Deleted Added
full compact
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/kern_time.c 225617 2011-09-16 13:58:51Z kmacy $");
33__FBSDID("$FreeBSD: head/sys/kern/kern_time.c 239347 2012-08-17 02:26:31Z davidxu $");
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/limits.h>
38#include <sys/clock.h>
39#include <sys/lock.h>
40#include <sys/mutex.h>
41#include <sys/sysproto.h>
42#include <sys/eventhandler.h>
43#include <sys/resourcevar.h>
44#include <sys/signalvar.h>
45#include <sys/kernel.h>
46#include <sys/syscallsubr.h>
47#include <sys/sysctl.h>
48#include <sys/sysent.h>
49#include <sys/priv.h>
50#include <sys/proc.h>
51#include <sys/posix4.h>
52#include <sys/time.h>
53#include <sys/timers.h>
54#include <sys/timetc.h>
55#include <sys/vnode.h>
56
57#include <vm/vm.h>
58#include <vm/vm_extern.h>
59
60#define MAX_CLOCKS (CLOCK_MONOTONIC+1)
61#define CPUCLOCK_BIT 0x80000000
62#define CPUCLOCK_PROCESS_BIT 0x40000000
63#define CPUCLOCK_ID_MASK (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT))
64#define MAKE_THREAD_CPUCLOCK(tid) (CPUCLOCK_BIT|(tid))
65#define MAKE_PROCESS_CPUCLOCK(pid) \
66 (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid))
67
68static struct kclock posix_clocks[MAX_CLOCKS];
69static uma_zone_t itimer_zone = NULL;
70
71/*
72 * Time of day and interval timer support.
73 *
74 * These routines provide the kernel entry points to get and set
75 * the time-of-day and per-process interval timers. Subroutines
76 * here provide support for adding and subtracting timeval structures
77 * and decrementing interval timers, optionally reloading the interval
78 * timers when they expire.
79 */
80
81static int settime(struct thread *, struct timeval *);
82static void timevalfix(struct timeval *);
83
84static void itimer_start(void);
85static int itimer_init(void *, int, int);
86static void itimer_fini(void *, int);
87static void itimer_enter(struct itimer *);
88static void itimer_leave(struct itimer *);
89static struct itimer *itimer_find(struct proc *, int);
90static void itimers_alloc(struct proc *);
91static void itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp);
92static void itimers_event_hook_exit(void *arg, struct proc *p);
93static int realtimer_create(struct itimer *);
94static int realtimer_gettime(struct itimer *, struct itimerspec *);
95static int realtimer_settime(struct itimer *, int,
96 struct itimerspec *, struct itimerspec *);
97static int realtimer_delete(struct itimer *);
98static void realtimer_clocktime(clockid_t, struct timespec *);
99static void realtimer_expire(void *);
100static int kern_timer_create(struct thread *, clockid_t,
101 struct sigevent *, int *, int);
102static int kern_timer_delete(struct thread *, int);
103
104int register_posix_clock(int, struct kclock *);
105void itimer_fire(struct itimer *it);
106int itimespecfix(struct timespec *ts);
107
108#define CLOCK_CALL(clock, call, arglist) \
109 ((*posix_clocks[clock].call) arglist)
110
111SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
112
113
114static int
115settime(struct thread *td, struct timeval *tv)
116{
117 struct timeval delta, tv1, tv2;
118 static struct timeval maxtime, laststep;
119 struct timespec ts;
120 int s;
121
122 s = splclock();
123 microtime(&tv1);
124 delta = *tv;
125 timevalsub(&delta, &tv1);
126
127 /*
128 * If the system is secure, we do not allow the time to be
129 * set to a value earlier than 1 second less than the highest
130 * time we have yet seen. The worst a miscreant can do in
131 * this circumstance is "freeze" time. He couldn't go
132 * back to the past.
133 *
134 * We similarly do not allow the clock to be stepped more
135 * than one second, nor more than once per second. This allows
136 * a miscreant to make the clock march double-time, but no worse.
137 */
138 if (securelevel_gt(td->td_ucred, 1) != 0) {
139 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
140 /*
141 * Update maxtime to latest time we've seen.
