Deleted Added
full compact
key.c (240392) key.c (241686)
1/* $FreeBSD: head/sys/netipsec/key.c 240392 2012-09-12 12:14:50Z vanhu $ */
1/* $FreeBSD: head/sys/netipsec/key.c 241686 2012-10-18 13:57:24Z andre $ */
2/* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
3
4/*-
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/*
34 * This code is referd to RFC 2367
35 */
36
37#include "opt_inet.h"
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40
41#include <sys/types.h>
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/lock.h>
46#include <sys/mutex.h>
47#include <sys/mbuf.h>
48#include <sys/domain.h>
49#include <sys/protosw.h>
50#include <sys/malloc.h>
51#include <sys/socket.h>
52#include <sys/socketvar.h>
53#include <sys/sysctl.h>
54#include <sys/errno.h>
55#include <sys/proc.h>
56#include <sys/queue.h>
57#include <sys/refcount.h>
58#include <sys/syslog.h>
59
60#include <net/if.h>
61#include <net/route.h>
62#include <net/raw_cb.h>
63#include <net/vnet.h>
64
65#include <netinet/in.h>
66#include <netinet/in_systm.h>
67#include <netinet/ip.h>
68#include <netinet/in_var.h>
69
70#ifdef INET6
71#include <netinet/ip6.h>
72#include <netinet6/in6_var.h>
73#include <netinet6/ip6_var.h>
74#endif /* INET6 */
75
76#if defined(INET) || defined(INET6)
77#include <netinet/in_pcb.h>
78#endif
79#ifdef INET6
80#include <netinet6/in6_pcb.h>
81#endif /* INET6 */
82
83#include <net/pfkeyv2.h>
84#include <netipsec/keydb.h>
85#include <netipsec/key.h>
86#include <netipsec/keysock.h>
87#include <netipsec/key_debug.h>
88
89#include <netipsec/ipsec.h>
90#ifdef INET6
91#include <netipsec/ipsec6.h>
92#endif
93
94#include <netipsec/xform.h>
95
96#include <machine/stdarg.h>
97
98/* randomness */
99#include <sys/random.h>
100
101#define FULLMASK 0xff
102#define _BITS(bytes) ((bytes) << 3)
103
104/*
105 * Note on SA reference counting:
106 * - SAs that are not in DEAD state will have (total external reference + 1)
107 * following value in reference count field. they cannot be freed and are
108 * referenced from SA header.
109 * - SAs that are in DEAD state will have (total external reference)
110 * in reference count field. they are ready to be freed. reference from
111 * SA header will be removed in key_delsav(), when the reference count
112 * field hits 0 (= no external reference other than from SA header.
113 */
114
115VNET_DEFINE(u_int32_t, key_debug_level) = 0;
116static VNET_DEFINE(u_int, key_spi_trycnt) = 1000;
117static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100;
118static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */
119static VNET_DEFINE(u_int32_t, policy_id) = 0;
120/*interval to initialize randseed,1(m)*/
121static VNET_DEFINE(u_int, key_int_random) = 60;
122/* interval to expire acquiring, 30(s)*/
123static VNET_DEFINE(u_int, key_larval_lifetime) = 30;
124/* counter for blocking SADB_ACQUIRE.*/
125static VNET_DEFINE(int, key_blockacq_count) = 10;
126/* lifetime for blocking SADB_ACQUIRE.*/
127static VNET_DEFINE(int, key_blockacq_lifetime) = 20;
128/* preferred old sa rather than new sa.*/
129static VNET_DEFINE(int, key_preferred_oldsa) = 1;
130#define V_key_spi_trycnt VNET(key_spi_trycnt)
131#define V_key_spi_minval VNET(key_spi_minval)
132#define V_key_spi_maxval VNET(key_spi_maxval)
133#define V_policy_id VNET(policy_id)
134#define V_key_int_random VNET(key_int_random)
135#define V_key_larval_lifetime VNET(key_larval_lifetime)
136#define V_key_blockacq_count VNET(key_blockacq_count)
137#define V_key_blockacq_lifetime VNET(key_blockacq_lifetime)
138#define V_key_preferred_oldsa VNET(key_preferred_oldsa)
139
140static VNET_DEFINE(u_int32_t, acq_seq) = 0;
141#define V_acq_seq VNET(acq_seq)
142
143 /* SPD */
144static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]);
145#define V_sptree VNET(sptree)
146static struct mtx sptree_lock;
147#define SPTREE_LOCK_INIT() \
148 mtx_init(&sptree_lock, "sptree", \
149 "fast ipsec security policy database", MTX_DEF)
150#define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock)
151#define SPTREE_LOCK() mtx_lock(&sptree_lock)
152#define SPTREE_UNLOCK() mtx_unlock(&sptree_lock)
153#define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED)
154
155static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */
156#define V_sahtree VNET(sahtree)
157static struct mtx sahtree_lock;
158#define SAHTREE_LOCK_INIT() \
159 mtx_init(&sahtree_lock, "sahtree", \
160 "fast ipsec security association database", MTX_DEF)
161#define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock)
162#define SAHTREE_LOCK() mtx_lock(&sahtree_lock)
163#define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock)
164#define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED)
165
166 /* registed list */
167static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]);
168#define V_regtree VNET(regtree)
169static struct mtx regtree_lock;
170#define REGTREE_LOCK_INIT() \
171 mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
172#define REGTREE_LOCK_DESTROY() mtx_destroy(&regtree_lock)
173#define REGTREE_LOCK() mtx_lock(&regtree_lock)
174#define REGTREE_UNLOCK() mtx_unlock(&regtree_lock)
175#define REGTREE_LOCK_ASSERT() mtx_assert(&regtree_lock, MA_OWNED)
176
177static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */
178#define V_acqtree VNET(acqtree)
179static struct mtx acq_lock;
180#define ACQ_LOCK_INIT() \
181 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
182#define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock)
183#define ACQ_LOCK() mtx_lock(&acq_lock)
184#define ACQ_UNLOCK() mtx_unlock(&acq_lock)
185#define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED)
186
187 /* SP acquiring list */
188static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree);
189#define V_spacqtree VNET(spacqtree)
190static struct mtx spacq_lock;
191#define SPACQ_LOCK_INIT() \
192 mtx_init(&spacq_lock, "spacqtree", \
193 "fast ipsec security policy acquire list", MTX_DEF)
194#define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock)
195#define SPACQ_LOCK() mtx_lock(&spacq_lock)
196#define SPACQ_UNLOCK() mtx_unlock(&spacq_lock)
197#define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED)
198
199/* search order for SAs */
200static const u_int saorder_state_valid_prefer_old[] = {
201 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
202};
203static const u_int saorder_state_valid_prefer_new[] = {
204 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
205};
206static const u_int saorder_state_alive[] = {
207 /* except DEAD */
208 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
209};
210static const u_int saorder_state_any[] = {
211 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
212 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
213};
214
215static const int minsize[] = {
216 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
217 sizeof(struct sadb_sa), /* SADB_EXT_SA */
218 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
219 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
220 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
221 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
222 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
223 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
224 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
225 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
226 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
227 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
228 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
229 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
230 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
231 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
232 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
233 0, /* SADB_X_EXT_KMPRIVATE */
234 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
235 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
236 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
237 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
238 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
239 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
240 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
241 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
242};
243static const int maxsize[] = {
244 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
245 sizeof(struct sadb_sa), /* SADB_EXT_SA */
246 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
247 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
248 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
249 0, /* SADB_EXT_ADDRESS_SRC */
250 0, /* SADB_EXT_ADDRESS_DST */
251 0, /* SADB_EXT_ADDRESS_PROXY */
252 0, /* SADB_EXT_KEY_AUTH */
253 0, /* SADB_EXT_KEY_ENCRYPT */
254 0, /* SADB_EXT_IDENTITY_SRC */
255 0, /* SADB_EXT_IDENTITY_DST */
256 0, /* SADB_EXT_SENSITIVITY */
257 0, /* SADB_EXT_PROPOSAL */
258 0, /* SADB_EXT_SUPPORTED_AUTH */
259 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
260 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
261 0, /* SADB_X_EXT_KMPRIVATE */
262 0, /* SADB_X_EXT_POLICY */
263 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
264 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
265 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
266 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
267 0, /* SADB_X_EXT_NAT_T_OAI */
268 0, /* SADB_X_EXT_NAT_T_OAR */
269 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
270};
271
272static VNET_DEFINE(int, ipsec_esp_keymin) = 256;
273static VNET_DEFINE(int, ipsec_esp_auth) = 0;
274static VNET_DEFINE(int, ipsec_ah_keymin) = 128;
275
276#define V_ipsec_esp_keymin VNET(ipsec_esp_keymin)
277#define V_ipsec_esp_auth VNET(ipsec_esp_auth)
278#define V_ipsec_ah_keymin VNET(ipsec_ah_keymin)
279
280#ifdef SYSCTL_DECL
281SYSCTL_DECL(_net_key);
282#endif
283
284SYSCTL_VNET_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug,
285 CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, "");
286
287/* max count of trial for the decision of spi value */
288SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt,
289 CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, "");
290
291/* minimum spi value to allocate automatically. */
292SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MIN_VALUE,
293 spi_minval, CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, "");
294
295/* maximun spi value to allocate automatically. */
296SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MAX_VALUE,
297 spi_maxval, CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, "");
298
299/* interval to initialize randseed */
300SYSCTL_VNET_INT(_net_key, KEYCTL_RANDOM_INT,
301 int_random, CTLFLAG_RW, &VNET_NAME(key_int_random), 0, "");
302
303/* lifetime for larval SA */
304SYSCTL_VNET_INT(_net_key, KEYCTL_LARVAL_LIFETIME,
305 larval_lifetime, CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, "");
306
307/* counter for blocking to send SADB_ACQUIRE to IKEd */
308SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_COUNT,
309 blockacq_count, CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, "");
310
311/* lifetime for blocking to send SADB_ACQUIRE to IKEd */
312SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME,
313 blockacq_lifetime, CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, "");
314
315/* ESP auth */
316SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth,
317 CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, "");
318
319/* minimum ESP key length */
320SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_KEYMIN,
321 esp_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, "");
322
323/* minimum AH key length */
324SYSCTL_VNET_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin,
325 CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, "");
326
327/* perfered old SA rather than new SA */
328SYSCTL_VNET_INT(_net_key, KEYCTL_PREFERED_OLDSA,
329 preferred_oldsa, CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, "");
330
331#define __LIST_CHAINED(elm) \
332 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
333#define LIST_INSERT_TAIL(head, elm, type, field) \
334do {\
335 struct type *curelm = LIST_FIRST(head); \
336 if (curelm == NULL) {\
337 LIST_INSERT_HEAD(head, elm, field); \
338 } else { \
339 while (LIST_NEXT(curelm, field)) \
340 curelm = LIST_NEXT(curelm, field);\
341 LIST_INSERT_AFTER(curelm, elm, field);\
342 }\
343} while (0)
344
345#define KEY_CHKSASTATE(head, sav, name) \
346do { \
347 if ((head) != (sav)) { \
348 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
349 (name), (head), (sav))); \
350 continue; \
351 } \
352} while (0)
353
354#define KEY_CHKSPDIR(head, sp, name) \
355do { \
356 if ((head) != (sp)) { \
357 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
358 "anyway continue.\n", \
359 (name), (head), (sp))); \
360 } \
361} while (0)
362
363MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
364MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
365MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
366MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
367MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
368MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
369MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
370
371/*
372 * set parameters into secpolicyindex buffer.
373 * Must allocate secpolicyindex buffer passed to this function.
374 */
375#define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
376do { \
377 bzero((idx), sizeof(struct secpolicyindex)); \
378 (idx)->dir = (_dir); \
379 (idx)->prefs = (ps); \
380 (idx)->prefd = (pd); \
381 (idx)->ul_proto = (ulp); \
382 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
383 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
384} while (0)
385
386/*
387 * set parameters into secasindex buffer.
388 * Must allocate secasindex buffer before calling this function.
389 */
390#define KEY_SETSECASIDX(p, m, r, s, d, idx) \
391do { \
392 bzero((idx), sizeof(struct secasindex)); \
393 (idx)->proto = (p); \
394 (idx)->mode = (m); \
395 (idx)->reqid = (r); \
396 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
397 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
398} while (0)
399
400/* key statistics */
401struct _keystat {
402 u_long getspi_count; /* the avarage of count to try to get new SPI */
403} keystat;
404
405struct sadb_msghdr {
406 struct sadb_msg *msg;
407 struct sadb_ext *ext[SADB_EXT_MAX + 1];
408 int extoff[SADB_EXT_MAX + 1];
409 int extlen[SADB_EXT_MAX + 1];
410};
411
412static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
413static void key_freesp_so __P((struct secpolicy **));
414static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
415static void key_delsp __P((struct secpolicy *));
416static struct secpolicy *key_getsp __P((struct secpolicyindex *));
417static void _key_delsp(struct secpolicy *sp);
418static struct secpolicy *key_getspbyid __P((u_int32_t));
419static u_int32_t key_newreqid __P((void));
420static struct mbuf *key_gather_mbuf __P((struct mbuf *,
421 const struct sadb_msghdr *, int, int, ...));
422static int key_spdadd __P((struct socket *, struct mbuf *,
423 const struct sadb_msghdr *));
424static u_int32_t key_getnewspid __P((void));
425static int key_spddelete __P((struct socket *, struct mbuf *,
426 const struct sadb_msghdr *));
427static int key_spddelete2 __P((struct socket *, struct mbuf *,
428 const struct sadb_msghdr *));
429static int key_spdget __P((struct socket *, struct mbuf *,
430 const struct sadb_msghdr *));
431static int key_spdflush __P((struct socket *, struct mbuf *,
432 const struct sadb_msghdr *));
433static int key_spddump __P((struct socket *, struct mbuf *,
434 const struct sadb_msghdr *));
435static struct mbuf *key_setdumpsp __P((struct secpolicy *,
436 u_int8_t, u_int32_t, u_int32_t));
437static u_int key_getspreqmsglen __P((struct secpolicy *));
438static int key_spdexpire __P((struct secpolicy *));
439static struct secashead *key_newsah __P((struct secasindex *));
440static void key_delsah __P((struct secashead *));
441static struct secasvar *key_newsav __P((struct mbuf *,
442 const struct sadb_msghdr *, struct secashead *, int *,
443 const char*, int));
444#define KEY_NEWSAV(m, sadb, sah, e) \
445 key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
446static void key_delsav __P((struct secasvar *));
447static struct secashead *key_getsah __P((struct secasindex *));
448static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
449static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
450static int key_setsaval __P((struct secasvar *, struct mbuf *,
451 const struct sadb_msghdr *));
452static int key_mature __P((struct secasvar *));
453static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
454 u_int8_t, u_int32_t, u_int32_t));
455static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
456 u_int32_t, pid_t, u_int16_t));
457static struct mbuf *key_setsadbsa __P((struct secasvar *));
458static struct mbuf *key_setsadbaddr __P((u_int16_t,
459 const struct sockaddr *, u_int8_t, u_int16_t));
460#ifdef IPSEC_NAT_T
461static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t);
462static struct mbuf *key_setsadbxtype(u_int16_t);
463#endif
464static void key_porttosaddr(struct sockaddr *, u_int16_t);
465#define KEY_PORTTOSADDR(saddr, port) \
466 key_porttosaddr((struct sockaddr *)(saddr), (port))
467static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
468static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
469 u_int32_t));
470static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
471 struct malloc_type *);
472static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
473 struct malloc_type *type);
474#ifdef INET6
475static int key_ismyaddr6 __P((struct sockaddr_in6 *));
476#endif
477
478/* flags for key_cmpsaidx() */
479#define CMP_HEAD 1 /* protocol, addresses. */
480#define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
481#define CMP_REQID 3 /* additionally HEAD, reaid. */
482#define CMP_EXACTLY 4 /* all elements. */
483static int key_cmpsaidx
484 __P((const struct secasindex *, const struct secasindex *, int));
485
486static int key_cmpspidx_exactly
487 __P((struct secpolicyindex *, struct secpolicyindex *));
488static int key_cmpspidx_withmask
489 __P((struct secpolicyindex *, struct secpolicyindex *));
490static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
491static int key_bbcmp __P((const void *, const void *, u_int));
492static u_int16_t key_satype2proto __P((u_int8_t));
493static u_int8_t key_proto2satype __P((u_int16_t));
494
495static int key_getspi __P((struct socket *, struct mbuf *,
496 const struct sadb_msghdr *));
497static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
498 struct secasindex *));
499static int key_update __P((struct socket *, struct mbuf *,
500 const struct sadb_msghdr *));
501#ifdef IPSEC_DOSEQCHECK
502static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
503#endif
504static int key_add __P((struct socket *, struct mbuf *,
505 const struct sadb_msghdr *));
506static int key_setident __P((struct secashead *, struct mbuf *,
507 const struct sadb_msghdr *));
508static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
509 const struct sadb_msghdr *));
510static int key_delete __P((struct socket *, struct mbuf *,
511 const struct sadb_msghdr *));
512static int key_get __P((struct socket *, struct mbuf *,
513 const struct sadb_msghdr *));
514
515static void key_getcomb_setlifetime __P((struct sadb_comb *));
516static struct mbuf *key_getcomb_esp __P((void));
517static struct mbuf *key_getcomb_ah __P((void));
518static struct mbuf *key_getcomb_ipcomp __P((void));
519static struct mbuf *key_getprop __P((const struct secasindex *));
520
521static int key_acquire __P((const struct secasindex *, struct secpolicy *));
522static struct secacq *key_newacq __P((const struct secasindex *));
523static struct secacq *key_getacq __P((const struct secasindex *));
524static struct secacq *key_getacqbyseq __P((u_int32_t));
525static struct secspacq *key_newspacq __P((struct secpolicyindex *));
526static struct secspacq *key_getspacq __P((struct secpolicyindex *));
527static int key_acquire2 __P((struct socket *, struct mbuf *,
528 const struct sadb_msghdr *));
529static int key_register __P((struct socket *, struct mbuf *,
530 const struct sadb_msghdr *));
531static int key_expire __P((struct secasvar *));
532static int key_flush __P((struct socket *, struct mbuf *,
533 const struct sadb_msghdr *));
534static int key_dump __P((struct socket *, struct mbuf *,
535 const struct sadb_msghdr *));
536static int key_promisc __P((struct socket *, struct mbuf *,
537 const struct sadb_msghdr *));
538static int key_senderror __P((struct socket *, struct mbuf *, int));
539static int key_validate_ext __P((const struct sadb_ext *, int));
540static int key_align __P((struct mbuf *, struct sadb_msghdr *));
541static struct mbuf *key_setlifetime(struct seclifetime *src,
542 u_int16_t exttype);
543static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
544
545#if 0
546static const char *key_getfqdn __P((void));
547static const char *key_getuserfqdn __P((void));
548#endif
549static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
550static struct mbuf *key_alloc_mbuf __P((int));
551
552static __inline void
553sa_initref(struct secasvar *sav)
554{
555
556 refcount_init(&sav->refcnt, 1);
557}
558static __inline void
559sa_addref(struct secasvar *sav)
560{
561
562 refcount_acquire(&sav->refcnt);
563 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
564}
565static __inline int
566sa_delref(struct secasvar *sav)
567{
568
569 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
570 return (refcount_release(&sav->refcnt));
571}
572
573#define SP_ADDREF(p) do { \
574 (p)->refcnt++; \
575 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \
576} while (0)
577#define SP_DELREF(p) do { \
578 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \
579 (p)->refcnt--; \
580} while (0)
581
582
583/*
584 * Update the refcnt while holding the SPTREE lock.
585 */
586void
587key_addref(struct secpolicy *sp)
588{
589 SPTREE_LOCK();
590 SP_ADDREF(sp);
591 SPTREE_UNLOCK();
592}
593
594/*
595 * Return 0 when there are known to be no SP's for the specified
596 * direction. Otherwise return 1. This is used by IPsec code
597 * to optimize performance.
598 */
599int
600key_havesp(u_int dir)
601{
602
603 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
604 LIST_FIRST(&V_sptree[dir]) != NULL : 1);
605}
606
607/* %%% IPsec policy management */
608/*
609 * allocating a SP for OUTBOUND or INBOUND packet.
610 * Must call key_freesp() later.
611 * OUT: NULL: not found
612 * others: found and return the pointer.
613 */
614struct secpolicy *
615key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
616{
617 struct secpolicy *sp;
618
619 IPSEC_ASSERT(spidx != NULL, ("null spidx"));
620 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
621 ("invalid direction %u", dir));
622
623 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
624 printf("DP %s from %s:%u\n", __func__, where, tag));
625
626 /* get a SP entry */
627 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
628 printf("*** objects\n");
629 kdebug_secpolicyindex(spidx));
630
631 SPTREE_LOCK();
632 LIST_FOREACH(sp, &V_sptree[dir], chain) {
633 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
634 printf("*** in SPD\n");
635 kdebug_secpolicyindex(&sp->spidx));
636
637 if (sp->state == IPSEC_SPSTATE_DEAD)
638 continue;
639 if (key_cmpspidx_withmask(&sp->spidx, spidx))
640 goto found;
641 }
642 sp = NULL;
643found:
644 if (sp) {
645 /* sanity check */
646 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
647
648 /* found a SPD entry */
649 sp->lastused = time_second;
650 SP_ADDREF(sp);
651 }
652 SPTREE_UNLOCK();
653
654 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
655 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
656 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
657 return sp;
658}
659
660/*
661 * allocating a SP for OUTBOUND or INBOUND packet.
662 * Must call key_freesp() later.
663 * OUT: NULL: not found
664 * others: found and return the pointer.
665 */
666struct secpolicy *
667key_allocsp2(u_int32_t spi,
668 union sockaddr_union *dst,
669 u_int8_t proto,
670 u_int dir,
671 const char* where, int tag)
672{
673 struct secpolicy *sp;
674
675 IPSEC_ASSERT(dst != NULL, ("null dst"));
676 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
677 ("invalid direction %u", dir));
678
679 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
680 printf("DP %s from %s:%u\n", __func__, where, tag));
681
682 /* get a SP entry */
683 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
684 printf("*** objects\n");
685 printf("spi %u proto %u dir %u\n", spi, proto, dir);
686 kdebug_sockaddr(&dst->sa));
687
688 SPTREE_LOCK();
689 LIST_FOREACH(sp, &V_sptree[dir], chain) {
690 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
691 printf("*** in SPD\n");
692 kdebug_secpolicyindex(&sp->spidx));
693
694 if (sp->state == IPSEC_SPSTATE_DEAD)
695 continue;
696 /* compare simple values, then dst address */
697 if (sp->spidx.ul_proto != proto)
698 continue;
699 /* NB: spi's must exist and match */
700 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
701 continue;
702 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
703 goto found;
704 }
705 sp = NULL;
706found:
707 if (sp) {
708 /* sanity check */
709 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
710
711 /* found a SPD entry */
712 sp->lastused = time_second;
713 SP_ADDREF(sp);
714 }
715 SPTREE_UNLOCK();
716
717 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
718 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
719 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
720 return sp;
721}
722
723#if 0
724/*
725 * return a policy that matches this particular inbound packet.
726 * XXX slow
727 */
728struct secpolicy *
729key_gettunnel(const struct sockaddr *osrc,
730 const struct sockaddr *odst,
731 const struct sockaddr *isrc,
732 const struct sockaddr *idst,
733 const char* where, int tag)
734{
735 struct secpolicy *sp;
736 const int dir = IPSEC_DIR_INBOUND;
737 struct ipsecrequest *r1, *r2, *p;
738 struct secpolicyindex spidx;
739
740 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
741 printf("DP %s from %s:%u\n", __func__, where, tag));
742
743 if (isrc->sa_family != idst->sa_family) {
744 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
745 __func__, isrc->sa_family, idst->sa_family));
746 sp = NULL;
747 goto done;
748 }
749
750 SPTREE_LOCK();
751 LIST_FOREACH(sp, &V_sptree[dir], chain) {
752 if (sp->state == IPSEC_SPSTATE_DEAD)
753 continue;
754
755 r1 = r2 = NULL;
756 for (p = sp->req; p; p = p->next) {
757 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
758 continue;
759
760 r1 = r2;
761 r2 = p;
762
763 if (!r1) {
764 /* here we look at address matches only */
765 spidx = sp->spidx;
766 if (isrc->sa_len > sizeof(spidx.src) ||
767 idst->sa_len > sizeof(spidx.dst))
768 continue;
769 bcopy(isrc, &spidx.src, isrc->sa_len);
770 bcopy(idst, &spidx.dst, idst->sa_len);
771 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
772 continue;
773 } else {
774 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
775 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
776 continue;
777 }
778
779 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
780 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
781 continue;
782
783 goto found;
784 }
785 }
786 sp = NULL;
787found:
788 if (sp) {
789 sp->lastused = time_second;
790 SP_ADDREF(sp);
791 }
792 SPTREE_UNLOCK();
793done:
794 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
795 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
796 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
797 return sp;
798}
799#endif
800
801/*
802 * allocating an SA entry for an *OUTBOUND* packet.
803 * checking each request entries in SP, and acquire an SA if need.
804 * OUT: 0: there are valid requests.
805 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
806 */
807int
808key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
809{
810 u_int level;
811 int error;
812 struct secasvar *sav;
813
814 IPSEC_ASSERT(isr != NULL, ("null isr"));
815 IPSEC_ASSERT(saidx != NULL, ("null saidx"));
816 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
817 saidx->mode == IPSEC_MODE_TUNNEL,
818 ("unexpected policy %u", saidx->mode));
819
820 /*
821 * XXX guard against protocol callbacks from the crypto
822 * thread as they reference ipsecrequest.sav which we
823 * temporarily null out below. Need to rethink how we
824 * handle bundled SA's in the callback thread.
825 */
826 IPSECREQUEST_LOCK_ASSERT(isr);
827
828 /* get current level */
829 level = ipsec_get_reqlevel(isr);
830
831 /*
832 * We check new SA in the IPsec request because a different
833 * SA may be involved each time this request is checked, either
834 * because new SAs are being configured, or this request is
835 * associated with an unconnected datagram socket, or this request
836 * is associated with a system default policy.
837 *
838 * key_allocsa_policy should allocate the oldest SA available.
839 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
840 */
841 sav = key_allocsa_policy(saidx);
842 if (sav != isr->sav) {
843 /* SA need to be updated. */
844 if (!IPSECREQUEST_UPGRADE(isr)) {
845 /* Kick everyone off. */
846 IPSECREQUEST_UNLOCK(isr);
847 IPSECREQUEST_WLOCK(isr);
848 }
849 if (isr->sav != NULL)
850 KEY_FREESAV(&isr->sav);
851 isr->sav = sav;
852 IPSECREQUEST_DOWNGRADE(isr);
853 } else if (sav != NULL)
854 KEY_FREESAV(&sav);
855
856 /* When there is SA. */
857 if (isr->sav != NULL) {
858 if (isr->sav->state != SADB_SASTATE_MATURE &&
859 isr->sav->state != SADB_SASTATE_DYING)
860 return EINVAL;
861 return 0;
862 }
863
864 /* there is no SA */
865 error = key_acquire(saidx, isr->sp);
866 if (error != 0) {
867 /* XXX What should I do ? */
868 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
869 __func__, error));
870 return error;
871 }
872
873 if (level != IPSEC_LEVEL_REQUIRE) {
874 /* XXX sigh, the interface to this routine is botched */
875 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
876 return 0;
877 } else {
878 return ENOENT;
879 }
880}
881
882/*
883 * allocating a SA for policy entry from SAD.
884 * NOTE: searching SAD of aliving state.
885 * OUT: NULL: not found.
886 * others: found and return the pointer.
887 */
888static struct secasvar *
889key_allocsa_policy(const struct secasindex *saidx)
890{
891#define N(a) _ARRAYLEN(a)
892 struct secashead *sah;
893 struct secasvar *sav;
894 u_int stateidx, arraysize;
895 const u_int *state_valid;
896
897 state_valid = NULL; /* silence gcc */
898 arraysize = 0; /* silence gcc */
899
900 SAHTREE_LOCK();
901 LIST_FOREACH(sah, &V_sahtree, chain) {
902 if (sah->state == SADB_SASTATE_DEAD)
903 continue;
904 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
905 if (V_key_preferred_oldsa) {
906 state_valid = saorder_state_valid_prefer_old;
907 arraysize = N(saorder_state_valid_prefer_old);
908 } else {
909 state_valid = saorder_state_valid_prefer_new;
910 arraysize = N(saorder_state_valid_prefer_new);
911 }
912 break;
913 }
914 }
915 SAHTREE_UNLOCK();
916 if (sah == NULL)
917 return NULL;
918
919 /* search valid state */
920 for (stateidx = 0; stateidx < arraysize; stateidx++) {
921 sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
922 if (sav != NULL)
923 return sav;
924 }
925
926 return NULL;
927#undef N
928}
929
930/*
931 * searching SAD with direction, protocol, mode and state.
932 * called by key_allocsa_policy().
933 * OUT:
934 * NULL : not found
935 * others : found, pointer to a SA.
936 */
937static struct secasvar *
938key_do_allocsa_policy(struct secashead *sah, u_int state)
939{
940 struct secasvar *sav, *nextsav, *candidate, *d;
941
942 /* initilize */
943 candidate = NULL;
944
945 SAHTREE_LOCK();
946 for (sav = LIST_FIRST(&sah->savtree[state]);
947 sav != NULL;
948 sav = nextsav) {
949
950 nextsav = LIST_NEXT(sav, chain);
951
952 /* sanity check */
953 KEY_CHKSASTATE(sav->state, state, __func__);
954
955 /* initialize */
956 if (candidate == NULL) {
957 candidate = sav;
958 continue;
959 }
960
961 /* Which SA is the better ? */
962
963 IPSEC_ASSERT(candidate->lft_c != NULL,
964 ("null candidate lifetime"));
965 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
966
967 /* What the best method is to compare ? */
968 if (V_key_preferred_oldsa) {
969 if (candidate->lft_c->addtime >
970 sav->lft_c->addtime) {
971 candidate = sav;
972 }
973 continue;
974 /*NOTREACHED*/
975 }
976
977 /* preferred new sa rather than old sa */
978 if (candidate->lft_c->addtime <
979 sav->lft_c->addtime) {
980 d = candidate;
981 candidate = sav;
982 } else
983 d = sav;
984
985 /*
986 * prepared to delete the SA when there is more
987 * suitable candidate and the lifetime of the SA is not
988 * permanent.
989 */
990 if (d->lft_h->addtime != 0) {
991 struct mbuf *m, *result;
992 u_int8_t satype;
993
994 key_sa_chgstate(d, SADB_SASTATE_DEAD);
995
996 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
997
998 satype = key_proto2satype(d->sah->saidx.proto);
999 if (satype == 0)
1000 goto msgfail;
1001
1002 m = key_setsadbmsg(SADB_DELETE, 0,
1003 satype, 0, 0, d->refcnt - 1);
1004 if (!m)
1005 goto msgfail;
1006 result = m;
1007
1008 /* set sadb_address for saidx's. */
1009 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1010 &d->sah->saidx.src.sa,
1011 d->sah->saidx.src.sa.sa_len << 3,
1012 IPSEC_ULPROTO_ANY);
1013 if (!m)
1014 goto msgfail;
1015 m_cat(result, m);
1016
1017 /* set sadb_address for saidx's. */
1018 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1019 &d->sah->saidx.dst.sa,
1020 d->sah->saidx.dst.sa.sa_len << 3,
1021 IPSEC_ULPROTO_ANY);
1022 if (!m)
1023 goto msgfail;
1024 m_cat(result, m);
1025
1026 /* create SA extension */
1027 m = key_setsadbsa(d);
1028 if (!m)
1029 goto msgfail;
1030 m_cat(result, m);
1031
1032 if (result->m_len < sizeof(struct sadb_msg)) {
1033 result = m_pullup(result,
1034 sizeof(struct sadb_msg));
1035 if (result == NULL)
1036 goto msgfail;
1037 }
1038
1039 result->m_pkthdr.len = 0;
1040 for (m = result; m; m = m->m_next)
1041 result->m_pkthdr.len += m->m_len;
1042 mtod(result, struct sadb_msg *)->sadb_msg_len =
1043 PFKEY_UNIT64(result->m_pkthdr.len);
1044
1045 if (key_sendup_mbuf(NULL, result,
1046 KEY_SENDUP_REGISTERED))
1047 goto msgfail;
1048 msgfail:
1049 KEY_FREESAV(&d);
1050 }
1051 }
1052 if (candidate) {
1053 sa_addref(candidate);
1054 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1055 printf("DP %s cause refcnt++:%d SA:%p\n",
1056 __func__, candidate->refcnt, candidate));
1057 }
1058 SAHTREE_UNLOCK();
1059
1060 return candidate;
1061}
1062
1063/*
1064 * allocating a usable SA entry for a *INBOUND* packet.
1065 * Must call key_freesav() later.
1066 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1067 * NULL: not found, or error occured.
1068 *
1069 * In the comparison, no source address is used--for RFC2401 conformance.
1070 * To quote, from section 4.1:
1071 * A security association is uniquely identified by a triple consisting
1072 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1073 * security protocol (AH or ESP) identifier.
1074 * Note that, however, we do need to keep source address in IPsec SA.
1075 * IKE specification and PF_KEY specification do assume that we
1076 * keep source address in IPsec SA. We see a tricky situation here.
1077 */
1078struct secasvar *
1079key_allocsa(
1080 union sockaddr_union *dst,
1081 u_int proto,
1082 u_int32_t spi,
1083 const char* where, int tag)
1084{
1085 struct secashead *sah;
1086 struct secasvar *sav;
1087 u_int stateidx, arraysize, state;
1088 const u_int *saorder_state_valid;
1089 int chkport;
1090
1091 IPSEC_ASSERT(dst != NULL, ("null dst address"));
1092
1093 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1094 printf("DP %s from %s:%u\n", __func__, where, tag));
1095
1096#ifdef IPSEC_NAT_T
1097 chkport = (dst->sa.sa_family == AF_INET &&
1098 dst->sa.sa_len == sizeof(struct sockaddr_in) &&
1099 dst->sin.sin_port != 0);
1100#else
1101 chkport = 0;
1102#endif
1103
1104 /*
1105 * searching SAD.
1106 * XXX: to be checked internal IP header somewhere. Also when
1107 * IPsec tunnel packet is received. But ESP tunnel mode is
1108 * encrypted so we can't check internal IP header.
1109 */
1110 SAHTREE_LOCK();
1111 if (V_key_preferred_oldsa) {
1112 saorder_state_valid = saorder_state_valid_prefer_old;
1113 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1114 } else {
1115 saorder_state_valid = saorder_state_valid_prefer_new;
1116 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1117 }
1118 LIST_FOREACH(sah, &V_sahtree, chain) {
1119 /* search valid state */
1120 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1121 state = saorder_state_valid[stateidx];
1122 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1123 /* sanity check */
1124 KEY_CHKSASTATE(sav->state, state, __func__);
1125 /* do not return entries w/ unusable state */
1126 if (sav->state != SADB_SASTATE_MATURE &&
1127 sav->state != SADB_SASTATE_DYING)
1128 continue;
1129 if (proto != sav->sah->saidx.proto)
1130 continue;
1131 if (spi != sav->spi)
1132 continue;
1133#if 0 /* don't check src */
1134 /* check src address */
1135 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, chkport) != 0)
1136 continue;
1137#endif
1138 /* check dst address */
1139 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0)
1140 continue;
1141 sa_addref(sav);
1142 goto done;
1143 }
1144 }
1145 }
1146 sav = NULL;
1147done:
1148 SAHTREE_UNLOCK();
1149
1150 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1151 printf("DP %s return SA:%p; refcnt %u\n", __func__,
1152 sav, sav ? sav->refcnt : 0));
1153 return sav;
1154}
1155
1156/*
1157 * Must be called after calling key_allocsp().
1158 * For both the packet without socket and key_freeso().
1159 */
1160void
1161_key_freesp(struct secpolicy **spp, const char* where, int tag)
1162{
1163 struct secpolicy *sp = *spp;
1164
1165 IPSEC_ASSERT(sp != NULL, ("null sp"));
1166
1167 SPTREE_LOCK();
1168 SP_DELREF(sp);
1169
1170 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1171 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1172 __func__, sp, sp->id, where, tag, sp->refcnt));
1173
1174 if (sp->refcnt == 0) {
1175 *spp = NULL;
1176 key_delsp(sp);
1177 }
1178 SPTREE_UNLOCK();
1179}
1180
1181/*
1182 * Must be called after calling key_allocsp().
1183 * For the packet with socket.
1184 */
1185void
1186key_freeso(struct socket *so)
1187{
1188 IPSEC_ASSERT(so != NULL, ("null so"));
1189
1190 switch (so->so_proto->pr_domain->dom_family) {
1191#if defined(INET) || defined(INET6)
1192#ifdef INET
1193 case PF_INET:
1194#endif
1195#ifdef INET6
1196 case PF_INET6:
1197#endif
1198 {
1199 struct inpcb *pcb = sotoinpcb(so);
1200
1201 /* Does it have a PCB ? */
1202 if (pcb == NULL)
1203 return;
1204 key_freesp_so(&pcb->inp_sp->sp_in);
1205 key_freesp_so(&pcb->inp_sp->sp_out);
1206 }
1207 break;
1208#endif /* INET || INET6 */
1209 default:
1210 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1211 __func__, so->so_proto->pr_domain->dom_family));
1212 return;
1213 }
1214}
1215
1216static void
1217key_freesp_so(struct secpolicy **sp)
1218{
1219 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1220
1221 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1222 (*sp)->policy == IPSEC_POLICY_BYPASS)
1223 return;
1224
1225 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1226 ("invalid policy %u", (*sp)->policy));
1227 KEY_FREESP(sp);
1228}
1229
1230void
1231key_addrefsa(struct secasvar *sav, const char* where, int tag)
1232{
1233
1234 IPSEC_ASSERT(sav != NULL, ("null sav"));
1235 IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist"));
1236
1237 sa_addref(sav);
1238}
1239
1240/*
1241 * Must be called after calling key_allocsa().
1242 * This function is called by key_freesp() to free some SA allocated
1243 * for a policy.
1244 */
1245void
1246key_freesav(struct secasvar **psav, const char* where, int tag)
1247{
1248 struct secasvar *sav = *psav;
1249
1250 IPSEC_ASSERT(sav != NULL, ("null sav"));
1251
1252 if (sa_delref(sav)) {
1253 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1254 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1255 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1256 *psav = NULL;
1257 key_delsav(sav);
1258 } else {
1259 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1260 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1261 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1262 }
1263}
1264
1265/* %%% SPD management */
1266/*
1267 * free security policy entry.
1268 */
1269static void
1270key_delsp(struct secpolicy *sp)
1271{
1272 struct ipsecrequest *isr, *nextisr;
1273
1274 IPSEC_ASSERT(sp != NULL, ("null sp"));
1275 SPTREE_LOCK_ASSERT();
1276
1277 sp->state = IPSEC_SPSTATE_DEAD;
1278
1279 IPSEC_ASSERT(sp->refcnt == 0,
1280 ("SP with references deleted (refcnt %u)", sp->refcnt));
1281
1282 /* remove from SP index */
1283 if (__LIST_CHAINED(sp))
1284 LIST_REMOVE(sp, chain);
1285
1286 for (isr = sp->req; isr != NULL; isr = nextisr) {
1287 if (isr->sav != NULL) {
1288 KEY_FREESAV(&isr->sav);
1289 isr->sav = NULL;
1290 }
1291
1292 nextisr = isr->next;
1293 ipsec_delisr(isr);
1294 }
1295 _key_delsp(sp);
1296}
1297
1298/*
1299 * search SPD
1300 * OUT: NULL : not found
1301 * others : found, pointer to a SP.
1302 */
1303static struct secpolicy *
1304key_getsp(struct secpolicyindex *spidx)
1305{
1306 struct secpolicy *sp;
1307
1308 IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1309
1310 SPTREE_LOCK();
1311 LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1312 if (sp->state == IPSEC_SPSTATE_DEAD)
1313 continue;
1314 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1315 SP_ADDREF(sp);
1316 break;
1317 }
1318 }
1319 SPTREE_UNLOCK();
1320
1321 return sp;
1322}
1323
1324/*
1325 * get SP by index.
1326 * OUT: NULL : not found
1327 * others : found, pointer to a SP.
1328 */
1329static struct secpolicy *
1330key_getspbyid(u_int32_t id)
1331{
1332 struct secpolicy *sp;
1333
1334 SPTREE_LOCK();
1335 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) {
1336 if (sp->state == IPSEC_SPSTATE_DEAD)
1337 continue;
1338 if (sp->id == id) {
1339 SP_ADDREF(sp);
1340 goto done;
1341 }
1342 }
1343
1344 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) {
1345 if (sp->state == IPSEC_SPSTATE_DEAD)
1346 continue;
1347 if (sp->id == id) {
1348 SP_ADDREF(sp);
1349 goto done;
1350 }
1351 }
1352done:
1353 SPTREE_UNLOCK();
1354
1355 return sp;
1356}
1357
1358struct secpolicy *
1359key_newsp(const char* where, int tag)
1360{
1361 struct secpolicy *newsp = NULL;
1362
1363 newsp = (struct secpolicy *)
1364 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1365 if (newsp) {
1366 SECPOLICY_LOCK_INIT(newsp);
1367 newsp->refcnt = 1;
1368 newsp->req = NULL;
1369 }
1370
1371 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1372 printf("DP %s from %s:%u return SP:%p\n", __func__,
1373 where, tag, newsp));
1374 return newsp;
1375}
1376
1377static void
1378_key_delsp(struct secpolicy *sp)
1379{
1380 SECPOLICY_LOCK_DESTROY(sp);
1381 free(sp, M_IPSEC_SP);
1382}
1383
1384/*
1385 * create secpolicy structure from sadb_x_policy structure.
1386 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1387 * so must be set properly later.
1388 */
1389struct secpolicy *
1390key_msg2sp(xpl0, len, error)
1391 struct sadb_x_policy *xpl0;
1392 size_t len;
1393 int *error;
1394{
1395 struct secpolicy *newsp;
1396
1397 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1398 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1399
1400 if (len != PFKEY_EXTLEN(xpl0)) {
1401 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1402 *error = EINVAL;
1403 return NULL;
1404 }
1405
1406 if ((newsp = KEY_NEWSP()) == NULL) {
1407 *error = ENOBUFS;
1408 return NULL;
1409 }
1410
1411 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1412 newsp->policy = xpl0->sadb_x_policy_type;
1413
1414 /* check policy */
1415 switch (xpl0->sadb_x_policy_type) {
1416 case IPSEC_POLICY_DISCARD:
1417 case IPSEC_POLICY_NONE:
1418 case IPSEC_POLICY_ENTRUST:
1419 case IPSEC_POLICY_BYPASS:
1420 newsp->req = NULL;
1421 break;
1422
1423 case IPSEC_POLICY_IPSEC:
1424 {
1425 int tlen;
1426 struct sadb_x_ipsecrequest *xisr;
1427 struct ipsecrequest **p_isr = &newsp->req;
1428
1429 /* validity check */
1430 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1431 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1432 __func__));
1433 KEY_FREESP(&newsp);
1434 *error = EINVAL;
1435 return NULL;
1436 }
1437
1438 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1439 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1440
1441 while (tlen > 0) {
1442 /* length check */
1443 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1444 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1445 "length.\n", __func__));
1446 KEY_FREESP(&newsp);
1447 *error = EINVAL;
1448 return NULL;
1449 }
1450
1451 /* allocate request buffer */
1452 /* NB: data structure is zero'd */
1453 *p_isr = ipsec_newisr();
1454 if ((*p_isr) == NULL) {
1455 ipseclog((LOG_DEBUG,
1456 "%s: No more memory.\n", __func__));
1457 KEY_FREESP(&newsp);
1458 *error = ENOBUFS;
1459 return NULL;
1460 }
1461
1462 /* set values */
1463 switch (xisr->sadb_x_ipsecrequest_proto) {
1464 case IPPROTO_ESP:
1465 case IPPROTO_AH:
1466 case IPPROTO_IPCOMP:
1467 break;
1468 default:
1469 ipseclog((LOG_DEBUG,
1470 "%s: invalid proto type=%u\n", __func__,
1471 xisr->sadb_x_ipsecrequest_proto));
1472 KEY_FREESP(&newsp);
1473 *error = EPROTONOSUPPORT;
1474 return NULL;
1475 }
1476 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1477
1478 switch (xisr->sadb_x_ipsecrequest_mode) {
1479 case IPSEC_MODE_TRANSPORT:
1480 case IPSEC_MODE_TUNNEL:
1481 break;
1482 case IPSEC_MODE_ANY:
1483 default:
1484 ipseclog((LOG_DEBUG,
1485 "%s: invalid mode=%u\n", __func__,
1486 xisr->sadb_x_ipsecrequest_mode));
1487 KEY_FREESP(&newsp);
1488 *error = EINVAL;
1489 return NULL;
1490 }
1491 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1492
1493 switch (xisr->sadb_x_ipsecrequest_level) {
1494 case IPSEC_LEVEL_DEFAULT:
1495 case IPSEC_LEVEL_USE:
1496 case IPSEC_LEVEL_REQUIRE:
1497 break;
1498 case IPSEC_LEVEL_UNIQUE:
1499 /* validity check */
1500 /*
1501 * If range violation of reqid, kernel will
1502 * update it, don't refuse it.
1503 */
1504 if (xisr->sadb_x_ipsecrequest_reqid
1505 > IPSEC_MANUAL_REQID_MAX) {
1506 ipseclog((LOG_DEBUG,
1507 "%s: reqid=%d range "
1508 "violation, updated by kernel.\n",
1509 __func__,
1510 xisr->sadb_x_ipsecrequest_reqid));
1511 xisr->sadb_x_ipsecrequest_reqid = 0;
1512 }
1513
1514 /* allocate new reqid id if reqid is zero. */
1515 if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1516 u_int32_t reqid;
1517 if ((reqid = key_newreqid()) == 0) {
1518 KEY_FREESP(&newsp);
1519 *error = ENOBUFS;
1520 return NULL;
1521 }
1522 (*p_isr)->saidx.reqid = reqid;
1523 xisr->sadb_x_ipsecrequest_reqid = reqid;
1524 } else {
1525 /* set it for manual keying. */
1526 (*p_isr)->saidx.reqid =
1527 xisr->sadb_x_ipsecrequest_reqid;
1528 }
1529 break;
1530
1531 default:
1532 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1533 __func__,
1534 xisr->sadb_x_ipsecrequest_level));
1535 KEY_FREESP(&newsp);
1536 *error = EINVAL;
1537 return NULL;
1538 }
1539 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1540
1541 /* set IP addresses if there */
1542 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1543 struct sockaddr *paddr;
1544
1545 paddr = (struct sockaddr *)(xisr + 1);
1546
1547 /* validity check */
1548 if (paddr->sa_len
1549 > sizeof((*p_isr)->saidx.src)) {
1550 ipseclog((LOG_DEBUG, "%s: invalid "
1551 "request address length.\n",
1552 __func__));
1553 KEY_FREESP(&newsp);
1554 *error = EINVAL;
1555 return NULL;
1556 }
1557 bcopy(paddr, &(*p_isr)->saidx.src,
1558 paddr->sa_len);
1559
1560 paddr = (struct sockaddr *)((caddr_t)paddr
1561 + paddr->sa_len);
1562
1563 /* validity check */
1564 if (paddr->sa_len
1565 > sizeof((*p_isr)->saidx.dst)) {
1566 ipseclog((LOG_DEBUG, "%s: invalid "
1567 "request address length.\n",
1568 __func__));
1569 KEY_FREESP(&newsp);
1570 *error = EINVAL;
1571 return NULL;
1572 }
1573 bcopy(paddr, &(*p_isr)->saidx.dst,
1574 paddr->sa_len);
1575 }
1576
1577 (*p_isr)->sp = newsp;
1578
1579 /* initialization for the next. */
1580 p_isr = &(*p_isr)->next;
1581 tlen -= xisr->sadb_x_ipsecrequest_len;
1582
1583 /* validity check */
1584 if (tlen < 0) {
1585 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1586 __func__));
1587 KEY_FREESP(&newsp);
1588 *error = EINVAL;
1589 return NULL;
1590 }
1591
1592 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1593 + xisr->sadb_x_ipsecrequest_len);
1594 }
1595 }
1596 break;
1597 default:
1598 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1599 KEY_FREESP(&newsp);
1600 *error = EINVAL;
1601 return NULL;
1602 }
1603
1604 *error = 0;
1605 return newsp;
1606}
1607
1608static u_int32_t
1609key_newreqid()
1610{
1611 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1612
1613 auto_reqid = (auto_reqid == ~0
1614 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1615
1616 /* XXX should be unique check */
1617
1618 return auto_reqid;
1619}
1620
1621/*
1622 * copy secpolicy struct to sadb_x_policy structure indicated.
1623 */
1624struct mbuf *
1625key_sp2msg(sp)
1626 struct secpolicy *sp;
1627{
1628 struct sadb_x_policy *xpl;
1629 int tlen;
1630 caddr_t p;
1631 struct mbuf *m;
1632
1633 IPSEC_ASSERT(sp != NULL, ("null policy"));
1634
1635 tlen = key_getspreqmsglen(sp);
1636
1637 m = key_alloc_mbuf(tlen);
1638 if (!m || m->m_next) { /*XXX*/
1639 if (m)
1640 m_freem(m);
1641 return NULL;
1642 }
1643
1644 m->m_len = tlen;
1645 m->m_next = NULL;
1646 xpl = mtod(m, struct sadb_x_policy *);
1647 bzero(xpl, tlen);
1648
1649 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1650 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1651 xpl->sadb_x_policy_type = sp->policy;
1652 xpl->sadb_x_policy_dir = sp->spidx.dir;
1653 xpl->sadb_x_policy_id = sp->id;
1654 p = (caddr_t)xpl + sizeof(*xpl);
1655
1656 /* if is the policy for ipsec ? */
1657 if (sp->policy == IPSEC_POLICY_IPSEC) {
1658 struct sadb_x_ipsecrequest *xisr;
1659 struct ipsecrequest *isr;
1660
1661 for (isr = sp->req; isr != NULL; isr = isr->next) {
1662
1663 xisr = (struct sadb_x_ipsecrequest *)p;
1664
1665 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1666 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1667 xisr->sadb_x_ipsecrequest_level = isr->level;
1668 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1669
1670 p += sizeof(*xisr);
1671 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1672 p += isr->saidx.src.sa.sa_len;
1673 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1674 p += isr->saidx.src.sa.sa_len;
1675
1676 xisr->sadb_x_ipsecrequest_len =
1677 PFKEY_ALIGN8(sizeof(*xisr)
1678 + isr->saidx.src.sa.sa_len
1679 + isr->saidx.dst.sa.sa_len);
1680 }
1681 }
1682
1683 return m;
1684}
1685
1686/* m will not be freed nor modified */
1687static struct mbuf *
1688#ifdef __STDC__
1689key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1690 int ndeep, int nitem, ...)
1691#else
1692key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1693 struct mbuf *m;
1694 const struct sadb_msghdr *mhp;
1695 int ndeep;
1696 int nitem;
1697 va_dcl
1698#endif
1699{
1700 va_list ap;
1701 int idx;
1702 int i;
1703 struct mbuf *result = NULL, *n;
1704 int len;
1705
1706 IPSEC_ASSERT(m != NULL, ("null mbuf"));
1707 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1708
1709 va_start(ap, nitem);
1710 for (i = 0; i < nitem; i++) {
1711 idx = va_arg(ap, int);
1712 if (idx < 0 || idx > SADB_EXT_MAX)
1713 goto fail;
1714 /* don't attempt to pull empty extension */
1715 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1716 continue;
1717 if (idx != SADB_EXT_RESERVED &&
1718 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1719 continue;
1720
1721 if (idx == SADB_EXT_RESERVED) {
1722 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1723
1724 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1725
1726 MGETHDR(n, M_DONTWAIT, MT_DATA);
1727 if (!n)
1728 goto fail;
1729 n->m_len = len;
1730 n->m_next = NULL;
1731 m_copydata(m, 0, sizeof(struct sadb_msg),
1732 mtod(n, caddr_t));
1733 } else if (i < ndeep) {
1734 len = mhp->extlen[idx];
1735 n = key_alloc_mbuf(len);
1736 if (!n || n->m_next) { /*XXX*/
1737 if (n)
1738 m_freem(n);
1739 goto fail;
1740 }
1741 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1742 mtod(n, caddr_t));
1743 } else {
1744 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1745 M_DONTWAIT);
1746 }
1747 if (n == NULL)
1748 goto fail;
1749
1750 if (result)
1751 m_cat(result, n);
1752 else
1753 result = n;
1754 }
1755 va_end(ap);
1756
1757 if ((result->m_flags & M_PKTHDR) != 0) {
1758 result->m_pkthdr.len = 0;
1759 for (n = result; n; n = n->m_next)
1760 result->m_pkthdr.len += n->m_len;
1761 }
1762
1763 return result;
1764
1765fail:
1766 m_freem(result);
1767 va_end(ap);
1768 return NULL;
1769}
1770
1771/*
1772 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1773 * add an entry to SP database, when received
1774 * <base, address(SD), (lifetime(H),) policy>
1775 * from the user(?).
1776 * Adding to SP database,
1777 * and send
1778 * <base, address(SD), (lifetime(H),) policy>
1779 * to the socket which was send.
1780 *
1781 * SPDADD set a unique policy entry.
1782 * SPDSETIDX like SPDADD without a part of policy requests.
1783 * SPDUPDATE replace a unique policy entry.
1784 *
1785 * m will always be freed.
1786 */
1787static int
1788key_spdadd(so, m, mhp)
1789 struct socket *so;
1790 struct mbuf *m;
1791 const struct sadb_msghdr *mhp;
1792{
1793 struct sadb_address *src0, *dst0;
1794 struct sadb_x_policy *xpl0, *xpl;
1795 struct sadb_lifetime *lft = NULL;
1796 struct secpolicyindex spidx;
1797 struct secpolicy *newsp;
1798 int error;
1799
1800 IPSEC_ASSERT(so != NULL, ("null socket"));
1801 IPSEC_ASSERT(m != NULL, ("null mbuf"));
1802 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1803 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1804
1805 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1806 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1807 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1808 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1809 return key_senderror(so, m, EINVAL);
1810 }
1811 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1812 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1813 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1814 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1815 __func__));
1816 return key_senderror(so, m, EINVAL);
1817 }
1818 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1819 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1820 < sizeof(struct sadb_lifetime)) {
1821 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1822 __func__));
1823 return key_senderror(so, m, EINVAL);
1824 }
1825 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1826 }
1827
1828 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1829 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1830 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1831
1832 /*
1833 * Note: do not parse SADB_X_EXT_NAT_T_* here:
1834 * we are processing traffic endpoints.
1835 */
1836
1837 /* make secindex */
1838 /* XXX boundary check against sa_len */
1839 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1840 src0 + 1,
1841 dst0 + 1,
1842 src0->sadb_address_prefixlen,
1843 dst0->sadb_address_prefixlen,
1844 src0->sadb_address_proto,
1845 &spidx);
1846
1847 /* checking the direciton. */
1848 switch (xpl0->sadb_x_policy_dir) {
1849 case IPSEC_DIR_INBOUND:
1850 case IPSEC_DIR_OUTBOUND:
1851 break;
1852 default:
1853 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1854 mhp->msg->sadb_msg_errno = EINVAL;
1855 return 0;
1856 }
1857
1858 /* check policy */
1859 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1860 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1861 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1862 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1863 return key_senderror(so, m, EINVAL);
1864 }
1865
1866 /* policy requests are mandatory when action is ipsec. */
1867 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1868 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1869 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1870 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1871 __func__));
1872 return key_senderror(so, m, EINVAL);
1873 }
1874
1875 /*
1876 * checking there is SP already or not.
1877 * SPDUPDATE doesn't depend on whether there is a SP or not.
1878 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1879 * then error.
1880 */
1881 newsp = key_getsp(&spidx);
1882 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1883 if (newsp) {
1884 SPTREE_LOCK();
1885 newsp->state = IPSEC_SPSTATE_DEAD;
1886 SPTREE_UNLOCK();
1887 KEY_FREESP(&newsp);
1888 }
1889 } else {
1890 if (newsp != NULL) {
1891 KEY_FREESP(&newsp);
1892 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1893 __func__));
1894 return key_senderror(so, m, EEXIST);
1895 }
1896 }
1897
1898 /* allocation new SP entry */
1899 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1900 return key_senderror(so, m, error);
1901 }
1902
1903 if ((newsp->id = key_getnewspid()) == 0) {
1904 _key_delsp(newsp);
1905 return key_senderror(so, m, ENOBUFS);
1906 }
1907
1908 /* XXX boundary check against sa_len */
1909 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1910 src0 + 1,
1911 dst0 + 1,
1912 src0->sadb_address_prefixlen,
1913 dst0->sadb_address_prefixlen,
1914 src0->sadb_address_proto,
1915 &newsp->spidx);
1916
1917 /* sanity check on addr pair */
1918 if (((struct sockaddr *)(src0 + 1))->sa_family !=
1919 ((struct sockaddr *)(dst0+ 1))->sa_family) {
1920 _key_delsp(newsp);
1921 return key_senderror(so, m, EINVAL);
1922 }
1923 if (((struct sockaddr *)(src0 + 1))->sa_len !=
1924 ((struct sockaddr *)(dst0+ 1))->sa_len) {
1925 _key_delsp(newsp);
1926 return key_senderror(so, m, EINVAL);
1927 }
1928#if 1
1929 if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) {
1930 if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) {
1931 _key_delsp(newsp);
1932 return key_senderror(so, m, EINVAL);
1933 }
1934 }
1935#endif
1936
1937 newsp->created = time_second;
1938 newsp->lastused = newsp->created;
1939 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1940 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1941
1942 newsp->refcnt = 1; /* do not reclaim until I say I do */
1943 newsp->state = IPSEC_SPSTATE_ALIVE;
1944 LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1945
1946 /* delete the entry in spacqtree */
1947 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1948 struct secspacq *spacq = key_getspacq(&spidx);
1949 if (spacq != NULL) {
1950 /* reset counter in order to deletion by timehandler. */
1951 spacq->created = time_second;
1952 spacq->count = 0;
1953 SPACQ_UNLOCK();
1954 }
1955 }
1956
1957 {
1958 struct mbuf *n, *mpolicy;
1959 struct sadb_msg *newmsg;
1960 int off;
1961
1962 /*
1963 * Note: do not send SADB_X_EXT_NAT_T_* here:
1964 * we are sending traffic endpoints.
