Deleted Added
full compact
sched_ule.c (113923) sched_ule.c (114471)
1/*-
2 * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
1/*-
2 * Copyright (c) 2002-2003, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * $FreeBSD: head/sys/kern/sched_ule.c 113923 2003-04-23 18:51:05Z jhb $
26 * $FreeBSD: head/sys/kern/sched_ule.c 114471 2003-05-02 00:33:12Z julian $
27 */
28
29#include <sys/param.h>
30#include <sys/systm.h>
31#include <sys/kernel.h>
32#include <sys/ktr.h>
33#include <sys/lock.h>
34#include <sys/mutex.h>
35#include <sys/proc.h>
36#include <sys/resource.h>
37#include <sys/sched.h>
38#include <sys/smp.h>
39#include <sys/sx.h>
40#include <sys/sysctl.h>
41#include <sys/sysproto.h>
42#include <sys/vmmeter.h>
43#ifdef DDB
44#include <ddb/ddb.h>
45#endif
46#ifdef KTRACE
47#include <sys/uio.h>
48#include <sys/ktrace.h>
49#endif
50
51#include <machine/cpu.h>
52
53#define KTR_ULE KTR_NFS
54
55/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
56/* XXX This is bogus compatability crap for ps */
57static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
58SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
59
60static void sched_setup(void *dummy);
61SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
62
63static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
64
65static int sched_strict;
66SYSCTL_INT(_kern_sched, OID_AUTO, strict, CTLFLAG_RD, &sched_strict, 0, "");
67
68static int slice_min = 1;
69SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
70
71static int slice_max = 2;
72SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
73
74int realstathz;
75int tickincr = 1;
76
77/*
78 * These datastructures are allocated within their parent datastructure but
79 * are scheduler specific.
80 */
81
82struct ke_sched {
83 int ske_slice;
84 struct runq *ske_runq;
85 /* The following variables are only used for pctcpu calculation */
86 int ske_ltick; /* Last tick that we were running on */
87 int ske_ftick; /* First tick that we were running on */
88 int ske_ticks; /* Tick count */
89 /* CPU that we have affinity for. */
90 u_char ske_cpu;
91};
92#define ke_slice ke_sched->ske_slice
93#define ke_runq ke_sched->ske_runq
94#define ke_ltick ke_sched->ske_ltick
95#define ke_ftick ke_sched->ske_ftick
96#define ke_ticks ke_sched->ske_ticks
97#define ke_cpu ke_sched->ske_cpu
98
99struct kg_sched {
100 int skg_slptime; /* Number of ticks we vol. slept */
101 int skg_runtime; /* Number of ticks we were running */
102};
103#define kg_slptime kg_sched->skg_slptime
104#define kg_runtime kg_sched->skg_runtime
105
106struct td_sched {
107 int std_slptime;
108};
109#define td_slptime td_sched->std_slptime
110
111struct td_sched td_sched;
112struct ke_sched ke_sched;
113struct kg_sched kg_sched;
114
115struct ke_sched *kse0_sched = &ke_sched;
116struct kg_sched *ksegrp0_sched = &kg_sched;
117struct p_sched *proc0_sched = NULL;
118struct td_sched *thread0_sched = &td_sched;
119
120/*
121 * This priority range has 20 priorities on either end that are reachable
122 * only through nice values.
123 *
124 * PRI_RANGE: Total priority range for timeshare threads.
125 * PRI_NRESV: Reserved priorities for nice.
126 * PRI_BASE: The start of the dynamic range.
127 * DYN_RANGE: Number of priorities that are available int the dynamic
128 * priority range.
129 */
130#define SCHED_PRI_RANGE (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
131#define SCHED_PRI_NRESV PRIO_TOTAL
132#define SCHED_PRI_NHALF (PRIO_TOTAL / 2)
133#define SCHED_PRI_NTHRESH (SCHED_PRI_NHALF - 1)
134#define SCHED_PRI_BASE ((SCHED_PRI_NRESV / 2) + PRI_MIN_TIMESHARE)
135#define SCHED_DYN_RANGE (SCHED_PRI_RANGE - SCHED_PRI_NRESV)
136#define SCHED_PRI_INTERACT(score) \
137 ((score) * SCHED_DYN_RANGE / SCHED_INTERACT_RANGE)
138
139/*
140 * These determine the interactivity of a process.
141 *
142 * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate
143 * before throttling back.
144 * SLP_RUN_THROTTLE: Divisor for reducing slp/run time.
145 * INTERACT_RANGE: Range of interactivity values. Smaller is better.
146 * INTERACT_HALF: Convenience define, half of the interactivity range.
147 * INTERACT_THRESH: Threshhold for placement on the current runq.
148 */
149#define SCHED_SLP_RUN_MAX ((hz / 10) << 10)
150#define SCHED_SLP_RUN_THROTTLE (10)
151#define SCHED_INTERACT_RANGE (100)
152#define SCHED_INTERACT_HALF (SCHED_INTERACT_RANGE / 2)
153#define SCHED_INTERACT_THRESH (10)
154
155/*
156 * These parameters and macros determine the size of the time slice that is
157 * granted to each thread.
158 *
159 * SLICE_MIN: Minimum time slice granted, in units of ticks.
160 * SLICE_MAX: Maximum time slice granted.
161 * SLICE_RANGE: Range of available time slices scaled by hz.
162 * SLICE_SCALE: The number slices granted per val in the range of [0, max].
163 * SLICE_NICE: Determine the amount of slice granted to a scaled nice.
164 */
165#define SCHED_SLICE_MIN (slice_min)
166#define SCHED_SLICE_MAX (slice_max)
167#define SCHED_SLICE_RANGE (SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
168#define SCHED_SLICE_SCALE(val, max) (((val) * SCHED_SLICE_RANGE) / (max))
169#define SCHED_SLICE_NICE(nice) \
170 (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_PRI_NTHRESH))
171
172/*
173 * This macro determines whether or not the kse belongs on the current or
174 * next run queue.
175 *
176 * XXX nice value should effect how interactive a kg is.
177 */
178#define SCHED_INTERACTIVE(kg) \
179 (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
180#define SCHED_CURR(kg, ke) \
181 (ke->ke_thread->td_priority < PRI_MIN_TIMESHARE || SCHED_INTERACTIVE(kg))
182
183/*
184 * Cpu percentage computation macros and defines.
185 *
186 * SCHED_CPU_TIME: Number of seconds to average the cpu usage across.
187 * SCHED_CPU_TICKS: Number of hz ticks to average the cpu usage across.
188 */
189
190#define SCHED_CPU_TIME 10
191#define SCHED_CPU_TICKS (hz * SCHED_CPU_TIME)
192
193/*
194 * kseq - per processor runqs and statistics.
195 */
196
197#define KSEQ_NCLASS (PRI_IDLE + 1) /* Number of run classes. */
198
199struct kseq {
200 struct runq ksq_idle; /* Queue of IDLE threads. */
201 struct runq ksq_timeshare[2]; /* Run queues for !IDLE. */
202 struct runq *ksq_next; /* Next timeshare queue. */
203 struct runq *ksq_curr; /* Current queue. */
204 int ksq_loads[KSEQ_NCLASS]; /* Load for each class */
205 int ksq_load; /* Aggregate load. */
206 short ksq_nice[PRIO_TOTAL + 1]; /* KSEs in each nice bin. */
207 short ksq_nicemin; /* Least nice. */
208#ifdef SMP
209 unsigned int ksq_rslices; /* Slices on run queue */
210#endif
211};
212
213/*
214 * One kse queue per processor.
215 */
216#ifdef SMP
217struct kseq kseq_cpu[MAXCPU];
218#define KSEQ_SELF() (&kseq_cpu[PCPU_GET(cpuid)])
219#define KSEQ_CPU(x) (&kseq_cpu[(x)])
220#else
221struct kseq kseq_cpu;
222#define KSEQ_SELF() (&kseq_cpu)
223#define KSEQ_CPU(x) (&kseq_cpu)
224#endif
225
226static void sched_slice(struct kse *ke);
227static void sched_priority(struct ksegrp *kg);
228static int sched_interact_score(struct ksegrp *kg);
229void sched_pctcpu_update(struct kse *ke);
230int sched_pickcpu(void);
231
232/* Operations on per processor queues */
233static struct kse * kseq_choose(struct kseq *kseq);
234static void kseq_setup(struct kseq *kseq);
235static void kseq_add(struct kseq *kseq, struct kse *ke);
236static void kseq_rem(struct kseq *kseq, struct kse *ke);
237static void kseq_nice_add(struct kseq *kseq, int nice);
238static void kseq_nice_rem(struct kseq *kseq, int nice);
239void kseq_print(int cpu);
240#ifdef SMP
241struct kseq * kseq_load_highest(void);
242#endif
243
244void
245kseq_print(int cpu)
246{
247 struct kseq *kseq;
248 int i;
249
250 kseq = KSEQ_CPU(cpu);
251
252 printf("kseq:\n");
253 printf("\tload: %d\n", kseq->ksq_load);
254 printf("\tload ITHD: %d\n", kseq->ksq_loads[PRI_ITHD]);
255 printf("\tload REALTIME: %d\n", kseq->ksq_loads[PRI_REALTIME]);
256 printf("\tload TIMESHARE: %d\n", kseq->ksq_loads[PRI_TIMESHARE]);
257 printf("\tload IDLE: %d\n", kseq->ksq_loads[PRI_IDLE]);
258 printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
259 printf("\tnice counts:\n");
260 for (i = 0; i < PRIO_TOTAL + 1; i++)
261 if (kseq->ksq_nice[i])
262 printf("\t\t%d = %d\n",
263 i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
264}
265
266static void
267kseq_add(struct kseq *kseq, struct kse *ke)
268{
269 kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]++;
270 kseq->ksq_load++;
271 if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
272 CTR6(KTR_ULE, "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
273 ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
274 ke->ke_ksegrp->kg_nice, kseq->ksq_nicemin);
275 if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
276 kseq_nice_add(kseq, ke->ke_ksegrp->kg_nice);
277#ifdef SMP
278 kseq->ksq_rslices += ke->ke_slice;
279#endif
280}
281
282static void
283kseq_rem(struct kseq *kseq, struct kse *ke)
284{
285 kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]--;
286 kseq->ksq_load--;
287 ke->ke_runq = NULL;
288 if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
289 kseq_nice_rem(kseq, ke->ke_ksegrp->kg_nice);
290#ifdef SMP
291 kseq->ksq_rslices -= ke->ke_slice;
292#endif
293}
294
295static void
296kseq_nice_add(struct kseq *kseq, int nice)
297{
298 /* Normalize to zero. */
299 kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
300 if (nice < kseq->ksq_nicemin || kseq->ksq_loads[PRI_TIMESHARE] == 0)
301 kseq->ksq_nicemin = nice;
302}
303
304static void
305kseq_nice_rem(struct kseq *kseq, int nice)
306{
307 int n;
308
309 /* Normalize to zero. */
310 n = nice + SCHED_PRI_NHALF;
311 kseq->ksq_nice[n]--;
312 KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
313
314 /*
315 * If this wasn't the smallest nice value or there are more in
316 * this bucket we can just return. Otherwise we have to recalculate
317 * the smallest nice.
