s == phys_avail[i]) {
2238 phys_avail[i] += size;
2239 } else if (e == phys_avail[i + 1]) {
2240 phys_avail[i + 1] -= size;
2241 } else {
2242 for (j = phys_avail_count * 2; j > i; j -= 2) {
2243 phys_avail[j] = phys_avail[j - 2];
2244 phys_avail[j + 1] = phys_avail[j - 1];
2245 }
2246
2247 phys_avail[i + 3] = phys_avail[i + 1];
2248 phys_avail[i + 1] = s;
2249 phys_avail[i + 2] = e;
2250 phys_avail_count++;
2251 }
2252
2253 return (s);
2254 }
2255 panic("moea64_bootstrap_alloc: could not allocate memory");
2256}
2257
2258static int
2259moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo, struct pvo_head *pvo_head)
2260{
2261 int first, err;
2262
2263 PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2264 KASSERT(moea64_pvo_find_va(pvo->pvo_pmap, PVO_VADDR(pvo)) == NULL,
2265 ("Existing mapping for VA %#jx", (uintmax_t)PVO_VADDR(pvo)));
2266
2267 moea64_pvo_enter_calls++;
2268
2269 /*
2270 * Add to pmap list
2271 */
2272 RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2273
2274 /*
2275 * Remember if the list was empty and therefore will be the first
2276 * item.
2277 */
2278 if (pvo_head != NULL) {
2279 if (LIST_FIRST(pvo_head) == NULL)
2280 first = 1;
2281 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2282 }
2283
2284 if (pvo->pvo_vaddr & PVO_WIRED)
2285 pvo->pvo_pmap->pm_stats.wired_count++;
2286 pvo->pvo_pmap->pm_stats.resident_count++;
2287
2288 /*
2289 * Insert it into the hardware page table
2290 */
2291 err = MOEA64_PTE_INSERT(mmu, pvo);
2292 if (err != 0) {
2293 panic("moea64_pvo_enter: overflow");
2294 }
2295
2296 moea64_pvo_entries++;
2297
2298 if (pvo->pvo_pmap == kernel_pmap)
2299 isync();
2300
2301#ifdef __powerpc64__
2302 /*
2303 * Make sure all our bootstrap mappings are in the SLB as soon
2304 * as virtual memory is switched on.
2305 */
2306 if (!pmap_bootstrapped)
2307 moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
2308 pvo->pvo_vaddr & PVO_LARGE);
2309#endif
2310
2311 return (first ? ENOENT : 0);
2312}
2313
2314static void
2315moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo)
2316{
2317 struct vm_page *pg;
2318 int32_t refchg;
2319
2320 KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
2321 PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2322 KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
2323
2324 /*
2325 * If there is an active pte entry, we need to deactivate it
2326 */
2327 refchg = MOEA64_PTE_UNSET(mmu, pvo);
2328 if (refchg < 0) {
2329 /*
2330 * If it was evicted from the page table, be pessimistic and
2331 * dirty the page.
2332 */
2333 if (pvo->pvo_pte.prot & VM_PROT_WRITE)
2334 refchg = LPTE_CHG;
2335 else
2336 refchg = 0;
2337 }
2338
2339 /*
2340 * Update our statistics.
2341 */
2342 pvo->pvo_pmap->pm_stats.resident_count--;
2343 if (pvo->pvo_vaddr & PVO_WIRED)
2344 pvo->pvo_pmap->pm_stats.wired_count--;
2345
2346 /*
2347 * Remove this PVO from the pmap list.
