Deleted Added
full compact
ip6_output.c (171259) ip6_output.c (171260)
1/* $FreeBSD: head/sys/netinet6/ip6_output.c 171259 2007-07-05 16:23:49Z delphij $ */
1/* $FreeBSD: head/sys/netinet6/ip6_output.c 171260 2007-07-05 16:29:40Z delphij $ */
2/* $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ */
3
4/*-
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/*-
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64#include "opt_inet.h"
65#include "opt_inet6.h"
66#include "opt_ipsec.h"
67
68#include <sys/param.h>
69#include <sys/malloc.h>
70#include <sys/mbuf.h>
71#include <sys/proc.h>
72#include <sys/errno.h>
73#include <sys/priv.h>
74#include <sys/protosw.h>
75#include <sys/socket.h>
76#include <sys/socketvar.h>
77#include <sys/kernel.h>
78
79#include <net/if.h>
80#include <net/netisr.h>
81#include <net/route.h>
82#include <net/pfil.h>
83
84#include <netinet/in.h>
85#include <netinet/in_var.h>
86#include <netinet6/in6_var.h>
87#include <netinet/ip6.h>
88#include <netinet/icmp6.h>
89#include <netinet6/ip6_var.h>
90#include <netinet/in_pcb.h>
91#include <netinet/tcp_var.h>
92#include <netinet6/nd6.h>
93
94#ifdef IPSEC
95#include <netipsec/ipsec.h>
96#include <netipsec/ipsec6.h>
97#include <netipsec/key.h>
98#include <netinet6/ip6_ipsec.h>
99#endif /* IPSEC */
100
101#include <netinet6/ip6protosw.h>
102#include <netinet6/scope6_var.h>
103
104static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "internet multicast options");
105
106struct ip6_exthdrs {
107 struct mbuf *ip6e_ip6;
108 struct mbuf *ip6e_hbh;
109 struct mbuf *ip6e_dest1;
110 struct mbuf *ip6e_rthdr;
111 struct mbuf *ip6e_dest2;
112};
113
114static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **,
115 int, int));
116static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
117 struct socket *, struct sockopt *));
118static int ip6_getpcbopt __P((struct ip6_pktopts *, int, struct sockopt *));
119static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *, int,
120 int, int, int));
121
122static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
123static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
124static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
125static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
126 struct ip6_frag **));
127static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
128static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
129static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
130 struct ifnet *, struct in6_addr *, u_long *, int *));
131static int copypktopts __P((struct ip6_pktopts *, struct ip6_pktopts *, int));
132
133
134/*
135 * Make an extension header from option data. hp is the source, and
136 * mp is the destination.
137 */
138#define MAKE_EXTHDR(hp, mp) \
139 do { \
140 if (hp) { \
141 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
142 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
143 ((eh)->ip6e_len + 1) << 3); \
144 if (error) \
145 goto freehdrs; \
146 } \
147 } while (/*CONSTCOND*/ 0)
148
149/*
2/* $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ */
3
4/*-
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/*-
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64#include "opt_inet.h"
65#include "opt_inet6.h"
66#include "opt_ipsec.h"
67
68#include <sys/param.h>
69#include <sys/malloc.h>
70#include <sys/mbuf.h>
71#include <sys/proc.h>
72#include <sys/errno.h>
73#include <sys/priv.h>
74#include <sys/protosw.h>
75#include <sys/socket.h>
76#include <sys/socketvar.h>
77#include <sys/kernel.h>
78
79#include <net/if.h>
80#include <net/netisr.h>
81#include <net/route.h>
82#include <net/pfil.h>
83
84#include <netinet/in.h>
85#include <netinet/in_var.h>
86#include <netinet6/in6_var.h>
87#include <netinet/ip6.h>
88#include <netinet/icmp6.h>
89#include <netinet6/ip6_var.h>
90#include <netinet/in_pcb.h>
91#include <netinet/tcp_var.h>
92#include <netinet6/nd6.h>
93
94#ifdef IPSEC
95#include <netipsec/ipsec.h>
96#include <netipsec/ipsec6.h>
97#include <netipsec/key.h>
98#include <netinet6/ip6_ipsec.h>
99#endif /* IPSEC */
100
101#include <netinet6/ip6protosw.h>
102#include <netinet6/scope6_var.h>
103
104static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "internet multicast options");
105
106struct ip6_exthdrs {
107 struct mbuf *ip6e_ip6;
108 struct mbuf *ip6e_hbh;
109 struct mbuf *ip6e_dest1;
110 struct mbuf *ip6e_rthdr;
111 struct mbuf *ip6e_dest2;
112};
113
114static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **,
115 int, int));
116static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
117 struct socket *, struct sockopt *));
118static int ip6_getpcbopt __P((struct ip6_pktopts *, int, struct sockopt *));
119static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *, int,
120 int, int, int));
121
122static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
123static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
124static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
125static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
126 struct ip6_frag **));
127static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
128static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
129static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
130 struct ifnet *, struct in6_addr *, u_long *, int *));
131static int copypktopts __P((struct ip6_pktopts *, struct ip6_pktopts *, int));
132
133
134/*
135 * Make an extension header from option data. hp is the source, and
136 * mp is the destination.
137 */
138#define MAKE_EXTHDR(hp, mp) \
139 do { \
140 if (hp) { \
141 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
142 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
143 ((eh)->ip6e_len + 1) << 3); \
144 if (error) \
145 goto freehdrs; \
146 } \
147 } while (/*CONSTCOND*/ 0)
148
149/*
150 * Form a chain of extension headers.
150 * Form a chain of extension headers.
151 * m is the extension header mbuf
152 * mp is the previous mbuf in the chain
153 * p is the next header
154 * i is the type of option.
155 */
156#define MAKE_CHAIN(m, mp, p, i)\
157 do {\
158 if (m) {\
159 if (!hdrsplit) \
160 panic("assumption failed: hdr not split"); \
161 *mtod((m), u_char *) = *(p);\
162 *(p) = (i);\
163 p = mtod((m), u_char *);\
164 (m)->m_next = (mp)->m_next;\
165 (mp)->m_next = (m);\
166 (mp) = (m);\
167 }\
168 } while (/*CONSTCOND*/ 0)
169
170/*
171 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
172 * header (with pri, len, nxt, hlim, src, dst).
173 * This function may modify ver and hlim only.
174 * The mbuf chain containing the packet will be freed.
175 * The mbuf opt, if present, will not be freed.
176 *
177 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
178 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
179 * which is rt_rmx.rmx_mtu.
180 *
181 * ifpp - XXX: just for statistics
182 */
183int
184ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
185 struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
186 struct ifnet **ifpp, struct inpcb *inp)
187{
188 struct ip6_hdr *ip6, *mhip6;
189 struct ifnet *ifp, *origifp;
190 struct mbuf *m = m0;
191 struct mbuf *mprev = NULL;
192 int hlen, tlen, len, off;
193 struct route_in6 ip6route;
194 struct rtentry *rt = NULL;
195 struct sockaddr_in6 *dst, src_sa, dst_sa;
196 struct in6_addr odst;
197 int error = 0;
198 struct in6_ifaddr *ia = NULL;
199 u_long mtu;
200 int alwaysfrag, dontfrag;
201 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
202 struct ip6_exthdrs exthdrs;
203 struct in6_addr finaldst, src0, dst0;
204 u_int32_t zone;
205 struct route_in6 *ro_pmtu = NULL;
206 int hdrsplit = 0;
207 int needipsec = 0;
208#ifdef IPSEC
209 struct ipsec_output_state state;
210 struct ip6_rthdr *rh = NULL;
211 int needipsectun = 0;
212 int segleft_org = 0;
213 struct secpolicy *sp = NULL;
214#endif /* IPSEC */
215
216 ip6 = mtod(m, struct ip6_hdr *);
217 if (ip6 == NULL) {
218 printf ("ip6 is NULL");
219 goto bad;
220 }
151 * m is the extension header mbuf
152 * mp is the previous mbuf in the chain
153 * p is the next header
154 * i is the type of option.
155 */
156#define MAKE_CHAIN(m, mp, p, i)\
157 do {\
158 if (m) {\
159 if (!hdrsplit) \
160 panic("assumption failed: hdr not split"); \
161 *mtod((m), u_char *) = *(p);\
162 *(p) = (i);\
163 p = mtod((m), u_char *);\
164 (m)->m_next = (mp)->m_next;\
165 (mp)->m_next = (m);\
166 (mp) = (m);\
167 }\
168 } while (/*CONSTCOND*/ 0)
169
170/*
171 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
172 * header (with pri, len, nxt, hlim, src, dst).
173 * This function may modify ver and hlim only.
174 * The mbuf chain containing the packet will be freed.
175 * The mbuf opt, if present, will not be freed.
176 *
177 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
178 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
179 * which is rt_rmx.rmx_mtu.
180 *
181 * ifpp - XXX: just for statistics
182 */
183int
184ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
185 struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
186 struct ifnet **ifpp, struct inpcb *inp)
187{
188 struct ip6_hdr *ip6, *mhip6;
189 struct ifnet *ifp, *origifp;
190 struct mbuf *m = m0;
191 struct mbuf *mprev = NULL;
192 int hlen, tlen, len, off;
193 struct route_in6 ip6route;
194 struct rtentry *rt = NULL;
195 struct sockaddr_in6 *dst, src_sa, dst_sa;
196 struct in6_addr odst;
197 int error = 0;
198 struct in6_ifaddr *ia = NULL;
199 u_long mtu;
200 int alwaysfrag, dontfrag;
201 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
202 struct ip6_exthdrs exthdrs;
203 struct in6_addr finaldst, src0, dst0;
204 u_int32_t zone;
205 struct route_in6 *ro_pmtu = NULL;
206 int hdrsplit = 0;
207 int needipsec = 0;
208#ifdef IPSEC
209 struct ipsec_output_state state;
210 struct ip6_rthdr *rh = NULL;
211 int needipsectun = 0;
212 int segleft_org = 0;
213 struct secpolicy *sp = NULL;
214#endif /* IPSEC */
215
216 ip6 = mtod(m, struct ip6_hdr *);
217 if (ip6 == NULL) {
218 printf ("ip6 is NULL");
219 goto bad;
220 }
221
221
222 finaldst = ip6->ip6_dst;
223
224 bzero(&exthdrs, sizeof(exthdrs));
225
226 if (opt) {
227 /* Hop-by-Hop options header */
228 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
229 /* Destination options header(1st part) */
230 if (opt->ip6po_rthdr) {
231 /*
232 * Destination options header(1st part)
233 * This only makes sense with a routing header.
234 * See Section 9.2 of RFC 3542.
235 * Disabling this part just for MIP6 convenience is
236 * a bad idea. We need to think carefully about a
237 * way to make the advanced API coexist with MIP6
238 * options, which might automatically be inserted in
239 * the kernel.
240 */
241 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
242 }
243 /* Routing header */
244 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
245 /* Destination options header(2nd part) */
246 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
247 }
248
222 finaldst = ip6->ip6_dst;
223
224 bzero(&exthdrs, sizeof(exthdrs));
225
226 if (opt) {
227 /* Hop-by-Hop options header */
228 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
229 /* Destination options header(1st part) */
230 if (opt->ip6po_rthdr) {
231 /*
232 * Destination options header(1st part)
233 * This only makes sense with a routing header.
234 * See Section 9.2 of RFC 3542.
235 * Disabling this part just for MIP6 convenience is
236 * a bad idea. We need to think carefully about a
237 * way to make the advanced API coexist with MIP6
238 * options, which might automatically be inserted in
239 * the kernel.
240 */
241 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
242 }
243 /* Routing header */
244 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
245 /* Destination options header(2nd part) */
246 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
247 }
248
249 /*
249 /*
250 * IPSec checking which handles several cases.
251 * FAST IPSEC: We re-injected the packet.
252 */
253#ifdef IPSEC
254 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp))
255 {
256 case 1: /* Bad packet */
257 goto freehdrs;
258 case -1: /* Do IPSec */
250 * IPSec checking which handles several cases.
251 * FAST IPSEC: We re-injected the packet.
252 */
253#ifdef IPSEC
254 switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp))
255 {
256 case 1: /* Bad packet */
257 goto freehdrs;
258 case -1: /* Do IPSec */
259 needipsec = 1;
259 needipsec = 1;
260 case 0: /* No IPSec */
261 default:
262 break;
263 }
264#endif /* IPSEC */
265
266 /*
267 * Calculate the total length of the extension header chain.
268 * Keep the length of the unfragmentable part for fragmentation.
269 */
270 optlen = 0;
260 case 0: /* No IPSec */
261 default:
262 break;
263 }
264#endif /* IPSEC */
265
266 /*
267 * Calculate the total length of the extension header chain.
268 * Keep the length of the unfragmentable part for fragmentation.
269 */
270 optlen = 0;
271 if (exthdrs.ip6e_hbh)
271 if (exthdrs.ip6e_hbh)
272 optlen += exthdrs.ip6e_hbh->m_len;
272 optlen += exthdrs.ip6e_hbh->m_len;
273 if (exthdrs.ip6e_dest1)
273 if (exthdrs.ip6e_dest1)
274 optlen += exthdrs.ip6e_dest1->m_len;
274 optlen += exthdrs.ip6e_dest1->m_len;
275 if (exthdrs.ip6e_rthdr)
275 if (exthdrs.ip6e_rthdr)
276 optlen += exthdrs.ip6e_rthdr->m_len;
277 unfragpartlen = optlen + sizeof(struct ip6_hdr);
278
279 /* NOTE: we don't add AH/ESP length here. do that later. */
276 optlen += exthdrs.ip6e_rthdr->m_len;
277 unfragpartlen = optlen + sizeof(struct ip6_hdr);
278
279 /* NOTE: we don't add AH/ESP length here. do that later. */
280 if (exthdrs.ip6e_dest2)
280 if (exthdrs.ip6e_dest2)
281 optlen += exthdrs.ip6e_dest2->m_len;
282
283 /*
284 * If we need IPsec, or there is at least one extension header,
285 * separate IP6 header from the payload.
286 */
287 if ((needipsec || optlen) && !hdrsplit) {
288 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
289 m = NULL;
290 goto freehdrs;
291 }
292 m = exthdrs.ip6e_ip6;
293 hdrsplit++;
294 }
295
296 /* adjust pointer */
297 ip6 = mtod(m, struct ip6_hdr *);
298
299 /* adjust mbuf packet header length */
300 m->m_pkthdr.len += optlen;
301 plen = m->m_pkthdr.len - sizeof(*ip6);
302
303 /* If this is a jumbo payload, insert a jumbo payload option. */
304 if (plen > IPV6_MAXPACKET) {
305 if (!hdrsplit) {
306 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
307 m = NULL;
308 goto freehdrs;
309 }
310 m = exthdrs.ip6e_ip6;
311 hdrsplit++;
312 }
313 /* adjust pointer */
314 ip6 = mtod(m, struct ip6_hdr *);
315 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
316 goto freehdrs;
317 ip6->ip6_plen = 0;
318 } else
319 ip6->ip6_plen = htons(plen);
320
321 /*
322 * Concatenate headers and fill in next header fields.
323 * Here we have, on "m"
324 * IPv6 payload
325 * and we insert headers accordingly. Finally, we should be getting:
326 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
327 *
328 * during the header composing process, "m" points to IPv6 header.
329 * "mprev" points to an extension header prior to esp.
330 */
331 u_char *nexthdrp = &ip6->ip6_nxt;
332 mprev = m;
281 optlen += exthdrs.ip6e_dest2->m_len;
282
283 /*
284 * If we need IPsec, or there is at least one extension header,
285 * separate IP6 header from the payload.
286 */
287 if ((needipsec || optlen) && !hdrsplit) {
288 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
289 m = NULL;
290 goto freehdrs;
291 }
292 m = exthdrs.ip6e_ip6;
293 hdrsplit++;
294 }
295
296 /* adjust pointer */
297 ip6 = mtod(m, struct ip6_hdr *);
298
299 /* adjust mbuf packet header length */
300 m->m_pkthdr.len += optlen;
301 plen = m->m_pkthdr.len - sizeof(*ip6);
302
303 /* If this is a jumbo payload, insert a jumbo payload option. */
304 if (plen > IPV6_MAXPACKET) {
305 if (!hdrsplit) {
306 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
307 m = NULL;
308 goto freehdrs;
309 }
310 m = exthdrs.ip6e_ip6;
311 hdrsplit++;
312 }
313 /* adjust pointer */
314 ip6 = mtod(m, struct ip6_hdr *);
315 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
316 goto freehdrs;
317 ip6->ip6_plen = 0;
318 } else
319 ip6->ip6_plen = htons(plen);
320
321 /*
322 * Concatenate headers and fill in next header fields.
323 * Here we have, on "m"
324 * IPv6 payload
325 * and we insert headers accordingly. Finally, we should be getting:
326 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
327 *
328 * during the header composing process, "m" points to IPv6 header.
329 * "mprev" points to an extension header prior to esp.
330 */
331 u_char *nexthdrp = &ip6->ip6_nxt;
332 mprev = m;
333
333
334 /*
335 * we treat dest2 specially. this makes IPsec processing
336 * much easier. the goal here is to make mprev point the
337 * mbuf prior to dest2.
338 *
339 * result: IPv6 dest2 payload
340 * m and mprev will point to IPv6 header.
341 */
342 if (exthdrs.ip6e_dest2) {
343 if (!hdrsplit)
344 panic("assumption failed: hdr not split");
345 exthdrs.ip6e_dest2->m_next = m->m_next;
346 m->m_next = exthdrs.ip6e_dest2;
347 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
348 ip6->ip6_nxt = IPPROTO_DSTOPTS;
349 }
334 /*
335 * we treat dest2 specially. this makes IPsec processing
336 * much easier. the goal here is to make mprev point the
337 * mbuf prior to dest2.
338 *
339 * result: IPv6 dest2 payload
340 * m and mprev will point to IPv6 header.
341 */
342 if (exthdrs.ip6e_dest2) {
343 if (!hdrsplit)
344 panic("assumption failed: hdr not split");
345 exthdrs.ip6e_dest2->m_next = m->m_next;
346 m->m_next = exthdrs.ip6e_dest2;
347 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
348 ip6->ip6_nxt = IPPROTO_DSTOPTS;
349 }
350
350
351 /*
352 * result: IPv6 hbh dest1 rthdr dest2 payload
353 * m will point to IPv6 header. mprev will point to the
354 * extension header prior to dest2 (rthdr in the above case).
355 */
356 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
357 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
358 IPPROTO_DSTOPTS);
359 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
360 IPPROTO_ROUTING);
351 /*
352 * result: IPv6 hbh dest1 rthdr dest2 payload
353 * m will point to IPv6 header. mprev will point to the
354 * extension header prior to dest2 (rthdr in the above case).
355 */
356 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
357 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
358 IPPROTO_DSTOPTS);
359 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
360 IPPROTO_ROUTING);
361
361
362#ifdef IPSEC
363 if (!needipsec)
364 goto skip_ipsec2;
362#ifdef IPSEC
363 if (!needipsec)
364 goto skip_ipsec2;
365
365
366 /*
367 * pointers after IPsec headers are not valid any more.
368 * other pointers need a great care too.
369 * (IPsec routines should not mangle mbufs prior to AH/ESP)
370 */
371 exthdrs.ip6e_dest2 = NULL;
366 /*
367 * pointers after IPsec headers are not valid any more.
368 * other pointers need a great care too.
369 * (IPsec routines should not mangle mbufs prior to AH/ESP)
370 */
371 exthdrs.ip6e_dest2 = NULL;
372
372
373 if (exthdrs.ip6e_rthdr) {
374 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
375 segleft_org = rh->ip6r_segleft;
376 rh->ip6r_segleft = 0;
377 }
373 if (exthdrs.ip6e_rthdr) {
374 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
375 segleft_org = rh->ip6r_segleft;
376 rh->ip6r_segleft = 0;
377 }
378
378
379 bzero(&state, sizeof(state));
380 state.m = m;
381 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
382 &needipsectun);
383 m = state.m;
384 if (error) {
385 /* mbuf is already reclaimed in ipsec6_output_trans. */
386 m = NULL;
387 switch (error) {
388 case EHOSTUNREACH:
389 case ENETUNREACH:
390 case EMSGSIZE:
391 case ENOBUFS:
392 case ENOMEM:
393 break;
394 default:
395 printf("ip6_output (ipsec): error code %d\n", error);
396 /* FALLTHROUGH */
397 case ENOENT:
398 /* don't show these error codes to the user */
399 error = 0;
400 break;
401 }
402 goto bad;
403 } else if (!needipsectun) {
379 bzero(&state, sizeof(state));
380 state.m = m;
381 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
382 &needipsectun);
383 m = state.m;
384 if (error) {
385 /* mbuf is already reclaimed in ipsec6_output_trans. */
386 m = NULL;
387 switch (error) {
388 case EHOSTUNREACH:
389 case ENETUNREACH:
390 case EMSGSIZE:
391 case ENOBUFS:
392 case ENOMEM:
393 break;
394 default:
395 printf("ip6_output (ipsec): error code %d\n", error);
396 /* FALLTHROUGH */
397 case ENOENT:
398 /* don't show these error codes to the user */
399 error = 0;
400 break;
401 }
402 goto bad;
403 } else if (!needipsectun) {
404 /*
405 * In the FAST IPSec case we have already
404 /*
405 * In the FAST IPSec case we have already
406 * re-injected the packet and it has been freed
406 * re-injected the packet and it has been freed
407 * by the ipsec_done() function. So, just clean
407 * by the ipsec_done() function. So, just clean
408 * up after ourselves.
408 * up after ourselves.
409 */
409 */
410 m = NULL;
411 goto done;
410 m = NULL;
411 goto done;
412 }
412 }
413 if (exthdrs.ip6e_rthdr) {
414 /* ah6_output doesn't modify mbuf chain */
415 rh->ip6r_segleft = segleft_org;
416 }
417skip_ipsec2:;
418#endif /* IPSEC */
419
420 /*
421 * If there is a routing header, replace the destination address field
422 * with the first hop of the routing header.
423 */
424 if (exthdrs.ip6e_rthdr) {
425 struct ip6_rthdr *rh =
426 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
427 struct ip6_rthdr *));
428 struct ip6_rthdr0 *rh0;
429 struct in6_addr *addr;
430 struct sockaddr_in6 sa;
431
432 switch (rh->ip6r_type) {
433 case IPV6_RTHDR_TYPE_0:
434 rh0 = (struct ip6_rthdr0 *)rh;
435 addr = (struct in6_addr *)(rh0 + 1);
436
437 /*
438 * construct a sockaddr_in6 form of
439 * the first hop.
440 *
441 * XXX: we may not have enough
442 * information about its scope zone;
443 * there is no standard API to pass
444 * the information from the
445 * application.
446 */
447 bzero(&sa, sizeof(sa));
448 sa.sin6_family = AF_INET6;
449 sa.sin6_len = sizeof(sa);
450 sa.sin6_addr = addr[0];
451 if ((error = sa6_embedscope(&sa,
452 ip6_use_defzone)) != 0) {
453 goto bad;
454 }
455 ip6->ip6_dst = sa.sin6_addr;
456 bcopy(&addr[1], &addr[0], sizeof(struct in6_addr)
457 * (rh0->ip6r0_segleft - 1));
458 addr[rh0->ip6r0_segleft - 1] = finaldst;
459 /* XXX */
460 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
461 break;
462 default: /* is it possible? */
463 error = EINVAL;
464 goto bad;
465 }
466 }
467
468 /* Source address validation */
469 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
470 (flags & IPV6_UNSPECSRC) == 0) {
471 error = EOPNOTSUPP;
472 ip6stat.ip6s_badscope++;
473 goto bad;
474 }
475 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
476 error = EOPNOTSUPP;
477 ip6stat.ip6s_badscope++;
478 goto bad;
479 }
480
481 ip6stat.ip6s_localout++;
482
483 /*
484 * Route packet.
485 */
486 if (ro == 0) {
487 ro = &ip6route;
488 bzero((caddr_t)ro, sizeof(*ro));
489 }
490 ro_pmtu = ro;
491 if (opt && opt->ip6po_rthdr)
492 ro = &opt->ip6po_route;
493 dst = (struct sockaddr_in6 *)&ro->ro_dst;
494
495again:
413 if (exthdrs.ip6e_rthdr) {
414 /* ah6_output doesn't modify mbuf chain */
415 rh->ip6r_segleft = segleft_org;
416 }
417skip_ipsec2:;
418#endif /* IPSEC */
419
420 /*
421 * If there is a routing header, replace the destination address field
422 * with the first hop of the routing header.
423 */
424 if (exthdrs.ip6e_rthdr) {
425 struct ip6_rthdr *rh =
426 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
427 struct ip6_rthdr *));
428 struct ip6_rthdr0 *rh0;
429 struct in6_addr *addr;
430 struct sockaddr_in6 sa;
431
432 switch (rh->ip6r_type) {
433 case IPV6_RTHDR_TYPE_0:
434 rh0 = (struct ip6_rthdr0 *)rh;
435 addr = (struct in6_addr *)(rh0 + 1);
436
437 /*
438 * construct a sockaddr_in6 form of
439 * the first hop.