318 */
319 if (nice != kseq->ksq_nicemin ||
320 kseq->ksq_nice[n] != 0 ||
321 kseq->ksq_loads[PRI_TIMESHARE] == 0)
322 return;
323
324 for (; n < SCHED_PRI_NRESV + 1; n++)
325 if (kseq->ksq_nice[n]) {
326 kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
327 return;
328 }
329}
330
331#ifdef SMP
332struct kseq *
333kseq_load_highest(void)
334{
335 struct kseq *kseq;
336 int load;
337 int cpu;
338 int i;
339
340 cpu = 0;
341 load = 0;
342
343 for (i = 0; i < mp_maxid; i++) {
344 if (CPU_ABSENT(i))
345 continue;
346 kseq = KSEQ_CPU(i);
347 if (kseq->ksq_load > load) {
348 load = kseq->ksq_load;
349 cpu = i;
350 }
351 }
352 if (load > 1)
353 return (KSEQ_CPU(cpu));
354
355 return (NULL);
356}
357#endif
358
359struct kse *
360kseq_choose(struct kseq *kseq)
361{
362 struct kse *ke;
363 struct runq *swap;
364
365 swap = NULL;
366
367 for (;;) {
368 ke = runq_choose(kseq->ksq_curr);
369 if (ke == NULL) {
370 /*
371 * We already swaped once and didn't get anywhere.
372 */
373 if (swap)
374 break;
375 swap = kseq->ksq_curr;
376 kseq->ksq_curr = kseq->ksq_next;
377 kseq->ksq_next = swap;
378 continue;
379 }
380 /*
381 * If we encounter a slice of 0 the kse is in a
382 * TIMESHARE kse group and its nice was too far out
383 * of the range that receives slices.
384 */
385 if (ke->ke_slice == 0) {
386 runq_remove(ke->ke_runq, ke);
387 sched_slice(ke);
388 ke->ke_runq = kseq->ksq_next;
389 runq_add(ke->ke_runq, ke);
390 continue;
391 }
392 return (ke);
393 }
394
395 return (runq_choose(&kseq->ksq_idle));
396}
397
398static void
399kseq_setup(struct kseq *kseq)
400{
401 runq_init(&kseq->ksq_timeshare[0]);
402 runq_init(&kseq->ksq_timeshare[1]);
403 runq_init(&kseq->ksq_idle);
404
405 kseq->ksq_curr = &kseq->ksq_timeshare[0];
406 kseq->ksq_next = &kseq->ksq_timeshare[1];
407
408 kseq->ksq_loads[PRI_ITHD] = 0;
409 kseq->ksq_loads[PRI_REALTIME] = 0;
410 kseq->ksq_loads[PRI_TIMESHARE] = 0;
411 kseq->ksq_loads[PRI_IDLE] = 0;
412 kseq->ksq_load = 0;
413#ifdef SMP
414 kseq->ksq_rslices = 0;
415#endif
416}
417
418static void
419sched_setup(void *dummy)
420{
421 int i;
422
423 slice_min = (hz/100);
424 slice_max = (hz/10);
425
426 mtx_lock_spin(&sched_lock);
427 /* init kseqs */
428 for (i = 0; i < MAXCPU; i++)
429 kseq_setup(KSEQ_CPU(i));
430
431 kseq_add(KSEQ_SELF(), &kse0);
432 mtx_unlock_spin(&sched_lock);
433}
434
435/*
436 * Scale the scheduling priority according to the "interactivity" of this
437 * process.
438 */
439static void
440sched_priority(struct ksegrp *kg)
441{
442 int pri;
443
444 if (kg->kg_pri_class != PRI_TIMESHARE)
445 return;
446
447 pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
448 pri += SCHED_PRI_BASE;
449 pri += kg->kg_nice;
450
451 if (pri > PRI_MAX_TIMESHARE)
452 pri = PRI_MAX_TIMESHARE;
453 else if (pri < PRI_MIN_TIMESHARE)
454 pri = PRI_MIN_TIMESHARE;
455
456 kg->kg_user_pri = pri;
457
458 return;
459}
460
461/*
462 * Calculate a time slice based on the properties of the kseg and the runq
463 * that we're on. This is only for PRI_TIMESHARE ksegrps.
464 */
465static void
466sched_slice(struct kse *ke)
467{
468 struct kseq *kseq;
469 struct ksegrp *kg;
470
471 kg = ke->ke_ksegrp;
472 kseq = KSEQ_CPU(ke->ke_cpu);
473
474 /*
475 * Rationale:
476 * KSEs in interactive ksegs get the minimum slice so that we
477 * quickly notice if it abuses its advantage.
478 *
479 * KSEs in non-interactive ksegs are assigned a slice that is
480 * based on the ksegs nice value relative to the least nice kseg
481 * on the run queue for this cpu.
482 *
483 * If the KSE is less nice than all others it gets the maximum
484 * slice and other KSEs will adjust their slice relative to
485 * this when they first expire.
486 *
487 * There is 20 point window that starts relative to the least
488 * nice kse on the run queue. Slice size is determined by
489 * the kse distance from the last nice ksegrp.
490 *
491 * If you are outside of the window you will get no slice and
492 * you will be reevaluated each time you are selected on the
493 * run queue.
494 *
495 */
496
497 if (!SCHED_INTERACTIVE(kg)) {
498 int nice;
499
500 nice = kg->kg_nice + (0 - kseq->ksq_nicemin);
501 if (kseq->ksq_loads[PRI_TIMESHARE] == 0 ||
502 kg->kg_nice < kseq->ksq_nicemin)
503 ke->ke_slice = SCHED_SLICE_MAX;
504 else if (nice <= SCHED_PRI_NTHRESH)
505 ke->ke_slice = SCHED_SLICE_NICE(nice);
506 else
507 ke->ke_slice = 0;
508 } else
509 ke->ke_slice = SCHED_SLICE_MIN;
510
511 CTR6(KTR_ULE,
512 "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
513 ke, ke->ke_slice, kg->kg_nice, kseq->ksq_nicemin,
514 kseq->ksq_loads[PRI_TIMESHARE], SCHED_INTERACTIVE(kg));
515
516 /*
517 * Check to see if we need to scale back the slp and run time
518 * in the kg. This will cause us to forget old interactivity
519 * while maintaining the current ratio.
520 */
521 CTR4(KTR_ULE, "Slp vs Run %p (Slp %d, Run %d, Score %d)",
522 ke, kg->kg_slptime >> 10, kg->kg_runtime >> 10,
523 sched_interact_score(kg));
524
525 if ((kg->kg_runtime + kg->kg_slptime) > SCHED_SLP_RUN_MAX) {
526 kg->kg_runtime /= SCHED_SLP_RUN_THROTTLE;
527 kg->kg_slptime /= SCHED_SLP_RUN_THROTTLE;
528 }
529 CTR4(KTR_ULE, "Slp vs Run(2) %p (Slp %d, Run %d, Score %d)",
530 ke, kg->kg_slptime >> 10, kg->kg_runtime >> 10,
531 sched_interact_score(kg));
532
533 return;
534}
535
536static int
537sched_interact_score(struct ksegrp *kg)
538{
539 int big;
540 int small;
541 int base;
542
543 if (kg->kg_runtime > kg->kg_slptime) {
544 big = kg->kg_runtime;
545 small = kg->kg_slptime;
546 base = SCHED_INTERACT_HALF;
547 } else {
548 big = kg->kg_slptime;
549 small = kg->kg_runtime;
550 base = 0;
551 }
552
553 big /= SCHED_INTERACT_HALF;
554 if (big != 0)
555 small /= big;
556 else
557 small = 0;
558
559 small += base;
560 /* XXX Factor in nice */
561 return (small);
562}
563
564/*
565 * This is only somewhat accurate since given many processes of the same
566 * priority they will switch when their slices run out, which will be
567 * at most SCHED_SLICE_MAX.
