Deleted Added
full compact
1/*-
2 * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 130551 2004-06-16 00:26:31Z julian $");
28__FBSDID("$FreeBSD: head/sys/kern/sched_ule.c 130881 2004-06-21 22:05:46Z scottl $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/kernel.h>
33#include <sys/ktr.h>
34#include <sys/lock.h>
35#include <sys/mutex.h>
36#include <sys/proc.h>
37#include <sys/resource.h>
38#include <sys/resourcevar.h>
39#include <sys/sched.h>
40#include <sys/smp.h>
41#include <sys/sx.h>
42#include <sys/sysctl.h>
43#include <sys/sysproto.h>
44#include <sys/vmmeter.h>
45#ifdef DDB
46#include <ddb/ddb.h>
47#endif
48#ifdef KTRACE
49#include <sys/uio.h>
50#include <sys/ktrace.h>
51#endif
52
53#include <machine/cpu.h>
54#include <machine/smp.h>
55
56#define KTR_ULE KTR_NFS
57
58/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
59/* XXX This is bogus compatability crap for ps */
60static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
61SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
62
63static void sched_setup(void *dummy);
64SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
65
66static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
67
68#define ULE_NAME "ule"
69#define ULE_NAME_LEN 3
70SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, ULE_NAME, ULE_NAME_LEN,
71 "System is using the ULE scheduler");
72
73static int slice_min = 1;
74SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
75
76static int slice_max = 10;
77SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
78
79int realstathz;
80int tickincr = 1;
81
82/*
83 * These datastructures are allocated within their parent datastructure but
84 * are scheduler specific.
85 */
86
87struct ke_sched {
88 int ske_slice;
89 struct runq *ske_runq;
90 /* The following variables are only used for pctcpu calculation */
91 int ske_ltick; /* Last tick that we were running on */
92 int ske_ftick; /* First tick that we were running on */
93 int ske_ticks; /* Tick count */
94 /* CPU that we have affinity for. */
95 u_char ske_cpu;
96};
97#define ke_slice ke_sched->ske_slice
98#define ke_runq ke_sched->ske_runq
99#define ke_ltick ke_sched->ske_ltick
100#define ke_ftick ke_sched->ske_ftick
101#define ke_ticks ke_sched->ske_ticks
102#define ke_cpu ke_sched->ske_cpu
103#define ke_assign ke_procq.tqe_next
104
105#define KEF_ASSIGNED KEF_SCHED0 /* KSE is being migrated. */
106#define KEF_BOUND KEF_SCHED1 /* KSE can not migrate. */
107
108struct kg_sched {
109 int skg_slptime; /* Number of ticks we vol. slept */
110 int skg_runtime; /* Number of ticks we were running */
111};
112#define kg_slptime kg_sched->skg_slptime
113#define kg_runtime kg_sched->skg_runtime
114
115struct td_sched {
116 int std_slptime;
117};
118#define td_slptime td_sched->std_slptime
119
120struct td_sched td_sched;
121struct ke_sched ke_sched;
122struct kg_sched kg_sched;
123
124struct ke_sched *kse0_sched = &ke_sched;
125struct kg_sched *ksegrp0_sched = &kg_sched;
126struct p_sched *proc0_sched = NULL;
127struct td_sched *thread0_sched = &td_sched;
128
129/*
130 * The priority is primarily determined by the interactivity score. Thus, we
131 * give lower(better) priorities to kse groups that use less CPU. The nice
132 * value is then directly added to this to allow nice to have some effect
133 * on latency.
134 *
135 * PRI_RANGE: Total priority range for timeshare threads.
136 * PRI_NRESV: Number of nice values.
137 * PRI_BASE: The start of the dynamic range.
138 */
139#define SCHED_PRI_RANGE (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
140#define SCHED_PRI_NRESV ((PRIO_MAX - PRIO_MIN) + 1)
141#define SCHED_PRI_NHALF (SCHED_PRI_NRESV / 2)
142#define SCHED_PRI_BASE (PRI_MIN_TIMESHARE)
143#define SCHED_PRI_INTERACT(score) \
144 ((score) * SCHED_PRI_RANGE / SCHED_INTERACT_MAX)
145
146/*
147 * These determine the interactivity of a process.
148 *
149 * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate
150 * before throttling back.
151 * SLP_RUN_FORK: Maximum slp+run time to inherit at fork time.
152 * INTERACT_MAX: Maximum interactivity value. Smaller is better.
153 * INTERACT_THRESH: Threshhold for placement on the current runq.
154 */
155#define SCHED_SLP_RUN_MAX ((hz * 5) << 10)
156#define SCHED_SLP_RUN_FORK ((hz / 2) << 10)
157#define SCHED_INTERACT_MAX (100)
158#define SCHED_INTERACT_HALF (SCHED_INTERACT_MAX / 2)
159#define SCHED_INTERACT_THRESH (30)
160
161/*
162 * These parameters and macros determine the size of the time slice that is
163 * granted to each thread.
164 *
165 * SLICE_MIN: Minimum time slice granted, in units of ticks.
166 * SLICE_MAX: Maximum time slice granted.
167 * SLICE_RANGE: Range of available time slices scaled by hz.
168 * SLICE_SCALE: The number slices granted per val in the range of [0, max].
169 * SLICE_NICE: Determine the amount of slice granted to a scaled nice.
170 * SLICE_NTHRESH: The nice cutoff point for slice assignment.
171 */
172#define SCHED_SLICE_MIN (slice_min)
173#define SCHED_SLICE_MAX (slice_max)
174#define SCHED_SLICE_INTERACTIVE (slice_max)
175#define SCHED_SLICE_NTHRESH (SCHED_PRI_NHALF - 1)
176#define SCHED_SLICE_RANGE (SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
177#define SCHED_SLICE_SCALE(val, max) (((val) * SCHED_SLICE_RANGE) / (max))
178#define SCHED_SLICE_NICE(nice) \
179 (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_SLICE_NTHRESH))
180
181/*
182 * This macro determines whether or not the kse belongs on the current or
183 * next run queue.
184 */
185#define SCHED_INTERACTIVE(kg) \
186 (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
187#define SCHED_CURR(kg, ke) \
188 (ke->ke_thread->td_priority < kg->kg_user_pri || \
189 SCHED_INTERACTIVE(kg))
190
191/*
192 * Cpu percentage computation macros and defines.
193 *
194 * SCHED_CPU_TIME: Number of seconds to average the cpu usage across.
195 * SCHED_CPU_TICKS: Number of hz ticks to average the cpu usage across.
196 */
197
198#define SCHED_CPU_TIME 10
199#define SCHED_CPU_TICKS (hz * SCHED_CPU_TIME)
200
201/*
202 * kseq - per processor runqs and statistics.
203 */
204struct kseq {
205 struct runq ksq_idle; /* Queue of IDLE threads. */
206 struct runq ksq_timeshare[2]; /* Run queues for !IDLE. */
207 struct runq *ksq_next; /* Next timeshare queue. */
208 struct runq *ksq_curr; /* Current queue. */
209 int ksq_load_timeshare; /* Load for timeshare. */
210 int ksq_load; /* Aggregate load. */
211 short ksq_nice[SCHED_PRI_NRESV]; /* KSEs in each nice bin. */
212 short ksq_nicemin; /* Least nice. */
213#ifdef SMP
214 int ksq_transferable;
215 LIST_ENTRY(kseq) ksq_siblings; /* Next in kseq group. */
216 struct kseq_group *ksq_group; /* Our processor group. */
217 volatile struct kse *ksq_assigned; /* assigned by another CPU. */
218#else
219 int ksq_sysload; /* For loadavg, !ITHD load. */
220#endif
221};
222
223#ifdef SMP
224/*
225 * kseq groups are groups of processors which can cheaply share threads. When
226 * one processor in the group goes idle it will check the runqs of the other
227 * processors in its group prior to halting and waiting for an interrupt.
