Deleted Added
full compact
ip_mroute.c (261024) ip_mroute.c (269699)
1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 */
55
56/*
57 * TODO: Prefix functions with ipmf_.
58 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
59 * domain attachment (if_afdata) so we can track consumers of that service.
60 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
61 * move it to socket options.
62 * TODO: Cleanup LSRR removal further.
63 * TODO: Push RSVP stubs into raw_ip.c.
64 * TODO: Use bitstring.h for vif set.
65 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
66 * TODO: Sync ip6_mroute.c with this file.
67 */
68
69#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 */
55
56/*
57 * TODO: Prefix functions with ipmf_.
58 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
59 * domain attachment (if_afdata) so we can track consumers of that service.
60 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
61 * move it to socket options.
62 * TODO: Cleanup LSRR removal further.
63 * TODO: Push RSVP stubs into raw_ip.c.
64 * TODO: Use bitstring.h for vif set.
65 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
66 * TODO: Sync ip6_mroute.c with this file.
67 */
68
69#include <sys/cdefs.h>
70__FBSDID("$FreeBSD: head/sys/netinet/ip_mroute.c 261024 2014-01-22 10:57:42Z glebius $");
70__FBSDID("$FreeBSD: head/sys/netinet/ip_mroute.c 269699 2014-08-08 01:57:15Z kevlo $");
71
72#include "opt_inet.h"
73#include "opt_mrouting.h"
74
75#define _PIM_VT 1
76
77#include <sys/param.h>
78#include <sys/kernel.h>
79#include <sys/stddef.h>
80#include <sys/lock.h>
81#include <sys/ktr.h>
82#include <sys/malloc.h>
83#include <sys/mbuf.h>
84#include <sys/module.h>
85#include <sys/priv.h>
86#include <sys/protosw.h>
87#include <sys/signalvar.h>
88#include <sys/socket.h>
89#include <sys/socketvar.h>
90#include <sys/sockio.h>
91#include <sys/sx.h>
92#include <sys/sysctl.h>
93#include <sys/syslog.h>
94#include <sys/systm.h>
95#include <sys/time.h>
96#include <sys/counter.h>
97
98#include <net/if.h>
99#include <net/if_var.h>
100#include <net/netisr.h>
101#include <net/route.h>
102#include <net/vnet.h>
103
104#include <netinet/in.h>
105#include <netinet/igmp.h>
106#include <netinet/in_systm.h>
107#include <netinet/in_var.h>
108#include <netinet/ip.h>
109#include <netinet/ip_encap.h>
110#include <netinet/ip_mroute.h>
111#include <netinet/ip_var.h>
112#include <netinet/ip_options.h>
113#include <netinet/pim.h>
114#include <netinet/pim_var.h>
115#include <netinet/udp.h>
116
117#include <machine/in_cksum.h>
118
119#ifndef KTR_IPMF
120#define KTR_IPMF KTR_INET
121#endif
122
123#define VIFI_INVALID ((vifi_t) -1)
124#define M_HASCL(m) ((m)->m_flags & M_EXT)
125
126static VNET_DEFINE(uint32_t, last_tv_sec); /* last time we processed this */
127#define V_last_tv_sec VNET(last_tv_sec)
128
129static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
130
131/*
132 * Locking. We use two locks: one for the virtual interface table and
133 * one for the forwarding table. These locks may be nested in which case
134 * the VIF lock must always be taken first. Note that each lock is used
135 * to cover not only the specific data structure but also related data
136 * structures.
137 */
138
139static struct mtx mrouter_mtx;
140#define MROUTER_LOCK() mtx_lock(&mrouter_mtx)
141#define MROUTER_UNLOCK() mtx_unlock(&mrouter_mtx)
142#define MROUTER_LOCK_ASSERT() mtx_assert(&mrouter_mtx, MA_OWNED)
143#define MROUTER_LOCK_INIT() \
144 mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
145#define MROUTER_LOCK_DESTROY() mtx_destroy(&mrouter_mtx)
146
147static int ip_mrouter_cnt; /* # of vnets with active mrouters */
148static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
149
150static VNET_PCPUSTAT_DEFINE(struct mrtstat, mrtstat);
151VNET_PCPUSTAT_SYSINIT(mrtstat);
152VNET_PCPUSTAT_SYSUNINIT(mrtstat);
153SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat,
154 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
155 "netinet/ip_mroute.h)");
156
157static VNET_DEFINE(u_long, mfchash);
158#define V_mfchash VNET(mfchash)
159#define MFCHASH(a, g) \
160 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
161 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
162#define MFCHASHSIZE 256
163
164static u_long mfchashsize; /* Hash size */
165static VNET_DEFINE(u_char *, nexpire); /* 0..mfchashsize-1 */
166#define V_nexpire VNET(nexpire)
167static VNET_DEFINE(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
168#define V_mfchashtbl VNET(mfchashtbl)
169
170static struct mtx mfc_mtx;
171#define MFC_LOCK() mtx_lock(&mfc_mtx)
172#define MFC_UNLOCK() mtx_unlock(&mfc_mtx)
173#define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED)
174#define MFC_LOCK_INIT() \
175 mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF)
176#define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx)
177
178static VNET_DEFINE(vifi_t, numvifs);
179#define V_numvifs VNET(numvifs)
180static VNET_DEFINE(struct vif, viftable[MAXVIFS]);
181#define V_viftable VNET(viftable)
182SYSCTL_VNET_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
183 &VNET_NAME(viftable), sizeof(V_viftable), "S,vif[MAXVIFS]",
184 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
185
186static struct mtx vif_mtx;
187#define VIF_LOCK() mtx_lock(&vif_mtx)
188#define VIF_UNLOCK() mtx_unlock(&vif_mtx)
189#define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED)
190#define VIF_LOCK_INIT() \
191 mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF)
192#define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx)
193
194static eventhandler_tag if_detach_event_tag = NULL;
195
196static VNET_DEFINE(struct callout, expire_upcalls_ch);
197#define V_expire_upcalls_ch VNET(expire_upcalls_ch)
198
199#define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
200#define UPCALL_EXPIRE 6 /* number of timeouts */
201
202/*
203 * Bandwidth meter variables and constants
204 */
205static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
206/*
207 * Pending timeouts are stored in a hash table, the key being the
208 * expiration time. Periodically, the entries are analysed and processed.
209 */
210#define BW_METER_BUCKETS 1024
211static VNET_DEFINE(struct bw_meter*, bw_meter_timers[BW_METER_BUCKETS]);
212#define V_bw_meter_timers VNET(bw_meter_timers)
213static VNET_DEFINE(struct callout, bw_meter_ch);
214#define V_bw_meter_ch VNET(bw_meter_ch)
215#define BW_METER_PERIOD (hz) /* periodical handling of bw meters */
216
217/*
218 * Pending upcalls are stored in a vector which is flushed when
219 * full, or periodically
220 */
221static VNET_DEFINE(struct bw_upcall, bw_upcalls[BW_UPCALLS_MAX]);
222#define V_bw_upcalls VNET(bw_upcalls)
223static VNET_DEFINE(u_int, bw_upcalls_n); /* # of pending upcalls */
224#define V_bw_upcalls_n VNET(bw_upcalls_n)
225static VNET_DEFINE(struct callout, bw_upcalls_ch);
226#define V_bw_upcalls_ch VNET(bw_upcalls_ch)
227
228#define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */
229
230static VNET_PCPUSTAT_DEFINE(struct pimstat, pimstat);
231VNET_PCPUSTAT_SYSINIT(pimstat);
232VNET_PCPUSTAT_SYSUNINIT(pimstat);
233
234SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
235SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat,
236 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)");
237
238static u_long pim_squelch_wholepkt = 0;
239SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
240 &pim_squelch_wholepkt, 0,
241 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
242
243extern struct domain inetdomain;
244static const struct protosw in_pim_protosw = {
245 .pr_type = SOCK_RAW,
246 .pr_domain = &inetdomain,
247 .pr_protocol = IPPROTO_PIM,
248 .pr_flags = PR_ATOMIC|PR_ADDR|PR_LASTHDR,
249 .pr_input = pim_input,
71
72#include "opt_inet.h"
73#include "opt_mrouting.h"
74
75#define _PIM_VT 1
76
77#include <sys/param.h>
78#include <sys/kernel.h>
79#include <sys/stddef.h>
80#include <sys/lock.h>
81#include <sys/ktr.h>
82#include <sys/malloc.h>
83#include <sys/mbuf.h>
84#include <sys/module.h>
85#include <sys/priv.h>
86#include <sys/protosw.h>
87#include <sys/signalvar.h>
88#include <sys/socket.h>
89#include <sys/socketvar.h>
90#include <sys/sockio.h>
91#include <sys/sx.h>
92#include <sys/sysctl.h>
93#include <sys/syslog.h>
94#include <sys/systm.h>
95#include <sys/time.h>
96#include <sys/counter.h>
97
98#include <net/if.h>
99#include <net/if_var.h>
100#include <net/netisr.h>
101#include <net/route.h>
102#include <net/vnet.h>
103
104#include <netinet/in.h>
105#include <netinet/igmp.h>
106#include <netinet/in_systm.h>
107#include <netinet/in_var.h>
108#include <netinet/ip.h>
109#include <netinet/ip_encap.h>
110#include <netinet/ip_mroute.h>
111#include <netinet/ip_var.h>
112#include <netinet/ip_options.h>
113#include <netinet/pim.h>
114#include <netinet/pim_var.h>
115#include <netinet/udp.h>
116
117#include <machine/in_cksum.h>
118
119#ifndef KTR_IPMF
120#define KTR_IPMF KTR_INET
121#endif
122
123#define VIFI_INVALID ((vifi_t) -1)
124#define M_HASCL(m) ((m)->m_flags & M_EXT)
125
126static VNET_DEFINE(uint32_t, last_tv_sec); /* last time we processed this */
127#define V_last_tv_sec VNET(last_tv_sec)
128
129static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
130
131/*
132 * Locking. We use two locks: one for the virtual interface table and
133 * one for the forwarding table. These locks may be nested in which case
134 * the VIF lock must always be taken first. Note that each lock is used
135 * to cover not only the specific data structure but also related data
136 * structures.
137 */
138
139static struct mtx mrouter_mtx;
140#define MROUTER_LOCK() mtx_lock(&mrouter_mtx)
141#define MROUTER_UNLOCK() mtx_unlock(&mrouter_mtx)
142#define MROUTER_LOCK_ASSERT() mtx_assert(&mrouter_mtx, MA_OWNED)
143#define MROUTER_LOCK_INIT() \
144 mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
145#define MROUTER_LOCK_DESTROY() mtx_destroy(&mrouter_mtx)
146
147static int ip_mrouter_cnt; /* # of vnets with active mrouters */
148static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
149
150static VNET_PCPUSTAT_DEFINE(struct mrtstat, mrtstat);
151VNET_PCPUSTAT_SYSINIT(mrtstat);
152VNET_PCPUSTAT_SYSUNINIT(mrtstat);
153SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat,
154 mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
155 "netinet/ip_mroute.h)");
156
157static VNET_DEFINE(u_long, mfchash);
158#define V_mfchash VNET(mfchash)
159#define MFCHASH(a, g) \
160 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
161 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
162#define MFCHASHSIZE 256
163
164static u_long mfchashsize; /* Hash size */
165static VNET_DEFINE(u_char *, nexpire); /* 0..mfchashsize-1 */
166#define V_nexpire VNET(nexpire)
167static VNET_DEFINE(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
168#define V_mfchashtbl VNET(mfchashtbl)
169
170static struct mtx mfc_mtx;
171#define MFC_LOCK() mtx_lock(&mfc_mtx)
172#define MFC_UNLOCK() mtx_unlock(&mfc_mtx)
173#define MFC_LOCK_ASSERT() mtx_assert(&mfc_mtx, MA_OWNED)
174#define MFC_LOCK_INIT() \
175 mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF)
176#define MFC_LOCK_DESTROY() mtx_destroy(&mfc_mtx)
177
178static VNET_DEFINE(vifi_t, numvifs);
179#define V_numvifs VNET(numvifs)
180static VNET_DEFINE(struct vif, viftable[MAXVIFS]);
181#define V_viftable VNET(viftable)
182SYSCTL_VNET_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
183 &VNET_NAME(viftable), sizeof(V_viftable), "S,vif[MAXVIFS]",
184 "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
185
186static struct mtx vif_mtx;
187#define VIF_LOCK() mtx_lock(&vif_mtx)
188#define VIF_UNLOCK() mtx_unlock(&vif_mtx)
189#define VIF_LOCK_ASSERT() mtx_assert(&vif_mtx, MA_OWNED)
190#define VIF_LOCK_INIT() \
191 mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF)
192#define VIF_LOCK_DESTROY() mtx_destroy(&vif_mtx)
193
194static eventhandler_tag if_detach_event_tag = NULL;
195
196static VNET_DEFINE(struct callout, expire_upcalls_ch);
197#define V_expire_upcalls_ch VNET(expire_upcalls_ch)
198
199#define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
200#define UPCALL_EXPIRE 6 /* number of timeouts */
201
202/*
203 * Bandwidth meter variables and constants
204 */
205static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
206/*
207 * Pending timeouts are stored in a hash table, the key being the
208 * expiration time. Periodically, the entries are analysed and processed.
209 */
210#define BW_METER_BUCKETS 1024
211static VNET_DEFINE(struct bw_meter*, bw_meter_timers[BW_METER_BUCKETS]);
212#define V_bw_meter_timers VNET(bw_meter_timers)
213static VNET_DEFINE(struct callout, bw_meter_ch);
214#define V_bw_meter_ch VNET(bw_meter_ch)
215#define BW_METER_PERIOD (hz) /* periodical handling of bw meters */
216
217/*
218 * Pending upcalls are stored in a vector which is flushed when
219 * full, or periodically
220 */
221static VNET_DEFINE(struct bw_upcall, bw_upcalls[BW_UPCALLS_MAX]);
222#define V_bw_upcalls VNET(bw_upcalls)
223static VNET_DEFINE(u_int, bw_upcalls_n); /* # of pending upcalls */
224#define V_bw_upcalls_n VNET(bw_upcalls_n)
225static VNET_DEFINE(struct callout, bw_upcalls_ch);
226#define V_bw_upcalls_ch VNET(bw_upcalls_ch)
227
228#define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */
229
230static VNET_PCPUSTAT_DEFINE(struct pimstat, pimstat);
231VNET_PCPUSTAT_SYSINIT(pimstat);
232VNET_PCPUSTAT_SYSUNINIT(pimstat);
233
234SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
235SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat,
236 pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)");
237
238static u_long pim_squelch_wholepkt = 0;
239SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
240 &pim_squelch_wholepkt, 0,
241 "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
242
243extern struct domain inetdomain;
244static const struct protosw in_pim_protosw = {
245 .pr_type = SOCK_RAW,
246 .pr_domain = &inetdomain,
247 .pr_protocol = IPPROTO_PIM,
248 .pr_flags = PR_ATOMIC|PR_ADDR|PR_LASTHDR,
249 .pr_input = pim_input,
250 .pr_output = (pr_output_t*)rip_output,
250 .pr_output = (pr_output_t *)rip_output,
251 .pr_ctloutput = rip_ctloutput,
252 .pr_usrreqs = &rip_usrreqs
253};
254static const struct encaptab *pim_encap_cookie;
255
256static int pim_encapcheck(const struct mbuf *, int, int, void *);
257
258/*
259 * Note: the PIM Register encapsulation adds the following in front of a
260 * data packet:
261 *
262 * struct pim_encap_hdr {
263 * struct ip ip;
264 * struct pim_encap_pimhdr pim;
265 * }
266 *
267 */
268
269struct pim_encap_pimhdr {
270 struct pim pim;
271 uint32_t flags;
272};
273#define PIM_ENCAP_TTL 64
274
275static struct ip pim_encap_iphdr = {
276#if BYTE_ORDER == LITTLE_ENDIAN
277 sizeof(struct ip) >> 2,
278 IPVERSION,
279#else
280 IPVERSION,
281 sizeof(struct ip) >> 2,
282#endif
283 0, /* tos */
284 sizeof(struct ip), /* total length */
285 0, /* id */
286 0, /* frag offset */
287 PIM_ENCAP_TTL,
288 IPPROTO_PIM,
289 0, /* checksum */
290};
291
292static struct pim_encap_pimhdr pim_encap_pimhdr = {
293 {
294 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
295 0, /* reserved */
296 0, /* checksum */
297 },
298 0 /* flags */
299};
300
301static VNET_DEFINE(vifi_t, reg_vif_num) = VIFI_INVALID;
302#define V_reg_vif_num VNET(reg_vif_num)
303static VNET_DEFINE(struct ifnet, multicast_register_if);
304#define V_multicast_register_if VNET(multicast_register_if)
305
306/*
307 * Private variables.
308 */
309
310static u_long X_ip_mcast_src(int);
311static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
312 struct ip_moptions *);
313static int X_ip_mrouter_done(void);
314static int X_ip_mrouter_get(struct socket *, struct sockopt *);
315static int X_ip_mrouter_set(struct socket *, struct sockopt *);
316static int X_legal_vif_num(int);
317static int X_mrt_ioctl(u_long, caddr_t, int);
318
319static int add_bw_upcall(struct bw_upcall *);
320static int add_mfc(struct mfcctl2 *);
321static int add_vif(struct vifctl *);
322static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
323static void bw_meter_process(void);
324static void bw_meter_receive_packet(struct bw_meter *, int,
325 struct timeval *);
326static void bw_upcalls_send(void);
327static int del_bw_upcall(struct bw_upcall *);
328static int del_mfc(struct mfcctl2 *);
329static int del_vif(vifi_t);
330static int del_vif_locked(vifi_t);
331static void expire_bw_meter_process(void *);
332static void expire_bw_upcalls_send(void *);
333static void expire_mfc(struct mfc *);
334static void expire_upcalls(void *);
335static void free_bw_list(struct bw_meter *);
336static int get_sg_cnt(struct sioc_sg_req *);
337static int get_vif_cnt(struct sioc_vif_req *);
338static void if_detached_event(void *, struct ifnet *);
339static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
340static int ip_mrouter_init(struct socket *, int);
341static __inline struct mfc *
342 mfc_find(struct in_addr *, struct in_addr *);
343static void phyint_send(struct ip *, struct vif *, struct mbuf *);
344static struct mbuf *
345 pim_register_prepare(struct ip *, struct mbuf *);
346static int pim_register_send(struct ip *, struct vif *,
347 struct mbuf *, struct mfc *);
348static int pim_register_send_rp(struct ip *, struct vif *,
349 struct mbuf *, struct mfc *);
350static int pim_register_send_upcall(struct ip *, struct vif *,
351 struct mbuf *, struct mfc *);
352static void schedule_bw_meter(struct bw_meter *, struct timeval *);
353static void send_packet(struct vif *, struct mbuf *);
354static int set_api_config(uint32_t *);
355static int set_assert(int);
356static int socket_send(struct socket *, struct mbuf *,
357 struct sockaddr_in *);
358static void unschedule_bw_meter(struct bw_meter *);
359
360/*
361 * Kernel multicast forwarding API capabilities and setup.
362 * If more API capabilities are added to the kernel, they should be
363 * recorded in `mrt_api_support'.
364 */
365#define MRT_API_VERSION 0x0305
366
367static const int mrt_api_version = MRT_API_VERSION;
368static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
369 MRT_MFC_FLAGS_BORDER_VIF |
370 MRT_MFC_RP |
371 MRT_MFC_BW_UPCALL);
372static VNET_DEFINE(uint32_t, mrt_api_config);
373#define V_mrt_api_config VNET(mrt_api_config)
374static VNET_DEFINE(int, pim_assert_enabled);
375#define V_pim_assert_enabled VNET(pim_assert_enabled)
376static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */
377
378/*
379 * Find a route for a given origin IP address and multicast group address.
380 * Statistics must be updated by the caller.
381 */
382static __inline struct mfc *
383mfc_find(struct in_addr *o, struct in_addr *g)
384{
385 struct mfc *rt;
386
387 MFC_LOCK_ASSERT();
388
389 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
390 if (in_hosteq(rt->mfc_origin, *o) &&
391 in_hosteq(rt->mfc_mcastgrp, *g) &&
392 TAILQ_EMPTY(&rt->mfc_stall))
393 break;
394 }
395
396 return (rt);
397}
398
399/*
400 * Handle MRT setsockopt commands to modify the multicast forwarding tables.
401 */
402static int
403X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
404{
405 int error, optval;
406 vifi_t vifi;
407 struct vifctl vifc;
408 struct mfcctl2 mfc;
409 struct bw_upcall bw_upcall;
410 uint32_t i;
411
412 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
413 return EPERM;
414
415 error = 0;
416 switch (sopt->sopt_name) {
417 case MRT_INIT:
418 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
419 if (error)
420 break;
421 error = ip_mrouter_init(so, optval);
422 break;
423
424 case MRT_DONE:
425 error = ip_mrouter_done();
426 break;
427
428 case MRT_ADD_VIF:
429 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
430 if (error)
431 break;
432 error = add_vif(&vifc);
433 break;
434
435 case MRT_DEL_VIF:
436 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
437 if (error)
438 break;
439 error = del_vif(vifi);
440 break;
441
442 case MRT_ADD_MFC:
443 case MRT_DEL_MFC:
444 /*
445 * select data size depending on API version.
