Deleted Added
full compact
sched_ule.c (110028) sched_ule.c (110226)
1/*-
2 * Copyright (c) 2003, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
1/*-
2 * Copyright (c) 2003, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice unmodified, this list of conditions, and the following
10 * disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * $FreeBSD: head/sys/kern/sched_ule.c 110028 2003-01-29 07:00:51Z jeff $
26 * $FreeBSD: head/sys/kern/sched_ule.c 110226 2003-02-02 08:24:32Z scottl $
27 */
28
29#include <sys/param.h>
30#include <sys/systm.h>
31#include <sys/kernel.h>
32#include <sys/ktr.h>
33#include <sys/lock.h>
34#include <sys/mutex.h>
35#include <sys/proc.h>
36#include <sys/sched.h>
37#include <sys/smp.h>
38#include <sys/sx.h>
39#include <sys/sysctl.h>
40#include <sys/sysproto.h>
41#include <sys/vmmeter.h>
42#ifdef DDB
43#include <ddb/ddb.h>
44#endif
45#ifdef KTRACE
46#include <sys/uio.h>
47#include <sys/ktrace.h>
48#endif
49
50#include <machine/cpu.h>
51
52/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
53/* XXX This is bogus compatability crap for ps */
54static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
55SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
56
57static void sched_setup(void *dummy);
58SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
59
60/*
61 * These datastructures are allocated within their parent datastructure but
62 * are scheduler specific.
63 */
64
65struct ke_sched {
66 int ske_slice;
67 struct runq *ske_runq;
68 /* The following variables are only used for pctcpu calculation */
69 int ske_ltick; /* Last tick that we were running on */
70 int ske_ftick; /* First tick that we were running on */
71 int ske_ticks; /* Tick count */
72};
73#define ke_slice ke_sched->ske_slice
74#define ke_runq ke_sched->ske_runq
75#define ke_ltick ke_sched->ske_ltick
76#define ke_ftick ke_sched->ske_ftick
77#define ke_ticks ke_sched->ske_ticks
78
79struct kg_sched {
80 int skg_slptime;
81};
82#define kg_slptime kg_sched->skg_slptime
83
84struct td_sched {
85 int std_slptime;
86};
87#define td_slptime td_sched->std_slptime
88
89struct ke_sched ke_sched;
90struct kg_sched kg_sched;
91struct td_sched td_sched;
92
93struct ke_sched *kse0_sched = &ke_sched;
94struct kg_sched *ksegrp0_sched = &kg_sched;
95struct p_sched *proc0_sched = NULL;
96struct td_sched *thread0_sched = &td_sched;
97
98/*
99 * This priority range has 20 priorities on either end that are reachable
100 * only through nice values.
101 */
102#define SCHED_PRI_NRESV 40
103#define SCHED_PRI_RANGE ((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1) - \
104 SCHED_PRI_NRESV)
105
106/*
107 * These determine how sleep time effects the priority of a process.
108 *
109 * SLP_MAX: Maximum amount of accrued sleep time.
110 * SLP_SCALE: Scale the number of ticks slept across the dynamic priority
111 * range.
112 * SLP_TOPRI: Convert a number of ticks slept into a priority value.
113 * SLP_DECAY: Reduce the sleep time to 50% for every granted slice.
114 */
115#define SCHED_SLP_MAX (hz * 2)
116#define SCHED_SLP_SCALE(slp) (((slp) * SCHED_PRI_RANGE) / SCHED_SLP_MAX)
117#define SCHED_SLP_TOPRI(slp) (SCHED_PRI_RANGE - SCHED_SLP_SCALE((slp)) + \
118 SCHED_PRI_NRESV / 2)
119#define SCHED_SLP_DECAY(slp) ((slp) / 2) /* XXX Multiple kses break */
120
121/*
122 * These parameters and macros determine the size of the time slice that is
123 * granted to each thread.
124 *
125 * SLICE_MIN: Minimum time slice granted, in units of ticks.
126 * SLICE_MAX: Maximum time slice granted.
127 * SLICE_RANGE: Range of available time slices scaled by hz.
128 * SLICE_SCALE: The number slices granted per unit of pri or slp.
129 * PRI_TOSLICE: Compute a slice size that is proportional to the priority.
130 * SLP_TOSLICE: Compute a slice size that is inversely proportional to the
131 * amount of time slept. (smaller slices for interactive ksegs)
132 * PRI_COMP: This determines what fraction of the actual slice comes from
133 * the slice size computed from the priority.
134 * SLP_COMP: This determines what component of the actual slice comes from
135 * the slize size computed from the sleep time.
136 */
137#define SCHED_SLICE_MIN (hz / 100)
138#define SCHED_SLICE_MAX (hz / 10)
139#define SCHED_SLICE_RANGE (SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
140#define SCHED_SLICE_SCALE(val, max) (((val) * SCHED_SLICE_RANGE) / (max))
141#define SCHED_PRI_TOSLICE(pri) \
142 (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((pri), SCHED_PRI_RANGE))
143#define SCHED_SLP_TOSLICE(slp) \
144 (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((slp), SCHED_SLP_MAX))
145#define SCHED_SLP_COMP(slice) (((slice) / 5) * 3) /* 60% */
146#define SCHED_PRI_COMP(slice) (((slice) / 5) * 2) /* 40% */
147
148/*
149 * This macro determines whether or not the kse belongs on the current or
150 * next run queue.
151 */
152#define SCHED_CURR(kg) ((kg)->kg_slptime > (hz / 4) || \
153 (kg)->kg_pri_class != PRI_TIMESHARE)
154
155/*
156 * Cpu percentage computation macros and defines.
157 *
158 * SCHED_CPU_TIME: Number of seconds to average the cpu usage across.
159 * SCHED_CPU_TICKS: Number of hz ticks to average the cpu usage across.