228 * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA.
229 * In a numa environment we'd want an idle bitmap per group and a two tiered
230 * load balancer.
231 */
232struct kseq_group {
233 int ksg_cpus; /* Count of CPUs in this kseq group. */
234 cpumask_t ksg_cpumask; /* Mask of cpus in this group. */
235 cpumask_t ksg_idlemask; /* Idle cpus in this group. */
236 cpumask_t ksg_mask; /* Bit mask for first cpu. */
237 int ksg_load; /* Total load of this group. */
238 int ksg_transferable; /* Transferable load of this group. */
239 LIST_HEAD(, kseq) ksg_members; /* Linked list of all members. */
240};
241#endif
242
243/*
244 * One kse queue per processor.
245 */
246#ifdef SMP
247static cpumask_t kseq_idle;
248static int ksg_maxid;
249static struct kseq kseq_cpu[MAXCPU];
250static struct kseq_group kseq_groups[MAXCPU];
251static int bal_tick;
252static int gbal_tick;
253
254#define KSEQ_SELF() (&kseq_cpu[PCPU_GET(cpuid)])
255#define KSEQ_CPU(x) (&kseq_cpu[(x)])
256#define KSEQ_ID(x) ((x) - kseq_cpu)
257#define KSEQ_GROUP(x) (&kseq_groups[(x)])
258#else /* !SMP */
259static struct kseq kseq_cpu;
260
261#define KSEQ_SELF() (&kseq_cpu)
262#define KSEQ_CPU(x) (&kseq_cpu)
263#endif
264
265static void sched_slice(struct kse *ke);
266static void sched_priority(struct ksegrp *kg);
267static int sched_interact_score(struct ksegrp *kg);
268static void sched_interact_update(struct ksegrp *kg);
269static void sched_interact_fork(struct ksegrp *kg);
270static void sched_pctcpu_update(struct kse *ke);
271
272/* Operations on per processor queues */
273static struct kse * kseq_choose(struct kseq *kseq);
274static void kseq_setup(struct kseq *kseq);
275static void kseq_load_add(struct kseq *kseq, struct kse *ke);
276static void kseq_load_rem(struct kseq *kseq, struct kse *ke);
277static __inline void kseq_runq_add(struct kseq *kseq, struct kse *ke);
278static __inline void kseq_runq_rem(struct kseq *kseq, struct kse *ke);
279static void kseq_nice_add(struct kseq *kseq, int nice);
280static void kseq_nice_rem(struct kseq *kseq, int nice);
281void kseq_print(int cpu);
282#ifdef SMP
283static int kseq_transfer(struct kseq *ksq, struct kse *ke, int class);
284static struct kse *runq_steal(struct runq *rq);
285static void sched_balance(void);
286static void sched_balance_groups(void);
287static void sched_balance_group(struct kseq_group *ksg);
288static void sched_balance_pair(struct kseq *high, struct kseq *low);
289static void kseq_move(struct kseq *from, int cpu);
290static int kseq_idled(struct kseq *kseq);
291static void kseq_notify(struct kse *ke, int cpu);
292static void kseq_assign(struct kseq *);
293static struct kse *kseq_steal(struct kseq *kseq, int stealidle);
294/*
295 * On P4 Xeons the round-robin interrupt delivery is broken. As a result of
296 * this, we can't pin interrupts to the cpu that they were delivered to,
297 * otherwise all ithreads only run on CPU 0.
298 */
299#ifdef __i386__
300#define KSE_CAN_MIGRATE(ke, class) \
301 ((ke)->ke_thread->td_pinned == 0 && ((ke)->ke_flags & KEF_BOUND) == 0)
302#else /* !__i386__ */
303#define KSE_CAN_MIGRATE(ke, class) \
304 ((class) != PRI_ITHD && (ke)->ke_thread->td_pinned == 0 && \
305 ((ke)->ke_flags & KEF_BOUND) == 0)
306#endif /* !__i386__ */
307#endif
308
309void
310kseq_print(int cpu)
311{
312 struct kseq *kseq;
313 int i;
314
315 kseq = KSEQ_CPU(cpu);
316
317 printf("kseq:\n");
318 printf("\tload: %d\n", kseq->ksq_load);
319 printf("\tload TIMESHARE: %d\n", kseq->ksq_load_timeshare);
320#ifdef SMP
321 printf("\tload transferable: %d\n", kseq->ksq_transferable);
322#endif
323 printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
324 printf("\tnice counts:\n");
325 for (i = 0; i < SCHED_PRI_NRESV; i++)
326 if (kseq->ksq_nice[i])
327 printf("\t\t%d = %d\n",
328 i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
329}
330
331static __inline void
332kseq_runq_add(struct kseq *kseq, struct kse *ke)
333{
334#ifdef SMP
335 if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
336 kseq->ksq_transferable++;
337 kseq->ksq_group->ksg_transferable++;
338 }
339#endif
340 runq_add(ke->ke_runq, ke);
341}
342
343static __inline void
344kseq_runq_rem(struct kseq *kseq, struct kse *ke)
345{
346#ifdef SMP
347 if (KSE_CAN_MIGRATE(ke, PRI_BASE(ke->ke_ksegrp->kg_pri_class))) {
348 kseq->ksq_transferable--;
349 kseq->ksq_group->ksg_transferable--;
350 }
351#endif
352 runq_remove(ke->ke_runq, ke);
353}
354
355static void
356kseq_load_add(struct kseq *kseq, struct kse *ke)
357{
358 int class;
359 mtx_assert(&sched_lock, MA_OWNED);
360 class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
361 if (class == PRI_TIMESHARE)
362 kseq->ksq_load_timeshare++;
363 kseq->ksq_load++;
364 if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
365#ifdef SMP
366 kseq->ksq_group->ksg_load++;
367#else
368 kseq->ksq_sysload++;
369#endif
370 if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
371 CTR6(KTR_ULE,
372 "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
373 ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
374 ke->ke_proc->p_nice, kseq->ksq_nicemin);
375 if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
376 kseq_nice_add(kseq, ke->ke_proc->p_nice);
377}
378
379static void
380kseq_load_rem(struct kseq *kseq, struct kse *ke)
381{
382 int class;
383 mtx_assert(&sched_lock, MA_OWNED);
384 class = PRI_BASE(ke->ke_ksegrp->kg_pri_class);
385 if (class == PRI_TIMESHARE)
386 kseq->ksq_load_timeshare--;
387 if (class != PRI_ITHD && (ke->ke_proc->p_flag & P_NOLOAD) == 0)
388#ifdef SMP
389 kseq->ksq_group->ksg_load--;
390#else
391 kseq->ksq_sysload--;
392#endif
393 kseq->ksq_load--;
394 ke->ke_runq = NULL;
395 if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
396 kseq_nice_rem(kseq, ke->ke_proc->p_nice);
397}
398
399static void
400kseq_nice_add(struct kseq *kseq, int nice)
401{
402 mtx_assert(&sched_lock, MA_OWNED);
403 /* Normalize to zero. */
404 kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
405 if (nice < kseq->ksq_nicemin || kseq->ksq_load_timeshare == 1)
406 kseq->ksq_nicemin = nice;
407}
408
409static void
410kseq_nice_rem(struct kseq *kseq, int nice)
411{
412 int n;
413
414 mtx_assert(&sched_lock, MA_OWNED);
415 /* Normalize to zero. */
416 n = nice + SCHED_PRI_NHALF;
417 kseq->ksq_nice[n]--;
418 KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
419
420 /*
421 * If this wasn't the smallest nice value or there are more in
422 * this bucket we can just return. Otherwise we have to recalculate
423 * the smallest nice.