446 */
447 if (sopt->sopt_name == MRT_ADD_MFC &&
448 V_mrt_api_config & MRT_API_FLAGS_ALL) {
449 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
450 sizeof(struct mfcctl2));
451 } else {
452 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
453 sizeof(struct mfcctl));
454 bzero((caddr_t)&mfc + sizeof(struct mfcctl),
455 sizeof(mfc) - sizeof(struct mfcctl));
456 }
457 if (error)
458 break;
459 if (sopt->sopt_name == MRT_ADD_MFC)
460 error = add_mfc(&mfc);
461 else
462 error = del_mfc(&mfc);
463 break;
464
465 case MRT_ASSERT:
466 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
467 if (error)
468 break;
469 set_assert(optval);
470 break;
471
472 case MRT_API_CONFIG:
473 error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
474 if (!error)
475 error = set_api_config(&i);
476 if (!error)
477 error = sooptcopyout(sopt, &i, sizeof i);
478 break;
479
480 case MRT_ADD_BW_UPCALL:
481 case MRT_DEL_BW_UPCALL:
482 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
483 sizeof bw_upcall);
484 if (error)
485 break;
486 if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
487 error = add_bw_upcall(&bw_upcall);
488 else
489 error = del_bw_upcall(&bw_upcall);
490 break;
491
492 default:
493 error = EOPNOTSUPP;
494 break;
495 }
496 return error;
497}
498
499/*
500 * Handle MRT getsockopt commands
501 */
502static int
503X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
504{
505 int error;
506
507 switch (sopt->sopt_name) {
508 case MRT_VERSION:
509 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
510 break;
511
512 case MRT_ASSERT:
513 error = sooptcopyout(sopt, &V_pim_assert_enabled,
514 sizeof V_pim_assert_enabled);
515 break;
516
517 case MRT_API_SUPPORT:
518 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
519 break;
520
521 case MRT_API_CONFIG:
522 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config);
523 break;
524
525 default:
526 error = EOPNOTSUPP;
527 break;
528 }
529 return error;
530}
531
532/*
533 * Handle ioctl commands to obtain information from the cache
534 */
535static int
536X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
537{
538 int error = 0;
539
540 /*
541 * Currently the only function calling this ioctl routine is rtioctl().
542 * Typically, only root can create the raw socket in order to execute
543 * this ioctl method, however the request might be coming from a prison
544 */
545 error = priv_check(curthread, PRIV_NETINET_MROUTE);
546 if (error)
547 return (error);
548 switch (cmd) {
549 case (SIOCGETVIFCNT):
550 error = get_vif_cnt((struct sioc_vif_req *)data);
551 break;
552
553 case (SIOCGETSGCNT):
554 error = get_sg_cnt((struct sioc_sg_req *)data);
555 break;
556
557 default:
558 error = EINVAL;
559 break;
560 }
561 return error;
562}
563
564/*
565 * returns the packet, byte, rpf-failure count for the source group provided
566 */
567static int
568get_sg_cnt(struct sioc_sg_req *req)
569{
570 struct mfc *rt;
571
572 MFC_LOCK();
573 rt = mfc_find(&req->src, &req->grp);
574 if (rt == NULL) {
575 MFC_UNLOCK();
576 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
577 return EADDRNOTAVAIL;
578 }
579 req->pktcnt = rt->mfc_pkt_cnt;
580 req->bytecnt = rt->mfc_byte_cnt;
581 req->wrong_if = rt->mfc_wrong_if;
582 MFC_UNLOCK();
583 return 0;
584}
585
586/*
587 * returns the input and output packet and byte counts on the vif provided
588 */
589static int
590get_vif_cnt(struct sioc_vif_req *req)
591{
592 vifi_t vifi = req->vifi;
593
594 VIF_LOCK();
595 if (vifi >= V_numvifs) {
596 VIF_UNLOCK();
597 return EINVAL;
598 }
599
600 req->icount = V_viftable[vifi].v_pkt_in;
601 req->ocount = V_viftable[vifi].v_pkt_out;
602 req->ibytes = V_viftable[vifi].v_bytes_in;
603 req->obytes = V_viftable[vifi].v_bytes_out;
604 VIF_UNLOCK();
605
606 return 0;
607}
608
609static void
610if_detached_event(void *arg __unused, struct ifnet *ifp)
611{
612 vifi_t vifi;
613 u_long i;
614
615 MROUTER_LOCK();
616
617 if (V_ip_mrouter == NULL) {
618 MROUTER_UNLOCK();
619 return;
620 }
621
622 VIF_LOCK();
623 MFC_LOCK();
624
625 /*
626 * Tear down multicast forwarder state associated with this ifnet.
627 * 1. Walk the vif list, matching vifs against this ifnet.
628 * 2. Walk the multicast forwarding cache (mfc) looking for
629 * inner matches with this vif's index.
630 * 3. Expire any matching multicast forwarding cache entries.
631 * 4. Free vif state. This should disable ALLMULTI on the interface.
632 */
633 for (vifi = 0; vifi < V_numvifs; vifi++) {
634 if (V_viftable[vifi].v_ifp != ifp)
635 continue;
636 for (i = 0; i < mfchashsize; i++) {
637 struct mfc *rt, *nrt;
638
639 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
640 if (rt->mfc_parent == vifi) {
641 expire_mfc(rt);
642 }
643 }
644 }
645 del_vif_locked(vifi);
646 }
647
648 MFC_UNLOCK();
649 VIF_UNLOCK();
650
651 MROUTER_UNLOCK();
652}
653
654/*
655 * Enable multicast forwarding.
656 */
657static int
658ip_mrouter_init(struct socket *so, int version)
659{
660
661 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
662 so->so_type, so->so_proto->pr_protocol);
663
664 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
665 return EOPNOTSUPP;
666
667 if (version != 1)
668 return ENOPROTOOPT;
669
670 MROUTER_LOCK();
671
672 if (ip_mrouter_unloading) {
673 MROUTER_UNLOCK();
674 return ENOPROTOOPT;
675 }
676
677 if (V_ip_mrouter != NULL) {
678 MROUTER_UNLOCK();
679 return EADDRINUSE;
680 }
681
682 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
683 HASH_NOWAIT);
684
685 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
686 curvnet);
687 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
688 curvnet);
689 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
690 curvnet);
691
692 V_ip_mrouter = so;
693 ip_mrouter_cnt++;
694
695 MROUTER_UNLOCK();
696
697 CTR1(KTR_IPMF, "%s: done", __func__);
698
699 return 0;
700}
701
702/*
703 * Disable multicast forwarding.
704 */
705static int
706X_ip_mrouter_done(void)
707{
708 struct ifnet *ifp;
709 u_long i;
710 vifi_t vifi;
711
712 MROUTER_LOCK();
713
714 if (V_ip_mrouter == NULL) {
715 MROUTER_UNLOCK();
716 return EINVAL;
717 }
718
719 /*
720 * Detach/disable hooks to the reset of the system.
721 */
722 V_ip_mrouter = NULL;
723 ip_mrouter_cnt--;
724 V_mrt_api_config = 0;
725
726 VIF_LOCK();
727
728 /*
729 * For each phyint in use, disable promiscuous reception of all IP
730 * multicasts.
731 */
732 for (vifi = 0; vifi < V_numvifs; vifi++) {
733 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
734 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
735 ifp = V_viftable[vifi].v_ifp;
736 if_allmulti(ifp, 0);
737 }
738 }
739 bzero((caddr_t)V_viftable, sizeof(V_viftable));
740 V_numvifs = 0;
741 V_pim_assert_enabled = 0;
742
743 VIF_UNLOCK();
744
745 callout_stop(&V_expire_upcalls_ch);
746 callout_stop(&V_bw_upcalls_ch);
747 callout_stop(&V_bw_meter_ch);
748
749 MFC_LOCK();
750
751 /*
752 * Free all multicast forwarding cache entries.
753 * Do not use hashdestroy(), as we must perform other cleanup.
754 */
755 for (i = 0; i < mfchashsize; i++) {
756 struct mfc *rt, *nrt;
757
758 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
759 expire_mfc(rt);
760 }
761 }
762 free(V_mfchashtbl, M_MRTABLE);
763 V_mfchashtbl = NULL;
764
765 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
766
767 V_bw_upcalls_n = 0;
768 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers));
769
770 MFC_UNLOCK();
771
772 V_reg_vif_num = VIFI_INVALID;
773
774 MROUTER_UNLOCK();
775
776 CTR1(KTR_IPMF, "%s: done", __func__);
777
778 return 0;
779}
780
781/*
782 * Set PIM assert processing global
783 */
784static int
785set_assert(int i)
786{
787 if ((i != 1) && (i != 0))
788 return EINVAL;
789
790 V_pim_assert_enabled = i;
791
792 return 0;
793}
794
795/*
796 * Configure API capabilities
797 */
798int
799set_api_config(uint32_t *apival)
800{
801 u_long i;
802
803 /*
804 * We can set the API capabilities only if it is the first operation
805 * after MRT_INIT. I.e.:
806 * - there are no vifs installed
807 * - pim_assert is not enabled
808 * - the MFC table is empty
809 */
810 if (V_numvifs > 0) {
811 *apival = 0;
812 return EPERM;
813 }
814 if (V_pim_assert_enabled) {
815 *apival = 0;
816 return EPERM;
817 }
818
819 MFC_LOCK();
820
821 for (i = 0; i < mfchashsize; i++) {
822 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
823 MFC_UNLOCK();
824 *apival = 0;
825 return EPERM;
826 }
827 }
828
829 MFC_UNLOCK();
830
831 V_mrt_api_config = *apival & mrt_api_support;
832 *apival = V_mrt_api_config;
833
834 return 0;
835}
836
837/*
838 * Add a vif to the vif table
839 */
840static int
841add_vif(struct vifctl *vifcp)
842{
843 struct vif *vifp = V_viftable + vifcp->vifc_vifi;
844 struct sockaddr_in sin = {sizeof sin, AF_INET};
845 struct ifaddr *ifa;
846 struct ifnet *ifp;
847 int error;
848
849 VIF_LOCK();
850 if (vifcp->vifc_vifi >= MAXVIFS) {
851 VIF_UNLOCK();
852 return EINVAL;
853 }
854 /* rate limiting is no longer supported by this code */
855 if (vifcp->vifc_rate_limit != 0) {
856 log(LOG_ERR, "rate limiting is no longer supported\n");
857 VIF_UNLOCK();
858 return EINVAL;
859 }
860 if (!in_nullhost(vifp->v_lcl_addr)) {
861 VIF_UNLOCK();
862 return EADDRINUSE;
863 }
864 if (in_nullhost(vifcp->vifc_lcl_addr)) {
865 VIF_UNLOCK();
866 return EADDRNOTAVAIL;
867 }
868
869 /* Find the interface with an address in AF_INET family */
870 if (vifcp->vifc_flags & VIFF_REGISTER) {
871 /*
872 * XXX: Because VIFF_REGISTER does not really need a valid
873 * local interface (e.g. it could be 127.0.0.2), we don't
874 * check its address.
875 */
876 ifp = NULL;
877 } else {
878 sin.sin_addr = vifcp->vifc_lcl_addr;
879 ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
880 if (ifa == NULL) {
881 VIF_UNLOCK();
882 return EADDRNOTAVAIL;
883 }
884 ifp = ifa->ifa_ifp;
885 ifa_free(ifa);
886 }
887
888 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
889 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
890 VIF_UNLOCK();
891 return EOPNOTSUPP;
892 } else if (vifcp->vifc_flags & VIFF_REGISTER) {
893 ifp = &V_multicast_register_if;
894 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
895 if (V_reg_vif_num == VIFI_INVALID) {
896 if_initname(&V_multicast_register_if, "register_vif", 0);
897 V_multicast_register_if.if_flags = IFF_LOOPBACK;
898 V_reg_vif_num = vifcp->vifc_vifi;
899 }
900 } else { /* Make sure the interface supports multicast */
901 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
902 VIF_UNLOCK();
903 return EOPNOTSUPP;
904 }
905
906 /* Enable promiscuous reception of all IP multicasts from the if */
907 error = if_allmulti(ifp, 1);
908 if (error) {
909 VIF_UNLOCK();
910 return error;
911 }
912 }
913
914 vifp->v_flags = vifcp->vifc_flags;
915 vifp->v_threshold = vifcp->vifc_threshold;
916 vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
917 vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
918 vifp->v_ifp = ifp;
919 /* initialize per vif pkt counters */
920 vifp->v_pkt_in = 0;
921 vifp->v_pkt_out = 0;
922 vifp->v_bytes_in = 0;
923 vifp->v_bytes_out = 0;
924
925 /* Adjust numvifs up if the vifi is higher than numvifs */
926 if (V_numvifs <= vifcp->vifc_vifi)
927 V_numvifs = vifcp->vifc_vifi + 1;
928
929 VIF_UNLOCK();
930
931 CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__,
932 (int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr),
933 (int)vifcp->vifc_threshold);
934
935 return 0;
936}
937
938/*
939 * Delete a vif from the vif table
940 */
941static int
942del_vif_locked(vifi_t vifi)
943{
944 struct vif *vifp;
945
946 VIF_LOCK_ASSERT();
947
948 if (vifi >= V_numvifs) {
949 return EINVAL;
950 }
951 vifp = &V_viftable[vifi];
952 if (in_nullhost(vifp->v_lcl_addr)) {
953 return EADDRNOTAVAIL;
954 }
955
956 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
957 if_allmulti(vifp->v_ifp, 0);
958
959 if (vifp->v_flags & VIFF_REGISTER)
960 V_reg_vif_num = VIFI_INVALID;
961
962 bzero((caddr_t)vifp, sizeof (*vifp));
963
964 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
965
966 /* Adjust numvifs down */
967 for (vifi = V_numvifs; vifi > 0; vifi--)
968 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
969 break;
970 V_numvifs = vifi;
971
972 return 0;
973}
974
975static int
976del_vif(vifi_t vifi)
977{
978 int cc;
979
980 VIF_LOCK();
981 cc = del_vif_locked(vifi);
982 VIF_UNLOCK();
983
984 return cc;
985}
986
987/*
988 * update an mfc entry without resetting counters and S,G addresses.
989 */
990static void
991update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
992{
993 int i;
994
995 rt->mfc_parent = mfccp->mfcc_parent;
996 for (i = 0; i < V_numvifs; i++) {
997 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
998 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
999 MRT_MFC_FLAGS_ALL;
1000 }
1001 /* set the RP address */
1002 if (V_mrt_api_config & MRT_MFC_RP)
1003 rt->mfc_rp = mfccp->mfcc_rp;
1004 else
1005 rt->mfc_rp.s_addr = INADDR_ANY;
1006}
1007
1008/*
1009 * fully initialize an mfc entry from the parameter.
1010 */
1011static void
1012init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1013{
1014 rt->mfc_origin = mfccp->mfcc_origin;
1015 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
1016
1017 update_mfc_params(rt, mfccp);
1018
1019 /* initialize pkt counters per src-grp */
1020 rt->mfc_pkt_cnt = 0;
1021 rt->mfc_byte_cnt = 0;
1022 rt->mfc_wrong_if = 0;
1023 timevalclear(&rt->mfc_last_assert);
1024}
1025
1026static void
1027expire_mfc(struct mfc *rt)
1028{
1029 struct rtdetq *rte, *nrte;
1030
1031 MFC_LOCK_ASSERT();
1032
1033 free_bw_list(rt->mfc_bw_meter);
1034
1035 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1036 m_freem(rte->m);
1037 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1038 free(rte, M_MRTABLE);
1039 }
1040
1041 LIST_REMOVE(rt, mfc_hash);
1042 free(rt, M_MRTABLE);
1043}
1044
1045/*
1046 * Add an mfc entry
1047 */
1048static int
1049add_mfc(struct mfcctl2 *mfccp)
1050{
1051 struct mfc *rt;
1052 struct rtdetq *rte, *nrte;
1053 u_long hash = 0;
1054 u_short nstl;
1055
1056 VIF_LOCK();
1057 MFC_LOCK();
1058
1059 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1060
1061 /* If an entry already exists, just update the fields */
1062 if (rt) {
1063 CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x",
1064 __func__, inet_ntoa(mfccp->mfcc_origin),
1065 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1066 mfccp->mfcc_parent);
1067 update_mfc_params(rt, mfccp);
1068 MFC_UNLOCK();
1069 VIF_UNLOCK();
1070 return (0);
1071 }
1072
1073 /*
1074 * Find the entry for which the upcall was made and update
1075 */
1076 nstl = 0;
1077 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1078 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1079 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1080 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1081 !TAILQ_EMPTY(&rt->mfc_stall)) {
1082 CTR5(KTR_IPMF,
1083 "%s: add mfc orig %s group %lx parent %x qh %p",
1084 __func__, inet_ntoa(mfccp->mfcc_origin),
1085 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1086 mfccp->mfcc_parent,
1087 TAILQ_FIRST(&rt->mfc_stall));
1088 if (nstl++)
1089 CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1090
1091 init_mfc_params(rt, mfccp);
1092 rt->mfc_expire = 0; /* Don't clean this guy up */
1093 V_nexpire[hash]--;
1094
1095 /* Free queued packets, but attempt to forward them first. */
1096 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1097 if (rte->ifp != NULL)
1098 ip_mdq(rte->m, rte->ifp, rt, -1);
1099 m_freem(rte->m);
1100 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1101 rt->mfc_nstall--;
1102 free(rte, M_MRTABLE);
1103 }
1104 }
1105 }
1106
1107 /*
1108 * It is possible that an entry is being inserted without an upcall
1109 */
1110 if (nstl == 0) {
1111 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1112 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1113 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1114 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1115 init_mfc_params(rt, mfccp);
1116 if (rt->mfc_expire)
1117 V_nexpire[hash]--;
1118 rt->mfc_expire = 0;
1119 break; /* XXX */
1120 }
1121 }
1122
1123 if (rt == NULL) { /* no upcall, so make a new entry */
1124 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1125 if (rt == NULL) {
1126 MFC_UNLOCK();
1127 VIF_UNLOCK();
1128 return (ENOBUFS);
1129 }
1130
1131 init_mfc_params(rt, mfccp);
1132 TAILQ_INIT(&rt->mfc_stall);
1133 rt->mfc_nstall = 0;
1134
1135 rt->mfc_expire = 0;
1136 rt->mfc_bw_meter = NULL;
1137
1138 /* insert new entry at head of hash chain */
1139 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1140 }
1141 }
1142
1143 MFC_UNLOCK();
1144 VIF_UNLOCK();
1145
1146 return (0);
1147}
1148
1149/*
1150 * Delete an mfc entry
1151 */
1152static int
1153del_mfc(struct mfcctl2 *mfccp)
1154{
1155 struct in_addr origin;
1156 struct in_addr mcastgrp;
1157 struct mfc *rt;
1158
1159 origin = mfccp->mfcc_origin;
1160 mcastgrp = mfccp->mfcc_mcastgrp;
1161
1162 CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__,
1163 inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr));
1164
1165 MFC_LOCK();
1166
1167 rt = mfc_find(&origin, &mcastgrp);
1168 if (rt == NULL) {
1169 MFC_UNLOCK();
1170 return EADDRNOTAVAIL;
1171 }
1172
1173 /*
1174 * free the bw_meter entries
1175 */
1176 free_bw_list(rt->mfc_bw_meter);
1177 rt->mfc_bw_meter = NULL;
1178
1179 LIST_REMOVE(rt, mfc_hash);
1180 free(rt, M_MRTABLE);
1181
1182 MFC_UNLOCK();
1183
1184 return (0);
1185}
1186
1187/*
1188 * Send a message to the routing daemon on the multicast routing socket.
1189 */
1190static int
1191socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1192{
1193 if (s) {
1194 SOCKBUF_LOCK(&s->so_rcv);
1195 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1196 NULL) != 0) {
1197 sorwakeup_locked(s);
1198 return 0;
1199 }
1200 SOCKBUF_UNLOCK(&s->so_rcv);
1201 }
1202 m_freem(mm);
1203 return -1;
1204}
1205
1206/*
1207 * IP multicast forwarding function. This function assumes that the packet
1208 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1209 * pointed to by "ifp", and the packet is to be relayed to other networks
1210 * that have members of the packet's destination IP multicast group.
1211 *
1212 * The packet is returned unscathed to the caller, unless it is
1213 * erroneous, in which case a non-zero return value tells the caller to
1214 * discard it.
1215 */
1216
1217#define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
1218
1219static int
1220X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1221 struct ip_moptions *imo)
1222{
1223 struct mfc *rt;
1224 int error;
1225 vifi_t vifi;
1226
1227 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p",
1228 inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1229
1230 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1231 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1232 /*
1233 * Packet arrived via a physical interface or
1234 * an encapsulated tunnel or a register_vif.
1235 */
1236 } else {
1237 /*
1238 * Packet arrived through a source-route tunnel.
1239 * Source-route tunnels are no longer supported.
1240 */
1241 return (1);
1242 }
1243
1244 VIF_LOCK();
1245 MFC_LOCK();
1246 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
1247 if (ip->ip_ttl < MAXTTL)
1248 ip->ip_ttl++; /* compensate for -1 in *_send routines */
1249 error = ip_mdq(m, ifp, NULL, vifi);
1250 MFC_UNLOCK();
1251 VIF_UNLOCK();
1252 return error;
1253 }
1254
1255 /*
1256 * Don't forward a packet with time-to-live of zero or one,
1257 * or a packet destined to a local-only group.
