Deleted Added
full compact
siftr.c (215553) siftr.c (215701)
1/*-
2 * Copyright (c) 2007-2009
3 * Swinburne University of Technology, Melbourne, Australia.
4 * Copyright (c) 2009-2010, The FreeBSD Foundation
5 * All rights reserved.
6 *
7 * Portions of this software were developed at the Centre for Advanced
8 * Internet Architectures, Swinburne University of Technology, Melbourne,
9 * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/******************************************************
34 * Statistical Information For TCP Research (SIFTR)
35 *
36 * A FreeBSD kernel module that adds very basic intrumentation to the
37 * TCP stack, allowing internal stats to be recorded to a log file
38 * for experimental, debugging and performance analysis purposes.
39 *
40 * SIFTR was first released in 2007 by James Healy and Lawrence Stewart whilst
41 * working on the NewTCP research project at Swinburne University's Centre for
42 * Advanced Internet Architectures, Melbourne, Australia, which was made
43 * possible in part by a grant from the Cisco University Research Program Fund
44 * at Community Foundation Silicon Valley. More details are available at:
45 * http://caia.swin.edu.au/urp/newtcp/
46 *
47 * Work on SIFTR v1.2.x was sponsored by the FreeBSD Foundation as part of
48 * the "Enhancing the FreeBSD TCP Implementation" project 2008-2009.
49 * More details are available at:
50 * http://www.freebsdfoundation.org/
51 * http://caia.swin.edu.au/freebsd/etcp09/
52 *
53 * Lawrence Stewart is the current maintainer, and all contact regarding
54 * SIFTR should be directed to him via email: lastewart@swin.edu.au
55 *
56 * Initial release date: June 2007
57 * Most recent update: September 2010
58 ******************************************************/
59
60#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 2007-2009
3 * Swinburne University of Technology, Melbourne, Australia.
4 * Copyright (c) 2009-2010, The FreeBSD Foundation
5 * All rights reserved.
6 *
7 * Portions of this software were developed at the Centre for Advanced
8 * Internet Architectures, Swinburne University of Technology, Melbourne,
9 * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/******************************************************
34 * Statistical Information For TCP Research (SIFTR)
35 *
36 * A FreeBSD kernel module that adds very basic intrumentation to the
37 * TCP stack, allowing internal stats to be recorded to a log file
38 * for experimental, debugging and performance analysis purposes.
39 *
40 * SIFTR was first released in 2007 by James Healy and Lawrence Stewart whilst
41 * working on the NewTCP research project at Swinburne University's Centre for
42 * Advanced Internet Architectures, Melbourne, Australia, which was made
43 * possible in part by a grant from the Cisco University Research Program Fund
44 * at Community Foundation Silicon Valley. More details are available at:
45 * http://caia.swin.edu.au/urp/newtcp/
46 *
47 * Work on SIFTR v1.2.x was sponsored by the FreeBSD Foundation as part of
48 * the "Enhancing the FreeBSD TCP Implementation" project 2008-2009.
49 * More details are available at:
50 * http://www.freebsdfoundation.org/
51 * http://caia.swin.edu.au/freebsd/etcp09/
52 *
53 * Lawrence Stewart is the current maintainer, and all contact regarding
54 * SIFTR should be directed to him via email: lastewart@swin.edu.au
55 *
56 * Initial release date: June 2007
57 * Most recent update: September 2010
58 ******************************************************/
59
60#include <sys/cdefs.h>
61__FBSDID("$FreeBSD: head/sys/netinet/siftr.c 215553 2010-11-20 08:40:37Z lstewart $");
61__FBSDID("$FreeBSD: head/sys/netinet/siftr.c 215701 2010-11-22 19:32:54Z dim $");
62
63#include <sys/param.h>
64#include <sys/alq.h>
65#include <sys/errno.h>
66#include <sys/hash.h>
67#include <sys/kernel.h>
68#include <sys/kthread.h>
69#include <sys/lock.h>
70#include <sys/mbuf.h>
71#include <sys/module.h>
72#include <sys/mutex.h>
73#include <sys/pcpu.h>
74#include <sys/proc.h>
75#include <sys/sbuf.h>
76#include <sys/smp.h>
77#include <sys/socket.h>
78#include <sys/socketvar.h>
79#include <sys/sysctl.h>
80#include <sys/unistd.h>
81
82#include <net/if.h>
83#include <net/pfil.h>
84
85#include <netinet/in.h>
86#include <netinet/in_pcb.h>
87#include <netinet/in_systm.h>
88#include <netinet/in_var.h>
89#include <netinet/ip.h>
90#include <netinet/tcp_var.h>
91
92#ifdef SIFTR_IPV6
93#include <netinet/ip6.h>
94#include <netinet6/in6_pcb.h>
95#endif /* SIFTR_IPV6 */
96
97#include <machine/in_cksum.h>
98
99/*
100 * Three digit version number refers to X.Y.Z where:
101 * X is the major version number
102 * Y is bumped to mark backwards incompatible changes
103 * Z is bumped to mark backwards compatible changes
104 */
105#define V_MAJOR 1
106#define V_BACKBREAK 2
107#define V_BACKCOMPAT 4
108#define MODVERSION __CONCAT(V_MAJOR, __CONCAT(V_BACKBREAK, V_BACKCOMPAT))
109#define MODVERSION_STR __XSTRING(V_MAJOR) "." __XSTRING(V_BACKBREAK) "." \
110 __XSTRING(V_BACKCOMPAT)
111
112#define HOOK 0
113#define UNHOOK 1
114#define SIFTR_EXPECTED_MAX_TCP_FLOWS 65536
115#define SYS_NAME "FreeBSD"
116#define PACKET_TAG_SIFTR 100
117#define PACKET_COOKIE_SIFTR 21749576
118#define SIFTR_LOG_FILE_MODE 0644
119#define SIFTR_DISABLE 0
120#define SIFTR_ENABLE 1
121
122/*
123 * Hard upper limit on the length of log messages. Bump this up if you add new
124 * data fields such that the line length could exceed the below value.
125 */
126#define MAX_LOG_MSG_LEN 200
127/* XXX: Make this a sysctl tunable. */
128#define SIFTR_ALQ_BUFLEN (1000*MAX_LOG_MSG_LEN)
129
130/*
131 * 1 byte for IP version
132 * IPv4: src/dst IP (4+4) + src/dst port (2+2) = 12 bytes
133 * IPv6: src/dst IP (16+16) + src/dst port (2+2) = 36 bytes
134 */
135#ifdef SIFTR_IPV6
136#define FLOW_KEY_LEN 37
137#else
138#define FLOW_KEY_LEN 13
139#endif
140
141#ifdef SIFTR_IPV6
142#define SIFTR_IPMODE 6
143#else
144#define SIFTR_IPMODE 4
145#endif
146
147/* useful macros */
148#define CAST_PTR_INT(X) (*((int*)(X)))
149
150#define UPPER_SHORT(X) (((X) & 0xFFFF0000) >> 16)
151#define LOWER_SHORT(X) ((X) & 0x0000FFFF)
152
153#define FIRST_OCTET(X) (((X) & 0xFF000000) >> 24)
154#define SECOND_OCTET(X) (((X) & 0x00FF0000) >> 16)
155#define THIRD_OCTET(X) (((X) & 0x0000FF00) >> 8)
156#define FOURTH_OCTET(X) ((X) & 0x000000FF)
157
158MALLOC_DECLARE(M_SIFTR);
159MALLOC_DEFINE(M_SIFTR, "siftr", "dynamic memory used by SIFTR");
160
161MALLOC_DECLARE(M_SIFTR_PKTNODE);
162MALLOC_DEFINE(M_SIFTR_PKTNODE, "siftr_pktnode", "SIFTR pkt_node struct");
163
164MALLOC_DECLARE(M_SIFTR_HASHNODE);
165MALLOC_DEFINE(M_SIFTR_HASHNODE, "siftr_hashnode", "SIFTR flow_hash_node struct");
166
167/* Used as links in the pkt manager queue. */
168struct pkt_node {
169 /* Timestamp of pkt as noted in the pfil hook. */
170 struct timeval tval;
171 /* Direction pkt is travelling; either PFIL_IN or PFIL_OUT. */
172 uint8_t direction;
173 /* IP version pkt_node relates to; either INP_IPV4 or INP_IPV6. */
174 uint8_t ipver;
175 /* Hash of the pkt which triggered the log message. */
176 uint32_t hash;
177 /* Local/foreign IP address. */
178#ifdef SIFTR_IPV6
179 uint32_t ip_laddr[4];
180 uint32_t ip_faddr[4];
181#else
182 uint8_t ip_laddr[4];
183 uint8_t ip_faddr[4];
184#endif
185 /* Local TCP port. */
186 uint16_t tcp_localport;
187 /* Foreign TCP port. */
188 uint16_t tcp_foreignport;
189 /* Congestion Window (bytes). */
190 u_long snd_cwnd;
191 /* Sending Window (bytes). */
192 u_long snd_wnd;
193 /* Receive Window (bytes). */
194 u_long rcv_wnd;
195 /* Unused (was: Bandwidth Controlled Window (bytes)). */
196 u_long snd_bwnd;
197 /* Slow Start Threshold (bytes). */
198 u_long snd_ssthresh;
199 /* Current state of the TCP FSM. */
200 int conn_state;
201 /* Max Segment Size (bytes). */
202 u_int max_seg_size;
203 /*
204 * Smoothed RTT stored as found in the TCP control block
205 * in units of (TCP_RTT_SCALE*hz).
206 */
207 int smoothed_rtt;
208 /* Is SACK enabled? */
209 u_char sack_enabled;
210 /* Window scaling for snd window. */
211 u_char snd_scale;
212 /* Window scaling for recv window. */
213 u_char rcv_scale;
214 /* TCP control block flags. */
215 u_int flags;
216 /* Retransmit timeout length. */
217 int rxt_length;
218 /* Size of the TCP send buffer in bytes. */
219 u_int snd_buf_hiwater;
220 /* Current num bytes in the send socket buffer. */
221 u_int snd_buf_cc;
222 /* Size of the TCP receive buffer in bytes. */
223 u_int rcv_buf_hiwater;
224 /* Current num bytes in the receive socket buffer. */
225 u_int rcv_buf_cc;
226 /* Number of bytes inflight that we are waiting on ACKs for. */
227 u_int sent_inflight_bytes;
228 /* Number of segments currently in the reassembly queue. */
229 int t_segqlen;
230 /* Link to next pkt_node in the list. */
231 STAILQ_ENTRY(pkt_node) nodes;
232};
233
234struct flow_hash_node
235{
236 uint16_t counter;
237 uint8_t key[FLOW_KEY_LEN];
238 LIST_ENTRY(flow_hash_node) nodes;
239};
240
241struct siftr_stats
242{
243 /* # TCP pkts seen by the SIFTR PFIL hooks, including any skipped. */
244 uint64_t n_in;
245 uint64_t n_out;
246 /* # pkts skipped due to failed malloc calls. */
247 uint32_t nskip_in_malloc;
248 uint32_t nskip_out_malloc;
249 /* # pkts skipped due to failed mtx acquisition. */
250 uint32_t nskip_in_mtx;
251 uint32_t nskip_out_mtx;
252 /* # pkts skipped due to failed inpcb lookups. */
253 uint32_t nskip_in_inpcb;
254 uint32_t nskip_out_inpcb;
255 /* # pkts skipped due to failed tcpcb lookups. */
256 uint32_t nskip_in_tcpcb;
257 uint32_t nskip_out_tcpcb;
258 /* # pkts skipped due to stack reinjection. */
259 uint32_t nskip_in_dejavu;
260 uint32_t nskip_out_dejavu;
261};
262
62
63#include <sys/param.h>
64#include <sys/alq.h>
65#include <sys/errno.h>
66#include <sys/hash.h>
67#include <sys/kernel.h>
68#include <sys/kthread.h>
69#include <sys/lock.h>
70#include <sys/mbuf.h>
71#include <sys/module.h>
72#include <sys/mutex.h>
73#include <sys/pcpu.h>
74#include <sys/proc.h>
75#include <sys/sbuf.h>
76#include <sys/smp.h>
77#include <sys/socket.h>
78#include <sys/socketvar.h>
79#include <sys/sysctl.h>
80#include <sys/unistd.h>
81
82#include <net/if.h>
83#include <net/pfil.h>
84
85#include <netinet/in.h>
86#include <netinet/in_pcb.h>
87#include <netinet/in_systm.h>
88#include <netinet/in_var.h>
89#include <netinet/ip.h>
90#include <netinet/tcp_var.h>
91
92#ifdef SIFTR_IPV6
93#include <netinet/ip6.h>
94#include <netinet6/in6_pcb.h>
95#endif /* SIFTR_IPV6 */
96
97#include <machine/in_cksum.h>
98
99/*
100 * Three digit version number refers to X.Y.Z where:
101 * X is the major version number
102 * Y is bumped to mark backwards incompatible changes
103 * Z is bumped to mark backwards compatible changes
104 */
105#define V_MAJOR 1
106#define V_BACKBREAK 2
107#define V_BACKCOMPAT 4
108#define MODVERSION __CONCAT(V_MAJOR, __CONCAT(V_BACKBREAK, V_BACKCOMPAT))
109#define MODVERSION_STR __XSTRING(V_MAJOR) "." __XSTRING(V_BACKBREAK) "." \
110 __XSTRING(V_BACKCOMPAT)
111
112#define HOOK 0
113#define UNHOOK 1
114#define SIFTR_EXPECTED_MAX_TCP_FLOWS 65536
115#define SYS_NAME "FreeBSD"
116#define PACKET_TAG_SIFTR 100
117#define PACKET_COOKIE_SIFTR 21749576
118#define SIFTR_LOG_FILE_MODE 0644
119#define SIFTR_DISABLE 0
120#define SIFTR_ENABLE 1
121
122/*
123 * Hard upper limit on the length of log messages. Bump this up if you add new
124 * data fields such that the line length could exceed the below value.