424 */
425 if (nice != kseq->ksq_nicemin ||
426 kseq->ksq_nice[n] != 0 ||
427 kseq->ksq_load_timeshare == 0)
428 return;
429
430 for (; n < SCHED_PRI_NRESV; n++)
431 if (kseq->ksq_nice[n]) {
432 kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
433 return;
434 }
435}
436
437#ifdef SMP
438/*
439 * sched_balance is a simple CPU load balancing algorithm. It operates by
440 * finding the least loaded and most loaded cpu and equalizing their load
441 * by migrating some processes.
442 *
443 * Dealing only with two CPUs at a time has two advantages. Firstly, most
444 * installations will only have 2 cpus. Secondly, load balancing too much at
445 * once can have an unpleasant effect on the system. The scheduler rarely has
446 * enough information to make perfect decisions. So this algorithm chooses
447 * algorithm simplicity and more gradual effects on load in larger systems.
448 *
449 * It could be improved by considering the priorities and slices assigned to
450 * each task prior to balancing them. There are many pathological cases with
451 * any approach and so the semi random algorithm below may work as well as any.
452 *
453 */
454static void
455sched_balance(void)
456{
457 struct kseq_group *high;
458 struct kseq_group *low;
459 struct kseq_group *ksg;
460 int cnt;
461 int i;
462
463 if (smp_started == 0)
464 goto out;
465 low = high = NULL;
466 i = random() % (ksg_maxid + 1);
467 for (cnt = 0; cnt <= ksg_maxid; cnt++) {
468 ksg = KSEQ_GROUP(i);
469 /*
470 * Find the CPU with the highest load that has some
471 * threads to transfer.
472 */
473 if ((high == NULL || ksg->ksg_load > high->ksg_load)
474 && ksg->ksg_transferable)
475 high = ksg;
476 if (low == NULL || ksg->ksg_load < low->ksg_load)
477 low = ksg;
478 if (++i > ksg_maxid)
479 i = 0;
480 }
481 if (low != NULL && high != NULL && high != low)
482 sched_balance_pair(LIST_FIRST(&high->ksg_members),
483 LIST_FIRST(&low->ksg_members));
484out:
485 bal_tick = ticks + (random() % (hz * 2));
486}
487
488static void
489sched_balance_groups(void)
490{
491 int i;
492
493 mtx_assert(&sched_lock, MA_OWNED);
494 if (smp_started)
495 for (i = 0; i <= ksg_maxid; i++)
496 sched_balance_group(KSEQ_GROUP(i));
497 gbal_tick = ticks + (random() % (hz * 2));
498}
499
500static void
501sched_balance_group(struct kseq_group *ksg)
502{
503 struct kseq *kseq;
504 struct kseq *high;
505 struct kseq *low;
506 int load;
507
508 if (ksg->ksg_transferable == 0)
509 return;
510 low = NULL;
511 high = NULL;
512 LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
513 load = kseq->ksq_load;
514 if (high == NULL || load > high->ksq_load)
515 high = kseq;
516 if (low == NULL || load < low->ksq_load)
517 low = kseq;
518 }
519 if (high != NULL && low != NULL && high != low)
520 sched_balance_pair(high, low);
521}
522
523static void
524sched_balance_pair(struct kseq *high, struct kseq *low)
525{
526 int transferable;
527 int high_load;
528 int low_load;
529 int move;
530 int diff;
531 int i;
532
533 /*
534 * If we're transfering within a group we have to use this specific
535 * kseq's transferable count, otherwise we can steal from other members
536 * of the group.
537 */
538 if (high->ksq_group == low->ksq_group) {
539 transferable = high->ksq_transferable;
540 high_load = high->ksq_load;
541 low_load = low->ksq_load;
542 } else {
543 transferable = high->ksq_group->ksg_transferable;
544 high_load = high->ksq_group->ksg_load;
545 low_load = low->ksq_group->ksg_load;
546 }
547 if (transferable == 0)
548 return;
549 /*
550 * Determine what the imbalance is and then adjust that to how many
551 * kses we actually have to give up (transferable).
552 */
553 diff = high_load - low_load;
554 move = diff / 2;
555 if (diff & 0x1)
556 move++;
557 move = min(move, transferable);
558 for (i = 0; i < move; i++)
559 kseq_move(high, KSEQ_ID(low));
560 return;
561}
562
563static void
564kseq_move(struct kseq *from, int cpu)
565{
566 struct kseq *kseq;
567 struct kseq *to;
568 struct kse *ke;
569
570 kseq = from;
571 to = KSEQ_CPU(cpu);
572 ke = kseq_steal(kseq, 1);
573 if (ke == NULL) {
574 struct kseq_group *ksg;
575
576 ksg = kseq->ksq_group;
577 LIST_FOREACH(kseq, &ksg->ksg_members, ksq_siblings) {
578 if (kseq == from || kseq->ksq_transferable == 0)
579 continue;
580 ke = kseq_steal(kseq, 1);
581 break;
582 }
583 if (ke == NULL)
584 panic("kseq_move: No KSEs available with a "
585 "transferable count of %d\n",
586 ksg->ksg_transferable);
587 }
588 if (kseq == to)
589 return;
590 ke->ke_state = KES_THREAD;
591 kseq_runq_rem(kseq, ke);
592 kseq_load_rem(kseq, ke);
593 kseq_notify(ke, cpu);
594}
595
596static int
597kseq_idled(struct kseq *kseq)
598{
599 struct kseq_group *ksg;
600 struct kseq *steal;
601 struct kse *ke;
602
603 ksg = kseq->ksq_group;
604 /*
605 * If we're in a cpu group, try and steal kses from another cpu in
606 * the group before idling.
607 */
608 if (ksg->ksg_cpus > 1 && ksg->ksg_transferable) {
609 LIST_FOREACH(steal, &ksg->ksg_members, ksq_siblings) {
610 if (steal == kseq || steal->ksq_transferable == 0)
611 continue;
612 ke = kseq_steal(steal, 0);
613 if (ke == NULL)
614 continue;
615 ke->ke_state = KES_THREAD;
616 kseq_runq_rem(steal, ke);
617 kseq_load_rem(steal, ke);
618 ke->ke_cpu = PCPU_GET(cpuid);
619 sched_add(ke->ke_thread);
620 return (0);
621 }
622 }
623 /*
624 * We only set the idled bit when all of the cpus in the group are
625 * idle. Otherwise we could get into a situation where a KSE bounces
626 * back and forth between two idle cores on seperate physical CPUs.