1965 */
1966
1967 /* create new sadb_msg to reply. */
1968 if (lft) {
1969 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1970 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1971 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1972 } else {
1973 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1974 SADB_X_EXT_POLICY,
1975 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1976 }
1977 if (!n)
1978 return key_senderror(so, m, ENOBUFS);
1979
1980 if (n->m_len < sizeof(*newmsg)) {
1981 n = m_pullup(n, sizeof(*newmsg));
1982 if (!n)
1983 return key_senderror(so, m, ENOBUFS);
1984 }
1985 newmsg = mtod(n, struct sadb_msg *);
1986 newmsg->sadb_msg_errno = 0;
1987 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1988
1989 off = 0;
1990 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1991 sizeof(*xpl), &off);
1992 if (mpolicy == NULL) {
1993 /* n is already freed */
1994 return key_senderror(so, m, ENOBUFS);
1995 }
1996 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1997 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1998 m_freem(n);
1999 return key_senderror(so, m, EINVAL);
2000 }
2001 xpl->sadb_x_policy_id = newsp->id;
2002
2003 m_freem(m);
2004 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2005 }
2006}
2007
2008/*
2009 * get new policy id.
2010 * OUT:
2011 * 0: failure.
2012 * others: success.
2013 */
2014static u_int32_t
2015key_getnewspid()
2016{
2017 u_int32_t newid = 0;
2018 int count = V_key_spi_trycnt; /* XXX */
2019 struct secpolicy *sp;
2020
2021 /* when requesting to allocate spi ranged */
2022 while (count--) {
2023 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1));
2024
2025 if ((sp = key_getspbyid(newid)) == NULL)
2026 break;
2027
2028 KEY_FREESP(&sp);
2029 }
2030
2031 if (count == 0 || newid == 0) {
2032 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
2033 __func__));
2034 return 0;
2035 }
2036
2037 return newid;
2038}
2039
2040/*
2041 * SADB_SPDDELETE processing
2042 * receive
2043 * <base, address(SD), policy(*)>
2044 * from the user(?), and set SADB_SASTATE_DEAD,
2045 * and send,
2046 * <base, address(SD), policy(*)>
2047 * to the ikmpd.
2048 * policy(*) including direction of policy.
2049 *
2050 * m will always be freed.
2051 */
2052static int
2053key_spddelete(so, m, mhp)
2054 struct socket *so;
2055 struct mbuf *m;
2056 const struct sadb_msghdr *mhp;
2057{
2058 struct sadb_address *src0, *dst0;
2059 struct sadb_x_policy *xpl0;
2060 struct secpolicyindex spidx;
2061 struct secpolicy *sp;
2062
2063 IPSEC_ASSERT(so != NULL, ("null so"));
2064 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2065 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2066 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2067
2068 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2069 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2070 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2071 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2072 __func__));
2073 return key_senderror(so, m, EINVAL);
2074 }
2075 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2076 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2077 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2078 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2079 __func__));
2080 return key_senderror(so, m, EINVAL);
2081 }
2082
2083 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2084 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2085 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2086
2087 /*
2088 * Note: do not parse SADB_X_EXT_NAT_T_* here:
2089 * we are processing traffic endpoints.
2090 */
2091
2092 /* make secindex */
2093 /* XXX boundary check against sa_len */
2094 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2095 src0 + 1,
2096 dst0 + 1,
2097 src0->sadb_address_prefixlen,
2098 dst0->sadb_address_prefixlen,
2099 src0->sadb_address_proto,
2100 &spidx);
2101
2102 /* checking the direciton. */
2103 switch (xpl0->sadb_x_policy_dir) {
2104 case IPSEC_DIR_INBOUND:
2105 case IPSEC_DIR_OUTBOUND:
2106 break;
2107 default:
2108 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2109 return key_senderror(so, m, EINVAL);
2110 }
2111
2112 /* Is there SP in SPD ? */
2113 if ((sp = key_getsp(&spidx)) == NULL) {
2114 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2115 return key_senderror(so, m, EINVAL);
2116 }
2117
2118 /* save policy id to buffer to be returned. */
2119 xpl0->sadb_x_policy_id = sp->id;
2120
2121 SPTREE_LOCK();
2122 sp->state = IPSEC_SPSTATE_DEAD;
2123 SPTREE_UNLOCK();
2124 KEY_FREESP(&sp);
2125
2126 {
2127 struct mbuf *n;
2128 struct sadb_msg *newmsg;
2129
2130 /*
2131 * Note: do not send SADB_X_EXT_NAT_T_* here:
2132 * we are sending traffic endpoints.
2133 */
2134
2135 /* create new sadb_msg to reply. */
2136 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2137 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2138 if (!n)
2139 return key_senderror(so, m, ENOBUFS);
2140
2141 newmsg = mtod(n, struct sadb_msg *);
2142 newmsg->sadb_msg_errno = 0;
2143 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2144
2145 m_freem(m);
2146 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2147 }
2148}
2149
2150/*
2151 * SADB_SPDDELETE2 processing
2152 * receive
2153 * <base, policy(*)>
2154 * from the user(?), and set SADB_SASTATE_DEAD,
2155 * and send,
2156 * <base, policy(*)>
2157 * to the ikmpd.
2158 * policy(*) including direction of policy.
2159 *
2160 * m will always be freed.
2161 */
2162static int
2163key_spddelete2(so, m, mhp)
2164 struct socket *so;
2165 struct mbuf *m;
2166 const struct sadb_msghdr *mhp;
2167{
2168 u_int32_t id;
2169 struct secpolicy *sp;
2170
2171 IPSEC_ASSERT(so != NULL, ("null socket"));
2172 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2173 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2174 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2175
2176 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2177 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2178 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2179 return key_senderror(so, m, EINVAL);
2180 }
2181
2182 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2183
2184 /* Is there SP in SPD ? */
2185 if ((sp = key_getspbyid(id)) == NULL) {
2186 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2187 return key_senderror(so, m, EINVAL);
2188 }
2189
2190 SPTREE_LOCK();
2191 sp->state = IPSEC_SPSTATE_DEAD;
2192 SPTREE_UNLOCK();
2193 KEY_FREESP(&sp);
2194
2195 {
2196 struct mbuf *n, *nn;
2197 struct sadb_msg *newmsg;
2198 int off, len;
2199
2200 /* create new sadb_msg to reply. */
2201 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2202
2203 MGETHDR(n, M_DONTWAIT, MT_DATA);
2204 if (n && len > MHLEN) {
2205 MCLGET(n, M_DONTWAIT);
2206 if ((n->m_flags & M_EXT) == 0) {
2207 m_freem(n);
2208 n = NULL;
2209 }
2210 }
2211 if (!n)
2212 return key_senderror(so, m, ENOBUFS);
2213
2214 n->m_len = len;
2215 n->m_next = NULL;
2216 off = 0;
2217
2218 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2219 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2220
2221 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2222 off, len));
2223
2224 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2225 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2226 if (!n->m_next) {
2227 m_freem(n);
2228 return key_senderror(so, m, ENOBUFS);
2229 }
2230
2231 n->m_pkthdr.len = 0;
2232 for (nn = n; nn; nn = nn->m_next)
2233 n->m_pkthdr.len += nn->m_len;
2234
2235 newmsg = mtod(n, struct sadb_msg *);
2236 newmsg->sadb_msg_errno = 0;
2237 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2238
2239 m_freem(m);
2240 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2241 }
2242}
2243
2244/*
2245 * SADB_X_GET processing
2246 * receive
2247 * <base, policy(*)>
2248 * from the user(?),
2249 * and send,
2250 * <base, address(SD), policy>
2251 * to the ikmpd.
2252 * policy(*) including direction of policy.
2253 *
2254 * m will always be freed.
2255 */
2256static int
2257key_spdget(so, m, mhp)
2258 struct socket *so;
2259 struct mbuf *m;
2260 const struct sadb_msghdr *mhp;
2261{
2262 u_int32_t id;
2263 struct secpolicy *sp;
2264 struct mbuf *n;
2265
2266 IPSEC_ASSERT(so != NULL, ("null socket"));
2267 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2268 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2269 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2270
2271 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2272 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2273 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2274 __func__));
2275 return key_senderror(so, m, EINVAL);
2276 }
2277
2278 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2279
2280 /* Is there SP in SPD ? */
2281 if ((sp = key_getspbyid(id)) == NULL) {
2282 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2283 return key_senderror(so, m, ENOENT);
2284 }
2285
2286 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2287 KEY_FREESP(&sp);
2288 if (n != NULL) {
2289 m_freem(m);
2290 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2291 } else
2292 return key_senderror(so, m, ENOBUFS);
2293}
2294
2295/*
2296 * SADB_X_SPDACQUIRE processing.
2297 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2298 * send
2299 * <base, policy(*)>
2300 * to KMD, and expect to receive
2301 * <base> with SADB_X_SPDACQUIRE if error occured,
2302 * or
2303 * <base, policy>
2304 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2305 * policy(*) is without policy requests.
2306 *
2307 * 0 : succeed
2308 * others: error number
2309 */
2310int
2311key_spdacquire(sp)
2312 struct secpolicy *sp;
2313{
2314 struct mbuf *result = NULL, *m;
2315 struct secspacq *newspacq;
2316
2317 IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2318 IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2319 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2320 ("policy not IPSEC %u", sp->policy));
2321
2322 /* Get an entry to check whether sent message or not. */
2323 newspacq = key_getspacq(&sp->spidx);
2324 if (newspacq != NULL) {
2325 if (V_key_blockacq_count < newspacq->count) {
2326 /* reset counter and do send message. */
2327 newspacq->count = 0;
2328 } else {
2329 /* increment counter and do nothing. */
2330 newspacq->count++;
2331 return 0;
2332 }
2333 SPACQ_UNLOCK();
2334 } else {
2335 /* make new entry for blocking to send SADB_ACQUIRE. */
2336 newspacq = key_newspacq(&sp->spidx);
2337 if (newspacq == NULL)
2338 return ENOBUFS;
2339 }
2340
2341 /* create new sadb_msg to reply. */
2342 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2343 if (!m)
2344 return ENOBUFS;
2345
2346 result = m;
2347
2348 result->m_pkthdr.len = 0;
2349 for (m = result; m; m = m->m_next)
2350 result->m_pkthdr.len += m->m_len;
2351
2352 mtod(result, struct sadb_msg *)->sadb_msg_len =
2353 PFKEY_UNIT64(result->m_pkthdr.len);
2354
2355 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2356}
2357
2358/*
2359 * SADB_SPDFLUSH processing
2360 * receive
2361 * <base>
2362 * from the user, and free all entries in secpctree.
2363 * and send,
2364 * <base>
2365 * to the user.
2366 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2367 *
2368 * m will always be freed.
2369 */
2370static int
2371key_spdflush(so, m, mhp)
2372 struct socket *so;
2373 struct mbuf *m;
2374 const struct sadb_msghdr *mhp;
2375{
2376 struct sadb_msg *newmsg;
2377 struct secpolicy *sp;
2378 u_int dir;
2379
2380 IPSEC_ASSERT(so != NULL, ("null socket"));
2381 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2382 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2383 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2384
2385 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2386 return key_senderror(so, m, EINVAL);
2387
2388 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2389 SPTREE_LOCK();
2390 LIST_FOREACH(sp, &V_sptree[dir], chain)
2391 sp->state = IPSEC_SPSTATE_DEAD;
2392 SPTREE_UNLOCK();
2393 }
2394
2395 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2396 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2397 return key_senderror(so, m, ENOBUFS);
2398 }
2399
2400 if (m->m_next)
2401 m_freem(m->m_next);
2402 m->m_next = NULL;
2403 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2404 newmsg = mtod(m, struct sadb_msg *);
2405 newmsg->sadb_msg_errno = 0;
2406 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2407
2408 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2409}
2410
2411/*
2412 * SADB_SPDDUMP processing
2413 * receive
2414 * <base>
2415 * from the user, and dump all SP leaves
2416 * and send,
2417 * <base> .....
2418 * to the ikmpd.
2419 *
2420 * m will always be freed.
2421 */
2422static int
2423key_spddump(so, m, mhp)
2424 struct socket *so;
2425 struct mbuf *m;
2426 const struct sadb_msghdr *mhp;
2427{
2428 struct secpolicy *sp;
2429 int cnt;
2430 u_int dir;
2431 struct mbuf *n;
2432
2433 IPSEC_ASSERT(so != NULL, ("null socket"));
2434 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2435 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2436 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2437
2438 /* search SPD entry and get buffer size. */
2439 cnt = 0;
2440 SPTREE_LOCK();
2441 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2442 LIST_FOREACH(sp, &V_sptree[dir], chain) {
2443 cnt++;
2444 }
2445 }
2446
2447 if (cnt == 0) {
2448 SPTREE_UNLOCK();
2449 return key_senderror(so, m, ENOENT);
2450 }
2451
2452 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2453 LIST_FOREACH(sp, &V_sptree[dir], chain) {
2454 --cnt;
2455 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2456 mhp->msg->sadb_msg_pid);
2457
2458 if (n)
2459 key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2460 }
2461 }
2462
2463 SPTREE_UNLOCK();
2464 m_freem(m);
2465 return 0;
2466}
2467
2468static struct mbuf *
2469key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid)
2470{
2471 struct mbuf *result = NULL, *m;
2472 struct seclifetime lt;
2473
2474 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2475 if (!m)
2476 goto fail;
2477 result = m;
2478
2479 /*
2480 * Note: do not send SADB_X_EXT_NAT_T_* here:
2481 * we are sending traffic endpoints.
2482 */
2483 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2484 &sp->spidx.src.sa, sp->spidx.prefs,
2485 sp->spidx.ul_proto);
2486 if (!m)
2487 goto fail;
2488 m_cat(result, m);
2489
2490 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2491 &sp->spidx.dst.sa, sp->spidx.prefd,
2492 sp->spidx.ul_proto);
2493 if (!m)
2494 goto fail;
2495 m_cat(result, m);
2496
2497 m = key_sp2msg(sp);
2498 if (!m)
2499 goto fail;
2500 m_cat(result, m);
2501
2502 if(sp->lifetime){
2503 lt.addtime=sp->created;
2504 lt.usetime= sp->lastused;
2505 m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2506 if (!m)
2507 goto fail;
2508 m_cat(result, m);
2509
2510 lt.addtime=sp->lifetime;
2511 lt.usetime= sp->validtime;
2512 m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2513 if (!m)
2514 goto fail;
2515 m_cat(result, m);
2516 }
2517
2518 if ((result->m_flags & M_PKTHDR) == 0)
2519 goto fail;
2520
2521 if (result->m_len < sizeof(struct sadb_msg)) {
2522 result = m_pullup(result, sizeof(struct sadb_msg));
2523 if (result == NULL)
2524 goto fail;
2525 }
2526
2527 result->m_pkthdr.len = 0;
2528 for (m = result; m; m = m->m_next)
2529 result->m_pkthdr.len += m->m_len;
2530
2531 mtod(result, struct sadb_msg *)->sadb_msg_len =
2532 PFKEY_UNIT64(result->m_pkthdr.len);
2533
2534 return result;
2535
2536fail:
2537 m_freem(result);
2538 return NULL;
2539}
2540
2541/*
2542 * get PFKEY message length for security policy and request.
2543 */
2544static u_int
2545key_getspreqmsglen(sp)
2546 struct secpolicy *sp;
2547{
2548 u_int tlen;
2549
2550 tlen = sizeof(struct sadb_x_policy);
2551
2552 /* if is the policy for ipsec ? */
2553 if (sp->policy != IPSEC_POLICY_IPSEC)
2554 return tlen;
2555
2556 /* get length of ipsec requests */
2557 {
2558 struct ipsecrequest *isr;
2559 int len;
2560
2561 for (isr = sp->req; isr != NULL; isr = isr->next) {
2562 len = sizeof(struct sadb_x_ipsecrequest)
2563 + isr->saidx.src.sa.sa_len
2564 + isr->saidx.dst.sa.sa_len;
2565
2566 tlen += PFKEY_ALIGN8(len);
2567 }
2568 }
2569
2570 return tlen;
2571}
2572
2573/*
2574 * SADB_SPDEXPIRE processing
2575 * send
2576 * <base, address(SD), lifetime(CH), policy>
2577 * to KMD by PF_KEY.
2578 *
2579 * OUT: 0 : succeed
2580 * others : error number
2581 */
2582static int
2583key_spdexpire(sp)
2584 struct secpolicy *sp;
2585{
2586 struct mbuf *result = NULL, *m;
2587 int len;
2588 int error = -1;
2589 struct sadb_lifetime *lt;
2590
2591 /* XXX: Why do we lock ? */
2592
2593 IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2594
2595 /* set msg header */
2596 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2597 if (!m) {
2598 error = ENOBUFS;
2599 goto fail;
2600 }
2601 result = m;
2602
2603 /* create lifetime extension (current and hard) */
2604 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2605 m = key_alloc_mbuf(len);
2606 if (!m || m->m_next) { /*XXX*/
2607 if (m)
2608 m_freem(m);
2609 error = ENOBUFS;
2610 goto fail;
2611 }
2612 bzero(mtod(m, caddr_t), len);
2613 lt = mtod(m, struct sadb_lifetime *);
2614 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2615 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2616 lt->sadb_lifetime_allocations = 0;
2617 lt->sadb_lifetime_bytes = 0;
2618 lt->sadb_lifetime_addtime = sp->created;
2619 lt->sadb_lifetime_usetime = sp->lastused;
2620 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2621 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2622 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2623 lt->sadb_lifetime_allocations = 0;
2624 lt->sadb_lifetime_bytes = 0;
2625 lt->sadb_lifetime_addtime = sp->lifetime;
2626 lt->sadb_lifetime_usetime = sp->validtime;
2627 m_cat(result, m);
2628
2629 /*
2630 * Note: do not send SADB_X_EXT_NAT_T_* here:
2631 * we are sending traffic endpoints.
2632 */
2633
2634 /* set sadb_address for source */
2635 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2636 &sp->spidx.src.sa,
2637 sp->spidx.prefs, sp->spidx.ul_proto);
2638 if (!m) {
2639 error = ENOBUFS;
2640 goto fail;
2641 }
2642 m_cat(result, m);
2643
2644 /* set sadb_address for destination */
2645 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2646 &sp->spidx.dst.sa,
2647 sp->spidx.prefd, sp->spidx.ul_proto);
2648 if (!m) {
2649 error = ENOBUFS;
2650 goto fail;
2651 }
2652 m_cat(result, m);
2653
2654 /* set secpolicy */
2655 m = key_sp2msg(sp);
2656 if (!m) {
2657 error = ENOBUFS;
2658 goto fail;
2659 }
2660 m_cat(result, m);
2661
2662 if ((result->m_flags & M_PKTHDR) == 0) {
2663 error = EINVAL;
2664 goto fail;
2665 }
2666
2667 if (result->m_len < sizeof(struct sadb_msg)) {
2668 result = m_pullup(result, sizeof(struct sadb_msg));
2669 if (result == NULL) {
2670 error = ENOBUFS;
2671 goto fail;
2672 }
2673 }
2674
2675 result->m_pkthdr.len = 0;
2676 for (m = result; m; m = m->m_next)
2677 result->m_pkthdr.len += m->m_len;
2678
2679 mtod(result, struct sadb_msg *)->sadb_msg_len =
2680 PFKEY_UNIT64(result->m_pkthdr.len);
2681
2682 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2683
2684 fail:
2685 if (result)
2686 m_freem(result);
2687 return error;
2688}
2689
2690/* %%% SAD management */
2691/*
2692 * allocating a memory for new SA head, and copy from the values of mhp.
2693 * OUT: NULL : failure due to the lack of memory.
2694 * others : pointer to new SA head.
2695 */
2696static struct secashead *
2697key_newsah(saidx)
2698 struct secasindex *saidx;
2699{
2700 struct secashead *newsah;
2701
2702 IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2703
2704 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2705 if (newsah != NULL) {
2706 int i;
2707 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2708 LIST_INIT(&newsah->savtree[i]);
2709 newsah->saidx = *saidx;
2710
2711 /* add to saidxtree */
2712 newsah->state = SADB_SASTATE_MATURE;
2713
2714 SAHTREE_LOCK();
2715 LIST_INSERT_HEAD(&V_sahtree, newsah, chain);
2716 SAHTREE_UNLOCK();
2717 }
2718 return(newsah);
2719}
2720
2721/*
2722 * delete SA index and all SA registerd.
2723 */
2724static void
2725key_delsah(sah)
2726 struct secashead *sah;
2727{
2728 struct secasvar *sav, *nextsav;
2729 u_int stateidx;
2730 int zombie = 0;
2731
2732 IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2733 SAHTREE_LOCK_ASSERT();
2734
2735 /* searching all SA registerd in the secindex. */
2736 for (stateidx = 0;
2737 stateidx < _ARRAYLEN(saorder_state_any);
2738 stateidx++) {
2739 u_int state = saorder_state_any[stateidx];
2740 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2741 if (sav->refcnt == 0) {
2742 /* sanity check */
2743 KEY_CHKSASTATE(state, sav->state, __func__);
2744 /*
2745 * do NOT call KEY_FREESAV here:
2746 * it will only delete the sav if refcnt == 1,
2747 * where we already know that refcnt == 0
2748 */
2749 key_delsav(sav);
2750 } else {
2751 /* give up to delete this sa */
2752 zombie++;
2753 }
2754 }
2755 }
2756 if (!zombie) { /* delete only if there are savs */
2757 /* remove from tree of SA index */
2758 if (__LIST_CHAINED(sah))
2759 LIST_REMOVE(sah, chain);
2760 if (sah->route_cache.sa_route.ro_rt) {
2761 RTFREE(sah->route_cache.sa_route.ro_rt);
2762 sah->route_cache.sa_route.ro_rt = (struct rtentry *)NULL;
2763 }
2764 free(sah, M_IPSEC_SAH);
2765 }
2766}
2767
2768/*
2769 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2770 * and copy the values of mhp into new buffer.
2771 * When SAD message type is GETSPI:
2772 * to set sequence number from acq_seq++,
2773 * to set zero to SPI.
2774 * not to call key_setsava().
2775 * OUT: NULL : fail
2776 * others : pointer to new secasvar.
2777 *
2778 * does not modify mbuf. does not free mbuf on error.
2779 */
2780static struct secasvar *
2781key_newsav(m, mhp, sah, errp, where, tag)
2782 struct mbuf *m;
2783 const struct sadb_msghdr *mhp;
2784 struct secashead *sah;
2785 int *errp;
2786 const char* where;
2787 int tag;
2788{
2789 struct secasvar *newsav;
2790 const struct sadb_sa *xsa;
2791
2792 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2793 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2794 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2795 IPSEC_ASSERT(sah != NULL, ("null secashead"));
2796
2797 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2798 if (newsav == NULL) {
2799 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2800 *errp = ENOBUFS;
2801 goto done;
2802 }
2803
2804 switch (mhp->msg->sadb_msg_type) {
2805 case SADB_GETSPI:
2806 newsav->spi = 0;
2807
2808#ifdef IPSEC_DOSEQCHECK
2809 /* sync sequence number */
2810 if (mhp->msg->sadb_msg_seq == 0)
2811 newsav->seq =
2812 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq));
2813 else
2814#endif
2815 newsav->seq = mhp->msg->sadb_msg_seq;
2816 break;
2817
2818 case SADB_ADD:
2819 /* sanity check */
2820 if (mhp->ext[SADB_EXT_SA] == NULL) {
2821 free(newsav, M_IPSEC_SA);
2822 newsav = NULL;
2823 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2824 __func__));
2825 *errp = EINVAL;
2826 goto done;
2827 }
2828 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2829 newsav->spi = xsa->sadb_sa_spi;
2830 newsav->seq = mhp->msg->sadb_msg_seq;
2831 break;
2832 default:
2833 free(newsav, M_IPSEC_SA);
2834 newsav = NULL;
2835 *errp = EINVAL;
2836 goto done;
2837 }
2838
2839
2840 /* copy sav values */
2841 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2842 *errp = key_setsaval(newsav, m, mhp);
2843 if (*errp) {
2844 free(newsav, M_IPSEC_SA);
2845 newsav = NULL;
2846 goto done;
2847 }
2848 }
2849
2850 SECASVAR_LOCK_INIT(newsav);
2851
2852 /* reset created */
2853 newsav->created = time_second;
2854 newsav->pid = mhp->msg->sadb_msg_pid;
2855
2856 /* add to satree */
2857 newsav->sah = sah;
2858 sa_initref(newsav);
2859 newsav->state = SADB_SASTATE_LARVAL;
2860
2861 SAHTREE_LOCK();
2862 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2863 secasvar, chain);
2864 SAHTREE_UNLOCK();
2865done:
2866 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2867 printf("DP %s from %s:%u return SP:%p\n", __func__,
2868 where, tag, newsav));
2869
2870 return newsav;
2871}
2872
2873/*
2874 * free() SA variable entry.
2875 */
2876static void
2877key_cleansav(struct secasvar *sav)
2878{
2879 /*
2880 * Cleanup xform state. Note that zeroize'ing causes the
2881 * keys to be cleared; otherwise we must do it ourself.
2882 */
2883 if (sav->tdb_xform != NULL) {
2884 sav->tdb_xform->xf_zeroize(sav);
2885 sav->tdb_xform = NULL;
2886 } else {
2887 KASSERT(sav->iv == NULL, ("iv but no xform"));
2888 if (sav->key_auth != NULL)
2889 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2890 if (sav->key_enc != NULL)
2891 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2892 }
2893 if (sav->key_auth != NULL) {
2894 if (sav->key_auth->key_data != NULL)
2895 free(sav->key_auth->key_data, M_IPSEC_MISC);
2896 free(sav->key_auth, M_IPSEC_MISC);
2897 sav->key_auth = NULL;
2898 }
2899 if (sav->key_enc != NULL) {
2900 if (sav->key_enc->key_data != NULL)
2901 free(sav->key_enc->key_data, M_IPSEC_MISC);
2902 free(sav->key_enc, M_IPSEC_MISC);
2903 sav->key_enc = NULL;
2904 }
2905 if (sav->sched) {
2906 bzero(sav->sched, sav->schedlen);
2907 free(sav->sched, M_IPSEC_MISC);
2908 sav->sched = NULL;
2909 }
2910 if (sav->replay != NULL) {
2911 free(sav->replay, M_IPSEC_MISC);
2912 sav->replay = NULL;
2913 }
2914 if (sav->lft_c != NULL) {
2915 free(sav->lft_c, M_IPSEC_MISC);
2916 sav->lft_c = NULL;
2917 }
2918 if (sav->lft_h != NULL) {
2919 free(sav->lft_h, M_IPSEC_MISC);
2920 sav->lft_h = NULL;
2921 }
2922 if (sav->lft_s != NULL) {
2923 free(sav->lft_s, M_IPSEC_MISC);
2924 sav->lft_s = NULL;
2925 }
2926}
2927
2928/*
2929 * free() SA variable entry.
2930 */
2931static void
2932key_delsav(sav)
2933 struct secasvar *sav;
2934{
2935 IPSEC_ASSERT(sav != NULL, ("null sav"));
2936 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2937
2938 /* remove from SA header */
2939 if (__LIST_CHAINED(sav))
2940 LIST_REMOVE(sav, chain);
2941 key_cleansav(sav);
2942 SECASVAR_LOCK_DESTROY(sav);
2943 free(sav, M_IPSEC_SA);
2944}
2945
2946/*
2947 * search SAD.
2948 * OUT:
2949 * NULL : not found
2950 * others : found, pointer to a SA.
2951 */
2952static struct secashead *
2953key_getsah(saidx)
2954 struct secasindex *saidx;
2955{
2956 struct secashead *sah;
2957
2958 SAHTREE_LOCK();
2959 LIST_FOREACH(sah, &V_sahtree, chain) {
2960 if (sah->state == SADB_SASTATE_DEAD)
2961 continue;
2962 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2963 break;
2964 }
2965 SAHTREE_UNLOCK();
2966
2967 return sah;
2968}
2969
2970/*
2971 * check not to be duplicated SPI.
2972 * NOTE: this function is too slow due to searching all SAD.
2973 * OUT:
2974 * NULL : not found
2975 * others : found, pointer to a SA.
2976 */
2977static struct secasvar *
2978key_checkspidup(saidx, spi)
2979 struct secasindex *saidx;
2980 u_int32_t spi;
2981{
2982 struct secashead *sah;
2983 struct secasvar *sav;
2984
2985 /* check address family */
2986 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2987 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2988 __func__));
2989 return NULL;
2990 }
2991
2992 sav = NULL;
2993 /* check all SAD */
2994 SAHTREE_LOCK();
2995 LIST_FOREACH(sah, &V_sahtree, chain) {
2996 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2997 continue;
2998 sav = key_getsavbyspi(sah, spi);
2999 if (sav != NULL)
3000 break;
3001 }
3002 SAHTREE_UNLOCK();
3003
3004 return sav;
3005}
3006
3007/*
3008 * search SAD litmited alive SA, protocol, SPI.
3009 * OUT:
3010 * NULL : not found
3011 * others : found, pointer to a SA.
3012 */
3013static struct secasvar *
3014key_getsavbyspi(sah, spi)
3015 struct secashead *sah;
3016 u_int32_t spi;
3017{
3018 struct secasvar *sav;
3019 u_int stateidx, state;
3020
3021 sav = NULL;
3022 SAHTREE_LOCK_ASSERT();
3023 /* search all status */
3024 for (stateidx = 0;
3025 stateidx < _ARRAYLEN(saorder_state_alive);
3026 stateidx++) {
3027
3028 state = saorder_state_alive[stateidx];
3029 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3030
3031 /* sanity check */
3032 if (sav->state != state) {
3033 ipseclog((LOG_DEBUG, "%s: "
3034 "invalid sav->state (queue: %d SA: %d)\n",
3035 __func__, state, sav->state));
3036 continue;
3037 }
3038
3039 if (sav->spi == spi)
3040 return sav;
3041 }
3042 }
3043
3044 return NULL;
3045}
3046
3047/*
3048 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3049 * You must update these if need.
3050 * OUT: 0: success.
3051 * !0: failure.
3052 *
3053 * does not modify mbuf. does not free mbuf on error.
3054 */
3055static int
3056key_setsaval(sav, m, mhp)
3057 struct secasvar *sav;
3058 struct mbuf *m;
3059 const struct sadb_msghdr *mhp;
3060{
3061 int error = 0;
3062
3063 IPSEC_ASSERT(m != NULL, ("null mbuf"));
3064 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3065 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3066
3067 /* initialization */
3068 sav->replay = NULL;
3069 sav->key_auth = NULL;
3070 sav->key_enc = NULL;
3071 sav->sched = NULL;
3072 sav->schedlen = 0;
3073 sav->iv = NULL;
3074 sav->lft_c = NULL;
3075 sav->lft_h = NULL;
3076 sav->lft_s = NULL;
3077 sav->tdb_xform = NULL; /* transform */
3078 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3079 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3080 sav->tdb_compalgxform = NULL; /* compression algorithm */
3081 /* Initialize even if NAT-T not compiled in: */
3082 sav->natt_type = 0;
3083 sav->natt_esp_frag_len = 0;
3084
3085 /* SA */
3086 if (mhp->ext[SADB_EXT_SA] != NULL) {
3087 const struct sadb_sa *sa0;
3088
3089 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3090 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3091 error = EINVAL;
3092 goto fail;
3093 }
3094
3095 sav->alg_auth = sa0->sadb_sa_auth;
3096 sav->alg_enc = sa0->sadb_sa_encrypt;
3097 sav->flags = sa0->sadb_sa_flags;
3098
3099 /* replay window */
3100 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3101 sav->replay = (struct secreplay *)
3102 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3103 if (sav->replay == NULL) {
3104 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3105 __func__));
3106 error = ENOBUFS;
3107 goto fail;
3108 }
3109 if (sa0->sadb_sa_replay != 0)
3110 sav->replay->bitmap = (caddr_t)(sav->replay+1);
3111 sav->replay->wsize = sa0->sadb_sa_replay;
3112 }
3113 }
3114
3115 /* Authentication keys */
3116 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3117 const struct sadb_key *key0;
3118 int len;
3119
3120 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3121 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3122
3123 error = 0;
3124 if (len < sizeof(*key0)) {
3125 error = EINVAL;
3126 goto fail;
3127 }
3128 switch (mhp->msg->sadb_msg_satype) {
3129 case SADB_SATYPE_AH:
3130 case SADB_SATYPE_ESP:
3131 case SADB_X_SATYPE_TCPSIGNATURE:
3132 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3133 sav->alg_auth != SADB_X_AALG_NULL)
3134 error = EINVAL;
3135 break;
3136 case SADB_X_SATYPE_IPCOMP:
3137 default:
3138 error = EINVAL;
3139 break;
3140 }
3141 if (error) {
3142 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3143 __func__));
3144 goto fail;
3145 }
3146
3147 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3148 M_IPSEC_MISC);
3149 if (sav->key_auth == NULL ) {
3150 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3151 __func__));
3152 error = ENOBUFS;
3153 goto fail;
3154 }
3155 }
3156
3157 /* Encryption key */
3158 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3159 const struct sadb_key *key0;
3160 int len;
3161
3162 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3163 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3164
3165 error = 0;
3166 if (len < sizeof(*key0)) {
3167 error = EINVAL;
3168 goto fail;
3169 }
3170 switch (mhp->msg->sadb_msg_satype) {
3171 case SADB_SATYPE_ESP:
3172 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3173 sav->alg_enc != SADB_EALG_NULL) {
3174 error = EINVAL;
3175 break;
3176 }
3177 sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3178 len,
3179 M_IPSEC_MISC);
3180 if (sav->key_enc == NULL) {
3181 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3182 __func__));
3183 error = ENOBUFS;
3184 goto fail;
3185 }
3186 break;
3187 case SADB_X_SATYPE_IPCOMP:
3188 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3189 error = EINVAL;
3190 sav->key_enc = NULL; /*just in case*/
3191 break;
3192 case SADB_SATYPE_AH:
3193 case SADB_X_SATYPE_TCPSIGNATURE:
3194 default:
3195 error = EINVAL;
3196 break;
3197 }
3198 if (error) {
3199 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3200 __func__));
3201 goto fail;
3202 }
3203 }
3204
3205 /* set iv */
3206 sav->ivlen = 0;
3207
3208 switch (mhp->msg->sadb_msg_satype) {
3209 case SADB_SATYPE_AH:
3210 error = xform_init(sav, XF_AH);
3211 break;
3212 case SADB_SATYPE_ESP:
3213 error = xform_init(sav, XF_ESP);
3214 break;
3215 case SADB_X_SATYPE_IPCOMP:
3216 error = xform_init(sav, XF_IPCOMP);
3217 break;
3218 case SADB_X_SATYPE_TCPSIGNATURE:
3219 error = xform_init(sav, XF_TCPSIGNATURE);
3220 break;
3221 }
3222 if (error) {
3223 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3224 __func__, mhp->msg->sadb_msg_satype));
3225 goto fail;
3226 }
3227
3228 /* reset created */
3229 sav->created = time_second;
3230
3231 /* make lifetime for CURRENT */
3232 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
3233 if (sav->lft_c == NULL) {
3234 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3235 error = ENOBUFS;
3236 goto fail;
3237 }
3238
3239 sav->lft_c->allocations = 0;
3240 sav->lft_c->bytes = 0;
3241 sav->lft_c->addtime = time_second;
3242 sav->lft_c->usetime = 0;
3243
3244 /* lifetimes for HARD and SOFT */
3245 {
3246 const struct sadb_lifetime *lft0;
3247
3248 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3249 if (lft0 != NULL) {
3250 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3251 error = EINVAL;
3252 goto fail;
3253 }
3254 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3255 if (sav->lft_h == NULL) {
3256 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3257 error = ENOBUFS;
3258 goto fail;
3259 }
3260 /* to be initialize ? */
3261 }
3262
3263 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3264 if (lft0 != NULL) {
3265 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3266 error = EINVAL;
3267 goto fail;
3268 }
3269 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3270 if (sav->lft_s == NULL) {
3271 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3272 error = ENOBUFS;
3273 goto fail;
3274 }
3275 /* to be initialize ? */
3276 }
3277 }
3278
3279 return 0;
3280
3281 fail:
3282 /* initialization */
3283 key_cleansav(sav);
3284
3285 return error;
3286}
3287
3288/*
3289 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3290 * OUT: 0: valid
3291 * other: errno
3292 */
3293static int
3294key_mature(struct secasvar *sav)
3295{
3296 int error;
3297
3298 /* check SPI value */
3299 switch (sav->sah->saidx.proto) {
3300 case IPPROTO_ESP:
3301 case IPPROTO_AH:
3302 /*
3303 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3304 * 1-255 reserved by IANA for future use,
3305 * 0 for implementation specific, local use.
3306 */
3307 if (ntohl(sav->spi) <= 255) {
3308 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3309 __func__, (u_int32_t)ntohl(sav->spi)));
3310 return EINVAL;
3311 }
3312 break;
3313 }
3314
3315 /* check satype */
3316 switch (sav->sah->saidx.proto) {
3317 case IPPROTO_ESP:
3318 /* check flags */
3319 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3320 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3321 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3322 "given to old-esp.\n", __func__));
3323 return EINVAL;
3324 }
3325 error = xform_init(sav, XF_ESP);
3326 break;
3327 case IPPROTO_AH:
3328 /* check flags */
3329 if (sav->flags & SADB_X_EXT_DERIV) {
3330 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3331 "given to AH SA.\n", __func__));
3332 return EINVAL;
3333 }
3334 if (sav->alg_enc != SADB_EALG_NONE) {
3335 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3336 "mismated.\n", __func__));
3337 return(EINVAL);
3338 }
3339 error = xform_init(sav, XF_AH);
3340 break;
3341 case IPPROTO_IPCOMP:
3342 if (sav->alg_auth != SADB_AALG_NONE) {
3343 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3344 "mismated.\n", __func__));
3345 return(EINVAL);
3346 }
3347 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3348 && ntohl(sav->spi) >= 0x10000) {
3349 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3350 __func__));
3351 return(EINVAL);
3352 }
3353 error = xform_init(sav, XF_IPCOMP);
3354 break;
3355 case IPPROTO_TCP:
3356 if (sav->alg_enc != SADB_EALG_NONE) {
3357 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3358 "mismated.\n", __func__));
3359 return(EINVAL);
3360 }
3361 error = xform_init(sav, XF_TCPSIGNATURE);
3362 break;
3363 default:
3364 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3365 error = EPROTONOSUPPORT;
3366 break;
3367 }
3368 if (error == 0) {
3369 SAHTREE_LOCK();
3370 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3371 SAHTREE_UNLOCK();
3372 }
3373 return (error);
3374}
3375
3376/*
3377 * subroutine for SADB_GET and SADB_DUMP.
3378 */
3379static struct mbuf *
3380key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3381 u_int32_t seq, u_int32_t pid)
3382{
3383 struct mbuf *result = NULL, *tres = NULL, *m;
3384 int i;
3385 int dumporder[] = {
3386 SADB_EXT_SA, SADB_X_EXT_SA2,
3387 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3388 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3389 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3390 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3391 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3392#ifdef IPSEC_NAT_T
3393 SADB_X_EXT_NAT_T_TYPE,
3394 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3395 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3396 SADB_X_EXT_NAT_T_FRAG,
3397#endif
3398 };
3399
3400 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3401 if (m == NULL)
3402 goto fail;
3403 result = m;
3404
3405 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3406 m = NULL;
3407 switch (dumporder[i]) {
3408 case SADB_EXT_SA:
3409 m = key_setsadbsa(sav);
3410 if (!m)
3411 goto fail;
3412 break;
3413
3414 case SADB_X_EXT_SA2:
3415 m = key_setsadbxsa2(sav->sah->saidx.mode,
3416 sav->replay ? sav->replay->count : 0,
3417 sav->sah->saidx.reqid);
3418 if (!m)
3419 goto fail;
3420 break;
3421
3422 case SADB_EXT_ADDRESS_SRC:
3423 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3424 &sav->sah->saidx.src.sa,
3425 FULLMASK, IPSEC_ULPROTO_ANY);
3426 if (!m)
3427 goto fail;
3428 break;
3429
3430 case SADB_EXT_ADDRESS_DST:
3431 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3432 &sav->sah->saidx.dst.sa,
3433 FULLMASK, IPSEC_ULPROTO_ANY);
3434 if (!m)
3435 goto fail;
3436 break;
3437
3438 case SADB_EXT_KEY_AUTH:
3439 if (!sav->key_auth)
3440 continue;
3441 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3442 if (!m)
3443 goto fail;
3444 break;
3445
3446 case SADB_EXT_KEY_ENCRYPT:
3447 if (!sav->key_enc)
3448 continue;
3449 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3450 if (!m)
3451 goto fail;
3452 break;
3453
3454 case SADB_EXT_LIFETIME_CURRENT:
3455 if (!sav->lft_c)
3456 continue;
3457 m = key_setlifetime(sav->lft_c,
3458 SADB_EXT_LIFETIME_CURRENT);
3459 if (!m)
3460 goto fail;
3461 break;
3462
3463 case SADB_EXT_LIFETIME_HARD:
3464 if (!sav->lft_h)
3465 continue;
3466 m = key_setlifetime(sav->lft_h,
3467 SADB_EXT_LIFETIME_HARD);
3468 if (!m)
3469 goto fail;
3470 break;
3471
3472 case SADB_EXT_LIFETIME_SOFT:
3473 if (!sav->lft_s)
3474 continue;
3475 m = key_setlifetime(sav->lft_s,
3476 SADB_EXT_LIFETIME_SOFT);
3477
3478 if (!m)
3479 goto fail;
3480 break;
3481
3482#ifdef IPSEC_NAT_T
3483 case SADB_X_EXT_NAT_T_TYPE:
3484 m = key_setsadbxtype(sav->natt_type);
3485 if (!m)
3486 goto fail;
3487 break;
3488
3489 case SADB_X_EXT_NAT_T_DPORT:
3490 m = key_setsadbxport(
3491 KEY_PORTFROMSADDR(&sav->sah->saidx.dst),
3492 SADB_X_EXT_NAT_T_DPORT);
3493 if (!m)
3494 goto fail;
3495 break;
3496
3497 case SADB_X_EXT_NAT_T_SPORT:
3498 m = key_setsadbxport(
3499 KEY_PORTFROMSADDR(&sav->sah->saidx.src),
3500 SADB_X_EXT_NAT_T_SPORT);
3501 if (!m)
3502 goto fail;
3503 break;
3504
3505 case SADB_X_EXT_NAT_T_OAI:
3506 case SADB_X_EXT_NAT_T_OAR:
3507 case SADB_X_EXT_NAT_T_FRAG:
3508 /* We do not (yet) support those. */
3509 continue;
3510#endif
3511
3512 case SADB_EXT_ADDRESS_PROXY:
3513 case SADB_EXT_IDENTITY_SRC:
3514 case SADB_EXT_IDENTITY_DST:
3515 /* XXX: should we brought from SPD ? */
3516 case SADB_EXT_SENSITIVITY:
3517 default:
3518 continue;
3519 }
3520
3521 if (!m)
3522 goto fail;
3523 if (tres)
3524 m_cat(m, tres);
3525 tres = m;
3526
3527 }
3528
3529 m_cat(result, tres);
3530 if (result->m_len < sizeof(struct sadb_msg)) {
3531 result = m_pullup(result, sizeof(struct sadb_msg));
3532 if (result == NULL)
3533 goto fail;
3534 }
3535
3536 result->m_pkthdr.len = 0;
3537 for (m = result; m; m = m->m_next)
3538 result->m_pkthdr.len += m->m_len;
3539
3540 mtod(result, struct sadb_msg *)->sadb_msg_len =
3541 PFKEY_UNIT64(result->m_pkthdr.len);
3542
3543 return result;
3544
3545fail:
3546 m_freem(result);
3547 m_freem(tres);
3548 return NULL;
3549}
3550
3551/*
3552 * set data into sadb_msg.
3553 */
3554static struct mbuf *
3555key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3556 pid_t pid, u_int16_t reserved)
3557{
3558 struct mbuf *m;
3559 struct sadb_msg *p;
3560 int len;
3561
3562 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3563 if (len > MCLBYTES)
3564 return NULL;
3565 MGETHDR(m, M_DONTWAIT, MT_DATA);
3566 if (m && len > MHLEN) {
3567 MCLGET(m, M_DONTWAIT);
3568 if ((m->m_flags & M_EXT) == 0) {
3569 m_freem(m);
3570 m = NULL;
3571 }
3572 }
3573 if (!m)
3574 return NULL;
3575 m->m_pkthdr.len = m->m_len = len;
3576 m->m_next = NULL;
3577
3578 p = mtod(m, struct sadb_msg *);
3579
3580 bzero(p, len);
3581 p->sadb_msg_version = PF_KEY_V2;
3582 p->sadb_msg_type = type;
3583 p->sadb_msg_errno = 0;
3584 p->sadb_msg_satype = satype;
3585 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3586 p->sadb_msg_reserved = reserved;
3587 p->sadb_msg_seq = seq;
3588 p->sadb_msg_pid = (u_int32_t)pid;
3589
3590 return m;
3591}
3592
3593/*
3594 * copy secasvar data into sadb_address.
3595 */
3596static struct mbuf *
3597key_setsadbsa(sav)
3598 struct secasvar *sav;
3599{
3600 struct mbuf *m;
3601 struct sadb_sa *p;
3602 int len;
3603
3604 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3605 m = key_alloc_mbuf(len);
3606 if (!m || m->m_next) { /*XXX*/
3607 if (m)
3608 m_freem(m);
3609 return NULL;
3610 }
3611
3612 p = mtod(m, struct sadb_sa *);
3613
3614 bzero(p, len);
3615 p->sadb_sa_len = PFKEY_UNIT64(len);
3616 p->sadb_sa_exttype = SADB_EXT_SA;
3617 p->sadb_sa_spi = sav->spi;
3618 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3619 p->sadb_sa_state = sav->state;
3620 p->sadb_sa_auth = sav->alg_auth;
3621 p->sadb_sa_encrypt = sav->alg_enc;
3622 p->sadb_sa_flags = sav->flags;
3623
3624 return m;
3625}
3626
3627/*
3628 * set data into sadb_address.
3629 */
3630static struct mbuf *
3631key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto)
3632{
3633 struct mbuf *m;
3634 struct sadb_address *p;
3635 size_t len;
3636
3637 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3638 PFKEY_ALIGN8(saddr->sa_len);
3639 m = key_alloc_mbuf(len);
3640 if (!m || m->m_next) { /*XXX*/
3641 if (m)
3642 m_freem(m);
3643 return NULL;
3644 }
3645
3646 p = mtod(m, struct sadb_address *);
3647
3648 bzero(p, len);
3649 p->sadb_address_len = PFKEY_UNIT64(len);
3650 p->sadb_address_exttype = exttype;
3651 p->sadb_address_proto = ul_proto;
3652 if (prefixlen == FULLMASK) {
3653 switch (saddr->sa_family) {
3654 case AF_INET:
3655 prefixlen = sizeof(struct in_addr) << 3;
3656 break;
3657 case AF_INET6:
3658 prefixlen = sizeof(struct in6_addr) << 3;
3659 break;
3660 default:
3661 ; /*XXX*/
3662 }
3663 }
3664 p->sadb_address_prefixlen = prefixlen;
3665 p->sadb_address_reserved = 0;
3666
3667 bcopy(saddr,
3668 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3669 saddr->sa_len);
3670
3671 return m;
3672}
3673
3674/*
3675 * set data into sadb_x_sa2.
3676 */
3677static struct mbuf *
3678key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
3679{
3680 struct mbuf *m;
3681 struct sadb_x_sa2 *p;
3682 size_t len;
3683
3684 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3685 m = key_alloc_mbuf(len);
3686 if (!m || m->m_next) { /*XXX*/
3687 if (m)
3688 m_freem(m);
3689 return NULL;
3690 }
3691
3692 p = mtod(m, struct sadb_x_sa2 *);
3693
3694 bzero(p, len);
3695 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3696 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3697 p->sadb_x_sa2_mode = mode;
3698 p->sadb_x_sa2_reserved1 = 0;
3699 p->sadb_x_sa2_reserved2 = 0;
3700 p->sadb_x_sa2_sequence = seq;
3701 p->sadb_x_sa2_reqid = reqid;
3702
3703 return m;
3704}
3705
3706#ifdef IPSEC_NAT_T
3707/*
3708 * Set a type in sadb_x_nat_t_type.
3709 */
3710static struct mbuf *
3711key_setsadbxtype(u_int16_t type)
3712{
3713 struct mbuf *m;
3714 size_t len;
3715 struct sadb_x_nat_t_type *p;
3716
3717 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3718
3719 m = key_alloc_mbuf(len);
3720 if (!m || m->m_next) { /*XXX*/
3721 if (m)
3722 m_freem(m);
3723 return (NULL);
3724 }
3725
3726 p = mtod(m, struct sadb_x_nat_t_type *);
3727
3728 bzero(p, len);
3729 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3730 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3731 p->sadb_x_nat_t_type_type = type;
3732
3733 return (m);
3734}
3735/*
3736 * Set a port in sadb_x_nat_t_port.
3737 * In contrast to default RFC 2367 behaviour, port is in network byte order.
3738 */
3739static struct mbuf *
3740key_setsadbxport(u_int16_t port, u_int16_t type)
3741{
3742 struct mbuf *m;
3743 size_t len;
3744 struct sadb_x_nat_t_port *p;
3745
3746 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3747
3748 m = key_alloc_mbuf(len);
3749 if (!m || m->m_next) { /*XXX*/
3750 if (m)
3751 m_freem(m);
3752 return (NULL);
3753 }
3754
3755 p = mtod(m, struct sadb_x_nat_t_port *);
3756
3757 bzero(p, len);
3758 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3759 p->sadb_x_nat_t_port_exttype = type;
3760 p->sadb_x_nat_t_port_port = port;
3761
3762 return (m);
3763}
3764
3765/*
3766 * Get port from sockaddr. Port is in network byte order.
3767 */
3768u_int16_t
3769key_portfromsaddr(struct sockaddr *sa)
3770{
3771
3772 switch (sa->sa_family) {
3773#ifdef INET
3774 case AF_INET:
3775 return ((struct sockaddr_in *)sa)->sin_port;
3776#endif
3777#ifdef INET6
3778 case AF_INET6:
3779 return ((struct sockaddr_in6 *)sa)->sin6_port;
3780#endif
3781 }
3782 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
3783 printf("DP %s unexpected address family %d\n",
3784 __func__, sa->sa_family));
3785 return (0);
3786}
3787#endif /* IPSEC_NAT_T */
3788
3789/*
3790 * Set port in struct sockaddr. Port is in network byte order.
3791 */
3792static void
3793key_porttosaddr(struct sockaddr *sa, u_int16_t port)
3794{
3795
3796 switch (sa->sa_family) {
3797#ifdef INET
3798 case AF_INET:
3799 ((struct sockaddr_in *)sa)->sin_port = port;
3800 break;
3801#endif
3802#ifdef INET6
3803 case AF_INET6:
3804 ((struct sockaddr_in6 *)sa)->sin6_port = port;
3805 break;
3806#endif
3807 default:
3808 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n",
3809 __func__, sa->sa_family));
3810 break;
3811 }
3812}
3813
3814/*
3815 * set data into sadb_x_policy
3816 */
3817static struct mbuf *
3818key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3819{
3820 struct mbuf *m;
3821 struct sadb_x_policy *p;
3822 size_t len;
3823
3824 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3825 m = key_alloc_mbuf(len);
3826 if (!m || m->m_next) { /*XXX*/
3827 if (m)
3828 m_freem(m);
3829 return NULL;
3830 }
3831
3832 p = mtod(m, struct sadb_x_policy *);
3833
3834 bzero(p, len);
3835 p->sadb_x_policy_len = PFKEY_UNIT64(len);
3836 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3837 p->sadb_x_policy_type = type;
3838 p->sadb_x_policy_dir = dir;
3839 p->sadb_x_policy_id = id;
3840
3841 return m;
3842}
3843
3844/* %%% utilities */
3845/* Take a key message (sadb_key) from the socket and turn it into one
3846 * of the kernel's key structures (seckey).
3847 *
3848 * IN: pointer to the src
3849 * OUT: NULL no more memory
3850 */
3851struct seckey *
3852key_dup_keymsg(const struct sadb_key *src, u_int len,
3853 struct malloc_type *type)
3854{
3855 struct seckey *dst;
3856 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3857 if (dst != NULL) {
3858 dst->bits = src->sadb_key_bits;
3859 dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3860 if (dst->key_data != NULL) {
3861 bcopy((const char *)src + sizeof(struct sadb_key),
3862 dst->key_data, len);
3863 } else {
3864 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3865 __func__));
3866 free(dst, type);
3867 dst = NULL;
3868 }
3869 } else {
3870 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3871 __func__));
3872
3873 }
3874 return dst;
3875}
3876
3877/* Take a lifetime message (sadb_lifetime) passed in on a socket and
3878 * turn it into one of the kernel's lifetime structures (seclifetime).
3879 *
3880 * IN: pointer to the destination, source and malloc type
3881 * OUT: NULL, no more memory
3882 */
3883
3884static struct seclifetime *
3885key_dup_lifemsg(const struct sadb_lifetime *src,
3886 struct malloc_type *type)
3887{
3888 struct seclifetime *dst = NULL;
3889
3890 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3891 type, M_NOWAIT);
3892 if (dst == NULL) {
3893 /* XXX counter */
3894 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3895 } else {
3896 dst->allocations = src->sadb_lifetime_allocations;
3897 dst->bytes = src->sadb_lifetime_bytes;
3898 dst->addtime = src->sadb_lifetime_addtime;
3899 dst->usetime = src->sadb_lifetime_usetime;
3900 }
3901 return dst;
3902}
3903
3904/* compare my own address
3905 * OUT: 1: true, i.e. my address.
3906 * 0: false
3907 */
3908int
3909key_ismyaddr(sa)
3910 struct sockaddr *sa;
3911{
3912#ifdef INET
3913 struct sockaddr_in *sin;
3914 struct in_ifaddr *ia;
3915#endif
3916
3917 IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3918
3919 switch (sa->sa_family) {
3920#ifdef INET
3921 case AF_INET:
3922 sin = (struct sockaddr_in *)sa;
3923 IN_IFADDR_RLOCK();
3924 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link)
3925 {
3926 if (sin->sin_family == ia->ia_addr.sin_family &&
3927 sin->sin_len == ia->ia_addr.sin_len &&
3928 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3929 {
3930 IN_IFADDR_RUNLOCK();
3931 return 1;
3932 }
3933 }
3934 IN_IFADDR_RUNLOCK();
3935 break;
3936#endif
3937#ifdef INET6
3938 case AF_INET6:
3939 return key_ismyaddr6((struct sockaddr_in6 *)sa);
3940#endif
3941 }
3942
3943 return 0;
3944}
3945
3946#ifdef INET6
3947/*
3948 * compare my own address for IPv6.
3949 * 1: ours
3950 * 0: other
3951 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3952 */
3953#include <netinet6/in6_var.h>
3954
3955static int
3956key_ismyaddr6(sin6)
3957 struct sockaddr_in6 *sin6;
3958{
3959 struct in6_ifaddr *ia;
3960#if 0
3961 struct in6_multi *in6m;
3962#endif
3963
3964 IN6_IFADDR_RLOCK();
3965 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
3966 if (key_sockaddrcmp((struct sockaddr *)&sin6,
3967 (struct sockaddr *)&ia->ia_addr, 0) == 0) {
3968 IN6_IFADDR_RUNLOCK();
3969 return 1;
3970 }
3971
3972#if 0
3973 /*
3974 * XXX Multicast
3975 * XXX why do we care about multlicast here while we don't care
3976 * about IPv4 multicast??
3977 * XXX scope
3978 */
3979 in6m = NULL;
3980 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3981 if (in6m) {
3982 IN6_IFADDR_RUNLOCK();
3983 return 1;
3984 }
3985#endif
3986 }
3987 IN6_IFADDR_RUNLOCK();
3988
3989 /* loopback, just for safety */
3990 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3991 return 1;
3992
3993 return 0;
3994}
3995#endif /*INET6*/
3996
3997/*
3998 * compare two secasindex structure.
3999 * flag can specify to compare 2 saidxes.
4000 * compare two secasindex structure without both mode and reqid.
4001 * don't compare port.
4002 * IN:
4003 * saidx0: source, it can be in SAD.
4004 * saidx1: object.
