Deleted Added
full compact
udp_usrreq.c (222488) udp_usrreq.c (222691)
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 * The Regents of the University of California.
4 * Copyright (c) 2008 Robert N. M. Watson
5 * Copyright (c) 2010-2011 Juniper Networks, Inc.
6 * All rights reserved.
7 *
8 * Portions of this software were developed by Robert N. M. Watson under
9 * contract to Juniper Networks, Inc.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95
36 */
37
38#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 * The Regents of the University of California.
4 * Copyright (c) 2008 Robert N. M. Watson
5 * Copyright (c) 2010-2011 Juniper Networks, Inc.
6 * All rights reserved.
7 *
8 * Portions of this software were developed by Robert N. M. Watson under
9 * contract to Juniper Networks, Inc.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: head/sys/netinet/udp_usrreq.c 222488 2011-05-30 09:43:55Z rwatson $");
39__FBSDID("$FreeBSD: head/sys/netinet/udp_usrreq.c 222691 2011-06-04 16:33:06Z rwatson $");
40
41#include "opt_ipfw.h"
42#include "opt_inet.h"
43#include "opt_inet6.h"
44#include "opt_ipsec.h"
45
46#include <sys/param.h>
47#include <sys/domain.h>
48#include <sys/eventhandler.h>
49#include <sys/jail.h>
50#include <sys/kernel.h>
51#include <sys/lock.h>
52#include <sys/malloc.h>
53#include <sys/mbuf.h>
54#include <sys/priv.h>
55#include <sys/proc.h>
56#include <sys/protosw.h>
57#include <sys/signalvar.h>
58#include <sys/socket.h>
59#include <sys/socketvar.h>
60#include <sys/sx.h>
61#include <sys/sysctl.h>
62#include <sys/syslog.h>
63#include <sys/systm.h>
64
65#include <vm/uma.h>
66
67#include <net/if.h>
68#include <net/route.h>
69
70#include <netinet/in.h>
71#include <netinet/in_pcb.h>
72#include <netinet/in_systm.h>
73#include <netinet/in_var.h>
74#include <netinet/ip.h>
75#ifdef INET6
76#include <netinet/ip6.h>
77#endif
78#include <netinet/ip_icmp.h>
79#include <netinet/icmp_var.h>
80#include <netinet/ip_var.h>
81#include <netinet/ip_options.h>
82#ifdef INET6
83#include <netinet6/ip6_var.h>
84#endif
85#include <netinet/udp.h>
86#include <netinet/udp_var.h>
87
88#ifdef IPSEC
89#include <netipsec/ipsec.h>
90#include <netipsec/esp.h>
91#endif
92
93#include <machine/in_cksum.h>
94
95#include <security/mac/mac_framework.h>
96
97/*
98 * UDP protocol implementation.
99 * Per RFC 768, August, 1980.
100 */
101
102/*
103 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums
104 * removes the only data integrity mechanism for packets and malformed
105 * packets that would otherwise be discarded due to bad checksums, and may
106 * cause problems (especially for NFS data blocks).
107 */
108static int udp_cksum = 1;
109SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW, &udp_cksum,
110 0, "compute udp checksum");
111
112int udp_log_in_vain = 0;
113SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
114 &udp_log_in_vain, 0, "Log all incoming UDP packets");
115
116VNET_DEFINE(int, udp_blackhole) = 0;
117SYSCTL_VNET_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW,
118 &VNET_NAME(udp_blackhole), 0,
119 "Do not send port unreachables for refused connects");
120
121u_long udp_sendspace = 9216; /* really max datagram size */
122 /* 40 1K datagrams */
123SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
124 &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
125
126u_long udp_recvspace = 40 * (1024 +
127#ifdef INET6
128 sizeof(struct sockaddr_in6)
129#else
130 sizeof(struct sockaddr_in)
131#endif
132 );
133
134SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
135 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
136
137VNET_DEFINE(struct inpcbhead, udb); /* from udp_var.h */
138VNET_DEFINE(struct inpcbinfo, udbinfo);
139static VNET_DEFINE(uma_zone_t, udpcb_zone);
140#define V_udpcb_zone VNET(udpcb_zone)
141
142#ifndef UDBHASHSIZE
143#define UDBHASHSIZE 128
144#endif
145
146VNET_DEFINE(struct udpstat, udpstat); /* from udp_var.h */
147SYSCTL_VNET_STRUCT(_net_inet_udp, UDPCTL_STATS, stats, CTLFLAG_RW,
148 &VNET_NAME(udpstat), udpstat,
149 "UDP statistics (struct udpstat, netinet/udp_var.h)");
150
151#ifdef INET
152static void udp_detach(struct socket *so);
153static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
154 struct mbuf *, struct thread *);
155#endif
156
157#ifdef IPSEC
158#ifdef IPSEC_NAT_T
159#define UF_ESPINUDP_ALL (UF_ESPINUDP_NON_IKE|UF_ESPINUDP)
160#ifdef INET
161static struct mbuf *udp4_espdecap(struct inpcb *, struct mbuf *, int);
162#endif
163#endif /* IPSEC_NAT_T */
164#endif /* IPSEC */
165
166static void
167udp_zone_change(void *tag)
168{
169
170 uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
171 uma_zone_set_max(V_udpcb_zone, maxsockets);
172}
173
174static int
175udp_inpcb_init(void *mem, int size, int flags)
176{
177 struct inpcb *inp;
178
179 inp = mem;
180 INP_LOCK_INIT(inp, "inp", "udpinp");
181 return (0);
182}
183
184void
185udp_init(void)
186{
187
188 in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
189 "udp_inpcb", udp_inpcb_init, NULL, UMA_ZONE_NOFREE);
190 V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
191 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
192 uma_zone_set_max(V_udpcb_zone, maxsockets);
193 EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
194 EVENTHANDLER_PRI_ANY);
195}
196
197/*
198 * Kernel module interface for updating udpstat. The argument is an index
199 * into udpstat treated as an array of u_long. While this encodes the
200 * general layout of udpstat into the caller, it doesn't encode its location,
201 * so that future changes to add, for example, per-CPU stats support won't
202 * cause binary compatibility problems for kernel modules.
203 */
204void
205kmod_udpstat_inc(int statnum)
206{
207
208 (*((u_long *)&V_udpstat + statnum))++;
209}
210
211int
212udp_newudpcb(struct inpcb *inp)
213{
214 struct udpcb *up;
215
216 up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
217 if (up == NULL)
218 return (ENOBUFS);
219 inp->inp_ppcb = up;
220 return (0);
221}
222
223void
224udp_discardcb(struct udpcb *up)
225{
226
227 uma_zfree(V_udpcb_zone, up);
228}
229
230#ifdef VIMAGE
231void
232udp_destroy(void)
233{
234
235 in_pcbinfo_destroy(&V_udbinfo);
236 uma_zdestroy(V_udpcb_zone);
237}
238#endif
239
240#ifdef INET
241/*
242 * Subroutine of udp_input(), which appends the provided mbuf chain to the
243 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that
244 * contains the source address. If the socket ends up being an IPv6 socket,
245 * udp_append() will convert to a sockaddr_in6 before passing the address
246 * into the socket code.
247 */
248static void
249udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
250 struct sockaddr_in *udp_in)
251{
252 struct sockaddr *append_sa;
253 struct socket *so;
254 struct mbuf *opts = 0;
255#ifdef INET6
256 struct sockaddr_in6 udp_in6;
257#endif
258 struct udpcb *up;
259
260 INP_LOCK_ASSERT(inp);
261
262 /*
263 * Engage the tunneling protocol.
264 */
265 up = intoudpcb(inp);
266 if (up->u_tun_func != NULL) {
267 (*up->u_tun_func)(n, off, inp);
268 return;
269 }
270
271 if (n == NULL)
272 return;
273
274 off += sizeof(struct udphdr);
275
276#ifdef IPSEC
277 /* Check AH/ESP integrity. */
278 if (ipsec4_in_reject(n, inp)) {
279 m_freem(n);
280 V_ipsec4stat.in_polvio++;
281 return;
282 }
283#ifdef IPSEC_NAT_T
284 up = intoudpcb(inp);
285 KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
286 if (up->u_flags & UF_ESPINUDP_ALL) { /* IPSec UDP encaps. */
287 n = udp4_espdecap(inp, n, off);
288 if (n == NULL) /* Consumed. */
289 return;
290 }
291#endif /* IPSEC_NAT_T */
292#endif /* IPSEC */
293#ifdef MAC
294 if (mac_inpcb_check_deliver(inp, n) != 0) {
295 m_freem(n);
296 return;
297 }
298#endif /* MAC */
299 if (inp->inp_flags & INP_CONTROLOPTS ||
300 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
301#ifdef INET6
302 if (inp->inp_vflag & INP_IPV6)
303 (void)ip6_savecontrol_v4(inp, n, &opts, NULL);
304 else
305#endif /* INET6 */
306 ip_savecontrol(inp, &opts, ip, n);
307 }
308#ifdef INET6
309 if (inp->inp_vflag & INP_IPV6) {
310 bzero(&udp_in6, sizeof(udp_in6));
311 udp_in6.sin6_len = sizeof(udp_in6);
312 udp_in6.sin6_family = AF_INET6;
313 in6_sin_2_v4mapsin6(udp_in, &udp_in6);
314 append_sa = (struct sockaddr *)&udp_in6;
315 } else
316#endif /* INET6 */
317 append_sa = (struct sockaddr *)udp_in;
318 m_adj(n, off);
319
320 so = inp->inp_socket;
321 SOCKBUF_LOCK(&so->so_rcv);
322 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
323 SOCKBUF_UNLOCK(&so->so_rcv);
324 m_freem(n);
325 if (opts)
326 m_freem(opts);
327 UDPSTAT_INC(udps_fullsock);
328 } else
329 sorwakeup_locked(so);
330}
331
332void
333udp_input(struct mbuf *m, int off)
334{
335 int iphlen = off;
336 struct ip *ip;
337 struct udphdr *uh;
338 struct ifnet *ifp;
339 struct inpcb *inp;
340 int len;
341 struct ip save_ip;
342 struct sockaddr_in udp_in;
343#ifdef IPFIREWALL_FORWARD
344 struct m_tag *fwd_tag;
345#endif
346
347 ifp = m->m_pkthdr.rcvif;
348 UDPSTAT_INC(udps_ipackets);
349
350 /*
351 * Strip IP options, if any; should skip this, make available to
352 * user, and use on returned packets, but we don't yet have a way to
353 * check the checksum with options still present.
354 */
355 if (iphlen > sizeof (struct ip)) {
356 ip_stripoptions(m, (struct mbuf *)0);
357 iphlen = sizeof(struct ip);
358 }
359
360 /*
361 * Get IP and UDP header together in first mbuf.
362 */
363 ip = mtod(m, struct ip *);
364 if (m->m_len < iphlen + sizeof(struct udphdr)) {
365 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == 0) {
366 UDPSTAT_INC(udps_hdrops);
367 return;
368 }
369 ip = mtod(m, struct ip *);
370 }
371 uh = (struct udphdr *)((caddr_t)ip + iphlen);
372
373 /*
374 * Destination port of 0 is illegal, based on RFC768.
375 */
376 if (uh->uh_dport == 0)
377 goto badunlocked;
378
379 /*
380 * Construct sockaddr format source address. Stuff source address
381 * and datagram in user buffer.
382 */
383 bzero(&udp_in, sizeof(udp_in));
384 udp_in.sin_len = sizeof(udp_in);
385 udp_in.sin_family = AF_INET;
386 udp_in.sin_port = uh->uh_sport;
387 udp_in.sin_addr = ip->ip_src;
388
389 /*
390 * Make mbuf data length reflect UDP length. If not enough data to
391 * reflect UDP length, drop.
392 */
393 len = ntohs((u_short)uh->uh_ulen);
394 if (ip->ip_len != len) {
395 if (len > ip->ip_len || len < sizeof(struct udphdr)) {
396 UDPSTAT_INC(udps_badlen);
397 goto badunlocked;
398 }
399 m_adj(m, len - ip->ip_len);
400 /* ip->ip_len = len; */
401 }
402
403 /*
404 * Save a copy of the IP header in case we want restore it for
405 * sending an ICMP error message in response.
406 */
407 if (!V_udp_blackhole)
408 save_ip = *ip;
409 else
410 memset(&save_ip, 0, sizeof(save_ip));
411
412 /*
413 * Checksum extended UDP header and data.