627 */
628 ksg->ksg_idlemask |= PCPU_GET(cpumask);
629 if (ksg->ksg_idlemask != ksg->ksg_cpumask)
630 return (1);
631 atomic_set_int(&kseq_idle, ksg->ksg_mask);
632 return (1);
633}
634
635static void
636kseq_assign(struct kseq *kseq)
637{
638 struct kse *nke;
639 struct kse *ke;
640
641 do {
642 (volatile struct kse *)ke = kseq->ksq_assigned;
643 } while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke, NULL));
644 for (; ke != NULL; ke = nke) {
645 nke = ke->ke_assign;
646 ke->ke_flags &= ~KEF_ASSIGNED;
647 sched_add(ke->ke_thread);
648 }
649}
650
651static void
652kseq_notify(struct kse *ke, int cpu)
653{
654 struct kseq *kseq;
655 struct thread *td;
656 struct pcpu *pcpu;
657
658 ke->ke_cpu = cpu;
659 ke->ke_flags |= KEF_ASSIGNED;
660
661 kseq = KSEQ_CPU(cpu);
662
663 /*
664 * Place a KSE on another cpu's queue and force a resched.
665 */
666 do {
667 (volatile struct kse *)ke->ke_assign = kseq->ksq_assigned;
668 } while(!atomic_cmpset_ptr(&kseq->ksq_assigned, ke->ke_assign, ke));
669 pcpu = pcpu_find(cpu);
670 td = pcpu->pc_curthread;
671 if (ke->ke_thread->td_priority < td->td_priority ||
672 td == pcpu->pc_idlethread) {
673 td->td_flags |= TDF_NEEDRESCHED;
674 ipi_selected(1 << cpu, IPI_AST);
675 }
676}
677
678static struct kse *
679runq_steal(struct runq *rq)
680{
681 struct rqhead *rqh;
682 struct rqbits *rqb;
683 struct kse *ke;
684 int word;
685 int bit;
686
687 mtx_assert(&sched_lock, MA_OWNED);
688 rqb = &rq->rq_status;
689 for (word = 0; word < RQB_LEN; word++) {
690 if (rqb->rqb_bits[word] == 0)
691 continue;
692 for (bit = 0; bit < RQB_BPW; bit++) {
693 if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
694 continue;
695 rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
696 TAILQ_FOREACH(ke, rqh, ke_procq) {
697 if (KSE_CAN_MIGRATE(ke,
698 PRI_BASE(ke->ke_ksegrp->kg_pri_class)))
699 return (ke);
700 }
701 }
702 }
703 return (NULL);
704}
705
706static struct kse *
707kseq_steal(struct kseq *kseq, int stealidle)
708{
709 struct kse *ke;
710
711 /*
712 * Steal from next first to try to get a non-interactive task that
713 * may not have run for a while.
714 */
715 if ((ke = runq_steal(kseq->ksq_next)) != NULL)
716 return (ke);
717 if ((ke = runq_steal(kseq->ksq_curr)) != NULL)
718 return (ke);
719 if (stealidle)
720 return (runq_steal(&kseq->ksq_idle));
721 return (NULL);
722}
723
724int
725kseq_transfer(struct kseq *kseq, struct kse *ke, int class)
726{
727 struct kseq_group *ksg;
728 int cpu;
729
730 if (smp_started == 0)
731 return (0);
732 cpu = 0;
733 ksg = kseq->ksq_group;
734
735 /*
736 * If there are any idle groups, give them our extra load. The
737 * threshold at which we start to reassign kses has a large impact
738 * on the overall performance of the system. Tuned too high and
739 * some CPUs may idle. Too low and there will be excess migration
740 * and context switches.
741 */
742 if (ksg->ksg_load > (ksg->ksg_cpus * 2) && kseq_idle) {
743 /*
744 * Multiple cpus could find this bit simultaneously
745 * but the race shouldn't be terrible.
746 */
747 cpu = ffs(kseq_idle);
748 if (cpu)
749 atomic_clear_int(&kseq_idle, 1 << (cpu - 1));
750 }
751 /*
752 * If another cpu in this group has idled, assign a thread over
753 * to them after checking to see if there are idled groups.
754 */
755 if (cpu == 0 && kseq->ksq_load > 1 && ksg->ksg_idlemask) {
756 cpu = ffs(ksg->ksg_idlemask);
757 if (cpu)
758 ksg->ksg_idlemask &= ~(1 << (cpu - 1));
759 }
760 /*
761 * Now that we've found an idle CPU, migrate the thread.
762 */
763 if (cpu) {
764 cpu--;
765 ke->ke_runq = NULL;
766 kseq_notify(ke, cpu);
767 return (1);
768 }
769 return (0);
770}
771
772#endif /* SMP */
773
774/*
775 * Pick the highest priority task we have and return it.
776 */
777
778static struct kse *
779kseq_choose(struct kseq *kseq)
780{
781 struct kse *ke;
782 struct runq *swap;
783
784 mtx_assert(&sched_lock, MA_OWNED);
785 swap = NULL;
786
787 for (;;) {
788 ke = runq_choose(kseq->ksq_curr);
789 if (ke == NULL) {
790 /*
791 * We already swaped once and didn't get anywhere.
792 */
793 if (swap)
794 break;
795 swap = kseq->ksq_curr;
796 kseq->ksq_curr = kseq->ksq_next;
797 kseq->ksq_next = swap;
798 continue;
799 }
800 /*
801 * If we encounter a slice of 0 the kse is in a
802 * TIMESHARE kse group and its nice was too far out
803 * of the range that receives slices.
804 */
805 if (ke->ke_slice == 0) {
806 runq_remove(ke->ke_runq, ke);
807 sched_slice(ke);
808 ke->ke_runq = kseq->ksq_next;
809 runq_add(ke->ke_runq, ke);
810 continue;
811 }
812 return (ke);
813 }
814
815 return (runq_choose(&kseq->ksq_idle));
816}
817
818static void
819kseq_setup(struct kseq *kseq)
820{
821 runq_init(&kseq->ksq_timeshare[0]);
822 runq_init(&kseq->ksq_timeshare[1]);
823 runq_init(&kseq->ksq_idle);
824 kseq->ksq_curr = &kseq->ksq_timeshare[0];
825 kseq->ksq_next = &kseq->ksq_timeshare[1];
826 kseq->ksq_load = 0;
827 kseq->ksq_load_timeshare = 0;
828}
829
830static void
831sched_setup(void *dummy)
832{
833#ifdef SMP
834 int balance_groups;
835 int i;
836#endif
837
838 slice_min = (hz/100); /* 10ms */
839 slice_max = (hz/7); /* ~140ms */
840
841#ifdef SMP
842 balance_groups = 0;
843 /*
844 * Initialize the kseqs.
845 */
846 for (i = 0; i < MAXCPU; i++) {
847 struct kseq *ksq;
848
849 ksq = &kseq_cpu[i];
850 ksq->ksq_assigned = NULL;
851 kseq_setup(&kseq_cpu[i]);
852 }
853 if (smp_topology == NULL) {
854 struct kseq_group *ksg;
855 struct kseq *ksq;
856
857 for (i = 0; i < MAXCPU; i++) {
858 ksq = &kseq_cpu[i];
859 ksg = &kseq_groups[i];
860 /*
861 * Setup a kseq group with one member.
862 */
863 ksq->ksq_transferable = 0;
864 ksq->ksq_group = ksg;
865 ksg->ksg_cpus = 1;
866 ksg->ksg_idlemask = 0;
867 ksg->ksg_cpumask = ksg->ksg_mask = 1 << i;
868 ksg->ksg_load = 0;
869 ksg->ksg_transferable = 0;
870 LIST_INIT(&ksg->ksg_members);
871 LIST_INSERT_HEAD(&ksg->ksg_members, ksq, ksq_siblings);
872 }
873 } else {
874 struct kseq_group *ksg;
875 struct cpu_group *cg;
876 int j;
877
878 for (i = 0; i < smp_topology->ct_count; i++) {
879 cg = &smp_topology->ct_group[i];
880 ksg = &kseq_groups[i];
881 /*
882 * Initialize the group.
