Deleted Added
sdiff udiff text old ( 85201 ) new ( 90643 )
full compact
1/*
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the NetBSD
19 * Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 * contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright

--- 42 unchanged lines hidden (view full) ---

87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#ifndef lint
94static const char rcsid[] =
95 "$FreeBSD: head/sys/powerpc/aim/mmu_oea.c 90643 2002-02-14 01:39:11Z benno $";
96#endif /* not lint */
97
98/*
99 * Manages physical address maps.
100 *
101 * In addition to hardware address maps, this module is called upon to
102 * provide software-use-only maps which may or may not be stored in the
103 * same form as hardware maps. These pseudo-maps are used to store
104 * intermediate results from copy operations to and from address spaces.
105 *
106 * Since the information managed by this module is also stored by the
107 * logical address mapping module, this module may throw away valid virtual
108 * to physical mappings at almost any time. However, invalidations of
109 * mappings must be done as requested.
110 *
111 * In order to cope with hardware architectures which make virtual to
112 * physical map invalidates expensive, this module may delay invalidate
113 * reduced protection operations until such time as they are actually
114 * necessary. This module is given full information as to which processors
115 * are currently using which maps, and to when physical maps must be made
116 * correct.
117 */
118
119#include <sys/param.h>
120#include <sys/kernel.h>
121#include <sys/ktr.h>
122#include <sys/lock.h>
123#include <sys/msgbuf.h>
124#include <sys/mutex.h>
125#include <sys/proc.h>
126#include <sys/sysctl.h>
127#include <sys/systm.h>
128#include <sys/vmmeter.h>
129
130#include <dev/ofw/openfirm.h>
131
132#include <vm/vm.h>
133#include <vm/vm_param.h>
134#include <vm/vm_kern.h>
135#include <vm/vm_page.h>
136#include <vm/vm_map.h>
137#include <vm/vm_object.h>
138#include <vm/vm_extern.h>
139#include <vm/vm_pageout.h>
140#include <vm/vm_pager.h>
141#include <vm/vm_zone.h>
142
143#include <machine/bat.h>
144#include <machine/frame.h>
145#include <machine/md_var.h>
146#include <machine/psl.h>
147#include <machine/pte.h>
148#include <machine/sr.h>
149
150#define PMAP_DEBUG
151
152#define TODO panic("%s: not implemented", __func__);
153
154#define PMAP_LOCK(pm)
155#define PMAP_UNLOCK(pm)
156
157#define TLBIE(va) __asm __volatile("tlbie %0" :: "r"(va))
158#define TLBSYNC() __asm __volatile("tlbsync");
159#define SYNC() __asm __volatile("sync");
160#define EIEIO() __asm __volatile("eieio");
161
162#define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4))
163#define VSID_TO_SR(vsid) ((vsid) & 0xf)
164#define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff)
165
166#define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
167#define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
168#define PVO_WIRED 0x0010 /* PVO entry is wired */
169#define PVO_MANAGED 0x0020 /* PVO entry is managed */
170#define PVO_EXECUTABLE 0x0040 /* PVO entry is executable */
171#define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
172#define PVO_ISEXECUTABLE(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
173#define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
174#define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
175#define PVO_PTEGIDX_CLR(pvo) \
176 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
177#define PVO_PTEGIDX_SET(pvo, i) \
178 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
179
180#define PMAP_PVO_CHECK(pvo)
181
182struct mem_region {
183 vm_offset_t mr_start;
184 vm_offset_t mr_size;
185};
186
187struct ofw_map {
188 vm_offset_t om_va;
189 vm_size_t om_len;
190 vm_offset_t om_pa;
191 u_int om_mode;
192};
193
194int pmap_bootstrapped = 0;
195
196/*
197 * Virtual and physical address of message buffer.
198 */
199struct msgbuf *msgbufp;
200vm_offset_t msgbuf_phys;
201
202/*
203 * Physical addresses of first and last available physical page.
204 */
205vm_offset_t avail_start;
206vm_offset_t avail_end;
207
208/*
209 * Map of physical memory regions.
210 */
211vm_offset_t phys_avail[128];
212u_int phys_avail_count;
213static struct mem_region regions[128];
214static struct ofw_map translations[128];
215static int translations_size;
216
217/*
218 * First and last available kernel virtual addresses.
219 */
220vm_offset_t virtual_avail;
221vm_offset_t virtual_end;
222vm_offset_t kernel_vm_end;
223
224/*
225 * Kernel pmap.
226 */
227struct pmap kernel_pmap_store;
228extern struct pmap ofw_pmap;
229
230/*
231 * PTEG data.
232 */
233static struct pteg *pmap_pteg_table;
234u_int pmap_pteg_count;
235u_int pmap_pteg_mask;
236
237/*
238 * PVO data.
239 */
240struct pvo_head *pmap_pvo_table; /* pvo entries by pteg index */
241struct pvo_head pmap_pvo_kunmanaged =
242 LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
243struct pvo_head pmap_pvo_unmanaged =
244 LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
245
246vm_zone_t pmap_upvo_zone; /* zone for pvo entries for unmanaged pages */
247vm_zone_t pmap_mpvo_zone; /* zone for pvo entries for managed pages */
248struct vm_zone pmap_upvo_zone_store;
249struct vm_zone pmap_mpvo_zone_store;
250struct vm_object pmap_upvo_zone_obj;
251struct vm_object pmap_mpvo_zone_obj;
252
253#define PMAP_PVO_SIZE 1024
254struct pvo_entry pmap_upvo_pool[PMAP_PVO_SIZE];
255
256#define VSID_NBPW (sizeof(u_int32_t) * 8)
257static u_int pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
258
259static boolean_t pmap_initialized = FALSE;
260
261/*
262 * Statistics.
263 */
264u_int pmap_pte_valid = 0;
265u_int pmap_pte_overflow = 0;
266u_int pmap_pte_replacements = 0;
267u_int pmap_pvo_entries = 0;
268u_int pmap_pvo_enter_calls = 0;
269u_int pmap_pvo_remove_calls = 0;
270u_int pmap_pte_spills = 0;
271SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
272 0, "");
273SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
274 &pmap_pte_overflow, 0, "");
275SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
276 &pmap_pte_replacements, 0, "");
277SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
278 0, "");
279SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
280 &pmap_pvo_enter_calls, 0, "");
281SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
282 &pmap_pvo_remove_calls, 0, "");
283SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
284 &pmap_pte_spills, 0, "");
285
286struct pvo_entry *pmap_pvo_zeropage;
287
288vm_offset_t pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
289u_int pmap_rkva_count = 4;
290
291/*
292 * Allocate physical memory for use in pmap_bootstrap.
293 */
294static vm_offset_t pmap_bootstrap_alloc(vm_size_t, u_int);
295
296/*
297 * PTE calls.
298 */
299static int pmap_pte_insert(u_int, struct pte *);
300
301/*
302 * PVO calls.