440 *
441 * XXX: we may not have enough
442 * information about its scope zone;
443 * there is no standard API to pass
444 * the information from the
445 * application.
446 */
447 bzero(&sa, sizeof(sa));
448 sa.sin6_family = AF_INET6;
449 sa.sin6_len = sizeof(sa);
450 sa.sin6_addr = addr[0];
451 if ((error = sa6_embedscope(&sa,
452 ip6_use_defzone)) != 0) {
453 goto bad;
454 }
455 ip6->ip6_dst = sa.sin6_addr;
456 bcopy(&addr[1], &addr[0], sizeof(struct in6_addr)
457 * (rh0->ip6r0_segleft - 1));
458 addr[rh0->ip6r0_segleft - 1] = finaldst;
459 /* XXX */
460 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
461 break;
462 default: /* is it possible? */
463 error = EINVAL;
464 goto bad;
465 }
466 }
467
468 /* Source address validation */
469 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
470 (flags & IPV6_UNSPECSRC) == 0) {
471 error = EOPNOTSUPP;
472 ip6stat.ip6s_badscope++;
473 goto bad;
474 }
475 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
476 error = EOPNOTSUPP;
477 ip6stat.ip6s_badscope++;
478 goto bad;
479 }
480
481 ip6stat.ip6s_localout++;
482
483 /*
484 * Route packet.
485 */
486 if (ro == 0) {
487 ro = &ip6route;
488 bzero((caddr_t)ro, sizeof(*ro));
489 }
490 ro_pmtu = ro;
491 if (opt && opt->ip6po_rthdr)
492 ro = &opt->ip6po_route;
493 dst = (struct sockaddr_in6 *)&ro->ro_dst;
494
495again:
496 /*
496 /*
497 * if specified, try to fill in the traffic class field.
498 * do not override if a non-zero value is already set.
499 * we check the diffserv field and the ecn field separately.
500 */
501 if (opt && opt->ip6po_tclass >= 0) {
502 int mask = 0;
503
504 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
505 mask |= 0xfc;
506 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
507 mask |= 0x03;
508 if (mask != 0)
509 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
510 }
511
512 /* fill in or override the hop limit field, if necessary. */
513 if (opt && opt->ip6po_hlim != -1)
514 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
515 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
516 if (im6o != NULL)
517 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
518 else
519 ip6->ip6_hlim = ip6_defmcasthlim;
520 }
521
522#ifdef IPSEC
523 /*
524 * We may re-inject packets into the stack here.
525 */
526 if (needipsec && needipsectun) {
527 struct ipsec_output_state state;
528
529 /*
530 * All the extension headers will become inaccessible
531 * (since they can be encrypted).
532 * Don't panic, we need no more updates to extension headers
533 * on inner IPv6 packet (since they are now encapsulated).
534 *
535 * IPv6 [ESP|AH] IPv6 [extension headers] payload
536 */
537 bzero(&exthdrs, sizeof(exthdrs));
538 exthdrs.ip6e_ip6 = m;
539
540 bzero(&state, sizeof(state));
541 state.m = m;
542 state.ro = (struct route *)ro;
543 state.dst = (struct sockaddr *)dst;
544
545 error = ipsec6_output_tunnel(&state, sp, flags);
546
547 m = state.m;
548 ro = (struct route_in6 *)state.ro;
549 dst = (struct sockaddr_in6 *)state.dst;
550 if (error) {
551 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
552 m0 = m = NULL;
553 m = NULL;
554 switch (error) {
555 case EHOSTUNREACH:
556 case ENETUNREACH:
557 case EMSGSIZE:
558 case ENOBUFS:
559 case ENOMEM:
560 break;
561 default:
562 printf("ip6_output (ipsec): error code %d\n", error);
563 /* FALLTHROUGH */
564 case ENOENT:
565 /* don't show these error codes to the user */
566 error = 0;
567 break;
568 }
569 goto bad;
570 } else {
497 * if specified, try to fill in the traffic class field.
498 * do not override if a non-zero value is already set.
499 * we check the diffserv field and the ecn field separately.
500 */
501 if (opt && opt->ip6po_tclass >= 0) {
502 int mask = 0;
503
504 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
505 mask |= 0xfc;
506 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
507 mask |= 0x03;
508 if (mask != 0)
509 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
510 }
511
512 /* fill in or override the hop limit field, if necessary. */
513 if (opt && opt->ip6po_hlim != -1)
514 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
515 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
516 if (im6o != NULL)
517 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
518 else
519 ip6->ip6_hlim = ip6_defmcasthlim;
520 }
521
522#ifdef IPSEC
523 /*
524 * We may re-inject packets into the stack here.
525 */
526 if (needipsec && needipsectun) {
527 struct ipsec_output_state state;
528
529 /*
530 * All the extension headers will become inaccessible
531 * (since they can be encrypted).
532 * Don't panic, we need no more updates to extension headers
533 * on inner IPv6 packet (since they are now encapsulated).
534 *
535 * IPv6 [ESP|AH] IPv6 [extension headers] payload
536 */
537 bzero(&exthdrs, sizeof(exthdrs));
538 exthdrs.ip6e_ip6 = m;
539
540 bzero(&state, sizeof(state));
541 state.m = m;
542 state.ro = (struct route *)ro;
543 state.dst = (struct sockaddr *)dst;
544
545 error = ipsec6_output_tunnel(&state, sp, flags);
546
547 m = state.m;
548 ro = (struct route_in6 *)state.ro;
549 dst = (struct sockaddr_in6 *)state.dst;
550 if (error) {
551 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
552 m0 = m = NULL;
553 m = NULL;
554 switch (error) {
555 case EHOSTUNREACH:
556 case ENETUNREACH:
557 case EMSGSIZE:
558 case ENOBUFS:
559 case ENOMEM:
560 break;
561 default:
562 printf("ip6_output (ipsec): error code %d\n", error);
563 /* FALLTHROUGH */
564 case ENOENT:
565 /* don't show these error codes to the user */
566 error = 0;
567 break;
568 }
569 goto bad;
570 } else {
571 /*
572 * In the FAST IPSec case we have already
571 /*
572 * In the FAST IPSec case we have already
573 * re-injected the packet and it has been freed
573 * re-injected the packet and it has been freed
574 * by the ipsec_done() function. So, just clean
574 * by the ipsec_done() function. So, just clean
575 * up after ourselves.
576 */
577 m = NULL;
578 goto done;
579 }
580
581 exthdrs.ip6e_ip6 = m;
582 }
583#endif /* IPSEC */
584
585 /* adjust pointer */
586 ip6 = mtod(m, struct ip6_hdr *);
587
588 bzero(&dst_sa, sizeof(dst_sa));
589 dst_sa.sin6_family = AF_INET6;
590 dst_sa.sin6_len = sizeof(dst_sa);
591 dst_sa.sin6_addr = ip6->ip6_dst;
592 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
593 &ifp, &rt, 0)) != 0) {
594 switch (error) {
595 case EHOSTUNREACH:
596 ip6stat.ip6s_noroute++;
597 break;
598 case EADDRNOTAVAIL:
599 default:
600 break; /* XXX statistics? */
601 }
602 if (ifp != NULL)
603 in6_ifstat_inc(ifp, ifs6_out_discard);
604 goto bad;
605 }
606 if (rt == NULL) {
607 /*
608 * If in6_selectroute() does not return a route entry,
609 * dst may not have been updated.
610 */
611 *dst = dst_sa; /* XXX */
612 }
613
614 /*
615 * then rt (for unicast) and ifp must be non-NULL valid values.
616 */
617 if ((flags & IPV6_FORWARDING) == 0) {
618 /* XXX: the FORWARDING flag can be set for mrouting. */
619 in6_ifstat_inc(ifp, ifs6_out_request);
620 }
621 if (rt != NULL) {
622 ia = (struct in6_ifaddr *)(rt->rt_ifa);
623 rt->rt_use++;
624 }
625
626 /*
627 * The outgoing interface must be in the zone of source and
628 * destination addresses. We should use ia_ifp to support the
629 * case of sending packets to an address of our own.
630 */
631 if (ia != NULL && ia->ia_ifp)
632 origifp = ia->ia_ifp;
633 else
634 origifp = ifp;
635
636 src0 = ip6->ip6_src;
637 if (in6_setscope(&src0, origifp, &zone))
638 goto badscope;
639 bzero(&src_sa, sizeof(src_sa));
640 src_sa.sin6_family = AF_INET6;
641 src_sa.sin6_len = sizeof(src_sa);
642 src_sa.sin6_addr = ip6->ip6_src;
643 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
644 goto badscope;
645
646 dst0 = ip6->ip6_dst;
647 if (in6_setscope(&dst0, origifp, &zone))
648 goto badscope;
649 /* re-initialize to be sure */
650 bzero(&dst_sa, sizeof(dst_sa));
651 dst_sa.sin6_family = AF_INET6;
652 dst_sa.sin6_len = sizeof(dst_sa);
653 dst_sa.sin6_addr = ip6->ip6_dst;
654 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) {
655 goto badscope;
656 }
657
658 /* scope check is done. */
659 goto routefound;
660
661 badscope:
662 ip6stat.ip6s_badscope++;
663 in6_ifstat_inc(origifp, ifs6_out_discard);
664 if (error == 0)
665 error = EHOSTUNREACH; /* XXX */
666 goto bad;
667
668 routefound:
669 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
670 if (opt && opt->ip6po_nextroute.ro_rt) {
671 /*
672 * The nexthop is explicitly specified by the
673 * application. We assume the next hop is an IPv6
674 * address.
675 */
676 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
677 }
678 else if ((rt->rt_flags & RTF_GATEWAY))
679 dst = (struct sockaddr_in6 *)rt->rt_gateway;
680 }
681
682 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
683 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
684 } else {
685 struct in6_multi *in6m;
686
687 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
688
689 in6_ifstat_inc(ifp, ifs6_out_mcast);
690
691 /*
692 * Confirm that the outgoing interface supports multicast.
693 */
694 if (!(ifp->if_flags & IFF_MULTICAST)) {
695 ip6stat.ip6s_noroute++;
696 in6_ifstat_inc(ifp, ifs6_out_discard);
697 error = ENETUNREACH;
698 goto bad;
699 }
700 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
701 if (in6m != NULL &&
702 (im6o == NULL || im6o->im6o_multicast_loop)) {
703 /*
704 * If we belong to the destination multicast group
705 * on the outgoing interface, and the caller did not
706 * forbid loopback, loop back a copy.
707 */
708 ip6_mloopback(ifp, m, dst);
709 } else {
710 /*
711 * If we are acting as a multicast router, perform
712 * multicast forwarding as if the packet had just
713 * arrived on the interface to which we are about
714 * to send. The multicast forwarding function
715 * recursively calls this function, using the
716 * IPV6_FORWARDING flag to prevent infinite recursion.
717 *
718 * Multicasts that are looped back by ip6_mloopback(),
719 * above, will be forwarded by the ip6_input() routine,
720 * if necessary.
721 */
722 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
723 /*
724 * XXX: ip6_mforward expects that rcvif is NULL
725 * when it is called from the originating path.
726 * However, it is not always the case, since
727 * some versions of MGETHDR() does not
728 * initialize the field.
729 */
730 m->m_pkthdr.rcvif = NULL;
731 if (ip6_mforward(ip6, ifp, m) != 0) {
732 m_freem(m);
733 goto done;
734 }
735 }
736 }
737 /*
738 * Multicasts with a hoplimit of zero may be looped back,
739 * above, but must not be transmitted on a network.
740 * Also, multicasts addressed to the loopback interface
741 * are not sent -- the above call to ip6_mloopback() will
742 * loop back a copy if this host actually belongs to the
743 * destination group on the loopback interface.
744 */
745 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
746 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
747 m_freem(m);
748 goto done;
749 }
750 }
751
752 /*
753 * Fill the outgoing inteface to tell the upper layer
754 * to increment per-interface statistics.
755 */
756 if (ifpp)
757 *ifpp = ifp;
758
759 /* Determine path MTU. */
760 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
761 &alwaysfrag)) != 0)
762 goto bad;
763
764 /*
765 * The caller of this function may specify to use the minimum MTU
766 * in some cases.
767 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
768 * setting. The logic is a bit complicated; by default, unicast
769 * packets will follow path MTU while multicast packets will be sent at
770 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
771 * including unicast ones will be sent at the minimum MTU. Multicast
772 * packets will always be sent at the minimum MTU unless
773 * IP6PO_MINMTU_DISABLE is explicitly specified.
774 * See RFC 3542 for more details.
775 */
776 if (mtu > IPV6_MMTU) {
777 if ((flags & IPV6_MINMTU))
778 mtu = IPV6_MMTU;
779 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
780 mtu = IPV6_MMTU;
781 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
782 (opt == NULL ||
783 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
784 mtu = IPV6_MMTU;
785 }
786 }
787
788 /*
789 * clear embedded scope identifiers if necessary.
790 * in6_clearscope will touch the addresses only when necessary.
791 */
792 in6_clearscope(&ip6->ip6_src);
793 in6_clearscope(&ip6->ip6_dst);
794
795 /*
796 * If the outgoing packet contains a hop-by-hop options header,
797 * it must be examined and processed even by the source node.
798 * (RFC 2460, section 4.)
799 */
800 if (exthdrs.ip6e_hbh) {
801 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
802 u_int32_t dummy; /* XXX unused */
803 u_int32_t plen = 0; /* XXX: ip6_process will check the value */
804
805#ifdef DIAGNOSTIC
806 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
807 panic("ip6e_hbh is not continuous");
808#endif
809 /*
810 * XXX: if we have to send an ICMPv6 error to the sender,
811 * we need the M_LOOP flag since icmp6_error() expects
812 * the IPv6 and the hop-by-hop options header are
813 * continuous unless the flag is set.
814 */
815 m->m_flags |= M_LOOP;
816 m->m_pkthdr.rcvif = ifp;
817 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
818 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
819 &dummy, &plen) < 0) {
820 /* m was already freed at this point */
821 error = EINVAL;/* better error? */
822 goto done;
823 }
824 m->m_flags &= ~M_LOOP; /* XXX */
825 m->m_pkthdr.rcvif = NULL;
826 }
827
828 /* Jump over all PFIL processing if hooks are not active. */
829 if (!PFIL_HOOKED(&inet6_pfil_hook))
830 goto passout;
831
832 odst = ip6->ip6_dst;
833 /* Run through list of hooks for output packets. */
834 error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT, inp);
835 if (error != 0 || m == NULL)
836 goto done;
837 ip6 = mtod(m, struct ip6_hdr *);
838
839 /* See if destination IP address was changed by packet filter. */
840 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
841 m->m_flags |= M_SKIP_FIREWALL;
842 /* If destination is now ourself drop to ip6_input(). */
843 if (in6_localaddr(&ip6->ip6_dst)) {
844 if (m->m_pkthdr.rcvif == NULL)
845 m->m_pkthdr.rcvif = loif;
846 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
847 m->m_pkthdr.csum_flags |=
848 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
849 m->m_pkthdr.csum_data = 0xffff;
850 }
851 m->m_pkthdr.csum_flags |=
852 CSUM_IP_CHECKED | CSUM_IP_VALID;
853 error = netisr_queue(NETISR_IPV6, m);
854 goto done;
855 } else
856 goto again; /* Redo the routing table lookup. */
857 }
858
859 /* XXX: IPFIREWALL_FORWARD */
860
861passout:
862 /*
863 * Send the packet to the outgoing interface.
864 * If necessary, do IPv6 fragmentation before sending.
865 *
866 * the logic here is rather complex:
867 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
868 * 1-a: send as is if tlen <= path mtu
869 * 1-b: fragment if tlen > path mtu
870 *
871 * 2: if user asks us not to fragment (dontfrag == 1)
872 * 2-a: send as is if tlen <= interface mtu
873 * 2-b: error if tlen > interface mtu
874 *
875 * 3: if we always need to attach fragment header (alwaysfrag == 1)
876 * always fragment
877 *
878 * 4: if dontfrag == 1 && alwaysfrag == 1
879 * error, as we cannot handle this conflicting request
880 */
881 tlen = m->m_pkthdr.len;
882
883 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
884 dontfrag = 1;
885 else
886 dontfrag = 0;
887 if (dontfrag && alwaysfrag) { /* case 4 */
888 /* conflicting request - can't transmit */
889 error = EMSGSIZE;
890 goto bad;
891 }
892 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */
893 /*
894 * Even if the DONTFRAG option is specified, we cannot send the
895 * packet when the data length is larger than the MTU of the
896 * outgoing interface.
897 * Notify the error by sending IPV6_PATHMTU ancillary data as
898 * well as returning an error code (the latter is not described
899 * in the API spec.)
900 */
901 u_int32_t mtu32;
902 struct ip6ctlparam ip6cp;
903
904 mtu32 = (u_int32_t)mtu;
905 bzero(&ip6cp, sizeof(ip6cp));
906 ip6cp.ip6c_cmdarg = (void *)&mtu32;
907 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
908 (void *)&ip6cp);
909
910 error = EMSGSIZE;
911 goto bad;
912 }
913
914 /*
915 * transmit packet without fragmentation
916 */
917 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */
918 struct in6_ifaddr *ia6;
919
920 ip6 = mtod(m, struct ip6_hdr *);
921 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
922 if (ia6) {
923 /* Record statistics for this interface address. */
924 ia6->ia_ifa.if_opackets++;
925 ia6->ia_ifa.if_obytes += m->m_pkthdr.len;
926 }
927 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
928 goto done;
929 }
930
931 /*
932 * try to fragment the packet. case 1-b and 3
933 */
934 if (mtu < IPV6_MMTU) {
935 /* path MTU cannot be less than IPV6_MMTU */
936 error = EMSGSIZE;
937 in6_ifstat_inc(ifp, ifs6_out_fragfail);
938 goto bad;
939 } else if (ip6->ip6_plen == 0) {
940 /* jumbo payload cannot be fragmented */
941 error = EMSGSIZE;
942 in6_ifstat_inc(ifp, ifs6_out_fragfail);
943 goto bad;
944 } else {
945 struct mbuf **mnext, *m_frgpart;
946 struct ip6_frag *ip6f;
947 u_int32_t id = htonl(ip6_randomid());
948 u_char nextproto;
949
950 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len;
951
952 /*
953 * Too large for the destination or interface;
954 * fragment if possible.
955 * Must be able to put at least 8 bytes per fragment.
956 */
957 hlen = unfragpartlen;
958 if (mtu > IPV6_MAXPACKET)
959 mtu = IPV6_MAXPACKET;
960
961 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
962 if (len < 8) {
963 error = EMSGSIZE;
964 in6_ifstat_inc(ifp, ifs6_out_fragfail);
965 goto bad;
966 }
967
968 /*
969 * Verify that we have any chance at all of being able to queue
970 * the packet or packet fragments
971 */
972 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen)
973 < tlen /* - hlen */)) {
974 error = ENOBUFS;
975 ip6stat.ip6s_odropped++;
976 goto bad;
977 }
978
979 mnext = &m->m_nextpkt;
980
981 /*
982 * Change the next header field of the last header in the
983 * unfragmentable part.
984 */
985 if (exthdrs.ip6e_rthdr) {
986 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
987 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
988 } else if (exthdrs.ip6e_dest1) {
989 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
990 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
991 } else if (exthdrs.ip6e_hbh) {
992 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
993 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
994 } else {
995 nextproto = ip6->ip6_nxt;
996 ip6->ip6_nxt = IPPROTO_FRAGMENT;
997 }
998
999 /*
1000 * Loop through length of segment after first fragment,
1001 * make new header and copy data of each part and link onto
1002 * chain.
1003 */
1004 m0 = m;
1005 for (off = hlen; off < tlen; off += len) {
1006 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1007 if (!m) {
1008 error = ENOBUFS;
1009 ip6stat.ip6s_odropped++;
1010 goto sendorfree;
1011 }
1012 m->m_pkthdr.rcvif = NULL;
1013 m->m_flags = m0->m_flags & M_COPYFLAGS;
1014 *mnext = m;
1015 mnext = &m->m_nextpkt;
1016 m->m_data += max_linkhdr;
1017 mhip6 = mtod(m, struct ip6_hdr *);
1018 *mhip6 = *ip6;
1019 m->m_len = sizeof(*mhip6);
1020 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1021 if (error) {
1022 ip6stat.ip6s_odropped++;
1023 goto sendorfree;
1024 }
1025 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
1026 if (off + len >= tlen)
1027 len = tlen - off;
1028 else
1029 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1030 mhip6->ip6_plen = htons((u_short)(len + hlen +
1031 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1032 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1033 error = ENOBUFS;
1034 ip6stat.ip6s_odropped++;
1035 goto sendorfree;
1036 }
1037 m_cat(m, m_frgpart);
1038 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1039 m->m_pkthdr.rcvif = NULL;
1040 ip6f->ip6f_reserved = 0;
1041 ip6f->ip6f_ident = id;
1042 ip6f->ip6f_nxt = nextproto;
1043 ip6stat.ip6s_ofragments++;
1044 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1045 }
1046
1047 in6_ifstat_inc(ifp, ifs6_out_fragok);
1048 }
1049
1050 /*
1051 * Remove leading garbages.
1052 */
1053sendorfree:
1054 m = m0->m_nextpkt;
1055 m0->m_nextpkt = 0;
1056 m_freem(m0);
1057 for (m0 = m; m; m = m0) {
1058 m0 = m->m_nextpkt;
1059 m->m_nextpkt = 0;
1060 if (error == 0) {
575 * up after ourselves.
576 */
577 m = NULL;
578 goto done;
579 }
580
581 exthdrs.ip6e_ip6 = m;
582 }
583#endif /* IPSEC */
584
585 /* adjust pointer */
586 ip6 = mtod(m, struct ip6_hdr *);
587
588 bzero(&dst_sa, sizeof(dst_sa));
589 dst_sa.sin6_family = AF_INET6;
590 dst_sa.sin6_len = sizeof(dst_sa);
591 dst_sa.sin6_addr = ip6->ip6_dst;
592 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
593 &ifp, &rt, 0)) != 0) {
594 switch (error) {
595 case EHOSTUNREACH:
596 ip6stat.ip6s_noroute++;
597 break;
598 case EADDRNOTAVAIL:
599 default:
600 break; /* XXX statistics? */
601 }
602 if (ifp != NULL)
603 in6_ifstat_inc(ifp, ifs6_out_discard);
604 goto bad;
605 }
606 if (rt == NULL) {
607 /*
608 * If in6_selectroute() does not return a route entry,
609 * dst may not have been updated.
610 */
611 *dst = dst_sa; /* XXX */
612 }
613
614 /*
615 * then rt (for unicast) and ifp must be non-NULL valid values.
616 */
617 if ((flags & IPV6_FORWARDING) == 0) {
618 /* XXX: the FORWARDING flag can be set for mrouting. */
619 in6_ifstat_inc(ifp, ifs6_out_request);
620 }
621 if (rt != NULL) {
622 ia = (struct in6_ifaddr *)(rt->rt_ifa);
623 rt->rt_use++;
624 }
625
626 /*
627 * The outgoing interface must be in the zone of source and
628 * destination addresses. We should use ia_ifp to support the
629 * case of sending packets to an address of our own.
630 */
631 if (ia != NULL && ia->ia_ifp)
632 origifp = ia->ia_ifp;
633 else
634 origifp = ifp;
635
636 src0 = ip6->ip6_src;
637 if (in6_setscope(&src0, origifp, &zone))
638 goto badscope;
639 bzero(&src_sa, sizeof(src_sa));
640 src_sa.sin6_family = AF_INET6;
641 src_sa.sin6_len = sizeof(src_sa);
642 src_sa.sin6_addr = ip6->ip6_src;
643 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
644 goto badscope;
645
646 dst0 = ip6->ip6_dst;
647 if (in6_setscope(&dst0, origifp, &zone))
648 goto badscope;
649 /* re-initialize to be sure */
650 bzero(&dst_sa, sizeof(dst_sa));
651 dst_sa.sin6_family = AF_INET6;
652 dst_sa.sin6_len = sizeof(dst_sa);
653 dst_sa.sin6_addr = ip6->ip6_dst;
654 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) {
655 goto badscope;
656 }
657
658 /* scope check is done. */
659 goto routefound;
660
661 badscope:
662 ip6stat.ip6s_badscope++;
663 in6_ifstat_inc(origifp, ifs6_out_discard);
664 if (error == 0)
665 error = EHOSTUNREACH; /* XXX */
666 goto bad;
667
668 routefound:
669 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
670 if (opt && opt->ip6po_nextroute.ro_rt) {
671 /*
672 * The nexthop is explicitly specified by the
673 * application. We assume the next hop is an IPv6
674 * address.
675 */
676 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
677 }
678 else if ((rt->rt_flags & RTF_GATEWAY))
679 dst = (struct sockaddr_in6 *)rt->rt_gateway;
680 }
681
682 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
683 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
684 } else {
685 struct in6_multi *in6m;
686
687 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
688
689 in6_ifstat_inc(ifp, ifs6_out_mcast);
690
691 /*
692 * Confirm that the outgoing interface supports multicast.