883 */
884 ksg->ksg_idlemask = 0;
885 ksg->ksg_load = 0;
886 ksg->ksg_transferable = 0;
887 ksg->ksg_cpus = cg->cg_count;
888 ksg->ksg_cpumask = cg->cg_mask;
889 LIST_INIT(&ksg->ksg_members);
890 /*
891 * Find all of the group members and add them.
892 */
893 for (j = 0; j < MAXCPU; j++) {
894 if ((cg->cg_mask & (1 << j)) != 0) {
895 if (ksg->ksg_mask == 0)
896 ksg->ksg_mask = 1 << j;
897 kseq_cpu[j].ksq_transferable = 0;
898 kseq_cpu[j].ksq_group = ksg;
899 LIST_INSERT_HEAD(&ksg->ksg_members,
900 &kseq_cpu[j], ksq_siblings);
901 }
902 }
903 if (ksg->ksg_cpus > 1)
904 balance_groups = 1;
905 }
906 ksg_maxid = smp_topology->ct_count - 1;
907 }
908 /*
909 * Stagger the group and global load balancer so they do not
910 * interfere with each other.
911 */
912 bal_tick = ticks + hz;
913 if (balance_groups)
914 gbal_tick = ticks + (hz / 2);
915#else
916 kseq_setup(KSEQ_SELF());
917#endif
918 mtx_lock_spin(&sched_lock);
919 kseq_load_add(KSEQ_SELF(), &kse0);
920 mtx_unlock_spin(&sched_lock);
921}
922
923/*
924 * Scale the scheduling priority according to the "interactivity" of this
925 * process.
926 */
927static void
928sched_priority(struct ksegrp *kg)
929{
930 int pri;
931
932 if (kg->kg_pri_class != PRI_TIMESHARE)
933 return;
934
935 pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
936 pri += SCHED_PRI_BASE;
937 pri += kg->kg_proc->p_nice;
938
939 if (pri > PRI_MAX_TIMESHARE)
940 pri = PRI_MAX_TIMESHARE;
941 else if (pri < PRI_MIN_TIMESHARE)
942 pri = PRI_MIN_TIMESHARE;
943
944 kg->kg_user_pri = pri;
945
946 return;
947}
948
949/*
950 * Calculate a time slice based on the properties of the kseg and the runq
951 * that we're on. This is only for PRI_TIMESHARE ksegrps.
952 */
953static void
954sched_slice(struct kse *ke)
955{
956 struct kseq *kseq;
957 struct ksegrp *kg;
958
959 kg = ke->ke_ksegrp;
960 kseq = KSEQ_CPU(ke->ke_cpu);
961
962 /*
963 * Rationale:
964 * KSEs in interactive ksegs get the minimum slice so that we
965 * quickly notice if it abuses its advantage.
966 *
967 * KSEs in non-interactive ksegs are assigned a slice that is
968 * based on the ksegs nice value relative to the least nice kseg
969 * on the run queue for this cpu.
970 *
971 * If the KSE is less nice than all others it gets the maximum
972 * slice and other KSEs will adjust their slice relative to
973 * this when they first expire.
974 *
975 * There is 20 point window that starts relative to the least
976 * nice kse on the run queue. Slice size is determined by
977 * the kse distance from the last nice ksegrp.
978 *
979 * If the kse is outside of the window it will get no slice
980 * and will be reevaluated each time it is selected on the
981 * run queue. The exception to this is nice 0 ksegs when
982 * a nice -20 is running. They are always granted a minimum
983 * slice.
984 */
985 if (!SCHED_INTERACTIVE(kg)) {
986 int nice;
987
988 nice = kg->kg_proc->p_nice + (0 - kseq->ksq_nicemin);
989 if (kseq->ksq_load_timeshare == 0 ||
990 kg->kg_proc->p_nice < kseq->ksq_nicemin)
991 ke->ke_slice = SCHED_SLICE_MAX;
992 else if (nice <= SCHED_SLICE_NTHRESH)
993 ke->ke_slice = SCHED_SLICE_NICE(nice);
994 else if (kg->kg_proc->p_nice == 0)
995 ke->ke_slice = SCHED_SLICE_MIN;
996 else
997 ke->ke_slice = 0;
998 } else
999 ke->ke_slice = SCHED_SLICE_INTERACTIVE;
1000
1001 CTR6(KTR_ULE,
1002 "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
1003 ke, ke->ke_slice, kg->kg_proc->p_nice, kseq->ksq_nicemin,
1004 kseq->ksq_load_timeshare, SCHED_INTERACTIVE(kg));
1005
1006 return;
1007}
1008
1009/*
1010 * This routine enforces a maximum limit on the amount of scheduling history
1011 * kept. It is called after either the slptime or runtime is adjusted.
1012 * This routine will not operate correctly when slp or run times have been
1013 * adjusted to more than double their maximum.
1014 */
1015static void
1016sched_interact_update(struct ksegrp *kg)
1017{
1018 int sum;
1019
1020 sum = kg->kg_runtime + kg->kg_slptime;
1021 if (sum < SCHED_SLP_RUN_MAX)
1022 return;
1023 /*
1024 * If we have exceeded by more than 1/5th then the algorithm below
1025 * will not bring us back into range. Dividing by two here forces
1026 * us into the range of [3/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1027 */
1028 if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1029 kg->kg_runtime /= 2;
1030 kg->kg_slptime /= 2;
1031 return;
1032 }
1033 kg->kg_runtime = (kg->kg_runtime / 5) * 4;
1034 kg->kg_slptime = (kg->kg_slptime / 5) * 4;
1035}
1036
1037static void
1038sched_interact_fork(struct ksegrp *kg)
1039{
1040 int ratio;
1041 int sum;
1042
1043 sum = kg->kg_runtime + kg->kg_slptime;
1044 if (sum > SCHED_SLP_RUN_FORK) {
1045 ratio = sum / SCHED_SLP_RUN_FORK;
1046 kg->kg_runtime /= ratio;
1047 kg->kg_slptime /= ratio;
1048 }
1049}
1050
1051static int
1052sched_interact_score(struct ksegrp *kg)
1053{
1054 int div;
1055
1056 if (kg->kg_runtime > kg->kg_slptime) {
1057 div = max(1, kg->kg_runtime / SCHED_INTERACT_HALF);
1058 return (SCHED_INTERACT_HALF +
1059 (SCHED_INTERACT_HALF - (kg->kg_slptime / div)));
1060 } if (kg->kg_slptime > kg->kg_runtime) {
1061 div = max(1, kg->kg_slptime / SCHED_INTERACT_HALF);
1062 return (kg->kg_runtime / div);
1063 }
1064
1065 /*
1066 * This can happen if slptime and runtime are 0.
1067 */
1068 return (0);
1069
1070}
1071
1072/*
1073 * This is only somewhat accurate since given many processes of the same
1074 * priority they will switch when their slices run out, which will be
1075 * at most SCHED_SLICE_MAX.
1076 */
1077int
1078sched_rr_interval(void)
1079{
1080 return (SCHED_SLICE_MAX);
1081}
1082
1083static void
1084sched_pctcpu_update(struct kse *ke)
1085{
1086 /*
1087 * Adjust counters and watermark for pctcpu calc.