303 */
304static int pmap_pvo_enter(pmap_t, vm_zone_t, struct pvo_head *,
305 vm_offset_t, vm_offset_t, u_int, int);
306static void pmap_pvo_remove(struct pvo_entry *, int);
307static struct pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
308static struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
309
310/*
311 * Utility routines.
312 */
313static struct pvo_entry *pmap_rkva_alloc(void);
314static void pmap_pa_map(struct pvo_entry *, vm_offset_t,
315 struct pte *, int *);
316static void pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
317static void pmap_syncicache(vm_offset_t, vm_size_t);
318static boolean_t pmap_query_bit(vm_page_t, int);
319static boolean_t pmap_clear_bit(vm_page_t, int);
320static void tlbia(void);
321
322static __inline int
323va_to_sr(u_int *sr, vm_offset_t va)
324{
325 return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
326}
327
328static __inline u_int
329va_to_pteg(u_int sr, vm_offset_t addr)
330{
331 u_int hash;
332
333 hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
334 ADDR_PIDX_SHFT);
335 return (hash & pmap_pteg_mask);
336}
337
338static __inline struct pvo_head *
339pa_to_pvoh(vm_offset_t pa)
340{
341 struct vm_page *pg;
342
343 pg = PHYS_TO_VM_PAGE(pa);
344
345 if (pg == NULL)
346 return (&pmap_pvo_unmanaged);
347
348 return (&pg->md.mdpg_pvoh);
349}
350
351static __inline struct pvo_head *
352vm_page_to_pvoh(vm_page_t m)
353{
354
355 return (&m->md.mdpg_pvoh);
356}
357
358static __inline void
359pmap_attr_clear(vm_page_t m, int ptebit)
360{
361
362 m->md.mdpg_attrs &= ~ptebit;
363}
364
365static __inline int
366pmap_attr_fetch(vm_page_t m)
367{
368
369 return (m->md.mdpg_attrs);
370}
371
372static __inline void
373pmap_attr_save(vm_page_t m, int ptebit)
374{
375
376 m->md.mdpg_attrs |= ptebit;
377}
378
379static __inline int
380pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
381{
382 if (pt->pte_hi == pvo_pt->pte_hi)
383 return (1);
384
385 return (0);
386}
387
388static __inline int
389pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
390{
391 return (pt->pte_hi & ~PTE_VALID) ==
392 (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
393 ((va >> ADDR_API_SHFT) & PTE_API) | which);
394}
395
396static __inline void
397pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
398{
399 /*
400 * Construct a PTE. Default to IMB initially. Valid bit only gets
401 * set when the real pte is set in memory.
402 *
403 * Note: Don't set the valid bit for correct operation of tlb update.
404 */
405 pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
406 (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
407 pt->pte_lo = pte_lo;
408}
409
410static __inline void
411pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
412{
413
414 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
415}
416
417static __inline void
418pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
419{
420
421 /*
422 * As shown in Section 7.6.3.2.3
423 */
424 pt->pte_lo &= ~ptebit;
425 TLBIE(va);
426 EIEIO();
427 TLBSYNC();
428 SYNC();
429}
430
431static __inline void
432pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
433{
434
435 pvo_pt->pte_hi |= PTE_VALID;
436
437 /*
438 * Update the PTE as defined in section 7.6.3.1.
439 * Note that the REF/CHG bits are from pvo_pt and thus should havce
440 * been saved so this routine can restore them (if desired).
441 */
442 pt->pte_lo = pvo_pt->pte_lo;
443 EIEIO();
444 pt->pte_hi = pvo_pt->pte_hi;
445 SYNC();
446 pmap_pte_valid++;
447}
448
449static __inline void
450pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
451{
452
453 pvo_pt->pte_hi &= ~PTE_VALID;
454
455 /*
456 * Force the reg & chg bits back into the PTEs.
457 */
458 SYNC();
459
460 /*
461 * Invalidate the pte.
462 */
463 pt->pte_hi &= ~PTE_VALID;
464
465 SYNC();
466 TLBIE(va);
467 EIEIO();
468 TLBSYNC();
469 SYNC();
470
471 /*
472 * Save the reg & chg bits.
473 */
474 pmap_pte_synch(pt, pvo_pt);
475 pmap_pte_valid--;
476}
477
478static __inline void
479pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
480{
481
482 /*
483 * Invalidate the PTE
484 */
485 pmap_pte_unset(pt, pvo_pt, va);
486 pmap_pte_set(pt, pvo_pt);
487}
488
489/*
490 * Quick sort callout for comparing memory regions.
491 */
492static int mr_cmp(const void *a, const void *b);
493static int om_cmp(const void *a, const void *b);
494
495static int
496mr_cmp(const void *a, const void *b)
497{
498 const struct mem_region *regiona;
499 const struct mem_region *regionb;
500
501 regiona = a;
502 regionb = b;
503 if (regiona->mr_start < regionb->mr_start)
504 return (-1);
505 else if (regiona->mr_start > regionb->mr_start)
506 return (1);
507 else
508 return (0);
509}
510
511static int
512om_cmp(const void *a, const void *b)
513{
514 const struct ofw_map *mapa;
515 const struct ofw_map *mapb;
516
517 mapa = a;
518 mapb = b;
519 if (mapa->om_pa < mapb->om_pa)
520 return (-1);
521 else if (mapa->om_pa > mapb->om_pa)
522 return (1);
523 else
524 return (0);
525}
526
527void
528pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
529{
530 ihandle_t pmem, mmui;
531 phandle_t chosen, mmu;
532 int sz;
533 int i, j;
534 vm_size_t size;
535 vm_offset_t pa, va, off;
536 u_int batl, batu;
537
538 /*
539 * Use an IBAT and a DBAT to map the bottom segment of memory
540 * where we are.
541 */
542 batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
543 batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
544 __asm ("mtibatu 0,%0; mtibatl 0,%1; mtdbatu 0,%0; mtdbatl 0,%1"
545 :: "r"(batu), "r"(batl));
546#if 0
547 batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
548 batl = BATL(0x80000000, BAT_M, BAT_PP_RW);
549 __asm ("mtibatu 1,%0; mtibatl 1,%1; mtdbatu 1,%0; mtdbatl 1,%1"
550 :: "r"(batu), "r"(batl));
551#endif
552
553 /*
554 * Set the start and end of kva.