125 */
126#define MAX_LOG_MSG_LEN 200
127/* XXX: Make this a sysctl tunable. */
128#define SIFTR_ALQ_BUFLEN (1000*MAX_LOG_MSG_LEN)
129
130/*
131 * 1 byte for IP version
132 * IPv4: src/dst IP (4+4) + src/dst port (2+2) = 12 bytes
133 * IPv6: src/dst IP (16+16) + src/dst port (2+2) = 36 bytes
134 */
135#ifdef SIFTR_IPV6
136#define FLOW_KEY_LEN 37
137#else
138#define FLOW_KEY_LEN 13
139#endif
140
141#ifdef SIFTR_IPV6
142#define SIFTR_IPMODE 6
143#else
144#define SIFTR_IPMODE 4
145#endif
146
147/* useful macros */
148#define CAST_PTR_INT(X) (*((int*)(X)))
149
150#define UPPER_SHORT(X) (((X) & 0xFFFF0000) >> 16)
151#define LOWER_SHORT(X) ((X) & 0x0000FFFF)
152
153#define FIRST_OCTET(X) (((X) & 0xFF000000) >> 24)
154#define SECOND_OCTET(X) (((X) & 0x00FF0000) >> 16)
155#define THIRD_OCTET(X) (((X) & 0x0000FF00) >> 8)
156#define FOURTH_OCTET(X) ((X) & 0x000000FF)
157
158MALLOC_DECLARE(M_SIFTR);
159MALLOC_DEFINE(M_SIFTR, "siftr", "dynamic memory used by SIFTR");
160
161MALLOC_DECLARE(M_SIFTR_PKTNODE);
162MALLOC_DEFINE(M_SIFTR_PKTNODE, "siftr_pktnode", "SIFTR pkt_node struct");
163
164MALLOC_DECLARE(M_SIFTR_HASHNODE);
165MALLOC_DEFINE(M_SIFTR_HASHNODE, "siftr_hashnode", "SIFTR flow_hash_node struct");
166
167/* Used as links in the pkt manager queue. */
168struct pkt_node {
169 /* Timestamp of pkt as noted in the pfil hook. */
170 struct timeval tval;
171 /* Direction pkt is travelling; either PFIL_IN or PFIL_OUT. */
172 uint8_t direction;
173 /* IP version pkt_node relates to; either INP_IPV4 or INP_IPV6. */
174 uint8_t ipver;
175 /* Hash of the pkt which triggered the log message. */
176 uint32_t hash;
177 /* Local/foreign IP address. */
178#ifdef SIFTR_IPV6
179 uint32_t ip_laddr[4];
180 uint32_t ip_faddr[4];
181#else
182 uint8_t ip_laddr[4];
183 uint8_t ip_faddr[4];
184#endif
185 /* Local TCP port. */
186 uint16_t tcp_localport;
187 /* Foreign TCP port. */
188 uint16_t tcp_foreignport;
189 /* Congestion Window (bytes). */
190 u_long snd_cwnd;
191 /* Sending Window (bytes). */
192 u_long snd_wnd;
193 /* Receive Window (bytes). */
194 u_long rcv_wnd;
195 /* Unused (was: Bandwidth Controlled Window (bytes)). */
196 u_long snd_bwnd;
197 /* Slow Start Threshold (bytes). */
198 u_long snd_ssthresh;
199 /* Current state of the TCP FSM. */
200 int conn_state;
201 /* Max Segment Size (bytes). */
202 u_int max_seg_size;
203 /*
204 * Smoothed RTT stored as found in the TCP control block
205 * in units of (TCP_RTT_SCALE*hz).
206 */
207 int smoothed_rtt;
208 /* Is SACK enabled? */
209 u_char sack_enabled;
210 /* Window scaling for snd window. */
211 u_char snd_scale;
212 /* Window scaling for recv window. */
213 u_char rcv_scale;
214 /* TCP control block flags. */
215 u_int flags;
216 /* Retransmit timeout length. */
217 int rxt_length;
218 /* Size of the TCP send buffer in bytes. */
219 u_int snd_buf_hiwater;
220 /* Current num bytes in the send socket buffer. */
221 u_int snd_buf_cc;
222 /* Size of the TCP receive buffer in bytes. */
223 u_int rcv_buf_hiwater;
224 /* Current num bytes in the receive socket buffer. */
225 u_int rcv_buf_cc;
226 /* Number of bytes inflight that we are waiting on ACKs for. */
227 u_int sent_inflight_bytes;
228 /* Number of segments currently in the reassembly queue. */
229 int t_segqlen;
230 /* Link to next pkt_node in the list. */
231 STAILQ_ENTRY(pkt_node) nodes;
232};
233
234struct flow_hash_node
235{
236 uint16_t counter;
237 uint8_t key[FLOW_KEY_LEN];
238 LIST_ENTRY(flow_hash_node) nodes;
239};
240
241struct siftr_stats
242{
243 /* # TCP pkts seen by the SIFTR PFIL hooks, including any skipped. */
244 uint64_t n_in;
245 uint64_t n_out;
246 /* # pkts skipped due to failed malloc calls. */
247 uint32_t nskip_in_malloc;
248 uint32_t nskip_out_malloc;
249 /* # pkts skipped due to failed mtx acquisition. */
250 uint32_t nskip_in_mtx;
251 uint32_t nskip_out_mtx;
252 /* # pkts skipped due to failed inpcb lookups. */
253 uint32_t nskip_in_inpcb;
254 uint32_t nskip_out_inpcb;
255 /* # pkts skipped due to failed tcpcb lookups. */
256 uint32_t nskip_in_tcpcb;
257 uint32_t nskip_out_tcpcb;
258 /* # pkts skipped due to stack reinjection. */
259 uint32_t nskip_in_dejavu;
260 uint32_t nskip_out_dejavu;
261};
262
263STATIC_DPCPU_DEFINE(struct siftr_stats, ss);
263static DPCPU_DEFINE(struct siftr_stats, ss);
264
265static volatile unsigned int siftr_exit_pkt_manager_thread = 0;
266static unsigned int siftr_enabled = 0;
267static unsigned int siftr_pkts_per_log = 1;
268static unsigned int siftr_generate_hashes = 0;
269/* static unsigned int siftr_binary_log = 0; */
270static char siftr_logfile[PATH_MAX] = "/var/log/siftr.log";
271static u_long siftr_hashmask;
272STAILQ_HEAD(pkthead, pkt_node) pkt_queue = STAILQ_HEAD_INITIALIZER(pkt_queue);
273LIST_HEAD(listhead, flow_hash_node) *counter_hash;
274static int wait_for_pkt;
275static struct alq *siftr_alq = NULL;
276static struct mtx siftr_pkt_queue_mtx;
277static struct mtx siftr_pkt_mgr_mtx;
278static struct thread *siftr_pkt_manager_thr = NULL;
279/*
280 * pfil.h defines PFIL_IN as 1 and PFIL_OUT as 2,
281 * which we use as an index into this array.
282 */
283static char direction[3] = {'\0', 'i','o'};
284
285/* Required function prototypes. */
286static int siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS);
287static int siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS);
288
289
290/* Declare the net.inet.siftr sysctl tree and populate it. */
291
292SYSCTL_DECL(_net_inet_siftr);
293
294SYSCTL_NODE(_net_inet, OID_AUTO, siftr, CTLFLAG_RW, NULL,
295 "siftr related settings");
296
297SYSCTL_PROC(_net_inet_siftr, OID_AUTO, enabled, CTLTYPE_UINT|CTLFLAG_RW,
298 &siftr_enabled, 0, &siftr_sysctl_enabled_handler, "IU",
299 "switch siftr module operations on/off");
300
301SYSCTL_PROC(_net_inet_siftr, OID_AUTO, logfile, CTLTYPE_STRING|CTLFLAG_RW,
302 &siftr_logfile, sizeof(siftr_logfile), &siftr_sysctl_logfile_name_handler,
303 "A", "file to save siftr log messages to");
304
305SYSCTL_UINT(_net_inet_siftr, OID_AUTO, ppl, CTLFLAG_RW,
306 &siftr_pkts_per_log, 1,
307 "number of packets between generating a log message");
308
309SYSCTL_UINT(_net_inet_siftr, OID_AUTO, genhashes, CTLFLAG_RW,
310 &siftr_generate_hashes, 0,
311 "enable packet hash generation");
312
313/* XXX: TODO
314SYSCTL_UINT(_net_inet_siftr, OID_AUTO, binary, CTLFLAG_RW,
315 &siftr_binary_log, 0,
316 "write log files in binary instead of ascii");
317*/
318
319
320/* Begin functions. */
321
322static void
323siftr_process_pkt(struct pkt_node * pkt_node)
324{
325 struct flow_hash_node *hash_node;
326 struct listhead *counter_list;
327 struct siftr_stats *ss;
328 struct ale *log_buf;
329 uint8_t key[FLOW_KEY_LEN];
330 uint8_t found_match, key_offset;
331
332 hash_node = NULL;
333 ss = DPCPU_PTR(ss);
334 found_match = 0;
335 key_offset = 1;
336
337 /*
338 * Create the key that will be used to create a hash index
339 * into our hash table. Our key consists of:
340 * ipversion, localip, localport, foreignip, foreignport
341 */
342 key[0] = pkt_node->ipver;
343 memcpy(key + key_offset, &pkt_node->ip_laddr,
344 sizeof(pkt_node->ip_laddr));
345 key_offset += sizeof(pkt_node->ip_laddr);
346 memcpy(key + key_offset, &pkt_node->tcp_localport,
347 sizeof(pkt_node->tcp_localport));
348 key_offset += sizeof(pkt_node->tcp_localport);
349 memcpy(key + key_offset, &pkt_node->ip_faddr,
350 sizeof(pkt_node->ip_faddr));
351 key_offset += sizeof(pkt_node->ip_faddr);
352 memcpy(key + key_offset, &pkt_node->tcp_foreignport,
353 sizeof(pkt_node->tcp_foreignport));
354
355 counter_list = counter_hash +
356 (hash32_buf(key, sizeof(key), 0) & siftr_hashmask);
357
358 /*
359 * If the list is not empty i.e. the hash index has
360 * been used by another flow previously.
361 */
362 if (LIST_FIRST(counter_list) != NULL) {
363 /*
364 * Loop through the hash nodes in the list.
365 * There should normally only be 1 hash node in the list,
366 * except if there have been collisions at the hash index
367 * computed by hash32_buf().
368 */
369 LIST_FOREACH(hash_node, counter_list, nodes) {
370 /*
371 * Check if the key for the pkt we are currently
372 * processing is the same as the key stored in the
373 * hash node we are currently processing.
374 * If they are the same, then we've found the
375 * hash node that stores the counter for the flow
376 * the pkt belongs to.
377 */
378 if (memcmp(hash_node->key, key, sizeof(key)) == 0) {
379 found_match = 1;
380 break;
381 }
382 }
383 }
384
385 /* If this flow hash hasn't been seen before or we have a collision. */
386 if (hash_node == NULL || !found_match) {
387 /* Create a new hash node to store the flow's counter. */
388 hash_node = malloc(sizeof(struct flow_hash_node),
389 M_SIFTR_HASHNODE, M_WAITOK);
390
391 if (hash_node != NULL) {
392 /* Initialise our new hash node list entry. */
393 hash_node->counter = 0;
394 memcpy(hash_node->key, key, sizeof(key));
395 LIST_INSERT_HEAD(counter_list, hash_node, nodes);
396 } else {
397 /* Malloc failed. */
398 if (pkt_node->direction == PFIL_IN)
399 ss->nskip_in_malloc++;
400 else
401 ss->nskip_out_malloc++;
402
403 return;
404 }
405 } else if (siftr_pkts_per_log > 1) {
406 /*
407 * Taking the remainder of the counter divided
408 * by the current value of siftr_pkts_per_log
409 * and storing that in counter provides a neat
410 * way to modulate the frequency of log
411 * messages being written to the log file.
412 */
413 hash_node->counter = (hash_node->counter + 1) %
414 siftr_pkts_per_log;
415
416 /*
417 * If we have not seen enough packets since the last time
418 * we wrote a log message for this connection, return.
419 */
420 if (hash_node->counter > 0)
421 return;
422 }
423
424 log_buf = alq_getn(siftr_alq, MAX_LOG_MSG_LEN, ALQ_WAITOK);
425
426 if (log_buf == NULL)
427 return; /* Should only happen if the ALQ is shutting down. */
428
429#ifdef SIFTR_IPV6
430 pkt_node->ip_laddr[3] = ntohl(pkt_node->ip_laddr[3]);
431 pkt_node->ip_faddr[3] = ntohl(pkt_node->ip_faddr[3]);
432
433 if (pkt_node->ipver == INP_IPV6) { /* IPv6 packet */
434 pkt_node->ip_laddr[0] = ntohl(pkt_node->ip_laddr[0]);
435 pkt_node->ip_laddr[1] = ntohl(pkt_node->ip_laddr[1]);
436 pkt_node->ip_laddr[2] = ntohl(pkt_node->ip_laddr[2]);
437 pkt_node->ip_faddr[0] = ntohl(pkt_node->ip_faddr[0]);
438 pkt_node->ip_faddr[1] = ntohl(pkt_node->ip_faddr[1]);
439 pkt_node->ip_faddr[2] = ntohl(pkt_node->ip_faddr[2]);
440
441 /* Construct an IPv6 log message. */
442 log_buf->ae_bytesused = snprintf(log_buf->ae_data,
443 MAX_LOG_MSG_LEN,
444 "%c,0x%08x,%zd.%06ld,%x:%x:%x:%x:%x:%x:%x:%x,%u,%x:%x:%x:"
445 "%x:%x:%x:%x:%x,%u,%ld,%ld,%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,"
446 "%u,%d,%u,%u,%u,%u,%u,%u\n",
447 direction[pkt_node->direction],
448 pkt_node->hash,
449 pkt_node->tval.tv_sec,
450 pkt_node->tval.tv_usec,
451 UPPER_SHORT(pkt_node->ip_laddr[0]),
452 LOWER_SHORT(pkt_node->ip_laddr[0]),
453 UPPER_SHORT(pkt_node->ip_laddr[1]),
454 LOWER_SHORT(pkt_node->ip_laddr[1]),
455 UPPER_SHORT(pkt_node->ip_laddr[2]),
456 LOWER_SHORT(pkt_node->ip_laddr[2]),
457 UPPER_SHORT(pkt_node->ip_laddr[3]),
458 LOWER_SHORT(pkt_node->ip_laddr[3]),
459 ntohs(pkt_node->tcp_localport),
460 UPPER_SHORT(pkt_node->ip_faddr[0]),
461 LOWER_SHORT(pkt_node->ip_faddr[0]),
462 UPPER_SHORT(pkt_node->ip_faddr[1]),
463 LOWER_SHORT(pkt_node->ip_faddr[1]),
464 UPPER_SHORT(pkt_node->ip_faddr[2]),
465 LOWER_SHORT(pkt_node->ip_faddr[2]),
466 UPPER_SHORT(pkt_node->ip_faddr[3]),
467 LOWER_SHORT(pkt_node->ip_faddr[3]),
468 ntohs(pkt_node->tcp_foreignport),
469 pkt_node->snd_ssthresh,
470 pkt_node->snd_cwnd,
471 pkt_node->snd_bwnd,
472 pkt_node->snd_wnd,
473 pkt_node->rcv_wnd,
474 pkt_node->snd_scale,
475 pkt_node->rcv_scale,
476 pkt_node->conn_state,
477 pkt_node->max_seg_size,
478 pkt_node->smoothed_rtt,
479 pkt_node->sack_enabled,
480 pkt_node->flags,
481 pkt_node->rxt_length,
482 pkt_node->snd_buf_hiwater,
483 pkt_node->snd_buf_cc,
484 pkt_node->rcv_buf_hiwater,
485 pkt_node->rcv_buf_cc,
486 pkt_node->sent_inflight_bytes,
487 pkt_node->t_segqlen);
488 } else { /* IPv4 packet */
489 pkt_node->ip_laddr[0] = FIRST_OCTET(pkt_node->ip_laddr[3]);
490 pkt_node->ip_laddr[1] = SECOND_OCTET(pkt_node->ip_laddr[3]);
491 pkt_node->ip_laddr[2] = THIRD_OCTET(pkt_node->ip_laddr[3]);
492 pkt_node->ip_laddr[3] = FOURTH_OCTET(pkt_node->ip_laddr[3]);
493 pkt_node->ip_faddr[0] = FIRST_OCTET(pkt_node->ip_faddr[3]);
494 pkt_node->ip_faddr[1] = SECOND_OCTET(pkt_node->ip_faddr[3]);
495 pkt_node->ip_faddr[2] = THIRD_OCTET(pkt_node->ip_faddr[3]);
496 pkt_node->ip_faddr[3] = FOURTH_OCTET(pkt_node->ip_faddr[3]);
497#endif /* SIFTR_IPV6 */
498
499 /* Construct an IPv4 log message. */
500 log_buf->ae_bytesused = snprintf(log_buf->ae_data,
501 MAX_LOG_MSG_LEN,
502 "%c,0x%08x,%jd.%06ld,%u.%u.%u.%u,%u,%u.%u.%u.%u,%u,%ld,%ld,"
503 "%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,%u,%d,%u,%u,%u,%u,%u,%u\n",
504 direction[pkt_node->direction],
505 pkt_node->hash,
506 (intmax_t)pkt_node->tval.tv_sec,
507 pkt_node->tval.tv_usec,
508 pkt_node->ip_laddr[0],
509 pkt_node->ip_laddr[1],
510 pkt_node->ip_laddr[2],
511 pkt_node->ip_laddr[3],
512 ntohs(pkt_node->tcp_localport),
513 pkt_node->ip_faddr[0],
514 pkt_node->ip_faddr[1],
515 pkt_node->ip_faddr[2],
516 pkt_node->ip_faddr[3],
517 ntohs(pkt_node->tcp_foreignport),
518 pkt_node->snd_ssthresh,
519 pkt_node->snd_cwnd,
520 pkt_node->snd_bwnd,
521 pkt_node->snd_wnd,
522 pkt_node->rcv_wnd,
523 pkt_node->snd_scale,
524 pkt_node->rcv_scale,
525 pkt_node->conn_state,
526 pkt_node->max_seg_size,
527 pkt_node->smoothed_rtt,
528 pkt_node->sack_enabled,
529 pkt_node->flags,
530 pkt_node->rxt_length,
531 pkt_node->snd_buf_hiwater,
532 pkt_node->snd_buf_cc,
533 pkt_node->rcv_buf_hiwater,
534 pkt_node->rcv_buf_cc,
535 pkt_node->sent_inflight_bytes,
536 pkt_node->t_segqlen);
537#ifdef SIFTR_IPV6
538 }
539#endif
540
541 alq_post_flags(siftr_alq, log_buf, 0);
542}
543
544
545static void
546siftr_pkt_manager_thread(void *arg)
547{
548 STAILQ_HEAD(pkthead, pkt_node) tmp_pkt_queue =
549 STAILQ_HEAD_INITIALIZER(tmp_pkt_queue);
550 struct pkt_node *pkt_node, *pkt_node_temp;
551 uint8_t draining;
552
553 draining = 2;
554
555 mtx_lock(&siftr_pkt_mgr_mtx);
556
557 /* draining == 0 when queue has been flushed and it's safe to exit. */
558 while (draining) {
559 /*
560 * Sleep until we are signalled to wake because thread has
561 * been told to exit or until 1 tick has passed.