414 */
415 if (uh->uh_sum) {
416 u_short uh_sum;
417
418 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
419 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
420 uh_sum = m->m_pkthdr.csum_data;
421 else
422 uh_sum = in_pseudo(ip->ip_src.s_addr,
423 ip->ip_dst.s_addr, htonl((u_short)len +
424 m->m_pkthdr.csum_data + IPPROTO_UDP));
425 uh_sum ^= 0xffff;
426 } else {
427 char b[9];
428
429 bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
430 bzero(((struct ipovly *)ip)->ih_x1, 9);
431 ((struct ipovly *)ip)->ih_len = uh->uh_ulen;
432 uh_sum = in_cksum(m, len + sizeof (struct ip));
433 bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
434 }
435 if (uh_sum) {
436 UDPSTAT_INC(udps_badsum);
437 m_freem(m);
438 return;
439 }
440 } else
441 UDPSTAT_INC(udps_nosum);
442
443#ifdef IPFIREWALL_FORWARD
444 /*
445 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
446 */
447 fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
448 if (fwd_tag != NULL) {
449 struct sockaddr_in *next_hop;
450
451 /*
452 * Do the hack.
453 */
454 next_hop = (struct sockaddr_in *)(fwd_tag + 1);
455 ip->ip_dst = next_hop->sin_addr;
456 uh->uh_dport = ntohs(next_hop->sin_port);
457
458 /*
459 * Remove the tag from the packet. We don't need it anymore.
460 */
461 m_tag_delete(m, fwd_tag);
462 }
463#endif
464
465 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
466 in_broadcast(ip->ip_dst, ifp)) {
467 struct inpcb *last;
468 struct ip_moptions *imo;
469
470 INP_INFO_RLOCK(&V_udbinfo);
471 last = NULL;
472 LIST_FOREACH(inp, &V_udb, inp_list) {
473 if (inp->inp_lport != uh->uh_dport)
474 continue;
475#ifdef INET6
476 if ((inp->inp_vflag & INP_IPV4) == 0)
477 continue;
478#endif
479 if (inp->inp_laddr.s_addr != INADDR_ANY &&
480 inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
481 continue;
482 if (inp->inp_faddr.s_addr != INADDR_ANY &&
483 inp->inp_faddr.s_addr != ip->ip_src.s_addr)
484 continue;
485 if (inp->inp_fport != 0 &&
486 inp->inp_fport != uh->uh_sport)
487 continue;
488
489 INP_RLOCK(inp);
490
491 /*
492 * XXXRW: Because we weren't holding either the inpcb
493 * or the hash lock when we checked for a match
494 * before, we should probably recheck now that the
495 * inpcb lock is held.
496 */
497
498 /*
499 * Handle socket delivery policy for any-source
500 * and source-specific multicast. [RFC3678]
501 */
502 imo = inp->inp_moptions;
503 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
504 struct sockaddr_in group;
505 int blocked;
506 if (imo == NULL) {
507 INP_RUNLOCK(inp);
508 continue;
509 }
510 bzero(&group, sizeof(struct sockaddr_in));
511 group.sin_len = sizeof(struct sockaddr_in);
512 group.sin_family = AF_INET;
513 group.sin_addr = ip->ip_dst;
514
515 blocked = imo_multi_filter(imo, ifp,
516 (struct sockaddr *)&group,
517 (struct sockaddr *)&udp_in);
518 if (blocked != MCAST_PASS) {
519 if (blocked == MCAST_NOTGMEMBER)
520 IPSTAT_INC(ips_notmember);
521 if (blocked == MCAST_NOTSMEMBER ||
522 blocked == MCAST_MUTED)
523 UDPSTAT_INC(udps_filtermcast);
524 INP_RUNLOCK(inp);
525 continue;
526 }
527 }
528 if (last != NULL) {
529 struct mbuf *n;
530
531 n = m_copy(m, 0, M_COPYALL);
532 udp_append(last, ip, n, iphlen, &udp_in);
533 INP_RUNLOCK(last);
534 }
535 last = inp;
536 /*
537 * Don't look for additional matches if this one does
538 * not have either the SO_REUSEPORT or SO_REUSEADDR
539 * socket options set. This heuristic avoids
540 * searching through all pcbs in the common case of a
541 * non-shared port. It assumes that an application
542 * will never clear these options after setting them.
543 */
544 if ((last->inp_socket->so_options &
545 (SO_REUSEPORT|SO_REUSEADDR)) == 0)
546 break;
547 }
548
549 if (last == NULL) {
550 /*
551 * No matching pcb found; discard datagram. (No need
552 * to send an ICMP Port Unreachable for a broadcast
553 * or multicast datgram.)
554 */
555 UDPSTAT_INC(udps_noportbcast);
556 if (inp)
557 INP_RUNLOCK(inp);
558 INP_INFO_RUNLOCK(&V_udbinfo);
559 goto badunlocked;
560 }
561 udp_append(last, ip, m, iphlen, &udp_in);
562 INP_RUNLOCK(last);
563 INP_INFO_RUNLOCK(&V_udbinfo);
564 return;
565 }
566
567 /*
568 * Locate pcb for datagram.
569 */
40
41#include "opt_ipfw.h"
42#include "opt_inet.h"
43#include "opt_inet6.h"
44#include "opt_ipsec.h"
45
46#include <sys/param.h>
47#include <sys/domain.h>
48#include <sys/eventhandler.h>
49#include <sys/jail.h>
50#include <sys/kernel.h>
51#include <sys/lock.h>
52#include <sys/malloc.h>
53#include <sys/mbuf.h>
54#include <sys/priv.h>
55#include <sys/proc.h>
56#include <sys/protosw.h>
57#include <sys/signalvar.h>
58#include <sys/socket.h>
59#include <sys/socketvar.h>
60#include <sys/sx.h>
61#include <sys/sysctl.h>
62#include <sys/syslog.h>
63#include <sys/systm.h>
64
65#include <vm/uma.h>
66
67#include <net/if.h>
68#include <net/route.h>
69
70#include <netinet/in.h>
71#include <netinet/in_pcb.h>
72#include <netinet/in_systm.h>
73#include <netinet/in_var.h>
74#include <netinet/ip.h>
75#ifdef INET6
76#include <netinet/ip6.h>
77#endif
78#include <netinet/ip_icmp.h>
79#include <netinet/icmp_var.h>
80#include <netinet/ip_var.h>
81#include <netinet/ip_options.h>
82#ifdef INET6
83#include <netinet6/ip6_var.h>
84#endif
85#include <netinet/udp.h>
86#include <netinet/udp_var.h>
87
88#ifdef IPSEC
89#include <netipsec/ipsec.h>
90#include <netipsec/esp.h>
91#endif
92
93#include <machine/in_cksum.h>
94
95#include <security/mac/mac_framework.h>
96
97/*
98 * UDP protocol implementation.
99 * Per RFC 768, August, 1980.
100 */
101
102/*
103 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums
104 * removes the only data integrity mechanism for packets and malformed
105 * packets that would otherwise be discarded due to bad checksums, and may
106 * cause problems (especially for NFS data blocks).
107 */
108static int udp_cksum = 1;
109SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW, &udp_cksum,
110 0, "compute udp checksum");
111
112int udp_log_in_vain = 0;
113SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
114 &udp_log_in_vain, 0, "Log all incoming UDP packets");
115
116VNET_DEFINE(int, udp_blackhole) = 0;
117SYSCTL_VNET_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW,
118 &VNET_NAME(udp_blackhole), 0,
119 "Do not send port unreachables for refused connects");
120
121u_long udp_sendspace = 9216; /* really max datagram size */
122 /* 40 1K datagrams */
123SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
124 &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
125
126u_long udp_recvspace = 40 * (1024 +
127#ifdef INET6
128 sizeof(struct sockaddr_in6)
129#else
130 sizeof(struct sockaddr_in)
131#endif
132 );
133
134SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
135 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
136
137VNET_DEFINE(struct inpcbhead, udb); /* from udp_var.h */
138VNET_DEFINE(struct inpcbinfo, udbinfo);
139static VNET_DEFINE(uma_zone_t, udpcb_zone);
140#define V_udpcb_zone VNET(udpcb_zone)
141
142#ifndef UDBHASHSIZE
143#define UDBHASHSIZE 128
144#endif
145
146VNET_DEFINE(struct udpstat, udpstat); /* from udp_var.h */
147SYSCTL_VNET_STRUCT(_net_inet_udp, UDPCTL_STATS, stats, CTLFLAG_RW,
148 &VNET_NAME(udpstat), udpstat,
149 "UDP statistics (struct udpstat, netinet/udp_var.h)");
150
151#ifdef INET
152static void udp_detach(struct socket *so);
153static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
154 struct mbuf *, struct thread *);
155#endif
156
157#ifdef IPSEC
158#ifdef IPSEC_NAT_T
159#define UF_ESPINUDP_ALL (UF_ESPINUDP_NON_IKE|UF_ESPINUDP)
160#ifdef INET
161static struct mbuf *udp4_espdecap(struct inpcb *, struct mbuf *, int);
162#endif
163#endif /* IPSEC_NAT_T */
164#endif /* IPSEC */
165
166static void
167udp_zone_change(void *tag)
168{
169
170 uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
171 uma_zone_set_max(V_udpcb_zone, maxsockets);
172}
173
174static int
175udp_inpcb_init(void *mem, int size, int flags)
176{
177 struct inpcb *inp;
178
179 inp = mem;
180 INP_LOCK_INIT(inp, "inp", "udpinp");
181 return (0);
182}
183
184void
185udp_init(void)
186{
187
188 in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
189 "udp_inpcb", udp_inpcb_init, NULL, UMA_ZONE_NOFREE);
190 V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
191 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
192 uma_zone_set_max(V_udpcb_zone, maxsockets);
193 EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
194 EVENTHANDLER_PRI_ANY);
195}
196
197/*
198 * Kernel module interface for updating udpstat. The argument is an index
199 * into udpstat treated as an array of u_long. While this encodes the
200 * general layout of udpstat into the caller, it doesn't encode its location,
201 * so that future changes to add, for example, per-CPU stats support won't
202 * cause binary compatibility problems for kernel modules.
203 */
204void
205kmod_udpstat_inc(int statnum)
206{
207
208 (*((u_long *)&V_udpstat + statnum))++;
209}
210
211int
212udp_newudpcb(struct inpcb *inp)
213{
214 struct udpcb *up;
215
216 up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
217 if (up == NULL)
218 return (ENOBUFS);
219 inp->inp_ppcb = up;
220 return (0);
221}
222
223void
224udp_discardcb(struct udpcb *up)
225{
226
227 uma_zfree(V_udpcb_zone, up);
228}
229
230#ifdef VIMAGE
231void
232udp_destroy(void)
233{
234
235 in_pcbinfo_destroy(&V_udbinfo);
236 uma_zdestroy(V_udpcb_zone);
237}
238#endif
239
240#ifdef INET
241/*
242 * Subroutine of udp_input(), which appends the provided mbuf chain to the
243 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that
244 * contains the source address. If the socket ends up being an IPv6 socket,
245 * udp_append() will convert to a sockaddr_in6 before passing the address
246 * into the socket code.
247 */
248static void
249udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
250 struct sockaddr_in *udp_in)
251{
252 struct sockaddr *append_sa;
253 struct socket *so;
254 struct mbuf *opts = 0;
255#ifdef INET6
256 struct sockaddr_in6 udp_in6;
257#endif
258 struct udpcb *up;
259
260 INP_LOCK_ASSERT(inp);
261
262 /*
263 * Engage the tunneling protocol.
264 */
265 up = intoudpcb(inp);
266 if (up->u_tun_func != NULL) {
267 (*up->u_tun_func)(n, off, inp);
268 return;
269 }
270
271 if (n == NULL)
272 return;
273
274 off += sizeof(struct udphdr);
275
276#ifdef IPSEC
277 /* Check AH/ESP integrity. */
278 if (ipsec4_in_reject(n, inp)) {
279 m_freem(n);
280 V_ipsec4stat.in_polvio++;
281 return;
282 }
283#ifdef IPSEC_NAT_T
284 up = intoudpcb(inp);
285 KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
286 if (up->u_flags & UF_ESPINUDP_ALL) { /* IPSec UDP encaps. */
287 n = udp4_espdecap(inp, n, off);
288 if (n == NULL) /* Consumed. */
289 return;
290 }
291#endif /* IPSEC_NAT_T */
292#endif /* IPSEC */
293#ifdef MAC
294 if (mac_inpcb_check_deliver(inp, n) != 0) {
295 m_freem(n);
296 return;
297 }
298#endif /* MAC */
299 if (inp->inp_flags & INP_CONTROLOPTS ||
300 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
301#ifdef INET6
302 if (inp->inp_vflag & INP_IPV6)
303 (void)ip6_savecontrol_v4(inp, n, &opts, NULL);
304 else
305#endif /* INET6 */
306 ip_savecontrol(inp, &opts, ip, n);
307 }
308#ifdef INET6
309 if (inp->inp_vflag & INP_IPV6) {
310 bzero(&udp_in6, sizeof(udp_in6));
311 udp_in6.sin6_len = sizeof(udp_in6);
312 udp_in6.sin6_family = AF_INET6;
313 in6_sin_2_v4mapsin6(udp_in, &udp_in6);
314 append_sa = (struct sockaddr *)&udp_in6;
315 } else
316#endif /* INET6 */
317 append_sa = (struct sockaddr *)udp_in;
318 m_adj(n, off);
319
320 so = inp->inp_socket;
321 SOCKBUF_LOCK(&so->so_rcv);
322 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
323 SOCKBUF_UNLOCK(&so->so_rcv);
324 m_freem(n);
325 if (opts)
326 m_freem(opts);
327 UDPSTAT_INC(udps_fullsock);
328 } else
329 sorwakeup_locked(so);
330}
331
332void
333udp_input(struct mbuf *m, int off)
334{
335 int iphlen = off;
336 struct ip *ip;
337 struct udphdr *uh;
338 struct ifnet *ifp;
339 struct inpcb *inp;
340 int len;
341 struct ip save_ip;
342 struct sockaddr_in udp_in;
343#ifdef IPFIREWALL_FORWARD
344 struct m_tag *fwd_tag;
345#endif
346
347 ifp = m->m_pkthdr.rcvif;
348 UDPSTAT_INC(udps_ipackets);
349
350 /*
351 * Strip IP options, if any; should skip this, make available to
352 * user, and use on returned packets, but we don't yet have a way to
353 * check the checksum with options still present.