4005 * OUT:
4006 * 1 : equal
4007 * 0 : not equal
4008 */
4009static int
4010key_cmpsaidx(
4011 const struct secasindex *saidx0,
4012 const struct secasindex *saidx1,
4013 int flag)
4014{
4015 int chkport = 0;
4016
4017 /* sanity */
4018 if (saidx0 == NULL && saidx1 == NULL)
4019 return 1;
4020
4021 if (saidx0 == NULL || saidx1 == NULL)
4022 return 0;
4023
4024 if (saidx0->proto != saidx1->proto)
4025 return 0;
4026
4027 if (flag == CMP_EXACTLY) {
4028 if (saidx0->mode != saidx1->mode)
4029 return 0;
4030 if (saidx0->reqid != saidx1->reqid)
4031 return 0;
4032 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4033 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4034 return 0;
4035 } else {
4036
4037 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4038 if (flag == CMP_MODE_REQID
4039 ||flag == CMP_REQID) {
4040 /*
4041 * If reqid of SPD is non-zero, unique SA is required.
4042 * The result must be of same reqid in this case.
4043 */
4044 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4045 return 0;
4046 }
4047
4048 if (flag == CMP_MODE_REQID) {
4049 if (saidx0->mode != IPSEC_MODE_ANY
4050 && saidx0->mode != saidx1->mode)
4051 return 0;
4052 }
4053
4054#ifdef IPSEC_NAT_T
4055 /*
4056 * If NAT-T is enabled, check ports for tunnel mode.
4057 * Do not check ports if they are set to zero in the SPD.
4058 * Also do not do it for native transport mode, as there
4059 * is no port information available in the SP.
4060 */
4061 if ((saidx1->mode == IPSEC_MODE_TUNNEL ||
4062 (saidx1->mode == IPSEC_MODE_TRANSPORT &&
4063 saidx1->proto == IPPROTO_ESP)) &&
4064 saidx1->src.sa.sa_family == AF_INET &&
4065 saidx1->dst.sa.sa_family == AF_INET &&
4066 ((const struct sockaddr_in *)(&saidx1->src))->sin_port &&
4067 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port)
4068 chkport = 1;
4069#endif /* IPSEC_NAT_T */
4070
4071 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) {
4072 return 0;
4073 }
4074 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) {
4075 return 0;
4076 }
4077 }
4078
4079 return 1;
4080}
4081
4082/*
4083 * compare two secindex structure exactly.
4084 * IN:
4085 * spidx0: source, it is often in SPD.
4086 * spidx1: object, it is often from PFKEY message.
4087 * OUT:
4088 * 1 : equal
4089 * 0 : not equal
4090 */
4091static int
4092key_cmpspidx_exactly(
4093 struct secpolicyindex *spidx0,
4094 struct secpolicyindex *spidx1)
4095{
4096 /* sanity */
4097 if (spidx0 == NULL && spidx1 == NULL)
4098 return 1;
4099
4100 if (spidx0 == NULL || spidx1 == NULL)
4101 return 0;
4102
4103 if (spidx0->prefs != spidx1->prefs
4104 || spidx0->prefd != spidx1->prefd
4105 || spidx0->ul_proto != spidx1->ul_proto)
4106 return 0;
4107
4108 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4109 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4110}
4111
4112/*
4113 * compare two secindex structure with mask.
4114 * IN:
4115 * spidx0: source, it is often in SPD.
4116 * spidx1: object, it is often from IP header.
4117 * OUT:
4118 * 1 : equal
4119 * 0 : not equal
4120 */
4121static int
4122key_cmpspidx_withmask(
4123 struct secpolicyindex *spidx0,
4124 struct secpolicyindex *spidx1)
4125{
4126 /* sanity */
4127 if (spidx0 == NULL && spidx1 == NULL)
4128 return 1;
4129
4130 if (spidx0 == NULL || spidx1 == NULL)
4131 return 0;
4132
4133 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4134 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4135 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4136 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4137 return 0;
4138
4139 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4140 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4141 && spidx0->ul_proto != spidx1->ul_proto)
4142 return 0;
4143
4144 switch (spidx0->src.sa.sa_family) {
4145 case AF_INET:
4146 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4147 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4148 return 0;
4149 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4150 &spidx1->src.sin.sin_addr, spidx0->prefs))
4151 return 0;
4152 break;
4153 case AF_INET6:
4154 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4155 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4156 return 0;
4157 /*
4158 * scope_id check. if sin6_scope_id is 0, we regard it
4159 * as a wildcard scope, which matches any scope zone ID.
4160 */
4161 if (spidx0->src.sin6.sin6_scope_id &&
4162 spidx1->src.sin6.sin6_scope_id &&
4163 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4164 return 0;
4165 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4166 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4167 return 0;
4168 break;
4169 default:
4170 /* XXX */
4171 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4172 return 0;
4173 break;
4174 }
4175
4176 switch (spidx0->dst.sa.sa_family) {
4177 case AF_INET:
4178 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4179 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4180 return 0;
4181 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4182 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4183 return 0;
4184 break;
4185 case AF_INET6:
4186 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4187 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4188 return 0;
4189 /*
4190 * scope_id check. if sin6_scope_id is 0, we regard it
4191 * as a wildcard scope, which matches any scope zone ID.
4192 */
4193 if (spidx0->dst.sin6.sin6_scope_id &&
4194 spidx1->dst.sin6.sin6_scope_id &&
4195 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4196 return 0;
4197 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4198 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4199 return 0;
4200 break;
4201 default:
4202 /* XXX */
4203 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4204 return 0;
4205 break;
4206 }
4207
4208 /* XXX Do we check other field ? e.g. flowinfo */
4209
4210 return 1;
4211}
4212
4213/* returns 0 on match */
4214static int
4215key_sockaddrcmp(
4216 const struct sockaddr *sa1,
4217 const struct sockaddr *sa2,
4218 int port)
4219{
4220#ifdef satosin
4221#undef satosin
4222#endif
4223#define satosin(s) ((const struct sockaddr_in *)s)
4224#ifdef satosin6
4225#undef satosin6
4226#endif
4227#define satosin6(s) ((const struct sockaddr_in6 *)s)
4228 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4229 return 1;
4230
4231 switch (sa1->sa_family) {
4232 case AF_INET:
4233 if (sa1->sa_len != sizeof(struct sockaddr_in))
4234 return 1;
4235 if (satosin(sa1)->sin_addr.s_addr !=
4236 satosin(sa2)->sin_addr.s_addr) {
4237 return 1;
4238 }
4239 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4240 return 1;
4241 break;
4242 case AF_INET6:
4243 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4244 return 1; /*EINVAL*/
4245 if (satosin6(sa1)->sin6_scope_id !=
4246 satosin6(sa2)->sin6_scope_id) {
4247 return 1;
4248 }
4249 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4250 &satosin6(sa2)->sin6_addr)) {
4251 return 1;
4252 }
4253 if (port &&
4254 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4255 return 1;
4256 }
4257 break;
4258 default:
4259 if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4260 return 1;
4261 break;
4262 }
4263
4264 return 0;
4265#undef satosin
4266#undef satosin6
4267}
4268
4269/*
4270 * compare two buffers with mask.
4271 * IN:
4272 * addr1: source
4273 * addr2: object
4274 * bits: Number of bits to compare
4275 * OUT:
4276 * 1 : equal
4277 * 0 : not equal
4278 */
4279static int
4280key_bbcmp(const void *a1, const void *a2, u_int bits)
4281{
4282 const unsigned char *p1 = a1;
4283 const unsigned char *p2 = a2;
4284
4285 /* XXX: This could be considerably faster if we compare a word
4286 * at a time, but it is complicated on LSB Endian machines */
4287
4288 /* Handle null pointers */
4289 if (p1 == NULL || p2 == NULL)
4290 return (p1 == p2);
4291
4292 while (bits >= 8) {
4293 if (*p1++ != *p2++)
4294 return 0;
4295 bits -= 8;
4296 }
4297
4298 if (bits > 0) {
4299 u_int8_t mask = ~((1<<(8-bits))-1);
4300 if ((*p1 & mask) != (*p2 & mask))
4301 return 0;
4302 }
4303 return 1; /* Match! */
4304}
4305
4306static void
4307key_flush_spd(time_t now)
4308{
4309 static u_int16_t sptree_scangen = 0;
4310 u_int16_t gen = sptree_scangen++;
4311 struct secpolicy *sp;
4312 u_int dir;
4313
4314 /* SPD */
4315 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4316restart:
4317 SPTREE_LOCK();
4318 LIST_FOREACH(sp, &V_sptree[dir], chain) {
4319 if (sp->scangen == gen) /* previously handled */
4320 continue;
4321 sp->scangen = gen;
4322 if (sp->state == IPSEC_SPSTATE_DEAD &&
4323 sp->refcnt == 1) {
4324 /*
4325 * Ensure that we only decrease refcnt once,
4326 * when we're the last consumer.
4327 * Directly call SP_DELREF/key_delsp instead
4328 * of KEY_FREESP to avoid unlocking/relocking
4329 * SPTREE_LOCK before key_delsp: may refcnt
4330 * be increased again during that time ?
4331 * NB: also clean entries created by
4332 * key_spdflush
4333 */
4334 SP_DELREF(sp);
4335 key_delsp(sp);
4336 SPTREE_UNLOCK();
4337 goto restart;
4338 }
4339 if (sp->lifetime == 0 && sp->validtime == 0)
4340 continue;
4341 if ((sp->lifetime && now - sp->created > sp->lifetime)
4342 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4343 sp->state = IPSEC_SPSTATE_DEAD;
4344 SPTREE_UNLOCK();
4345 key_spdexpire(sp);
4346 goto restart;
4347 }
4348 }
4349 SPTREE_UNLOCK();
4350 }
4351}
4352
4353static void
4354key_flush_sad(time_t now)
4355{
4356 struct secashead *sah, *nextsah;
4357 struct secasvar *sav, *nextsav;
4358
4359 /* SAD */
4360 SAHTREE_LOCK();
4361 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) {
4362 /* if sah has been dead, then delete it and process next sah. */
4363 if (sah->state == SADB_SASTATE_DEAD) {
4364 key_delsah(sah);
4365 continue;
4366 }
4367
4368 /* if LARVAL entry doesn't become MATURE, delete it. */
4369 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4370 /* Need to also check refcnt for a larval SA ??? */
4371 if (now - sav->created > V_key_larval_lifetime)
4372 KEY_FREESAV(&sav);
4373 }
4374
4375 /*
4376 * check MATURE entry to start to send expire message
4377 * whether or not.
4378 */
4379 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4380 /* we don't need to check. */
4381 if (sav->lft_s == NULL)
4382 continue;
4383
4384 /* sanity check */
4385 if (sav->lft_c == NULL) {
4386 ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4387 "time, why?\n", __func__));
4388 continue;
4389 }
4390
4391 /* check SOFT lifetime */
4392 if (sav->lft_s->addtime != 0 &&
4393 now - sav->created > sav->lft_s->addtime) {
4394 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4395 /*
4396 * Actually, only send expire message if
4397 * SA has been used, as it was done before,
4398 * but should we always send such message,
4399 * and let IKE daemon decide if it should be
4400 * renegotiated or not ?
4401 * XXX expire message will actually NOT be
4402 * sent if SA is only used after soft
4403 * lifetime has been reached, see below
4404 * (DYING state)
4405 */
4406 if (sav->lft_c->usetime != 0)
4407 key_expire(sav);
4408 }
4409 /* check SOFT lifetime by bytes */
4410 /*
4411 * XXX I don't know the way to delete this SA
4412 * when new SA is installed. Caution when it's
4413 * installed too big lifetime by time.
4414 */
4415 else if (sav->lft_s->bytes != 0 &&
4416 sav->lft_s->bytes < sav->lft_c->bytes) {
4417
4418 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4419 /*
4420 * XXX If we keep to send expire
4421 * message in the status of
4422 * DYING. Do remove below code.
4423 */
4424 key_expire(sav);
4425 }
4426 }
4427
4428 /* check DYING entry to change status to DEAD. */
4429 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4430 /* we don't need to check. */
4431 if (sav->lft_h == NULL)
4432 continue;
4433
4434 /* sanity check */
4435 if (sav->lft_c == NULL) {
4436 ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4437 "time, why?\n", __func__));
4438 continue;
4439 }
4440
4441 if (sav->lft_h->addtime != 0 &&
4442 now - sav->created > sav->lft_h->addtime) {
4443 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4444 KEY_FREESAV(&sav);
4445 }
4446#if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4447 else if (sav->lft_s != NULL
4448 && sav->lft_s->addtime != 0
4449 && now - sav->created > sav->lft_s->addtime) {
4450 /*
4451 * XXX: should be checked to be
4452 * installed the valid SA.
4453 */
4454
4455 /*
4456 * If there is no SA then sending
4457 * expire message.
4458 */
4459 key_expire(sav);
4460 }
4461#endif
4462 /* check HARD lifetime by bytes */
4463 else if (sav->lft_h->bytes != 0 &&
4464 sav->lft_h->bytes < sav->lft_c->bytes) {
4465 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4466 KEY_FREESAV(&sav);
4467 }
4468 }
4469
4470 /* delete entry in DEAD */
4471 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4472 /* sanity check */
4473 if (sav->state != SADB_SASTATE_DEAD) {
4474 ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4475 "(queue: %d SA: %d): kill it anyway\n",
4476 __func__,
4477 SADB_SASTATE_DEAD, sav->state));
4478 }
4479 /*
4480 * do not call key_freesav() here.
4481 * sav should already be freed, and sav->refcnt
4482 * shows other references to sav
4483 * (such as from SPD).
4484 */
4485 }
4486 }
4487 SAHTREE_UNLOCK();
4488}
4489
4490static void
4491key_flush_acq(time_t now)
4492{
4493 struct secacq *acq, *nextacq;
4494
4495 /* ACQ tree */
4496 ACQ_LOCK();
4497 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
4498 nextacq = LIST_NEXT(acq, chain);
4499 if (now - acq->created > V_key_blockacq_lifetime
4500 && __LIST_CHAINED(acq)) {
4501 LIST_REMOVE(acq, chain);
4502 free(acq, M_IPSEC_SAQ);
4503 }
4504 }
4505 ACQ_UNLOCK();
4506}
4507
4508static void
4509key_flush_spacq(time_t now)
4510{
4511 struct secspacq *acq, *nextacq;
4512
4513 /* SP ACQ tree */
4514 SPACQ_LOCK();
4515 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4516 nextacq = LIST_NEXT(acq, chain);
4517 if (now - acq->created > V_key_blockacq_lifetime
4518 && __LIST_CHAINED(acq)) {
4519 LIST_REMOVE(acq, chain);
4520 free(acq, M_IPSEC_SAQ);
4521 }
4522 }
4523 SPACQ_UNLOCK();
4524}
4525
4526/*
4527 * time handler.
4528 * scanning SPD and SAD to check status for each entries,
4529 * and do to remove or to expire.
4530 * XXX: year 2038 problem may remain.
4531 */
4532void
4533key_timehandler(void)
4534{
4535 VNET_ITERATOR_DECL(vnet_iter);
4536 time_t now = time_second;
4537
4538 VNET_LIST_RLOCK_NOSLEEP();
4539 VNET_FOREACH(vnet_iter) {
4540 CURVNET_SET(vnet_iter);
4541 key_flush_spd(now);
4542 key_flush_sad(now);
4543 key_flush_acq(now);
4544 key_flush_spacq(now);
4545 CURVNET_RESTORE();
4546 }
4547 VNET_LIST_RUNLOCK_NOSLEEP();
4548
4549#ifndef IPSEC_DEBUG2
4550 /* do exchange to tick time !! */
4551 (void)timeout((void *)key_timehandler, (void *)0, hz);
4552#endif /* IPSEC_DEBUG2 */
4553}
4554
4555u_long
4556key_random()
4557{
4558 u_long value;
4559
4560 key_randomfill(&value, sizeof(value));
4561 return value;
4562}
4563
4564void
4565key_randomfill(p, l)
4566 void *p;
4567 size_t l;
4568{
4569 size_t n;
4570 u_long v;
4571 static int warn = 1;
4572
4573 n = 0;
4574 n = (size_t)read_random(p, (u_int)l);
4575 /* last resort */
4576 while (n < l) {
4577 v = random();
4578 bcopy(&v, (u_int8_t *)p + n,
4579 l - n < sizeof(v) ? l - n : sizeof(v));
4580 n += sizeof(v);
4581
4582 if (warn) {
4583 printf("WARNING: pseudo-random number generator "
4584 "used for IPsec processing\n");
4585 warn = 0;
4586 }
4587 }
4588}
4589
4590/*
4591 * map SADB_SATYPE_* to IPPROTO_*.
4592 * if satype == SADB_SATYPE then satype is mapped to ~0.
4593 * OUT:
4594 * 0: invalid satype.
4595 */
4596static u_int16_t
4597key_satype2proto(u_int8_t satype)
4598{
4599 switch (satype) {
4600 case SADB_SATYPE_UNSPEC:
4601 return IPSEC_PROTO_ANY;
4602 case SADB_SATYPE_AH:
4603 return IPPROTO_AH;
4604 case SADB_SATYPE_ESP:
4605 return IPPROTO_ESP;
4606 case SADB_X_SATYPE_IPCOMP:
4607 return IPPROTO_IPCOMP;
4608 case SADB_X_SATYPE_TCPSIGNATURE:
4609 return IPPROTO_TCP;
4610 default:
4611 return 0;
4612 }
4613 /* NOTREACHED */
4614}
4615
4616/*
4617 * map IPPROTO_* to SADB_SATYPE_*
4618 * OUT:
4619 * 0: invalid protocol type.
4620 */
4621static u_int8_t
4622key_proto2satype(u_int16_t proto)
4623{
4624 switch (proto) {
4625 case IPPROTO_AH:
4626 return SADB_SATYPE_AH;
4627 case IPPROTO_ESP:
4628 return SADB_SATYPE_ESP;
4629 case IPPROTO_IPCOMP:
4630 return SADB_X_SATYPE_IPCOMP;
4631 case IPPROTO_TCP:
4632 return SADB_X_SATYPE_TCPSIGNATURE;
4633 default:
4634 return 0;
4635 }
4636 /* NOTREACHED */
4637}
4638
4639/* %%% PF_KEY */
4640/*
4641 * SADB_GETSPI processing is to receive
4642 * <base, (SA2), src address, dst address, (SPI range)>
4643 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4644 * tree with the status of LARVAL, and send
4645 * <base, SA(*), address(SD)>
4646 * to the IKMPd.
4647 *
4648 * IN: mhp: pointer to the pointer to each header.
4649 * OUT: NULL if fail.
4650 * other if success, return pointer to the message to send.
4651 */
4652static int
4653key_getspi(so, m, mhp)
4654 struct socket *so;
4655 struct mbuf *m;
4656 const struct sadb_msghdr *mhp;
4657{
4658 struct sadb_address *src0, *dst0;
4659 struct secasindex saidx;
4660 struct secashead *newsah;
4661 struct secasvar *newsav;
4662 u_int8_t proto;
4663 u_int32_t spi;
4664 u_int8_t mode;
4665 u_int32_t reqid;
4666 int error;
4667
4668 IPSEC_ASSERT(so != NULL, ("null socket"));
4669 IPSEC_ASSERT(m != NULL, ("null mbuf"));
4670 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4671 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4672
4673 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4674 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4675 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4676 __func__));
4677 return key_senderror(so, m, EINVAL);
4678 }
4679 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4680 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4681 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4682 __func__));
4683 return key_senderror(so, m, EINVAL);
4684 }
4685 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4686 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4687 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4688 } else {
4689 mode = IPSEC_MODE_ANY;
4690 reqid = 0;
4691 }
4692
4693 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4694 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4695
4696 /* map satype to proto */
4697 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4698 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4699 __func__));
4700 return key_senderror(so, m, EINVAL);
4701 }
4702
4703 /*
4704 * Make sure the port numbers are zero.
4705 * In case of NAT-T we will update them later if needed.
4706 */
4707 switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4708 case AF_INET:
4709 if (((struct sockaddr *)(src0 + 1))->sa_len !=
4710 sizeof(struct sockaddr_in))
4711 return key_senderror(so, m, EINVAL);
4712 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4713 break;
4714 case AF_INET6:
4715 if (((struct sockaddr *)(src0 + 1))->sa_len !=
4716 sizeof(struct sockaddr_in6))
4717 return key_senderror(so, m, EINVAL);
4718 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4719 break;
4720 default:
4721 ; /*???*/
4722 }
4723 switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4724 case AF_INET:
4725 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4726 sizeof(struct sockaddr_in))
4727 return key_senderror(so, m, EINVAL);
4728 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4729 break;
4730 case AF_INET6:
4731 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4732 sizeof(struct sockaddr_in6))
4733 return key_senderror(so, m, EINVAL);
4734 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4735 break;
4736 default:
4737 ; /*???*/
4738 }
4739
4740 /* XXX boundary check against sa_len */
4741 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4742
4743#ifdef IPSEC_NAT_T
4744 /*
4745 * Handle NAT-T info if present.
4746 * We made sure the port numbers are zero above, so we do
4747 * not have to worry in case we do not update them.
4748 */
4749 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
4750 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__));
4751 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
4752 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__));
4753
4754 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
4755 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
4756 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
4757 struct sadb_x_nat_t_type *type;
4758 struct sadb_x_nat_t_port *sport, *dport;
4759
4760 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
4761 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
4762 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
4763 ipseclog((LOG_DEBUG, "%s: invalid nat-t message "
4764 "passed.\n", __func__));
4765 return key_senderror(so, m, EINVAL);
4766 }
4767
4768 sport = (struct sadb_x_nat_t_port *)
4769 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
4770 dport = (struct sadb_x_nat_t_port *)
4771 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
4772
4773 if (sport)
4774 KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port);
4775 if (dport)
4776 KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port);
4777 }
4778#endif
4779
4780 /* SPI allocation */
4781 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4782 &saidx);
4783 if (spi == 0)
4784 return key_senderror(so, m, EINVAL);
4785
4786 /* get a SA index */
4787 if ((newsah = key_getsah(&saidx)) == NULL) {
4788 /* create a new SA index */
4789 if ((newsah = key_newsah(&saidx)) == NULL) {
4790 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4791 return key_senderror(so, m, ENOBUFS);
4792 }
4793 }
4794
4795 /* get a new SA */
4796 /* XXX rewrite */
4797 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4798 if (newsav == NULL) {
4799 /* XXX don't free new SA index allocated in above. */
4800 return key_senderror(so, m, error);
4801 }
4802
4803 /* set spi */
4804 newsav->spi = htonl(spi);
4805
4806 /* delete the entry in acqtree */
4807 if (mhp->msg->sadb_msg_seq != 0) {
4808 struct secacq *acq;
4809 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4810 /* reset counter in order to deletion by timehandler. */
4811 acq->created = time_second;
4812 acq->count = 0;
4813 }
4814 }
4815
4816 {
4817 struct mbuf *n, *nn;
4818 struct sadb_sa *m_sa;
4819 struct sadb_msg *newmsg;
4820 int off, len;
4821
4822 /* create new sadb_msg to reply. */
4823 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4824 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4825
4826 MGETHDR(n, M_DONTWAIT, MT_DATA);
4827 if (len > MHLEN) {
4828 MCLGET(n, M_DONTWAIT);
4829 if ((n->m_flags & M_EXT) == 0) {
4830 m_freem(n);
4831 n = NULL;
4832 }
4833 }
4834 if (!n)
4835 return key_senderror(so, m, ENOBUFS);
4836
4837 n->m_len = len;
4838 n->m_next = NULL;
4839 off = 0;
4840
4841 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4842 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4843
4844 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4845 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4846 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4847 m_sa->sadb_sa_spi = htonl(spi);
4848 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4849
4850 IPSEC_ASSERT(off == len,
4851 ("length inconsistency (off %u len %u)", off, len));
4852
4853 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4854 SADB_EXT_ADDRESS_DST);
4855 if (!n->m_next) {
4856 m_freem(n);
4857 return key_senderror(so, m, ENOBUFS);
4858 }
4859
4860 if (n->m_len < sizeof(struct sadb_msg)) {
4861 n = m_pullup(n, sizeof(struct sadb_msg));
4862 if (n == NULL)
4863 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4864 }
4865
4866 n->m_pkthdr.len = 0;
4867 for (nn = n; nn; nn = nn->m_next)
4868 n->m_pkthdr.len += nn->m_len;
4869
4870 newmsg = mtod(n, struct sadb_msg *);
4871 newmsg->sadb_msg_seq = newsav->seq;
4872 newmsg->sadb_msg_errno = 0;
4873 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4874
4875 m_freem(m);
4876 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4877 }
4878}
4879
4880/*
4881 * allocating new SPI
4882 * called by key_getspi().
4883 * OUT:
4884 * 0: failure.
4885 * others: success.
4886 */
4887static u_int32_t
4888key_do_getnewspi(spirange, saidx)
4889 struct sadb_spirange *spirange;
4890 struct secasindex *saidx;
4891{
4892 u_int32_t newspi;
4893 u_int32_t min, max;
4894 int count = V_key_spi_trycnt;
4895
4896 /* set spi range to allocate */
4897 if (spirange != NULL) {
4898 min = spirange->sadb_spirange_min;
4899 max = spirange->sadb_spirange_max;
4900 } else {
4901 min = V_key_spi_minval;
4902 max = V_key_spi_maxval;
4903 }
4904 /* IPCOMP needs 2-byte SPI */
4905 if (saidx->proto == IPPROTO_IPCOMP) {
4906 u_int32_t t;
4907 if (min >= 0x10000)
4908 min = 0xffff;
4909 if (max >= 0x10000)
4910 max = 0xffff;
4911 if (min > max) {
4912 t = min; min = max; max = t;
4913 }
4914 }
4915
4916 if (min == max) {
4917 if (key_checkspidup(saidx, min) != NULL) {
4918 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4919 __func__, min));
4920 return 0;
4921 }
4922
4923 count--; /* taking one cost. */
4924 newspi = min;
4925
4926 } else {
4927
4928 /* init SPI */
4929 newspi = 0;
4930
4931 /* when requesting to allocate spi ranged */
4932 while (count--) {
4933 /* generate pseudo-random SPI value ranged. */
4934 newspi = min + (key_random() % (max - min + 1));
4935
4936 if (key_checkspidup(saidx, newspi) == NULL)
4937 break;
4938 }
4939
4940 if (count == 0 || newspi == 0) {
4941 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4942 __func__));
4943 return 0;
4944 }
4945 }
4946
4947 /* statistics */
4948 keystat.getspi_count =
4949 (keystat.getspi_count + V_key_spi_trycnt - count) / 2;
4950
4951 return newspi;
4952}
4953
4954/*
4955 * SADB_UPDATE processing
4956 * receive
4957 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4958 * key(AE), (identity(SD),) (sensitivity)>
4959 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4960 * and send
4961 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4962 * (identity(SD),) (sensitivity)>
4963 * to the ikmpd.
4964 *
4965 * m will always be freed.
4966 */
4967static int
4968key_update(so, m, mhp)
4969 struct socket *so;
4970 struct mbuf *m;
4971 const struct sadb_msghdr *mhp;
4972{
4973 struct sadb_sa *sa0;
4974 struct sadb_address *src0, *dst0;
4975#ifdef IPSEC_NAT_T
4976 struct sadb_x_nat_t_type *type;
4977 struct sadb_x_nat_t_port *sport, *dport;
4978 struct sadb_address *iaddr, *raddr;
4979 struct sadb_x_nat_t_frag *frag;
4980#endif
4981 struct secasindex saidx;
4982 struct secashead *sah;
4983 struct secasvar *sav;
4984 u_int16_t proto;
4985 u_int8_t mode;
4986 u_int32_t reqid;
4987 int error;
4988
4989 IPSEC_ASSERT(so != NULL, ("null socket"));
4990 IPSEC_ASSERT(m != NULL, ("null mbuf"));
4991 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4992 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4993
4994 /* map satype to proto */
4995 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4996 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4997 __func__));
4998 return key_senderror(so, m, EINVAL);
4999 }
5000
5001 if (mhp->ext[SADB_EXT_SA] == NULL ||
5002 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5003 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5004 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5005 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5006 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5007 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5008 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5009 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5010 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5011 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5012 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5013 __func__));
5014 return key_senderror(so, m, EINVAL);
5015 }
5016 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5017 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5018 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5019 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5020 __func__));
5021 return key_senderror(so, m, EINVAL);
5022 }
5023 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5024 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5025 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5026 } else {
5027 mode = IPSEC_MODE_ANY;
5028 reqid = 0;
5029 }
5030 /* XXX boundary checking for other extensions */
5031
5032 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5033 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5034 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5035
5036 /* XXX boundary check against sa_len */
5037 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5038
5039 /*
5040 * Make sure the port numbers are zero.
5041 * In case of NAT-T we will update them later if needed.
5042 */
5043 KEY_PORTTOSADDR(&saidx.src, 0);
5044 KEY_PORTTOSADDR(&saidx.dst, 0);
5045
5046#ifdef IPSEC_NAT_T
5047 /*
5048 * Handle NAT-T info if present.
5049 */
5050 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5051 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5052 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5053
5054 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5055 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5056 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5057 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5058 __func__));
5059 return key_senderror(so, m, EINVAL);
5060 }
5061
5062 type = (struct sadb_x_nat_t_type *)
5063 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5064 sport = (struct sadb_x_nat_t_port *)
5065 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5066 dport = (struct sadb_x_nat_t_port *)
5067 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5068 } else {
5069 type = 0;
5070 sport = dport = 0;
5071 }
5072 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5073 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5074 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5075 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5076 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5077 __func__));
5078 return key_senderror(so, m, EINVAL);
5079 }
5080 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5081 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5082 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5083 } else {
5084 iaddr = raddr = NULL;
5085 }
5086 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5087 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5088 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5089 __func__));
5090 return key_senderror(so, m, EINVAL);
5091 }
5092 frag = (struct sadb_x_nat_t_frag *)
5093 mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5094 } else {
5095 frag = 0;
5096 }
5097#endif
5098
5099 /* get a SA header */
5100 if ((sah = key_getsah(&saidx)) == NULL) {
5101 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
5102 return key_senderror(so, m, ENOENT);
5103 }
5104
5105 /* set spidx if there */
5106 /* XXX rewrite */
5107 error = key_setident(sah, m, mhp);
5108 if (error)
5109 return key_senderror(so, m, error);
5110
5111 /* find a SA with sequence number. */
5112#ifdef IPSEC_DOSEQCHECK
5113 if (mhp->msg->sadb_msg_seq != 0
5114 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5115 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
5116 "exists.\n", __func__, mhp->msg->sadb_msg_seq));
5117 return key_senderror(so, m, ENOENT);
5118 }
5119#else
5120 SAHTREE_LOCK();
5121 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5122 SAHTREE_UNLOCK();
5123 if (sav == NULL) {
5124 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
5125 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5126 return key_senderror(so, m, EINVAL);
5127 }
5128#endif
5129
5130 /* validity check */
5131 if (sav->sah->saidx.proto != proto) {
5132 ipseclog((LOG_DEBUG, "%s: protocol mismatched "
5133 "(DB=%u param=%u)\n", __func__,
5134 sav->sah->saidx.proto, proto));
5135 return key_senderror(so, m, EINVAL);
5136 }
5137#ifdef IPSEC_DOSEQCHECK
5138 if (sav->spi != sa0->sadb_sa_spi) {
5139 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
5140 __func__,
5141 (u_int32_t)ntohl(sav->spi),
5142 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5143 return key_senderror(so, m, EINVAL);
5144 }
5145#endif
5146 if (sav->pid != mhp->msg->sadb_msg_pid) {
5147 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
5148 __func__, sav->pid, mhp->msg->sadb_msg_pid));
5149 return key_senderror(so, m, EINVAL);
5150 }
5151
5152 /* copy sav values */
5153 error = key_setsaval(sav, m, mhp);
5154 if (error) {
5155 KEY_FREESAV(&sav);
5156 return key_senderror(so, m, error);
5157 }
5158
5159#ifdef IPSEC_NAT_T
5160 /*
5161 * Handle more NAT-T info if present,
5162 * now that we have a sav to fill.
5163 */
5164 if (type)
5165 sav->natt_type = type->sadb_x_nat_t_type_type;
5166
5167 if (sport)
5168 KEY_PORTTOSADDR(&sav->sah->saidx.src,
5169 sport->sadb_x_nat_t_port_port);
5170 if (dport)
5171 KEY_PORTTOSADDR(&sav->sah->saidx.dst,
5172 dport->sadb_x_nat_t_port_port);
5173
5174#if 0
5175 /*
5176 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5177 * We should actually check for a minimum MTU here, if we
5178 * want to support it in ip_output.
5179 */
5180 if (frag)
5181 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5182#endif
5183#endif
5184
5185 /* check SA values to be mature. */
5186 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5187 KEY_FREESAV(&sav);
5188 return key_senderror(so, m, 0);
5189 }
5190
5191 {
5192 struct mbuf *n;
5193
5194 /* set msg buf from mhp */
5195 n = key_getmsgbuf_x1(m, mhp);
5196 if (n == NULL) {
5197 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5198 return key_senderror(so, m, ENOBUFS);
5199 }
5200
5201 m_freem(m);
5202 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5203 }
5204}
5205
5206/*
5207 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5208 * only called by key_update().
5209 * OUT:
5210 * NULL : not found
5211 * others : found, pointer to a SA.
5212 */
5213#ifdef IPSEC_DOSEQCHECK
5214static struct secasvar *
5215key_getsavbyseq(sah, seq)
5216 struct secashead *sah;
5217 u_int32_t seq;
5218{
5219 struct secasvar *sav;
5220 u_int state;
5221
5222 state = SADB_SASTATE_LARVAL;
5223
5224 /* search SAD with sequence number ? */
5225 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5226
5227 KEY_CHKSASTATE(state, sav->state, __func__);
5228
5229 if (sav->seq == seq) {
5230 sa_addref(sav);
5231 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5232 printf("DP %s cause refcnt++:%d SA:%p\n",
5233 __func__, sav->refcnt, sav));
5234 return sav;
5235 }
5236 }
5237
5238 return NULL;
5239}
5240#endif
5241
5242/*
5243 * SADB_ADD processing
5244 * add an entry to SA database, when received
5245 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5246 * key(AE), (identity(SD),) (sensitivity)>
5247 * from the ikmpd,
5248 * and send
5249 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5250 * (identity(SD),) (sensitivity)>
5251 * to the ikmpd.
5252 *
5253 * IGNORE identity and sensitivity messages.
5254 *
5255 * m will always be freed.
5256 */
5257static int
5258key_add(so, m, mhp)
5259 struct socket *so;
5260 struct mbuf *m;
5261 const struct sadb_msghdr *mhp;
5262{
5263 struct sadb_sa *sa0;
5264 struct sadb_address *src0, *dst0;
5265#ifdef IPSEC_NAT_T
5266 struct sadb_x_nat_t_type *type;
5267 struct sadb_address *iaddr, *raddr;
5268 struct sadb_x_nat_t_frag *frag;
5269#endif
5270 struct secasindex saidx;
5271 struct secashead *newsah;
5272 struct secasvar *newsav;
5273 u_int16_t proto;
5274 u_int8_t mode;
5275 u_int32_t reqid;
5276 int error;
5277
5278 IPSEC_ASSERT(so != NULL, ("null socket"));
5279 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5280 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5281 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5282
5283 /* map satype to proto */
5284 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5285 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5286 __func__));
5287 return key_senderror(so, m, EINVAL);
5288 }
5289
5290 if (mhp->ext[SADB_EXT_SA] == NULL ||
5291 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5292 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5293 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5294 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5295 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5296 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5297 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5298 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5299 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5300 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5301 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5302 __func__));
5303 return key_senderror(so, m, EINVAL);
5304 }
5305 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5306 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5307 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5308 /* XXX need more */
5309 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5310 __func__));
5311 return key_senderror(so, m, EINVAL);
5312 }
5313 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5314 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5315 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5316 } else {
5317 mode = IPSEC_MODE_ANY;
5318 reqid = 0;
5319 }
5320
5321 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5322 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5323 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5324
5325 /* XXX boundary check against sa_len */
5326 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5327
5328 /*
5329 * Make sure the port numbers are zero.
5330 * In case of NAT-T we will update them later if needed.
5331 */
5332 KEY_PORTTOSADDR(&saidx.src, 0);
5333 KEY_PORTTOSADDR(&saidx.dst, 0);
5334
5335#ifdef IPSEC_NAT_T
5336 /*
5337 * Handle NAT-T info if present.
5338 */
5339 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5340 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5341 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5342 struct sadb_x_nat_t_port *sport, *dport;
5343
5344 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5345 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5346 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5347 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5348 __func__));
5349 return key_senderror(so, m, EINVAL);
5350 }
5351
5352 type = (struct sadb_x_nat_t_type *)
5353 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5354 sport = (struct sadb_x_nat_t_port *)
5355 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5356 dport = (struct sadb_x_nat_t_port *)
5357 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5358
5359 if (sport)
5360 KEY_PORTTOSADDR(&saidx.src,
5361 sport->sadb_x_nat_t_port_port);
5362 if (dport)
5363 KEY_PORTTOSADDR(&saidx.dst,
5364 dport->sadb_x_nat_t_port_port);
5365 } else {
5366 type = 0;
5367 }
5368 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5369 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5370 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5371 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5372 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5373 __func__));
5374 return key_senderror(so, m, EINVAL);
5375 }
5376 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5377 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5378 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5379 } else {
5380 iaddr = raddr = NULL;
5381 }
5382 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5383 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5384 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5385 __func__));
5386 return key_senderror(so, m, EINVAL);
5387 }
5388 frag = (struct sadb_x_nat_t_frag *)
5389 mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5390 } else {
5391 frag = 0;
5392 }
5393#endif
5394
5395 /* get a SA header */
5396 if ((newsah = key_getsah(&saidx)) == NULL) {
5397 /* create a new SA header */
5398 if ((newsah = key_newsah(&saidx)) == NULL) {
5399 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
5400 return key_senderror(so, m, ENOBUFS);
5401 }
5402 }
5403
5404 /* set spidx if there */
5405 /* XXX rewrite */
5406 error = key_setident(newsah, m, mhp);
5407 if (error) {
5408 return key_senderror(so, m, error);
5409 }
5410
5411 /* create new SA entry. */
5412 /* We can create new SA only if SPI is differenct. */
5413 SAHTREE_LOCK();
5414 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5415 SAHTREE_UNLOCK();
5416 if (newsav != NULL) {
5417 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5418 return key_senderror(so, m, EEXIST);
5419 }
5420 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5421 if (newsav == NULL) {
5422 return key_senderror(so, m, error);
5423 }
5424
5425#ifdef IPSEC_NAT_T
5426 /*
5427 * Handle more NAT-T info if present,
5428 * now that we have a sav to fill.
5429 */
5430 if (type)
5431 newsav->natt_type = type->sadb_x_nat_t_type_type;
5432
5433#if 0
5434 /*
5435 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5436 * We should actually check for a minimum MTU here, if we
5437 * want to support it in ip_output.
5438 */
5439 if (frag)
5440 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5441#endif
5442#endif
5443
5444 /* check SA values to be mature. */
5445 if ((error = key_mature(newsav)) != 0) {
5446 KEY_FREESAV(&newsav);
5447 return key_senderror(so, m, error);
5448 }
5449
5450 /*
5451 * don't call key_freesav() here, as we would like to keep the SA
5452 * in the database on success.
5453 */
5454
5455 {
5456 struct mbuf *n;
5457
5458 /* set msg buf from mhp */
5459 n = key_getmsgbuf_x1(m, mhp);
5460 if (n == NULL) {
5461 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5462 return key_senderror(so, m, ENOBUFS);
5463 }
5464
5465 m_freem(m);
5466 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5467 }
5468}
5469
5470/* m is retained */
5471static int
5472key_setident(sah, m, mhp)
5473 struct secashead *sah;
5474 struct mbuf *m;
5475 const struct sadb_msghdr *mhp;
5476{
5477 const struct sadb_ident *idsrc, *iddst;
5478 int idsrclen, iddstlen;
5479
5480 IPSEC_ASSERT(sah != NULL, ("null secashead"));
5481 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5482 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5483 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5484
5485 /* don't make buffer if not there */
5486 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5487 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5488 sah->idents = NULL;
5489 sah->identd = NULL;
5490 return 0;
5491 }
5492
5493 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5494 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5495 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5496 return EINVAL;
5497 }
5498
5499 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5500 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5501 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5502 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5503
5504 /* validity check */
5505 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5506 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5507 return EINVAL;
5508 }
5509
5510 switch (idsrc->sadb_ident_type) {
5511 case SADB_IDENTTYPE_PREFIX:
5512 case SADB_IDENTTYPE_FQDN:
5513 case SADB_IDENTTYPE_USERFQDN:
5514 default:
5515 /* XXX do nothing */
5516 sah->idents = NULL;
5517 sah->identd = NULL;
5518 return 0;
5519 }
5520
5521 /* make structure */
5522 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5523 if (sah->idents == NULL) {
5524 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5525 return ENOBUFS;
5526 }
5527 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5528 if (sah->identd == NULL) {
5529 free(sah->idents, M_IPSEC_MISC);
5530 sah->idents = NULL;
5531 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5532 return ENOBUFS;
5533 }
5534 sah->idents->type = idsrc->sadb_ident_type;
5535 sah->idents->id = idsrc->sadb_ident_id;
5536
5537 sah->identd->type = iddst->sadb_ident_type;
5538 sah->identd->id = iddst->sadb_ident_id;
5539
5540 return 0;
5541}
5542
5543/*
5544 * m will not be freed on return.
5545 * it is caller's responsibility to free the result.
5546 */
5547static struct mbuf *
5548key_getmsgbuf_x1(m, mhp)
5549 struct mbuf *m;
5550 const struct sadb_msghdr *mhp;
5551{
5552 struct mbuf *n;
5553
5554 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5555 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5556 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5557
5558 /* create new sadb_msg to reply. */
5559 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5560 SADB_EXT_SA, SADB_X_EXT_SA2,
5561 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5562 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5563 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5564 if (!n)
5565 return NULL;
5566
5567 if (n->m_len < sizeof(struct sadb_msg)) {
5568 n = m_pullup(n, sizeof(struct sadb_msg));
5569 if (n == NULL)
5570 return NULL;
5571 }
5572 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5573 mtod(n, struct sadb_msg *)->sadb_msg_len =
5574 PFKEY_UNIT64(n->m_pkthdr.len);
5575
5576 return n;
5577}
5578
5579static int key_delete_all __P((struct socket *, struct mbuf *,
5580 const struct sadb_msghdr *, u_int16_t));
5581
5582/*
5583 * SADB_DELETE processing
5584 * receive
5585 * <base, SA(*), address(SD)>
5586 * from the ikmpd, and set SADB_SASTATE_DEAD,
5587 * and send,
5588 * <base, SA(*), address(SD)>
5589 * to the ikmpd.
5590 *
5591 * m will always be freed.
5592 */
5593static int
5594key_delete(so, m, mhp)
5595 struct socket *so;
5596 struct mbuf *m;
5597 const struct sadb_msghdr *mhp;
5598{
5599 struct sadb_sa *sa0;
5600 struct sadb_address *src0, *dst0;
5601 struct secasindex saidx;
5602 struct secashead *sah;
5603 struct secasvar *sav = NULL;
5604 u_int16_t proto;
5605
5606 IPSEC_ASSERT(so != NULL, ("null socket"));
5607 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5608 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5609 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5610
5611 /* map satype to proto */
5612 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5613 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5614 __func__));
5615 return key_senderror(so, m, EINVAL);
5616 }
5617
5618 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5619 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5620 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5621 __func__));
5622 return key_senderror(so, m, EINVAL);
5623 }
5624
5625 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5626 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5627 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5628 __func__));
5629 return key_senderror(so, m, EINVAL);
5630 }
5631
5632 if (mhp->ext[SADB_EXT_SA] == NULL) {
5633 /*
5634 * Caller wants us to delete all non-LARVAL SAs
5635 * that match the src/dst. This is used during
5636 * IKE INITIAL-CONTACT.
5637 */
5638 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5639 return key_delete_all(so, m, mhp, proto);
5640 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5641 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5642 __func__));
5643 return key_senderror(so, m, EINVAL);
5644 }
5645
5646 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5647 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5648 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5649
5650 /* XXX boundary check against sa_len */
5651 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5652
5653 /*
5654 * Make sure the port numbers are zero.
5655 * In case of NAT-T we will update them later if needed.
5656 */
5657 KEY_PORTTOSADDR(&saidx.src, 0);
5658 KEY_PORTTOSADDR(&saidx.dst, 0);
5659
5660#ifdef IPSEC_NAT_T
5661 /*
5662 * Handle NAT-T info if present.
5663 */
5664 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5665 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5666 struct sadb_x_nat_t_port *sport, *dport;
5667
5668 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5669 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5670 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5671 __func__));
5672 return key_senderror(so, m, EINVAL);
5673 }
5674
5675 sport = (struct sadb_x_nat_t_port *)
5676 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5677 dport = (struct sadb_x_nat_t_port *)
5678 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5679
5680 if (sport)
5681 KEY_PORTTOSADDR(&saidx.src,
5682 sport->sadb_x_nat_t_port_port);
5683 if (dport)
5684 KEY_PORTTOSADDR(&saidx.dst,
5685 dport->sadb_x_nat_t_port_port);
5686 }
5687#endif
5688
5689 /* get a SA header */
5690 SAHTREE_LOCK();
5691 LIST_FOREACH(sah, &V_sahtree, chain) {
5692 if (sah->state == SADB_SASTATE_DEAD)
5693 continue;
5694 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5695 continue;
5696
5697 /* get a SA with SPI. */
5698 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5699 if (sav)
5700 break;
5701 }
5702 if (sah == NULL) {
5703 SAHTREE_UNLOCK();
5704 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5705 return key_senderror(so, m, ENOENT);
5706 }
5707
5708 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5709 KEY_FREESAV(&sav);
5710 SAHTREE_UNLOCK();
5711
5712 {
5713 struct mbuf *n;
5714 struct sadb_msg *newmsg;
5715
5716 /* create new sadb_msg to reply. */
5717 /* XXX-BZ NAT-T extensions? */
5718 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5719 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5720 if (!n)
5721 return key_senderror(so, m, ENOBUFS);
5722
5723 if (n->m_len < sizeof(struct sadb_msg)) {
5724 n = m_pullup(n, sizeof(struct sadb_msg));
5725 if (n == NULL)
5726 return key_senderror(so, m, ENOBUFS);
5727 }
5728 newmsg = mtod(n, struct sadb_msg *);
5729 newmsg->sadb_msg_errno = 0;
5730 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5731
5732 m_freem(m);
5733 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5734 }
5735}
5736
5737/*
5738 * delete all SAs for src/dst. Called from key_delete().
5739 */
5740static int
5741key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp,
5742 u_int16_t proto)
5743{
5744 struct sadb_address *src0, *dst0;
5745 struct secasindex saidx;
5746 struct secashead *sah;
5747 struct secasvar *sav, *nextsav;
5748 u_int stateidx, state;
5749
5750 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5751 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5752
5753 /* XXX boundary check against sa_len */
5754 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5755
5756 /*
5757 * Make sure the port numbers are zero.
5758 * In case of NAT-T we will update them later if needed.
5759 */
5760 KEY_PORTTOSADDR(&saidx.src, 0);
5761 KEY_PORTTOSADDR(&saidx.dst, 0);
5762
5763#ifdef IPSEC_NAT_T
5764 /*
5765 * Handle NAT-T info if present.
5766 */
5767
5768 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5769 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5770 struct sadb_x_nat_t_port *sport, *dport;
5771
5772 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5773 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5774 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5775 __func__));
5776 return key_senderror(so, m, EINVAL);
5777 }
5778
5779 sport = (struct sadb_x_nat_t_port *)
5780 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5781 dport = (struct sadb_x_nat_t_port *)
5782 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5783
5784 if (sport)
5785 KEY_PORTTOSADDR(&saidx.src,
5786 sport->sadb_x_nat_t_port_port);
5787 if (dport)
5788 KEY_PORTTOSADDR(&saidx.dst,
5789 dport->sadb_x_nat_t_port_port);
5790 }
5791#endif
5792
5793 SAHTREE_LOCK();
5794 LIST_FOREACH(sah, &V_sahtree, chain) {
5795 if (sah->state == SADB_SASTATE_DEAD)
5796 continue;
5797 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5798 continue;
5799
5800 /* Delete all non-LARVAL SAs. */
5801 for (stateidx = 0;
5802 stateidx < _ARRAYLEN(saorder_state_alive);
5803 stateidx++) {
5804 state = saorder_state_alive[stateidx];
5805 if (state == SADB_SASTATE_LARVAL)
5806 continue;
5807 for (sav = LIST_FIRST(&sah->savtree[state]);
5808 sav != NULL; sav = nextsav) {
5809 nextsav = LIST_NEXT(sav, chain);
5810 /* sanity check */
5811 if (sav->state != state) {
5812 ipseclog((LOG_DEBUG, "%s: invalid "
5813 "sav->state (queue %d SA %d)\n",
5814 __func__, state, sav->state));
5815 continue;
5816 }
5817
5818 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5819 KEY_FREESAV(&sav);
5820 }
5821 }
5822 }
5823 SAHTREE_UNLOCK();
5824 {
5825 struct mbuf *n;
5826 struct sadb_msg *newmsg;
5827
5828 /* create new sadb_msg to reply. */
5829 /* XXX-BZ NAT-T extensions? */
5830 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5831 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5832 if (!n)
5833 return key_senderror(so, m, ENOBUFS);
5834
5835 if (n->m_len < sizeof(struct sadb_msg)) {
5836 n = m_pullup(n, sizeof(struct sadb_msg));
5837 if (n == NULL)
5838 return key_senderror(so, m, ENOBUFS);
5839 }
5840 newmsg = mtod(n, struct sadb_msg *);
5841 newmsg->sadb_msg_errno = 0;
5842 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5843
5844 m_freem(m);
5845 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5846 }
5847}
5848
5849/*
5850 * SADB_GET processing
5851 * receive
5852 * <base, SA(*), address(SD)>
5853 * from the ikmpd, and get a SP and a SA to respond,
5854 * and send,
5855 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5856 * (identity(SD),) (sensitivity)>
5857 * to the ikmpd.
5858 *
5859 * m will always be freed.
5860 */
5861static int
5862key_get(so, m, mhp)
5863 struct socket *so;
5864 struct mbuf *m;
5865 const struct sadb_msghdr *mhp;
5866{
5867 struct sadb_sa *sa0;
5868 struct sadb_address *src0, *dst0;
5869 struct secasindex saidx;
5870 struct secashead *sah;
5871 struct secasvar *sav = NULL;
5872 u_int16_t proto;
5873
5874 IPSEC_ASSERT(so != NULL, ("null socket"));
5875 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5876 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5877 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5878
5879 /* map satype to proto */
5880 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5881 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5882 __func__));
5883 return key_senderror(so, m, EINVAL);
5884 }
5885
5886 if (mhp->ext[SADB_EXT_SA] == NULL ||
5887 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5888 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5889 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5890 __func__));
5891 return key_senderror(so, m, EINVAL);
5892 }
5893 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5894 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5895 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5896 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5897 __func__));
5898 return key_senderror(so, m, EINVAL);
5899 }
5900
5901 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5902 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5903 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5904
5905 /* XXX boundary check against sa_len */
5906 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5907
5908 /*
5909 * Make sure the port numbers are zero.
5910 * In case of NAT-T we will update them later if needed.
5911 */
5912 KEY_PORTTOSADDR(&saidx.src, 0);
5913 KEY_PORTTOSADDR(&saidx.dst, 0);
5914
5915#ifdef IPSEC_NAT_T
5916 /*
5917 * Handle NAT-T info if present.
5918 */
5919
5920 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5921 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5922 struct sadb_x_nat_t_port *sport, *dport;
5923
5924 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5925 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5926 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5927 __func__));
5928 return key_senderror(so, m, EINVAL);
5929 }
5930
5931 sport = (struct sadb_x_nat_t_port *)
5932 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5933 dport = (struct sadb_x_nat_t_port *)
5934 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5935
5936 if (sport)
5937 KEY_PORTTOSADDR(&saidx.src,
5938 sport->sadb_x_nat_t_port_port);
5939 if (dport)
5940 KEY_PORTTOSADDR(&saidx.dst,
5941 dport->sadb_x_nat_t_port_port);
5942 }
5943#endif
5944
5945 /* get a SA header */
5946 SAHTREE_LOCK();
5947 LIST_FOREACH(sah, &V_sahtree, chain) {
5948 if (sah->state == SADB_SASTATE_DEAD)
5949 continue;
5950 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5951 continue;
5952
5953 /* get a SA with SPI. */
5954 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5955 if (sav)
5956 break;
5957 }
5958 SAHTREE_UNLOCK();
5959 if (sah == NULL) {
5960 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5961 return key_senderror(so, m, ENOENT);
5962 }
5963
5964 {
5965 struct mbuf *n;
5966 u_int8_t satype;
5967
5968 /* map proto to satype */
5969 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5970 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5971 __func__));
5972 return key_senderror(so, m, EINVAL);
5973 }
5974
5975 /* create new sadb_msg to reply. */
5976 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5977 mhp->msg->sadb_msg_pid);
5978 if (!n)
5979 return key_senderror(so, m, ENOBUFS);
5980
5981 m_freem(m);
5982 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5983 }
5984}
5985
5986/* XXX make it sysctl-configurable? */
5987static void
5988key_getcomb_setlifetime(comb)
5989 struct sadb_comb *comb;
5990{
5991
5992 comb->sadb_comb_soft_allocations = 1;
5993 comb->sadb_comb_hard_allocations = 1;
5994 comb->sadb_comb_soft_bytes = 0;
5995 comb->sadb_comb_hard_bytes = 0;
5996 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5997 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5998 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5999 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6000}
6001
6002/*
6003 * XXX reorder combinations by preference
6004 * XXX no idea if the user wants ESP authentication or not
6005 */
6006static struct mbuf *
6007key_getcomb_esp()
6008{
6009 struct sadb_comb *comb;
6010 struct enc_xform *algo;
6011 struct mbuf *result = NULL, *m, *n;
6012 int encmin;
6013 int i, off, o;
6014 int totlen;
6015 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6016
6017 m = NULL;
6018 for (i = 1; i <= SADB_EALG_MAX; i++) {
6019 algo = esp_algorithm_lookup(i);
6020 if (algo == NULL)
6021 continue;
6022
6023 /* discard algorithms with key size smaller than system min */
6024 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
6025 continue;
6026 if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
6027 encmin = V_ipsec_esp_keymin;
6028 else
6029 encmin = _BITS(algo->minkey);
6030
6031 if (V_ipsec_esp_auth)
6032 m = key_getcomb_ah();
6033 else {
6034 IPSEC_ASSERT(l <= MLEN,
6035 ("l=%u > MLEN=%lu", l, (u_long) MLEN));
6036 MGET(m, M_DONTWAIT, MT_DATA);
6037 if (m) {
6038 M_ALIGN(m, l);
6039 m->m_len = l;
6040 m->m_next = NULL;
6041 bzero(mtod(m, caddr_t), m->m_len);
6042 }
6043 }
6044 if (!m)
6045 goto fail;
6046
6047 totlen = 0;
6048 for (n = m; n; n = n->m_next)
6049 totlen += n->m_len;
6050 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
6051
6052 for (off = 0; off < totlen; off += l) {
6053 n = m_pulldown(m, off, l, &o);
6054 if (!n) {
6055 /* m is already freed */
6056 goto fail;
6057 }
6058 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
6059 bzero(comb, sizeof(*comb));
6060 key_getcomb_setlifetime(comb);
6061 comb->sadb_comb_encrypt = i;
6062 comb->sadb_comb_encrypt_minbits = encmin;
6063 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6064 }
6065
6066 if (!result)
6067 result = m;
6068 else
6069 m_cat(result, m);
6070 }
6071
6072 return result;
6073
6074 fail:
6075 if (result)
6076 m_freem(result);
6077 return NULL;
6078}
6079
6080static void
6081key_getsizes_ah(
6082 const struct auth_hash *ah,
6083 int alg,
6084 u_int16_t* min,
6085 u_int16_t* max)
6086{
6087
6088 *min = *max = ah->keysize;
6089 if (ah->keysize == 0) {
6090 /*
6091 * Transform takes arbitrary key size but algorithm
6092 * key size is restricted. Enforce this here.
6093 */
6094 switch (alg) {
6095 case SADB_X_AALG_MD5: *min = *max = 16; break;
6096 case SADB_X_AALG_SHA: *min = *max = 20; break;
6097 case SADB_X_AALG_NULL: *min = 1; *max = 256; break;
6098 case SADB_X_AALG_SHA2_256: *min = *max = 32; break;
6099 case SADB_X_AALG_SHA2_384: *min = *max = 48; break;
6100 case SADB_X_AALG_SHA2_512: *min = *max = 64; break;
6101 default:
6102 DPRINTF(("%s: unknown AH algorithm %u\n",
6103 __func__, alg));
6104 break;
6105 }
6106 }
6107}
6108
6109/*
6110 * XXX reorder combinations by preference
6111 */
6112static struct mbuf *
6113key_getcomb_ah()
6114{
6115 struct sadb_comb *comb;
6116 struct auth_hash *algo;
6117 struct mbuf *m;
6118 u_int16_t minkeysize, maxkeysize;
6119 int i;
6120 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6121
6122 m = NULL;
6123 for (i = 1; i <= SADB_AALG_MAX; i++) {
6124#if 1
6125 /* we prefer HMAC algorithms, not old algorithms */
6126 if (i != SADB_AALG_SHA1HMAC &&
6127 i != SADB_AALG_MD5HMAC &&
6128 i != SADB_X_AALG_SHA2_256 &&
6129 i != SADB_X_AALG_SHA2_384 &&
6130 i != SADB_X_AALG_SHA2_512)
6131 continue;
6132#endif
6133 algo = ah_algorithm_lookup(i);
6134 if (!algo)
6135 continue;
6136 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6137 /* discard algorithms with key size smaller than system min */
6138 if (_BITS(minkeysize) < V_ipsec_ah_keymin)
6139 continue;
6140
6141 if (!m) {
6142 IPSEC_ASSERT(l <= MLEN,
6143 ("l=%u > MLEN=%lu", l, (u_long) MLEN));
6144 MGET(m, M_DONTWAIT, MT_DATA);
6145 if (m) {
6146 M_ALIGN(m, l);
6147 m->m_len = l;
6148 m->m_next = NULL;
6149 }
6150 } else
6151 M_PREPEND(m, l, M_DONTWAIT);
6152 if (!m)
6153 return NULL;
6154
6155 comb = mtod(m, struct sadb_comb *);
6156 bzero(comb, sizeof(*comb));
6157 key_getcomb_setlifetime(comb);
6158 comb->sadb_comb_auth = i;
6159 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6160 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6161 }
6162
6163 return m;
6164}
6165
6166/*
6167 * not really an official behavior. discussed in pf_key@inner.net in Sep2000.