568 */
569int
570sched_rr_interval(void)
571{
572 return (SCHED_SLICE_MAX);
573}
574
575void
576sched_pctcpu_update(struct kse *ke)
577{
578 /*
579 * Adjust counters and watermark for pctcpu calc.
580 *
581 * Shift the tick count out so that the divide doesn't round away
582 * our results.
583 */
584 ke->ke_ticks <<= 10;
585 ke->ke_ticks = (ke->ke_ticks / (ke->ke_ltick - ke->ke_ftick)) *
586 SCHED_CPU_TICKS;
587 ke->ke_ticks >>= 10;
588 ke->ke_ltick = ticks;
589 ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
590}
591
592#ifdef SMP
593/* XXX Should be changed to kseq_load_lowest() */
594int
595sched_pickcpu(void)
596{
597 struct kseq *kseq;
598 int load;
599 int cpu;
600 int i;
601
602 if (!smp_started)
603 return (0);
604
605 load = 0;
606 cpu = 0;
607
608 for (i = 0; i < mp_maxid; i++) {
609 if (CPU_ABSENT(i))
610 continue;
611 kseq = KSEQ_CPU(i);
612 if (kseq->ksq_load < load) {
613 cpu = i;
614 load = kseq->ksq_load;
615 }
616 }
617
618 CTR1(KTR_RUNQ, "sched_pickcpu: %d", cpu);
619 return (cpu);
620}
621#else
622int
623sched_pickcpu(void)
624{
625 return (0);
626}
627#endif
628
629void
630sched_prio(struct thread *td, u_char prio)
631{
632 struct kse *ke;
633 struct runq *rq;
634
635 mtx_assert(&sched_lock, MA_OWNED);
636 ke = td->td_kse;
637 td->td_priority = prio;
638
639 if (TD_ON_RUNQ(td)) {
640 rq = ke->ke_runq;
641
642 runq_remove(rq, ke);
643 runq_add(rq, ke);
644 }
645}
646
647void
648sched_switchout(struct thread *td)
649{
650 struct kse *ke;
651
652 mtx_assert(&sched_lock, MA_OWNED);
653
654 ke = td->td_kse;
655
656 td->td_last_kse = ke;
657 td->td_lastcpu = td->td_oncpu;
658 td->td_oncpu = NOCPU;
659 td->td_flags &= ~TDF_NEEDRESCHED;
660
661 if (TD_IS_RUNNING(td)) {
662 runq_add(ke->ke_runq, ke);
663 /* setrunqueue(td); */
664 return;
665 }
666 if (ke->ke_runq)
667 kseq_rem(KSEQ_CPU(ke->ke_cpu), ke);
668 /*
669 * We will not be on the run queue. So we must be
670 * sleeping or similar.
671 */
672 if (td->td_proc->p_flag & P_THREADED)
673 kse_reassign(ke);
674}
675
676void
677sched_switchin(struct thread *td)
678{
679 /* struct kse *ke = td->td_kse; */
680 mtx_assert(&sched_lock, MA_OWNED);
681
682 td->td_oncpu = PCPU_GET(cpuid);
683
684 if (td->td_ksegrp->kg_pri_class == PRI_TIMESHARE &&
685 td->td_priority != td->td_ksegrp->kg_user_pri)
686 curthread->td_flags |= TDF_NEEDRESCHED;
687}
688
689void
690sched_nice(struct ksegrp *kg, int nice)
691{
692 struct kse *ke;
693 struct thread *td;
694 struct kseq *kseq;
695
696 PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED);
697 mtx_assert(&sched_lock, MA_OWNED);
698 /*
699 * We need to adjust the nice counts for running KSEs.
700 */
701 if (kg->kg_pri_class == PRI_TIMESHARE)
702 FOREACH_KSE_IN_GROUP(kg, ke) {
703 if (ke->ke_state != KES_ONRUNQ &&
704 ke->ke_state != KES_THREAD)
705 continue;
706 kseq = KSEQ_CPU(ke->ke_cpu);
707 kseq_nice_rem(kseq, kg->kg_nice);
708 kseq_nice_add(kseq, nice);
709 }
710 kg->kg_nice = nice;
711 sched_priority(kg);
712 FOREACH_THREAD_IN_GROUP(kg, td)
713 td->td_flags |= TDF_NEEDRESCHED;
714}
715
716void
717sched_sleep(struct thread *td, u_char prio)
718{
719 mtx_assert(&sched_lock, MA_OWNED);
720
721 td->td_slptime = ticks;
722 td->td_priority = prio;
723
724 CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
725 td->td_kse, td->td_slptime);
726}
727
728void
729sched_wakeup(struct thread *td)
730{
731 mtx_assert(&sched_lock, MA_OWNED);
732
733 /*
734 * Let the kseg know how long we slept for. This is because process
735 * interactivity behavior is modeled in the kseg.
736 */
737 if (td->td_slptime) {
738 struct ksegrp *kg;
739 int hzticks;
740
741 kg = td->td_ksegrp;
742 hzticks = ticks - td->td_slptime;
743 kg->kg_slptime += hzticks << 10;
744 sched_priority(kg);
745 CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
746 td->td_kse, hzticks);
747 td->td_slptime = 0;
748 }
749 setrunqueue(td);
750 if (td->td_priority < curthread->td_priority)
751 curthread->td_flags |= TDF_NEEDRESCHED;
752}
753
754/*
755 * Penalize the parent for creating a new child and initialize the child's
756 * priority.
757 */
758void
759sched_fork(struct proc *p, struct proc *p1)
760{
761
762 mtx_assert(&sched_lock, MA_OWNED);
763
764 sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
765 sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
766 sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
767}
768
769void
770sched_fork_kse(struct kse *ke, struct kse *child)
771{
772
773 child->ke_slice = ke->ke_slice;
774 child->ke_cpu = ke->ke_cpu; /* sched_pickcpu(); */
775 child->ke_runq = NULL;
776
777 /*
778 * Claim that we've been running for one second for statistical
779 * purposes.
780 */
781 child->ke_ticks = 0;
782 child->ke_ltick = ticks;
783 child->ke_ftick = ticks - hz;
784}
785
786void
787sched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
788{
789
790 PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
791 /* XXX Need something better here */
792 if (kg->kg_slptime > kg->kg_runtime) {
793 child->kg_slptime = SCHED_DYN_RANGE;
794 child->kg_runtime = kg->kg_slptime / SCHED_DYN_RANGE;
795 } else {
796 child->kg_runtime = SCHED_DYN_RANGE;
797 child->kg_slptime = kg->kg_runtime / SCHED_DYN_RANGE;
798 }
799
800 child->kg_user_pri = kg->kg_user_pri;
801 child->kg_nice = kg->kg_nice;
802}
803
804void
805sched_fork_thread(struct thread *td, struct thread *child)
806{
807}
808
809void
810sched_class(struct ksegrp *kg, int class)
811{
812 struct kseq *kseq;
813 struct kse *ke;
814
815 mtx_assert(&sched_lock, MA_OWNED);
816 if (kg->kg_pri_class == class)
817 return;
818
819 FOREACH_KSE_IN_GROUP(kg, ke) {
820 if (ke->ke_state != KES_ONRUNQ &&
821 ke->ke_state != KES_THREAD)
822 continue;
823 kseq = KSEQ_CPU(ke->ke_cpu);
824
825 kseq->ksq_loads[PRI_BASE(kg->kg_pri_class)]--;
826 kseq->ksq_loads[PRI_BASE(class)]++;
827
828 if (kg->kg_pri_class == PRI_TIMESHARE)
829 kseq_nice_rem(kseq, kg->kg_nice);
830 else if (class == PRI_TIMESHARE)
831 kseq_nice_add(kseq, kg->kg_nice);
832 }
833
834 kg->kg_pri_class = class;
835}
836
837/*
838 * Return some of the child's priority and interactivity to the parent.
839 */
840void
841sched_exit(struct proc *p, struct proc *child)
842{
843 /* XXX Need something better here */
844 mtx_assert(&sched_lock, MA_OWNED);
845 sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
846}
847
848void
849sched_exit_kse(struct kse *ke, struct kse *child)
850{
851 kseq_rem(KSEQ_CPU(child->ke_cpu), child);
852}
853
854void
855sched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
856{
857}
858
859void
860sched_exit_thread(struct thread *td, struct thread *child)
861{
862}
863
864void
865sched_clock(struct kse *ke)
866{
867 struct kseq *kseq;
868 struct ksegrp *kg;
869 struct thread *td;
870#if 0
871 struct kse *nke;
872#endif
873
874 /*
875 * sched_setup() apparently happens prior to stathz being set. We
876 * need to resolve the timers earlier in the boot so we can avoid
877 * calculating this here.
878 */
879 if (realstathz == 0) {
880 realstathz = stathz ? stathz : hz;
881 tickincr = hz / realstathz;
882 /*
883 * XXX This does not work for values of stathz that are much
884 * larger than hz.
