Deleted Added
full compact
rtsock.c (156750) rtsock.c (157366)
1/*-
2 * Copyright (c) 1988, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95
1/*-
2 * Copyright (c) 1988, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95
30 * $FreeBSD: head/sys/net/rtsock.c 156750 2006-03-15 19:39:09Z andre $
30 * $FreeBSD: head/sys/net/rtsock.c 157366 2006-04-01 15:15:05Z rwatson $
31 */
32
33#include <sys/param.h>
34#include <sys/domain.h>
35#include <sys/kernel.h>
36#include <sys/jail.h>
37#include <sys/malloc.h>
38#include <sys/mbuf.h>
39#include <sys/proc.h>
40#include <sys/protosw.h>
41#include <sys/signalvar.h>
42#include <sys/socket.h>
43#include <sys/socketvar.h>
44#include <sys/sysctl.h>
45#include <sys/systm.h>
46
47#include <net/if.h>
48#include <net/netisr.h>
49#include <net/raw_cb.h>
50#include <net/route.h>
51
52#include <netinet/in.h>
53
54MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
55
56/* NB: these are not modified */
57static struct sockaddr route_dst = { 2, PF_ROUTE, };
58static struct sockaddr route_src = { 2, PF_ROUTE, };
59static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, };
60
61static struct {
62 int ip_count; /* attached w/ AF_INET */
63 int ip6_count; /* attached w/ AF_INET6 */
64 int ipx_count; /* attached w/ AF_IPX */
65 int any_count; /* total attached */
66} route_cb;
67
68struct mtx rtsock_mtx;
69MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
70
71#define RTSOCK_LOCK() mtx_lock(&rtsock_mtx)
72#define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx)
73#define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED)
74
75static struct ifqueue rtsintrq;
76
77SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, "");
78SYSCTL_INT(_net_route, OID_AUTO, netisr_maxqlen, CTLFLAG_RW,
79 &rtsintrq.ifq_maxlen, 0, "maximum routing socket dispatch queue length");
80
81struct walkarg {
82 int w_tmemsize;
83 int w_op, w_arg;
84 caddr_t w_tmem;
85 struct sysctl_req *w_req;
86};
87
88static void rts_input(struct mbuf *m);
89static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo);
90static int rt_msg2(int type, struct rt_addrinfo *rtinfo,
91 caddr_t cp, struct walkarg *w);
92static int rt_xaddrs(caddr_t cp, caddr_t cplim,
93 struct rt_addrinfo *rtinfo);
94static int sysctl_dumpentry(struct radix_node *rn, void *vw);
95static int sysctl_iflist(int af, struct walkarg *w);
96static int sysctl_ifmalist(int af, struct walkarg *w);
97static int route_output(struct mbuf *m, struct socket *so);
98static void rt_setmetrics(u_long which, const struct rt_metrics *in,
99 struct rt_metrics_lite *out);
100static void rt_getmetrics(const struct rt_metrics_lite *in,
101 struct rt_metrics *out);
102static void rt_dispatch(struct mbuf *, const struct sockaddr *);
103
104static void
105rts_init(void)
106{
107 int tmp;
108
109 rtsintrq.ifq_maxlen = 256;
110 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
111 rtsintrq.ifq_maxlen = tmp;
112 mtx_init(&rtsintrq.ifq_mtx, "rts_inq", NULL, MTX_DEF);
113 netisr_register(NETISR_ROUTE, rts_input, &rtsintrq, NETISR_MPSAFE);
114}
115SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0)
116
117static void
118rts_input(struct mbuf *m)
119{
120 struct sockproto route_proto;
121 unsigned short *family;
122 struct m_tag *tag;
123
124 route_proto.sp_family = PF_ROUTE;
125 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
126 if (tag != NULL) {
127 family = (unsigned short *)(tag + 1);
128 route_proto.sp_protocol = *family;
129 m_tag_delete(m, tag);
130 } else
131 route_proto.sp_protocol = 0;
132
133 raw_input(m, &route_proto, &route_src, &route_dst);
134}
135
136/*
137 * It really doesn't make any sense at all for this code to share much
138 * with raw_usrreq.c, since its functionality is so restricted. XXX
139 */
31 */
32
33#include <sys/param.h>
34#include <sys/domain.h>
35#include <sys/kernel.h>
36#include <sys/jail.h>
37#include <sys/malloc.h>
38#include <sys/mbuf.h>
39#include <sys/proc.h>
40#include <sys/protosw.h>
41#include <sys/signalvar.h>
42#include <sys/socket.h>
43#include <sys/socketvar.h>
44#include <sys/sysctl.h>
45#include <sys/systm.h>
46
47#include <net/if.h>
48#include <net/netisr.h>
49#include <net/raw_cb.h>
50#include <net/route.h>
51
52#include <netinet/in.h>
53
54MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
55
56/* NB: these are not modified */
57static struct sockaddr route_dst = { 2, PF_ROUTE, };
58static struct sockaddr route_src = { 2, PF_ROUTE, };
59static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, };
60
61static struct {
62 int ip_count; /* attached w/ AF_INET */
63 int ip6_count; /* attached w/ AF_INET6 */
64 int ipx_count; /* attached w/ AF_IPX */
65 int any_count; /* total attached */
66} route_cb;
67
68struct mtx rtsock_mtx;
69MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
70
71#define RTSOCK_LOCK() mtx_lock(&rtsock_mtx)
72#define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx)
73#define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED)
74
75static struct ifqueue rtsintrq;
76
77SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, "");
78SYSCTL_INT(_net_route, OID_AUTO, netisr_maxqlen, CTLFLAG_RW,
79 &rtsintrq.ifq_maxlen, 0, "maximum routing socket dispatch queue length");
80
81struct walkarg {
82 int w_tmemsize;
83 int w_op, w_arg;
84 caddr_t w_tmem;
85 struct sysctl_req *w_req;
86};
87
88static void rts_input(struct mbuf *m);
89static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo);
90static int rt_msg2(int type, struct rt_addrinfo *rtinfo,
91 caddr_t cp, struct walkarg *w);
92static int rt_xaddrs(caddr_t cp, caddr_t cplim,
93 struct rt_addrinfo *rtinfo);
94static int sysctl_dumpentry(struct radix_node *rn, void *vw);
95static int sysctl_iflist(int af, struct walkarg *w);
96static int sysctl_ifmalist(int af, struct walkarg *w);
97static int route_output(struct mbuf *m, struct socket *so);
98static void rt_setmetrics(u_long which, const struct rt_metrics *in,
99 struct rt_metrics_lite *out);
100static void rt_getmetrics(const struct rt_metrics_lite *in,
101 struct rt_metrics *out);
102static void rt_dispatch(struct mbuf *, const struct sockaddr *);
103
104static void
105rts_init(void)
106{
107 int tmp;
108
109 rtsintrq.ifq_maxlen = 256;
110 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
111 rtsintrq.ifq_maxlen = tmp;
112 mtx_init(&rtsintrq.ifq_mtx, "rts_inq", NULL, MTX_DEF);
113 netisr_register(NETISR_ROUTE, rts_input, &rtsintrq, NETISR_MPSAFE);
114}
115SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0)
116
117static void
118rts_input(struct mbuf *m)
119{
120 struct sockproto route_proto;
121 unsigned short *family;
122 struct m_tag *tag;
123
124 route_proto.sp_family = PF_ROUTE;
125 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
126 if (tag != NULL) {
127 family = (unsigned short *)(tag + 1);
128 route_proto.sp_protocol = *family;
129 m_tag_delete(m, tag);
130 } else
131 route_proto.sp_protocol = 0;
132
133 raw_input(m, &route_proto, &route_src, &route_dst);
134}
135
136/*
137 * It really doesn't make any sense at all for this code to share much
138 * with raw_usrreq.c, since its functionality is so restricted. XXX
139 */
140static int
140static void
141rts_abort(struct socket *so)
142{
143
141rts_abort(struct socket *so)
142{
143
144 return (raw_usrreqs.pru_abort(so));
144 raw_usrreqs.pru_abort(so);
145}
146
147/* pru_accept is EOPNOTSUPP */
148
149static int
150rts_attach(struct socket *so, int proto, struct thread *td)
151{
152 struct rawcb *rp;
153 int s, error;
154
155 if (sotorawcb(so) != NULL)
156 return EISCONN; /* XXX panic? */
157 /* XXX */
158 MALLOC(rp, struct rawcb *, sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
159 if (rp == NULL)
160 return ENOBUFS;
161
162 /*
163 * The splnet() is necessary to block protocols from sending
164 * error notifications (like RTM_REDIRECT or RTM_LOSING) while
165 * this PCB is extant but incompletely initialized.
166 * Probably we should try to do more of this work beforehand and
167 * eliminate the spl.