693 */
694 if (!(ifp->if_flags & IFF_MULTICAST)) {
695 ip6stat.ip6s_noroute++;
696 in6_ifstat_inc(ifp, ifs6_out_discard);
697 error = ENETUNREACH;
698 goto bad;
699 }
700 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
701 if (in6m != NULL &&
702 (im6o == NULL || im6o->im6o_multicast_loop)) {
703 /*
704 * If we belong to the destination multicast group
705 * on the outgoing interface, and the caller did not
706 * forbid loopback, loop back a copy.
707 */
708 ip6_mloopback(ifp, m, dst);
709 } else {
710 /*
711 * If we are acting as a multicast router, perform
712 * multicast forwarding as if the packet had just
713 * arrived on the interface to which we are about
714 * to send. The multicast forwarding function
715 * recursively calls this function, using the
716 * IPV6_FORWARDING flag to prevent infinite recursion.
717 *
718 * Multicasts that are looped back by ip6_mloopback(),
719 * above, will be forwarded by the ip6_input() routine,
720 * if necessary.
721 */
722 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
723 /*
724 * XXX: ip6_mforward expects that rcvif is NULL
725 * when it is called from the originating path.
726 * However, it is not always the case, since
727 * some versions of MGETHDR() does not
728 * initialize the field.
729 */
730 m->m_pkthdr.rcvif = NULL;
731 if (ip6_mforward(ip6, ifp, m) != 0) {
732 m_freem(m);
733 goto done;
734 }
735 }
736 }
737 /*
738 * Multicasts with a hoplimit of zero may be looped back,
739 * above, but must not be transmitted on a network.
740 * Also, multicasts addressed to the loopback interface
741 * are not sent -- the above call to ip6_mloopback() will
742 * loop back a copy if this host actually belongs to the
743 * destination group on the loopback interface.
744 */
745 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
746 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
747 m_freem(m);
748 goto done;
749 }
750 }
751
752 /*
753 * Fill the outgoing inteface to tell the upper layer
754 * to increment per-interface statistics.
755 */
756 if (ifpp)
757 *ifpp = ifp;
758
759 /* Determine path MTU. */
760 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
761 &alwaysfrag)) != 0)
762 goto bad;
763
764 /*
765 * The caller of this function may specify to use the minimum MTU
766 * in some cases.
767 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
768 * setting. The logic is a bit complicated; by default, unicast
769 * packets will follow path MTU while multicast packets will be sent at
770 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
771 * including unicast ones will be sent at the minimum MTU. Multicast
772 * packets will always be sent at the minimum MTU unless
773 * IP6PO_MINMTU_DISABLE is explicitly specified.
774 * See RFC 3542 for more details.
775 */
776 if (mtu > IPV6_MMTU) {
777 if ((flags & IPV6_MINMTU))
778 mtu = IPV6_MMTU;
779 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
780 mtu = IPV6_MMTU;
781 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
782 (opt == NULL ||
783 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
784 mtu = IPV6_MMTU;
785 }
786 }
787
788 /*
789 * clear embedded scope identifiers if necessary.
790 * in6_clearscope will touch the addresses only when necessary.
791 */
792 in6_clearscope(&ip6->ip6_src);
793 in6_clearscope(&ip6->ip6_dst);
794
795 /*
796 * If the outgoing packet contains a hop-by-hop options header,
797 * it must be examined and processed even by the source node.
798 * (RFC 2460, section 4.)
799 */
800 if (exthdrs.ip6e_hbh) {
801 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
802 u_int32_t dummy; /* XXX unused */
803 u_int32_t plen = 0; /* XXX: ip6_process will check the value */
804
805#ifdef DIAGNOSTIC
806 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
807 panic("ip6e_hbh is not continuous");
808#endif
809 /*
810 * XXX: if we have to send an ICMPv6 error to the sender,
811 * we need the M_LOOP flag since icmp6_error() expects
812 * the IPv6 and the hop-by-hop options header are
813 * continuous unless the flag is set.
814 */
815 m->m_flags |= M_LOOP;
816 m->m_pkthdr.rcvif = ifp;
817 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
818 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
819 &dummy, &plen) < 0) {
820 /* m was already freed at this point */
821 error = EINVAL;/* better error? */
822 goto done;
823 }
824 m->m_flags &= ~M_LOOP; /* XXX */
825 m->m_pkthdr.rcvif = NULL;
826 }
827
828 /* Jump over all PFIL processing if hooks are not active. */
829 if (!PFIL_HOOKED(&inet6_pfil_hook))
830 goto passout;
831
832 odst = ip6->ip6_dst;
833 /* Run through list of hooks for output packets. */
834 error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT, inp);
835 if (error != 0 || m == NULL)
836 goto done;
837 ip6 = mtod(m, struct ip6_hdr *);
838
839 /* See if destination IP address was changed by packet filter. */
840 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
841 m->m_flags |= M_SKIP_FIREWALL;
842 /* If destination is now ourself drop to ip6_input(). */
843 if (in6_localaddr(&ip6->ip6_dst)) {
844 if (m->m_pkthdr.rcvif == NULL)
845 m->m_pkthdr.rcvif = loif;
846 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
847 m->m_pkthdr.csum_flags |=
848 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
849 m->m_pkthdr.csum_data = 0xffff;
850 }
851 m->m_pkthdr.csum_flags |=
852 CSUM_IP_CHECKED | CSUM_IP_VALID;
853 error = netisr_queue(NETISR_IPV6, m);
854 goto done;
855 } else
856 goto again; /* Redo the routing table lookup. */
857 }
858
859 /* XXX: IPFIREWALL_FORWARD */
860
861passout:
862 /*
863 * Send the packet to the outgoing interface.
864 * If necessary, do IPv6 fragmentation before sending.
865 *
866 * the logic here is rather complex:
867 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
868 * 1-a: send as is if tlen <= path mtu
869 * 1-b: fragment if tlen > path mtu
870 *
871 * 2: if user asks us not to fragment (dontfrag == 1)
872 * 2-a: send as is if tlen <= interface mtu
873 * 2-b: error if tlen > interface mtu
874 *
875 * 3: if we always need to attach fragment header (alwaysfrag == 1)
876 * always fragment
877 *
878 * 4: if dontfrag == 1 && alwaysfrag == 1
879 * error, as we cannot handle this conflicting request
880 */
881 tlen = m->m_pkthdr.len;
882
883 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
884 dontfrag = 1;
885 else
886 dontfrag = 0;
887 if (dontfrag && alwaysfrag) { /* case 4 */
888 /* conflicting request - can't transmit */
889 error = EMSGSIZE;
890 goto bad;
891 }
892 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */
893 /*
894 * Even if the DONTFRAG option is specified, we cannot send the
895 * packet when the data length is larger than the MTU of the
896 * outgoing interface.
897 * Notify the error by sending IPV6_PATHMTU ancillary data as
898 * well as returning an error code (the latter is not described
899 * in the API spec.)
900 */
901 u_int32_t mtu32;
902 struct ip6ctlparam ip6cp;
903
904 mtu32 = (u_int32_t)mtu;
905 bzero(&ip6cp, sizeof(ip6cp));
906 ip6cp.ip6c_cmdarg = (void *)&mtu32;
907 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
908 (void *)&ip6cp);
909
910 error = EMSGSIZE;
911 goto bad;
912 }
913
914 /*
915 * transmit packet without fragmentation
916 */
917 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */
918 struct in6_ifaddr *ia6;
919
920 ip6 = mtod(m, struct ip6_hdr *);
921 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
922 if (ia6) {
923 /* Record statistics for this interface address. */
924 ia6->ia_ifa.if_opackets++;
925 ia6->ia_ifa.if_obytes += m->m_pkthdr.len;
926 }
927 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
928 goto done;
929 }
930
931 /*
932 * try to fragment the packet. case 1-b and 3
933 */
934 if (mtu < IPV6_MMTU) {
935 /* path MTU cannot be less than IPV6_MMTU */
936 error = EMSGSIZE;
937 in6_ifstat_inc(ifp, ifs6_out_fragfail);
938 goto bad;
939 } else if (ip6->ip6_plen == 0) {
940 /* jumbo payload cannot be fragmented */
941 error = EMSGSIZE;
942 in6_ifstat_inc(ifp, ifs6_out_fragfail);
943 goto bad;
944 } else {
945 struct mbuf **mnext, *m_frgpart;
946 struct ip6_frag *ip6f;
947 u_int32_t id = htonl(ip6_randomid());
948 u_char nextproto;
949
950 int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len;
951
952 /*
953 * Too large for the destination or interface;
954 * fragment if possible.
955 * Must be able to put at least 8 bytes per fragment.
956 */
957 hlen = unfragpartlen;
958 if (mtu > IPV6_MAXPACKET)
959 mtu = IPV6_MAXPACKET;
960
961 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
962 if (len < 8) {
963 error = EMSGSIZE;
964 in6_ifstat_inc(ifp, ifs6_out_fragfail);
965 goto bad;
966 }
967
968 /*
969 * Verify that we have any chance at all of being able to queue
970 * the packet or packet fragments
971 */
972 if (qslots <= 0 || ((u_int)qslots * (mtu - hlen)
973 < tlen /* - hlen */)) {
974 error = ENOBUFS;
975 ip6stat.ip6s_odropped++;
976 goto bad;
977 }
978
979 mnext = &m->m_nextpkt;
980
981 /*
982 * Change the next header field of the last header in the
983 * unfragmentable part.
984 */
985 if (exthdrs.ip6e_rthdr) {
986 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
987 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
988 } else if (exthdrs.ip6e_dest1) {
989 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
990 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
991 } else if (exthdrs.ip6e_hbh) {
992 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
993 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
994 } else {
995 nextproto = ip6->ip6_nxt;
996 ip6->ip6_nxt = IPPROTO_FRAGMENT;
997 }
998
999 /*
1000 * Loop through length of segment after first fragment,
1001 * make new header and copy data of each part and link onto
1002 * chain.
1003 */
1004 m0 = m;
1005 for (off = hlen; off < tlen; off += len) {
1006 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1007 if (!m) {
1008 error = ENOBUFS;
1009 ip6stat.ip6s_odropped++;
1010 goto sendorfree;
1011 }
1012 m->m_pkthdr.rcvif = NULL;
1013 m->m_flags = m0->m_flags & M_COPYFLAGS;
1014 *mnext = m;
1015 mnext = &m->m_nextpkt;
1016 m->m_data += max_linkhdr;
1017 mhip6 = mtod(m, struct ip6_hdr *);
1018 *mhip6 = *ip6;
1019 m->m_len = sizeof(*mhip6);
1020 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1021 if (error) {
1022 ip6stat.ip6s_odropped++;
1023 goto sendorfree;
1024 }
1025 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
1026 if (off + len >= tlen)
1027 len = tlen - off;
1028 else
1029 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1030 mhip6->ip6_plen = htons((u_short)(len + hlen +
1031 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1032 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1033 error = ENOBUFS;
1034 ip6stat.ip6s_odropped++;
1035 goto sendorfree;
1036 }
1037 m_cat(m, m_frgpart);
1038 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1039 m->m_pkthdr.rcvif = NULL;
1040 ip6f->ip6f_reserved = 0;
1041 ip6f->ip6f_ident = id;
1042 ip6f->ip6f_nxt = nextproto;
1043 ip6stat.ip6s_ofragments++;
1044 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1045 }
1046
1047 in6_ifstat_inc(ifp, ifs6_out_fragok);
1048 }
1049
1050 /*
1051 * Remove leading garbages.
1052 */
1053sendorfree:
1054 m = m0->m_nextpkt;
1055 m0->m_nextpkt = 0;
1056 m_freem(m0);
1057 for (m0 = m; m; m = m0) {
1058 m0 = m->m_nextpkt;
1059 m->m_nextpkt = 0;
1060 if (error == 0) {
1061 /* Record statistics for this interface address. */
1062 if (ia) {
1063 ia->ia_ifa.if_opackets++;
1064 ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1065 }
1061 /* Record statistics for this interface address. */
1062 if (ia) {
1063 ia->ia_ifa.if_opackets++;
1064 ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1065 }
1066 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1067 } else
1068 m_freem(m);
1069 }
1070
1071 if (error == 0)
1072 ip6stat.ip6s_fragmented++;
1073
1074done:
1075 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1076 RTFREE(ro->ro_rt);
1077 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1078 RTFREE(ro_pmtu->ro_rt);
1079 }
1080
1081 return (error);
1082
1083freehdrs:
1084 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1085 m_freem(exthdrs.ip6e_dest1);
1086 m_freem(exthdrs.ip6e_rthdr);
1087 m_freem(exthdrs.ip6e_dest2);
1088 /* FALLTHROUGH */
1089bad:
1090 if (m)
1091 m_freem(m);
1092 goto done;
1093}
1094
1095static int
1096ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1097{
1098 struct mbuf *m;
1099
1100 if (hlen > MCLBYTES)
1101 return (ENOBUFS); /* XXX */
1102
1103 MGET(m, M_DONTWAIT, MT_DATA);
1104 if (!m)
1105 return (ENOBUFS);
1106
1107 if (hlen > MLEN) {
1108 MCLGET(m, M_DONTWAIT);
1109 if ((m->m_flags & M_EXT) == 0) {
1110 m_free(m);
1111 return (ENOBUFS);
1112 }
1113 }
1114 m->m_len = hlen;
1115 if (hdr)
1116 bcopy(hdr, mtod(m, caddr_t), hlen);
1117
1118 *mp = m;
1119 return (0);
1120}
1121
1122/*
1123 * Insert jumbo payload option.
1124 */
1125static int
1126ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1127{
1128 struct mbuf *mopt;
1129 u_char *optbuf;
1130 u_int32_t v;
1131
1132#define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1133
1134 /*
1135 * If there is no hop-by-hop options header, allocate new one.
1136 * If there is one but it doesn't have enough space to store the
1137 * jumbo payload option, allocate a cluster to store the whole options.
1138 * Otherwise, use it to store the options.
1139 */
1140 if (exthdrs->ip6e_hbh == 0) {
1141 MGET(mopt, M_DONTWAIT, MT_DATA);
1142 if (mopt == 0)
1143 return (ENOBUFS);
1144 mopt->m_len = JUMBOOPTLEN;
1145 optbuf = mtod(mopt, u_char *);
1146 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1147 exthdrs->ip6e_hbh = mopt;
1148 } else {
1149 struct ip6_hbh *hbh;
1150
1151 mopt = exthdrs->ip6e_hbh;
1152 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1153 /*
1154 * XXX assumption:
1155 * - exthdrs->ip6e_hbh is not referenced from places
1156 * other than exthdrs.
1157 * - exthdrs->ip6e_hbh is not an mbuf chain.
1158 */
1159 int oldoptlen = mopt->m_len;
1160 struct mbuf *n;
1161
1162 /*
1163 * XXX: give up if the whole (new) hbh header does
1164 * not fit even in an mbuf cluster.
1165 */
1166 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1167 return (ENOBUFS);
1168
1169 /*
1170 * As a consequence, we must always prepare a cluster
1171 * at this point.
1172 */
1173 MGET(n, M_DONTWAIT, MT_DATA);
1174 if (n) {
1175 MCLGET(n, M_DONTWAIT);
1176 if ((n->m_flags & M_EXT) == 0) {
1177 m_freem(n);
1178 n = NULL;
1179 }
1180 }
1181 if (!n)
1182 return (ENOBUFS);
1183 n->m_len = oldoptlen + JUMBOOPTLEN;
1184 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1185 oldoptlen);
1186 optbuf = mtod(n, caddr_t) + oldoptlen;
1187 m_freem(mopt);
1188 mopt = exthdrs->ip6e_hbh = n;
1189 } else {
1190 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1191 mopt->m_len += JUMBOOPTLEN;
1192 }
1193 optbuf[0] = IP6OPT_PADN;
1194 optbuf[1] = 1;
1195
1196 /*
1197 * Adjust the header length according to the pad and
1198 * the jumbo payload option.
1199 */
1200 hbh = mtod(mopt, struct ip6_hbh *);
1201 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1202 }
1203
1204 /* fill in the option. */
1205 optbuf[2] = IP6OPT_JUMBO;
1206 optbuf[3] = 4;
1207 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1208 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1209
1210 /* finally, adjust the packet header length */
1211 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1212
1213 return (0);
1214#undef JUMBOOPTLEN
1215}
1216
1217/*
1218 * Insert fragment header and copy unfragmentable header portions.
1219 */
1220static int
1221ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1222 struct ip6_frag **frghdrp)
1223{
1224 struct mbuf *n, *mlast;
1225
1226 if (hlen > sizeof(struct ip6_hdr)) {
1227 n = m_copym(m0, sizeof(struct ip6_hdr),
1228 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1229 if (n == 0)
1230 return (ENOBUFS);
1231 m->m_next = n;
1232 } else
1233 n = m;
1234
1235 /* Search for the last mbuf of unfragmentable part. */
1236 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1237 ;
1238
1239 if ((mlast->m_flags & M_EXT) == 0 &&
1240 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1241 /* use the trailing space of the last mbuf for the fragment hdr */
1242 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1243 mlast->m_len);
1244 mlast->m_len += sizeof(struct ip6_frag);
1245 m->m_pkthdr.len += sizeof(struct ip6_frag);
1246 } else {
1247 /* allocate a new mbuf for the fragment header */
1248 struct mbuf *mfrg;
1249
1250 MGET(mfrg, M_DONTWAIT, MT_DATA);
1251 if (mfrg == 0)
1252 return (ENOBUFS);
1253 mfrg->m_len = sizeof(struct ip6_frag);
1254 *frghdrp = mtod(mfrg, struct ip6_frag *);
1255 mlast->m_next = mfrg;
1256 }
1257
1258 return (0);
1259}
1260
1261static int
1262ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1263 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1264 int *alwaysfragp)
1265{
1266 u_int32_t mtu = 0;
1267 int alwaysfrag = 0;
1268 int error = 0;
1269
1270 if (ro_pmtu != ro) {
1271 /* The first hop and the final destination may differ. */
1272 struct sockaddr_in6 *sa6_dst =
1273 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1274 if (ro_pmtu->ro_rt &&
1275 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1276 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1277 RTFREE(ro_pmtu->ro_rt);
1278 ro_pmtu->ro_rt = (struct rtentry *)NULL;
1279 }
1280 if (ro_pmtu->ro_rt == NULL) {
1281 bzero(sa6_dst, sizeof(*sa6_dst));
1282 sa6_dst->sin6_family = AF_INET6;
1283 sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1284 sa6_dst->sin6_addr = *dst;
1285
1286 rtalloc((struct route *)ro_pmtu);
1287 }
1288 }
1289 if (ro_pmtu->ro_rt) {
1290 u_int32_t ifmtu;
1291 struct in_conninfo inc;
1292
1293 bzero(&inc, sizeof(inc));
1294 inc.inc_flags = 1; /* IPv6 */
1295 inc.inc6_faddr = *dst;
1296
1297 if (ifp == NULL)
1298 ifp = ro_pmtu->ro_rt->rt_ifp;
1299 ifmtu = IN6_LINKMTU(ifp);
1300 mtu = tcp_hc_getmtu(&inc);
1301 if (mtu)
1302 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu);
1303 else
1304 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1305 if (mtu == 0)
1306 mtu = ifmtu;
1307 else if (mtu < IPV6_MMTU) {
1308 /*
1309 * RFC2460 section 5, last paragraph:
1310 * if we record ICMPv6 too big message with
1311 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1312 * or smaller, with framgent header attached.
1313 * (fragment header is needed regardless from the
1314 * packet size, for translators to identify packets)
1315 */
1316 alwaysfrag = 1;
1317 mtu = IPV6_MMTU;
1318 } else if (mtu > ifmtu) {
1319 /*
1320 * The MTU on the route is larger than the MTU on
1321 * the interface! This shouldn't happen, unless the
1322 * MTU of the interface has been changed after the
1323 * interface was brought up. Change the MTU in the
1324 * route to match the interface MTU (as long as the
1325 * field isn't locked).
1326 */
1327 mtu = ifmtu;
1328 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1329 }
1330 } else if (ifp) {
1331 mtu = IN6_LINKMTU(ifp);
1332 } else
1333 error = EHOSTUNREACH; /* XXX */
1334
1335 *mtup = mtu;
1336 if (alwaysfragp)
1337 *alwaysfragp = alwaysfrag;
1338 return (error);
1339}
1340
1341/*
1342 * IP6 socket option processing.
1343 */
1344int
1345ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1346{
1347 int privileged, optdatalen, uproto;
1348 void *optdata;
1349 struct inpcb *in6p = sotoinpcb(so);
1350 int error, optval;
1351 int level, op, optname;
1352 int optlen;
1353 struct thread *td;
1354
1355 if (sopt) {
1356 level = sopt->sopt_level;
1357 op = sopt->sopt_dir;
1358 optname = sopt->sopt_name;
1359 optlen = sopt->sopt_valsize;
1360 td = sopt->sopt_td;
1361 } else {
1362 panic("ip6_ctloutput: arg soopt is NULL");
1363 }
1364 error = optval = 0;
1365
1366 privileged = (td == 0 || suser(td)) ? 0 : 1;
1367 uproto = (int)so->so_proto->pr_protocol;
1368
1369 if (level == IPPROTO_IPV6) {
1370 switch (op) {
1371
1372 case SOPT_SET:
1373 switch (optname) {
1374 case IPV6_2292PKTOPTIONS:
1375#ifdef IPV6_PKTOPTIONS
1376 case IPV6_PKTOPTIONS:
1377#endif
1378 {
1379 struct mbuf *m;
1380
1381 error = soopt_getm(sopt, &m); /* XXX */
1382 if (error != 0)
1383 break;
1384 error = soopt_mcopyin(sopt, m); /* XXX */
1385 if (error != 0)
1386 break;
1387 error = ip6_pcbopts(&in6p->in6p_outputopts,
1388 m, so, sopt);
1389 m_freem(m); /* XXX */
1390 break;
1391 }
1392
1393 /*
1394 * Use of some Hop-by-Hop options or some
1395 * Destination options, might require special
1396 * privilege. That is, normal applications
1397 * (without special privilege) might be forbidden
1398 * from setting certain options in outgoing packets,
1399 * and might never see certain options in received
1400 * packets. [RFC 2292 Section 6]
1401 * KAME specific note:
1402 * KAME prevents non-privileged users from sending or
1403 * receiving ANY hbh/dst options in order to avoid
1404 * overhead of parsing options in the kernel.
1405 */
1406 case IPV6_RECVHOPOPTS:
1407 case IPV6_RECVDSTOPTS:
1408 case IPV6_RECVRTHDRDSTOPTS:
1409 if (!privileged) {
1410 error = EPERM;
1411 break;
1412 }
1413 /* FALLTHROUGH */
1414 case IPV6_UNICAST_HOPS:
1415 case IPV6_HOPLIMIT:
1416 case IPV6_FAITH:
1417
1418 case IPV6_RECVPKTINFO:
1419 case IPV6_RECVHOPLIMIT:
1420 case IPV6_RECVRTHDR:
1421 case IPV6_RECVPATHMTU:
1422 case IPV6_RECVTCLASS:
1423 case IPV6_V6ONLY:
1424 case IPV6_AUTOFLOWLABEL:
1425 if (optlen != sizeof(int)) {
1426 error = EINVAL;
1427 break;
1428 }
1429 error = sooptcopyin(sopt, &optval,
1430 sizeof optval, sizeof optval);
1431 if (error)
1432 break;
1433 switch (optname) {
1434
1435 case IPV6_UNICAST_HOPS:
1436 if (optval < -1 || optval >= 256)
1437 error = EINVAL;
1438 else {
1439 /* -1 = kernel default */
1440 in6p->in6p_hops = optval;
1441 if ((in6p->in6p_vflag &
1442 INP_IPV4) != 0)
1443 in6p->inp_ip_ttl = optval;
1444 }
1445 break;
1446#define OPTSET(bit) \
1447do { \
1448 if (optval) \
1449 in6p->in6p_flags |= (bit); \
1450 else \
1451 in6p->in6p_flags &= ~(bit); \
1452} while (/*CONSTCOND*/ 0)
1453#define OPTSET2292(bit) \
1454do { \
1455 in6p->in6p_flags |= IN6P_RFC2292; \
1456 if (optval) \
1457 in6p->in6p_flags |= (bit); \
1458 else \
1459 in6p->in6p_flags &= ~(bit); \
1460} while (/*CONSTCOND*/ 0)
1461#define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1462
1463 case IPV6_RECVPKTINFO:
1464 /* cannot mix with RFC2292 */
1465 if (OPTBIT(IN6P_RFC2292)) {
1466 error = EINVAL;
1467 break;
1468 }
1469 OPTSET(IN6P_PKTINFO);
1470 break;
1471
1472 case IPV6_HOPLIMIT:
1473 {
1474 struct ip6_pktopts **optp;
1475
1476 /* cannot mix with RFC2292 */
1477 if (OPTBIT(IN6P_RFC2292)) {
1478 error = EINVAL;
1479 break;
1480 }
1481 optp = &in6p->in6p_outputopts;
1482 error = ip6_pcbopt(IPV6_HOPLIMIT,
1483 (u_char *)&optval,
1484 sizeof(optval),
1485 optp,
1486 privileged, uproto);
1487 break;
1488 }
1489
1490 case IPV6_RECVHOPLIMIT:
1491 /* cannot mix with RFC2292 */
1492 if (OPTBIT(IN6P_RFC2292)) {
1493 error = EINVAL;
1494 break;
1495 }
1496 OPTSET(IN6P_HOPLIMIT);
1497 break;
1498
1499 case IPV6_RECVHOPOPTS:
1500 /* cannot mix with RFC2292 */
1501 if (OPTBIT(IN6P_RFC2292)) {
1502 error = EINVAL;
1503 break;
1504 }
1505 OPTSET(IN6P_HOPOPTS);
1506 break;
1507
1508 case IPV6_RECVDSTOPTS:
1509 /* cannot mix with RFC2292 */
1510 if (OPTBIT(IN6P_RFC2292)) {
1511 error = EINVAL;
1512 break;
1513 }
1514 OPTSET(IN6P_DSTOPTS);
1515 break;
1516
1517 case IPV6_RECVRTHDRDSTOPTS:
1518 /* cannot mix with RFC2292 */
1519 if (OPTBIT(IN6P_RFC2292)) {
1520 error = EINVAL;
1521 break;
1522 }
1523 OPTSET(IN6P_RTHDRDSTOPTS);
1524 break;
1525
1526 case IPV6_RECVRTHDR:
1527 /* cannot mix with RFC2292 */
1528 if (OPTBIT(IN6P_RFC2292)) {
1529 error = EINVAL;
1530 break;
1531 }
1532 OPTSET(IN6P_RTHDR);
1533 break;
1534
1535 case IPV6_FAITH:
1536 OPTSET(IN6P_FAITH);
1537 break;
1538
1539 case IPV6_RECVPATHMTU:
1540 /*
1541 * We ignore this option for TCP
1542 * sockets.