354 */
355 if (iphlen > sizeof (struct ip)) {
356 ip_stripoptions(m, (struct mbuf *)0);
357 iphlen = sizeof(struct ip);
358 }
359
360 /*
361 * Get IP and UDP header together in first mbuf.
362 */
363 ip = mtod(m, struct ip *);
364 if (m->m_len < iphlen + sizeof(struct udphdr)) {
365 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == 0) {
366 UDPSTAT_INC(udps_hdrops);
367 return;
368 }
369 ip = mtod(m, struct ip *);
370 }
371 uh = (struct udphdr *)((caddr_t)ip + iphlen);
372
373 /*
374 * Destination port of 0 is illegal, based on RFC768.
375 */
376 if (uh->uh_dport == 0)
377 goto badunlocked;
378
379 /*
380 * Construct sockaddr format source address. Stuff source address
381 * and datagram in user buffer.
382 */
383 bzero(&udp_in, sizeof(udp_in));
384 udp_in.sin_len = sizeof(udp_in);
385 udp_in.sin_family = AF_INET;
386 udp_in.sin_port = uh->uh_sport;
387 udp_in.sin_addr = ip->ip_src;
388
389 /*
390 * Make mbuf data length reflect UDP length. If not enough data to
391 * reflect UDP length, drop.
392 */
393 len = ntohs((u_short)uh->uh_ulen);
394 if (ip->ip_len != len) {
395 if (len > ip->ip_len || len < sizeof(struct udphdr)) {
396 UDPSTAT_INC(udps_badlen);
397 goto badunlocked;
398 }
399 m_adj(m, len - ip->ip_len);
400 /* ip->ip_len = len; */
401 }
402
403 /*
404 * Save a copy of the IP header in case we want restore it for
405 * sending an ICMP error message in response.
406 */
407 if (!V_udp_blackhole)
408 save_ip = *ip;
409 else
410 memset(&save_ip, 0, sizeof(save_ip));
411
412 /*
413 * Checksum extended UDP header and data.
414 */
415 if (uh->uh_sum) {
416 u_short uh_sum;
417
418 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
419 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
420 uh_sum = m->m_pkthdr.csum_data;
421 else
422 uh_sum = in_pseudo(ip->ip_src.s_addr,
423 ip->ip_dst.s_addr, htonl((u_short)len +
424 m->m_pkthdr.csum_data + IPPROTO_UDP));
425 uh_sum ^= 0xffff;
426 } else {
427 char b[9];
428
429 bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
430 bzero(((struct ipovly *)ip)->ih_x1, 9);
431 ((struct ipovly *)ip)->ih_len = uh->uh_ulen;
432 uh_sum = in_cksum(m, len + sizeof (struct ip));
433 bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
434 }
435 if (uh_sum) {
436 UDPSTAT_INC(udps_badsum);
437 m_freem(m);
438 return;
439 }
440 } else
441 UDPSTAT_INC(udps_nosum);
442
443#ifdef IPFIREWALL_FORWARD
444 /*
445 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
446 */
447 fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
448 if (fwd_tag != NULL) {
449 struct sockaddr_in *next_hop;
450
451 /*
452 * Do the hack.
453 */
454 next_hop = (struct sockaddr_in *)(fwd_tag + 1);
455 ip->ip_dst = next_hop->sin_addr;
456 uh->uh_dport = ntohs(next_hop->sin_port);
457
458 /*
459 * Remove the tag from the packet. We don't need it anymore.
460 */
461 m_tag_delete(m, fwd_tag);
462 }
463#endif
464
465 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
466 in_broadcast(ip->ip_dst, ifp)) {
467 struct inpcb *last;
468 struct ip_moptions *imo;
469
470 INP_INFO_RLOCK(&V_udbinfo);
471 last = NULL;
472 LIST_FOREACH(inp, &V_udb, inp_list) {
473 if (inp->inp_lport != uh->uh_dport)
474 continue;
475#ifdef INET6
476 if ((inp->inp_vflag & INP_IPV4) == 0)
477 continue;
478#endif
479 if (inp->inp_laddr.s_addr != INADDR_ANY &&
480 inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
481 continue;
482 if (inp->inp_faddr.s_addr != INADDR_ANY &&
483 inp->inp_faddr.s_addr != ip->ip_src.s_addr)
484 continue;
485 if (inp->inp_fport != 0 &&
486 inp->inp_fport != uh->uh_sport)
487 continue;
488
489 INP_RLOCK(inp);
490
491 /*
492 * XXXRW: Because we weren't holding either the inpcb
493 * or the hash lock when we checked for a match
494 * before, we should probably recheck now that the
495 * inpcb lock is held.
496 */
497
498 /*
499 * Handle socket delivery policy for any-source
500 * and source-specific multicast. [RFC3678]
501 */
502 imo = inp->inp_moptions;
503 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
504 struct sockaddr_in group;
505 int blocked;
506 if (imo == NULL) {
507 INP_RUNLOCK(inp);
508 continue;
509 }
510 bzero(&group, sizeof(struct sockaddr_in));
511 group.sin_len = sizeof(struct sockaddr_in);
512 group.sin_family = AF_INET;
513 group.sin_addr = ip->ip_dst;
514
515 blocked = imo_multi_filter(imo, ifp,
516 (struct sockaddr *)&group,
517 (struct sockaddr *)&udp_in);
518 if (blocked != MCAST_PASS) {
519 if (blocked == MCAST_NOTGMEMBER)
520 IPSTAT_INC(ips_notmember);
521 if (blocked == MCAST_NOTSMEMBER ||
522 blocked == MCAST_MUTED)
523 UDPSTAT_INC(udps_filtermcast);
524 INP_RUNLOCK(inp);
525 continue;
526 }
527 }
528 if (last != NULL) {
529 struct mbuf *n;
530
531 n = m_copy(m, 0, M_COPYALL);
532 udp_append(last, ip, n, iphlen, &udp_in);
533 INP_RUNLOCK(last);
534 }
535 last = inp;
536 /*
537 * Don't look for additional matches if this one does
538 * not have either the SO_REUSEPORT or SO_REUSEADDR
539 * socket options set. This heuristic avoids
540 * searching through all pcbs in the common case of a
541 * non-shared port. It assumes that an application
542 * will never clear these options after setting them.
543 */
544 if ((last->inp_socket->so_options &
545 (SO_REUSEPORT|SO_REUSEADDR)) == 0)
546 break;
547 }
548
549 if (last == NULL) {
550 /*
551 * No matching pcb found; discard datagram. (No need
552 * to send an ICMP Port Unreachable for a broadcast
553 * or multicast datgram.)
554 */
555 UDPSTAT_INC(udps_noportbcast);
556 if (inp)
557 INP_RUNLOCK(inp);
558 INP_INFO_RUNLOCK(&V_udbinfo);
559 goto badunlocked;
560 }
561 udp_append(last, ip, m, iphlen, &udp_in);
562 INP_RUNLOCK(last);
563 INP_INFO_RUNLOCK(&V_udbinfo);
564 return;
565 }
566
567 /*
568 * Locate pcb for datagram.
569 */
570 inp = in_pcblookup(&V_udbinfo, ip->ip_src, uh->uh_sport,
570 inp = in_pcblookup_mbuf(&V_udbinfo, ip->ip_src, uh->uh_sport,
571 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB,
571 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB,
572 ifp);
572 ifp, m);
573 if (inp == NULL) {
574 if (udp_log_in_vain) {
575 char buf[4*sizeof "123"];
576
577 strcpy(buf, inet_ntoa(ip->ip_dst));
578 log(LOG_INFO,
579 "Connection attempt to UDP %s:%d from %s:%d\n",
580 buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src),
581 ntohs(uh->uh_sport));
582 }
583 UDPSTAT_INC(udps_noport);
584 if (m->m_flags & (M_BCAST | M_MCAST)) {
585 UDPSTAT_INC(udps_noportbcast);
586 goto badunlocked;
587 }
588 if (V_udp_blackhole)
589 goto badunlocked;
590 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
591 goto badunlocked;
592 *ip = save_ip;
593 ip->ip_len += iphlen;
594 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
595 return;
596 }
597
598 /*
599 * Check the minimum TTL for socket.
600 */
601 INP_RLOCK_ASSERT(inp);
602 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
603 INP_RUNLOCK(inp);
604 m_freem(m);
605 return;
606 }
607 udp_append(inp, ip, m, iphlen, &udp_in);
608 INP_RUNLOCK(inp);
609 return;
610
611badunlocked:
612 m_freem(m);
613}
614#endif /* INET */
615
616/*
617 * Notify a udp user of an asynchronous error; just wake up so that they can
618 * collect error status.
619 */
620struct inpcb *
621udp_notify(struct inpcb *inp, int errno)
622{
623
624 /*
625 * While udp_ctlinput() always calls udp_notify() with a read lock
626 * when invoking it directly, in_pcbnotifyall() currently uses write
627 * locks due to sharing code with TCP. For now, accept either a read
628 * or a write lock, but a read lock is sufficient.
629 */
630 INP_LOCK_ASSERT(inp);
631
632 inp->inp_socket->so_error = errno;
633 sorwakeup(inp->inp_socket);
634 sowwakeup(inp->inp_socket);
635 return (inp);
636}
637
638#ifdef INET
639void
640udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
641{
642 struct ip *ip = vip;
643 struct udphdr *uh;
644 struct in_addr faddr;
645 struct inpcb *inp;
646
647 faddr = ((struct sockaddr_in *)sa)->sin_addr;
648 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
649 return;
650
651 /*
652 * Redirects don't need to be handled up here.
653 */
654 if (PRC_IS_REDIRECT(cmd))
655 return;
656
657 /*
658 * Hostdead is ugly because it goes linearly through all PCBs.
659 *
660 * XXX: We never get this from ICMP, otherwise it makes an excellent
661 * DoS attack on machines with many connections.
662 */
663 if (cmd == PRC_HOSTDEAD)
664 ip = NULL;
665 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
666 return;
667 if (ip != NULL) {
668 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
669 inp = in_pcblookup(&V_udbinfo, faddr, uh->uh_dport,
670 ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL);
671 if (inp != NULL) {
672 INP_RLOCK_ASSERT(inp);
673 if (inp->inp_socket != NULL) {
674 udp_notify(inp, inetctlerrmap[cmd]);
675 }
676 INP_RUNLOCK(inp);
677 }
678 } else
679 in_pcbnotifyall(&V_udbinfo, faddr, inetctlerrmap[cmd],
680 udp_notify);
681}
682#endif /* INET */
683
684static int
685udp_pcblist(SYSCTL_HANDLER_ARGS)
686{
687 int error, i, n;
688 struct inpcb *inp, **inp_list;
689 inp_gen_t gencnt;
690 struct xinpgen xig;
691
692 /*
693 * The process of preparing the PCB list is too time-consuming and
694 * resource-intensive to repeat twice on every request.
695 */
696 if (req->oldptr == 0) {
697 n = V_udbinfo.ipi_count;
698 n += imax(n / 8, 10);
699 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
700 return (0);
701 }
702
703 if (req->newptr != 0)
704 return (EPERM);
705
706 /*
707 * OK, now we're committed to doing something.