168 */
169 s = splnet();
170 so->so_pcb = (caddr_t)rp;
171 error = raw_attach(so, proto);
172 rp = sotorawcb(so);
173 if (error) {
174 splx(s);
175 so->so_pcb = NULL;
176 free(rp, M_PCB);
177 return error;
178 }
179 RTSOCK_LOCK();
180 switch(rp->rcb_proto.sp_protocol) {
181 case AF_INET:
182 route_cb.ip_count++;
183 break;
184 case AF_INET6:
185 route_cb.ip6_count++;
186 break;
187 case AF_IPX:
188 route_cb.ipx_count++;
189 break;
190 }
191 rp->rcb_faddr = &route_src;
192 route_cb.any_count++;
193 RTSOCK_UNLOCK();
194 soisconnected(so);
195 so->so_options |= SO_USELOOPBACK;
196 splx(s);
197 return 0;
198}
199
200static int
201rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
202{
203
204 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
205}
206
207static int
208rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
209{
210
211 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
212}
213
214/* pru_connect2 is EOPNOTSUPP */
215/* pru_control is EOPNOTSUPP */
216
217static int
218rts_detach(struct socket *so)
219{
220 struct rawcb *rp = sotorawcb(so);
221 int s, error;
222
223 s = splnet();
224 if (rp != NULL) {
225 RTSOCK_LOCK();
226 switch(rp->rcb_proto.sp_protocol) {
227 case AF_INET:
228 route_cb.ip_count--;
229 break;
230 case AF_INET6:
231 route_cb.ip6_count--;
232 break;
233 case AF_IPX:
234 route_cb.ipx_count--;
235 break;
236 }
237 route_cb.any_count--;
238 RTSOCK_UNLOCK();
239 }
240 error = raw_usrreqs.pru_detach(so);
241 splx(s);
242 return error;
243}
244
245static int
246rts_disconnect(struct socket *so)
247{
248
249 return (raw_usrreqs.pru_disconnect(so));
250}
251
252/* pru_listen is EOPNOTSUPP */
253
254static int
255rts_peeraddr(struct socket *so, struct sockaddr **nam)
256{
257
258 return (raw_usrreqs.pru_peeraddr(so, nam));
259}
260
261/* pru_rcvd is EOPNOTSUPP */
262/* pru_rcvoob is EOPNOTSUPP */
263
264static int
265rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
266 struct mbuf *control, struct thread *td)
267{
268
269 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
270}
271
272/* pru_sense is null */
273
274static int
275rts_shutdown(struct socket *so)
276{
277
278 return (raw_usrreqs.pru_shutdown(so));
279}
280
281static int
282rts_sockaddr(struct socket *so, struct sockaddr **nam)
283{
284
285 return (raw_usrreqs.pru_sockaddr(so, nam));
286}
287
288static struct pr_usrreqs route_usrreqs = {
289 .pru_abort = rts_abort,
290 .pru_attach = rts_attach,
291 .pru_bind = rts_bind,
292 .pru_connect = rts_connect,
293 .pru_detach = rts_detach,
294 .pru_disconnect = rts_disconnect,
295 .pru_peeraddr = rts_peeraddr,
296 .pru_send = rts_send,
297 .pru_shutdown = rts_shutdown,
298 .pru_sockaddr = rts_sockaddr,
299};
300
301/*ARGSUSED*/
302static int
303route_output(struct mbuf *m, struct socket *so)
304{
305#define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0)
306 struct rt_msghdr *rtm = NULL;
307 struct rtentry *rt = NULL;
308 struct radix_node_head *rnh;
309 struct rt_addrinfo info;
310 int len, error = 0;
311 struct ifnet *ifp = NULL;
312 struct ifaddr *ifa = NULL;
313 struct sockaddr_in jail;
314
315#define senderr(e) { error = e; goto flush;}
316 if (m == NULL || ((m->m_len < sizeof(long)) &&
317 (m = m_pullup(m, sizeof(long))) == NULL))
318 return (ENOBUFS);
319 if ((m->m_flags & M_PKTHDR) == 0)
320 panic("route_output");
321 len = m->m_pkthdr.len;
322 if (len < sizeof(*rtm) ||
323 len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
324 info.rti_info[RTAX_DST] = NULL;
325 senderr(EINVAL);
326 }
327 R_Malloc(rtm, struct rt_msghdr *, len);
328 if (rtm == NULL) {
329 info.rti_info[RTAX_DST] = NULL;
330 senderr(ENOBUFS);
331 }
332 m_copydata(m, 0, len, (caddr_t)rtm);
333 if (rtm->rtm_version != RTM_VERSION) {
334 info.rti_info[RTAX_DST] = NULL;
335 senderr(EPROTONOSUPPORT);
336 }
337 rtm->rtm_pid = curproc->p_pid;
338 bzero(&info, sizeof(info));
339 info.rti_addrs = rtm->rtm_addrs;
340 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) {
341 info.rti_info[RTAX_DST] = NULL;
342 senderr(EINVAL);
343 }
344 info.rti_flags = rtm->rtm_flags;
345 if (info.rti_info[RTAX_DST] == NULL ||
346 info.rti_info[RTAX_DST]->sa_family >= AF_MAX ||
347 (info.rti_info[RTAX_GATEWAY] != NULL &&
348 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
349 senderr(EINVAL);
350 if (info.rti_info[RTAX_GENMASK]) {
351 struct radix_node *t;
352 t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1);
353 if (t != NULL &&
354 bcmp((char *)(void *)info.rti_info[RTAX_GENMASK] + 1,
355 (char *)(void *)t->rn_key + 1,
356 ((struct sockaddr *)t->rn_key)->sa_len - 1) == 0)
357 info.rti_info[RTAX_GENMASK] =
358 (struct sockaddr *)t->rn_key;
359 else
360 senderr(ENOBUFS);
361 }
362
363 /*
364 * Verify that the caller has the appropriate privilege; RTM_GET
365 * is the only operation the non-superuser is allowed.
366 */
367 if (rtm->rtm_type != RTM_GET && (error = suser(curthread)) != 0)
368 senderr(error);
369
370 switch (rtm->rtm_type) {
371 struct rtentry *saved_nrt;
372
373 case RTM_ADD:
374 if (info.rti_info[RTAX_GATEWAY] == NULL)
375 senderr(EINVAL);
376 saved_nrt = NULL;
377 error = rtrequest1(RTM_ADD, &info, &saved_nrt);
378 if (error == 0 && saved_nrt) {
379 RT_LOCK(saved_nrt);
380 rt_setmetrics(rtm->rtm_inits,
381 &rtm->rtm_rmx, &saved_nrt->rt_rmx);
382 rtm->rtm_index = saved_nrt->rt_ifp->if_index;
383 RT_REMREF(saved_nrt);
384 saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK];
385 RT_UNLOCK(saved_nrt);
386 }
387 break;
388
389 case RTM_DELETE:
390 saved_nrt = NULL;
391 error = rtrequest1(RTM_DELETE, &info, &saved_nrt);
392 if (error == 0) {
393 RT_LOCK(saved_nrt);
394 rt = saved_nrt;
395 goto report;
396 }
397 break;
398
399 case RTM_GET:
400 case RTM_CHANGE:
401 case RTM_LOCK:
402 rnh = rt_tables[info.rti_info[RTAX_DST]->sa_family];
403 if (rnh == NULL)
404 senderr(EAFNOSUPPORT);
405 RADIX_NODE_HEAD_LOCK(rnh);
406 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST],
407 info.rti_info[RTAX_NETMASK], rnh);
408 if (rt == NULL) { /* XXX looks bogus */
409 RADIX_NODE_HEAD_UNLOCK(rnh);
410 senderr(ESRCH);
411 }
412 RT_LOCK(rt);
413 RT_ADDREF(rt);
414 RADIX_NODE_HEAD_UNLOCK(rnh);
415
416 /*
417 * Fix for PR: 82974
418 *
419 * RTM_CHANGE/LOCK need a perfect match, rn_lookup()
420 * returns a perfect match in case a netmask is
421 * specified. For host routes only a longest prefix
422 * match is returned so it is necessary to compare the
423 * existence of the netmask. If both have a netmask
424 * rnh_lookup() did a perfect match and if none of them
425 * have a netmask both are host routes which is also a
426 * perfect match.
427 */
428
429 if (rtm->rtm_type != RTM_GET &&
430 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) {
431 RT_UNLOCK(rt);
432 senderr(ESRCH);
433 }
434
435 switch(rtm->rtm_type) {
436
437 case RTM_GET:
438 report:
439 RT_LOCK_ASSERT(rt);
440 info.rti_info[RTAX_DST] = rt_key(rt);
441 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
442 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
443 info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
444 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
445 ifp = rt->rt_ifp;
446 if (ifp) {
447 info.rti_info[RTAX_IFP] =
448 ifp->if_addr->ifa_addr;
449 if (jailed(so->so_cred)) {
450 bzero(&jail, sizeof(jail));
451 jail.sin_family = PF_INET;
452 jail.sin_len = sizeof(jail);
453 jail.sin_addr.s_addr =
454 htonl(prison_getip(so->so_cred));
455 info.rti_info[RTAX_IFA] =
456 (struct sockaddr *)&jail;
457 } else
458 info.rti_info[RTAX_IFA] =
459 rt->rt_ifa->ifa_addr;
460 if (ifp->if_flags & IFF_POINTOPOINT)
461 info.rti_info[RTAX_BRD] =
462 rt->rt_ifa->ifa_dstaddr;
463 rtm->rtm_index = ifp->if_index;
464 } else {
465 info.rti_info[RTAX_IFP] = NULL;
466 info.rti_info[RTAX_IFA] = NULL;
467 }
468 } else if ((ifp = rt->rt_ifp) != NULL) {
469 rtm->rtm_index = ifp->if_index;
470 }
471 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL);
472 if (len > rtm->rtm_msglen) {
473 struct rt_msghdr *new_rtm;
474 R_Malloc(new_rtm, struct rt_msghdr *, len);
475 if (new_rtm == NULL) {
476 RT_UNLOCK(rt);
477 senderr(ENOBUFS);
478 }
479 bcopy(rtm, new_rtm, rtm->rtm_msglen);
480 Free(rtm); rtm = new_rtm;
481 }
482 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL);
483 rtm->rtm_flags = rt->rt_flags;
484 rtm->rtm_use = 0;
485 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
486 rtm->rtm_addrs = info.rti_addrs;
487 break;
488
489 case RTM_CHANGE:
490 /*
491 * New gateway could require new ifaddr, ifp;
492 * flags may also be different; ifp may be specified
493 * by ll sockaddr when protocol address is ambiguous
494 */
495 if (((rt->rt_flags & RTF_GATEWAY) &&
496 info.rti_info[RTAX_GATEWAY] != NULL) ||
497 info.rti_info[RTAX_IFP] != NULL ||
498 (info.rti_info[RTAX_IFA] != NULL &&
499 !sa_equal(info.rti_info[RTAX_IFA],
500 rt->rt_ifa->ifa_addr))) {
501 RT_UNLOCK(rt);
502 if ((error = rt_getifa(&info)) != 0)
503 senderr(error);
504 RT_LOCK(rt);
505 }
506 if (info.rti_info[RTAX_GATEWAY] != NULL &&
507 (error = rt_setgate(rt, rt_key(rt),
508 info.rti_info[RTAX_GATEWAY])) != 0) {
509 RT_UNLOCK(rt);
510 senderr(error);
511 }
512 if ((ifa = info.rti_ifa) != NULL) {
513 struct ifaddr *oifa = rt->rt_ifa;
514 if (oifa != ifa) {
515 if (oifa) {
516 if (oifa->ifa_rtrequest)
517 oifa->ifa_rtrequest(
518 RTM_DELETE, rt,
519 &info);
520 IFAFREE(oifa);
521 }
522 IFAREF(ifa);
523 rt->rt_ifa = ifa;
524 rt->rt_ifp = info.rti_ifp;
525 }
526 }
527 /* Allow some flags to be toggled on change. */
528 if (rtm->rtm_fmask & RTF_FMASK)
529 rt->rt_flags = (rt->rt_flags &
530 ~rtm->rtm_fmask) |
531 (rtm->rtm_flags & rtm->rtm_fmask);
532 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
533 &rt->rt_rmx);
534 rtm->rtm_index = rt->rt_ifp->if_index;
535 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
536 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
537 if (info.rti_info[RTAX_GENMASK])
538 rt->rt_genmask = info.rti_info[RTAX_GENMASK];
539 /* FALLTHROUGH */
540 case RTM_LOCK:
541 /* We don't support locks anymore */
542 break;
543 }
544 RT_UNLOCK(rt);
545 break;
546
547 default:
548 senderr(EOPNOTSUPP);
549 }
550
551flush:
552 if (rtm) {
553 if (error)
554 rtm->rtm_errno = error;
555 else
556 rtm->rtm_flags |= RTF_DONE;
557 }
558 if (rt) /* XXX can this be true? */
559 RTFREE(rt);
560 {
561 struct rawcb *rp = NULL;
562 /*
563 * Check to see if we don't want our own messages.