1543 * (RFC3542 leaves this case
1544 * unspecified.)
1545 */
1546 if (uproto != IPPROTO_TCP)
1547 OPTSET(IN6P_MTU);
1548 break;
1549
1550 case IPV6_V6ONLY:
1551 /*
1552 * make setsockopt(IPV6_V6ONLY)
1553 * available only prior to bind(2).
1554 * see ipng mailing list, Jun 22 2001.
1555 */
1556 if (in6p->in6p_lport ||
1557 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1558 error = EINVAL;
1559 break;
1560 }
1561 OPTSET(IN6P_IPV6_V6ONLY);
1562 if (optval)
1563 in6p->in6p_vflag &= ~INP_IPV4;
1564 else
1565 in6p->in6p_vflag |= INP_IPV4;
1566 break;
1567 case IPV6_RECVTCLASS:
1568 /* cannot mix with RFC2292 XXX */
1569 if (OPTBIT(IN6P_RFC2292)) {
1570 error = EINVAL;
1571 break;
1572 }
1573 OPTSET(IN6P_TCLASS);
1574 break;
1575 case IPV6_AUTOFLOWLABEL:
1576 OPTSET(IN6P_AUTOFLOWLABEL);
1577 break;
1578
1579 }
1580 break;
1581
1582 case IPV6_TCLASS:
1583 case IPV6_DONTFRAG:
1584 case IPV6_USE_MIN_MTU:
1585 case IPV6_PREFER_TEMPADDR:
1586 if (optlen != sizeof(optval)) {
1587 error = EINVAL;
1588 break;
1589 }
1590 error = sooptcopyin(sopt, &optval,
1591 sizeof optval, sizeof optval);
1592 if (error)
1593 break;
1594 {
1595 struct ip6_pktopts **optp;
1596 optp = &in6p->in6p_outputopts;
1597 error = ip6_pcbopt(optname,
1598 (u_char *)&optval,
1599 sizeof(optval),
1600 optp,
1601 privileged, uproto);
1602 break;
1603 }
1604
1605 case IPV6_2292PKTINFO:
1606 case IPV6_2292HOPLIMIT:
1607 case IPV6_2292HOPOPTS:
1608 case IPV6_2292DSTOPTS:
1609 case IPV6_2292RTHDR:
1610 /* RFC 2292 */
1611 if (optlen != sizeof(int)) {
1612 error = EINVAL;
1613 break;
1614 }
1615 error = sooptcopyin(sopt, &optval,
1616 sizeof optval, sizeof optval);
1617 if (error)
1618 break;
1619 switch (optname) {
1620 case IPV6_2292PKTINFO:
1621 OPTSET2292(IN6P_PKTINFO);
1622 break;
1623 case IPV6_2292HOPLIMIT:
1624 OPTSET2292(IN6P_HOPLIMIT);
1625 break;
1626 case IPV6_2292HOPOPTS:
1627 /*
1628 * Check super-user privilege.
1629 * See comments for IPV6_RECVHOPOPTS.
1630 */
1631 if (!privileged)
1632 return (EPERM);
1633 OPTSET2292(IN6P_HOPOPTS);
1634 break;
1635 case IPV6_2292DSTOPTS:
1636 if (!privileged)
1637 return (EPERM);
1638 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1639 break;
1640 case IPV6_2292RTHDR:
1641 OPTSET2292(IN6P_RTHDR);
1642 break;
1643 }
1644 break;
1645 case IPV6_PKTINFO:
1646 case IPV6_HOPOPTS:
1647 case IPV6_RTHDR:
1648 case IPV6_DSTOPTS:
1649 case IPV6_RTHDRDSTOPTS:
1650 case IPV6_NEXTHOP:
1651 {
1652 /* new advanced API (RFC3542) */
1653 u_char *optbuf;
1654 u_char optbuf_storage[MCLBYTES];
1655 int optlen;
1656 struct ip6_pktopts **optp;
1657
1658 /* cannot mix with RFC2292 */
1659 if (OPTBIT(IN6P_RFC2292)) {
1660 error = EINVAL;
1661 break;
1662 }
1663
1664 /*
1665 * We only ensure valsize is not too large
1666 * here. Further validation will be done
1667 * later.
1668 */
1669 error = sooptcopyin(sopt, optbuf_storage,
1670 sizeof(optbuf_storage), 0);
1671 if (error)
1672 break;
1673 optlen = sopt->sopt_valsize;
1674 optbuf = optbuf_storage;
1675 optp = &in6p->in6p_outputopts;
1676 error = ip6_pcbopt(optname,
1677 optbuf, optlen,
1678 optp, privileged, uproto);
1679 break;
1680 }
1681#undef OPTSET
1682
1683 case IPV6_MULTICAST_IF:
1684 case IPV6_MULTICAST_HOPS:
1685 case IPV6_MULTICAST_LOOP:
1686 case IPV6_JOIN_GROUP:
1687 case IPV6_LEAVE_GROUP:
1688 {
1689 if (sopt->sopt_valsize > MLEN) {
1690 error = EMSGSIZE;
1691 break;
1692 }
1693 /* XXX */
1694 }
1695 /* FALLTHROUGH */
1696 {
1697 struct mbuf *m;
1698
1699 if (sopt->sopt_valsize > MCLBYTES) {
1700 error = EMSGSIZE;
1701 break;
1702 }
1703 /* XXX */
1704 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
1705 if (m == 0) {
1706 error = ENOBUFS;
1707 break;
1708 }
1709 if (sopt->sopt_valsize > MLEN) {
1710 MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT);
1711 if ((m->m_flags & M_EXT) == 0) {
1712 m_free(m);
1713 error = ENOBUFS;
1714 break;
1715 }
1716 }
1717 m->m_len = sopt->sopt_valsize;
1718 error = sooptcopyin(sopt, mtod(m, char *),
1719 m->m_len, m->m_len);
1720 if (error) {
1721 (void)m_free(m);
1722 break;
1723 }
1724 error = ip6_setmoptions(sopt->sopt_name,
1725 &in6p->in6p_moptions,
1726 m);
1727 (void)m_free(m);
1728 }
1729 break;
1730
1731 case IPV6_PORTRANGE:
1732 error = sooptcopyin(sopt, &optval,
1733 sizeof optval, sizeof optval);
1734 if (error)
1735 break;
1736
1737 switch (optval) {
1738 case IPV6_PORTRANGE_DEFAULT:
1739 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1740 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1741 break;
1742
1743 case IPV6_PORTRANGE_HIGH:
1744 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1745 in6p->in6p_flags |= IN6P_HIGHPORT;
1746 break;
1747
1748 case IPV6_PORTRANGE_LOW:
1749 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1750 in6p->in6p_flags |= IN6P_LOWPORT;
1751 break;
1752
1753 default:
1754 error = EINVAL;
1755 break;
1756 }
1757 break;
1758
1759#ifdef IPSEC
1760 case IPV6_IPSEC_POLICY:
1761 {
1762 caddr_t req = NULL;
1763 size_t len = 0;
1764 struct mbuf *m;
1765
1766 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1767 break;
1768 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1769 break;
1770 if (m) {
1771 req = mtod(m, caddr_t);
1772 len = m->m_len;
1773 }
1774 error = ipsec6_set_policy(in6p, optname, req,
1775 len, privileged);
1776 m_freem(m);
1777 }
1778 break;
1779#endif /* IPSEC */
1780
1781 default:
1782 error = ENOPROTOOPT;
1783 break;
1784 }
1785 break;
1786
1787 case SOPT_GET:
1788 switch (optname) {
1789
1790 case IPV6_2292PKTOPTIONS:
1791#ifdef IPV6_PKTOPTIONS
1792 case IPV6_PKTOPTIONS:
1793#endif
1794 /*
1795 * RFC3542 (effectively) deprecated the
1796 * semantics of the 2292-style pktoptions.
1797 * Since it was not reliable in nature (i.e.,
1798 * applications had to expect the lack of some
1799 * information after all), it would make sense
1800 * to simplify this part by always returning
1801 * empty data.
1802 */
1803 sopt->sopt_valsize = 0;
1804 break;
1805
1806 case IPV6_RECVHOPOPTS:
1807 case IPV6_RECVDSTOPTS:
1808 case IPV6_RECVRTHDRDSTOPTS:
1809 case IPV6_UNICAST_HOPS:
1810 case IPV6_RECVPKTINFO:
1811 case IPV6_RECVHOPLIMIT:
1812 case IPV6_RECVRTHDR:
1813 case IPV6_RECVPATHMTU:
1814
1815 case IPV6_FAITH:
1816 case IPV6_V6ONLY:
1817 case IPV6_PORTRANGE:
1818 case IPV6_RECVTCLASS:
1819 case IPV6_AUTOFLOWLABEL:
1820 switch (optname) {
1821
1822 case IPV6_RECVHOPOPTS:
1823 optval = OPTBIT(IN6P_HOPOPTS);
1824 break;
1825
1826 case IPV6_RECVDSTOPTS:
1827 optval = OPTBIT(IN6P_DSTOPTS);
1828 break;
1829
1830 case IPV6_RECVRTHDRDSTOPTS:
1831 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1832 break;
1833
1834 case IPV6_UNICAST_HOPS:
1835 optval = in6p->in6p_hops;
1836 break;
1837
1838 case IPV6_RECVPKTINFO:
1839 optval = OPTBIT(IN6P_PKTINFO);
1840 break;
1841
1842 case IPV6_RECVHOPLIMIT:
1843 optval = OPTBIT(IN6P_HOPLIMIT);
1844 break;
1845
1846 case IPV6_RECVRTHDR:
1847 optval = OPTBIT(IN6P_RTHDR);
1848 break;
1849
1850 case IPV6_RECVPATHMTU:
1851 optval = OPTBIT(IN6P_MTU);
1852 break;
1853
1854 case IPV6_FAITH:
1855 optval = OPTBIT(IN6P_FAITH);
1856 break;
1857
1858 case IPV6_V6ONLY:
1859 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1860 break;
1861
1862 case IPV6_PORTRANGE:
1863 {
1864 int flags;
1865 flags = in6p->in6p_flags;
1866 if (flags & IN6P_HIGHPORT)
1867 optval = IPV6_PORTRANGE_HIGH;
1868 else if (flags & IN6P_LOWPORT)
1869 optval = IPV6_PORTRANGE_LOW;
1870 else
1871 optval = 0;
1872 break;
1873 }
1874 case IPV6_RECVTCLASS:
1875 optval = OPTBIT(IN6P_TCLASS);
1876 break;
1877
1878 case IPV6_AUTOFLOWLABEL:
1879 optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1880 break;
1881 }
1882 if (error)
1883 break;
1884 error = sooptcopyout(sopt, &optval,
1885 sizeof optval);
1886 break;
1887
1888 case IPV6_PATHMTU:
1889 {
1890 u_long pmtu = 0;
1891 struct ip6_mtuinfo mtuinfo;
1892 struct route_in6 sro;
1893
1894 bzero(&sro, sizeof(sro));
1895
1896 if (!(so->so_state & SS_ISCONNECTED))
1897 return (ENOTCONN);
1898 /*
1899 * XXX: we dot not consider the case of source
1900 * routing, or optional information to specify
1901 * the outgoing interface.
1902 */
1903 error = ip6_getpmtu(&sro, NULL, NULL,
1904 &in6p->in6p_faddr, &pmtu, NULL);
1905 if (sro.ro_rt)
1906 RTFREE(sro.ro_rt);
1907 if (error)
1908 break;
1909 if (pmtu > IPV6_MAXPACKET)
1910 pmtu = IPV6_MAXPACKET;
1911
1912 bzero(&mtuinfo, sizeof(mtuinfo));
1913 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1914 optdata = (void *)&mtuinfo;
1915 optdatalen = sizeof(mtuinfo);
1916 error = sooptcopyout(sopt, optdata,
1917 optdatalen);
1918 break;
1919 }
1920
1921 case IPV6_2292PKTINFO:
1922 case IPV6_2292HOPLIMIT:
1923 case IPV6_2292HOPOPTS:
1924 case IPV6_2292RTHDR:
1925 case IPV6_2292DSTOPTS:
1926 switch (optname) {
1927 case IPV6_2292PKTINFO:
1928 optval = OPTBIT(IN6P_PKTINFO);
1929 break;
1930 case IPV6_2292HOPLIMIT:
1931 optval = OPTBIT(IN6P_HOPLIMIT);
1932 break;
1933 case IPV6_2292HOPOPTS:
1934 optval = OPTBIT(IN6P_HOPOPTS);
1935 break;
1936 case IPV6_2292RTHDR:
1937 optval = OPTBIT(IN6P_RTHDR);
1938 break;
1939 case IPV6_2292DSTOPTS:
1940 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1941 break;
1942 }
1943 error = sooptcopyout(sopt, &optval,
1944 sizeof optval);
1945 break;
1946 case IPV6_PKTINFO:
1947 case IPV6_HOPOPTS:
1948 case IPV6_RTHDR:
1949 case IPV6_DSTOPTS:
1950 case IPV6_RTHDRDSTOPTS:
1951 case IPV6_NEXTHOP:
1952 case IPV6_TCLASS:
1953 case IPV6_DONTFRAG:
1954 case IPV6_USE_MIN_MTU:
1955 case IPV6_PREFER_TEMPADDR:
1956 error = ip6_getpcbopt(in6p->in6p_outputopts,
1957 optname, sopt);
1958 break;
1959
1960 case IPV6_MULTICAST_IF:
1961 case IPV6_MULTICAST_HOPS:
1962 case IPV6_MULTICAST_LOOP:
1963 case IPV6_JOIN_GROUP:
1964 case IPV6_LEAVE_GROUP:
1965 {
1966 struct mbuf *m;
1967 error = ip6_getmoptions(sopt->sopt_name,
1968 in6p->in6p_moptions, &m);
1969 if (error == 0)
1970 error = sooptcopyout(sopt,
1971 mtod(m, char *), m->m_len);
1972 m_freem(m);
1973 }
1974 break;
1975
1976#ifdef IPSEC
1977 case IPV6_IPSEC_POLICY:
1978 {
1979 caddr_t req = NULL;
1980 size_t len = 0;
1981 struct mbuf *m = NULL;
1982 struct mbuf **mp = &m;
1983 size_t ovalsize = sopt->sopt_valsize;
1984 caddr_t oval = (caddr_t)sopt->sopt_val;
1985
1986 error = soopt_getm(sopt, &m); /* XXX */
1987 if (error != 0)
1988 break;
1989 error = soopt_mcopyin(sopt, m); /* XXX */
1990 if (error != 0)
1991 break;
1992 sopt->sopt_valsize = ovalsize;
1993 sopt->sopt_val = oval;
1994 if (m) {
1995 req = mtod(m, caddr_t);
1996 len = m->m_len;
1997 }
1998 error = ipsec6_get_policy(in6p, req, len, mp);
1999 if (error == 0)
2000 error = soopt_mcopyout(sopt, m); /* XXX */
2001 if (error == 0 && m)
2002 m_freem(m);
2003 break;
2004 }
2005#endif /* IPSEC */
2006
2007 default:
2008 error = ENOPROTOOPT;
2009 break;
2010 }
2011 break;
2012 }
2013 } else { /* level != IPPROTO_IPV6 */
2014 error = EINVAL;
2015 }
2016 return (error);
2017}
2018
2019int
2020ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
2021{
2022 int error = 0, optval, optlen;
2023 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2024 struct in6pcb *in6p = sotoin6pcb(so);
2025 int level, op, optname;
2026
2027 if (sopt) {
2028 level = sopt->sopt_level;
2029 op = sopt->sopt_dir;
2030 optname = sopt->sopt_name;
2031 optlen = sopt->sopt_valsize;
2032 } else
2033 panic("ip6_raw_ctloutput: arg soopt is NULL");
2034
2035 if (level != IPPROTO_IPV6) {
2036 return (EINVAL);
2037 }
2038
2039 switch (optname) {
2040 case IPV6_CHECKSUM:
2041 /*
2042 * For ICMPv6 sockets, no modification allowed for checksum
2043 * offset, permit "no change" values to help existing apps.
2044 *
2045 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2046 * for an ICMPv6 socket will fail."
2047 * The current behavior does not meet RFC3542.
2048 */
2049 switch (op) {
2050 case SOPT_SET:
2051 if (optlen != sizeof(int)) {
2052 error = EINVAL;
2053 break;
2054 }
2055 error = sooptcopyin(sopt, &optval, sizeof(optval),
2056 sizeof(optval));
2057 if (error)
2058 break;
2059 if ((optval % 2) != 0) {
2060 /* the API assumes even offset values */
2061 error = EINVAL;
2062 } else if (so->so_proto->pr_protocol ==
2063 IPPROTO_ICMPV6) {
2064 if (optval != icmp6off)
2065 error = EINVAL;
2066 } else
2067 in6p->in6p_cksum = optval;
2068 break;
2069
2070 case SOPT_GET:
2071 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2072 optval = icmp6off;
2073 else
2074 optval = in6p->in6p_cksum;
2075
2076 error = sooptcopyout(sopt, &optval, sizeof(optval));
2077 break;
2078
2079 default:
2080 error = EINVAL;
2081 break;
2082 }
2083 break;
2084
2085 default:
2086 error = ENOPROTOOPT;
2087 break;
2088 }
2089
2090 return (error);
2091}
2092
2093/*
2094 * Set up IP6 options in pcb for insertion in output packets or
2095 * specifying behavior of outgoing packets.
2096 */
2097static int
2098ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2099 struct socket *so, struct sockopt *sopt)
2100{
2101 struct ip6_pktopts *opt = *pktopt;
2102 int error = 0;
2103 struct thread *td = sopt->sopt_td;
2104 int priv = 0;
2105
2106 /* turn off any old options. */
2107 if (opt) {
2108#ifdef DIAGNOSTIC
2109 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2110 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2111 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2112 printf("ip6_pcbopts: all specified options are cleared.\n");
2113#endif
2114 ip6_clearpktopts(opt, -1);
2115 } else
2116 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2117 *pktopt = NULL;
2118
2119 if (!m || m->m_len == 0) {
2120 /*
2121 * Only turning off any previous options, regardless of
2122 * whether the opt is just created or given.
2123 */
2124 free(opt, M_IP6OPT);
2125 return (0);
2126 }
2127
2128 /* set options specified by user. */
2129 if (td && !suser(td))
2130 priv = 1;
2131 if ((error = ip6_setpktopts(m, opt, NULL, priv,
2132 so->so_proto->pr_protocol)) != 0) {
2133 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2134 free(opt, M_IP6OPT);
2135 return (error);
2136 }
2137 *pktopt = opt;
2138 return (0);
2139}
2140
2141/*
2142 * initialize ip6_pktopts. beware that there are non-zero default values in
2143 * the struct.
2144 */
2145void
2146ip6_initpktopts(struct ip6_pktopts *opt)
2147{
2148
2149 bzero(opt, sizeof(*opt));
2150 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2151 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2152 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2153 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2154}
2155
2156static int
2157ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2158 int priv, int uproto)
2159{
2160 struct ip6_pktopts *opt;
2161
2162 if (*pktopt == NULL) {
2163 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2164 M_WAITOK);
2165 ip6_initpktopts(*pktopt);
2166 }
2167 opt = *pktopt;
2168
2169 return (ip6_setpktopt(optname, buf, len, opt, priv, 1, 0, uproto));
2170}
2171
2172static int
2173ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2174{
2175 void *optdata = NULL;
2176 int optdatalen = 0;
2177 struct ip6_ext *ip6e;
2178 int error = 0;
2179 struct in6_pktinfo null_pktinfo;
2180 int deftclass = 0, on;
2181 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2182 int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2183
2184 switch (optname) {
2185 case IPV6_PKTINFO:
2186 if (pktopt && pktopt->ip6po_pktinfo)
2187 optdata = (void *)pktopt->ip6po_pktinfo;
2188 else {
2189 /* XXX: we don't have to do this every time... */
2190 bzero(&null_pktinfo, sizeof(null_pktinfo));
2191 optdata = (void *)&null_pktinfo;
2192 }
2193 optdatalen = sizeof(struct in6_pktinfo);
2194 break;
2195 case IPV6_TCLASS:
2196 if (pktopt && pktopt->ip6po_tclass >= 0)
2197 optdata = (void *)&pktopt->ip6po_tclass;
2198 else
2199 optdata = (void *)&deftclass;
2200 optdatalen = sizeof(int);
2201 break;
2202 case IPV6_HOPOPTS:
2203 if (pktopt && pktopt->ip6po_hbh) {
2204 optdata = (void *)pktopt->ip6po_hbh;
2205 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2206 optdatalen = (ip6e->ip6e_len + 1) << 3;
2207 }
2208 break;
2209 case IPV6_RTHDR:
2210 if (pktopt && pktopt->ip6po_rthdr) {
2211 optdata = (void *)pktopt->ip6po_rthdr;
2212 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2213 optdatalen = (ip6e->ip6e_len + 1) << 3;
2214 }
2215 break;
2216 case IPV6_RTHDRDSTOPTS:
2217 if (pktopt && pktopt->ip6po_dest1) {
2218 optdata = (void *)pktopt->ip6po_dest1;
2219 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2220 optdatalen = (ip6e->ip6e_len + 1) << 3;
2221 }
2222 break;
2223 case IPV6_DSTOPTS:
2224 if (pktopt && pktopt->ip6po_dest2) {
2225 optdata = (void *)pktopt->ip6po_dest2;
2226 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2227 optdatalen = (ip6e->ip6e_len + 1) << 3;
2228 }
2229 break;
2230 case IPV6_NEXTHOP:
2231 if (pktopt && pktopt->ip6po_nexthop) {
2232 optdata = (void *)pktopt->ip6po_nexthop;
2233 optdatalen = pktopt->ip6po_nexthop->sa_len;
2234 }
2235 break;
2236 case IPV6_USE_MIN_MTU:
2237 if (pktopt)
2238 optdata = (void *)&pktopt->ip6po_minmtu;
2239 else
2240 optdata = (void *)&defminmtu;
2241 optdatalen = sizeof(int);
2242 break;
2243 case IPV6_DONTFRAG:
2244 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2245 on = 1;
2246 else
2247 on = 0;
2248 optdata = (void *)&on;
2249 optdatalen = sizeof(on);
2250 break;
2251 case IPV6_PREFER_TEMPADDR:
2252 if (pktopt)
2253 optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2254 else
2255 optdata = (void *)&defpreftemp;
2256 optdatalen = sizeof(int);
2257 break;
2258 default: /* should not happen */
2259#ifdef DIAGNOSTIC
2260 panic("ip6_getpcbopt: unexpected option\n");
2261#endif
2262 return (ENOPROTOOPT);
2263 }
2264
2265 error = sooptcopyout(sopt, optdata, optdatalen);
2266
2267 return (error);
2268}
2269
2270void
2271ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2272{
2273 if (pktopt == NULL)
2274 return;
2275
2276 if (optname == -1 || optname == IPV6_PKTINFO) {
2277 if (pktopt->ip6po_pktinfo)
2278 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2279 pktopt->ip6po_pktinfo = NULL;
2280 }
2281 if (optname == -1 || optname == IPV6_HOPLIMIT)
2282 pktopt->ip6po_hlim = -1;
2283 if (optname == -1 || optname == IPV6_TCLASS)
2284 pktopt->ip6po_tclass = -1;
2285 if (optname == -1 || optname == IPV6_NEXTHOP) {
2286 if (pktopt->ip6po_nextroute.ro_rt) {
2287 RTFREE(pktopt->ip6po_nextroute.ro_rt);
2288 pktopt->ip6po_nextroute.ro_rt = NULL;
2289 }
2290 if (pktopt->ip6po_nexthop)
2291 free(pktopt->ip6po_nexthop, M_IP6OPT);
2292 pktopt->ip6po_nexthop = NULL;
2293 }
2294 if (optname == -1 || optname == IPV6_HOPOPTS) {
2295 if (pktopt->ip6po_hbh)
2296 free(pktopt->ip6po_hbh, M_IP6OPT);
2297 pktopt->ip6po_hbh = NULL;
2298 }
2299 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2300 if (pktopt->ip6po_dest1)
2301 free(pktopt->ip6po_dest1, M_IP6OPT);
2302 pktopt->ip6po_dest1 = NULL;
2303 }
2304 if (optname == -1 || optname == IPV6_RTHDR) {
2305 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2306 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2307 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2308 if (pktopt->ip6po_route.ro_rt) {
2309 RTFREE(pktopt->ip6po_route.ro_rt);
2310 pktopt->ip6po_route.ro_rt = NULL;
2311 }
2312 }
2313 if (optname == -1 || optname == IPV6_DSTOPTS) {
2314 if (pktopt->ip6po_dest2)
2315 free(pktopt->ip6po_dest2, M_IP6OPT);
2316 pktopt->ip6po_dest2 = NULL;
2317 }
2318}
2319
2320#define PKTOPT_EXTHDRCPY(type) \
2321do {\
2322 if (src->type) {\
2323 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2324 dst->type = malloc(hlen, M_IP6OPT, canwait);\
2325 if (dst->type == NULL && canwait == M_NOWAIT)\
2326 goto bad;\
2327 bcopy(src->type, dst->type, hlen);\
2328 }\
2329} while (/*CONSTCOND*/ 0)
2330
2331static int
2332copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2333{
2334 if (dst == NULL || src == NULL) {
2335 printf("ip6_clearpktopts: invalid argument\n");
2336 return (EINVAL);
2337 }
2338
2339 dst->ip6po_hlim = src->ip6po_hlim;
2340 dst->ip6po_tclass = src->ip6po_tclass;
2341 dst->ip6po_flags = src->ip6po_flags;
2342 if (src->ip6po_pktinfo) {
2343 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2344 M_IP6OPT, canwait);
2345 if (dst->ip6po_pktinfo == NULL)
2346 goto bad;
2347 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2348 }
2349 if (src->ip6po_nexthop) {
2350 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2351 M_IP6OPT, canwait);
2352 if (dst->ip6po_nexthop == NULL)
2353 goto bad;
2354 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2355 src->ip6po_nexthop->sa_len);
2356 }
2357 PKTOPT_EXTHDRCPY(ip6po_hbh);
2358 PKTOPT_EXTHDRCPY(ip6po_dest1);
2359 PKTOPT_EXTHDRCPY(ip6po_dest2);
2360 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2361 return (0);
2362
2363 bad:
2364 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2365 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2366 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2367 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2368 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2369 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2370 return (ENOBUFS);
2371}
2372#undef PKTOPT_EXTHDRCPY
2373
2374struct ip6_pktopts *
2375ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2376{
2377 int error;
2378 struct ip6_pktopts *dst;
2379
2380 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2381 if (dst == NULL)
2382 return (NULL);
2383 ip6_initpktopts(dst);
2384
2385 if ((error = copypktopts(dst, src, canwait)) != 0) {
2386 free(dst, M_IP6OPT);
2387 return (NULL);
2388 }
2389
2390 return (dst);
2391}
2392
2393void
2394ip6_freepcbopts(struct ip6_pktopts *pktopt)
2395{
2396 if (pktopt == NULL)
2397 return;
2398
2399 ip6_clearpktopts(pktopt, -1);
2400
2401 free(pktopt, M_IP6OPT);
2402}
2403
2404/*
2405 * Set the IP6 multicast options in response to user setsockopt().