1258 */
1259 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1260 MFC_UNLOCK();
1261 VIF_UNLOCK();
1262 return 0;
1263 }
1264
1265 /*
1266 * Determine forwarding vifs from the forwarding cache table
1267 */
1268 MRTSTAT_INC(mrts_mfc_lookups);
1269 rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1270
1271 /* Entry exists, so forward if necessary */
1272 if (rt != NULL) {
1273 error = ip_mdq(m, ifp, rt, -1);
1274 MFC_UNLOCK();
1275 VIF_UNLOCK();
1276 return error;
1277 } else {
1278 /*
1279 * If we don't have a route for packet's origin,
1280 * Make a copy of the packet & send message to routing daemon
1281 */
1282
1283 struct mbuf *mb0;
1284 struct rtdetq *rte;
1285 u_long hash;
1286 int hlen = ip->ip_hl << 2;
1287
1288 MRTSTAT_INC(mrts_mfc_misses);
1289 MRTSTAT_INC(mrts_no_route);
1290 CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)",
1291 inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr));
1292
1293 /*
1294 * Allocate mbufs early so that we don't do extra work if we are
1295 * just going to fail anyway. Make sure to pullup the header so
1296 * that other people can't step on it.
1297 */
1298 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE,
1299 M_NOWAIT|M_ZERO);
1300 if (rte == NULL) {
1301 MFC_UNLOCK();
1302 VIF_UNLOCK();
1303 return ENOBUFS;
1304 }
1305
1306 mb0 = m_copypacket(m, M_NOWAIT);
1307 if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1308 mb0 = m_pullup(mb0, hlen);
1309 if (mb0 == NULL) {
1310 free(rte, M_MRTABLE);
1311 MFC_UNLOCK();
1312 VIF_UNLOCK();
1313 return ENOBUFS;
1314 }
1315
1316 /* is there an upcall waiting for this flow ? */
1317 hash = MFCHASH(ip->ip_src, ip->ip_dst);
1318 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1319 if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1320 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1321 !TAILQ_EMPTY(&rt->mfc_stall))
1322 break;
1323 }
1324
1325 if (rt == NULL) {
1326 int i;
1327 struct igmpmsg *im;
1328 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1329 struct mbuf *mm;
1330
1331 /*
1332 * Locate the vifi for the incoming interface for this packet.
1333 * If none found, drop packet.
1334 */
1335 for (vifi = 0; vifi < V_numvifs &&
1336 V_viftable[vifi].v_ifp != ifp; vifi++)
1337 ;
1338 if (vifi >= V_numvifs) /* vif not found, drop packet */
1339 goto non_fatal;
1340
1341 /* no upcall, so make a new entry */
1342 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1343 if (rt == NULL)
1344 goto fail;
1345
1346 /* Make a copy of the header to send to the user level process */
1347 mm = m_copy(mb0, 0, hlen);
1348 if (mm == NULL)
1349 goto fail1;
1350
1351 /*
1352 * Send message to routing daemon to install
1353 * a route into the kernel table
1354 */
1355
1356 im = mtod(mm, struct igmpmsg *);
1357 im->im_msgtype = IGMPMSG_NOCACHE;
1358 im->im_mbz = 0;
1359 im->im_vif = vifi;
1360
1361 MRTSTAT_INC(mrts_upcalls);
1362
1363 k_igmpsrc.sin_addr = ip->ip_src;
1364 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1365 CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1366 MRTSTAT_INC(mrts_upq_sockfull);
1367fail1:
1368 free(rt, M_MRTABLE);
1369fail:
1370 free(rte, M_MRTABLE);
1371 m_freem(mb0);
1372 MFC_UNLOCK();
1373 VIF_UNLOCK();
1374 return ENOBUFS;
1375 }
1376
1377 /* insert new entry at head of hash chain */
1378 rt->mfc_origin.s_addr = ip->ip_src.s_addr;
1379 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr;
1380 rt->mfc_expire = UPCALL_EXPIRE;
1381 V_nexpire[hash]++;
1382 for (i = 0; i < V_numvifs; i++) {
1383 rt->mfc_ttls[i] = 0;
1384 rt->mfc_flags[i] = 0;
1385 }
1386 rt->mfc_parent = -1;
1387
1388 /* clear the RP address */
1389 rt->mfc_rp.s_addr = INADDR_ANY;
1390 rt->mfc_bw_meter = NULL;
1391
1392 /* initialize pkt counters per src-grp */
1393 rt->mfc_pkt_cnt = 0;
1394 rt->mfc_byte_cnt = 0;
1395 rt->mfc_wrong_if = 0;
1396 timevalclear(&rt->mfc_last_assert);
1397
1398 TAILQ_INIT(&rt->mfc_stall);
1399 rt->mfc_nstall = 0;
1400
1401 /* link into table */
1402 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1403 TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link);
1404 rt->mfc_nstall++;
1405
1406 } else {
1407 /* determine if queue has overflowed */
1408 if (rt->mfc_nstall > MAX_UPQ) {
1409 MRTSTAT_INC(mrts_upq_ovflw);
1410non_fatal:
1411 free(rte, M_MRTABLE);
1412 m_freem(mb0);
1413 MFC_UNLOCK();
1414 VIF_UNLOCK();
1415 return (0);
1416 }
1417 TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link);
1418 rt->mfc_nstall++;
1419 }
1420
1421 rte->m = mb0;
1422 rte->ifp = ifp;
1423
1424 MFC_UNLOCK();
1425 VIF_UNLOCK();
1426
1427 return 0;
1428 }
1429}
1430
1431/*
1432 * Clean up the cache entry if upcall is not serviced
1433 */
1434static void
1435expire_upcalls(void *arg)
1436{
1437 u_long i;
1438
1439 CURVNET_SET((struct vnet *) arg);
1440
1441 MFC_LOCK();
1442
1443 for (i = 0; i < mfchashsize; i++) {
1444 struct mfc *rt, *nrt;
1445
1446 if (V_nexpire[i] == 0)
1447 continue;
1448
1449 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
1450 if (TAILQ_EMPTY(&rt->mfc_stall))
1451 continue;
1452
1453 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1454 continue;
1455
1456 /*
1457 * free the bw_meter entries
1458 */
1459 while (rt->mfc_bw_meter != NULL) {
1460 struct bw_meter *x = rt->mfc_bw_meter;
1461
1462 rt->mfc_bw_meter = x->bm_mfc_next;
1463 free(x, M_BWMETER);
1464 }
1465
1466 MRTSTAT_INC(mrts_cache_cleanups);
1467 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1468 (u_long)ntohl(rt->mfc_origin.s_addr),
1469 (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1470
1471 expire_mfc(rt);
1472 }
1473 }
1474
1475 MFC_UNLOCK();
1476
1477 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
1478 curvnet);
1479
1480 CURVNET_RESTORE();
1481}
1482
1483/*
1484 * Packet forwarding routine once entry in the cache is made
1485 */
1486static int
1487ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1488{
1489 struct ip *ip = mtod(m, struct ip *);
1490 vifi_t vifi;
1491 int plen = ntohs(ip->ip_len);
1492
1493 VIF_LOCK_ASSERT();
1494
1495 /*
1496 * If xmt_vif is not -1, send on only the requested vif.
1497 *
1498 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1499 */
1500 if (xmt_vif < V_numvifs) {
1501 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
1502 pim_register_send(ip, V_viftable + xmt_vif, m, rt);
1503 else
1504 phyint_send(ip, V_viftable + xmt_vif, m);
1505 return 1;
1506 }
1507
1508 /*
1509 * Don't forward if it didn't arrive from the parent vif for its origin.
1510 */
1511 vifi = rt->mfc_parent;
1512 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
1513 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1514 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
1515 MRTSTAT_INC(mrts_wrong_if);
1516 ++rt->mfc_wrong_if;
1517 /*
1518 * If we are doing PIM assert processing, send a message
1519 * to the routing daemon.
1520 *
1521 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1522 * can complete the SPT switch, regardless of the type
1523 * of the iif (broadcast media, GRE tunnel, etc).
1524 */
1525 if (V_pim_assert_enabled && (vifi < V_numvifs) &&
1526 V_viftable[vifi].v_ifp) {
1527
1528 if (ifp == &V_multicast_register_if)
1529 PIMSTAT_INC(pims_rcv_registers_wrongiif);
1530
1531 /* Get vifi for the incoming packet */
1532 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp;
1533 vifi++)
1534 ;
1535 if (vifi >= V_numvifs)
1536 return 0; /* The iif is not found: ignore the packet. */
1537
1538 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1539 return 0; /* WRONGVIF disabled: ignore the packet */
1540
1541 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1542 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1543 struct igmpmsg *im;
1544 int hlen = ip->ip_hl << 2;
1545 struct mbuf *mm = m_copy(m, 0, hlen);
1546
1547 if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1548 mm = m_pullup(mm, hlen);
1549 if (mm == NULL)
1550 return ENOBUFS;
1551
1552 im = mtod(mm, struct igmpmsg *);
1553 im->im_msgtype = IGMPMSG_WRONGVIF;
1554 im->im_mbz = 0;
1555 im->im_vif = vifi;
1556
1557 MRTSTAT_INC(mrts_upcalls);
1558
1559 k_igmpsrc.sin_addr = im->im_src;
1560 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1561 CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1562 MRTSTAT_INC(mrts_upq_sockfull);
1563 return ENOBUFS;
1564 }
1565 }
1566 }
1567 return 0;
1568 }
1569
1570
1571 /* If I sourced this packet, it counts as output, else it was input. */
1572 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
1573 V_viftable[vifi].v_pkt_out++;
1574 V_viftable[vifi].v_bytes_out += plen;
1575 } else {
1576 V_viftable[vifi].v_pkt_in++;
1577 V_viftable[vifi].v_bytes_in += plen;
1578 }
1579 rt->mfc_pkt_cnt++;
1580 rt->mfc_byte_cnt += plen;
1581
1582 /*
1583 * For each vif, decide if a copy of the packet should be forwarded.
1584 * Forward if:
1585 * - the ttl exceeds the vif's threshold
1586 * - there are group members downstream on interface
1587 */
1588 for (vifi = 0; vifi < V_numvifs; vifi++)
1589 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1590 V_viftable[vifi].v_pkt_out++;
1591 V_viftable[vifi].v_bytes_out += plen;
1592 if (V_viftable[vifi].v_flags & VIFF_REGISTER)
1593 pim_register_send(ip, V_viftable + vifi, m, rt);
1594 else
1595 phyint_send(ip, V_viftable + vifi, m);
1596 }
1597
1598 /*
1599 * Perform upcall-related bw measuring.
1600 */
1601 if (rt->mfc_bw_meter != NULL) {
1602 struct bw_meter *x;
1603 struct timeval now;
1604
1605 microtime(&now);
1606 MFC_LOCK_ASSERT();
1607 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1608 bw_meter_receive_packet(x, plen, &now);
1609 }
1610
1611 return 0;
1612}
1613
1614/*
1615 * Check if a vif number is legal/ok. This is used by in_mcast.c.
1616 */
1617static int
1618X_legal_vif_num(int vif)
1619{
1620 int ret;
1621
1622 ret = 0;
1623 if (vif < 0)
1624 return (ret);
1625
1626 VIF_LOCK();
1627 if (vif < V_numvifs)
1628 ret = 1;
1629 VIF_UNLOCK();
1630
1631 return (ret);
1632}
1633
1634/*
1635 * Return the local address used by this vif
1636 */
1637static u_long
1638X_ip_mcast_src(int vifi)
1639{
1640 in_addr_t addr;
1641
1642 addr = INADDR_ANY;
1643 if (vifi < 0)
1644 return (addr);
1645
1646 VIF_LOCK();
1647 if (vifi < V_numvifs)
1648 addr = V_viftable[vifi].v_lcl_addr.s_addr;
1649 VIF_UNLOCK();
1650
1651 return (addr);
1652}
1653
1654static void
1655phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1656{
1657 struct mbuf *mb_copy;
1658 int hlen = ip->ip_hl << 2;
1659
1660 VIF_LOCK_ASSERT();
1661
1662 /*
1663 * Make a new reference to the packet; make sure that
1664 * the IP header is actually copied, not just referenced,
1665 * so that ip_output() only scribbles on the copy.
1666 */
1667 mb_copy = m_copypacket(m, M_NOWAIT);
1668 if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1669 mb_copy = m_pullup(mb_copy, hlen);
1670 if (mb_copy == NULL)
1671 return;
1672
1673 send_packet(vifp, mb_copy);
1674}
1675
1676static void
1677send_packet(struct vif *vifp, struct mbuf *m)
1678{
1679 struct ip_moptions imo;
1680 struct in_multi *imm[2];
1681 int error;
1682
1683 VIF_LOCK_ASSERT();
1684
1685 imo.imo_multicast_ifp = vifp->v_ifp;
1686 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
1687 imo.imo_multicast_loop = 1;
1688 imo.imo_multicast_vif = -1;
1689 imo.imo_num_memberships = 0;
1690 imo.imo_max_memberships = 2;
1691 imo.imo_membership = &imm[0];
1692
1693 /*
1694 * Re-entrancy should not be a problem here, because
1695 * the packets that we send out and are looped back at us
1696 * should get rejected because they appear to come from
1697 * the loopback interface, thus preventing looping.
1698 */
1699 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL);
1700 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1701 (ptrdiff_t)(vifp - V_viftable), error);
1702}
1703
1704/*
1705 * Stubs for old RSVP socket shim implementation.
1706 */
1707
1708static int
1709X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1710{
1711
1712 return (EOPNOTSUPP);
1713}
1714
1715static void
1716X_ip_rsvp_force_done(struct socket *so __unused)
1717{
1718
1719}
1720
251 .pr_ctloutput = rip_ctloutput,
252 .pr_usrreqs = &rip_usrreqs
253};
254static const struct encaptab *pim_encap_cookie;
255
256static int pim_encapcheck(const struct mbuf *, int, int, void *);
257
258/*
259 * Note: the PIM Register encapsulation adds the following in front of a
260 * data packet:
261 *
262 * struct pim_encap_hdr {
263 * struct ip ip;
264 * struct pim_encap_pimhdr pim;
265 * }
266 *
267 */
268
269struct pim_encap_pimhdr {
270 struct pim pim;
271 uint32_t flags;
272};
273#define PIM_ENCAP_TTL 64
274
275static struct ip pim_encap_iphdr = {
276#if BYTE_ORDER == LITTLE_ENDIAN
277 sizeof(struct ip) >> 2,
278 IPVERSION,
279#else
280 IPVERSION,
281 sizeof(struct ip) >> 2,
282#endif
283 0, /* tos */
284 sizeof(struct ip), /* total length */
285 0, /* id */
286 0, /* frag offset */
287 PIM_ENCAP_TTL,
288 IPPROTO_PIM,
289 0, /* checksum */
290};
291
292static struct pim_encap_pimhdr pim_encap_pimhdr = {
293 {
294 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
295 0, /* reserved */
296 0, /* checksum */
297 },
298 0 /* flags */
299};
300
301static VNET_DEFINE(vifi_t, reg_vif_num) = VIFI_INVALID;
302#define V_reg_vif_num VNET(reg_vif_num)
303static VNET_DEFINE(struct ifnet, multicast_register_if);
304#define V_multicast_register_if VNET(multicast_register_if)
305
306/*
307 * Private variables.
308 */
309
310static u_long X_ip_mcast_src(int);
311static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
312 struct ip_moptions *);
313static int X_ip_mrouter_done(void);
314static int X_ip_mrouter_get(struct socket *, struct sockopt *);
315static int X_ip_mrouter_set(struct socket *, struct sockopt *);
316static int X_legal_vif_num(int);
317static int X_mrt_ioctl(u_long, caddr_t, int);
318
319static int add_bw_upcall(struct bw_upcall *);
320static int add_mfc(struct mfcctl2 *);
321static int add_vif(struct vifctl *);
322static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
323static void bw_meter_process(void);
324static void bw_meter_receive_packet(struct bw_meter *, int,
325 struct timeval *);
326static void bw_upcalls_send(void);
327static int del_bw_upcall(struct bw_upcall *);
328static int del_mfc(struct mfcctl2 *);
329static int del_vif(vifi_t);
330static int del_vif_locked(vifi_t);
331static void expire_bw_meter_process(void *);
332static void expire_bw_upcalls_send(void *);
333static void expire_mfc(struct mfc *);
334static void expire_upcalls(void *);
335static void free_bw_list(struct bw_meter *);
336static int get_sg_cnt(struct sioc_sg_req *);
337static int get_vif_cnt(struct sioc_vif_req *);
338static void if_detached_event(void *, struct ifnet *);
339static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
340static int ip_mrouter_init(struct socket *, int);
341static __inline struct mfc *
342 mfc_find(struct in_addr *, struct in_addr *);
343static void phyint_send(struct ip *, struct vif *, struct mbuf *);
344static struct mbuf *
345 pim_register_prepare(struct ip *, struct mbuf *);
346static int pim_register_send(struct ip *, struct vif *,
347 struct mbuf *, struct mfc *);
348static int pim_register_send_rp(struct ip *, struct vif *,
349 struct mbuf *, struct mfc *);
350static int pim_register_send_upcall(struct ip *, struct vif *,
351 struct mbuf *, struct mfc *);
352static void schedule_bw_meter(struct bw_meter *, struct timeval *);
353static void send_packet(struct vif *, struct mbuf *);
354static int set_api_config(uint32_t *);
355static int set_assert(int);
356static int socket_send(struct socket *, struct mbuf *,
357 struct sockaddr_in *);
358static void unschedule_bw_meter(struct bw_meter *);
359
360/*
361 * Kernel multicast forwarding API capabilities and setup.
362 * If more API capabilities are added to the kernel, they should be
363 * recorded in `mrt_api_support'.
364 */
365#define MRT_API_VERSION 0x0305
366
367static const int mrt_api_version = MRT_API_VERSION;
368static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
369 MRT_MFC_FLAGS_BORDER_VIF |
370 MRT_MFC_RP |
371 MRT_MFC_BW_UPCALL);
372static VNET_DEFINE(uint32_t, mrt_api_config);
373#define V_mrt_api_config VNET(mrt_api_config)
374static VNET_DEFINE(int, pim_assert_enabled);
375#define V_pim_assert_enabled VNET(pim_assert_enabled)
376static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */
377
378/*
379 * Find a route for a given origin IP address and multicast group address.
380 * Statistics must be updated by the caller.
381 */
382static __inline struct mfc *
383mfc_find(struct in_addr *o, struct in_addr *g)
384{
385 struct mfc *rt;
386
387 MFC_LOCK_ASSERT();
388
389 LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
390 if (in_hosteq(rt->mfc_origin, *o) &&
391 in_hosteq(rt->mfc_mcastgrp, *g) &&
392 TAILQ_EMPTY(&rt->mfc_stall))
393 break;
394 }
395
396 return (rt);
397}
398
399/*
400 * Handle MRT setsockopt commands to modify the multicast forwarding tables.
401 */
402static int
403X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
404{
405 int error, optval;
406 vifi_t vifi;
407 struct vifctl vifc;
408 struct mfcctl2 mfc;
409 struct bw_upcall bw_upcall;
410 uint32_t i;
411
412 if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
413 return EPERM;
414
415 error = 0;
416 switch (sopt->sopt_name) {
417 case MRT_INIT:
418 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
419 if (error)
420 break;
421 error = ip_mrouter_init(so, optval);
422 break;
423
424 case MRT_DONE:
425 error = ip_mrouter_done();
426 break;
427
428 case MRT_ADD_VIF:
429 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
430 if (error)
431 break;
432 error = add_vif(&vifc);
433 break;
434
435 case MRT_DEL_VIF:
436 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
437 if (error)
438 break;
439 error = del_vif(vifi);
440 break;
441
442 case MRT_ADD_MFC:
443 case MRT_DEL_MFC:
444 /*
445 * select data size depending on API version.
446 */
447 if (sopt->sopt_name == MRT_ADD_MFC &&
448 V_mrt_api_config & MRT_API_FLAGS_ALL) {
449 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
450 sizeof(struct mfcctl2));
451 } else {
452 error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
453 sizeof(struct mfcctl));
454 bzero((caddr_t)&mfc + sizeof(struct mfcctl),
455 sizeof(mfc) - sizeof(struct mfcctl));
456 }
457 if (error)
458 break;
459 if (sopt->sopt_name == MRT_ADD_MFC)
460 error = add_mfc(&mfc);
461 else
462 error = del_mfc(&mfc);
463 break;
464
465 case MRT_ASSERT:
466 error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
467 if (error)
468 break;
469 set_assert(optval);
470 break;
471
472 case MRT_API_CONFIG:
473 error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
474 if (!error)
475 error = set_api_config(&i);
476 if (!error)
477 error = sooptcopyout(sopt, &i, sizeof i);
478 break;
479
480 case MRT_ADD_BW_UPCALL:
481 case MRT_DEL_BW_UPCALL:
482 error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
483 sizeof bw_upcall);
484 if (error)
485 break;
486 if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
487 error = add_bw_upcall(&bw_upcall);
488 else
489 error = del_bw_upcall(&bw_upcall);
490 break;
491
492 default:
493 error = EOPNOTSUPP;
494 break;
495 }
496 return error;
497}
498
499/*
500 * Handle MRT getsockopt commands
501 */
502static int
503X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
504{
505 int error;
506
507 switch (sopt->sopt_name) {
508 case MRT_VERSION:
509 error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
510 break;
511
512 case MRT_ASSERT:
513 error = sooptcopyout(sopt, &V_pim_assert_enabled,
514 sizeof V_pim_assert_enabled);
515 break;
516
517 case MRT_API_SUPPORT:
518 error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
519 break;
520
521 case MRT_API_CONFIG:
522 error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config);
523 break;
524
525 default:
526 error = EOPNOTSUPP;
527 break;
528 }
529 return error;
530}
531
532/*
533 * Handle ioctl commands to obtain information from the cache
534 */
535static int
536X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
537{
538 int error = 0;
539
540 /*
541 * Currently the only function calling this ioctl routine is rtioctl().