885 */
886 if (tickincr == 0)
887 tickincr = 1;
888 }
889
890 td = ke->ke_thread;
891 kg = ke->ke_ksegrp;
892
893 mtx_assert(&sched_lock, MA_OWNED);
894 KASSERT((td != NULL), ("schedclock: null thread pointer"));
895
896 /* Adjust ticks for pctcpu */
897 ke->ke_ticks++;
898 ke->ke_ltick = ticks;
899
900 /* Go up to one second beyond our max and then trim back down */
901 if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
902 sched_pctcpu_update(ke);
903
27 */
28
29#include <sys/param.h>
30#include <sys/systm.h>
31#include <sys/kernel.h>
32#include <sys/ktr.h>
33#include <sys/lock.h>
34#include <sys/mutex.h>
35#include <sys/proc.h>
36#include <sys/resource.h>
37#include <sys/sched.h>
38#include <sys/smp.h>
39#include <sys/sx.h>
40#include <sys/sysctl.h>
41#include <sys/sysproto.h>
42#include <sys/vmmeter.h>
43#ifdef DDB
44#include <ddb/ddb.h>
45#endif
46#ifdef KTRACE
47#include <sys/uio.h>
48#include <sys/ktrace.h>
49#endif
50
51#include <machine/cpu.h>
52
53#define KTR_ULE KTR_NFS
54
55/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
56/* XXX This is bogus compatability crap for ps */
57static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
58SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
59
60static void sched_setup(void *dummy);
61SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
62
63static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "SCHED");
64
65static int sched_strict;
66SYSCTL_INT(_kern_sched, OID_AUTO, strict, CTLFLAG_RD, &sched_strict, 0, "");
67
68static int slice_min = 1;
69SYSCTL_INT(_kern_sched, OID_AUTO, slice_min, CTLFLAG_RW, &slice_min, 0, "");
70
71static int slice_max = 2;
72SYSCTL_INT(_kern_sched, OID_AUTO, slice_max, CTLFLAG_RW, &slice_max, 0, "");
73
74int realstathz;
75int tickincr = 1;
76
77/*
78 * These datastructures are allocated within their parent datastructure but
79 * are scheduler specific.
80 */
81
82struct ke_sched {
83 int ske_slice;
84 struct runq *ske_runq;
85 /* The following variables are only used for pctcpu calculation */
86 int ske_ltick; /* Last tick that we were running on */
87 int ske_ftick; /* First tick that we were running on */
88 int ske_ticks; /* Tick count */
89 /* CPU that we have affinity for. */
90 u_char ske_cpu;
91};
92#define ke_slice ke_sched->ske_slice
93#define ke_runq ke_sched->ske_runq
94#define ke_ltick ke_sched->ske_ltick
95#define ke_ftick ke_sched->ske_ftick
96#define ke_ticks ke_sched->ske_ticks
97#define ke_cpu ke_sched->ske_cpu
98
99struct kg_sched {
100 int skg_slptime; /* Number of ticks we vol. slept */
101 int skg_runtime; /* Number of ticks we were running */
102};
103#define kg_slptime kg_sched->skg_slptime
104#define kg_runtime kg_sched->skg_runtime
105
106struct td_sched {
107 int std_slptime;
108};
109#define td_slptime td_sched->std_slptime
110
111struct td_sched td_sched;
112struct ke_sched ke_sched;
113struct kg_sched kg_sched;
114
115struct ke_sched *kse0_sched = &ke_sched;
116struct kg_sched *ksegrp0_sched = &kg_sched;
117struct p_sched *proc0_sched = NULL;
118struct td_sched *thread0_sched = &td_sched;
119
120/*
121 * This priority range has 20 priorities on either end that are reachable
122 * only through nice values.
123 *
124 * PRI_RANGE: Total priority range for timeshare threads.
125 * PRI_NRESV: Reserved priorities for nice.
126 * PRI_BASE: The start of the dynamic range.
127 * DYN_RANGE: Number of priorities that are available int the dynamic
128 * priority range.
129 */
130#define SCHED_PRI_RANGE (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
131#define SCHED_PRI_NRESV PRIO_TOTAL
132#define SCHED_PRI_NHALF (PRIO_TOTAL / 2)
133#define SCHED_PRI_NTHRESH (SCHED_PRI_NHALF - 1)
134#define SCHED_PRI_BASE ((SCHED_PRI_NRESV / 2) + PRI_MIN_TIMESHARE)
135#define SCHED_DYN_RANGE (SCHED_PRI_RANGE - SCHED_PRI_NRESV)
136#define SCHED_PRI_INTERACT(score) \
137 ((score) * SCHED_DYN_RANGE / SCHED_INTERACT_RANGE)
138
139/*
140 * These determine the interactivity of a process.
141 *
142 * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate
143 * before throttling back.
144 * SLP_RUN_THROTTLE: Divisor for reducing slp/run time.
145 * INTERACT_RANGE: Range of interactivity values. Smaller is better.
146 * INTERACT_HALF: Convenience define, half of the interactivity range.
147 * INTERACT_THRESH: Threshhold for placement on the current runq.
148 */
149#define SCHED_SLP_RUN_MAX ((hz / 10) << 10)
150#define SCHED_SLP_RUN_THROTTLE (10)
151#define SCHED_INTERACT_RANGE (100)
152#define SCHED_INTERACT_HALF (SCHED_INTERACT_RANGE / 2)
153#define SCHED_INTERACT_THRESH (10)
154
155/*
156 * These parameters and macros determine the size of the time slice that is
157 * granted to each thread.
158 *
159 * SLICE_MIN: Minimum time slice granted, in units of ticks.
160 * SLICE_MAX: Maximum time slice granted.
161 * SLICE_RANGE: Range of available time slices scaled by hz.
162 * SLICE_SCALE: The number slices granted per val in the range of [0, max].
163 * SLICE_NICE: Determine the amount of slice granted to a scaled nice.
164 */
165#define SCHED_SLICE_MIN (slice_min)
166#define SCHED_SLICE_MAX (slice_max)
167#define SCHED_SLICE_RANGE (SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
168#define SCHED_SLICE_SCALE(val, max) (((val) * SCHED_SLICE_RANGE) / (max))
169#define SCHED_SLICE_NICE(nice) \
170 (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((nice), SCHED_PRI_NTHRESH))
171
172/*
173 * This macro determines whether or not the kse belongs on the current or
174 * next run queue.
175 *
176 * XXX nice value should effect how interactive a kg is.
177 */
178#define SCHED_INTERACTIVE(kg) \
179 (sched_interact_score(kg) < SCHED_INTERACT_THRESH)
180#define SCHED_CURR(kg, ke) \
181 (ke->ke_thread->td_priority < PRI_MIN_TIMESHARE || SCHED_INTERACTIVE(kg))
182
183/*
184 * Cpu percentage computation macros and defines.
185 *
186 * SCHED_CPU_TIME: Number of seconds to average the cpu usage across.
187 * SCHED_CPU_TICKS: Number of hz ticks to average the cpu usage across.
188 */
189
190#define SCHED_CPU_TIME 10
191#define SCHED_CPU_TICKS (hz * SCHED_CPU_TIME)
192
193/*
194 * kseq - per processor runqs and statistics.
195 */
196
197#define KSEQ_NCLASS (PRI_IDLE + 1) /* Number of run classes. */
198
199struct kseq {
200 struct runq ksq_idle; /* Queue of IDLE threads. */
201 struct runq ksq_timeshare[2]; /* Run queues for !IDLE. */
202 struct runq *ksq_next; /* Next timeshare queue. */
203 struct runq *ksq_curr; /* Current queue. */
204 int ksq_loads[KSEQ_NCLASS]; /* Load for each class */
205 int ksq_load; /* Aggregate load. */
206 short ksq_nice[PRIO_TOTAL + 1]; /* KSEs in each nice bin. */
207 short ksq_nicemin; /* Least nice. */
208#ifdef SMP
209 unsigned int ksq_rslices; /* Slices on run queue */
210#endif
211};
212
213/*
214 * One kse queue per processor.