160 */
161
162#define SCHED_CPU_TIME 60
163#define SCHED_CPU_TICKS (hz * SCHED_CPU_TIME)
164
165/*
166 * kseq - pair of runqs per processor
167 */
168
169struct kseq {
170 struct runq ksq_runqs[2];
171 struct runq *ksq_curr;
172 struct runq *ksq_next;
173 int ksq_load; /* Total runnable */
174};
175
176/*
177 * One kse queue per processor.
178 */
179#ifdef SMP
180struct kseq kseq_cpu[MAXCPU];
181#define KSEQ_SELF() (&kseq_cpu[PCPU_GET(cpuid)])
182#define KSEQ_CPU(x) (&kseq_cpu[(x)])
183#else
184struct kseq kseq_cpu;
185#define KSEQ_SELF() (&kseq_cpu)
186#define KSEQ_CPU(x) (&kseq_cpu)
187#endif
188
189static int sched_slice(struct ksegrp *kg);
190static int sched_priority(struct ksegrp *kg);
191void sched_pctcpu_update(struct kse *ke);
192int sched_pickcpu(void);
193
194static struct kse * kseq_choose(struct kseq *kseq);
195static void kseq_setup(struct kseq *kseq);
196
197static void
198kseq_setup(struct kseq *kseq)
199{
200 kseq->ksq_load = 0;
201 kseq->ksq_curr = &kseq->ksq_runqs[0];
202 kseq->ksq_next = &kseq->ksq_runqs[1];
203 runq_init(kseq->ksq_curr);
204 runq_init(kseq->ksq_next);
205}
206
207static void
208sched_setup(void *dummy)
209{
210 int i;
211
212 mtx_lock_spin(&sched_lock);
213 /* init kseqs */
214 for (i = 0; i < MAXCPU; i++)
215 kseq_setup(KSEQ_CPU(i));
216 mtx_unlock_spin(&sched_lock);
217}
218
219/*
220 * Scale the scheduling priority according to the "interactivity" of this
221 * process.
222 */
223static int
224sched_priority(struct ksegrp *kg)
225{
226 int pri;
227
228 if (kg->kg_pri_class != PRI_TIMESHARE)
229 return (kg->kg_user_pri);
230
231 pri = SCHED_SLP_TOPRI(kg->kg_slptime);
232 CTR2(KTR_RUNQ, "sched_priority: slptime: %d\tpri: %d",
233 kg->kg_slptime, pri);
234
235 pri += PRI_MIN_TIMESHARE;
236 pri += kg->kg_nice;
237
238 if (pri > PRI_MAX_TIMESHARE)
239 pri = PRI_MAX_TIMESHARE;
240 else if (pri < PRI_MIN_TIMESHARE)
241 pri = PRI_MIN_TIMESHARE;
242
243 kg->kg_user_pri = pri;
244
245 return (kg->kg_user_pri);
246}
247
248/*
249 * Calculate a time slice based on the process priority.
250 */
251static int
252sched_slice(struct ksegrp *kg)
253{
254 int pslice;
255 int sslice;
256 int slice;
257 int pri;
258
259 pri = kg->kg_user_pri;
260 pri -= PRI_MIN_TIMESHARE;
261 pslice = SCHED_PRI_TOSLICE(pri);
262 sslice = SCHED_SLP_TOSLICE(kg->kg_slptime);
263 slice = SCHED_SLP_COMP(sslice) + SCHED_PRI_COMP(pslice);
264 kg->kg_slptime = SCHED_SLP_DECAY(kg->kg_slptime);
265
266 CTR4(KTR_RUNQ,
267 "sched_slice: pri: %d\tsslice: %d\tpslice: %d\tslice: %d",
268 pri, sslice, pslice, slice);
269
270 if (slice < SCHED_SLICE_MIN)
271 slice = SCHED_SLICE_MIN;
272 else if (slice > SCHED_SLICE_MAX)
273 slice = SCHED_SLICE_MAX;
274
275 return (slice);
276}
277
278int
279sched_rr_interval(void)
280{
281 return (SCHED_SLICE_MAX);
282}
283
284void
285sched_pctcpu_update(struct kse *ke)
286{
287 /*
288 * Adjust counters and watermark for pctcpu calc.
289 */
290 ke->ke_ticks = (ke->ke_ticks / (ke->ke_ltick - ke->ke_ftick)) *
291 SCHED_CPU_TICKS;
292 ke->ke_ltick = ticks;
293 ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
294}
295
296#ifdef SMP
297int
298sched_pickcpu(void)
299{
300 struct kseq *kseq;
301 int load;
302 int cpu;
303 int i;
304
305 if (!smp_started)
306 return (0);
307
308 load = 0;
309 cpu = 0;
310
311 for (i = 0; i < mp_maxid; i++) {
312 if (CPU_ABSENT(i))
313 continue;
314 kseq = KSEQ_CPU(i);
315 if (kseq->ksq_load < load) {
316 cpu = i;
317 load = kseq->ksq_load;
318 }
319 }
320
321 CTR1(KTR_RUNQ, "sched_pickcpu: %d", cpu);
322 return (cpu);
323}
324#else
325int
326sched_pickcpu(void)
327{
328 return (0);
329}
330#endif
331
332void
333sched_prio(struct thread *td, u_char prio)
334{
335 struct kse *ke;
336 struct runq *rq;
337
338 mtx_assert(&sched_lock, MA_OWNED);
339 ke = td->td_kse;
340 td->td_priority = prio;
341
342 if (TD_ON_RUNQ(td)) {
343 rq = ke->ke_runq;
344
345 runq_remove(rq, ke);
346 runq_add(rq, ke);
347 }
348}
349
350void
351sched_switchout(struct thread *td)
352{
353 struct kse *ke;
354
355 mtx_assert(&sched_lock, MA_OWNED);
356
357 ke = td->td_kse;
358
359 td->td_last_kse = ke;
360 td->td_lastcpu = ke->ke_oncpu;
361 ke->ke_flags &= ~KEF_NEEDRESCHED;
362
363 if (TD_IS_RUNNING(td)) {
364 setrunqueue(td);
365 return;
366 } else
367 td->td_kse->ke_runq = NULL;
368
369 /*
370 * We will not be on the run queue. So we must be
371 * sleeping or similar.