564 */
565 if ((so->so_options & SO_USELOOPBACK) == 0) {
566 if (route_cb.any_count <= 1) {
567 if (rtm)
568 Free(rtm);
569 m_freem(m);
570 return (error);
571 }
572 /* There is another listener, so construct message */
573 rp = sotorawcb(so);
574 }
575 if (rtm) {
576 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
577 if (m->m_pkthdr.len < rtm->rtm_msglen) {
578 m_freem(m);
579 m = NULL;
580 } else if (m->m_pkthdr.len > rtm->rtm_msglen)
581 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
582 Free(rtm);
583 }
584 if (m) {
585 if (rp) {
586 /*
587 * XXX insure we don't get a copy by
588 * invalidating our protocol
589 */
590 unsigned short family = rp->rcb_proto.sp_family;
591 rp->rcb_proto.sp_family = 0;
592 rt_dispatch(m, info.rti_info[RTAX_DST]);
593 rp->rcb_proto.sp_family = family;
594 } else
595 rt_dispatch(m, info.rti_info[RTAX_DST]);
596 }
597 }
598 return (error);
599#undef sa_equal
600}
601
602static void
603rt_setmetrics(u_long which, const struct rt_metrics *in,
604 struct rt_metrics_lite *out)
605{
606#define metric(f, e) if (which & (f)) out->e = in->e;
607 /*
608 * Only these are stored in the routing entry since introduction
609 * of tcp hostcache. The rest is ignored.
610 */
611 metric(RTV_MTU, rmx_mtu);
612 metric(RTV_EXPIRE, rmx_expire);
613#undef metric
614}
615
616static void
617rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out)
618{
619#define metric(e) out->e = in->e;
620 bzero(out, sizeof(*out));
621 metric(rmx_mtu);
622 metric(rmx_expire);
623#undef metric
624}
625
626/*
627 * Extract the addresses of the passed sockaddrs.
628 * Do a little sanity checking so as to avoid bad memory references.
629 * This data is derived straight from userland.
630 */
631static int
632rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
633{
634 struct sockaddr *sa;
635 int i;
636
637 for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
638 if ((rtinfo->rti_addrs & (1 << i)) == 0)
639 continue;
640 sa = (struct sockaddr *)cp;
641 /*
642 * It won't fit.
643 */
644 if (cp + sa->sa_len > cplim)
645 return (EINVAL);
646 /*
647 * there are no more.. quit now
648 * If there are more bits, they are in error.
649 * I've seen this. route(1) can evidently generate these.
650 * This causes kernel to core dump.
651 * for compatibility, If we see this, point to a safe address.
652 */
653 if (sa->sa_len == 0) {
654 rtinfo->rti_info[i] = &sa_zero;
655 return (0); /* should be EINVAL but for compat */
656 }
657 /* accept it */
658 rtinfo->rti_info[i] = sa;
659 cp += SA_SIZE(sa);
660 }
661 return (0);
662}
663
664static struct mbuf *
665rt_msg1(int type, struct rt_addrinfo *rtinfo)
666{
667 struct rt_msghdr *rtm;
668 struct mbuf *m;
669 int i;
670 struct sockaddr *sa;
671 int len, dlen;
672
673 switch (type) {
674
675 case RTM_DELADDR:
676 case RTM_NEWADDR:
677 len = sizeof(struct ifa_msghdr);
678 break;
679
680 case RTM_DELMADDR:
681 case RTM_NEWMADDR:
682 len = sizeof(struct ifma_msghdr);
683 break;
684
685 case RTM_IFINFO:
686 len = sizeof(struct if_msghdr);
687 break;
688
689 case RTM_IFANNOUNCE:
690 case RTM_IEEE80211:
691 len = sizeof(struct if_announcemsghdr);
692 break;
693
694 default:
695 len = sizeof(struct rt_msghdr);
696 }
697 if (len > MCLBYTES)
698 panic("rt_msg1");
699 m = m_gethdr(M_DONTWAIT, MT_DATA);
700 if (m && len > MHLEN) {
701 MCLGET(m, M_DONTWAIT);
702 if ((m->m_flags & M_EXT) == 0) {
703 m_free(m);
704 m = NULL;
705 }
706 }
707 if (m == NULL)
708 return (m);
709 m->m_pkthdr.len = m->m_len = len;
710 m->m_pkthdr.rcvif = NULL;
711 rtm = mtod(m, struct rt_msghdr *);
712 bzero((caddr_t)rtm, len);
713 for (i = 0; i < RTAX_MAX; i++) {
714 if ((sa = rtinfo->rti_info[i]) == NULL)
715 continue;
716 rtinfo->rti_addrs |= (1 << i);
717 dlen = SA_SIZE(sa);
718 m_copyback(m, len, dlen, (caddr_t)sa);
719 len += dlen;
720 }
721 if (m->m_pkthdr.len != len) {
722 m_freem(m);
723 return (NULL);
724 }
725 rtm->rtm_msglen = len;
726 rtm->rtm_version = RTM_VERSION;
727 rtm->rtm_type = type;
728 return (m);
729}
730
731static int
732rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w)
733{
734 int i;
735 int len, dlen, second_time = 0;
736 caddr_t cp0;
737
738 rtinfo->rti_addrs = 0;
739again:
740 switch (type) {
741
742 case RTM_DELADDR:
743 case RTM_NEWADDR:
744 len = sizeof(struct ifa_msghdr);
745 break;
746
747 case RTM_IFINFO:
748 len = sizeof(struct if_msghdr);
749 break;
750
751 case RTM_NEWMADDR:
752 len = sizeof(struct ifma_msghdr);
753 break;
754
755 default:
756 len = sizeof(struct rt_msghdr);
757 }
758 cp0 = cp;
759 if (cp0)
760 cp += len;
761 for (i = 0; i < RTAX_MAX; i++) {
762 struct sockaddr *sa;
763
764 if ((sa = rtinfo->rti_info[i]) == NULL)
765 continue;
766 rtinfo->rti_addrs |= (1 << i);
767 dlen = SA_SIZE(sa);
768 if (cp) {
769 bcopy((caddr_t)sa, cp, (unsigned)dlen);
770 cp += dlen;
771 }
772 len += dlen;
773 }
774 len = ALIGN(len);
775 if (cp == NULL && w != NULL && !second_time) {
776 struct walkarg *rw = w;
777
778 if (rw->w_req) {
779 if (rw->w_tmemsize < len) {
780 if (rw->w_tmem)
781 free(rw->w_tmem, M_RTABLE);
782 rw->w_tmem = (caddr_t)
783 malloc(len, M_RTABLE, M_NOWAIT);
784 if (rw->w_tmem)
785 rw->w_tmemsize = len;
786 }
787 if (rw->w_tmem) {
788 cp = rw->w_tmem;
789 second_time = 1;
790 goto again;
791 }
792 }
793 }
794 if (cp) {
795 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
796
797 rtm->rtm_version = RTM_VERSION;
798 rtm->rtm_type = type;
799 rtm->rtm_msglen = len;
800 }
801 return (len);
802}
803
804/*
805 * This routine is called to generate a message from the routing
806 * socket indicating that a redirect has occured, a routing lookup
807 * has failed, or that a protocol has detected timeouts to a particular
808 * destination.
809 */
810void
811rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
812{
813 struct rt_msghdr *rtm;
814 struct mbuf *m;
815 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
816
817 if (route_cb.any_count == 0)
818 return;
819 m = rt_msg1(type, rtinfo);
820 if (m == NULL)
821 return;
822 rtm = mtod(m, struct rt_msghdr *);
823 rtm->rtm_flags = RTF_DONE | flags;
824 rtm->rtm_errno = error;
825 rtm->rtm_addrs = rtinfo->rti_addrs;
826 rt_dispatch(m, sa);
827}
828
829/*
830 * This routine is called to generate a message from the routing
831 * socket indicating that the status of a network interface has changed.
832 */
833void
834rt_ifmsg(struct ifnet *ifp)
835{
836 struct if_msghdr *ifm;
837 struct mbuf *m;
838 struct rt_addrinfo info;
839
840 if (route_cb.any_count == 0)
841 return;
842 bzero((caddr_t)&info, sizeof(info));
843 m = rt_msg1(RTM_IFINFO, &info);
844 if (m == NULL)
845 return;
846 ifm = mtod(m, struct if_msghdr *);
847 ifm->ifm_index = ifp->if_index;
848 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
849 ifm->ifm_data = ifp->if_data;
850 ifm->ifm_addrs = 0;
851 rt_dispatch(m, NULL);
852}
853
854/*
855 * This is called to generate messages from the routing socket
856 * indicating a network interface has had addresses associated with it.