555 */
556 virtual_avail = VM_MIN_KERNEL_ADDRESS;
557 virtual_end = VM_MAX_KERNEL_ADDRESS;
558
559 if ((pmem = OF_finddevice("/memory")) == -1)
560 panic("pmap_bootstrap: can't locate memory device");
561 if ((sz = OF_getproplen(pmem, "available")) == -1)
562 panic("pmap_bootstrap: can't get length of available memory");
563 if (sizeof(phys_avail) < sz)
564 panic("pmap_bootstrap: phys_avail too small");
565 if (sizeof(regions) < sz)
566 panic("pmap_bootstrap: regions too small");
567 bzero(regions, sz);
568 if (OF_getprop(pmem, "available", regions, sz) == -1)
569 panic("pmap_bootstrap: can't get available memory");
570 sz /= sizeof(*regions);
571 CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
572 qsort(regions, sz, sizeof(*regions), mr_cmp);
573 phys_avail_count = 0;
574 for (i = 0, j = 0; i < sz; i++, j += 2) {
575 CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
576 regions[i].mr_start + regions[i].mr_size,
577 regions[i].mr_size);
578 phys_avail[j] = regions[i].mr_start;
579 phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
580 phys_avail_count++;
581 }
582
583 /*
584 * Allocate PTEG table.
585 */
586#ifdef PTEGCOUNT
587 pmap_pteg_count = PTEGCOUNT;
588#else
589 pmap_pteg_count = 0x1000;
590
591 while (pmap_pteg_count < physmem)
592 pmap_pteg_count <<= 1;
593
594 pmap_pteg_count >>= 1;
595#endif /* PTEGCOUNT */
596
597 size = pmap_pteg_count * sizeof(struct pteg);
598 CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
599 size);
600 pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
601 CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
602 bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
603 pmap_pteg_mask = pmap_pteg_count - 1;
604
605 /*
606 * Allocate PTE overflow lists.
607 */
608 size = sizeof(struct pvo_head) * pmap_pteg_count;
609 pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
610 PAGE_SIZE);
611 CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
612 for (i = 0; i < pmap_pteg_count; i++)
613 LIST_INIT(&pmap_pvo_table[i]);
614
615 /*
616 * Allocate the message buffer.
617 */
618 msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
619
620 /*
621 * Initialise the unmanaged pvo pool.
622 */
623 pmap_upvo_zone = &pmap_upvo_zone_store;
624 zbootinit(pmap_upvo_zone, "unmanaged pvo", sizeof (struct pvo_entry),
625 pmap_upvo_pool, PMAP_PVO_SIZE);
626
627 /*
628 * Make sure kernel vsid is allocated as well as VSID 0.
629 */
630 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
631 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
632 pmap_vsid_bitmap[0] |= 1;
633
634 /*
635 * Set up the OpenFirmware pmap and add it's mappings.
636 */
637 pmap_pinit(&ofw_pmap);
638 ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
639 if ((chosen = OF_finddevice("/chosen")) == -1)
640 panic("pmap_bootstrap: can't find /chosen");
641 OF_getprop(chosen, "mmu", &mmui, 4);
642 if ((mmu = OF_instance_to_package(mmui)) == -1)
643 panic("pmap_bootstrap: can't get mmu package");
644 if ((sz = OF_getproplen(mmu, "translations")) == -1)
645 panic("pmap_bootstrap: can't get ofw translation count");
646 if (sizeof(translations) < sz)
647 panic("pmap_bootstrap: translations too small");
648 bzero(translations, sz);
649 if (OF_getprop(mmu, "translations", translations, sz) == -1)
650 panic("pmap_bootstrap: can't get ofw translations");
651 CTR0(KTR_PMAP, "pmap_bootstrap: translations");
652 qsort(translations, sz, sizeof (*translations), om_cmp);
653 for (i = 0; i < sz; i++) {
654 CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
655 translations[i].om_pa, translations[i].om_va,
656 translations[i].om_len);
657
658 /* Drop stuff below something? */
659
660 /* Enter the pages? */
661 for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
662 struct vm_page m;
663
664 m.phys_addr = translations[i].om_pa + off;
665 pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
666 VM_PROT_ALL, 1);
667 }
668 }
669#ifdef SMP
670 TLBSYNC();
671#endif
672
673 /*
674 * Initialize the kernel pmap (which is statically allocated).
675 */
676 for (i = 0; i < 16; i++) {
677 kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
678 }
679 kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
680 kernel_pmap->pm_active = ~0;
681 kernel_pmap->pm_count = 1;
682
683 /*
684 * Allocate a kernel stack with a guard page for thread0 and map it
685 * into the kernel page map.
686 */
687 pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
688 kstack0_phys = pa;
689 kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
690 CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
691 kstack0);
692 virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
693 for (i = 0; i < KSTACK_PAGES; i++) {
694 pa = kstack0_phys + i * PAGE_SIZE;
695 va = kstack0 + i * PAGE_SIZE;
696 pmap_kenter(va, pa);
697 TLBIE(va);
698 }
699
700 /*
701 * Calculate the first and last available physical addresses.
702 */
703 avail_start = phys_avail[0];
704 for (i = 0; phys_avail[i + 2] != 0; i += 2)
705 ;
706 avail_end = phys_avail[i + 1];
707 Maxmem = powerpc_btop(avail_end);
708
709 /*
710 * Allocate virtual address space for the message buffer.
711 */
712 msgbufp = (struct msgbuf *)virtual_avail;
713 virtual_avail += round_page(MSGBUF_SIZE);
714
715 /*
716 * Initialize hardware.
717 */
718 for (i = 0; i < 16; i++) {
719 __asm __volatile("mtsrin %0,%1"
720 :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
721 }
722 __asm __volatile ("mtsr %0,%1"
723 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
724 __asm __volatile ("sync; mtsdr1 %0; isync"
725 :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
726 tlbia();
727
728 pmap_bootstrapped++;
729}
730
731/*
732 * Activate a user pmap. The pmap must be activated before it's address
733 * space can be accessed in any way.
734 */
735void
736pmap_activate(struct thread *td)
737{
738 pmap_t pm;
739 int i;
740
741 /*
742 * Load all the data we need up front to encourasge the compiler to
743 * not issue any loads while we have interrupts disabled below.
744 */
745 pm = &td->td_proc->p_vmspace->vm_pmap;
746
747 KASSERT(pm->pm_active == 0, ("pmap_activate: pmap already active?"));
748
749 pm->pm_active |= PCPU_GET(cpumask);
750
751 /*
752 * XXX: Address this again later?
753 */
754 critical_enter();
755
756 for (i = 0; i < 16; i++) {
757 __asm __volatile("mtsr %0,%1" :: "r"(i), "r"(pm->pm_sr[i]));
758 }
759 __asm __volatile("sync; isync");
760
761 critical_exit();
762}
763
764vm_offset_t
765pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
766{
767 TODO;
768 return (0);
769}
770
771void
772pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
773{
774 TODO;
775}
776
777void
778pmap_clear_modify(vm_page_t m)
779{
780
781 if (m->flags * PG_FICTITIOUS)
782 return;
783 pmap_clear_bit(m, PTE_CHG);
784}
785
786void
787pmap_collect(void)
788{
789 TODO;
790}
791
792void
793pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
794 vm_size_t len, vm_offset_t src_addr)
795{
796 TODO;
797}
798
799void
800pmap_copy_page(vm_offset_t src, vm_offset_t dst)
801{
802 TODO;
803}
804
805/*
806 * Zero a page of physical memory by temporarily mapping it into the tlb.