562 */
563 mtx_sleep(&wait_for_pkt, &siftr_pkt_mgr_mtx, PWAIT, "pktwait",
564 1);
565
566 /* Gain exclusive access to the pkt_node queue. */
567 mtx_lock(&siftr_pkt_queue_mtx);
568
569 /*
570 * Move pkt_queue to tmp_pkt_queue, which leaves
571 * pkt_queue empty and ready to receive more pkt_nodes.
572 */
573 STAILQ_CONCAT(&tmp_pkt_queue, &pkt_queue);
574
575 /*
576 * We've finished making changes to the list. Unlock it
577 * so the pfil hooks can continue queuing pkt_nodes.
578 */
579 mtx_unlock(&siftr_pkt_queue_mtx);
580
581 /*
582 * We can't hold a mutex whilst calling siftr_process_pkt
583 * because ALQ might sleep waiting for buffer space.
584 */
585 mtx_unlock(&siftr_pkt_mgr_mtx);
586
587 /* Flush all pkt_nodes to the log file. */
588 STAILQ_FOREACH_SAFE(pkt_node, &tmp_pkt_queue, nodes,
589 pkt_node_temp) {
590 siftr_process_pkt(pkt_node);
591 STAILQ_REMOVE_HEAD(&tmp_pkt_queue, nodes);
592 free(pkt_node, M_SIFTR_PKTNODE);
593 }
594
595 KASSERT(STAILQ_EMPTY(&tmp_pkt_queue),
596 ("SIFTR tmp_pkt_queue not empty after flush"));
597
598 mtx_lock(&siftr_pkt_mgr_mtx);
599
600 /*
601 * If siftr_exit_pkt_manager_thread gets set during the window
602 * where we are draining the tmp_pkt_queue above, there might
603 * still be pkts in pkt_queue that need to be drained.
604 * Allow one further iteration to occur after
605 * siftr_exit_pkt_manager_thread has been set to ensure
606 * pkt_queue is completely empty before we kill the thread.
607 *
608 * siftr_exit_pkt_manager_thread is set only after the pfil
609 * hooks have been removed, so only 1 extra iteration
610 * is needed to drain the queue.
611 */
612 if (siftr_exit_pkt_manager_thread)
613 draining--;
614 }
615
616 mtx_unlock(&siftr_pkt_mgr_mtx);
617
618 /* Calls wakeup on this thread's struct thread ptr. */
619 kthread_exit();
620}
621
622
623static uint32_t
624hash_pkt(struct mbuf *m, uint32_t offset)
625{
626 uint32_t hash;
627
628 hash = 0;
629
630 while (m != NULL && offset > m->m_len) {
631 /*
632 * The IP packet payload does not start in this mbuf, so
633 * need to figure out which mbuf it starts in and what offset
634 * into the mbuf's data region the payload starts at.
635 */
636 offset -= m->m_len;
637 m = m->m_next;
638 }
639
640 while (m != NULL) {
641 /* Ensure there is data in the mbuf */
642 if ((m->m_len - offset) > 0)
643 hash = hash32_buf(m->m_data + offset,
644 m->m_len - offset, hash);
645
646 m = m->m_next;
647 offset = 0;
648 }
649
650 return (hash);
651}
652
653
654/*
655 * Check if a given mbuf has the SIFTR mbuf tag. If it does, log the fact that
656 * it's a reinjected packet and return. If it doesn't, tag the mbuf and return.
657 * Return value >0 means the caller should skip processing this mbuf.
658 */
659static inline int
660siftr_chkreinject(struct mbuf *m, int dir, struct siftr_stats *ss)
661{
662 if (m_tag_locate(m, PACKET_COOKIE_SIFTR, PACKET_TAG_SIFTR, NULL)
663 != NULL) {
664 if (dir == PFIL_IN)
665 ss->nskip_in_dejavu++;
666 else
667 ss->nskip_out_dejavu++;
668
669 return (1);
670 } else {
671 struct m_tag *tag = m_tag_alloc(PACKET_COOKIE_SIFTR,
672 PACKET_TAG_SIFTR, 0, M_NOWAIT);
673 if (tag == NULL) {
674 if (dir == PFIL_IN)
675 ss->nskip_in_malloc++;
676 else
677 ss->nskip_out_malloc++;
678
679 return (1);
680 }
681
682 m_tag_prepend(m, tag);
683 }
684
685 return (0);
686}
687
688
689/*
690 * Look up an inpcb for a packet. Return the inpcb pointer if found, or NULL
691 * otherwise.
692 */
693static inline struct inpcb *
694siftr_findinpcb(int ipver, struct ip *ip, struct mbuf *m, uint16_t sport,
695 uint16_t dport, int dir, struct siftr_stats *ss)
696{
697 struct inpcb *inp;
698
699 /* We need the tcbinfo lock. */
700 INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
701 INP_INFO_RLOCK(&V_tcbinfo);
702
703 if (dir == PFIL_IN)
704 inp = (ipver == INP_IPV4 ?
705 in_pcblookup_hash(&V_tcbinfo, ip->ip_src, sport, ip->ip_dst,
706 dport, 0, m->m_pkthdr.rcvif)
707 :
708#ifdef SIFTR_IPV6
709 in6_pcblookup_hash(&V_tcbinfo,
710 &((struct ip6_hdr *)ip)->ip6_src, sport,
711 &((struct ip6_hdr *)ip)->ip6_dst, dport, 0,
712 m->m_pkthdr.rcvif)
713#else
714 NULL
715#endif
716 );
717
718 else
719 inp = (ipver == INP_IPV4 ?
720 in_pcblookup_hash(&V_tcbinfo, ip->ip_dst, dport, ip->ip_src,
721 sport, 0, m->m_pkthdr.rcvif)
722 :
723#ifdef SIFTR_IPV6
724 in6_pcblookup_hash(&V_tcbinfo,
725 &((struct ip6_hdr *)ip)->ip6_dst, dport,
726 &((struct ip6_hdr *)ip)->ip6_src, sport, 0,
727 m->m_pkthdr.rcvif)
728#else
729 NULL
730#endif
731 );
732
733 /* If we can't find the inpcb, bail. */
734 if (inp == NULL) {
735 if (dir == PFIL_IN)
736 ss->nskip_in_inpcb++;
737 else
738 ss->nskip_out_inpcb++;
739 } else {
740 /* Acquire the inpcb lock. */
741 INP_UNLOCK_ASSERT(inp);
742 INP_RLOCK(inp);
743 }
744 INP_INFO_RUNLOCK(&V_tcbinfo);
745
746 return (inp);
747}
748
749
750static inline void
751siftr_siftdata(struct pkt_node *pn, struct inpcb *inp, struct tcpcb *tp,
752 int ipver, int dir, int inp_locally_locked)
753{
754#ifdef SIFTR_IPV6
755 if (ipver == INP_IPV4) {
756 pn->ip_laddr[3] = inp->inp_laddr.s_addr;
757 pn->ip_faddr[3] = inp->inp_faddr.s_addr;
758#else
759 *((uint32_t *)pn->ip_laddr) = inp->inp_laddr.s_addr;
760 *((uint32_t *)pn->ip_faddr) = inp->inp_faddr.s_addr;
761#endif
762#ifdef SIFTR_IPV6
763 } else {
764 pn->ip_laddr[0] = inp->in6p_laddr.s6_addr32[0];
765 pn->ip_laddr[1] = inp->in6p_laddr.s6_addr32[1];
766 pn->ip_laddr[2] = inp->in6p_laddr.s6_addr32[2];
767 pn->ip_laddr[3] = inp->in6p_laddr.s6_addr32[3];
768 pn->ip_faddr[0] = inp->in6p_faddr.s6_addr32[0];
769 pn->ip_faddr[1] = inp->in6p_faddr.s6_addr32[1];
770 pn->ip_faddr[2] = inp->in6p_faddr.s6_addr32[2];
771 pn->ip_faddr[3] = inp->in6p_faddr.s6_addr32[3];
772 }
773#endif
774 pn->tcp_localport = inp->inp_lport;
775 pn->tcp_foreignport = inp->inp_fport;
776 pn->snd_cwnd = tp->snd_cwnd;
777 pn->snd_wnd = tp->snd_wnd;
778 pn->rcv_wnd = tp->rcv_wnd;
779 pn->snd_bwnd = 0; /* Unused, kept for compat. */
780 pn->snd_ssthresh = tp->snd_ssthresh;
781 pn->snd_scale = tp->snd_scale;
782 pn->rcv_scale = tp->rcv_scale;
783 pn->conn_state = tp->t_state;
784 pn->max_seg_size = tp->t_maxseg;
785 pn->smoothed_rtt = tp->t_srtt;
786 pn->sack_enabled = (tp->t_flags & TF_SACK_PERMIT) != 0;
787 pn->flags = tp->t_flags;
788 pn->rxt_length = tp->t_rxtcur;
789 pn->snd_buf_hiwater = inp->inp_socket->so_snd.sb_hiwat;
790 pn->snd_buf_cc = inp->inp_socket->so_snd.sb_cc;
791 pn->rcv_buf_hiwater = inp->inp_socket->so_rcv.sb_hiwat;
792 pn->rcv_buf_cc = inp->inp_socket->so_rcv.sb_cc;
793 pn->sent_inflight_bytes = tp->snd_max - tp->snd_una;
794 pn->t_segqlen = tp->t_segqlen;
795
796 /* We've finished accessing the tcb so release the lock. */
797 if (inp_locally_locked)
798 INP_RUNLOCK(inp);
799
800 pn->ipver = ipver;
801 pn->direction = dir;
802
803 /*
804 * Significantly more accurate than using getmicrotime(), but slower!
805 * Gives true microsecond resolution at the expense of a hit to
806 * maximum pps throughput processing when SIFTR is loaded and enabled.
807 */
808 microtime(&pn->tval);
809}
810
811
812/*
813 * pfil hook that is called for each IPv4 packet making its way through the
814 * stack in either direction.
815 * The pfil subsystem holds a non-sleepable mutex somewhere when
816 * calling our hook function, so we can't sleep at all.
817 * It's very important to use the M_NOWAIT flag with all function calls
818 * that support it so that they won't sleep, otherwise you get a panic.
819 */
820static int
821siftr_chkpkt(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
822 struct inpcb *inp)
823{
824 struct pkt_node *pn;
825 struct ip *ip;
826 struct tcphdr *th;
827 struct tcpcb *tp;
828 struct siftr_stats *ss;
829 unsigned int ip_hl;
830 int inp_locally_locked;
831
832 inp_locally_locked = 0;
833 ss = DPCPU_PTR(ss);
834
835 /*
836 * m_pullup is not required here because ip_{input|output}
837 * already do the heavy lifting for us.
838 */
839
840 ip = mtod(*m, struct ip *);
841
842 /* Only continue processing if the packet is TCP. */
843 if (ip->ip_p != IPPROTO_TCP)
844 goto ret;
845
846 /*
847 * If a kernel subsystem reinjects packets into the stack, our pfil
848 * hook will be called multiple times for the same packet.
849 * Make sure we only process unique packets.
850 */
851 if (siftr_chkreinject(*m, dir, ss))
852 goto ret;
853
854 if (dir == PFIL_IN)
855 ss->n_in++;
856 else
857 ss->n_out++;
858
859 /*
860 * Create a tcphdr struct starting at the correct offset
861 * in the IP packet. ip->ip_hl gives the ip header length
862 * in 4-byte words, so multiply it to get the size in bytes.
863 */
864 ip_hl = (ip->ip_hl << 2);
865 th = (struct tcphdr *)((caddr_t)ip + ip_hl);
866
867 /*
868 * If the pfil hooks don't provide a pointer to the
869 * inpcb, we need to find it ourselves and lock it.
870 */
871 if (!inp) {
872 /* Find the corresponding inpcb for this pkt. */
873 inp = siftr_findinpcb(INP_IPV4, ip, *m, th->th_sport,
874 th->th_dport, dir, ss);
875
876 if (inp == NULL)
877 goto ret;
878 else
879 inp_locally_locked = 1;
880 }
881
882 INP_LOCK_ASSERT(inp);
883
884 /* Find the TCP control block that corresponds with this packet */
885 tp = intotcpcb(inp);
886
887 /*
888 * If we can't find the TCP control block (happens occasionaly for a
889 * packet sent during the shutdown phase of a TCP connection),
890 * or we're in the timewait state, bail
891 */
892 if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
893 if (dir == PFIL_IN)
894 ss->nskip_in_tcpcb++;
895 else
896 ss->nskip_out_tcpcb++;
897
898 goto inp_unlock;
899 }
900
901 pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
902
903 if (pn == NULL) {
904 if (dir == PFIL_IN)
905 ss->nskip_in_malloc++;
906 else
907 ss->nskip_out_malloc++;
908
909 goto inp_unlock;
910 }
911
912 siftr_siftdata(pn, inp, tp, INP_IPV4, dir, inp_locally_locked);
913
914 if (siftr_generate_hashes) {
915 if ((*m)->m_pkthdr.csum_flags & CSUM_TCP) {
916 /*
917 * For outbound packets, the TCP checksum isn't
918 * calculated yet. This is a problem for our packet
919 * hashing as the receiver will calc a different hash
920 * to ours if we don't include the correct TCP checksum
921 * in the bytes being hashed. To work around this
922 * problem, we manually calc the TCP checksum here in
923 * software. We unset the CSUM_TCP flag so the lower
924 * layers don't recalc it.