542 * Typically, only root can create the raw socket in order to execute
543 * this ioctl method, however the request might be coming from a prison
544 */
545 error = priv_check(curthread, PRIV_NETINET_MROUTE);
546 if (error)
547 return (error);
548 switch (cmd) {
549 case (SIOCGETVIFCNT):
550 error = get_vif_cnt((struct sioc_vif_req *)data);
551 break;
552
553 case (SIOCGETSGCNT):
554 error = get_sg_cnt((struct sioc_sg_req *)data);
555 break;
556
557 default:
558 error = EINVAL;
559 break;
560 }
561 return error;
562}
563
564/*
565 * returns the packet, byte, rpf-failure count for the source group provided
566 */
567static int
568get_sg_cnt(struct sioc_sg_req *req)
569{
570 struct mfc *rt;
571
572 MFC_LOCK();
573 rt = mfc_find(&req->src, &req->grp);
574 if (rt == NULL) {
575 MFC_UNLOCK();
576 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
577 return EADDRNOTAVAIL;
578 }
579 req->pktcnt = rt->mfc_pkt_cnt;
580 req->bytecnt = rt->mfc_byte_cnt;
581 req->wrong_if = rt->mfc_wrong_if;
582 MFC_UNLOCK();
583 return 0;
584}
585
586/*
587 * returns the input and output packet and byte counts on the vif provided
588 */
589static int
590get_vif_cnt(struct sioc_vif_req *req)
591{
592 vifi_t vifi = req->vifi;
593
594 VIF_LOCK();
595 if (vifi >= V_numvifs) {
596 VIF_UNLOCK();
597 return EINVAL;
598 }
599
600 req->icount = V_viftable[vifi].v_pkt_in;
601 req->ocount = V_viftable[vifi].v_pkt_out;
602 req->ibytes = V_viftable[vifi].v_bytes_in;
603 req->obytes = V_viftable[vifi].v_bytes_out;
604 VIF_UNLOCK();
605
606 return 0;
607}
608
609static void
610if_detached_event(void *arg __unused, struct ifnet *ifp)
611{
612 vifi_t vifi;
613 u_long i;
614
615 MROUTER_LOCK();
616
617 if (V_ip_mrouter == NULL) {
618 MROUTER_UNLOCK();
619 return;
620 }
621
622 VIF_LOCK();
623 MFC_LOCK();
624
625 /*
626 * Tear down multicast forwarder state associated with this ifnet.
627 * 1. Walk the vif list, matching vifs against this ifnet.
628 * 2. Walk the multicast forwarding cache (mfc) looking for
629 * inner matches with this vif's index.
630 * 3. Expire any matching multicast forwarding cache entries.
631 * 4. Free vif state. This should disable ALLMULTI on the interface.
632 */
633 for (vifi = 0; vifi < V_numvifs; vifi++) {
634 if (V_viftable[vifi].v_ifp != ifp)
635 continue;
636 for (i = 0; i < mfchashsize; i++) {
637 struct mfc *rt, *nrt;
638
639 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
640 if (rt->mfc_parent == vifi) {
641 expire_mfc(rt);
642 }
643 }
644 }
645 del_vif_locked(vifi);
646 }
647
648 MFC_UNLOCK();
649 VIF_UNLOCK();
650
651 MROUTER_UNLOCK();
652}
653
654/*
655 * Enable multicast forwarding.
656 */
657static int
658ip_mrouter_init(struct socket *so, int version)
659{
660
661 CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
662 so->so_type, so->so_proto->pr_protocol);
663
664 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
665 return EOPNOTSUPP;
666
667 if (version != 1)
668 return ENOPROTOOPT;
669
670 MROUTER_LOCK();
671
672 if (ip_mrouter_unloading) {
673 MROUTER_UNLOCK();
674 return ENOPROTOOPT;
675 }
676
677 if (V_ip_mrouter != NULL) {
678 MROUTER_UNLOCK();
679 return EADDRINUSE;
680 }
681
682 V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
683 HASH_NOWAIT);
684
685 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
686 curvnet);
687 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
688 curvnet);
689 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
690 curvnet);
691
692 V_ip_mrouter = so;
693 ip_mrouter_cnt++;
694
695 MROUTER_UNLOCK();
696
697 CTR1(KTR_IPMF, "%s: done", __func__);
698
699 return 0;
700}
701
702/*
703 * Disable multicast forwarding.
704 */
705static int
706X_ip_mrouter_done(void)
707{
708 struct ifnet *ifp;
709 u_long i;
710 vifi_t vifi;
711
712 MROUTER_LOCK();
713
714 if (V_ip_mrouter == NULL) {
715 MROUTER_UNLOCK();
716 return EINVAL;
717 }
718
719 /*
720 * Detach/disable hooks to the reset of the system.
721 */
722 V_ip_mrouter = NULL;
723 ip_mrouter_cnt--;
724 V_mrt_api_config = 0;
725
726 VIF_LOCK();
727
728 /*
729 * For each phyint in use, disable promiscuous reception of all IP
730 * multicasts.
731 */
732 for (vifi = 0; vifi < V_numvifs; vifi++) {
733 if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
734 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
735 ifp = V_viftable[vifi].v_ifp;
736 if_allmulti(ifp, 0);
737 }
738 }
739 bzero((caddr_t)V_viftable, sizeof(V_viftable));
740 V_numvifs = 0;
741 V_pim_assert_enabled = 0;
742
743 VIF_UNLOCK();
744
745 callout_stop(&V_expire_upcalls_ch);
746 callout_stop(&V_bw_upcalls_ch);
747 callout_stop(&V_bw_meter_ch);
748
749 MFC_LOCK();
750
751 /*
752 * Free all multicast forwarding cache entries.
753 * Do not use hashdestroy(), as we must perform other cleanup.
754 */
755 for (i = 0; i < mfchashsize; i++) {
756 struct mfc *rt, *nrt;
757
758 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
759 expire_mfc(rt);
760 }
761 }
762 free(V_mfchashtbl, M_MRTABLE);
763 V_mfchashtbl = NULL;
764
765 bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
766
767 V_bw_upcalls_n = 0;
768 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers));
769
770 MFC_UNLOCK();
771
772 V_reg_vif_num = VIFI_INVALID;
773
774 MROUTER_UNLOCK();
775
776 CTR1(KTR_IPMF, "%s: done", __func__);
777
778 return 0;
779}
780
781/*
782 * Set PIM assert processing global
783 */
784static int
785set_assert(int i)
786{
787 if ((i != 1) && (i != 0))
788 return EINVAL;
789
790 V_pim_assert_enabled = i;
791
792 return 0;
793}
794
795/*
796 * Configure API capabilities
797 */
798int
799set_api_config(uint32_t *apival)
800{
801 u_long i;
802
803 /*
804 * We can set the API capabilities only if it is the first operation
805 * after MRT_INIT. I.e.:
806 * - there are no vifs installed
807 * - pim_assert is not enabled
808 * - the MFC table is empty
809 */
810 if (V_numvifs > 0) {
811 *apival = 0;
812 return EPERM;
813 }
814 if (V_pim_assert_enabled) {
815 *apival = 0;
816 return EPERM;
817 }
818
819 MFC_LOCK();
820
821 for (i = 0; i < mfchashsize; i++) {
822 if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
823 MFC_UNLOCK();
824 *apival = 0;
825 return EPERM;
826 }
827 }
828
829 MFC_UNLOCK();
830
831 V_mrt_api_config = *apival & mrt_api_support;
832 *apival = V_mrt_api_config;
833
834 return 0;
835}
836
837/*
838 * Add a vif to the vif table
839 */
840static int
841add_vif(struct vifctl *vifcp)
842{
843 struct vif *vifp = V_viftable + vifcp->vifc_vifi;
844 struct sockaddr_in sin = {sizeof sin, AF_INET};
845 struct ifaddr *ifa;
846 struct ifnet *ifp;
847 int error;
848
849 VIF_LOCK();
850 if (vifcp->vifc_vifi >= MAXVIFS) {
851 VIF_UNLOCK();
852 return EINVAL;
853 }
854 /* rate limiting is no longer supported by this code */
855 if (vifcp->vifc_rate_limit != 0) {
856 log(LOG_ERR, "rate limiting is no longer supported\n");
857 VIF_UNLOCK();
858 return EINVAL;
859 }
860 if (!in_nullhost(vifp->v_lcl_addr)) {
861 VIF_UNLOCK();
862 return EADDRINUSE;
863 }
864 if (in_nullhost(vifcp->vifc_lcl_addr)) {
865 VIF_UNLOCK();
866 return EADDRNOTAVAIL;
867 }
868
869 /* Find the interface with an address in AF_INET family */
870 if (vifcp->vifc_flags & VIFF_REGISTER) {
871 /*
872 * XXX: Because VIFF_REGISTER does not really need a valid
873 * local interface (e.g. it could be 127.0.0.2), we don't
874 * check its address.
875 */
876 ifp = NULL;
877 } else {
878 sin.sin_addr = vifcp->vifc_lcl_addr;
879 ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
880 if (ifa == NULL) {
881 VIF_UNLOCK();
882 return EADDRNOTAVAIL;
883 }
884 ifp = ifa->ifa_ifp;
885 ifa_free(ifa);
886 }
887
888 if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
889 CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
890 VIF_UNLOCK();
891 return EOPNOTSUPP;
892 } else if (vifcp->vifc_flags & VIFF_REGISTER) {
893 ifp = &V_multicast_register_if;
894 CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
895 if (V_reg_vif_num == VIFI_INVALID) {
896 if_initname(&V_multicast_register_if, "register_vif", 0);
897 V_multicast_register_if.if_flags = IFF_LOOPBACK;
898 V_reg_vif_num = vifcp->vifc_vifi;
899 }
900 } else { /* Make sure the interface supports multicast */
901 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
902 VIF_UNLOCK();
903 return EOPNOTSUPP;
904 }
905
906 /* Enable promiscuous reception of all IP multicasts from the if */
907 error = if_allmulti(ifp, 1);
908 if (error) {
909 VIF_UNLOCK();
910 return error;
911 }
912 }
913
914 vifp->v_flags = vifcp->vifc_flags;
915 vifp->v_threshold = vifcp->vifc_threshold;
916 vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
917 vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
918 vifp->v_ifp = ifp;
919 /* initialize per vif pkt counters */
920 vifp->v_pkt_in = 0;
921 vifp->v_pkt_out = 0;
922 vifp->v_bytes_in = 0;
923 vifp->v_bytes_out = 0;
924
925 /* Adjust numvifs up if the vifi is higher than numvifs */
926 if (V_numvifs <= vifcp->vifc_vifi)
927 V_numvifs = vifcp->vifc_vifi + 1;
928
929 VIF_UNLOCK();
930
931 CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__,
932 (int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr),
933 (int)vifcp->vifc_threshold);
934
935 return 0;
936}
937
938/*
939 * Delete a vif from the vif table
940 */
941static int
942del_vif_locked(vifi_t vifi)
943{
944 struct vif *vifp;
945
946 VIF_LOCK_ASSERT();
947
948 if (vifi >= V_numvifs) {
949 return EINVAL;
950 }
951 vifp = &V_viftable[vifi];
952 if (in_nullhost(vifp->v_lcl_addr)) {
953 return EADDRNOTAVAIL;
954 }
955
956 if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
957 if_allmulti(vifp->v_ifp, 0);
958
959 if (vifp->v_flags & VIFF_REGISTER)
960 V_reg_vif_num = VIFI_INVALID;
961
962 bzero((caddr_t)vifp, sizeof (*vifp));
963
964 CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
965
966 /* Adjust numvifs down */
967 for (vifi = V_numvifs; vifi > 0; vifi--)
968 if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
969 break;
970 V_numvifs = vifi;
971
972 return 0;
973}
974
975static int
976del_vif(vifi_t vifi)
977{
978 int cc;
979
980 VIF_LOCK();
981 cc = del_vif_locked(vifi);
982 VIF_UNLOCK();
983
984 return cc;
985}
986
987/*
988 * update an mfc entry without resetting counters and S,G addresses.
989 */
990static void
991update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
992{
993 int i;
994
995 rt->mfc_parent = mfccp->mfcc_parent;
996 for (i = 0; i < V_numvifs; i++) {
997 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
998 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
999 MRT_MFC_FLAGS_ALL;
1000 }
1001 /* set the RP address */
1002 if (V_mrt_api_config & MRT_MFC_RP)
1003 rt->mfc_rp = mfccp->mfcc_rp;
1004 else
1005 rt->mfc_rp.s_addr = INADDR_ANY;
1006}
1007
1008/*
1009 * fully initialize an mfc entry from the parameter.
1010 */
1011static void
1012init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1013{
1014 rt->mfc_origin = mfccp->mfcc_origin;
1015 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
1016
1017 update_mfc_params(rt, mfccp);
1018
1019 /* initialize pkt counters per src-grp */
1020 rt->mfc_pkt_cnt = 0;
1021 rt->mfc_byte_cnt = 0;
1022 rt->mfc_wrong_if = 0;
1023 timevalclear(&rt->mfc_last_assert);
1024}
1025
1026static void
1027expire_mfc(struct mfc *rt)
1028{
1029 struct rtdetq *rte, *nrte;
1030
1031 MFC_LOCK_ASSERT();
1032
1033 free_bw_list(rt->mfc_bw_meter);
1034
1035 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1036 m_freem(rte->m);
1037 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1038 free(rte, M_MRTABLE);
1039 }
1040
1041 LIST_REMOVE(rt, mfc_hash);
1042 free(rt, M_MRTABLE);
1043}
1044
1045/*
1046 * Add an mfc entry
1047 */
1048static int
1049add_mfc(struct mfcctl2 *mfccp)
1050{
1051 struct mfc *rt;
1052 struct rtdetq *rte, *nrte;
1053 u_long hash = 0;
1054 u_short nstl;
1055
1056 VIF_LOCK();
1057 MFC_LOCK();
1058
1059 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1060
1061 /* If an entry already exists, just update the fields */
1062 if (rt) {
1063 CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x",
1064 __func__, inet_ntoa(mfccp->mfcc_origin),
1065 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1066 mfccp->mfcc_parent);
1067 update_mfc_params(rt, mfccp);
1068 MFC_UNLOCK();
1069 VIF_UNLOCK();
1070 return (0);
1071 }
1072
1073 /*
1074 * Find the entry for which the upcall was made and update
1075 */
1076 nstl = 0;
1077 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1078 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1079 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1080 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1081 !TAILQ_EMPTY(&rt->mfc_stall)) {
1082 CTR5(KTR_IPMF,
1083 "%s: add mfc orig %s group %lx parent %x qh %p",
1084 __func__, inet_ntoa(mfccp->mfcc_origin),
1085 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1086 mfccp->mfcc_parent,
1087 TAILQ_FIRST(&rt->mfc_stall));
1088 if (nstl++)
1089 CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1090
1091 init_mfc_params(rt, mfccp);
1092 rt->mfc_expire = 0; /* Don't clean this guy up */
1093 V_nexpire[hash]--;
1094
1095 /* Free queued packets, but attempt to forward them first. */
1096 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1097 if (rte->ifp != NULL)
1098 ip_mdq(rte->m, rte->ifp, rt, -1);
1099 m_freem(rte->m);
1100 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1101 rt->mfc_nstall--;
1102 free(rte, M_MRTABLE);
1103 }
1104 }
1105 }
1106
1107 /*
1108 * It is possible that an entry is being inserted without an upcall
1109 */
1110 if (nstl == 0) {
1111 CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1112 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1113 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1114 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1115 init_mfc_params(rt, mfccp);
1116 if (rt->mfc_expire)
1117 V_nexpire[hash]--;
1118 rt->mfc_expire = 0;
1119 break; /* XXX */
1120 }
1121 }
1122
1123 if (rt == NULL) { /* no upcall, so make a new entry */
1124 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1125 if (rt == NULL) {
1126 MFC_UNLOCK();
1127 VIF_UNLOCK();
1128 return (ENOBUFS);
1129 }
1130
1131 init_mfc_params(rt, mfccp);
1132 TAILQ_INIT(&rt->mfc_stall);
1133 rt->mfc_nstall = 0;
1134
1135 rt->mfc_expire = 0;
1136 rt->mfc_bw_meter = NULL;
1137
1138 /* insert new entry at head of hash chain */
1139 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1140 }
1141 }
1142
1143 MFC_UNLOCK();
1144 VIF_UNLOCK();
1145
1146 return (0);
1147}
1148
1149/*
1150 * Delete an mfc entry
1151 */
1152static int
1153del_mfc(struct mfcctl2 *mfccp)
1154{
1155 struct in_addr origin;
1156 struct in_addr mcastgrp;
1157 struct mfc *rt;
1158
1159 origin = mfccp->mfcc_origin;
1160 mcastgrp = mfccp->mfcc_mcastgrp;
1161
1162 CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__,
1163 inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr));
1164
1165 MFC_LOCK();
1166
1167 rt = mfc_find(&origin, &mcastgrp);
1168 if (rt == NULL) {
1169 MFC_UNLOCK();
1170 return EADDRNOTAVAIL;
1171 }
1172
1173 /*
1174 * free the bw_meter entries
1175 */
1176 free_bw_list(rt->mfc_bw_meter);
1177 rt->mfc_bw_meter = NULL;
1178
1179 LIST_REMOVE(rt, mfc_hash);
1180 free(rt, M_MRTABLE);
1181
1182 MFC_UNLOCK();
1183
1184 return (0);
1185}
1186
1187/*
1188 * Send a message to the routing daemon on the multicast routing socket.
1189 */
1190static int
1191socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1192{
1193 if (s) {
1194 SOCKBUF_LOCK(&s->so_rcv);
1195 if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1196 NULL) != 0) {
1197 sorwakeup_locked(s);
1198 return 0;
1199 }
1200 SOCKBUF_UNLOCK(&s->so_rcv);
1201 }
1202 m_freem(mm);
1203 return -1;
1204}
1205
1206/*
1207 * IP multicast forwarding function. This function assumes that the packet
1208 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1209 * pointed to by "ifp", and the packet is to be relayed to other networks
1210 * that have members of the packet's destination IP multicast group.
1211 *
1212 * The packet is returned unscathed to the caller, unless it is
1213 * erroneous, in which case a non-zero return value tells the caller to
1214 * discard it.
1215 */
1216
1217#define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
1218
1219static int
1220X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1221 struct ip_moptions *imo)
1222{
1223 struct mfc *rt;
1224 int error;
1225 vifi_t vifi;
1226
1227 CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p",
1228 inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1229
1230 if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1231 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1232 /*
1233 * Packet arrived via a physical interface or
1234 * an encapsulated tunnel or a register_vif.
1235 */
1236 } else {
1237 /*
1238 * Packet arrived through a source-route tunnel.
1239 * Source-route tunnels are no longer supported.
1240 */
1241 return (1);
1242 }
1243
1244 VIF_LOCK();
1245 MFC_LOCK();
1246 if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
1247 if (ip->ip_ttl < MAXTTL)
1248 ip->ip_ttl++; /* compensate for -1 in *_send routines */
1249 error = ip_mdq(m, ifp, NULL, vifi);
1250 MFC_UNLOCK();
1251 VIF_UNLOCK();
1252 return error;
1253 }
1254
1255 /*
1256 * Don't forward a packet with time-to-live of zero or one,
1257 * or a packet destined to a local-only group.
1258 */
1259 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1260 MFC_UNLOCK();
1261 VIF_UNLOCK();
1262 return 0;
1263 }
1264
1265 /*
1266 * Determine forwarding vifs from the forwarding cache table
1267 */
1268 MRTSTAT_INC(mrts_mfc_lookups);
1269 rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1270
1271 /* Entry exists, so forward if necessary */
1272 if (rt != NULL) {
1273 error = ip_mdq(m, ifp, rt, -1);
1274 MFC_UNLOCK();
1275 VIF_UNLOCK();
1276 return error;
1277 } else {
1278 /*
1279 * If we don't have a route for packet's origin,
1280 * Make a copy of the packet & send message to routing daemon
1281 */
1282
1283 struct mbuf *mb0;
1284 struct rtdetq *rte;
1285 u_long hash;
1286 int hlen = ip->ip_hl << 2;
1287
1288 MRTSTAT_INC(mrts_mfc_misses);
1289 MRTSTAT_INC(mrts_no_route);
1290 CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)",
1291 inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr));
1292
1293 /*
1294 * Allocate mbufs early so that we don't do extra work if we are
1295 * just going to fail anyway. Make sure to pullup the header so
1296 * that other people can't step on it.
1297 */
1298 rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE,
1299 M_NOWAIT|M_ZERO);
1300 if (rte == NULL) {
1301 MFC_UNLOCK();
1302 VIF_UNLOCK();
1303 return ENOBUFS;
1304 }
1305
1306 mb0 = m_copypacket(m, M_NOWAIT);
1307 if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1308 mb0 = m_pullup(mb0, hlen);
1309 if (mb0 == NULL) {
1310 free(rte, M_MRTABLE);
1311 MFC_UNLOCK();
1312 VIF_UNLOCK();
1313 return ENOBUFS;
1314 }
1315
1316 /* is there an upcall waiting for this flow ? */
1317 hash = MFCHASH(ip->ip_src, ip->ip_dst);
1318 LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1319 if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1320 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1321 !TAILQ_EMPTY(&rt->mfc_stall))
1322 break;
1323 }
1324
1325 if (rt == NULL) {
1326 int i;
1327 struct igmpmsg *im;
1328 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1329 struct mbuf *mm;
1330
1331 /*
1332 * Locate the vifi for the incoming interface for this packet.