807 */
808void
809pmap_zero_page(vm_offset_t pa)
810{
811 caddr_t va;
812 int i;
813
814 if (pa < SEGMENT_LENGTH) {
815 va = (caddr_t) pa;
816 } else if (pmap_initialized) {
817 if (pmap_pvo_zeropage == NULL)
818 pmap_pvo_zeropage = pmap_rkva_alloc();
819 pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
820 va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
821 } else {
822 panic("pmap_zero_page: can't zero pa %#x", pa);
823 }
824
825 bzero(va, PAGE_SIZE);
826
827 for (i = PAGE_SIZE / CACHELINESIZE; i > 0; i--) {
828 __asm __volatile("dcbz 0,%0" :: "r"(va));
829 va += CACHELINESIZE;
830 }
831
832 if (pa >= SEGMENT_LENGTH)
833 pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
834}
835
836void
837pmap_zero_page_area(vm_offset_t pa, int off, int size)
838{
839 TODO;
840}
841
842/*
843 * Map the given physical page at the specified virtual address in the
844 * target pmap with the protection requested. If specified the page
845 * will be wired down.
846 */
847void
848pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
849 boolean_t wired)
850{
851 struct pvo_head *pvo_head;
852 vm_zone_t zone;
853 u_int pte_lo, pvo_flags;
854 int error;
855
856 if (!pmap_initialized) {
857 pvo_head = &pmap_pvo_kunmanaged;
858 zone = pmap_upvo_zone;
859 pvo_flags = 0;
860 } else {
861 pvo_head = pa_to_pvoh(m->phys_addr);
862 zone = pmap_mpvo_zone;
863 pvo_flags = PVO_MANAGED;
864 }
865
866 pte_lo = PTE_I | PTE_G;
867
868 if (prot & VM_PROT_WRITE)
869 pte_lo |= PTE_BW;
870 else
871 pte_lo |= PTE_BR;
872
873 if (prot & VM_PROT_EXECUTE)
874 pvo_flags |= PVO_EXECUTABLE;
875
876 if (wired)
877 pvo_flags |= PVO_WIRED;
878
879 critical_enter();
880
881 error = pmap_pvo_enter(pmap, zone, pvo_head, va, m->phys_addr, pte_lo,
882 pvo_flags);
883
884 critical_exit();
885
886 if (error == ENOENT) {
887 /*
888 * Flush the real memory from the cache.
889 */
890 if ((pvo_flags & PVO_EXECUTABLE) && (pte_lo & PTE_I) == 0) {
891 pmap_syncicache(m->phys_addr, PAGE_SIZE);
892 }
893 }
894}
895
896vm_offset_t
897pmap_extract(pmap_t pmap, vm_offset_t va)
898{
899 TODO;
900 return (0);
901}
902
903/*
904 * Grow the number of kernel page table entries. Unneeded.
905 */
906void
907pmap_growkernel(vm_offset_t addr)
908{
909}
910
911void
912pmap_init(vm_offset_t phys_start, vm_offset_t phys_end)
913{
914
915 CTR(KTR_PMAP, "pmap_init");
916}
917
918void
919pmap_init2(void)
920{
921
922 CTR(KTR_PMAP, "pmap_init2");
923 zinitna(pmap_upvo_zone, &pmap_upvo_zone_obj, NULL, 0, PMAP_PVO_SIZE,
924 ZONE_INTERRUPT, 1);
925 pmap_mpvo_zone = zinit("managed pvo", sizeof(struct pvo_entry),
926 PMAP_PVO_SIZE, ZONE_INTERRUPT, 1);
927 pmap_initialized = TRUE;
928}
929
930boolean_t
931pmap_is_modified(vm_page_t m)
932{
933 TODO;
934 return (0);
935}
936
937void
938pmap_clear_reference(vm_page_t m)
939{
940 TODO;
941}
942
943int
944pmap_ts_referenced(vm_page_t m)
945{
946 TODO;
947 return (0);
948}
949
950/*
951 * Map a wired page into kernel virtual address space.
952 */
953void
954pmap_kenter(vm_offset_t va, vm_offset_t pa)
955{
956 u_int pte_lo;
957 int error;
958 int i;
959
960#if 0
961 if (va < VM_MIN_KERNEL_ADDRESS)
962 panic("pmap_kenter: attempt to enter non-kernel address %#x",
963 va);
964#endif
965
966 pte_lo = PTE_I | PTE_G | PTE_BW;
967 for (i = 0; phys_avail[i + 2] != 0; i += 2) {
968 if (pa >= phys_avail[i] && pa < phys_avail[i + 1]) {
969 pte_lo &= ~(PTE_I | PTE_G);
970 break;
971 }
972 }
973
974 critical_enter();
975
976 error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
977 &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
978
979 critical_exit();
980
981 if (error != 0 && error != ENOENT)
982 panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
983 pa, error);
984
985 /*
986 * Flush the real memory from the instruction cache.
987 */
988 if ((pte_lo & (PTE_I | PTE_G)) == 0) {
989 pmap_syncicache(pa, PAGE_SIZE);
990 }
991}
992
993vm_offset_t
994pmap_kextract(vm_offset_t va)
995{
996 TODO;
997 return (0);
998}
999
1000void
1001pmap_kremove(vm_offset_t va)
1002{
1003 TODO;
1004}
1005
1006/*
1007 * Map a range of physical addresses into kernel virtual address space.
1008 *
1009 * The value passed in *virt is a suggested virtual address for the mapping.
1010 * Architectures which can support a direct-mapped physical to virtual region
1011 * can return the appropriate address within that region, leaving '*virt'
1012 * unchanged. We cannot and therefore do not; *virt is updated with the
1013 * first usable address after the mapped region.
1014 */
1015vm_offset_t
1016pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
1017{
1018 vm_offset_t sva, va;
1019
1020 sva = *virt;
1021 va = sva;
1022 for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1023 pmap_kenter(va, pa_start);
1024 *virt = va;
1025 return (sva);
1026}
1027
1028int
1029pmap_mincore(pmap_t pmap, vm_offset_t addr)
1030{
1031 TODO;
1032 return (0);
1033}
1034
1035/*
1036 * Create the uarea for a new process.
1037 * This routine directly affects the fork perf for a process.
1038 */
1039void
1040pmap_new_proc(struct proc *p)
1041{
1042 vm_object_t upobj;
1043 vm_offset_t up;
1044 vm_page_t m;
1045 u_int i;
1046
1047 /*
1048 * Allocate the object for the upages.
1049 */
1050 upobj = p->p_upages_obj;
1051 if (upobj == NULL) {
1052 upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
1053 p->p_upages_obj = upobj;
1054 }
1055
1056 /*
1057 * Get a kernel virtual address for the uarea for this process.