215 */
216#ifdef SMP
217struct kseq kseq_cpu[MAXCPU];
218#define KSEQ_SELF() (&kseq_cpu[PCPU_GET(cpuid)])
219#define KSEQ_CPU(x) (&kseq_cpu[(x)])
220#else
221struct kseq kseq_cpu;
222#define KSEQ_SELF() (&kseq_cpu)
223#define KSEQ_CPU(x) (&kseq_cpu)
224#endif
225
226static void sched_slice(struct kse *ke);
227static void sched_priority(struct ksegrp *kg);
228static int sched_interact_score(struct ksegrp *kg);
229void sched_pctcpu_update(struct kse *ke);
230int sched_pickcpu(void);
231
232/* Operations on per processor queues */
233static struct kse * kseq_choose(struct kseq *kseq);
234static void kseq_setup(struct kseq *kseq);
235static void kseq_add(struct kseq *kseq, struct kse *ke);
236static void kseq_rem(struct kseq *kseq, struct kse *ke);
237static void kseq_nice_add(struct kseq *kseq, int nice);
238static void kseq_nice_rem(struct kseq *kseq, int nice);
239void kseq_print(int cpu);
240#ifdef SMP
241struct kseq * kseq_load_highest(void);
242#endif
243
244void
245kseq_print(int cpu)
246{
247 struct kseq *kseq;
248 int i;
249
250 kseq = KSEQ_CPU(cpu);
251
252 printf("kseq:\n");
253 printf("\tload: %d\n", kseq->ksq_load);
254 printf("\tload ITHD: %d\n", kseq->ksq_loads[PRI_ITHD]);
255 printf("\tload REALTIME: %d\n", kseq->ksq_loads[PRI_REALTIME]);
256 printf("\tload TIMESHARE: %d\n", kseq->ksq_loads[PRI_TIMESHARE]);
257 printf("\tload IDLE: %d\n", kseq->ksq_loads[PRI_IDLE]);
258 printf("\tnicemin:\t%d\n", kseq->ksq_nicemin);
259 printf("\tnice counts:\n");
260 for (i = 0; i < PRIO_TOTAL + 1; i++)
261 if (kseq->ksq_nice[i])
262 printf("\t\t%d = %d\n",
263 i - SCHED_PRI_NHALF, kseq->ksq_nice[i]);
264}
265
266static void
267kseq_add(struct kseq *kseq, struct kse *ke)
268{
269 kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]++;
270 kseq->ksq_load++;
271 if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
272 CTR6(KTR_ULE, "Add kse %p to %p (slice: %d, pri: %d, nice: %d(%d))",
273 ke, ke->ke_runq, ke->ke_slice, ke->ke_thread->td_priority,
274 ke->ke_ksegrp->kg_nice, kseq->ksq_nicemin);
275 if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
276 kseq_nice_add(kseq, ke->ke_ksegrp->kg_nice);
277#ifdef SMP
278 kseq->ksq_rslices += ke->ke_slice;
279#endif
280}
281
282static void
283kseq_rem(struct kseq *kseq, struct kse *ke)
284{
285 kseq->ksq_loads[PRI_BASE(ke->ke_ksegrp->kg_pri_class)]--;
286 kseq->ksq_load--;
287 ke->ke_runq = NULL;
288 if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE)
289 kseq_nice_rem(kseq, ke->ke_ksegrp->kg_nice);
290#ifdef SMP
291 kseq->ksq_rslices -= ke->ke_slice;
292#endif
293}
294
295static void
296kseq_nice_add(struct kseq *kseq, int nice)
297{
298 /* Normalize to zero. */
299 kseq->ksq_nice[nice + SCHED_PRI_NHALF]++;
300 if (nice < kseq->ksq_nicemin || kseq->ksq_loads[PRI_TIMESHARE] == 0)
301 kseq->ksq_nicemin = nice;
302}
303
304static void
305kseq_nice_rem(struct kseq *kseq, int nice)
306{
307 int n;
308
309 /* Normalize to zero. */
310 n = nice + SCHED_PRI_NHALF;
311 kseq->ksq_nice[n]--;
312 KASSERT(kseq->ksq_nice[n] >= 0, ("Negative nice count."));
313
314 /*
315 * If this wasn't the smallest nice value or there are more in
316 * this bucket we can just return. Otherwise we have to recalculate
317 * the smallest nice.
318 */
319 if (nice != kseq->ksq_nicemin ||
320 kseq->ksq_nice[n] != 0 ||
321 kseq->ksq_loads[PRI_TIMESHARE] == 0)
322 return;
323
324 for (; n < SCHED_PRI_NRESV + 1; n++)
325 if (kseq->ksq_nice[n]) {
326 kseq->ksq_nicemin = n - SCHED_PRI_NHALF;
327 return;
328 }
329}
330
331#ifdef SMP
332struct kseq *
333kseq_load_highest(void)
334{
335 struct kseq *kseq;
336 int load;
337 int cpu;
338 int i;
339
340 cpu = 0;
341 load = 0;
342
343 for (i = 0; i < mp_maxid; i++) {
344 if (CPU_ABSENT(i))
345 continue;
346 kseq = KSEQ_CPU(i);
347 if (kseq->ksq_load > load) {
348 load = kseq->ksq_load;
349 cpu = i;
350 }
351 }
352 if (load > 1)
353 return (KSEQ_CPU(cpu));
354
355 return (NULL);
356}
357#endif
358
359struct kse *
360kseq_choose(struct kseq *kseq)
361{
362 struct kse *ke;
363 struct runq *swap;
364
365 swap = NULL;
366
367 for (;;) {
368 ke = runq_choose(kseq->ksq_curr);
369 if (ke == NULL) {
370 /*
371 * We already swaped once and didn't get anywhere.
372 */
373 if (swap)
374 break;
375 swap = kseq->ksq_curr;
376 kseq->ksq_curr = kseq->ksq_next;
377 kseq->ksq_next = swap;
378 continue;
379 }
380 /*
381 * If we encounter a slice of 0 the kse is in a
382 * TIMESHARE kse group and its nice was too far out
383 * of the range that receives slices.
384 */
385 if (ke->ke_slice == 0) {
386 runq_remove(ke->ke_runq, ke);
387 sched_slice(ke);
388 ke->ke_runq = kseq->ksq_next;
389 runq_add(ke->ke_runq, ke);
390 continue;
391 }
392 return (ke);
393 }
394
395 return (runq_choose(&kseq->ksq_idle));
396}
397
398static void
399kseq_setup(struct kseq *kseq)
400{
401 runq_init(&kseq->ksq_timeshare[0]);
402 runq_init(&kseq->ksq_timeshare[1]);
403 runq_init(&kseq->ksq_idle);
404
405 kseq->ksq_curr = &kseq->ksq_timeshare[0];
406 kseq->ksq_next = &kseq->ksq_timeshare[1];
407
408 kseq->ksq_loads[PRI_ITHD] = 0;
409 kseq->ksq_loads[PRI_REALTIME] = 0;
410 kseq->ksq_loads[PRI_TIMESHARE] = 0;
411 kseq->ksq_loads[PRI_IDLE] = 0;
412 kseq->ksq_load = 0;
413#ifdef SMP
414 kseq->ksq_rslices = 0;
415#endif
416}
417
418static void
419sched_setup(void *dummy)
420{
421 int i;
422
423 slice_min = (hz/100);
424 slice_max = (hz/10);
425
426 mtx_lock_spin(&sched_lock);
427 /* init kseqs */
428 for (i = 0; i < MAXCPU; i++)
429 kseq_setup(KSEQ_CPU(i));
430
431 kseq_add(KSEQ_SELF(), &kse0);
432 mtx_unlock_spin(&sched_lock);
433}
434
435/*
436 * Scale the scheduling priority according to the "interactivity" of this
437 * process.
438 */
439static void
440sched_priority(struct ksegrp *kg)
441{
442 int pri;
443
444 if (kg->kg_pri_class != PRI_TIMESHARE)
445 return;
446
447 pri = SCHED_PRI_INTERACT(sched_interact_score(kg));
448 pri += SCHED_PRI_BASE;
449 pri += kg->kg_nice;
450
451 if (pri > PRI_MAX_TIMESHARE)
452 pri = PRI_MAX_TIMESHARE;
453 else if (pri < PRI_MIN_TIMESHARE)
454 pri = PRI_MIN_TIMESHARE;
455
456 kg->kg_user_pri = pri;
457
458 return;
459}
460
461/*
462 * Calculate a time slice based on the properties of the kseg and the runq
463 * that we're on. This is only for PRI_TIMESHARE ksegrps.
464 */
465static void
466sched_slice(struct kse *ke)
467{
468 struct kseq *kseq;
469 struct ksegrp *kg;
470
471 kg = ke->ke_ksegrp;
472 kseq = KSEQ_CPU(ke->ke_cpu);
473
474 /*
475 * Rationale:
476 * KSEs in interactive ksegs get the minimum slice so that we
477 * quickly notice if it abuses its advantage.
478 *
479 * KSEs in non-interactive ksegs are assigned a slice that is
480 * based on the ksegs nice value relative to the least nice kseg
481 * on the run queue for this cpu.
482 *
483 * If the KSE is less nice than all others it gets the maximum
484 * slice and other KSEs will adjust their slice relative to
485 * this when they first expire.
486 *
487 * There is 20 point window that starts relative to the least
488 * nice kse on the run queue. Slice size is determined by
489 * the kse distance from the last nice ksegrp.
490 *
491 * If you are outside of the window you will get no slice and
492 * you will be reevaluated each time you are selected on the
493 * run queue.
494 *
495 */
496
497 if (!SCHED_INTERACTIVE(kg)) {
498 int nice;
499
500 nice = kg->kg_nice + (0 - kseq->ksq_nicemin);
501 if (kseq->ksq_loads[PRI_TIMESHARE] == 0 ||
502 kg->kg_nice < kseq->ksq_nicemin)
503 ke->ke_slice = SCHED_SLICE_MAX;
504 else if (nice <= SCHED_PRI_NTHRESH)
505 ke->ke_slice = SCHED_SLICE_NICE(nice);
506 else
507 ke->ke_slice = 0;
508 } else
509 ke->ke_slice = SCHED_SLICE_MIN;
510
511 CTR6(KTR_ULE,
512 "Sliced %p(%d) (nice: %d, nicemin: %d, load: %d, interactive: %d)",
513 ke, ke->ke_slice, kg->kg_nice, kseq->ksq_nicemin,
514 kseq->ksq_loads[PRI_TIMESHARE], SCHED_INTERACTIVE(kg));
515
516 /*
517 * Check to see if we need to scale back the slp and run time
518 * in the kg. This will cause us to forget old interactivity
519 * while maintaining the current ratio.