372 */
373 if (td->td_proc->p_flag & P_KSES)
374 kse_reassign(ke);
375}
376
377void
378sched_switchin(struct thread *td)
379{
380 /* struct kse *ke = td->td_kse; */
381 mtx_assert(&sched_lock, MA_OWNED);
382
383 td->td_kse->ke_oncpu = PCPU_GET(cpuid); /* XXX */
384 if (td->td_ksegrp->kg_pri_class == PRI_TIMESHARE &&
385 td->td_priority != td->td_ksegrp->kg_user_pri)
386 curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
387}
388
389void
390sched_nice(struct ksegrp *kg, int nice)
391{
392 struct thread *td;
393
394 kg->kg_nice = nice;
395 sched_priority(kg);
396 FOREACH_THREAD_IN_GROUP(kg, td) {
397 td->td_kse->ke_flags |= KEF_NEEDRESCHED;
398 }
399}
400
401void
402sched_sleep(struct thread *td, u_char prio)
403{
404 mtx_assert(&sched_lock, MA_OWNED);
405
406 td->td_slptime = ticks;
407 td->td_priority = prio;
408
409 /*
410 * If this is an interactive task clear its queue so it moves back
411 * on to curr when it wakes up. Otherwise let it stay on the queue
412 * that it was assigned to.
413 */
414 if (SCHED_CURR(td->td_kse->ke_ksegrp))
415 td->td_kse->ke_runq = NULL;
416#if 0
417 if (td->td_priority < PZERO)
418 kseq_cpu[td->td_kse->ke_oncpu].ksq_load++;
419#endif
420}
421
422void
423sched_wakeup(struct thread *td)
424{
425 struct ksegrp *kg;
426
427 mtx_assert(&sched_lock, MA_OWNED);
428
429 /*
430 * Let the kseg know how long we slept for. This is because process
431 * interactivity behavior is modeled in the kseg.
432 */
433 kg = td->td_ksegrp;
434
435 if (td->td_slptime) {
436 kg->kg_slptime += ticks - td->td_slptime;
437 if (kg->kg_slptime > SCHED_SLP_MAX)
438 kg->kg_slptime = SCHED_SLP_MAX;
439 td->td_priority = sched_priority(kg);
440 }
441 td->td_slptime = 0;
442#if 0
443 if (td->td_priority < PZERO)
444 kseq_cpu[td->td_kse->ke_oncpu].ksq_load--;
445#endif
446 setrunqueue(td);
447 if (td->td_priority < curthread->td_priority)
448 curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
449}
450
451/*
452 * Penalize the parent for creating a new child and initialize the child's
453 * priority.
454 */
455void
456sched_fork(struct ksegrp *kg, struct ksegrp *child)
457{
458 struct kse *ckse;
459 struct kse *pkse;
460
461 mtx_assert(&sched_lock, MA_OWNED);
462 ckse = FIRST_KSE_IN_KSEGRP(child);
463 pkse = FIRST_KSE_IN_KSEGRP(kg);
464
465 /* XXX Need something better here */
466 child->kg_slptime = kg->kg_slptime;
467 child->kg_user_pri = kg->kg_user_pri;
468
469 if (pkse->ke_oncpu != PCPU_GET(cpuid)) {
470 printf("pkse->ke_oncpu = %d\n", pkse->ke_oncpu);
471 printf("cpuid = %d", PCPU_GET(cpuid));
472 Debugger("stop");
473 }
474
475 ckse->ke_slice = pkse->ke_slice;
476 ckse->ke_oncpu = pkse->ke_oncpu; /* sched_pickcpu(); */
477 ckse->ke_runq = NULL;
478 /*
479 * Claim that we've been running for one second for statistical
480 * purposes.
481 */
482 ckse->ke_ticks = 0;
483 ckse->ke_ltick = ticks;
484 ckse->ke_ftick = ticks - hz;
485}
486
487/*
488 * Return some of the child's priority and interactivity to the parent.
489 */
490void
491sched_exit(struct ksegrp *kg, struct ksegrp *child)
492{
493 /* XXX Need something better here */
494 mtx_assert(&sched_lock, MA_OWNED);
495 kg->kg_slptime = child->kg_slptime;
496 sched_priority(kg);
497}
498
499void
500sched_clock(struct thread *td)
501{
502 struct kse *ke;
503 struct kse *nke;
504 struct kseq *kseq;
505 struct ksegrp *kg;
506
507
508 ke = td->td_kse;
509 kg = td->td_ksegrp;
510
511 mtx_assert(&sched_lock, MA_OWNED);
512 KASSERT((td != NULL), ("schedclock: null thread pointer"));
513
514 /* Adjust ticks for pctcpu */
515 ke->ke_ticks += 10000;
516 ke->ke_ltick = ticks;
517 /* Go up to one second beyond our max and then trim back down */
518 if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
519 sched_pctcpu_update(ke);
520
521 if (td->td_kse->ke_flags & KEF_IDLEKSE)
522 return;
523
524 /*
525 * Check for a higher priority task on the run queue. This can happen
526 * on SMP if another processor woke up a process on our runq.
527 */
528 kseq = KSEQ_SELF();
529 nke = runq_choose(kseq->ksq_curr);
530
531 if (nke && nke->ke_thread &&
532 nke->ke_thread->td_priority < td->td_priority)
533 ke->ke_flags |= KEF_NEEDRESCHED;
534 /*
535 * We used a tick, decrease our total sleep time. This decreases our
536 * "interactivity".