1058 */
1059 up = (vm_offset_t)p->p_uarea;
1060 if (up == 0) {
1061 up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
1062 if (up == 0)
1063 panic("pmap_new_proc: upage allocation failed");
1064 p->p_uarea = (struct user *)up;
1065 }
1066
1067 for (i = 0; i < UAREA_PAGES; i++) {
1068 /*
1069 * Get a uarea page.
1070 */
1071 m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1072
1073 /*
1074 * Wire the page.
1075 */
1076 m->wire_count++;
1077
1078 /*
1079 * Enter the page into the kernel address space.
1080 */
1081 pmap_kenter(up + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1082
1083 vm_page_wakeup(m);
1084 vm_page_flag_clear(m, PG_ZERO);
1085 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1086 m->valid = VM_PAGE_BITS_ALL;
1087 }
1088}
1089
1090void
1091pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
1092 vm_pindex_t pindex, vm_size_t size, int limit)
1093{
1094 TODO;
1095}
1096
1097/*
1098 * Lower the permission for all mappings to a given page.
1099 */
1100void
1101pmap_page_protect(vm_page_t m, vm_prot_t prot)
1102{
1103 struct pvo_head *pvo_head;
1104 struct pvo_entry *pvo, *next_pvo;
1105 struct pte *pt;
1106
1107 /*
1108 * Since the routine only downgrades protection, if the
1109 * maximal protection is desired, there isn't any change
1110 * to be made.
1111 */
1112 if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
1113 (VM_PROT_READ|VM_PROT_WRITE))
1114 return;
1115
1116 critical_enter();
1117
1118 pvo_head = vm_page_to_pvoh(m);
1119 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1120 next_pvo = LIST_NEXT(pvo, pvo_vlink);
1121 PMAP_PVO_CHECK(pvo); /* sanity check */
1122
1123 /*
1124 * Downgrading to no mapping at all, we just remove the entry.
1125 */
1126 if ((prot & VM_PROT_READ) == 0) {
1127 pmap_pvo_remove(pvo, -1);
1128 continue;
1129 }
1130
1131 /*
1132 * If EXEC permission is being revoked, just clear the flag
1133 * in the PVO.
1134 */
1135 if ((prot & VM_PROT_EXECUTE) == 0)
1136 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1137
1138 /*
1139 * If this entry is already RO, don't diddle with the page
1140 * table.
1141 */
1142 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
1143 PMAP_PVO_CHECK(pvo);
1144 continue;
1145 }
1146
1147 /*
1148 * Grab the PTE before we diddle the bits so pvo_to_pte can
1149 * verify the pte contents are as expected.
1150 */
1151 pt = pmap_pvo_to_pte(pvo, -1);
1152 pvo->pvo_pte.pte_lo &= ~PTE_PP;
1153 pvo->pvo_pte.pte_lo |= PTE_BR;
1154 if (pt != NULL)
1155 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1156 PMAP_PVO_CHECK(pvo); /* sanity check */
1157 }
1158
1159 critical_exit();
1160}
1161
1162/*
1163 * Make the specified page pageable (or not). Unneeded.
1164 */
1165void
1166pmap_pageable(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1167 boolean_t pageable)
1168{
1169}
1170
1171boolean_t
1172pmap_page_exists(pmap_t pmap, vm_page_t m)
1173{
1174 TODO;
1175 return (0);
1176}
1177
1178static u_int pmap_vsidcontext;
1179
1180void
1181pmap_pinit(pmap_t pmap)
1182{
1183 int i, mask;
1184 u_int entropy;
1185
1186 entropy = 0;
1187 __asm __volatile("mftb %0" : "=r"(entropy));
1188
1189 /*
1190 * Allocate some segment registers for this pmap.
1191 */
1192 pmap->pm_count = 1;
1193 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1194 u_int hash, n;
1195
1196 /*
1197 * Create a new value by mutiplying by a prime and adding in
1198 * entropy from the timebase register. This is to make the
1199 * VSID more random so that the PT hash function collides
1200 * less often. (Note that the prime casues gcc to do shifts
1201 * instead of a multiply.)
1202 */
1203 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1204 hash = pmap_vsidcontext & (NPMAPS - 1);
1205 if (hash == 0) /* 0 is special, avoid it */
1206 continue;
1207 n = hash >> 5;
1208 mask = 1 << (hash & (VSID_NBPW - 1));
1209 hash = (pmap_vsidcontext & 0xfffff);
1210 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1211 /* anything free in this bucket? */
1212 if (pmap_vsid_bitmap[n] == 0xffffffff) {
1213 entropy = (pmap_vsidcontext >> 20);
1214 continue;
1215 }
1216 i = ffs(~pmap_vsid_bitmap[i]) - 1;
1217 mask = 1 << i;
1218 hash &= 0xfffff & ~(VSID_NBPW - 1);
1219 hash |= i;
1220 }
1221 pmap_vsid_bitmap[n] |= mask;
1222 for (i = 0; i < 16; i++)
1223 pmap->pm_sr[i] = VSID_MAKE(i, hash);
1224 return;
1225 }
1226
1227 panic("pmap_pinit: out of segments");
1228}
1229
1230/*
1231 * Initialize the pmap associated with process 0.
1232 */
1233void
1234pmap_pinit0(pmap_t pm)
1235{
1236
1237 pmap_pinit(pm);
1238 bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1239}
1240
1241void
1242pmap_pinit2(pmap_t pmap)
1243{
1244 /* XXX: Remove this stub when no longer called */
1245}
1246
1247void
1248pmap_prefault(pmap_t pmap, vm_offset_t va, vm_map_entry_t entry)
1249{
1250 TODO;
1251}
1252
1253void
1254pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1255{
1256 TODO;
1257}
1258
1259vm_offset_t
1260pmap_phys_address(int ppn)
1261{
1262 TODO;
1263 return (0);
1264}
1265
1266void
1267pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1268{
1269 int i;
1270
1271 for (i = 0; i < count; i++, va += PAGE_SIZE)
1272 pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
1273}
1274
1275void
1276pmap_qremove(vm_offset_t va, int count)
1277{
1278 TODO;
1279}
1280
1281/*
1282 * Add a reference to the specified pmap.
1283 */
1284void
1285pmap_reference(pmap_t pm)
1286{
1287
1288 if (pm != NULL)
1289 pm->pm_count++;
1290}
1291
1292void
1293pmap_release(pmap_t pmap)
1294{
1295 TODO;
1296}
1297
1298void
1299pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1300{
1301 TODO;
1302}
1303
1304void
1305pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1306{
1307 TODO;
1308}
1309
1310void
1311pmap_swapin_proc(struct proc *p)
1312{
1313 TODO;
1314}
1315
1316void
1317pmap_swapout_proc(struct proc *p)
1318{
1319 TODO;
1320}
1321
1322/*
1323 * Create the kernel stack and pcb for a new thread.