857 * if we ever reverse the logic and replace messages TO the routing
858 * socket indicate a request to configure interfaces, then it will
859 * be unnecessary as the routing socket will automatically generate
860 * copies of it.
861 */
862void
863rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
864{
865 struct rt_addrinfo info;
866 struct sockaddr *sa = NULL;
867 int pass;
868 struct mbuf *m = NULL;
869 struct ifnet *ifp = ifa->ifa_ifp;
870
871 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE,
872 ("unexpected cmd %u", cmd));
873
874 if (route_cb.any_count == 0)
875 return;
876 for (pass = 1; pass < 3; pass++) {
877 bzero((caddr_t)&info, sizeof(info));
878 if ((cmd == RTM_ADD && pass == 1) ||
879 (cmd == RTM_DELETE && pass == 2)) {
880 struct ifa_msghdr *ifam;
881 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
882
883 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
884 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
885 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
886 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
887 if ((m = rt_msg1(ncmd, &info)) == NULL)
888 continue;
889 ifam = mtod(m, struct ifa_msghdr *);
890 ifam->ifam_index = ifp->if_index;
891 ifam->ifam_metric = ifa->ifa_metric;
892 ifam->ifam_flags = ifa->ifa_flags;
893 ifam->ifam_addrs = info.rti_addrs;
894 }
895 if ((cmd == RTM_ADD && pass == 2) ||
896 (cmd == RTM_DELETE && pass == 1)) {
897 struct rt_msghdr *rtm;
898
899 if (rt == NULL)
900 continue;
901 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
902 info.rti_info[RTAX_DST] = sa = rt_key(rt);
903 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
904 if ((m = rt_msg1(cmd, &info)) == NULL)
905 continue;
906 rtm = mtod(m, struct rt_msghdr *);
907 rtm->rtm_index = ifp->if_index;
908 rtm->rtm_flags |= rt->rt_flags;
909 rtm->rtm_errno = error;
910 rtm->rtm_addrs = info.rti_addrs;
911 }
912 rt_dispatch(m, sa);
913 }
914}
915
916/*
917 * This is the analogue to the rt_newaddrmsg which performs the same
918 * function but for multicast group memberhips. This is easier since
919 * there is no route state to worry about.
920 */
921void
922rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
923{
924 struct rt_addrinfo info;
925 struct mbuf *m = NULL;
926 struct ifnet *ifp = ifma->ifma_ifp;
927 struct ifma_msghdr *ifmam;
928
929 if (route_cb.any_count == 0)
930 return;
931
932 bzero((caddr_t)&info, sizeof(info));
933 info.rti_info[RTAX_IFA] = ifma->ifma_addr;
934 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL;
935 /*
936 * If a link-layer address is present, present it as a ``gateway''
937 * (similarly to how ARP entries, e.g., are presented).
938 */
939 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
940 m = rt_msg1(cmd, &info);
941 if (m == NULL)
942 return;
943 ifmam = mtod(m, struct ifma_msghdr *);
944 ifmam->ifmam_index = ifp->if_index;
945 ifmam->ifmam_addrs = info.rti_addrs;
946 rt_dispatch(m, ifma->ifma_addr);
947}
948
949static struct mbuf *
950rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
951 struct rt_addrinfo *info)
952{
953 struct if_announcemsghdr *ifan;
954 struct mbuf *m;
955
956 if (route_cb.any_count == 0)
957 return NULL;
958 bzero((caddr_t)info, sizeof(*info));
959 m = rt_msg1(type, info);
960 if (m != NULL) {
961 ifan = mtod(m, struct if_announcemsghdr *);
962 ifan->ifan_index = ifp->if_index;
963 strlcpy(ifan->ifan_name, ifp->if_xname,
964 sizeof(ifan->ifan_name));
965 ifan->ifan_what = what;
966 }
967 return m;
968}
969
970/*
971 * This is called to generate routing socket messages indicating
972 * IEEE80211 wireless events.
973 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
974 */
975void
976rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
977{
978 struct mbuf *m;
979 struct rt_addrinfo info;
980
981 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
982 if (m != NULL) {
983 /*
984 * Append the ieee80211 data. Try to stick it in the
985 * mbuf containing the ifannounce msg; otherwise allocate
986 * a new mbuf and append.
987 *
988 * NB: we assume m is a single mbuf.
989 */
990 if (data_len > M_TRAILINGSPACE(m)) {
991 struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
992 if (n == NULL) {
993 m_freem(m);
994 return;
995 }
996 bcopy(data, mtod(n, void *), data_len);
997 n->m_len = data_len;
998 m->m_next = n;
999 } else if (data_len > 0) {
1000 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1001 m->m_len += data_len;
1002 }
1003 if (m->m_flags & M_PKTHDR)
1004 m->m_pkthdr.len += data_len;
1005 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1006 rt_dispatch(m, NULL);
1007 }
1008}
1009
1010/*
1011 * This is called to generate routing socket messages indicating
1012 * network interface arrival and departure.
1013 */
1014void
1015rt_ifannouncemsg(struct ifnet *ifp, int what)
1016{
1017 struct mbuf *m;
1018 struct rt_addrinfo info;
1019
1020 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1021 if (m != NULL)
1022 rt_dispatch(m, NULL);
1023}
1024
1025static void
1026rt_dispatch(struct mbuf *m, const struct sockaddr *sa)
1027{
1028 struct m_tag *tag;
1029
1030 /*
1031 * Preserve the family from the sockaddr, if any, in an m_tag for
1032 * use when injecting the mbuf into the routing socket buffer from
1033 * the netisr.
1034 */
1035 if (sa != NULL) {
1036 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1037 M_NOWAIT);
1038 if (tag == NULL) {
1039 m_freem(m);
1040 return;
1041 }
1042 *(unsigned short *)(tag + 1) = sa->sa_family;
1043 m_tag_prepend(m, tag);
1044 }
1045 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */
1046}
1047
1048/*
1049 * This is used in dumping the kernel table via sysctl().
1050 */
1051static int
1052sysctl_dumpentry(struct radix_node *rn, void *vw)
1053{
1054 struct walkarg *w = vw;
1055 struct rtentry *rt = (struct rtentry *)rn;
1056 int error = 0, size;
1057 struct rt_addrinfo info;
1058
1059 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1060 return 0;
1061 bzero((caddr_t)&info, sizeof(info));
1062 info.rti_info[RTAX_DST] = rt_key(rt);
1063 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1064 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1065 info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
1066 if (rt->rt_ifp) {
1067 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
1068 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1069 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1070 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
1071 }
1072 size = rt_msg2(RTM_GET, &info, NULL, w);
1073 if (w->w_req && w->w_tmem) {
1074 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1075
1076 rtm->rtm_flags = rt->rt_flags;
1077 rtm->rtm_use = rt->rt_rmx.rmx_pksent;
1078 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
1079 rtm->rtm_index = rt->rt_ifp->if_index;
1080 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1081 rtm->rtm_addrs = info.rti_addrs;
1082 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1083 return (error);
1084 }
1085 return (error);
1086}
1087
1088static int
1089sysctl_iflist(int af, struct walkarg *w)
1090{
1091 struct ifnet *ifp;
1092 struct ifaddr *ifa;
1093 struct rt_addrinfo info;
1094 int len, error = 0;
1095
1096 bzero((caddr_t)&info, sizeof(info));
1097 IFNET_RLOCK();
1098 TAILQ_FOREACH(ifp, &ifnet, if_link) {
1099 if (w->w_arg && w->w_arg != ifp->if_index)
1100 continue;
1101 ifa = ifp->if_addr;
1102 info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1103 len = rt_msg2(RTM_IFINFO, &info, NULL, w);
1104 info.rti_info[RTAX_IFP] = NULL;
1105 if (w->w_req && w->w_tmem) {
1106 struct if_msghdr *ifm;
1107
1108 ifm = (struct if_msghdr *)w->w_tmem;
1109 ifm->ifm_index = ifp->if_index;
1110 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1111 ifm->ifm_data = ifp->if_data;
1112 ifm->ifm_addrs = info.rti_addrs;
1113 error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len);
1114 if (error)
1115 goto done;
1116 }
1117 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) {
1118 if (af && af != ifa->ifa_addr->sa_family)
1119 continue;
1120 if (jailed(curthread->td_ucred) &&
1121 prison_if(curthread->td_ucred, ifa->ifa_addr))
1122 continue;
1123 info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1124 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1125 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1126 len = rt_msg2(RTM_NEWADDR, &info, NULL, w);
1127 if (w->w_req && w->w_tmem) {
1128 struct ifa_msghdr *ifam;
1129
1130 ifam = (struct ifa_msghdr *)w->w_tmem;
1131 ifam->ifam_index = ifa->ifa_ifp->if_index;
1132 ifam->ifam_flags = ifa->ifa_flags;
1133 ifam->ifam_metric = ifa->ifa_metric;
1134 ifam->ifam_addrs = info.rti_addrs;
1135 error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1136 if (error)
1137 goto done;
1138 }
1139 }
1140 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
1141 info.rti_info[RTAX_BRD] = NULL;
1142 }
1143done:
1144 IFNET_RUNLOCK();
1145 return (error);
1146}
1147
1148int
1149sysctl_ifmalist(int af, struct walkarg *w)
1150{
1151 struct ifnet *ifp;
1152 struct ifmultiaddr *ifma;
1153 struct rt_addrinfo info;
1154 int len, error = 0;
1155 struct ifaddr *ifa;
1156
1157 bzero((caddr_t)&info, sizeof(info));
1158 IFNET_RLOCK();
1159 TAILQ_FOREACH(ifp, &ifnet, if_link) {
1160 if (w->w_arg && w->w_arg != ifp->if_index)
1161 continue;
1162 ifa = ifp->if_addr;
1163 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
1164 IF_ADDR_LOCK(ifp);
1165 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1166 if (af && af != ifma->ifma_addr->sa_family)
1167 continue;
1168 if (jailed(curproc->p_ucred) &&
1169 prison_if(curproc->p_ucred, ifma->ifma_addr))
1170 continue;
1171 info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1172 info.rti_info[RTAX_GATEWAY] =
1173 (ifma->ifma_addr->sa_family != AF_LINK) ?