708 */
709 INP_INFO_RLOCK(&V_udbinfo);
710 gencnt = V_udbinfo.ipi_gencnt;
711 n = V_udbinfo.ipi_count;
712 INP_INFO_RUNLOCK(&V_udbinfo);
713
714 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
715 + n * sizeof(struct xinpcb));
716 if (error != 0)
717 return (error);
718
719 xig.xig_len = sizeof xig;
720 xig.xig_count = n;
721 xig.xig_gen = gencnt;
722 xig.xig_sogen = so_gencnt;
723 error = SYSCTL_OUT(req, &xig, sizeof xig);
724 if (error)
725 return (error);
726
727 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
728 if (inp_list == 0)
729 return (ENOMEM);
730
731 INP_INFO_RLOCK(&V_udbinfo);
732 for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
733 inp = LIST_NEXT(inp, inp_list)) {
734 INP_WLOCK(inp);
735 if (inp->inp_gencnt <= gencnt &&
736 cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
737 in_pcbref(inp);
738 inp_list[i++] = inp;
739 }
740 INP_WUNLOCK(inp);
741 }
742 INP_INFO_RUNLOCK(&V_udbinfo);
743 n = i;
744
745 error = 0;
746 for (i = 0; i < n; i++) {
747 inp = inp_list[i];
748 INP_RLOCK(inp);
749 if (inp->inp_gencnt <= gencnt) {
750 struct xinpcb xi;
751
752 bzero(&xi, sizeof(xi));
753 xi.xi_len = sizeof xi;
754 /* XXX should avoid extra copy */
755 bcopy(inp, &xi.xi_inp, sizeof *inp);
756 if (inp->inp_socket)
757 sotoxsocket(inp->inp_socket, &xi.xi_socket);
758 xi.xi_inp.inp_gencnt = inp->inp_gencnt;
759 INP_RUNLOCK(inp);
760 error = SYSCTL_OUT(req, &xi, sizeof xi);
761 } else
762 INP_RUNLOCK(inp);
763 }
764 INP_INFO_WLOCK(&V_udbinfo);
765 for (i = 0; i < n; i++) {
766 inp = inp_list[i];
767 INP_RLOCK(inp);
768 if (!in_pcbrele_rlocked(inp))
769 INP_RUNLOCK(inp);
770 }
771 INP_INFO_WUNLOCK(&V_udbinfo);
772
773 if (!error) {
774 /*
775 * Give the user an updated idea of our state. If the
776 * generation differs from what we told her before, she knows
777 * that something happened while we were processing this
778 * request, and it might be necessary to retry.
779 */
780 INP_INFO_RLOCK(&V_udbinfo);
781 xig.xig_gen = V_udbinfo.ipi_gencnt;
782 xig.xig_sogen = so_gencnt;
783 xig.xig_count = V_udbinfo.ipi_count;
784 INP_INFO_RUNLOCK(&V_udbinfo);
785 error = SYSCTL_OUT(req, &xig, sizeof xig);
786 }
787 free(inp_list, M_TEMP);
788 return (error);
789}
790
791SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
792 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
793 udp_pcblist, "S,xinpcb", "List of active UDP sockets");
794
795#ifdef INET
796static int
797udp_getcred(SYSCTL_HANDLER_ARGS)
798{
799 struct xucred xuc;
800 struct sockaddr_in addrs[2];
801 struct inpcb *inp;
802 int error;
803
804 error = priv_check(req->td, PRIV_NETINET_GETCRED);
805 if (error)
806 return (error);
807 error = SYSCTL_IN(req, addrs, sizeof(addrs));
808 if (error)
809 return (error);
810 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
811 addrs[0].sin_addr, addrs[0].sin_port,
812 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
813 if (inp != NULL) {
814 INP_RLOCK_ASSERT(inp);
815 if (inp->inp_socket == NULL)
816 error = ENOENT;
817 if (error == 0)
818 error = cr_canseeinpcb(req->td->td_ucred, inp);
819 if (error == 0)
820 cru2x(inp->inp_cred, &xuc);
821 INP_RUNLOCK(inp);
822 } else
823 error = ENOENT;
824 if (error == 0)
825 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
826 return (error);
827}
828
829SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
830 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
831 udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
832#endif /* INET */
833
834int
835udp_ctloutput(struct socket *so, struct sockopt *sopt)
836{
837 int error = 0, optval;
838 struct inpcb *inp;
839#ifdef IPSEC_NAT_T
840 struct udpcb *up;
841#endif
842
843 inp = sotoinpcb(so);
844 KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
845 INP_WLOCK(inp);
846 if (sopt->sopt_level != IPPROTO_UDP) {
847#ifdef INET6
848 if (INP_CHECK_SOCKAF(so, AF_INET6)) {
849 INP_WUNLOCK(inp);
850 error = ip6_ctloutput(so, sopt);
851 }
852#endif
853#if defined(INET) && defined(INET6)
854 else
855#endif
856#ifdef INET
857 {
858 INP_WUNLOCK(inp);
859 error = ip_ctloutput(so, sopt);
860 }
861#endif
862 return (error);
863 }
864
865 switch (sopt->sopt_dir) {
866 case SOPT_SET:
867 switch (sopt->sopt_name) {
868 case UDP_ENCAP:
869 INP_WUNLOCK(inp);
870 error = sooptcopyin(sopt, &optval, sizeof optval,
871 sizeof optval);
872 if (error)
873 break;
874 inp = sotoinpcb(so);
875 KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
876 INP_WLOCK(inp);
877#ifdef IPSEC_NAT_T
878 up = intoudpcb(inp);
879 KASSERT(up != NULL, ("%s: up == NULL", __func__));
880#endif
881 switch (optval) {
882 case 0:
883 /* Clear all UDP encap. */
884#ifdef IPSEC_NAT_T
885 up->u_flags &= ~UF_ESPINUDP_ALL;
886#endif
887 break;
888#ifdef IPSEC_NAT_T
889 case UDP_ENCAP_ESPINUDP:
890 case UDP_ENCAP_ESPINUDP_NON_IKE:
891 up->u_flags &= ~UF_ESPINUDP_ALL;
892 if (optval == UDP_ENCAP_ESPINUDP)
893 up->u_flags |= UF_ESPINUDP;
894 else if (optval == UDP_ENCAP_ESPINUDP_NON_IKE)
895 up->u_flags |= UF_ESPINUDP_NON_IKE;
896 break;
897#endif
898 default:
899 error = EINVAL;
900 break;
901 }
902 INP_WUNLOCK(inp);
903 break;
904 default:
905 INP_WUNLOCK(inp);
906 error = ENOPROTOOPT;
907 break;
908 }
909 break;
910 case SOPT_GET:
911 switch (sopt->sopt_name) {
912#ifdef IPSEC_NAT_T
913 case UDP_ENCAP:
914 up = intoudpcb(inp);
915 KASSERT(up != NULL, ("%s: up == NULL", __func__));
916 optval = up->u_flags & UF_ESPINUDP_ALL;
917 INP_WUNLOCK(inp);
918 error = sooptcopyout(sopt, &optval, sizeof optval);
919 break;
920#endif
921 default:
922 INP_WUNLOCK(inp);
923 error = ENOPROTOOPT;
924 break;
925 }
926 break;
927 }
928 return (error);
929}
930
931#ifdef INET
932#define UH_WLOCKED 2
933#define UH_RLOCKED 1
934#define UH_UNLOCKED 0
935static int
936udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
937 struct mbuf *control, struct thread *td)
938{
939 struct udpiphdr *ui;
940 int len = m->m_pkthdr.len;
941 struct in_addr faddr, laddr;
942 struct cmsghdr *cm;
943 struct sockaddr_in *sin, src;
944 int error = 0;
945 int ipflags;
946 u_short fport, lport;
947 int unlock_udbinfo;
948
949 /*
950 * udp_output() may need to temporarily bind or connect the current
951 * inpcb. As such, we don't know up front whether we will need the
952 * pcbinfo lock or not. Do any work to decide what is needed up
953 * front before acquiring any locks.
954 */
955 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
956 if (control)
957 m_freem(control);
958 m_freem(m);
959 return (EMSGSIZE);
960 }
961
962 src.sin_family = 0;
963 if (control != NULL) {
964 /*
965 * XXX: Currently, we assume all the optional information is
966 * stored in a single mbuf.
967 */
968 if (control->m_next) {
969 m_freem(control);
970 m_freem(m);
971 return (EINVAL);
972 }
973 for (; control->m_len > 0;
974 control->m_data += CMSG_ALIGN(cm->cmsg_len),
975 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
976 cm = mtod(control, struct cmsghdr *);
977 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
978 || cm->cmsg_len > control->m_len) {
979 error = EINVAL;
980 break;
981 }
982 if (cm->cmsg_level != IPPROTO_IP)
983 continue;
984
985 switch (cm->cmsg_type) {
986 case IP_SENDSRCADDR:
987 if (cm->cmsg_len !=
988 CMSG_LEN(sizeof(struct in_addr))) {
989 error = EINVAL;
990 break;
991 }
992 bzero(&src, sizeof(src));
993 src.sin_family = AF_INET;
994 src.sin_len = sizeof(src);
995 src.sin_port = inp->inp_lport;
996 src.sin_addr =
997 *(struct in_addr *)CMSG_DATA(cm);
998 break;
999
1000 default:
1001 error = ENOPROTOOPT;
1002 break;
1003 }
1004 if (error)
1005 break;
1006 }
1007 m_freem(control);
1008 }
1009 if (error) {
1010 m_freem(m);
1011 return (error);
1012 }
1013
1014 /*
1015 * Depending on whether or not the application has bound or connected
1016 * the socket, we may have to do varying levels of work. The optimal
1017 * case is for a connected UDP socket, as a global lock isn't
1018 * required at all.
1019 *
1020 * In order to decide which we need, we require stability of the
1021 * inpcb binding, which we ensure by acquiring a read lock on the
1022 * inpcb. This doesn't strictly follow the lock order, so we play
1023 * the trylock and retry game; note that we may end up with more
1024 * conservative locks than required the second time around, so later
1025 * assertions have to accept that. Further analysis of the number of
1026 * misses under contention is required.
1027 *
1028 * XXXRW: Check that hash locking update here is correct.
1029 */
1030 sin = (struct sockaddr_in *)addr;
1031 INP_RLOCK(inp);
1032 if (sin != NULL &&
1033 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1034 INP_RUNLOCK(inp);
1035 INP_WLOCK(inp);
1036 INP_HASH_WLOCK(&V_udbinfo);
1037 unlock_udbinfo = UH_WLOCKED;
1038 } else if ((sin != NULL && (
1039 (sin->sin_addr.s_addr == INADDR_ANY) ||
1040 (sin->sin_addr.s_addr == INADDR_BROADCAST) ||
1041 (inp->inp_laddr.s_addr == INADDR_ANY) ||
1042 (inp->inp_lport == 0))) ||
1043 (src.sin_family == AF_INET)) {
1044 INP_HASH_RLOCK(&V_udbinfo);
1045 unlock_udbinfo = UH_RLOCKED;
1046 } else
1047 unlock_udbinfo = UH_UNLOCKED;
1048
1049 /*
1050 * If the IP_SENDSRCADDR control message was specified, override the
1051 * source address for this datagram. Its use is invalidated if the
1052 * address thus specified is incomplete or clobbers other inpcbs.
1053 */
1054 laddr = inp->inp_laddr;
1055 lport = inp->inp_lport;
1056 if (src.sin_family == AF_INET) {
1057 INP_HASH_LOCK_ASSERT(&V_udbinfo);
1058 if ((lport == 0) ||
1059 (laddr.s_addr == INADDR_ANY &&
1060 src.sin_addr.s_addr == INADDR_ANY)) {
1061 error = EINVAL;
1062 goto release;
1063 }
1064 error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1065 &laddr.s_addr, &lport, td->td_ucred);
1066 if (error)
1067 goto release;
1068 }
1069
1070 /*
1071 * If a UDP socket has been connected, then a local address/port will
1072 * have been selected and bound.
1073 *
1074 * If a UDP socket has not been connected to, then an explicit
1075 * destination address must be used, in which case a local
1076 * address/port may not have been selected and bound.
1077 */
1078 if (sin != NULL) {
1079 INP_LOCK_ASSERT(inp);
1080 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1081 error = EISCONN;
1082 goto release;
1083 }
1084
1085 /*
1086 * Jail may rewrite the destination address, so let it do
1087 * that before we use it.
1088 */
1089 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1090 if (error)
1091 goto release;
1092
1093 /*
1094 * If a local address or port hasn't yet been selected, or if
1095 * the destination address needs to be rewritten due to using
1096 * a special INADDR_ constant, invoke in_pcbconnect_setup()
1097 * to do the heavy lifting. Once a port is selected, we
1098 * commit the binding back to the socket; we also commit the
1099 * binding of the address if in jail.
1100 *
1101 * If we already have a valid binding and we're not
1102 * requesting a destination address rewrite, use a fast path.
1103 */
1104 if (inp->inp_laddr.s_addr == INADDR_ANY ||
1105 inp->inp_lport == 0 ||
1106 sin->sin_addr.s_addr == INADDR_ANY ||
1107 sin->sin_addr.s_addr == INADDR_BROADCAST) {
1108 INP_HASH_LOCK_ASSERT(&V_udbinfo);
1109 error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1110 &lport, &faddr.s_addr, &fport, NULL,
1111 td->td_ucred);
1112 if (error)
1113 goto release;
1114
1115 /*
1116 * XXXRW: Why not commit the port if the address is
1117 * !INADDR_ANY?