1324 * This routine directly affects the fork perf for a process and
1325 * create performance for a thread.
1326 */
1327void
1328pmap_new_thread(struct thread *td)
1329{
1330 vm_object_t ksobj;
1331 vm_offset_t ks;
1332 vm_page_t m;
1333 u_int i;
1334
1335 /*
1336 * Allocate object for the kstack.
1337 */
1338 ksobj = td->td_kstack_obj;
1339 if (ksobj == NULL) {
1340 ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
1341 td->td_kstack_obj = ksobj;
1342 }
1343
1344 /*
1345 * Get a kernel virtual address for the kstack for this thread.
1346 */
1347 ks = td->td_kstack;
1348 if (ks == 0) {
1349 ks = kmem_alloc_nofault(kernel_map,
1350 (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE);
1351 if (ks == 0)
1352 panic("pmap_new_thread: kstack allocation failed");
1353 TLBIE(ks);
1354 ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
1355 td->td_kstack = ks;
1356 }
1357
1358 for (i = 0; i < KSTACK_PAGES; i++) {
1359 /*
1360 * Get a kernel stack page.
1361 */
1362 m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1363
1364 /*
1365 * Wire the page.
1366 */
1367 m->wire_count++;
1368
1369 /*
1370 * Enter the page into the kernel address space.
1371 */
1372 pmap_kenter(ks + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1373
1374 vm_page_wakeup(m);
1375 vm_page_flag_clear(m, PG_ZERO);
1376 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1377 m->valid = VM_PAGE_BITS_ALL;
1378 }
1379}
1380
1381void
1382pmap_dispose_proc(struct proc *p)
1383{
1384 TODO;
1385}
1386
1387void
1388pmap_dispose_thread(struct thread *td)
1389{
1390 TODO;
1391}
1392
1393void
1394pmap_swapin_thread(struct thread *td)
1395{
1396 TODO;
1397}
1398
1399void
1400pmap_swapout_thread(struct thread *td)
1401{
1402 TODO;
1403}
1404
1405/*
1406 * Allocate a physical page of memory directly from the phys_avail map.
1407 * Can only be called from pmap_bootstrap before avail start and end are
1408 * calculated.
1409 */
1410static vm_offset_t
1411pmap_bootstrap_alloc(vm_size_t size, u_int align)
1412{
1413 vm_offset_t s, e;
1414 int i, j;
1415
1416 size = round_page(size);
1417 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1418 if (align != 0)
1419 s = (phys_avail[i] + align - 1) & ~(align - 1);
1420 else
1421 s = phys_avail[i];
1422 e = s + size;
1423
1424 if (s < phys_avail[i] || e > phys_avail[i + 1])
1425 continue;
1426
1427 if (s == phys_avail[i]) {
1428 phys_avail[i] += size;
1429 } else if (e == phys_avail[i + 1]) {
1430 phys_avail[i + 1] -= size;
1431 } else {
1432 for (j = phys_avail_count * 2; j > i; j -= 2) {
1433 phys_avail[j] = phys_avail[j - 2];
1434 phys_avail[j + 1] = phys_avail[j - 1];
1435 }
1436
1437 phys_avail[i + 3] = phys_avail[i + 1];
1438 phys_avail[i + 1] = s;
1439 phys_avail[i + 2] = e;
1440 phys_avail_count++;
1441 }
1442
1443 return (s);
1444 }
1445 panic("pmap_bootstrap_alloc: could not allocate memory");
1446}
1447
1448/*
1449 * Return an unmapped pvo for a kernel virtual address.
1450 * Used by pmap functions that operate on physical pages.
1451 */
1452static struct pvo_entry *
1453pmap_rkva_alloc(void)
1454{
1455 struct pvo_entry *pvo;
1456 struct pte *pt;
1457 vm_offset_t kva;
1458 int pteidx;
1459
1460 if (pmap_rkva_count == 0)
1461 panic("pmap_rkva_alloc: no more reserved KVAs");
1462
1463 kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
1464 pmap_kenter(kva, 0);
1465
1466 pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
1467
1468 if (pvo == NULL)
1469 panic("pmap_kva_alloc: pmap_pvo_find_va failed");
1470
1471 pt = pmap_pvo_to_pte(pvo, pteidx);
1472
1473 if (pt == NULL)
1474 panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
1475
1476 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1477 PVO_PTEGIDX_CLR(pvo);
1478
1479 pmap_pte_overflow++;
1480
1481 return (pvo);
1482}
1483
1484static void
1485pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
1486 int *depth_p)
1487{
1488 struct pte *pt;
1489
1490 critical_enter();
1491
1492 /*
1493 * If this pvo already has a valid pte, we need to save it so it can
1494 * be restored later. We then just reload the new PTE over the old
1495 * slot.
1496 */
1497 if (saved_pt != NULL) {
1498 pt = pmap_pvo_to_pte(pvo, -1);
1499
1500 if (pt != NULL) {
1501 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1502 PVO_PTEGIDX_CLR(pvo);
1503 pmap_pte_overflow++;
1504 }
1505
1506 *saved_pt = pvo->pvo_pte;
1507
1508 pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1509 }
1510
1511 pvo->pvo_pte.pte_lo |= pa;
1512
1513 if (!pmap_pte_spill(pvo->pvo_vaddr))
1514 panic("pmap_pa_map: could not spill pvo %p", pvo);
1515
1516 if (depth_p != NULL)
1517 (*depth_p)++;
1518
1519 critical_exit();
1520}
1521
1522static void
1523pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
1524{
1525 struct pte *pt;
1526
1527 critical_enter();
1528
1529 pt = pmap_pvo_to_pte(pvo, -1);
1530
1531 if (pt != NULL) {
1532 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1533 PVO_PTEGIDX_CLR(pvo);
1534 pmap_pte_overflow++;
1535 }
1536
1537 pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1538
1539 /*
1540 * If there is a saved PTE and it's valid, restore it and return.
1541 */
1542 if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
1543 if (depth_p != NULL && --(*depth_p) == 0)
1544 panic("pmap_pa_unmap: restoring but depth == 0");
1545
1546 pvo->pvo_pte = *saved_pt;
1547
1548 if (!pmap_pte_spill(pvo->pvo_vaddr))
1549 panic("pmap_pa_unmap: could not spill pvo %p", pvo);
1550 }
1551
1552 critical_exit();
1553}
1554
1555static void
1556pmap_syncicache(vm_offset_t pa, vm_size_t len)
1557{
1558 __syncicache((void *)pa, len);
1559}
1560
1561static void
1562tlbia(void)
1563{
1564 caddr_t i;
1565
1566 SYNC();
1567 for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
1568 TLBIE(i);
1569 EIEIO();
1570 }
1571 TLBSYNC();
1572 SYNC();
1573}
1574
1575static int
1576pmap_pvo_enter(pmap_t pm, vm_zone_t zone, struct pvo_head *pvo_head,
1577 vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1578{
1579 struct pvo_entry *pvo;
1580 u_int sr;
1581 int first;
1582 u_int ptegidx;
1583 int i;
1584
1585 pmap_pvo_enter_calls++;
1586
1587 /*
1588 * Compute the PTE Group index.