1174 ifma->ifma_lladdr : NULL;
1175 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w);
1176 if (w->w_req && w->w_tmem) {
1177 struct ifma_msghdr *ifmam;
1178
1179 ifmam = (struct ifma_msghdr *)w->w_tmem;
1180 ifmam->ifmam_index = ifma->ifma_ifp->if_index;
1181 ifmam->ifmam_flags = 0;
1182 ifmam->ifmam_addrs = info.rti_addrs;
1183 error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1184 if (error) {
1185 IF_ADDR_UNLOCK(ifp);
1186 goto done;
1187 }
1188 }
1189 }
1190 IF_ADDR_UNLOCK(ifp);
1191 }
1192done:
1193 IFNET_RUNLOCK();
1194 return (error);
1195}
1196
1197static int
1198sysctl_rtsock(SYSCTL_HANDLER_ARGS)
1199{
1200 int *name = (int *)arg1;
1201 u_int namelen = arg2;
1202 struct radix_node_head *rnh;
1203 int i, lim, error = EINVAL;
1204 u_char af;
1205 struct walkarg w;
1206
1207 name ++;
1208 namelen--;
1209 if (req->newptr)
1210 return (EPERM);
1211 if (namelen != 3)
1212 return ((namelen < 3) ? EISDIR : ENOTDIR);
1213 af = name[0];
1214 if (af > AF_MAX)
1215 return (EINVAL);
1216 bzero(&w, sizeof(w));
1217 w.w_op = name[1];
1218 w.w_arg = name[2];
1219 w.w_req = req;
1220
1221 error = sysctl_wire_old_buffer(req, 0);
1222 if (error)
1223 return (error);
1224 switch (w.w_op) {
1225
1226 case NET_RT_DUMP:
1227 case NET_RT_FLAGS:
1228 if (af == 0) { /* dump all tables */
1229 i = 1;
1230 lim = AF_MAX;
1231 } else /* dump only one table */
1232 i = lim = af;
1233 for (error = 0; error == 0 && i <= lim; i++)
1234 if ((rnh = rt_tables[i]) != NULL) {
1235 RADIX_NODE_HEAD_LOCK(rnh);
1236 error = rnh->rnh_walktree(rnh,
1237 sysctl_dumpentry, &w);
1238 RADIX_NODE_HEAD_UNLOCK(rnh);
1239 } else if (af != 0)
1240 error = EAFNOSUPPORT;
1241 break;
1242
1243 case NET_RT_IFLIST:
1244 error = sysctl_iflist(af, &w);
1245 break;
1246
1247 case NET_RT_IFMALIST:
1248 error = sysctl_ifmalist(af, &w);
1249 break;
1250 }
1251 if (w.w_tmem)
1252 free(w.w_tmem, M_RTABLE);
1253 return (error);
1254}
1255
1256SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
1257
1258/*
1259 * Definitions of protocols supported in the ROUTE domain.
1260 */
1261
1262static struct domain routedomain; /* or at least forward */
1263
1264static struct protosw routesw[] = {
1265{
1266 .pr_type = SOCK_RAW,
1267 .pr_domain = &routedomain,
1268 .pr_flags = PR_ATOMIC|PR_ADDR,
1269 .pr_output = route_output,
1270 .pr_ctlinput = raw_ctlinput,
1271 .pr_init = raw_init,
1272 .pr_usrreqs = &route_usrreqs
1273}
1274};
1275
1276static struct domain routedomain = {
1277 .dom_family = PF_ROUTE,
1278 .dom_name = "route",
1279 .dom_protosw = routesw,
1280 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])]
1281};
1282
1283DOMAIN_SET(route);
145}
146
147/* pru_accept is EOPNOTSUPP */
148
149static int
150rts_attach(struct socket *so, int proto, struct thread *td)
151{
152 struct rawcb *rp;
153 int s, error;
154
155 if (sotorawcb(so) != NULL)
156 return EISCONN; /* XXX panic? */
157 /* XXX */
158 MALLOC(rp, struct rawcb *, sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
159 if (rp == NULL)
160 return ENOBUFS;
161
162 /*
163 * The splnet() is necessary to block protocols from sending
164 * error notifications (like RTM_REDIRECT or RTM_LOSING) while
165 * this PCB is extant but incompletely initialized.
166 * Probably we should try to do more of this work beforehand and
167 * eliminate the spl.
168 */
169 s = splnet();
170 so->so_pcb = (caddr_t)rp;
171 error = raw_attach(so, proto);
172 rp = sotorawcb(so);
173 if (error) {
174 splx(s);
175 so->so_pcb = NULL;
176 free(rp, M_PCB);
177 return error;
178 }
179 RTSOCK_LOCK();
180 switch(rp->rcb_proto.sp_protocol) {
181 case AF_INET:
182 route_cb.ip_count++;
183 break;
184 case AF_INET6:
185 route_cb.ip6_count++;
186 break;
187 case AF_IPX:
188 route_cb.ipx_count++;
189 break;
190 }
191 rp->rcb_faddr = &route_src;
192 route_cb.any_count++;
193 RTSOCK_UNLOCK();
194 soisconnected(so);
195 so->so_options |= SO_USELOOPBACK;
196 splx(s);
197 return 0;
198}
199
200static int
201rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
202{
203
204 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
205}
206
207static int
208rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
209{
210
211 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
212}
213
214/* pru_connect2 is EOPNOTSUPP */
215/* pru_control is EOPNOTSUPP */
216
217static int
218rts_detach(struct socket *so)
219{
220 struct rawcb *rp = sotorawcb(so);
221 int s, error;
222
223 s = splnet();
224 if (rp != NULL) {
225 RTSOCK_LOCK();
226 switch(rp->rcb_proto.sp_protocol) {
227 case AF_INET:
228 route_cb.ip_count--;
229 break;
230 case AF_INET6:
231 route_cb.ip6_count--;
232 break;
233 case AF_IPX:
234 route_cb.ipx_count--;
235 break;
236 }
237 route_cb.any_count--;
238 RTSOCK_UNLOCK();
239 }
240 error = raw_usrreqs.pru_detach(so);
241 splx(s);
242 return error;
243}
244
245static int
246rts_disconnect(struct socket *so)
247{
248
249 return (raw_usrreqs.pru_disconnect(so));
250}
251
252/* pru_listen is EOPNOTSUPP */
253
254static int
255rts_peeraddr(struct socket *so, struct sockaddr **nam)
256{
257
258 return (raw_usrreqs.pru_peeraddr(so, nam));
259}
260
261/* pru_rcvd is EOPNOTSUPP */
262/* pru_rcvoob is EOPNOTSUPP */
263
264static int
265rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
266 struct mbuf *control, struct thread *td)
267{
268
269 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
270}
271
272/* pru_sense is null */
273
274static int
275rts_shutdown(struct socket *so)
276{
277
278 return (raw_usrreqs.pru_shutdown(so));
279}
280
281static int
282rts_sockaddr(struct socket *so, struct sockaddr **nam)
283{
284
285 return (raw_usrreqs.pru_sockaddr(so, nam));
286}
287
288static struct pr_usrreqs route_usrreqs = {
289 .pru_abort = rts_abort,
290 .pru_attach = rts_attach,
291 .pru_bind = rts_bind,
292 .pru_connect = rts_connect,
293 .pru_detach = rts_detach,
294 .pru_disconnect = rts_disconnect,
295 .pru_peeraddr = rts_peeraddr,
296 .pru_send = rts_send,
297 .pru_shutdown = rts_shutdown,
298 .pru_sockaddr = rts_sockaddr,
299};
300
301/*ARGSUSED*/
302static int
303route_output(struct mbuf *m, struct socket *so)
304{
305#define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0)
306 struct rt_msghdr *rtm = NULL;
307 struct rtentry *rt = NULL;
308 struct radix_node_head *rnh;
309 struct rt_addrinfo info;
310 int len, error = 0;
311 struct ifnet *ifp = NULL;
312 struct ifaddr *ifa = NULL;
313 struct sockaddr_in jail;
314
315#define senderr(e) { error = e; goto flush;}
316 if (m == NULL || ((m->m_len < sizeof(long)) &&
317 (m = m_pullup(m, sizeof(long))) == NULL))
318 return (ENOBUFS);
319 if ((m->m_flags & M_PKTHDR) == 0)
320 panic("route_output");
321 len = m->m_pkthdr.len;
322 if (len < sizeof(*rtm) ||
323 len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
324 info.rti_info[RTAX_DST] = NULL;
325 senderr(EINVAL);
326 }
327 R_Malloc(rtm, struct rt_msghdr *, len);
328 if (rtm == NULL) {
329 info.rti_info[RTAX_DST] = NULL;
330 senderr(ENOBUFS);
331 }
332 m_copydata(m, 0, len, (caddr_t)rtm);
333 if (rtm->rtm_version != RTM_VERSION) {
334 info.rti_info[RTAX_DST] = NULL;
335 senderr(EPROTONOSUPPORT);
336 }
337 rtm->rtm_pid = curproc->p_pid;
338 bzero(&info, sizeof(info));
339 info.rti_addrs = rtm->rtm_addrs;
340 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) {
341 info.rti_info[RTAX_DST] = NULL;
342 senderr(EINVAL);
343 }
344 info.rti_flags = rtm->rtm_flags;
345 if (info.rti_info[RTAX_DST] == NULL ||
346 info.rti_info[RTAX_DST]->sa_family >= AF_MAX ||
347 (info.rti_info[RTAX_GATEWAY] != NULL &&
348 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
349 senderr(EINVAL);
350 if (info.rti_info[RTAX_GENMASK]) {
351 struct radix_node *t;
352 t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1);
353 if (t != NULL &&
354 bcmp((char *)(void *)info.rti_info[RTAX_GENMASK] + 1,
355 (char *)(void *)t->rn_key + 1,
356 ((struct sockaddr *)t->rn_key)->sa_len - 1) == 0)
357 info.rti_info[RTAX_GENMASK] =
358 (struct sockaddr *)t->rn_key;
359 else
360 senderr(ENOBUFS);
361 }
362
363 /*
364 * Verify that the caller has the appropriate privilege; RTM_GET
365 * is the only operation the non-superuser is allowed.
