Deleted Added
sdiff udiff text old ( 92521 ) new ( 92654 )
full compact
1/*
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the NetBSD
19 * Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 * contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 * must display the following acknowledgement:
51 * This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 * derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 * notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 * notice, this list of conditions and the following disclaimer in the
79 * documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#ifndef lint
94static const char rcsid[] =
95 "$FreeBSD: head/sys/powerpc/aim/mmu_oea.c 92654 2002-03-19 09:11:49Z jeff $";
96#endif /* not lint */
97
98/*
99 * Manages physical address maps.
100 *
101 * In addition to hardware address maps, this module is called upon to
102 * provide software-use-only maps which may or may not be stored in the
103 * same form as hardware maps. These pseudo-maps are used to store
104 * intermediate results from copy operations to and from address spaces.
105 *
106 * Since the information managed by this module is also stored by the
107 * logical address mapping module, this module may throw away valid virtual
108 * to physical mappings at almost any time. However, invalidations of
109 * mappings must be done as requested.
110 *
111 * In order to cope with hardware architectures which make virtual to
112 * physical map invalidates expensive, this module may delay invalidate
113 * reduced protection operations until such time as they are actually
114 * necessary. This module is given full information as to which processors
115 * are currently using which maps, and to when physical maps must be made
116 * correct.
117 */
118
119#include <sys/param.h>
120#include <sys/kernel.h>
121#include <sys/ktr.h>
122#include <sys/lock.h>
123#include <sys/msgbuf.h>
124#include <sys/mutex.h>
125#include <sys/proc.h>
126#include <sys/sysctl.h>
127#include <sys/systm.h>
128#include <sys/vmmeter.h>
129
130#include <dev/ofw/openfirm.h>
131
132#include <vm/vm.h>
133#include <vm/vm_param.h>
134#include <vm/vm_kern.h>
135#include <vm/vm_page.h>
136#include <vm/vm_map.h>
137#include <vm/vm_object.h>
138#include <vm/vm_extern.h>
139#include <vm/vm_pageout.h>
140#include <vm/vm_pager.h>
141#include <vm/vm_zone.h>
142
143#include <machine/bat.h>
144#include <machine/frame.h>
145#include <machine/md_var.h>
146#include <machine/psl.h>
147#include <machine/pte.h>
148#include <machine/sr.h>
149
150#define PMAP_DEBUG
151
152#define TODO panic("%s: not implemented", __func__);
153
154#define PMAP_LOCK(pm)
155#define PMAP_UNLOCK(pm)
156
157#define TLBIE(va) __asm __volatile("tlbie %0" :: "r"(va))
158#define TLBSYNC() __asm __volatile("tlbsync");
159#define SYNC() __asm __volatile("sync");
160#define EIEIO() __asm __volatile("eieio");
161
162#define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4))
163#define VSID_TO_SR(vsid) ((vsid) & 0xf)
164#define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff)
165
166#define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
167#define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
168#define PVO_WIRED 0x0010 /* PVO entry is wired */
169#define PVO_MANAGED 0x0020 /* PVO entry is managed */
170#define PVO_EXECUTABLE 0x0040 /* PVO entry is executable */
171#define PVO_BOOTSTRAP 0x0004 /* PVO entry allocated during
172 bootstrap */
173#define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
174#define PVO_ISEXECUTABLE(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
175#define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
176#define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
177#define PVO_PTEGIDX_CLR(pvo) \
178 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
179#define PVO_PTEGIDX_SET(pvo, i) \
180 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
181
182#define PMAP_PVO_CHECK(pvo)
183
184struct mem_region {
185 vm_offset_t mr_start;
186 vm_offset_t mr_size;
187};
188
189struct ofw_map {
190 vm_offset_t om_va;
191 vm_size_t om_len;
192 vm_offset_t om_pa;
193 u_int om_mode;
194};
195
196int pmap_bootstrapped = 0;
197
198/*
199 * Virtual and physical address of message buffer.
200 */
201struct msgbuf *msgbufp;
202vm_offset_t msgbuf_phys;
203
204/*
205 * Physical addresses of first and last available physical page.
206 */
207vm_offset_t avail_start;
208vm_offset_t avail_end;
209
210/*
211 * Map of physical memory regions.
212 */
213vm_offset_t phys_avail[128];
214u_int phys_avail_count;
215static struct mem_region regions[128];
216static struct ofw_map translations[128];
217static int translations_size;
218
219/*
220 * First and last available kernel virtual addresses.
221 */
222vm_offset_t virtual_avail;
223vm_offset_t virtual_end;
224vm_offset_t kernel_vm_end;
225
226/*
227 * Kernel pmap.
228 */
229struct pmap kernel_pmap_store;
230extern struct pmap ofw_pmap;
231
232/*
233 * PTEG data.
234 */
235static struct pteg *pmap_pteg_table;
236u_int pmap_pteg_count;
237u_int pmap_pteg_mask;
238
239/*
240 * PVO data.
241 */
242struct pvo_head *pmap_pvo_table; /* pvo entries by pteg index */
243struct pvo_head pmap_pvo_kunmanaged =
244 LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
245struct pvo_head pmap_pvo_unmanaged =
246 LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
247
248vm_zone_t pmap_upvo_zone; /* zone for pvo entries for unmanaged pages */
249vm_zone_t pmap_mpvo_zone; /* zone for pvo entries for managed pages */
250struct vm_object pmap_upvo_zone_obj;
251struct vm_object pmap_mpvo_zone_obj;
252static vm_object_t pmap_pvo_obj;
253static u_int pmap_pvo_count;
254
255#define PMAP_PVO_SIZE 1024
256static struct pvo_entry *pmap_bpvo_pool;
257static int pmap_bpvo_pool_index;
258static int pmap_bpvo_pool_count;
259
260#define VSID_NBPW (sizeof(u_int32_t) * 8)
261static u_int pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
262
263static boolean_t pmap_initialized = FALSE;
264
265/*
266 * Statistics.
267 */
268u_int pmap_pte_valid = 0;
269u_int pmap_pte_overflow = 0;
270u_int pmap_pte_replacements = 0;
271u_int pmap_pvo_entries = 0;
272u_int pmap_pvo_enter_calls = 0;
273u_int pmap_pvo_remove_calls = 0;
274u_int pmap_pte_spills = 0;
275SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
276 0, "");
277SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
278 &pmap_pte_overflow, 0, "");
279SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
280 &pmap_pte_replacements, 0, "");
281SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
282 0, "");
283SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
284 &pmap_pvo_enter_calls, 0, "");
285SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
286 &pmap_pvo_remove_calls, 0, "");
287SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
288 &pmap_pte_spills, 0, "");
289
290struct pvo_entry *pmap_pvo_zeropage;
291
292vm_offset_t pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
293u_int pmap_rkva_count = 4;
294
295/*
296 * Allocate physical memory for use in pmap_bootstrap.
297 */
298static vm_offset_t pmap_bootstrap_alloc(vm_size_t, u_int);
299
300/*
301 * PTE calls.
302 */
303static int pmap_pte_insert(u_int, struct pte *);
304
305/*
306 * PVO calls.