1333 * If none found, drop packet.
1334 */
1335 for (vifi = 0; vifi < V_numvifs &&
1336 V_viftable[vifi].v_ifp != ifp; vifi++)
1337 ;
1338 if (vifi >= V_numvifs) /* vif not found, drop packet */
1339 goto non_fatal;
1340
1341 /* no upcall, so make a new entry */
1342 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1343 if (rt == NULL)
1344 goto fail;
1345
1346 /* Make a copy of the header to send to the user level process */
1347 mm = m_copy(mb0, 0, hlen);
1348 if (mm == NULL)
1349 goto fail1;
1350
1351 /*
1352 * Send message to routing daemon to install
1353 * a route into the kernel table
1354 */
1355
1356 im = mtod(mm, struct igmpmsg *);
1357 im->im_msgtype = IGMPMSG_NOCACHE;
1358 im->im_mbz = 0;
1359 im->im_vif = vifi;
1360
1361 MRTSTAT_INC(mrts_upcalls);
1362
1363 k_igmpsrc.sin_addr = ip->ip_src;
1364 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1365 CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1366 MRTSTAT_INC(mrts_upq_sockfull);
1367fail1:
1368 free(rt, M_MRTABLE);
1369fail:
1370 free(rte, M_MRTABLE);
1371 m_freem(mb0);
1372 MFC_UNLOCK();
1373 VIF_UNLOCK();
1374 return ENOBUFS;
1375 }
1376
1377 /* insert new entry at head of hash chain */
1378 rt->mfc_origin.s_addr = ip->ip_src.s_addr;
1379 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr;
1380 rt->mfc_expire = UPCALL_EXPIRE;
1381 V_nexpire[hash]++;
1382 for (i = 0; i < V_numvifs; i++) {
1383 rt->mfc_ttls[i] = 0;
1384 rt->mfc_flags[i] = 0;
1385 }
1386 rt->mfc_parent = -1;
1387
1388 /* clear the RP address */
1389 rt->mfc_rp.s_addr = INADDR_ANY;
1390 rt->mfc_bw_meter = NULL;
1391
1392 /* initialize pkt counters per src-grp */
1393 rt->mfc_pkt_cnt = 0;
1394 rt->mfc_byte_cnt = 0;
1395 rt->mfc_wrong_if = 0;
1396 timevalclear(&rt->mfc_last_assert);
1397
1398 TAILQ_INIT(&rt->mfc_stall);
1399 rt->mfc_nstall = 0;
1400
1401 /* link into table */
1402 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1403 TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link);
1404 rt->mfc_nstall++;
1405
1406 } else {
1407 /* determine if queue has overflowed */
1408 if (rt->mfc_nstall > MAX_UPQ) {
1409 MRTSTAT_INC(mrts_upq_ovflw);
1410non_fatal:
1411 free(rte, M_MRTABLE);
1412 m_freem(mb0);
1413 MFC_UNLOCK();
1414 VIF_UNLOCK();
1415 return (0);
1416 }
1417 TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link);
1418 rt->mfc_nstall++;
1419 }
1420
1421 rte->m = mb0;
1422 rte->ifp = ifp;
1423
1424 MFC_UNLOCK();
1425 VIF_UNLOCK();
1426
1427 return 0;
1428 }
1429}
1430
1431/*
1432 * Clean up the cache entry if upcall is not serviced
1433 */
1434static void
1435expire_upcalls(void *arg)
1436{
1437 u_long i;
1438
1439 CURVNET_SET((struct vnet *) arg);
1440
1441 MFC_LOCK();
1442
1443 for (i = 0; i < mfchashsize; i++) {
1444 struct mfc *rt, *nrt;
1445
1446 if (V_nexpire[i] == 0)
1447 continue;
1448
1449 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
1450 if (TAILQ_EMPTY(&rt->mfc_stall))
1451 continue;
1452
1453 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1454 continue;
1455
1456 /*
1457 * free the bw_meter entries
1458 */
1459 while (rt->mfc_bw_meter != NULL) {
1460 struct bw_meter *x = rt->mfc_bw_meter;
1461
1462 rt->mfc_bw_meter = x->bm_mfc_next;
1463 free(x, M_BWMETER);
1464 }
1465
1466 MRTSTAT_INC(mrts_cache_cleanups);
1467 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1468 (u_long)ntohl(rt->mfc_origin.s_addr),
1469 (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1470
1471 expire_mfc(rt);
1472 }
1473 }
1474
1475 MFC_UNLOCK();
1476
1477 callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
1478 curvnet);
1479
1480 CURVNET_RESTORE();
1481}
1482
1483/*
1484 * Packet forwarding routine once entry in the cache is made
1485 */
1486static int
1487ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1488{
1489 struct ip *ip = mtod(m, struct ip *);
1490 vifi_t vifi;
1491 int plen = ntohs(ip->ip_len);
1492
1493 VIF_LOCK_ASSERT();
1494
1495 /*
1496 * If xmt_vif is not -1, send on only the requested vif.
1497 *
1498 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1499 */
1500 if (xmt_vif < V_numvifs) {
1501 if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
1502 pim_register_send(ip, V_viftable + xmt_vif, m, rt);
1503 else
1504 phyint_send(ip, V_viftable + xmt_vif, m);
1505 return 1;
1506 }
1507
1508 /*
1509 * Don't forward if it didn't arrive from the parent vif for its origin.
1510 */
1511 vifi = rt->mfc_parent;
1512 if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
1513 CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1514 __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
1515 MRTSTAT_INC(mrts_wrong_if);
1516 ++rt->mfc_wrong_if;
1517 /*
1518 * If we are doing PIM assert processing, send a message
1519 * to the routing daemon.
1520 *
1521 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1522 * can complete the SPT switch, regardless of the type
1523 * of the iif (broadcast media, GRE tunnel, etc).
1524 */
1525 if (V_pim_assert_enabled && (vifi < V_numvifs) &&
1526 V_viftable[vifi].v_ifp) {
1527
1528 if (ifp == &V_multicast_register_if)
1529 PIMSTAT_INC(pims_rcv_registers_wrongiif);
1530
1531 /* Get vifi for the incoming packet */
1532 for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp;
1533 vifi++)
1534 ;
1535 if (vifi >= V_numvifs)
1536 return 0; /* The iif is not found: ignore the packet. */
1537
1538 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1539 return 0; /* WRONGVIF disabled: ignore the packet */
1540
1541 if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1542 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1543 struct igmpmsg *im;
1544 int hlen = ip->ip_hl << 2;
1545 struct mbuf *mm = m_copy(m, 0, hlen);
1546
1547 if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1548 mm = m_pullup(mm, hlen);
1549 if (mm == NULL)
1550 return ENOBUFS;
1551
1552 im = mtod(mm, struct igmpmsg *);
1553 im->im_msgtype = IGMPMSG_WRONGVIF;
1554 im->im_mbz = 0;
1555 im->im_vif = vifi;
1556
1557 MRTSTAT_INC(mrts_upcalls);
1558
1559 k_igmpsrc.sin_addr = im->im_src;
1560 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1561 CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1562 MRTSTAT_INC(mrts_upq_sockfull);
1563 return ENOBUFS;
1564 }
1565 }
1566 }
1567 return 0;
1568 }
1569
1570
1571 /* If I sourced this packet, it counts as output, else it was input. */
1572 if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
1573 V_viftable[vifi].v_pkt_out++;
1574 V_viftable[vifi].v_bytes_out += plen;
1575 } else {
1576 V_viftable[vifi].v_pkt_in++;
1577 V_viftable[vifi].v_bytes_in += plen;
1578 }
1579 rt->mfc_pkt_cnt++;
1580 rt->mfc_byte_cnt += plen;
1581
1582 /*
1583 * For each vif, decide if a copy of the packet should be forwarded.
1584 * Forward if:
1585 * - the ttl exceeds the vif's threshold
1586 * - there are group members downstream on interface
1587 */
1588 for (vifi = 0; vifi < V_numvifs; vifi++)
1589 if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1590 V_viftable[vifi].v_pkt_out++;
1591 V_viftable[vifi].v_bytes_out += plen;
1592 if (V_viftable[vifi].v_flags & VIFF_REGISTER)
1593 pim_register_send(ip, V_viftable + vifi, m, rt);
1594 else
1595 phyint_send(ip, V_viftable + vifi, m);
1596 }
1597
1598 /*
1599 * Perform upcall-related bw measuring.
1600 */
1601 if (rt->mfc_bw_meter != NULL) {
1602 struct bw_meter *x;
1603 struct timeval now;
1604
1605 microtime(&now);
1606 MFC_LOCK_ASSERT();
1607 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1608 bw_meter_receive_packet(x, plen, &now);
1609 }
1610
1611 return 0;
1612}
1613
1614/*
1615 * Check if a vif number is legal/ok. This is used by in_mcast.c.
1616 */
1617static int
1618X_legal_vif_num(int vif)
1619{
1620 int ret;
1621
1622 ret = 0;
1623 if (vif < 0)
1624 return (ret);
1625
1626 VIF_LOCK();
1627 if (vif < V_numvifs)
1628 ret = 1;
1629 VIF_UNLOCK();
1630
1631 return (ret);
1632}
1633
1634/*
1635 * Return the local address used by this vif
1636 */
1637static u_long
1638X_ip_mcast_src(int vifi)
1639{
1640 in_addr_t addr;
1641
1642 addr = INADDR_ANY;
1643 if (vifi < 0)
1644 return (addr);
1645
1646 VIF_LOCK();
1647 if (vifi < V_numvifs)
1648 addr = V_viftable[vifi].v_lcl_addr.s_addr;
1649 VIF_UNLOCK();
1650
1651 return (addr);
1652}
1653
1654static void
1655phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1656{
1657 struct mbuf *mb_copy;
1658 int hlen = ip->ip_hl << 2;
1659
1660 VIF_LOCK_ASSERT();
1661
1662 /*
1663 * Make a new reference to the packet; make sure that
1664 * the IP header is actually copied, not just referenced,
1665 * so that ip_output() only scribbles on the copy.
1666 */
1667 mb_copy = m_copypacket(m, M_NOWAIT);
1668 if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1669 mb_copy = m_pullup(mb_copy, hlen);
1670 if (mb_copy == NULL)
1671 return;
1672
1673 send_packet(vifp, mb_copy);
1674}
1675
1676static void
1677send_packet(struct vif *vifp, struct mbuf *m)
1678{
1679 struct ip_moptions imo;
1680 struct in_multi *imm[2];
1681 int error;
1682
1683 VIF_LOCK_ASSERT();
1684
1685 imo.imo_multicast_ifp = vifp->v_ifp;
1686 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
1687 imo.imo_multicast_loop = 1;
1688 imo.imo_multicast_vif = -1;
1689 imo.imo_num_memberships = 0;
1690 imo.imo_max_memberships = 2;
1691 imo.imo_membership = &imm[0];
1692
1693 /*
1694 * Re-entrancy should not be a problem here, because
1695 * the packets that we send out and are looped back at us
1696 * should get rejected because they appear to come from
1697 * the loopback interface, thus preventing looping.
1698 */
1699 error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL);
1700 CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1701 (ptrdiff_t)(vifp - V_viftable), error);
1702}
1703
1704/*
1705 * Stubs for old RSVP socket shim implementation.
1706 */
1707
1708static int
1709X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1710{
1711
1712 return (EOPNOTSUPP);
1713}
1714
1715static void
1716X_ip_rsvp_force_done(struct socket *so __unused)
1717{
1718
1719}
1720
1721static void
1722X_rsvp_input(struct mbuf *m, int off __unused)
1721static int
1722X_rsvp_input(struct mbuf **mp, int *offp, int proto)
1723{
1723{
1724 struct mbuf *m;
1724
1725
1726 m = *mp;
1727 *mp = NULL;
1725 if (!V_rsvp_on)
1726 m_freem(m);
1728 if (!V_rsvp_on)
1729 m_freem(m);
1730 return (IPPROTO_DONE);
1727}
1728
1729/*
1730 * Code for bandwidth monitors
1731 */
1732
1733/*
1734 * Define common interface for timeval-related methods
1735 */
1736#define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1737#define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1738#define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1739
1740static uint32_t
1741compute_bw_meter_flags(struct bw_upcall *req)
1742{
1743 uint32_t flags = 0;
1744
1745 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1746 flags |= BW_METER_UNIT_PACKETS;
1747 if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1748 flags |= BW_METER_UNIT_BYTES;
1749 if (req->bu_flags & BW_UPCALL_GEQ)
1750 flags |= BW_METER_GEQ;
1751 if (req->bu_flags & BW_UPCALL_LEQ)
1752 flags |= BW_METER_LEQ;
1753
1754 return flags;
1755}
1756
1757/*
1758 * Add a bw_meter entry
1759 */
1760static int
1761add_bw_upcall(struct bw_upcall *req)
1762{
1763 struct mfc *mfc;
1764 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1765 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1766 struct timeval now;
1767 struct bw_meter *x;
1768 uint32_t flags;
1769
1770 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1771 return EOPNOTSUPP;
1772
1773 /* Test if the flags are valid */
1774 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1775 return EINVAL;
1776 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1777 return EINVAL;
1778 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1779 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1780 return EINVAL;
1781
1782 /* Test if the threshold time interval is valid */
1783 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1784 return EINVAL;
1785
1786 flags = compute_bw_meter_flags(req);
1787
1788 /*
1789 * Find if we have already same bw_meter entry
1790 */
1791 MFC_LOCK();
1792 mfc = mfc_find(&req->bu_src, &req->bu_dst);
1793 if (mfc == NULL) {
1794 MFC_UNLOCK();
1795 return EADDRNOTAVAIL;
1796 }
1797 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
1798 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1799 &req->bu_threshold.b_time, ==)) &&
1800 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1801 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1802 (x->bm_flags & BW_METER_USER_FLAGS) == flags) {
1803 MFC_UNLOCK();
1804 return 0; /* XXX Already installed */
1805 }
1806 }
1807
1808 /* Allocate the new bw_meter entry */
1809 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
1810 if (x == NULL) {
1811 MFC_UNLOCK();
1812 return ENOBUFS;
1813 }
1814
1815 /* Set the new bw_meter entry */
1816 x->bm_threshold.b_time = req->bu_threshold.b_time;
1817 microtime(&now);
1818 x->bm_start_time = now;
1819 x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1820 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1821 x->bm_measured.b_packets = 0;
1822 x->bm_measured.b_bytes = 0;
1823 x->bm_flags = flags;
1824 x->bm_time_next = NULL;
1825 x->bm_time_hash = BW_METER_BUCKETS;
1826
1827 /* Add the new bw_meter entry to the front of entries for this MFC */
1828 x->bm_mfc = mfc;
1829 x->bm_mfc_next = mfc->mfc_bw_meter;
1830 mfc->mfc_bw_meter = x;
1831 schedule_bw_meter(x, &now);
1832 MFC_UNLOCK();
1833
1834 return 0;
1835}
1836
1837static void
1838free_bw_list(struct bw_meter *list)
1839{
1840 while (list != NULL) {
1841 struct bw_meter *x = list;
1842
1843 list = list->bm_mfc_next;
1844 unschedule_bw_meter(x);
1845 free(x, M_BWMETER);
1846 }
1847}
1848
1849/*
1850 * Delete one or multiple bw_meter entries
1851 */
1852static int
1853del_bw_upcall(struct bw_upcall *req)
1854{
1855 struct mfc *mfc;
1856 struct bw_meter *x;
1857
1858 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1859 return EOPNOTSUPP;
1860
1861 MFC_LOCK();
1862
1863 /* Find the corresponding MFC entry */
1864 mfc = mfc_find(&req->bu_src, &req->bu_dst);
1865 if (mfc == NULL) {
1866 MFC_UNLOCK();
1867 return EADDRNOTAVAIL;
1868 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
1869 /*
1870 * Delete all bw_meter entries for this mfc
1871 */
1872 struct bw_meter *list;
1873
1874 list = mfc->mfc_bw_meter;
1875 mfc->mfc_bw_meter = NULL;
1876 free_bw_list(list);
1877 MFC_UNLOCK();
1878 return 0;
1879 } else { /* Delete a single bw_meter entry */
1880 struct bw_meter *prev;
1881 uint32_t flags = 0;
1882
1883 flags = compute_bw_meter_flags(req);
1884
1885 /* Find the bw_meter entry to delete */
1886 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
1887 prev = x, x = x->bm_mfc_next) {
1888 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1889 &req->bu_threshold.b_time, ==)) &&
1890 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1891 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1892 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
1893 break;
1894 }
1895 if (x != NULL) { /* Delete entry from the list for this MFC */
1896 if (prev != NULL)
1897 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/
1898 else
1899 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
1900
1901 unschedule_bw_meter(x);
1902 MFC_UNLOCK();
1903 /* Free the bw_meter entry */
1904 free(x, M_BWMETER);
1905 return 0;
1906 } else {
1907 MFC_UNLOCK();
1908 return EINVAL;
1909 }
1910 }
1911 /* NOTREACHED */
1912}
1913
1914/*
1915 * Perform bandwidth measurement processing that may result in an upcall
1916 */
1917static void
1918bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
1919{
1920 struct timeval delta;
1921
1922 MFC_LOCK_ASSERT();
1923
1924 delta = *nowp;
1925 BW_TIMEVALDECR(&delta, &x->bm_start_time);
1926
1927 if (x->bm_flags & BW_METER_GEQ) {
1928 /*
1929 * Processing for ">=" type of bw_meter entry
1930 */
1931 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1932 /* Reset the bw_meter entry */
1933 x->bm_start_time = *nowp;
1934 x->bm_measured.b_packets = 0;
1935 x->bm_measured.b_bytes = 0;
1936 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1937 }
1938
1939 /* Record that a packet is received */
1940 x->bm_measured.b_packets++;
1941 x->bm_measured.b_bytes += plen;
1942
1943 /*
1944 * Test if we should deliver an upcall
1945 */
1946 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
1947 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1948 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
1949 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
1950 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
1951 /* Prepare an upcall for delivery */
1952 bw_meter_prepare_upcall(x, nowp);
1953 x->bm_flags |= BW_METER_UPCALL_DELIVERED;
1954 }
1955 }
1956 } else if (x->bm_flags & BW_METER_LEQ) {
1957 /*
1958 * Processing for "<=" type of bw_meter entry
1959 */
1960 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1961 /*
1962 * We are behind time with the multicast forwarding table
1963 * scanning for "<=" type of bw_meter entries, so test now
1964 * if we should deliver an upcall.
1965 */
1966 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1967 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1968 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
1969 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1970 /* Prepare an upcall for delivery */
1971 bw_meter_prepare_upcall(x, nowp);
1972 }
1973 /* Reschedule the bw_meter entry */
1974 unschedule_bw_meter(x);
1975 schedule_bw_meter(x, nowp);
1976 }
1977
1978 /* Record that a packet is received */
1979 x->bm_measured.b_packets++;
1980 x->bm_measured.b_bytes += plen;
1981
1982 /*
1983 * Test if we should restart the measuring interval
1984 */
1985 if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
1986 x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
1987 (x->bm_flags & BW_METER_UNIT_BYTES &&
1988 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
1989 /* Don't restart the measuring interval */
1990 } else {
1991 /* Do restart the measuring interval */
1992 /*
1993 * XXX: note that we don't unschedule and schedule, because this
1994 * might be too much overhead per packet. Instead, when we process
1995 * all entries for a given timer hash bin, we check whether it is
1996 * really a timeout. If not, we reschedule at that time.
1997 */
1998 x->bm_start_time = *nowp;
1999 x->bm_measured.b_packets = 0;
2000 x->bm_measured.b_bytes = 0;
2001 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2002 }
2003 }
2004}
2005
2006/*
2007 * Prepare a bandwidth-related upcall
2008 */
2009static void
2010bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2011{
2012 struct timeval delta;
2013 struct bw_upcall *u;
2014
2015 MFC_LOCK_ASSERT();
2016
2017 /*
2018 * Compute the measured time interval
2019 */
2020 delta = *nowp;
2021 BW_TIMEVALDECR(&delta, &x->bm_start_time);
2022
2023 /*
2024 * If there are too many pending upcalls, deliver them now
2025 */
2026 if (V_bw_upcalls_n >= BW_UPCALLS_MAX)
2027 bw_upcalls_send();
2028
2029 /*
2030 * Set the bw_upcall entry
2031 */
2032 u = &V_bw_upcalls[V_bw_upcalls_n++];
2033 u->bu_src = x->bm_mfc->mfc_origin;
2034 u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2035 u->bu_threshold.b_time = x->bm_threshold.b_time;
2036 u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2037 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2038 u->bu_measured.b_time = delta;
2039 u->bu_measured.b_packets = x->bm_measured.b_packets;
2040 u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2041 u->bu_flags = 0;
2042 if (x->bm_flags & BW_METER_UNIT_PACKETS)
2043 u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2044 if (x->bm_flags & BW_METER_UNIT_BYTES)
2045 u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2046 if (x->bm_flags & BW_METER_GEQ)
2047 u->bu_flags |= BW_UPCALL_GEQ;
2048 if (x->bm_flags & BW_METER_LEQ)
2049 u->bu_flags |= BW_UPCALL_LEQ;
2050}
2051
2052/*
2053 * Send the pending bandwidth-related upcalls
2054 */
2055static void
2056bw_upcalls_send(void)
2057{
2058 struct mbuf *m;
2059 int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]);
2060 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2061 static struct igmpmsg igmpmsg = { 0, /* unused1 */
2062 0, /* unused2 */
2063 IGMPMSG_BW_UPCALL,/* im_msgtype */
2064 0, /* im_mbz */
2065 0, /* im_vif */
2066 0, /* unused3 */
2067 { 0 }, /* im_src */
2068 { 0 } }; /* im_dst */
2069
2070 MFC_LOCK_ASSERT();
2071
2072 if (V_bw_upcalls_n == 0)
2073 return; /* No pending upcalls */
2074
2075 V_bw_upcalls_n = 0;
2076
2077 /*
2078 * Allocate a new mbuf, initialize it with the header and
2079 * the payload for the pending calls.