520 */
521 CTR4(KTR_ULE, "Slp vs Run %p (Slp %d, Run %d, Score %d)",
522 ke, kg->kg_slptime >> 10, kg->kg_runtime >> 10,
523 sched_interact_score(kg));
524
525 if ((kg->kg_runtime + kg->kg_slptime) > SCHED_SLP_RUN_MAX) {
526 kg->kg_runtime /= SCHED_SLP_RUN_THROTTLE;
527 kg->kg_slptime /= SCHED_SLP_RUN_THROTTLE;
528 }
529 CTR4(KTR_ULE, "Slp vs Run(2) %p (Slp %d, Run %d, Score %d)",
530 ke, kg->kg_slptime >> 10, kg->kg_runtime >> 10,
531 sched_interact_score(kg));
532
533 return;
534}
535
536static int
537sched_interact_score(struct ksegrp *kg)
538{
539 int big;
540 int small;
541 int base;
542
543 if (kg->kg_runtime > kg->kg_slptime) {
544 big = kg->kg_runtime;
545 small = kg->kg_slptime;
546 base = SCHED_INTERACT_HALF;
547 } else {
548 big = kg->kg_slptime;
549 small = kg->kg_runtime;
550 base = 0;
551 }
552
553 big /= SCHED_INTERACT_HALF;
554 if (big != 0)
555 small /= big;
556 else
557 small = 0;
558
559 small += base;
560 /* XXX Factor in nice */
561 return (small);
562}
563
564/*
565 * This is only somewhat accurate since given many processes of the same
566 * priority they will switch when their slices run out, which will be
567 * at most SCHED_SLICE_MAX.
568 */
569int
570sched_rr_interval(void)
571{
572 return (SCHED_SLICE_MAX);
573}
574
575void
576sched_pctcpu_update(struct kse *ke)
577{
578 /*
579 * Adjust counters and watermark for pctcpu calc.
580 *
581 * Shift the tick count out so that the divide doesn't round away
582 * our results.
583 */
584 ke->ke_ticks <<= 10;
585 ke->ke_ticks = (ke->ke_ticks / (ke->ke_ltick - ke->ke_ftick)) *
586 SCHED_CPU_TICKS;
587 ke->ke_ticks >>= 10;
588 ke->ke_ltick = ticks;
589 ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
590}
591
592#ifdef SMP
593/* XXX Should be changed to kseq_load_lowest() */
594int
595sched_pickcpu(void)
596{
597 struct kseq *kseq;
598 int load;
599 int cpu;
600 int i;
601
602 if (!smp_started)
603 return (0);
604
605 load = 0;
606 cpu = 0;
607
608 for (i = 0; i < mp_maxid; i++) {
609 if (CPU_ABSENT(i))
610 continue;
611 kseq = KSEQ_CPU(i);
612 if (kseq->ksq_load < load) {
613 cpu = i;
614 load = kseq->ksq_load;
615 }
616 }
617
618 CTR1(KTR_RUNQ, "sched_pickcpu: %d", cpu);
619 return (cpu);
620}
621#else
622int
623sched_pickcpu(void)
624{
625 return (0);
626}
627#endif
628
629void
630sched_prio(struct thread *td, u_char prio)
631{
632 struct kse *ke;
633 struct runq *rq;
634
635 mtx_assert(&sched_lock, MA_OWNED);
636 ke = td->td_kse;
637 td->td_priority = prio;
638
639 if (TD_ON_RUNQ(td)) {
640 rq = ke->ke_runq;
641
642 runq_remove(rq, ke);
643 runq_add(rq, ke);
644 }
645}
646
647void
648sched_switchout(struct thread *td)
649{
650 struct kse *ke;
651
652 mtx_assert(&sched_lock, MA_OWNED);
653
654 ke = td->td_kse;
655
656 td->td_last_kse = ke;
657 td->td_lastcpu = td->td_oncpu;
658 td->td_oncpu = NOCPU;
659 td->td_flags &= ~TDF_NEEDRESCHED;
660
661 if (TD_IS_RUNNING(td)) {
662 runq_add(ke->ke_runq, ke);
663 /* setrunqueue(td); */
664 return;
665 }
666 if (ke->ke_runq)
667 kseq_rem(KSEQ_CPU(ke->ke_cpu), ke);
668 /*
669 * We will not be on the run queue. So we must be
670 * sleeping or similar.
671 */
672 if (td->td_proc->p_flag & P_THREADED)
673 kse_reassign(ke);
674}
675
676void
677sched_switchin(struct thread *td)
678{
679 /* struct kse *ke = td->td_kse; */
680 mtx_assert(&sched_lock, MA_OWNED);
681
682 td->td_oncpu = PCPU_GET(cpuid);
683
684 if (td->td_ksegrp->kg_pri_class == PRI_TIMESHARE &&
685 td->td_priority != td->td_ksegrp->kg_user_pri)
686 curthread->td_flags |= TDF_NEEDRESCHED;
687}
688
689void
690sched_nice(struct ksegrp *kg, int nice)
691{
692 struct kse *ke;
693 struct thread *td;
694 struct kseq *kseq;
695
696 PROC_LOCK_ASSERT(kg->kg_proc, MA_OWNED);
697 mtx_assert(&sched_lock, MA_OWNED);
698 /*
699 * We need to adjust the nice counts for running KSEs.
700 */
701 if (kg->kg_pri_class == PRI_TIMESHARE)
702 FOREACH_KSE_IN_GROUP(kg, ke) {
703 if (ke->ke_state != KES_ONRUNQ &&
704 ke->ke_state != KES_THREAD)
705 continue;
706 kseq = KSEQ_CPU(ke->ke_cpu);
707 kseq_nice_rem(kseq, kg->kg_nice);
708 kseq_nice_add(kseq, nice);
709 }
710 kg->kg_nice = nice;
711 sched_priority(kg);
712 FOREACH_THREAD_IN_GROUP(kg, td)
713 td->td_flags |= TDF_NEEDRESCHED;
714}
715
716void
717sched_sleep(struct thread *td, u_char prio)
718{
719 mtx_assert(&sched_lock, MA_OWNED);
720
721 td->td_slptime = ticks;
722 td->td_priority = prio;
723
724 CTR2(KTR_ULE, "sleep kse %p (tick: %d)",
725 td->td_kse, td->td_slptime);
726}
727
728void
729sched_wakeup(struct thread *td)
730{
731 mtx_assert(&sched_lock, MA_OWNED);
732
733 /*
734 * Let the kseg know how long we slept for. This is because process
735 * interactivity behavior is modeled in the kseg.
736 */
737 if (td->td_slptime) {
738 struct ksegrp *kg;
739 int hzticks;
740
741 kg = td->td_ksegrp;
742 hzticks = ticks - td->td_slptime;
743 kg->kg_slptime += hzticks << 10;
744 sched_priority(kg);
745 CTR2(KTR_ULE, "wakeup kse %p (%d ticks)",
746 td->td_kse, hzticks);
747 td->td_slptime = 0;
748 }
749 setrunqueue(td);
750 if (td->td_priority < curthread->td_priority)
751 curthread->td_flags |= TDF_NEEDRESCHED;
752}
753
754/*
755 * Penalize the parent for creating a new child and initialize the child's
756 * priority.
757 */
758void
759sched_fork(struct proc *p, struct proc *p1)
760{
761
762 mtx_assert(&sched_lock, MA_OWNED);
763
764 sched_fork_ksegrp(FIRST_KSEGRP_IN_PROC(p), FIRST_KSEGRP_IN_PROC(p1));
765 sched_fork_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(p1));
766 sched_fork_thread(FIRST_THREAD_IN_PROC(p), FIRST_THREAD_IN_PROC(p1));
767}
768
769void
770sched_fork_kse(struct kse *ke, struct kse *child)
771{
772
773 child->ke_slice = ke->ke_slice;
774 child->ke_cpu = ke->ke_cpu; /* sched_pickcpu(); */
775 child->ke_runq = NULL;
776
777 /*
778 * Claim that we've been running for one second for statistical
779 * purposes.
780 */
781 child->ke_ticks = 0;
782 child->ke_ltick = ticks;
783 child->ke_ftick = ticks - hz;
784}
785
786void
787sched_fork_ksegrp(struct ksegrp *kg, struct ksegrp *child)
788{
789
790 PROC_LOCK_ASSERT(child->kg_proc, MA_OWNED);
791 /* XXX Need something better here */
792 if (kg->kg_slptime > kg->kg_runtime) {
793 child->kg_slptime = SCHED_DYN_RANGE;
794 child->kg_runtime = kg->kg_slptime / SCHED_DYN_RANGE;
795 } else {
796 child->kg_runtime = SCHED_DYN_RANGE;
797 child->kg_slptime = kg->kg_runtime / SCHED_DYN_RANGE;
798 }
799
800 child->kg_user_pri = kg->kg_user_pri;
801 child->kg_nice = kg->kg_nice;
802}
803
804void
805sched_fork_thread(struct thread *td, struct thread *child)
806{
807}
808
809void
810sched_class(struct ksegrp *kg, int class)
811{
812 struct kseq *kseq;
813 struct kse *ke;
814
815 mtx_assert(&sched_lock, MA_OWNED);
816 if (kg->kg_pri_class == class)
817 return;
818
819 FOREACH_KSE_IN_GROUP(kg, ke) {
820 if (ke->ke_state != KES_ONRUNQ &&
821 ke->ke_state != KES_THREAD)
822 continue;
823 kseq = KSEQ_CPU(ke->ke_cpu);
824
825 kseq->ksq_loads[PRI_BASE(kg->kg_pri_class)]--;
826 kseq->ksq_loads[PRI_BASE(class)]++;
827
828 if (kg->kg_pri_class == PRI_TIMESHARE)
829 kseq_nice_rem(kseq, kg->kg_nice);
830 else if (class == PRI_TIMESHARE)
831 kseq_nice_add(kseq, kg->kg_nice);
832 }
833
834 kg->kg_pri_class = class;
835}
836
837/*
838 * Return some of the child's priority and interactivity to the parent.