366 */
367 if (rtm->rtm_type != RTM_GET && (error = suser(curthread)) != 0)
368 senderr(error);
369
370 switch (rtm->rtm_type) {
371 struct rtentry *saved_nrt;
372
373 case RTM_ADD:
374 if (info.rti_info[RTAX_GATEWAY] == NULL)
375 senderr(EINVAL);
376 saved_nrt = NULL;
377 error = rtrequest1(RTM_ADD, &info, &saved_nrt);
378 if (error == 0 && saved_nrt) {
379 RT_LOCK(saved_nrt);
380 rt_setmetrics(rtm->rtm_inits,
381 &rtm->rtm_rmx, &saved_nrt->rt_rmx);
382 rtm->rtm_index = saved_nrt->rt_ifp->if_index;
383 RT_REMREF(saved_nrt);
384 saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK];
385 RT_UNLOCK(saved_nrt);
386 }
387 break;
388
389 case RTM_DELETE:
390 saved_nrt = NULL;
391 error = rtrequest1(RTM_DELETE, &info, &saved_nrt);
392 if (error == 0) {
393 RT_LOCK(saved_nrt);
394 rt = saved_nrt;
395 goto report;
396 }
397 break;
398
399 case RTM_GET:
400 case RTM_CHANGE:
401 case RTM_LOCK:
402 rnh = rt_tables[info.rti_info[RTAX_DST]->sa_family];
403 if (rnh == NULL)
404 senderr(EAFNOSUPPORT);
405 RADIX_NODE_HEAD_LOCK(rnh);
406 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST],
407 info.rti_info[RTAX_NETMASK], rnh);
408 if (rt == NULL) { /* XXX looks bogus */
409 RADIX_NODE_HEAD_UNLOCK(rnh);
410 senderr(ESRCH);
411 }
412 RT_LOCK(rt);
413 RT_ADDREF(rt);
414 RADIX_NODE_HEAD_UNLOCK(rnh);
415
416 /*
417 * Fix for PR: 82974
418 *
419 * RTM_CHANGE/LOCK need a perfect match, rn_lookup()
420 * returns a perfect match in case a netmask is
421 * specified. For host routes only a longest prefix
422 * match is returned so it is necessary to compare the
423 * existence of the netmask. If both have a netmask
424 * rnh_lookup() did a perfect match and if none of them
425 * have a netmask both are host routes which is also a
426 * perfect match.
427 */
428
429 if (rtm->rtm_type != RTM_GET &&
430 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) {
431 RT_UNLOCK(rt);
432 senderr(ESRCH);
433 }
434
435 switch(rtm->rtm_type) {
436
437 case RTM_GET:
438 report:
439 RT_LOCK_ASSERT(rt);
440 info.rti_info[RTAX_DST] = rt_key(rt);
441 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
442 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
443 info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
444 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
445 ifp = rt->rt_ifp;
446 if (ifp) {
447 info.rti_info[RTAX_IFP] =
448 ifp->if_addr->ifa_addr;
449 if (jailed(so->so_cred)) {
450 bzero(&jail, sizeof(jail));
451 jail.sin_family = PF_INET;
452 jail.sin_len = sizeof(jail);
453 jail.sin_addr.s_addr =
454 htonl(prison_getip(so->so_cred));
455 info.rti_info[RTAX_IFA] =
456 (struct sockaddr *)&jail;
457 } else
458 info.rti_info[RTAX_IFA] =
459 rt->rt_ifa->ifa_addr;
460 if (ifp->if_flags & IFF_POINTOPOINT)
461 info.rti_info[RTAX_BRD] =
462 rt->rt_ifa->ifa_dstaddr;
463 rtm->rtm_index = ifp->if_index;
464 } else {
465 info.rti_info[RTAX_IFP] = NULL;
466 info.rti_info[RTAX_IFA] = NULL;
467 }
468 } else if ((ifp = rt->rt_ifp) != NULL) {
469 rtm->rtm_index = ifp->if_index;
470 }
471 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL);
472 if (len > rtm->rtm_msglen) {
473 struct rt_msghdr *new_rtm;
474 R_Malloc(new_rtm, struct rt_msghdr *, len);
475 if (new_rtm == NULL) {
476 RT_UNLOCK(rt);
477 senderr(ENOBUFS);
478 }
479 bcopy(rtm, new_rtm, rtm->rtm_msglen);
480 Free(rtm); rtm = new_rtm;
481 }
482 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL);
483 rtm->rtm_flags = rt->rt_flags;
484 rtm->rtm_use = 0;
485 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
486 rtm->rtm_addrs = info.rti_addrs;
487 break;
488
489 case RTM_CHANGE:
490 /*
491 * New gateway could require new ifaddr, ifp;
492 * flags may also be different; ifp may be specified
493 * by ll sockaddr when protocol address is ambiguous
494 */
495 if (((rt->rt_flags & RTF_GATEWAY) &&
496 info.rti_info[RTAX_GATEWAY] != NULL) ||
497 info.rti_info[RTAX_IFP] != NULL ||
498 (info.rti_info[RTAX_IFA] != NULL &&
499 !sa_equal(info.rti_info[RTAX_IFA],
500 rt->rt_ifa->ifa_addr))) {
501 RT_UNLOCK(rt);
502 if ((error = rt_getifa(&info)) != 0)
503 senderr(error);
504 RT_LOCK(rt);
505 }
506 if (info.rti_info[RTAX_GATEWAY] != NULL &&
507 (error = rt_setgate(rt, rt_key(rt),
508 info.rti_info[RTAX_GATEWAY])) != 0) {
509 RT_UNLOCK(rt);
510 senderr(error);
511 }
512 if ((ifa = info.rti_ifa) != NULL) {
513 struct ifaddr *oifa = rt->rt_ifa;
514 if (oifa != ifa) {
515 if (oifa) {
516 if (oifa->ifa_rtrequest)
517 oifa->ifa_rtrequest(
518 RTM_DELETE, rt,
519 &info);
520 IFAFREE(oifa);
521 }
522 IFAREF(ifa);
523 rt->rt_ifa = ifa;
524 rt->rt_ifp = info.rti_ifp;
525 }
526 }
527 /* Allow some flags to be toggled on change. */
528 if (rtm->rtm_fmask & RTF_FMASK)
529 rt->rt_flags = (rt->rt_flags &
530 ~rtm->rtm_fmask) |
531 (rtm->rtm_flags & rtm->rtm_fmask);
532 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
533 &rt->rt_rmx);
534 rtm->rtm_index = rt->rt_ifp->if_index;
535 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
536 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
537 if (info.rti_info[RTAX_GENMASK])
538 rt->rt_genmask = info.rti_info[RTAX_GENMASK];
539 /* FALLTHROUGH */
540 case RTM_LOCK:
541 /* We don't support locks anymore */
542 break;
543 }
544 RT_UNLOCK(rt);
545 break;
546
547 default:
548 senderr(EOPNOTSUPP);
549 }
550
551flush:
552 if (rtm) {
553 if (error)
554 rtm->rtm_errno = error;
555 else
556 rtm->rtm_flags |= RTF_DONE;
557 }
558 if (rt) /* XXX can this be true? */
559 RTFREE(rt);
560 {
561 struct rawcb *rp = NULL;
562 /*
563 * Check to see if we don't want our own messages.
564 */
565 if ((so->so_options & SO_USELOOPBACK) == 0) {
566 if (route_cb.any_count <= 1) {
567 if (rtm)
568 Free(rtm);
569 m_freem(m);
570 return (error);
571 }
572 /* There is another listener, so construct message */
573 rp = sotorawcb(so);
574 }
575 if (rtm) {
576 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
577 if (m->m_pkthdr.len < rtm->rtm_msglen) {
578 m_freem(m);
579 m = NULL;
580 } else if (m->m_pkthdr.len > rtm->rtm_msglen)
581 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
582 Free(rtm);
583 }
584 if (m) {
585 if (rp) {
586 /*
587 * XXX insure we don't get a copy by
588 * invalidating our protocol
589 */
590 unsigned short family = rp->rcb_proto.sp_family;
591 rp->rcb_proto.sp_family = 0;
592 rt_dispatch(m, info.rti_info[RTAX_DST]);
593 rp->rcb_proto.sp_family = family;
594 } else
595 rt_dispatch(m, info.rti_info[RTAX_DST]);
596 }
597 }
598 return (error);
599#undef sa_equal
600}
601
602static void
603rt_setmetrics(u_long which, const struct rt_metrics *in,
604 struct rt_metrics_lite *out)
605{
606#define metric(f, e) if (which & (f)) out->e = in->e;
607 /*
608 * Only these are stored in the routing entry since introduction
609 * of tcp hostcache. The rest is ignored.
610 */
611 metric(RTV_MTU, rmx_mtu);
612 metric(RTV_EXPIRE, rmx_expire);
613#undef metric
614}
615
616static void
617rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out)
618{
619#define metric(e) out->e = in->e;
620 bzero(out, sizeof(*out));
621 metric(rmx_mtu);
622 metric(rmx_expire);
623#undef metric
624}
625
626/*
627 * Extract the addresses of the passed sockaddrs.
628 * Do a little sanity checking so as to avoid bad memory references.
629 * This data is derived straight from userland.
630 */
631static int
632rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
633{
634 struct sockaddr *sa;
635 int i;
636
637 for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
638 if ((rtinfo->rti_addrs & (1 << i)) == 0)
639 continue;
640 sa = (struct sockaddr *)cp;
641 /*
642 * It won't fit.