1589 */
1590 va &= ~ADDR_POFF;
1591 sr = va_to_sr(pm->pm_sr, va);
1592 ptegidx = va_to_pteg(sr, va);
1593
1594 critical_enter();
1595
1596 /*
1597 * Remove any existing mapping for this page. Reuse the pvo entry if
1598 * there is a mapping.
1599 */
1600 LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1601 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1602 pmap_pvo_remove(pvo, -1);
1603 break;
1604 }
1605 }
1606
1607 /*
1608 * If we aren't overwriting a mapping, try to allocate.
1609 */
1610 critical_exit();
1611
1612 pvo = zalloc(zone);
1613
1614 critical_enter();
1615
1616 if (pvo == NULL) {
1617 critical_exit();
1618 return (ENOMEM);
1619 }
1620
1621 pmap_pvo_entries++;
1622 pvo->pvo_vaddr = va;
1623 pvo->pvo_pmap = pm;
1624 LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1625 pvo->pvo_vaddr &= ~ADDR_POFF;
1626 if (flags & VM_PROT_EXECUTE)
1627 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1628 if (flags & PVO_WIRED)
1629 pvo->pvo_vaddr |= PVO_WIRED;
1630 if (pvo_head != &pmap_pvo_kunmanaged)
1631 pvo->pvo_vaddr |= PVO_MANAGED;
1632 pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
1633
1634 /*
1635 * Remember if the list was empty and therefore will be the first
1636 * item.
1637 */
1638 first = LIST_FIRST(pvo_head) == NULL;
1639
1640 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1641 if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1642 pvo->pvo_pmap->pm_stats.wired_count++;
1643 pvo->pvo_pmap->pm_stats.resident_count++;
1644
1645 /*
1646 * We hope this succeeds but it isn't required.
1647 */
1648 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1649 if (i >= 0) {
1650 PVO_PTEGIDX_SET(pvo, i);
1651 } else {
1652 panic("pmap_pvo_enter: overflow");
1653 pmap_pte_overflow++;
1654 }
1655
1656 critical_exit();
1657
1658 return (first ? ENOENT : 0);
1659}
1660
1661static void
1662pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1663{
1664 struct pte *pt;
1665
1666 /*
1667 * If there is an active pte entry, we need to deactivate it (and
1668 * save the ref & cfg bits).
1669 */
1670 pt = pmap_pvo_to_pte(pvo, pteidx);
1671 if (pt != NULL) {
1672 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1673 PVO_PTEGIDX_CLR(pvo);
1674 } else {
1675 pmap_pte_overflow--;
1676 }
1677
1678 /*
1679 * Update our statistics.
1680 */
1681 pvo->pvo_pmap->pm_stats.resident_count--;
1682 if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1683 pvo->pvo_pmap->pm_stats.wired_count--;
1684
1685 /*
1686 * Save the REF/CHG bits into their cache if the page is managed.
1687 */
1688 if (pvo->pvo_vaddr & PVO_MANAGED) {
1689 struct vm_page *pg;
1690
1691 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo * PTE_RPGN);
1692 if (pg != NULL) {
1693 pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
1694 (PTE_REF | PTE_CHG));
1695 }
1696 }
1697
1698 /*
1699 * Remove this PVO from the PV list.
1700 */
1701 LIST_REMOVE(pvo, pvo_vlink);
1702
1703 /*
1704 * Remove this from the overflow list and return it to the pool
1705 * if we aren't going to reuse it.
1706 */
1707 LIST_REMOVE(pvo, pvo_olink);
1708 zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone : pmap_upvo_zone,
1709 pvo);
1710 pmap_pvo_entries--;
1711 pmap_pvo_remove_calls++;
1712}
1713
1714static __inline int
1715pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1716{
1717 int pteidx;
1718
1719 /*
1720 * We can find the actual pte entry without searching by grabbing
1721 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
1722 * noticing the HID bit.
1723 */
1724 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1725 if (pvo->pvo_pte.pte_hi & PTE_HID)
1726 pteidx ^= pmap_pteg_mask * 8;
1727
1728 return (pteidx);
1729}
1730
1731static struct pvo_entry *
1732pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
1733{
1734 struct pvo_entry *pvo;
1735 int ptegidx;
1736 u_int sr;
1737
1738 va &= ~ADDR_POFF;
1739 sr = va_to_sr(pm->pm_sr, va);
1740 ptegidx = va_to_pteg(sr, va);
1741
1742 LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1743 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1744 if (pteidx_p)
1745 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1746 return (pvo);
1747 }
1748 }
1749
1750 return (NULL);
1751}
1752
1753static struct pte *
1754pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1755{
1756 struct pte *pt;
1757
1758 /*
1759 * If we haven't been supplied the ptegidx, calculate it.
1760 */
1761 if (pteidx == -1) {
1762 int ptegidx;
1763 u_int sr;
1764
1765 sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
1766 ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
1767 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1768 }
1769
1770 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1771
1772 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1773 panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
1774 "valid pte index", pvo);
1775 }
1776
1777 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1778 panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
1779 "pvo but no valid pte", pvo);
1780 }
1781
1782 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1783 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1784 panic("pmap_pvo_to_pte: pvo %p has valid pte in "
1785 "pmap_pteg_table %p but invalid in pvo", pvo, pt);
1786 }
1787
1788 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
1789 != 0) {
1790 panic("pmap_pvo_to_pte: pvo %p pte does not match "
1791 "pte %p in pmap_pteg_table", pvo, pt);
1792 }
1793
1794 return (pt);
1795 }
1796
1797 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1798 panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
1799 "pmap_pteg_table but valid in pvo", pvo, pt);
1800 }
1801
1802 return (NULL);
1803}
1804
1805/*
1806 * XXX: THIS STUFF SHOULD BE IN pte.c?
1807 */
1808int
1809pmap_pte_spill(vm_offset_t addr)
1810{
1811 struct pvo_entry *source_pvo, *victim_pvo;
1812 struct pvo_entry *pvo;
1813 int ptegidx, i, j;
1814 u_int sr;
1815 struct pteg *pteg;
1816 struct pte *pt;
1817
1818 pmap_pte_spills++;
1819
1820 __asm __volatile("mfsrin %0,%1" : "=r"(sr) : "r"(addr));
1821 ptegidx = va_to_pteg(sr, addr);
1822
1823 /*
1824 * Have to substitute some entry. Use the primary hash for this.
1825 * Use low bits of timebase as random generator.
1826 */
1827 pteg = &pmap_pteg_table[ptegidx];
1828 __asm __volatile("mftb %0" : "=r"(i));
1829 i &= 7;
1830 pt = &pteg->pt[i];
1831
1832 source_pvo = NULL;
1833 victim_pvo = NULL;
1834 LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1835 /*
1836 * We need to find a pvo entry for this address.