2348 */
2349 RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2350
2351 /*
2352 * Mark this for the next sweep
2353 */
2354 pvo->pvo_vaddr |= PVO_DEAD;
2355
2356 /* Send RC bits to VM */
2357 if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2358 (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2359 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2360 if (pg != NULL) {
2361 refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2362 if (refchg & LPTE_CHG)
2363 vm_page_dirty(pg);
2364 if (refchg & LPTE_REF)
2365 vm_page_aflag_set(pg, PGA_REFERENCED);
2366 }
2367 }
2368}
2369
2370static void
2371moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo)
2372{
2373 struct vm_page *pg;
2374
2375 KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
2376
2377 /* Use NULL pmaps as a sentinel for races in page deletion */
2378 if (pvo->pvo_pmap == NULL)
2379 return;
2380 pvo->pvo_pmap = NULL;
2381
2382 /*
2383 * Update vm about page writeability/executability if managed
2384 */
2385 PV_LOCKASSERT(pvo->pvo_pte.pa & LPTE_RPGN);
2386 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2387
2388 if ((pvo->pvo_vaddr & PVO_MANAGED) && pg != NULL) {
2389 LIST_REMOVE(pvo, pvo_vlink);
2390 if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2391 vm_page_aflag_clear(pg, PGA_WRITEABLE | PGA_EXECUTABLE);
2392 }
2393
2394 moea64_pvo_entries--;
2395 moea64_pvo_remove_calls++;
2396}
2397
2398static struct pvo_entry *
2399moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2400{
2401 struct pvo_entry key;
2402
2403 PMAP_LOCK_ASSERT(pm, MA_OWNED);
2404
2405 key.pvo_vaddr = va & ~ADDR_POFF;
2406 return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2407}
2408
2409static boolean_t
2410moea64_query_bit(mmu_t mmu, vm_page_t m, uint64_t ptebit)
2411{
2412 struct pvo_entry *pvo;
2413 int64_t ret;
2414 boolean_t rv;
2415
2416 /*
2417 * See if this bit is stored in the page already.
2418 */
2419 if (m->md.mdpg_attrs & ptebit)
2420 return (TRUE);
2421
2422 /*
2423 * Examine each PTE. Sync so that any pending REF/CHG bits are
2424 * flushed to the PTEs.
2425 */
2426 rv = FALSE;
2427 powerpc_sync();
2428 PV_PAGE_LOCK(m);
2429 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2430 ret = 0;
2431
2432 /*
2433 * See if this pvo has a valid PTE. if so, fetch the
2434 * REF/CHG bits from the valid PTE. If the appropriate
2435 * ptebit is set, return success.
2436 */
2437 PMAP_LOCK(pvo->pvo_pmap);
2438 if (!(pvo->pvo_vaddr & PVO_DEAD))
2439 ret = MOEA64_PTE_SYNCH(mmu, pvo);
2440 PMAP_UNLOCK(pvo->pvo_pmap);
2441
2442 if (ret > 0) {
2443 atomic_set_32(&m->md.mdpg_attrs,
2444 ret & (LPTE_CHG | LPTE_REF));
2445 if (ret & ptebit) {
2446 rv = TRUE;
2447 break;
2448 }
2449 }
2450 }
2451 PV_PAGE_UNLOCK(m);
2452
2453 return (rv);
2454}
2455
2456static u_int
2457moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2458{
2459 u_int count;
2460 struct pvo_entry *pvo;
2461 int64_t ret;
2462
2463 /*
2464 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2465 * we can reset the right ones).
2466 */
2467 powerpc_sync();
2468
2469 /*
2470 * For each pvo entry, clear the pte's ptebit.
2471 */
2472 count = 0;
2473 PV_PAGE_LOCK(m);
2474 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2475 ret = 0;
2476
2477 PMAP_LOCK(pvo->pvo_pmap);
2478 if (!(pvo->pvo_vaddr & PVO_DEAD))
2479 ret = MOEA64_PTE_CLEAR(mmu, pvo, ptebit);
2480 PMAP_UNLOCK(pvo->pvo_pmap);
2481
2482 if (ret > 0 && (ret & ptebit))
2483 count++;
2484 }
2485 atomic_clear_32(&m->md.mdpg_attrs, ptebit);
2486 PV_PAGE_UNLOCK(m);
2487
2488 return (count);
2489}
2490
2491boolean_t
2492moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2493{
2494 struct pvo_entry *pvo, key;
2495 vm_offset_t ppa;
2496 int error = 0;
2497
2498 PMAP_LOCK(kernel_pmap);
2499 key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2500 for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2501 ppa < pa + size; ppa += PAGE_SIZE,
2502 pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2503 if (pvo == NULL || (pvo->pvo_pte.pa & LPTE_RPGN) != ppa) {
2504 error = EFAULT;
2505 break;
2506 }
2507 }
2508 PMAP_UNLOCK(kernel_pmap);
2509
2510 return (error);
2511}
2512
2513/*
2514 * Map a set of physical memory pages into the kernel virtual
2515 * address space. Return a pointer to where it is mapped. This
2516 * routine is intended to be used for mapping device memory,
2517 * NOT real memory.