2080 */
2081 m = m_gethdr(M_NOWAIT, MT_DATA);
2082 if (m == NULL) {
2083 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2084 return;
2085 }
2086
2087 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2088 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]);
2089
2090 /*
2091 * Send the upcalls
2092 * XXX do we need to set the address in k_igmpsrc ?
2093 */
2094 MRTSTAT_INC(mrts_upcalls);
2095 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2096 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2097 MRTSTAT_INC(mrts_upq_sockfull);
2098 }
2099}
2100
2101/*
2102 * Compute the timeout hash value for the bw_meter entries
2103 */
2104#define BW_METER_TIMEHASH(bw_meter, hash) \
2105 do { \
2106 struct timeval next_timeval = (bw_meter)->bm_start_time; \
2107 \
2108 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2109 (hash) = next_timeval.tv_sec; \
2110 if (next_timeval.tv_usec) \
2111 (hash)++; /* XXX: make sure we don't timeout early */ \
2112 (hash) %= BW_METER_BUCKETS; \
2113 } while (0)
2114
2115/*
2116 * Schedule a timer to process periodically bw_meter entry of type "<="
2117 * by linking the entry in the proper hash bucket.
2118 */
2119static void
2120schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2121{
2122 int time_hash;
2123
2124 MFC_LOCK_ASSERT();
2125
2126 if (!(x->bm_flags & BW_METER_LEQ))
2127 return; /* XXX: we schedule timers only for "<=" entries */
2128
2129 /*
2130 * Reset the bw_meter entry
2131 */
2132 x->bm_start_time = *nowp;
2133 x->bm_measured.b_packets = 0;
2134 x->bm_measured.b_bytes = 0;
2135 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2136
2137 /*
2138 * Compute the timeout hash value and insert the entry
2139 */
2140 BW_METER_TIMEHASH(x, time_hash);
2141 x->bm_time_next = V_bw_meter_timers[time_hash];
2142 V_bw_meter_timers[time_hash] = x;
2143 x->bm_time_hash = time_hash;
2144}
2145
2146/*
2147 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2148 * by removing the entry from the proper hash bucket.
2149 */
2150static void
2151unschedule_bw_meter(struct bw_meter *x)
2152{
2153 int time_hash;
2154 struct bw_meter *prev, *tmp;
2155
2156 MFC_LOCK_ASSERT();
2157
2158 if (!(x->bm_flags & BW_METER_LEQ))
2159 return; /* XXX: we schedule timers only for "<=" entries */
2160
2161 /*
2162 * Compute the timeout hash value and delete the entry
2163 */
2164 time_hash = x->bm_time_hash;
2165 if (time_hash >= BW_METER_BUCKETS)
2166 return; /* Entry was not scheduled */
2167
2168 for (prev = NULL, tmp = V_bw_meter_timers[time_hash];
2169 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2170 if (tmp == x)
2171 break;
2172
2173 if (tmp == NULL)
2174 panic("unschedule_bw_meter: bw_meter entry not found");
2175
2176 if (prev != NULL)
2177 prev->bm_time_next = x->bm_time_next;
2178 else
2179 V_bw_meter_timers[time_hash] = x->bm_time_next;
2180
2181 x->bm_time_next = NULL;
2182 x->bm_time_hash = BW_METER_BUCKETS;
2183}
2184
2185
2186/*
2187 * Process all "<=" type of bw_meter that should be processed now,
2188 * and for each entry prepare an upcall if necessary. Each processed
2189 * entry is rescheduled again for the (periodic) processing.
2190 *
2191 * This is run periodically (once per second normally). On each round,
2192 * all the potentially matching entries are in the hash slot that we are
2193 * looking at.
2194 */
2195static void
2196bw_meter_process()
2197{
2198 uint32_t loops;
2199 int i;
2200 struct timeval now, process_endtime;
2201
2202 microtime(&now);
2203 if (V_last_tv_sec == now.tv_sec)
2204 return; /* nothing to do */
2205
2206 loops = now.tv_sec - V_last_tv_sec;
2207 V_last_tv_sec = now.tv_sec;
2208 if (loops > BW_METER_BUCKETS)
2209 loops = BW_METER_BUCKETS;
2210
2211 MFC_LOCK();
2212 /*
2213 * Process all bins of bw_meter entries from the one after the last
2214 * processed to the current one. On entry, i points to the last bucket
2215 * visited, so we need to increment i at the beginning of the loop.
2216 */
2217 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2218 struct bw_meter *x, *tmp_list;
2219
2220 if (++i >= BW_METER_BUCKETS)
2221 i = 0;
2222
2223 /* Disconnect the list of bw_meter entries from the bin */
2224 tmp_list = V_bw_meter_timers[i];
2225 V_bw_meter_timers[i] = NULL;
2226
2227 /* Process the list of bw_meter entries */
2228 while (tmp_list != NULL) {
2229 x = tmp_list;
2230 tmp_list = tmp_list->bm_time_next;
2231
2232 /* Test if the time interval is over */
2233 process_endtime = x->bm_start_time;
2234 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2235 if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2236 /* Not yet: reschedule, but don't reset */
2237 int time_hash;
2238
2239 BW_METER_TIMEHASH(x, time_hash);
2240 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2241 /*
2242 * XXX: somehow the bin processing is a bit ahead of time.
2243 * Put the entry in the next bin.
2244 */
2245 if (++time_hash >= BW_METER_BUCKETS)
2246 time_hash = 0;
2247 }
2248 x->bm_time_next = V_bw_meter_timers[time_hash];
2249 V_bw_meter_timers[time_hash] = x;
2250 x->bm_time_hash = time_hash;
2251
2252 continue;
2253 }
2254
2255 /*
2256 * Test if we should deliver an upcall
2257 */
2258 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2259 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2260 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2261 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2262 /* Prepare an upcall for delivery */
2263 bw_meter_prepare_upcall(x, &now);
2264 }
2265
2266 /*
2267 * Reschedule for next processing
2268 */
2269 schedule_bw_meter(x, &now);
2270 }
2271 }
2272
2273 /* Send all upcalls that are pending delivery */
2274 bw_upcalls_send();
2275
2276 MFC_UNLOCK();
2277}
2278
2279/*
2280 * A periodic function for sending all upcalls that are pending delivery
2281 */
2282static void
2283expire_bw_upcalls_send(void *arg)
2284{
2285 CURVNET_SET((struct vnet *) arg);
2286
2287 MFC_LOCK();
2288 bw_upcalls_send();
2289 MFC_UNLOCK();
2290
2291 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
2292 curvnet);
2293 CURVNET_RESTORE();
2294}
2295
2296/*
2297 * A periodic function for periodic scanning of the multicast forwarding
2298 * table for processing all "<=" bw_meter entries.
2299 */
2300static void
2301expire_bw_meter_process(void *arg)
2302{
2303 CURVNET_SET((struct vnet *) arg);
2304
2305 if (V_mrt_api_config & MRT_MFC_BW_UPCALL)
2306 bw_meter_process();
2307
2308 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
2309 curvnet);
2310 CURVNET_RESTORE();
2311}
2312
2313/*
2314 * End of bandwidth monitoring code
2315 */
2316
2317/*
2318 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2319 *
2320 */
2321static int
2322pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2323 struct mfc *rt)
2324{
2325 struct mbuf *mb_copy, *mm;
2326
2327 /*
2328 * Do not send IGMP_WHOLEPKT notifications to userland, if the
2329 * rendezvous point was unspecified, and we were told not to.
2330 */
2331 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
2332 in_nullhost(rt->mfc_rp))
2333 return 0;
2334
2335 mb_copy = pim_register_prepare(ip, m);
2336 if (mb_copy == NULL)
2337 return ENOBUFS;
2338
2339 /*
2340 * Send all the fragments. Note that the mbuf for each fragment
2341 * is freed by the sending machinery.
2342 */
2343 for (mm = mb_copy; mm; mm = mb_copy) {
2344 mb_copy = mm->m_nextpkt;
2345 mm->m_nextpkt = 0;
2346 mm = m_pullup(mm, sizeof(struct ip));
2347 if (mm != NULL) {
2348 ip = mtod(mm, struct ip *);
2349 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2350 pim_register_send_rp(ip, vifp, mm, rt);
2351 } else {
2352 pim_register_send_upcall(ip, vifp, mm, rt);
2353 }
2354 }
2355 }
2356
2357 return 0;
2358}
2359
2360/*
2361 * Return a copy of the data packet that is ready for PIM Register
2362 * encapsulation.
2363 * XXX: Note that in the returned copy the IP header is a valid one.
2364 */
2365static struct mbuf *
2366pim_register_prepare(struct ip *ip, struct mbuf *m)
2367{
2368 struct mbuf *mb_copy = NULL;
2369 int mtu;
2370
2371 /* Take care of delayed checksums */
2372 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2373 in_delayed_cksum(m);
2374 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2375 }
2376
2377 /*
2378 * Copy the old packet & pullup its IP header into the
2379 * new mbuf so we can modify it.
2380 */
2381 mb_copy = m_copypacket(m, M_NOWAIT);
2382 if (mb_copy == NULL)
2383 return NULL;
2384 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2385 if (mb_copy == NULL)
2386 return NULL;
2387
2388 /* take care of the TTL */
2389 ip = mtod(mb_copy, struct ip *);
2390 --ip->ip_ttl;
2391
2392 /* Compute the MTU after the PIM Register encapsulation */
2393 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2394
2395 if (ntohs(ip->ip_len) <= mtu) {
2396 /* Turn the IP header into a valid one */
2397 ip->ip_sum = 0;
2398 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2399 } else {
2400 /* Fragment the packet */
2401 mb_copy->m_pkthdr.csum_flags |= CSUM_IP;
2402 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) {
2403 m_freem(mb_copy);
2404 return NULL;
2405 }
2406 }
2407 return mb_copy;
2408}
2409
2410/*
2411 * Send an upcall with the data packet to the user-level process.
2412 */
2413static int
2414pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2415 struct mbuf *mb_copy, struct mfc *rt)
2416{
2417 struct mbuf *mb_first;
2418 int len = ntohs(ip->ip_len);
2419 struct igmpmsg *im;
2420 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2421
2422 VIF_LOCK_ASSERT();
2423
2424 /*
2425 * Add a new mbuf with an upcall header
2426 */
2427 mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2428 if (mb_first == NULL) {
2429 m_freem(mb_copy);
2430 return ENOBUFS;
2431 }
2432 mb_first->m_data += max_linkhdr;
2433 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2434 mb_first->m_len = sizeof(struct igmpmsg);
2435 mb_first->m_next = mb_copy;
2436
2437 /* Send message to routing daemon */
2438 im = mtod(mb_first, struct igmpmsg *);
2439 im->im_msgtype = IGMPMSG_WHOLEPKT;
2440 im->im_mbz = 0;
2441 im->im_vif = vifp - V_viftable;
2442 im->im_src = ip->ip_src;
2443 im->im_dst = ip->ip_dst;
2444
2445 k_igmpsrc.sin_addr = ip->ip_src;
2446
2447 MRTSTAT_INC(mrts_upcalls);
2448
2449 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2450 CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2451 MRTSTAT_INC(mrts_upq_sockfull);
2452 return ENOBUFS;
2453 }
2454
2455 /* Keep statistics */
2456 PIMSTAT_INC(pims_snd_registers_msgs);
2457 PIMSTAT_ADD(pims_snd_registers_bytes, len);
2458
2459 return 0;
2460}
2461
2462/*
2463 * Encapsulate the data packet in PIM Register message and send it to the RP.
2464 */
2465static int
2466pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2467 struct mfc *rt)
2468{
2469 struct mbuf *mb_first;
2470 struct ip *ip_outer;
2471 struct pim_encap_pimhdr *pimhdr;
2472 int len = ntohs(ip->ip_len);
2473 vifi_t vifi = rt->mfc_parent;
2474
2475 VIF_LOCK_ASSERT();
2476
2477 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
2478 m_freem(mb_copy);
2479 return EADDRNOTAVAIL; /* The iif vif is invalid */
2480 }
2481
2482 /*
2483 * Add a new mbuf with the encapsulating header
2484 */
2485 mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2486 if (mb_first == NULL) {
2487 m_freem(mb_copy);
2488 return ENOBUFS;
2489 }
2490 mb_first->m_data += max_linkhdr;
2491 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2492 mb_first->m_next = mb_copy;
2493
2494 mb_first->m_pkthdr.len = len + mb_first->m_len;
2495
2496 /*
2497 * Fill in the encapsulating IP and PIM header
2498 */
2499 ip_outer = mtod(mb_first, struct ip *);
2500 *ip_outer = pim_encap_iphdr;
2501 ip_outer->ip_id = ip_newid();
2502 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
2503 sizeof(pim_encap_pimhdr));
2504 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
2505 ip_outer->ip_dst = rt->mfc_rp;
2506 /*
2507 * Copy the inner header TOS to the outer header, and take care of the
2508 * IP_DF bit.
2509 */
2510 ip_outer->ip_tos = ip->ip_tos;
2511 if (ip->ip_off & htons(IP_DF))
2512 ip_outer->ip_off |= htons(IP_DF);
2513 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2514 + sizeof(pim_encap_iphdr));
2515 *pimhdr = pim_encap_pimhdr;
2516 /* If the iif crosses a border, set the Border-bit */
2517 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
2518 pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2519
2520 mb_first->m_data += sizeof(pim_encap_iphdr);
2521 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2522 mb_first->m_data -= sizeof(pim_encap_iphdr);
2523
2524 send_packet(vifp, mb_first);
2525
2526 /* Keep statistics */
2527 PIMSTAT_INC(pims_snd_registers_msgs);
2528 PIMSTAT_ADD(pims_snd_registers_bytes, len);
2529
2530 return 0;
2531}
2532
2533/*
2534 * pim_encapcheck() is called by the encap4_input() path at runtime to
2535 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2536 * into the kernel.
2537 */
2538static int
2539pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2540{
2541
2542#ifdef DIAGNOSTIC
2543 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2544#endif
2545 if (proto != IPPROTO_PIM)
2546 return 0; /* not for us; reject the datagram. */
2547
2548 return 64; /* claim the datagram. */
2549}
2550
2551/*
2552 * PIM-SMv2 and PIM-DM messages processing.
2553 * Receives and verifies the PIM control messages, and passes them
2554 * up to the listening socket, using rip_input().
2555 * The only message with special processing is the PIM_REGISTER message
2556 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2557 * is passed to if_simloop().
2558 */
1731}
1732
1733/*
1734 * Code for bandwidth monitors
1735 */
1736
1737/*
1738 * Define common interface for timeval-related methods
1739 */
1740#define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1741#define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1742#define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1743
1744static uint32_t
1745compute_bw_meter_flags(struct bw_upcall *req)
1746{
1747 uint32_t flags = 0;
1748
1749 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1750 flags |= BW_METER_UNIT_PACKETS;
1751 if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1752 flags |= BW_METER_UNIT_BYTES;
1753 if (req->bu_flags & BW_UPCALL_GEQ)
1754 flags |= BW_METER_GEQ;
1755 if (req->bu_flags & BW_UPCALL_LEQ)
1756 flags |= BW_METER_LEQ;
1757
1758 return flags;
1759}
1760
1761/*
1762 * Add a bw_meter entry
1763 */
1764static int
1765add_bw_upcall(struct bw_upcall *req)
1766{
1767 struct mfc *mfc;
1768 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1769 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1770 struct timeval now;
1771 struct bw_meter *x;
1772 uint32_t flags;
1773
1774 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1775 return EOPNOTSUPP;
1776
1777 /* Test if the flags are valid */
1778 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1779 return EINVAL;
1780 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1781 return EINVAL;
1782 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1783 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1784 return EINVAL;
1785
1786 /* Test if the threshold time interval is valid */
1787 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1788 return EINVAL;
1789
1790 flags = compute_bw_meter_flags(req);
1791
1792 /*
1793 * Find if we have already same bw_meter entry
1794 */
1795 MFC_LOCK();
1796 mfc = mfc_find(&req->bu_src, &req->bu_dst);
1797 if (mfc == NULL) {
1798 MFC_UNLOCK();
1799 return EADDRNOTAVAIL;
1800 }
1801 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
1802 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1803 &req->bu_threshold.b_time, ==)) &&
1804 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1805 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1806 (x->bm_flags & BW_METER_USER_FLAGS) == flags) {
1807 MFC_UNLOCK();
1808 return 0; /* XXX Already installed */
1809 }
1810 }
1811
1812 /* Allocate the new bw_meter entry */
1813 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
1814 if (x == NULL) {
1815 MFC_UNLOCK();
1816 return ENOBUFS;
1817 }
1818
1819 /* Set the new bw_meter entry */
1820 x->bm_threshold.b_time = req->bu_threshold.b_time;
1821 microtime(&now);
1822 x->bm_start_time = now;
1823 x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1824 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1825 x->bm_measured.b_packets = 0;
1826 x->bm_measured.b_bytes = 0;
1827 x->bm_flags = flags;
1828 x->bm_time_next = NULL;
1829 x->bm_time_hash = BW_METER_BUCKETS;
1830
1831 /* Add the new bw_meter entry to the front of entries for this MFC */
1832 x->bm_mfc = mfc;
1833 x->bm_mfc_next = mfc->mfc_bw_meter;
1834 mfc->mfc_bw_meter = x;
1835 schedule_bw_meter(x, &now);
1836 MFC_UNLOCK();
1837
1838 return 0;
1839}
1840
1841static void
1842free_bw_list(struct bw_meter *list)
1843{
1844 while (list != NULL) {
1845 struct bw_meter *x = list;
1846
1847 list = list->bm_mfc_next;
1848 unschedule_bw_meter(x);
1849 free(x, M_BWMETER);
1850 }
1851}
1852
1853/*
1854 * Delete one or multiple bw_meter entries
1855 */
1856static int
1857del_bw_upcall(struct bw_upcall *req)
1858{
1859 struct mfc *mfc;
1860 struct bw_meter *x;
1861
1862 if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1863 return EOPNOTSUPP;
1864
1865 MFC_LOCK();
1866
1867 /* Find the corresponding MFC entry */
1868 mfc = mfc_find(&req->bu_src, &req->bu_dst);
1869 if (mfc == NULL) {
1870 MFC_UNLOCK();
1871 return EADDRNOTAVAIL;
1872 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
1873 /*
1874 * Delete all bw_meter entries for this mfc
1875 */
1876 struct bw_meter *list;
1877
1878 list = mfc->mfc_bw_meter;
1879 mfc->mfc_bw_meter = NULL;
1880 free_bw_list(list);
1881 MFC_UNLOCK();
1882 return 0;
1883 } else { /* Delete a single bw_meter entry */
1884 struct bw_meter *prev;
1885 uint32_t flags = 0;
1886
1887 flags = compute_bw_meter_flags(req);
1888
1889 /* Find the bw_meter entry to delete */
1890 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
1891 prev = x, x = x->bm_mfc_next) {
1892 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1893 &req->bu_threshold.b_time, ==)) &&
1894 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1895 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1896 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
1897 break;
1898 }
1899 if (x != NULL) { /* Delete entry from the list for this MFC */
1900 if (prev != NULL)
1901 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/
1902 else
1903 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
1904
1905 unschedule_bw_meter(x);
1906 MFC_UNLOCK();
1907 /* Free the bw_meter entry */
1908 free(x, M_BWMETER);
1909 return 0;
1910 } else {
1911 MFC_UNLOCK();
1912 return EINVAL;
1913 }
1914 }
1915 /* NOTREACHED */
1916}
1917
1918/*
1919 * Perform bandwidth measurement processing that may result in an upcall
1920 */
1921static void
1922bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
1923{
1924 struct timeval delta;
1925
1926 MFC_LOCK_ASSERT();
1927
1928 delta = *nowp;
1929 BW_TIMEVALDECR(&delta, &x->bm_start_time);
1930
1931 if (x->bm_flags & BW_METER_GEQ) {
1932 /*
1933 * Processing for ">=" type of bw_meter entry
1934 */
1935 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1936 /* Reset the bw_meter entry */
1937 x->bm_start_time = *nowp;
1938 x->bm_measured.b_packets = 0;
1939 x->bm_measured.b_bytes = 0;
1940 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1941 }
1942
1943 /* Record that a packet is received */
1944 x->bm_measured.b_packets++;
1945 x->bm_measured.b_bytes += plen;
1946
1947 /*
1948 * Test if we should deliver an upcall
1949 */
1950 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
1951 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1952 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
1953 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
1954 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
1955 /* Prepare an upcall for delivery */
1956 bw_meter_prepare_upcall(x, nowp);
1957 x->bm_flags |= BW_METER_UPCALL_DELIVERED;
1958 }
1959 }
1960 } else if (x->bm_flags & BW_METER_LEQ) {
1961 /*
1962 * Processing for "<=" type of bw_meter entry
1963 */
1964 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1965 /*
1966 * We are behind time with the multicast forwarding table
1967 * scanning for "<=" type of bw_meter entries, so test now
1968 * if we should deliver an upcall.