1088 */
1089 if (ke->ke_ltick > ticks - SCHED_CPU_TICKS) {
1090 /*
1091 * Shift the tick count out so that the divide doesn't
1092 * round away our results.
1093 */
1094 ke->ke_ticks <<= 10;
1095 ke->ke_ticks = (ke->ke_ticks / (ticks - ke->ke_ftick)) *
1096 SCHED_CPU_TICKS;
1097 ke->ke_ticks >>= 10;
1098 } else
1099 ke->ke_ticks = 0;
1100 ke->ke_ltick = ticks;
1101 ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
1102}
1103
1104void
1105sched_prio(struct thread *td, u_char prio)
1106{
1107 struct kse *ke;
1108
1109 ke = td->td_kse;
1110 mtx_assert(&sched_lock, MA_OWNED);
1111 if (TD_ON_RUNQ(td)) {
1112 /*
1113 * If the priority has been elevated due to priority
1114 * propagation, we may have to move ourselves to a new
1115 * queue. We still call adjustrunqueue below in case kse
1116 * needs to fix things up.
1117 */
1118 if (prio < td->td_priority && ke &&
1119 (ke->ke_flags & KEF_ASSIGNED) == 0 &&
1120 ke->ke_runq != KSEQ_CPU(ke->ke_cpu)->ksq_curr) {
1121 runq_remove(ke->ke_runq, ke);
1122 ke->ke_runq = KSEQ_CPU(ke->ke_cpu)->ksq_curr;
1123 runq_add(ke->ke_runq, ke);
1124 }
1125 adjustrunqueue(td, prio);
1126 } else
1127 td->td_priority = prio;
1128}
1129
1130void
1131sched_switch(struct thread *td)
1132{
1133 struct thread *newtd;
1134 struct kse *ke;
1135
1136 mtx_assert(&sched_lock, MA_OWNED);
1137
1138 ke = td->td_kse;
1139
1140 td->td_last_kse = ke;
1141 td->td_lastcpu = td->td_oncpu;
1142 td->td_oncpu = NOCPU;
1143 td->td_flags &= ~TDF_NEEDRESCHED;
1144
1145 /*
1146 * If the KSE has been assigned it may be in the process of switching
1147 * to the new cpu. This is the case in sched_bind().
1148 */
1149 if ((ke->ke_flags & KEF_ASSIGNED) == 0) {
1150 if (TD_IS_RUNNING(td)) {
1151 kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1152 setrunqueue(td);
1153 } else {
1154 if (ke->ke_runq) {
1155 kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1156 } else if ((td->td_flags & TDF_IDLETD) == 0)
1157 backtrace();
1158 /*
1159 * We will not be on the run queue. So we must be
1160 * sleeping or similar.
1161 */
1162 if (td->td_proc->p_flag & P_SA)
1163 kse_reassign(ke);
1164 }
1165 }
1166 newtd = choosethread();
1167 if (td != newtd)
1168 cpu_switch(td, newtd);
1169 sched_lock.mtx_lock = (uintptr_t)td;
1170
1171 td->td_oncpu = PCPU_GET(cpuid);
1172}
1173
1174void
1175sched_nice(struct proc *p, int nice)
1176{
1177 struct ksegrp *kg;
1178 struct kse *ke;
1179 struct thread *td;
1180 struct kseq *kseq;
1181
1182 PROC_LOCK_ASSERT(p, MA_OWNED);
1183 mtx_assert(&sched_lock, MA_OWNED);
1184 /*
1185 * We need to adjust the nice counts for running KSEs.
1186 */
1187 FOREACH_KSEGRP_IN_PROC(p, kg) {
1188 if (kg->kg_pri_class == PRI_TIMESHARE) {
1189 FOREACH_KSE_IN_GROUP(kg, ke) {
1190 if (ke->ke_runq == NULL)
1191 continue;
1192 kseq = KSEQ_CPU(ke->ke_cpu);
1193 kseq_nice_rem(kseq, p->p_nice);
1194 kseq_nice_add(kseq, nice);
1195 }
1196 }
1197 }
1198 p->p_nice = nice;
1199 FOREACH_KSEGRP_IN_PROC(p, kg) {
1200 sched_priority(kg);
1201 FOREACH_THREAD_IN_GROUP(kg, td)
1202 td->td_flags |= TDF_NEEDRESCHED;
1203 }
1204}
1205
1206void
1207sched_sleep(struct thread *td)
1208{
1209 mtx_assert(&sched_lock, MA_OWNED);
1210
1211 td->td_slptime = ticks;
1212 td->td_base_pri = td->td_priority;
1213
1214 CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
1215 td->td_kse, td->td_slptime);
1216}
1217
1218void
1219sched_wakeup(struct thread *td)
1220{
1221 mtx_assert(&sched_lock, MA_OWNED);
1222
1223 /*
1224 * Let the kseg know how long we slept for. This is because process
1225 * interactivity behavior is modeled in the kseg.
1226 */
1227 if (td->td_slptime) {
1228 struct ksegrp *kg;
1229 int hzticks;
1230
1231 kg = td->td_ksegrp;
1232 hzticks = (ticks - td->td_slptime) << 10;
1233 if (hzticks >= SCHED_SLP_RUN_MAX) {
1234 kg->kg_slptime = SCHED_SLP_RUN_MAX;
1235 kg->kg_runtime = 1;
1236 } else {
1237 kg->kg_slptime += hzticks;
1238 sched_interact_update(kg);
1239 }
1240 sched_priority(kg);
1241 if (td->td_kse)
1242 sched_slice(td->td_kse);
1243 CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
1244 td->td_kse, hzticks);
1245 td->td_slptime = 0;
1246 }
1247 setrunqueue(td);
1248}
1249
1250/*
1251 * Penalize the parent for creating a new child and initialize the child's
1252 * priority.
1253 */
1254void
1255sched_fork(struct proc *p, struct proc *p1)
1256{
1257
1258 mtx_assert(&sched_lock, MA_OWNED);
1259
1260 p1->p_nice = p->p_nice;
1261 sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
1262 sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
1263 sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
1264}
1265
1266void
1267sched_fork_kse(struct kse *ke, struct kse *child)
1268{
1269
1270 child->ke_slice = 1; /* Attempt to quickly learn interactivity. */
1271 child->ke_cpu = ke->ke_cpu;
1272 child->ke_runq = NULL;
1273
1274 /* Grab our parents cpu estimation information. */
1275 child->ke_ticks = ke->ke_ticks;
1276 child->ke_ltick = ke->ke_ltick;
1277 child->ke_ftick = ke->ke_ftick;
1278}
1279
1280void
1281sched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1282{
1283 PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
1284
1285 child->kg_slptime = kg->kg_slptime;
1286 child->kg_runtime = kg->kg_runtime;
1287 child->kg_user_pri = kg->kg_user_pri;
1288 sched_interact_fork(child);
1289 kg->kg_runtime += tickincr << 10;
1290 sched_interact_update(kg);
1291
1292 CTR6(KTR_ULE, "sched_fork_ksegrp: %d(%d, %d) - %d(%d, %d)",
1293 kg->kg_proc->p_pid, kg->kg_slptime, kg->kg_runtime,
1294 child->kg_proc->p_pid, child->kg_slptime, child->kg_runtime);
1295}
1296
1297void
1298sched_fork_thread(struct thread *td, struct thread *child)
1299{
1300}
1301
1302void
1303sched_class(struct ksegrp *kg, int class)
1304{
1305 struct kseq *kseq;
1306 struct kse *ke;
1307 int nclass;
1308 int oclass;
1309
1310 mtx_assert(&sched_lock, MA_OWNED);
1311 if (kg->kg_pri_class == class)
1312 return;
1313
1314 nclass = PRI_BASE(class);
1315 oclass = PRI_BASE(kg->kg_pri_class);
1316 FOREACH_KSE_IN_GROUP(kg, ke) {
1317 if (ke->ke_state != KES_ONRUNQ &&
1318 ke->ke_state != KES_THREAD)
1319 continue;
1320 kseq = KSEQ_CPU(ke->ke_cpu);
1321
1322#ifdef SMP
1323 /*
1324 * On SMP if we're on the RUNQ we must adjust the transferable
1325 * count because could be changing to or from an interrupt
1326 * class.