307 */
308static int pmap_pvo_enter(pmap_t, vm_zone_t, struct pvo_head *,
309 vm_offset_t, vm_offset_t, u_int, int);
310static void pmap_pvo_remove(struct pvo_entry *, int);
311static struct pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
312static struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
313
314/*
315 * Utility routines.
316 */
317static void * pmap_pvo_allocf(uma_zone_t, int, u_int8_t *, int);
318static struct pvo_entry *pmap_rkva_alloc(void);
319static void pmap_pa_map(struct pvo_entry *, vm_offset_t,
320 struct pte *, int *);
321static void pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
322static void pmap_syncicache(vm_offset_t, vm_size_t);
323static boolean_t pmap_query_bit(vm_page_t, int);
324static boolean_t pmap_clear_bit(vm_page_t, int);
325static void tlbia(void);
326
327static __inline int
328va_to_sr(u_int *sr, vm_offset_t va)
329{
330 return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
331}
332
333static __inline u_int
334va_to_pteg(u_int sr, vm_offset_t addr)
335{
336 u_int hash;
337
338 hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
339 ADDR_PIDX_SHFT);
340 return (hash & pmap_pteg_mask);
341}
342
343static __inline struct pvo_head *
344pa_to_pvoh(vm_offset_t pa)
345{
346 struct vm_page *pg;
347
348 pg = PHYS_TO_VM_PAGE(pa);
349
350 if (pg == NULL)
351 return (&pmap_pvo_unmanaged);
352
353 return (&pg->md.mdpg_pvoh);
354}
355
356static __inline struct pvo_head *
357vm_page_to_pvoh(vm_page_t m)
358{
359
360 return (&m->md.mdpg_pvoh);
361}
362
363static __inline void
364pmap_attr_clear(vm_page_t m, int ptebit)
365{
366
367 m->md.mdpg_attrs &= ~ptebit;
368}
369
370static __inline int
371pmap_attr_fetch(vm_page_t m)
372{
373
374 return (m->md.mdpg_attrs);
375}
376
377static __inline void
378pmap_attr_save(vm_page_t m, int ptebit)
379{
380
381 m->md.mdpg_attrs |= ptebit;
382}
383
384static __inline int
385pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
386{
387 if (pt->pte_hi == pvo_pt->pte_hi)
388 return (1);
389
390 return (0);
391}
392
393static __inline int
394pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
395{
396 return (pt->pte_hi & ~PTE_VALID) ==
397 (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
398 ((va >> ADDR_API_SHFT) & PTE_API) | which);
399}
400
401static __inline void
402pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
403{
404 /*
405 * Construct a PTE. Default to IMB initially. Valid bit only gets
406 * set when the real pte is set in memory.
407 *
408 * Note: Don't set the valid bit for correct operation of tlb update.
409 */
410 pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
411 (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
412 pt->pte_lo = pte_lo;
413}
414
415static __inline void
416pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
417{
418
419 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
420}
421
422static __inline void
423pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
424{
425
426 /*
427 * As shown in Section 7.6.3.2.3
428 */
429 pt->pte_lo &= ~ptebit;
430 TLBIE(va);
431 EIEIO();
432 TLBSYNC();
433 SYNC();
434}
435
436static __inline void
437pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
438{
439
440 pvo_pt->pte_hi |= PTE_VALID;
441
442 /*
443 * Update the PTE as defined in section 7.6.3.1.
444 * Note that the REF/CHG bits are from pvo_pt and thus should havce
445 * been saved so this routine can restore them (if desired).
446 */
447 pt->pte_lo = pvo_pt->pte_lo;
448 EIEIO();
449 pt->pte_hi = pvo_pt->pte_hi;
450 SYNC();
451 pmap_pte_valid++;
452}
453
454static __inline void
455pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
456{
457
458 pvo_pt->pte_hi &= ~PTE_VALID;
459
460 /*
461 * Force the reg & chg bits back into the PTEs.
462 */
463 SYNC();
464
465 /*
466 * Invalidate the pte.
467 */
468 pt->pte_hi &= ~PTE_VALID;
469
470 SYNC();
471 TLBIE(va);
472 EIEIO();
473 TLBSYNC();
474 SYNC();
475
476 /*
477 * Save the reg & chg bits.
478 */
479 pmap_pte_synch(pt, pvo_pt);
480 pmap_pte_valid--;
481}
482
483static __inline void
484pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
485{
486
487 /*
488 * Invalidate the PTE
489 */
490 pmap_pte_unset(pt, pvo_pt, va);
491 pmap_pte_set(pt, pvo_pt);
492}
493
494/*
495 * Quick sort callout for comparing memory regions.
496 */
497static int mr_cmp(const void *a, const void *b);
498static int om_cmp(const void *a, const void *b);
499
500static int
501mr_cmp(const void *a, const void *b)
502{
503 const struct mem_region *regiona;
504 const struct mem_region *regionb;
505
506 regiona = a;
507 regionb = b;
508 if (regiona->mr_start < regionb->mr_start)
509 return (-1);
510 else if (regiona->mr_start > regionb->mr_start)
511 return (1);
512 else
513 return (0);
514}
515
516static int
517om_cmp(const void *a, const void *b)
518{
519 const struct ofw_map *mapa;
520 const struct ofw_map *mapb;
521
522 mapa = a;
523 mapb = b;
524 if (mapa->om_pa < mapb->om_pa)
525 return (-1);
526 else if (mapa->om_pa > mapb->om_pa)
527 return (1);
528 else
529 return (0);
530}
531
532void
533pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
534{
535 ihandle_t pmem, mmui;
536 phandle_t chosen, mmu;
537 int sz;
538 int i, j;
539 vm_size_t size, physsz;
540 vm_offset_t pa, va, off;
541 u_int batl, batu;
542
543 /*
544 * Use an IBAT and a DBAT to map the bottom segment of memory
545 * where we are.
546 */
547 batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
548 batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
549 __asm ("mtibatu 0,%0; mtibatl 0,%1; mtdbatu 0,%0; mtdbatl 0,%1"
550 :: "r"(batu), "r"(batl));
551#if 0
552 batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
553 batl = BATL(0x80000000, BAT_M, BAT_PP_RW);
554 __asm ("mtibatu 1,%0; mtibatl 1,%1; mtdbatu 1,%0; mtdbatl 1,%1"
555 :: "r"(batu), "r"(batl));
556#endif
557
558 /*
559 * Set the start and end of kva.
560 */
561 virtual_avail = VM_MIN_KERNEL_ADDRESS;
562 virtual_end = VM_MAX_KERNEL_ADDRESS;
563
564 if ((pmem = OF_finddevice("/memory")) == -1)
565 panic("pmap_bootstrap: can't locate memory device");
566 if ((sz = OF_getproplen(pmem, "available")) == -1)
567 panic("pmap_bootstrap: can't get length of available memory");
568 if (sizeof(phys_avail) < sz)
569 panic("pmap_bootstrap: phys_avail too small");
570 if (sizeof(regions) < sz)
571 panic("pmap_bootstrap: regions too small");
572 bzero(regions, sz);
573 if (OF_getprop(pmem, "available", regions, sz) == -1)
574 panic("pmap_bootstrap: can't get available memory");
575 sz /= sizeof(*regions);
576 CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
577 qsort(regions, sz, sizeof(*regions), mr_cmp);
578 phys_avail_count = 0;
579 physsz = 0;
580 for (i = 0, j = 0; i < sz; i++, j += 2) {
581 CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
582 regions[i].mr_start + regions[i].mr_size,
583 regions[i].mr_size);
584 phys_avail[j] = regions[i].mr_start;
585 phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
586 phys_avail_count++;
587 physsz += regions[i].mr_size;
588 }
589 physmem = btoc(physsz);
590
591 /*
592 * Allocate PTEG table.