2406 */
2407static int
2408ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m)
2409{
2410 int error = 0;
2411 u_int loop, ifindex;
2412 struct ipv6_mreq *mreq;
2413 struct ifnet *ifp;
2414 struct ip6_moptions *im6o = *im6op;
2415 struct route_in6 ro;
2416 struct in6_multi_mship *imm;
2417 struct thread *td = curthread;
2418
2419 if (im6o == NULL) {
2420 /*
2421 * No multicast option buffer attached to the pcb;
2422 * allocate one and initialize to default values.
2423 */
2424 im6o = (struct ip6_moptions *)
2425 malloc(sizeof(*im6o), M_IP6MOPTS, M_WAITOK);
2426
2427 if (im6o == NULL)
2428 return (ENOBUFS);
2429 *im6op = im6o;
2430 im6o->im6o_multicast_ifp = NULL;
2431 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2432 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2433 LIST_INIT(&im6o->im6o_memberships);
2434 }
2435
2436 switch (optname) {
2437
2438 case IPV6_MULTICAST_IF:
2439 /*
2440 * Select the interface for outgoing multicast packets.
2441 */
2442 if (m == NULL || m->m_len != sizeof(u_int)) {
2443 error = EINVAL;
2444 break;
2445 }
2446 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
2447 if (ifindex < 0 || if_index < ifindex) {
2448 error = ENXIO; /* XXX EINVAL? */
2449 break;
2450 }
2451 ifp = ifnet_byindex(ifindex);
2452 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2453 error = EADDRNOTAVAIL;
2454 break;
2455 }
2456 im6o->im6o_multicast_ifp = ifp;
2457 break;
2458
2459 case IPV6_MULTICAST_HOPS:
2460 {
2461 /*
2462 * Set the IP6 hoplimit for outgoing multicast packets.
2463 */
2464 int optval;
2465 if (m == NULL || m->m_len != sizeof(int)) {
2466 error = EINVAL;
2467 break;
2468 }
2469 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
2470 if (optval < -1 || optval >= 256)
2471 error = EINVAL;
2472 else if (optval == -1)
2473 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2474 else
2475 im6o->im6o_multicast_hlim = optval;
2476 break;
2477 }
2478
2479 case IPV6_MULTICAST_LOOP:
2480 /*
2481 * Set the loopback flag for outgoing multicast packets.
2482 * Must be zero or one.
2483 */
2484 if (m == NULL || m->m_len != sizeof(u_int)) {
2485 error = EINVAL;
2486 break;
2487 }
2488 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
2489 if (loop > 1) {
2490 error = EINVAL;
2491 break;
2492 }
2493 im6o->im6o_multicast_loop = loop;
2494 break;
2495
2496 case IPV6_JOIN_GROUP:
2497 /*
2498 * Add a multicast group membership.
2499 * Group must be a valid IP6 multicast address.
2500 */
2501 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2502 error = EINVAL;
2503 break;
2504 }
2505 mreq = mtod(m, struct ipv6_mreq *);
2506
2507 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2508 /*
2509 * We use the unspecified address to specify to accept
2510 * all multicast addresses. Only super user is allowed
2511 * to do this.
2512 */
2513 if (suser(td)) {
2514 error = EACCES;
2515 break;
2516 }
2517 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2518 error = EINVAL;
2519 break;
2520 }
2521
2522 /*
2523 * If no interface was explicitly specified, choose an
2524 * appropriate one according to the given multicast address.
2525 */
2526 if (mreq->ipv6mr_interface == 0) {
2527 struct sockaddr_in6 *dst;
2528
2529 /*
2530 * Look up the routing table for the
2531 * address, and choose the outgoing interface.
2532 * XXX: is it a good approach?
2533 */
2534 ro.ro_rt = NULL;
2535 dst = (struct sockaddr_in6 *)&ro.ro_dst;
2536 bzero(dst, sizeof(*dst));
2537 dst->sin6_family = AF_INET6;
2538 dst->sin6_len = sizeof(*dst);
2539 dst->sin6_addr = mreq->ipv6mr_multiaddr;
2540 rtalloc((struct route *)&ro);
2541 if (ro.ro_rt == NULL) {
2542 error = EADDRNOTAVAIL;
2543 break;
2544 }
2545 ifp = ro.ro_rt->rt_ifp;
2546 RTFREE(ro.ro_rt);
2547 } else {
2548 /*
2549 * If the interface is specified, validate it.
2550 */
2551 if (mreq->ipv6mr_interface < 0 ||
2552 if_index < mreq->ipv6mr_interface) {
2553 error = ENXIO; /* XXX EINVAL? */
2554 break;
2555 }
2556 ifp = ifnet_byindex(mreq->ipv6mr_interface);
2557 if (!ifp) {
2558 error = ENXIO; /* XXX EINVAL? */
2559 break;
2560 }
2561 }
2562
2563 /*
2564 * See if we found an interface, and confirm that it
2565 * supports multicast
2566 */
2567 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2568 error = EADDRNOTAVAIL;
2569 break;
2570 }
2571
2572 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
2573 error = EADDRNOTAVAIL; /* XXX: should not happen */
2574 break;
2575 }
2576
2577 /*
2578 * See if the membership already exists.
2579 */
2580 for (imm = im6o->im6o_memberships.lh_first;
2581 imm != NULL; imm = imm->i6mm_chain.le_next)
2582 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2583 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2584 &mreq->ipv6mr_multiaddr))
2585 break;
2586 if (imm != NULL) {
2587 error = EADDRINUSE;
2588 break;
2589 }
2590 /*
2591 * Everything looks good; add a new record to the multicast
2592 * address list for the given interface.
2593 */
2594 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0);
2595 if (imm == NULL)
2596 break;
2597 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2598 break;
2599
2600 case IPV6_LEAVE_GROUP:
2601 /*
2602 * Drop a multicast group membership.
2603 * Group must be a valid IP6 multicast address.
2604 */
2605 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2606 error = EINVAL;
2607 break;
2608 }
2609 mreq = mtod(m, struct ipv6_mreq *);
2610
2611 /*
2612 * If an interface address was specified, get a pointer
2613 * to its ifnet structure.
2614 */
2615 if (mreq->ipv6mr_interface < 0 ||
2616 if_index < mreq->ipv6mr_interface) {
2617 error = ENXIO; /* XXX EINVAL? */
2618 break;
2619 }
2620 if (mreq->ipv6mr_interface == 0)
2621 ifp = NULL;
2622 else
2623 ifp = ifnet_byindex(mreq->ipv6mr_interface);
2624
2625 /* Fill in the scope zone ID */
2626 if (ifp) {
2627 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
2628 /* XXX: should not happen */
2629 error = EADDRNOTAVAIL;
2630 break;
2631 }
2632 } else if (mreq->ipv6mr_interface != 0) {
2633 /*
2634 * This case happens when the (positive) index is in
2635 * the valid range, but the corresponding interface has
2636 * been detached dynamically (XXX).
2637 */
2638 error = EADDRNOTAVAIL;
2639 break;
2640 } else { /* ipv6mr_interface == 0 */
2641 struct sockaddr_in6 sa6_mc;
2642
2643 /*
2644 * The API spec says as follows:
2645 * If the interface index is specified as 0, the
2646 * system may choose a multicast group membership to
2647 * drop by matching the multicast address only.
2648 * On the other hand, we cannot disambiguate the scope
2649 * zone unless an interface is provided. Thus, we
2650 * check if there's ambiguity with the default scope
2651 * zone as the last resort.
2652 */
2653 bzero(&sa6_mc, sizeof(sa6_mc));
2654 sa6_mc.sin6_family = AF_INET6;
2655 sa6_mc.sin6_len = sizeof(sa6_mc);
2656 sa6_mc.sin6_addr = mreq->ipv6mr_multiaddr;
2657 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2658 if (error != 0)
2659 break;
2660 mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr;
2661 }
2662
2663 /*
2664 * Find the membership in the membership list.
2665 */
2666 for (imm = im6o->im6o_memberships.lh_first;
2667 imm != NULL; imm = imm->i6mm_chain.le_next) {
2668 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2669 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2670 &mreq->ipv6mr_multiaddr))
2671 break;
2672 }
2673 if (imm == NULL) {
2674 /* Unable to resolve interface */
2675 error = EADDRNOTAVAIL;
2676 break;
2677 }
2678 /*
2679 * Give up the multicast address record to which the
2680 * membership points.
2681 */
2682 LIST_REMOVE(imm, i6mm_chain);
2683 in6_delmulti(imm->i6mm_maddr);
2684 free(imm, M_IP6MADDR);
2685 break;
2686
2687 default:
2688 error = EOPNOTSUPP;
2689 break;
2690 }
2691
2692 /*
2693 * If all options have default values, no need to keep the mbuf.
2694 */
2695 if (im6o->im6o_multicast_ifp == NULL &&
2696 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2697 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2698 im6o->im6o_memberships.lh_first == NULL) {
2699 free(*im6op, M_IP6MOPTS);
2700 *im6op = NULL;
2701 }
2702
2703 return (error);
2704}
2705
2706/*
2707 * Return the IP6 multicast options in response to user getsockopt().
2708 */
2709static int
2710ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp)
2711{
2712 u_int *hlim, *loop, *ifindex;
2713
2714 *mp = m_get(M_TRYWAIT, MT_HEADER); /* XXX */
2715
2716 switch (optname) {
2717
2718 case IPV6_MULTICAST_IF:
2719 ifindex = mtod(*mp, u_int *);
2720 (*mp)->m_len = sizeof(u_int);
2721 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2722 *ifindex = 0;
2723 else
2724 *ifindex = im6o->im6o_multicast_ifp->if_index;
2725 return (0);
2726
2727 case IPV6_MULTICAST_HOPS:
2728 hlim = mtod(*mp, u_int *);
2729 (*mp)->m_len = sizeof(u_int);
2730 if (im6o == NULL)
2731 *hlim = ip6_defmcasthlim;
2732 else
2733 *hlim = im6o->im6o_multicast_hlim;
2734 return (0);
2735
2736 case IPV6_MULTICAST_LOOP:
2737 loop = mtod(*mp, u_int *);
2738 (*mp)->m_len = sizeof(u_int);
2739 if (im6o == NULL)
2740 *loop = ip6_defmcasthlim;
2741 else
2742 *loop = im6o->im6o_multicast_loop;
2743 return (0);
2744
2745 default:
2746 return (EOPNOTSUPP);
2747 }
2748}
2749
2750/*
2751 * Discard the IP6 multicast options.
2752 */
2753void
2754ip6_freemoptions(struct ip6_moptions *im6o)
2755{
2756 struct in6_multi_mship *imm;
2757
2758 if (im6o == NULL)
2759 return;
2760
2761 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2762 LIST_REMOVE(imm, i6mm_chain);
2763 if (imm->i6mm_maddr)
2764 in6_delmulti(imm->i6mm_maddr);
2765 free(imm, M_IP6MADDR);
2766 }
2767 free(im6o, M_IP6MOPTS);
2768}
2769
2770/*
2771 * Set IPv6 outgoing packet options based on advanced API.
2772 */
2773int
2774ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2775 struct ip6_pktopts *stickyopt, int priv, int uproto)
2776{
2777 struct cmsghdr *cm = 0;
2778
2779 if (control == NULL || opt == NULL)
2780 return (EINVAL);
2781
2782 ip6_initpktopts(opt);
2783 if (stickyopt) {
2784 int error;
2785
2786 /*
2787 * If stickyopt is provided, make a local copy of the options
2788 * for this particular packet, then override them by ancillary
2789 * objects.
2790 * XXX: copypktopts() does not copy the cached route to a next
2791 * hop (if any). This is not very good in terms of efficiency,
2792 * but we can allow this since this option should be rarely
2793 * used.
2794 */
2795 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2796 return (error);
2797 }
2798
2799 /*
2800 * XXX: Currently, we assume all the optional information is stored
2801 * in a single mbuf.
2802 */
2803 if (control->m_next)
2804 return (EINVAL);
2805
2806 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2807 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2808 int error;
2809
2810 if (control->m_len < CMSG_LEN(0))
2811 return (EINVAL);
2812
2813 cm = mtod(control, struct cmsghdr *);
2814 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2815 return (EINVAL);
2816 if (cm->cmsg_level != IPPROTO_IPV6)
2817 continue;
2818
2819 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2820 cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, 1, uproto);
2821 if (error)
2822 return (error);
2823 }
2824
2825 return (0);
2826}
2827
2828/*
2829 * Set a particular packet option, as a sticky option or an ancillary data
2830 * item. "len" can be 0 only when it's a sticky option.
2831 * We have 4 cases of combination of "sticky" and "cmsg":
2832 * "sticky=0, cmsg=0": impossible
2833 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2834 * "sticky=1, cmsg=0": RFC3542 socket option
2835 * "sticky=1, cmsg=1": RFC2292 socket option
2836 */
2837static int
2838ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2839 int priv, int sticky, int cmsg, int uproto)
2840{
2841 int minmtupolicy, preftemp;
2842
2843 if (!sticky && !cmsg) {
2844#ifdef DIAGNOSTIC
2845 printf("ip6_setpktopt: impossible case\n");
2846#endif
2847 return (EINVAL);
2848 }
2849
2850 /*
2851 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2852 * not be specified in the context of RFC3542. Conversely,
2853 * RFC3542 types should not be specified in the context of RFC2292.
2854 */
2855 if (!cmsg) {
2856 switch (optname) {
2857 case IPV6_2292PKTINFO:
2858 case IPV6_2292HOPLIMIT:
2859 case IPV6_2292NEXTHOP:
2860 case IPV6_2292HOPOPTS:
2861 case IPV6_2292DSTOPTS:
2862 case IPV6_2292RTHDR:
2863 case IPV6_2292PKTOPTIONS:
2864 return (ENOPROTOOPT);
2865 }
2866 }
2867 if (sticky && cmsg) {
2868 switch (optname) {
2869 case IPV6_PKTINFO:
2870 case IPV6_HOPLIMIT:
2871 case IPV6_NEXTHOP:
2872 case IPV6_HOPOPTS:
2873 case IPV6_DSTOPTS:
2874 case IPV6_RTHDRDSTOPTS:
2875 case IPV6_RTHDR:
2876 case IPV6_USE_MIN_MTU:
2877 case IPV6_DONTFRAG:
2878 case IPV6_TCLASS:
2879 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2880 return (ENOPROTOOPT);
2881 }
2882 }
2883
2884 switch (optname) {
2885 case IPV6_2292PKTINFO:
2886 case IPV6_PKTINFO:
2887 {
2888 struct ifnet *ifp = NULL;
2889 struct in6_pktinfo *pktinfo;
2890
2891 if (len != sizeof(struct in6_pktinfo))
2892 return (EINVAL);
2893
2894 pktinfo = (struct in6_pktinfo *)buf;
2895
2896 /*
2897 * An application can clear any sticky IPV6_PKTINFO option by
2898 * doing a "regular" setsockopt with ipi6_addr being
2899 * in6addr_any and ipi6_ifindex being zero.
2900 * [RFC 3542, Section 6]
2901 */
2902 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2903 pktinfo->ipi6_ifindex == 0 &&
2904 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2905 ip6_clearpktopts(opt, optname);
2906 break;
2907 }
2908
2909 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2910 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2911 return (EINVAL);
2912 }
2913
2914 /* validate the interface index if specified. */
2915 if (pktinfo->ipi6_ifindex > if_index ||
2916 pktinfo->ipi6_ifindex < 0) {
2917 return (ENXIO);
2918 }
2919 if (pktinfo->ipi6_ifindex) {
2920 ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2921 if (ifp == NULL)
2922 return (ENXIO);
2923 }
2924
2925 /*
2926 * We store the address anyway, and let in6_selectsrc()
2927 * validate the specified address. This is because ipi6_addr
2928 * may not have enough information about its scope zone, and
2929 * we may need additional information (such as outgoing
2930 * interface or the scope zone of a destination address) to
2931 * disambiguate the scope.
2932 * XXX: the delay of the validation may confuse the
2933 * application when it is used as a sticky option.
2934 */
2935 if (opt->ip6po_pktinfo == NULL) {
2936 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2937 M_IP6OPT, M_NOWAIT);
2938 if (opt->ip6po_pktinfo == NULL)
2939 return (ENOBUFS);
2940 }
2941 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2942 break;
2943 }
2944
2945 case IPV6_2292HOPLIMIT:
2946 case IPV6_HOPLIMIT:
2947 {
2948 int *hlimp;
2949
2950 /*
2951 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2952 * to simplify the ordering among hoplimit options.
2953 */
2954 if (optname == IPV6_HOPLIMIT && sticky)
2955 return (ENOPROTOOPT);
2956
2957 if (len != sizeof(int))
2958 return (EINVAL);
2959 hlimp = (int *)buf;
2960 if (*hlimp < -1 || *hlimp > 255)
2961 return (EINVAL);
2962
2963 opt->ip6po_hlim = *hlimp;
2964 break;
2965 }
2966
2967 case IPV6_TCLASS:
2968 {
2969 int tclass;
2970
2971 if (len != sizeof(int))
2972 return (EINVAL);
2973 tclass = *(int *)buf;
2974 if (tclass < -1 || tclass > 255)
2975 return (EINVAL);
2976
2977 opt->ip6po_tclass = tclass;
2978 break;
2979 }
2980
2981 case IPV6_2292NEXTHOP:
2982 case IPV6_NEXTHOP:
2983 if (!priv)
2984 return (EPERM);
2985
2986 if (len == 0) { /* just remove the option */
2987 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2988 break;
2989 }
2990
2991 /* check if cmsg_len is large enough for sa_len */
2992 if (len < sizeof(struct sockaddr) || len < *buf)
2993 return (EINVAL);
2994
2995 switch (((struct sockaddr *)buf)->sa_family) {
2996 case AF_INET6:
2997 {
2998 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2999 int error;
3000
3001 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3002 return (EINVAL);
3003
3004 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3005 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3006 return (EINVAL);
3007 }
3008 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
3009 != 0) {
3010 return (error);
3011 }
3012 break;
3013 }
3014 case AF_LINK: /* should eventually be supported */
3015 default:
3016 return (EAFNOSUPPORT);
3017 }
3018
3019 /* turn off the previous option, then set the new option. */
3020 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3021 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3022 if (opt->ip6po_nexthop == NULL)
3023 return (ENOBUFS);
3024 bcopy(buf, opt->ip6po_nexthop, *buf);
3025 break;
3026
3027 case IPV6_2292HOPOPTS:
3028 case IPV6_HOPOPTS:
3029 {
3030 struct ip6_hbh *hbh;
3031 int hbhlen;
3032
3033 /*
3034 * XXX: We don't allow a non-privileged user to set ANY HbH
3035 * options, since per-option restriction has too much
3036 * overhead.
3037 */
3038 if (!priv)
3039 return (EPERM);
3040
3041 if (len == 0) {
3042 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3043 break; /* just remove the option */
3044 }
3045
3046 /* message length validation */
3047 if (len < sizeof(struct ip6_hbh))
3048 return (EINVAL);
3049 hbh = (struct ip6_hbh *)buf;
3050 hbhlen = (hbh->ip6h_len + 1) << 3;
3051 if (len != hbhlen)
3052 return (EINVAL);
3053
3054 /* turn off the previous option, then set the new option. */
3055 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3056 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3057 if (opt->ip6po_hbh == NULL)
3058 return (ENOBUFS);
3059 bcopy(hbh, opt->ip6po_hbh, hbhlen);
3060
3061 break;
3062 }
3063
3064 case IPV6_2292DSTOPTS:
3065 case IPV6_DSTOPTS:
3066 case IPV6_RTHDRDSTOPTS:
3067 {
3068 struct ip6_dest *dest, **newdest = NULL;
3069 int destlen;
3070
3071 if (!priv) /* XXX: see the comment for IPV6_HOPOPTS */
3072 return (EPERM);
3073
3074 if (len == 0) {
3075 ip6_clearpktopts(opt, optname);
3076 break; /* just remove the option */
3077 }
3078
3079 /* message length validation */
3080 if (len < sizeof(struct ip6_dest))
3081 return (EINVAL);
3082 dest = (struct ip6_dest *)buf;
3083 destlen = (dest->ip6d_len + 1) << 3;
3084 if (len != destlen)
3085 return (EINVAL);
3086
3087 /*
3088 * Determine the position that the destination options header
3089 * should be inserted; before or after the routing header.
3090 */
3091 switch (optname) {
3092 case IPV6_2292DSTOPTS:
3093 /*
3094 * The old advacned API is ambiguous on this point.
3095 * Our approach is to determine the position based
3096 * according to the existence of a routing header.
3097 * Note, however, that this depends on the order of the
3098 * extension headers in the ancillary data; the 1st
3099 * part of the destination options header must appear
3100 * before the routing header in the ancillary data,
3101 * too.
3102 * RFC3542 solved the ambiguity by introducing
3103 * separate ancillary data or option types.