2518 */
2519void *
2520moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2520moea64_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2521{
2522 vm_offset_t va, tmpva, ppa, offset;
2523
2524 ppa = trunc_page(pa);
2525 offset = pa & PAGE_MASK;
2526 size = roundup2(offset + size, PAGE_SIZE);
2527
2528 va = kva_alloc(size);
2529
2530 if (!va)
2531 panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2532
2533 for (tmpva = va; size > 0;) {
2534 moea64_kenter_attr(mmu, tmpva, ppa, ma);
2535 size -= PAGE_SIZE;
2536 tmpva += PAGE_SIZE;
2537 ppa += PAGE_SIZE;
2538 }
2539
2540 return ((void *)(va + offset));
2541}
2542
2543void *
2544moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2545{
2546
2547 return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2548}
2549
2550void
2551moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2552{
2553 vm_offset_t base, offset;
2554
2555 base = trunc_page(va);
2556 offset = va & PAGE_MASK;
2557 size = roundup2(offset + size, PAGE_SIZE);
2558
2559 kva_free(base, size);
2560}
2561
2562void
2563moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2564{
2565 struct pvo_entry *pvo;
2566 vm_offset_t lim;
2567 vm_paddr_t pa;
2568 vm_size_t len;
2569
2570 PMAP_LOCK(pm);
2571 while (sz > 0) {
2572 lim = round_page(va);
2573 len = MIN(lim - va, sz);
2574 pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2575 if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
2576 pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va & ADDR_POFF);
2577 moea64_syncicache(mmu, pm, va, pa, len);
2578 }
2579 va += len;
2580 sz -= len;
2581 }
2582 PMAP_UNLOCK(pm);
2583}
2584
2585void
2586moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2587{
2588
2589 *va = (void *)pa;
2590}
2591
2592extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2593
2594void
2595moea64_scan_init(mmu_t mmu)
2596{
2597 struct pvo_entry *pvo;
2598 vm_offset_t va;
2599 int i;
2600
2601 if (!do_minidump) {
2602 /* Initialize phys. segments for dumpsys(). */
2603 memset(&dump_map, 0, sizeof(dump_map));
2604 mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2605 for (i = 0; i < pregions_sz; i++) {
2606 dump_map[i].pa_start = pregions[i].mr_start;
2607 dump_map[i].pa_size = pregions[i].mr_size;
2608 }
2609 return;
2610 }
2611
2612 /* Virtual segments for minidumps: */
2613 memset(&dump_map, 0, sizeof(dump_map));
2614
2615 /* 1st: kernel .data and .bss. */
2616 dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2617 dump_map[0].pa_size = round_page((uintptr_t)_end) -
2618 dump_map[0].pa_start;
2619
2620 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2621 dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr;
2622 dump_map[1].pa_size = round_page(msgbufp->msg_size);
2623
2624 /* 3rd: kernel VM. */
2625 va = dump_map[1].pa_start + dump_map[1].pa_size;
2626 /* Find start of next chunk (from va). */
2627 while (va < virtual_end) {
2628 /* Don't dump the buffer cache. */
2629 if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2630 va = kmi.buffer_eva;
2631 continue;
2632 }
2633 pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2634 if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2635 break;
2636 va += PAGE_SIZE;
2637 }
2638 if (va < virtual_end) {
2639 dump_map[2].pa_start = va;
2640 va += PAGE_SIZE;
2641 /* Find last page in chunk. */
2642 while (va < virtual_end) {
2643 /* Don't run into the buffer cache. */
2644 if (va == kmi.buffer_sva)
2645 break;
2646 pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2647 if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2648 break;
2649 va += PAGE_SIZE;
2650 }