593 */
594#ifdef PTEGCOUNT
595 pmap_pteg_count = PTEGCOUNT;
596#else
597 pmap_pteg_count = 0x1000;
598
599 while (pmap_pteg_count < physmem)
600 pmap_pteg_count <<= 1;
601
602 pmap_pteg_count >>= 1;
603#endif /* PTEGCOUNT */
604
605 size = pmap_pteg_count * sizeof(struct pteg);
606 CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
607 size);
608 pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
609 CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
610 bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
611 pmap_pteg_mask = pmap_pteg_count - 1;
612
613 /*
614 * Allocate PTE overflow lists.
615 */
616 size = sizeof(struct pvo_head) * pmap_pteg_count;
617 pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
618 PAGE_SIZE);
619 CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
620 for (i = 0; i < pmap_pteg_count; i++)
621 LIST_INIT(&pmap_pvo_table[i]);
622
623 /*
624 * Allocate the message buffer.
625 */
626 msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
627
628 /*
629 * Initialise the unmanaged pvo pool.
630 */
631 pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(PAGE_SIZE, 0);
632 pmap_bpvo_pool_index = 0;
633 pmap_bpvo_pool_count = (int)PAGE_SIZE / sizeof(struct pvo_entry);
634
635 /*
636 * Make sure kernel vsid is allocated as well as VSID 0.
637 */
638 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
639 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
640 pmap_vsid_bitmap[0] |= 1;
641
642 /*
643 * Set up the OpenFirmware pmap and add it's mappings.
644 */
645 pmap_pinit(&ofw_pmap);
646 ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
647 if ((chosen = OF_finddevice("/chosen")) == -1)
648 panic("pmap_bootstrap: can't find /chosen");
649 OF_getprop(chosen, "mmu", &mmui, 4);
650 if ((mmu = OF_instance_to_package(mmui)) == -1)
651 panic("pmap_bootstrap: can't get mmu package");
652 if ((sz = OF_getproplen(mmu, "translations")) == -1)
653 panic("pmap_bootstrap: can't get ofw translation count");
654 if (sizeof(translations) < sz)
655 panic("pmap_bootstrap: translations too small");
656 bzero(translations, sz);
657 if (OF_getprop(mmu, "translations", translations, sz) == -1)
658 panic("pmap_bootstrap: can't get ofw translations");
659 CTR0(KTR_PMAP, "pmap_bootstrap: translations");
660 qsort(translations, sz, sizeof (*translations), om_cmp);
661 for (i = 0; i < sz; i++) {
662 CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
663 translations[i].om_pa, translations[i].om_va,
664 translations[i].om_len);
665
666 /* Drop stuff below something? */
667
668 /* Enter the pages? */
669 for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
670 struct vm_page m;
671
672 m.phys_addr = translations[i].om_pa + off;
673 pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
674 VM_PROT_ALL, 1);
675 }
676 }
677#ifdef SMP
678 TLBSYNC();
679#endif
680
681 /*
682 * Initialize the kernel pmap (which is statically allocated).
683 */
684 for (i = 0; i < 16; i++) {
685 kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
686 }
687 kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
688 kernel_pmap->pm_active = ~0;
689 kernel_pmap->pm_count = 1;
690
691 /*
692 * Allocate a kernel stack with a guard page for thread0 and map it
693 * into the kernel page map.
694 */
695 pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
696 kstack0_phys = pa;
697 kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
698 CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
699 kstack0);
700 virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
701 for (i = 0; i < KSTACK_PAGES; i++) {
702 pa = kstack0_phys + i * PAGE_SIZE;
703 va = kstack0 + i * PAGE_SIZE;
704 pmap_kenter(va, pa);
705 TLBIE(va);
706 }
707
708 /*
709 * Calculate the first and last available physical addresses.
710 */
711 avail_start = phys_avail[0];
712 for (i = 0; phys_avail[i + 2] != 0; i += 2)
713 ;
714 avail_end = phys_avail[i + 1];
715 Maxmem = powerpc_btop(avail_end);
716
717 /*
718 * Allocate virtual address space for the message buffer.
719 */
720 msgbufp = (struct msgbuf *)virtual_avail;
721 virtual_avail += round_page(MSGBUF_SIZE);
722
723 /*
724 * Initialize hardware.
725 */
726 for (i = 0; i < 16; i++) {
727 __asm __volatile("mtsrin %0,%1"
728 :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
729 }
730 __asm __volatile ("mtsr %0,%1"
731 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
732 __asm __volatile ("sync; mtsdr1 %0; isync"
733 :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
734 tlbia();
735
736 pmap_bootstrapped++;
737}
738
739/*
740 * Activate a user pmap. The pmap must be activated before it's address
741 * space can be accessed in any way.
742 */
743void
744pmap_activate(struct thread *td)
745{
746 pmap_t pm;
747 int i;
748
749 /*
750 * Load all the data we need up front to encourasge the compiler to
751 * not issue any loads while we have interrupts disabled below.
752 */
753 pm = &td->td_proc->p_vmspace->vm_pmap;
754
755 KASSERT(pm->pm_active == 0, ("pmap_activate: pmap already active?"));
756
757 pm->pm_active |= PCPU_GET(cpumask);
758
759 /*
760 * XXX: Address this again later?
761 * NetBSD only change the segment registers on return to userland.
762 */
763#if 0
764 critical_enter();
765
766 for (i = 0; i < 16; i++) {
767 __asm __volatile("mtsr %0,%1" :: "r"(i), "r"(pm->pm_sr[i]));
768 }
769 __asm __volatile("sync; isync");
770
771 critical_exit();
772#endif
773}
774
775void
776pmap_deactivate(struct thread *td)
777{
778 pmap_t pm;
779
780 pm = &td->td_proc->p_vmspace->vm_pmap;
781 pm->pm_active &= ~(PCPU_GET(cpumask));
782}
783
784vm_offset_t
785pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
786{
787 TODO;
788 return (0);
789}
790
791void
792pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
793{
794 TODO;
795}
796
797void
798pmap_clear_modify(vm_page_t m)
799{
800
801 if (m->flags * PG_FICTITIOUS)
802 return;
803 pmap_clear_bit(m, PTE_CHG);
804}
805
806void
807pmap_collect(void)
808{
809 TODO;
810}
811
812void
813pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
814 vm_size_t len, vm_offset_t src_addr)
815{
816 TODO;
817}
818
819void
820pmap_copy_page(vm_offset_t src, vm_offset_t dst)
821{
822 TODO;
823}
824
825/*
826 * Zero a page of physical memory by temporarily mapping it into the tlb.