3104 */
3105 if (opt->ip6po_rthdr == NULL)
3106 newdest = &opt->ip6po_dest1;
3107 else
3108 newdest = &opt->ip6po_dest2;
3109 break;
3110 case IPV6_RTHDRDSTOPTS:
3111 newdest = &opt->ip6po_dest1;
3112 break;
3113 case IPV6_DSTOPTS:
3114 newdest = &opt->ip6po_dest2;
3115 break;
3116 }
3117
3118 /* turn off the previous option, then set the new option. */
3119 ip6_clearpktopts(opt, optname);
3120 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3121 if (*newdest == NULL)
3122 return (ENOBUFS);
3123 bcopy(dest, *newdest, destlen);
3124
3125 break;
3126 }
3127
3128 case IPV6_2292RTHDR:
3129 case IPV6_RTHDR:
3130 {
3131 struct ip6_rthdr *rth;
3132 int rthlen;
3133
3134 if (len == 0) {
3135 ip6_clearpktopts(opt, IPV6_RTHDR);
3136 break; /* just remove the option */
3137 }
3138
3139 /* message length validation */
3140 if (len < sizeof(struct ip6_rthdr))
3141 return (EINVAL);
3142 rth = (struct ip6_rthdr *)buf;
3143 rthlen = (rth->ip6r_len + 1) << 3;
3144 if (len != rthlen)
3145 return (EINVAL);
3146
3147 switch (rth->ip6r_type) {
3148 case IPV6_RTHDR_TYPE_0:
3149 if (rth->ip6r_len == 0) /* must contain one addr */
3150 return (EINVAL);
3151 if (rth->ip6r_len % 2) /* length must be even */
3152 return (EINVAL);
3153 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3154 return (EINVAL);
3155 break;
3156 default:
3157 return (EINVAL); /* not supported */
3158 }
3159
3160 /* turn off the previous option */
3161 ip6_clearpktopts(opt, IPV6_RTHDR);
3162 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3163 if (opt->ip6po_rthdr == NULL)
3164 return (ENOBUFS);
3165 bcopy(rth, opt->ip6po_rthdr, rthlen);
3166
3167 break;
3168 }
3169
3170 case IPV6_USE_MIN_MTU:
3171 if (len != sizeof(int))
3172 return (EINVAL);
3173 minmtupolicy = *(int *)buf;
3174 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3175 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3176 minmtupolicy != IP6PO_MINMTU_ALL) {
3177 return (EINVAL);
3178 }
3179 opt->ip6po_minmtu = minmtupolicy;
3180 break;
3181
3182 case IPV6_DONTFRAG:
3183 if (len != sizeof(int))
3184 return (EINVAL);
3185
3186 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3187 /*
3188 * we ignore this option for TCP sockets.
3189 * (RFC3542 leaves this case unspecified.)
3190 */
3191 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3192 } else
3193 opt->ip6po_flags |= IP6PO_DONTFRAG;
3194 break;
3195
3196 case IPV6_PREFER_TEMPADDR:
3197 if (len != sizeof(int))
3198 return (EINVAL);
3199 preftemp = *(int *)buf;
3200 if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
3201 preftemp != IP6PO_TEMPADDR_NOTPREFER &&
3202 preftemp != IP6PO_TEMPADDR_PREFER) {
3203 return (EINVAL);
3204 }
3205 opt->ip6po_prefer_tempaddr = preftemp;
3206 break;
3207
3208 default:
3209 return (ENOPROTOOPT);
3210 } /* end of switch */
3211
3212 return (0);
3213}
3214
3215/*
3216 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3217 * packet to the input queue of a specified interface. Note that this
3218 * calls the output routine of the loopback "driver", but with an interface
3219 * pointer that might NOT be &loif -- easier than replicating that code here.
3220 */
3221void
3222ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
3223{
3224 struct mbuf *copym;
3225 struct ip6_hdr *ip6;
3226
3227 copym = m_copy(m, 0, M_COPYALL);
3228 if (copym == NULL)
3229 return;
3230
3231 /*
3232 * Make sure to deep-copy IPv6 header portion in case the data
3233 * is in an mbuf cluster, so that we can safely override the IPv6
3234 * header portion later.
3235 */
3236 if ((copym->m_flags & M_EXT) != 0 ||
3237 copym->m_len < sizeof(struct ip6_hdr)) {
3238 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3239 if (copym == NULL)
3240 return;
3241 }
3242
3243#ifdef DIAGNOSTIC
3244 if (copym->m_len < sizeof(*ip6)) {
3245 m_freem(copym);
3246 return;
3247 }
3248#endif
3249
3250 ip6 = mtod(copym, struct ip6_hdr *);
3251 /*
3252 * clear embedded scope identifiers if necessary.
3253 * in6_clearscope will touch the addresses only when necessary.
3254 */
3255 in6_clearscope(&ip6->ip6_src);
3256 in6_clearscope(&ip6->ip6_dst);
3257
3258 (void)if_simloop(ifp, copym, dst->sin6_family, 0);
3259}
3260
3261/*
3262 * Chop IPv6 header off from the payload.
3263 */
3264static int
3265ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3266{
3267 struct mbuf *mh;
3268 struct ip6_hdr *ip6;
3269
3270 ip6 = mtod(m, struct ip6_hdr *);
3271 if (m->m_len > sizeof(*ip6)) {
3272 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3273 if (mh == 0) {
3274 m_freem(m);
3275 return ENOBUFS;
3276 }
3277 M_MOVE_PKTHDR(mh, m);
3278 MH_ALIGN(mh, sizeof(*ip6));
3279 m->m_len -= sizeof(*ip6);
3280 m->m_data += sizeof(*ip6);
3281 mh->m_next = m;
3282 m = mh;
3283 m->m_len = sizeof(*ip6);
3284 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
3285 }
3286 exthdrs->ip6e_ip6 = m;
3287 return 0;
3288}
3289
3290/*
3291 * Compute IPv6 extension header length.
3292 */
3293int
3294ip6_optlen(struct in6pcb *in6p)
3295{
3296 int len;
3297
3298 if (!in6p->in6p_outputopts)
3299 return 0;
3300
3301 len = 0;
3302#define elen(x) \
3303 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3304
3305 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3306 if (in6p->in6p_outputopts->ip6po_rthdr)
3307 /* dest1 is valid with rthdr only */
3308 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3309 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3310 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3311 return len;
3312#undef elen
3313}
1066 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1067 } else
1068 m_freem(m);
1069 }
1070
1071 if (error == 0)
1072 ip6stat.ip6s_fragmented++;
1073
1074done:
1075 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1076 RTFREE(ro->ro_rt);
1077 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1078 RTFREE(ro_pmtu->ro_rt);
1079 }
1080
1081 return (error);
1082
1083freehdrs:
1084 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1085 m_freem(exthdrs.ip6e_dest1);
1086 m_freem(exthdrs.ip6e_rthdr);
1087 m_freem(exthdrs.ip6e_dest2);
1088 /* FALLTHROUGH */
1089bad:
1090 if (m)
1091 m_freem(m);
1092 goto done;
1093}
1094
1095static int
1096ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1097{
1098 struct mbuf *m;
1099
1100 if (hlen > MCLBYTES)
1101 return (ENOBUFS); /* XXX */
1102
1103 MGET(m, M_DONTWAIT, MT_DATA);
1104 if (!m)
1105 return (ENOBUFS);
1106
1107 if (hlen > MLEN) {
1108 MCLGET(m, M_DONTWAIT);
1109 if ((m->m_flags & M_EXT) == 0) {
1110 m_free(m);
1111 return (ENOBUFS);
1112 }
1113 }
1114 m->m_len = hlen;
1115 if (hdr)
1116 bcopy(hdr, mtod(m, caddr_t), hlen);
1117
1118 *mp = m;
1119 return (0);
1120}
1121
1122/*
1123 * Insert jumbo payload option.
1124 */
1125static int
1126ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1127{
1128 struct mbuf *mopt;
1129 u_char *optbuf;
1130 u_int32_t v;
1131
1132#define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1133
1134 /*
1135 * If there is no hop-by-hop options header, allocate new one.
1136 * If there is one but it doesn't have enough space to store the
1137 * jumbo payload option, allocate a cluster to store the whole options.
1138 * Otherwise, use it to store the options.
1139 */
1140 if (exthdrs->ip6e_hbh == 0) {
1141 MGET(mopt, M_DONTWAIT, MT_DATA);
1142 if (mopt == 0)
1143 return (ENOBUFS);
1144 mopt->m_len = JUMBOOPTLEN;
1145 optbuf = mtod(mopt, u_char *);
1146 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1147 exthdrs->ip6e_hbh = mopt;
1148 } else {
1149 struct ip6_hbh *hbh;
1150
1151 mopt = exthdrs->ip6e_hbh;
1152 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1153 /*
1154 * XXX assumption:
1155 * - exthdrs->ip6e_hbh is not referenced from places
1156 * other than exthdrs.
1157 * - exthdrs->ip6e_hbh is not an mbuf chain.
1158 */
1159 int oldoptlen = mopt->m_len;
1160 struct mbuf *n;
1161
1162 /*
1163 * XXX: give up if the whole (new) hbh header does
1164 * not fit even in an mbuf cluster.
1165 */
1166 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1167 return (ENOBUFS);
1168
1169 /*
1170 * As a consequence, we must always prepare a cluster
1171 * at this point.
1172 */
1173 MGET(n, M_DONTWAIT, MT_DATA);
1174 if (n) {
1175 MCLGET(n, M_DONTWAIT);
1176 if ((n->m_flags & M_EXT) == 0) {
1177 m_freem(n);
1178 n = NULL;
1179 }
1180 }
1181 if (!n)
1182 return (ENOBUFS);
1183 n->m_len = oldoptlen + JUMBOOPTLEN;
1184 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1185 oldoptlen);
1186 optbuf = mtod(n, caddr_t) + oldoptlen;
1187 m_freem(mopt);
1188 mopt = exthdrs->ip6e_hbh = n;
1189 } else {
1190 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1191 mopt->m_len += JUMBOOPTLEN;
1192 }
1193 optbuf[0] = IP6OPT_PADN;
1194 optbuf[1] = 1;
1195
1196 /*
1197 * Adjust the header length according to the pad and
1198 * the jumbo payload option.
1199 */
1200 hbh = mtod(mopt, struct ip6_hbh *);
1201 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1202 }
1203
1204 /* fill in the option. */
1205 optbuf[2] = IP6OPT_JUMBO;
1206 optbuf[3] = 4;
1207 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1208 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1209
1210 /* finally, adjust the packet header length */
1211 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1212
1213 return (0);
1214#undef JUMBOOPTLEN
1215}
1216
1217/*
1218 * Insert fragment header and copy unfragmentable header portions.
1219 */
1220static int
1221ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1222 struct ip6_frag **frghdrp)
1223{
1224 struct mbuf *n, *mlast;
1225
1226 if (hlen > sizeof(struct ip6_hdr)) {
1227 n = m_copym(m0, sizeof(struct ip6_hdr),
1228 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1229 if (n == 0)
1230 return (ENOBUFS);
1231 m->m_next = n;
1232 } else
1233 n = m;
1234
1235 /* Search for the last mbuf of unfragmentable part. */
1236 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1237 ;
1238
1239 if ((mlast->m_flags & M_EXT) == 0 &&
1240 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1241 /* use the trailing space of the last mbuf for the fragment hdr */
1242 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1243 mlast->m_len);
1244 mlast->m_len += sizeof(struct ip6_frag);
1245 m->m_pkthdr.len += sizeof(struct ip6_frag);
1246 } else {
1247 /* allocate a new mbuf for the fragment header */
1248 struct mbuf *mfrg;
1249
1250 MGET(mfrg, M_DONTWAIT, MT_DATA);
1251 if (mfrg == 0)
1252 return (ENOBUFS);
1253 mfrg->m_len = sizeof(struct ip6_frag);
1254 *frghdrp = mtod(mfrg, struct ip6_frag *);
1255 mlast->m_next = mfrg;
1256 }
1257
1258 return (0);
1259}
1260
1261static int
1262ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1263 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1264 int *alwaysfragp)
1265{
1266 u_int32_t mtu = 0;
1267 int alwaysfrag = 0;
1268 int error = 0;
1269
1270 if (ro_pmtu != ro) {
1271 /* The first hop and the final destination may differ. */
1272 struct sockaddr_in6 *sa6_dst =
1273 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1274 if (ro_pmtu->ro_rt &&
1275 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1276 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1277 RTFREE(ro_pmtu->ro_rt);
1278 ro_pmtu->ro_rt = (struct rtentry *)NULL;
1279 }
1280 if (ro_pmtu->ro_rt == NULL) {
1281 bzero(sa6_dst, sizeof(*sa6_dst));
1282 sa6_dst->sin6_family = AF_INET6;
1283 sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1284 sa6_dst->sin6_addr = *dst;
1285
1286 rtalloc((struct route *)ro_pmtu);
1287 }
1288 }
1289 if (ro_pmtu->ro_rt) {
1290 u_int32_t ifmtu;
1291 struct in_conninfo inc;
1292
1293 bzero(&inc, sizeof(inc));
1294 inc.inc_flags = 1; /* IPv6 */
1295 inc.inc6_faddr = *dst;
1296
1297 if (ifp == NULL)
1298 ifp = ro_pmtu->ro_rt->rt_ifp;
1299 ifmtu = IN6_LINKMTU(ifp);
1300 mtu = tcp_hc_getmtu(&inc);
1301 if (mtu)
1302 mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu);
1303 else
1304 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1305 if (mtu == 0)
1306 mtu = ifmtu;
1307 else if (mtu < IPV6_MMTU) {
1308 /*
1309 * RFC2460 section 5, last paragraph:
1310 * if we record ICMPv6 too big message with
1311 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1312 * or smaller, with framgent header attached.
1313 * (fragment header is needed regardless from the
1314 * packet size, for translators to identify packets)
1315 */
1316 alwaysfrag = 1;
1317 mtu = IPV6_MMTU;
1318 } else if (mtu > ifmtu) {
1319 /*
1320 * The MTU on the route is larger than the MTU on
1321 * the interface! This shouldn't happen, unless the
1322 * MTU of the interface has been changed after the
1323 * interface was brought up. Change the MTU in the
1324 * route to match the interface MTU (as long as the
1325 * field isn't locked).
1326 */
1327 mtu = ifmtu;
1328 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1329 }
1330 } else if (ifp) {
1331 mtu = IN6_LINKMTU(ifp);
1332 } else
1333 error = EHOSTUNREACH; /* XXX */
1334
1335 *mtup = mtu;
1336 if (alwaysfragp)
1337 *alwaysfragp = alwaysfrag;
1338 return (error);
1339}
1340
1341/*
1342 * IP6 socket option processing.
1343 */
1344int
1345ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1346{
1347 int privileged, optdatalen, uproto;
1348 void *optdata;
1349 struct inpcb *in6p = sotoinpcb(so);
1350 int error, optval;
1351 int level, op, optname;
1352 int optlen;
1353 struct thread *td;
1354
1355 if (sopt) {
1356 level = sopt->sopt_level;
1357 op = sopt->sopt_dir;
1358 optname = sopt->sopt_name;
1359 optlen = sopt->sopt_valsize;
1360 td = sopt->sopt_td;
1361 } else {
1362 panic("ip6_ctloutput: arg soopt is NULL");
1363 }
1364 error = optval = 0;
1365
1366 privileged = (td == 0 || suser(td)) ? 0 : 1;
1367 uproto = (int)so->so_proto->pr_protocol;
1368
1369 if (level == IPPROTO_IPV6) {
1370 switch (op) {
1371
1372 case SOPT_SET:
1373 switch (optname) {
1374 case IPV6_2292PKTOPTIONS:
1375#ifdef IPV6_PKTOPTIONS
1376 case IPV6_PKTOPTIONS:
1377#endif
1378 {
1379 struct mbuf *m;
1380
1381 error = soopt_getm(sopt, &m); /* XXX */
1382 if (error != 0)
1383 break;
1384 error = soopt_mcopyin(sopt, m); /* XXX */
1385 if (error != 0)
1386 break;
1387 error = ip6_pcbopts(&in6p->in6p_outputopts,
1388 m, so, sopt);
1389 m_freem(m); /* XXX */
1390 break;
1391 }
1392
1393 /*
1394 * Use of some Hop-by-Hop options or some
1395 * Destination options, might require special
1396 * privilege. That is, normal applications
1397 * (without special privilege) might be forbidden
1398 * from setting certain options in outgoing packets,
1399 * and might never see certain options in received
1400 * packets. [RFC 2292 Section 6]
1401 * KAME specific note:
1402 * KAME prevents non-privileged users from sending or
1403 * receiving ANY hbh/dst options in order to avoid
1404 * overhead of parsing options in the kernel.
1405 */
1406 case IPV6_RECVHOPOPTS:
1407 case IPV6_RECVDSTOPTS:
1408 case IPV6_RECVRTHDRDSTOPTS:
1409 if (!privileged) {
1410 error = EPERM;
1411 break;
1412 }
1413 /* FALLTHROUGH */
1414 case IPV6_UNICAST_HOPS:
1415 case IPV6_HOPLIMIT:
1416 case IPV6_FAITH:
1417
1418 case IPV6_RECVPKTINFO:
1419 case IPV6_RECVHOPLIMIT:
1420 case IPV6_RECVRTHDR:
1421 case IPV6_RECVPATHMTU:
1422 case IPV6_RECVTCLASS:
1423 case IPV6_V6ONLY:
1424 case IPV6_AUTOFLOWLABEL:
1425 if (optlen != sizeof(int)) {
1426 error = EINVAL;
1427 break;
1428 }
1429 error = sooptcopyin(sopt, &optval,
1430 sizeof optval, sizeof optval);
1431 if (error)
1432 break;
1433 switch (optname) {
1434
1435 case IPV6_UNICAST_HOPS:
1436 if (optval < -1 || optval >= 256)
1437 error = EINVAL;
1438 else {
1439 /* -1 = kernel default */
1440 in6p->in6p_hops = optval;
1441 if ((in6p->in6p_vflag &
1442 INP_IPV4) != 0)
1443 in6p->inp_ip_ttl = optval;
1444 }
1445 break;
1446#define OPTSET(bit) \
1447do { \
1448 if (optval) \
1449 in6p->in6p_flags |= (bit); \
1450 else \
1451 in6p->in6p_flags &= ~(bit); \
1452} while (/*CONSTCOND*/ 0)
1453#define OPTSET2292(bit) \
1454do { \
1455 in6p->in6p_flags |= IN6P_RFC2292; \
1456 if (optval) \
1457 in6p->in6p_flags |= (bit); \
1458 else \
1459 in6p->in6p_flags &= ~(bit); \
1460} while (/*CONSTCOND*/ 0)
1461#define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1462
1463 case IPV6_RECVPKTINFO:
1464 /* cannot mix with RFC2292 */
1465 if (OPTBIT(IN6P_RFC2292)) {
1466 error = EINVAL;
1467 break;
1468 }
1469 OPTSET(IN6P_PKTINFO);
1470 break;
1471
1472 case IPV6_HOPLIMIT:
1473 {
1474 struct ip6_pktopts **optp;
1475
1476 /* cannot mix with RFC2292 */
1477 if (OPTBIT(IN6P_RFC2292)) {
1478 error = EINVAL;
1479 break;
1480 }
1481 optp = &in6p->in6p_outputopts;
1482 error = ip6_pcbopt(IPV6_HOPLIMIT,
1483 (u_char *)&optval,
1484 sizeof(optval),
1485 optp,
1486 privileged, uproto);
1487 break;
1488 }
1489
1490 case IPV6_RECVHOPLIMIT:
1491 /* cannot mix with RFC2292 */
1492 if (OPTBIT(IN6P_RFC2292)) {
1493 error = EINVAL;
1494 break;
1495 }
1496 OPTSET(IN6P_HOPLIMIT);
1497 break;
1498
1499 case IPV6_RECVHOPOPTS:
1500 /* cannot mix with RFC2292 */
1501 if (OPTBIT(IN6P_RFC2292)) {
1502 error = EINVAL;
1503 break;
1504 }
1505 OPTSET(IN6P_HOPOPTS);
1506 break;
1507
1508 case IPV6_RECVDSTOPTS:
1509 /* cannot mix with RFC2292 */
1510 if (OPTBIT(IN6P_RFC2292)) {
1511 error = EINVAL;
1512 break;
1513 }
1514 OPTSET(IN6P_DSTOPTS);
1515 break;
1516
1517 case IPV6_RECVRTHDRDSTOPTS:
1518 /* cannot mix with RFC2292 */
1519 if (OPTBIT(IN6P_RFC2292)) {
1520 error = EINVAL;
1521 break;
1522 }
1523 OPTSET(IN6P_RTHDRDSTOPTS);
1524 break;
1525
1526 case IPV6_RECVRTHDR:
1527 /* cannot mix with RFC2292 */
1528 if (OPTBIT(IN6P_RFC2292)) {
1529 error = EINVAL;
1530 break;
1531 }
1532 OPTSET(IN6P_RTHDR);
1533 break;
1534
1535 case IPV6_FAITH:
1536 OPTSET(IN6P_FAITH);
1537 break;
1538
1539 case IPV6_RECVPATHMTU:
1540 /*
1541 * We ignore this option for TCP
1542 * sockets.
1543 * (RFC3542 leaves this case
1544 * unspecified.)
1545 */
1546 if (uproto != IPPROTO_TCP)
1547 OPTSET(IN6P_MTU);
1548 break;
1549
1550 case IPV6_V6ONLY:
1551 /*
1552 * make setsockopt(IPV6_V6ONLY)
1553 * available only prior to bind(2).
1554 * see ipng mailing list, Jun 22 2001.
1555 */
1556 if (in6p->in6p_lport ||
1557 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1558 error = EINVAL;
1559 break;
1560 }
1561 OPTSET(IN6P_IPV6_V6ONLY);
1562 if (optval)
1563 in6p->in6p_vflag &= ~INP_IPV4;
1564 else
1565 in6p->in6p_vflag |= INP_IPV4;
1566 break;
1567 case IPV6_RECVTCLASS:
1568 /* cannot mix with RFC2292 XXX */
1569 if (OPTBIT(IN6P_RFC2292)) {
1570 error = EINVAL;
1571 break;
1572 }
1573 OPTSET(IN6P_TCLASS);
1574 break;
1575 case IPV6_AUTOFLOWLABEL:
1576 OPTSET(IN6P_AUTOFLOWLABEL);
1577 break;
1578
1579 }
1580 break;
1581
1582 case IPV6_TCLASS:
1583 case IPV6_DONTFRAG:
1584 case IPV6_USE_MIN_MTU:
1585 case IPV6_PREFER_TEMPADDR:
1586 if (optlen != sizeof(optval)) {
1587 error = EINVAL;
1588 break;
1589 }
1590 error = sooptcopyin(sopt, &optval,
1591 sizeof optval, sizeof optval);
1592 if (error)
1593 break;
1594 {
1595 struct ip6_pktopts **optp;
1596 optp = &in6p->in6p_outputopts;
1597 error = ip6_pcbopt(optname,
1598 (u_char *)&optval,
1599 sizeof(optval),
1600 optp,
1601 privileged, uproto);
1602 break;
1603 }
1604
1605 case IPV6_2292PKTINFO:
1606 case IPV6_2292HOPLIMIT:
1607 case IPV6_2292HOPOPTS:
1608 case IPV6_2292DSTOPTS:
1609 case IPV6_2292RTHDR:
1610 /* RFC 2292 */
1611 if (optlen != sizeof(int)) {
1612 error = EINVAL;
1613 break;
1614 }
1615 error = sooptcopyin(sopt, &optval,
1616 sizeof optval, sizeof optval);
1617 if (error)
1618 break;
1619 switch (optname) {
1620 case IPV6_2292PKTINFO:
1621 OPTSET2292(IN6P_PKTINFO);
1622 break;
1623 case IPV6_2292HOPLIMIT:
1624 OPTSET2292(IN6P_HOPLIMIT);
1625 break;
1626 case IPV6_2292HOPOPTS:
1627 /*
1628 * Check super-user privilege.
1629 * See comments for IPV6_RECVHOPOPTS.
1630 */
1631 if (!privileged)
1632 return (EPERM);
1633 OPTSET2292(IN6P_HOPOPTS);
1634 break;
1635 case IPV6_2292DSTOPTS:
1636 if (!privileged)
1637 return (EPERM);
1638 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1639 break;
1640 case IPV6_2292RTHDR:
1641 OPTSET2292(IN6P_RTHDR);
1642 break;
1643 }
1644 break;
1645 case IPV6_PKTINFO:
1646 case IPV6_HOPOPTS:
1647 case IPV6_RTHDR:
1648 case IPV6_DSTOPTS:
1649 case IPV6_RTHDRDSTOPTS:
1650 case IPV6_NEXTHOP:
1651 {
1652 /* new advanced API (RFC3542) */
1653 u_char *optbuf;
1654 u_char optbuf_storage[MCLBYTES];
1655 int optlen;
1656 struct ip6_pktopts **optp;
1657
1658 /* cannot mix with RFC2292 */
1659 if (OPTBIT(IN6P_RFC2292)) {
1660 error = EINVAL;
1661 break;
1662 }
1663
1664 /*
1665 * We only ensure valsize is not too large
1666 * here. Further validation will be done
1667 * later.