2651 dump_map[2].pa_size = va - dump_map[2].pa_start;
2652 }
2653}
2654
2521{
2522 vm_offset_t va, tmpva, ppa, offset;
2523
2524 ppa = trunc_page(pa);
2525 offset = pa & PAGE_MASK;
2526 size = roundup2(offset + size, PAGE_SIZE);
2527
2528 va = kva_alloc(size);
2529
2530 if (!va)
2531 panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2532
2533 for (tmpva = va; size > 0;) {
2534 moea64_kenter_attr(mmu, tmpva, ppa, ma);
2535 size -= PAGE_SIZE;
2536 tmpva += PAGE_SIZE;
2537 ppa += PAGE_SIZE;
2538 }
2539
2540 return ((void *)(va + offset));
2541}
2542
2543void *
2544moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2545{
2546
2547 return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2548}
2549
2550void
2551moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2552{
2553 vm_offset_t base, offset;
2554
2555 base = trunc_page(va);
2556 offset = va & PAGE_MASK;
2557 size = roundup2(offset + size, PAGE_SIZE);
2558
2559 kva_free(base, size);
2560}
2561
2562void
2563moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2564{
2565 struct pvo_entry *pvo;
2566 vm_offset_t lim;
2567 vm_paddr_t pa;
2568 vm_size_t len;
2569
2570 PMAP_LOCK(pm);
2571 while (sz > 0) {
2572 lim = round_page(va);
2573 len = MIN(lim - va, sz);
2574 pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2575 if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
2576 pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va & ADDR_POFF);
2577 moea64_syncicache(mmu, pm, va, pa, len);
2578 }
2579 va += len;
2580 sz -= len;
2581 }
2582 PMAP_UNLOCK(pm);
2583}
2584
2585void
2586moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2587{
2588
2589 *va = (void *)pa;
2590}
2591
2592extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2593
2594void
2595moea64_scan_init(mmu_t mmu)
2596{
2597 struct pvo_entry *pvo;
2598 vm_offset_t va;
2599 int i;
2600
2601 if (!do_minidump) {
2602 /* Initialize phys. segments for dumpsys(). */
2603 memset(&dump_map, 0, sizeof(dump_map));
2604 mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2605 for (i = 0; i < pregions_sz; i++) {
2606 dump_map[i].pa_start = pregions[i].mr_start;
2607 dump_map[i].pa_size = pregions[i].mr_size;
2608 }
2609 return;
2610 }
2611
2612 /* Virtual segments for minidumps: */
2613 memset(&dump_map, 0, sizeof(dump_map));
2614
2615 /* 1st: kernel .data and .bss. */
2616 dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2617 dump_map[0].pa_size = round_page((uintptr_t)_end) -
2618 dump_map[0].pa_start;
2619
2620 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2621 dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr;
2622 dump_map[1].pa_size = round_page(msgbufp->msg_size);
2623
2624 /* 3rd: kernel VM. */
2625 va = dump_map[1].pa_start + dump_map[1].pa_size;
2626 /* Find start of next chunk (from va). */
2627 while (va < virtual_end) {
2628 /* Don't dump the buffer cache. */
2629 if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2630 va = kmi.buffer_eva;
2631 continue;
2632 }
2633 pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2634 if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2635 break;
2636 va += PAGE_SIZE;
2637 }
2638 if (va < virtual_end) {
2639 dump_map[2].pa_start = va;
2640 va += PAGE_SIZE;
2641 /* Find last page in chunk. */
2642 while (va < virtual_end) {
2643 /* Don't run into the buffer cache. */
2644 if (va == kmi.buffer_sva)
2645 break;
2646 pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2647 if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2648 break;
2649 va += PAGE_SIZE;
2650 }
2651 dump_map[2].pa_size = va - dump_map[2].pa_start;
2652 }
2653}
2654