827 */
828void
829pmap_zero_page(vm_offset_t pa)
830{
831 caddr_t va;
832 int i;
833
834 if (pa < SEGMENT_LENGTH) {
835 va = (caddr_t) pa;
836 } else if (pmap_initialized) {
837 if (pmap_pvo_zeropage == NULL)
838 pmap_pvo_zeropage = pmap_rkva_alloc();
839 pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
840 va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
841 } else {
842 panic("pmap_zero_page: can't zero pa %#x", pa);
843 }
844
845 bzero(va, PAGE_SIZE);
846
847 for (i = PAGE_SIZE / CACHELINESIZE; i > 0; i--) {
848 __asm __volatile("dcbz 0,%0" :: "r"(va));
849 va += CACHELINESIZE;
850 }
851
852 if (pa >= SEGMENT_LENGTH)
853 pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
854}
855
856void
857pmap_zero_page_area(vm_offset_t pa, int off, int size)
858{
859 TODO;
860}
861
862/*
863 * Map the given physical page at the specified virtual address in the
864 * target pmap with the protection requested. If specified the page
865 * will be wired down.
866 */
867void
868pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
869 boolean_t wired)
870{
871 struct pvo_head *pvo_head;
872 vm_zone_t zone;
873 u_int pte_lo, pvo_flags;
874 int error;
875
876 if (!pmap_initialized) {
877 pvo_head = &pmap_pvo_kunmanaged;
878 zone = pmap_upvo_zone;
879 pvo_flags = 0;
880 } else {
881 pvo_head = pa_to_pvoh(m->phys_addr);
882 zone = pmap_mpvo_zone;
883 pvo_flags = PVO_MANAGED;
884 }
885
886 pte_lo = PTE_I | PTE_G;
887
888 if (prot & VM_PROT_WRITE)
889 pte_lo |= PTE_BW;
890 else
891 pte_lo |= PTE_BR;
892
893 if (prot & VM_PROT_EXECUTE)
894 pvo_flags |= PVO_EXECUTABLE;
895
896 if (wired)
897 pvo_flags |= PVO_WIRED;
898
899 error = pmap_pvo_enter(pmap, zone, pvo_head, va, m->phys_addr, pte_lo,
900 pvo_flags);
901
902 if (error == ENOENT) {
903 /*
904 * Flush the real memory from the cache.
905 */
906 if ((pvo_flags & PVO_EXECUTABLE) && (pte_lo & PTE_I) == 0) {
907 pmap_syncicache(m->phys_addr, PAGE_SIZE);
908 }
909 }
910}
911
912vm_offset_t
913pmap_extract(pmap_t pmap, vm_offset_t va)
914{
915 TODO;
916 return (0);
917}
918
919/*
920 * Grow the number of kernel page table entries. Unneeded.
921 */
922void
923pmap_growkernel(vm_offset_t addr)
924{
925}
926
927void
928pmap_init(vm_offset_t phys_start, vm_offset_t phys_end)
929{
930
931 CTR(KTR_PMAP, "pmap_init");
932}
933
934void
935pmap_init2(void)
936{
937
938 CTR(KTR_PMAP, "pmap_init2");
939
940 pmap_pvo_obj = vm_object_allocate(OBJT_PHYS, 16);
941 pmap_pvo_count = 0;
942 pmap_upvo_zone = zinit("UPVO entry", sizeof (struct pvo_entry),
943 0, 0, 0);
944 uma_zone_set_allocf(pmap_upvo_zone, pmap_pvo_allocf);
945 pmap_mpvo_zone = zinit("MPVO entry", sizeof(struct pvo_entry),
946 PMAP_PVO_SIZE, ZONE_INTERRUPT, 1);
947 uma_zone_set_allocf(pmap_mpvo_zone, pmap_pvo_allocf);
948 pmap_initialized = TRUE;
949}
950
951boolean_t
952pmap_is_modified(vm_page_t m)
953{
954 TODO;
955 return (0);
956}
957
958void
959pmap_clear_reference(vm_page_t m)
960{
961 TODO;
962}
963
964/*
965 * pmap_ts_referenced:
966 *
967 * Return a count of reference bits for a page, clearing those bits.
968 * It is not necessary for every reference bit to be cleared, but it
969 * is necessary that 0 only be returned when there are truly no
970 * reference bits set.
971 *
972 * XXX: The exact number of bits to check and clear is a matter that
973 * should be tested and standardized at some point in the future for
974 * optimal aging of shared pages.
975 */
976
977int
978pmap_ts_referenced(vm_page_t m)
979{
980 TODO;
981 return (0);
982}
983
984/*
985 * Map a wired page into kernel virtual address space.
986 */
987void
988pmap_kenter(vm_offset_t va, vm_offset_t pa)
989{
990 u_int pte_lo;
991 int error;
992 int i;
993
994#if 0
995 if (va < VM_MIN_KERNEL_ADDRESS)
996 panic("pmap_kenter: attempt to enter non-kernel address %#x",
997 va);
998#endif
999
1000 pte_lo = PTE_I | PTE_G | PTE_BW;
1001 for (i = 0; phys_avail[i + 2] != 0; i += 2) {
1002 if (pa >= phys_avail[i] && pa < phys_avail[i + 1]) {
1003 pte_lo &= ~(PTE_I | PTE_G);
1004 break;
1005 }
1006 }
1007
1008 error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
1009 &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1010
1011 if (error != 0 && error != ENOENT)
1012 panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
1013 pa, error);
1014
1015 /*
1016 * Flush the real memory from the instruction cache.
1017 */
1018 if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1019 pmap_syncicache(pa, PAGE_SIZE);
1020 }
1021}
1022
1023vm_offset_t
1024pmap_kextract(vm_offset_t va)
1025{
1026 TODO;
1027 return (0);
1028}
1029
1030/*
1031 * Remove a wired page from kernel virtual address space.
1032 */
1033void
1034pmap_kremove(vm_offset_t va)
1035{
1036
1037 pmap_remove(kernel_pmap, va, roundup(va, PAGE_SIZE));
1038}
1039
1040/*
1041 * Map a range of physical addresses into kernel virtual address space.
1042 *
1043 * The value passed in *virt is a suggested virtual address for the mapping.
1044 * Architectures which can support a direct-mapped physical to virtual region
1045 * can return the appropriate address within that region, leaving '*virt'
1046 * unchanged. We cannot and therefore do not; *virt is updated with the
1047 * first usable address after the mapped region.
1048 */
1049vm_offset_t
1050pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
1051{
1052 vm_offset_t sva, va;
1053
1054 sva = *virt;
1055 va = sva;
1056 for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1057 pmap_kenter(va, pa_start);
1058 *virt = va;
1059 return (sva);
1060}
1061
1062int
1063pmap_mincore(pmap_t pmap, vm_offset_t addr)
1064{
1065 TODO;
1066 return (0);
1067}
1068
1069/*
1070 * Create the uarea for a new process.
1071 * This routine directly affects the fork perf for a process.
1072 */
1073void
1074pmap_new_proc(struct proc *p)
1075{
1076 vm_object_t upobj;
1077 vm_offset_t up;
1078 vm_page_t m;
1079 u_int i;
1080
1081 /*
1082 * Allocate the object for the upages.
1083 */
1084 upobj = p->p_upages_obj;
1085 if (upobj == NULL) {
1086 upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
1087 p->p_upages_obj = upobj;
1088 }
1089
1090 /*
1091 * Get a kernel virtual address for the uarea for this process.