1327 */
1328 if (ke->ke_state == KES_ONRUNQ) {
1329 if (KSE_CAN_MIGRATE(ke, oclass)) {
1330 kseq->ksq_transferable--;
1331 kseq->ksq_group->ksg_transferable--;
1332 }
1333 if (KSE_CAN_MIGRATE(ke, nclass)) {
1334 kseq->ksq_transferable++;
1335 kseq->ksq_group->ksg_transferable++;
1336 }
1337 }
1338#endif
1339 if (oclass == PRI_TIMESHARE) {
1340 kseq->ksq_load_timeshare--;
1341 kseq_nice_rem(kseq, kg->kg_proc->p_nice);
1342 }
1343 if (nclass == PRI_TIMESHARE) {
1344 kseq->ksq_load_timeshare++;
1345 kseq_nice_add(kseq, kg->kg_proc->p_nice);
1346 }
1347 }
1348
1349 kg->kg_pri_class = class;
1350}
1351
1352/*
1353 * Return some of the child's priority and interactivity to the parent.
1354 */
1355void
1356sched_exit(struct proc *p, struct proc *child)
1357{
1358 mtx_assert(&sched_lock, MA_OWNED);
1359 sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
1360 sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(child));
1361}
1362
1363void
1364sched_exit_kse(struct kse *ke, struct kse *child)
1365{
1366 kseq_load_rem(KSEQ_CPU(child->ke_cpu), child);
1367}
1368
1369void
1370sched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
1371{
1372 /* kg->kg_slptime += child->kg_slptime; */
1373 kg->kg_runtime += child->kg_runtime;
1374 sched_interact_update(kg);
1375}
1376
1377void
1378sched_exit_thread(struct thread *td, struct thread *child)
1379{
1380}
1381
1382void
1383sched_clock(struct thread *td)
1384{
1385 struct kseq *kseq;
1386 struct ksegrp *kg;
1387 struct kse *ke;
1388
1389 mtx_assert(&sched_lock, MA_OWNED);
1390#ifdef SMP
1391 if (ticks == bal_tick)
1392 sched_balance();
1393 if (ticks == gbal_tick)
1394 sched_balance_groups();
1395#endif
1396 /*
1397 * sched_setup() apparently happens prior to stathz being set. We
1398 * need to resolve the timers earlier in the boot so we can avoid
1399 * calculating this here.
1400 */
1401 if (realstathz == 0) {
1402 realstathz = stathz ? stathz : hz;
1403 tickincr = hz / realstathz;
1404 /*
1405 * XXX This does not work for values of stathz that are much
1406 * larger than hz.
1407 */
1408 if (tickincr == 0)
1409 tickincr = 1;
1410 }
1411
1412 ke = td->td_kse;
1413 kg = ke->ke_ksegrp;
1414
1415 /* Adjust ticks for pctcpu */
1416 ke->ke_ticks++;
1417 ke->ke_ltick = ticks;
1418
1419 /* Go up to one second beyond our max and then trim back down */
1420 if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
1421 sched_pctcpu_update(ke);
1422
1423 if (td->td_flags & TDF_IDLETD)
1424 return;
1425
1426 CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
1427 ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
1428 /*
1429 * We only do slicing code for TIMESHARE ksegrps.
1430 */
1431 if (kg->kg_pri_class != PRI_TIMESHARE)
1432 return;
1433 /*
1434 * We used a tick charge it to the ksegrp so that we can compute our
1435 * interactivity.
1436 */
1437 kg->kg_runtime += tickincr << 10;
1438 sched_interact_update(kg);
1439
1440 /*
1441 * We used up one time slice.
1442 */
1443 if (--ke->ke_slice > 0)
1444 return;
1445 /*
1446 * We're out of time, recompute priorities and requeue.
1447 */
1448 kseq = KSEQ_SELF();
1449 kseq_load_rem(kseq, ke);
1450 sched_priority(kg);
1451 sched_slice(ke);
1452 if (SCHED_CURR(kg, ke))
1453 ke->ke_runq = kseq->ksq_curr;
1454 else
1455 ke->ke_runq = kseq->ksq_next;
1456 kseq_load_add(kseq, ke);
1457 td->td_flags |= TDF_NEEDRESCHED;
1458}
1459
1460int
1461sched_runnable(void)
1462{
1463 struct kseq *kseq;
1464 int load;
1465
1466 load = 1;
1467
1468 kseq = KSEQ_SELF();
1469#ifdef SMP
1470 if (kseq->ksq_assigned) {
1471 mtx_lock_spin(&sched_lock);
1472 kseq_assign(kseq);
1473 mtx_unlock_spin(&sched_lock);
1474 }
1475#endif
1476 if ((curthread->td_flags & TDF_IDLETD) != 0) {
1477 if (kseq->ksq_load > 0)
1478 goto out;
1479 } else
1480 if (kseq->ksq_load - 1 > 0)
1481 goto out;
1482 load = 0;
1483out:
1484 return (load);
1485}
1486
1487void
1488sched_userret(struct thread *td)
1489{
1490 struct ksegrp *kg;
1491
1492 kg = td->td_ksegrp;
1493
1494 if (td->td_priority != kg->kg_user_pri) {
1495 mtx_lock_spin(&sched_lock);
1496 td->td_priority = kg->kg_user_pri;
1497 mtx_unlock_spin(&sched_lock);
1498 }
1499}
1500
1501struct kse *
1502sched_choose(void)
1503{
1504 struct kseq *kseq;
1505 struct kse *ke;
1506
1507 mtx_assert(&sched_lock, MA_OWNED);
1508 kseq = KSEQ_SELF();
1509#ifdef SMP
1510restart:
1511 if (kseq->ksq_assigned)
1512 kseq_assign(kseq);
1513#endif
1514 ke = kseq_choose(kseq);
1515 if (ke) {
1516#ifdef SMP
1517 if (ke->ke_ksegrp->kg_pri_class == PRI_IDLE)
1518 if (kseq_idled(kseq) == 0)
1519 goto restart;
1520#endif
1521 kseq_runq_rem(kseq, ke);
1522 ke->ke_state = KES_THREAD;
1523
1524 if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1525 CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
1526 ke, ke->ke_runq, ke->ke_slice,
1527 ke->ke_thread->td_priority);
1528 }
1529 return (ke);
1530 }
1531#ifdef SMP
1532 if (kseq_idled(kseq) == 0)
1533 goto restart;
1534#endif
1535 return (NULL);
1536}
1537
1538void
1539sched_add(struct thread *td)
1540{
1541 struct kseq *kseq;
1542 struct ksegrp *kg;
1543 struct kse *ke;
1544 int class;
1545
1546 mtx_assert(&sched_lock, MA_OWNED);
1547 ke = td->td_kse;
1548 kg = td->td_ksegrp;
1549 if (ke->ke_flags & KEF_ASSIGNED)
1550 return;
1551 kseq = KSEQ_SELF();
1552 KASSERT((ke->ke_thread != NULL),
1553 ("sched_add: No thread on KSE"));
1554 KASSERT((ke->ke_thread->td_kse != NULL),
1555 ("sched_add: No KSE on thread"));
1556 KASSERT(ke->ke_state != KES_ONRUNQ,
1557 ("sched_add: kse %p (%s) already in run queue", ke,
1558 ke->ke_proc->p_comm));
1559 KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1560 ("sched_add: process swapped out"));
1561 KASSERT(ke->ke_runq == NULL,
1562 ("sched_add: KSE %p is still assigned to a run queue", ke));
1563
1564 class = PRI_BASE(kg->kg_pri_class);
1565 switch (class) {
1566 case PRI_ITHD:
1567 case PRI_REALTIME:
1568 ke->ke_runq = kseq->ksq_curr;
1569 ke->ke_slice = SCHED_SLICE_MAX;
1570 ke->ke_cpu = PCPU_GET(cpuid);
1571 break;
1572 case PRI_TIMESHARE:
1573 if (SCHED_CURR(kg, ke))
1574 ke->ke_runq = kseq->ksq_curr;
1575 else
1576 ke->ke_runq = kseq->ksq_next;
1577 break;
1578 case PRI_IDLE:
1579 /*
1580 * This is for priority prop.