925 */
926 (*m)->m_pkthdr.csum_flags &= ~CSUM_TCP;
927
928 /*
929 * Calculate the TCP checksum in software and assign
930 * to correct TCP header field, which will follow the
931 * packet mbuf down the stack. The trick here is that
932 * tcp_output() sets th->th_sum to the checksum of the
933 * pseudo header for us already. Because of the nature
934 * of the checksumming algorithm, we can sum over the
935 * entire IP payload (i.e. TCP header and data), which
936 * will include the already calculated pseduo header
937 * checksum, thus giving us the complete TCP checksum.
938 *
939 * To put it in simple terms, if checksum(1,2,3,4)=10,
940 * then checksum(1,2,3,4,5) == checksum(10,5).
941 * This property is what allows us to "cheat" and
942 * checksum only the IP payload which has the TCP
943 * th_sum field populated with the pseudo header's
944 * checksum, and not need to futz around checksumming
945 * pseudo header bytes and TCP header/data in one hit.
946 * Refer to RFC 1071 for more info.
947 *
948 * NB: in_cksum_skip(struct mbuf *m, int len, int skip)
949 * in_cksum_skip 2nd argument is NOT the number of
950 * bytes to read from the mbuf at "skip" bytes offset
951 * from the start of the mbuf (very counter intuitive!).
952 * The number of bytes to read is calculated internally
953 * by the function as len-skip i.e. to sum over the IP
954 * payload (TCP header + data) bytes, it is INCORRECT
955 * to call the function like this:
956 * in_cksum_skip(at, ip->ip_len - offset, offset)
957 * Rather, it should be called like this:
958 * in_cksum_skip(at, ip->ip_len, offset)
959 * which means read "ip->ip_len - offset" bytes from
960 * the mbuf cluster "at" at offset "offset" bytes from
961 * the beginning of the "at" mbuf's data pointer.
962 */
963 th->th_sum = in_cksum_skip(*m, ip->ip_len, ip_hl);
964 }
965
966 /*
967 * XXX: Having to calculate the checksum in software and then
968 * hash over all bytes is really inefficient. Would be nice to
969 * find a way to create the hash and checksum in the same pass
970 * over the bytes.
971 */
972 pn->hash = hash_pkt(*m, ip_hl);
973 }
974
975 mtx_lock(&siftr_pkt_queue_mtx);
976 STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
977 mtx_unlock(&siftr_pkt_queue_mtx);
978 goto ret;
979
980inp_unlock:
981 if (inp_locally_locked)
982 INP_RUNLOCK(inp);
983
984ret:
985 /* Returning 0 ensures pfil will not discard the pkt */
986 return (0);
987}
988
989
990#ifdef SIFTR_IPV6
991static int
992siftr_chkpkt6(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
993 struct inpcb *inp)
994{
995 struct pkt_node *pn;
996 struct ip6_hdr *ip6;
997 struct tcphdr *th;
998 struct tcpcb *tp;
999 struct siftr_stats *ss;
1000 unsigned int ip6_hl;
1001 int inp_locally_locked;
1002
1003 inp_locally_locked = 0;
1004 ss = DPCPU_PTR(ss);
1005
1006 /*
1007 * m_pullup is not required here because ip6_{input|output}
1008 * already do the heavy lifting for us.
1009 */
1010
1011 ip6 = mtod(*m, struct ip6_hdr *);
1012
1013 /*
1014 * Only continue processing if the packet is TCP
1015 * XXX: We should follow the next header fields
1016 * as shown on Pg 6 RFC 2460, but right now we'll
1017 * only check pkts that have no extension headers.
1018 */
1019 if (ip6->ip6_nxt != IPPROTO_TCP)
1020 goto ret6;
1021
1022 /*
1023 * If a kernel subsystem reinjects packets into the stack, our pfil
1024 * hook will be called multiple times for the same packet.
1025 * Make sure we only process unique packets.
1026 */
1027 if (siftr_chkreinject(*m, dir, ss))
1028 goto ret6;
1029
1030 if (dir == PFIL_IN)
1031 ss->n_in++;
1032 else
1033 ss->n_out++;
1034
1035 ip6_hl = sizeof(struct ip6_hdr);
1036
1037 /*
1038 * Create a tcphdr struct starting at the correct offset
1039 * in the ipv6 packet. ip->ip_hl gives the ip header length
1040 * in 4-byte words, so multiply it to get the size in bytes.
1041 */
1042 th = (struct tcphdr *)((caddr_t)ip6 + ip6_hl);
1043
1044 /*
1045 * For inbound packets, the pfil hooks don't provide a pointer to the
1046 * inpcb, so we need to find it ourselves and lock it.
1047 */
1048 if (!inp) {
1049 /* Find the corresponding inpcb for this pkt. */
1050 inp = siftr_findinpcb(INP_IPV6, (struct ip *)ip6, *m,
1051 th->th_sport, th->th_dport, dir, ss);
1052
1053 if (inp == NULL)
1054 goto ret6;
1055 else
1056 inp_locally_locked = 1;
1057 }
1058
1059 /* Find the TCP control block that corresponds with this packet. */
1060 tp = intotcpcb(inp);
1061
1062 /*
1063 * If we can't find the TCP control block (happens occasionaly for a
1064 * packet sent during the shutdown phase of a TCP connection),
1065 * or we're in the timewait state, bail.
1066 */
1067 if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
1068 if (dir == PFIL_IN)
1069 ss->nskip_in_tcpcb++;
1070 else
1071 ss->nskip_out_tcpcb++;
1072
1073 goto inp_unlock6;
1074 }
1075
1076 pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
1077
1078 if (pn == NULL) {
1079 if (dir == PFIL_IN)
1080 ss->nskip_in_malloc++;
1081 else
1082 ss->nskip_out_malloc++;
1083
1084 goto inp_unlock6;
1085 }
1086
1087 siftr_siftdata(pn, inp, tp, INP_IPV6, dir, inp_locally_locked);
1088
1089 /* XXX: Figure out how to generate hashes for IPv6 packets. */
1090
1091 mtx_lock(&siftr_pkt_queue_mtx);
1092 STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
1093 mtx_unlock(&siftr_pkt_queue_mtx);
1094 goto ret6;
1095
1096inp_unlock6:
1097 if (inp_locally_locked)
1098 INP_RUNLOCK(inp);
1099
1100ret6:
1101 /* Returning 0 ensures pfil will not discard the pkt. */
1102 return (0);
1103}
1104#endif /* #ifdef SIFTR_IPV6 */
1105
1106
1107static int
1108siftr_pfil(int action)
1109{
1110 struct pfil_head *pfh_inet;
1111#ifdef SIFTR_IPV6
1112 struct pfil_head *pfh_inet6;
1113#endif
1114 VNET_ITERATOR_DECL(vnet_iter);
1115
1116 VNET_LIST_RLOCK();
1117 VNET_FOREACH(vnet_iter) {
1118 CURVNET_SET(vnet_iter);
1119 pfh_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET);
1120#ifdef SIFTR_IPV6
1121 pfh_inet6 = pfil_head_get(PFIL_TYPE_AF, AF_INET6);
1122#endif
1123
1124 if (action == HOOK) {
1125 pfil_add_hook(siftr_chkpkt, NULL,
1126 PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
1127#ifdef SIFTR_IPV6
1128 pfil_add_hook(siftr_chkpkt6, NULL,
1129 PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
1130#endif
1131 } else if (action == UNHOOK) {
1132 pfil_remove_hook(siftr_chkpkt, NULL,
1133 PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
1134#ifdef SIFTR_IPV6
1135 pfil_remove_hook(siftr_chkpkt6, NULL,
1136 PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
1137#endif
1138 }
1139 CURVNET_RESTORE();
1140 }
1141 VNET_LIST_RUNLOCK();
1142
1143 return (0);
1144}
1145
1146
1147static int
1148siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS)
1149{
1150 struct alq *new_alq;
1151 int error;
1152
1153 if (req->newptr == NULL)
1154 goto skip;
1155
1156 /* If old filename and new filename are different. */
1157 if (strncmp(siftr_logfile, (char *)req->newptr, PATH_MAX)) {
1158
1159 error = alq_open(&new_alq, req->newptr, curthread->td_ucred,
1160 SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1161
1162 /* Bail if unable to create new alq. */
1163 if (error)
1164 return (1);
1165
1166 /*
1167 * If disabled, siftr_alq == NULL so we simply close
1168 * the alq as we've proved it can be opened.
1169 * If enabled, close the existing alq and switch the old
1170 * for the new.
1171 */
1172 if (siftr_alq == NULL)
1173 alq_close(new_alq);
1174 else {
1175 alq_close(siftr_alq);
1176 siftr_alq = new_alq;
1177 }
1178 }
1179
1180skip:
1181 return (sysctl_handle_string(oidp, arg1, arg2, req));
1182}
1183
1184
1185static int
1186siftr_manage_ops(uint8_t action)
1187{
1188 struct siftr_stats totalss;
1189 struct timeval tval;
1190 struct flow_hash_node *counter, *tmp_counter;
1191 struct sbuf *s;
1192 int i, key_index, ret, error;
1193 uint32_t bytes_to_write, total_skipped_pkts;
1194 uint16_t lport, fport;
1195 uint8_t *key, ipver;
1196
1197#ifdef SIFTR_IPV6
1198 uint32_t laddr[4];
1199 uint32_t faddr[4];
1200#else
1201 uint8_t laddr[4];
1202 uint8_t faddr[4];
1203#endif
1204
1205 error = 0;
1206 total_skipped_pkts = 0;
1207
1208 /* Init an autosizing sbuf that initially holds 200 chars. */
1209 if ((s = sbuf_new(NULL, NULL, 200, SBUF_AUTOEXTEND)) == NULL)
1210 return (-1);
1211
1212 if (action == SIFTR_ENABLE) {
1213 /*
1214 * Create our alq
1215 * XXX: We should abort if alq_open fails!
1216 */
1217 alq_open(&siftr_alq, siftr_logfile, curthread->td_ucred,
1218 SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1219
1220 STAILQ_INIT(&pkt_queue);
1221
1222 DPCPU_ZERO(ss);
1223
1224 siftr_exit_pkt_manager_thread = 0;
1225
1226 ret = kthread_add(&siftr_pkt_manager_thread, NULL, NULL,
1227 &siftr_pkt_manager_thr, RFNOWAIT, 0,
1228 "siftr_pkt_manager_thr");
1229
1230 siftr_pfil(HOOK);
1231
1232 microtime(&tval);
1233
1234 sbuf_printf(s,
1235 "enable_time_secs=%jd\tenable_time_usecs=%06ld\t"
1236 "siftrver=%s\thz=%u\ttcp_rtt_scale=%u\tsysname=%s\t"
1237 "sysver=%u\tipmode=%u\n",
1238 (intmax_t)tval.tv_sec, tval.tv_usec, MODVERSION_STR, hz,
1239 TCP_RTT_SCALE, SYS_NAME, __FreeBSD_version, SIFTR_IPMODE);
1240
1241 sbuf_finish(s);
1242 alq_writen(siftr_alq, sbuf_data(s), sbuf_len(s), ALQ_WAITOK);
1243
1244 } else if (action == SIFTR_DISABLE && siftr_pkt_manager_thr != NULL) {
1245 /*
1246 * Remove the pfil hook functions. All threads currently in
1247 * the hook functions are allowed to exit before siftr_pfil()
1248 * returns.
1249 */
1250 siftr_pfil(UNHOOK);
1251
1252 /* This will block until the pkt manager thread unlocks it. */
1253 mtx_lock(&siftr_pkt_mgr_mtx);
1254
1255 /* Tell the pkt manager thread that it should exit now. */
1256 siftr_exit_pkt_manager_thread = 1;
1257
1258 /*
1259 * Wake the pkt_manager thread so it realises that
1260 * siftr_exit_pkt_manager_thread == 1 and exits gracefully.
1261 * The wakeup won't be delivered until we unlock
1262 * siftr_pkt_mgr_mtx so this isn't racy.
1263 */
1264 wakeup(&wait_for_pkt);
1265
1266 /* Wait for the pkt_manager thread to exit. */
1267 mtx_sleep(siftr_pkt_manager_thr, &siftr_pkt_mgr_mtx, PWAIT,
1268 "thrwait", 0);
1269
1270 siftr_pkt_manager_thr = NULL;
1271 mtx_unlock(&siftr_pkt_mgr_mtx);
1272
1273 totalss.n_in = DPCPU_VARSUM(ss, n_in);
1274 totalss.n_out = DPCPU_VARSUM(ss, n_out);
1275 totalss.nskip_in_malloc = DPCPU_VARSUM(ss, nskip_in_malloc);
1276 totalss.nskip_out_malloc = DPCPU_VARSUM(ss, nskip_out_malloc);
1277 totalss.nskip_in_mtx = DPCPU_VARSUM(ss, nskip_in_mtx);
1278 totalss.nskip_out_mtx = DPCPU_VARSUM(ss, nskip_out_mtx);
1279 totalss.nskip_in_tcpcb = DPCPU_VARSUM(ss, nskip_in_tcpcb);
1280 totalss.nskip_out_tcpcb = DPCPU_VARSUM(ss, nskip_out_tcpcb);
1281 totalss.nskip_in_inpcb = DPCPU_VARSUM(ss, nskip_in_inpcb);
1282 totalss.nskip_out_inpcb = DPCPU_VARSUM(ss, nskip_out_inpcb);
1283
1284 total_skipped_pkts = totalss.nskip_in_malloc +
1285 totalss.nskip_out_malloc + totalss.nskip_in_mtx +
1286 totalss.nskip_out_mtx + totalss.nskip_in_tcpcb +
1287 totalss.nskip_out_tcpcb + totalss.nskip_in_inpcb +
1288 totalss.nskip_out_inpcb;
1289
1290 microtime(&tval);
1291
1292 sbuf_printf(s,
1293 "disable_time_secs=%jd\tdisable_time_usecs=%06ld\t"
1294 "num_inbound_tcp_pkts=%ju\tnum_outbound_tcp_pkts=%ju\t"
1295 "total_tcp_pkts=%ju\tnum_inbound_skipped_pkts_malloc=%u\t"
1296 "num_outbound_skipped_pkts_malloc=%u\t"
1297 "num_inbound_skipped_pkts_mtx=%u\t"
1298 "num_outbound_skipped_pkts_mtx=%u\t"
1299 "num_inbound_skipped_pkts_tcpcb=%u\t"
1300 "num_outbound_skipped_pkts_tcpcb=%u\t"
1301 "num_inbound_skipped_pkts_inpcb=%u\t"
1302 "num_outbound_skipped_pkts_inpcb=%u\t"
1303 "total_skipped_tcp_pkts=%u\tflow_list=",
1304 (intmax_t)tval.tv_sec,
1305 tval.tv_usec,
1306 (uintmax_t)totalss.n_in,
1307 (uintmax_t)totalss.n_out,
1308 (uintmax_t)(totalss.n_in + totalss.n_out),
1309 totalss.nskip_in_malloc,
1310 totalss.nskip_out_malloc,
1311 totalss.nskip_in_mtx,
1312 totalss.nskip_out_mtx,
1313 totalss.nskip_in_tcpcb,
1314 totalss.nskip_out_tcpcb,
1315 totalss.nskip_in_inpcb,
1316 totalss.nskip_out_inpcb,
1317 total_skipped_pkts);
1318
1319 /*
1320 * Iterate over the flow hash, printing a summary of each
1321 * flow seen and freeing any malloc'd memory.