1092 */
1093 up = (vm_offset_t)p->p_uarea;
1094 if (up == 0) {
1095 up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
1096 if (up == 0)
1097 panic("pmap_new_proc: upage allocation failed");
1098 p->p_uarea = (struct user *)up;
1099 }
1100
1101 for (i = 0; i < UAREA_PAGES; i++) {
1102 /*
1103 * Get a uarea page.
1104 */
1105 m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1106
1107 /*
1108 * Wire the page.
1109 */
1110 m->wire_count++;
1111
1112 /*
1113 * Enter the page into the kernel address space.
1114 */
1115 pmap_kenter(up + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1116
1117 vm_page_wakeup(m);
1118 vm_page_flag_clear(m, PG_ZERO);
1119 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1120 m->valid = VM_PAGE_BITS_ALL;
1121 }
1122}
1123
1124void
1125pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
1126 vm_pindex_t pindex, vm_size_t size, int limit)
1127{
1128 TODO;
1129}
1130
1131/*
1132 * Lower the permission for all mappings to a given page.
1133 */
1134void
1135pmap_page_protect(vm_page_t m, vm_prot_t prot)
1136{
1137 struct pvo_head *pvo_head;
1138 struct pvo_entry *pvo, *next_pvo;
1139 struct pte *pt;
1140
1141 /*
1142 * Since the routine only downgrades protection, if the
1143 * maximal protection is desired, there isn't any change
1144 * to be made.
1145 */
1146 if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
1147 (VM_PROT_READ|VM_PROT_WRITE))
1148 return;
1149
1150 pvo_head = vm_page_to_pvoh(m);
1151 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1152 next_pvo = LIST_NEXT(pvo, pvo_vlink);
1153 PMAP_PVO_CHECK(pvo); /* sanity check */
1154
1155 /*
1156 * Downgrading to no mapping at all, we just remove the entry.
1157 */
1158 if ((prot & VM_PROT_READ) == 0) {
1159 pmap_pvo_remove(pvo, -1);
1160 continue;
1161 }
1162
1163 /*
1164 * If EXEC permission is being revoked, just clear the flag
1165 * in the PVO.
1166 */
1167 if ((prot & VM_PROT_EXECUTE) == 0)
1168 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1169
1170 /*
1171 * If this entry is already RO, don't diddle with the page
1172 * table.
1173 */
1174 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
1175 PMAP_PVO_CHECK(pvo);
1176 continue;
1177 }
1178
1179 /*
1180 * Grab the PTE before we diddle the bits so pvo_to_pte can
1181 * verify the pte contents are as expected.
1182 */
1183 pt = pmap_pvo_to_pte(pvo, -1);
1184 pvo->pvo_pte.pte_lo &= ~PTE_PP;
1185 pvo->pvo_pte.pte_lo |= PTE_BR;
1186 if (pt != NULL)
1187 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1188 PMAP_PVO_CHECK(pvo); /* sanity check */
1189 }
1190}
1191
1192/*
1193 * Make the specified page pageable (or not). Unneeded.
1194 */
1195void
1196pmap_pageable(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1197 boolean_t pageable)
1198{
1199}
1200
1201/*
1202 * Returns true if the pmap's pv is one of the first
1203 * 16 pvs linked to from this page. This count may
1204 * be changed upwards or downwards in the future; it
1205 * is only necessary that true be returned for a small
1206 * subset of pmaps for proper page aging.
1207 */
1208boolean_t
1209pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
1210{
1211 TODO;
1212 return (0);
1213}
1214
1215static u_int pmap_vsidcontext;
1216
1217void
1218pmap_pinit(pmap_t pmap)
1219{
1220 int i, mask;
1221 u_int entropy;
1222
1223 entropy = 0;
1224 __asm __volatile("mftb %0" : "=r"(entropy));
1225
1226 /*
1227 * Allocate some segment registers for this pmap.
1228 */
1229 pmap->pm_count = 1;
1230 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1231 u_int hash, n;
1232
1233 /*
1234 * Create a new value by mutiplying by a prime and adding in
1235 * entropy from the timebase register. This is to make the
1236 * VSID more random so that the PT hash function collides
1237 * less often. (Note that the prime casues gcc to do shifts
1238 * instead of a multiply.)
1239 */
1240 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1241 hash = pmap_vsidcontext & (NPMAPS - 1);
1242 if (hash == 0) /* 0 is special, avoid it */
1243 continue;
1244 n = hash >> 5;
1245 mask = 1 << (hash & (VSID_NBPW - 1));
1246 hash = (pmap_vsidcontext & 0xfffff);
1247 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1248 /* anything free in this bucket? */
1249 if (pmap_vsid_bitmap[n] == 0xffffffff) {
1250 entropy = (pmap_vsidcontext >> 20);
1251 continue;
1252 }
1253 i = ffs(~pmap_vsid_bitmap[i]) - 1;
1254 mask = 1 << i;
1255 hash &= 0xfffff & ~(VSID_NBPW - 1);
1256 hash |= i;
1257 }
1258 pmap_vsid_bitmap[n] |= mask;
1259 for (i = 0; i < 16; i++)
1260 pmap->pm_sr[i] = VSID_MAKE(i, hash);
1261 return;
1262 }
1263
1264 panic("pmap_pinit: out of segments");
1265}
1266
1267/*
1268 * Initialize the pmap associated with process 0.
1269 */
1270void
1271pmap_pinit0(pmap_t pm)
1272{
1273
1274 pmap_pinit(pm);
1275 bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1276}
1277
1278void
1279pmap_pinit2(pmap_t pmap)
1280{
1281 /* XXX: Remove this stub when no longer called */
1282}
1283
1284void
1285pmap_prefault(pmap_t pm, vm_offset_t va, vm_map_entry_t entry)
1286{
1287 KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1288 ("pmap_prefault: non current pmap"));
1289 /* XXX */
1290}
1291
1292void
1293pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1294{
1295 TODO;
1296}
1297
1298vm_offset_t
1299pmap_phys_address(int ppn)
1300{
1301 TODO;
1302 return (0);
1303}
1304
1305/*
1306 * Map a list of wired pages into kernel virtual address space. This is
1307 * intended for temporary mappings which do not need page modification or
1308 * references recorded. Existing mappings in the region are overwritten.
1309 */
1310void
1311pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1312{
1313 int i;
1314
1315 for (i = 0; i < count; i++, va += PAGE_SIZE)
1316 pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
1317}
1318
1319/*
1320 * Remove page mappings from kernel virtual address space. Intended for
1321 * temporary mappings entered by pmap_qenter.
1322 */
1323void
1324pmap_qremove(vm_offset_t va, int count)
1325{
1326 int i;
1327
1328 for (i = 0; i < count; i++, va += PAGE_SIZE)
1329 pmap_kremove(va);
1330}
1331
1332/*
1333 * Add a reference to the specified pmap.
1334 */
1335void
1336pmap_reference(pmap_t pm)
1337{
1338
1339 if (pm != NULL)
1340 pm->pm_count++;
1341}
1342
1343void
1344pmap_release(pmap_t pmap)
1345{
1346 TODO;
1347}
1348
1349/*
1350 * Remove the given range of addresses from the specified map.