6168 * XXX reorder combinations by preference
6169 */
6170static struct mbuf *
6171key_getcomb_ipcomp()
6172{
6173 struct sadb_comb *comb;
6174 struct comp_algo *algo;
6175 struct mbuf *m;
6176 int i;
6177 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6178
6179 m = NULL;
6180 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6181 algo = ipcomp_algorithm_lookup(i);
6182 if (!algo)
6183 continue;
6184
6185 if (!m) {
6186 IPSEC_ASSERT(l <= MLEN,
6187 ("l=%u > MLEN=%lu", l, (u_long) MLEN));
6188 MGET(m, M_DONTWAIT, MT_DATA);
6189 if (m) {
6190 M_ALIGN(m, l);
6191 m->m_len = l;
6192 m->m_next = NULL;
6193 }
6194 } else
6195 M_PREPEND(m, l, M_DONTWAIT);
6196 if (!m)
6197 return NULL;
6198
6199 comb = mtod(m, struct sadb_comb *);
6200 bzero(comb, sizeof(*comb));
6201 key_getcomb_setlifetime(comb);
6202 comb->sadb_comb_encrypt = i;
6203 /* what should we set into sadb_comb_*_{min,max}bits? */
6204 }
6205
6206 return m;
6207}
6208
6209/*
6210 * XXX no way to pass mode (transport/tunnel) to userland
6211 * XXX replay checking?
6212 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6213 */
6214static struct mbuf *
6215key_getprop(saidx)
6216 const struct secasindex *saidx;
6217{
6218 struct sadb_prop *prop;
6219 struct mbuf *m, *n;
6220 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6221 int totlen;
6222
6223 switch (saidx->proto) {
6224 case IPPROTO_ESP:
6225 m = key_getcomb_esp();
6226 break;
6227 case IPPROTO_AH:
6228 m = key_getcomb_ah();
6229 break;
6230 case IPPROTO_IPCOMP:
6231 m = key_getcomb_ipcomp();
6232 break;
6233 default:
6234 return NULL;
6235 }
6236
6237 if (!m)
6238 return NULL;
6239 M_PREPEND(m, l, M_DONTWAIT);
6240 if (!m)
6241 return NULL;
6242
6243 totlen = 0;
6244 for (n = m; n; n = n->m_next)
6245 totlen += n->m_len;
6246
6247 prop = mtod(m, struct sadb_prop *);
6248 bzero(prop, sizeof(*prop));
6249 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6250 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6251 prop->sadb_prop_replay = 32; /* XXX */
6252
6253 return m;
6254}
6255
6256/*
6257 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6258 * send
6259 * <base, SA, address(SD), (address(P)), x_policy,
6260 * (identity(SD),) (sensitivity,) proposal>
6261 * to KMD, and expect to receive
6262 * <base> with SADB_ACQUIRE if error occured,
6263 * or
6264 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6265 * from KMD by PF_KEY.
6266 *
6267 * XXX x_policy is outside of RFC2367 (KAME extension).
6268 * XXX sensitivity is not supported.
6269 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6270 * see comment for key_getcomb_ipcomp().
6271 *
6272 * OUT:
6273 * 0 : succeed
6274 * others: error number
6275 */
6276static int
6277key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6278{
6279 struct mbuf *result = NULL, *m;
6280 struct secacq *newacq;
6281 u_int8_t satype;
6282 int error = -1;
6283 u_int32_t seq;
6284
6285 IPSEC_ASSERT(saidx != NULL, ("null saidx"));
6286 satype = key_proto2satype(saidx->proto);
6287 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
6288
6289 /*
6290 * We never do anything about acquirng SA. There is anather
6291 * solution that kernel blocks to send SADB_ACQUIRE message until
6292 * getting something message from IKEd. In later case, to be
6293 * managed with ACQUIRING list.
6294 */
6295 /* Get an entry to check whether sending message or not. */
6296 if ((newacq = key_getacq(saidx)) != NULL) {
6297 if (V_key_blockacq_count < newacq->count) {
6298 /* reset counter and do send message. */
6299 newacq->count = 0;
6300 } else {
6301 /* increment counter and do nothing. */
6302 newacq->count++;
6303 return 0;
6304 }
6305 } else {
6306 /* make new entry for blocking to send SADB_ACQUIRE. */
6307 if ((newacq = key_newacq(saidx)) == NULL)
6308 return ENOBUFS;
6309 }
6310
6311
6312 seq = newacq->seq;
6313 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6314 if (!m) {
6315 error = ENOBUFS;
6316 goto fail;
6317 }
6318 result = m;
6319
6320 /*
6321 * No SADB_X_EXT_NAT_T_* here: we do not know
6322 * anything related to NAT-T at this time.
6323 */
6324
6325 /* set sadb_address for saidx's. */
6326 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6327 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6328 if (!m) {
6329 error = ENOBUFS;
6330 goto fail;
6331 }
6332 m_cat(result, m);
6333
6334 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6335 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6336 if (!m) {
6337 error = ENOBUFS;
6338 goto fail;
6339 }
6340 m_cat(result, m);
6341
6342 /* XXX proxy address (optional) */
6343
6344 /* set sadb_x_policy */
6345 if (sp) {
6346 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6347 if (!m) {
6348 error = ENOBUFS;
6349 goto fail;
6350 }
6351 m_cat(result, m);
6352 }
6353
6354 /* XXX identity (optional) */
6355#if 0
6356 if (idexttype && fqdn) {
6357 /* create identity extension (FQDN) */
6358 struct sadb_ident *id;
6359 int fqdnlen;
6360
6361 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6362 id = (struct sadb_ident *)p;
6363 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6364 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6365 id->sadb_ident_exttype = idexttype;
6366 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6367 bcopy(fqdn, id + 1, fqdnlen);
6368 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6369 }
6370
6371 if (idexttype) {
6372 /* create identity extension (USERFQDN) */
6373 struct sadb_ident *id;
6374 int userfqdnlen;
6375
6376 if (userfqdn) {
6377 /* +1 for terminating-NUL */
6378 userfqdnlen = strlen(userfqdn) + 1;
6379 } else
6380 userfqdnlen = 0;
6381 id = (struct sadb_ident *)p;
6382 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6383 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6384 id->sadb_ident_exttype = idexttype;
6385 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6386 /* XXX is it correct? */
6387 if (curproc && curproc->p_cred)
6388 id->sadb_ident_id = curproc->p_cred->p_ruid;
6389 if (userfqdn && userfqdnlen)
6390 bcopy(userfqdn, id + 1, userfqdnlen);
6391 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6392 }
6393#endif
6394
6395 /* XXX sensitivity (optional) */
6396
6397 /* create proposal/combination extension */
6398 m = key_getprop(saidx);
6399#if 0
6400 /*
6401 * spec conformant: always attach proposal/combination extension,
6402 * the problem is that we have no way to attach it for ipcomp,
6403 * due to the way sadb_comb is declared in RFC2367.
6404 */
6405 if (!m) {
6406 error = ENOBUFS;
6407 goto fail;
6408 }
6409 m_cat(result, m);
6410#else
6411 /*
6412 * outside of spec; make proposal/combination extension optional.
6413 */
6414 if (m)
6415 m_cat(result, m);
6416#endif
6417
6418 if ((result->m_flags & M_PKTHDR) == 0) {
6419 error = EINVAL;
6420 goto fail;
6421 }
6422
6423 if (result->m_len < sizeof(struct sadb_msg)) {
6424 result = m_pullup(result, sizeof(struct sadb_msg));
6425 if (result == NULL) {
6426 error = ENOBUFS;
6427 goto fail;
6428 }
6429 }
6430
6431 result->m_pkthdr.len = 0;
6432 for (m = result; m; m = m->m_next)
6433 result->m_pkthdr.len += m->m_len;
6434
6435 mtod(result, struct sadb_msg *)->sadb_msg_len =
6436 PFKEY_UNIT64(result->m_pkthdr.len);
6437
6438 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6439
6440 fail:
6441 if (result)
6442 m_freem(result);
6443 return error;
6444}
6445
6446static struct secacq *
6447key_newacq(const struct secasindex *saidx)
6448{
6449 struct secacq *newacq;
6450
6451 /* get new entry */
6452 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6453 if (newacq == NULL) {
6454 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6455 return NULL;
6456 }
6457
6458 /* copy secindex */
6459 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
6460 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
6461 newacq->created = time_second;
6462 newacq->count = 0;
6463
6464 /* add to acqtree */
6465 ACQ_LOCK();
6466 LIST_INSERT_HEAD(&V_acqtree, newacq, chain);
6467 ACQ_UNLOCK();
6468
6469 return newacq;
6470}
6471
6472static struct secacq *
6473key_getacq(const struct secasindex *saidx)
6474{
6475 struct secacq *acq;
6476
6477 ACQ_LOCK();
6478 LIST_FOREACH(acq, &V_acqtree, chain) {
6479 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6480 break;
6481 }
6482 ACQ_UNLOCK();
6483
6484 return acq;
6485}
6486
6487static struct secacq *
6488key_getacqbyseq(seq)
6489 u_int32_t seq;
6490{
6491 struct secacq *acq;
6492
6493 ACQ_LOCK();
6494 LIST_FOREACH(acq, &V_acqtree, chain) {
6495 if (acq->seq == seq)
6496 break;
6497 }
6498 ACQ_UNLOCK();
6499
6500 return acq;
6501}
6502
6503static struct secspacq *
6504key_newspacq(spidx)
6505 struct secpolicyindex *spidx;
6506{
6507 struct secspacq *acq;
6508
6509 /* get new entry */
6510 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6511 if (acq == NULL) {
6512 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6513 return NULL;
6514 }
6515
6516 /* copy secindex */
6517 bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
6518 acq->created = time_second;
6519 acq->count = 0;
6520
6521 /* add to spacqtree */
6522 SPACQ_LOCK();
6523 LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
6524 SPACQ_UNLOCK();
6525
6526 return acq;
6527}
6528
6529static struct secspacq *
6530key_getspacq(spidx)
6531 struct secpolicyindex *spidx;
6532{
6533 struct secspacq *acq;
6534
6535 SPACQ_LOCK();
6536 LIST_FOREACH(acq, &V_spacqtree, chain) {
6537 if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
6538 /* NB: return holding spacq_lock */
6539 return acq;
6540 }
6541 }
6542 SPACQ_UNLOCK();
6543
6544 return NULL;
6545}
6546
6547/*
6548 * SADB_ACQUIRE processing,
6549 * in first situation, is receiving
6550 * <base>
6551 * from the ikmpd, and clear sequence of its secasvar entry.
6552 *
6553 * In second situation, is receiving
6554 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6555 * from a user land process, and return
6556 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6557 * to the socket.
6558 *
6559 * m will always be freed.
6560 */
6561static int
6562key_acquire2(so, m, mhp)
6563 struct socket *so;
6564 struct mbuf *m;
6565 const struct sadb_msghdr *mhp;
6566{
6567 const struct sadb_address *src0, *dst0;
6568 struct secasindex saidx;
6569 struct secashead *sah;
6570 u_int16_t proto;
6571 int error;
6572
6573 IPSEC_ASSERT(so != NULL, ("null socket"));
6574 IPSEC_ASSERT(m != NULL, ("null mbuf"));
6575 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6576 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6577
6578 /*
6579 * Error message from KMd.
6580 * We assume that if error was occured in IKEd, the length of PFKEY
6581 * message is equal to the size of sadb_msg structure.
6582 * We do not raise error even if error occured in this function.
6583 */
6584 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6585 struct secacq *acq;
6586
6587 /* check sequence number */
6588 if (mhp->msg->sadb_msg_seq == 0) {
6589 ipseclog((LOG_DEBUG, "%s: must specify sequence "
6590 "number.\n", __func__));
6591 m_freem(m);
6592 return 0;
6593 }
6594
6595 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6596 /*
6597 * the specified larval SA is already gone, or we got
6598 * a bogus sequence number. we can silently ignore it.
6599 */
6600 m_freem(m);
6601 return 0;
6602 }
6603
6604 /* reset acq counter in order to deletion by timehander. */
6605 acq->created = time_second;
6606 acq->count = 0;
6607 m_freem(m);
6608 return 0;
6609 }
6610
6611 /*
6612 * This message is from user land.
6613 */
6614
6615 /* map satype to proto */
6616 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6617 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6618 __func__));
6619 return key_senderror(so, m, EINVAL);
6620 }
6621
6622 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6623 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6624 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6625 /* error */
6626 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6627 __func__));
6628 return key_senderror(so, m, EINVAL);
6629 }
6630 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6631 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6632 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6633 /* error */
6634 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6635 __func__));
6636 return key_senderror(so, m, EINVAL);
6637 }
6638
6639 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6640 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6641
6642 /* XXX boundary check against sa_len */
6643 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6644
6645 /*
6646 * Make sure the port numbers are zero.
6647 * In case of NAT-T we will update them later if needed.
6648 */
6649 KEY_PORTTOSADDR(&saidx.src, 0);
6650 KEY_PORTTOSADDR(&saidx.dst, 0);
6651
6652#ifndef IPSEC_NAT_T
6653 /*
6654 * Handle NAT-T info if present.
6655 */
6656
6657 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
6658 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
6659 struct sadb_x_nat_t_port *sport, *dport;
6660
6661 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
6662 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
6663 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
6664 __func__));
6665 return key_senderror(so, m, EINVAL);
6666 }
6667
6668 sport = (struct sadb_x_nat_t_port *)
6669 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
6670 dport = (struct sadb_x_nat_t_port *)
6671 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
6672
6673 if (sport)
6674 KEY_PORTTOSADDR(&saidx.src,
6675 sport->sadb_x_nat_t_port_port);
6676 if (dport)
6677 KEY_PORTTOSADDR(&saidx.dst,
6678 dport->sadb_x_nat_t_port_port);
6679 }
6680#endif
6681
6682 /* get a SA index */
6683 SAHTREE_LOCK();
6684 LIST_FOREACH(sah, &V_sahtree, chain) {
6685 if (sah->state == SADB_SASTATE_DEAD)
6686 continue;
6687 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6688 break;
6689 }
6690 SAHTREE_UNLOCK();
6691 if (sah != NULL) {
6692 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
6693 return key_senderror(so, m, EEXIST);
6694 }
6695
6696 error = key_acquire(&saidx, NULL);
6697 if (error != 0) {
6698 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
6699 __func__, mhp->msg->sadb_msg_errno));
6700 return key_senderror(so, m, error);
6701 }
6702
6703 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6704}
6705
6706/*
6707 * SADB_REGISTER processing.
6708 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6709 * receive
6710 * <base>
6711 * from the ikmpd, and register a socket to send PF_KEY messages,
6712 * and send
6713 * <base, supported>
6714 * to KMD by PF_KEY.
6715 * If socket is detached, must free from regnode.
6716 *
6717 * m will always be freed.
6718 */
6719static int
6720key_register(so, m, mhp)
6721 struct socket *so;
6722 struct mbuf *m;
6723 const struct sadb_msghdr *mhp;
6724{
6725 struct secreg *reg, *newreg = 0;
6726
6727 IPSEC_ASSERT(so != NULL, ("null socket"));
6728 IPSEC_ASSERT(m != NULL, ("null mbuf"));
6729 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6730 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6731
6732 /* check for invalid register message */
6733 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
6734 return key_senderror(so, m, EINVAL);
6735
6736 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6737 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6738 goto setmsg;
6739
6740 /* check whether existing or not */
6741 REGTREE_LOCK();
6742 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
6743 if (reg->so == so) {
6744 REGTREE_UNLOCK();
6745 ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6746 __func__));
6747 return key_senderror(so, m, EEXIST);
6748 }
6749 }
6750
6751 /* create regnode */
6752 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6753 if (newreg == NULL) {
6754 REGTREE_UNLOCK();
6755 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6756 return key_senderror(so, m, ENOBUFS);
6757 }
6758
6759 newreg->so = so;
6760 ((struct keycb *)sotorawcb(so))->kp_registered++;
6761
6762 /* add regnode to regtree. */
6763 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6764 REGTREE_UNLOCK();
6765
6766 setmsg:
6767 {
6768 struct mbuf *n;
6769 struct sadb_msg *newmsg;
6770 struct sadb_supported *sup;
6771 u_int len, alen, elen;
6772 int off;
6773 int i;
6774 struct sadb_alg *alg;
6775
6776 /* create new sadb_msg to reply. */
6777 alen = 0;
6778 for (i = 1; i <= SADB_AALG_MAX; i++) {
6779 if (ah_algorithm_lookup(i))
6780 alen += sizeof(struct sadb_alg);
6781 }
6782 if (alen)
6783 alen += sizeof(struct sadb_supported);
6784 elen = 0;
6785 for (i = 1; i <= SADB_EALG_MAX; i++) {
6786 if (esp_algorithm_lookup(i))
6787 elen += sizeof(struct sadb_alg);
6788 }
6789 if (elen)
6790 elen += sizeof(struct sadb_supported);
6791
6792 len = sizeof(struct sadb_msg) + alen + elen;
6793
6794 if (len > MCLBYTES)
6795 return key_senderror(so, m, ENOBUFS);
6796
6797 MGETHDR(n, M_DONTWAIT, MT_DATA);
6798 if (len > MHLEN) {
6799 MCLGET(n, M_DONTWAIT);
6800 if ((n->m_flags & M_EXT) == 0) {
6801 m_freem(n);
6802 n = NULL;
6803 }
6804 }
6805 if (!n)
6806 return key_senderror(so, m, ENOBUFS);
6807
6808 n->m_pkthdr.len = n->m_len = len;
6809 n->m_next = NULL;
6810 off = 0;
6811
6812 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6813 newmsg = mtod(n, struct sadb_msg *);
6814 newmsg->sadb_msg_errno = 0;
6815 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6816 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6817
6818 /* for authentication algorithm */
6819 if (alen) {
6820 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6821 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6822 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6823 off += PFKEY_ALIGN8(sizeof(*sup));
6824
6825 for (i = 1; i <= SADB_AALG_MAX; i++) {
6826 struct auth_hash *aalgo;
6827 u_int16_t minkeysize, maxkeysize;
6828
6829 aalgo = ah_algorithm_lookup(i);
6830 if (!aalgo)
6831 continue;
6832 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6833 alg->sadb_alg_id = i;
6834 alg->sadb_alg_ivlen = 0;
6835 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6836 alg->sadb_alg_minbits = _BITS(minkeysize);
6837 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6838 off += PFKEY_ALIGN8(sizeof(*alg));
6839 }
6840 }
6841
6842 /* for encryption algorithm */
6843 if (elen) {
6844 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6845 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6846 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6847 off += PFKEY_ALIGN8(sizeof(*sup));
6848
6849 for (i = 1; i <= SADB_EALG_MAX; i++) {
6850 struct enc_xform *ealgo;
6851
6852 ealgo = esp_algorithm_lookup(i);
6853 if (!ealgo)
6854 continue;
6855 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6856 alg->sadb_alg_id = i;
6857 alg->sadb_alg_ivlen = ealgo->blocksize;
6858 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6859 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6860 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6861 }
6862 }
6863
6864 IPSEC_ASSERT(off == len,
6865 ("length assumption failed (off %u len %u)", off, len));
6866
6867 m_freem(m);
6868 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6869 }
6870}
6871
6872/*
6873 * free secreg entry registered.
6874 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6875 */
6876void
6877key_freereg(struct socket *so)
6878{
6879 struct secreg *reg;
6880 int i;
6881
6882 IPSEC_ASSERT(so != NULL, ("NULL so"));
6883
6884 /*
6885 * check whether existing or not.
6886 * check all type of SA, because there is a potential that
6887 * one socket is registered to multiple type of SA.
6888 */
6889 REGTREE_LOCK();
6890 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6891 LIST_FOREACH(reg, &V_regtree[i], chain) {
6892 if (reg->so == so && __LIST_CHAINED(reg)) {
6893 LIST_REMOVE(reg, chain);
6894 free(reg, M_IPSEC_SAR);
6895 break;
6896 }
6897 }
6898 }
6899 REGTREE_UNLOCK();
6900}
6901
6902/*
6903 * SADB_EXPIRE processing
6904 * send
6905 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6906 * to KMD by PF_KEY.
6907 * NOTE: We send only soft lifetime extension.
6908 *
6909 * OUT: 0 : succeed
6910 * others : error number
6911 */
6912static int
6913key_expire(struct secasvar *sav)
6914{
2/* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
3
4/*-
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/*
34 * This code is referd to RFC 2367
35 */
36
37#include "opt_inet.h"
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40
41#include <sys/types.h>
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/lock.h>
46#include <sys/mutex.h>
47#include <sys/mbuf.h>
48#include <sys/domain.h>
49#include <sys/protosw.h>
50#include <sys/malloc.h>
51#include <sys/socket.h>
52#include <sys/socketvar.h>
53#include <sys/sysctl.h>
54#include <sys/errno.h>
55#include <sys/proc.h>
56#include <sys/queue.h>
57#include <sys/refcount.h>
58#include <sys/syslog.h>
59
60#include <net/if.h>
61#include <net/route.h>
62#include <net/raw_cb.h>
63#include <net/vnet.h>
64
65#include <netinet/in.h>
66#include <netinet/in_systm.h>
67#include <netinet/ip.h>
68#include <netinet/in_var.h>
69
70#ifdef INET6
71#include <netinet/ip6.h>
72#include <netinet6/in6_var.h>
73#include <netinet6/ip6_var.h>
74#endif /* INET6 */
75
76#if defined(INET) || defined(INET6)
77#include <netinet/in_pcb.h>
78#endif
79#ifdef INET6
80#include <netinet6/in6_pcb.h>
81#endif /* INET6 */
82
83#include <net/pfkeyv2.h>
84#include <netipsec/keydb.h>
85#include <netipsec/key.h>
86#include <netipsec/keysock.h>
87#include <netipsec/key_debug.h>
88
89#include <netipsec/ipsec.h>
90#ifdef INET6
91#include <netipsec/ipsec6.h>
92#endif
93
94#include <netipsec/xform.h>
95
96#include <machine/stdarg.h>
97
98/* randomness */
99#include <sys/random.h>
100
101#define FULLMASK 0xff
102#define _BITS(bytes) ((bytes) << 3)
103
104/*
105 * Note on SA reference counting:
106 * - SAs that are not in DEAD state will have (total external reference + 1)
107 * following value in reference count field. they cannot be freed and are
108 * referenced from SA header.
109 * - SAs that are in DEAD state will have (total external reference)
110 * in reference count field. they are ready to be freed. reference from
111 * SA header will be removed in key_delsav(), when the reference count
112 * field hits 0 (= no external reference other than from SA header.
113 */
114
115VNET_DEFINE(u_int32_t, key_debug_level) = 0;
116static VNET_DEFINE(u_int, key_spi_trycnt) = 1000;
117static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100;
118static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */
119static VNET_DEFINE(u_int32_t, policy_id) = 0;
120/*interval to initialize randseed,1(m)*/
121static VNET_DEFINE(u_int, key_int_random) = 60;
122/* interval to expire acquiring, 30(s)*/
123static VNET_DEFINE(u_int, key_larval_lifetime) = 30;
124/* counter for blocking SADB_ACQUIRE.*/
125static VNET_DEFINE(int, key_blockacq_count) = 10;
126/* lifetime for blocking SADB_ACQUIRE.*/
127static VNET_DEFINE(int, key_blockacq_lifetime) = 20;
128/* preferred old sa rather than new sa.*/
129static VNET_DEFINE(int, key_preferred_oldsa) = 1;
130#define V_key_spi_trycnt VNET(key_spi_trycnt)
131#define V_key_spi_minval VNET(key_spi_minval)
132#define V_key_spi_maxval VNET(key_spi_maxval)
133#define V_policy_id VNET(policy_id)
134#define V_key_int_random VNET(key_int_random)
135#define V_key_larval_lifetime VNET(key_larval_lifetime)
136#define V_key_blockacq_count VNET(key_blockacq_count)
137#define V_key_blockacq_lifetime VNET(key_blockacq_lifetime)
138#define V_key_preferred_oldsa VNET(key_preferred_oldsa)
139
140static VNET_DEFINE(u_int32_t, acq_seq) = 0;
141#define V_acq_seq VNET(acq_seq)
142
143 /* SPD */
144static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]);
145#define V_sptree VNET(sptree)
146static struct mtx sptree_lock;
147#define SPTREE_LOCK_INIT() \
148 mtx_init(&sptree_lock, "sptree", \
149 "fast ipsec security policy database", MTX_DEF)
150#define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock)
151#define SPTREE_LOCK() mtx_lock(&sptree_lock)
152#define SPTREE_UNLOCK() mtx_unlock(&sptree_lock)
153#define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED)
154
155static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */
156#define V_sahtree VNET(sahtree)
157static struct mtx sahtree_lock;
158#define SAHTREE_LOCK_INIT() \
159 mtx_init(&sahtree_lock, "sahtree", \
160 "fast ipsec security association database", MTX_DEF)
161#define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock)
162#define SAHTREE_LOCK() mtx_lock(&sahtree_lock)
163#define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock)
164#define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED)
165
166 /* registed list */
167static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]);
168#define V_regtree VNET(regtree)
169static struct mtx regtree_lock;
170#define REGTREE_LOCK_INIT() \
171 mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
172#define REGTREE_LOCK_DESTROY() mtx_destroy(&regtree_lock)
173#define REGTREE_LOCK() mtx_lock(&regtree_lock)
174#define REGTREE_UNLOCK() mtx_unlock(&regtree_lock)
175#define REGTREE_LOCK_ASSERT() mtx_assert(&regtree_lock, MA_OWNED)
176
177static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */
178#define V_acqtree VNET(acqtree)
179static struct mtx acq_lock;
180#define ACQ_LOCK_INIT() \
181 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
182#define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock)
183#define ACQ_LOCK() mtx_lock(&acq_lock)
184#define ACQ_UNLOCK() mtx_unlock(&acq_lock)
185#define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED)
186
187 /* SP acquiring list */
188static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree);
189#define V_spacqtree VNET(spacqtree)
190static struct mtx spacq_lock;
191#define SPACQ_LOCK_INIT() \
192 mtx_init(&spacq_lock, "spacqtree", \
193 "fast ipsec security policy acquire list", MTX_DEF)
194#define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock)
195#define SPACQ_LOCK() mtx_lock(&spacq_lock)
196#define SPACQ_UNLOCK() mtx_unlock(&spacq_lock)
197#define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED)
198
199/* search order for SAs */
200static const u_int saorder_state_valid_prefer_old[] = {
201 SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
202};
203static const u_int saorder_state_valid_prefer_new[] = {
204 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
205};
206static const u_int saorder_state_alive[] = {
207 /* except DEAD */
208 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
209};
210static const u_int saorder_state_any[] = {
211 SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
212 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
213};
214
215static const int minsize[] = {
216 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
217 sizeof(struct sadb_sa), /* SADB_EXT_SA */
218 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
219 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
220 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
221 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
222 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
223 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
224 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
225 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
226 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
227 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
228 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
229 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
230 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
231 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
232 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
233 0, /* SADB_X_EXT_KMPRIVATE */
234 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
235 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
236 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
237 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
238 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
239 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
240 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
241 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
242};
243static const int maxsize[] = {
244 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
245 sizeof(struct sadb_sa), /* SADB_EXT_SA */
246 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
247 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
248 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
249 0, /* SADB_EXT_ADDRESS_SRC */
250 0, /* SADB_EXT_ADDRESS_DST */
251 0, /* SADB_EXT_ADDRESS_PROXY */
252 0, /* SADB_EXT_KEY_AUTH */
253 0, /* SADB_EXT_KEY_ENCRYPT */
254 0, /* SADB_EXT_IDENTITY_SRC */
255 0, /* SADB_EXT_IDENTITY_DST */
256 0, /* SADB_EXT_SENSITIVITY */
257 0, /* SADB_EXT_PROPOSAL */
258 0, /* SADB_EXT_SUPPORTED_AUTH */
259 0, /* SADB_EXT_SUPPORTED_ENCRYPT */
260 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
261 0, /* SADB_X_EXT_KMPRIVATE */
262 0, /* SADB_X_EXT_POLICY */
263 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
264 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
265 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
266 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
267 0, /* SADB_X_EXT_NAT_T_OAI */
268 0, /* SADB_X_EXT_NAT_T_OAR */
269 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
270};
271
272static VNET_DEFINE(int, ipsec_esp_keymin) = 256;
273static VNET_DEFINE(int, ipsec_esp_auth) = 0;
274static VNET_DEFINE(int, ipsec_ah_keymin) = 128;
275
276#define V_ipsec_esp_keymin VNET(ipsec_esp_keymin)
277#define V_ipsec_esp_auth VNET(ipsec_esp_auth)
278#define V_ipsec_ah_keymin VNET(ipsec_ah_keymin)
279
280#ifdef SYSCTL_DECL
281SYSCTL_DECL(_net_key);
282#endif
283
284SYSCTL_VNET_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug,
285 CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, "");
286
287/* max count of trial for the decision of spi value */
288SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt,
289 CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, "");
290
291/* minimum spi value to allocate automatically. */
292SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MIN_VALUE,
293 spi_minval, CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, "");
294
295/* maximun spi value to allocate automatically. */
296SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MAX_VALUE,
297 spi_maxval, CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, "");
298
299/* interval to initialize randseed */
300SYSCTL_VNET_INT(_net_key, KEYCTL_RANDOM_INT,
301 int_random, CTLFLAG_RW, &VNET_NAME(key_int_random), 0, "");
302
303/* lifetime for larval SA */
304SYSCTL_VNET_INT(_net_key, KEYCTL_LARVAL_LIFETIME,
305 larval_lifetime, CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, "");
306
307/* counter for blocking to send SADB_ACQUIRE to IKEd */
308SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_COUNT,
309 blockacq_count, CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, "");
310
311/* lifetime for blocking to send SADB_ACQUIRE to IKEd */
312SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME,
313 blockacq_lifetime, CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, "");
314
315/* ESP auth */
316SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth,
317 CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, "");
318
319/* minimum ESP key length */
320SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_KEYMIN,
321 esp_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, "");
322
323/* minimum AH key length */
324SYSCTL_VNET_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin,
325 CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, "");
326
327/* perfered old SA rather than new SA */
328SYSCTL_VNET_INT(_net_key, KEYCTL_PREFERED_OLDSA,
329 preferred_oldsa, CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, "");
330
331#define __LIST_CHAINED(elm) \
332 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
333#define LIST_INSERT_TAIL(head, elm, type, field) \
334do {\
335 struct type *curelm = LIST_FIRST(head); \
336 if (curelm == NULL) {\
337 LIST_INSERT_HEAD(head, elm, field); \
338 } else { \
339 while (LIST_NEXT(curelm, field)) \
340 curelm = LIST_NEXT(curelm, field);\
341 LIST_INSERT_AFTER(curelm, elm, field);\
342 }\
343} while (0)
344
345#define KEY_CHKSASTATE(head, sav, name) \
346do { \
347 if ((head) != (sav)) { \
348 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
349 (name), (head), (sav))); \
350 continue; \
351 } \
352} while (0)
353
354#define KEY_CHKSPDIR(head, sp, name) \
355do { \
356 if ((head) != (sp)) { \
357 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
358 "anyway continue.\n", \
359 (name), (head), (sp))); \
360 } \
361} while (0)
362
363MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
364MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
365MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
366MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
367MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
368MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
369MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
370
371/*
372 * set parameters into secpolicyindex buffer.
373 * Must allocate secpolicyindex buffer passed to this function.
374 */
375#define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
376do { \
377 bzero((idx), sizeof(struct secpolicyindex)); \
378 (idx)->dir = (_dir); \
379 (idx)->prefs = (ps); \
380 (idx)->prefd = (pd); \
381 (idx)->ul_proto = (ulp); \
382 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
383 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
384} while (0)
385
386/*
387 * set parameters into secasindex buffer.
388 * Must allocate secasindex buffer before calling this function.
389 */
390#define KEY_SETSECASIDX(p, m, r, s, d, idx) \
391do { \
392 bzero((idx), sizeof(struct secasindex)); \
393 (idx)->proto = (p); \
394 (idx)->mode = (m); \
395 (idx)->reqid = (r); \
396 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
397 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
398} while (0)
399
400/* key statistics */
401struct _keystat {
402 u_long getspi_count; /* the avarage of count to try to get new SPI */
403} keystat;
404
405struct sadb_msghdr {
406 struct sadb_msg *msg;
407 struct sadb_ext *ext[SADB_EXT_MAX + 1];
408 int extoff[SADB_EXT_MAX + 1];
409 int extlen[SADB_EXT_MAX + 1];
410};
411
412static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
413static void key_freesp_so __P((struct secpolicy **));
414static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
415static void key_delsp __P((struct secpolicy *));
416static struct secpolicy *key_getsp __P((struct secpolicyindex *));
417static void _key_delsp(struct secpolicy *sp);
418static struct secpolicy *key_getspbyid __P((u_int32_t));
419static u_int32_t key_newreqid __P((void));
420static struct mbuf *key_gather_mbuf __P((struct mbuf *,
421 const struct sadb_msghdr *, int, int, ...));
422static int key_spdadd __P((struct socket *, struct mbuf *,
423 const struct sadb_msghdr *));
424static u_int32_t key_getnewspid __P((void));
425static int key_spddelete __P((struct socket *, struct mbuf *,
426 const struct sadb_msghdr *));
427static int key_spddelete2 __P((struct socket *, struct mbuf *,
428 const struct sadb_msghdr *));
429static int key_spdget __P((struct socket *, struct mbuf *,
430 const struct sadb_msghdr *));
431static int key_spdflush __P((struct socket *, struct mbuf *,
432 const struct sadb_msghdr *));
433static int key_spddump __P((struct socket *, struct mbuf *,
434 const struct sadb_msghdr *));
435static struct mbuf *key_setdumpsp __P((struct secpolicy *,
436 u_int8_t, u_int32_t, u_int32_t));
437static u_int key_getspreqmsglen __P((struct secpolicy *));
438static int key_spdexpire __P((struct secpolicy *));
439static struct secashead *key_newsah __P((struct secasindex *));
440static void key_delsah __P((struct secashead *));
441static struct secasvar *key_newsav __P((struct mbuf *,
442 const struct sadb_msghdr *, struct secashead *, int *,
443 const char*, int));
444#define KEY_NEWSAV(m, sadb, sah, e) \
445 key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
446static void key_delsav __P((struct secasvar *));
447static struct secashead *key_getsah __P((struct secasindex *));
448static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
449static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
450static int key_setsaval __P((struct secasvar *, struct mbuf *,
451 const struct sadb_msghdr *));
452static int key_mature __P((struct secasvar *));
453static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
454 u_int8_t, u_int32_t, u_int32_t));
455static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
456 u_int32_t, pid_t, u_int16_t));
457static struct mbuf *key_setsadbsa __P((struct secasvar *));
458static struct mbuf *key_setsadbaddr __P((u_int16_t,
459 const struct sockaddr *, u_int8_t, u_int16_t));
460#ifdef IPSEC_NAT_T
461static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t);
462static struct mbuf *key_setsadbxtype(u_int16_t);
463#endif
464static void key_porttosaddr(struct sockaddr *, u_int16_t);
465#define KEY_PORTTOSADDR(saddr, port) \
466 key_porttosaddr((struct sockaddr *)(saddr), (port))
467static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
468static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
469 u_int32_t));
470static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
471 struct malloc_type *);
472static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
473 struct malloc_type *type);
474#ifdef INET6
475static int key_ismyaddr6 __P((struct sockaddr_in6 *));
476#endif
477
478/* flags for key_cmpsaidx() */
479#define CMP_HEAD 1 /* protocol, addresses. */
480#define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
481#define CMP_REQID 3 /* additionally HEAD, reaid. */
482#define CMP_EXACTLY 4 /* all elements. */
483static int key_cmpsaidx
484 __P((const struct secasindex *, const struct secasindex *, int));
485
486static int key_cmpspidx_exactly
487 __P((struct secpolicyindex *, struct secpolicyindex *));
488static int key_cmpspidx_withmask
489 __P((struct secpolicyindex *, struct secpolicyindex *));
490static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
491static int key_bbcmp __P((const void *, const void *, u_int));
492static u_int16_t key_satype2proto __P((u_int8_t));
493static u_int8_t key_proto2satype __P((u_int16_t));
494
495static int key_getspi __P((struct socket *, struct mbuf *,
496 const struct sadb_msghdr *));
497static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
498 struct secasindex *));
499static int key_update __P((struct socket *, struct mbuf *,
500 const struct sadb_msghdr *));
501#ifdef IPSEC_DOSEQCHECK
502static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
503#endif
504static int key_add __P((struct socket *, struct mbuf *,
505 const struct sadb_msghdr *));
506static int key_setident __P((struct secashead *, struct mbuf *,
507 const struct sadb_msghdr *));
508static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
509 const struct sadb_msghdr *));
510static int key_delete __P((struct socket *, struct mbuf *,
511 const struct sadb_msghdr *));
512static int key_get __P((struct socket *, struct mbuf *,
513 const struct sadb_msghdr *));
514
515static void key_getcomb_setlifetime __P((struct sadb_comb *));
516static struct mbuf *key_getcomb_esp __P((void));
517static struct mbuf *key_getcomb_ah __P((void));
518static struct mbuf *key_getcomb_ipcomp __P((void));
519static struct mbuf *key_getprop __P((const struct secasindex *));
520
521static int key_acquire __P((const struct secasindex *, struct secpolicy *));
522static struct secacq *key_newacq __P((const struct secasindex *));
523static struct secacq *key_getacq __P((const struct secasindex *));
524static struct secacq *key_getacqbyseq __P((u_int32_t));
525static struct secspacq *key_newspacq __P((struct secpolicyindex *));
526static struct secspacq *key_getspacq __P((struct secpolicyindex *));
527static int key_acquire2 __P((struct socket *, struct mbuf *,
528 const struct sadb_msghdr *));
529static int key_register __P((struct socket *, struct mbuf *,
530 const struct sadb_msghdr *));
531static int key_expire __P((struct secasvar *));
532static int key_flush __P((struct socket *, struct mbuf *,
533 const struct sadb_msghdr *));
534static int key_dump __P((struct socket *, struct mbuf *,
535 const struct sadb_msghdr *));
536static int key_promisc __P((struct socket *, struct mbuf *,
537 const struct sadb_msghdr *));
538static int key_senderror __P((struct socket *, struct mbuf *, int));
539static int key_validate_ext __P((const struct sadb_ext *, int));
540static int key_align __P((struct mbuf *, struct sadb_msghdr *));
541static struct mbuf *key_setlifetime(struct seclifetime *src,
542 u_int16_t exttype);
543static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
544
545#if 0
546static const char *key_getfqdn __P((void));
547static const char *key_getuserfqdn __P((void));
548#endif
549static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
550static struct mbuf *key_alloc_mbuf __P((int));
551
552static __inline void
553sa_initref(struct secasvar *sav)
554{
555
556 refcount_init(&sav->refcnt, 1);
557}
558static __inline void
559sa_addref(struct secasvar *sav)
560{
561
562 refcount_acquire(&sav->refcnt);
563 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
564}
565static __inline int
566sa_delref(struct secasvar *sav)
567{
568
569 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
570 return (refcount_release(&sav->refcnt));
571}
572
573#define SP_ADDREF(p) do { \
574 (p)->refcnt++; \
575 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \
576} while (0)
577#define SP_DELREF(p) do { \
578 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \
579 (p)->refcnt--; \
580} while (0)
581
582
583/*
584 * Update the refcnt while holding the SPTREE lock.
585 */
586void
587key_addref(struct secpolicy *sp)
588{
589 SPTREE_LOCK();
590 SP_ADDREF(sp);
591 SPTREE_UNLOCK();
592}
593
594/*
595 * Return 0 when there are known to be no SP's for the specified
596 * direction. Otherwise return 1. This is used by IPsec code
597 * to optimize performance.
598 */
599int
600key_havesp(u_int dir)
601{
602
603 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
604 LIST_FIRST(&V_sptree[dir]) != NULL : 1);
605}
606
607/* %%% IPsec policy management */
608/*
609 * allocating a SP for OUTBOUND or INBOUND packet.
610 * Must call key_freesp() later.
611 * OUT: NULL: not found
612 * others: found and return the pointer.
613 */
614struct secpolicy *
615key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
616{
617 struct secpolicy *sp;
618
619 IPSEC_ASSERT(spidx != NULL, ("null spidx"));
620 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
621 ("invalid direction %u", dir));
622
623 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
624 printf("DP %s from %s:%u\n", __func__, where, tag));
625
626 /* get a SP entry */
627 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
628 printf("*** objects\n");
629 kdebug_secpolicyindex(spidx));
630
631 SPTREE_LOCK();
632 LIST_FOREACH(sp, &V_sptree[dir], chain) {
633 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
634 printf("*** in SPD\n");
635 kdebug_secpolicyindex(&sp->spidx));
636
637 if (sp->state == IPSEC_SPSTATE_DEAD)
638 continue;
639 if (key_cmpspidx_withmask(&sp->spidx, spidx))
640 goto found;
641 }
642 sp = NULL;
643found:
644 if (sp) {
645 /* sanity check */
646 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
647
648 /* found a SPD entry */
649 sp->lastused = time_second;
650 SP_ADDREF(sp);
651 }
652 SPTREE_UNLOCK();
653
654 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
655 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
656 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
657 return sp;
658}
659
660/*
661 * allocating a SP for OUTBOUND or INBOUND packet.
662 * Must call key_freesp() later.
663 * OUT: NULL: not found
664 * others: found and return the pointer.
665 */
666struct secpolicy *
667key_allocsp2(u_int32_t spi,
668 union sockaddr_union *dst,
669 u_int8_t proto,
670 u_int dir,
671 const char* where, int tag)
672{
673 struct secpolicy *sp;
674
675 IPSEC_ASSERT(dst != NULL, ("null dst"));
676 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
677 ("invalid direction %u", dir));
678
679 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
680 printf("DP %s from %s:%u\n", __func__, where, tag));
681
682 /* get a SP entry */
683 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
684 printf("*** objects\n");
685 printf("spi %u proto %u dir %u\n", spi, proto, dir);
686 kdebug_sockaddr(&dst->sa));
687
688 SPTREE_LOCK();
689 LIST_FOREACH(sp, &V_sptree[dir], chain) {
690 KEYDEBUG(KEYDEBUG_IPSEC_DATA,
691 printf("*** in SPD\n");
692 kdebug_secpolicyindex(&sp->spidx));
693
694 if (sp->state == IPSEC_SPSTATE_DEAD)
695 continue;
696 /* compare simple values, then dst address */
697 if (sp->spidx.ul_proto != proto)
698 continue;
699 /* NB: spi's must exist and match */
700 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
701 continue;
702 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
703 goto found;
704 }
705 sp = NULL;
706found:
707 if (sp) {
708 /* sanity check */
709 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
710
711 /* found a SPD entry */
712 sp->lastused = time_second;
713 SP_ADDREF(sp);
714 }
715 SPTREE_UNLOCK();
716
717 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
718 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
719 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
720 return sp;
721}
722
723#if 0
724/*
725 * return a policy that matches this particular inbound packet.
726 * XXX slow
727 */
728struct secpolicy *
729key_gettunnel(const struct sockaddr *osrc,
730 const struct sockaddr *odst,
731 const struct sockaddr *isrc,
732 const struct sockaddr *idst,
733 const char* where, int tag)
734{
735 struct secpolicy *sp;
736 const int dir = IPSEC_DIR_INBOUND;
737 struct ipsecrequest *r1, *r2, *p;
738 struct secpolicyindex spidx;
739
740 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
741 printf("DP %s from %s:%u\n", __func__, where, tag));
742
743 if (isrc->sa_family != idst->sa_family) {
744 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
745 __func__, isrc->sa_family, idst->sa_family));
746 sp = NULL;
747 goto done;
748 }
749
750 SPTREE_LOCK();
751 LIST_FOREACH(sp, &V_sptree[dir], chain) {
752 if (sp->state == IPSEC_SPSTATE_DEAD)
753 continue;
754
755 r1 = r2 = NULL;
756 for (p = sp->req; p; p = p->next) {
757 if (p->saidx.mode != IPSEC_MODE_TUNNEL)
758 continue;
759
760 r1 = r2;
761 r2 = p;
762
763 if (!r1) {
764 /* here we look at address matches only */
765 spidx = sp->spidx;
766 if (isrc->sa_len > sizeof(spidx.src) ||
767 idst->sa_len > sizeof(spidx.dst))
768 continue;
769 bcopy(isrc, &spidx.src, isrc->sa_len);
770 bcopy(idst, &spidx.dst, idst->sa_len);
771 if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
772 continue;
773 } else {
774 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
775 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
776 continue;
777 }
778
779 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
780 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
781 continue;
782
783 goto found;
784 }
785 }
786 sp = NULL;
787found:
788 if (sp) {
789 sp->lastused = time_second;
790 SP_ADDREF(sp);
791 }
792 SPTREE_UNLOCK();
793done:
794 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
795 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
796 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
797 return sp;
798}
799#endif
800
801/*
802 * allocating an SA entry for an *OUTBOUND* packet.
803 * checking each request entries in SP, and acquire an SA if need.
804 * OUT: 0: there are valid requests.
805 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
806 */
807int
808key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
809{
810 u_int level;
811 int error;
812 struct secasvar *sav;
813
814 IPSEC_ASSERT(isr != NULL, ("null isr"));
815 IPSEC_ASSERT(saidx != NULL, ("null saidx"));
816 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
817 saidx->mode == IPSEC_MODE_TUNNEL,
818 ("unexpected policy %u", saidx->mode));
819
820 /*
821 * XXX guard against protocol callbacks from the crypto
822 * thread as they reference ipsecrequest.sav which we
823 * temporarily null out below. Need to rethink how we
824 * handle bundled SA's in the callback thread.
825 */
826 IPSECREQUEST_LOCK_ASSERT(isr);
827
828 /* get current level */
829 level = ipsec_get_reqlevel(isr);
830
831 /*
832 * We check new SA in the IPsec request because a different
833 * SA may be involved each time this request is checked, either
834 * because new SAs are being configured, or this request is
835 * associated with an unconnected datagram socket, or this request
836 * is associated with a system default policy.
837 *
838 * key_allocsa_policy should allocate the oldest SA available.
839 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
840 */
841 sav = key_allocsa_policy(saidx);
842 if (sav != isr->sav) {
843 /* SA need to be updated. */
844 if (!IPSECREQUEST_UPGRADE(isr)) {
845 /* Kick everyone off. */
846 IPSECREQUEST_UNLOCK(isr);
847 IPSECREQUEST_WLOCK(isr);
848 }
849 if (isr->sav != NULL)
850 KEY_FREESAV(&isr->sav);
851 isr->sav = sav;
852 IPSECREQUEST_DOWNGRADE(isr);
853 } else if (sav != NULL)
854 KEY_FREESAV(&sav);
855
856 /* When there is SA. */
857 if (isr->sav != NULL) {
858 if (isr->sav->state != SADB_SASTATE_MATURE &&
859 isr->sav->state != SADB_SASTATE_DYING)
860 return EINVAL;
861 return 0;
862 }
863
864 /* there is no SA */
865 error = key_acquire(saidx, isr->sp);
866 if (error != 0) {
867 /* XXX What should I do ? */
868 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
869 __func__, error));
870 return error;
871 }
872
873 if (level != IPSEC_LEVEL_REQUIRE) {
874 /* XXX sigh, the interface to this routine is botched */
875 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
876 return 0;
877 } else {
878 return ENOENT;
879 }
880}
881
882/*
883 * allocating a SA for policy entry from SAD.
884 * NOTE: searching SAD of aliving state.
885 * OUT: NULL: not found.
886 * others: found and return the pointer.
887 */
888static struct secasvar *
889key_allocsa_policy(const struct secasindex *saidx)
890{
891#define N(a) _ARRAYLEN(a)
892 struct secashead *sah;
893 struct secasvar *sav;
894 u_int stateidx, arraysize;
895 const u_int *state_valid;
896
897 state_valid = NULL; /* silence gcc */
898 arraysize = 0; /* silence gcc */
899
900 SAHTREE_LOCK();
901 LIST_FOREACH(sah, &V_sahtree, chain) {
902 if (sah->state == SADB_SASTATE_DEAD)
903 continue;
904 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
905 if (V_key_preferred_oldsa) {
906 state_valid = saorder_state_valid_prefer_old;
907 arraysize = N(saorder_state_valid_prefer_old);
908 } else {
909 state_valid = saorder_state_valid_prefer_new;
910 arraysize = N(saorder_state_valid_prefer_new);
911 }
912 break;
913 }
914 }
915 SAHTREE_UNLOCK();
916 if (sah == NULL)
917 return NULL;
918
919 /* search valid state */
920 for (stateidx = 0; stateidx < arraysize; stateidx++) {
921 sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
922 if (sav != NULL)
923 return sav;
924 }
925
926 return NULL;
927#undef N
928}
929
930/*
931 * searching SAD with direction, protocol, mode and state.
932 * called by key_allocsa_policy().
933 * OUT:
934 * NULL : not found
935 * others : found, pointer to a SA.
936 */
937static struct secasvar *
938key_do_allocsa_policy(struct secashead *sah, u_int state)
939{
940 struct secasvar *sav, *nextsav, *candidate, *d;
941
942 /* initilize */
943 candidate = NULL;
944
945 SAHTREE_LOCK();
946 for (sav = LIST_FIRST(&sah->savtree[state]);
947 sav != NULL;
948 sav = nextsav) {
949
950 nextsav = LIST_NEXT(sav, chain);
951
952 /* sanity check */
953 KEY_CHKSASTATE(sav->state, state, __func__);
954
955 /* initialize */
956 if (candidate == NULL) {
957 candidate = sav;
958 continue;
959 }
960
961 /* Which SA is the better ? */
962
963 IPSEC_ASSERT(candidate->lft_c != NULL,
964 ("null candidate lifetime"));
965 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
966
967 /* What the best method is to compare ? */
968 if (V_key_preferred_oldsa) {
969 if (candidate->lft_c->addtime >
970 sav->lft_c->addtime) {
971 candidate = sav;
972 }
973 continue;
974 /*NOTREACHED*/
975 }
976
977 /* preferred new sa rather than old sa */
978 if (candidate->lft_c->addtime <
979 sav->lft_c->addtime) {
980 d = candidate;
981 candidate = sav;
982 } else
983 d = sav;
984
985 /*
986 * prepared to delete the SA when there is more
987 * suitable candidate and the lifetime of the SA is not
988 * permanent.
989 */
990 if (d->lft_h->addtime != 0) {
991 struct mbuf *m, *result;
992 u_int8_t satype;
993
994 key_sa_chgstate(d, SADB_SASTATE_DEAD);
995
996 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
997
998 satype = key_proto2satype(d->sah->saidx.proto);
999 if (satype == 0)
1000 goto msgfail;
1001
1002 m = key_setsadbmsg(SADB_DELETE, 0,
1003 satype, 0, 0, d->refcnt - 1);
1004 if (!m)
1005 goto msgfail;
1006 result = m;
1007
1008 /* set sadb_address for saidx's. */
1009 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1010 &d->sah->saidx.src.sa,
1011 d->sah->saidx.src.sa.sa_len << 3,
1012 IPSEC_ULPROTO_ANY);
1013 if (!m)
1014 goto msgfail;
1015 m_cat(result, m);
1016
1017 /* set sadb_address for saidx's. */
1018 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1019 &d->sah->saidx.dst.sa,
1020 d->sah->saidx.dst.sa.sa_len << 3,
1021 IPSEC_ULPROTO_ANY);
1022 if (!m)
1023 goto msgfail;
1024 m_cat(result, m);
1025
1026 /* create SA extension */
1027 m = key_setsadbsa(d);
1028 if (!m)
1029 goto msgfail;
1030 m_cat(result, m);
1031
1032 if (result->m_len < sizeof(struct sadb_msg)) {
1033 result = m_pullup(result,
1034 sizeof(struct sadb_msg));
1035 if (result == NULL)
1036 goto msgfail;
1037 }
1038
1039 result->m_pkthdr.len = 0;
1040 for (m = result; m; m = m->m_next)
1041 result->m_pkthdr.len += m->m_len;
1042 mtod(result, struct sadb_msg *)->sadb_msg_len =
1043 PFKEY_UNIT64(result->m_pkthdr.len);
1044
1045 if (key_sendup_mbuf(NULL, result,
1046 KEY_SENDUP_REGISTERED))
1047 goto msgfail;
1048 msgfail:
1049 KEY_FREESAV(&d);
1050 }
1051 }
1052 if (candidate) {
1053 sa_addref(candidate);
1054 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1055 printf("DP %s cause refcnt++:%d SA:%p\n",
1056 __func__, candidate->refcnt, candidate));
1057 }
1058 SAHTREE_UNLOCK();
1059
1060 return candidate;
1061}
1062
1063/*
1064 * allocating a usable SA entry for a *INBOUND* packet.
1065 * Must call key_freesav() later.
1066 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
1067 * NULL: not found, or error occured.
1068 *
1069 * In the comparison, no source address is used--for RFC2401 conformance.
1070 * To quote, from section 4.1:
1071 * A security association is uniquely identified by a triple consisting
1072 * of a Security Parameter Index (SPI), an IP Destination Address, and a
1073 * security protocol (AH or ESP) identifier.
1074 * Note that, however, we do need to keep source address in IPsec SA.
1075 * IKE specification and PF_KEY specification do assume that we
1076 * keep source address in IPsec SA. We see a tricky situation here.
1077 */
1078struct secasvar *
1079key_allocsa(
1080 union sockaddr_union *dst,
1081 u_int proto,
1082 u_int32_t spi,
1083 const char* where, int tag)
1084{
1085 struct secashead *sah;
1086 struct secasvar *sav;
1087 u_int stateidx, arraysize, state;
1088 const u_int *saorder_state_valid;
1089 int chkport;
1090
1091 IPSEC_ASSERT(dst != NULL, ("null dst address"));
1092
1093 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1094 printf("DP %s from %s:%u\n", __func__, where, tag));
1095
1096#ifdef IPSEC_NAT_T
1097 chkport = (dst->sa.sa_family == AF_INET &&
1098 dst->sa.sa_len == sizeof(struct sockaddr_in) &&
1099 dst->sin.sin_port != 0);
1100#else
1101 chkport = 0;
1102#endif
1103
1104 /*
1105 * searching SAD.
1106 * XXX: to be checked internal IP header somewhere. Also when
1107 * IPsec tunnel packet is received. But ESP tunnel mode is
1108 * encrypted so we can't check internal IP header.
1109 */
1110 SAHTREE_LOCK();
1111 if (V_key_preferred_oldsa) {
1112 saorder_state_valid = saorder_state_valid_prefer_old;
1113 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1114 } else {
1115 saorder_state_valid = saorder_state_valid_prefer_new;
1116 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1117 }
1118 LIST_FOREACH(sah, &V_sahtree, chain) {
1119 /* search valid state */
1120 for (stateidx = 0; stateidx < arraysize; stateidx++) {
1121 state = saorder_state_valid[stateidx];
1122 LIST_FOREACH(sav, &sah->savtree[state], chain) {
1123 /* sanity check */
1124 KEY_CHKSASTATE(sav->state, state, __func__);
1125 /* do not return entries w/ unusable state */
1126 if (sav->state != SADB_SASTATE_MATURE &&
1127 sav->state != SADB_SASTATE_DYING)
1128 continue;
1129 if (proto != sav->sah->saidx.proto)
1130 continue;
1131 if (spi != sav->spi)
1132 continue;
1133#if 0 /* don't check src */
1134 /* check src address */
1135 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, chkport) != 0)
1136 continue;
1137#endif
1138 /* check dst address */
1139 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0)
1140 continue;
1141 sa_addref(sav);
1142 goto done;
1143 }
1144 }
1145 }
1146 sav = NULL;
1147done:
1148 SAHTREE_UNLOCK();
1149
1150 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1151 printf("DP %s return SA:%p; refcnt %u\n", __func__,
1152 sav, sav ? sav->refcnt : 0));
1153 return sav;
1154}
1155
1156/*
1157 * Must be called after calling key_allocsp().
1158 * For both the packet without socket and key_freeso().
1159 */
1160void
1161_key_freesp(struct secpolicy **spp, const char* where, int tag)
1162{
1163 struct secpolicy *sp = *spp;
1164
1165 IPSEC_ASSERT(sp != NULL, ("null sp"));
1166
1167 SPTREE_LOCK();
1168 SP_DELREF(sp);
1169
1170 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1171 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1172 __func__, sp, sp->id, where, tag, sp->refcnt));
1173
1174 if (sp->refcnt == 0) {
1175 *spp = NULL;
1176 key_delsp(sp);
1177 }
1178 SPTREE_UNLOCK();
1179}
1180
1181/*
1182 * Must be called after calling key_allocsp().