1118 */
1119 /* Commit the local port if newly assigned. */
1120 if (inp->inp_laddr.s_addr == INADDR_ANY &&
1121 inp->inp_lport == 0) {
1122 INP_WLOCK_ASSERT(inp);
1123 INP_HASH_WLOCK_ASSERT(&V_udbinfo);
1124 /*
1125 * Remember addr if jailed, to prevent
1126 * rebinding.
1127 */
1128 if (prison_flag(td->td_ucred, PR_IP4))
1129 inp->inp_laddr = laddr;
1130 inp->inp_lport = lport;
1131 if (in_pcbinshash(inp) != 0) {
1132 inp->inp_lport = 0;
1133 error = EAGAIN;
1134 goto release;
1135 }
1136 inp->inp_flags |= INP_ANONPORT;
1137 }
1138 } else {
1139 faddr = sin->sin_addr;
1140 fport = sin->sin_port;
1141 }
1142 } else {
1143 INP_LOCK_ASSERT(inp);
1144 faddr = inp->inp_faddr;
1145 fport = inp->inp_fport;
1146 if (faddr.s_addr == INADDR_ANY) {
1147 error = ENOTCONN;
1148 goto release;
1149 }
1150 }
1151
1152 /*
1153 * Calculate data length and get a mbuf for UDP, IP, and possible
1154 * link-layer headers. Immediate slide the data pointer back forward
1155 * since we won't use that space at this layer.
1156 */
1157 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_DONTWAIT);
1158 if (m == NULL) {
1159 error = ENOBUFS;
1160 goto release;
1161 }
1162 m->m_data += max_linkhdr;
1163 m->m_len -= max_linkhdr;
1164 m->m_pkthdr.len -= max_linkhdr;
1165
1166 /*
1167 * Fill in mbuf with extended UDP header and addresses and length put
1168 * into network format.
1169 */
1170 ui = mtod(m, struct udpiphdr *);
1171 bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */
1172 ui->ui_pr = IPPROTO_UDP;
1173 ui->ui_src = laddr;
1174 ui->ui_dst = faddr;
1175 ui->ui_sport = lport;
1176 ui->ui_dport = fport;
1177 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1178
1179 /*
1180 * Set the Don't Fragment bit in the IP header.
1181 */
1182 if (inp->inp_flags & INP_DONTFRAG) {
1183 struct ip *ip;
1184
1185 ip = (struct ip *)&ui->ui_i;
1186 ip->ip_off |= IP_DF;
1187 }
1188
1189 ipflags = 0;
1190 if (inp->inp_socket->so_options & SO_DONTROUTE)
1191 ipflags |= IP_ROUTETOIF;
1192 if (inp->inp_socket->so_options & SO_BROADCAST)
1193 ipflags |= IP_ALLOWBROADCAST;
1194 if (inp->inp_flags & INP_ONESBCAST)
1195 ipflags |= IP_SENDONES;
1196
1197#ifdef MAC
1198 mac_inpcb_create_mbuf(inp, m);
1199#endif
1200
1201 /*
1202 * Set up checksum and output datagram.
1203 */
1204 if (udp_cksum) {
1205 if (inp->inp_flags & INP_ONESBCAST)
1206 faddr.s_addr = INADDR_BROADCAST;
1207 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1208 htons((u_short)len + sizeof(struct udphdr) + IPPROTO_UDP));
1209 m->m_pkthdr.csum_flags = CSUM_UDP;
1210 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1211 } else
1212 ui->ui_sum = 0;
1213 ((struct ip *)ui)->ip_len = sizeof (struct udpiphdr) + len;
1214 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */
1215 ((struct ip *)ui)->ip_tos = inp->inp_ip_tos; /* XXX */
1216 UDPSTAT_INC(udps_opackets);
1217
1218 if (unlock_udbinfo == UH_WLOCKED)
1219 INP_HASH_WUNLOCK(&V_udbinfo);
1220 else if (unlock_udbinfo == UH_RLOCKED)
1221 INP_HASH_RUNLOCK(&V_udbinfo);
1222 error = ip_output(m, inp->inp_options, NULL, ipflags,
1223 inp->inp_moptions, inp);
1224 if (unlock_udbinfo == UH_WLOCKED)
1225 INP_WUNLOCK(inp);
1226 else
1227 INP_RUNLOCK(inp);
1228 return (error);
1229
1230release:
1231 if (unlock_udbinfo == UH_WLOCKED) {
1232 INP_HASH_WUNLOCK(&V_udbinfo);
1233 INP_WUNLOCK(inp);
1234 } else if (unlock_udbinfo == UH_RLOCKED) {
1235 INP_HASH_RUNLOCK(&V_udbinfo);
1236 INP_RUNLOCK(inp);
1237 } else
1238 INP_RUNLOCK(inp);
1239 m_freem(m);
1240 return (error);
1241}
1242
1243
1244#if defined(IPSEC) && defined(IPSEC_NAT_T)
1245/*
1246 * Potentially decap ESP in UDP frame. Check for an ESP header
1247 * and optional marker; if present, strip the UDP header and
1248 * push the result through IPSec.
1249 *
1250 * Returns mbuf to be processed (potentially re-allocated) or
1251 * NULL if consumed and/or processed.
1252 */
1253static struct mbuf *
1254udp4_espdecap(struct inpcb *inp, struct mbuf *m, int off)
1255{
1256 size_t minlen, payload, skip, iphlen;
1257 caddr_t data;
1258 struct udpcb *up;
1259 struct m_tag *tag;
1260 struct udphdr *udphdr;
1261 struct ip *ip;
1262
1263 INP_RLOCK_ASSERT(inp);
1264
1265 /*
1266 * Pull up data so the longest case is contiguous:
1267 * IP/UDP hdr + non ESP marker + ESP hdr.
1268 */
1269 minlen = off + sizeof(uint64_t) + sizeof(struct esp);
1270 if (minlen > m->m_pkthdr.len)
1271 minlen = m->m_pkthdr.len;
1272 if ((m = m_pullup(m, minlen)) == NULL) {
1273 V_ipsec4stat.in_inval++;
1274 return (NULL); /* Bypass caller processing. */
1275 }
1276 data = mtod(m, caddr_t); /* Points to ip header. */
1277 payload = m->m_len - off; /* Size of payload. */
1278
1279 if (payload == 1 && data[off] == '\xff')
1280 return (m); /* NB: keepalive packet, no decap. */
1281
1282 up = intoudpcb(inp);
1283 KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
1284 KASSERT((up->u_flags & UF_ESPINUDP_ALL) != 0,
1285 ("u_flags 0x%x", up->u_flags));
1286
1287 /*
1288 * Check that the payload is large enough to hold an
1289 * ESP header and compute the amount of data to remove.
1290 *
1291 * NB: the caller has already done a pullup for us.
1292 * XXX can we assume alignment and eliminate bcopys?
1293 */
1294 if (up->u_flags & UF_ESPINUDP_NON_IKE) {
1295 /*
1296 * draft-ietf-ipsec-nat-t-ike-0[01].txt and
1297 * draft-ietf-ipsec-udp-encaps-(00/)01.txt, ignoring
1298 * possible AH mode non-IKE marker+non-ESP marker
1299 * from draft-ietf-ipsec-udp-encaps-00.txt.
1300 */
1301 uint64_t marker;
1302
1303 if (payload <= sizeof(uint64_t) + sizeof(struct esp))
1304 return (m); /* NB: no decap. */
1305 bcopy(data + off, &marker, sizeof(uint64_t));
1306 if (marker != 0) /* Non-IKE marker. */
1307 return (m); /* NB: no decap. */
1308 skip = sizeof(uint64_t) + sizeof(struct udphdr);
1309 } else {
1310 uint32_t spi;
1311
1312 if (payload <= sizeof(struct esp)) {
1313 V_ipsec4stat.in_inval++;
1314 m_freem(m);
1315 return (NULL); /* Discard. */
1316 }
1317 bcopy(data + off, &spi, sizeof(uint32_t));
1318 if (spi == 0) /* Non-ESP marker. */
1319 return (m); /* NB: no decap. */
1320 skip = sizeof(struct udphdr);
1321 }
1322
1323 /*
1324 * Setup a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember
1325 * the UDP ports. This is required if we want to select
1326 * the right SPD for multiple hosts behind same NAT.
1327 *
1328 * NB: ports are maintained in network byte order everywhere
1329 * in the NAT-T code.
1330 */
1331 tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS,
1332 2 * sizeof(uint16_t), M_NOWAIT);
1333 if (tag == NULL) {
1334 V_ipsec4stat.in_nomem++;
1335 m_freem(m);
1336 return (NULL); /* Discard. */
1337 }
1338 iphlen = off - sizeof(struct udphdr);
1339 udphdr = (struct udphdr *)(data + iphlen);
1340 ((uint16_t *)(tag + 1))[0] = udphdr->uh_sport;
1341 ((uint16_t *)(tag + 1))[1] = udphdr->uh_dport;
1342 m_tag_prepend(m, tag);
1343
1344 /*
1345 * Remove the UDP header (and possibly the non ESP marker)
1346 * IP header length is iphlen
1347 * Before:
1348 * <--- off --->
1349 * +----+------+-----+
1350 * | IP | UDP | ESP |
1351 * +----+------+-----+
1352 * <-skip->
1353 * After:
1354 * +----+-----+
1355 * | IP | ESP |
1356 * +----+-----+
1357 * <-skip->
1358 */
1359 ovbcopy(data, data + skip, iphlen);
1360 m_adj(m, skip);
1361
1362 ip = mtod(m, struct ip *);
1363 ip->ip_len -= skip;
1364 ip->ip_p = IPPROTO_ESP;
1365
1366 /*
1367 * We cannot yet update the cksums so clear any
1368 * h/w cksum flags as they are no longer valid.