537 */
538 if (kg->kg_slptime)
539 kg->kg_slptime--;
540 /*
541 * We used up one time slice.
542 */
543 ke->ke_slice--;
544 /*
545 * We're out of time, recompute priorities and requeue
546 */
547 if (ke->ke_slice == 0) {
548 td->td_priority = sched_priority(kg);
549 ke->ke_slice = sched_slice(kg);
550 ke->ke_flags |= KEF_NEEDRESCHED;
551 ke->ke_runq = NULL;
552 }
553}
554
555int
556sched_runnable(void)
557{
558 struct kseq *kseq;
559
560 kseq = KSEQ_SELF();
561
562 if (kseq->ksq_load)
563 return (1);
564#ifdef SMP
565 /*
566 * For SMP we may steal other processor's KSEs. Just search until we
567 * verify that at least on other cpu has a runnable task.
568 */
569 if (smp_started) {
570 int i;
571
572 for (i = 0; i < mp_maxid; i++) {
573 if (CPU_ABSENT(i))
574 continue;
575 kseq = KSEQ_CPU(i);
576 if (kseq->ksq_load)
577 return (1);
578 }
579 }
580#endif
581 return (0);
582}
583
584void
585sched_userret(struct thread *td)
586{
587 struct ksegrp *kg;
588
589 kg = td->td_ksegrp;
590
591 if (td->td_priority != kg->kg_user_pri) {
592 mtx_lock_spin(&sched_lock);
593 td->td_priority = kg->kg_user_pri;
594 mtx_unlock_spin(&sched_lock);
595 }
596}
597
598struct kse *
599kseq_choose(struct kseq *kseq)
600{
601 struct kse *ke;
602 struct runq *swap;
603
604 if ((ke = runq_choose(kseq->ksq_curr)) == NULL) {
605 swap = kseq->ksq_curr;
606 kseq->ksq_curr = kseq->ksq_next;
607 kseq->ksq_next = swap;
608 ke = runq_choose(kseq->ksq_curr);
609 }
610
611 return (ke);
612}
613
614struct kse *
615sched_choose(void)
616{
617 struct kseq *kseq;
618 struct kse *ke;
619
620 kseq = KSEQ_SELF();
621 ke = kseq_choose(kseq);
622
623 if (ke) {
624 runq_remove(ke->ke_runq, ke);
625 kseq->ksq_load--;
626 ke->ke_state = KES_THREAD;
627 }
628
629#ifdef SMP
630 if (ke == NULL && smp_started) {
631 int load;
632 int cpu;
633 int i;
634
635 load = 0;
636 cpu = 0;
637
638 /*
639 * Find the cpu with the highest load and steal one proc.
640 */
641 for (i = 0; i < mp_maxid; i++) {
642 if (CPU_ABSENT(i))
643 continue;
644 kseq = KSEQ_CPU(i);
645 if (kseq->ksq_load > load) {
646 load = kseq->ksq_load;
647 cpu = i;
648 }
649 }
650 if (load) {
651 kseq = KSEQ_CPU(cpu);
652 ke = kseq_choose(kseq);
653 kseq->ksq_load--;
654 ke->ke_state = KES_THREAD;
655 runq_remove(ke->ke_runq, ke);
656 ke->ke_runq = NULL;
657 ke->ke_oncpu = PCPU_GET(cpuid);
658 }
659
660 }
661#endif
662 return (ke);
663}
664
665void
666sched_add(struct kse *ke)
667{
668
669 mtx_assert(&sched_lock, MA_OWNED);
670 KASSERT((ke->ke_thread != NULL), ("runq_add: No thread on KSE"));
671 KASSERT((ke->ke_thread->td_kse != NULL),
672 ("runq_add: No KSE on thread"));
673 KASSERT(ke->ke_state != KES_ONRUNQ,
674 ("runq_add: kse %p (%s) already in run queue", ke,
675 ke->ke_proc->p_comm));
676 KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
677 ("runq_add: process swapped out"));
678
679
680 if (ke->ke_runq == NULL) {
681 struct kseq *kseq;
682
683 kseq = KSEQ_CPU(ke->ke_oncpu);
684 if (SCHED_CURR(ke->ke_ksegrp))
685 ke->ke_runq = kseq->ksq_curr;
686 else
687 ke->ke_runq = kseq->ksq_next;
688 }
689 ke->ke_ksegrp->kg_runq_kses++;
690 ke->ke_state = KES_ONRUNQ;
691
692 runq_add(ke->ke_runq, ke);
693 KSEQ_CPU(ke->ke_oncpu)->ksq_load++;
694}
695
696void
697sched_rem(struct kse *ke)
698{
699 mtx_assert(&sched_lock, MA_OWNED);
700 /* KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue")); */
701
702 runq_remove(ke->ke_runq, ke);
703 ke->ke_runq = NULL;
704 ke->ke_state = KES_THREAD;
705 ke->ke_ksegrp->kg_runq_kses--;
706 KSEQ_CPU(ke->ke_oncpu)->ksq_load--;
707}
708
709fixpt_t
710sched_pctcpu(struct kse *ke)
711{
712 fixpt_t pctcpu;
27 */
28
29#include <sys/param.h>
30#include <sys/systm.h>
31#include <sys/kernel.h>
32#include <sys/ktr.h>
33#include <sys/lock.h>
34#include <sys/mutex.h>
35#include <sys/proc.h>
36#include <sys/sched.h>
37#include <sys/smp.h>
38#include <sys/sx.h>
39#include <sys/sysctl.h>
40#include <sys/sysproto.h>
41#include <sys/vmmeter.h>
42#ifdef DDB
43#include <ddb/ddb.h>
44#endif
45#ifdef KTRACE
46#include <sys/uio.h>
47#include <sys/ktrace.h>
48#endif
49
50#include <machine/cpu.h>
51
52/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
53/* XXX This is bogus compatability crap for ps */
54static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
55SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
56
57static void sched_setup(void *dummy);
58SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)
59
60/*
61 * These datastructures are allocated within their parent datastructure but
62 * are scheduler specific.