1322 * The hash consists of an array of LISTs (man 3 queue).
1323 */
1324 for (i = 0; i < siftr_hashmask; i++) {
1325 LIST_FOREACH_SAFE(counter, counter_hash + i, nodes,
1326 tmp_counter) {
1327 key = counter->key;
1328 key_index = 1;
1329
1330 ipver = key[0];
1331
1332 memcpy(laddr, key + key_index, sizeof(laddr));
1333 key_index += sizeof(laddr);
1334 memcpy(&lport, key + key_index, sizeof(lport));
1335 key_index += sizeof(lport);
1336 memcpy(faddr, key + key_index, sizeof(faddr));
1337 key_index += sizeof(faddr);
1338 memcpy(&fport, key + key_index, sizeof(fport));
1339
1340#ifdef SIFTR_IPV6
1341 laddr[3] = ntohl(laddr[3]);
1342 faddr[3] = ntohl(faddr[3]);
1343
1344 if (ipver == INP_IPV6) {
1345 laddr[0] = ntohl(laddr[0]);
1346 laddr[1] = ntohl(laddr[1]);
1347 laddr[2] = ntohl(laddr[2]);
1348 faddr[0] = ntohl(faddr[0]);
1349 faddr[1] = ntohl(faddr[1]);
1350 faddr[2] = ntohl(faddr[2]);
1351
1352 sbuf_printf(s,
1353 "%x:%x:%x:%x:%x:%x:%x:%x;%u-"
1354 "%x:%x:%x:%x:%x:%x:%x:%x;%u,",
1355 UPPER_SHORT(laddr[0]),
1356 LOWER_SHORT(laddr[0]),
1357 UPPER_SHORT(laddr[1]),
1358 LOWER_SHORT(laddr[1]),
1359 UPPER_SHORT(laddr[2]),
1360 LOWER_SHORT(laddr[2]),
1361 UPPER_SHORT(laddr[3]),
1362 LOWER_SHORT(laddr[3]),
1363 ntohs(lport),
1364 UPPER_SHORT(faddr[0]),
1365 LOWER_SHORT(faddr[0]),
1366 UPPER_SHORT(faddr[1]),
1367 LOWER_SHORT(faddr[1]),
1368 UPPER_SHORT(faddr[2]),
1369 LOWER_SHORT(faddr[2]),
1370 UPPER_SHORT(faddr[3]),
1371 LOWER_SHORT(faddr[3]),
1372 ntohs(fport));
1373 } else {
1374 laddr[0] = FIRST_OCTET(laddr[3]);
1375 laddr[1] = SECOND_OCTET(laddr[3]);
1376 laddr[2] = THIRD_OCTET(laddr[3]);
1377 laddr[3] = FOURTH_OCTET(laddr[3]);
1378 faddr[0] = FIRST_OCTET(faddr[3]);
1379 faddr[1] = SECOND_OCTET(faddr[3]);
1380 faddr[2] = THIRD_OCTET(faddr[3]);
1381 faddr[3] = FOURTH_OCTET(faddr[3]);
1382#endif
1383 sbuf_printf(s,
1384 "%u.%u.%u.%u;%u-%u.%u.%u.%u;%u,",
1385 laddr[0],
1386 laddr[1],
1387 laddr[2],
1388 laddr[3],
1389 ntohs(lport),
1390 faddr[0],
1391 faddr[1],
1392 faddr[2],
1393 faddr[3],
1394 ntohs(fport));
1395#ifdef SIFTR_IPV6
1396 }
1397#endif
1398
1399 free(counter, M_SIFTR_HASHNODE);
1400 }
1401
1402 LIST_INIT(counter_hash + i);
1403 }
1404
1405 sbuf_printf(s, "\n");
1406 sbuf_finish(s);
1407
1408 i = 0;
1409 do {
1410 bytes_to_write = min(SIFTR_ALQ_BUFLEN, sbuf_len(s)-i);
1411 alq_writen(siftr_alq, sbuf_data(s)+i, bytes_to_write, ALQ_WAITOK);
1412 i += bytes_to_write;
1413 } while (i < sbuf_len(s));
1414
1415 alq_close(siftr_alq);
1416 siftr_alq = NULL;
1417 }
1418
1419 sbuf_delete(s);
1420
1421 /*
1422 * XXX: Should be using ret to check if any functions fail
1423 * and set error appropriately
1424 */
1425
1426 return (error);
1427}
1428
1429
1430static int
1431siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS)
1432{
1433 if (req->newptr == NULL)
1434 goto skip;
1435
1436 /* If the value passed in isn't 0 or 1, return an error. */
1437 if (CAST_PTR_INT(req->newptr) != 0 && CAST_PTR_INT(req->newptr) != 1)
1438 return (1);
1439
1440 /* If we are changing state (0 to 1 or 1 to 0). */
1441 if (CAST_PTR_INT(req->newptr) != siftr_enabled )
1442 if (siftr_manage_ops(CAST_PTR_INT(req->newptr))) {
1443 siftr_manage_ops(SIFTR_DISABLE);
1444 return (1);
1445 }
1446
1447skip:
1448 return (sysctl_handle_int(oidp, arg1, arg2, req));
1449}
1450
1451
1452static void
1453siftr_shutdown_handler(void *arg)
1454{
1455 siftr_manage_ops(SIFTR_DISABLE);
1456}
1457
1458
1459/*
1460 * Module is being unloaded or machine is shutting down. Take care of cleanup.
1461 */
1462static int
1463deinit_siftr(void)
1464{
1465 /* Cleanup. */
1466 siftr_manage_ops(SIFTR_DISABLE);
1467 hashdestroy(counter_hash, M_SIFTR, siftr_hashmask);
1468 mtx_destroy(&siftr_pkt_queue_mtx);
1469 mtx_destroy(&siftr_pkt_mgr_mtx);
1470
1471 return (0);
1472}
1473
1474
1475/*
1476 * Module has just been loaded into the kernel.
1477 */
1478static int
1479init_siftr(void)
1480{
1481 EVENTHANDLER_REGISTER(shutdown_pre_sync, siftr_shutdown_handler, NULL,
1482 SHUTDOWN_PRI_FIRST);
1483
1484 /* Initialise our flow counter hash table. */
1485 counter_hash = hashinit(SIFTR_EXPECTED_MAX_TCP_FLOWS, M_SIFTR,
1486 &siftr_hashmask);
1487
1488 mtx_init(&siftr_pkt_queue_mtx, "siftr_pkt_queue_mtx", NULL, MTX_DEF);
1489 mtx_init(&siftr_pkt_mgr_mtx, "siftr_pkt_mgr_mtx", NULL, MTX_DEF);
1490
1491 /* Print message to the user's current terminal. */
1492 uprintf("\nStatistical Information For TCP Research (SIFTR) %s\n"
1493 " http://caia.swin.edu.au/urp/newtcp\n\n",
1494 MODVERSION_STR);
1495
1496 return (0);
1497}
1498
1499
1500/*
1501 * This is the function that is called to load and unload the module.
1502 * When the module is loaded, this function is called once with
1503 * "what" == MOD_LOAD
1504 * When the module is unloaded, this function is called twice with
1505 * "what" = MOD_QUIESCE first, followed by "what" = MOD_UNLOAD second
1506 * When the system is shut down e.g. CTRL-ALT-DEL or using the shutdown command,
1507 * this function is called once with "what" = MOD_SHUTDOWN
1508 * When the system is shut down, the handler isn't called until the very end
1509 * of the shutdown sequence i.e. after the disks have been synced.
1510 */
1511static int
1512siftr_load_handler(module_t mod, int what, void *arg)
1513{
1514 int ret;
1515
1516 switch (what) {
1517 case MOD_LOAD:
1518 ret = init_siftr();
1519 break;
1520
1521 case MOD_QUIESCE:
1522 case MOD_SHUTDOWN:
1523 ret = deinit_siftr();
1524 break;
1525
1526 case MOD_UNLOAD:
1527 ret = 0;
1528 break;
1529
1530 default:
1531 ret = EINVAL;
1532 break;
1533 }
1534
1535 return (ret);
1536}
1537
1538
1539static moduledata_t siftr_mod = {
1540 .name = "siftr",
1541 .evhand = siftr_load_handler,
1542};
1543
1544/*
1545 * Param 1: name of the kernel module
1546 * Param 2: moduledata_t struct containing info about the kernel module
1547 * and the execution entry point for the module
1548 * Param 3: From sysinit_sub_id enumeration in /usr/include/sys/kernel.h
1549 * Defines the module initialisation order
1550 * Param 4: From sysinit_elem_order enumeration in /usr/include/sys/kernel.h
1551 * Defines the initialisation order of this kld relative to others
1552 * within the same subsystem as defined by param 3
1553 */
1554DECLARE_MODULE(siftr, siftr_mod, SI_SUB_SMP, SI_ORDER_ANY);
1555MODULE_DEPEND(siftr, alq, 1, 1, 1);
1556MODULE_VERSION(siftr, MODVERSION);
264
265static volatile unsigned int siftr_exit_pkt_manager_thread = 0;
266static unsigned int siftr_enabled = 0;
267static unsigned int siftr_pkts_per_log = 1;
268static unsigned int siftr_generate_hashes = 0;
269/* static unsigned int siftr_binary_log = 0; */
270static char siftr_logfile[PATH_MAX] = "/var/log/siftr.log";
271static u_long siftr_hashmask;
272STAILQ_HEAD(pkthead, pkt_node) pkt_queue = STAILQ_HEAD_INITIALIZER(pkt_queue);
273LIST_HEAD(listhead, flow_hash_node) *counter_hash;
274static int wait_for_pkt;
275static struct alq *siftr_alq = NULL;
276static struct mtx siftr_pkt_queue_mtx;
277static struct mtx siftr_pkt_mgr_mtx;
278static struct thread *siftr_pkt_manager_thr = NULL;
279/*
280 * pfil.h defines PFIL_IN as 1 and PFIL_OUT as 2,
281 * which we use as an index into this array.
282 */
283static char direction[3] = {'\0', 'i','o'};
284
285/* Required function prototypes. */
286static int siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS);
287static int siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS);
288
289
290/* Declare the net.inet.siftr sysctl tree and populate it. */
291
292SYSCTL_DECL(_net_inet_siftr);
293
294SYSCTL_NODE(_net_inet, OID_AUTO, siftr, CTLFLAG_RW, NULL,
295 "siftr related settings");
296
297SYSCTL_PROC(_net_inet_siftr, OID_AUTO, enabled, CTLTYPE_UINT|CTLFLAG_RW,
298 &siftr_enabled, 0, &siftr_sysctl_enabled_handler, "IU",
299 "switch siftr module operations on/off");
300
301SYSCTL_PROC(_net_inet_siftr, OID_AUTO, logfile, CTLTYPE_STRING|CTLFLAG_RW,
302 &siftr_logfile, sizeof(siftr_logfile), &siftr_sysctl_logfile_name_handler,
303 "A", "file to save siftr log messages to");
304
305SYSCTL_UINT(_net_inet_siftr, OID_AUTO, ppl, CTLFLAG_RW,
306 &siftr_pkts_per_log, 1,
307 "number of packets between generating a log message");
308
309SYSCTL_UINT(_net_inet_siftr, OID_AUTO, genhashes, CTLFLAG_RW,
310 &siftr_generate_hashes, 0,
311 "enable packet hash generation");
312
313/* XXX: TODO
314SYSCTL_UINT(_net_inet_siftr, OID_AUTO, binary, CTLFLAG_RW,
315 &siftr_binary_log, 0,
316 "write log files in binary instead of ascii");
317*/
318
319
320/* Begin functions. */
321
322static void
323siftr_process_pkt(struct pkt_node * pkt_node)
324{
325 struct flow_hash_node *hash_node;
326 struct listhead *counter_list;
327 struct siftr_stats *ss;
328 struct ale *log_buf;
329 uint8_t key[FLOW_KEY_LEN];
330 uint8_t found_match, key_offset;
331
332 hash_node = NULL;
333 ss = DPCPU_PTR(ss);
334 found_match = 0;
335 key_offset = 1;
336
337 /*
338 * Create the key that will be used to create a hash index
339 * into our hash table. Our key consists of:
340 * ipversion, localip, localport, foreignip, foreignport
341 */
342 key[0] = pkt_node->ipver;
343 memcpy(key + key_offset, &pkt_node->ip_laddr,
344 sizeof(pkt_node->ip_laddr));
345 key_offset += sizeof(pkt_node->ip_laddr);
346 memcpy(key + key_offset, &pkt_node->tcp_localport,
347 sizeof(pkt_node->tcp_localport));
348 key_offset += sizeof(pkt_node->tcp_localport);
349 memcpy(key + key_offset, &pkt_node->ip_faddr,
350 sizeof(pkt_node->ip_faddr));
351 key_offset += sizeof(pkt_node->ip_faddr);
352 memcpy(key + key_offset, &pkt_node->tcp_foreignport,
353 sizeof(pkt_node->tcp_foreignport));
354
355 counter_list = counter_hash +
356 (hash32_buf(key, sizeof(key), 0) & siftr_hashmask);
357
358 /*
359 * If the list is not empty i.e. the hash index has
360 * been used by another flow previously.
361 */
362 if (LIST_FIRST(counter_list) != NULL) {
363 /*
364 * Loop through the hash nodes in the list.
365 * There should normally only be 1 hash node in the list,
366 * except if there have been collisions at the hash index
367 * computed by hash32_buf().
368 */
369 LIST_FOREACH(hash_node, counter_list, nodes) {
370 /*
371 * Check if the key for the pkt we are currently
372 * processing is the same as the key stored in the
373 * hash node we are currently processing.
374 * If they are the same, then we've found the
375 * hash node that stores the counter for the flow
376 * the pkt belongs to.
377 */
378 if (memcmp(hash_node->key, key, sizeof(key)) == 0) {
379 found_match = 1;
380 break;
381 }
382 }
383 }
384
385 /* If this flow hash hasn't been seen before or we have a collision. */
386 if (hash_node == NULL || !found_match) {
387 /* Create a new hash node to store the flow's counter. */
388 hash_node = malloc(sizeof(struct flow_hash_node),
389 M_SIFTR_HASHNODE, M_WAITOK);
390
391 if (hash_node != NULL) {
392 /* Initialise our new hash node list entry. */
393 hash_node->counter = 0;
394 memcpy(hash_node->key, key, sizeof(key));
395 LIST_INSERT_HEAD(counter_list, hash_node, nodes);
396 } else {
397 /* Malloc failed. */
398 if (pkt_node->direction == PFIL_IN)
399 ss->nskip_in_malloc++;
400 else
401 ss->nskip_out_malloc++;
402
403 return;
404 }
405 } else if (siftr_pkts_per_log > 1) {
406 /*
407 * Taking the remainder of the counter divided
408 * by the current value of siftr_pkts_per_log
409 * and storing that in counter provides a neat
410 * way to modulate the frequency of log
411 * messages being written to the log file.