1183 * For the packet with socket.
1184 */
1185void
1186key_freeso(struct socket *so)
1187{
1188 IPSEC_ASSERT(so != NULL, ("null so"));
1189
1190 switch (so->so_proto->pr_domain->dom_family) {
1191#if defined(INET) || defined(INET6)
1192#ifdef INET
1193 case PF_INET:
1194#endif
1195#ifdef INET6
1196 case PF_INET6:
1197#endif
1198 {
1199 struct inpcb *pcb = sotoinpcb(so);
1200
1201 /* Does it have a PCB ? */
1202 if (pcb == NULL)
1203 return;
1204 key_freesp_so(&pcb->inp_sp->sp_in);
1205 key_freesp_so(&pcb->inp_sp->sp_out);
1206 }
1207 break;
1208#endif /* INET || INET6 */
1209 default:
1210 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1211 __func__, so->so_proto->pr_domain->dom_family));
1212 return;
1213 }
1214}
1215
1216static void
1217key_freesp_so(struct secpolicy **sp)
1218{
1219 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1220
1221 if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1222 (*sp)->policy == IPSEC_POLICY_BYPASS)
1223 return;
1224
1225 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1226 ("invalid policy %u", (*sp)->policy));
1227 KEY_FREESP(sp);
1228}
1229
1230void
1231key_addrefsa(struct secasvar *sav, const char* where, int tag)
1232{
1233
1234 IPSEC_ASSERT(sav != NULL, ("null sav"));
1235 IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist"));
1236
1237 sa_addref(sav);
1238}
1239
1240/*
1241 * Must be called after calling key_allocsa().
1242 * This function is called by key_freesp() to free some SA allocated
1243 * for a policy.
1244 */
1245void
1246key_freesav(struct secasvar **psav, const char* where, int tag)
1247{
1248 struct secasvar *sav = *psav;
1249
1250 IPSEC_ASSERT(sav != NULL, ("null sav"));
1251
1252 if (sa_delref(sav)) {
1253 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1254 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1255 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1256 *psav = NULL;
1257 key_delsav(sav);
1258 } else {
1259 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1260 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1261 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1262 }
1263}
1264
1265/* %%% SPD management */
1266/*
1267 * free security policy entry.
1268 */
1269static void
1270key_delsp(struct secpolicy *sp)
1271{
1272 struct ipsecrequest *isr, *nextisr;
1273
1274 IPSEC_ASSERT(sp != NULL, ("null sp"));
1275 SPTREE_LOCK_ASSERT();
1276
1277 sp->state = IPSEC_SPSTATE_DEAD;
1278
1279 IPSEC_ASSERT(sp->refcnt == 0,
1280 ("SP with references deleted (refcnt %u)", sp->refcnt));
1281
1282 /* remove from SP index */
1283 if (__LIST_CHAINED(sp))
1284 LIST_REMOVE(sp, chain);
1285
1286 for (isr = sp->req; isr != NULL; isr = nextisr) {
1287 if (isr->sav != NULL) {
1288 KEY_FREESAV(&isr->sav);
1289 isr->sav = NULL;
1290 }
1291
1292 nextisr = isr->next;
1293 ipsec_delisr(isr);
1294 }
1295 _key_delsp(sp);
1296}
1297
1298/*
1299 * search SPD
1300 * OUT: NULL : not found
1301 * others : found, pointer to a SP.
1302 */
1303static struct secpolicy *
1304key_getsp(struct secpolicyindex *spidx)
1305{
1306 struct secpolicy *sp;
1307
1308 IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1309
1310 SPTREE_LOCK();
1311 LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1312 if (sp->state == IPSEC_SPSTATE_DEAD)
1313 continue;
1314 if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1315 SP_ADDREF(sp);
1316 break;
1317 }
1318 }
1319 SPTREE_UNLOCK();
1320
1321 return sp;
1322}
1323
1324/*
1325 * get SP by index.
1326 * OUT: NULL : not found
1327 * others : found, pointer to a SP.
1328 */
1329static struct secpolicy *
1330key_getspbyid(u_int32_t id)
1331{
1332 struct secpolicy *sp;
1333
1334 SPTREE_LOCK();
1335 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) {
1336 if (sp->state == IPSEC_SPSTATE_DEAD)
1337 continue;
1338 if (sp->id == id) {
1339 SP_ADDREF(sp);
1340 goto done;
1341 }
1342 }
1343
1344 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) {
1345 if (sp->state == IPSEC_SPSTATE_DEAD)
1346 continue;
1347 if (sp->id == id) {
1348 SP_ADDREF(sp);
1349 goto done;
1350 }
1351 }
1352done:
1353 SPTREE_UNLOCK();
1354
1355 return sp;
1356}
1357
1358struct secpolicy *
1359key_newsp(const char* where, int tag)
1360{
1361 struct secpolicy *newsp = NULL;
1362
1363 newsp = (struct secpolicy *)
1364 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1365 if (newsp) {
1366 SECPOLICY_LOCK_INIT(newsp);
1367 newsp->refcnt = 1;
1368 newsp->req = NULL;
1369 }
1370
1371 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1372 printf("DP %s from %s:%u return SP:%p\n", __func__,
1373 where, tag, newsp));
1374 return newsp;
1375}
1376
1377static void
1378_key_delsp(struct secpolicy *sp)
1379{
1380 SECPOLICY_LOCK_DESTROY(sp);
1381 free(sp, M_IPSEC_SP);
1382}
1383
1384/*
1385 * create secpolicy structure from sadb_x_policy structure.
1386 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1387 * so must be set properly later.
1388 */
1389struct secpolicy *
1390key_msg2sp(xpl0, len, error)
1391 struct sadb_x_policy *xpl0;
1392 size_t len;
1393 int *error;
1394{
1395 struct secpolicy *newsp;
1396
1397 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1398 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1399
1400 if (len != PFKEY_EXTLEN(xpl0)) {
1401 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1402 *error = EINVAL;
1403 return NULL;
1404 }
1405
1406 if ((newsp = KEY_NEWSP()) == NULL) {
1407 *error = ENOBUFS;
1408 return NULL;
1409 }
1410
1411 newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1412 newsp->policy = xpl0->sadb_x_policy_type;
1413
1414 /* check policy */
1415 switch (xpl0->sadb_x_policy_type) {
1416 case IPSEC_POLICY_DISCARD:
1417 case IPSEC_POLICY_NONE:
1418 case IPSEC_POLICY_ENTRUST:
1419 case IPSEC_POLICY_BYPASS:
1420 newsp->req = NULL;
1421 break;
1422
1423 case IPSEC_POLICY_IPSEC:
1424 {
1425 int tlen;
1426 struct sadb_x_ipsecrequest *xisr;
1427 struct ipsecrequest **p_isr = &newsp->req;
1428
1429 /* validity check */
1430 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1431 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1432 __func__));
1433 KEY_FREESP(&newsp);
1434 *error = EINVAL;
1435 return NULL;
1436 }
1437
1438 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1439 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1440
1441 while (tlen > 0) {
1442 /* length check */
1443 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1444 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1445 "length.\n", __func__));
1446 KEY_FREESP(&newsp);
1447 *error = EINVAL;
1448 return NULL;
1449 }
1450
1451 /* allocate request buffer */
1452 /* NB: data structure is zero'd */
1453 *p_isr = ipsec_newisr();
1454 if ((*p_isr) == NULL) {
1455 ipseclog((LOG_DEBUG,
1456 "%s: No more memory.\n", __func__));
1457 KEY_FREESP(&newsp);
1458 *error = ENOBUFS;
1459 return NULL;
1460 }
1461
1462 /* set values */
1463 switch (xisr->sadb_x_ipsecrequest_proto) {
1464 case IPPROTO_ESP:
1465 case IPPROTO_AH:
1466 case IPPROTO_IPCOMP:
1467 break;
1468 default:
1469 ipseclog((LOG_DEBUG,
1470 "%s: invalid proto type=%u\n", __func__,
1471 xisr->sadb_x_ipsecrequest_proto));
1472 KEY_FREESP(&newsp);
1473 *error = EPROTONOSUPPORT;
1474 return NULL;
1475 }
1476 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1477
1478 switch (xisr->sadb_x_ipsecrequest_mode) {
1479 case IPSEC_MODE_TRANSPORT:
1480 case IPSEC_MODE_TUNNEL:
1481 break;
1482 case IPSEC_MODE_ANY:
1483 default:
1484 ipseclog((LOG_DEBUG,
1485 "%s: invalid mode=%u\n", __func__,
1486 xisr->sadb_x_ipsecrequest_mode));
1487 KEY_FREESP(&newsp);
1488 *error = EINVAL;
1489 return NULL;
1490 }
1491 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1492
1493 switch (xisr->sadb_x_ipsecrequest_level) {
1494 case IPSEC_LEVEL_DEFAULT:
1495 case IPSEC_LEVEL_USE:
1496 case IPSEC_LEVEL_REQUIRE:
1497 break;
1498 case IPSEC_LEVEL_UNIQUE:
1499 /* validity check */
1500 /*
1501 * If range violation of reqid, kernel will
1502 * update it, don't refuse it.
1503 */
1504 if (xisr->sadb_x_ipsecrequest_reqid
1505 > IPSEC_MANUAL_REQID_MAX) {
1506 ipseclog((LOG_DEBUG,
1507 "%s: reqid=%d range "
1508 "violation, updated by kernel.\n",
1509 __func__,
1510 xisr->sadb_x_ipsecrequest_reqid));
1511 xisr->sadb_x_ipsecrequest_reqid = 0;
1512 }
1513
1514 /* allocate new reqid id if reqid is zero. */
1515 if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1516 u_int32_t reqid;
1517 if ((reqid = key_newreqid()) == 0) {
1518 KEY_FREESP(&newsp);
1519 *error = ENOBUFS;
1520 return NULL;
1521 }
1522 (*p_isr)->saidx.reqid = reqid;
1523 xisr->sadb_x_ipsecrequest_reqid = reqid;
1524 } else {
1525 /* set it for manual keying. */
1526 (*p_isr)->saidx.reqid =
1527 xisr->sadb_x_ipsecrequest_reqid;
1528 }
1529 break;
1530
1531 default:
1532 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1533 __func__,
1534 xisr->sadb_x_ipsecrequest_level));
1535 KEY_FREESP(&newsp);
1536 *error = EINVAL;
1537 return NULL;
1538 }
1539 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1540
1541 /* set IP addresses if there */
1542 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1543 struct sockaddr *paddr;
1544
1545 paddr = (struct sockaddr *)(xisr + 1);
1546
1547 /* validity check */
1548 if (paddr->sa_len
1549 > sizeof((*p_isr)->saidx.src)) {
1550 ipseclog((LOG_DEBUG, "%s: invalid "
1551 "request address length.\n",
1552 __func__));
1553 KEY_FREESP(&newsp);
1554 *error = EINVAL;
1555 return NULL;
1556 }
1557 bcopy(paddr, &(*p_isr)->saidx.src,
1558 paddr->sa_len);
1559
1560 paddr = (struct sockaddr *)((caddr_t)paddr
1561 + paddr->sa_len);
1562
1563 /* validity check */
1564 if (paddr->sa_len
1565 > sizeof((*p_isr)->saidx.dst)) {
1566 ipseclog((LOG_DEBUG, "%s: invalid "
1567 "request address length.\n",
1568 __func__));
1569 KEY_FREESP(&newsp);
1570 *error = EINVAL;
1571 return NULL;
1572 }
1573 bcopy(paddr, &(*p_isr)->saidx.dst,
1574 paddr->sa_len);
1575 }
1576
1577 (*p_isr)->sp = newsp;
1578
1579 /* initialization for the next. */
1580 p_isr = &(*p_isr)->next;
1581 tlen -= xisr->sadb_x_ipsecrequest_len;
1582
1583 /* validity check */
1584 if (tlen < 0) {
1585 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1586 __func__));
1587 KEY_FREESP(&newsp);
1588 *error = EINVAL;
1589 return NULL;
1590 }
1591
1592 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1593 + xisr->sadb_x_ipsecrequest_len);
1594 }
1595 }
1596 break;
1597 default:
1598 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1599 KEY_FREESP(&newsp);
1600 *error = EINVAL;
1601 return NULL;
1602 }
1603
1604 *error = 0;
1605 return newsp;
1606}
1607
1608static u_int32_t
1609key_newreqid()
1610{
1611 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1612
1613 auto_reqid = (auto_reqid == ~0
1614 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1615
1616 /* XXX should be unique check */
1617
1618 return auto_reqid;
1619}
1620
1621/*
1622 * copy secpolicy struct to sadb_x_policy structure indicated.
1623 */
1624struct mbuf *
1625key_sp2msg(sp)
1626 struct secpolicy *sp;
1627{
1628 struct sadb_x_policy *xpl;
1629 int tlen;
1630 caddr_t p;
1631 struct mbuf *m;
1632
1633 IPSEC_ASSERT(sp != NULL, ("null policy"));
1634
1635 tlen = key_getspreqmsglen(sp);
1636
1637 m = key_alloc_mbuf(tlen);
1638 if (!m || m->m_next) { /*XXX*/
1639 if (m)
1640 m_freem(m);
1641 return NULL;
1642 }
1643
1644 m->m_len = tlen;
1645 m->m_next = NULL;
1646 xpl = mtod(m, struct sadb_x_policy *);
1647 bzero(xpl, tlen);
1648
1649 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1650 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1651 xpl->sadb_x_policy_type = sp->policy;
1652 xpl->sadb_x_policy_dir = sp->spidx.dir;
1653 xpl->sadb_x_policy_id = sp->id;
1654 p = (caddr_t)xpl + sizeof(*xpl);
1655
1656 /* if is the policy for ipsec ? */
1657 if (sp->policy == IPSEC_POLICY_IPSEC) {
1658 struct sadb_x_ipsecrequest *xisr;
1659 struct ipsecrequest *isr;
1660
1661 for (isr = sp->req; isr != NULL; isr = isr->next) {
1662
1663 xisr = (struct sadb_x_ipsecrequest *)p;
1664
1665 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1666 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1667 xisr->sadb_x_ipsecrequest_level = isr->level;
1668 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1669
1670 p += sizeof(*xisr);
1671 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1672 p += isr->saidx.src.sa.sa_len;
1673 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1674 p += isr->saidx.src.sa.sa_len;
1675
1676 xisr->sadb_x_ipsecrequest_len =
1677 PFKEY_ALIGN8(sizeof(*xisr)
1678 + isr->saidx.src.sa.sa_len
1679 + isr->saidx.dst.sa.sa_len);
1680 }
1681 }
1682
1683 return m;
1684}
1685
1686/* m will not be freed nor modified */
1687static struct mbuf *
1688#ifdef __STDC__
1689key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1690 int ndeep, int nitem, ...)
1691#else
1692key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1693 struct mbuf *m;
1694 const struct sadb_msghdr *mhp;
1695 int ndeep;
1696 int nitem;
1697 va_dcl
1698#endif
1699{
1700 va_list ap;
1701 int idx;
1702 int i;
1703 struct mbuf *result = NULL, *n;
1704 int len;
1705
1706 IPSEC_ASSERT(m != NULL, ("null mbuf"));
1707 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1708
1709 va_start(ap, nitem);
1710 for (i = 0; i < nitem; i++) {
1711 idx = va_arg(ap, int);
1712 if (idx < 0 || idx > SADB_EXT_MAX)
1713 goto fail;
1714 /* don't attempt to pull empty extension */
1715 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1716 continue;
1717 if (idx != SADB_EXT_RESERVED &&
1718 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1719 continue;
1720
1721 if (idx == SADB_EXT_RESERVED) {
1722 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1723
1724 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1725
1726 MGETHDR(n, M_DONTWAIT, MT_DATA);
1727 if (!n)
1728 goto fail;
1729 n->m_len = len;
1730 n->m_next = NULL;
1731 m_copydata(m, 0, sizeof(struct sadb_msg),
1732 mtod(n, caddr_t));
1733 } else if (i < ndeep) {
1734 len = mhp->extlen[idx];
1735 n = key_alloc_mbuf(len);
1736 if (!n || n->m_next) { /*XXX*/
1737 if (n)
1738 m_freem(n);
1739 goto fail;
1740 }
1741 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1742 mtod(n, caddr_t));
1743 } else {
1744 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1745 M_DONTWAIT);
1746 }
1747 if (n == NULL)
1748 goto fail;
1749
1750 if (result)
1751 m_cat(result, n);
1752 else
1753 result = n;
1754 }
1755 va_end(ap);
1756
1757 if ((result->m_flags & M_PKTHDR) != 0) {
1758 result->m_pkthdr.len = 0;
1759 for (n = result; n; n = n->m_next)
1760 result->m_pkthdr.len += n->m_len;
1761 }
1762
1763 return result;
1764
1765fail:
1766 m_freem(result);
1767 va_end(ap);
1768 return NULL;
1769}
1770
1771/*
1772 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1773 * add an entry to SP database, when received
1774 * <base, address(SD), (lifetime(H),) policy>
1775 * from the user(?).
1776 * Adding to SP database,
1777 * and send
1778 * <base, address(SD), (lifetime(H),) policy>
1779 * to the socket which was send.
1780 *
1781 * SPDADD set a unique policy entry.
1782 * SPDSETIDX like SPDADD without a part of policy requests.
1783 * SPDUPDATE replace a unique policy entry.
1784 *
1785 * m will always be freed.
1786 */
1787static int
1788key_spdadd(so, m, mhp)
1789 struct socket *so;
1790 struct mbuf *m;
1791 const struct sadb_msghdr *mhp;
1792{
1793 struct sadb_address *src0, *dst0;
1794 struct sadb_x_policy *xpl0, *xpl;
1795 struct sadb_lifetime *lft = NULL;
1796 struct secpolicyindex spidx;
1797 struct secpolicy *newsp;
1798 int error;
1799
1800 IPSEC_ASSERT(so != NULL, ("null socket"));
1801 IPSEC_ASSERT(m != NULL, ("null mbuf"));
1802 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1803 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1804
1805 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1806 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1807 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1808 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1809 return key_senderror(so, m, EINVAL);
1810 }
1811 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1812 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1813 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1814 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1815 __func__));
1816 return key_senderror(so, m, EINVAL);
1817 }
1818 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1819 if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1820 < sizeof(struct sadb_lifetime)) {
1821 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1822 __func__));
1823 return key_senderror(so, m, EINVAL);
1824 }
1825 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1826 }
1827
1828 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1829 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1830 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1831
1832 /*
1833 * Note: do not parse SADB_X_EXT_NAT_T_* here:
1834 * we are processing traffic endpoints.
1835 */
1836
1837 /* make secindex */
1838 /* XXX boundary check against sa_len */
1839 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1840 src0 + 1,
1841 dst0 + 1,
1842 src0->sadb_address_prefixlen,
1843 dst0->sadb_address_prefixlen,
1844 src0->sadb_address_proto,
1845 &spidx);
1846
1847 /* checking the direciton. */
1848 switch (xpl0->sadb_x_policy_dir) {
1849 case IPSEC_DIR_INBOUND:
1850 case IPSEC_DIR_OUTBOUND:
1851 break;
1852 default:
1853 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1854 mhp->msg->sadb_msg_errno = EINVAL;
1855 return 0;
1856 }
1857
1858 /* check policy */
1859 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1860 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1861 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1862 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1863 return key_senderror(so, m, EINVAL);
1864 }
1865
1866 /* policy requests are mandatory when action is ipsec. */
1867 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1868 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1869 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1870 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1871 __func__));
1872 return key_senderror(so, m, EINVAL);
1873 }
1874
1875 /*
1876 * checking there is SP already or not.
1877 * SPDUPDATE doesn't depend on whether there is a SP or not.
1878 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1879 * then error.
1880 */
1881 newsp = key_getsp(&spidx);
1882 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1883 if (newsp) {
1884 SPTREE_LOCK();
1885 newsp->state = IPSEC_SPSTATE_DEAD;
1886 SPTREE_UNLOCK();
1887 KEY_FREESP(&newsp);
1888 }
1889 } else {
1890 if (newsp != NULL) {
1891 KEY_FREESP(&newsp);
1892 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1893 __func__));
1894 return key_senderror(so, m, EEXIST);
1895 }
1896 }
1897
1898 /* allocation new SP entry */
1899 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1900 return key_senderror(so, m, error);
1901 }
1902
1903 if ((newsp->id = key_getnewspid()) == 0) {
1904 _key_delsp(newsp);
1905 return key_senderror(so, m, ENOBUFS);
1906 }
1907
1908 /* XXX boundary check against sa_len */
1909 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1910 src0 + 1,
1911 dst0 + 1,
1912 src0->sadb_address_prefixlen,
1913 dst0->sadb_address_prefixlen,
1914 src0->sadb_address_proto,
1915 &newsp->spidx);
1916
1917 /* sanity check on addr pair */
1918 if (((struct sockaddr *)(src0 + 1))->sa_family !=
1919 ((struct sockaddr *)(dst0+ 1))->sa_family) {
1920 _key_delsp(newsp);
1921 return key_senderror(so, m, EINVAL);
1922 }
1923 if (((struct sockaddr *)(src0 + 1))->sa_len !=
1924 ((struct sockaddr *)(dst0+ 1))->sa_len) {
1925 _key_delsp(newsp);
1926 return key_senderror(so, m, EINVAL);
1927 }
1928#if 1
1929 if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) {
1930 if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) {
1931 _key_delsp(newsp);
1932 return key_senderror(so, m, EINVAL);
1933 }
1934 }
1935#endif
1936
1937 newsp->created = time_second;
1938 newsp->lastused = newsp->created;
1939 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1940 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1941
1942 newsp->refcnt = 1; /* do not reclaim until I say I do */
1943 newsp->state = IPSEC_SPSTATE_ALIVE;
1944 LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1945
1946 /* delete the entry in spacqtree */
1947 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1948 struct secspacq *spacq = key_getspacq(&spidx);
1949 if (spacq != NULL) {
1950 /* reset counter in order to deletion by timehandler. */
1951 spacq->created = time_second;
1952 spacq->count = 0;
1953 SPACQ_UNLOCK();
1954 }
1955 }
1956
1957 {
1958 struct mbuf *n, *mpolicy;
1959 struct sadb_msg *newmsg;
1960 int off;
1961
1962 /*
1963 * Note: do not send SADB_X_EXT_NAT_T_* here:
1964 * we are sending traffic endpoints.
1965 */
1966
1967 /* create new sadb_msg to reply. */
1968 if (lft) {
1969 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1970 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1971 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1972 } else {
1973 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1974 SADB_X_EXT_POLICY,
1975 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1976 }
1977 if (!n)
1978 return key_senderror(so, m, ENOBUFS);
1979
1980 if (n->m_len < sizeof(*newmsg)) {
1981 n = m_pullup(n, sizeof(*newmsg));
1982 if (!n)
1983 return key_senderror(so, m, ENOBUFS);
1984 }
1985 newmsg = mtod(n, struct sadb_msg *);
1986 newmsg->sadb_msg_errno = 0;
1987 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1988
1989 off = 0;
1990 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1991 sizeof(*xpl), &off);
1992 if (mpolicy == NULL) {
1993 /* n is already freed */
1994 return key_senderror(so, m, ENOBUFS);
1995 }
1996 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
1997 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
1998 m_freem(n);
1999 return key_senderror(so, m, EINVAL);
2000 }
2001 xpl->sadb_x_policy_id = newsp->id;
2002
2003 m_freem(m);
2004 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2005 }
2006}
2007
2008/*
2009 * get new policy id.
2010 * OUT:
2011 * 0: failure.
2012 * others: success.
2013 */
2014static u_int32_t
2015key_getnewspid()
2016{
2017 u_int32_t newid = 0;
2018 int count = V_key_spi_trycnt; /* XXX */
2019 struct secpolicy *sp;
2020
2021 /* when requesting to allocate spi ranged */
2022 while (count--) {
2023 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1));
2024
2025 if ((sp = key_getspbyid(newid)) == NULL)
2026 break;
2027
2028 KEY_FREESP(&sp);
2029 }
2030
2031 if (count == 0 || newid == 0) {
2032 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
2033 __func__));
2034 return 0;
2035 }
2036
2037 return newid;
2038}
2039
2040/*
2041 * SADB_SPDDELETE processing
2042 * receive
2043 * <base, address(SD), policy(*)>
2044 * from the user(?), and set SADB_SASTATE_DEAD,
2045 * and send,
2046 * <base, address(SD), policy(*)>
2047 * to the ikmpd.
2048 * policy(*) including direction of policy.
2049 *
2050 * m will always be freed.
2051 */
2052static int
2053key_spddelete(so, m, mhp)
2054 struct socket *so;
2055 struct mbuf *m;
2056 const struct sadb_msghdr *mhp;
2057{
2058 struct sadb_address *src0, *dst0;
2059 struct sadb_x_policy *xpl0;
2060 struct secpolicyindex spidx;
2061 struct secpolicy *sp;
2062
2063 IPSEC_ASSERT(so != NULL, ("null so"));
2064 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2065 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2066 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2067
2068 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2069 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2070 mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2071 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2072 __func__));
2073 return key_senderror(so, m, EINVAL);
2074 }
2075 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2076 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2077 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2078 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2079 __func__));
2080 return key_senderror(so, m, EINVAL);
2081 }
2082
2083 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2084 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2085 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2086
2087 /*
2088 * Note: do not parse SADB_X_EXT_NAT_T_* here:
2089 * we are processing traffic endpoints.
2090 */
2091
2092 /* make secindex */
2093 /* XXX boundary check against sa_len */
2094 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2095 src0 + 1,
2096 dst0 + 1,
2097 src0->sadb_address_prefixlen,
2098 dst0->sadb_address_prefixlen,
2099 src0->sadb_address_proto,
2100 &spidx);
2101
2102 /* checking the direciton. */
2103 switch (xpl0->sadb_x_policy_dir) {
2104 case IPSEC_DIR_INBOUND:
2105 case IPSEC_DIR_OUTBOUND:
2106 break;
2107 default:
2108 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2109 return key_senderror(so, m, EINVAL);
2110 }
2111
2112 /* Is there SP in SPD ? */
2113 if ((sp = key_getsp(&spidx)) == NULL) {
2114 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2115 return key_senderror(so, m, EINVAL);
2116 }
2117
2118 /* save policy id to buffer to be returned. */
2119 xpl0->sadb_x_policy_id = sp->id;
2120
2121 SPTREE_LOCK();
2122 sp->state = IPSEC_SPSTATE_DEAD;
2123 SPTREE_UNLOCK();
2124 KEY_FREESP(&sp);
2125
2126 {
2127 struct mbuf *n;
2128 struct sadb_msg *newmsg;
2129
2130 /*
2131 * Note: do not send SADB_X_EXT_NAT_T_* here:
2132 * we are sending traffic endpoints.
2133 */
2134
2135 /* create new sadb_msg to reply. */
2136 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2137 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2138 if (!n)
2139 return key_senderror(so, m, ENOBUFS);
2140
2141 newmsg = mtod(n, struct sadb_msg *);
2142 newmsg->sadb_msg_errno = 0;
2143 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2144
2145 m_freem(m);
2146 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2147 }
2148}
2149
2150/*
2151 * SADB_SPDDELETE2 processing
2152 * receive
2153 * <base, policy(*)>
2154 * from the user(?), and set SADB_SASTATE_DEAD,
2155 * and send,
2156 * <base, policy(*)>
2157 * to the ikmpd.
2158 * policy(*) including direction of policy.
2159 *
2160 * m will always be freed.
2161 */
2162static int
2163key_spddelete2(so, m, mhp)
2164 struct socket *so;
2165 struct mbuf *m;
2166 const struct sadb_msghdr *mhp;
2167{
2168 u_int32_t id;
2169 struct secpolicy *sp;
2170
2171 IPSEC_ASSERT(so != NULL, ("null socket"));
2172 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2173 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2174 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2175
2176 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2177 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2178 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2179 return key_senderror(so, m, EINVAL);
2180 }
2181
2182 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2183
2184 /* Is there SP in SPD ? */
2185 if ((sp = key_getspbyid(id)) == NULL) {
2186 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2187 return key_senderror(so, m, EINVAL);
2188 }
2189
2190 SPTREE_LOCK();
2191 sp->state = IPSEC_SPSTATE_DEAD;
2192 SPTREE_UNLOCK();
2193 KEY_FREESP(&sp);
2194
2195 {
2196 struct mbuf *n, *nn;
2197 struct sadb_msg *newmsg;
2198 int off, len;
2199
2200 /* create new sadb_msg to reply. */
2201 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2202
2203 MGETHDR(n, M_DONTWAIT, MT_DATA);
2204 if (n && len > MHLEN) {
2205 MCLGET(n, M_DONTWAIT);
2206 if ((n->m_flags & M_EXT) == 0) {
2207 m_freem(n);
2208 n = NULL;
2209 }
2210 }
2211 if (!n)
2212 return key_senderror(so, m, ENOBUFS);
2213
2214 n->m_len = len;
2215 n->m_next = NULL;
2216 off = 0;
2217
2218 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2219 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2220
2221 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2222 off, len));
2223
2224 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2225 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2226 if (!n->m_next) {
2227 m_freem(n);
2228 return key_senderror(so, m, ENOBUFS);
2229 }
2230
2231 n->m_pkthdr.len = 0;
2232 for (nn = n; nn; nn = nn->m_next)
2233 n->m_pkthdr.len += nn->m_len;
2234
2235 newmsg = mtod(n, struct sadb_msg *);
2236 newmsg->sadb_msg_errno = 0;
2237 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2238
2239 m_freem(m);
2240 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2241 }
2242}
2243
2244/*
2245 * SADB_X_GET processing
2246 * receive
2247 * <base, policy(*)>
2248 * from the user(?),
2249 * and send,
2250 * <base, address(SD), policy>
2251 * to the ikmpd.
2252 * policy(*) including direction of policy.
2253 *
2254 * m will always be freed.
2255 */
2256static int
2257key_spdget(so, m, mhp)
2258 struct socket *so;
2259 struct mbuf *m;
2260 const struct sadb_msghdr *mhp;
2261{
2262 u_int32_t id;
2263 struct secpolicy *sp;
2264 struct mbuf *n;
2265
2266 IPSEC_ASSERT(so != NULL, ("null socket"));
2267 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2268 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2269 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2270
2271 if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2272 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2273 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2274 __func__));
2275 return key_senderror(so, m, EINVAL);
2276 }
2277
2278 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2279
2280 /* Is there SP in SPD ? */
2281 if ((sp = key_getspbyid(id)) == NULL) {
2282 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2283 return key_senderror(so, m, ENOENT);
2284 }
2285
2286 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2287 KEY_FREESP(&sp);
2288 if (n != NULL) {
2289 m_freem(m);
2290 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2291 } else
2292 return key_senderror(so, m, ENOBUFS);
2293}
2294
2295/*
2296 * SADB_X_SPDACQUIRE processing.
2297 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2298 * send
2299 * <base, policy(*)>
2300 * to KMD, and expect to receive
2301 * <base> with SADB_X_SPDACQUIRE if error occured,
2302 * or
2303 * <base, policy>
2304 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2305 * policy(*) is without policy requests.
2306 *
2307 * 0 : succeed
2308 * others: error number
2309 */
2310int
2311key_spdacquire(sp)
2312 struct secpolicy *sp;
2313{
2314 struct mbuf *result = NULL, *m;
2315 struct secspacq *newspacq;
2316
2317 IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2318 IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2319 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2320 ("policy not IPSEC %u", sp->policy));
2321
2322 /* Get an entry to check whether sent message or not. */
2323 newspacq = key_getspacq(&sp->spidx);
2324 if (newspacq != NULL) {
2325 if (V_key_blockacq_count < newspacq->count) {
2326 /* reset counter and do send message. */
2327 newspacq->count = 0;
2328 } else {
2329 /* increment counter and do nothing. */
2330 newspacq->count++;
2331 return 0;
2332 }
2333 SPACQ_UNLOCK();
2334 } else {
2335 /* make new entry for blocking to send SADB_ACQUIRE. */
2336 newspacq = key_newspacq(&sp->spidx);
2337 if (newspacq == NULL)
2338 return ENOBUFS;
2339 }
2340
2341 /* create new sadb_msg to reply. */
2342 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2343 if (!m)
2344 return ENOBUFS;
2345
2346 result = m;
2347
2348 result->m_pkthdr.len = 0;
2349 for (m = result; m; m = m->m_next)
2350 result->m_pkthdr.len += m->m_len;
2351
2352 mtod(result, struct sadb_msg *)->sadb_msg_len =
2353 PFKEY_UNIT64(result->m_pkthdr.len);
2354
2355 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2356}
2357
2358/*
2359 * SADB_SPDFLUSH processing
2360 * receive
2361 * <base>
2362 * from the user, and free all entries in secpctree.
2363 * and send,
2364 * <base>
2365 * to the user.
2366 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2367 *
2368 * m will always be freed.
2369 */
2370static int
2371key_spdflush(so, m, mhp)
2372 struct socket *so;
2373 struct mbuf *m;
2374 const struct sadb_msghdr *mhp;
2375{
2376 struct sadb_msg *newmsg;
2377 struct secpolicy *sp;
2378 u_int dir;
2379
2380 IPSEC_ASSERT(so != NULL, ("null socket"));
2381 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2382 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2383 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2384
2385 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2386 return key_senderror(so, m, EINVAL);
2387
2388 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2389 SPTREE_LOCK();
2390 LIST_FOREACH(sp, &V_sptree[dir], chain)
2391 sp->state = IPSEC_SPSTATE_DEAD;
2392 SPTREE_UNLOCK();
2393 }
2394
2395 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2396 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2397 return key_senderror(so, m, ENOBUFS);
2398 }
2399
2400 if (m->m_next)
2401 m_freem(m->m_next);
2402 m->m_next = NULL;
2403 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2404 newmsg = mtod(m, struct sadb_msg *);
2405 newmsg->sadb_msg_errno = 0;
2406 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2407
2408 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2409}
2410
2411/*
2412 * SADB_SPDDUMP processing
2413 * receive
2414 * <base>
2415 * from the user, and dump all SP leaves
2416 * and send,
2417 * <base> .....
2418 * to the ikmpd.
2419 *
2420 * m will always be freed.
2421 */
2422static int
2423key_spddump(so, m, mhp)
2424 struct socket *so;
2425 struct mbuf *m;
2426 const struct sadb_msghdr *mhp;
2427{
2428 struct secpolicy *sp;
2429 int cnt;
2430 u_int dir;
2431 struct mbuf *n;
2432
2433 IPSEC_ASSERT(so != NULL, ("null socket"));
2434 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2435 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2436 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2437
2438 /* search SPD entry and get buffer size. */
2439 cnt = 0;
2440 SPTREE_LOCK();
2441 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2442 LIST_FOREACH(sp, &V_sptree[dir], chain) {
2443 cnt++;
2444 }
2445 }
2446
2447 if (cnt == 0) {
2448 SPTREE_UNLOCK();
2449 return key_senderror(so, m, ENOENT);
2450 }
2451
2452 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2453 LIST_FOREACH(sp, &V_sptree[dir], chain) {
2454 --cnt;
2455 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2456 mhp->msg->sadb_msg_pid);
2457
2458 if (n)
2459 key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2460 }
2461 }
2462
2463 SPTREE_UNLOCK();
2464 m_freem(m);
2465 return 0;
2466}
2467
2468static struct mbuf *
2469key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid)
2470{
2471 struct mbuf *result = NULL, *m;
2472 struct seclifetime lt;
2473
2474 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2475 if (!m)
2476 goto fail;
2477 result = m;
2478
2479 /*
2480 * Note: do not send SADB_X_EXT_NAT_T_* here:
2481 * we are sending traffic endpoints.
2482 */
2483 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2484 &sp->spidx.src.sa, sp->spidx.prefs,
2485 sp->spidx.ul_proto);
2486 if (!m)
2487 goto fail;
2488 m_cat(result, m);
2489
2490 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2491 &sp->spidx.dst.sa, sp->spidx.prefd,
2492 sp->spidx.ul_proto);
2493 if (!m)
2494 goto fail;
2495 m_cat(result, m);
2496
2497 m = key_sp2msg(sp);
2498 if (!m)
2499 goto fail;
2500 m_cat(result, m);
2501
2502 if(sp->lifetime){
2503 lt.addtime=sp->created;
2504 lt.usetime= sp->lastused;
2505 m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2506 if (!m)
2507 goto fail;
2508 m_cat(result, m);
2509
2510 lt.addtime=sp->lifetime;
2511 lt.usetime= sp->validtime;
2512 m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2513 if (!m)
2514 goto fail;
2515 m_cat(result, m);
2516 }
2517
2518 if ((result->m_flags & M_PKTHDR) == 0)
2519 goto fail;
2520
2521 if (result->m_len < sizeof(struct sadb_msg)) {
2522 result = m_pullup(result, sizeof(struct sadb_msg));
2523 if (result == NULL)
2524 goto fail;
2525 }
2526
2527 result->m_pkthdr.len = 0;
2528 for (m = result; m; m = m->m_next)
2529 result->m_pkthdr.len += m->m_len;
2530
2531 mtod(result, struct sadb_msg *)->sadb_msg_len =
2532 PFKEY_UNIT64(result->m_pkthdr.len);
2533
2534 return result;
2535
2536fail:
2537 m_freem(result);
2538 return NULL;
2539}
2540
2541/*
2542 * get PFKEY message length for security policy and request.
2543 */
2544static u_int
2545key_getspreqmsglen(sp)
2546 struct secpolicy *sp;
2547{
2548 u_int tlen;
2549
2550 tlen = sizeof(struct sadb_x_policy);
2551
2552 /* if is the policy for ipsec ? */
2553 if (sp->policy != IPSEC_POLICY_IPSEC)
2554 return tlen;
2555
2556 /* get length of ipsec requests */
2557 {
2558 struct ipsecrequest *isr;
2559 int len;
2560
2561 for (isr = sp->req; isr != NULL; isr = isr->next) {
2562 len = sizeof(struct sadb_x_ipsecrequest)
2563 + isr->saidx.src.sa.sa_len
2564 + isr->saidx.dst.sa.sa_len;
2565
2566 tlen += PFKEY_ALIGN8(len);
2567 }
2568 }
2569
2570 return tlen;
2571}
2572
2573/*
2574 * SADB_SPDEXPIRE processing
2575 * send
2576 * <base, address(SD), lifetime(CH), policy>
2577 * to KMD by PF_KEY.
2578 *
2579 * OUT: 0 : succeed
2580 * others : error number
2581 */
2582static int
2583key_spdexpire(sp)
2584 struct secpolicy *sp;
2585{
2586 struct mbuf *result = NULL, *m;
2587 int len;
2588 int error = -1;
2589 struct sadb_lifetime *lt;
2590
2591 /* XXX: Why do we lock ? */
2592
2593 IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2594
2595 /* set msg header */
2596 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2597 if (!m) {
2598 error = ENOBUFS;
2599 goto fail;
2600 }
2601 result = m;
2602
2603 /* create lifetime extension (current and hard) */
2604 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2605 m = key_alloc_mbuf(len);
2606 if (!m || m->m_next) { /*XXX*/
2607 if (m)
2608 m_freem(m);
2609 error = ENOBUFS;
2610 goto fail;
2611 }
2612 bzero(mtod(m, caddr_t), len);
2613 lt = mtod(m, struct sadb_lifetime *);
2614 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2615 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2616 lt->sadb_lifetime_allocations = 0;
2617 lt->sadb_lifetime_bytes = 0;
2618 lt->sadb_lifetime_addtime = sp->created;
2619 lt->sadb_lifetime_usetime = sp->lastused;
2620 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2621 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2622 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2623 lt->sadb_lifetime_allocations = 0;
2624 lt->sadb_lifetime_bytes = 0;
2625 lt->sadb_lifetime_addtime = sp->lifetime;
2626 lt->sadb_lifetime_usetime = sp->validtime;
2627 m_cat(result, m);
2628
2629 /*
2630 * Note: do not send SADB_X_EXT_NAT_T_* here:
2631 * we are sending traffic endpoints.
2632 */
2633
2634 /* set sadb_address for source */
2635 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2636 &sp->spidx.src.sa,
2637 sp->spidx.prefs, sp->spidx.ul_proto);
2638 if (!m) {
2639 error = ENOBUFS;
2640 goto fail;
2641 }
2642 m_cat(result, m);
2643
2644 /* set sadb_address for destination */
2645 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2646 &sp->spidx.dst.sa,
2647 sp->spidx.prefd, sp->spidx.ul_proto);
2648 if (!m) {
2649 error = ENOBUFS;
2650 goto fail;
2651 }
2652 m_cat(result, m);
2653
2654 /* set secpolicy */
2655 m = key_sp2msg(sp);
2656 if (!m) {
2657 error = ENOBUFS;
2658 goto fail;
2659 }
2660 m_cat(result, m);
2661
2662 if ((result->m_flags & M_PKTHDR) == 0) {
2663 error = EINVAL;
2664 goto fail;
2665 }
2666
2667 if (result->m_len < sizeof(struct sadb_msg)) {
2668 result = m_pullup(result, sizeof(struct sadb_msg));
2669 if (result == NULL) {
2670 error = ENOBUFS;
2671 goto fail;
2672 }
2673 }
2674
2675 result->m_pkthdr.len = 0;
2676 for (m = result; m; m = m->m_next)
2677 result->m_pkthdr.len += m->m_len;
2678
2679 mtod(result, struct sadb_msg *)->sadb_msg_len =
2680 PFKEY_UNIT64(result->m_pkthdr.len);
2681
2682 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2683
2684 fail:
2685 if (result)
2686 m_freem(result);
2687 return error;
2688}
2689
2690/* %%% SAD management */
2691/*
2692 * allocating a memory for new SA head, and copy from the values of mhp.
2693 * OUT: NULL : failure due to the lack of memory.
2694 * others : pointer to new SA head.
2695 */
2696static struct secashead *
2697key_newsah(saidx)
2698 struct secasindex *saidx;
2699{
2700 struct secashead *newsah;
2701
2702 IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2703
2704 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2705 if (newsah != NULL) {
2706 int i;
2707 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2708 LIST_INIT(&newsah->savtree[i]);
2709 newsah->saidx = *saidx;
2710
2711 /* add to saidxtree */
2712 newsah->state = SADB_SASTATE_MATURE;
2713
2714 SAHTREE_LOCK();
2715 LIST_INSERT_HEAD(&V_sahtree, newsah, chain);
2716 SAHTREE_UNLOCK();
2717 }
2718 return(newsah);
2719}
2720
2721/*
2722 * delete SA index and all SA registerd.
2723 */
2724static void
2725key_delsah(sah)
2726 struct secashead *sah;
2727{
2728 struct secasvar *sav, *nextsav;
2729 u_int stateidx;
2730 int zombie = 0;
2731
2732 IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2733 SAHTREE_LOCK_ASSERT();
2734
2735 /* searching all SA registerd in the secindex. */
2736 for (stateidx = 0;
2737 stateidx < _ARRAYLEN(saorder_state_any);
2738 stateidx++) {
2739 u_int state = saorder_state_any[stateidx];
2740 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2741 if (sav->refcnt == 0) {
2742 /* sanity check */
2743 KEY_CHKSASTATE(state, sav->state, __func__);
2744 /*
2745 * do NOT call KEY_FREESAV here:
2746 * it will only delete the sav if refcnt == 1,
2747 * where we already know that refcnt == 0
2748 */
2749 key_delsav(sav);
2750 } else {
2751 /* give up to delete this sa */
2752 zombie++;
2753 }
2754 }
2755 }
2756 if (!zombie) { /* delete only if there are savs */
2757 /* remove from tree of SA index */
2758 if (__LIST_CHAINED(sah))
2759 LIST_REMOVE(sah, chain);
2760 if (sah->route_cache.sa_route.ro_rt) {
2761 RTFREE(sah->route_cache.sa_route.ro_rt);
2762 sah->route_cache.sa_route.ro_rt = (struct rtentry *)NULL;
2763 }
2764 free(sah, M_IPSEC_SAH);
2765 }
2766}
2767
2768/*
2769 * allocating a new SA with LARVAL state. key_add() and key_getspi() call,
2770 * and copy the values of mhp into new buffer.
2771 * When SAD message type is GETSPI:
2772 * to set sequence number from acq_seq++,
2773 * to set zero to SPI.
2774 * not to call key_setsava().
2775 * OUT: NULL : fail
2776 * others : pointer to new secasvar.
2777 *
2778 * does not modify mbuf. does not free mbuf on error.
2779 */
2780static struct secasvar *
2781key_newsav(m, mhp, sah, errp, where, tag)
2782 struct mbuf *m;
2783 const struct sadb_msghdr *mhp;
2784 struct secashead *sah;
2785 int *errp;
2786 const char* where;
2787 int tag;
2788{
2789 struct secasvar *newsav;
2790 const struct sadb_sa *xsa;
2791
2792 IPSEC_ASSERT(m != NULL, ("null mbuf"));
2793 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2794 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2795 IPSEC_ASSERT(sah != NULL, ("null secashead"));
2796
2797 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2798 if (newsav == NULL) {
2799 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2800 *errp = ENOBUFS;
2801 goto done;
2802 }
2803
2804 switch (mhp->msg->sadb_msg_type) {
2805 case SADB_GETSPI:
2806 newsav->spi = 0;
2807
2808#ifdef IPSEC_DOSEQCHECK
2809 /* sync sequence number */
2810 if (mhp->msg->sadb_msg_seq == 0)
2811 newsav->seq =
2812 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq));
2813 else
2814#endif
2815 newsav->seq = mhp->msg->sadb_msg_seq;
2816 break;
2817
2818 case SADB_ADD:
2819 /* sanity check */
2820 if (mhp->ext[SADB_EXT_SA] == NULL) {
2821 free(newsav, M_IPSEC_SA);
2822 newsav = NULL;
2823 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2824 __func__));
2825 *errp = EINVAL;
2826 goto done;
2827 }
2828 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2829 newsav->spi = xsa->sadb_sa_spi;
2830 newsav->seq = mhp->msg->sadb_msg_seq;
2831 break;
2832 default:
2833 free(newsav, M_IPSEC_SA);
2834 newsav = NULL;
2835 *errp = EINVAL;
2836 goto done;
2837 }
2838
2839
2840 /* copy sav values */
2841 if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2842 *errp = key_setsaval(newsav, m, mhp);
2843 if (*errp) {
2844 free(newsav, M_IPSEC_SA);
2845 newsav = NULL;
2846 goto done;
2847 }
2848 }
2849
2850 SECASVAR_LOCK_INIT(newsav);
2851
2852 /* reset created */
2853 newsav->created = time_second;
2854 newsav->pid = mhp->msg->sadb_msg_pid;
2855
2856 /* add to satree */
2857 newsav->sah = sah;
2858 sa_initref(newsav);
2859 newsav->state = SADB_SASTATE_LARVAL;
2860
2861 SAHTREE_LOCK();
2862 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2863 secasvar, chain);
2864 SAHTREE_UNLOCK();
2865done:
2866 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2867 printf("DP %s from %s:%u return SP:%p\n", __func__,
2868 where, tag, newsav));
2869
2870 return newsav;
2871}
2872
2873/*
2874 * free() SA variable entry.
2875 */
2876static void
2877key_cleansav(struct secasvar *sav)
2878{
2879 /*
2880 * Cleanup xform state. Note that zeroize'ing causes the
2881 * keys to be cleared; otherwise we must do it ourself.
2882 */
2883 if (sav->tdb_xform != NULL) {
2884 sav->tdb_xform->xf_zeroize(sav);
2885 sav->tdb_xform = NULL;
2886 } else {
2887 KASSERT(sav->iv == NULL, ("iv but no xform"));
2888 if (sav->key_auth != NULL)
2889 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2890 if (sav->key_enc != NULL)
2891 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2892 }
2893 if (sav->key_auth != NULL) {
2894 if (sav->key_auth->key_data != NULL)
2895 free(sav->key_auth->key_data, M_IPSEC_MISC);
2896 free(sav->key_auth, M_IPSEC_MISC);
2897 sav->key_auth = NULL;
2898 }
2899 if (sav->key_enc != NULL) {
2900 if (sav->key_enc->key_data != NULL)
2901 free(sav->key_enc->key_data, M_IPSEC_MISC);
2902 free(sav->key_enc, M_IPSEC_MISC);
2903 sav->key_enc = NULL;
2904 }
2905 if (sav->sched) {
2906 bzero(sav->sched, sav->schedlen);
2907 free(sav->sched, M_IPSEC_MISC);
2908 sav->sched = NULL;
2909 }
2910 if (sav->replay != NULL) {
2911 free(sav->replay, M_IPSEC_MISC);
2912 sav->replay = NULL;
2913 }
2914 if (sav->lft_c != NULL) {
2915 free(sav->lft_c, M_IPSEC_MISC);
2916 sav->lft_c = NULL;
2917 }
2918 if (sav->lft_h != NULL) {
2919 free(sav->lft_h, M_IPSEC_MISC);
2920 sav->lft_h = NULL;
2921 }
2922 if (sav->lft_s != NULL) {
2923 free(sav->lft_s, M_IPSEC_MISC);
2924 sav->lft_s = NULL;
2925 }
2926}
2927
2928/*
2929 * free() SA variable entry.
2930 */
2931static void
2932key_delsav(sav)
2933 struct secasvar *sav;
2934{
2935 IPSEC_ASSERT(sav != NULL, ("null sav"));
2936 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2937
2938 /* remove from SA header */
2939 if (__LIST_CHAINED(sav))
2940 LIST_REMOVE(sav, chain);
2941 key_cleansav(sav);
2942 SECASVAR_LOCK_DESTROY(sav);
2943 free(sav, M_IPSEC_SA);
2944}
2945
2946/*
2947 * search SAD.
2948 * OUT:
2949 * NULL : not found
2950 * others : found, pointer to a SA.
2951 */
2952static struct secashead *
2953key_getsah(saidx)
2954 struct secasindex *saidx;
2955{
2956 struct secashead *sah;
2957
2958 SAHTREE_LOCK();
2959 LIST_FOREACH(sah, &V_sahtree, chain) {
2960 if (sah->state == SADB_SASTATE_DEAD)
2961 continue;
2962 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2963 break;
2964 }
2965 SAHTREE_UNLOCK();
2966
2967 return sah;
2968}
2969
2970/*
2971 * check not to be duplicated SPI.
2972 * NOTE: this function is too slow due to searching all SAD.
2973 * OUT:
2974 * NULL : not found
2975 * others : found, pointer to a SA.
2976 */
2977static struct secasvar *
2978key_checkspidup(saidx, spi)
2979 struct secasindex *saidx;
2980 u_int32_t spi;
2981{
2982 struct secashead *sah;
2983 struct secasvar *sav;
2984
2985 /* check address family */
2986 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2987 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2988 __func__));
2989 return NULL;
2990 }
2991
2992 sav = NULL;
2993 /* check all SAD */
2994 SAHTREE_LOCK();
2995 LIST_FOREACH(sah, &V_sahtree, chain) {
2996 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
2997 continue;
2998 sav = key_getsavbyspi(sah, spi);
2999 if (sav != NULL)
3000 break;
3001 }
3002 SAHTREE_UNLOCK();
3003
3004 return sav;
3005}
3006
3007/*
3008 * search SAD litmited alive SA, protocol, SPI.
3009 * OUT:
3010 * NULL : not found
3011 * others : found, pointer to a SA.
3012 */
3013static struct secasvar *
3014key_getsavbyspi(sah, spi)
3015 struct secashead *sah;
3016 u_int32_t spi;
3017{
3018 struct secasvar *sav;
3019 u_int stateidx, state;
3020
3021 sav = NULL;
3022 SAHTREE_LOCK_ASSERT();
3023 /* search all status */
3024 for (stateidx = 0;
3025 stateidx < _ARRAYLEN(saorder_state_alive);
3026 stateidx++) {
3027
3028 state = saorder_state_alive[stateidx];
3029 LIST_FOREACH(sav, &sah->savtree[state], chain) {
3030
3031 /* sanity check */
3032 if (sav->state != state) {
3033 ipseclog((LOG_DEBUG, "%s: "
3034 "invalid sav->state (queue: %d SA: %d)\n",
3035 __func__, state, sav->state));
3036 continue;
3037 }
3038
3039 if (sav->spi == spi)
3040 return sav;
3041 }
3042 }
3043
3044 return NULL;
3045}
3046
3047/*
3048 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3049 * You must update these if need.
3050 * OUT: 0: success.
3051 * !0: failure.
3052 *
3053 * does not modify mbuf. does not free mbuf on error.
3054 */
3055static int
3056key_setsaval(sav, m, mhp)
3057 struct secasvar *sav;
3058 struct mbuf *m;
3059 const struct sadb_msghdr *mhp;
3060{
3061 int error = 0;
3062
3063 IPSEC_ASSERT(m != NULL, ("null mbuf"));
3064 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3065 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3066
3067 /* initialization */
3068 sav->replay = NULL;
3069 sav->key_auth = NULL;
3070 sav->key_enc = NULL;
3071 sav->sched = NULL;
3072 sav->schedlen = 0;
3073 sav->iv = NULL;
3074 sav->lft_c = NULL;
3075 sav->lft_h = NULL;
3076 sav->lft_s = NULL;
3077 sav->tdb_xform = NULL; /* transform */
3078 sav->tdb_encalgxform = NULL; /* encoding algorithm */
3079 sav->tdb_authalgxform = NULL; /* authentication algorithm */
3080 sav->tdb_compalgxform = NULL; /* compression algorithm */
3081 /* Initialize even if NAT-T not compiled in: */
3082 sav->natt_type = 0;
3083 sav->natt_esp_frag_len = 0;
3084
3085 /* SA */
3086 if (mhp->ext[SADB_EXT_SA] != NULL) {
3087 const struct sadb_sa *sa0;
3088
3089 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3090 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3091 error = EINVAL;
3092 goto fail;
3093 }
3094
3095 sav->alg_auth = sa0->sadb_sa_auth;
3096 sav->alg_enc = sa0->sadb_sa_encrypt;
3097 sav->flags = sa0->sadb_sa_flags;
3098
3099 /* replay window */
3100 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3101 sav->replay = (struct secreplay *)
3102 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3103 if (sav->replay == NULL) {
3104 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3105 __func__));
3106 error = ENOBUFS;
3107 goto fail;
3108 }
3109 if (sa0->sadb_sa_replay != 0)
3110 sav->replay->bitmap = (caddr_t)(sav->replay+1);
3111 sav->replay->wsize = sa0->sadb_sa_replay;
3112 }
3113 }
3114
3115 /* Authentication keys */
3116 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3117 const struct sadb_key *key0;
3118 int len;
3119
3120 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3121 len = mhp->extlen[SADB_EXT_KEY_AUTH];
3122
3123 error = 0;
3124 if (len < sizeof(*key0)) {
3125 error = EINVAL;
3126 goto fail;
3127 }
3128 switch (mhp->msg->sadb_msg_satype) {
3129 case SADB_SATYPE_AH:
3130 case SADB_SATYPE_ESP:
3131 case SADB_X_SATYPE_TCPSIGNATURE:
3132 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3133 sav->alg_auth != SADB_X_AALG_NULL)
3134 error = EINVAL;
3135 break;
3136 case SADB_X_SATYPE_IPCOMP:
3137 default:
3138 error = EINVAL;
3139 break;
3140 }
3141 if (error) {
3142 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3143 __func__));
3144 goto fail;
3145 }
3146
3147 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3148 M_IPSEC_MISC);
3149 if (sav->key_auth == NULL ) {
3150 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3151 __func__));
3152 error = ENOBUFS;
3153 goto fail;
3154 }
3155 }
3156
3157 /* Encryption key */
3158 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3159 const struct sadb_key *key0;
3160 int len;
3161
3162 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3163 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3164
3165 error = 0;
3166 if (len < sizeof(*key0)) {
3167 error = EINVAL;
3168 goto fail;
3169 }
3170 switch (mhp->msg->sadb_msg_satype) {
3171 case SADB_SATYPE_ESP:
3172 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3173 sav->alg_enc != SADB_EALG_NULL) {
3174 error = EINVAL;
3175 break;
3176 }
3177 sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3178 len,
3179 M_IPSEC_MISC);
3180 if (sav->key_enc == NULL) {
3181 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3182 __func__));
3183 error = ENOBUFS;
3184 goto fail;
3185 }
3186 break;
3187 case SADB_X_SATYPE_IPCOMP:
3188 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3189 error = EINVAL;
3190 sav->key_enc = NULL; /*just in case*/
3191 break;
3192 case SADB_SATYPE_AH:
3193 case SADB_X_SATYPE_TCPSIGNATURE:
3194 default:
3195 error = EINVAL;
3196 break;
3197 }
3198 if (error) {
3199 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3200 __func__));
3201 goto fail;
3202 }
3203 }
3204
3205 /* set iv */
3206 sav->ivlen = 0;
3207
3208 switch (mhp->msg->sadb_msg_satype) {
3209 case SADB_SATYPE_AH:
3210 error = xform_init(sav, XF_AH);
3211 break;
3212 case SADB_SATYPE_ESP:
3213 error = xform_init(sav, XF_ESP);
3214 break;
3215 case SADB_X_SATYPE_IPCOMP:
3216 error = xform_init(sav, XF_IPCOMP);
3217 break;
3218 case SADB_X_SATYPE_TCPSIGNATURE:
3219 error = xform_init(sav, XF_TCPSIGNATURE);
3220 break;
3221 }
3222 if (error) {
3223 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3224 __func__, mhp->msg->sadb_msg_satype));
3225 goto fail;
3226 }
3227
3228 /* reset created */
3229 sav->created = time_second;
3230
3231 /* make lifetime for CURRENT */
3232 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
3233 if (sav->lft_c == NULL) {
3234 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3235 error = ENOBUFS;
3236 goto fail;
3237 }
3238
3239 sav->lft_c->allocations = 0;
3240 sav->lft_c->bytes = 0;
3241 sav->lft_c->addtime = time_second;
3242 sav->lft_c->usetime = 0;
3243
3244 /* lifetimes for HARD and SOFT */
3245 {
3246 const struct sadb_lifetime *lft0;
3247
3248 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3249 if (lft0 != NULL) {
3250 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3251 error = EINVAL;
3252 goto fail;
3253 }
3254 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3255 if (sav->lft_h == NULL) {
3256 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3257 error = ENOBUFS;
3258 goto fail;
3259 }
3260 /* to be initialize ? */
3261 }
3262
3263 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3264 if (lft0 != NULL) {
3265 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3266 error = EINVAL;
3267 goto fail;
3268 }
3269 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3270 if (sav->lft_s == NULL) {
3271 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3272 error = ENOBUFS;
3273 goto fail;
3274 }
3275 /* to be initialize ? */
3276 }
3277 }
3278
3279 return 0;
3280
3281 fail:
3282 /* initialization */
3283 key_cleansav(sav);
3284
3285 return error;
3286}
3287
3288/*
3289 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3290 * OUT: 0: valid
3291 * other: errno
3292 */
3293static int
3294key_mature(struct secasvar *sav)
3295{
3296 int error;
3297
3298 /* check SPI value */
3299 switch (sav->sah->saidx.proto) {
3300 case IPPROTO_ESP:
3301 case IPPROTO_AH:
3302 /*
3303 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3304 * 1-255 reserved by IANA for future use,
3305 * 0 for implementation specific, local use.