63 */
64
65struct ke_sched {
66 int ske_slice;
67 struct runq *ske_runq;
68 /* The following variables are only used for pctcpu calculation */
69 int ske_ltick; /* Last tick that we were running on */
70 int ske_ftick; /* First tick that we were running on */
71 int ske_ticks; /* Tick count */
72};
73#define ke_slice ke_sched->ske_slice
74#define ke_runq ke_sched->ske_runq
75#define ke_ltick ke_sched->ske_ltick
76#define ke_ftick ke_sched->ske_ftick
77#define ke_ticks ke_sched->ske_ticks
78
79struct kg_sched {
80 int skg_slptime;
81};
82#define kg_slptime kg_sched->skg_slptime
83
84struct td_sched {
85 int std_slptime;
86};
87#define td_slptime td_sched->std_slptime
88
89struct ke_sched ke_sched;
90struct kg_sched kg_sched;
91struct td_sched td_sched;
92
93struct ke_sched *kse0_sched = &ke_sched;
94struct kg_sched *ksegrp0_sched = &kg_sched;
95struct p_sched *proc0_sched = NULL;
96struct td_sched *thread0_sched = &td_sched;
97
98/*
99 * This priority range has 20 priorities on either end that are reachable
100 * only through nice values.
101 */
102#define SCHED_PRI_NRESV 40
103#define SCHED_PRI_RANGE ((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1) - \
104 SCHED_PRI_NRESV)
105
106/*
107 * These determine how sleep time effects the priority of a process.
108 *
109 * SLP_MAX: Maximum amount of accrued sleep time.
110 * SLP_SCALE: Scale the number of ticks slept across the dynamic priority
111 * range.
112 * SLP_TOPRI: Convert a number of ticks slept into a priority value.
113 * SLP_DECAY: Reduce the sleep time to 50% for every granted slice.
114 */
115#define SCHED_SLP_MAX (hz * 2)
116#define SCHED_SLP_SCALE(slp) (((slp) * SCHED_PRI_RANGE) / SCHED_SLP_MAX)
117#define SCHED_SLP_TOPRI(slp) (SCHED_PRI_RANGE - SCHED_SLP_SCALE((slp)) + \
118 SCHED_PRI_NRESV / 2)
119#define SCHED_SLP_DECAY(slp) ((slp) / 2) /* XXX Multiple kses break */
120
121/*
122 * These parameters and macros determine the size of the time slice that is
123 * granted to each thread.
124 *
125 * SLICE_MIN: Minimum time slice granted, in units of ticks.
126 * SLICE_MAX: Maximum time slice granted.
127 * SLICE_RANGE: Range of available time slices scaled by hz.
128 * SLICE_SCALE: The number slices granted per unit of pri or slp.
129 * PRI_TOSLICE: Compute a slice size that is proportional to the priority.
130 * SLP_TOSLICE: Compute a slice size that is inversely proportional to the
131 * amount of time slept. (smaller slices for interactive ksegs)
132 * PRI_COMP: This determines what fraction of the actual slice comes from
133 * the slice size computed from the priority.
134 * SLP_COMP: This determines what component of the actual slice comes from
135 * the slize size computed from the sleep time.
136 */
137#define SCHED_SLICE_MIN (hz / 100)
138#define SCHED_SLICE_MAX (hz / 10)
139#define SCHED_SLICE_RANGE (SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
140#define SCHED_SLICE_SCALE(val, max) (((val) * SCHED_SLICE_RANGE) / (max))
141#define SCHED_PRI_TOSLICE(pri) \
142 (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((pri), SCHED_PRI_RANGE))
143#define SCHED_SLP_TOSLICE(slp) \
144 (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((slp), SCHED_SLP_MAX))
145#define SCHED_SLP_COMP(slice) (((slice) / 5) * 3) /* 60% */
146#define SCHED_PRI_COMP(slice) (((slice) / 5) * 2) /* 40% */
147
148/*
149 * This macro determines whether or not the kse belongs on the current or
150 * next run queue.
151 */
152#define SCHED_CURR(kg) ((kg)->kg_slptime > (hz / 4) || \
153 (kg)->kg_pri_class != PRI_TIMESHARE)
154
155/*
156 * Cpu percentage computation macros and defines.
157 *
158 * SCHED_CPU_TIME: Number of seconds to average the cpu usage across.
159 * SCHED_CPU_TICKS: Number of hz ticks to average the cpu usage across.
160 */
161
162#define SCHED_CPU_TIME 60
163#define SCHED_CPU_TICKS (hz * SCHED_CPU_TIME)
164
165/*
166 * kseq - pair of runqs per processor
167 */
168
169struct kseq {
170 struct runq ksq_runqs[2];
171 struct runq *ksq_curr;
172 struct runq *ksq_next;
173 int ksq_load; /* Total runnable */
174};
175
176/*
177 * One kse queue per processor.
178 */
179#ifdef SMP
180struct kseq kseq_cpu[MAXCPU];
181#define KSEQ_SELF() (&kseq_cpu[PCPU_GET(cpuid)])
182#define KSEQ_CPU(x) (&kseq_cpu[(x)])
183#else
184struct kseq kseq_cpu;
185#define KSEQ_SELF() (&kseq_cpu)
186#define KSEQ_CPU(x) (&kseq_cpu)
187#endif
188
189static int sched_slice(struct ksegrp *kg);
190static int sched_priority(struct ksegrp *kg);
191void sched_pctcpu_update(struct kse *ke);
192int sched_pickcpu(void);
193
194static struct kse * kseq_choose(struct kseq *kseq);
195static void kseq_setup(struct kseq *kseq);
196
197static void
198kseq_setup(struct kseq *kseq)
199{
200 kseq->ksq_load = 0;
201 kseq->ksq_curr = &kseq->ksq_runqs[0];
202 kseq->ksq_next = &kseq->ksq_runqs[1];
203 runq_init(kseq->ksq_curr);
204 runq_init(kseq->ksq_next);
205}
206
207static void
208sched_setup(void *dummy)
209{
210 int i;
211
212 mtx_lock_spin(&sched_lock);
213 /* init kseqs */
214 for (i = 0; i < MAXCPU; i++)
215 kseq_setup(KSEQ_CPU(i));
216 mtx_unlock_spin(&sched_lock);
217}
218
219/*
220 * Scale the scheduling priority according to the "interactivity" of this
221 * process.