839 */
840void
841sched_exit(struct proc *p, struct proc *child)
842{
843 /* XXX Need something better here */
844 mtx_assert(&sched_lock, MA_OWNED);
845 sched_exit_kse(FIRST_KSE_IN_PROC(p), FIRST_KSE_IN_PROC(child));
846}
847
848void
849sched_exit_kse(struct kse *ke, struct kse *child)
850{
851 kseq_rem(KSEQ_CPU(child->ke_cpu), child);
852}
853
854void
855sched_exit_ksegrp(struct ksegrp *kg, struct ksegrp *child)
856{
857}
858
859void
860sched_exit_thread(struct thread *td, struct thread *child)
861{
862}
863
864void
865sched_clock(struct kse *ke)
866{
867 struct kseq *kseq;
868 struct ksegrp *kg;
869 struct thread *td;
870#if 0
871 struct kse *nke;
872#endif
873
874 /*
875 * sched_setup() apparently happens prior to stathz being set. We
876 * need to resolve the timers earlier in the boot so we can avoid
877 * calculating this here.
878 */
879 if (realstathz == 0) {
880 realstathz = stathz ? stathz : hz;
881 tickincr = hz / realstathz;
882 /*
883 * XXX This does not work for values of stathz that are much
884 * larger than hz.
885 */
886 if (tickincr == 0)
887 tickincr = 1;
888 }
889
890 td = ke->ke_thread;
891 kg = ke->ke_ksegrp;
892
893 mtx_assert(&sched_lock, MA_OWNED);
894 KASSERT((td != NULL), ("schedclock: null thread pointer"));
895
896 /* Adjust ticks for pctcpu */
897 ke->ke_ticks++;
898 ke->ke_ltick = ticks;
899
900 /* Go up to one second beyond our max and then trim back down */
901 if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
902 sched_pctcpu_update(ke);
903
904 if (td->td_kse->ke_flags & KEF_IDLEKSE)
904 if (td->td_flags & TD_IDLETD)
905 return;
906
907 CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
908 ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
909
910 /*
911 * We only do slicing code for TIMESHARE ksegrps.
912 */
913 if (kg->kg_pri_class != PRI_TIMESHARE)
914 return;
915 /*
916 * Check for a higher priority task on the run queue. This can happen
917 * on SMP if another processor woke up a process on our runq.
918 */
919 kseq = KSEQ_SELF();
920#if 0
921 if (kseq->ksq_load > 1 && (nke = kseq_choose(kseq)) != NULL) {
922 if (sched_strict &&
923 nke->ke_thread->td_priority < td->td_priority)
924 td->td_flags |= TDF_NEEDRESCHED;
925 else if (nke->ke_thread->td_priority <
926 td->td_priority SCHED_PRIO_SLOP)
927
928 if (nke->ke_thread->td_priority < td->td_priority)
929 td->td_flags |= TDF_NEEDRESCHED;
930 }
931#endif
932 /*
933 * We used a tick charge it to the ksegrp so that we can compute our
934 * interactivity.
935 */
936 kg->kg_runtime += tickincr << 10;
937
938 /*
939 * We used up one time slice.
940 */
941 ke->ke_slice--;
942#ifdef SMP
943 kseq->ksq_rslices--;
944#endif
945
946 if (ke->ke_slice > 0)
947 return;
948 /*
949 * We're out of time, recompute priorities and requeue.
950 */
951 kseq_rem(kseq, ke);
952 sched_priority(kg);
953 sched_slice(ke);
954 if (SCHED_CURR(kg, ke))
955 ke->ke_runq = kseq->ksq_curr;
956 else
957 ke->ke_runq = kseq->ksq_next;
958 kseq_add(kseq, ke);
959 td->td_flags |= TDF_NEEDRESCHED;
960}
961
962int
963sched_runnable(void)
964{
965 struct kseq *kseq;
966
967 kseq = KSEQ_SELF();
968
969 if (kseq->ksq_load)
970 return (1);
971#ifdef SMP
972 /*
973 * For SMP we may steal other processor's KSEs. Just search until we
974 * verify that at least on other cpu has a runnable task.
975 */
976 if (smp_started) {
977 int i;
978
979 for (i = 0; i < mp_maxid; i++) {
980 if (CPU_ABSENT(i))
981 continue;
982 kseq = KSEQ_CPU(i);
983 if (kseq->ksq_load > 1)
984 return (1);
985 }
986 }
987#endif
988 return (0);
989}
990
991void
992sched_userret(struct thread *td)
993{
994 struct ksegrp *kg;
995
996 kg = td->td_ksegrp;
997
998 if (td->td_priority != kg->kg_user_pri) {
999 mtx_lock_spin(&sched_lock);
1000 td->td_priority = kg->kg_user_pri;
1001 mtx_unlock_spin(&sched_lock);
1002 }
1003}
1004
1005struct kse *
1006sched_choose(void)
1007{
1008 struct kseq *kseq;
1009 struct kse *ke;
1010
1011#ifdef SMP
1012retry:
1013#endif
1014 kseq = KSEQ_SELF();
1015 ke = kseq_choose(kseq);
1016 if (ke) {
1017 runq_remove(ke->ke_runq, ke);
1018 ke->ke_state = KES_THREAD;
1019
1020 if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1021 CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
1022 ke, ke->ke_runq, ke->ke_slice,
1023 ke->ke_thread->td_priority);
1024 }
1025 return (ke);
1026 }
1027
1028#ifdef SMP
1029 if (smp_started) {
1030 /*
1031 * Find the cpu with the highest load and steal one proc.
1032 */
1033 if ((kseq = kseq_load_highest()) == NULL)
1034 return (NULL);
1035
1036 /*
1037 * Remove this kse from this kseq and runq and then requeue
1038 * on the current processor. Then we will dequeue it
1039 * normally above.
1040 */
1041 ke = kseq_choose(kseq);
1042 runq_remove(ke->ke_runq, ke);
1043 ke->ke_state = KES_THREAD;
1044 kseq_rem(kseq, ke);
1045
1046 ke->ke_cpu = PCPU_GET(cpuid);
1047 sched_add(ke);
1048 goto retry;
1049 }
1050#endif
1051
1052 return (NULL);
1053}
1054
1055void
1056sched_add(struct kse *ke)
1057{
1058 struct kseq *kseq;
1059 struct ksegrp *kg;
1060
1061 mtx_assert(&sched_lock, MA_OWNED);
1062 KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
1063 KASSERT((ke->ke_thread->td_kse != NULL),
1064 ("sched_add: No KSE on thread"));
1065 KASSERT(ke->ke_state != KES_ONRUNQ,
1066 ("sched_add: kse %p (%s) already in run queue", ke,
1067 ke->ke_proc->p_comm));
1068 KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1069 ("sched_add: process swapped out"));
1070 KASSERT(ke->ke_runq == NULL,
1071 ("sched_add: KSE %p is still assigned to a run queue", ke));
1072
1073 kg = ke->ke_ksegrp;
1074
1075 switch (PRI_BASE(kg->kg_pri_class)) {
1076 case PRI_ITHD:
1077 case PRI_REALTIME:
1078 kseq = KSEQ_SELF();
1079 ke->ke_runq = kseq->ksq_curr;
1080 ke->ke_slice = SCHED_SLICE_MAX;
1081 ke->ke_cpu = PCPU_GET(cpuid);
1082 break;
1083 case PRI_TIMESHARE:
1084 kseq = KSEQ_CPU(ke->ke_cpu);
1085 if (SCHED_CURR(kg, ke))
1086 ke->ke_runq = kseq->ksq_curr;
1087 else
1088 ke->ke_runq = kseq->ksq_next;
1089 break;
1090 case PRI_IDLE:
1091 kseq = KSEQ_CPU(ke->ke_cpu);
1092 /*
1093 * This is for priority prop.
1094 */
1095 if (ke->ke_thread->td_priority < PRI_MAX_TIMESHARE)
1096 ke->ke_runq = kseq->ksq_curr;
1097 else
1098 ke->ke_runq = &kseq->ksq_idle;
1099 ke->ke_slice = SCHED_SLICE_MIN;
1100 break;
1101 default:
1102 panic("Unknown pri class.\n");
1103 break;
1104 }
1105
1106 ke->ke_ksegrp->kg_runq_kses++;
1107 ke->ke_state = KES_ONRUNQ;
1108
1109 runq_add(ke->ke_runq, ke);
1110 kseq_add(kseq, ke);
1111}
1112
1113void
1114sched_rem(struct kse *ke)
1115{
1116 struct kseq *kseq;
1117
1118 mtx_assert(&sched_lock, MA_OWNED);
1119 KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
1120
1121 ke->ke_state = KES_THREAD;
1122 ke->ke_ksegrp->kg_runq_kses--;
1123 kseq = KSEQ_CPU(ke->ke_cpu);
1124 runq_remove(ke->ke_runq, ke);
1125 kseq_rem(kseq, ke);
1126}
1127
1128fixpt_t
1129sched_pctcpu(struct kse *ke)
1130{
1131 fixpt_t pctcpu;
1132
1133 pctcpu = 0;
1134
1135 if (ke->ke_ticks) {
1136 int rtick;
1137
1138 /* Update to account for time potentially spent sleeping */
1139 ke->ke_ltick = ticks;
1140 sched_pctcpu_update(ke);
1141
1142 /* How many rtick per second ? */
1143 rtick = ke->ke_ticks / SCHED_CPU_TIME;
1144 pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1145 }
1146
1147 mtx_lock_spin(&sched_lock);
1148 ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1149 mtx_unlock_spin(&sched_lock);
1150
1151 return (pctcpu);
1152}
1153
1154int
1155sched_sizeof_kse(void)
1156{
1157 return (sizeof(struct kse) + sizeof(struct ke_sched));
1158}
1159
1160int
1161sched_sizeof_ksegrp(void)
1162{
1163 return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1164}
1165
1166int
1167sched_sizeof_proc(void)
1168{
1169 return (sizeof(struct proc));
1170}
1171
1172int
1173sched_sizeof_thread(void)
1174{
1175 return (sizeof(struct thread) + sizeof(struct td_sched));
1176}
905 return;
906
907 CTR4(KTR_ULE, "Tick kse %p (slice: %d, slptime: %d, runtime: %d)",
908 ke, ke->ke_slice, kg->kg_slptime >> 10, kg->kg_runtime >> 10);
909
910 /*
911 * We only do slicing code for TIMESHARE ksegrps.