643 */
644 if (cp + sa->sa_len > cplim)
645 return (EINVAL);
646 /*
647 * there are no more.. quit now
648 * If there are more bits, they are in error.
649 * I've seen this. route(1) can evidently generate these.
650 * This causes kernel to core dump.
651 * for compatibility, If we see this, point to a safe address.
652 */
653 if (sa->sa_len == 0) {
654 rtinfo->rti_info[i] = &sa_zero;
655 return (0); /* should be EINVAL but for compat */
656 }
657 /* accept it */
658 rtinfo->rti_info[i] = sa;
659 cp += SA_SIZE(sa);
660 }
661 return (0);
662}
663
664static struct mbuf *
665rt_msg1(int type, struct rt_addrinfo *rtinfo)
666{
667 struct rt_msghdr *rtm;
668 struct mbuf *m;
669 int i;
670 struct sockaddr *sa;
671 int len, dlen;
672
673 switch (type) {
674
675 case RTM_DELADDR:
676 case RTM_NEWADDR:
677 len = sizeof(struct ifa_msghdr);
678 break;
679
680 case RTM_DELMADDR:
681 case RTM_NEWMADDR:
682 len = sizeof(struct ifma_msghdr);
683 break;
684
685 case RTM_IFINFO:
686 len = sizeof(struct if_msghdr);
687 break;
688
689 case RTM_IFANNOUNCE:
690 case RTM_IEEE80211:
691 len = sizeof(struct if_announcemsghdr);
692 break;
693
694 default:
695 len = sizeof(struct rt_msghdr);
696 }
697 if (len > MCLBYTES)
698 panic("rt_msg1");
699 m = m_gethdr(M_DONTWAIT, MT_DATA);
700 if (m && len > MHLEN) {
701 MCLGET(m, M_DONTWAIT);
702 if ((m->m_flags & M_EXT) == 0) {
703 m_free(m);
704 m = NULL;
705 }
706 }
707 if (m == NULL)
708 return (m);
709 m->m_pkthdr.len = m->m_len = len;
710 m->m_pkthdr.rcvif = NULL;
711 rtm = mtod(m, struct rt_msghdr *);
712 bzero((caddr_t)rtm, len);
713 for (i = 0; i < RTAX_MAX; i++) {
714 if ((sa = rtinfo->rti_info[i]) == NULL)
715 continue;
716 rtinfo->rti_addrs |= (1 << i);
717 dlen = SA_SIZE(sa);
718 m_copyback(m, len, dlen, (caddr_t)sa);
719 len += dlen;
720 }
721 if (m->m_pkthdr.len != len) {
722 m_freem(m);
723 return (NULL);
724 }
725 rtm->rtm_msglen = len;
726 rtm->rtm_version = RTM_VERSION;
727 rtm->rtm_type = type;
728 return (m);
729}
730
731static int
732rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w)
733{
734 int i;
735 int len, dlen, second_time = 0;
736 caddr_t cp0;
737
738 rtinfo->rti_addrs = 0;
739again:
740 switch (type) {
741
742 case RTM_DELADDR:
743 case RTM_NEWADDR:
744 len = sizeof(struct ifa_msghdr);
745 break;
746
747 case RTM_IFINFO:
748 len = sizeof(struct if_msghdr);
749 break;
750
751 case RTM_NEWMADDR:
752 len = sizeof(struct ifma_msghdr);
753 break;
754
755 default:
756 len = sizeof(struct rt_msghdr);
757 }
758 cp0 = cp;
759 if (cp0)
760 cp += len;
761 for (i = 0; i < RTAX_MAX; i++) {
762 struct sockaddr *sa;
763
764 if ((sa = rtinfo->rti_info[i]) == NULL)
765 continue;
766 rtinfo->rti_addrs |= (1 << i);
767 dlen = SA_SIZE(sa);
768 if (cp) {
769 bcopy((caddr_t)sa, cp, (unsigned)dlen);
770 cp += dlen;
771 }
772 len += dlen;
773 }
774 len = ALIGN(len);
775 if (cp == NULL && w != NULL && !second_time) {
776 struct walkarg *rw = w;
777
778 if (rw->w_req) {
779 if (rw->w_tmemsize < len) {
780 if (rw->w_tmem)
781 free(rw->w_tmem, M_RTABLE);
782 rw->w_tmem = (caddr_t)
783 malloc(len, M_RTABLE, M_NOWAIT);
784 if (rw->w_tmem)
785 rw->w_tmemsize = len;
786 }
787 if (rw->w_tmem) {
788 cp = rw->w_tmem;
789 second_time = 1;
790 goto again;
791 }
792 }
793 }
794 if (cp) {
795 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
796
797 rtm->rtm_version = RTM_VERSION;
798 rtm->rtm_type = type;
799 rtm->rtm_msglen = len;
800 }
801 return (len);
802}
803
804/*
805 * This routine is called to generate a message from the routing
806 * socket indicating that a redirect has occured, a routing lookup
807 * has failed, or that a protocol has detected timeouts to a particular
808 * destination.
809 */
810void
811rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
812{
813 struct rt_msghdr *rtm;
814 struct mbuf *m;
815 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
816
817 if (route_cb.any_count == 0)
818 return;
819 m = rt_msg1(type, rtinfo);
820 if (m == NULL)
821 return;
822 rtm = mtod(m, struct rt_msghdr *);
823 rtm->rtm_flags = RTF_DONE | flags;
824 rtm->rtm_errno = error;
825 rtm->rtm_addrs = rtinfo->rti_addrs;
826 rt_dispatch(m, sa);
827}
828
829/*
830 * This routine is called to generate a message from the routing
831 * socket indicating that the status of a network interface has changed.
832 */
833void
834rt_ifmsg(struct ifnet *ifp)
835{
836 struct if_msghdr *ifm;
837 struct mbuf *m;
838 struct rt_addrinfo info;
839
840 if (route_cb.any_count == 0)
841 return;
842 bzero((caddr_t)&info, sizeof(info));
843 m = rt_msg1(RTM_IFINFO, &info);
844 if (m == NULL)
845 return;
846 ifm = mtod(m, struct if_msghdr *);
847 ifm->ifm_index = ifp->if_index;
848 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
849 ifm->ifm_data = ifp->if_data;
850 ifm->ifm_addrs = 0;
851 rt_dispatch(m, NULL);
852}
853
854/*
855 * This is called to generate messages from the routing socket
856 * indicating a network interface has had addresses associated with it.
857 * if we ever reverse the logic and replace messages TO the routing
858 * socket indicate a request to configure interfaces, then it will
859 * be unnecessary as the routing socket will automatically generate
860 * copies of it.
861 */
862void
863rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
864{
865 struct rt_addrinfo info;
866 struct sockaddr *sa = NULL;
867 int pass;
868 struct mbuf *m = NULL;
869 struct ifnet *ifp = ifa->ifa_ifp;
870
871 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE,
872 ("unexpected cmd %u", cmd));
873
874 if (route_cb.any_count == 0)
875 return;
876 for (pass = 1; pass < 3; pass++) {
877 bzero((caddr_t)&info, sizeof(info));
878 if ((cmd == RTM_ADD && pass == 1) ||
879 (cmd == RTM_DELETE && pass == 2)) {
880 struct ifa_msghdr *ifam;
881 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
882
883 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
884 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
885 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
886 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
887 if ((m = rt_msg1(ncmd, &info)) == NULL)
888 continue;
889 ifam = mtod(m, struct ifa_msghdr *);
890 ifam->ifam_index = ifp->if_index;
891 ifam->ifam_metric = ifa->ifa_metric;
892 ifam->ifam_flags = ifa->ifa_flags;
893 ifam->ifam_addrs = info.rti_addrs;
894 }
895 if ((cmd == RTM_ADD && pass == 2) ||
896 (cmd == RTM_DELETE && pass == 1)) {
897 struct rt_msghdr *rtm;
898
899 if (rt == NULL)
900 continue;
901 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
902 info.rti_info[RTAX_DST] = sa = rt_key(rt);
903 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
904 if ((m = rt_msg1(cmd, &info)) == NULL)
905 continue;
906 rtm = mtod(m, struct rt_msghdr *);
907 rtm->rtm_index = ifp->if_index;
908 rtm->rtm_flags |= rt->rt_flags;
909 rtm->rtm_errno = error;
910 rtm->rtm_addrs = info.rti_addrs;
911 }
912 rt_dispatch(m, sa);
913 }
914}
915
916/*
917 * This is the analogue to the rt_newaddrmsg which performs the same
918 * function but for multicast group memberhips. This is easier since
919 * there is no route state to worry about.
920 */
921void
922rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
923{
924 struct rt_addrinfo info;
925 struct mbuf *m = NULL;
926 struct ifnet *ifp = ifma->ifma_ifp;
927 struct ifma_msghdr *ifmam;
928
929 if (route_cb.any_count == 0)
930 return;
931
932 bzero((caddr_t)&info, sizeof(info));
933 info.rti_info[RTAX_IFA] = ifma->ifma_addr;
934 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL;
935 /*
936 * If a link-layer address is present, present it as a ``gateway''
937 * (similarly to how ARP entries, e.g., are presented).
938 */
939 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
940 m = rt_msg1(cmd, &info);
941 if (m == NULL)
942 return;
943 ifmam = mtod(m, struct ifma_msghdr *);
944 ifmam->ifmam_index = ifp->if_index;
945 ifmam->ifmam_addrs = info.rti_addrs;
946 rt_dispatch(m, ifma->ifma_addr);
947}
948
949static struct mbuf *
950rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
951 struct rt_addrinfo *info)
952{
953 struct if_announcemsghdr *ifan;
954 struct mbuf *m;
955
956 if (route_cb.any_count == 0)
957 return NULL;
958 bzero((caddr_t)info, sizeof(*info));
959 m = rt_msg1(type, info);
960 if (m != NULL) {
961 ifan = mtod(m, struct if_announcemsghdr *);
962 ifan->ifan_index = ifp->if_index;
963 strlcpy(ifan->ifan_name, ifp->if_xname,
964 sizeof(ifan->ifan_name));
965 ifan->ifan_what = what;
966 }
967 return m;
968}
969
970/*
971 * This is called to generate routing socket messages indicating
972 * IEEE80211 wireless events.