222 */
223static int
224sched_priority(struct ksegrp *kg)
225{
226 int pri;
227
228 if (kg->kg_pri_class != PRI_TIMESHARE)
229 return (kg->kg_user_pri);
230
231 pri = SCHED_SLP_TOPRI(kg->kg_slptime);
232 CTR2(KTR_RUNQ, "sched_priority: slptime: %d\tpri: %d",
233 kg->kg_slptime, pri);
234
235 pri += PRI_MIN_TIMESHARE;
236 pri += kg->kg_nice;
237
238 if (pri > PRI_MAX_TIMESHARE)
239 pri = PRI_MAX_TIMESHARE;
240 else if (pri < PRI_MIN_TIMESHARE)
241 pri = PRI_MIN_TIMESHARE;
242
243 kg->kg_user_pri = pri;
244
245 return (kg->kg_user_pri);
246}
247
248/*
249 * Calculate a time slice based on the process priority.
250 */
251static int
252sched_slice(struct ksegrp *kg)
253{
254 int pslice;
255 int sslice;
256 int slice;
257 int pri;
258
259 pri = kg->kg_user_pri;
260 pri -= PRI_MIN_TIMESHARE;
261 pslice = SCHED_PRI_TOSLICE(pri);
262 sslice = SCHED_SLP_TOSLICE(kg->kg_slptime);
263 slice = SCHED_SLP_COMP(sslice) + SCHED_PRI_COMP(pslice);
264 kg->kg_slptime = SCHED_SLP_DECAY(kg->kg_slptime);
265
266 CTR4(KTR_RUNQ,
267 "sched_slice: pri: %d\tsslice: %d\tpslice: %d\tslice: %d",
268 pri, sslice, pslice, slice);
269
270 if (slice < SCHED_SLICE_MIN)
271 slice = SCHED_SLICE_MIN;
272 else if (slice > SCHED_SLICE_MAX)
273 slice = SCHED_SLICE_MAX;
274
275 return (slice);
276}
277
278int
279sched_rr_interval(void)
280{
281 return (SCHED_SLICE_MAX);
282}
283
284void
285sched_pctcpu_update(struct kse *ke)
286{
287 /*
288 * Adjust counters and watermark for pctcpu calc.
289 */
290 ke->ke_ticks = (ke->ke_ticks / (ke->ke_ltick - ke->ke_ftick)) *
291 SCHED_CPU_TICKS;
292 ke->ke_ltick = ticks;
293 ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
294}
295
296#ifdef SMP
297int
298sched_pickcpu(void)
299{
300 struct kseq *kseq;
301 int load;
302 int cpu;
303 int i;
304
305 if (!smp_started)
306 return (0);
307
308 load = 0;
309 cpu = 0;
310
311 for (i = 0; i < mp_maxid; i++) {
312 if (CPU_ABSENT(i))
313 continue;
314 kseq = KSEQ_CPU(i);
315 if (kseq->ksq_load < load) {
316 cpu = i;
317 load = kseq->ksq_load;
318 }
319 }
320
321 CTR1(KTR_RUNQ, "sched_pickcpu: %d", cpu);
322 return (cpu);
323}
324#else
325int
326sched_pickcpu(void)
327{
328 return (0);
329}
330#endif
331
332void
333sched_prio(struct thread *td, u_char prio)
334{
335 struct kse *ke;
336 struct runq *rq;
337
338 mtx_assert(&sched_lock, MA_OWNED);
339 ke = td->td_kse;
340 td->td_priority = prio;
341
342 if (TD_ON_RUNQ(td)) {
343 rq = ke->ke_runq;
344
345 runq_remove(rq, ke);
346 runq_add(rq, ke);
347 }
348}
349
350void
351sched_switchout(struct thread *td)
352{
353 struct kse *ke;
354
355 mtx_assert(&sched_lock, MA_OWNED);
356
357 ke = td->td_kse;
358
359 td->td_last_kse = ke;
360 td->td_lastcpu = ke->ke_oncpu;
361 ke->ke_flags &= ~KEF_NEEDRESCHED;
362
363 if (TD_IS_RUNNING(td)) {
364 setrunqueue(td);
365 return;
366 } else
367 td->td_kse->ke_runq = NULL;
368
369 /*
370 * We will not be on the run queue. So we must be
371 * sleeping or similar.
372 */
373 if (td->td_proc->p_flag & P_KSES)
374 kse_reassign(ke);
375}
376
377void
378sched_switchin(struct thread *td)
379{
380 /* struct kse *ke = td->td_kse; */
381 mtx_assert(&sched_lock, MA_OWNED);
382
383 td->td_kse->ke_oncpu = PCPU_GET(cpuid); /* XXX */
384 if (td->td_ksegrp->kg_pri_class == PRI_TIMESHARE &&
385 td->td_priority != td->td_ksegrp->kg_user_pri)
386 curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
387}
388
389void
390sched_nice(struct ksegrp *kg, int nice)
391{
392 struct thread *td;
393
394 kg->kg_nice = nice;
395 sched_priority(kg);
396 FOREACH_THREAD_IN_GROUP(kg, td) {
397 td->td_kse->ke_flags |= KEF_NEEDRESCHED;
398 }
399}
400
401void
402sched_sleep(struct thread *td, u_char prio)
403{
404 mtx_assert(&sched_lock, MA_OWNED);
405
406 td->td_slptime = ticks;
407 td->td_priority = prio;
408
409 /*
410 * If this is an interactive task clear its queue so it moves back
411 * on to curr when it wakes up. Otherwise let it stay on the queue
412 * that it was assigned to.