912 */
913 if (kg->kg_pri_class != PRI_TIMESHARE)
914 return;
915 /*
916 * Check for a higher priority task on the run queue. This can happen
917 * on SMP if another processor woke up a process on our runq.
918 */
919 kseq = KSEQ_SELF();
920#if 0
921 if (kseq->ksq_load > 1 && (nke = kseq_choose(kseq)) != NULL) {
922 if (sched_strict &&
923 nke->ke_thread->td_priority < td->td_priority)
924 td->td_flags |= TDF_NEEDRESCHED;
925 else if (nke->ke_thread->td_priority <
926 td->td_priority SCHED_PRIO_SLOP)
927
928 if (nke->ke_thread->td_priority < td->td_priority)
929 td->td_flags |= TDF_NEEDRESCHED;
930 }
931#endif
932 /*
933 * We used a tick charge it to the ksegrp so that we can compute our
934 * interactivity.
935 */
936 kg->kg_runtime += tickincr << 10;
937
938 /*
939 * We used up one time slice.
940 */
941 ke->ke_slice--;
942#ifdef SMP
943 kseq->ksq_rslices--;
944#endif
945
946 if (ke->ke_slice > 0)
947 return;
948 /*
949 * We're out of time, recompute priorities and requeue.
950 */
951 kseq_rem(kseq, ke);
952 sched_priority(kg);
953 sched_slice(ke);
954 if (SCHED_CURR(kg, ke))
955 ke->ke_runq = kseq->ksq_curr;
956 else
957 ke->ke_runq = kseq->ksq_next;
958 kseq_add(kseq, ke);
959 td->td_flags |= TDF_NEEDRESCHED;
960}
961
962int
963sched_runnable(void)
964{
965 struct kseq *kseq;
966
967 kseq = KSEQ_SELF();
968
969 if (kseq->ksq_load)
970 return (1);
971#ifdef SMP
972 /*
973 * For SMP we may steal other processor's KSEs. Just search until we
974 * verify that at least on other cpu has a runnable task.
975 */
976 if (smp_started) {
977 int i;
978
979 for (i = 0; i < mp_maxid; i++) {
980 if (CPU_ABSENT(i))
981 continue;
982 kseq = KSEQ_CPU(i);
983 if (kseq->ksq_load > 1)
984 return (1);
985 }
986 }
987#endif
988 return (0);
989}
990
991void
992sched_userret(struct thread *td)
993{
994 struct ksegrp *kg;
995
996 kg = td->td_ksegrp;
997
998 if (td->td_priority != kg->kg_user_pri) {
999 mtx_lock_spin(&sched_lock);
1000 td->td_priority = kg->kg_user_pri;
1001 mtx_unlock_spin(&sched_lock);
1002 }
1003}
1004
1005struct kse *
1006sched_choose(void)
1007{
1008 struct kseq *kseq;
1009 struct kse *ke;
1010
1011#ifdef SMP
1012retry:
1013#endif
1014 kseq = KSEQ_SELF();
1015 ke = kseq_choose(kseq);
1016 if (ke) {
1017 runq_remove(ke->ke_runq, ke);
1018 ke->ke_state = KES_THREAD;
1019
1020 if (ke->ke_ksegrp->kg_pri_class == PRI_TIMESHARE) {
1021 CTR4(KTR_ULE, "Run kse %p from %p (slice: %d, pri: %d)",
1022 ke, ke->ke_runq, ke->ke_slice,
1023 ke->ke_thread->td_priority);
1024 }
1025 return (ke);
1026 }
1027
1028#ifdef SMP
1029 if (smp_started) {
1030 /*
1031 * Find the cpu with the highest load and steal one proc.
1032 */
1033 if ((kseq = kseq_load_highest()) == NULL)
1034 return (NULL);
1035
1036 /*
1037 * Remove this kse from this kseq and runq and then requeue
1038 * on the current processor. Then we will dequeue it
1039 * normally above.
1040 */
1041 ke = kseq_choose(kseq);
1042 runq_remove(ke->ke_runq, ke);
1043 ke->ke_state = KES_THREAD;
1044 kseq_rem(kseq, ke);
1045
1046 ke->ke_cpu = PCPU_GET(cpuid);
1047 sched_add(ke);
1048 goto retry;
1049 }
1050#endif
1051
1052 return (NULL);
1053}
1054
1055void
1056sched_add(struct kse *ke)
1057{
1058 struct kseq *kseq;
1059 struct ksegrp *kg;
1060
1061 mtx_assert(&sched_lock, MA_OWNED);
1062 KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
1063 KASSERT((ke->ke_thread->td_kse != NULL),
1064 ("sched_add: No KSE on thread"));
1065 KASSERT(ke->ke_state != KES_ONRUNQ,
1066 ("sched_add: kse %p (%s) already in run queue", ke,
1067 ke->ke_proc->p_comm));
1068 KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
1069 ("sched_add: process swapped out"));
1070 KASSERT(ke->ke_runq == NULL,
1071 ("sched_add: KSE %p is still assigned to a run queue", ke));
1072
1073 kg = ke->ke_ksegrp;
1074
1075 switch (PRI_BASE(kg->kg_pri_class)) {
1076 case PRI_ITHD:
1077 case PRI_REALTIME:
1078 kseq = KSEQ_SELF();
1079 ke->ke_runq = kseq->ksq_curr;
1080 ke->ke_slice = SCHED_SLICE_MAX;
1081 ke->ke_cpu = PCPU_GET(cpuid);
1082 break;
1083 case PRI_TIMESHARE:
1084 kseq = KSEQ_CPU(ke->ke_cpu);
1085 if (SCHED_CURR(kg, ke))
1086 ke->ke_runq = kseq->ksq_curr;
1087 else
1088 ke->ke_runq = kseq->ksq_next;
1089 break;
1090 case PRI_IDLE:
1091 kseq = KSEQ_CPU(ke->ke_cpu);
1092 /*
1093 * This is for priority prop.
1094 */
1095 if (ke->ke_thread->td_priority < PRI_MAX_TIMESHARE)
1096 ke->ke_runq = kseq->ksq_curr;
1097 else
1098 ke->ke_runq = &kseq->ksq_idle;
1099 ke->ke_slice = SCHED_SLICE_MIN;
1100 break;
1101 default:
1102 panic("Unknown pri class.\n");
1103 break;
1104 }
1105
1106 ke->ke_ksegrp->kg_runq_kses++;
1107 ke->ke_state = KES_ONRUNQ;
1108
1109 runq_add(ke->ke_runq, ke);
1110 kseq_add(kseq, ke);
1111}
1112
1113void
1114sched_rem(struct kse *ke)
1115{
1116 struct kseq *kseq;
1117
1118 mtx_assert(&sched_lock, MA_OWNED);
1119 KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
1120
1121 ke->ke_state = KES_THREAD;
1122 ke->ke_ksegrp->kg_runq_kses--;
1123 kseq = KSEQ_CPU(ke->ke_cpu);
1124 runq_remove(ke->ke_runq, ke);
1125 kseq_rem(kseq, ke);
1126}
1127
1128fixpt_t
1129sched_pctcpu(struct kse *ke)
1130{
1131 fixpt_t pctcpu;
1132
1133 pctcpu = 0;
1134
1135 if (ke->ke_ticks) {
1136 int rtick;
1137
1138 /* Update to account for time potentially spent sleeping */
1139 ke->ke_ltick = ticks;
1140 sched_pctcpu_update(ke);
1141
1142 /* How many rtick per second ? */
1143 rtick = ke->ke_ticks / SCHED_CPU_TIME;
1144 pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
1145 }
1146
1147 mtx_lock_spin(&sched_lock);
1148 ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
1149 mtx_unlock_spin(&sched_lock);
1150
1151 return (pctcpu);
1152}
1153
1154int
1155sched_sizeof_kse(void)
1156{
1157 return (sizeof(struct kse) + sizeof(struct ke_sched));
1158}
1159
1160int
1161sched_sizeof_ksegrp(void)
1162{
1163 return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
1164}
1165
1166int
1167sched_sizeof_proc(void)
1168{
1169 return (sizeof(struct proc));
1170}
1171
1172int
1173sched_sizeof_thread(void)
1174{
1175 return (sizeof(struct thread) + sizeof(struct td_sched));
1176}