3306 */
3307 if (ntohl(sav->spi) <= 255) {
3308 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3309 __func__, (u_int32_t)ntohl(sav->spi)));
3310 return EINVAL;
3311 }
3312 break;
3313 }
3314
3315 /* check satype */
3316 switch (sav->sah->saidx.proto) {
3317 case IPPROTO_ESP:
3318 /* check flags */
3319 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3320 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3321 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3322 "given to old-esp.\n", __func__));
3323 return EINVAL;
3324 }
3325 error = xform_init(sav, XF_ESP);
3326 break;
3327 case IPPROTO_AH:
3328 /* check flags */
3329 if (sav->flags & SADB_X_EXT_DERIV) {
3330 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3331 "given to AH SA.\n", __func__));
3332 return EINVAL;
3333 }
3334 if (sav->alg_enc != SADB_EALG_NONE) {
3335 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3336 "mismated.\n", __func__));
3337 return(EINVAL);
3338 }
3339 error = xform_init(sav, XF_AH);
3340 break;
3341 case IPPROTO_IPCOMP:
3342 if (sav->alg_auth != SADB_AALG_NONE) {
3343 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3344 "mismated.\n", __func__));
3345 return(EINVAL);
3346 }
3347 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3348 && ntohl(sav->spi) >= 0x10000) {
3349 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3350 __func__));
3351 return(EINVAL);
3352 }
3353 error = xform_init(sav, XF_IPCOMP);
3354 break;
3355 case IPPROTO_TCP:
3356 if (sav->alg_enc != SADB_EALG_NONE) {
3357 ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3358 "mismated.\n", __func__));
3359 return(EINVAL);
3360 }
3361 error = xform_init(sav, XF_TCPSIGNATURE);
3362 break;
3363 default:
3364 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3365 error = EPROTONOSUPPORT;
3366 break;
3367 }
3368 if (error == 0) {
3369 SAHTREE_LOCK();
3370 key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3371 SAHTREE_UNLOCK();
3372 }
3373 return (error);
3374}
3375
3376/*
3377 * subroutine for SADB_GET and SADB_DUMP.
3378 */
3379static struct mbuf *
3380key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3381 u_int32_t seq, u_int32_t pid)
3382{
3383 struct mbuf *result = NULL, *tres = NULL, *m;
3384 int i;
3385 int dumporder[] = {
3386 SADB_EXT_SA, SADB_X_EXT_SA2,
3387 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3388 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3389 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3390 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3391 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3392#ifdef IPSEC_NAT_T
3393 SADB_X_EXT_NAT_T_TYPE,
3394 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3395 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3396 SADB_X_EXT_NAT_T_FRAG,
3397#endif
3398 };
3399
3400 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3401 if (m == NULL)
3402 goto fail;
3403 result = m;
3404
3405 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3406 m = NULL;
3407 switch (dumporder[i]) {
3408 case SADB_EXT_SA:
3409 m = key_setsadbsa(sav);
3410 if (!m)
3411 goto fail;
3412 break;
3413
3414 case SADB_X_EXT_SA2:
3415 m = key_setsadbxsa2(sav->sah->saidx.mode,
3416 sav->replay ? sav->replay->count : 0,
3417 sav->sah->saidx.reqid);
3418 if (!m)
3419 goto fail;
3420 break;
3421
3422 case SADB_EXT_ADDRESS_SRC:
3423 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3424 &sav->sah->saidx.src.sa,
3425 FULLMASK, IPSEC_ULPROTO_ANY);
3426 if (!m)
3427 goto fail;
3428 break;
3429
3430 case SADB_EXT_ADDRESS_DST:
3431 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3432 &sav->sah->saidx.dst.sa,
3433 FULLMASK, IPSEC_ULPROTO_ANY);
3434 if (!m)
3435 goto fail;
3436 break;
3437
3438 case SADB_EXT_KEY_AUTH:
3439 if (!sav->key_auth)
3440 continue;
3441 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3442 if (!m)
3443 goto fail;
3444 break;
3445
3446 case SADB_EXT_KEY_ENCRYPT:
3447 if (!sav->key_enc)
3448 continue;
3449 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3450 if (!m)
3451 goto fail;
3452 break;
3453
3454 case SADB_EXT_LIFETIME_CURRENT:
3455 if (!sav->lft_c)
3456 continue;
3457 m = key_setlifetime(sav->lft_c,
3458 SADB_EXT_LIFETIME_CURRENT);
3459 if (!m)
3460 goto fail;
3461 break;
3462
3463 case SADB_EXT_LIFETIME_HARD:
3464 if (!sav->lft_h)
3465 continue;
3466 m = key_setlifetime(sav->lft_h,
3467 SADB_EXT_LIFETIME_HARD);
3468 if (!m)
3469 goto fail;
3470 break;
3471
3472 case SADB_EXT_LIFETIME_SOFT:
3473 if (!sav->lft_s)
3474 continue;
3475 m = key_setlifetime(sav->lft_s,
3476 SADB_EXT_LIFETIME_SOFT);
3477
3478 if (!m)
3479 goto fail;
3480 break;
3481
3482#ifdef IPSEC_NAT_T
3483 case SADB_X_EXT_NAT_T_TYPE:
3484 m = key_setsadbxtype(sav->natt_type);
3485 if (!m)
3486 goto fail;
3487 break;
3488
3489 case SADB_X_EXT_NAT_T_DPORT:
3490 m = key_setsadbxport(
3491 KEY_PORTFROMSADDR(&sav->sah->saidx.dst),
3492 SADB_X_EXT_NAT_T_DPORT);
3493 if (!m)
3494 goto fail;
3495 break;
3496
3497 case SADB_X_EXT_NAT_T_SPORT:
3498 m = key_setsadbxport(
3499 KEY_PORTFROMSADDR(&sav->sah->saidx.src),
3500 SADB_X_EXT_NAT_T_SPORT);
3501 if (!m)
3502 goto fail;
3503 break;
3504
3505 case SADB_X_EXT_NAT_T_OAI:
3506 case SADB_X_EXT_NAT_T_OAR:
3507 case SADB_X_EXT_NAT_T_FRAG:
3508 /* We do not (yet) support those. */
3509 continue;
3510#endif
3511
3512 case SADB_EXT_ADDRESS_PROXY:
3513 case SADB_EXT_IDENTITY_SRC:
3514 case SADB_EXT_IDENTITY_DST:
3515 /* XXX: should we brought from SPD ? */
3516 case SADB_EXT_SENSITIVITY:
3517 default:
3518 continue;
3519 }
3520
3521 if (!m)
3522 goto fail;
3523 if (tres)
3524 m_cat(m, tres);
3525 tres = m;
3526
3527 }
3528
3529 m_cat(result, tres);
3530 if (result->m_len < sizeof(struct sadb_msg)) {
3531 result = m_pullup(result, sizeof(struct sadb_msg));
3532 if (result == NULL)
3533 goto fail;
3534 }
3535
3536 result->m_pkthdr.len = 0;
3537 for (m = result; m; m = m->m_next)
3538 result->m_pkthdr.len += m->m_len;
3539
3540 mtod(result, struct sadb_msg *)->sadb_msg_len =
3541 PFKEY_UNIT64(result->m_pkthdr.len);
3542
3543 return result;
3544
3545fail:
3546 m_freem(result);
3547 m_freem(tres);
3548 return NULL;
3549}
3550
3551/*
3552 * set data into sadb_msg.
3553 */
3554static struct mbuf *
3555key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3556 pid_t pid, u_int16_t reserved)
3557{
3558 struct mbuf *m;
3559 struct sadb_msg *p;
3560 int len;
3561
3562 len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3563 if (len > MCLBYTES)
3564 return NULL;
3565 MGETHDR(m, M_DONTWAIT, MT_DATA);
3566 if (m && len > MHLEN) {
3567 MCLGET(m, M_DONTWAIT);
3568 if ((m->m_flags & M_EXT) == 0) {
3569 m_freem(m);
3570 m = NULL;
3571 }
3572 }
3573 if (!m)
3574 return NULL;
3575 m->m_pkthdr.len = m->m_len = len;
3576 m->m_next = NULL;
3577
3578 p = mtod(m, struct sadb_msg *);
3579
3580 bzero(p, len);
3581 p->sadb_msg_version = PF_KEY_V2;
3582 p->sadb_msg_type = type;
3583 p->sadb_msg_errno = 0;
3584 p->sadb_msg_satype = satype;
3585 p->sadb_msg_len = PFKEY_UNIT64(tlen);
3586 p->sadb_msg_reserved = reserved;
3587 p->sadb_msg_seq = seq;
3588 p->sadb_msg_pid = (u_int32_t)pid;
3589
3590 return m;
3591}
3592
3593/*
3594 * copy secasvar data into sadb_address.
3595 */
3596static struct mbuf *
3597key_setsadbsa(sav)
3598 struct secasvar *sav;
3599{
3600 struct mbuf *m;
3601 struct sadb_sa *p;
3602 int len;
3603
3604 len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3605 m = key_alloc_mbuf(len);
3606 if (!m || m->m_next) { /*XXX*/
3607 if (m)
3608 m_freem(m);
3609 return NULL;
3610 }
3611
3612 p = mtod(m, struct sadb_sa *);
3613
3614 bzero(p, len);
3615 p->sadb_sa_len = PFKEY_UNIT64(len);
3616 p->sadb_sa_exttype = SADB_EXT_SA;
3617 p->sadb_sa_spi = sav->spi;
3618 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3619 p->sadb_sa_state = sav->state;
3620 p->sadb_sa_auth = sav->alg_auth;
3621 p->sadb_sa_encrypt = sav->alg_enc;
3622 p->sadb_sa_flags = sav->flags;
3623
3624 return m;
3625}
3626
3627/*
3628 * set data into sadb_address.
3629 */
3630static struct mbuf *
3631key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto)
3632{
3633 struct mbuf *m;
3634 struct sadb_address *p;
3635 size_t len;
3636
3637 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3638 PFKEY_ALIGN8(saddr->sa_len);
3639 m = key_alloc_mbuf(len);
3640 if (!m || m->m_next) { /*XXX*/
3641 if (m)
3642 m_freem(m);
3643 return NULL;
3644 }
3645
3646 p = mtod(m, struct sadb_address *);
3647
3648 bzero(p, len);
3649 p->sadb_address_len = PFKEY_UNIT64(len);
3650 p->sadb_address_exttype = exttype;
3651 p->sadb_address_proto = ul_proto;
3652 if (prefixlen == FULLMASK) {
3653 switch (saddr->sa_family) {
3654 case AF_INET:
3655 prefixlen = sizeof(struct in_addr) << 3;
3656 break;
3657 case AF_INET6:
3658 prefixlen = sizeof(struct in6_addr) << 3;
3659 break;
3660 default:
3661 ; /*XXX*/
3662 }
3663 }
3664 p->sadb_address_prefixlen = prefixlen;
3665 p->sadb_address_reserved = 0;
3666
3667 bcopy(saddr,
3668 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3669 saddr->sa_len);
3670
3671 return m;
3672}
3673
3674/*
3675 * set data into sadb_x_sa2.
3676 */
3677static struct mbuf *
3678key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
3679{
3680 struct mbuf *m;
3681 struct sadb_x_sa2 *p;
3682 size_t len;
3683
3684 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3685 m = key_alloc_mbuf(len);
3686 if (!m || m->m_next) { /*XXX*/
3687 if (m)
3688 m_freem(m);
3689 return NULL;
3690 }
3691
3692 p = mtod(m, struct sadb_x_sa2 *);
3693
3694 bzero(p, len);
3695 p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3696 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3697 p->sadb_x_sa2_mode = mode;
3698 p->sadb_x_sa2_reserved1 = 0;
3699 p->sadb_x_sa2_reserved2 = 0;
3700 p->sadb_x_sa2_sequence = seq;
3701 p->sadb_x_sa2_reqid = reqid;
3702
3703 return m;
3704}
3705
3706#ifdef IPSEC_NAT_T
3707/*
3708 * Set a type in sadb_x_nat_t_type.
3709 */
3710static struct mbuf *
3711key_setsadbxtype(u_int16_t type)
3712{
3713 struct mbuf *m;
3714 size_t len;
3715 struct sadb_x_nat_t_type *p;
3716
3717 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3718
3719 m = key_alloc_mbuf(len);
3720 if (!m || m->m_next) { /*XXX*/
3721 if (m)
3722 m_freem(m);
3723 return (NULL);
3724 }
3725
3726 p = mtod(m, struct sadb_x_nat_t_type *);
3727
3728 bzero(p, len);
3729 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3730 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3731 p->sadb_x_nat_t_type_type = type;
3732
3733 return (m);
3734}
3735/*
3736 * Set a port in sadb_x_nat_t_port.
3737 * In contrast to default RFC 2367 behaviour, port is in network byte order.
3738 */
3739static struct mbuf *
3740key_setsadbxport(u_int16_t port, u_int16_t type)
3741{
3742 struct mbuf *m;
3743 size_t len;
3744 struct sadb_x_nat_t_port *p;
3745
3746 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3747
3748 m = key_alloc_mbuf(len);
3749 if (!m || m->m_next) { /*XXX*/
3750 if (m)
3751 m_freem(m);
3752 return (NULL);
3753 }
3754
3755 p = mtod(m, struct sadb_x_nat_t_port *);
3756
3757 bzero(p, len);
3758 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3759 p->sadb_x_nat_t_port_exttype = type;
3760 p->sadb_x_nat_t_port_port = port;
3761
3762 return (m);
3763}
3764
3765/*
3766 * Get port from sockaddr. Port is in network byte order.
3767 */
3768u_int16_t
3769key_portfromsaddr(struct sockaddr *sa)
3770{
3771
3772 switch (sa->sa_family) {
3773#ifdef INET
3774 case AF_INET:
3775 return ((struct sockaddr_in *)sa)->sin_port;
3776#endif
3777#ifdef INET6
3778 case AF_INET6:
3779 return ((struct sockaddr_in6 *)sa)->sin6_port;
3780#endif
3781 }
3782 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
3783 printf("DP %s unexpected address family %d\n",
3784 __func__, sa->sa_family));
3785 return (0);
3786}
3787#endif /* IPSEC_NAT_T */
3788
3789/*
3790 * Set port in struct sockaddr. Port is in network byte order.
3791 */
3792static void
3793key_porttosaddr(struct sockaddr *sa, u_int16_t port)
3794{
3795
3796 switch (sa->sa_family) {
3797#ifdef INET
3798 case AF_INET:
3799 ((struct sockaddr_in *)sa)->sin_port = port;
3800 break;
3801#endif
3802#ifdef INET6
3803 case AF_INET6:
3804 ((struct sockaddr_in6 *)sa)->sin6_port = port;
3805 break;
3806#endif
3807 default:
3808 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n",
3809 __func__, sa->sa_family));
3810 break;
3811 }
3812}
3813
3814/*
3815 * set data into sadb_x_policy
3816 */
3817static struct mbuf *
3818key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3819{
3820 struct mbuf *m;
3821 struct sadb_x_policy *p;
3822 size_t len;
3823
3824 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3825 m = key_alloc_mbuf(len);
3826 if (!m || m->m_next) { /*XXX*/
3827 if (m)
3828 m_freem(m);
3829 return NULL;
3830 }
3831
3832 p = mtod(m, struct sadb_x_policy *);
3833
3834 bzero(p, len);
3835 p->sadb_x_policy_len = PFKEY_UNIT64(len);
3836 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3837 p->sadb_x_policy_type = type;
3838 p->sadb_x_policy_dir = dir;
3839 p->sadb_x_policy_id = id;
3840
3841 return m;
3842}
3843
3844/* %%% utilities */
3845/* Take a key message (sadb_key) from the socket and turn it into one
3846 * of the kernel's key structures (seckey).
3847 *
3848 * IN: pointer to the src
3849 * OUT: NULL no more memory
3850 */
3851struct seckey *
3852key_dup_keymsg(const struct sadb_key *src, u_int len,
3853 struct malloc_type *type)
3854{
3855 struct seckey *dst;
3856 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3857 if (dst != NULL) {
3858 dst->bits = src->sadb_key_bits;
3859 dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3860 if (dst->key_data != NULL) {
3861 bcopy((const char *)src + sizeof(struct sadb_key),
3862 dst->key_data, len);
3863 } else {
3864 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3865 __func__));
3866 free(dst, type);
3867 dst = NULL;
3868 }
3869 } else {
3870 ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3871 __func__));
3872
3873 }
3874 return dst;
3875}
3876
3877/* Take a lifetime message (sadb_lifetime) passed in on a socket and
3878 * turn it into one of the kernel's lifetime structures (seclifetime).
3879 *
3880 * IN: pointer to the destination, source and malloc type
3881 * OUT: NULL, no more memory
3882 */
3883
3884static struct seclifetime *
3885key_dup_lifemsg(const struct sadb_lifetime *src,
3886 struct malloc_type *type)
3887{
3888 struct seclifetime *dst = NULL;
3889
3890 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3891 type, M_NOWAIT);
3892 if (dst == NULL) {
3893 /* XXX counter */
3894 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3895 } else {
3896 dst->allocations = src->sadb_lifetime_allocations;
3897 dst->bytes = src->sadb_lifetime_bytes;
3898 dst->addtime = src->sadb_lifetime_addtime;
3899 dst->usetime = src->sadb_lifetime_usetime;
3900 }
3901 return dst;
3902}
3903
3904/* compare my own address
3905 * OUT: 1: true, i.e. my address.
3906 * 0: false
3907 */
3908int
3909key_ismyaddr(sa)
3910 struct sockaddr *sa;
3911{
3912#ifdef INET
3913 struct sockaddr_in *sin;
3914 struct in_ifaddr *ia;
3915#endif
3916
3917 IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3918
3919 switch (sa->sa_family) {
3920#ifdef INET
3921 case AF_INET:
3922 sin = (struct sockaddr_in *)sa;
3923 IN_IFADDR_RLOCK();
3924 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link)
3925 {
3926 if (sin->sin_family == ia->ia_addr.sin_family &&
3927 sin->sin_len == ia->ia_addr.sin_len &&
3928 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3929 {
3930 IN_IFADDR_RUNLOCK();
3931 return 1;
3932 }
3933 }
3934 IN_IFADDR_RUNLOCK();
3935 break;
3936#endif
3937#ifdef INET6
3938 case AF_INET6:
3939 return key_ismyaddr6((struct sockaddr_in6 *)sa);
3940#endif
3941 }
3942
3943 return 0;
3944}
3945
3946#ifdef INET6
3947/*
3948 * compare my own address for IPv6.
3949 * 1: ours
3950 * 0: other
3951 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3952 */
3953#include <netinet6/in6_var.h>
3954
3955static int
3956key_ismyaddr6(sin6)
3957 struct sockaddr_in6 *sin6;
3958{
3959 struct in6_ifaddr *ia;
3960#if 0
3961 struct in6_multi *in6m;
3962#endif
3963
3964 IN6_IFADDR_RLOCK();
3965 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
3966 if (key_sockaddrcmp((struct sockaddr *)&sin6,
3967 (struct sockaddr *)&ia->ia_addr, 0) == 0) {
3968 IN6_IFADDR_RUNLOCK();
3969 return 1;
3970 }
3971
3972#if 0
3973 /*
3974 * XXX Multicast
3975 * XXX why do we care about multlicast here while we don't care
3976 * about IPv4 multicast??
3977 * XXX scope
3978 */
3979 in6m = NULL;
3980 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3981 if (in6m) {
3982 IN6_IFADDR_RUNLOCK();
3983 return 1;
3984 }
3985#endif
3986 }
3987 IN6_IFADDR_RUNLOCK();
3988
3989 /* loopback, just for safety */
3990 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3991 return 1;
3992
3993 return 0;
3994}
3995#endif /*INET6*/
3996
3997/*
3998 * compare two secasindex structure.
3999 * flag can specify to compare 2 saidxes.
4000 * compare two secasindex structure without both mode and reqid.
4001 * don't compare port.
4002 * IN:
4003 * saidx0: source, it can be in SAD.
4004 * saidx1: object.
4005 * OUT:
4006 * 1 : equal
4007 * 0 : not equal
4008 */
4009static int
4010key_cmpsaidx(
4011 const struct secasindex *saidx0,
4012 const struct secasindex *saidx1,
4013 int flag)
4014{
4015 int chkport = 0;
4016
4017 /* sanity */
4018 if (saidx0 == NULL && saidx1 == NULL)
4019 return 1;
4020
4021 if (saidx0 == NULL || saidx1 == NULL)
4022 return 0;
4023
4024 if (saidx0->proto != saidx1->proto)
4025 return 0;
4026
4027 if (flag == CMP_EXACTLY) {
4028 if (saidx0->mode != saidx1->mode)
4029 return 0;
4030 if (saidx0->reqid != saidx1->reqid)
4031 return 0;
4032 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4033 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4034 return 0;
4035 } else {
4036
4037 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4038 if (flag == CMP_MODE_REQID
4039 ||flag == CMP_REQID) {
4040 /*
4041 * If reqid of SPD is non-zero, unique SA is required.
4042 * The result must be of same reqid in this case.
4043 */
4044 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4045 return 0;
4046 }
4047
4048 if (flag == CMP_MODE_REQID) {
4049 if (saidx0->mode != IPSEC_MODE_ANY
4050 && saidx0->mode != saidx1->mode)
4051 return 0;
4052 }
4053
4054#ifdef IPSEC_NAT_T
4055 /*
4056 * If NAT-T is enabled, check ports for tunnel mode.
4057 * Do not check ports if they are set to zero in the SPD.
4058 * Also do not do it for native transport mode, as there
4059 * is no port information available in the SP.
4060 */
4061 if ((saidx1->mode == IPSEC_MODE_TUNNEL ||
4062 (saidx1->mode == IPSEC_MODE_TRANSPORT &&
4063 saidx1->proto == IPPROTO_ESP)) &&
4064 saidx1->src.sa.sa_family == AF_INET &&
4065 saidx1->dst.sa.sa_family == AF_INET &&
4066 ((const struct sockaddr_in *)(&saidx1->src))->sin_port &&
4067 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port)
4068 chkport = 1;
4069#endif /* IPSEC_NAT_T */
4070
4071 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) {
4072 return 0;
4073 }
4074 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) {
4075 return 0;
4076 }
4077 }
4078
4079 return 1;
4080}
4081
4082/*
4083 * compare two secindex structure exactly.
4084 * IN:
4085 * spidx0: source, it is often in SPD.
4086 * spidx1: object, it is often from PFKEY message.
4087 * OUT:
4088 * 1 : equal
4089 * 0 : not equal
4090 */
4091static int
4092key_cmpspidx_exactly(
4093 struct secpolicyindex *spidx0,
4094 struct secpolicyindex *spidx1)
4095{
4096 /* sanity */
4097 if (spidx0 == NULL && spidx1 == NULL)
4098 return 1;
4099
4100 if (spidx0 == NULL || spidx1 == NULL)
4101 return 0;
4102
4103 if (spidx0->prefs != spidx1->prefs
4104 || spidx0->prefd != spidx1->prefd
4105 || spidx0->ul_proto != spidx1->ul_proto)
4106 return 0;
4107
4108 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4109 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4110}
4111
4112/*
4113 * compare two secindex structure with mask.
4114 * IN:
4115 * spidx0: source, it is often in SPD.
4116 * spidx1: object, it is often from IP header.
4117 * OUT:
4118 * 1 : equal
4119 * 0 : not equal
4120 */
4121static int
4122key_cmpspidx_withmask(
4123 struct secpolicyindex *spidx0,
4124 struct secpolicyindex *spidx1)
4125{
4126 /* sanity */
4127 if (spidx0 == NULL && spidx1 == NULL)
4128 return 1;
4129
4130 if (spidx0 == NULL || spidx1 == NULL)
4131 return 0;
4132
4133 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4134 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4135 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4136 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4137 return 0;
4138
4139 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4140 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4141 && spidx0->ul_proto != spidx1->ul_proto)
4142 return 0;
4143
4144 switch (spidx0->src.sa.sa_family) {
4145 case AF_INET:
4146 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4147 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4148 return 0;
4149 if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4150 &spidx1->src.sin.sin_addr, spidx0->prefs))
4151 return 0;
4152 break;
4153 case AF_INET6:
4154 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4155 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4156 return 0;
4157 /*
4158 * scope_id check. if sin6_scope_id is 0, we regard it
4159 * as a wildcard scope, which matches any scope zone ID.
4160 */
4161 if (spidx0->src.sin6.sin6_scope_id &&
4162 spidx1->src.sin6.sin6_scope_id &&
4163 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4164 return 0;
4165 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4166 &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4167 return 0;
4168 break;
4169 default:
4170 /* XXX */
4171 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4172 return 0;
4173 break;
4174 }
4175
4176 switch (spidx0->dst.sa.sa_family) {
4177 case AF_INET:
4178 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4179 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4180 return 0;
4181 if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4182 &spidx1->dst.sin.sin_addr, spidx0->prefd))
4183 return 0;
4184 break;
4185 case AF_INET6:
4186 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4187 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4188 return 0;
4189 /*
4190 * scope_id check. if sin6_scope_id is 0, we regard it
4191 * as a wildcard scope, which matches any scope zone ID.
4192 */
4193 if (spidx0->dst.sin6.sin6_scope_id &&
4194 spidx1->dst.sin6.sin6_scope_id &&
4195 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4196 return 0;
4197 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4198 &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4199 return 0;
4200 break;
4201 default:
4202 /* XXX */
4203 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4204 return 0;
4205 break;
4206 }
4207
4208 /* XXX Do we check other field ? e.g. flowinfo */
4209
4210 return 1;
4211}
4212
4213/* returns 0 on match */
4214static int
4215key_sockaddrcmp(
4216 const struct sockaddr *sa1,
4217 const struct sockaddr *sa2,
4218 int port)
4219{
4220#ifdef satosin
4221#undef satosin
4222#endif
4223#define satosin(s) ((const struct sockaddr_in *)s)
4224#ifdef satosin6
4225#undef satosin6
4226#endif
4227#define satosin6(s) ((const struct sockaddr_in6 *)s)
4228 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4229 return 1;
4230
4231 switch (sa1->sa_family) {
4232 case AF_INET:
4233 if (sa1->sa_len != sizeof(struct sockaddr_in))
4234 return 1;
4235 if (satosin(sa1)->sin_addr.s_addr !=
4236 satosin(sa2)->sin_addr.s_addr) {
4237 return 1;
4238 }
4239 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4240 return 1;
4241 break;
4242 case AF_INET6:
4243 if (sa1->sa_len != sizeof(struct sockaddr_in6))
4244 return 1; /*EINVAL*/
4245 if (satosin6(sa1)->sin6_scope_id !=
4246 satosin6(sa2)->sin6_scope_id) {
4247 return 1;
4248 }
4249 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4250 &satosin6(sa2)->sin6_addr)) {
4251 return 1;
4252 }
4253 if (port &&
4254 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4255 return 1;
4256 }
4257 break;
4258 default:
4259 if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4260 return 1;
4261 break;
4262 }
4263
4264 return 0;
4265#undef satosin
4266#undef satosin6
4267}
4268
4269/*
4270 * compare two buffers with mask.
4271 * IN:
4272 * addr1: source
4273 * addr2: object
4274 * bits: Number of bits to compare
4275 * OUT:
4276 * 1 : equal
4277 * 0 : not equal
4278 */
4279static int
4280key_bbcmp(const void *a1, const void *a2, u_int bits)
4281{
4282 const unsigned char *p1 = a1;
4283 const unsigned char *p2 = a2;
4284
4285 /* XXX: This could be considerably faster if we compare a word
4286 * at a time, but it is complicated on LSB Endian machines */
4287
4288 /* Handle null pointers */
4289 if (p1 == NULL || p2 == NULL)
4290 return (p1 == p2);
4291
4292 while (bits >= 8) {
4293 if (*p1++ != *p2++)
4294 return 0;
4295 bits -= 8;
4296 }
4297
4298 if (bits > 0) {
4299 u_int8_t mask = ~((1<<(8-bits))-1);
4300 if ((*p1 & mask) != (*p2 & mask))
4301 return 0;
4302 }
4303 return 1; /* Match! */
4304}
4305
4306static void
4307key_flush_spd(time_t now)
4308{
4309 static u_int16_t sptree_scangen = 0;
4310 u_int16_t gen = sptree_scangen++;
4311 struct secpolicy *sp;
4312 u_int dir;
4313
4314 /* SPD */
4315 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4316restart:
4317 SPTREE_LOCK();
4318 LIST_FOREACH(sp, &V_sptree[dir], chain) {
4319 if (sp->scangen == gen) /* previously handled */
4320 continue;
4321 sp->scangen = gen;
4322 if (sp->state == IPSEC_SPSTATE_DEAD &&
4323 sp->refcnt == 1) {
4324 /*
4325 * Ensure that we only decrease refcnt once,
4326 * when we're the last consumer.
4327 * Directly call SP_DELREF/key_delsp instead
4328 * of KEY_FREESP to avoid unlocking/relocking
4329 * SPTREE_LOCK before key_delsp: may refcnt
4330 * be increased again during that time ?
4331 * NB: also clean entries created by
4332 * key_spdflush
4333 */
4334 SP_DELREF(sp);
4335 key_delsp(sp);
4336 SPTREE_UNLOCK();
4337 goto restart;
4338 }
4339 if (sp->lifetime == 0 && sp->validtime == 0)
4340 continue;
4341 if ((sp->lifetime && now - sp->created > sp->lifetime)
4342 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4343 sp->state = IPSEC_SPSTATE_DEAD;
4344 SPTREE_UNLOCK();
4345 key_spdexpire(sp);
4346 goto restart;
4347 }
4348 }
4349 SPTREE_UNLOCK();
4350 }
4351}
4352
4353static void
4354key_flush_sad(time_t now)
4355{
4356 struct secashead *sah, *nextsah;
4357 struct secasvar *sav, *nextsav;
4358
4359 /* SAD */
4360 SAHTREE_LOCK();
4361 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) {
4362 /* if sah has been dead, then delete it and process next sah. */
4363 if (sah->state == SADB_SASTATE_DEAD) {
4364 key_delsah(sah);
4365 continue;
4366 }
4367
4368 /* if LARVAL entry doesn't become MATURE, delete it. */
4369 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4370 /* Need to also check refcnt for a larval SA ??? */
4371 if (now - sav->created > V_key_larval_lifetime)
4372 KEY_FREESAV(&sav);
4373 }
4374
4375 /*
4376 * check MATURE entry to start to send expire message
4377 * whether or not.
4378 */
4379 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4380 /* we don't need to check. */
4381 if (sav->lft_s == NULL)
4382 continue;
4383
4384 /* sanity check */
4385 if (sav->lft_c == NULL) {
4386 ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4387 "time, why?\n", __func__));
4388 continue;
4389 }
4390
4391 /* check SOFT lifetime */
4392 if (sav->lft_s->addtime != 0 &&
4393 now - sav->created > sav->lft_s->addtime) {
4394 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4395 /*
4396 * Actually, only send expire message if
4397 * SA has been used, as it was done before,
4398 * but should we always send such message,
4399 * and let IKE daemon decide if it should be
4400 * renegotiated or not ?
4401 * XXX expire message will actually NOT be
4402 * sent if SA is only used after soft
4403 * lifetime has been reached, see below
4404 * (DYING state)
4405 */
4406 if (sav->lft_c->usetime != 0)
4407 key_expire(sav);
4408 }
4409 /* check SOFT lifetime by bytes */
4410 /*
4411 * XXX I don't know the way to delete this SA
4412 * when new SA is installed. Caution when it's
4413 * installed too big lifetime by time.
4414 */
4415 else if (sav->lft_s->bytes != 0 &&
4416 sav->lft_s->bytes < sav->lft_c->bytes) {
4417
4418 key_sa_chgstate(sav, SADB_SASTATE_DYING);
4419 /*
4420 * XXX If we keep to send expire
4421 * message in the status of
4422 * DYING. Do remove below code.
4423 */
4424 key_expire(sav);
4425 }
4426 }
4427
4428 /* check DYING entry to change status to DEAD. */
4429 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4430 /* we don't need to check. */
4431 if (sav->lft_h == NULL)
4432 continue;
4433
4434 /* sanity check */
4435 if (sav->lft_c == NULL) {
4436 ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4437 "time, why?\n", __func__));
4438 continue;
4439 }
4440
4441 if (sav->lft_h->addtime != 0 &&
4442 now - sav->created > sav->lft_h->addtime) {
4443 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4444 KEY_FREESAV(&sav);
4445 }
4446#if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
4447 else if (sav->lft_s != NULL
4448 && sav->lft_s->addtime != 0
4449 && now - sav->created > sav->lft_s->addtime) {
4450 /*
4451 * XXX: should be checked to be
4452 * installed the valid SA.
4453 */
4454
4455 /*
4456 * If there is no SA then sending
4457 * expire message.
4458 */
4459 key_expire(sav);
4460 }
4461#endif
4462 /* check HARD lifetime by bytes */
4463 else if (sav->lft_h->bytes != 0 &&
4464 sav->lft_h->bytes < sav->lft_c->bytes) {
4465 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4466 KEY_FREESAV(&sav);
4467 }
4468 }
4469
4470 /* delete entry in DEAD */
4471 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4472 /* sanity check */
4473 if (sav->state != SADB_SASTATE_DEAD) {
4474 ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4475 "(queue: %d SA: %d): kill it anyway\n",
4476 __func__,
4477 SADB_SASTATE_DEAD, sav->state));
4478 }
4479 /*
4480 * do not call key_freesav() here.
4481 * sav should already be freed, and sav->refcnt
4482 * shows other references to sav
4483 * (such as from SPD).
4484 */
4485 }
4486 }
4487 SAHTREE_UNLOCK();
4488}
4489
4490static void
4491key_flush_acq(time_t now)
4492{
4493 struct secacq *acq, *nextacq;
4494
4495 /* ACQ tree */
4496 ACQ_LOCK();
4497 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
4498 nextacq = LIST_NEXT(acq, chain);
4499 if (now - acq->created > V_key_blockacq_lifetime
4500 && __LIST_CHAINED(acq)) {
4501 LIST_REMOVE(acq, chain);
4502 free(acq, M_IPSEC_SAQ);
4503 }
4504 }
4505 ACQ_UNLOCK();
4506}
4507
4508static void
4509key_flush_spacq(time_t now)
4510{
4511 struct secspacq *acq, *nextacq;
4512
4513 /* SP ACQ tree */
4514 SPACQ_LOCK();
4515 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4516 nextacq = LIST_NEXT(acq, chain);
4517 if (now - acq->created > V_key_blockacq_lifetime
4518 && __LIST_CHAINED(acq)) {
4519 LIST_REMOVE(acq, chain);
4520 free(acq, M_IPSEC_SAQ);
4521 }
4522 }
4523 SPACQ_UNLOCK();
4524}
4525
4526/*
4527 * time handler.
4528 * scanning SPD and SAD to check status for each entries,
4529 * and do to remove or to expire.
4530 * XXX: year 2038 problem may remain.
4531 */
4532void
4533key_timehandler(void)
4534{
4535 VNET_ITERATOR_DECL(vnet_iter);
4536 time_t now = time_second;
4537
4538 VNET_LIST_RLOCK_NOSLEEP();
4539 VNET_FOREACH(vnet_iter) {
4540 CURVNET_SET(vnet_iter);
4541 key_flush_spd(now);
4542 key_flush_sad(now);
4543 key_flush_acq(now);
4544 key_flush_spacq(now);
4545 CURVNET_RESTORE();
4546 }
4547 VNET_LIST_RUNLOCK_NOSLEEP();
4548
4549#ifndef IPSEC_DEBUG2
4550 /* do exchange to tick time !! */
4551 (void)timeout((void *)key_timehandler, (void *)0, hz);
4552#endif /* IPSEC_DEBUG2 */
4553}
4554
4555u_long
4556key_random()
4557{
4558 u_long value;
4559
4560 key_randomfill(&value, sizeof(value));
4561 return value;
4562}
4563
4564void
4565key_randomfill(p, l)
4566 void *p;
4567 size_t l;
4568{
4569 size_t n;
4570 u_long v;
4571 static int warn = 1;
4572
4573 n = 0;
4574 n = (size_t)read_random(p, (u_int)l);
4575 /* last resort */
4576 while (n < l) {
4577 v = random();
4578 bcopy(&v, (u_int8_t *)p + n,
4579 l - n < sizeof(v) ? l - n : sizeof(v));
4580 n += sizeof(v);
4581
4582 if (warn) {
4583 printf("WARNING: pseudo-random number generator "
4584 "used for IPsec processing\n");
4585 warn = 0;
4586 }
4587 }
4588}
4589
4590/*
4591 * map SADB_SATYPE_* to IPPROTO_*.
4592 * if satype == SADB_SATYPE then satype is mapped to ~0.
4593 * OUT:
4594 * 0: invalid satype.
4595 */
4596static u_int16_t
4597key_satype2proto(u_int8_t satype)
4598{
4599 switch (satype) {
4600 case SADB_SATYPE_UNSPEC:
4601 return IPSEC_PROTO_ANY;
4602 case SADB_SATYPE_AH:
4603 return IPPROTO_AH;
4604 case SADB_SATYPE_ESP:
4605 return IPPROTO_ESP;
4606 case SADB_X_SATYPE_IPCOMP:
4607 return IPPROTO_IPCOMP;
4608 case SADB_X_SATYPE_TCPSIGNATURE:
4609 return IPPROTO_TCP;
4610 default:
4611 return 0;
4612 }
4613 /* NOTREACHED */
4614}
4615
4616/*
4617 * map IPPROTO_* to SADB_SATYPE_*
4618 * OUT:
4619 * 0: invalid protocol type.
4620 */
4621static u_int8_t
4622key_proto2satype(u_int16_t proto)
4623{
4624 switch (proto) {
4625 case IPPROTO_AH:
4626 return SADB_SATYPE_AH;
4627 case IPPROTO_ESP:
4628 return SADB_SATYPE_ESP;
4629 case IPPROTO_IPCOMP:
4630 return SADB_X_SATYPE_IPCOMP;
4631 case IPPROTO_TCP:
4632 return SADB_X_SATYPE_TCPSIGNATURE;
4633 default:
4634 return 0;
4635 }
4636 /* NOTREACHED */
4637}
4638
4639/* %%% PF_KEY */
4640/*
4641 * SADB_GETSPI processing is to receive
4642 * <base, (SA2), src address, dst address, (SPI range)>
4643 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4644 * tree with the status of LARVAL, and send
4645 * <base, SA(*), address(SD)>
4646 * to the IKMPd.
4647 *
4648 * IN: mhp: pointer to the pointer to each header.
4649 * OUT: NULL if fail.
4650 * other if success, return pointer to the message to send.
4651 */
4652static int
4653key_getspi(so, m, mhp)
4654 struct socket *so;
4655 struct mbuf *m;
4656 const struct sadb_msghdr *mhp;
4657{
4658 struct sadb_address *src0, *dst0;
4659 struct secasindex saidx;
4660 struct secashead *newsah;
4661 struct secasvar *newsav;
4662 u_int8_t proto;
4663 u_int32_t spi;
4664 u_int8_t mode;
4665 u_int32_t reqid;
4666 int error;
4667
4668 IPSEC_ASSERT(so != NULL, ("null socket"));
4669 IPSEC_ASSERT(m != NULL, ("null mbuf"));
4670 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4671 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4672
4673 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4674 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4675 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4676 __func__));
4677 return key_senderror(so, m, EINVAL);
4678 }
4679 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4680 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4681 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4682 __func__));
4683 return key_senderror(so, m, EINVAL);
4684 }
4685 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4686 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4687 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4688 } else {
4689 mode = IPSEC_MODE_ANY;
4690 reqid = 0;
4691 }
4692
4693 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4694 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4695
4696 /* map satype to proto */
4697 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4698 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4699 __func__));
4700 return key_senderror(so, m, EINVAL);
4701 }
4702
4703 /*
4704 * Make sure the port numbers are zero.
4705 * In case of NAT-T we will update them later if needed.
4706 */
4707 switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4708 case AF_INET:
4709 if (((struct sockaddr *)(src0 + 1))->sa_len !=
4710 sizeof(struct sockaddr_in))
4711 return key_senderror(so, m, EINVAL);
4712 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4713 break;
4714 case AF_INET6:
4715 if (((struct sockaddr *)(src0 + 1))->sa_len !=
4716 sizeof(struct sockaddr_in6))
4717 return key_senderror(so, m, EINVAL);
4718 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4719 break;
4720 default:
4721 ; /*???*/
4722 }
4723 switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4724 case AF_INET:
4725 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4726 sizeof(struct sockaddr_in))
4727 return key_senderror(so, m, EINVAL);
4728 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4729 break;
4730 case AF_INET6:
4731 if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4732 sizeof(struct sockaddr_in6))
4733 return key_senderror(so, m, EINVAL);
4734 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4735 break;
4736 default:
4737 ; /*???*/
4738 }
4739
4740 /* XXX boundary check against sa_len */
4741 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4742
4743#ifdef IPSEC_NAT_T
4744 /*
4745 * Handle NAT-T info if present.
4746 * We made sure the port numbers are zero above, so we do
4747 * not have to worry in case we do not update them.
4748 */
4749 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
4750 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__));
4751 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
4752 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__));
4753
4754 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
4755 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
4756 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
4757 struct sadb_x_nat_t_type *type;
4758 struct sadb_x_nat_t_port *sport, *dport;
4759
4760 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
4761 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
4762 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
4763 ipseclog((LOG_DEBUG, "%s: invalid nat-t message "
4764 "passed.\n", __func__));
4765 return key_senderror(so, m, EINVAL);
4766 }
4767
4768 sport = (struct sadb_x_nat_t_port *)
4769 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
4770 dport = (struct sadb_x_nat_t_port *)
4771 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
4772
4773 if (sport)
4774 KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port);
4775 if (dport)
4776 KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port);
4777 }
4778#endif
4779
4780 /* SPI allocation */
4781 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4782 &saidx);
4783 if (spi == 0)
4784 return key_senderror(so, m, EINVAL);
4785
4786 /* get a SA index */
4787 if ((newsah = key_getsah(&saidx)) == NULL) {
4788 /* create a new SA index */
4789 if ((newsah = key_newsah(&saidx)) == NULL) {
4790 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4791 return key_senderror(so, m, ENOBUFS);
4792 }
4793 }
4794
4795 /* get a new SA */
4796 /* XXX rewrite */
4797 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4798 if (newsav == NULL) {
4799 /* XXX don't free new SA index allocated in above. */
4800 return key_senderror(so, m, error);
4801 }
4802
4803 /* set spi */
4804 newsav->spi = htonl(spi);
4805
4806 /* delete the entry in acqtree */
4807 if (mhp->msg->sadb_msg_seq != 0) {
4808 struct secacq *acq;
4809 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4810 /* reset counter in order to deletion by timehandler. */
4811 acq->created = time_second;
4812 acq->count = 0;
4813 }
4814 }
4815
4816 {
4817 struct mbuf *n, *nn;
4818 struct sadb_sa *m_sa;
4819 struct sadb_msg *newmsg;
4820 int off, len;
4821
4822 /* create new sadb_msg to reply. */
4823 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4824 PFKEY_ALIGN8(sizeof(struct sadb_sa));
4825
4826 MGETHDR(n, M_DONTWAIT, MT_DATA);
4827 if (len > MHLEN) {
4828 MCLGET(n, M_DONTWAIT);
4829 if ((n->m_flags & M_EXT) == 0) {
4830 m_freem(n);
4831 n = NULL;
4832 }
4833 }
4834 if (!n)
4835 return key_senderror(so, m, ENOBUFS);
4836
4837 n->m_len = len;
4838 n->m_next = NULL;
4839 off = 0;
4840
4841 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4842 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4843
4844 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4845 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4846 m_sa->sadb_sa_exttype = SADB_EXT_SA;
4847 m_sa->sadb_sa_spi = htonl(spi);
4848 off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4849
4850 IPSEC_ASSERT(off == len,
4851 ("length inconsistency (off %u len %u)", off, len));
4852
4853 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4854 SADB_EXT_ADDRESS_DST);
4855 if (!n->m_next) {
4856 m_freem(n);
4857 return key_senderror(so, m, ENOBUFS);
4858 }
4859
4860 if (n->m_len < sizeof(struct sadb_msg)) {
4861 n = m_pullup(n, sizeof(struct sadb_msg));
4862 if (n == NULL)
4863 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4864 }
4865
4866 n->m_pkthdr.len = 0;
4867 for (nn = n; nn; nn = nn->m_next)
4868 n->m_pkthdr.len += nn->m_len;
4869
4870 newmsg = mtod(n, struct sadb_msg *);
4871 newmsg->sadb_msg_seq = newsav->seq;
4872 newmsg->sadb_msg_errno = 0;
4873 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4874
4875 m_freem(m);
4876 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4877 }
4878}
4879
4880/*
4881 * allocating new SPI
4882 * called by key_getspi().
4883 * OUT:
4884 * 0: failure.
4885 * others: success.
4886 */
4887static u_int32_t
4888key_do_getnewspi(spirange, saidx)
4889 struct sadb_spirange *spirange;
4890 struct secasindex *saidx;
4891{
4892 u_int32_t newspi;
4893 u_int32_t min, max;
4894 int count = V_key_spi_trycnt;
4895
4896 /* set spi range to allocate */
4897 if (spirange != NULL) {
4898 min = spirange->sadb_spirange_min;
4899 max = spirange->sadb_spirange_max;
4900 } else {
4901 min = V_key_spi_minval;
4902 max = V_key_spi_maxval;
4903 }
4904 /* IPCOMP needs 2-byte SPI */
4905 if (saidx->proto == IPPROTO_IPCOMP) {
4906 u_int32_t t;
4907 if (min >= 0x10000)
4908 min = 0xffff;
4909 if (max >= 0x10000)
4910 max = 0xffff;
4911 if (min > max) {
4912 t = min; min = max; max = t;
4913 }
4914 }
4915
4916 if (min == max) {
4917 if (key_checkspidup(saidx, min) != NULL) {
4918 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4919 __func__, min));
4920 return 0;
4921 }
4922
4923 count--; /* taking one cost. */
4924 newspi = min;
4925
4926 } else {
4927
4928 /* init SPI */
4929 newspi = 0;
4930
4931 /* when requesting to allocate spi ranged */
4932 while (count--) {
4933 /* generate pseudo-random SPI value ranged. */
4934 newspi = min + (key_random() % (max - min + 1));
4935
4936 if (key_checkspidup(saidx, newspi) == NULL)
4937 break;
4938 }
4939
4940 if (count == 0 || newspi == 0) {
4941 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4942 __func__));
4943 return 0;
4944 }
4945 }
4946
4947 /* statistics */
4948 keystat.getspi_count =
4949 (keystat.getspi_count + V_key_spi_trycnt - count) / 2;
4950
4951 return newspi;
4952}
4953
4954/*
4955 * SADB_UPDATE processing
4956 * receive
4957 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4958 * key(AE), (identity(SD),) (sensitivity)>
4959 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4960 * and send
4961 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4962 * (identity(SD),) (sensitivity)>
4963 * to the ikmpd.
4964 *
4965 * m will always be freed.
4966 */
4967static int
4968key_update(so, m, mhp)
4969 struct socket *so;
4970 struct mbuf *m;
4971 const struct sadb_msghdr *mhp;
4972{
4973 struct sadb_sa *sa0;
4974 struct sadb_address *src0, *dst0;
4975#ifdef IPSEC_NAT_T
4976 struct sadb_x_nat_t_type *type;
4977 struct sadb_x_nat_t_port *sport, *dport;
4978 struct sadb_address *iaddr, *raddr;
4979 struct sadb_x_nat_t_frag *frag;
4980#endif
4981 struct secasindex saidx;
4982 struct secashead *sah;
4983 struct secasvar *sav;
4984 u_int16_t proto;
4985 u_int8_t mode;
4986 u_int32_t reqid;
4987 int error;
4988
4989 IPSEC_ASSERT(so != NULL, ("null socket"));
4990 IPSEC_ASSERT(m != NULL, ("null mbuf"));
4991 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4992 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4993
4994 /* map satype to proto */
4995 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4996 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4997 __func__));
4998 return key_senderror(so, m, EINVAL);
4999 }
5000
5001 if (mhp->ext[SADB_EXT_SA] == NULL ||
5002 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5003 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5004 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5005 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5006 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5007 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5008 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5009 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5010 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5011 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5012 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5013 __func__));
5014 return key_senderror(so, m, EINVAL);
5015 }
5016 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5017 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5018 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5019 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5020 __func__));
5021 return key_senderror(so, m, EINVAL);
5022 }
5023 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5024 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5025 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5026 } else {
5027 mode = IPSEC_MODE_ANY;
5028 reqid = 0;
5029 }
5030 /* XXX boundary checking for other extensions */
5031
5032 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5033 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5034 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5035
5036 /* XXX boundary check against sa_len */
5037 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5038
5039 /*
5040 * Make sure the port numbers are zero.
5041 * In case of NAT-T we will update them later if needed.
5042 */
5043 KEY_PORTTOSADDR(&saidx.src, 0);
5044 KEY_PORTTOSADDR(&saidx.dst, 0);
5045
5046#ifdef IPSEC_NAT_T
5047 /*
5048 * Handle NAT-T info if present.
5049 */
5050 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5051 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5052 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5053
5054 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5055 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5056 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5057 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5058 __func__));
5059 return key_senderror(so, m, EINVAL);
5060 }
5061
5062 type = (struct sadb_x_nat_t_type *)
5063 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5064 sport = (struct sadb_x_nat_t_port *)
5065 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5066 dport = (struct sadb_x_nat_t_port *)
5067 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5068 } else {
5069 type = 0;
5070 sport = dport = 0;
5071 }
5072 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5073 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5074 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5075 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5076 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5077 __func__));
5078 return key_senderror(so, m, EINVAL);
5079 }
5080 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5081 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5082 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5083 } else {
5084 iaddr = raddr = NULL;
5085 }
5086 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5087 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5088 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5089 __func__));
5090 return key_senderror(so, m, EINVAL);
5091 }
5092 frag = (struct sadb_x_nat_t_frag *)
5093 mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5094 } else {
5095 frag = 0;
5096 }
5097#endif
5098
5099 /* get a SA header */
5100 if ((sah = key_getsah(&saidx)) == NULL) {
5101 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
5102 return key_senderror(so, m, ENOENT);
5103 }
5104
5105 /* set spidx if there */
5106 /* XXX rewrite */
5107 error = key_setident(sah, m, mhp);
5108 if (error)
5109 return key_senderror(so, m, error);
5110
5111 /* find a SA with sequence number. */
5112#ifdef IPSEC_DOSEQCHECK
5113 if (mhp->msg->sadb_msg_seq != 0
5114 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5115 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
5116 "exists.\n", __func__, mhp->msg->sadb_msg_seq));
5117 return key_senderror(so, m, ENOENT);
5118 }
5119#else
5120 SAHTREE_LOCK();
5121 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5122 SAHTREE_UNLOCK();
5123 if (sav == NULL) {
5124 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
5125 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5126 return key_senderror(so, m, EINVAL);
5127 }
5128#endif
5129
5130 /* validity check */
5131 if (sav->sah->saidx.proto != proto) {
5132 ipseclog((LOG_DEBUG, "%s: protocol mismatched "
5133 "(DB=%u param=%u)\n", __func__,
5134 sav->sah->saidx.proto, proto));
5135 return key_senderror(so, m, EINVAL);
5136 }
5137#ifdef IPSEC_DOSEQCHECK
5138 if (sav->spi != sa0->sadb_sa_spi) {
5139 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
5140 __func__,
5141 (u_int32_t)ntohl(sav->spi),
5142 (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5143 return key_senderror(so, m, EINVAL);
5144 }
5145#endif
5146 if (sav->pid != mhp->msg->sadb_msg_pid) {
5147 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
5148 __func__, sav->pid, mhp->msg->sadb_msg_pid));
5149 return key_senderror(so, m, EINVAL);
5150 }
5151
5152 /* copy sav values */
5153 error = key_setsaval(sav, m, mhp);
5154 if (error) {
5155 KEY_FREESAV(&sav);
5156 return key_senderror(so, m, error);
5157 }
5158
5159#ifdef IPSEC_NAT_T
5160 /*
5161 * Handle more NAT-T info if present,
5162 * now that we have a sav to fill.
5163 */
5164 if (type)
5165 sav->natt_type = type->sadb_x_nat_t_type_type;
5166
5167 if (sport)
5168 KEY_PORTTOSADDR(&sav->sah->saidx.src,
5169 sport->sadb_x_nat_t_port_port);
5170 if (dport)
5171 KEY_PORTTOSADDR(&sav->sah->saidx.dst,
5172 dport->sadb_x_nat_t_port_port);
5173
5174#if 0
5175 /*
5176 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5177 * We should actually check for a minimum MTU here, if we
5178 * want to support it in ip_output.
5179 */
5180 if (frag)
5181 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5182#endif
5183#endif
5184
5185 /* check SA values to be mature. */
5186 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5187 KEY_FREESAV(&sav);
5188 return key_senderror(so, m, 0);
5189 }
5190
5191 {
5192 struct mbuf *n;
5193
5194 /* set msg buf from mhp */
5195 n = key_getmsgbuf_x1(m, mhp);
5196 if (n == NULL) {
5197 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5198 return key_senderror(so, m, ENOBUFS);
5199 }
5200
5201 m_freem(m);
5202 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5203 }
5204}
5205
5206/*
5207 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5208 * only called by key_update().
5209 * OUT:
5210 * NULL : not found
5211 * others : found, pointer to a SA.
5212 */
5213#ifdef IPSEC_DOSEQCHECK
5214static struct secasvar *
5215key_getsavbyseq(sah, seq)
5216 struct secashead *sah;
5217 u_int32_t seq;
5218{
5219 struct secasvar *sav;
5220 u_int state;
5221
5222 state = SADB_SASTATE_LARVAL;
5223
5224 /* search SAD with sequence number ? */
5225 LIST_FOREACH(sav, &sah->savtree[state], chain) {
5226
5227 KEY_CHKSASTATE(state, sav->state, __func__);
5228
5229 if (sav->seq == seq) {
5230 sa_addref(sav);
5231 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5232 printf("DP %s cause refcnt++:%d SA:%p\n",
5233 __func__, sav->refcnt, sav));
5234 return sav;
5235 }
5236 }
5237
5238 return NULL;
5239}
5240#endif
5241
5242/*
5243 * SADB_ADD processing
5244 * add an entry to SA database, when received
5245 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5246 * key(AE), (identity(SD),) (sensitivity)>
5247 * from the ikmpd,
5248 * and send
5249 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5250 * (identity(SD),) (sensitivity)>
5251 * to the ikmpd.
5252 *
5253 * IGNORE identity and sensitivity messages.
5254 *
5255 * m will always be freed.
5256 */
5257static int
5258key_add(so, m, mhp)
5259 struct socket *so;
5260 struct mbuf *m;
5261 const struct sadb_msghdr *mhp;
5262{
5263 struct sadb_sa *sa0;
5264 struct sadb_address *src0, *dst0;
5265#ifdef IPSEC_NAT_T
5266 struct sadb_x_nat_t_type *type;
5267 struct sadb_address *iaddr, *raddr;
5268 struct sadb_x_nat_t_frag *frag;
5269#endif
5270 struct secasindex saidx;
5271 struct secashead *newsah;
5272 struct secasvar *newsav;
5273 u_int16_t proto;
5274 u_int8_t mode;
5275 u_int32_t reqid;
5276 int error;
5277
5278 IPSEC_ASSERT(so != NULL, ("null socket"));
5279 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5280 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5281 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5282
5283 /* map satype to proto */
5284 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5285 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5286 __func__));
5287 return key_senderror(so, m, EINVAL);
5288 }
5289
5290 if (mhp->ext[SADB_EXT_SA] == NULL ||
5291 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5292 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5293 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5294 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5295 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5296 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5297 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5298 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5299 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5300 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5301 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5302 __func__));
5303 return key_senderror(so, m, EINVAL);
5304 }
5305 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5306 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5307 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5308 /* XXX need more */
5309 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5310 __func__));
5311 return key_senderror(so, m, EINVAL);
5312 }
5313 if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5314 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5315 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5316 } else {
5317 mode = IPSEC_MODE_ANY;
5318 reqid = 0;
5319 }
5320
5321 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5322 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5323 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5324
5325 /* XXX boundary check against sa_len */
5326 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5327
5328 /*
5329 * Make sure the port numbers are zero.