413 */
414 if (SCHED_CURR(td->td_kse->ke_ksegrp))
415 td->td_kse->ke_runq = NULL;
416#if 0
417 if (td->td_priority < PZERO)
418 kseq_cpu[td->td_kse->ke_oncpu].ksq_load++;
419#endif
420}
421
422void
423sched_wakeup(struct thread *td)
424{
425 struct ksegrp *kg;
426
427 mtx_assert(&sched_lock, MA_OWNED);
428
429 /*
430 * Let the kseg know how long we slept for. This is because process
431 * interactivity behavior is modeled in the kseg.
432 */
433 kg = td->td_ksegrp;
434
435 if (td->td_slptime) {
436 kg->kg_slptime += ticks - td->td_slptime;
437 if (kg->kg_slptime > SCHED_SLP_MAX)
438 kg->kg_slptime = SCHED_SLP_MAX;
439 td->td_priority = sched_priority(kg);
440 }
441 td->td_slptime = 0;
442#if 0
443 if (td->td_priority < PZERO)
444 kseq_cpu[td->td_kse->ke_oncpu].ksq_load--;
445#endif
446 setrunqueue(td);
447 if (td->td_priority < curthread->td_priority)
448 curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
449}
450
451/*
452 * Penalize the parent for creating a new child and initialize the child's
453 * priority.
454 */
455void
456sched_fork(struct ksegrp *kg, struct ksegrp *child)
457{
458 struct kse *ckse;
459 struct kse *pkse;
460
461 mtx_assert(&sched_lock, MA_OWNED);
462 ckse = FIRST_KSE_IN_KSEGRP(child);
463 pkse = FIRST_KSE_IN_KSEGRP(kg);
464
465 /* XXX Need something better here */
466 child->kg_slptime = kg->kg_slptime;
467 child->kg_user_pri = kg->kg_user_pri;
468
469 if (pkse->ke_oncpu != PCPU_GET(cpuid)) {
470 printf("pkse->ke_oncpu = %d\n", pkse->ke_oncpu);
471 printf("cpuid = %d", PCPU_GET(cpuid));
472 Debugger("stop");
473 }
474
475 ckse->ke_slice = pkse->ke_slice;
476 ckse->ke_oncpu = pkse->ke_oncpu; /* sched_pickcpu(); */
477 ckse->ke_runq = NULL;
478 /*
479 * Claim that we've been running for one second for statistical
480 * purposes.
481 */
482 ckse->ke_ticks = 0;
483 ckse->ke_ltick = ticks;
484 ckse->ke_ftick = ticks - hz;
485}
486
487/*
488 * Return some of the child's priority and interactivity to the parent.
489 */
490void
491sched_exit(struct ksegrp *kg, struct ksegrp *child)
492{
493 /* XXX Need something better here */
494 mtx_assert(&sched_lock, MA_OWNED);
495 kg->kg_slptime = child->kg_slptime;
496 sched_priority(kg);
497}
498
499void
500sched_clock(struct thread *td)
501{
502 struct kse *ke;
503 struct kse *nke;
504 struct kseq *kseq;
505 struct ksegrp *kg;
506
507
508 ke = td->td_kse;
509 kg = td->td_ksegrp;
510
511 mtx_assert(&sched_lock, MA_OWNED);
512 KASSERT((td != NULL), ("schedclock: null thread pointer"));
513
514 /* Adjust ticks for pctcpu */
515 ke->ke_ticks += 10000;
516 ke->ke_ltick = ticks;
517 /* Go up to one second beyond our max and then trim back down */
518 if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
519 sched_pctcpu_update(ke);
520
521 if (td->td_kse->ke_flags & KEF_IDLEKSE)
522 return;
523
524 /*
525 * Check for a higher priority task on the run queue. This can happen
526 * on SMP if another processor woke up a process on our runq.
527 */
528 kseq = KSEQ_SELF();
529 nke = runq_choose(kseq->ksq_curr);
530
531 if (nke && nke->ke_thread &&
532 nke->ke_thread->td_priority < td->td_priority)
533 ke->ke_flags |= KEF_NEEDRESCHED;
534 /*
535 * We used a tick, decrease our total sleep time. This decreases our
536 * "interactivity".
537 */
538 if (kg->kg_slptime)
539 kg->kg_slptime--;
540 /*
541 * We used up one time slice.
542 */
543 ke->ke_slice--;
544 /*
545 * We're out of time, recompute priorities and requeue
546 */
547 if (ke->ke_slice == 0) {
548 td->td_priority = sched_priority(kg);
549 ke->ke_slice = sched_slice(kg);
550 ke->ke_flags |= KEF_NEEDRESCHED;
551 ke->ke_runq = NULL;
552 }
553}
554
555int
556sched_runnable(void)
557{
558 struct kseq *kseq;
559
560 kseq = KSEQ_SELF();
561
562 if (kseq->ksq_load)
563 return (1);
564#ifdef SMP
565 /*
566 * For SMP we may steal other processor's KSEs. Just search until we
567 * verify that at least on other cpu has a runnable task.