1351 */
1352void
1353pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1354{
1355 struct pvo_entry *pvo;
1356 int pteidx;
1357
1358 for (; sva < eva; sva += PAGE_SIZE) {
1359 pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1360 if (pvo != NULL) {
1361 pmap_pvo_remove(pvo, pteidx);
1362 }
1363 }
1364}
1365
1366void
1367pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1368{
1369 TODO;
1370}
1371
1372void
1373pmap_swapin_proc(struct proc *p)
1374{
1375 TODO;
1376}
1377
1378void
1379pmap_swapout_proc(struct proc *p)
1380{
1381 TODO;
1382}
1383
1384/*
1385 * Create the kernel stack and pcb for a new thread.
1386 * This routine directly affects the fork perf for a process and
1387 * create performance for a thread.
1388 */
1389void
1390pmap_new_thread(struct thread *td)
1391{
1392 vm_object_t ksobj;
1393 vm_offset_t ks;
1394 vm_page_t m;
1395 u_int i;
1396
1397 /*
1398 * Allocate object for the kstack.
1399 */
1400 ksobj = td->td_kstack_obj;
1401 if (ksobj == NULL) {
1402 ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
1403 td->td_kstack_obj = ksobj;
1404 }
1405
1406 /*
1407 * Get a kernel virtual address for the kstack for this thread.
1408 */
1409 ks = td->td_kstack;
1410 if (ks == 0) {
1411 ks = kmem_alloc_nofault(kernel_map,
1412 (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE);
1413 if (ks == 0)
1414 panic("pmap_new_thread: kstack allocation failed");
1415 TLBIE(ks);
1416 ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
1417 td->td_kstack = ks;
1418 }
1419
1420 for (i = 0; i < KSTACK_PAGES; i++) {
1421 /*
1422 * Get a kernel stack page.
1423 */
1424 m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1425
1426 /*
1427 * Wire the page.
1428 */
1429 m->wire_count++;
1430
1431 /*
1432 * Enter the page into the kernel address space.
1433 */
1434 pmap_kenter(ks + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1435
1436 vm_page_wakeup(m);
1437 vm_page_flag_clear(m, PG_ZERO);
1438 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1439 m->valid = VM_PAGE_BITS_ALL;
1440 }
1441}
1442
1443void
1444pmap_dispose_proc(struct proc *p)
1445{
1446 TODO;
1447}
1448
1449void
1450pmap_dispose_thread(struct thread *td)
1451{
1452 TODO;
1453}
1454
1455void
1456pmap_swapin_thread(struct thread *td)
1457{
1458 TODO;
1459}
1460
1461void
1462pmap_swapout_thread(struct thread *td)
1463{
1464 TODO;
1465}
1466
1467/*
1468 * Allocate a physical page of memory directly from the phys_avail map.
1469 * Can only be called from pmap_bootstrap before avail start and end are
1470 * calculated.
1471 */
1472static vm_offset_t
1473pmap_bootstrap_alloc(vm_size_t size, u_int align)
1474{
1475 vm_offset_t s, e;
1476 int i, j;
1477
1478 size = round_page(size);
1479 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1480 if (align != 0)
1481 s = (phys_avail[i] + align - 1) & ~(align - 1);
1482 else
1483 s = phys_avail[i];
1484 e = s + size;
1485
1486 if (s < phys_avail[i] || e > phys_avail[i + 1])
1487 continue;
1488
1489 if (s == phys_avail[i]) {
1490 phys_avail[i] += size;
1491 } else if (e == phys_avail[i + 1]) {
1492 phys_avail[i + 1] -= size;
1493 } else {
1494 for (j = phys_avail_count * 2; j > i; j -= 2) {
1495 phys_avail[j] = phys_avail[j - 2];
1496 phys_avail[j + 1] = phys_avail[j - 1];
1497 }
1498
1499 phys_avail[i + 3] = phys_avail[i + 1];
1500 phys_avail[i + 1] = s;
1501 phys_avail[i + 2] = e;
1502 phys_avail_count++;
1503 }
1504
1505 return (s);
1506 }
1507 panic("pmap_bootstrap_alloc: could not allocate memory");
1508}
1509
1510/*
1511 * Return an unmapped pvo for a kernel virtual address.
1512 * Used by pmap functions that operate on physical pages.
1513 */
1514static struct pvo_entry *
1515pmap_rkva_alloc(void)
1516{
1517 struct pvo_entry *pvo;
1518 struct pte *pt;
1519 vm_offset_t kva;
1520 int pteidx;
1521
1522 if (pmap_rkva_count == 0)
1523 panic("pmap_rkva_alloc: no more reserved KVAs");
1524
1525 kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
1526 pmap_kenter(kva, 0);
1527
1528 pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
1529
1530 if (pvo == NULL)
1531 panic("pmap_kva_alloc: pmap_pvo_find_va failed");
1532
1533 pt = pmap_pvo_to_pte(pvo, pteidx);
1534
1535 if (pt == NULL)
1536 panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
1537
1538 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1539 PVO_PTEGIDX_CLR(pvo);
1540
1541 pmap_pte_overflow++;
1542
1543 return (pvo);
1544}
1545
1546static void
1547pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
1548 int *depth_p)
1549{
1550 struct pte *pt;
1551
1552 /*
1553 * If this pvo already has a valid pte, we need to save it so it can
1554 * be restored later. We then just reload the new PTE over the old
1555 * slot.
1556 */
1557 if (saved_pt != NULL) {
1558 pt = pmap_pvo_to_pte(pvo, -1);
1559
1560 if (pt != NULL) {
1561 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1562 PVO_PTEGIDX_CLR(pvo);
1563 pmap_pte_overflow++;
1564 }
1565
1566 *saved_pt = pvo->pvo_pte;
1567
1568 pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1569 }
1570
1571 pvo->pvo_pte.pte_lo |= pa;
1572
1573 if (!pmap_pte_spill(pvo->pvo_vaddr))
1574 panic("pmap_pa_map: could not spill pvo %p", pvo);
1575
1576 if (depth_p != NULL)
1577 (*depth_p)++;
1578}
1579
1580static void
1581pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
1582{
1583 struct pte *pt;
1584
1585 pt = pmap_pvo_to_pte(pvo, -1);
1586
1587 if (pt != NULL) {
1588 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1589 PVO_PTEGIDX_CLR(pvo);
1590 pmap_pte_overflow++;
1591 }
1592
1593 pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1594
1595 /*
1596 * If there is a saved PTE and it's valid, restore it and return.
1597 */
1598 if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
1599 if (depth_p != NULL && --(*depth_p) == 0)
1600 panic("pmap_pa_unmap: restoring but depth == 0");
1601
1602 pvo->pvo_pte = *saved_pt;
1603
1604 if (!pmap_pte_spill(pvo->pvo_vaddr))
1605 panic("pmap_pa_unmap: could not spill pvo %p", pvo);
1606 }
1607}
1608
1609static void
1610pmap_syncicache(vm_offset_t pa, vm_size_t len)
1611{
1612 __syncicache((void *)pa, len);
1613}
1614
1615static void
1616tlbia(void)
1617{
1618 caddr_t i;
1619
1620 SYNC();
1621 for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
1622 TLBIE(i);
1623 EIEIO();
1624 }
1625 TLBSYNC();
1626 SYNC();
1627}
1628
1629static int
1630pmap_pvo_enter(pmap_t pm, vm_zone_t zone, struct pvo_head *pvo_head,
1631 vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1632{
1633 struct pvo_entry *pvo;
1634 u_int sr;
1635 int first;
1636 u_int ptegidx;
1637 int i;
1638
1639 pmap_pvo_enter_calls++;
1640
1641 /*
1642 * Compute the PTE Group index.