1369 */
1370 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)
1371 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
1372
1373 (void) ipsec4_common_input(m, iphlen, ip->ip_p);
1374 return (NULL); /* NB: consumed, bypass processing. */
1375}
1376#endif /* defined(IPSEC) && defined(IPSEC_NAT_T) */
1377
1378static void
1379udp_abort(struct socket *so)
1380{
1381 struct inpcb *inp;
1382
1383 inp = sotoinpcb(so);
1384 KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1385 INP_WLOCK(inp);
1386 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1387 INP_HASH_WLOCK(&V_udbinfo);
1388 in_pcbdisconnect(inp);
1389 inp->inp_laddr.s_addr = INADDR_ANY;
1390 INP_HASH_WUNLOCK(&V_udbinfo);
1391 soisdisconnected(so);
1392 }
1393 INP_WUNLOCK(inp);
1394}
1395
1396static int
1397udp_attach(struct socket *so, int proto, struct thread *td)
1398{
1399 struct inpcb *inp;
1400 int error;
1401
1402 inp = sotoinpcb(so);
1403 KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1404 error = soreserve(so, udp_sendspace, udp_recvspace);
1405 if (error)
1406 return (error);
1407 INP_INFO_WLOCK(&V_udbinfo);
1408 error = in_pcballoc(so, &V_udbinfo);
1409 if (error) {
1410 INP_INFO_WUNLOCK(&V_udbinfo);
1411 return (error);
1412 }
1413
1414 inp = sotoinpcb(so);
1415 inp->inp_vflag |= INP_IPV4;
1416 inp->inp_ip_ttl = V_ip_defttl;
1417
1418 error = udp_newudpcb(inp);
1419 if (error) {
1420 in_pcbdetach(inp);
1421 in_pcbfree(inp);
1422 INP_INFO_WUNLOCK(&V_udbinfo);
1423 return (error);
1424 }
1425
1426 INP_WUNLOCK(inp);
1427 INP_INFO_WUNLOCK(&V_udbinfo);
1428 return (0);
1429}
1430#endif /* INET */
1431
1432int
1433udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f)
1434{
1435 struct inpcb *inp;
1436 struct udpcb *up;
1437
1438 KASSERT(so->so_type == SOCK_DGRAM,
1439 ("udp_set_kernel_tunneling: !dgram"));
1440 inp = sotoinpcb(so);
1441 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1442 INP_WLOCK(inp);
1443 up = intoudpcb(inp);
1444 if (up->u_tun_func != NULL) {
1445 INP_WUNLOCK(inp);
1446 return (EBUSY);
1447 }
1448 up->u_tun_func = f;
1449 INP_WUNLOCK(inp);
1450 return (0);
1451}
1452
1453#ifdef INET
1454static int
1455udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1456{
1457 struct inpcb *inp;
1458 int error;
1459
1460 inp = sotoinpcb(so);
1461 KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1462 INP_WLOCK(inp);
1463 INP_HASH_WLOCK(&V_udbinfo);
1464 error = in_pcbbind(inp, nam, td->td_ucred);
1465 INP_HASH_WUNLOCK(&V_udbinfo);
1466 INP_WUNLOCK(inp);
1467 return (error);
1468}
1469
1470static void
1471udp_close(struct socket *so)
1472{
1473 struct inpcb *inp;
1474
1475 inp = sotoinpcb(so);
1476 KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1477 INP_WLOCK(inp);
1478 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1479 INP_HASH_WLOCK(&V_udbinfo);
1480 in_pcbdisconnect(inp);
1481 inp->inp_laddr.s_addr = INADDR_ANY;
1482 INP_HASH_WUNLOCK(&V_udbinfo);
1483 soisdisconnected(so);
1484 }
1485 INP_WUNLOCK(inp);
1486}
1487
1488static int
1489udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1490{
1491 struct inpcb *inp;
1492 int error;
1493 struct sockaddr_in *sin;
1494
1495 inp = sotoinpcb(so);
1496 KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1497 INP_WLOCK(inp);
1498 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1499 INP_WUNLOCK(inp);
1500 return (EISCONN);
1501 }
1502 sin = (struct sockaddr_in *)nam;
1503 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1504 if (error != 0) {
1505 INP_WUNLOCK(inp);
1506 return (error);
1507 }
1508 INP_HASH_WLOCK(&V_udbinfo);
1509 error = in_pcbconnect(inp, nam, td->td_ucred);
1510 INP_HASH_WUNLOCK(&V_udbinfo);
1511 if (error == 0)
1512 soisconnected(so);
1513 INP_WUNLOCK(inp);
1514 return (error);
1515}
1516
1517static void
1518udp_detach(struct socket *so)
1519{
1520 struct inpcb *inp;
1521 struct udpcb *up;
1522
1523 inp = sotoinpcb(so);
1524 KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1525 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1526 ("udp_detach: not disconnected"));
1527 INP_INFO_WLOCK(&V_udbinfo);
1528 INP_WLOCK(inp);
1529 up = intoudpcb(inp);
1530 KASSERT(up != NULL, ("%s: up == NULL", __func__));
1531 inp->inp_ppcb = NULL;
1532 in_pcbdetach(inp);
1533 in_pcbfree(inp);
1534 INP_INFO_WUNLOCK(&V_udbinfo);
1535 udp_discardcb(up);
1536}
1537
1538static int
1539udp_disconnect(struct socket *so)
1540{
1541 struct inpcb *inp;
1542
1543 inp = sotoinpcb(so);
1544 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1545 INP_WLOCK(inp);
1546 if (inp->inp_faddr.s_addr == INADDR_ANY) {
1547 INP_WUNLOCK(inp);
1548 return (ENOTCONN);
1549 }
1550 INP_HASH_WLOCK(&V_udbinfo);
1551 in_pcbdisconnect(inp);
1552 inp->inp_laddr.s_addr = INADDR_ANY;
1553 INP_HASH_WUNLOCK(&V_udbinfo);
1554 SOCK_LOCK(so);
1555 so->so_state &= ~SS_ISCONNECTED; /* XXX */
1556 SOCK_UNLOCK(so);
1557 INP_WUNLOCK(inp);
1558 return (0);
1559}
1560
1561static int
1562udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1563 struct mbuf *control, struct thread *td)
1564{
1565 struct inpcb *inp;
1566
1567 inp = sotoinpcb(so);
1568 KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1569 return (udp_output(inp, m, addr, control, td));
1570}
1571#endif /* INET */
1572
1573int
1574udp_shutdown(struct socket *so)
1575{
1576 struct inpcb *inp;
1577
1578 inp = sotoinpcb(so);
1579 KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1580 INP_WLOCK(inp);
1581 socantsendmore(so);
1582 INP_WUNLOCK(inp);
1583 return (0);
1584}
1585
1586#ifdef INET
1587struct pr_usrreqs udp_usrreqs = {
1588 .pru_abort = udp_abort,
1589 .pru_attach = udp_attach,
1590 .pru_bind = udp_bind,
1591 .pru_connect = udp_connect,
1592 .pru_control = in_control,
1593 .pru_detach = udp_detach,
1594 .pru_disconnect = udp_disconnect,
1595 .pru_peeraddr = in_getpeeraddr,
1596 .pru_send = udp_send,
1597 .pru_soreceive = soreceive_dgram,
1598 .pru_sosend = sosend_dgram,
1599 .pru_shutdown = udp_shutdown,
1600 .pru_sockaddr = in_getsockaddr,
1601 .pru_sosetlabel = in_pcbsosetlabel,
1602 .pru_close = udp_close,
1603};
1604#endif /* INET */
573 if (inp == NULL) {
574 if (udp_log_in_vain) {
575 char buf[4*sizeof "123"];
576
577 strcpy(buf, inet_ntoa(ip->ip_dst));
578 log(LOG_INFO,
579 "Connection attempt to UDP %s:%d from %s:%d\n",
580 buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src),
581 ntohs(uh->uh_sport));
582 }
583 UDPSTAT_INC(udps_noport);
584 if (m->m_flags & (M_BCAST | M_MCAST)) {
585 UDPSTAT_INC(udps_noportbcast);
586 goto badunlocked;
587 }
588 if (V_udp_blackhole)
589 goto badunlocked;
590 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
591 goto badunlocked;
592 *ip = save_ip;
593 ip->ip_len += iphlen;
594 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
595 return;
596 }
597
598 /*
599 * Check the minimum TTL for socket.
600 */
601 INP_RLOCK_ASSERT(inp);
602 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
603 INP_RUNLOCK(inp);
604 m_freem(m);
605 return;
606 }
607 udp_append(inp, ip, m, iphlen, &udp_in);
608 INP_RUNLOCK(inp);
609 return;
610
611badunlocked:
612 m_freem(m);
613}
614#endif /* INET */
615
616/*
617 * Notify a udp user of an asynchronous error; just wake up so that they can
618 * collect error status.
619 */
620struct inpcb *
621udp_notify(struct inpcb *inp, int errno)
622{
623
624 /*
625 * While udp_ctlinput() always calls udp_notify() with a read lock
626 * when invoking it directly, in_pcbnotifyall() currently uses write
627 * locks due to sharing code with TCP. For now, accept either a read
628 * or a write lock, but a read lock is sufficient.
629 */
630 INP_LOCK_ASSERT(inp);
631
632 inp->inp_socket->so_error = errno;
633 sorwakeup(inp->inp_socket);
634 sowwakeup(inp->inp_socket);
635 return (inp);
636}
637
638#ifdef INET
639void
640udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
641{
642 struct ip *ip = vip;
643 struct udphdr *uh;
644 struct in_addr faddr;
645 struct inpcb *inp;
646
647 faddr = ((struct sockaddr_in *)sa)->sin_addr;
648 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
649 return;
650
651 /*
652 * Redirects don't need to be handled up here.
653 */
654 if (PRC_IS_REDIRECT(cmd))
655 return;
656
657 /*
658 * Hostdead is ugly because it goes linearly through all PCBs.
659 *
660 * XXX: We never get this from ICMP, otherwise it makes an excellent
661 * DoS attack on machines with many connections.
662 */
663 if (cmd == PRC_HOSTDEAD)
664 ip = NULL;
665 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
666 return;
667 if (ip != NULL) {
668 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
669 inp = in_pcblookup(&V_udbinfo, faddr, uh->uh_dport,
670 ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL);
671 if (inp != NULL) {
672 INP_RLOCK_ASSERT(inp);
673 if (inp->inp_socket != NULL) {
674 udp_notify(inp, inetctlerrmap[cmd]);
675 }
676 INP_RUNLOCK(inp);
677 }
678 } else
679 in_pcbnotifyall(&V_udbinfo, faddr, inetctlerrmap[cmd],
680 udp_notify);
681}
682#endif /* INET */
683
684static int
685udp_pcblist(SYSCTL_HANDLER_ARGS)
686{
687 int error, i, n;
688 struct inpcb *inp, **inp_list;
689 inp_gen_t gencnt;
690 struct xinpgen xig;
691
692 /*
693 * The process of preparing the PCB list is too time-consuming and
694 * resource-intensive to repeat twice on every request.
695 */
696 if (req->oldptr == 0) {
697 n = V_udbinfo.ipi_count;
698 n += imax(n / 8, 10);
699 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
700 return (0);
701 }
702
703 if (req->newptr != 0)
704 return (EPERM);
705
706 /*
707 * OK, now we're committed to doing something.
708 */
709 INP_INFO_RLOCK(&V_udbinfo);
710 gencnt = V_udbinfo.ipi_gencnt;
711 n = V_udbinfo.ipi_count;
712 INP_INFO_RUNLOCK(&V_udbinfo);
713
714 error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
715 + n * sizeof(struct xinpcb));
716 if (error != 0)
717 return (error);
718
719 xig.xig_len = sizeof xig;
720 xig.xig_count = n;
721 xig.xig_gen = gencnt;
722 xig.xig_sogen = so_gencnt;
723 error = SYSCTL_OUT(req, &xig, sizeof xig);
724 if (error)
725 return (error);
726
727 inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
728 if (inp_list == 0)
729 return (ENOMEM);
730
731 INP_INFO_RLOCK(&V_udbinfo);
732 for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
733 inp = LIST_NEXT(inp, inp_list)) {
734 INP_WLOCK(inp);
735 if (inp->inp_gencnt <= gencnt &&
736 cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
737 in_pcbref(inp);
738 inp_list[i++] = inp;
739 }
740 INP_WUNLOCK(inp);
741 }
742 INP_INFO_RUNLOCK(&V_udbinfo);
743 n = i;
744
745 error = 0;
746 for (i = 0; i < n; i++) {
747 inp = inp_list[i];
748 INP_RLOCK(inp);
749 if (inp->inp_gencnt <= gencnt) {
750 struct xinpcb xi;
751
752 bzero(&xi, sizeof(xi));
753 xi.xi_len = sizeof xi;
754 /* XXX should avoid extra copy */
755 bcopy(inp, &xi.xi_inp, sizeof *inp);
756 if (inp->inp_socket)
757 sotoxsocket(inp->inp_socket, &xi.xi_socket);
758 xi.xi_inp.inp_gencnt = inp->inp_gencnt;
759 INP_RUNLOCK(inp);
760 error = SYSCTL_OUT(req, &xi, sizeof xi);
761 } else
762 INP_RUNLOCK(inp);
763 }
764 INP_INFO_WLOCK(&V_udbinfo);
765 for (i = 0; i < n; i++) {
766 inp = inp_list[i];
767 INP_RLOCK(inp);
768 if (!in_pcbrele_rlocked(inp))
769 INP_RUNLOCK(inp);
770 }
771 INP_INFO_WUNLOCK(&V_udbinfo);
772
773 if (!error) {
774 /*
775 * Give the user an updated idea of our state. If the
776 * generation differs from what we told her before, she knows
777 * that something happened while we were processing this
778 * request, and it might be necessary to retry.