5330 * In case of NAT-T we will update them later if needed.
5331 */
5332 KEY_PORTTOSADDR(&saidx.src, 0);
5333 KEY_PORTTOSADDR(&saidx.dst, 0);
5334
5335#ifdef IPSEC_NAT_T
5336 /*
5337 * Handle NAT-T info if present.
5338 */
5339 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5340 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5341 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5342 struct sadb_x_nat_t_port *sport, *dport;
5343
5344 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5345 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5346 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5347 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5348 __func__));
5349 return key_senderror(so, m, EINVAL);
5350 }
5351
5352 type = (struct sadb_x_nat_t_type *)
5353 mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5354 sport = (struct sadb_x_nat_t_port *)
5355 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5356 dport = (struct sadb_x_nat_t_port *)
5357 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5358
5359 if (sport)
5360 KEY_PORTTOSADDR(&saidx.src,
5361 sport->sadb_x_nat_t_port_port);
5362 if (dport)
5363 KEY_PORTTOSADDR(&saidx.dst,
5364 dport->sadb_x_nat_t_port_port);
5365 } else {
5366 type = 0;
5367 }
5368 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5369 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5370 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5371 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5372 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5373 __func__));
5374 return key_senderror(so, m, EINVAL);
5375 }
5376 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5377 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5378 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5379 } else {
5380 iaddr = raddr = NULL;
5381 }
5382 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5383 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5384 ipseclog((LOG_DEBUG, "%s: invalid message\n",
5385 __func__));
5386 return key_senderror(so, m, EINVAL);
5387 }
5388 frag = (struct sadb_x_nat_t_frag *)
5389 mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5390 } else {
5391 frag = 0;
5392 }
5393#endif
5394
5395 /* get a SA header */
5396 if ((newsah = key_getsah(&saidx)) == NULL) {
5397 /* create a new SA header */
5398 if ((newsah = key_newsah(&saidx)) == NULL) {
5399 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
5400 return key_senderror(so, m, ENOBUFS);
5401 }
5402 }
5403
5404 /* set spidx if there */
5405 /* XXX rewrite */
5406 error = key_setident(newsah, m, mhp);
5407 if (error) {
5408 return key_senderror(so, m, error);
5409 }
5410
5411 /* create new SA entry. */
5412 /* We can create new SA only if SPI is differenct. */
5413 SAHTREE_LOCK();
5414 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5415 SAHTREE_UNLOCK();
5416 if (newsav != NULL) {
5417 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5418 return key_senderror(so, m, EEXIST);
5419 }
5420 newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5421 if (newsav == NULL) {
5422 return key_senderror(so, m, error);
5423 }
5424
5425#ifdef IPSEC_NAT_T
5426 /*
5427 * Handle more NAT-T info if present,
5428 * now that we have a sav to fill.
5429 */
5430 if (type)
5431 newsav->natt_type = type->sadb_x_nat_t_type_type;
5432
5433#if 0
5434 /*
5435 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5436 * We should actually check for a minimum MTU here, if we
5437 * want to support it in ip_output.
5438 */
5439 if (frag)
5440 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5441#endif
5442#endif
5443
5444 /* check SA values to be mature. */
5445 if ((error = key_mature(newsav)) != 0) {
5446 KEY_FREESAV(&newsav);
5447 return key_senderror(so, m, error);
5448 }
5449
5450 /*
5451 * don't call key_freesav() here, as we would like to keep the SA
5452 * in the database on success.
5453 */
5454
5455 {
5456 struct mbuf *n;
5457
5458 /* set msg buf from mhp */
5459 n = key_getmsgbuf_x1(m, mhp);
5460 if (n == NULL) {
5461 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5462 return key_senderror(so, m, ENOBUFS);
5463 }
5464
5465 m_freem(m);
5466 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5467 }
5468}
5469
5470/* m is retained */
5471static int
5472key_setident(sah, m, mhp)
5473 struct secashead *sah;
5474 struct mbuf *m;
5475 const struct sadb_msghdr *mhp;
5476{
5477 const struct sadb_ident *idsrc, *iddst;
5478 int idsrclen, iddstlen;
5479
5480 IPSEC_ASSERT(sah != NULL, ("null secashead"));
5481 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5482 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5483 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5484
5485 /* don't make buffer if not there */
5486 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5487 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5488 sah->idents = NULL;
5489 sah->identd = NULL;
5490 return 0;
5491 }
5492
5493 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5494 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5495 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5496 return EINVAL;
5497 }
5498
5499 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5500 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5501 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5502 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5503
5504 /* validity check */
5505 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5506 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5507 return EINVAL;
5508 }
5509
5510 switch (idsrc->sadb_ident_type) {
5511 case SADB_IDENTTYPE_PREFIX:
5512 case SADB_IDENTTYPE_FQDN:
5513 case SADB_IDENTTYPE_USERFQDN:
5514 default:
5515 /* XXX do nothing */
5516 sah->idents = NULL;
5517 sah->identd = NULL;
5518 return 0;
5519 }
5520
5521 /* make structure */
5522 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5523 if (sah->idents == NULL) {
5524 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5525 return ENOBUFS;
5526 }
5527 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5528 if (sah->identd == NULL) {
5529 free(sah->idents, M_IPSEC_MISC);
5530 sah->idents = NULL;
5531 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5532 return ENOBUFS;
5533 }
5534 sah->idents->type = idsrc->sadb_ident_type;
5535 sah->idents->id = idsrc->sadb_ident_id;
5536
5537 sah->identd->type = iddst->sadb_ident_type;
5538 sah->identd->id = iddst->sadb_ident_id;
5539
5540 return 0;
5541}
5542
5543/*
5544 * m will not be freed on return.
5545 * it is caller's responsibility to free the result.
5546 */
5547static struct mbuf *
5548key_getmsgbuf_x1(m, mhp)
5549 struct mbuf *m;
5550 const struct sadb_msghdr *mhp;
5551{
5552 struct mbuf *n;
5553
5554 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5555 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5556 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5557
5558 /* create new sadb_msg to reply. */
5559 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5560 SADB_EXT_SA, SADB_X_EXT_SA2,
5561 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5562 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5563 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5564 if (!n)
5565 return NULL;
5566
5567 if (n->m_len < sizeof(struct sadb_msg)) {
5568 n = m_pullup(n, sizeof(struct sadb_msg));
5569 if (n == NULL)
5570 return NULL;
5571 }
5572 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5573 mtod(n, struct sadb_msg *)->sadb_msg_len =
5574 PFKEY_UNIT64(n->m_pkthdr.len);
5575
5576 return n;
5577}
5578
5579static int key_delete_all __P((struct socket *, struct mbuf *,
5580 const struct sadb_msghdr *, u_int16_t));
5581
5582/*
5583 * SADB_DELETE processing
5584 * receive
5585 * <base, SA(*), address(SD)>
5586 * from the ikmpd, and set SADB_SASTATE_DEAD,
5587 * and send,
5588 * <base, SA(*), address(SD)>
5589 * to the ikmpd.
5590 *
5591 * m will always be freed.
5592 */
5593static int
5594key_delete(so, m, mhp)
5595 struct socket *so;
5596 struct mbuf *m;
5597 const struct sadb_msghdr *mhp;
5598{
5599 struct sadb_sa *sa0;
5600 struct sadb_address *src0, *dst0;
5601 struct secasindex saidx;
5602 struct secashead *sah;
5603 struct secasvar *sav = NULL;
5604 u_int16_t proto;
5605
5606 IPSEC_ASSERT(so != NULL, ("null socket"));
5607 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5608 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5609 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5610
5611 /* map satype to proto */
5612 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5613 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5614 __func__));
5615 return key_senderror(so, m, EINVAL);
5616 }
5617
5618 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5619 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5620 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5621 __func__));
5622 return key_senderror(so, m, EINVAL);
5623 }
5624
5625 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5626 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5627 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5628 __func__));
5629 return key_senderror(so, m, EINVAL);
5630 }
5631
5632 if (mhp->ext[SADB_EXT_SA] == NULL) {
5633 /*
5634 * Caller wants us to delete all non-LARVAL SAs
5635 * that match the src/dst. This is used during
5636 * IKE INITIAL-CONTACT.
5637 */
5638 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5639 return key_delete_all(so, m, mhp, proto);
5640 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5641 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5642 __func__));
5643 return key_senderror(so, m, EINVAL);
5644 }
5645
5646 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5647 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5648 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5649
5650 /* XXX boundary check against sa_len */
5651 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5652
5653 /*
5654 * Make sure the port numbers are zero.
5655 * In case of NAT-T we will update them later if needed.
5656 */
5657 KEY_PORTTOSADDR(&saidx.src, 0);
5658 KEY_PORTTOSADDR(&saidx.dst, 0);
5659
5660#ifdef IPSEC_NAT_T
5661 /*
5662 * Handle NAT-T info if present.
5663 */
5664 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5665 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5666 struct sadb_x_nat_t_port *sport, *dport;
5667
5668 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5669 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5670 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5671 __func__));
5672 return key_senderror(so, m, EINVAL);
5673 }
5674
5675 sport = (struct sadb_x_nat_t_port *)
5676 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5677 dport = (struct sadb_x_nat_t_port *)
5678 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5679
5680 if (sport)
5681 KEY_PORTTOSADDR(&saidx.src,
5682 sport->sadb_x_nat_t_port_port);
5683 if (dport)
5684 KEY_PORTTOSADDR(&saidx.dst,
5685 dport->sadb_x_nat_t_port_port);
5686 }
5687#endif
5688
5689 /* get a SA header */
5690 SAHTREE_LOCK();
5691 LIST_FOREACH(sah, &V_sahtree, chain) {
5692 if (sah->state == SADB_SASTATE_DEAD)
5693 continue;
5694 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5695 continue;
5696
5697 /* get a SA with SPI. */
5698 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5699 if (sav)
5700 break;
5701 }
5702 if (sah == NULL) {
5703 SAHTREE_UNLOCK();
5704 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5705 return key_senderror(so, m, ENOENT);
5706 }
5707
5708 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5709 KEY_FREESAV(&sav);
5710 SAHTREE_UNLOCK();
5711
5712 {
5713 struct mbuf *n;
5714 struct sadb_msg *newmsg;
5715
5716 /* create new sadb_msg to reply. */
5717 /* XXX-BZ NAT-T extensions? */
5718 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5719 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5720 if (!n)
5721 return key_senderror(so, m, ENOBUFS);
5722
5723 if (n->m_len < sizeof(struct sadb_msg)) {
5724 n = m_pullup(n, sizeof(struct sadb_msg));
5725 if (n == NULL)
5726 return key_senderror(so, m, ENOBUFS);
5727 }
5728 newmsg = mtod(n, struct sadb_msg *);
5729 newmsg->sadb_msg_errno = 0;
5730 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5731
5732 m_freem(m);
5733 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5734 }
5735}
5736
5737/*
5738 * delete all SAs for src/dst. Called from key_delete().
5739 */
5740static int
5741key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp,
5742 u_int16_t proto)
5743{
5744 struct sadb_address *src0, *dst0;
5745 struct secasindex saidx;
5746 struct secashead *sah;
5747 struct secasvar *sav, *nextsav;
5748 u_int stateidx, state;
5749
5750 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5751 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5752
5753 /* XXX boundary check against sa_len */
5754 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5755
5756 /*
5757 * Make sure the port numbers are zero.
5758 * In case of NAT-T we will update them later if needed.
5759 */
5760 KEY_PORTTOSADDR(&saidx.src, 0);
5761 KEY_PORTTOSADDR(&saidx.dst, 0);
5762
5763#ifdef IPSEC_NAT_T
5764 /*
5765 * Handle NAT-T info if present.
5766 */
5767
5768 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5769 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5770 struct sadb_x_nat_t_port *sport, *dport;
5771
5772 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5773 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5774 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5775 __func__));
5776 return key_senderror(so, m, EINVAL);
5777 }
5778
5779 sport = (struct sadb_x_nat_t_port *)
5780 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5781 dport = (struct sadb_x_nat_t_port *)
5782 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5783
5784 if (sport)
5785 KEY_PORTTOSADDR(&saidx.src,
5786 sport->sadb_x_nat_t_port_port);
5787 if (dport)
5788 KEY_PORTTOSADDR(&saidx.dst,
5789 dport->sadb_x_nat_t_port_port);
5790 }
5791#endif
5792
5793 SAHTREE_LOCK();
5794 LIST_FOREACH(sah, &V_sahtree, chain) {
5795 if (sah->state == SADB_SASTATE_DEAD)
5796 continue;
5797 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5798 continue;
5799
5800 /* Delete all non-LARVAL SAs. */
5801 for (stateidx = 0;
5802 stateidx < _ARRAYLEN(saorder_state_alive);
5803 stateidx++) {
5804 state = saorder_state_alive[stateidx];
5805 if (state == SADB_SASTATE_LARVAL)
5806 continue;
5807 for (sav = LIST_FIRST(&sah->savtree[state]);
5808 sav != NULL; sav = nextsav) {
5809 nextsav = LIST_NEXT(sav, chain);
5810 /* sanity check */
5811 if (sav->state != state) {
5812 ipseclog((LOG_DEBUG, "%s: invalid "
5813 "sav->state (queue %d SA %d)\n",
5814 __func__, state, sav->state));
5815 continue;
5816 }
5817
5818 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5819 KEY_FREESAV(&sav);
5820 }
5821 }
5822 }
5823 SAHTREE_UNLOCK();
5824 {
5825 struct mbuf *n;
5826 struct sadb_msg *newmsg;
5827
5828 /* create new sadb_msg to reply. */
5829 /* XXX-BZ NAT-T extensions? */
5830 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5831 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5832 if (!n)
5833 return key_senderror(so, m, ENOBUFS);
5834
5835 if (n->m_len < sizeof(struct sadb_msg)) {
5836 n = m_pullup(n, sizeof(struct sadb_msg));
5837 if (n == NULL)
5838 return key_senderror(so, m, ENOBUFS);
5839 }
5840 newmsg = mtod(n, struct sadb_msg *);
5841 newmsg->sadb_msg_errno = 0;
5842 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5843
5844 m_freem(m);
5845 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5846 }
5847}
5848
5849/*
5850 * SADB_GET processing
5851 * receive
5852 * <base, SA(*), address(SD)>
5853 * from the ikmpd, and get a SP and a SA to respond,
5854 * and send,
5855 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5856 * (identity(SD),) (sensitivity)>
5857 * to the ikmpd.
5858 *
5859 * m will always be freed.
5860 */
5861static int
5862key_get(so, m, mhp)
5863 struct socket *so;
5864 struct mbuf *m;
5865 const struct sadb_msghdr *mhp;
5866{
5867 struct sadb_sa *sa0;
5868 struct sadb_address *src0, *dst0;
5869 struct secasindex saidx;
5870 struct secashead *sah;
5871 struct secasvar *sav = NULL;
5872 u_int16_t proto;
5873
5874 IPSEC_ASSERT(so != NULL, ("null socket"));
5875 IPSEC_ASSERT(m != NULL, ("null mbuf"));
5876 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5877 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5878
5879 /* map satype to proto */
5880 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5881 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5882 __func__));
5883 return key_senderror(so, m, EINVAL);
5884 }
5885
5886 if (mhp->ext[SADB_EXT_SA] == NULL ||
5887 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5888 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5889 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5890 __func__));
5891 return key_senderror(so, m, EINVAL);
5892 }
5893 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5894 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5895 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5896 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5897 __func__));
5898 return key_senderror(so, m, EINVAL);
5899 }
5900
5901 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5902 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5903 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5904
5905 /* XXX boundary check against sa_len */
5906 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5907
5908 /*
5909 * Make sure the port numbers are zero.
5910 * In case of NAT-T we will update them later if needed.
5911 */
5912 KEY_PORTTOSADDR(&saidx.src, 0);
5913 KEY_PORTTOSADDR(&saidx.dst, 0);
5914
5915#ifdef IPSEC_NAT_T
5916 /*
5917 * Handle NAT-T info if present.
5918 */
5919
5920 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5921 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5922 struct sadb_x_nat_t_port *sport, *dport;
5923
5924 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5925 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5926 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5927 __func__));
5928 return key_senderror(so, m, EINVAL);
5929 }
5930
5931 sport = (struct sadb_x_nat_t_port *)
5932 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5933 dport = (struct sadb_x_nat_t_port *)
5934 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5935
5936 if (sport)
5937 KEY_PORTTOSADDR(&saidx.src,
5938 sport->sadb_x_nat_t_port_port);
5939 if (dport)
5940 KEY_PORTTOSADDR(&saidx.dst,
5941 dport->sadb_x_nat_t_port_port);
5942 }
5943#endif
5944
5945 /* get a SA header */
5946 SAHTREE_LOCK();
5947 LIST_FOREACH(sah, &V_sahtree, chain) {
5948 if (sah->state == SADB_SASTATE_DEAD)
5949 continue;
5950 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5951 continue;
5952
5953 /* get a SA with SPI. */
5954 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5955 if (sav)
5956 break;
5957 }
5958 SAHTREE_UNLOCK();
5959 if (sah == NULL) {
5960 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5961 return key_senderror(so, m, ENOENT);
5962 }
5963
5964 {
5965 struct mbuf *n;
5966 u_int8_t satype;
5967
5968 /* map proto to satype */
5969 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5970 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5971 __func__));
5972 return key_senderror(so, m, EINVAL);
5973 }
5974
5975 /* create new sadb_msg to reply. */
5976 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5977 mhp->msg->sadb_msg_pid);
5978 if (!n)
5979 return key_senderror(so, m, ENOBUFS);
5980
5981 m_freem(m);
5982 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5983 }
5984}
5985
5986/* XXX make it sysctl-configurable? */
5987static void
5988key_getcomb_setlifetime(comb)
5989 struct sadb_comb *comb;
5990{
5991
5992 comb->sadb_comb_soft_allocations = 1;
5993 comb->sadb_comb_hard_allocations = 1;
5994 comb->sadb_comb_soft_bytes = 0;
5995 comb->sadb_comb_hard_bytes = 0;
5996 comb->sadb_comb_hard_addtime = 86400; /* 1 day */
5997 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5998 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
5999 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6000}
6001
6002/*
6003 * XXX reorder combinations by preference
6004 * XXX no idea if the user wants ESP authentication or not
6005 */
6006static struct mbuf *
6007key_getcomb_esp()
6008{
6009 struct sadb_comb *comb;
6010 struct enc_xform *algo;
6011 struct mbuf *result = NULL, *m, *n;
6012 int encmin;
6013 int i, off, o;
6014 int totlen;
6015 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6016
6017 m = NULL;
6018 for (i = 1; i <= SADB_EALG_MAX; i++) {
6019 algo = esp_algorithm_lookup(i);
6020 if (algo == NULL)
6021 continue;
6022
6023 /* discard algorithms with key size smaller than system min */
6024 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
6025 continue;
6026 if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
6027 encmin = V_ipsec_esp_keymin;
6028 else
6029 encmin = _BITS(algo->minkey);
6030
6031 if (V_ipsec_esp_auth)
6032 m = key_getcomb_ah();
6033 else {
6034 IPSEC_ASSERT(l <= MLEN,
6035 ("l=%u > MLEN=%lu", l, (u_long) MLEN));
6036 MGET(m, M_DONTWAIT, MT_DATA);
6037 if (m) {
6038 M_ALIGN(m, l);
6039 m->m_len = l;
6040 m->m_next = NULL;
6041 bzero(mtod(m, caddr_t), m->m_len);
6042 }
6043 }
6044 if (!m)
6045 goto fail;
6046
6047 totlen = 0;
6048 for (n = m; n; n = n->m_next)
6049 totlen += n->m_len;
6050 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
6051
6052 for (off = 0; off < totlen; off += l) {
6053 n = m_pulldown(m, off, l, &o);
6054 if (!n) {
6055 /* m is already freed */
6056 goto fail;
6057 }
6058 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
6059 bzero(comb, sizeof(*comb));
6060 key_getcomb_setlifetime(comb);
6061 comb->sadb_comb_encrypt = i;
6062 comb->sadb_comb_encrypt_minbits = encmin;
6063 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6064 }
6065
6066 if (!result)
6067 result = m;
6068 else
6069 m_cat(result, m);
6070 }
6071
6072 return result;
6073
6074 fail:
6075 if (result)
6076 m_freem(result);
6077 return NULL;
6078}
6079
6080static void
6081key_getsizes_ah(
6082 const struct auth_hash *ah,
6083 int alg,
6084 u_int16_t* min,
6085 u_int16_t* max)
6086{
6087
6088 *min = *max = ah->keysize;
6089 if (ah->keysize == 0) {
6090 /*
6091 * Transform takes arbitrary key size but algorithm
6092 * key size is restricted. Enforce this here.
6093 */
6094 switch (alg) {
6095 case SADB_X_AALG_MD5: *min = *max = 16; break;
6096 case SADB_X_AALG_SHA: *min = *max = 20; break;
6097 case SADB_X_AALG_NULL: *min = 1; *max = 256; break;
6098 case SADB_X_AALG_SHA2_256: *min = *max = 32; break;
6099 case SADB_X_AALG_SHA2_384: *min = *max = 48; break;
6100 case SADB_X_AALG_SHA2_512: *min = *max = 64; break;
6101 default:
6102 DPRINTF(("%s: unknown AH algorithm %u\n",
6103 __func__, alg));
6104 break;
6105 }
6106 }
6107}
6108
6109/*
6110 * XXX reorder combinations by preference
6111 */
6112static struct mbuf *
6113key_getcomb_ah()
6114{
6115 struct sadb_comb *comb;
6116 struct auth_hash *algo;
6117 struct mbuf *m;
6118 u_int16_t minkeysize, maxkeysize;
6119 int i;
6120 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6121
6122 m = NULL;
6123 for (i = 1; i <= SADB_AALG_MAX; i++) {
6124#if 1
6125 /* we prefer HMAC algorithms, not old algorithms */
6126 if (i != SADB_AALG_SHA1HMAC &&
6127 i != SADB_AALG_MD5HMAC &&
6128 i != SADB_X_AALG_SHA2_256 &&
6129 i != SADB_X_AALG_SHA2_384 &&
6130 i != SADB_X_AALG_SHA2_512)
6131 continue;
6132#endif
6133 algo = ah_algorithm_lookup(i);
6134 if (!algo)
6135 continue;
6136 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6137 /* discard algorithms with key size smaller than system min */
6138 if (_BITS(minkeysize) < V_ipsec_ah_keymin)
6139 continue;
6140
6141 if (!m) {
6142 IPSEC_ASSERT(l <= MLEN,
6143 ("l=%u > MLEN=%lu", l, (u_long) MLEN));
6144 MGET(m, M_DONTWAIT, MT_DATA);
6145 if (m) {
6146 M_ALIGN(m, l);
6147 m->m_len = l;
6148 m->m_next = NULL;
6149 }
6150 } else
6151 M_PREPEND(m, l, M_DONTWAIT);
6152 if (!m)
6153 return NULL;
6154
6155 comb = mtod(m, struct sadb_comb *);
6156 bzero(comb, sizeof(*comb));
6157 key_getcomb_setlifetime(comb);
6158 comb->sadb_comb_auth = i;
6159 comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6160 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6161 }
6162
6163 return m;
6164}
6165
6166/*
6167 * not really an official behavior. discussed in pf_key@inner.net in Sep2000.
6168 * XXX reorder combinations by preference
6169 */
6170static struct mbuf *
6171key_getcomb_ipcomp()
6172{
6173 struct sadb_comb *comb;
6174 struct comp_algo *algo;
6175 struct mbuf *m;
6176 int i;
6177 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6178
6179 m = NULL;
6180 for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6181 algo = ipcomp_algorithm_lookup(i);
6182 if (!algo)
6183 continue;
6184
6185 if (!m) {
6186 IPSEC_ASSERT(l <= MLEN,
6187 ("l=%u > MLEN=%lu", l, (u_long) MLEN));
6188 MGET(m, M_DONTWAIT, MT_DATA);
6189 if (m) {
6190 M_ALIGN(m, l);
6191 m->m_len = l;
6192 m->m_next = NULL;
6193 }
6194 } else
6195 M_PREPEND(m, l, M_DONTWAIT);
6196 if (!m)
6197 return NULL;
6198
6199 comb = mtod(m, struct sadb_comb *);
6200 bzero(comb, sizeof(*comb));
6201 key_getcomb_setlifetime(comb);
6202 comb->sadb_comb_encrypt = i;
6203 /* what should we set into sadb_comb_*_{min,max}bits? */
6204 }
6205
6206 return m;
6207}
6208
6209/*
6210 * XXX no way to pass mode (transport/tunnel) to userland
6211 * XXX replay checking?
6212 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6213 */
6214static struct mbuf *
6215key_getprop(saidx)
6216 const struct secasindex *saidx;
6217{
6218 struct sadb_prop *prop;
6219 struct mbuf *m, *n;
6220 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6221 int totlen;
6222
6223 switch (saidx->proto) {
6224 case IPPROTO_ESP:
6225 m = key_getcomb_esp();
6226 break;
6227 case IPPROTO_AH:
6228 m = key_getcomb_ah();
6229 break;
6230 case IPPROTO_IPCOMP:
6231 m = key_getcomb_ipcomp();
6232 break;
6233 default:
6234 return NULL;
6235 }
6236
6237 if (!m)
6238 return NULL;
6239 M_PREPEND(m, l, M_DONTWAIT);
6240 if (!m)
6241 return NULL;
6242
6243 totlen = 0;
6244 for (n = m; n; n = n->m_next)
6245 totlen += n->m_len;
6246
6247 prop = mtod(m, struct sadb_prop *);
6248 bzero(prop, sizeof(*prop));
6249 prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6250 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6251 prop->sadb_prop_replay = 32; /* XXX */
6252
6253 return m;
6254}
6255
6256/*
6257 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6258 * send
6259 * <base, SA, address(SD), (address(P)), x_policy,
6260 * (identity(SD),) (sensitivity,) proposal>
6261 * to KMD, and expect to receive
6262 * <base> with SADB_ACQUIRE if error occured,
6263 * or
6264 * <base, src address, dst address, (SPI range)> with SADB_GETSPI
6265 * from KMD by PF_KEY.
6266 *
6267 * XXX x_policy is outside of RFC2367 (KAME extension).
6268 * XXX sensitivity is not supported.
6269 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6270 * see comment for key_getcomb_ipcomp().
6271 *
6272 * OUT:
6273 * 0 : succeed
6274 * others: error number
6275 */
6276static int
6277key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6278{
6279 struct mbuf *result = NULL, *m;
6280 struct secacq *newacq;
6281 u_int8_t satype;
6282 int error = -1;
6283 u_int32_t seq;
6284
6285 IPSEC_ASSERT(saidx != NULL, ("null saidx"));
6286 satype = key_proto2satype(saidx->proto);
6287 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
6288
6289 /*
6290 * We never do anything about acquirng SA. There is anather
6291 * solution that kernel blocks to send SADB_ACQUIRE message until
6292 * getting something message from IKEd. In later case, to be
6293 * managed with ACQUIRING list.
6294 */
6295 /* Get an entry to check whether sending message or not. */
6296 if ((newacq = key_getacq(saidx)) != NULL) {
6297 if (V_key_blockacq_count < newacq->count) {
6298 /* reset counter and do send message. */
6299 newacq->count = 0;
6300 } else {
6301 /* increment counter and do nothing. */
6302 newacq->count++;
6303 return 0;
6304 }
6305 } else {
6306 /* make new entry for blocking to send SADB_ACQUIRE. */
6307 if ((newacq = key_newacq(saidx)) == NULL)
6308 return ENOBUFS;
6309 }
6310
6311
6312 seq = newacq->seq;
6313 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6314 if (!m) {
6315 error = ENOBUFS;
6316 goto fail;
6317 }
6318 result = m;
6319
6320 /*
6321 * No SADB_X_EXT_NAT_T_* here: we do not know
6322 * anything related to NAT-T at this time.
6323 */
6324
6325 /* set sadb_address for saidx's. */
6326 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6327 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6328 if (!m) {
6329 error = ENOBUFS;
6330 goto fail;
6331 }
6332 m_cat(result, m);
6333
6334 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6335 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6336 if (!m) {
6337 error = ENOBUFS;
6338 goto fail;
6339 }
6340 m_cat(result, m);
6341
6342 /* XXX proxy address (optional) */
6343
6344 /* set sadb_x_policy */
6345 if (sp) {
6346 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6347 if (!m) {
6348 error = ENOBUFS;
6349 goto fail;
6350 }
6351 m_cat(result, m);
6352 }
6353
6354 /* XXX identity (optional) */
6355#if 0
6356 if (idexttype && fqdn) {
6357 /* create identity extension (FQDN) */
6358 struct sadb_ident *id;
6359 int fqdnlen;
6360
6361 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
6362 id = (struct sadb_ident *)p;
6363 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6364 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6365 id->sadb_ident_exttype = idexttype;
6366 id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6367 bcopy(fqdn, id + 1, fqdnlen);
6368 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6369 }
6370
6371 if (idexttype) {
6372 /* create identity extension (USERFQDN) */
6373 struct sadb_ident *id;
6374 int userfqdnlen;
6375
6376 if (userfqdn) {
6377 /* +1 for terminating-NUL */
6378 userfqdnlen = strlen(userfqdn) + 1;
6379 } else
6380 userfqdnlen = 0;
6381 id = (struct sadb_ident *)p;
6382 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6383 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6384 id->sadb_ident_exttype = idexttype;
6385 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6386 /* XXX is it correct? */
6387 if (curproc && curproc->p_cred)
6388 id->sadb_ident_id = curproc->p_cred->p_ruid;
6389 if (userfqdn && userfqdnlen)
6390 bcopy(userfqdn, id + 1, userfqdnlen);
6391 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6392 }
6393#endif
6394
6395 /* XXX sensitivity (optional) */
6396
6397 /* create proposal/combination extension */
6398 m = key_getprop(saidx);
6399#if 0
6400 /*
6401 * spec conformant: always attach proposal/combination extension,
6402 * the problem is that we have no way to attach it for ipcomp,
6403 * due to the way sadb_comb is declared in RFC2367.
6404 */
6405 if (!m) {
6406 error = ENOBUFS;
6407 goto fail;
6408 }
6409 m_cat(result, m);
6410#else
6411 /*
6412 * outside of spec; make proposal/combination extension optional.
6413 */
6414 if (m)
6415 m_cat(result, m);
6416#endif
6417
6418 if ((result->m_flags & M_PKTHDR) == 0) {
6419 error = EINVAL;
6420 goto fail;
6421 }
6422
6423 if (result->m_len < sizeof(struct sadb_msg)) {
6424 result = m_pullup(result, sizeof(struct sadb_msg));
6425 if (result == NULL) {
6426 error = ENOBUFS;
6427 goto fail;
6428 }
6429 }
6430
6431 result->m_pkthdr.len = 0;
6432 for (m = result; m; m = m->m_next)
6433 result->m_pkthdr.len += m->m_len;
6434
6435 mtod(result, struct sadb_msg *)->sadb_msg_len =
6436 PFKEY_UNIT64(result->m_pkthdr.len);
6437
6438 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6439
6440 fail:
6441 if (result)
6442 m_freem(result);
6443 return error;
6444}
6445
6446static struct secacq *
6447key_newacq(const struct secasindex *saidx)
6448{
6449 struct secacq *newacq;
6450
6451 /* get new entry */
6452 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6453 if (newacq == NULL) {
6454 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6455 return NULL;
6456 }
6457
6458 /* copy secindex */
6459 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
6460 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
6461 newacq->created = time_second;
6462 newacq->count = 0;
6463
6464 /* add to acqtree */
6465 ACQ_LOCK();
6466 LIST_INSERT_HEAD(&V_acqtree, newacq, chain);
6467 ACQ_UNLOCK();
6468
6469 return newacq;
6470}
6471
6472static struct secacq *
6473key_getacq(const struct secasindex *saidx)
6474{
6475 struct secacq *acq;
6476
6477 ACQ_LOCK();
6478 LIST_FOREACH(acq, &V_acqtree, chain) {
6479 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6480 break;
6481 }
6482 ACQ_UNLOCK();
6483
6484 return acq;
6485}
6486
6487static struct secacq *
6488key_getacqbyseq(seq)
6489 u_int32_t seq;
6490{
6491 struct secacq *acq;
6492
6493 ACQ_LOCK();
6494 LIST_FOREACH(acq, &V_acqtree, chain) {
6495 if (acq->seq == seq)
6496 break;
6497 }
6498 ACQ_UNLOCK();
6499
6500 return acq;
6501}
6502
6503static struct secspacq *
6504key_newspacq(spidx)
6505 struct secpolicyindex *spidx;
6506{
6507 struct secspacq *acq;
6508
6509 /* get new entry */
6510 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6511 if (acq == NULL) {
6512 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6513 return NULL;
6514 }
6515
6516 /* copy secindex */
6517 bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
6518 acq->created = time_second;
6519 acq->count = 0;
6520
6521 /* add to spacqtree */
6522 SPACQ_LOCK();
6523 LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
6524 SPACQ_UNLOCK();
6525
6526 return acq;
6527}
6528
6529static struct secspacq *
6530key_getspacq(spidx)
6531 struct secpolicyindex *spidx;
6532{
6533 struct secspacq *acq;
6534
6535 SPACQ_LOCK();
6536 LIST_FOREACH(acq, &V_spacqtree, chain) {
6537 if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
6538 /* NB: return holding spacq_lock */
6539 return acq;
6540 }
6541 }
6542 SPACQ_UNLOCK();
6543
6544 return NULL;
6545}
6546
6547/*
6548 * SADB_ACQUIRE processing,
6549 * in first situation, is receiving
6550 * <base>
6551 * from the ikmpd, and clear sequence of its secasvar entry.
6552 *
6553 * In second situation, is receiving
6554 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6555 * from a user land process, and return
6556 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6557 * to the socket.
6558 *
6559 * m will always be freed.
6560 */
6561static int
6562key_acquire2(so, m, mhp)
6563 struct socket *so;
6564 struct mbuf *m;
6565 const struct sadb_msghdr *mhp;
6566{
6567 const struct sadb_address *src0, *dst0;
6568 struct secasindex saidx;
6569 struct secashead *sah;
6570 u_int16_t proto;
6571 int error;
6572
6573 IPSEC_ASSERT(so != NULL, ("null socket"));
6574 IPSEC_ASSERT(m != NULL, ("null mbuf"));
6575 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6576 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6577
6578 /*
6579 * Error message from KMd.
6580 * We assume that if error was occured in IKEd, the length of PFKEY
6581 * message is equal to the size of sadb_msg structure.
6582 * We do not raise error even if error occured in this function.
6583 */
6584 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6585 struct secacq *acq;
6586
6587 /* check sequence number */
6588 if (mhp->msg->sadb_msg_seq == 0) {
6589 ipseclog((LOG_DEBUG, "%s: must specify sequence "
6590 "number.\n", __func__));
6591 m_freem(m);
6592 return 0;
6593 }
6594
6595 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6596 /*
6597 * the specified larval SA is already gone, or we got
6598 * a bogus sequence number. we can silently ignore it.
6599 */
6600 m_freem(m);
6601 return 0;
6602 }
6603
6604 /* reset acq counter in order to deletion by timehander. */
6605 acq->created = time_second;
6606 acq->count = 0;
6607 m_freem(m);
6608 return 0;
6609 }
6610
6611 /*
6612 * This message is from user land.
6613 */
6614
6615 /* map satype to proto */
6616 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6617 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6618 __func__));
6619 return key_senderror(so, m, EINVAL);
6620 }
6621
6622 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6623 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6624 mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6625 /* error */
6626 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6627 __func__));
6628 return key_senderror(so, m, EINVAL);
6629 }
6630 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6631 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6632 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6633 /* error */
6634 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6635 __func__));
6636 return key_senderror(so, m, EINVAL);
6637 }
6638
6639 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6640 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6641
6642 /* XXX boundary check against sa_len */
6643 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6644
6645 /*
6646 * Make sure the port numbers are zero.
6647 * In case of NAT-T we will update them later if needed.
6648 */
6649 KEY_PORTTOSADDR(&saidx.src, 0);
6650 KEY_PORTTOSADDR(&saidx.dst, 0);
6651
6652#ifndef IPSEC_NAT_T
6653 /*
6654 * Handle NAT-T info if present.
6655 */
6656
6657 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
6658 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
6659 struct sadb_x_nat_t_port *sport, *dport;
6660
6661 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
6662 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
6663 ipseclog((LOG_DEBUG, "%s: invalid message.\n",
6664 __func__));
6665 return key_senderror(so, m, EINVAL);
6666 }
6667
6668 sport = (struct sadb_x_nat_t_port *)
6669 mhp->ext[SADB_X_EXT_NAT_T_SPORT];
6670 dport = (struct sadb_x_nat_t_port *)
6671 mhp->ext[SADB_X_EXT_NAT_T_DPORT];
6672
6673 if (sport)
6674 KEY_PORTTOSADDR(&saidx.src,
6675 sport->sadb_x_nat_t_port_port);
6676 if (dport)
6677 KEY_PORTTOSADDR(&saidx.dst,
6678 dport->sadb_x_nat_t_port_port);
6679 }
6680#endif
6681
6682 /* get a SA index */
6683 SAHTREE_LOCK();
6684 LIST_FOREACH(sah, &V_sahtree, chain) {
6685 if (sah->state == SADB_SASTATE_DEAD)
6686 continue;
6687 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6688 break;
6689 }
6690 SAHTREE_UNLOCK();
6691 if (sah != NULL) {
6692 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
6693 return key_senderror(so, m, EEXIST);
6694 }
6695
6696 error = key_acquire(&saidx, NULL);
6697 if (error != 0) {
6698 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
6699 __func__, mhp->msg->sadb_msg_errno));
6700 return key_senderror(so, m, error);
6701 }
6702
6703 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6704}
6705
6706/*
6707 * SADB_REGISTER processing.
6708 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6709 * receive
6710 * <base>
6711 * from the ikmpd, and register a socket to send PF_KEY messages,
6712 * and send
6713 * <base, supported>
6714 * to KMD by PF_KEY.
6715 * If socket is detached, must free from regnode.
6716 *
6717 * m will always be freed.
6718 */
6719static int
6720key_register(so, m, mhp)
6721 struct socket *so;
6722 struct mbuf *m;
6723 const struct sadb_msghdr *mhp;
6724{
6725 struct secreg *reg, *newreg = 0;
6726
6727 IPSEC_ASSERT(so != NULL, ("null socket"));
6728 IPSEC_ASSERT(m != NULL, ("null mbuf"));
6729 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6730 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6731
6732 /* check for invalid register message */
6733 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
6734 return key_senderror(so, m, EINVAL);
6735
6736 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6737 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6738 goto setmsg;
6739
6740 /* check whether existing or not */
6741 REGTREE_LOCK();
6742 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
6743 if (reg->so == so) {
6744 REGTREE_UNLOCK();
6745 ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6746 __func__));
6747 return key_senderror(so, m, EEXIST);
6748 }
6749 }
6750
6751 /* create regnode */
6752 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6753 if (newreg == NULL) {
6754 REGTREE_UNLOCK();
6755 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6756 return key_senderror(so, m, ENOBUFS);
6757 }
6758
6759 newreg->so = so;
6760 ((struct keycb *)sotorawcb(so))->kp_registered++;
6761
6762 /* add regnode to regtree. */
6763 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6764 REGTREE_UNLOCK();
6765
6766 setmsg:
6767 {
6768 struct mbuf *n;
6769 struct sadb_msg *newmsg;
6770 struct sadb_supported *sup;
6771 u_int len, alen, elen;
6772 int off;
6773 int i;
6774 struct sadb_alg *alg;
6775
6776 /* create new sadb_msg to reply. */
6777 alen = 0;
6778 for (i = 1; i <= SADB_AALG_MAX; i++) {
6779 if (ah_algorithm_lookup(i))
6780 alen += sizeof(struct sadb_alg);
6781 }
6782 if (alen)
6783 alen += sizeof(struct sadb_supported);
6784 elen = 0;
6785 for (i = 1; i <= SADB_EALG_MAX; i++) {
6786 if (esp_algorithm_lookup(i))
6787 elen += sizeof(struct sadb_alg);
6788 }
6789 if (elen)
6790 elen += sizeof(struct sadb_supported);
6791
6792 len = sizeof(struct sadb_msg) + alen + elen;
6793
6794 if (len > MCLBYTES)
6795 return key_senderror(so, m, ENOBUFS);
6796
6797 MGETHDR(n, M_DONTWAIT, MT_DATA);
6798 if (len > MHLEN) {
6799 MCLGET(n, M_DONTWAIT);
6800 if ((n->m_flags & M_EXT) == 0) {
6801 m_freem(n);
6802 n = NULL;
6803 }
6804 }
6805 if (!n)
6806 return key_senderror(so, m, ENOBUFS);
6807
6808 n->m_pkthdr.len = n->m_len = len;
6809 n->m_next = NULL;
6810 off = 0;
6811
6812 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6813 newmsg = mtod(n, struct sadb_msg *);
6814 newmsg->sadb_msg_errno = 0;
6815 newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6816 off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6817
6818 /* for authentication algorithm */
6819 if (alen) {
6820 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6821 sup->sadb_supported_len = PFKEY_UNIT64(alen);
6822 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6823 off += PFKEY_ALIGN8(sizeof(*sup));
6824
6825 for (i = 1; i <= SADB_AALG_MAX; i++) {
6826 struct auth_hash *aalgo;
6827 u_int16_t minkeysize, maxkeysize;
6828
6829 aalgo = ah_algorithm_lookup(i);
6830 if (!aalgo)
6831 continue;
6832 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6833 alg->sadb_alg_id = i;
6834 alg->sadb_alg_ivlen = 0;
6835 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6836 alg->sadb_alg_minbits = _BITS(minkeysize);
6837 alg->sadb_alg_maxbits = _BITS(maxkeysize);
6838 off += PFKEY_ALIGN8(sizeof(*alg));
6839 }
6840 }
6841
6842 /* for encryption algorithm */
6843 if (elen) {
6844 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6845 sup->sadb_supported_len = PFKEY_UNIT64(elen);
6846 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6847 off += PFKEY_ALIGN8(sizeof(*sup));
6848
6849 for (i = 1; i <= SADB_EALG_MAX; i++) {
6850 struct enc_xform *ealgo;
6851
6852 ealgo = esp_algorithm_lookup(i);
6853 if (!ealgo)
6854 continue;
6855 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6856 alg->sadb_alg_id = i;
6857 alg->sadb_alg_ivlen = ealgo->blocksize;
6858 alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6859 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6860 off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6861 }
6862 }
6863
6864 IPSEC_ASSERT(off == len,
6865 ("length assumption failed (off %u len %u)", off, len));
6866
6867 m_freem(m);
6868 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6869 }
6870}
6871
6872/*
6873 * free secreg entry registered.
6874 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6875 */
6876void
6877key_freereg(struct socket *so)
6878{
6879 struct secreg *reg;
6880 int i;
6881
6882 IPSEC_ASSERT(so != NULL, ("NULL so"));
6883
6884 /*
6885 * check whether existing or not.
6886 * check all type of SA, because there is a potential that
6887 * one socket is registered to multiple type of SA.
6888 */
6889 REGTREE_LOCK();
6890 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6891 LIST_FOREACH(reg, &V_regtree[i], chain) {
6892 if (reg->so == so && __LIST_CHAINED(reg)) {
6893 LIST_REMOVE(reg, chain);
6894 free(reg, M_IPSEC_SAR);
6895 break;
6896 }
6897 }
6898 }
6899 REGTREE_UNLOCK();
6900}
6901
6902/*
6903 * SADB_EXPIRE processing
6904 * send
6905 * <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6906 * to KMD by PF_KEY.
6907 * NOTE: We send only soft lifetime extension.
6908 *
6909 * OUT: 0 : succeed
6910 * others : error number
6911 */
6912static int
6913key_expire(struct secasvar *sav)
6914{
6915 int s;
6916 int satype;
6917 struct mbuf *result = NULL, *m;
6918 int len;
6919 int error = -1;
6920 struct sadb_lifetime *lt;
6921
6915 int satype;
6916 struct mbuf *result = NULL, *m;
6917 int len;
6918 int error = -1;
6919 struct sadb_lifetime *lt;
6920
6922 /* XXX: Why do we lock ? */
6923 s = splnet(); /*called from softclock()*/
6924
6925 IPSEC_ASSERT (sav != NULL, ("null sav"));
6926 IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6927
6928 /* set msg header */
6929 satype = key_proto2satype(sav->sah->saidx.proto);
6930 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6931 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6932 if (!m) {
6933 error = ENOBUFS;
6934 goto fail;
6935 }
6936 result = m;
6937
6938 /* create SA extension */
6939 m = key_setsadbsa(sav);
6940 if (!m) {
6941 error = ENOBUFS;
6942 goto fail;
6943 }
6944 m_cat(result, m);
6945
6946 /* create SA extension */
6947 m = key_setsadbxsa2(sav->sah->saidx.mode,
6948 sav->replay ? sav->replay->count : 0,
6949 sav->sah->saidx.reqid);
6950 if (!m) {
6951 error = ENOBUFS;
6952 goto fail;
6953 }
6954 m_cat(result, m);
6955
6956 /* create lifetime extension (current and soft) */
6957 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6958 m = key_alloc_mbuf(len);
6959 if (!m || m->m_next) { /*XXX*/
6960 if (m)
6961 m_freem(m);
6962 error = ENOBUFS;
6963 goto fail;
6964 }
6965 bzero(mtod(m, caddr_t), len);
6966 lt = mtod(m, struct sadb_lifetime *);
6967 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6968 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6969 lt->sadb_lifetime_allocations = sav->lft_c->allocations;
6970 lt->sadb_lifetime_bytes = sav->lft_c->bytes;
6971 lt->sadb_lifetime_addtime = sav->lft_c->addtime;
6972 lt->sadb_lifetime_usetime = sav->lft_c->usetime;
6973 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6974 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6975 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
6976 lt->sadb_lifetime_allocations = sav->lft_s->allocations;
6977 lt->sadb_lifetime_bytes = sav->lft_s->bytes;
6978 lt->sadb_lifetime_addtime = sav->lft_s->addtime;
6979 lt->sadb_lifetime_usetime = sav->lft_s->usetime;
6980 m_cat(result, m);
6981
6982 /* set sadb_address for source */
6983 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6984 &sav->sah->saidx.src.sa,
6985 FULLMASK, IPSEC_ULPROTO_ANY);
6986 if (!m) {
6987 error = ENOBUFS;
6988 goto fail;
6989 }
6990 m_cat(result, m);
6991
6992 /* set sadb_address for destination */
6993 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6994 &sav->sah->saidx.dst.sa,
6995 FULLMASK, IPSEC_ULPROTO_ANY);
6996 if (!m) {
6997 error = ENOBUFS;
6998 goto fail;
6999 }
7000 m_cat(result, m);
7001
7002 /*
7003 * XXX-BZ Handle NAT-T extensions here.
7004 */
7005
7006 if ((result->m_flags & M_PKTHDR) == 0) {
7007 error = EINVAL;
7008 goto fail;
7009 }
7010
7011 if (result->m_len < sizeof(struct sadb_msg)) {
7012 result = m_pullup(result, sizeof(struct sadb_msg));
7013 if (result == NULL) {
7014 error = ENOBUFS;
7015 goto fail;
7016 }
7017 }
7018
7019 result->m_pkthdr.len = 0;
7020 for (m = result; m; m = m->m_next)
7021 result->m_pkthdr.len += m->m_len;
7022
7023 mtod(result, struct sadb_msg *)->sadb_msg_len =
7024 PFKEY_UNIT64(result->m_pkthdr.len);
7025
6921 IPSEC_ASSERT (sav != NULL, ("null sav"));
6922 IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6923
6924 /* set msg header */
6925 satype = key_proto2satype(sav->sah->saidx.proto);
6926 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6927 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6928 if (!m) {
6929 error = ENOBUFS;
6930 goto fail;
6931 }
6932 result = m;
6933
6934 /* create SA extension */
6935 m = key_setsadbsa(sav);
6936 if (!m) {
6937 error = ENOBUFS;
6938 goto fail;
6939 }
6940 m_cat(result, m);
6941
6942 /* create SA extension */
6943 m = key_setsadbxsa2(sav->sah->saidx.mode,
6944 sav->replay ? sav->replay->count : 0,
6945 sav->sah->saidx.reqid);
6946 if (!m) {
6947 error = ENOBUFS;
6948 goto fail;
6949 }
6950 m_cat(result, m);
6951
6952 /* create lifetime extension (current and soft) */
6953 len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6954 m = key_alloc_mbuf(len);
6955 if (!m || m->m_next) { /*XXX*/
6956 if (m)
6957 m_freem(m);
6958 error = ENOBUFS;
6959 goto fail;
6960 }
6961 bzero(mtod(m, caddr_t), len);
6962 lt = mtod(m, struct sadb_lifetime *);
6963 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6964 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6965 lt->sadb_lifetime_allocations = sav->lft_c->allocations;
6966 lt->sadb_lifetime_bytes = sav->lft_c->bytes;
6967 lt->sadb_lifetime_addtime = sav->lft_c->addtime;
6968 lt->sadb_lifetime_usetime = sav->lft_c->usetime;
6969 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6970 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6971 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
6972 lt->sadb_lifetime_allocations = sav->lft_s->allocations;
6973 lt->sadb_lifetime_bytes = sav->lft_s->bytes;
6974 lt->sadb_lifetime_addtime = sav->lft_s->addtime;
6975 lt->sadb_lifetime_usetime = sav->lft_s->usetime;
6976 m_cat(result, m);
6977
6978 /* set sadb_address for source */
6979 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6980 &sav->sah->saidx.src.sa,
6981 FULLMASK, IPSEC_ULPROTO_ANY);
6982 if (!m) {
6983 error = ENOBUFS;
6984 goto fail;
6985 }
6986 m_cat(result, m);
6987
6988 /* set sadb_address for destination */
6989 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6990 &sav->sah->saidx.dst.sa,
6991 FULLMASK, IPSEC_ULPROTO_ANY);
6992 if (!m) {
6993 error = ENOBUFS;
6994 goto fail;
6995 }
6996 m_cat(result, m);
6997
6998 /*
6999 * XXX-BZ Handle NAT-T extensions here.
7000 */
7001
7002 if ((result->m_flags & M_PKTHDR) == 0) {
7003 error = EINVAL;
7004 goto fail;
7005 }
7006
7007 if (result->m_len < sizeof(struct sadb_msg)) {
7008 result = m_pullup(result, sizeof(struct sadb_msg));
7009 if (result == NULL) {
7010 error = ENOBUFS;
7011 goto fail;
7012 }
7013 }
7014
7015 result->m_pkthdr.len = 0;
7016 for (m = result; m; m = m->m_next)
7017 result->m_pkthdr.len += m->m_len;
7018
7019 mtod(result, struct sadb_msg *)->sadb_msg_len =
7020 PFKEY_UNIT64(result->m_pkthdr.len);
7021
7026 splx(s);
7027 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7028
7029 fail:
7030 if (result)
7031 m_freem(result);
7022 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7023
7024 fail:
7025 if (result)
7026 m_freem(result);
7032 splx(s);
7033 return error;
7034}
7035
7036/*
7037 * SADB_FLUSH processing
7038 * receive
7039 * <base>
7040 * from the ikmpd, and free all entries in secastree.
7041 * and send,
7042 * <base>
7043 * to the ikmpd.
7044 * NOTE: to do is only marking SADB_SASTATE_DEAD.
7045 *
7046 * m will always be freed.
7047 */
7048static int
7049key_flush(so, m, mhp)
7050 struct socket *so;
7051 struct mbuf *m;
7052 const struct sadb_msghdr *mhp;
7053{
7054 struct sadb_msg *newmsg;
7055 struct secashead *sah, *nextsah;
7056 struct secasvar *sav, *nextsav;
7057 u_int16_t proto;
7058 u_int8_t state;
7059 u_int stateidx;
7060
7061 IPSEC_ASSERT(so != NULL, ("null socket"));
7062 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7063 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7064
7065 /* map satype to proto */
7066 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7067 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7068 __func__));
7069 return key_senderror(so, m, EINVAL);
7070 }
7071
7072 /* no SATYPE specified, i.e. flushing all SA. */
7073 SAHTREE_LOCK();
7074 for (sah = LIST_FIRST(&V_sahtree);
7075 sah != NULL;
7076 sah = nextsah) {
7077 nextsah = LIST_NEXT(sah, chain);
7078
7079 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7080 && proto != sah->saidx.proto)
7081 continue;
7082
7083 for (stateidx = 0;
7084 stateidx < _ARRAYLEN(saorder_state_alive);
7085 stateidx++) {
7086 state = saorder_state_any[stateidx];
7087 for (sav = LIST_FIRST(&sah->savtree[state]);
7088 sav != NULL;
7089 sav = nextsav) {
7090
7091 nextsav = LIST_NEXT(sav, chain);
7092
7093 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7094 KEY_FREESAV(&sav);
7095 }
7096 }
7097
7098 sah->state = SADB_SASTATE_DEAD;
7099 }
7100 SAHTREE_UNLOCK();
7101
7102 if (m->m_len < sizeof(struct sadb_msg) ||
7103 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7104 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7105 return key_senderror(so, m, ENOBUFS);
7106 }
7107
7108 if (m->m_next)
7109 m_freem(m->m_next);
7110 m->m_next = NULL;
7111 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7112 newmsg = mtod(m, struct sadb_msg *);
7113 newmsg->sadb_msg_errno = 0;
7114 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7115
7116 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7117}
7118
7119/*
7120 * SADB_DUMP processing
7121 * dump all entries including status of DEAD in SAD.
7122 * receive
7123 * <base>
7124 * from the ikmpd, and dump all secasvar leaves
7125 * and send,
7126 * <base> .....
7127 * to the ikmpd.
7128 *
7129 * m will always be freed.
7130 */
7131static int
7132key_dump(so, m, mhp)
7133 struct socket *so;
7134 struct mbuf *m;
7135 const struct sadb_msghdr *mhp;
7136{
7137 struct secashead *sah;
7138 struct secasvar *sav;
7139 u_int16_t proto;
7140 u_int stateidx;
7141 u_int8_t satype;
7142 u_int8_t state;
7143 int cnt;
7144 struct sadb_msg *newmsg;
7145 struct mbuf *n;
7146
7147 IPSEC_ASSERT(so != NULL, ("null socket"));
7148 IPSEC_ASSERT(m != NULL, ("null mbuf"));
7149 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7150 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7151
7152 /* map satype to proto */
7153 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7154 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7155 __func__));
7156 return key_senderror(so, m, EINVAL);
7157 }
7158
7159 /* count sav entries to be sent to the userland. */
7160 cnt = 0;
7161 SAHTREE_LOCK();
7162 LIST_FOREACH(sah, &V_sahtree, chain) {
7163 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7164 && proto != sah->saidx.proto)
7165 continue;
7166
7167 for (stateidx = 0;
7168 stateidx < _ARRAYLEN(saorder_state_any);
7169 stateidx++) {
7170 state = saorder_state_any[stateidx];
7171 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7172 cnt++;
7173 }
7174 }
7175 }
7176
7177 if (cnt == 0) {
7178 SAHTREE_UNLOCK();
7179 return key_senderror(so, m, ENOENT);
7180 }
7181
7182 /* send this to the userland, one at a time. */
7183 newmsg = NULL;
7184 LIST_FOREACH(sah, &V_sahtree, chain) {
7185 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7186 && proto != sah->saidx.proto)
7187 continue;
7188
7189 /* map proto to satype */
7190 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7191 SAHTREE_UNLOCK();
7192 ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
7193 "SAD.\n", __func__));
7194 return key_senderror(so, m, EINVAL);
7195 }
7196
7197 for (stateidx = 0;
7198 stateidx < _ARRAYLEN(saorder_state_any);
7199 stateidx++) {
7200 state = saorder_state_any[stateidx];
7201 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7202 n = key_setdumpsa(sav, SADB_DUMP, satype,
7203 --cnt, mhp->msg->sadb_msg_pid);
7204 if (!n) {
7205 SAHTREE_UNLOCK();
7206 return key_senderror(so, m, ENOBUFS);
7207 }
7208 key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7209 }
7210 }
7211 }
7212 SAHTREE_UNLOCK();
7213
7214 m_freem(m);
7215 return 0;
7216}
7217
7218/*
7219 * SADB_X_PROMISC processing
7220 *
7221 * m will always be freed.