1643 */
1644 va &= ~ADDR_POFF;
1645 sr = va_to_sr(pm->pm_sr, va);
1646 ptegidx = va_to_pteg(sr, va);
1647
1648 /*
1649 * Remove any existing mapping for this page. Reuse the pvo entry if
1650 * there is a mapping.
1651 */
1652 LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1653 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1654 if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa)
1655 return (0);
1656 pmap_pvo_remove(pvo, -1);
1657 break;
1658 }
1659 }
1660
1661 /*
1662 * If we aren't overwriting a mapping, try to allocate.
1663 */
1664 if (pmap_initialized) {
1665 pvo = zalloc(zone);
1666 } else {
1667 if (pmap_bpvo_pool_index >= pmap_bpvo_pool_count) {
1668 pmap_bpvo_pool = (struct pvo_entry *)
1669 pmap_bootstrap_alloc(PAGE_SIZE, 0);
1670 pmap_bpvo_pool_index = 0;
1671 }
1672 pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
1673 pmap_bpvo_pool_index++;
1674 pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1675 }
1676
1677 if (pvo == NULL) {
1678 return (ENOMEM);
1679 }
1680
1681 pmap_pvo_entries++;
1682 pvo->pvo_vaddr = va;
1683 pvo->pvo_pmap = pm;
1684 LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1685 pvo->pvo_vaddr &= ~ADDR_POFF;
1686 if (flags & VM_PROT_EXECUTE)
1687 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1688 if (flags & PVO_WIRED)
1689 pvo->pvo_vaddr |= PVO_WIRED;
1690 if (pvo_head != &pmap_pvo_kunmanaged)
1691 pvo->pvo_vaddr |= PVO_MANAGED;
1692 pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
1693
1694 /*
1695 * Remember if the list was empty and therefore will be the first
1696 * item.
1697 */
1698 first = LIST_FIRST(pvo_head) == NULL;
1699
1700 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1701 if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1702 pvo->pvo_pmap->pm_stats.wired_count++;
1703 pvo->pvo_pmap->pm_stats.resident_count++;
1704
1705 /*
1706 * We hope this succeeds but it isn't required.
1707 */
1708 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1709 if (i >= 0) {
1710 PVO_PTEGIDX_SET(pvo, i);
1711 } else {
1712 panic("pmap_pvo_enter: overflow");
1713 pmap_pte_overflow++;
1714 }
1715
1716 return (first ? ENOENT : 0);
1717}
1718
1719static void
1720pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1721{
1722 struct pte *pt;
1723
1724 /*
1725 * If there is an active pte entry, we need to deactivate it (and
1726 * save the ref & cfg bits).
1727 */
1728 pt = pmap_pvo_to_pte(pvo, pteidx);
1729 if (pt != NULL) {
1730 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1731 PVO_PTEGIDX_CLR(pvo);
1732 } else {
1733 pmap_pte_overflow--;
1734 }
1735
1736 /*
1737 * Update our statistics.
1738 */
1739 pvo->pvo_pmap->pm_stats.resident_count--;
1740 if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1741 pvo->pvo_pmap->pm_stats.wired_count--;
1742
1743 /*
1744 * Save the REF/CHG bits into their cache if the page is managed.
1745 */
1746 if (pvo->pvo_vaddr & PVO_MANAGED) {
1747 struct vm_page *pg;
1748
1749 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
1750 if (pg != NULL) {
1751 pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
1752 (PTE_REF | PTE_CHG));
1753 }
1754 }
1755
1756 /*
1757 * Remove this PVO from the PV list.
1758 */
1759 LIST_REMOVE(pvo, pvo_vlink);
1760
1761 /*
1762 * Remove this from the overflow list and return it to the pool
1763 * if we aren't going to reuse it.
1764 */
1765 LIST_REMOVE(pvo, pvo_olink);
1766 if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
1767 zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
1768 pmap_upvo_zone, pvo);
1769 pmap_pvo_entries--;
1770 pmap_pvo_remove_calls++;
1771}
1772
1773static __inline int
1774pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1775{
1776 int pteidx;
1777
1778 /*
1779 * We can find the actual pte entry without searching by grabbing
1780 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
1781 * noticing the HID bit.
1782 */
1783 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1784 if (pvo->pvo_pte.pte_hi & PTE_HID)
1785 pteidx ^= pmap_pteg_mask * 8;
1786
1787 return (pteidx);
1788}
1789
1790static struct pvo_entry *
1791pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
1792{
1793 struct pvo_entry *pvo;
1794 int ptegidx;
1795 u_int sr;
1796
1797 va &= ~ADDR_POFF;
1798 sr = va_to_sr(pm->pm_sr, va);
1799 ptegidx = va_to_pteg(sr, va);
1800
1801 LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1802 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1803 if (pteidx_p)
1804 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1805 return (pvo);
1806 }
1807 }
1808
1809 return (NULL);
1810}
1811
1812static struct pte *
1813pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1814{
1815 struct pte *pt;
1816
1817 /*
1818 * If we haven't been supplied the ptegidx, calculate it.
1819 */
1820 if (pteidx == -1) {
1821 int ptegidx;
1822 u_int sr;
1823
1824 sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
1825 ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
1826 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1827 }
1828
1829 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1830
1831 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1832 panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
1833 "valid pte index", pvo);
1834 }
1835
1836 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1837 panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
1838 "pvo but no valid pte", pvo);
1839 }
1840
1841 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1842 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1843 panic("pmap_pvo_to_pte: pvo %p has valid pte in "
1844 "pmap_pteg_table %p but invalid in pvo", pvo, pt);
1845 }
1846
1847 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
1848 != 0) {
1849 panic("pmap_pvo_to_pte: pvo %p pte does not match "
1850 "pte %p in pmap_pteg_table", pvo, pt);
1851 }
1852
1853 return (pt);
1854 }
1855
1856 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1857 panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
1858 "pmap_pteg_table but valid in pvo", pvo, pt);
1859 }
1860
1861 return (NULL);
1862}
1863
1864static void *
1865pmap_pvo_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1866{
1867 vm_page_t m;
1868
1869 if (bytes != PAGE_SIZE)
1870 panic("pmap_pvo_allocf: benno was shortsighted. hit him.");
1871
1872 *flags = UMA_SLAB_PRIV;
1873 m = vm_page_alloc(pmap_pvo_obj, pmap_pvo_count, VM_ALLOC_SYSTEM);
1874 pmap_pvo_count++;
1875 if (m == NULL)
1876 return (NULL);
1877 return ((void *)VM_PAGE_TO_PHYS(m));
1878}
1879
1880/*
1881 * XXX: THIS STUFF SHOULD BE IN pte.c?
1882 */
1883int
1884pmap_pte_spill(vm_offset_t addr)
1885{
1886 struct pvo_entry *source_pvo, *victim_pvo;
1887 struct pvo_entry *pvo;
1888 int ptegidx, i, j;
1889 u_int sr;
1890 struct pteg *pteg;
1891 struct pte *pt;
1892
1893 pmap_pte_spills++;
1894
1895 __asm __volatile("mfsrin %0,%1" : "=r"(sr) : "r"(addr));
1896 ptegidx = va_to_pteg(sr, addr);
1897
1898 /*
1899 * Have to substitute some entry. Use the primary hash for this.