1668 */
1669 error = sooptcopyin(sopt, optbuf_storage,
1670 sizeof(optbuf_storage), 0);
1671 if (error)
1672 break;
1673 optlen = sopt->sopt_valsize;
1674 optbuf = optbuf_storage;
1675 optp = &in6p->in6p_outputopts;
1676 error = ip6_pcbopt(optname,
1677 optbuf, optlen,
1678 optp, privileged, uproto);
1679 break;
1680 }
1681#undef OPTSET
1682
1683 case IPV6_MULTICAST_IF:
1684 case IPV6_MULTICAST_HOPS:
1685 case IPV6_MULTICAST_LOOP:
1686 case IPV6_JOIN_GROUP:
1687 case IPV6_LEAVE_GROUP:
1688 {
1689 if (sopt->sopt_valsize > MLEN) {
1690 error = EMSGSIZE;
1691 break;
1692 }
1693 /* XXX */
1694 }
1695 /* FALLTHROUGH */
1696 {
1697 struct mbuf *m;
1698
1699 if (sopt->sopt_valsize > MCLBYTES) {
1700 error = EMSGSIZE;
1701 break;
1702 }
1703 /* XXX */
1704 MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
1705 if (m == 0) {
1706 error = ENOBUFS;
1707 break;
1708 }
1709 if (sopt->sopt_valsize > MLEN) {
1710 MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT);
1711 if ((m->m_flags & M_EXT) == 0) {
1712 m_free(m);
1713 error = ENOBUFS;
1714 break;
1715 }
1716 }
1717 m->m_len = sopt->sopt_valsize;
1718 error = sooptcopyin(sopt, mtod(m, char *),
1719 m->m_len, m->m_len);
1720 if (error) {
1721 (void)m_free(m);
1722 break;
1723 }
1724 error = ip6_setmoptions(sopt->sopt_name,
1725 &in6p->in6p_moptions,
1726 m);
1727 (void)m_free(m);
1728 }
1729 break;
1730
1731 case IPV6_PORTRANGE:
1732 error = sooptcopyin(sopt, &optval,
1733 sizeof optval, sizeof optval);
1734 if (error)
1735 break;
1736
1737 switch (optval) {
1738 case IPV6_PORTRANGE_DEFAULT:
1739 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1740 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1741 break;
1742
1743 case IPV6_PORTRANGE_HIGH:
1744 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1745 in6p->in6p_flags |= IN6P_HIGHPORT;
1746 break;
1747
1748 case IPV6_PORTRANGE_LOW:
1749 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1750 in6p->in6p_flags |= IN6P_LOWPORT;
1751 break;
1752
1753 default:
1754 error = EINVAL;
1755 break;
1756 }
1757 break;
1758
1759#ifdef IPSEC
1760 case IPV6_IPSEC_POLICY:
1761 {
1762 caddr_t req = NULL;
1763 size_t len = 0;
1764 struct mbuf *m;
1765
1766 if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1767 break;
1768 if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1769 break;
1770 if (m) {
1771 req = mtod(m, caddr_t);
1772 len = m->m_len;
1773 }
1774 error = ipsec6_set_policy(in6p, optname, req,
1775 len, privileged);
1776 m_freem(m);
1777 }
1778 break;
1779#endif /* IPSEC */
1780
1781 default:
1782 error = ENOPROTOOPT;
1783 break;
1784 }
1785 break;
1786
1787 case SOPT_GET:
1788 switch (optname) {
1789
1790 case IPV6_2292PKTOPTIONS:
1791#ifdef IPV6_PKTOPTIONS
1792 case IPV6_PKTOPTIONS:
1793#endif
1794 /*
1795 * RFC3542 (effectively) deprecated the
1796 * semantics of the 2292-style pktoptions.
1797 * Since it was not reliable in nature (i.e.,
1798 * applications had to expect the lack of some
1799 * information after all), it would make sense
1800 * to simplify this part by always returning
1801 * empty data.
1802 */
1803 sopt->sopt_valsize = 0;
1804 break;
1805
1806 case IPV6_RECVHOPOPTS:
1807 case IPV6_RECVDSTOPTS:
1808 case IPV6_RECVRTHDRDSTOPTS:
1809 case IPV6_UNICAST_HOPS:
1810 case IPV6_RECVPKTINFO:
1811 case IPV6_RECVHOPLIMIT:
1812 case IPV6_RECVRTHDR:
1813 case IPV6_RECVPATHMTU:
1814
1815 case IPV6_FAITH:
1816 case IPV6_V6ONLY:
1817 case IPV6_PORTRANGE:
1818 case IPV6_RECVTCLASS:
1819 case IPV6_AUTOFLOWLABEL:
1820 switch (optname) {
1821
1822 case IPV6_RECVHOPOPTS:
1823 optval = OPTBIT(IN6P_HOPOPTS);
1824 break;
1825
1826 case IPV6_RECVDSTOPTS:
1827 optval = OPTBIT(IN6P_DSTOPTS);
1828 break;
1829
1830 case IPV6_RECVRTHDRDSTOPTS:
1831 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1832 break;
1833
1834 case IPV6_UNICAST_HOPS:
1835 optval = in6p->in6p_hops;
1836 break;
1837
1838 case IPV6_RECVPKTINFO:
1839 optval = OPTBIT(IN6P_PKTINFO);
1840 break;
1841
1842 case IPV6_RECVHOPLIMIT:
1843 optval = OPTBIT(IN6P_HOPLIMIT);
1844 break;
1845
1846 case IPV6_RECVRTHDR:
1847 optval = OPTBIT(IN6P_RTHDR);
1848 break;
1849
1850 case IPV6_RECVPATHMTU:
1851 optval = OPTBIT(IN6P_MTU);
1852 break;
1853
1854 case IPV6_FAITH:
1855 optval = OPTBIT(IN6P_FAITH);
1856 break;
1857
1858 case IPV6_V6ONLY:
1859 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1860 break;
1861
1862 case IPV6_PORTRANGE:
1863 {
1864 int flags;
1865 flags = in6p->in6p_flags;
1866 if (flags & IN6P_HIGHPORT)
1867 optval = IPV6_PORTRANGE_HIGH;
1868 else if (flags & IN6P_LOWPORT)
1869 optval = IPV6_PORTRANGE_LOW;
1870 else
1871 optval = 0;
1872 break;
1873 }
1874 case IPV6_RECVTCLASS:
1875 optval = OPTBIT(IN6P_TCLASS);
1876 break;
1877
1878 case IPV6_AUTOFLOWLABEL:
1879 optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1880 break;
1881 }
1882 if (error)
1883 break;
1884 error = sooptcopyout(sopt, &optval,
1885 sizeof optval);
1886 break;
1887
1888 case IPV6_PATHMTU:
1889 {
1890 u_long pmtu = 0;
1891 struct ip6_mtuinfo mtuinfo;
1892 struct route_in6 sro;
1893
1894 bzero(&sro, sizeof(sro));
1895
1896 if (!(so->so_state & SS_ISCONNECTED))
1897 return (ENOTCONN);
1898 /*
1899 * XXX: we dot not consider the case of source
1900 * routing, or optional information to specify
1901 * the outgoing interface.
1902 */
1903 error = ip6_getpmtu(&sro, NULL, NULL,
1904 &in6p->in6p_faddr, &pmtu, NULL);
1905 if (sro.ro_rt)
1906 RTFREE(sro.ro_rt);
1907 if (error)
1908 break;
1909 if (pmtu > IPV6_MAXPACKET)
1910 pmtu = IPV6_MAXPACKET;
1911
1912 bzero(&mtuinfo, sizeof(mtuinfo));
1913 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1914 optdata = (void *)&mtuinfo;
1915 optdatalen = sizeof(mtuinfo);
1916 error = sooptcopyout(sopt, optdata,
1917 optdatalen);
1918 break;
1919 }
1920
1921 case IPV6_2292PKTINFO:
1922 case IPV6_2292HOPLIMIT:
1923 case IPV6_2292HOPOPTS:
1924 case IPV6_2292RTHDR:
1925 case IPV6_2292DSTOPTS:
1926 switch (optname) {
1927 case IPV6_2292PKTINFO:
1928 optval = OPTBIT(IN6P_PKTINFO);
1929 break;
1930 case IPV6_2292HOPLIMIT:
1931 optval = OPTBIT(IN6P_HOPLIMIT);
1932 break;
1933 case IPV6_2292HOPOPTS:
1934 optval = OPTBIT(IN6P_HOPOPTS);
1935 break;
1936 case IPV6_2292RTHDR:
1937 optval = OPTBIT(IN6P_RTHDR);
1938 break;
1939 case IPV6_2292DSTOPTS:
1940 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1941 break;
1942 }
1943 error = sooptcopyout(sopt, &optval,
1944 sizeof optval);
1945 break;
1946 case IPV6_PKTINFO:
1947 case IPV6_HOPOPTS:
1948 case IPV6_RTHDR:
1949 case IPV6_DSTOPTS:
1950 case IPV6_RTHDRDSTOPTS:
1951 case IPV6_NEXTHOP:
1952 case IPV6_TCLASS:
1953 case IPV6_DONTFRAG:
1954 case IPV6_USE_MIN_MTU:
1955 case IPV6_PREFER_TEMPADDR:
1956 error = ip6_getpcbopt(in6p->in6p_outputopts,
1957 optname, sopt);
1958 break;
1959
1960 case IPV6_MULTICAST_IF:
1961 case IPV6_MULTICAST_HOPS:
1962 case IPV6_MULTICAST_LOOP:
1963 case IPV6_JOIN_GROUP:
1964 case IPV6_LEAVE_GROUP:
1965 {
1966 struct mbuf *m;
1967 error = ip6_getmoptions(sopt->sopt_name,
1968 in6p->in6p_moptions, &m);
1969 if (error == 0)
1970 error = sooptcopyout(sopt,
1971 mtod(m, char *), m->m_len);
1972 m_freem(m);
1973 }
1974 break;
1975
1976#ifdef IPSEC
1977 case IPV6_IPSEC_POLICY:
1978 {
1979 caddr_t req = NULL;
1980 size_t len = 0;
1981 struct mbuf *m = NULL;
1982 struct mbuf **mp = &m;
1983 size_t ovalsize = sopt->sopt_valsize;
1984 caddr_t oval = (caddr_t)sopt->sopt_val;
1985
1986 error = soopt_getm(sopt, &m); /* XXX */
1987 if (error != 0)
1988 break;
1989 error = soopt_mcopyin(sopt, m); /* XXX */
1990 if (error != 0)
1991 break;
1992 sopt->sopt_valsize = ovalsize;
1993 sopt->sopt_val = oval;
1994 if (m) {
1995 req = mtod(m, caddr_t);
1996 len = m->m_len;
1997 }
1998 error = ipsec6_get_policy(in6p, req, len, mp);
1999 if (error == 0)
2000 error = soopt_mcopyout(sopt, m); /* XXX */
2001 if (error == 0 && m)
2002 m_freem(m);
2003 break;
2004 }
2005#endif /* IPSEC */
2006
2007 default:
2008 error = ENOPROTOOPT;
2009 break;
2010 }
2011 break;
2012 }
2013 } else { /* level != IPPROTO_IPV6 */
2014 error = EINVAL;
2015 }
2016 return (error);
2017}
2018
2019int
2020ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
2021{
2022 int error = 0, optval, optlen;
2023 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2024 struct in6pcb *in6p = sotoin6pcb(so);
2025 int level, op, optname;
2026
2027 if (sopt) {
2028 level = sopt->sopt_level;
2029 op = sopt->sopt_dir;
2030 optname = sopt->sopt_name;
2031 optlen = sopt->sopt_valsize;
2032 } else
2033 panic("ip6_raw_ctloutput: arg soopt is NULL");
2034
2035 if (level != IPPROTO_IPV6) {
2036 return (EINVAL);
2037 }
2038
2039 switch (optname) {
2040 case IPV6_CHECKSUM:
2041 /*
2042 * For ICMPv6 sockets, no modification allowed for checksum
2043 * offset, permit "no change" values to help existing apps.
2044 *
2045 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2046 * for an ICMPv6 socket will fail."
2047 * The current behavior does not meet RFC3542.
2048 */
2049 switch (op) {
2050 case SOPT_SET:
2051 if (optlen != sizeof(int)) {
2052 error = EINVAL;
2053 break;
2054 }
2055 error = sooptcopyin(sopt, &optval, sizeof(optval),
2056 sizeof(optval));
2057 if (error)
2058 break;
2059 if ((optval % 2) != 0) {
2060 /* the API assumes even offset values */
2061 error = EINVAL;
2062 } else if (so->so_proto->pr_protocol ==
2063 IPPROTO_ICMPV6) {
2064 if (optval != icmp6off)
2065 error = EINVAL;
2066 } else
2067 in6p->in6p_cksum = optval;
2068 break;
2069
2070 case SOPT_GET:
2071 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2072 optval = icmp6off;
2073 else
2074 optval = in6p->in6p_cksum;
2075
2076 error = sooptcopyout(sopt, &optval, sizeof(optval));
2077 break;
2078
2079 default:
2080 error = EINVAL;
2081 break;
2082 }
2083 break;
2084
2085 default:
2086 error = ENOPROTOOPT;
2087 break;
2088 }
2089
2090 return (error);
2091}
2092
2093/*
2094 * Set up IP6 options in pcb for insertion in output packets or
2095 * specifying behavior of outgoing packets.
2096 */
2097static int
2098ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2099 struct socket *so, struct sockopt *sopt)
2100{
2101 struct ip6_pktopts *opt = *pktopt;
2102 int error = 0;
2103 struct thread *td = sopt->sopt_td;
2104 int priv = 0;
2105
2106 /* turn off any old options. */
2107 if (opt) {
2108#ifdef DIAGNOSTIC
2109 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2110 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2111 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2112 printf("ip6_pcbopts: all specified options are cleared.\n");
2113#endif
2114 ip6_clearpktopts(opt, -1);
2115 } else
2116 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2117 *pktopt = NULL;
2118
2119 if (!m || m->m_len == 0) {
2120 /*
2121 * Only turning off any previous options, regardless of
2122 * whether the opt is just created or given.
2123 */
2124 free(opt, M_IP6OPT);
2125 return (0);
2126 }
2127
2128 /* set options specified by user. */
2129 if (td && !suser(td))
2130 priv = 1;
2131 if ((error = ip6_setpktopts(m, opt, NULL, priv,
2132 so->so_proto->pr_protocol)) != 0) {
2133 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2134 free(opt, M_IP6OPT);
2135 return (error);
2136 }
2137 *pktopt = opt;
2138 return (0);
2139}
2140
2141/*
2142 * initialize ip6_pktopts. beware that there are non-zero default values in
2143 * the struct.
2144 */
2145void
2146ip6_initpktopts(struct ip6_pktopts *opt)
2147{
2148
2149 bzero(opt, sizeof(*opt));
2150 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2151 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2152 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2153 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2154}
2155
2156static int
2157ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2158 int priv, int uproto)
2159{
2160 struct ip6_pktopts *opt;
2161
2162 if (*pktopt == NULL) {
2163 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2164 M_WAITOK);
2165 ip6_initpktopts(*pktopt);
2166 }
2167 opt = *pktopt;
2168
2169 return (ip6_setpktopt(optname, buf, len, opt, priv, 1, 0, uproto));
2170}
2171
2172static int
2173ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2174{
2175 void *optdata = NULL;
2176 int optdatalen = 0;
2177 struct ip6_ext *ip6e;
2178 int error = 0;
2179 struct in6_pktinfo null_pktinfo;
2180 int deftclass = 0, on;
2181 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2182 int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2183
2184 switch (optname) {
2185 case IPV6_PKTINFO:
2186 if (pktopt && pktopt->ip6po_pktinfo)
2187 optdata = (void *)pktopt->ip6po_pktinfo;
2188 else {
2189 /* XXX: we don't have to do this every time... */
2190 bzero(&null_pktinfo, sizeof(null_pktinfo));
2191 optdata = (void *)&null_pktinfo;
2192 }
2193 optdatalen = sizeof(struct in6_pktinfo);
2194 break;
2195 case IPV6_TCLASS:
2196 if (pktopt && pktopt->ip6po_tclass >= 0)
2197 optdata = (void *)&pktopt->ip6po_tclass;
2198 else
2199 optdata = (void *)&deftclass;
2200 optdatalen = sizeof(int);
2201 break;
2202 case IPV6_HOPOPTS:
2203 if (pktopt && pktopt->ip6po_hbh) {
2204 optdata = (void *)pktopt->ip6po_hbh;
2205 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2206 optdatalen = (ip6e->ip6e_len + 1) << 3;
2207 }
2208 break;
2209 case IPV6_RTHDR:
2210 if (pktopt && pktopt->ip6po_rthdr) {
2211 optdata = (void *)pktopt->ip6po_rthdr;
2212 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2213 optdatalen = (ip6e->ip6e_len + 1) << 3;
2214 }
2215 break;
2216 case IPV6_RTHDRDSTOPTS:
2217 if (pktopt && pktopt->ip6po_dest1) {
2218 optdata = (void *)pktopt->ip6po_dest1;
2219 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2220 optdatalen = (ip6e->ip6e_len + 1) << 3;
2221 }
2222 break;
2223 case IPV6_DSTOPTS:
2224 if (pktopt && pktopt->ip6po_dest2) {
2225 optdata = (void *)pktopt->ip6po_dest2;
2226 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2227 optdatalen = (ip6e->ip6e_len + 1) << 3;
2228 }
2229 break;
2230 case IPV6_NEXTHOP:
2231 if (pktopt && pktopt->ip6po_nexthop) {
2232 optdata = (void *)pktopt->ip6po_nexthop;
2233 optdatalen = pktopt->ip6po_nexthop->sa_len;
2234 }
2235 break;
2236 case IPV6_USE_MIN_MTU:
2237 if (pktopt)
2238 optdata = (void *)&pktopt->ip6po_minmtu;
2239 else
2240 optdata = (void *)&defminmtu;
2241 optdatalen = sizeof(int);
2242 break;
2243 case IPV6_DONTFRAG:
2244 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2245 on = 1;
2246 else
2247 on = 0;
2248 optdata = (void *)&on;
2249 optdatalen = sizeof(on);
2250 break;
2251 case IPV6_PREFER_TEMPADDR:
2252 if (pktopt)
2253 optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2254 else
2255 optdata = (void *)&defpreftemp;
2256 optdatalen = sizeof(int);
2257 break;
2258 default: /* should not happen */
2259#ifdef DIAGNOSTIC
2260 panic("ip6_getpcbopt: unexpected option\n");
2261#endif
2262 return (ENOPROTOOPT);
2263 }
2264
2265 error = sooptcopyout(sopt, optdata, optdatalen);
2266
2267 return (error);
2268}
2269
2270void
2271ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2272{
2273 if (pktopt == NULL)
2274 return;
2275
2276 if (optname == -1 || optname == IPV6_PKTINFO) {
2277 if (pktopt->ip6po_pktinfo)
2278 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2279 pktopt->ip6po_pktinfo = NULL;
2280 }
2281 if (optname == -1 || optname == IPV6_HOPLIMIT)
2282 pktopt->ip6po_hlim = -1;
2283 if (optname == -1 || optname == IPV6_TCLASS)
2284 pktopt->ip6po_tclass = -1;
2285 if (optname == -1 || optname == IPV6_NEXTHOP) {
2286 if (pktopt->ip6po_nextroute.ro_rt) {
2287 RTFREE(pktopt->ip6po_nextroute.ro_rt);
2288 pktopt->ip6po_nextroute.ro_rt = NULL;
2289 }
2290 if (pktopt->ip6po_nexthop)
2291 free(pktopt->ip6po_nexthop, M_IP6OPT);
2292 pktopt->ip6po_nexthop = NULL;
2293 }
2294 if (optname == -1 || optname == IPV6_HOPOPTS) {
2295 if (pktopt->ip6po_hbh)
2296 free(pktopt->ip6po_hbh, M_IP6OPT);
2297 pktopt->ip6po_hbh = NULL;
2298 }
2299 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2300 if (pktopt->ip6po_dest1)
2301 free(pktopt->ip6po_dest1, M_IP6OPT);
2302 pktopt->ip6po_dest1 = NULL;
2303 }
2304 if (optname == -1 || optname == IPV6_RTHDR) {
2305 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2306 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2307 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2308 if (pktopt->ip6po_route.ro_rt) {
2309 RTFREE(pktopt->ip6po_route.ro_rt);
2310 pktopt->ip6po_route.ro_rt = NULL;
2311 }
2312 }
2313 if (optname == -1 || optname == IPV6_DSTOPTS) {
2314 if (pktopt->ip6po_dest2)
2315 free(pktopt->ip6po_dest2, M_IP6OPT);
2316 pktopt->ip6po_dest2 = NULL;
2317 }
2318}
2319
2320#define PKTOPT_EXTHDRCPY(type) \
2321do {\
2322 if (src->type) {\
2323 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2324 dst->type = malloc(hlen, M_IP6OPT, canwait);\
2325 if (dst->type == NULL && canwait == M_NOWAIT)\
2326 goto bad;\
2327 bcopy(src->type, dst->type, hlen);\
2328 }\
2329} while (/*CONSTCOND*/ 0)
2330
2331static int
2332copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2333{
2334 if (dst == NULL || src == NULL) {
2335 printf("ip6_clearpktopts: invalid argument\n");
2336 return (EINVAL);
2337 }
2338
2339 dst->ip6po_hlim = src->ip6po_hlim;
2340 dst->ip6po_tclass = src->ip6po_tclass;
2341 dst->ip6po_flags = src->ip6po_flags;
2342 if (src->ip6po_pktinfo) {
2343 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2344 M_IP6OPT, canwait);
2345 if (dst->ip6po_pktinfo == NULL)
2346 goto bad;
2347 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2348 }
2349 if (src->ip6po_nexthop) {
2350 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2351 M_IP6OPT, canwait);
2352 if (dst->ip6po_nexthop == NULL)
2353 goto bad;
2354 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2355 src->ip6po_nexthop->sa_len);
2356 }
2357 PKTOPT_EXTHDRCPY(ip6po_hbh);
2358 PKTOPT_EXTHDRCPY(ip6po_dest1);
2359 PKTOPT_EXTHDRCPY(ip6po_dest2);
2360 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2361 return (0);
2362
2363 bad:
2364 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2365 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2366 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2367 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2368 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2369 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2370 return (ENOBUFS);
2371}
2372#undef PKTOPT_EXTHDRCPY
2373
2374struct ip6_pktopts *
2375ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2376{
2377 int error;
2378 struct ip6_pktopts *dst;
2379
2380 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2381 if (dst == NULL)
2382 return (NULL);
2383 ip6_initpktopts(dst);
2384
2385 if ((error = copypktopts(dst, src, canwait)) != 0) {
2386 free(dst, M_IP6OPT);
2387 return (NULL);
2388 }
2389
2390 return (dst);
2391}
2392
2393void
2394ip6_freepcbopts(struct ip6_pktopts *pktopt)
2395{
2396 if (pktopt == NULL)
2397 return;
2398
2399 ip6_clearpktopts(pktopt, -1);
2400
2401 free(pktopt, M_IP6OPT);
2402}
2403
2404/*
2405 * Set the IP6 multicast options in response to user setsockopt().
2406 */
2407static int
2408ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m)
2409{
2410 int error = 0;
2411 u_int loop, ifindex;
2412 struct ipv6_mreq *mreq;
2413 struct ifnet *ifp;
2414 struct ip6_moptions *im6o = *im6op;
2415 struct route_in6 ro;
2416 struct in6_multi_mship *imm;
2417 struct thread *td = curthread;
2418
2419 if (im6o == NULL) {
2420 /*
2421 * No multicast option buffer attached to the pcb;
2422 * allocate one and initialize to default values.
2423 */
2424 im6o = (struct ip6_moptions *)
2425 malloc(sizeof(*im6o), M_IP6MOPTS, M_WAITOK);
2426
2427 if (im6o == NULL)
2428 return (ENOBUFS);
2429 *im6op = im6o;
2430 im6o->im6o_multicast_ifp = NULL;
2431 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2432 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2433 LIST_INIT(&im6o->im6o_memberships);
2434 }
2435
2436 switch (optname) {
2437
2438 case IPV6_MULTICAST_IF:
2439 /*
2440 * Select the interface for outgoing multicast packets.
2441 */
2442 if (m == NULL || m->m_len != sizeof(u_int)) {
2443 error = EINVAL;
2444 break;
2445 }
2446 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
2447 if (ifindex < 0 || if_index < ifindex) {
2448 error = ENXIO; /* XXX EINVAL? */
2449 break;
2450 }
2451 ifp = ifnet_byindex(ifindex);
2452 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2453 error = EADDRNOTAVAIL;
2454 break;
2455 }
2456 im6o->im6o_multicast_ifp = ifp;
2457 break;
2458
2459 case IPV6_MULTICAST_HOPS:
2460 {
2461 /*
2462 * Set the IP6 hoplimit for outgoing multicast packets.
2463 */
2464 int optval;
2465 if (m == NULL || m->m_len != sizeof(int)) {
2466 error = EINVAL;
2467 break;
2468 }
2469 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
2470 if (optval < -1 || optval >= 256)
2471 error = EINVAL;
2472 else if (optval == -1)
2473 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2474 else
2475 im6o->im6o_multicast_hlim = optval;
2476 break;
2477 }
2478
2479 case IPV6_MULTICAST_LOOP:
2480 /*
2481 * Set the loopback flag for outgoing multicast packets.