412 */
413 hash_node->counter = (hash_node->counter + 1) %
414 siftr_pkts_per_log;
415
416 /*
417 * If we have not seen enough packets since the last time
418 * we wrote a log message for this connection, return.
419 */
420 if (hash_node->counter > 0)
421 return;
422 }
423
424 log_buf = alq_getn(siftr_alq, MAX_LOG_MSG_LEN, ALQ_WAITOK);
425
426 if (log_buf == NULL)
427 return; /* Should only happen if the ALQ is shutting down. */
428
429#ifdef SIFTR_IPV6
430 pkt_node->ip_laddr[3] = ntohl(pkt_node->ip_laddr[3]);
431 pkt_node->ip_faddr[3] = ntohl(pkt_node->ip_faddr[3]);
432
433 if (pkt_node->ipver == INP_IPV6) { /* IPv6 packet */
434 pkt_node->ip_laddr[0] = ntohl(pkt_node->ip_laddr[0]);
435 pkt_node->ip_laddr[1] = ntohl(pkt_node->ip_laddr[1]);
436 pkt_node->ip_laddr[2] = ntohl(pkt_node->ip_laddr[2]);
437 pkt_node->ip_faddr[0] = ntohl(pkt_node->ip_faddr[0]);
438 pkt_node->ip_faddr[1] = ntohl(pkt_node->ip_faddr[1]);
439 pkt_node->ip_faddr[2] = ntohl(pkt_node->ip_faddr[2]);
440
441 /* Construct an IPv6 log message. */
442 log_buf->ae_bytesused = snprintf(log_buf->ae_data,
443 MAX_LOG_MSG_LEN,
444 "%c,0x%08x,%zd.%06ld,%x:%x:%x:%x:%x:%x:%x:%x,%u,%x:%x:%x:"
445 "%x:%x:%x:%x:%x,%u,%ld,%ld,%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,"
446 "%u,%d,%u,%u,%u,%u,%u,%u\n",
447 direction[pkt_node->direction],
448 pkt_node->hash,
449 pkt_node->tval.tv_sec,
450 pkt_node->tval.tv_usec,
451 UPPER_SHORT(pkt_node->ip_laddr[0]),
452 LOWER_SHORT(pkt_node->ip_laddr[0]),
453 UPPER_SHORT(pkt_node->ip_laddr[1]),
454 LOWER_SHORT(pkt_node->ip_laddr[1]),
455 UPPER_SHORT(pkt_node->ip_laddr[2]),
456 LOWER_SHORT(pkt_node->ip_laddr[2]),
457 UPPER_SHORT(pkt_node->ip_laddr[3]),
458 LOWER_SHORT(pkt_node->ip_laddr[3]),
459 ntohs(pkt_node->tcp_localport),
460 UPPER_SHORT(pkt_node->ip_faddr[0]),
461 LOWER_SHORT(pkt_node->ip_faddr[0]),
462 UPPER_SHORT(pkt_node->ip_faddr[1]),
463 LOWER_SHORT(pkt_node->ip_faddr[1]),
464 UPPER_SHORT(pkt_node->ip_faddr[2]),
465 LOWER_SHORT(pkt_node->ip_faddr[2]),
466 UPPER_SHORT(pkt_node->ip_faddr[3]),
467 LOWER_SHORT(pkt_node->ip_faddr[3]),
468 ntohs(pkt_node->tcp_foreignport),
469 pkt_node->snd_ssthresh,
470 pkt_node->snd_cwnd,
471 pkt_node->snd_bwnd,
472 pkt_node->snd_wnd,
473 pkt_node->rcv_wnd,
474 pkt_node->snd_scale,
475 pkt_node->rcv_scale,
476 pkt_node->conn_state,
477 pkt_node->max_seg_size,
478 pkt_node->smoothed_rtt,
479 pkt_node->sack_enabled,
480 pkt_node->flags,
481 pkt_node->rxt_length,
482 pkt_node->snd_buf_hiwater,
483 pkt_node->snd_buf_cc,
484 pkt_node->rcv_buf_hiwater,
485 pkt_node->rcv_buf_cc,
486 pkt_node->sent_inflight_bytes,
487 pkt_node->t_segqlen);
488 } else { /* IPv4 packet */
489 pkt_node->ip_laddr[0] = FIRST_OCTET(pkt_node->ip_laddr[3]);
490 pkt_node->ip_laddr[1] = SECOND_OCTET(pkt_node->ip_laddr[3]);
491 pkt_node->ip_laddr[2] = THIRD_OCTET(pkt_node->ip_laddr[3]);
492 pkt_node->ip_laddr[3] = FOURTH_OCTET(pkt_node->ip_laddr[3]);
493 pkt_node->ip_faddr[0] = FIRST_OCTET(pkt_node->ip_faddr[3]);
494 pkt_node->ip_faddr[1] = SECOND_OCTET(pkt_node->ip_faddr[3]);
495 pkt_node->ip_faddr[2] = THIRD_OCTET(pkt_node->ip_faddr[3]);
496 pkt_node->ip_faddr[3] = FOURTH_OCTET(pkt_node->ip_faddr[3]);
497#endif /* SIFTR_IPV6 */
498
499 /* Construct an IPv4 log message. */
500 log_buf->ae_bytesused = snprintf(log_buf->ae_data,
501 MAX_LOG_MSG_LEN,
502 "%c,0x%08x,%jd.%06ld,%u.%u.%u.%u,%u,%u.%u.%u.%u,%u,%ld,%ld,"
503 "%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,%u,%d,%u,%u,%u,%u,%u,%u\n",
504 direction[pkt_node->direction],
505 pkt_node->hash,
506 (intmax_t)pkt_node->tval.tv_sec,
507 pkt_node->tval.tv_usec,
508 pkt_node->ip_laddr[0],
509 pkt_node->ip_laddr[1],
510 pkt_node->ip_laddr[2],
511 pkt_node->ip_laddr[3],
512 ntohs(pkt_node->tcp_localport),
513 pkt_node->ip_faddr[0],
514 pkt_node->ip_faddr[1],
515 pkt_node->ip_faddr[2],
516 pkt_node->ip_faddr[3],
517 ntohs(pkt_node->tcp_foreignport),
518 pkt_node->snd_ssthresh,
519 pkt_node->snd_cwnd,
520 pkt_node->snd_bwnd,
521 pkt_node->snd_wnd,
522 pkt_node->rcv_wnd,
523 pkt_node->snd_scale,
524 pkt_node->rcv_scale,
525 pkt_node->conn_state,
526 pkt_node->max_seg_size,
527 pkt_node->smoothed_rtt,
528 pkt_node->sack_enabled,
529 pkt_node->flags,
530 pkt_node->rxt_length,
531 pkt_node->snd_buf_hiwater,
532 pkt_node->snd_buf_cc,
533 pkt_node->rcv_buf_hiwater,
534 pkt_node->rcv_buf_cc,
535 pkt_node->sent_inflight_bytes,
536 pkt_node->t_segqlen);
537#ifdef SIFTR_IPV6
538 }
539#endif
540
541 alq_post_flags(siftr_alq, log_buf, 0);
542}
543
544
545static void
546siftr_pkt_manager_thread(void *arg)
547{
548 STAILQ_HEAD(pkthead, pkt_node) tmp_pkt_queue =
549 STAILQ_HEAD_INITIALIZER(tmp_pkt_queue);
550 struct pkt_node *pkt_node, *pkt_node_temp;
551 uint8_t draining;
552
553 draining = 2;
554
555 mtx_lock(&siftr_pkt_mgr_mtx);
556
557 /* draining == 0 when queue has been flushed and it's safe to exit. */
558 while (draining) {
559 /*
560 * Sleep until we are signalled to wake because thread has
561 * been told to exit or until 1 tick has passed.
562 */
563 mtx_sleep(&wait_for_pkt, &siftr_pkt_mgr_mtx, PWAIT, "pktwait",
564 1);
565
566 /* Gain exclusive access to the pkt_node queue. */
567 mtx_lock(&siftr_pkt_queue_mtx);
568
569 /*
570 * Move pkt_queue to tmp_pkt_queue, which leaves
571 * pkt_queue empty and ready to receive more pkt_nodes.
572 */
573 STAILQ_CONCAT(&tmp_pkt_queue, &pkt_queue);
574
575 /*
576 * We've finished making changes to the list. Unlock it
577 * so the pfil hooks can continue queuing pkt_nodes.
578 */
579 mtx_unlock(&siftr_pkt_queue_mtx);
580
581 /*
582 * We can't hold a mutex whilst calling siftr_process_pkt
583 * because ALQ might sleep waiting for buffer space.
584 */
585 mtx_unlock(&siftr_pkt_mgr_mtx);
586
587 /* Flush all pkt_nodes to the log file. */
588 STAILQ_FOREACH_SAFE(pkt_node, &tmp_pkt_queue, nodes,
589 pkt_node_temp) {
590 siftr_process_pkt(pkt_node);
591 STAILQ_REMOVE_HEAD(&tmp_pkt_queue, nodes);
592 free(pkt_node, M_SIFTR_PKTNODE);
593 }
594
595 KASSERT(STAILQ_EMPTY(&tmp_pkt_queue),
596 ("SIFTR tmp_pkt_queue not empty after flush"));
597
598 mtx_lock(&siftr_pkt_mgr_mtx);
599
600 /*
601 * If siftr_exit_pkt_manager_thread gets set during the window
602 * where we are draining the tmp_pkt_queue above, there might
603 * still be pkts in pkt_queue that need to be drained.
604 * Allow one further iteration to occur after
605 * siftr_exit_pkt_manager_thread has been set to ensure
606 * pkt_queue is completely empty before we kill the thread.
607 *
608 * siftr_exit_pkt_manager_thread is set only after the pfil
609 * hooks have been removed, so only 1 extra iteration
610 * is needed to drain the queue.
611 */
612 if (siftr_exit_pkt_manager_thread)
613 draining--;
614 }
615
616 mtx_unlock(&siftr_pkt_mgr_mtx);
617
618 /* Calls wakeup on this thread's struct thread ptr. */
619 kthread_exit();
620}
621
622
623static uint32_t
624hash_pkt(struct mbuf *m, uint32_t offset)
625{
626 uint32_t hash;
627
628 hash = 0;
629
630 while (m != NULL && offset > m->m_len) {
631 /*
632 * The IP packet payload does not start in this mbuf, so
633 * need to figure out which mbuf it starts in and what offset
634 * into the mbuf's data region the payload starts at.
635 */
636 offset -= m->m_len;
637 m = m->m_next;
638 }
639
640 while (m != NULL) {
641 /* Ensure there is data in the mbuf */
642 if ((m->m_len - offset) > 0)
643 hash = hash32_buf(m->m_data + offset,
644 m->m_len - offset, hash);
645
646 m = m->m_next;
647 offset = 0;
648 }
649
650 return (hash);
651}
652
653
654/*
655 * Check if a given mbuf has the SIFTR mbuf tag. If it does, log the fact that
656 * it's a reinjected packet and return. If it doesn't, tag the mbuf and return.
657 * Return value >0 means the caller should skip processing this mbuf.
658 */
659static inline int
660siftr_chkreinject(struct mbuf *m, int dir, struct siftr_stats *ss)
661{
662 if (m_tag_locate(m, PACKET_COOKIE_SIFTR, PACKET_TAG_SIFTR, NULL)
663 != NULL) {
664 if (dir == PFIL_IN)
665 ss->nskip_in_dejavu++;
666 else
667 ss->nskip_out_dejavu++;
668
669 return (1);
670 } else {
671 struct m_tag *tag = m_tag_alloc(PACKET_COOKIE_SIFTR,
672 PACKET_TAG_SIFTR, 0, M_NOWAIT);
673 if (tag == NULL) {
674 if (dir == PFIL_IN)
675 ss->nskip_in_malloc++;
676 else
677 ss->nskip_out_malloc++;
678
679 return (1);
680 }
681
682 m_tag_prepend(m, tag);
683 }
684
685 return (0);
686}
687
688
689/*
690 * Look up an inpcb for a packet. Return the inpcb pointer if found, or NULL
691 * otherwise.
692 */
693static inline struct inpcb *
694siftr_findinpcb(int ipver, struct ip *ip, struct mbuf *m, uint16_t sport,
695 uint16_t dport, int dir, struct siftr_stats *ss)
696{
697 struct inpcb *inp;
698
699 /* We need the tcbinfo lock. */
700 INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
701 INP_INFO_RLOCK(&V_tcbinfo);
702
703 if (dir == PFIL_IN)
704 inp = (ipver == INP_IPV4 ?
705 in_pcblookup_hash(&V_tcbinfo, ip->ip_src, sport, ip->ip_dst,
706 dport, 0, m->m_pkthdr.rcvif)
707 :
708#ifdef SIFTR_IPV6
709 in6_pcblookup_hash(&V_tcbinfo,
710 &((struct ip6_hdr *)ip)->ip6_src, sport,
711 &((struct ip6_hdr *)ip)->ip6_dst, dport, 0,
712 m->m_pkthdr.rcvif)
713#else
714 NULL
715#endif
716 );
717
718 else
719 inp = (ipver == INP_IPV4 ?