1581 */
1582 if (ke->ke_thread->td_priority < PRI_MIN_IDLE)
1583 ke->ke_runq = kseq->ksq_curr;
1584 else
1585 ke->ke_runq = &kseq->ksq_idle;
1586 ke->ke_slice = SCHED_SLICE_MIN;
1587 break;
1588 default:
1589 panic("Unknown pri class.");
1590 break;
1591 }
1592#ifdef SMP
1593 if (ke->ke_cpu != PCPU_GET(cpuid)) {
1594 ke->ke_runq = NULL;
1595 kseq_notify(ke, ke->ke_cpu);
1596 return;
1597 }
1598 /*
1599 * If we had been idle, clear our bit in the group and potentially
1600 * the global bitmap. If not, see if we should transfer this thread.
1601 */
1602 if ((class == PRI_TIMESHARE || class == PRI_REALTIME) &&
1603 (kseq->ksq_group->ksg_idlemask & PCPU_GET(cpumask)) != 0) {
1604 /*
1605 * Check to see if our group is unidling, and if so, remove it
1606 * from the global idle mask.
1607 */
1608 if (kseq->ksq_group->ksg_idlemask ==
1609 kseq->ksq_group->ksg_cpumask)
1610 atomic_clear_int(&kseq_idle, kseq->ksq_group->ksg_mask);
1611 /*
1612 * Now remove ourselves from the group specific idle mask.
1613 */
1614 kseq->ksq_group->ksg_idlemask &= ~PCPU_GET(cpumask);
1615 } else if (kseq->ksq_load > 1 && KSE_CAN_MIGRATE(ke, class))
1616 if (kseq_transfer(kseq, ke, class))
1617 return;
1618#endif
1619 if (td->td_priority < curthread->td_priority)
1620 curthread->td_flags |= TDF_NEEDRESCHED;
1621
1622 ke->ke_ksegrp->kg_runq_kses++;
1623 ke->ke_state = KES_ONRUNQ;
1624
1625 kseq_runq_add(kseq, ke);
1626 kseq_load_add(kseq, ke);
1627}
1628
1629void
1630sched_rem(struct thread *td)
1631{
1632 struct kseq *kseq;
1633 struct kse *ke;
1634
1635 ke = td->td_kse;
1636 /*
1637 * It is safe to just return here because sched_rem() is only ever
1638 * used in places where we're immediately going to add the
1639 * kse back on again. In that case it'll be added with the correct
1640 * thread and priority when the caller drops the sched_lock.
1641 */
1642 if (ke->ke_flags & KEF_ASSIGNED)
1643 return;
1644 mtx_assert(&sched_lock, MA_OWNED);
1645 KASSERT((ke->ke_state == KES_ONRUNQ),
1646 ("sched_rem: KSE not on run queue"));
1647
1648 ke->ke_state = KES_THREAD;
1649 ke->ke_ksegrp->kg_runq_kses--;
1650 kseq = KSEQ_CPU(ke->ke_cpu);
1651 kseq_runq_rem(kseq, ke);
1652 kseq_load_rem(kseq, ke);
1653}
1654
1655fixpt_t
1656sched_pctcpu(struct thread *td)
1657{
1658 fixpt_t pctcpu;
1659 struct kse *ke;
1660
1661 pctcpu = 0;
1662 ke = td->td_kse;
1663 if (ke == NULL)
1664 return (0);
1665
1666 mtx_lock_spin(&sched_lock);
1667 if (ke->ke_ticks) {
1668 int rtick;
1669
1670 /*
1671 * Don't update more frequently than twice a second. Allowing
1672 * this causes the cpu usage to decay away too quickly due to
1673 * rounding errors.
1674 */
1675 if (ke->ke_ftick + SCHED_CPU_TICKS < ke->ke_ltick ||
1676 ke->ke_ltick < (ticks - (hz / 2)))
1677 sched_pctcpu_update(ke);
1678 /* How many rtick per second ? */
1679 rtick = min(ke->ke_ticks / SCHED_CPU_TIME, SCHED_CPU_TICKS);
1680 pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1681 }
1682
1683 ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1684 mtx_unlock_spin(&sched_lock);
1685
1686 return (pctcpu);
1687}
1688
1689void
1690sched_bind(struct thread *td, int cpu)
1691{
1692 struct kse *ke;
1693
1694 mtx_assert(&sched_lock, MA_OWNED);
1695 ke = td->td_kse;
1696 ke->ke_flags |= KEF_BOUND;
1697#ifdef SMP
1698 if (PCPU_GET(cpuid) == cpu)
1699 return;
1700 /* sched_rem without the runq_remove */
1701 ke->ke_state = KES_THREAD;
1702 ke->ke_ksegrp->kg_runq_kses--;
1703 kseq_load_rem(KSEQ_CPU(ke->ke_cpu), ke);
1704 kseq_notify(ke, cpu);
1705 /* When we return from mi_switch we'll be on the correct cpu. */
1706 mi_switch(SW_VOL);
1707#endif
1708}
1709
1710void
1711sched_unbind(struct thread *td)
1712{
1713 mtx_assert(&sched_lock, MA_OWNED);
1714 td->td_kse->ke_flags &= ~KEF_BOUND;
1715}
1716
1717int
1718sched_load(void)
1719{
1720#ifdef SMP
1721 int total;
1722 int i;
1723
1724 total = 0;
1725 for (i = 0; i <= ksg_maxid; i++)
1726 total += KSEQ_GROUP(i)->ksg_load;
1727 return (total);
1728#else
1729 return (KSEQ_SELF()->ksq_sysload);
1730#endif
1731}
1732
1733int
1734sched_sizeof_kse(void)
1735{
1736 return (sizeof(struct kse) + sizeof(struct ke_sched));
1737}
1738
1739int
1740sched_sizeof_ksegrp(void)
1741{
1742 return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1743}
1744
1745int
1746sched_sizeof_proc(void)
1747{
1748 return (sizeof(struct proc));
1749}
1750
1751int
1752sched_sizeof_thread(void)
1753{
1754 return (sizeof(struct thread) + sizeof(struct td_sched));
1755}