779 */
780 INP_INFO_RLOCK(&V_udbinfo);
781 xig.xig_gen = V_udbinfo.ipi_gencnt;
782 xig.xig_sogen = so_gencnt;
783 xig.xig_count = V_udbinfo.ipi_count;
784 INP_INFO_RUNLOCK(&V_udbinfo);
785 error = SYSCTL_OUT(req, &xig, sizeof xig);
786 }
787 free(inp_list, M_TEMP);
788 return (error);
789}
790
791SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
792 CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
793 udp_pcblist, "S,xinpcb", "List of active UDP sockets");
794
795#ifdef INET
796static int
797udp_getcred(SYSCTL_HANDLER_ARGS)
798{
799 struct xucred xuc;
800 struct sockaddr_in addrs[2];
801 struct inpcb *inp;
802 int error;
803
804 error = priv_check(req->td, PRIV_NETINET_GETCRED);
805 if (error)
806 return (error);
807 error = SYSCTL_IN(req, addrs, sizeof(addrs));
808 if (error)
809 return (error);
810 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
811 addrs[0].sin_addr, addrs[0].sin_port,
812 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
813 if (inp != NULL) {
814 INP_RLOCK_ASSERT(inp);
815 if (inp->inp_socket == NULL)
816 error = ENOENT;
817 if (error == 0)
818 error = cr_canseeinpcb(req->td->td_ucred, inp);
819 if (error == 0)
820 cru2x(inp->inp_cred, &xuc);
821 INP_RUNLOCK(inp);
822 } else
823 error = ENOENT;
824 if (error == 0)
825 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
826 return (error);
827}
828
829SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
830 CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
831 udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
832#endif /* INET */
833
834int
835udp_ctloutput(struct socket *so, struct sockopt *sopt)
836{
837 int error = 0, optval;
838 struct inpcb *inp;
839#ifdef IPSEC_NAT_T
840 struct udpcb *up;
841#endif
842
843 inp = sotoinpcb(so);
844 KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
845 INP_WLOCK(inp);
846 if (sopt->sopt_level != IPPROTO_UDP) {
847#ifdef INET6
848 if (INP_CHECK_SOCKAF(so, AF_INET6)) {
849 INP_WUNLOCK(inp);
850 error = ip6_ctloutput(so, sopt);
851 }
852#endif
853#if defined(INET) && defined(INET6)
854 else
855#endif
856#ifdef INET
857 {
858 INP_WUNLOCK(inp);
859 error = ip_ctloutput(so, sopt);
860 }
861#endif
862 return (error);
863 }
864
865 switch (sopt->sopt_dir) {
866 case SOPT_SET:
867 switch (sopt->sopt_name) {
868 case UDP_ENCAP:
869 INP_WUNLOCK(inp);
870 error = sooptcopyin(sopt, &optval, sizeof optval,
871 sizeof optval);
872 if (error)
873 break;
874 inp = sotoinpcb(so);
875 KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
876 INP_WLOCK(inp);
877#ifdef IPSEC_NAT_T
878 up = intoudpcb(inp);
879 KASSERT(up != NULL, ("%s: up == NULL", __func__));
880#endif
881 switch (optval) {
882 case 0:
883 /* Clear all UDP encap. */
884#ifdef IPSEC_NAT_T
885 up->u_flags &= ~UF_ESPINUDP_ALL;
886#endif
887 break;
888#ifdef IPSEC_NAT_T
889 case UDP_ENCAP_ESPINUDP:
890 case UDP_ENCAP_ESPINUDP_NON_IKE:
891 up->u_flags &= ~UF_ESPINUDP_ALL;
892 if (optval == UDP_ENCAP_ESPINUDP)
893 up->u_flags |= UF_ESPINUDP;
894 else if (optval == UDP_ENCAP_ESPINUDP_NON_IKE)
895 up->u_flags |= UF_ESPINUDP_NON_IKE;
896 break;
897#endif
898 default:
899 error = EINVAL;
900 break;
901 }
902 INP_WUNLOCK(inp);
903 break;
904 default:
905 INP_WUNLOCK(inp);
906 error = ENOPROTOOPT;
907 break;
908 }
909 break;
910 case SOPT_GET:
911 switch (sopt->sopt_name) {
912#ifdef IPSEC_NAT_T
913 case UDP_ENCAP:
914 up = intoudpcb(inp);
915 KASSERT(up != NULL, ("%s: up == NULL", __func__));
916 optval = up->u_flags & UF_ESPINUDP_ALL;
917 INP_WUNLOCK(inp);
918 error = sooptcopyout(sopt, &optval, sizeof optval);
919 break;
920#endif
921 default:
922 INP_WUNLOCK(inp);
923 error = ENOPROTOOPT;
924 break;
925 }
926 break;
927 }
928 return (error);
929}
930
931#ifdef INET
932#define UH_WLOCKED 2
933#define UH_RLOCKED 1
934#define UH_UNLOCKED 0
935static int
936udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
937 struct mbuf *control, struct thread *td)
938{
939 struct udpiphdr *ui;
940 int len = m->m_pkthdr.len;
941 struct in_addr faddr, laddr;
942 struct cmsghdr *cm;
943 struct sockaddr_in *sin, src;
944 int error = 0;
945 int ipflags;
946 u_short fport, lport;
947 int unlock_udbinfo;
948
949 /*
950 * udp_output() may need to temporarily bind or connect the current
951 * inpcb. As such, we don't know up front whether we will need the
952 * pcbinfo lock or not. Do any work to decide what is needed up
953 * front before acquiring any locks.
954 */
955 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
956 if (control)
957 m_freem(control);
958 m_freem(m);
959 return (EMSGSIZE);
960 }
961
962 src.sin_family = 0;
963 if (control != NULL) {
964 /*
965 * XXX: Currently, we assume all the optional information is
966 * stored in a single mbuf.
967 */
968 if (control->m_next) {
969 m_freem(control);
970 m_freem(m);
971 return (EINVAL);
972 }
973 for (; control->m_len > 0;
974 control->m_data += CMSG_ALIGN(cm->cmsg_len),
975 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
976 cm = mtod(control, struct cmsghdr *);
977 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
978 || cm->cmsg_len > control->m_len) {
979 error = EINVAL;
980 break;
981 }
982 if (cm->cmsg_level != IPPROTO_IP)
983 continue;
984
985 switch (cm->cmsg_type) {
986 case IP_SENDSRCADDR:
987 if (cm->cmsg_len !=
988 CMSG_LEN(sizeof(struct in_addr))) {
989 error = EINVAL;
990 break;
991 }
992 bzero(&src, sizeof(src));
993 src.sin_family = AF_INET;
994 src.sin_len = sizeof(src);
995 src.sin_port = inp->inp_lport;
996 src.sin_addr =
997 *(struct in_addr *)CMSG_DATA(cm);
998 break;
999
1000 default:
1001 error = ENOPROTOOPT;
1002 break;
1003 }
1004 if (error)
1005 break;
1006 }
1007 m_freem(control);
1008 }
1009 if (error) {
1010 m_freem(m);
1011 return (error);
1012 }
1013
1014 /*
1015 * Depending on whether or not the application has bound or connected
1016 * the socket, we may have to do varying levels of work. The optimal
1017 * case is for a connected UDP socket, as a global lock isn't
1018 * required at all.
1019 *
1020 * In order to decide which we need, we require stability of the
1021 * inpcb binding, which we ensure by acquiring a read lock on the
1022 * inpcb. This doesn't strictly follow the lock order, so we play
1023 * the trylock and retry game; note that we may end up with more
1024 * conservative locks than required the second time around, so later
1025 * assertions have to accept that. Further analysis of the number of
1026 * misses under contention is required.
1027 *
1028 * XXXRW: Check that hash locking update here is correct.
1029 */
1030 sin = (struct sockaddr_in *)addr;
1031 INP_RLOCK(inp);
1032 if (sin != NULL &&
1033 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1034 INP_RUNLOCK(inp);
1035 INP_WLOCK(inp);
1036 INP_HASH_WLOCK(&V_udbinfo);
1037 unlock_udbinfo = UH_WLOCKED;
1038 } else if ((sin != NULL && (
1039 (sin->sin_addr.s_addr == INADDR_ANY) ||
1040 (sin->sin_addr.s_addr == INADDR_BROADCAST) ||
1041 (inp->inp_laddr.s_addr == INADDR_ANY) ||
1042 (inp->inp_lport == 0))) ||
1043 (src.sin_family == AF_INET)) {
1044 INP_HASH_RLOCK(&V_udbinfo);
1045 unlock_udbinfo = UH_RLOCKED;
1046 } else
1047 unlock_udbinfo = UH_UNLOCKED;
1048
1049 /*
1050 * If the IP_SENDSRCADDR control message was specified, override the
1051 * source address for this datagram. Its use is invalidated if the
1052 * address thus specified is incomplete or clobbers other inpcbs.
1053 */
1054 laddr = inp->inp_laddr;
1055 lport = inp->inp_lport;
1056 if (src.sin_family == AF_INET) {
1057 INP_HASH_LOCK_ASSERT(&V_udbinfo);
1058 if ((lport == 0) ||
1059 (laddr.s_addr == INADDR_ANY &&
1060 src.sin_addr.s_addr == INADDR_ANY)) {
1061 error = EINVAL;
1062 goto release;
1063 }
1064 error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1065 &laddr.s_addr, &lport, td->td_ucred);
1066 if (error)
1067 goto release;
1068 }
1069
1070 /*
1071 * If a UDP socket has been connected, then a local address/port will
1072 * have been selected and bound.
1073 *
1074 * If a UDP socket has not been connected to, then an explicit
1075 * destination address must be used, in which case a local
1076 * address/port may not have been selected and bound.
1077 */
1078 if (sin != NULL) {
1079 INP_LOCK_ASSERT(inp);
1080 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1081 error = EISCONN;
1082 goto release;
1083 }
1084
1085 /*
1086 * Jail may rewrite the destination address, so let it do
1087 * that before we use it.
1088 */
1089 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1090 if (error)
1091 goto release;
1092
1093 /*
1094 * If a local address or port hasn't yet been selected, or if
1095 * the destination address needs to be rewritten due to using
1096 * a special INADDR_ constant, invoke in_pcbconnect_setup()
1097 * to do the heavy lifting. Once a port is selected, we
1098 * commit the binding back to the socket; we also commit the
1099 * binding of the address if in jail.
1100 *
1101 * If we already have a valid binding and we're not
1102 * requesting a destination address rewrite, use a fast path.
1103 */
1104 if (inp->inp_laddr.s_addr == INADDR_ANY ||
1105 inp->inp_lport == 0 ||
1106 sin->sin_addr.s_addr == INADDR_ANY ||
1107 sin->sin_addr.s_addr == INADDR_BROADCAST) {
1108 INP_HASH_LOCK_ASSERT(&V_udbinfo);
1109 error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1110 &lport, &faddr.s_addr, &fport, NULL,
1111 td->td_ucred);
1112 if (error)
1113 goto release;
1114
1115 /*
1116 * XXXRW: Why not commit the port if the address is
1117 * !INADDR_ANY?
1118 */
1119 /* Commit the local port if newly assigned. */
1120 if (inp->inp_laddr.s_addr == INADDR_ANY &&
1121 inp->inp_lport == 0) {
1122 INP_WLOCK_ASSERT(inp);
1123 INP_HASH_WLOCK_ASSERT(&V_udbinfo);
1124 /*
1125 * Remember addr if jailed, to prevent
1126 * rebinding.
1127 */
1128 if (prison_flag(td->td_ucred, PR_IP4))
1129 inp->inp_laddr = laddr;
1130 inp->inp_lport = lport;
1131 if (in_pcbinshash(inp) != 0) {
1132 inp->inp_lport = 0;
1133 error = EAGAIN;
1134 goto release;
1135 }
1136 inp->inp_flags |= INP_ANONPORT;
1137 }
1138 } else {
1139 faddr = sin->sin_addr;
1140 fport = sin->sin_port;
1141 }
1142 } else {
1143 INP_LOCK_ASSERT(inp);
1144 faddr = inp->inp_faddr;
1145 fport = inp->inp_fport;
1146 if (faddr.s_addr == INADDR_ANY) {
1147 error = ENOTCONN;
1148 goto release;
1149 }
1150 }
1151
1152 /*
1153 * Calculate data length and get a mbuf for UDP, IP, and possible
1154 * link-layer headers. Immediate slide the data pointer back forward
1155 * since we won't use that space at this layer.
1156 */
1157 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_DONTWAIT);
1158 if (m == NULL) {
1159 error = ENOBUFS;
1160 goto release;
1161 }
1162 m->m_data += max_linkhdr;
1163 m->m_len -= max_linkhdr;
1164 m->m_pkthdr.len -= max_linkhdr;
1165
1166 /*
1167 * Fill in mbuf with extended UDP header and addresses and length put
1168 * into network format.
1169 */
1170 ui = mtod(m, struct udpiphdr *);
1171 bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */
1172 ui->ui_pr = IPPROTO_UDP;
1173 ui->ui_src = laddr;
1174 ui->ui_dst = faddr;
1175 ui->ui_sport = lport;
1176 ui->ui_dport = fport;
1177 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1178
1179 /*
1180 * Set the Don't Fragment bit in the IP header.
1181 */
1182 if (inp->inp_flags & INP_DONTFRAG) {
1183 struct ip *ip;
1184
1185 ip = (struct ip *)&ui->ui_i;
1186 ip->ip_off |= IP_DF;
1187 }
1188
1189 ipflags = 0;
1190 if (inp->inp_socket->so_options & SO_DONTROUTE)
1191 ipflags |= IP_ROUTETOIF;
1192 if (inp->inp_socket->so_options & SO_BROADCAST)
1193 ipflags |= IP_ALLOWBROADCAST;
1194 if (inp->inp_flags & INP_ONESBCAST)
1195 ipflags |= IP_SENDONES;
1196
1197#ifdef MAC
1198 mac_inpcb_create_mbuf(inp, m);
1199#endif
1200
1201 /*
1202 * Set up checksum and output datagram.
1203 */
1204 if (udp_cksum) {
1205 if (inp->inp_flags & INP_ONESBCAST)
1206 faddr.s_addr = INADDR_BROADCAST;
1207 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1208 htons((u_short)len + sizeof(struct udphdr) + IPPROTO_UDP));
1209 m->m_pkthdr.csum_flags = CSUM_UDP;
1210 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1211 } else
1212 ui->ui_sum = 0;
1213 ((struct ip *)ui)->ip_len = sizeof (struct udpiphdr) + len;
1214 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */
1215 ((struct ip *)ui)->ip_tos = inp->inp_ip_tos; /* XXX */
1216 UDPSTAT_INC(udps_opackets);
1217
1218 if (unlock_udbinfo == UH_WLOCKED)
1219 INP_HASH_WUNLOCK(&V_udbinfo);
1220 else if (unlock_udbinfo == UH_RLOCKED)
1221 INP_HASH_RUNLOCK(&V_udbinfo);
1222 error = ip_output(m, inp->inp_options, NULL, ipflags,
1223 inp->inp_moptions, inp);
1224 if (unlock_udbinfo == UH_WLOCKED)
1225 INP_WUNLOCK(inp);
1226 else
1227 INP_RUNLOCK(inp);
1228 return (error);
1229
1230release:
1231 if (unlock_udbinfo == UH_WLOCKED) {
1232 INP_HASH_WUNLOCK(&V_udbinfo);
1233 INP_WUNLOCK(inp);
1234 } else if (unlock_udbinfo == UH_RLOCKED) {
1235 INP_HASH_RUNLOCK(&V_udbinfo);
1236 INP_RUNLOCK(inp);
1237 } else
1238 INP_RUNLOCK(inp);
1239 m_freem(m);
1240 return (error);
1241}
1242
1243
1244#if defined(IPSEC) && defined(IPSEC_NAT_T)
1245/*
1246 * Potentially decap ESP in UDP frame. Check for an ESP header
1247 * and optional marker; if present, strip the UDP header and
1248 * push the result through IPSec.