1900 * Use low bits of timebase as random generator.
1901 */
1902 pteg = &pmap_pteg_table[ptegidx];
1903 __asm __volatile("mftb %0" : "=r"(i));
1904 i &= 7;
1905 pt = &pteg->pt[i];
1906
1907 source_pvo = NULL;
1908 victim_pvo = NULL;
1909 LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1910 /*
1911 * We need to find a pvo entry for this address.
1912 */
1913 PMAP_PVO_CHECK(pvo);
1914 if (source_pvo == NULL &&
1915 pmap_pte_match(&pvo->pvo_pte, sr, addr,
1916 pvo->pvo_pte.pte_hi & PTE_HID)) {
1917 /*
1918 * Now found an entry to be spilled into the pteg.
1919 * The PTE is now valid, so we know it's active.
1920 */
1921 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1922
1923 if (j >= 0) {
1924 PVO_PTEGIDX_SET(pvo, j);
1925 pmap_pte_overflow--;
1926 PMAP_PVO_CHECK(pvo);
1927 return (1);
1928 }
1929
1930 source_pvo = pvo;
1931
1932 if (victim_pvo != NULL)
1933 break;
1934 }
1935
1936 /*
1937 * We also need the pvo entry of the victim we are replacing
1938 * so save the R & C bits of the PTE.
1939 */
1940 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1941 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1942 victim_pvo = pvo;
1943 if (source_pvo != NULL)
1944 break;
1945 }
1946 }
1947
1948 if (source_pvo == NULL)
1949 return (0);
1950
1951 if (victim_pvo == NULL) {
1952 if ((pt->pte_hi & PTE_HID) == 0)
1953 panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
1954 "entry", pt);
1955
1956 /*
1957 * If this is a secondary PTE, we need to search it's primary
1958 * pvo bucket for the matching PVO.
1959 */
1960 LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
1961 pvo_olink) {
1962 PMAP_PVO_CHECK(pvo);
1963 /*
1964 * We also need the pvo entry of the victim we are
1965 * replacing so save the R & C bits of the PTE.
1966 */
1967 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1968 victim_pvo = pvo;
1969 break;
1970 }
1971 }
1972
1973 if (victim_pvo == NULL)
1974 panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
1975 "entry", pt);
1976 }
1977
1978 /*
1979 * We are invalidating the TLB entry for the EA we are replacing even
1980 * though it's valid. If we don't, we lose any ref/chg bit changes
1981 * contained in the TLB entry.
1982 */
1983 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1984
1985 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1986 pmap_pte_set(pt, &source_pvo->pvo_pte);
1987
1988 PVO_PTEGIDX_CLR(victim_pvo);
1989 PVO_PTEGIDX_SET(source_pvo, i);
1990 pmap_pte_replacements++;
1991
1992 PMAP_PVO_CHECK(victim_pvo);
1993 PMAP_PVO_CHECK(source_pvo);
1994
1995 return (1);
1996}
1997
1998static int
1999pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2000{
2001 struct pte *pt;
2002 int i;
2003
2004 /*
2005 * First try primary hash.
2006 */
2007 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2008 if ((pt->pte_hi & PTE_VALID) == 0) {
2009 pvo_pt->pte_hi &= ~PTE_HID;
2010 pmap_pte_set(pt, pvo_pt);
2011 return (i);
2012 }
2013 }
2014
2015 /*
2016 * Now try secondary hash.
2017 */
2018 ptegidx ^= pmap_pteg_mask;
2019 ptegidx++;
2020 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2021 if ((pt->pte_hi & PTE_VALID) == 0) {
2022 pvo_pt->pte_hi |= PTE_HID;
2023 pmap_pte_set(pt, pvo_pt);
2024 return (i);
2025 }
2026 }
2027
2028 panic("pmap_pte_insert: overflow");
2029 return (-1);
2030}
2031
2032static boolean_t
2033pmap_query_bit(vm_page_t m, int ptebit)
2034{
2035 struct pvo_entry *pvo;
2036 struct pte *pt;
2037
2038 if (pmap_attr_fetch(m) & ptebit)
2039 return (TRUE);
2040
2041 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2042 PMAP_PVO_CHECK(pvo); /* sanity check */
2043
2044 /*
2045 * See if we saved the bit off. If so, cache it and return
2046 * success.
2047 */
2048 if (pvo->pvo_pte.pte_lo & ptebit) {
2049 pmap_attr_save(m, ptebit);
2050 PMAP_PVO_CHECK(pvo); /* sanity check */
2051 return (TRUE);
2052 }
2053 }
2054
2055 /*
2056 * No luck, now go through the hard part of looking at the PTEs
2057 * themselves. Sync so that any pending REF/CHG bits are flushed to
2058 * the PTEs.
2059 */
2060 SYNC();
2061 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2062 PMAP_PVO_CHECK(pvo); /* sanity check */
2063
2064 /*
2065 * See if this pvo has a valid PTE. if so, fetch the
2066 * REF/CHG bits from the valid PTE. If the appropriate
2067 * ptebit is set, cache it and return success.
2068 */
2069 pt = pmap_pvo_to_pte(pvo, -1);
2070 if (pt != NULL) {
2071 pmap_pte_synch(pt, &pvo->pvo_pte);
2072 if (pvo->pvo_pte.pte_lo & ptebit) {
2073 pmap_attr_save(m, ptebit);
2074 PMAP_PVO_CHECK(pvo); /* sanity check */
2075 return (TRUE);
2076 }
2077 }
2078 }
2079
2080 return (TRUE);
2081}
2082
2083static boolean_t
2084pmap_clear_bit(vm_page_t m, int ptebit)
2085{
2086 struct pvo_entry *pvo;
2087 struct pte *pt;
2088 int rv;
2089
2090 /*
2091 * Clear the cached value.
2092 */
2093 rv = pmap_attr_fetch(m);
2094 pmap_attr_clear(m, ptebit);
2095
2096 /*
2097 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2098 * we can reset the right ones). note that since the pvo entries and
2099 * list heads are accessed via BAT0 and are never placed in the page
2100 * table, we don't have to worry about further accesses setting the
2101 * REF/CHG bits.
2102 */
2103 SYNC();
2104
2105 /*
2106 * For each pvo entry, clear the pvo's ptebit. If this pvo has a
2107 * valid pte clear the ptebit from the valid pte.
2108 */
2109 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2110 PMAP_PVO_CHECK(pvo); /* sanity check */
2111 pt = pmap_pvo_to_pte(pvo, -1);
2112 if (pt != NULL) {
2113 pmap_pte_synch(pt, &pvo->pvo_pte);
2114 if (pvo->pvo_pte.pte_lo & ptebit)
2115 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2116 }
2117 rv |= pvo->pvo_pte.pte_lo;
2118 pvo->pvo_pte.pte_lo &= ~ptebit;
2119 PMAP_PVO_CHECK(pvo); /* sanity check */
2120 }
2121
2122 return ((rv & ptebit) != 0);
2123}