973 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
974 */
975void
976rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
977{
978 struct mbuf *m;
979 struct rt_addrinfo info;
980
981 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
982 if (m != NULL) {
983 /*
984 * Append the ieee80211 data. Try to stick it in the
985 * mbuf containing the ifannounce msg; otherwise allocate
986 * a new mbuf and append.
987 *
988 * NB: we assume m is a single mbuf.
989 */
990 if (data_len > M_TRAILINGSPACE(m)) {
991 struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
992 if (n == NULL) {
993 m_freem(m);
994 return;
995 }
996 bcopy(data, mtod(n, void *), data_len);
997 n->m_len = data_len;
998 m->m_next = n;
999 } else if (data_len > 0) {
1000 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1001 m->m_len += data_len;
1002 }
1003 if (m->m_flags & M_PKTHDR)
1004 m->m_pkthdr.len += data_len;
1005 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1006 rt_dispatch(m, NULL);
1007 }
1008}
1009
1010/*
1011 * This is called to generate routing socket messages indicating
1012 * network interface arrival and departure.
1013 */
1014void
1015rt_ifannouncemsg(struct ifnet *ifp, int what)
1016{
1017 struct mbuf *m;
1018 struct rt_addrinfo info;
1019
1020 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1021 if (m != NULL)
1022 rt_dispatch(m, NULL);
1023}
1024
1025static void
1026rt_dispatch(struct mbuf *m, const struct sockaddr *sa)
1027{
1028 struct m_tag *tag;
1029
1030 /*
1031 * Preserve the family from the sockaddr, if any, in an m_tag for
1032 * use when injecting the mbuf into the routing socket buffer from
1033 * the netisr.
1034 */
1035 if (sa != NULL) {
1036 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1037 M_NOWAIT);
1038 if (tag == NULL) {
1039 m_freem(m);
1040 return;
1041 }
1042 *(unsigned short *)(tag + 1) = sa->sa_family;
1043 m_tag_prepend(m, tag);
1044 }
1045 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */
1046}
1047
1048/*
1049 * This is used in dumping the kernel table via sysctl().
1050 */
1051static int
1052sysctl_dumpentry(struct radix_node *rn, void *vw)
1053{
1054 struct walkarg *w = vw;
1055 struct rtentry *rt = (struct rtentry *)rn;
1056 int error = 0, size;
1057 struct rt_addrinfo info;
1058
1059 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1060 return 0;
1061 bzero((caddr_t)&info, sizeof(info));
1062 info.rti_info[RTAX_DST] = rt_key(rt);
1063 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1064 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1065 info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
1066 if (rt->rt_ifp) {
1067 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
1068 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1069 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1070 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
1071 }
1072 size = rt_msg2(RTM_GET, &info, NULL, w);
1073 if (w->w_req && w->w_tmem) {
1074 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1075
1076 rtm->rtm_flags = rt->rt_flags;
1077 rtm->rtm_use = rt->rt_rmx.rmx_pksent;
1078 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
1079 rtm->rtm_index = rt->rt_ifp->if_index;
1080 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1081 rtm->rtm_addrs = info.rti_addrs;
1082 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1083 return (error);
1084 }
1085 return (error);
1086}
1087
1088static int
1089sysctl_iflist(int af, struct walkarg *w)
1090{
1091 struct ifnet *ifp;
1092 struct ifaddr *ifa;
1093 struct rt_addrinfo info;
1094 int len, error = 0;
1095
1096 bzero((caddr_t)&info, sizeof(info));
1097 IFNET_RLOCK();
1098 TAILQ_FOREACH(ifp, &ifnet, if_link) {
1099 if (w->w_arg && w->w_arg != ifp->if_index)
1100 continue;
1101 ifa = ifp->if_addr;
1102 info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1103 len = rt_msg2(RTM_IFINFO, &info, NULL, w);
1104 info.rti_info[RTAX_IFP] = NULL;
1105 if (w->w_req && w->w_tmem) {
1106 struct if_msghdr *ifm;
1107
1108 ifm = (struct if_msghdr *)w->w_tmem;
1109 ifm->ifm_index = ifp->if_index;
1110 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1111 ifm->ifm_data = ifp->if_data;
1112 ifm->ifm_addrs = info.rti_addrs;
1113 error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len);
1114 if (error)
1115 goto done;
1116 }
1117 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) {
1118 if (af && af != ifa->ifa_addr->sa_family)
1119 continue;
1120 if (jailed(curthread->td_ucred) &&
1121 prison_if(curthread->td_ucred, ifa->ifa_addr))
1122 continue;
1123 info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1124 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1125 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1126 len = rt_msg2(RTM_NEWADDR, &info, NULL, w);
1127 if (w->w_req && w->w_tmem) {
1128 struct ifa_msghdr *ifam;
1129
1130 ifam = (struct ifa_msghdr *)w->w_tmem;
1131 ifam->ifam_index = ifa->ifa_ifp->if_index;
1132 ifam->ifam_flags = ifa->ifa_flags;
1133 ifam->ifam_metric = ifa->ifa_metric;
1134 ifam->ifam_addrs = info.rti_addrs;
1135 error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1136 if (error)
1137 goto done;
1138 }
1139 }
1140 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
1141 info.rti_info[RTAX_BRD] = NULL;
1142 }
1143done:
1144 IFNET_RUNLOCK();
1145 return (error);
1146}
1147
1148int
1149sysctl_ifmalist(int af, struct walkarg *w)
1150{
1151 struct ifnet *ifp;
1152 struct ifmultiaddr *ifma;
1153 struct rt_addrinfo info;
1154 int len, error = 0;
1155 struct ifaddr *ifa;
1156
1157 bzero((caddr_t)&info, sizeof(info));
1158 IFNET_RLOCK();
1159 TAILQ_FOREACH(ifp, &ifnet, if_link) {
1160 if (w->w_arg && w->w_arg != ifp->if_index)
1161 continue;
1162 ifa = ifp->if_addr;
1163 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
1164 IF_ADDR_LOCK(ifp);
1165 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1166 if (af && af != ifma->ifma_addr->sa_family)
1167 continue;
1168 if (jailed(curproc->p_ucred) &&
1169 prison_if(curproc->p_ucred, ifma->ifma_addr))
1170 continue;
1171 info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1172 info.rti_info[RTAX_GATEWAY] =
1173 (ifma->ifma_addr->sa_family != AF_LINK) ?
1174 ifma->ifma_lladdr : NULL;
1175 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w);
1176 if (w->w_req && w->w_tmem) {
1177 struct ifma_msghdr *ifmam;
1178
1179 ifmam = (struct ifma_msghdr *)w->w_tmem;
1180 ifmam->ifmam_index = ifma->ifma_ifp->if_index;
1181 ifmam->ifmam_flags = 0;
1182 ifmam->ifmam_addrs = info.rti_addrs;
1183 error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1184 if (error) {
1185 IF_ADDR_UNLOCK(ifp);
1186 goto done;
1187 }
1188 }
1189 }
1190 IF_ADDR_UNLOCK(ifp);
1191 }
1192done:
1193 IFNET_RUNLOCK();
1194 return (error);
1195}
1196
1197static int
1198sysctl_rtsock(SYSCTL_HANDLER_ARGS)
1199{
1200 int *name = (int *)arg1;
1201 u_int namelen = arg2;
1202 struct radix_node_head *rnh;
1203 int i, lim, error = EINVAL;
1204 u_char af;
1205 struct walkarg w;
1206
1207 name ++;
1208 namelen--;
1209 if (req->newptr)
1210 return (EPERM);
1211 if (namelen != 3)
1212 return ((namelen < 3) ? EISDIR : ENOTDIR);
1213 af = name[0];
1214 if (af > AF_MAX)
1215 return (EINVAL);
1216 bzero(&w, sizeof(w));
1217 w.w_op = name[1];
1218 w.w_arg = name[2];
1219 w.w_req = req;
1220
1221 error = sysctl_wire_old_buffer(req, 0);
1222 if (error)
1223 return (error);
1224 switch (w.w_op) {
1225
1226 case NET_RT_DUMP:
1227 case NET_RT_FLAGS:
1228 if (af == 0) { /* dump all tables */
1229 i = 1;
1230 lim = AF_MAX;
1231 } else /* dump only one table */
1232 i = lim = af;
1233 for (error = 0; error == 0 && i <= lim; i++)
1234 if ((rnh = rt_tables[i]) != NULL) {
1235 RADIX_NODE_HEAD_LOCK(rnh);
1236 error = rnh->rnh_walktree(rnh,
1237 sysctl_dumpentry, &w);
1238 RADIX_NODE_HEAD_UNLOCK(rnh);
1239 } else if (af != 0)
1240 error = EAFNOSUPPORT;
1241 break;
1242
1243 case NET_RT_IFLIST:
1244 error = sysctl_iflist(af, &w);
1245 break;
1246
1247 case NET_RT_IFMALIST:
1248 error = sysctl_ifmalist(af, &w);
1249 break;
1250 }
1251 if (w.w_tmem)
1252 free(w.w_tmem, M_RTABLE);
1253 return (error);
1254}
1255
1256SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
1257
1258/*
1259 * Definitions of protocols supported in the ROUTE domain.
1260 */
1261
1262static struct domain routedomain; /* or at least forward */
1263
1264static struct protosw routesw[] = {
1265{
1266 .pr_type = SOCK_RAW,
1267 .pr_domain = &routedomain,
1268 .pr_flags = PR_ATOMIC|PR_ADDR,
1269 .pr_output = route_output,
1270 .pr_ctlinput = raw_ctlinput,
1271 .pr_init = raw_init,
1272 .pr_usrreqs = &route_usrreqs
1273}
1274};
1275
1276static struct domain routedomain = {
1277 .dom_family = PF_ROUTE,
1278 .dom_name = "route",
1279 .dom_protosw = routesw,
1280 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])]
1281};
1282
1283DOMAIN_SET(route);