7222 */
7223static int
7224key_promisc(so, m, mhp)
7225 struct socket *so;
7226 struct mbuf *m;
7227 const struct sadb_msghdr *mhp;
7228{
7229 int olen;
7230
7231 IPSEC_ASSERT(so != NULL, ("null socket"));
7232 IPSEC_ASSERT(m != NULL, ("null mbuf"));
7233 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7234 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7235
7236 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7237
7238 if (olen < sizeof(struct sadb_msg)) {
7239#if 1
7240 return key_senderror(so, m, EINVAL);
7241#else
7242 m_freem(m);
7243 return 0;
7244#endif
7245 } else if (olen == sizeof(struct sadb_msg)) {
7246 /* enable/disable promisc mode */
7247 struct keycb *kp;
7248
7249 if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7250 return key_senderror(so, m, EINVAL);
7251 mhp->msg->sadb_msg_errno = 0;
7252 switch (mhp->msg->sadb_msg_satype) {
7253 case 0:
7254 case 1:
7255 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7256 break;
7257 default:
7258 return key_senderror(so, m, EINVAL);
7259 }
7260
7261 /* send the original message back to everyone */
7262 mhp->msg->sadb_msg_errno = 0;
7263 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7264 } else {
7265 /* send packet as is */
7266
7267 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7268
7269 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7270 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7271 }
7272}
7273
7274static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
7275 const struct sadb_msghdr *)) = {
7276 NULL, /* SADB_RESERVED */
7277 key_getspi, /* SADB_GETSPI */
7278 key_update, /* SADB_UPDATE */
7279 key_add, /* SADB_ADD */
7280 key_delete, /* SADB_DELETE */
7281 key_get, /* SADB_GET */
7282 key_acquire2, /* SADB_ACQUIRE */
7283 key_register, /* SADB_REGISTER */
7284 NULL, /* SADB_EXPIRE */
7285 key_flush, /* SADB_FLUSH */
7286 key_dump, /* SADB_DUMP */
7287 key_promisc, /* SADB_X_PROMISC */
7288 NULL, /* SADB_X_PCHANGE */
7289 key_spdadd, /* SADB_X_SPDUPDATE */
7290 key_spdadd, /* SADB_X_SPDADD */
7291 key_spddelete, /* SADB_X_SPDDELETE */
7292 key_spdget, /* SADB_X_SPDGET */
7293 NULL, /* SADB_X_SPDACQUIRE */
7294 key_spddump, /* SADB_X_SPDDUMP */
7295 key_spdflush, /* SADB_X_SPDFLUSH */
7296 key_spdadd, /* SADB_X_SPDSETIDX */
7297 NULL, /* SADB_X_SPDEXPIRE */
7298 key_spddelete2, /* SADB_X_SPDDELETE2 */
7299};
7300
7301/*
7302 * parse sadb_msg buffer to process PFKEYv2,
7303 * and create a data to response if needed.
7304 * I think to be dealed with mbuf directly.
7305 * IN:
7306 * msgp : pointer to pointer to a received buffer pulluped.
7307 * This is rewrited to response.
7308 * so : pointer to socket.
7309 * OUT:
7310 * length for buffer to send to user process.
7311 */
7312int
7313key_parse(m, so)
7314 struct mbuf *m;
7315 struct socket *so;
7316{
7317 struct sadb_msg *msg;
7318 struct sadb_msghdr mh;
7319 u_int orglen;
7320 int error;
7321 int target;
7322
7323 IPSEC_ASSERT(so != NULL, ("null socket"));
7324 IPSEC_ASSERT(m != NULL, ("null mbuf"));
7325
7326#if 0 /*kdebug_sadb assumes msg in linear buffer*/
7327 KEYDEBUG(KEYDEBUG_KEY_DUMP,
7328 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
7329 kdebug_sadb(msg));
7330#endif
7331
7332 if (m->m_len < sizeof(struct sadb_msg)) {
7333 m = m_pullup(m, sizeof(struct sadb_msg));
7334 if (!m)
7335 return ENOBUFS;
7336 }
7337 msg = mtod(m, struct sadb_msg *);
7338 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7339 target = KEY_SENDUP_ONE;
7340
7341 if ((m->m_flags & M_PKTHDR) == 0 ||
7342 m->m_pkthdr.len != m->m_pkthdr.len) {
7343 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
7344 V_pfkeystat.out_invlen++;
7345 error = EINVAL;
7346 goto senderror;
7347 }
7348
7349 if (msg->sadb_msg_version != PF_KEY_V2) {
7350 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
7351 __func__, msg->sadb_msg_version));
7352 V_pfkeystat.out_invver++;
7353 error = EINVAL;
7354 goto senderror;
7355 }
7356
7357 if (msg->sadb_msg_type > SADB_MAX) {
7358 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7359 __func__, msg->sadb_msg_type));
7360 V_pfkeystat.out_invmsgtype++;
7361 error = EINVAL;
7362 goto senderror;
7363 }
7364
7365 /* for old-fashioned code - should be nuked */
7366 if (m->m_pkthdr.len > MCLBYTES) {
7367 m_freem(m);
7368 return ENOBUFS;
7369 }
7370 if (m->m_next) {
7371 struct mbuf *n;
7372
7373 MGETHDR(n, M_DONTWAIT, MT_DATA);
7374 if (n && m->m_pkthdr.len > MHLEN) {
7375 MCLGET(n, M_DONTWAIT);
7376 if ((n->m_flags & M_EXT) == 0) {
7377 m_free(n);
7378 n = NULL;
7379 }
7380 }
7381 if (!n) {
7382 m_freem(m);
7383 return ENOBUFS;
7384 }
7385 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
7386 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7387 n->m_next = NULL;
7388 m_freem(m);
7389 m = n;
7390 }
7391
7392 /* align the mbuf chain so that extensions are in contiguous region. */
7393 error = key_align(m, &mh);
7394 if (error)
7395 return error;
7396
7397 msg = mh.msg;
7398
7399 /* check SA type */
7400 switch (msg->sadb_msg_satype) {
7401 case SADB_SATYPE_UNSPEC:
7402 switch (msg->sadb_msg_type) {
7403 case SADB_GETSPI:
7404 case SADB_UPDATE:
7405 case SADB_ADD:
7406 case SADB_DELETE:
7407 case SADB_GET:
7408 case SADB_ACQUIRE:
7409 case SADB_EXPIRE:
7410 ipseclog((LOG_DEBUG, "%s: must specify satype "
7411 "when msg type=%u.\n", __func__,
7412 msg->sadb_msg_type));
7413 V_pfkeystat.out_invsatype++;
7414 error = EINVAL;
7415 goto senderror;
7416 }
7417 break;
7418 case SADB_SATYPE_AH:
7419 case SADB_SATYPE_ESP:
7420 case SADB_X_SATYPE_IPCOMP:
7421 case SADB_X_SATYPE_TCPSIGNATURE:
7422 switch (msg->sadb_msg_type) {
7423 case SADB_X_SPDADD:
7424 case SADB_X_SPDDELETE:
7425 case SADB_X_SPDGET:
7426 case SADB_X_SPDDUMP:
7427 case SADB_X_SPDFLUSH:
7428 case SADB_X_SPDSETIDX:
7429 case SADB_X_SPDUPDATE:
7430 case SADB_X_SPDDELETE2:
7431 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
7432 __func__, msg->sadb_msg_type));
7433 V_pfkeystat.out_invsatype++;
7434 error = EINVAL;
7435 goto senderror;
7436 }
7437 break;
7438 case SADB_SATYPE_RSVP:
7439 case SADB_SATYPE_OSPFV2:
7440 case SADB_SATYPE_RIPV2:
7441 case SADB_SATYPE_MIP:
7442 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
7443 __func__, msg->sadb_msg_satype));
7444 V_pfkeystat.out_invsatype++;
7445 error = EOPNOTSUPP;
7446 goto senderror;
7447 case 1: /* XXX: What does it do? */
7448 if (msg->sadb_msg_type == SADB_X_PROMISC)
7449 break;
7450 /*FALLTHROUGH*/
7451 default:
7452 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7453 __func__, msg->sadb_msg_satype));
7454 V_pfkeystat.out_invsatype++;
7455 error = EINVAL;
7456 goto senderror;
7457 }
7458
7459 /* check field of upper layer protocol and address family */
7460 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7461 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7462 struct sadb_address *src0, *dst0;
7463 u_int plen;
7464
7465 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7466 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7467
7468 /* check upper layer protocol */
7469 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7470 ipseclog((LOG_DEBUG, "%s: upper layer protocol "
7471 "mismatched.\n", __func__));
7472 V_pfkeystat.out_invaddr++;
7473 error = EINVAL;
7474 goto senderror;
7475 }
7476
7477 /* check family */
7478 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7479 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7480 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
7481 __func__));
7482 V_pfkeystat.out_invaddr++;
7483 error = EINVAL;
7484 goto senderror;
7485 }
7486 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7487 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7488 ipseclog((LOG_DEBUG, "%s: address struct size "
7489 "mismatched.\n", __func__));
7490 V_pfkeystat.out_invaddr++;
7491 error = EINVAL;
7492 goto senderror;
7493 }
7494
7495 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7496 case AF_INET:
7497 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7498 sizeof(struct sockaddr_in)) {
7499 V_pfkeystat.out_invaddr++;
7500 error = EINVAL;
7501 goto senderror;
7502 }
7503 break;
7504 case AF_INET6:
7505 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7506 sizeof(struct sockaddr_in6)) {
7507 V_pfkeystat.out_invaddr++;
7508 error = EINVAL;
7509 goto senderror;
7510 }
7511 break;
7512 default:
7513 ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
7514 __func__));
7515 V_pfkeystat.out_invaddr++;
7516 error = EAFNOSUPPORT;
7517 goto senderror;
7518 }
7519
7520 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7521 case AF_INET:
7522 plen = sizeof(struct in_addr) << 3;
7523 break;
7524 case AF_INET6:
7525 plen = sizeof(struct in6_addr) << 3;
7526 break;
7527 default:
7528 plen = 0; /*fool gcc*/
7529 break;
7530 }
7531
7532 /* check max prefix length */
7533 if (src0->sadb_address_prefixlen > plen ||
7534 dst0->sadb_address_prefixlen > plen) {
7535 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
7536 __func__));
7537 V_pfkeystat.out_invaddr++;
7538 error = EINVAL;
7539 goto senderror;
7540 }
7541
7542 /*
7543 * prefixlen == 0 is valid because there can be a case when
7544 * all addresses are matched.
7545 */
7546 }
7547
7548 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7549 key_typesw[msg->sadb_msg_type] == NULL) {
7550 V_pfkeystat.out_invmsgtype++;
7551 error = EINVAL;
7552 goto senderror;
7553 }
7554
7555 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7556
7557senderror:
7558 msg->sadb_msg_errno = error;
7559 return key_sendup_mbuf(so, m, target);
7560}
7561
7562static int
7563key_senderror(so, m, code)
7564 struct socket *so;
7565 struct mbuf *m;
7566 int code;
7567{
7568 struct sadb_msg *msg;
7569
7570 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7571 ("mbuf too small, len %u", m->m_len));
7572
7573 msg = mtod(m, struct sadb_msg *);
7574 msg->sadb_msg_errno = code;
7575 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7576}
7577
7578/*
7579 * set the pointer to each header into message buffer.
7580 * m will be freed on error.
7581 * XXX larger-than-MCLBYTES extension?
7582 */
7583static int
7584key_align(m, mhp)
7585 struct mbuf *m;
7586 struct sadb_msghdr *mhp;
7587{
7588 struct mbuf *n;
7589 struct sadb_ext *ext;
7590 size_t off, end;
7591 int extlen;
7592 int toff;
7593
7594 IPSEC_ASSERT(m != NULL, ("null mbuf"));
7595 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7596 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7597 ("mbuf too small, len %u", m->m_len));
7598
7599 /* initialize */
7600 bzero(mhp, sizeof(*mhp));
7601
7602 mhp->msg = mtod(m, struct sadb_msg *);
7603 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7604
7605 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7606 extlen = end; /*just in case extlen is not updated*/
7607 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7608 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7609 if (!n) {
7610 /* m is already freed */
7611 return ENOBUFS;
7612 }
7613 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7614
7615 /* set pointer */
7616 switch (ext->sadb_ext_type) {
7617 case SADB_EXT_SA:
7618 case SADB_EXT_ADDRESS_SRC:
7619 case SADB_EXT_ADDRESS_DST:
7620 case SADB_EXT_ADDRESS_PROXY:
7621 case SADB_EXT_LIFETIME_CURRENT:
7622 case SADB_EXT_LIFETIME_HARD:
7623 case SADB_EXT_LIFETIME_SOFT:
7624 case SADB_EXT_KEY_AUTH:
7625 case SADB_EXT_KEY_ENCRYPT:
7626 case SADB_EXT_IDENTITY_SRC:
7627 case SADB_EXT_IDENTITY_DST:
7628 case SADB_EXT_SENSITIVITY:
7629 case SADB_EXT_PROPOSAL:
7630 case SADB_EXT_SUPPORTED_AUTH:
7631 case SADB_EXT_SUPPORTED_ENCRYPT:
7632 case SADB_EXT_SPIRANGE:
7633 case SADB_X_EXT_POLICY:
7634 case SADB_X_EXT_SA2:
7635#ifdef IPSEC_NAT_T
7636 case SADB_X_EXT_NAT_T_TYPE:
7637 case SADB_X_EXT_NAT_T_SPORT:
7638 case SADB_X_EXT_NAT_T_DPORT:
7639 case SADB_X_EXT_NAT_T_OAI:
7640 case SADB_X_EXT_NAT_T_OAR:
7641 case SADB_X_EXT_NAT_T_FRAG:
7642#endif
7643 /* duplicate check */
7644 /*
7645 * XXX Are there duplication payloads of either
7646 * KEY_AUTH or KEY_ENCRYPT ?
7647 */
7648 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7649 ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
7650 "%u\n", __func__, ext->sadb_ext_type));
7651 m_freem(m);
7652 V_pfkeystat.out_dupext++;
7653 return EINVAL;
7654 }
7655 break;
7656 default:
7657 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
7658 __func__, ext->sadb_ext_type));
7659 m_freem(m);
7660 V_pfkeystat.out_invexttype++;
7661 return EINVAL;
7662 }
7663
7664 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7665
7666 if (key_validate_ext(ext, extlen)) {
7667 m_freem(m);
7668 V_pfkeystat.out_invlen++;
7669 return EINVAL;
7670 }
7671
7672 n = m_pulldown(m, off, extlen, &toff);
7673 if (!n) {
7674 /* m is already freed */
7675 return ENOBUFS;
7676 }
7677 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7678
7679 mhp->ext[ext->sadb_ext_type] = ext;
7680 mhp->extoff[ext->sadb_ext_type] = off;
7681 mhp->extlen[ext->sadb_ext_type] = extlen;
7682 }
7683
7684 if (off != end) {
7685 m_freem(m);
7686 V_pfkeystat.out_invlen++;
7687 return EINVAL;
7688 }
7689
7690 return 0;
7691}
7692
7693static int
7694key_validate_ext(ext, len)
7695 const struct sadb_ext *ext;
7696 int len;
7697{
7698 const struct sockaddr *sa;
7699 enum { NONE, ADDR } checktype = NONE;
7700 int baselen = 0;
7701 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7702
7703 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7704 return EINVAL;
7705
7706 /* if it does not match minimum/maximum length, bail */
7707 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7708 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7709 return EINVAL;
7710 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7711 return EINVAL;
7712 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7713 return EINVAL;
7714
7715 /* more checks based on sadb_ext_type XXX need more */
7716 switch (ext->sadb_ext_type) {
7717 case SADB_EXT_ADDRESS_SRC:
7718 case SADB_EXT_ADDRESS_DST:
7719 case SADB_EXT_ADDRESS_PROXY:
7720 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7721 checktype = ADDR;
7722 break;
7723 case SADB_EXT_IDENTITY_SRC:
7724 case SADB_EXT_IDENTITY_DST:
7725 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7726 SADB_X_IDENTTYPE_ADDR) {
7727 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7728 checktype = ADDR;
7729 } else
7730 checktype = NONE;
7731 break;
7732 default:
7733 checktype = NONE;
7734 break;
7735 }
7736
7737 switch (checktype) {
7738 case NONE:
7739 break;
7740 case ADDR:
7741 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7742 if (len < baselen + sal)
7743 return EINVAL;
7744 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7745 return EINVAL;
7746 break;
7747 }
7748
7749 return 0;
7750}
7751
7752void
7753key_init(void)
7754{
7755 int i;
7756
7757 for (i = 0; i < IPSEC_DIR_MAX; i++)
7758 LIST_INIT(&V_sptree[i]);
7759
7760 LIST_INIT(&V_sahtree);
7761
7762 for (i = 0; i <= SADB_SATYPE_MAX; i++)
7763 LIST_INIT(&V_regtree[i]);
7764
7765 LIST_INIT(&V_acqtree);
7766 LIST_INIT(&V_spacqtree);
7767
7768 /* system default */
7769 V_ip4_def_policy.policy = IPSEC_POLICY_NONE;
7770 V_ip4_def_policy.refcnt++; /*never reclaim this*/
7771
7772 if (!IS_DEFAULT_VNET(curvnet))
7773 return;
7774
7775 SPTREE_LOCK_INIT();
7776 REGTREE_LOCK_INIT();
7777 SAHTREE_LOCK_INIT();
7778 ACQ_LOCK_INIT();
7779 SPACQ_LOCK_INIT();
7780
7781#ifndef IPSEC_DEBUG2
7782 timeout((void *)key_timehandler, (void *)0, hz);
7783#endif /*IPSEC_DEBUG2*/
7784
7785 /* initialize key statistics */
7786 keystat.getspi_count = 1;
7787
7788 printf("IPsec: Initialized Security Association Processing.\n");
7789}
7790
7791#ifdef VIMAGE
7792void
7793key_destroy(void)
7794{
7795 struct secpolicy *sp, *nextsp;
7796 struct secacq *acq, *nextacq;
7797 struct secspacq *spacq, *nextspacq;
7798 struct secashead *sah, *nextsah;
7799 struct secreg *reg;
7800 int i;
7801
7802 SPTREE_LOCK();
7803 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7804 for (sp = LIST_FIRST(&V_sptree[i]);
7805 sp != NULL; sp = nextsp) {
7806 nextsp = LIST_NEXT(sp, chain);
7807 if (__LIST_CHAINED(sp)) {
7808 LIST_REMOVE(sp, chain);
7809 free(sp, M_IPSEC_SP);
7810 }
7811 }
7812 }
7813 SPTREE_UNLOCK();
7814
7815 SAHTREE_LOCK();
7816 for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) {
7817 nextsah = LIST_NEXT(sah, chain);
7818 if (__LIST_CHAINED(sah)) {
7819 LIST_REMOVE(sah, chain);
7820 free(sah, M_IPSEC_SAH);
7821 }
7822 }
7823 SAHTREE_UNLOCK();
7824
7825 REGTREE_LOCK();
7826 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7827 LIST_FOREACH(reg, &V_regtree[i], chain) {
7828 if (__LIST_CHAINED(reg)) {
7829 LIST_REMOVE(reg, chain);
7830 free(reg, M_IPSEC_SAR);
7831 break;
7832 }
7833 }
7834 }
7835 REGTREE_UNLOCK();
7836
7837 ACQ_LOCK();
7838 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
7839 nextacq = LIST_NEXT(acq, chain);
7840 if (__LIST_CHAINED(acq)) {
7841 LIST_REMOVE(acq, chain);
7842 free(acq, M_IPSEC_SAQ);
7843 }
7844 }
7845 ACQ_UNLOCK();
7846
7847 SPACQ_LOCK();
7848 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL;
7849 spacq = nextspacq) {
7850 nextspacq = LIST_NEXT(spacq, chain);
7851 if (__LIST_CHAINED(spacq)) {
7852 LIST_REMOVE(spacq, chain);
7853 free(spacq, M_IPSEC_SAQ);
7854 }
7855 }
7856 SPACQ_UNLOCK();
7857}
7858#endif
7859
7860/*
7861 * XXX: maybe This function is called after INBOUND IPsec processing.
7862 *
7863 * Special check for tunnel-mode packets.
7864 * We must make some checks for consistency between inner and outer IP header.
7865 *
7866 * xxx more checks to be provided
7867 */
7868int
7869key_checktunnelsanity(sav, family, src, dst)
7870 struct secasvar *sav;
7871 u_int family;
7872 caddr_t src;
7873 caddr_t dst;
7874{
7875 IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7876
7877 /* XXX: check inner IP header */
7878
7879 return 1;
7880}
7881
7882/* record data transfer on SA, and update timestamps */
7883void
7884key_sa_recordxfer(sav, m)
7885 struct secasvar *sav;
7886 struct mbuf *m;
7887{
7888 IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7889 IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7890 if (!sav->lft_c)
7891 return;
7892
7893 /*
7894 * XXX Currently, there is a difference of bytes size
7895 * between inbound and outbound processing.
7896 */
7897 sav->lft_c->bytes += m->m_pkthdr.len;
7898 /* to check bytes lifetime is done in key_timehandler(). */
7899
7900 /*
7901 * We use the number of packets as the unit of
7902 * allocations. We increment the variable
7903 * whenever {esp,ah}_{in,out}put is called.
7904 */
7905 sav->lft_c->allocations++;
7906 /* XXX check for expires? */
7907
7908 /*
7909 * NOTE: We record CURRENT usetime by using wall clock,
7910 * in seconds. HARD and SOFT lifetime are measured by the time
7911 * difference (again in seconds) from usetime.
7912 *
7913 * usetime
7914 * v expire expire
7915 * -----+-----+--------+---> t
7916 * <--------------> HARD
7917 * <-----> SOFT
7918 */
7919 sav->lft_c->usetime = time_second;
7920 /* XXX check for expires? */
7921
7922 return;
7923}
7924
7925/* dumb version */
7926void
7927key_sa_routechange(dst)
7928 struct sockaddr *dst;
7929{
7930 struct secashead *sah;
7931 struct route *ro;
7932
7933 SAHTREE_LOCK();
7934 LIST_FOREACH(sah, &V_sahtree, chain) {
7935 ro = &sah->route_cache.sa_route;
7936 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7937 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7938 RTFREE(ro->ro_rt);
7939 ro->ro_rt = (struct rtentry *)NULL;
7940 }
7941 }
7942 SAHTREE_UNLOCK();
7943}
7944
7945static void
7946key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7947{
7948 IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7949 SAHTREE_LOCK_ASSERT();
7950
7951 if (sav->state != state) {
7952 if (__LIST_CHAINED(sav))
7953 LIST_REMOVE(sav, chain);
7954 sav->state = state;
7955 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7956 }
7957}
7958
7959void
7960key_sa_stir_iv(sav)
7961 struct secasvar *sav;
7962{
7963
7964 IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7965 key_randomfill(sav->iv, sav->ivlen);
7966}
7967
7968/* XXX too much? */
7969static struct mbuf *
7970key_alloc_mbuf(l)
7971 int l;
7972{
7973 struct mbuf *m = NULL, *n;
7974 int len, t;
7975
7976 len = l;
7977 while (len > 0) {
7978 MGET(n, M_DONTWAIT, MT_DATA);
7979 if (n && len > MLEN)
7980 MCLGET(n, M_DONTWAIT);
7981 if (!n) {
7982 m_freem(m);
7983 return NULL;
7984 }
7985
7986 n->m_next = NULL;
7987 n->m_len = 0;
7988 n->m_len = M_TRAILINGSPACE(n);
7989 /* use the bottom of mbuf, hoping we can prepend afterwards */
7990 if (n->m_len > len) {
7991 t = (n->m_len - len) & ~(sizeof(long) - 1);
7992 n->m_data += t;
7993 n->m_len = len;
7994 }
7995
7996 len -= n->m_len;
7997
7998 if (m)
7999 m_cat(m, n);
8000 else
8001 m = n;
8002 }
8003
8004 return m;
8005}
8006
8007/*
8008 * Take one of the kernel's security keys and convert it into a PF_KEY
8009 * structure within an mbuf, suitable for sending up to a waiting
8010 * application in user land.
8011 *
8012 * IN:
8013 * src: A pointer to a kernel security key.
8014 * exttype: Which type of key this is. Refer to the PF_KEY data structures.
8015 * OUT:
8016 * a valid mbuf or NULL indicating an error
8017 *
8018 */
8019
8020static struct mbuf *
8021key_setkey(struct seckey *src, u_int16_t exttype)
8022{
8023 struct mbuf *m;
8024 struct sadb_key *p;
8025 int len;
8026
8027 if (src == NULL)
8028 return NULL;
8029
8030 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
8031 m = key_alloc_mbuf(len);
8032 if (m == NULL)
8033 return NULL;
8034 p = mtod(m, struct sadb_key *);
8035 bzero(p, len);
8036 p->sadb_key_len = PFKEY_UNIT64(len);
8037 p->sadb_key_exttype = exttype;
8038 p->sadb_key_bits = src->bits;
8039 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
8040
8041 return m;
8042}
8043
8044/*
8045 * Take one of the kernel's lifetime data structures and convert it
8046 * into a PF_KEY structure within an mbuf, suitable for sending up to
8047 * a waiting application in user land.
8048 *
8049 * IN:
8050 * src: A pointer to a kernel lifetime structure.
8051 * exttype: Which type of lifetime this is. Refer to the PF_KEY
8052 * data structures for more information.
8053 * OUT:
8054 * a valid mbuf or NULL indicating an error
8055 *
8056 */
8057
8058static struct mbuf *
8059key_setlifetime(struct seclifetime *src, u_int16_t exttype)
8060{
8061 struct mbuf *m = NULL;
8062 struct sadb_lifetime *p;
8063 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
8064
8065 if (src == NULL)
8066 return NULL;
8067
8068 m = key_alloc_mbuf(len);
8069 if (m == NULL)
8070 return m;
8071 p = mtod(m, struct sadb_lifetime *);
8072
8073 bzero(p, len);
8074 p->sadb_lifetime_len = PFKEY_UNIT64(len);
8075 p->sadb_lifetime_exttype = exttype;
8076 p->sadb_lifetime_allocations = src->allocations;
8077 p->sadb_lifetime_bytes = src->bytes;
8078 p->sadb_lifetime_addtime = src->addtime;
8079 p->sadb_lifetime_usetime = src->usetime;
8080
8081 return m;
8082
8083}
7027 return error;
7028}
7029
7030/*
7031 * SADB_FLUSH processing
7032 * receive
7033 * <base>
7034 * from the ikmpd, and free all entries in secastree.
7035 * and send,
7036 * <base>
7037 * to the ikmpd.
7038 * NOTE: to do is only marking SADB_SASTATE_DEAD.
7039 *
7040 * m will always be freed.
7041 */
7042static int
7043key_flush(so, m, mhp)
7044 struct socket *so;
7045 struct mbuf *m;
7046 const struct sadb_msghdr *mhp;
7047{
7048 struct sadb_msg *newmsg;
7049 struct secashead *sah, *nextsah;
7050 struct secasvar *sav, *nextsav;
7051 u_int16_t proto;
7052 u_int8_t state;
7053 u_int stateidx;
7054
7055 IPSEC_ASSERT(so != NULL, ("null socket"));
7056 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7057 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7058
7059 /* map satype to proto */
7060 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7061 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7062 __func__));
7063 return key_senderror(so, m, EINVAL);
7064 }
7065
7066 /* no SATYPE specified, i.e. flushing all SA. */
7067 SAHTREE_LOCK();
7068 for (sah = LIST_FIRST(&V_sahtree);
7069 sah != NULL;
7070 sah = nextsah) {
7071 nextsah = LIST_NEXT(sah, chain);
7072
7073 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7074 && proto != sah->saidx.proto)
7075 continue;
7076
7077 for (stateidx = 0;
7078 stateidx < _ARRAYLEN(saorder_state_alive);
7079 stateidx++) {
7080 state = saorder_state_any[stateidx];
7081 for (sav = LIST_FIRST(&sah->savtree[state]);
7082 sav != NULL;
7083 sav = nextsav) {
7084
7085 nextsav = LIST_NEXT(sav, chain);
7086
7087 key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7088 KEY_FREESAV(&sav);
7089 }
7090 }
7091
7092 sah->state = SADB_SASTATE_DEAD;
7093 }
7094 SAHTREE_UNLOCK();
7095
7096 if (m->m_len < sizeof(struct sadb_msg) ||
7097 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7098 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7099 return key_senderror(so, m, ENOBUFS);
7100 }
7101
7102 if (m->m_next)
7103 m_freem(m->m_next);
7104 m->m_next = NULL;
7105 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7106 newmsg = mtod(m, struct sadb_msg *);
7107 newmsg->sadb_msg_errno = 0;
7108 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7109
7110 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7111}
7112
7113/*
7114 * SADB_DUMP processing
7115 * dump all entries including status of DEAD in SAD.
7116 * receive
7117 * <base>
7118 * from the ikmpd, and dump all secasvar leaves
7119 * and send,
7120 * <base> .....
7121 * to the ikmpd.
7122 *
7123 * m will always be freed.
7124 */
7125static int
7126key_dump(so, m, mhp)
7127 struct socket *so;
7128 struct mbuf *m;
7129 const struct sadb_msghdr *mhp;
7130{
7131 struct secashead *sah;
7132 struct secasvar *sav;
7133 u_int16_t proto;
7134 u_int stateidx;
7135 u_int8_t satype;
7136 u_int8_t state;
7137 int cnt;
7138 struct sadb_msg *newmsg;
7139 struct mbuf *n;
7140
7141 IPSEC_ASSERT(so != NULL, ("null socket"));
7142 IPSEC_ASSERT(m != NULL, ("null mbuf"));
7143 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7144 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7145
7146 /* map satype to proto */
7147 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7148 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7149 __func__));
7150 return key_senderror(so, m, EINVAL);
7151 }
7152
7153 /* count sav entries to be sent to the userland. */
7154 cnt = 0;
7155 SAHTREE_LOCK();
7156 LIST_FOREACH(sah, &V_sahtree, chain) {
7157 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7158 && proto != sah->saidx.proto)
7159 continue;
7160
7161 for (stateidx = 0;
7162 stateidx < _ARRAYLEN(saorder_state_any);
7163 stateidx++) {
7164 state = saorder_state_any[stateidx];
7165 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7166 cnt++;
7167 }
7168 }
7169 }
7170
7171 if (cnt == 0) {
7172 SAHTREE_UNLOCK();
7173 return key_senderror(so, m, ENOENT);
7174 }
7175
7176 /* send this to the userland, one at a time. */
7177 newmsg = NULL;
7178 LIST_FOREACH(sah, &V_sahtree, chain) {
7179 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7180 && proto != sah->saidx.proto)
7181 continue;
7182
7183 /* map proto to satype */
7184 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7185 SAHTREE_UNLOCK();
7186 ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
7187 "SAD.\n", __func__));
7188 return key_senderror(so, m, EINVAL);
7189 }
7190
7191 for (stateidx = 0;
7192 stateidx < _ARRAYLEN(saorder_state_any);
7193 stateidx++) {
7194 state = saorder_state_any[stateidx];
7195 LIST_FOREACH(sav, &sah->savtree[state], chain) {
7196 n = key_setdumpsa(sav, SADB_DUMP, satype,
7197 --cnt, mhp->msg->sadb_msg_pid);
7198 if (!n) {
7199 SAHTREE_UNLOCK();
7200 return key_senderror(so, m, ENOBUFS);
7201 }
7202 key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7203 }
7204 }
7205 }
7206 SAHTREE_UNLOCK();
7207
7208 m_freem(m);
7209 return 0;
7210}
7211
7212/*
7213 * SADB_X_PROMISC processing
7214 *
7215 * m will always be freed.
7216 */
7217static int
7218key_promisc(so, m, mhp)
7219 struct socket *so;
7220 struct mbuf *m;
7221 const struct sadb_msghdr *mhp;
7222{
7223 int olen;
7224
7225 IPSEC_ASSERT(so != NULL, ("null socket"));
7226 IPSEC_ASSERT(m != NULL, ("null mbuf"));
7227 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7228 IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7229
7230 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7231
7232 if (olen < sizeof(struct sadb_msg)) {
7233#if 1
7234 return key_senderror(so, m, EINVAL);
7235#else
7236 m_freem(m);
7237 return 0;
7238#endif
7239 } else if (olen == sizeof(struct sadb_msg)) {
7240 /* enable/disable promisc mode */
7241 struct keycb *kp;
7242
7243 if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7244 return key_senderror(so, m, EINVAL);
7245 mhp->msg->sadb_msg_errno = 0;
7246 switch (mhp->msg->sadb_msg_satype) {
7247 case 0:
7248 case 1:
7249 kp->kp_promisc = mhp->msg->sadb_msg_satype;
7250 break;
7251 default:
7252 return key_senderror(so, m, EINVAL);
7253 }
7254
7255 /* send the original message back to everyone */
7256 mhp->msg->sadb_msg_errno = 0;
7257 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7258 } else {
7259 /* send packet as is */
7260
7261 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7262
7263 /* TODO: if sadb_msg_seq is specified, send to specific pid */
7264 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7265 }
7266}
7267
7268static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
7269 const struct sadb_msghdr *)) = {
7270 NULL, /* SADB_RESERVED */
7271 key_getspi, /* SADB_GETSPI */
7272 key_update, /* SADB_UPDATE */
7273 key_add, /* SADB_ADD */
7274 key_delete, /* SADB_DELETE */
7275 key_get, /* SADB_GET */
7276 key_acquire2, /* SADB_ACQUIRE */
7277 key_register, /* SADB_REGISTER */
7278 NULL, /* SADB_EXPIRE */
7279 key_flush, /* SADB_FLUSH */
7280 key_dump, /* SADB_DUMP */
7281 key_promisc, /* SADB_X_PROMISC */
7282 NULL, /* SADB_X_PCHANGE */
7283 key_spdadd, /* SADB_X_SPDUPDATE */
7284 key_spdadd, /* SADB_X_SPDADD */
7285 key_spddelete, /* SADB_X_SPDDELETE */
7286 key_spdget, /* SADB_X_SPDGET */
7287 NULL, /* SADB_X_SPDACQUIRE */
7288 key_spddump, /* SADB_X_SPDDUMP */
7289 key_spdflush, /* SADB_X_SPDFLUSH */
7290 key_spdadd, /* SADB_X_SPDSETIDX */
7291 NULL, /* SADB_X_SPDEXPIRE */
7292 key_spddelete2, /* SADB_X_SPDDELETE2 */
7293};
7294
7295/*
7296 * parse sadb_msg buffer to process PFKEYv2,
7297 * and create a data to response if needed.
7298 * I think to be dealed with mbuf directly.
7299 * IN:
7300 * msgp : pointer to pointer to a received buffer pulluped.
7301 * This is rewrited to response.
7302 * so : pointer to socket.
7303 * OUT:
7304 * length for buffer to send to user process.
7305 */
7306int
7307key_parse(m, so)
7308 struct mbuf *m;
7309 struct socket *so;
7310{
7311 struct sadb_msg *msg;
7312 struct sadb_msghdr mh;
7313 u_int orglen;
7314 int error;
7315 int target;
7316
7317 IPSEC_ASSERT(so != NULL, ("null socket"));
7318 IPSEC_ASSERT(m != NULL, ("null mbuf"));
7319
7320#if 0 /*kdebug_sadb assumes msg in linear buffer*/
7321 KEYDEBUG(KEYDEBUG_KEY_DUMP,
7322 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
7323 kdebug_sadb(msg));
7324#endif
7325
7326 if (m->m_len < sizeof(struct sadb_msg)) {
7327 m = m_pullup(m, sizeof(struct sadb_msg));
7328 if (!m)
7329 return ENOBUFS;
7330 }
7331 msg = mtod(m, struct sadb_msg *);
7332 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7333 target = KEY_SENDUP_ONE;
7334
7335 if ((m->m_flags & M_PKTHDR) == 0 ||
7336 m->m_pkthdr.len != m->m_pkthdr.len) {
7337 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
7338 V_pfkeystat.out_invlen++;
7339 error = EINVAL;
7340 goto senderror;
7341 }
7342
7343 if (msg->sadb_msg_version != PF_KEY_V2) {
7344 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
7345 __func__, msg->sadb_msg_version));
7346 V_pfkeystat.out_invver++;
7347 error = EINVAL;
7348 goto senderror;
7349 }
7350
7351 if (msg->sadb_msg_type > SADB_MAX) {
7352 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7353 __func__, msg->sadb_msg_type));
7354 V_pfkeystat.out_invmsgtype++;
7355 error = EINVAL;
7356 goto senderror;
7357 }
7358
7359 /* for old-fashioned code - should be nuked */
7360 if (m->m_pkthdr.len > MCLBYTES) {
7361 m_freem(m);
7362 return ENOBUFS;
7363 }
7364 if (m->m_next) {
7365 struct mbuf *n;
7366
7367 MGETHDR(n, M_DONTWAIT, MT_DATA);
7368 if (n && m->m_pkthdr.len > MHLEN) {
7369 MCLGET(n, M_DONTWAIT);
7370 if ((n->m_flags & M_EXT) == 0) {
7371 m_free(n);
7372 n = NULL;
7373 }
7374 }
7375 if (!n) {
7376 m_freem(m);
7377 return ENOBUFS;
7378 }
7379 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
7380 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7381 n->m_next = NULL;
7382 m_freem(m);
7383 m = n;
7384 }
7385
7386 /* align the mbuf chain so that extensions are in contiguous region. */
7387 error = key_align(m, &mh);
7388 if (error)
7389 return error;
7390
7391 msg = mh.msg;
7392
7393 /* check SA type */
7394 switch (msg->sadb_msg_satype) {
7395 case SADB_SATYPE_UNSPEC:
7396 switch (msg->sadb_msg_type) {
7397 case SADB_GETSPI:
7398 case SADB_UPDATE:
7399 case SADB_ADD:
7400 case SADB_DELETE:
7401 case SADB_GET:
7402 case SADB_ACQUIRE:
7403 case SADB_EXPIRE:
7404 ipseclog((LOG_DEBUG, "%s: must specify satype "
7405 "when msg type=%u.\n", __func__,
7406 msg->sadb_msg_type));
7407 V_pfkeystat.out_invsatype++;
7408 error = EINVAL;
7409 goto senderror;
7410 }
7411 break;
7412 case SADB_SATYPE_AH:
7413 case SADB_SATYPE_ESP:
7414 case SADB_X_SATYPE_IPCOMP:
7415 case SADB_X_SATYPE_TCPSIGNATURE:
7416 switch (msg->sadb_msg_type) {
7417 case SADB_X_SPDADD:
7418 case SADB_X_SPDDELETE:
7419 case SADB_X_SPDGET:
7420 case SADB_X_SPDDUMP:
7421 case SADB_X_SPDFLUSH:
7422 case SADB_X_SPDSETIDX:
7423 case SADB_X_SPDUPDATE:
7424 case SADB_X_SPDDELETE2:
7425 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
7426 __func__, msg->sadb_msg_type));
7427 V_pfkeystat.out_invsatype++;
7428 error = EINVAL;
7429 goto senderror;
7430 }
7431 break;
7432 case SADB_SATYPE_RSVP:
7433 case SADB_SATYPE_OSPFV2:
7434 case SADB_SATYPE_RIPV2:
7435 case SADB_SATYPE_MIP:
7436 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
7437 __func__, msg->sadb_msg_satype));
7438 V_pfkeystat.out_invsatype++;
7439 error = EOPNOTSUPP;
7440 goto senderror;
7441 case 1: /* XXX: What does it do? */
7442 if (msg->sadb_msg_type == SADB_X_PROMISC)
7443 break;
7444 /*FALLTHROUGH*/
7445 default:
7446 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7447 __func__, msg->sadb_msg_satype));
7448 V_pfkeystat.out_invsatype++;
7449 error = EINVAL;
7450 goto senderror;
7451 }
7452
7453 /* check field of upper layer protocol and address family */
7454 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7455 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7456 struct sadb_address *src0, *dst0;
7457 u_int plen;
7458
7459 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7460 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7461
7462 /* check upper layer protocol */
7463 if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7464 ipseclog((LOG_DEBUG, "%s: upper layer protocol "
7465 "mismatched.\n", __func__));
7466 V_pfkeystat.out_invaddr++;
7467 error = EINVAL;
7468 goto senderror;
7469 }
7470
7471 /* check family */
7472 if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7473 PFKEY_ADDR_SADDR(dst0)->sa_family) {
7474 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
7475 __func__));
7476 V_pfkeystat.out_invaddr++;
7477 error = EINVAL;
7478 goto senderror;
7479 }
7480 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7481 PFKEY_ADDR_SADDR(dst0)->sa_len) {
7482 ipseclog((LOG_DEBUG, "%s: address struct size "
7483 "mismatched.\n", __func__));
7484 V_pfkeystat.out_invaddr++;
7485 error = EINVAL;
7486 goto senderror;
7487 }
7488
7489 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7490 case AF_INET:
7491 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7492 sizeof(struct sockaddr_in)) {
7493 V_pfkeystat.out_invaddr++;
7494 error = EINVAL;
7495 goto senderror;
7496 }
7497 break;
7498 case AF_INET6:
7499 if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7500 sizeof(struct sockaddr_in6)) {
7501 V_pfkeystat.out_invaddr++;
7502 error = EINVAL;
7503 goto senderror;
7504 }
7505 break;
7506 default:
7507 ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
7508 __func__));
7509 V_pfkeystat.out_invaddr++;
7510 error = EAFNOSUPPORT;
7511 goto senderror;
7512 }
7513
7514 switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7515 case AF_INET:
7516 plen = sizeof(struct in_addr) << 3;
7517 break;
7518 case AF_INET6:
7519 plen = sizeof(struct in6_addr) << 3;
7520 break;
7521 default:
7522 plen = 0; /*fool gcc*/
7523 break;
7524 }
7525
7526 /* check max prefix length */
7527 if (src0->sadb_address_prefixlen > plen ||
7528 dst0->sadb_address_prefixlen > plen) {
7529 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
7530 __func__));
7531 V_pfkeystat.out_invaddr++;
7532 error = EINVAL;
7533 goto senderror;
7534 }
7535
7536 /*
7537 * prefixlen == 0 is valid because there can be a case when
7538 * all addresses are matched.
7539 */
7540 }
7541
7542 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7543 key_typesw[msg->sadb_msg_type] == NULL) {
7544 V_pfkeystat.out_invmsgtype++;
7545 error = EINVAL;
7546 goto senderror;
7547 }
7548
7549 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7550
7551senderror:
7552 msg->sadb_msg_errno = error;
7553 return key_sendup_mbuf(so, m, target);
7554}
7555
7556static int
7557key_senderror(so, m, code)
7558 struct socket *so;
7559 struct mbuf *m;
7560 int code;
7561{
7562 struct sadb_msg *msg;
7563
7564 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7565 ("mbuf too small, len %u", m->m_len));
7566
7567 msg = mtod(m, struct sadb_msg *);
7568 msg->sadb_msg_errno = code;
7569 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7570}
7571
7572/*
7573 * set the pointer to each header into message buffer.
7574 * m will be freed on error.
7575 * XXX larger-than-MCLBYTES extension?
7576 */
7577static int
7578key_align(m, mhp)
7579 struct mbuf *m;
7580 struct sadb_msghdr *mhp;
7581{
7582 struct mbuf *n;
7583 struct sadb_ext *ext;
7584 size_t off, end;
7585 int extlen;
7586 int toff;
7587
7588 IPSEC_ASSERT(m != NULL, ("null mbuf"));
7589 IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7590 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7591 ("mbuf too small, len %u", m->m_len));
7592
7593 /* initialize */
7594 bzero(mhp, sizeof(*mhp));
7595
7596 mhp->msg = mtod(m, struct sadb_msg *);
7597 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
7598
7599 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7600 extlen = end; /*just in case extlen is not updated*/
7601 for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7602 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7603 if (!n) {
7604 /* m is already freed */
7605 return ENOBUFS;
7606 }
7607 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7608
7609 /* set pointer */
7610 switch (ext->sadb_ext_type) {
7611 case SADB_EXT_SA:
7612 case SADB_EXT_ADDRESS_SRC:
7613 case SADB_EXT_ADDRESS_DST:
7614 case SADB_EXT_ADDRESS_PROXY:
7615 case SADB_EXT_LIFETIME_CURRENT:
7616 case SADB_EXT_LIFETIME_HARD:
7617 case SADB_EXT_LIFETIME_SOFT:
7618 case SADB_EXT_KEY_AUTH:
7619 case SADB_EXT_KEY_ENCRYPT:
7620 case SADB_EXT_IDENTITY_SRC:
7621 case SADB_EXT_IDENTITY_DST:
7622 case SADB_EXT_SENSITIVITY:
7623 case SADB_EXT_PROPOSAL:
7624 case SADB_EXT_SUPPORTED_AUTH:
7625 case SADB_EXT_SUPPORTED_ENCRYPT:
7626 case SADB_EXT_SPIRANGE:
7627 case SADB_X_EXT_POLICY:
7628 case SADB_X_EXT_SA2:
7629#ifdef IPSEC_NAT_T
7630 case SADB_X_EXT_NAT_T_TYPE:
7631 case SADB_X_EXT_NAT_T_SPORT:
7632 case SADB_X_EXT_NAT_T_DPORT:
7633 case SADB_X_EXT_NAT_T_OAI:
7634 case SADB_X_EXT_NAT_T_OAR:
7635 case SADB_X_EXT_NAT_T_FRAG:
7636#endif
7637 /* duplicate check */
7638 /*
7639 * XXX Are there duplication payloads of either
7640 * KEY_AUTH or KEY_ENCRYPT ?
7641 */
7642 if (mhp->ext[ext->sadb_ext_type] != NULL) {
7643 ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
7644 "%u\n", __func__, ext->sadb_ext_type));
7645 m_freem(m);
7646 V_pfkeystat.out_dupext++;
7647 return EINVAL;
7648 }
7649 break;
7650 default:
7651 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
7652 __func__, ext->sadb_ext_type));
7653 m_freem(m);
7654 V_pfkeystat.out_invexttype++;
7655 return EINVAL;
7656 }
7657
7658 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7659
7660 if (key_validate_ext(ext, extlen)) {
7661 m_freem(m);
7662 V_pfkeystat.out_invlen++;
7663 return EINVAL;
7664 }
7665
7666 n = m_pulldown(m, off, extlen, &toff);
7667 if (!n) {
7668 /* m is already freed */
7669 return ENOBUFS;
7670 }
7671 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7672
7673 mhp->ext[ext->sadb_ext_type] = ext;
7674 mhp->extoff[ext->sadb_ext_type] = off;
7675 mhp->extlen[ext->sadb_ext_type] = extlen;
7676 }
7677
7678 if (off != end) {
7679 m_freem(m);
7680 V_pfkeystat.out_invlen++;
7681 return EINVAL;
7682 }
7683
7684 return 0;
7685}
7686
7687static int
7688key_validate_ext(ext, len)
7689 const struct sadb_ext *ext;
7690 int len;
7691{
7692 const struct sockaddr *sa;
7693 enum { NONE, ADDR } checktype = NONE;
7694 int baselen = 0;
7695 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7696
7697 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7698 return EINVAL;
7699
7700 /* if it does not match minimum/maximum length, bail */
7701 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7702 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7703 return EINVAL;
7704 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7705 return EINVAL;
7706 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7707 return EINVAL;
7708
7709 /* more checks based on sadb_ext_type XXX need more */
7710 switch (ext->sadb_ext_type) {
7711 case SADB_EXT_ADDRESS_SRC:
7712 case SADB_EXT_ADDRESS_DST:
7713 case SADB_EXT_ADDRESS_PROXY:
7714 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7715 checktype = ADDR;
7716 break;
7717 case SADB_EXT_IDENTITY_SRC:
7718 case SADB_EXT_IDENTITY_DST:
7719 if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7720 SADB_X_IDENTTYPE_ADDR) {
7721 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7722 checktype = ADDR;
7723 } else
7724 checktype = NONE;
7725 break;
7726 default:
7727 checktype = NONE;
7728 break;
7729 }
7730
7731 switch (checktype) {
7732 case NONE:
7733 break;
7734 case ADDR:
7735 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7736 if (len < baselen + sal)
7737 return EINVAL;
7738 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7739 return EINVAL;
7740 break;
7741 }
7742
7743 return 0;
7744}
7745
7746void
7747key_init(void)
7748{
7749 int i;
7750
7751 for (i = 0; i < IPSEC_DIR_MAX; i++)
7752 LIST_INIT(&V_sptree[i]);
7753
7754 LIST_INIT(&V_sahtree);
7755
7756 for (i = 0; i <= SADB_SATYPE_MAX; i++)
7757 LIST_INIT(&V_regtree[i]);
7758
7759 LIST_INIT(&V_acqtree);
7760 LIST_INIT(&V_spacqtree);
7761
7762 /* system default */
7763 V_ip4_def_policy.policy = IPSEC_POLICY_NONE;
7764 V_ip4_def_policy.refcnt++; /*never reclaim this*/
7765
7766 if (!IS_DEFAULT_VNET(curvnet))
7767 return;
7768
7769 SPTREE_LOCK_INIT();
7770 REGTREE_LOCK_INIT();
7771 SAHTREE_LOCK_INIT();
7772 ACQ_LOCK_INIT();
7773 SPACQ_LOCK_INIT();
7774
7775#ifndef IPSEC_DEBUG2
7776 timeout((void *)key_timehandler, (void *)0, hz);
7777#endif /*IPSEC_DEBUG2*/
7778
7779 /* initialize key statistics */
7780 keystat.getspi_count = 1;
7781
7782 printf("IPsec: Initialized Security Association Processing.\n");
7783}
7784
7785#ifdef VIMAGE
7786void
7787key_destroy(void)
7788{
7789 struct secpolicy *sp, *nextsp;
7790 struct secacq *acq, *nextacq;
7791 struct secspacq *spacq, *nextspacq;
7792 struct secashead *sah, *nextsah;
7793 struct secreg *reg;
7794 int i;
7795
7796 SPTREE_LOCK();
7797 for (i = 0; i < IPSEC_DIR_MAX; i++) {
7798 for (sp = LIST_FIRST(&V_sptree[i]);
7799 sp != NULL; sp = nextsp) {
7800 nextsp = LIST_NEXT(sp, chain);
7801 if (__LIST_CHAINED(sp)) {
7802 LIST_REMOVE(sp, chain);
7803 free(sp, M_IPSEC_SP);
7804 }
7805 }
7806 }
7807 SPTREE_UNLOCK();
7808
7809 SAHTREE_LOCK();
7810 for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) {
7811 nextsah = LIST_NEXT(sah, chain);
7812 if (__LIST_CHAINED(sah)) {
7813 LIST_REMOVE(sah, chain);
7814 free(sah, M_IPSEC_SAH);
7815 }
7816 }
7817 SAHTREE_UNLOCK();
7818
7819 REGTREE_LOCK();
7820 for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7821 LIST_FOREACH(reg, &V_regtree[i], chain) {
7822 if (__LIST_CHAINED(reg)) {
7823 LIST_REMOVE(reg, chain);
7824 free(reg, M_IPSEC_SAR);
7825 break;
7826 }
7827 }
7828 }
7829 REGTREE_UNLOCK();
7830
7831 ACQ_LOCK();
7832 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
7833 nextacq = LIST_NEXT(acq, chain);
7834 if (__LIST_CHAINED(acq)) {
7835 LIST_REMOVE(acq, chain);
7836 free(acq, M_IPSEC_SAQ);
7837 }
7838 }
7839 ACQ_UNLOCK();
7840
7841 SPACQ_LOCK();
7842 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL;
7843 spacq = nextspacq) {
7844 nextspacq = LIST_NEXT(spacq, chain);
7845 if (__LIST_CHAINED(spacq)) {
7846 LIST_REMOVE(spacq, chain);
7847 free(spacq, M_IPSEC_SAQ);
7848 }
7849 }
7850 SPACQ_UNLOCK();
7851}
7852#endif
7853
7854/*
7855 * XXX: maybe This function is called after INBOUND IPsec processing.
7856 *
7857 * Special check for tunnel-mode packets.
7858 * We must make some checks for consistency between inner and outer IP header.
7859 *
7860 * xxx more checks to be provided
7861 */
7862int
7863key_checktunnelsanity(sav, family, src, dst)
7864 struct secasvar *sav;
7865 u_int family;
7866 caddr_t src;
7867 caddr_t dst;
7868{
7869 IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7870
7871 /* XXX: check inner IP header */
7872
7873 return 1;
7874}
7875
7876/* record data transfer on SA, and update timestamps */
7877void
7878key_sa_recordxfer(sav, m)
7879 struct secasvar *sav;
7880 struct mbuf *m;
7881{
7882 IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7883 IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7884 if (!sav->lft_c)
7885 return;
7886
7887 /*
7888 * XXX Currently, there is a difference of bytes size
7889 * between inbound and outbound processing.
7890 */
7891 sav->lft_c->bytes += m->m_pkthdr.len;
7892 /* to check bytes lifetime is done in key_timehandler(). */
7893
7894 /*
7895 * We use the number of packets as the unit of
7896 * allocations. We increment the variable
7897 * whenever {esp,ah}_{in,out}put is called.
7898 */
7899 sav->lft_c->allocations++;
7900 /* XXX check for expires? */
7901
7902 /*
7903 * NOTE: We record CURRENT usetime by using wall clock,
7904 * in seconds. HARD and SOFT lifetime are measured by the time
7905 * difference (again in seconds) from usetime.
7906 *
7907 * usetime
7908 * v expire expire
7909 * -----+-----+--------+---> t
7910 * <--------------> HARD
7911 * <-----> SOFT
7912 */
7913 sav->lft_c->usetime = time_second;
7914 /* XXX check for expires? */
7915
7916 return;
7917}
7918
7919/* dumb version */
7920void
7921key_sa_routechange(dst)
7922 struct sockaddr *dst;
7923{
7924 struct secashead *sah;
7925 struct route *ro;
7926
7927 SAHTREE_LOCK();
7928 LIST_FOREACH(sah, &V_sahtree, chain) {
7929 ro = &sah->route_cache.sa_route;
7930 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7931 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7932 RTFREE(ro->ro_rt);
7933 ro->ro_rt = (struct rtentry *)NULL;
7934 }
7935 }
7936 SAHTREE_UNLOCK();
7937}
7938
7939static void
7940key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7941{
7942 IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7943 SAHTREE_LOCK_ASSERT();
7944
7945 if (sav->state != state) {
7946 if (__LIST_CHAINED(sav))
7947 LIST_REMOVE(sav, chain);
7948 sav->state = state;
7949 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7950 }
7951}
7952
7953void
7954key_sa_stir_iv(sav)
7955 struct secasvar *sav;
7956{
7957
7958 IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7959 key_randomfill(sav->iv, sav->ivlen);
7960}
7961
7962/* XXX too much? */
7963static struct mbuf *
7964key_alloc_mbuf(l)
7965 int l;
7966{
7967 struct mbuf *m = NULL, *n;
7968 int len, t;
7969
7970 len = l;
7971 while (len > 0) {
7972 MGET(n, M_DONTWAIT, MT_DATA);
7973 if (n && len > MLEN)
7974 MCLGET(n, M_DONTWAIT);
7975 if (!n) {
7976 m_freem(m);
7977 return NULL;
7978 }
7979
7980 n->m_next = NULL;
7981 n->m_len = 0;
7982 n->m_len = M_TRAILINGSPACE(n);
7983 /* use the bottom of mbuf, hoping we can prepend afterwards */
7984 if (n->m_len > len) {
7985 t = (n->m_len - len) & ~(sizeof(long) - 1);
7986 n->m_data += t;
7987 n->m_len = len;
7988 }
7989
7990 len -= n->m_len;
7991
7992 if (m)
7993 m_cat(m, n);
7994 else
7995 m = n;
7996 }
7997
7998 return m;
7999}
8000
8001/*
8002 * Take one of the kernel's security keys and convert it into a PF_KEY
8003 * structure within an mbuf, suitable for sending up to a waiting
8004 * application in user land.
8005 *
8006 * IN:
8007 * src: A pointer to a kernel security key.
8008 * exttype: Which type of key this is. Refer to the PF_KEY data structures.
8009 * OUT:
8010 * a valid mbuf or NULL indicating an error
8011 *
8012 */
8013
8014static struct mbuf *
8015key_setkey(struct seckey *src, u_int16_t exttype)
8016{
8017 struct mbuf *m;
8018 struct sadb_key *p;
8019 int len;
8020
8021 if (src == NULL)
8022 return NULL;
8023
8024 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
8025 m = key_alloc_mbuf(len);
8026 if (m == NULL)
8027 return NULL;
8028 p = mtod(m, struct sadb_key *);
8029 bzero(p, len);
8030 p->sadb_key_len = PFKEY_UNIT64(len);
8031 p->sadb_key_exttype = exttype;
8032 p->sadb_key_bits = src->bits;
8033 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
8034
8035 return m;
8036}
8037
8038/*
8039 * Take one of the kernel's lifetime data structures and convert it
8040 * into a PF_KEY structure within an mbuf, suitable for sending up to
8041 * a waiting application in user land.
8042 *
8043 * IN:
8044 * src: A pointer to a kernel lifetime structure.
8045 * exttype: Which type of lifetime this is. Refer to the PF_KEY
8046 * data structures for more information.
8047 * OUT:
8048 * a valid mbuf or NULL indicating an error
8049 *
8050 */
8051
8052static struct mbuf *
8053key_setlifetime(struct seclifetime *src, u_int16_t exttype)
8054{
8055 struct mbuf *m = NULL;
8056 struct sadb_lifetime *p;
8057 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
8058
8059 if (src == NULL)
8060 return NULL;
8061
8062 m = key_alloc_mbuf(len);
8063 if (m == NULL)
8064 return m;
8065 p = mtod(m, struct sadb_lifetime *);
8066
8067 bzero(p, len);
8068 p->sadb_lifetime_len = PFKEY_UNIT64(len);
8069 p->sadb_lifetime_exttype = exttype;
8070 p->sadb_lifetime_allocations = src->allocations;
8071 p->sadb_lifetime_bytes = src->bytes;
8072 p->sadb_lifetime_addtime = src->addtime;
8073 p->sadb_lifetime_usetime = src->usetime;
8074
8075 return m;
8076
8077}