1969 */
1970 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1971 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1972 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
1973 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1974 /* Prepare an upcall for delivery */
1975 bw_meter_prepare_upcall(x, nowp);
1976 }
1977 /* Reschedule the bw_meter entry */
1978 unschedule_bw_meter(x);
1979 schedule_bw_meter(x, nowp);
1980 }
1981
1982 /* Record that a packet is received */
1983 x->bm_measured.b_packets++;
1984 x->bm_measured.b_bytes += plen;
1985
1986 /*
1987 * Test if we should restart the measuring interval
1988 */
1989 if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
1990 x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
1991 (x->bm_flags & BW_METER_UNIT_BYTES &&
1992 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
1993 /* Don't restart the measuring interval */
1994 } else {
1995 /* Do restart the measuring interval */
1996 /*
1997 * XXX: note that we don't unschedule and schedule, because this
1998 * might be too much overhead per packet. Instead, when we process
1999 * all entries for a given timer hash bin, we check whether it is
2000 * really a timeout. If not, we reschedule at that time.
2001 */
2002 x->bm_start_time = *nowp;
2003 x->bm_measured.b_packets = 0;
2004 x->bm_measured.b_bytes = 0;
2005 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2006 }
2007 }
2008}
2009
2010/*
2011 * Prepare a bandwidth-related upcall
2012 */
2013static void
2014bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2015{
2016 struct timeval delta;
2017 struct bw_upcall *u;
2018
2019 MFC_LOCK_ASSERT();
2020
2021 /*
2022 * Compute the measured time interval
2023 */
2024 delta = *nowp;
2025 BW_TIMEVALDECR(&delta, &x->bm_start_time);
2026
2027 /*
2028 * If there are too many pending upcalls, deliver them now
2029 */
2030 if (V_bw_upcalls_n >= BW_UPCALLS_MAX)
2031 bw_upcalls_send();
2032
2033 /*
2034 * Set the bw_upcall entry
2035 */
2036 u = &V_bw_upcalls[V_bw_upcalls_n++];
2037 u->bu_src = x->bm_mfc->mfc_origin;
2038 u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2039 u->bu_threshold.b_time = x->bm_threshold.b_time;
2040 u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2041 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2042 u->bu_measured.b_time = delta;
2043 u->bu_measured.b_packets = x->bm_measured.b_packets;
2044 u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2045 u->bu_flags = 0;
2046 if (x->bm_flags & BW_METER_UNIT_PACKETS)
2047 u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2048 if (x->bm_flags & BW_METER_UNIT_BYTES)
2049 u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2050 if (x->bm_flags & BW_METER_GEQ)
2051 u->bu_flags |= BW_UPCALL_GEQ;
2052 if (x->bm_flags & BW_METER_LEQ)
2053 u->bu_flags |= BW_UPCALL_LEQ;
2054}
2055
2056/*
2057 * Send the pending bandwidth-related upcalls
2058 */
2059static void
2060bw_upcalls_send(void)
2061{
2062 struct mbuf *m;
2063 int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]);
2064 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2065 static struct igmpmsg igmpmsg = { 0, /* unused1 */
2066 0, /* unused2 */
2067 IGMPMSG_BW_UPCALL,/* im_msgtype */
2068 0, /* im_mbz */
2069 0, /* im_vif */
2070 0, /* unused3 */
2071 { 0 }, /* im_src */
2072 { 0 } }; /* im_dst */
2073
2074 MFC_LOCK_ASSERT();
2075
2076 if (V_bw_upcalls_n == 0)
2077 return; /* No pending upcalls */
2078
2079 V_bw_upcalls_n = 0;
2080
2081 /*
2082 * Allocate a new mbuf, initialize it with the header and
2083 * the payload for the pending calls.
2084 */
2085 m = m_gethdr(M_NOWAIT, MT_DATA);
2086 if (m == NULL) {
2087 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2088 return;
2089 }
2090
2091 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2092 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]);
2093
2094 /*
2095 * Send the upcalls
2096 * XXX do we need to set the address in k_igmpsrc ?
2097 */
2098 MRTSTAT_INC(mrts_upcalls);
2099 if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2100 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2101 MRTSTAT_INC(mrts_upq_sockfull);
2102 }
2103}
2104
2105/*
2106 * Compute the timeout hash value for the bw_meter entries
2107 */
2108#define BW_METER_TIMEHASH(bw_meter, hash) \
2109 do { \
2110 struct timeval next_timeval = (bw_meter)->bm_start_time; \
2111 \
2112 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2113 (hash) = next_timeval.tv_sec; \
2114 if (next_timeval.tv_usec) \
2115 (hash)++; /* XXX: make sure we don't timeout early */ \
2116 (hash) %= BW_METER_BUCKETS; \
2117 } while (0)
2118
2119/*
2120 * Schedule a timer to process periodically bw_meter entry of type "<="
2121 * by linking the entry in the proper hash bucket.
2122 */
2123static void
2124schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2125{
2126 int time_hash;
2127
2128 MFC_LOCK_ASSERT();
2129
2130 if (!(x->bm_flags & BW_METER_LEQ))
2131 return; /* XXX: we schedule timers only for "<=" entries */
2132
2133 /*
2134 * Reset the bw_meter entry
2135 */
2136 x->bm_start_time = *nowp;
2137 x->bm_measured.b_packets = 0;
2138 x->bm_measured.b_bytes = 0;
2139 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2140
2141 /*
2142 * Compute the timeout hash value and insert the entry
2143 */
2144 BW_METER_TIMEHASH(x, time_hash);
2145 x->bm_time_next = V_bw_meter_timers[time_hash];
2146 V_bw_meter_timers[time_hash] = x;
2147 x->bm_time_hash = time_hash;
2148}
2149
2150/*
2151 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2152 * by removing the entry from the proper hash bucket.
2153 */
2154static void
2155unschedule_bw_meter(struct bw_meter *x)
2156{
2157 int time_hash;
2158 struct bw_meter *prev, *tmp;
2159
2160 MFC_LOCK_ASSERT();
2161
2162 if (!(x->bm_flags & BW_METER_LEQ))
2163 return; /* XXX: we schedule timers only for "<=" entries */
2164
2165 /*
2166 * Compute the timeout hash value and delete the entry
2167 */
2168 time_hash = x->bm_time_hash;
2169 if (time_hash >= BW_METER_BUCKETS)
2170 return; /* Entry was not scheduled */
2171
2172 for (prev = NULL, tmp = V_bw_meter_timers[time_hash];
2173 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2174 if (tmp == x)
2175 break;
2176
2177 if (tmp == NULL)
2178 panic("unschedule_bw_meter: bw_meter entry not found");
2179
2180 if (prev != NULL)
2181 prev->bm_time_next = x->bm_time_next;
2182 else
2183 V_bw_meter_timers[time_hash] = x->bm_time_next;
2184
2185 x->bm_time_next = NULL;
2186 x->bm_time_hash = BW_METER_BUCKETS;
2187}
2188
2189
2190/*
2191 * Process all "<=" type of bw_meter that should be processed now,
2192 * and for each entry prepare an upcall if necessary. Each processed
2193 * entry is rescheduled again for the (periodic) processing.
2194 *
2195 * This is run periodically (once per second normally). On each round,
2196 * all the potentially matching entries are in the hash slot that we are
2197 * looking at.
2198 */
2199static void
2200bw_meter_process()
2201{
2202 uint32_t loops;
2203 int i;
2204 struct timeval now, process_endtime;
2205
2206 microtime(&now);
2207 if (V_last_tv_sec == now.tv_sec)
2208 return; /* nothing to do */
2209
2210 loops = now.tv_sec - V_last_tv_sec;
2211 V_last_tv_sec = now.tv_sec;
2212 if (loops > BW_METER_BUCKETS)
2213 loops = BW_METER_BUCKETS;
2214
2215 MFC_LOCK();
2216 /*
2217 * Process all bins of bw_meter entries from the one after the last
2218 * processed to the current one. On entry, i points to the last bucket
2219 * visited, so we need to increment i at the beginning of the loop.
2220 */
2221 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2222 struct bw_meter *x, *tmp_list;
2223
2224 if (++i >= BW_METER_BUCKETS)
2225 i = 0;
2226
2227 /* Disconnect the list of bw_meter entries from the bin */
2228 tmp_list = V_bw_meter_timers[i];
2229 V_bw_meter_timers[i] = NULL;
2230
2231 /* Process the list of bw_meter entries */
2232 while (tmp_list != NULL) {
2233 x = tmp_list;
2234 tmp_list = tmp_list->bm_time_next;
2235
2236 /* Test if the time interval is over */
2237 process_endtime = x->bm_start_time;
2238 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2239 if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2240 /* Not yet: reschedule, but don't reset */
2241 int time_hash;
2242
2243 BW_METER_TIMEHASH(x, time_hash);
2244 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2245 /*
2246 * XXX: somehow the bin processing is a bit ahead of time.
2247 * Put the entry in the next bin.
2248 */
2249 if (++time_hash >= BW_METER_BUCKETS)
2250 time_hash = 0;
2251 }
2252 x->bm_time_next = V_bw_meter_timers[time_hash];
2253 V_bw_meter_timers[time_hash] = x;
2254 x->bm_time_hash = time_hash;
2255
2256 continue;
2257 }
2258
2259 /*
2260 * Test if we should deliver an upcall
2261 */
2262 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2263 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2264 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2265 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2266 /* Prepare an upcall for delivery */
2267 bw_meter_prepare_upcall(x, &now);
2268 }
2269
2270 /*
2271 * Reschedule for next processing
2272 */
2273 schedule_bw_meter(x, &now);
2274 }
2275 }
2276
2277 /* Send all upcalls that are pending delivery */
2278 bw_upcalls_send();
2279
2280 MFC_UNLOCK();
2281}
2282
2283/*
2284 * A periodic function for sending all upcalls that are pending delivery
2285 */
2286static void
2287expire_bw_upcalls_send(void *arg)
2288{
2289 CURVNET_SET((struct vnet *) arg);
2290
2291 MFC_LOCK();
2292 bw_upcalls_send();
2293 MFC_UNLOCK();
2294
2295 callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
2296 curvnet);
2297 CURVNET_RESTORE();
2298}
2299
2300/*
2301 * A periodic function for periodic scanning of the multicast forwarding
2302 * table for processing all "<=" bw_meter entries.
2303 */
2304static void
2305expire_bw_meter_process(void *arg)
2306{
2307 CURVNET_SET((struct vnet *) arg);
2308
2309 if (V_mrt_api_config & MRT_MFC_BW_UPCALL)
2310 bw_meter_process();
2311
2312 callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
2313 curvnet);
2314 CURVNET_RESTORE();
2315}
2316
2317/*
2318 * End of bandwidth monitoring code
2319 */
2320
2321/*
2322 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2323 *
2324 */
2325static int
2326pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2327 struct mfc *rt)
2328{
2329 struct mbuf *mb_copy, *mm;
2330
2331 /*
2332 * Do not send IGMP_WHOLEPKT notifications to userland, if the
2333 * rendezvous point was unspecified, and we were told not to.
2334 */
2335 if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
2336 in_nullhost(rt->mfc_rp))
2337 return 0;
2338
2339 mb_copy = pim_register_prepare(ip, m);
2340 if (mb_copy == NULL)
2341 return ENOBUFS;
2342
2343 /*
2344 * Send all the fragments. Note that the mbuf for each fragment
2345 * is freed by the sending machinery.
2346 */
2347 for (mm = mb_copy; mm; mm = mb_copy) {
2348 mb_copy = mm->m_nextpkt;
2349 mm->m_nextpkt = 0;
2350 mm = m_pullup(mm, sizeof(struct ip));
2351 if (mm != NULL) {
2352 ip = mtod(mm, struct ip *);
2353 if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2354 pim_register_send_rp(ip, vifp, mm, rt);
2355 } else {
2356 pim_register_send_upcall(ip, vifp, mm, rt);
2357 }
2358 }
2359 }
2360
2361 return 0;
2362}
2363
2364/*
2365 * Return a copy of the data packet that is ready for PIM Register
2366 * encapsulation.
2367 * XXX: Note that in the returned copy the IP header is a valid one.
2368 */
2369static struct mbuf *
2370pim_register_prepare(struct ip *ip, struct mbuf *m)
2371{
2372 struct mbuf *mb_copy = NULL;
2373 int mtu;
2374
2375 /* Take care of delayed checksums */
2376 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2377 in_delayed_cksum(m);
2378 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2379 }
2380
2381 /*
2382 * Copy the old packet & pullup its IP header into the
2383 * new mbuf so we can modify it.
2384 */
2385 mb_copy = m_copypacket(m, M_NOWAIT);
2386 if (mb_copy == NULL)
2387 return NULL;
2388 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2389 if (mb_copy == NULL)
2390 return NULL;
2391
2392 /* take care of the TTL */
2393 ip = mtod(mb_copy, struct ip *);
2394 --ip->ip_ttl;
2395
2396 /* Compute the MTU after the PIM Register encapsulation */
2397 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2398
2399 if (ntohs(ip->ip_len) <= mtu) {
2400 /* Turn the IP header into a valid one */
2401 ip->ip_sum = 0;
2402 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2403 } else {
2404 /* Fragment the packet */
2405 mb_copy->m_pkthdr.csum_flags |= CSUM_IP;
2406 if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) {
2407 m_freem(mb_copy);
2408 return NULL;
2409 }
2410 }
2411 return mb_copy;
2412}
2413
2414/*
2415 * Send an upcall with the data packet to the user-level process.
2416 */
2417static int
2418pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2419 struct mbuf *mb_copy, struct mfc *rt)
2420{
2421 struct mbuf *mb_first;
2422 int len = ntohs(ip->ip_len);
2423 struct igmpmsg *im;
2424 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2425
2426 VIF_LOCK_ASSERT();
2427
2428 /*
2429 * Add a new mbuf with an upcall header
2430 */
2431 mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2432 if (mb_first == NULL) {
2433 m_freem(mb_copy);
2434 return ENOBUFS;
2435 }
2436 mb_first->m_data += max_linkhdr;
2437 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2438 mb_first->m_len = sizeof(struct igmpmsg);
2439 mb_first->m_next = mb_copy;
2440
2441 /* Send message to routing daemon */
2442 im = mtod(mb_first, struct igmpmsg *);
2443 im->im_msgtype = IGMPMSG_WHOLEPKT;
2444 im->im_mbz = 0;
2445 im->im_vif = vifp - V_viftable;
2446 im->im_src = ip->ip_src;
2447 im->im_dst = ip->ip_dst;
2448
2449 k_igmpsrc.sin_addr = ip->ip_src;
2450
2451 MRTSTAT_INC(mrts_upcalls);
2452
2453 if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2454 CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2455 MRTSTAT_INC(mrts_upq_sockfull);
2456 return ENOBUFS;
2457 }
2458
2459 /* Keep statistics */
2460 PIMSTAT_INC(pims_snd_registers_msgs);
2461 PIMSTAT_ADD(pims_snd_registers_bytes, len);
2462
2463 return 0;
2464}
2465
2466/*
2467 * Encapsulate the data packet in PIM Register message and send it to the RP.
2468 */
2469static int
2470pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2471 struct mfc *rt)
2472{
2473 struct mbuf *mb_first;
2474 struct ip *ip_outer;
2475 struct pim_encap_pimhdr *pimhdr;
2476 int len = ntohs(ip->ip_len);
2477 vifi_t vifi = rt->mfc_parent;
2478
2479 VIF_LOCK_ASSERT();
2480
2481 if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
2482 m_freem(mb_copy);
2483 return EADDRNOTAVAIL; /* The iif vif is invalid */
2484 }
2485
2486 /*
2487 * Add a new mbuf with the encapsulating header
2488 */
2489 mb_first = m_gethdr(M_NOWAIT, MT_DATA);
2490 if (mb_first == NULL) {
2491 m_freem(mb_copy);
2492 return ENOBUFS;
2493 }
2494 mb_first->m_data += max_linkhdr;
2495 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2496 mb_first->m_next = mb_copy;
2497
2498 mb_first->m_pkthdr.len = len + mb_first->m_len;
2499
2500 /*
2501 * Fill in the encapsulating IP and PIM header
2502 */
2503 ip_outer = mtod(mb_first, struct ip *);
2504 *ip_outer = pim_encap_iphdr;
2505 ip_outer->ip_id = ip_newid();
2506 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
2507 sizeof(pim_encap_pimhdr));
2508 ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
2509 ip_outer->ip_dst = rt->mfc_rp;
2510 /*
2511 * Copy the inner header TOS to the outer header, and take care of the
2512 * IP_DF bit.
2513 */
2514 ip_outer->ip_tos = ip->ip_tos;
2515 if (ip->ip_off & htons(IP_DF))
2516 ip_outer->ip_off |= htons(IP_DF);
2517 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2518 + sizeof(pim_encap_iphdr));
2519 *pimhdr = pim_encap_pimhdr;
2520 /* If the iif crosses a border, set the Border-bit */
2521 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
2522 pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2523
2524 mb_first->m_data += sizeof(pim_encap_iphdr);
2525 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2526 mb_first->m_data -= sizeof(pim_encap_iphdr);
2527
2528 send_packet(vifp, mb_first);
2529
2530 /* Keep statistics */
2531 PIMSTAT_INC(pims_snd_registers_msgs);
2532 PIMSTAT_ADD(pims_snd_registers_bytes, len);
2533
2534 return 0;
2535}
2536
2537/*
2538 * pim_encapcheck() is called by the encap4_input() path at runtime to
2539 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2540 * into the kernel.
2541 */
2542static int
2543pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2544{
2545
2546#ifdef DIAGNOSTIC
2547 KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2548#endif
2549 if (proto != IPPROTO_PIM)
2550 return 0; /* not for us; reject the datagram. */
2551
2552 return 64; /* claim the datagram. */
2553}
2554
2555/*
2556 * PIM-SMv2 and PIM-DM messages processing.
2557 * Receives and verifies the PIM control messages, and passes them
2558 * up to the listening socket, using rip_input().
2559 * The only message with special processing is the PIM_REGISTER message
2560 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2561 * is passed to if_simloop().
2562 */
2559void
2560pim_input(struct mbuf *m, int iphlen)
2563int
2564pim_input(struct mbuf **mp, int *offp, int proto)
2561{
2565{
2566 struct mbuf *m = *mp;
2562 struct ip *ip = mtod(m, struct ip *);
2563 struct pim *pim;
2567 struct ip *ip = mtod(m, struct ip *);
2568 struct pim *pim;
2569 int iphlen = *offp;
2564 int minlen;
2565 int datalen = ntohs(ip->ip_len) - iphlen;
2566 int ip_tos;
2567
2570 int minlen;
2571 int datalen = ntohs(ip->ip_len) - iphlen;
2572 int ip_tos;
2573
2574 *mp = NULL;
2575
2568 /* Keep statistics */
2569 PIMSTAT_INC(pims_rcv_total_msgs);
2570 PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2571
2572 /*
2573 * Validate lengths
2574 */
2575 if (datalen < PIM_MINLEN) {
2576 PIMSTAT_INC(pims_rcv_tooshort);
2577 CTR3(KTR_IPMF, "%s: short packet (%d) from %s",
2578 __func__, datalen, inet_ntoa(ip->ip_src));
2579 m_freem(m);
2576 /* Keep statistics */
2577 PIMSTAT_INC(pims_rcv_total_msgs);
2578 PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2579
2580 /*
2581 * Validate lengths
2582 */
2583 if (datalen < PIM_MINLEN) {
2584 PIMSTAT_INC(pims_rcv_tooshort);
2585 CTR3(KTR_IPMF, "%s: short packet (%d) from %s",
2586 __func__, datalen, inet_ntoa(ip->ip_src));
2587 m_freem(m);
2580 return;
2588 return (IPPROTO_DONE);
2581 }
2582
2583 /*
2584 * If the packet is at least as big as a REGISTER, go agead
2585 * and grab the PIM REGISTER header size, to avoid another
2586 * possible m_pullup() later.
2587 *
2588 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8
2589 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2590 */
2591 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2592 /*
2593 * Get the IP and PIM headers in contiguous memory, and
2594 * possibly the PIM REGISTER header.
2595 */
2596 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == 0) {
2597 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2589 }
2590
2591 /*
2592 * If the packet is at least as big as a REGISTER, go agead
2593 * and grab the PIM REGISTER header size, to avoid another
2594 * possible m_pullup() later.
2595 *
2596 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8
2597 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2598 */
2599 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2600 /*
2601 * Get the IP and PIM headers in contiguous memory, and
2602 * possibly the PIM REGISTER header.
2603 */
2604 if (m->m_len < minlen && (m = m_pullup(m, minlen)) == 0) {
2605 CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2598 return;
2606 return (IPPROTO_DONE);
2599 }
2600
2601 /* m_pullup() may have given us a new mbuf so reset ip. */
2602 ip = mtod(m, struct ip *);
2603 ip_tos = ip->ip_tos;
2604
2605 /* adjust mbuf to point to the PIM header */
2606 m->m_data += iphlen;
2607 m->m_len -= iphlen;
2608 pim = mtod(m, struct pim *);
2609
2610 /*
2611 * Validate checksum. If PIM REGISTER, exclude the data packet.
2612 *
2613 * XXX: some older PIMv2 implementations don't make this distinction,
2614 * so for compatibility reason perform the checksum over part of the
2615 * message, and if error, then over the whole message.