1249 *
1250 * Returns mbuf to be processed (potentially re-allocated) or
1251 * NULL if consumed and/or processed.
1252 */
1253static struct mbuf *
1254udp4_espdecap(struct inpcb *inp, struct mbuf *m, int off)
1255{
1256 size_t minlen, payload, skip, iphlen;
1257 caddr_t data;
1258 struct udpcb *up;
1259 struct m_tag *tag;
1260 struct udphdr *udphdr;
1261 struct ip *ip;
1262
1263 INP_RLOCK_ASSERT(inp);
1264
1265 /*
1266 * Pull up data so the longest case is contiguous:
1267 * IP/UDP hdr + non ESP marker + ESP hdr.
1268 */
1269 minlen = off + sizeof(uint64_t) + sizeof(struct esp);
1270 if (minlen > m->m_pkthdr.len)
1271 minlen = m->m_pkthdr.len;
1272 if ((m = m_pullup(m, minlen)) == NULL) {
1273 V_ipsec4stat.in_inval++;
1274 return (NULL); /* Bypass caller processing. */
1275 }
1276 data = mtod(m, caddr_t); /* Points to ip header. */
1277 payload = m->m_len - off; /* Size of payload. */
1278
1279 if (payload == 1 && data[off] == '\xff')
1280 return (m); /* NB: keepalive packet, no decap. */
1281
1282 up = intoudpcb(inp);
1283 KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
1284 KASSERT((up->u_flags & UF_ESPINUDP_ALL) != 0,
1285 ("u_flags 0x%x", up->u_flags));
1286
1287 /*
1288 * Check that the payload is large enough to hold an
1289 * ESP header and compute the amount of data to remove.
1290 *
1291 * NB: the caller has already done a pullup for us.
1292 * XXX can we assume alignment and eliminate bcopys?
1293 */
1294 if (up->u_flags & UF_ESPINUDP_NON_IKE) {
1295 /*
1296 * draft-ietf-ipsec-nat-t-ike-0[01].txt and
1297 * draft-ietf-ipsec-udp-encaps-(00/)01.txt, ignoring
1298 * possible AH mode non-IKE marker+non-ESP marker
1299 * from draft-ietf-ipsec-udp-encaps-00.txt.
1300 */
1301 uint64_t marker;
1302
1303 if (payload <= sizeof(uint64_t) + sizeof(struct esp))
1304 return (m); /* NB: no decap. */
1305 bcopy(data + off, &marker, sizeof(uint64_t));
1306 if (marker != 0) /* Non-IKE marker. */
1307 return (m); /* NB: no decap. */
1308 skip = sizeof(uint64_t) + sizeof(struct udphdr);
1309 } else {
1310 uint32_t spi;
1311
1312 if (payload <= sizeof(struct esp)) {
1313 V_ipsec4stat.in_inval++;
1314 m_freem(m);
1315 return (NULL); /* Discard. */
1316 }
1317 bcopy(data + off, &spi, sizeof(uint32_t));
1318 if (spi == 0) /* Non-ESP marker. */
1319 return (m); /* NB: no decap. */
1320 skip = sizeof(struct udphdr);
1321 }
1322
1323 /*
1324 * Setup a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember
1325 * the UDP ports. This is required if we want to select
1326 * the right SPD for multiple hosts behind same NAT.
1327 *
1328 * NB: ports are maintained in network byte order everywhere
1329 * in the NAT-T code.
1330 */
1331 tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS,
1332 2 * sizeof(uint16_t), M_NOWAIT);
1333 if (tag == NULL) {
1334 V_ipsec4stat.in_nomem++;
1335 m_freem(m);
1336 return (NULL); /* Discard. */
1337 }
1338 iphlen = off - sizeof(struct udphdr);
1339 udphdr = (struct udphdr *)(data + iphlen);
1340 ((uint16_t *)(tag + 1))[0] = udphdr->uh_sport;
1341 ((uint16_t *)(tag + 1))[1] = udphdr->uh_dport;
1342 m_tag_prepend(m, tag);
1343
1344 /*
1345 * Remove the UDP header (and possibly the non ESP marker)
1346 * IP header length is iphlen
1347 * Before:
1348 * <--- off --->
1349 * +----+------+-----+
1350 * | IP | UDP | ESP |
1351 * +----+------+-----+
1352 * <-skip->
1353 * After:
1354 * +----+-----+
1355 * | IP | ESP |
1356 * +----+-----+
1357 * <-skip->
1358 */
1359 ovbcopy(data, data + skip, iphlen);
1360 m_adj(m, skip);
1361
1362 ip = mtod(m, struct ip *);
1363 ip->ip_len -= skip;
1364 ip->ip_p = IPPROTO_ESP;
1365
1366 /*
1367 * We cannot yet update the cksums so clear any
1368 * h/w cksum flags as they are no longer valid.
1369 */
1370 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)
1371 m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
1372
1373 (void) ipsec4_common_input(m, iphlen, ip->ip_p);
1374 return (NULL); /* NB: consumed, bypass processing. */
1375}
1376#endif /* defined(IPSEC) && defined(IPSEC_NAT_T) */
1377
1378static void
1379udp_abort(struct socket *so)
1380{
1381 struct inpcb *inp;
1382
1383 inp = sotoinpcb(so);
1384 KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1385 INP_WLOCK(inp);
1386 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1387 INP_HASH_WLOCK(&V_udbinfo);
1388 in_pcbdisconnect(inp);
1389 inp->inp_laddr.s_addr = INADDR_ANY;
1390 INP_HASH_WUNLOCK(&V_udbinfo);
1391 soisdisconnected(so);
1392 }
1393 INP_WUNLOCK(inp);
1394}
1395
1396static int
1397udp_attach(struct socket *so, int proto, struct thread *td)
1398{
1399 struct inpcb *inp;
1400 int error;
1401
1402 inp = sotoinpcb(so);
1403 KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1404 error = soreserve(so, udp_sendspace, udp_recvspace);
1405 if (error)
1406 return (error);
1407 INP_INFO_WLOCK(&V_udbinfo);
1408 error = in_pcballoc(so, &V_udbinfo);
1409 if (error) {
1410 INP_INFO_WUNLOCK(&V_udbinfo);
1411 return (error);
1412 }
1413
1414 inp = sotoinpcb(so);
1415 inp->inp_vflag |= INP_IPV4;
1416 inp->inp_ip_ttl = V_ip_defttl;
1417
1418 error = udp_newudpcb(inp);
1419 if (error) {
1420 in_pcbdetach(inp);
1421 in_pcbfree(inp);
1422 INP_INFO_WUNLOCK(&V_udbinfo);
1423 return (error);
1424 }
1425
1426 INP_WUNLOCK(inp);
1427 INP_INFO_WUNLOCK(&V_udbinfo);
1428 return (0);
1429}
1430#endif /* INET */
1431
1432int
1433udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f)
1434{
1435 struct inpcb *inp;
1436 struct udpcb *up;
1437
1438 KASSERT(so->so_type == SOCK_DGRAM,
1439 ("udp_set_kernel_tunneling: !dgram"));
1440 inp = sotoinpcb(so);
1441 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1442 INP_WLOCK(inp);
1443 up = intoudpcb(inp);
1444 if (up->u_tun_func != NULL) {
1445 INP_WUNLOCK(inp);
1446 return (EBUSY);
1447 }
1448 up->u_tun_func = f;
1449 INP_WUNLOCK(inp);
1450 return (0);
1451}
1452
1453#ifdef INET
1454static int
1455udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1456{
1457 struct inpcb *inp;
1458 int error;
1459
1460 inp = sotoinpcb(so);
1461 KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1462 INP_WLOCK(inp);
1463 INP_HASH_WLOCK(&V_udbinfo);
1464 error = in_pcbbind(inp, nam, td->td_ucred);
1465 INP_HASH_WUNLOCK(&V_udbinfo);
1466 INP_WUNLOCK(inp);
1467 return (error);
1468}
1469
1470static void
1471udp_close(struct socket *so)
1472{
1473 struct inpcb *inp;
1474
1475 inp = sotoinpcb(so);
1476 KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1477 INP_WLOCK(inp);
1478 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1479 INP_HASH_WLOCK(&V_udbinfo);
1480 in_pcbdisconnect(inp);
1481 inp->inp_laddr.s_addr = INADDR_ANY;
1482 INP_HASH_WUNLOCK(&V_udbinfo);
1483 soisdisconnected(so);
1484 }
1485 INP_WUNLOCK(inp);
1486}
1487
1488static int
1489udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1490{
1491 struct inpcb *inp;
1492 int error;
1493 struct sockaddr_in *sin;
1494
1495 inp = sotoinpcb(so);
1496 KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1497 INP_WLOCK(inp);
1498 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1499 INP_WUNLOCK(inp);
1500 return (EISCONN);
1501 }
1502 sin = (struct sockaddr_in *)nam;
1503 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1504 if (error != 0) {
1505 INP_WUNLOCK(inp);
1506 return (error);
1507 }
1508 INP_HASH_WLOCK(&V_udbinfo);
1509 error = in_pcbconnect(inp, nam, td->td_ucred);
1510 INP_HASH_WUNLOCK(&V_udbinfo);
1511 if (error == 0)
1512 soisconnected(so);
1513 INP_WUNLOCK(inp);
1514 return (error);
1515}
1516
1517static void
1518udp_detach(struct socket *so)
1519{
1520 struct inpcb *inp;
1521 struct udpcb *up;
1522
1523 inp = sotoinpcb(so);
1524 KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1525 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1526 ("udp_detach: not disconnected"));
1527 INP_INFO_WLOCK(&V_udbinfo);
1528 INP_WLOCK(inp);
1529 up = intoudpcb(inp);
1530 KASSERT(up != NULL, ("%s: up == NULL", __func__));
1531 inp->inp_ppcb = NULL;
1532 in_pcbdetach(inp);
1533 in_pcbfree(inp);
1534 INP_INFO_WUNLOCK(&V_udbinfo);
1535 udp_discardcb(up);
1536}
1537
1538static int
1539udp_disconnect(struct socket *so)
1540{
1541 struct inpcb *inp;
1542
1543 inp = sotoinpcb(so);
1544 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1545 INP_WLOCK(inp);
1546 if (inp->inp_faddr.s_addr == INADDR_ANY) {
1547 INP_WUNLOCK(inp);
1548 return (ENOTCONN);
1549 }
1550 INP_HASH_WLOCK(&V_udbinfo);
1551 in_pcbdisconnect(inp);
1552 inp->inp_laddr.s_addr = INADDR_ANY;
1553 INP_HASH_WUNLOCK(&V_udbinfo);
1554 SOCK_LOCK(so);
1555 so->so_state &= ~SS_ISCONNECTED; /* XXX */
1556 SOCK_UNLOCK(so);
1557 INP_WUNLOCK(inp);
1558 return (0);
1559}
1560
1561static int
1562udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1563 struct mbuf *control, struct thread *td)
1564{
1565 struct inpcb *inp;
1566
1567 inp = sotoinpcb(so);
1568 KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1569 return (udp_output(inp, m, addr, control, td));
1570}
1571#endif /* INET */
1572
1573int
1574udp_shutdown(struct socket *so)
1575{
1576 struct inpcb *inp;
1577
1578 inp = sotoinpcb(so);
1579 KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1580 INP_WLOCK(inp);
1581 socantsendmore(so);
1582 INP_WUNLOCK(inp);
1583 return (0);
1584}
1585
1586#ifdef INET
1587struct pr_usrreqs udp_usrreqs = {
1588 .pru_abort = udp_abort,
1589 .pru_attach = udp_attach,
1590 .pru_bind = udp_bind,
1591 .pru_connect = udp_connect,
1592 .pru_control = in_control,
1593 .pru_detach = udp_detach,
1594 .pru_disconnect = udp_disconnect,
1595 .pru_peeraddr = in_getpeeraddr,
1596 .pru_send = udp_send,
1597 .pru_soreceive = soreceive_dgram,
1598 .pru_sosend = sosend_dgram,
1599 .pru_shutdown = udp_shutdown,
1600 .pru_sockaddr = in_getsockaddr,
1601 .pru_sosetlabel = in_pcbsosetlabel,
1602 .pru_close = udp_close,
1603};
1604#endif /* INET */