720 in_pcblookup_hash(&V_tcbinfo, ip->ip_dst, dport, ip->ip_src,
721 sport, 0, m->m_pkthdr.rcvif)
722 :
723#ifdef SIFTR_IPV6
724 in6_pcblookup_hash(&V_tcbinfo,
725 &((struct ip6_hdr *)ip)->ip6_dst, dport,
726 &((struct ip6_hdr *)ip)->ip6_src, sport, 0,
727 m->m_pkthdr.rcvif)
728#else
729 NULL
730#endif
731 );
732
733 /* If we can't find the inpcb, bail. */
734 if (inp == NULL) {
735 if (dir == PFIL_IN)
736 ss->nskip_in_inpcb++;
737 else
738 ss->nskip_out_inpcb++;
739 } else {
740 /* Acquire the inpcb lock. */
741 INP_UNLOCK_ASSERT(inp);
742 INP_RLOCK(inp);
743 }
744 INP_INFO_RUNLOCK(&V_tcbinfo);
745
746 return (inp);
747}
748
749
750static inline void
751siftr_siftdata(struct pkt_node *pn, struct inpcb *inp, struct tcpcb *tp,
752 int ipver, int dir, int inp_locally_locked)
753{
754#ifdef SIFTR_IPV6
755 if (ipver == INP_IPV4) {
756 pn->ip_laddr[3] = inp->inp_laddr.s_addr;
757 pn->ip_faddr[3] = inp->inp_faddr.s_addr;
758#else
759 *((uint32_t *)pn->ip_laddr) = inp->inp_laddr.s_addr;
760 *((uint32_t *)pn->ip_faddr) = inp->inp_faddr.s_addr;
761#endif
762#ifdef SIFTR_IPV6
763 } else {
764 pn->ip_laddr[0] = inp->in6p_laddr.s6_addr32[0];
765 pn->ip_laddr[1] = inp->in6p_laddr.s6_addr32[1];
766 pn->ip_laddr[2] = inp->in6p_laddr.s6_addr32[2];
767 pn->ip_laddr[3] = inp->in6p_laddr.s6_addr32[3];
768 pn->ip_faddr[0] = inp->in6p_faddr.s6_addr32[0];
769 pn->ip_faddr[1] = inp->in6p_faddr.s6_addr32[1];
770 pn->ip_faddr[2] = inp->in6p_faddr.s6_addr32[2];
771 pn->ip_faddr[3] = inp->in6p_faddr.s6_addr32[3];
772 }
773#endif
774 pn->tcp_localport = inp->inp_lport;
775 pn->tcp_foreignport = inp->inp_fport;
776 pn->snd_cwnd = tp->snd_cwnd;
777 pn->snd_wnd = tp->snd_wnd;
778 pn->rcv_wnd = tp->rcv_wnd;
779 pn->snd_bwnd = 0; /* Unused, kept for compat. */
780 pn->snd_ssthresh = tp->snd_ssthresh;
781 pn->snd_scale = tp->snd_scale;
782 pn->rcv_scale = tp->rcv_scale;
783 pn->conn_state = tp->t_state;
784 pn->max_seg_size = tp->t_maxseg;
785 pn->smoothed_rtt = tp->t_srtt;
786 pn->sack_enabled = (tp->t_flags & TF_SACK_PERMIT) != 0;
787 pn->flags = tp->t_flags;
788 pn->rxt_length = tp->t_rxtcur;
789 pn->snd_buf_hiwater = inp->inp_socket->so_snd.sb_hiwat;
790 pn->snd_buf_cc = inp->inp_socket->so_snd.sb_cc;
791 pn->rcv_buf_hiwater = inp->inp_socket->so_rcv.sb_hiwat;
792 pn->rcv_buf_cc = inp->inp_socket->so_rcv.sb_cc;
793 pn->sent_inflight_bytes = tp->snd_max - tp->snd_una;
794 pn->t_segqlen = tp->t_segqlen;
795
796 /* We've finished accessing the tcb so release the lock. */
797 if (inp_locally_locked)
798 INP_RUNLOCK(inp);
799
800 pn->ipver = ipver;
801 pn->direction = dir;
802
803 /*
804 * Significantly more accurate than using getmicrotime(), but slower!
805 * Gives true microsecond resolution at the expense of a hit to
806 * maximum pps throughput processing when SIFTR is loaded and enabled.
807 */
808 microtime(&pn->tval);
809}
810
811
812/*
813 * pfil hook that is called for each IPv4 packet making its way through the
814 * stack in either direction.
815 * The pfil subsystem holds a non-sleepable mutex somewhere when
816 * calling our hook function, so we can't sleep at all.
817 * It's very important to use the M_NOWAIT flag with all function calls
818 * that support it so that they won't sleep, otherwise you get a panic.
819 */
820static int
821siftr_chkpkt(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
822 struct inpcb *inp)
823{
824 struct pkt_node *pn;
825 struct ip *ip;
826 struct tcphdr *th;
827 struct tcpcb *tp;
828 struct siftr_stats *ss;
829 unsigned int ip_hl;
830 int inp_locally_locked;
831
832 inp_locally_locked = 0;
833 ss = DPCPU_PTR(ss);
834
835 /*
836 * m_pullup is not required here because ip_{input|output}
837 * already do the heavy lifting for us.
838 */
839
840 ip = mtod(*m, struct ip *);
841
842 /* Only continue processing if the packet is TCP. */
843 if (ip->ip_p != IPPROTO_TCP)
844 goto ret;
845
846 /*
847 * If a kernel subsystem reinjects packets into the stack, our pfil
848 * hook will be called multiple times for the same packet.
849 * Make sure we only process unique packets.
850 */
851 if (siftr_chkreinject(*m, dir, ss))
852 goto ret;
853
854 if (dir == PFIL_IN)
855 ss->n_in++;
856 else
857 ss->n_out++;
858
859 /*
860 * Create a tcphdr struct starting at the correct offset
861 * in the IP packet. ip->ip_hl gives the ip header length
862 * in 4-byte words, so multiply it to get the size in bytes.
863 */
864 ip_hl = (ip->ip_hl << 2);
865 th = (struct tcphdr *)((caddr_t)ip + ip_hl);
866
867 /*
868 * If the pfil hooks don't provide a pointer to the
869 * inpcb, we need to find it ourselves and lock it.
870 */
871 if (!inp) {
872 /* Find the corresponding inpcb for this pkt. */
873 inp = siftr_findinpcb(INP_IPV4, ip, *m, th->th_sport,
874 th->th_dport, dir, ss);
875
876 if (inp == NULL)
877 goto ret;
878 else
879 inp_locally_locked = 1;
880 }
881
882 INP_LOCK_ASSERT(inp);
883
884 /* Find the TCP control block that corresponds with this packet */
885 tp = intotcpcb(inp);
886
887 /*
888 * If we can't find the TCP control block (happens occasionaly for a
889 * packet sent during the shutdown phase of a TCP connection),
890 * or we're in the timewait state, bail
891 */
892 if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
893 if (dir == PFIL_IN)
894 ss->nskip_in_tcpcb++;
895 else
896 ss->nskip_out_tcpcb++;
897
898 goto inp_unlock;
899 }
900
901 pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
902
903 if (pn == NULL) {
904 if (dir == PFIL_IN)
905 ss->nskip_in_malloc++;
906 else
907 ss->nskip_out_malloc++;
908
909 goto inp_unlock;
910 }
911
912 siftr_siftdata(pn, inp, tp, INP_IPV4, dir, inp_locally_locked);
913
914 if (siftr_generate_hashes) {
915 if ((*m)->m_pkthdr.csum_flags & CSUM_TCP) {
916 /*
917 * For outbound packets, the TCP checksum isn't
918 * calculated yet. This is a problem for our packet
919 * hashing as the receiver will calc a different hash
920 * to ours if we don't include the correct TCP checksum
921 * in the bytes being hashed. To work around this
922 * problem, we manually calc the TCP checksum here in
923 * software. We unset the CSUM_TCP flag so the lower
924 * layers don't recalc it.
925 */
926 (*m)->m_pkthdr.csum_flags &= ~CSUM_TCP;
927
928 /*
929 * Calculate the TCP checksum in software and assign
930 * to correct TCP header field, which will follow the
931 * packet mbuf down the stack. The trick here is that
932 * tcp_output() sets th->th_sum to the checksum of the
933 * pseudo header for us already. Because of the nature
934 * of the checksumming algorithm, we can sum over the
935 * entire IP payload (i.e. TCP header and data), which
936 * will include the already calculated pseduo header
937 * checksum, thus giving us the complete TCP checksum.
938 *
939 * To put it in simple terms, if checksum(1,2,3,4)=10,
940 * then checksum(1,2,3,4,5) == checksum(10,5).
941 * This property is what allows us to "cheat" and
942 * checksum only the IP payload which has the TCP
943 * th_sum field populated with the pseudo header's
944 * checksum, and not need to futz around checksumming
945 * pseudo header bytes and TCP header/data in one hit.
946 * Refer to RFC 1071 for more info.
947 *
948 * NB: in_cksum_skip(struct mbuf *m, int len, int skip)
949 * in_cksum_skip 2nd argument is NOT the number of
950 * bytes to read from the mbuf at "skip" bytes offset
951 * from the start of the mbuf (very counter intuitive!).
952 * The number of bytes to read is calculated internally
953 * by the function as len-skip i.e. to sum over the IP
954 * payload (TCP header + data) bytes, it is INCORRECT
955 * to call the function like this:
956 * in_cksum_skip(at, ip->ip_len - offset, offset)
957 * Rather, it should be called like this:
958 * in_cksum_skip(at, ip->ip_len, offset)
959 * which means read "ip->ip_len - offset" bytes from
960 * the mbuf cluster "at" at offset "offset" bytes from
961 * the beginning of the "at" mbuf's data pointer.
962 */
963 th->th_sum = in_cksum_skip(*m, ip->ip_len, ip_hl);
964 }
965
966 /*
967 * XXX: Having to calculate the checksum in software and then
968 * hash over all bytes is really inefficient. Would be nice to
969 * find a way to create the hash and checksum in the same pass
970 * over the bytes.
971 */
972 pn->hash = hash_pkt(*m, ip_hl);
973 }
974
975 mtx_lock(&siftr_pkt_queue_mtx);
976 STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
977 mtx_unlock(&siftr_pkt_queue_mtx);
978 goto ret;
979
980inp_unlock:
981 if (inp_locally_locked)
982 INP_RUNLOCK(inp);
983
984ret:
985 /* Returning 0 ensures pfil will not discard the pkt */
986 return (0);
987}
988
989
990#ifdef SIFTR_IPV6
991static int
992siftr_chkpkt6(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
993 struct inpcb *inp)
994{
995 struct pkt_node *pn;
996 struct ip6_hdr *ip6;
997 struct tcphdr *th;
998 struct tcpcb *tp;
999 struct siftr_stats *ss;
1000 unsigned int ip6_hl;
1001 int inp_locally_locked;
1002
1003 inp_locally_locked = 0;
1004 ss = DPCPU_PTR(ss);
1005
1006 /*
1007 * m_pullup is not required here because ip6_{input|output}
1008 * already do the heavy lifting for us.
1009 */
1010
1011 ip6 = mtod(*m, struct ip6_hdr *);
1012
1013 /*
1014 * Only continue processing if the packet is TCP
1015 * XXX: We should follow the next header fields
1016 * as shown on Pg 6 RFC 2460, but right now we'll
1017 * only check pkts that have no extension headers.
1018 */
1019 if (ip6->ip6_nxt != IPPROTO_TCP)
1020 goto ret6;
1021
1022 /*
1023 * If a kernel subsystem reinjects packets into the stack, our pfil
1024 * hook will be called multiple times for the same packet.
1025 * Make sure we only process unique packets.
1026 */
1027 if (siftr_chkreinject(*m, dir, ss))
1028 goto ret6;
1029
1030 if (dir == PFIL_IN)
1031 ss->n_in++;
1032 else
1033 ss->n_out++;
1034
1035 ip6_hl = sizeof(struct ip6_hdr);
1036
1037 /*
1038 * Create a tcphdr struct starting at the correct offset
1039 * in the ipv6 packet. ip->ip_hl gives the ip header length
1040 * in 4-byte words, so multiply it to get the size in bytes.
1041 */
1042 th = (struct tcphdr *)((caddr_t)ip6 + ip6_hl);
1043
1044 /*
1045 * For inbound packets, the pfil hooks don't provide a pointer to the
1046 * inpcb, so we need to find it ourselves and lock it.
1047 */
1048 if (!inp) {
1049 /* Find the corresponding inpcb for this pkt. */
1050 inp = siftr_findinpcb(INP_IPV6, (struct ip *)ip6, *m,
1051 th->th_sport, th->th_dport, dir, ss);
1052
1053 if (inp == NULL)
1054 goto ret6;
1055 else
1056 inp_locally_locked = 1;
1057 }
1058
1059 /* Find the TCP control block that corresponds with this packet. */
1060 tp = intotcpcb(inp);
1061
1062 /*
1063 * If we can't find the TCP control block (happens occasionaly for a
1064 * packet sent during the shutdown phase of a TCP connection),
1065 * or we're in the timewait state, bail.
1066 */
1067 if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
1068 if (dir == PFIL_IN)
1069 ss->nskip_in_tcpcb++;
1070 else
1071 ss->nskip_out_tcpcb++;
1072
1073 goto inp_unlock6;
1074 }
1075
1076 pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
1077
1078 if (pn == NULL) {
1079 if (dir == PFIL_IN)
1080 ss->nskip_in_malloc++;
1081 else
1082 ss->nskip_out_malloc++;
1083
1084 goto inp_unlock6;
1085 }
1086
1087 siftr_siftdata(pn, inp, tp, INP_IPV6, dir, inp_locally_locked);
1088
1089 /* XXX: Figure out how to generate hashes for IPv6 packets. */
1090
1091 mtx_lock(&siftr_pkt_queue_mtx);
1092 STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
1093 mtx_unlock(&siftr_pkt_queue_mtx);
1094 goto ret6;
1095
1096inp_unlock6:
1097 if (inp_locally_locked)
1098 INP_RUNLOCK(inp);
1099
1100ret6:
1101 /* Returning 0 ensures pfil will not discard the pkt. */
1102 return (0);
1103}
1104#endif /* #ifdef SIFTR_IPV6 */
1105
1106
1107static int
1108siftr_pfil(int action)
1109{
1110 struct pfil_head *pfh_inet;
1111#ifdef SIFTR_IPV6
1112 struct pfil_head *pfh_inet6;
1113#endif
1114 VNET_ITERATOR_DECL(vnet_iter);
1115
1116 VNET_LIST_RLOCK();
1117 VNET_FOREACH(vnet_iter) {
1118 CURVNET_SET(vnet_iter);
1119 pfh_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET);
1120#ifdef SIFTR_IPV6
1121 pfh_inet6 = pfil_head_get(PFIL_TYPE_AF, AF_INET6);
1122#endif
1123
1124 if (action == HOOK) {
1125 pfil_add_hook(siftr_chkpkt, NULL,
1126 PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
1127#ifdef SIFTR_IPV6
1128 pfil_add_hook(siftr_chkpkt6, NULL,
1129 PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
1130#endif
1131 } else if (action == UNHOOK) {
1132 pfil_remove_hook(siftr_chkpkt, NULL,
1133 PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
1134#ifdef SIFTR_IPV6
1135 pfil_remove_hook(siftr_chkpkt6, NULL,
1136 PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
1137#endif
1138 }
1139 CURVNET_RESTORE();
1140 }
1141 VNET_LIST_RUNLOCK();
1142
1143 return (0);
1144}
1145
1146
1147static int
1148siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS)
1149{
1150 struct alq *new_alq;
1151 int error;
1152
1153 if (req->newptr == NULL)
1154 goto skip;
1155
1156 /* If old filename and new filename are different. */
1157 if (strncmp(siftr_logfile, (char *)req->newptr, PATH_MAX)) {
1158
1159 error = alq_open(&new_alq, req->newptr, curthread->td_ucred,
1160 SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1161
1162 /* Bail if unable to create new alq. */
1163 if (error)
1164 return (1);
1165
1166 /*
1167 * If disabled, siftr_alq == NULL so we simply close
1168 * the alq as we've proved it can be opened.
1169 * If enabled, close the existing alq and switch the old
1170 * for the new.