2616 */
2617 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2618 /* do nothing, checksum okay */
2619 } else if (in_cksum(m, datalen)) {
2620 PIMSTAT_INC(pims_rcv_badsum);
2621 CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2622 m_freem(m);
2607 }
2608
2609 /* m_pullup() may have given us a new mbuf so reset ip. */
2610 ip = mtod(m, struct ip *);
2611 ip_tos = ip->ip_tos;
2612
2613 /* adjust mbuf to point to the PIM header */
2614 m->m_data += iphlen;
2615 m->m_len -= iphlen;
2616 pim = mtod(m, struct pim *);
2617
2618 /*
2619 * Validate checksum. If PIM REGISTER, exclude the data packet.
2620 *
2621 * XXX: some older PIMv2 implementations don't make this distinction,
2622 * so for compatibility reason perform the checksum over part of the
2623 * message, and if error, then over the whole message.
2624 */
2625 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2626 /* do nothing, checksum okay */
2627 } else if (in_cksum(m, datalen)) {
2628 PIMSTAT_INC(pims_rcv_badsum);
2629 CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2630 m_freem(m);
2623 return;
2631 return (IPPROTO_DONE);
2624 }
2625
2626 /* PIM version check */
2627 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2628 PIMSTAT_INC(pims_rcv_badversion);
2629 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2630 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2631 m_freem(m);
2632 }
2633
2634 /* PIM version check */
2635 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2636 PIMSTAT_INC(pims_rcv_badversion);
2637 CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2638 (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2639 m_freem(m);
2632 return;
2640 return (IPPROTO_DONE);
2633 }
2634
2635 /* restore mbuf back to the outer IP */
2636 m->m_data -= iphlen;
2637 m->m_len += iphlen;
2638
2639 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2640 /*
2641 * Since this is a REGISTER, we'll make a copy of the register
2642 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2643 * routing daemon.
2644 */
2645 struct sockaddr_in dst = { sizeof(dst), AF_INET };
2646 struct mbuf *mcp;
2647 struct ip *encap_ip;
2648 u_int32_t *reghdr;
2649 struct ifnet *vifp;
2650
2651 VIF_LOCK();
2652 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
2653 VIF_UNLOCK();
2654 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2655 (int)V_reg_vif_num);
2656 m_freem(m);
2641 }
2642
2643 /* restore mbuf back to the outer IP */
2644 m->m_data -= iphlen;
2645 m->m_len += iphlen;
2646
2647 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2648 /*
2649 * Since this is a REGISTER, we'll make a copy of the register
2650 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2651 * routing daemon.
2652 */
2653 struct sockaddr_in dst = { sizeof(dst), AF_INET };
2654 struct mbuf *mcp;
2655 struct ip *encap_ip;
2656 u_int32_t *reghdr;
2657 struct ifnet *vifp;
2658
2659 VIF_LOCK();
2660 if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
2661 VIF_UNLOCK();
2662 CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2663 (int)V_reg_vif_num);
2664 m_freem(m);
2657 return;
2665 return (IPPROTO_DONE);
2658 }
2659 /* XXX need refcnt? */
2660 vifp = V_viftable[V_reg_vif_num].v_ifp;
2661 VIF_UNLOCK();
2662
2663 /*
2664 * Validate length
2665 */
2666 if (datalen < PIM_REG_MINLEN) {
2667 PIMSTAT_INC(pims_rcv_tooshort);
2668 PIMSTAT_INC(pims_rcv_badregisters);
2669 CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2670 m_freem(m);
2666 }
2667 /* XXX need refcnt? */
2668 vifp = V_viftable[V_reg_vif_num].v_ifp;
2669 VIF_UNLOCK();
2670
2671 /*
2672 * Validate length
2673 */
2674 if (datalen < PIM_REG_MINLEN) {
2675 PIMSTAT_INC(pims_rcv_tooshort);
2676 PIMSTAT_INC(pims_rcv_badregisters);
2677 CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2678 m_freem(m);
2671 return;
2679 return (IPPROTO_DONE);
2672 }
2673
2674 reghdr = (u_int32_t *)(pim + 1);
2675 encap_ip = (struct ip *)(reghdr + 1);
2676
2677 CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d",
2678 __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len));
2679
2680 /* verify the version number of the inner packet */
2681 if (encap_ip->ip_v != IPVERSION) {
2682 PIMSTAT_INC(pims_rcv_badregisters);
2683 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2684 m_freem(m);
2680 }
2681
2682 reghdr = (u_int32_t *)(pim + 1);
2683 encap_ip = (struct ip *)(reghdr + 1);
2684
2685 CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d",
2686 __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len));
2687
2688 /* verify the version number of the inner packet */
2689 if (encap_ip->ip_v != IPVERSION) {
2690 PIMSTAT_INC(pims_rcv_badregisters);
2691 CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2692 m_freem(m);
2685 return;
2693 return (IPPROTO_DONE);
2686 }
2687
2688 /* verify the inner packet is destined to a mcast group */
2689 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2690 PIMSTAT_INC(pims_rcv_badregisters);
2691 CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__,
2692 inet_ntoa(encap_ip->ip_dst));
2693 m_freem(m);
2694 }
2695
2696 /* verify the inner packet is destined to a mcast group */
2697 if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2698 PIMSTAT_INC(pims_rcv_badregisters);
2699 CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__,
2700 inet_ntoa(encap_ip->ip_dst));
2701 m_freem(m);
2694 return;
2702 return (IPPROTO_DONE);
2695 }
2696
2697 /* If a NULL_REGISTER, pass it to the daemon */
2698 if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2699 goto pim_input_to_daemon;
2700
2701 /*
2702 * Copy the TOS from the outer IP header to the inner IP header.
2703 */
2704 if (encap_ip->ip_tos != ip_tos) {
2705 /* Outer TOS -> inner TOS */
2706 encap_ip->ip_tos = ip_tos;
2707 /* Recompute the inner header checksum. Sigh... */
2708
2709 /* adjust mbuf to point to the inner IP header */
2710 m->m_data += (iphlen + PIM_MINLEN);
2711 m->m_len -= (iphlen + PIM_MINLEN);
2712
2713 encap_ip->ip_sum = 0;
2714 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2715
2716 /* restore mbuf to point back to the outer IP header */
2717 m->m_data -= (iphlen + PIM_MINLEN);
2718 m->m_len += (iphlen + PIM_MINLEN);
2719 }
2720
2721 /*
2722 * Decapsulate the inner IP packet and loopback to forward it
2723 * as a normal multicast packet. Also, make a copy of the
2724 * outer_iphdr + pimhdr + reghdr + encap_iphdr
2725 * to pass to the daemon later, so it can take the appropriate
2726 * actions (e.g., send back PIM_REGISTER_STOP).
2727 * XXX: here m->m_data points to the outer IP header.
2728 */
2729 mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2730 if (mcp == NULL) {
2731 CTR1(KTR_IPMF, "%s: m_copy() failed", __func__);
2732 m_freem(m);
2703 }
2704
2705 /* If a NULL_REGISTER, pass it to the daemon */
2706 if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2707 goto pim_input_to_daemon;
2708
2709 /*
2710 * Copy the TOS from the outer IP header to the inner IP header.
2711 */
2712 if (encap_ip->ip_tos != ip_tos) {
2713 /* Outer TOS -> inner TOS */
2714 encap_ip->ip_tos = ip_tos;
2715 /* Recompute the inner header checksum. Sigh... */
2716
2717 /* adjust mbuf to point to the inner IP header */
2718 m->m_data += (iphlen + PIM_MINLEN);
2719 m->m_len -= (iphlen + PIM_MINLEN);
2720
2721 encap_ip->ip_sum = 0;
2722 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2723
2724 /* restore mbuf to point back to the outer IP header */
2725 m->m_data -= (iphlen + PIM_MINLEN);
2726 m->m_len += (iphlen + PIM_MINLEN);
2727 }
2728
2729 /*
2730 * Decapsulate the inner IP packet and loopback to forward it
2731 * as a normal multicast packet. Also, make a copy of the
2732 * outer_iphdr + pimhdr + reghdr + encap_iphdr
2733 * to pass to the daemon later, so it can take the appropriate
2734 * actions (e.g., send back PIM_REGISTER_STOP).
2735 * XXX: here m->m_data points to the outer IP header.
2736 */
2737 mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2738 if (mcp == NULL) {
2739 CTR1(KTR_IPMF, "%s: m_copy() failed", __func__);
2740 m_freem(m);
2733 return;
2741 return (IPPROTO_DONE);
2734 }
2735
2736 /* Keep statistics */
2737 /* XXX: registers_bytes include only the encap. mcast pkt */
2738 PIMSTAT_INC(pims_rcv_registers_msgs);
2739 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2740
2741 /*
2742 * forward the inner ip packet; point m_data at the inner ip.
2743 */
2744 m_adj(m, iphlen + PIM_MINLEN);
2745
2746 CTR4(KTR_IPMF,
2747 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2748 __func__,
2749 (u_long)ntohl(encap_ip->ip_src.s_addr),
2750 (u_long)ntohl(encap_ip->ip_dst.s_addr),
2751 (int)V_reg_vif_num);
2752
2753 /* NB: vifp was collected above; can it change on us? */
2754 if_simloop(vifp, m, dst.sin_family, 0);
2755
2756 /* prepare the register head to send to the mrouting daemon */
2757 m = mcp;
2758 }
2759
2760pim_input_to_daemon:
2761 /*
2762 * Pass the PIM message up to the daemon; if it is a Register message,
2763 * pass the 'head' only up to the daemon. This includes the
2764 * outer IP header, PIM header, PIM-Register header and the
2765 * inner IP header.
2766 * XXX: the outer IP header pkt size of a Register is not adjust to
2767 * reflect the fact that the inner multicast data is truncated.
2768 */
2742 }
2743
2744 /* Keep statistics */
2745 /* XXX: registers_bytes include only the encap. mcast pkt */
2746 PIMSTAT_INC(pims_rcv_registers_msgs);
2747 PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2748
2749 /*
2750 * forward the inner ip packet; point m_data at the inner ip.
2751 */
2752 m_adj(m, iphlen + PIM_MINLEN);
2753
2754 CTR4(KTR_IPMF,
2755 "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2756 __func__,
2757 (u_long)ntohl(encap_ip->ip_src.s_addr),
2758 (u_long)ntohl(encap_ip->ip_dst.s_addr),
2759 (int)V_reg_vif_num);
2760
2761 /* NB: vifp was collected above; can it change on us? */
2762 if_simloop(vifp, m, dst.sin_family, 0);
2763
2764 /* prepare the register head to send to the mrouting daemon */
2765 m = mcp;
2766 }
2767
2768pim_input_to_daemon:
2769 /*
2770 * Pass the PIM message up to the daemon; if it is a Register message,
2771 * pass the 'head' only up to the daemon. This includes the
2772 * outer IP header, PIM header, PIM-Register header and the
2773 * inner IP header.
2774 * XXX: the outer IP header pkt size of a Register is not adjust to
2775 * reflect the fact that the inner multicast data is truncated.
2776 */
2769 rip_input(m, iphlen);
2777 *mp = m;
2778 rip_input(mp, offp, proto);
2770
2779
2771 return;
2780 return (IPPROTO_DONE);
2772}
2773
2774static int
2775sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2776{
2777 struct mfc *rt;
2778 int error, i;
2779
2780 if (req->newptr)
2781 return (EPERM);
2782 if (V_mfchashtbl == NULL) /* XXX unlocked */
2783 return (0);
2784 error = sysctl_wire_old_buffer(req, 0);
2785 if (error)
2786 return (error);
2787
2788 MFC_LOCK();
2789 for (i = 0; i < mfchashsize; i++) {
2790 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
2791 error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2792 if (error)
2793 goto out_locked;
2794 }
2795 }
2796out_locked:
2797 MFC_UNLOCK();
2798 return (error);
2799}
2800
2801static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
2802 sysctl_mfctable, "IPv4 Multicast Forwarding Table "
2803 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
2804
2805static void
2806vnet_mroute_init(const void *unused __unused)
2807{
2808
2809 MALLOC(V_nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2810 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers));
2811 callout_init(&V_expire_upcalls_ch, CALLOUT_MPSAFE);
2812 callout_init(&V_bw_upcalls_ch, CALLOUT_MPSAFE);
2813 callout_init(&V_bw_meter_ch, CALLOUT_MPSAFE);
2814}
2815
2816VNET_SYSINIT(vnet_mroute_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mroute_init,
2817 NULL);
2818
2819static void
2820vnet_mroute_uninit(const void *unused __unused)
2821{
2822
2823 FREE(V_nexpire, M_MRTABLE);
2824 V_nexpire = NULL;
2825}
2826
2827VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE,
2828 vnet_mroute_uninit, NULL);
2829
2830static int
2831ip_mroute_modevent(module_t mod, int type, void *unused)
2832{
2833
2834 switch (type) {
2835 case MOD_LOAD:
2836 MROUTER_LOCK_INIT();
2837
2838 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
2839 if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
2840 if (if_detach_event_tag == NULL) {
2841 printf("ip_mroute: unable to register "
2842 "ifnet_departure_event handler\n");
2843 MROUTER_LOCK_DESTROY();
2844 return (EINVAL);
2845 }
2846
2847 MFC_LOCK_INIT();
2848 VIF_LOCK_INIT();
2849
2850 mfchashsize = MFCHASHSIZE;
2851 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2852 !powerof2(mfchashsize)) {
2853 printf("WARNING: %s not a power of 2; using default\n",
2854 "net.inet.ip.mfchashsize");
2855 mfchashsize = MFCHASHSIZE;
2856 }
2857
2858 pim_squelch_wholepkt = 0;
2859 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2860 &pim_squelch_wholepkt);
2861
2862 pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
2863 pim_encapcheck, &in_pim_protosw, NULL);
2864 if (pim_encap_cookie == NULL) {
2865 printf("ip_mroute: unable to attach pim encap\n");
2866 VIF_LOCK_DESTROY();
2867 MFC_LOCK_DESTROY();
2868 MROUTER_LOCK_DESTROY();
2869 return (EINVAL);
2870 }
2871
2872 ip_mcast_src = X_ip_mcast_src;
2873 ip_mforward = X_ip_mforward;
2874 ip_mrouter_done = X_ip_mrouter_done;
2875 ip_mrouter_get = X_ip_mrouter_get;
2876 ip_mrouter_set = X_ip_mrouter_set;
2877
2878 ip_rsvp_force_done = X_ip_rsvp_force_done;
2879 ip_rsvp_vif = X_ip_rsvp_vif;
2880
2881 legal_vif_num = X_legal_vif_num;
2882 mrt_ioctl = X_mrt_ioctl;
2883 rsvp_input_p = X_rsvp_input;
2884 break;
2885
2886 case MOD_UNLOAD:
2887 /*
2888 * Typically module unload happens after the user-level
2889 * process has shutdown the kernel services (the check
2890 * below insures someone can't just yank the module out
2891 * from under a running process). But if the module is
2892 * just loaded and then unloaded w/o starting up a user
2893 * process we still need to cleanup.
2894 */
2895 MROUTER_LOCK();
2896 if (ip_mrouter_cnt != 0) {
2897 MROUTER_UNLOCK();
2898 return (EINVAL);
2899 }
2900 ip_mrouter_unloading = 1;
2901 MROUTER_UNLOCK();
2902
2903 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
2904
2905 if (pim_encap_cookie) {
2906 encap_detach(pim_encap_cookie);
2907 pim_encap_cookie = NULL;
2908 }
2909
2910 ip_mcast_src = NULL;
2911 ip_mforward = NULL;
2912 ip_mrouter_done = NULL;
2913 ip_mrouter_get = NULL;
2914 ip_mrouter_set = NULL;
2915
2916 ip_rsvp_force_done = NULL;
2917 ip_rsvp_vif = NULL;
2918
2919 legal_vif_num = NULL;
2920 mrt_ioctl = NULL;
2921 rsvp_input_p = NULL;
2922
2923 VIF_LOCK_DESTROY();
2924 MFC_LOCK_DESTROY();
2925 MROUTER_LOCK_DESTROY();
2926 break;
2927
2928 default:
2929 return EOPNOTSUPP;
2930 }
2931 return 0;
2932}
2933
2934static moduledata_t ip_mroutemod = {
2935 "ip_mroute",
2936 ip_mroute_modevent,
2937 0
2938};
2939
2940DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_MIDDLE);
2781}
2782
2783static int
2784sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2785{
2786 struct mfc *rt;
2787 int error, i;
2788
2789 if (req->newptr)
2790 return (EPERM);
2791 if (V_mfchashtbl == NULL) /* XXX unlocked */
2792 return (0);
2793 error = sysctl_wire_old_buffer(req, 0);
2794 if (error)
2795 return (error);
2796
2797 MFC_LOCK();
2798 for (i = 0; i < mfchashsize; i++) {
2799 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
2800 error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2801 if (error)
2802 goto out_locked;
2803 }
2804 }
2805out_locked:
2806 MFC_UNLOCK();
2807 return (error);
2808}
2809
2810static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
2811 sysctl_mfctable, "IPv4 Multicast Forwarding Table "
2812 "(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
2813
2814static void
2815vnet_mroute_init(const void *unused __unused)
2816{
2817
2818 MALLOC(V_nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2819 bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers));
2820 callout_init(&V_expire_upcalls_ch, CALLOUT_MPSAFE);
2821 callout_init(&V_bw_upcalls_ch, CALLOUT_MPSAFE);
2822 callout_init(&V_bw_meter_ch, CALLOUT_MPSAFE);
2823}
2824
2825VNET_SYSINIT(vnet_mroute_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mroute_init,
2826 NULL);
2827
2828static void
2829vnet_mroute_uninit(const void *unused __unused)
2830{
2831
2832 FREE(V_nexpire, M_MRTABLE);
2833 V_nexpire = NULL;
2834}
2835
2836VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE,
2837 vnet_mroute_uninit, NULL);
2838
2839static int
2840ip_mroute_modevent(module_t mod, int type, void *unused)
2841{
2842
2843 switch (type) {
2844 case MOD_LOAD:
2845 MROUTER_LOCK_INIT();
2846
2847 if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
2848 if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
2849 if (if_detach_event_tag == NULL) {
2850 printf("ip_mroute: unable to register "
2851 "ifnet_departure_event handler\n");
2852 MROUTER_LOCK_DESTROY();
2853 return (EINVAL);
2854 }
2855
2856 MFC_LOCK_INIT();
2857 VIF_LOCK_INIT();
2858
2859 mfchashsize = MFCHASHSIZE;
2860 if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2861 !powerof2(mfchashsize)) {
2862 printf("WARNING: %s not a power of 2; using default\n",
2863 "net.inet.ip.mfchashsize");
2864 mfchashsize = MFCHASHSIZE;
2865 }
2866
2867 pim_squelch_wholepkt = 0;
2868 TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2869 &pim_squelch_wholepkt);
2870
2871 pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
2872 pim_encapcheck, &in_pim_protosw, NULL);
2873 if (pim_encap_cookie == NULL) {
2874 printf("ip_mroute: unable to attach pim encap\n");
2875 VIF_LOCK_DESTROY();
2876 MFC_LOCK_DESTROY();
2877 MROUTER_LOCK_DESTROY();
2878 return (EINVAL);
2879 }
2880
2881 ip_mcast_src = X_ip_mcast_src;
2882 ip_mforward = X_ip_mforward;
2883 ip_mrouter_done = X_ip_mrouter_done;
2884 ip_mrouter_get = X_ip_mrouter_get;
2885 ip_mrouter_set = X_ip_mrouter_set;
2886
2887 ip_rsvp_force_done = X_ip_rsvp_force_done;
2888 ip_rsvp_vif = X_ip_rsvp_vif;
2889
2890 legal_vif_num = X_legal_vif_num;
2891 mrt_ioctl = X_mrt_ioctl;
2892 rsvp_input_p = X_rsvp_input;
2893 break;
2894
2895 case MOD_UNLOAD:
2896 /*
2897 * Typically module unload happens after the user-level
2898 * process has shutdown the kernel services (the check
2899 * below insures someone can't just yank the module out
2900 * from under a running process). But if the module is
2901 * just loaded and then unloaded w/o starting up a user
2902 * process we still need to cleanup.
2903 */
2904 MROUTER_LOCK();
2905 if (ip_mrouter_cnt != 0) {
2906 MROUTER_UNLOCK();
2907 return (EINVAL);
2908 }
2909 ip_mrouter_unloading = 1;
2910 MROUTER_UNLOCK();
2911
2912 EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
2913
2914 if (pim_encap_cookie) {
2915 encap_detach(pim_encap_cookie);
2916 pim_encap_cookie = NULL;
2917 }
2918
2919 ip_mcast_src = NULL;
2920 ip_mforward = NULL;
2921 ip_mrouter_done = NULL;
2922 ip_mrouter_get = NULL;
2923 ip_mrouter_set = NULL;
2924
2925 ip_rsvp_force_done = NULL;
2926 ip_rsvp_vif = NULL;
2927
2928 legal_vif_num = NULL;
2929 mrt_ioctl = NULL;
2930 rsvp_input_p = NULL;
2931
2932 VIF_LOCK_DESTROY();
2933 MFC_LOCK_DESTROY();
2934 MROUTER_LOCK_DESTROY();
2935 break;
2936
2937 default:
2938 return EOPNOTSUPP;
2939 }
2940 return 0;
2941}
2942
2943static moduledata_t ip_mroutemod = {
2944 "ip_mroute",
2945 ip_mroute_modevent,
2946 0
2947};
2948
2949DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_MIDDLE);