2482 * Must be zero or one.
2483 */
2484 if (m == NULL || m->m_len != sizeof(u_int)) {
2485 error = EINVAL;
2486 break;
2487 }
2488 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
2489 if (loop > 1) {
2490 error = EINVAL;
2491 break;
2492 }
2493 im6o->im6o_multicast_loop = loop;
2494 break;
2495
2496 case IPV6_JOIN_GROUP:
2497 /*
2498 * Add a multicast group membership.
2499 * Group must be a valid IP6 multicast address.
2500 */
2501 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2502 error = EINVAL;
2503 break;
2504 }
2505 mreq = mtod(m, struct ipv6_mreq *);
2506
2507 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2508 /*
2509 * We use the unspecified address to specify to accept
2510 * all multicast addresses. Only super user is allowed
2511 * to do this.
2512 */
2513 if (suser(td)) {
2514 error = EACCES;
2515 break;
2516 }
2517 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2518 error = EINVAL;
2519 break;
2520 }
2521
2522 /*
2523 * If no interface was explicitly specified, choose an
2524 * appropriate one according to the given multicast address.
2525 */
2526 if (mreq->ipv6mr_interface == 0) {
2527 struct sockaddr_in6 *dst;
2528
2529 /*
2530 * Look up the routing table for the
2531 * address, and choose the outgoing interface.
2532 * XXX: is it a good approach?
2533 */
2534 ro.ro_rt = NULL;
2535 dst = (struct sockaddr_in6 *)&ro.ro_dst;
2536 bzero(dst, sizeof(*dst));
2537 dst->sin6_family = AF_INET6;
2538 dst->sin6_len = sizeof(*dst);
2539 dst->sin6_addr = mreq->ipv6mr_multiaddr;
2540 rtalloc((struct route *)&ro);
2541 if (ro.ro_rt == NULL) {
2542 error = EADDRNOTAVAIL;
2543 break;
2544 }
2545 ifp = ro.ro_rt->rt_ifp;
2546 RTFREE(ro.ro_rt);
2547 } else {
2548 /*
2549 * If the interface is specified, validate it.
2550 */
2551 if (mreq->ipv6mr_interface < 0 ||
2552 if_index < mreq->ipv6mr_interface) {
2553 error = ENXIO; /* XXX EINVAL? */
2554 break;
2555 }
2556 ifp = ifnet_byindex(mreq->ipv6mr_interface);
2557 if (!ifp) {
2558 error = ENXIO; /* XXX EINVAL? */
2559 break;
2560 }
2561 }
2562
2563 /*
2564 * See if we found an interface, and confirm that it
2565 * supports multicast
2566 */
2567 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2568 error = EADDRNOTAVAIL;
2569 break;
2570 }
2571
2572 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
2573 error = EADDRNOTAVAIL; /* XXX: should not happen */
2574 break;
2575 }
2576
2577 /*
2578 * See if the membership already exists.
2579 */
2580 for (imm = im6o->im6o_memberships.lh_first;
2581 imm != NULL; imm = imm->i6mm_chain.le_next)
2582 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2583 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2584 &mreq->ipv6mr_multiaddr))
2585 break;
2586 if (imm != NULL) {
2587 error = EADDRINUSE;
2588 break;
2589 }
2590 /*
2591 * Everything looks good; add a new record to the multicast
2592 * address list for the given interface.
2593 */
2594 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0);
2595 if (imm == NULL)
2596 break;
2597 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2598 break;
2599
2600 case IPV6_LEAVE_GROUP:
2601 /*
2602 * Drop a multicast group membership.
2603 * Group must be a valid IP6 multicast address.
2604 */
2605 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2606 error = EINVAL;
2607 break;
2608 }
2609 mreq = mtod(m, struct ipv6_mreq *);
2610
2611 /*
2612 * If an interface address was specified, get a pointer
2613 * to its ifnet structure.
2614 */
2615 if (mreq->ipv6mr_interface < 0 ||
2616 if_index < mreq->ipv6mr_interface) {
2617 error = ENXIO; /* XXX EINVAL? */
2618 break;
2619 }
2620 if (mreq->ipv6mr_interface == 0)
2621 ifp = NULL;
2622 else
2623 ifp = ifnet_byindex(mreq->ipv6mr_interface);
2624
2625 /* Fill in the scope zone ID */
2626 if (ifp) {
2627 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
2628 /* XXX: should not happen */
2629 error = EADDRNOTAVAIL;
2630 break;
2631 }
2632 } else if (mreq->ipv6mr_interface != 0) {
2633 /*
2634 * This case happens when the (positive) index is in
2635 * the valid range, but the corresponding interface has
2636 * been detached dynamically (XXX).
2637 */
2638 error = EADDRNOTAVAIL;
2639 break;
2640 } else { /* ipv6mr_interface == 0 */
2641 struct sockaddr_in6 sa6_mc;
2642
2643 /*
2644 * The API spec says as follows:
2645 * If the interface index is specified as 0, the
2646 * system may choose a multicast group membership to
2647 * drop by matching the multicast address only.
2648 * On the other hand, we cannot disambiguate the scope
2649 * zone unless an interface is provided. Thus, we
2650 * check if there's ambiguity with the default scope
2651 * zone as the last resort.
2652 */
2653 bzero(&sa6_mc, sizeof(sa6_mc));
2654 sa6_mc.sin6_family = AF_INET6;
2655 sa6_mc.sin6_len = sizeof(sa6_mc);
2656 sa6_mc.sin6_addr = mreq->ipv6mr_multiaddr;
2657 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2658 if (error != 0)
2659 break;
2660 mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr;
2661 }
2662
2663 /*
2664 * Find the membership in the membership list.
2665 */
2666 for (imm = im6o->im6o_memberships.lh_first;
2667 imm != NULL; imm = imm->i6mm_chain.le_next) {
2668 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2669 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2670 &mreq->ipv6mr_multiaddr))
2671 break;
2672 }
2673 if (imm == NULL) {
2674 /* Unable to resolve interface */
2675 error = EADDRNOTAVAIL;
2676 break;
2677 }
2678 /*
2679 * Give up the multicast address record to which the
2680 * membership points.
2681 */
2682 LIST_REMOVE(imm, i6mm_chain);
2683 in6_delmulti(imm->i6mm_maddr);
2684 free(imm, M_IP6MADDR);
2685 break;
2686
2687 default:
2688 error = EOPNOTSUPP;
2689 break;
2690 }
2691
2692 /*
2693 * If all options have default values, no need to keep the mbuf.
2694 */
2695 if (im6o->im6o_multicast_ifp == NULL &&
2696 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2697 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2698 im6o->im6o_memberships.lh_first == NULL) {
2699 free(*im6op, M_IP6MOPTS);
2700 *im6op = NULL;
2701 }
2702
2703 return (error);
2704}
2705
2706/*
2707 * Return the IP6 multicast options in response to user getsockopt().
2708 */
2709static int
2710ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp)
2711{
2712 u_int *hlim, *loop, *ifindex;
2713
2714 *mp = m_get(M_TRYWAIT, MT_HEADER); /* XXX */
2715
2716 switch (optname) {
2717
2718 case IPV6_MULTICAST_IF:
2719 ifindex = mtod(*mp, u_int *);
2720 (*mp)->m_len = sizeof(u_int);
2721 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2722 *ifindex = 0;
2723 else
2724 *ifindex = im6o->im6o_multicast_ifp->if_index;
2725 return (0);
2726
2727 case IPV6_MULTICAST_HOPS:
2728 hlim = mtod(*mp, u_int *);
2729 (*mp)->m_len = sizeof(u_int);
2730 if (im6o == NULL)
2731 *hlim = ip6_defmcasthlim;
2732 else
2733 *hlim = im6o->im6o_multicast_hlim;
2734 return (0);
2735
2736 case IPV6_MULTICAST_LOOP:
2737 loop = mtod(*mp, u_int *);
2738 (*mp)->m_len = sizeof(u_int);
2739 if (im6o == NULL)
2740 *loop = ip6_defmcasthlim;
2741 else
2742 *loop = im6o->im6o_multicast_loop;
2743 return (0);
2744
2745 default:
2746 return (EOPNOTSUPP);
2747 }
2748}
2749
2750/*
2751 * Discard the IP6 multicast options.
2752 */
2753void
2754ip6_freemoptions(struct ip6_moptions *im6o)
2755{
2756 struct in6_multi_mship *imm;
2757
2758 if (im6o == NULL)
2759 return;
2760
2761 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2762 LIST_REMOVE(imm, i6mm_chain);
2763 if (imm->i6mm_maddr)
2764 in6_delmulti(imm->i6mm_maddr);
2765 free(imm, M_IP6MADDR);
2766 }
2767 free(im6o, M_IP6MOPTS);
2768}
2769
2770/*
2771 * Set IPv6 outgoing packet options based on advanced API.
2772 */
2773int
2774ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2775 struct ip6_pktopts *stickyopt, int priv, int uproto)
2776{
2777 struct cmsghdr *cm = 0;
2778
2779 if (control == NULL || opt == NULL)
2780 return (EINVAL);
2781
2782 ip6_initpktopts(opt);
2783 if (stickyopt) {
2784 int error;
2785
2786 /*
2787 * If stickyopt is provided, make a local copy of the options
2788 * for this particular packet, then override them by ancillary
2789 * objects.
2790 * XXX: copypktopts() does not copy the cached route to a next
2791 * hop (if any). This is not very good in terms of efficiency,
2792 * but we can allow this since this option should be rarely
2793 * used.
2794 */
2795 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2796 return (error);
2797 }
2798
2799 /*
2800 * XXX: Currently, we assume all the optional information is stored
2801 * in a single mbuf.
2802 */
2803 if (control->m_next)
2804 return (EINVAL);
2805
2806 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2807 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2808 int error;
2809
2810 if (control->m_len < CMSG_LEN(0))
2811 return (EINVAL);
2812
2813 cm = mtod(control, struct cmsghdr *);
2814 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2815 return (EINVAL);
2816 if (cm->cmsg_level != IPPROTO_IPV6)
2817 continue;
2818
2819 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2820 cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, 1, uproto);
2821 if (error)
2822 return (error);
2823 }
2824
2825 return (0);
2826}
2827
2828/*
2829 * Set a particular packet option, as a sticky option or an ancillary data
2830 * item. "len" can be 0 only when it's a sticky option.
2831 * We have 4 cases of combination of "sticky" and "cmsg":
2832 * "sticky=0, cmsg=0": impossible
2833 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2834 * "sticky=1, cmsg=0": RFC3542 socket option
2835 * "sticky=1, cmsg=1": RFC2292 socket option
2836 */
2837static int
2838ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2839 int priv, int sticky, int cmsg, int uproto)
2840{
2841 int minmtupolicy, preftemp;
2842
2843 if (!sticky && !cmsg) {
2844#ifdef DIAGNOSTIC
2845 printf("ip6_setpktopt: impossible case\n");
2846#endif
2847 return (EINVAL);
2848 }
2849
2850 /*
2851 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2852 * not be specified in the context of RFC3542. Conversely,
2853 * RFC3542 types should not be specified in the context of RFC2292.
2854 */
2855 if (!cmsg) {
2856 switch (optname) {
2857 case IPV6_2292PKTINFO:
2858 case IPV6_2292HOPLIMIT:
2859 case IPV6_2292NEXTHOP:
2860 case IPV6_2292HOPOPTS:
2861 case IPV6_2292DSTOPTS:
2862 case IPV6_2292RTHDR:
2863 case IPV6_2292PKTOPTIONS:
2864 return (ENOPROTOOPT);
2865 }
2866 }
2867 if (sticky && cmsg) {
2868 switch (optname) {
2869 case IPV6_PKTINFO:
2870 case IPV6_HOPLIMIT:
2871 case IPV6_NEXTHOP:
2872 case IPV6_HOPOPTS:
2873 case IPV6_DSTOPTS:
2874 case IPV6_RTHDRDSTOPTS:
2875 case IPV6_RTHDR:
2876 case IPV6_USE_MIN_MTU:
2877 case IPV6_DONTFRAG:
2878 case IPV6_TCLASS:
2879 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2880 return (ENOPROTOOPT);
2881 }
2882 }
2883
2884 switch (optname) {
2885 case IPV6_2292PKTINFO:
2886 case IPV6_PKTINFO:
2887 {
2888 struct ifnet *ifp = NULL;
2889 struct in6_pktinfo *pktinfo;
2890
2891 if (len != sizeof(struct in6_pktinfo))
2892 return (EINVAL);
2893
2894 pktinfo = (struct in6_pktinfo *)buf;
2895
2896 /*
2897 * An application can clear any sticky IPV6_PKTINFO option by
2898 * doing a "regular" setsockopt with ipi6_addr being
2899 * in6addr_any and ipi6_ifindex being zero.
2900 * [RFC 3542, Section 6]
2901 */
2902 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2903 pktinfo->ipi6_ifindex == 0 &&
2904 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2905 ip6_clearpktopts(opt, optname);
2906 break;
2907 }
2908
2909 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2910 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2911 return (EINVAL);
2912 }
2913
2914 /* validate the interface index if specified. */
2915 if (pktinfo->ipi6_ifindex > if_index ||
2916 pktinfo->ipi6_ifindex < 0) {
2917 return (ENXIO);
2918 }
2919 if (pktinfo->ipi6_ifindex) {
2920 ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2921 if (ifp == NULL)
2922 return (ENXIO);
2923 }
2924
2925 /*
2926 * We store the address anyway, and let in6_selectsrc()
2927 * validate the specified address. This is because ipi6_addr
2928 * may not have enough information about its scope zone, and
2929 * we may need additional information (such as outgoing
2930 * interface or the scope zone of a destination address) to
2931 * disambiguate the scope.
2932 * XXX: the delay of the validation may confuse the
2933 * application when it is used as a sticky option.
2934 */
2935 if (opt->ip6po_pktinfo == NULL) {
2936 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2937 M_IP6OPT, M_NOWAIT);
2938 if (opt->ip6po_pktinfo == NULL)
2939 return (ENOBUFS);
2940 }
2941 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2942 break;
2943 }
2944
2945 case IPV6_2292HOPLIMIT:
2946 case IPV6_HOPLIMIT:
2947 {
2948 int *hlimp;
2949
2950 /*
2951 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2952 * to simplify the ordering among hoplimit options.
2953 */
2954 if (optname == IPV6_HOPLIMIT && sticky)
2955 return (ENOPROTOOPT);
2956
2957 if (len != sizeof(int))
2958 return (EINVAL);
2959 hlimp = (int *)buf;
2960 if (*hlimp < -1 || *hlimp > 255)
2961 return (EINVAL);
2962
2963 opt->ip6po_hlim = *hlimp;
2964 break;
2965 }
2966
2967 case IPV6_TCLASS:
2968 {
2969 int tclass;
2970
2971 if (len != sizeof(int))
2972 return (EINVAL);
2973 tclass = *(int *)buf;
2974 if (tclass < -1 || tclass > 255)
2975 return (EINVAL);
2976
2977 opt->ip6po_tclass = tclass;
2978 break;
2979 }
2980
2981 case IPV6_2292NEXTHOP:
2982 case IPV6_NEXTHOP:
2983 if (!priv)
2984 return (EPERM);
2985
2986 if (len == 0) { /* just remove the option */
2987 ip6_clearpktopts(opt, IPV6_NEXTHOP);
2988 break;
2989 }
2990
2991 /* check if cmsg_len is large enough for sa_len */
2992 if (len < sizeof(struct sockaddr) || len < *buf)
2993 return (EINVAL);
2994
2995 switch (((struct sockaddr *)buf)->sa_family) {
2996 case AF_INET6:
2997 {
2998 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2999 int error;
3000
3001 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3002 return (EINVAL);
3003
3004 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3005 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3006 return (EINVAL);
3007 }
3008 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
3009 != 0) {
3010 return (error);
3011 }
3012 break;
3013 }
3014 case AF_LINK: /* should eventually be supported */
3015 default:
3016 return (EAFNOSUPPORT);
3017 }
3018
3019 /* turn off the previous option, then set the new option. */
3020 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3021 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3022 if (opt->ip6po_nexthop == NULL)
3023 return (ENOBUFS);
3024 bcopy(buf, opt->ip6po_nexthop, *buf);
3025 break;
3026
3027 case IPV6_2292HOPOPTS:
3028 case IPV6_HOPOPTS:
3029 {
3030 struct ip6_hbh *hbh;
3031 int hbhlen;
3032
3033 /*
3034 * XXX: We don't allow a non-privileged user to set ANY HbH
3035 * options, since per-option restriction has too much
3036 * overhead.
3037 */
3038 if (!priv)
3039 return (EPERM);
3040
3041 if (len == 0) {
3042 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3043 break; /* just remove the option */
3044 }
3045
3046 /* message length validation */
3047 if (len < sizeof(struct ip6_hbh))
3048 return (EINVAL);
3049 hbh = (struct ip6_hbh *)buf;
3050 hbhlen = (hbh->ip6h_len + 1) << 3;
3051 if (len != hbhlen)
3052 return (EINVAL);
3053
3054 /* turn off the previous option, then set the new option. */
3055 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3056 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3057 if (opt->ip6po_hbh == NULL)
3058 return (ENOBUFS);
3059 bcopy(hbh, opt->ip6po_hbh, hbhlen);
3060
3061 break;
3062 }
3063
3064 case IPV6_2292DSTOPTS:
3065 case IPV6_DSTOPTS:
3066 case IPV6_RTHDRDSTOPTS:
3067 {
3068 struct ip6_dest *dest, **newdest = NULL;
3069 int destlen;
3070
3071 if (!priv) /* XXX: see the comment for IPV6_HOPOPTS */
3072 return (EPERM);
3073
3074 if (len == 0) {
3075 ip6_clearpktopts(opt, optname);
3076 break; /* just remove the option */
3077 }
3078
3079 /* message length validation */
3080 if (len < sizeof(struct ip6_dest))
3081 return (EINVAL);
3082 dest = (struct ip6_dest *)buf;
3083 destlen = (dest->ip6d_len + 1) << 3;
3084 if (len != destlen)
3085 return (EINVAL);
3086
3087 /*
3088 * Determine the position that the destination options header
3089 * should be inserted; before or after the routing header.
3090 */
3091 switch (optname) {
3092 case IPV6_2292DSTOPTS:
3093 /*
3094 * The old advacned API is ambiguous on this point.
3095 * Our approach is to determine the position based
3096 * according to the existence of a routing header.
3097 * Note, however, that this depends on the order of the
3098 * extension headers in the ancillary data; the 1st
3099 * part of the destination options header must appear
3100 * before the routing header in the ancillary data,
3101 * too.
3102 * RFC3542 solved the ambiguity by introducing
3103 * separate ancillary data or option types.
3104 */
3105 if (opt->ip6po_rthdr == NULL)
3106 newdest = &opt->ip6po_dest1;
3107 else
3108 newdest = &opt->ip6po_dest2;
3109 break;
3110 case IPV6_RTHDRDSTOPTS:
3111 newdest = &opt->ip6po_dest1;
3112 break;
3113 case IPV6_DSTOPTS:
3114 newdest = &opt->ip6po_dest2;
3115 break;
3116 }
3117
3118 /* turn off the previous option, then set the new option. */
3119 ip6_clearpktopts(opt, optname);
3120 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3121 if (*newdest == NULL)
3122 return (ENOBUFS);
3123 bcopy(dest, *newdest, destlen);
3124
3125 break;
3126 }
3127
3128 case IPV6_2292RTHDR:
3129 case IPV6_RTHDR:
3130 {
3131 struct ip6_rthdr *rth;
3132 int rthlen;
3133
3134 if (len == 0) {
3135 ip6_clearpktopts(opt, IPV6_RTHDR);
3136 break; /* just remove the option */
3137 }
3138
3139 /* message length validation */
3140 if (len < sizeof(struct ip6_rthdr))
3141 return (EINVAL);
3142 rth = (struct ip6_rthdr *)buf;
3143 rthlen = (rth->ip6r_len + 1) << 3;
3144 if (len != rthlen)
3145 return (EINVAL);
3146
3147 switch (rth->ip6r_type) {
3148 case IPV6_RTHDR_TYPE_0:
3149 if (rth->ip6r_len == 0) /* must contain one addr */
3150 return (EINVAL);
3151 if (rth->ip6r_len % 2) /* length must be even */
3152 return (EINVAL);
3153 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3154 return (EINVAL);
3155 break;
3156 default:
3157 return (EINVAL); /* not supported */
3158 }
3159
3160 /* turn off the previous option */
3161 ip6_clearpktopts(opt, IPV6_RTHDR);
3162 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3163 if (opt->ip6po_rthdr == NULL)
3164 return (ENOBUFS);
3165 bcopy(rth, opt->ip6po_rthdr, rthlen);
3166
3167 break;
3168 }
3169
3170 case IPV6_USE_MIN_MTU:
3171 if (len != sizeof(int))
3172 return (EINVAL);
3173 minmtupolicy = *(int *)buf;
3174 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3175 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3176 minmtupolicy != IP6PO_MINMTU_ALL) {
3177 return (EINVAL);
3178 }
3179 opt->ip6po_minmtu = minmtupolicy;
3180 break;
3181
3182 case IPV6_DONTFRAG:
3183 if (len != sizeof(int))
3184 return (EINVAL);
3185
3186 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3187 /*
3188 * we ignore this option for TCP sockets.
3189 * (RFC3542 leaves this case unspecified.)
3190 */
3191 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3192 } else
3193 opt->ip6po_flags |= IP6PO_DONTFRAG;
3194 break;
3195
3196 case IPV6_PREFER_TEMPADDR:
3197 if (len != sizeof(int))
3198 return (EINVAL);
3199 preftemp = *(int *)buf;
3200 if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
3201 preftemp != IP6PO_TEMPADDR_NOTPREFER &&
3202 preftemp != IP6PO_TEMPADDR_PREFER) {
3203 return (EINVAL);
3204 }
3205 opt->ip6po_prefer_tempaddr = preftemp;
3206 break;
3207
3208 default:
3209 return (ENOPROTOOPT);
3210 } /* end of switch */
3211
3212 return (0);
3213}
3214
3215/*
3216 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3217 * packet to the input queue of a specified interface. Note that this
3218 * calls the output routine of the loopback "driver", but with an interface
3219 * pointer that might NOT be &loif -- easier than replicating that code here.
3220 */
3221void
3222ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
3223{
3224 struct mbuf *copym;
3225 struct ip6_hdr *ip6;
3226
3227 copym = m_copy(m, 0, M_COPYALL);
3228 if (copym == NULL)
3229 return;
3230
3231 /*
3232 * Make sure to deep-copy IPv6 header portion in case the data
3233 * is in an mbuf cluster, so that we can safely override the IPv6
3234 * header portion later.
3235 */
3236 if ((copym->m_flags & M_EXT) != 0 ||
3237 copym->m_len < sizeof(struct ip6_hdr)) {
3238 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3239 if (copym == NULL)
3240 return;
3241 }
3242
3243#ifdef DIAGNOSTIC
3244 if (copym->m_len < sizeof(*ip6)) {
3245 m_freem(copym);
3246 return;
3247 }
3248#endif
3249
3250 ip6 = mtod(copym, struct ip6_hdr *);
3251 /*
3252 * clear embedded scope identifiers if necessary.
3253 * in6_clearscope will touch the addresses only when necessary.
3254 */
3255 in6_clearscope(&ip6->ip6_src);
3256 in6_clearscope(&ip6->ip6_dst);
3257
3258 (void)if_simloop(ifp, copym, dst->sin6_family, 0);
3259}
3260
3261/*
3262 * Chop IPv6 header off from the payload.
3263 */
3264static int
3265ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3266{
3267 struct mbuf *mh;
3268 struct ip6_hdr *ip6;
3269
3270 ip6 = mtod(m, struct ip6_hdr *);
3271 if (m->m_len > sizeof(*ip6)) {
3272 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3273 if (mh == 0) {
3274 m_freem(m);
3275 return ENOBUFS;
3276 }
3277 M_MOVE_PKTHDR(mh, m);
3278 MH_ALIGN(mh, sizeof(*ip6));
3279 m->m_len -= sizeof(*ip6);
3280 m->m_data += sizeof(*ip6);
3281 mh->m_next = m;
3282 m = mh;
3283 m->m_len = sizeof(*ip6);
3284 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
3285 }
3286 exthdrs->ip6e_ip6 = m;
3287 return 0;
3288}
3289
3290/*
3291 * Compute IPv6 extension header length.
3292 */
3293int
3294ip6_optlen(struct in6pcb *in6p)
3295{
3296 int len;
3297
3298 if (!in6p->in6p_outputopts)
3299 return 0;
3300
3301 len = 0;
3302#define elen(x) \
3303 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3304
3305 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3306 if (in6p->in6p_outputopts->ip6po_rthdr)
3307 /* dest1 is valid with rthdr only */
3308 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3309 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3310 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3311 return len;
3312#undef elen
3313}