568 */
569 if (smp_started) {
570 int i;
571
572 for (i = 0; i < mp_maxid; i++) {
573 if (CPU_ABSENT(i))
574 continue;
575 kseq = KSEQ_CPU(i);
576 if (kseq->ksq_load)
577 return (1);
578 }
579 }
580#endif
581 return (0);
582}
583
584void
585sched_userret(struct thread *td)
586{
587 struct ksegrp *kg;
588
589 kg = td->td_ksegrp;
590
591 if (td->td_priority != kg->kg_user_pri) {
592 mtx_lock_spin(&sched_lock);
593 td->td_priority = kg->kg_user_pri;
594 mtx_unlock_spin(&sched_lock);
595 }
596}
597
598struct kse *
599kseq_choose(struct kseq *kseq)
600{
601 struct kse *ke;
602 struct runq *swap;
603
604 if ((ke = runq_choose(kseq->ksq_curr)) == NULL) {
605 swap = kseq->ksq_curr;
606 kseq->ksq_curr = kseq->ksq_next;
607 kseq->ksq_next = swap;
608 ke = runq_choose(kseq->ksq_curr);
609 }
610
611 return (ke);
612}
613
614struct kse *
615sched_choose(void)
616{
617 struct kseq *kseq;
618 struct kse *ke;
619
620 kseq = KSEQ_SELF();
621 ke = kseq_choose(kseq);
622
623 if (ke) {
624 runq_remove(ke->ke_runq, ke);
625 kseq->ksq_load--;
626 ke->ke_state = KES_THREAD;
627 }
628
629#ifdef SMP
630 if (ke == NULL && smp_started) {
631 int load;
632 int cpu;
633 int i;
634
635 load = 0;
636 cpu = 0;
637
638 /*
639 * Find the cpu with the highest load and steal one proc.
640 */
641 for (i = 0; i < mp_maxid; i++) {
642 if (CPU_ABSENT(i))
643 continue;
644 kseq = KSEQ_CPU(i);
645 if (kseq->ksq_load > load) {
646 load = kseq->ksq_load;
647 cpu = i;
648 }
649 }
650 if (load) {
651 kseq = KSEQ_CPU(cpu);
652 ke = kseq_choose(kseq);
653 kseq->ksq_load--;
654 ke->ke_state = KES_THREAD;
655 runq_remove(ke->ke_runq, ke);
656 ke->ke_runq = NULL;
657 ke->ke_oncpu = PCPU_GET(cpuid);
658 }
659
660 }
661#endif
662 return (ke);
663}
664
665void
666sched_add(struct kse *ke)
667{
668
669 mtx_assert(&sched_lock, MA_OWNED);
670 KASSERT((ke->ke_thread != NULL), ("runq_add: No thread on KSE"));
671 KASSERT((ke->ke_thread->td_kse != NULL),
672 ("runq_add: No KSE on thread"));
673 KASSERT(ke->ke_state != KES_ONRUNQ,
674 ("runq_add: kse %p (%s) already in run queue", ke,
675 ke->ke_proc->p_comm));
676 KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
677 ("runq_add: process swapped out"));
678
679
680 if (ke->ke_runq == NULL) {
681 struct kseq *kseq;
682
683 kseq = KSEQ_CPU(ke->ke_oncpu);
684 if (SCHED_CURR(ke->ke_ksegrp))
685 ke->ke_runq = kseq->ksq_curr;
686 else
687 ke->ke_runq = kseq->ksq_next;
688 }
689 ke->ke_ksegrp->kg_runq_kses++;
690 ke->ke_state = KES_ONRUNQ;
691
692 runq_add(ke->ke_runq, ke);
693 KSEQ_CPU(ke->ke_oncpu)->ksq_load++;
694}
695
696void
697sched_rem(struct kse *ke)
698{
699 mtx_assert(&sched_lock, MA_OWNED);
700 /* KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue")); */
701
702 runq_remove(ke->ke_runq, ke);
703 ke->ke_runq = NULL;
704 ke->ke_state = KES_THREAD;
705 ke->ke_ksegrp->kg_runq_kses--;
706 KSEQ_CPU(ke->ke_oncpu)->ksq_load--;
707}
708
709fixpt_t
710sched_pctcpu(struct kse *ke)
711{
712 fixpt_t pctcpu;
713 int realstathz;
713
714 pctcpu = 0;
714
715 pctcpu = 0;
716 realstathz = stathz ? stathz : hz;
715
716 if (ke->ke_ticks) {
717 int rtick;
718
719 /* Update to account for time potentially spent sleeping */
720 ke->ke_ltick = ticks;
721 sched_pctcpu_update(ke);
722
723 /* How many rtick per second ? */
724 rtick = ke->ke_ticks / (SCHED_CPU_TIME * 10000);
717
718 if (ke->ke_ticks) {
719 int rtick;
720
721 /* Update to account for time potentially spent sleeping */
722 ke->ke_ltick = ticks;
723 sched_pctcpu_update(ke);
724
725 /* How many rtick per second ? */
726 rtick = ke->ke_ticks / (SCHED_CPU_TIME * 10000);
725 pctcpu = (FSCALE * ((FSCALE * rtick)/stathz)) >> FSHIFT;
727 pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
726 }
727
728 ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
729
730 return (pctcpu);
731}
732
733int
734sched_sizeof_kse(void)
735{
736 return (sizeof(struct kse) + sizeof(struct ke_sched));
737}
738
739int
740sched_sizeof_ksegrp(void)
741{
742 return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
743}
744
745int
746sched_sizeof_proc(void)
747{
748 return (sizeof(struct proc));
749}
750
751int
752sched_sizeof_thread(void)
753{
754 return (sizeof(struct thread) + sizeof(struct td_sched));
755}
728 }
729
730 ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;
731
732 return (pctcpu);
733}
734
735int
736sched_sizeof_kse(void)
737{
738 return (sizeof(struct kse) + sizeof(struct ke_sched));
739}
740
741int
742sched_sizeof_ksegrp(void)
743{
744 return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
745}
746
747int
748sched_sizeof_proc(void)
749{
750 return (sizeof(struct proc));
751}
752
753int
754sched_sizeof_thread(void)
755{
756 return (sizeof(struct thread) + sizeof(struct td_sched));
757}