1837 */
1838 PMAP_PVO_CHECK(pvo);
1839 if (source_pvo == NULL &&
1840 pmap_pte_match(&pvo->pvo_pte, sr, addr,
1841 pvo->pvo_pte.pte_hi & PTE_HID)) {
1842 /*
1843 * Now found an entry to be spilled into the pteg.
1844 * The PTE is now valid, so we know it's active.
1845 */
1846 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1847
1848 if (j >= 0) {
1849 PVO_PTEGIDX_SET(pvo, j);
1850 pmap_pte_overflow--;
1851 PMAP_PVO_CHECK(pvo);
1852 return (1);
1853 }
1854
1855 source_pvo = pvo;
1856
1857 if (victim_pvo != NULL)
1858 break;
1859 }
1860
1861 /*
1862 * We also need the pvo entry of the victim we are replacing
1863 * so save the R & C bits of the PTE.
1864 */
1865 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1866 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1867 victim_pvo = pvo;
1868 if (source_pvo != NULL)
1869 break;
1870 }
1871 }
1872
1873 if (source_pvo == NULL)
1874 return (0);
1875
1876 if (victim_pvo == NULL) {
1877 if ((pt->pte_hi & PTE_HID) == 0)
1878 panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
1879 "entry", pt);
1880
1881 /*
1882 * If this is a secondary PTE, we need to search it's primary
1883 * pvo bucket for the matching PVO.
1884 */
1885 LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
1886 pvo_olink) {
1887 PMAP_PVO_CHECK(pvo);
1888 /*
1889 * We also need the pvo entry of the victim we are
1890 * replacing so save the R & C bits of the PTE.
1891 */
1892 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1893 victim_pvo = pvo;
1894 break;
1895 }
1896 }
1897
1898 if (victim_pvo == NULL)
1899 panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
1900 "entry", pt);
1901 }
1902
1903 /*
1904 * We are invalidating the TLB entry for the EA we are replacing even
1905 * though it's valid. If we don't, we lose any ref/chg bit changes
1906 * contained in the TLB entry.
1907 */
1908 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1909
1910 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1911 pmap_pte_set(pt, &source_pvo->pvo_pte);
1912
1913 PVO_PTEGIDX_CLR(victim_pvo);
1914 PVO_PTEGIDX_SET(source_pvo, i);
1915 pmap_pte_replacements++;
1916
1917 PMAP_PVO_CHECK(victim_pvo);
1918 PMAP_PVO_CHECK(source_pvo);
1919
1920 return (1);
1921}
1922
1923static int
1924pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
1925{
1926 struct pte *pt;
1927 int i;
1928
1929 /*
1930 * First try primary hash.
1931 */
1932 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
1933 if ((pt->pte_hi & PTE_VALID) == 0) {
1934 pvo_pt->pte_hi &= ~PTE_HID;
1935 pmap_pte_set(pt, pvo_pt);
1936 return (i);
1937 }
1938 }
1939
1940 /*
1941 * Now try secondary hash.
1942 */
1943 ptegidx ^= pmap_pteg_mask;
1944 ptegidx++;
1945 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
1946 if ((pt->pte_hi & PTE_VALID) == 0) {
1947 pvo_pt->pte_hi |= PTE_HID;
1948 pmap_pte_set(pt, pvo_pt);
1949 return (i);
1950 }
1951 }
1952
1953 panic("pmap_pte_insert: overflow");
1954 return (-1);
1955}
1956
1957static boolean_t
1958pmap_query_bit(vm_page_t m, int ptebit)
1959{
1960 struct pvo_entry *pvo;
1961 struct pte *pt;
1962
1963 if (pmap_attr_fetch(m) & ptebit)
1964 return (TRUE);
1965
1966 critical_enter();
1967
1968 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1969 PMAP_PVO_CHECK(pvo); /* sanity check */
1970
1971 /*
1972 * See if we saved the bit off. If so, cache it and return
1973 * success.
1974 */
1975 if (pvo->pvo_pte.pte_lo & ptebit) {
1976 pmap_attr_save(m, ptebit);
1977 PMAP_PVO_CHECK(pvo); /* sanity check */
1978 critical_exit();
1979 return (TRUE);
1980 }
1981 }
1982
1983 /*
1984 * No luck, now go through the hard part of looking at the PTEs
1985 * themselves. Sync so that any pending REF/CHG bits are flushed to
1986 * the PTEs.
1987 */
1988 SYNC();
1989 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1990 PMAP_PVO_CHECK(pvo); /* sanity check */
1991
1992 /*
1993 * See if this pvo has a valid PTE. if so, fetch the
1994 * REF/CHG bits from the valid PTE. If the appropriate
1995 * ptebit is set, cache it and return success.
1996 */
1997 pt = pmap_pvo_to_pte(pvo, -1);
1998 if (pt != NULL) {
1999 pmap_pte_synch(pt, &pvo->pvo_pte);
2000 if (pvo->pvo_pte.pte_lo & ptebit) {
2001 pmap_attr_save(m, ptebit);
2002 PMAP_PVO_CHECK(pvo); /* sanity check */
2003 critical_exit();
2004 return (TRUE);
2005 }
2006 }
2007 }
2008
2009 critical_exit();
2010 return (TRUE);
2011}
2012
2013static boolean_t
2014pmap_clear_bit(vm_page_t m, int ptebit)
2015{
2016 struct pvo_entry *pvo;
2017 struct pte *pt;
2018 int rv;
2019
2020 critical_enter();
2021
2022 /*
2023 * Clear the cached value.
2024 */
2025 rv = pmap_attr_fetch(m);
2026 pmap_attr_clear(m, ptebit);
2027
2028 /*
2029 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2030 * we can reset the right ones). note that since the pvo entries and
2031 * list heads are accessed via BAT0 and are never placed in the page
2032 * table, we don't have to worry about further accesses setting the
2033 * REF/CHG bits.
2034 */
2035 SYNC();
2036
2037 /*
2038 * For each pvo entry, clear the pvo's ptebit. If this pvo has a
2039 * valid pte clear the ptebit from the valid pte.
2040 */
2041 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2042 PMAP_PVO_CHECK(pvo); /* sanity check */
2043 pt = pmap_pvo_to_pte(pvo, -1);
2044 if (pt != NULL) {
2045 pmap_pte_synch(pt, &pvo->pvo_pte);
2046 if (pvo->pvo_pte.pte_lo & ptebit)
2047 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2048 }
2049 rv |= pvo->pvo_pte.pte_lo;
2050 pvo->pvo_pte.pte_lo &= ~ptebit;
2051 PMAP_PVO_CHECK(pvo); /* sanity check */
2052 }
2053
2054 critical_exit();
2055 return ((rv & ptebit) != 0);
2056}