1171 */
1172 if (siftr_alq == NULL)
1173 alq_close(new_alq);
1174 else {
1175 alq_close(siftr_alq);
1176 siftr_alq = new_alq;
1177 }
1178 }
1179
1180skip:
1181 return (sysctl_handle_string(oidp, arg1, arg2, req));
1182}
1183
1184
1185static int
1186siftr_manage_ops(uint8_t action)
1187{
1188 struct siftr_stats totalss;
1189 struct timeval tval;
1190 struct flow_hash_node *counter, *tmp_counter;
1191 struct sbuf *s;
1192 int i, key_index, ret, error;
1193 uint32_t bytes_to_write, total_skipped_pkts;
1194 uint16_t lport, fport;
1195 uint8_t *key, ipver;
1196
1197#ifdef SIFTR_IPV6
1198 uint32_t laddr[4];
1199 uint32_t faddr[4];
1200#else
1201 uint8_t laddr[4];
1202 uint8_t faddr[4];
1203#endif
1204
1205 error = 0;
1206 total_skipped_pkts = 0;
1207
1208 /* Init an autosizing sbuf that initially holds 200 chars. */
1209 if ((s = sbuf_new(NULL, NULL, 200, SBUF_AUTOEXTEND)) == NULL)
1210 return (-1);
1211
1212 if (action == SIFTR_ENABLE) {
1213 /*
1214 * Create our alq
1215 * XXX: We should abort if alq_open fails!
1216 */
1217 alq_open(&siftr_alq, siftr_logfile, curthread->td_ucred,
1218 SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
1219
1220 STAILQ_INIT(&pkt_queue);
1221
1222 DPCPU_ZERO(ss);
1223
1224 siftr_exit_pkt_manager_thread = 0;
1225
1226 ret = kthread_add(&siftr_pkt_manager_thread, NULL, NULL,
1227 &siftr_pkt_manager_thr, RFNOWAIT, 0,
1228 "siftr_pkt_manager_thr");
1229
1230 siftr_pfil(HOOK);
1231
1232 microtime(&tval);
1233
1234 sbuf_printf(s,
1235 "enable_time_secs=%jd\tenable_time_usecs=%06ld\t"
1236 "siftrver=%s\thz=%u\ttcp_rtt_scale=%u\tsysname=%s\t"
1237 "sysver=%u\tipmode=%u\n",
1238 (intmax_t)tval.tv_sec, tval.tv_usec, MODVERSION_STR, hz,
1239 TCP_RTT_SCALE, SYS_NAME, __FreeBSD_version, SIFTR_IPMODE);
1240
1241 sbuf_finish(s);
1242 alq_writen(siftr_alq, sbuf_data(s), sbuf_len(s), ALQ_WAITOK);
1243
1244 } else if (action == SIFTR_DISABLE && siftr_pkt_manager_thr != NULL) {
1245 /*
1246 * Remove the pfil hook functions. All threads currently in
1247 * the hook functions are allowed to exit before siftr_pfil()
1248 * returns.
1249 */
1250 siftr_pfil(UNHOOK);
1251
1252 /* This will block until the pkt manager thread unlocks it. */
1253 mtx_lock(&siftr_pkt_mgr_mtx);
1254
1255 /* Tell the pkt manager thread that it should exit now. */
1256 siftr_exit_pkt_manager_thread = 1;
1257
1258 /*
1259 * Wake the pkt_manager thread so it realises that
1260 * siftr_exit_pkt_manager_thread == 1 and exits gracefully.
1261 * The wakeup won't be delivered until we unlock
1262 * siftr_pkt_mgr_mtx so this isn't racy.
1263 */
1264 wakeup(&wait_for_pkt);
1265
1266 /* Wait for the pkt_manager thread to exit. */
1267 mtx_sleep(siftr_pkt_manager_thr, &siftr_pkt_mgr_mtx, PWAIT,
1268 "thrwait", 0);
1269
1270 siftr_pkt_manager_thr = NULL;
1271 mtx_unlock(&siftr_pkt_mgr_mtx);
1272
1273 totalss.n_in = DPCPU_VARSUM(ss, n_in);
1274 totalss.n_out = DPCPU_VARSUM(ss, n_out);
1275 totalss.nskip_in_malloc = DPCPU_VARSUM(ss, nskip_in_malloc);
1276 totalss.nskip_out_malloc = DPCPU_VARSUM(ss, nskip_out_malloc);
1277 totalss.nskip_in_mtx = DPCPU_VARSUM(ss, nskip_in_mtx);
1278 totalss.nskip_out_mtx = DPCPU_VARSUM(ss, nskip_out_mtx);
1279 totalss.nskip_in_tcpcb = DPCPU_VARSUM(ss, nskip_in_tcpcb);
1280 totalss.nskip_out_tcpcb = DPCPU_VARSUM(ss, nskip_out_tcpcb);
1281 totalss.nskip_in_inpcb = DPCPU_VARSUM(ss, nskip_in_inpcb);
1282 totalss.nskip_out_inpcb = DPCPU_VARSUM(ss, nskip_out_inpcb);
1283
1284 total_skipped_pkts = totalss.nskip_in_malloc +
1285 totalss.nskip_out_malloc + totalss.nskip_in_mtx +
1286 totalss.nskip_out_mtx + totalss.nskip_in_tcpcb +
1287 totalss.nskip_out_tcpcb + totalss.nskip_in_inpcb +
1288 totalss.nskip_out_inpcb;
1289
1290 microtime(&tval);
1291
1292 sbuf_printf(s,
1293 "disable_time_secs=%jd\tdisable_time_usecs=%06ld\t"
1294 "num_inbound_tcp_pkts=%ju\tnum_outbound_tcp_pkts=%ju\t"
1295 "total_tcp_pkts=%ju\tnum_inbound_skipped_pkts_malloc=%u\t"
1296 "num_outbound_skipped_pkts_malloc=%u\t"
1297 "num_inbound_skipped_pkts_mtx=%u\t"
1298 "num_outbound_skipped_pkts_mtx=%u\t"
1299 "num_inbound_skipped_pkts_tcpcb=%u\t"
1300 "num_outbound_skipped_pkts_tcpcb=%u\t"
1301 "num_inbound_skipped_pkts_inpcb=%u\t"
1302 "num_outbound_skipped_pkts_inpcb=%u\t"
1303 "total_skipped_tcp_pkts=%u\tflow_list=",
1304 (intmax_t)tval.tv_sec,
1305 tval.tv_usec,
1306 (uintmax_t)totalss.n_in,
1307 (uintmax_t)totalss.n_out,
1308 (uintmax_t)(totalss.n_in + totalss.n_out),
1309 totalss.nskip_in_malloc,
1310 totalss.nskip_out_malloc,
1311 totalss.nskip_in_mtx,
1312 totalss.nskip_out_mtx,
1313 totalss.nskip_in_tcpcb,
1314 totalss.nskip_out_tcpcb,
1315 totalss.nskip_in_inpcb,
1316 totalss.nskip_out_inpcb,
1317 total_skipped_pkts);
1318
1319 /*
1320 * Iterate over the flow hash, printing a summary of each
1321 * flow seen and freeing any malloc'd memory.
1322 * The hash consists of an array of LISTs (man 3 queue).
1323 */
1324 for (i = 0; i < siftr_hashmask; i++) {
1325 LIST_FOREACH_SAFE(counter, counter_hash + i, nodes,
1326 tmp_counter) {
1327 key = counter->key;
1328 key_index = 1;
1329
1330 ipver = key[0];
1331
1332 memcpy(laddr, key + key_index, sizeof(laddr));
1333 key_index += sizeof(laddr);
1334 memcpy(&lport, key + key_index, sizeof(lport));
1335 key_index += sizeof(lport);
1336 memcpy(faddr, key + key_index, sizeof(faddr));
1337 key_index += sizeof(faddr);
1338 memcpy(&fport, key + key_index, sizeof(fport));
1339
1340#ifdef SIFTR_IPV6
1341 laddr[3] = ntohl(laddr[3]);
1342 faddr[3] = ntohl(faddr[3]);
1343
1344 if (ipver == INP_IPV6) {
1345 laddr[0] = ntohl(laddr[0]);
1346 laddr[1] = ntohl(laddr[1]);
1347 laddr[2] = ntohl(laddr[2]);
1348 faddr[0] = ntohl(faddr[0]);
1349 faddr[1] = ntohl(faddr[1]);
1350 faddr[2] = ntohl(faddr[2]);
1351
1352 sbuf_printf(s,
1353 "%x:%x:%x:%x:%x:%x:%x:%x;%u-"
1354 "%x:%x:%x:%x:%x:%x:%x:%x;%u,",
1355 UPPER_SHORT(laddr[0]),
1356 LOWER_SHORT(laddr[0]),
1357 UPPER_SHORT(laddr[1]),
1358 LOWER_SHORT(laddr[1]),
1359 UPPER_SHORT(laddr[2]),
1360 LOWER_SHORT(laddr[2]),
1361 UPPER_SHORT(laddr[3]),
1362 LOWER_SHORT(laddr[3]),
1363 ntohs(lport),
1364 UPPER_SHORT(faddr[0]),
1365 LOWER_SHORT(faddr[0]),
1366 UPPER_SHORT(faddr[1]),
1367 LOWER_SHORT(faddr[1]),
1368 UPPER_SHORT(faddr[2]),
1369 LOWER_SHORT(faddr[2]),
1370 UPPER_SHORT(faddr[3]),
1371 LOWER_SHORT(faddr[3]),
1372 ntohs(fport));
1373 } else {
1374 laddr[0] = FIRST_OCTET(laddr[3]);
1375 laddr[1] = SECOND_OCTET(laddr[3]);
1376 laddr[2] = THIRD_OCTET(laddr[3]);
1377 laddr[3] = FOURTH_OCTET(laddr[3]);
1378 faddr[0] = FIRST_OCTET(faddr[3]);
1379 faddr[1] = SECOND_OCTET(faddr[3]);
1380 faddr[2] = THIRD_OCTET(faddr[3]);
1381 faddr[3] = FOURTH_OCTET(faddr[3]);
1382#endif
1383 sbuf_printf(s,
1384 "%u.%u.%u.%u;%u-%u.%u.%u.%u;%u,",
1385 laddr[0],
1386 laddr[1],
1387 laddr[2],
1388 laddr[3],
1389 ntohs(lport),
1390 faddr[0],
1391 faddr[1],
1392 faddr[2],
1393 faddr[3],
1394 ntohs(fport));
1395#ifdef SIFTR_IPV6
1396 }
1397#endif
1398
1399 free(counter, M_SIFTR_HASHNODE);
1400 }
1401
1402 LIST_INIT(counter_hash + i);
1403 }
1404
1405 sbuf_printf(s, "\n");
1406 sbuf_finish(s);
1407
1408 i = 0;
1409 do {
1410 bytes_to_write = min(SIFTR_ALQ_BUFLEN, sbuf_len(s)-i);
1411 alq_writen(siftr_alq, sbuf_data(s)+i, bytes_to_write, ALQ_WAITOK);
1412 i += bytes_to_write;
1413 } while (i < sbuf_len(s));
1414
1415 alq_close(siftr_alq);
1416 siftr_alq = NULL;
1417 }
1418
1419 sbuf_delete(s);
1420
1421 /*
1422 * XXX: Should be using ret to check if any functions fail
1423 * and set error appropriately
1424 */
1425
1426 return (error);
1427}
1428
1429
1430static int
1431siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS)
1432{
1433 if (req->newptr == NULL)
1434 goto skip;
1435
1436 /* If the value passed in isn't 0 or 1, return an error. */
1437 if (CAST_PTR_INT(req->newptr) != 0 && CAST_PTR_INT(req->newptr) != 1)
1438 return (1);
1439
1440 /* If we are changing state (0 to 1 or 1 to 0). */
1441 if (CAST_PTR_INT(req->newptr) != siftr_enabled )
1442 if (siftr_manage_ops(CAST_PTR_INT(req->newptr))) {
1443 siftr_manage_ops(SIFTR_DISABLE);
1444 return (1);
1445 }
1446
1447skip:
1448 return (sysctl_handle_int(oidp, arg1, arg2, req));
1449}
1450
1451
1452static void
1453siftr_shutdown_handler(void *arg)
1454{
1455 siftr_manage_ops(SIFTR_DISABLE);
1456}
1457
1458
1459/*
1460 * Module is being unloaded or machine is shutting down. Take care of cleanup.
1461 */
1462static int
1463deinit_siftr(void)
1464{
1465 /* Cleanup. */
1466 siftr_manage_ops(SIFTR_DISABLE);
1467 hashdestroy(counter_hash, M_SIFTR, siftr_hashmask);
1468 mtx_destroy(&siftr_pkt_queue_mtx);
1469 mtx_destroy(&siftr_pkt_mgr_mtx);
1470
1471 return (0);
1472}
1473
1474
1475/*
1476 * Module has just been loaded into the kernel.
1477 */
1478static int
1479init_siftr(void)
1480{
1481 EVENTHANDLER_REGISTER(shutdown_pre_sync, siftr_shutdown_handler, NULL,
1482 SHUTDOWN_PRI_FIRST);
1483
1484 /* Initialise our flow counter hash table. */
1485 counter_hash = hashinit(SIFTR_EXPECTED_MAX_TCP_FLOWS, M_SIFTR,
1486 &siftr_hashmask);
1487
1488 mtx_init(&siftr_pkt_queue_mtx, "siftr_pkt_queue_mtx", NULL, MTX_DEF);
1489 mtx_init(&siftr_pkt_mgr_mtx, "siftr_pkt_mgr_mtx", NULL, MTX_DEF);
1490
1491 /* Print message to the user's current terminal. */
1492 uprintf("\nStatistical Information For TCP Research (SIFTR) %s\n"
1493 " http://caia.swin.edu.au/urp/newtcp\n\n",
1494 MODVERSION_STR);
1495
1496 return (0);
1497}
1498
1499
1500/*
1501 * This is the function that is called to load and unload the module.
1502 * When the module is loaded, this function is called once with
1503 * "what" == MOD_LOAD
1504 * When the module is unloaded, this function is called twice with
1505 * "what" = MOD_QUIESCE first, followed by "what" = MOD_UNLOAD second
1506 * When the system is shut down e.g. CTRL-ALT-DEL or using the shutdown command,
1507 * this function is called once with "what" = MOD_SHUTDOWN
1508 * When the system is shut down, the handler isn't called until the very end
1509 * of the shutdown sequence i.e. after the disks have been synced.
1510 */
1511static int
1512siftr_load_handler(module_t mod, int what, void *arg)
1513{
1514 int ret;
1515
1516 switch (what) {
1517 case MOD_LOAD:
1518 ret = init_siftr();
1519 break;
1520
1521 case MOD_QUIESCE:
1522 case MOD_SHUTDOWN:
1523 ret = deinit_siftr();
1524 break;
1525
1526 case MOD_UNLOAD:
1527 ret = 0;
1528 break;
1529
1530 default:
1531 ret = EINVAL;
1532 break;
1533 }
1534
1535 return (ret);
1536}
1537
1538
1539static moduledata_t siftr_mod = {
1540 .name = "siftr",
1541 .evhand = siftr_load_handler,
1542};
1543
1544/*
1545 * Param 1: name of the kernel module
1546 * Param 2: moduledata_t struct containing info about the kernel module
1547 * and the execution entry point for the module
1548 * Param 3: From sysinit_sub_id enumeration in /usr/include/sys/kernel.h
1549 * Defines the module initialisation order
1550 * Param 4: From sysinit_elem_order enumeration in /usr/include/sys/kernel.h
1551 * Defines the initialisation order of this kld relative to others
1552 * within the same subsystem as defined by param 3
1553 */
1554DECLARE_MODULE(siftr, siftr_mod, SI_SUB_SMP, SI_ORDER_ANY);
1555MODULE_DEPEND(siftr, alq, 1, 1, 1);
1556MODULE_VERSION(siftr, MODVERSION);