142 */
143 if (tv1.tv_sec > maxtime.tv_sec)
144 maxtime = tv1;
145 tv2 = *tv;
146 timevalsub(&tv2, &maxtime);
147 if (tv2.tv_sec < -1) {
148 tv->tv_sec = maxtime.tv_sec - 1;
149 printf("Time adjustment clamped to -1 second\n");
150 }
151 } else {
152 if (tv1.tv_sec == laststep.tv_sec) {
153 splx(s);
154 return (EPERM);
155 }
156 if (delta.tv_sec > 1) {
157 tv->tv_sec = tv1.tv_sec + 1;
158 printf("Time adjustment clamped to +1 second\n");
159 }
160 laststep = *tv;
161 }
162 }
163
164 ts.tv_sec = tv->tv_sec;
165 ts.tv_nsec = tv->tv_usec * 1000;
166 mtx_lock(&Giant);
167 tc_setclock(&ts);
168 resettodr();
169 mtx_unlock(&Giant);
170 return (0);
171}
172
173#ifndef _SYS_SYSPROTO_H_
174struct clock_getcpuclockid2_args {
175 id_t id;
176 int which,
177 clockid_t *clock_id;
178};
179#endif
180/* ARGSUSED */
181int
182sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap)
183{
184 clockid_t clk_id;
185 struct proc *p;
186 pid_t pid;
187 lwpid_t tid;
188 int error;
189
190 switch(uap->which) {
191 case CPUCLOCK_WHICH_PID:
192 if (uap->id != 0) {
193 p = pfind(uap->id);
194 if (p == NULL)
195 return (ESRCH);
196 error = p_cansee(td, p);
197 PROC_UNLOCK(p);
198 if (error)
199 return (error);
200 pid = uap->id;
201 } else {
202 pid = td->td_proc->p_pid;
203 }
204 clk_id = MAKE_PROCESS_CPUCLOCK(pid);
205 break;
206 case CPUCLOCK_WHICH_TID:
207 if (uap->id == 0)
208 tid = td->td_tid;
209 else
210 tid = uap->id;
211 clk_id = MAKE_THREAD_CPUCLOCK(tid);
212 break;
213 default:
214 return (EINVAL);
215 }
216 return (copyout(&clk_id, uap->clock_id, sizeof(clockid_t)));
217}
218
219#ifndef _SYS_SYSPROTO_H_
220struct clock_gettime_args {
221 clockid_t clock_id;
222 struct timespec *tp;
223};
224#endif
225/* ARGSUSED */
226int
227sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
228{
229 struct timespec ats;
230 int error;
231
232 error = kern_clock_gettime(td, uap->clock_id, &ats);
233 if (error == 0)
234 error = copyout(&ats, uap->tp, sizeof(ats));
235
236 return (error);
237}
238
239static inline void
240cputick2timespec(uint64_t runtime, struct timespec *ats)
241{
242 runtime = cputick2usec(runtime);
243 ats->tv_sec = runtime / 1000000;
244 ats->tv_nsec = runtime % 1000000 * 1000;
245}
246
247static void
248get_thread_cputime(struct thread *targettd, struct timespec *ats)
249{
250 uint64_t runtime, curtime, switchtime;
251
252 if (targettd == NULL) { /* current thread */
253 critical_enter();
254 switchtime = PCPU_GET(switchtime);
255 curtime = cpu_ticks();
256 runtime = curthread->td_runtime;
257 critical_exit();
258 runtime += curtime - switchtime;
259 } else {
260 thread_lock(targettd);
261 runtime = targettd->td_runtime;
262 thread_unlock(targettd);
263 }
264 cputick2timespec(runtime, ats);
265}
266
267static void
268get_process_cputime(struct proc *targetp, struct timespec *ats)
269{
270 uint64_t runtime;
271 struct rusage ru;
272
273 PROC_SLOCK(targetp);
274 rufetch(targetp, &ru);
275 runtime = targetp->p_rux.rux_runtime;
276 PROC_SUNLOCK(targetp);
277 cputick2timespec(runtime, ats);
278}
279
280static int
281get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
282{
283 struct proc *p, *p2;
284 struct thread *td2;
285 lwpid_t tid;
286 pid_t pid;
287 int error;
288
289 p = td->td_proc;
290 if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) {
291 tid = clock_id & CPUCLOCK_ID_MASK;
292 td2 = tdfind(tid, p->p_pid);
293 if (td2 == NULL)
294 return (EINVAL);
295 get_thread_cputime(td2, ats);
296 PROC_UNLOCK(td2->td_proc);
297 } else {
298 pid = clock_id & CPUCLOCK_ID_MASK;
299 p2 = pfind(pid);
300 if (p2 == NULL)
301 return (EINVAL);
302 error = p_cansee(td, p2);
303 if (error) {
304 PROC_UNLOCK(p2);
305 return (EINVAL);
306 }
307 get_process_cputime(p2, ats);
308 PROC_UNLOCK(p2);
309 }
310 return (0);
311}
312
313int
314kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
315{
316 struct timeval sys, user;
317 struct proc *p;
192 uint64_t runtime, curtime, switchtime;
318
319 p = td->td_proc;
320 switch (clock_id) {
321 case CLOCK_REALTIME: /* Default to precise. */
322 case CLOCK_REALTIME_PRECISE:
323 nanotime(ats);
324 break;
325 case CLOCK_REALTIME_FAST:
326 getnanotime(ats);
327 break;
328 case CLOCK_VIRTUAL:
329 PROC_LOCK(p);
330 PROC_SLOCK(p);
331 calcru(p, &user, &sys);
332 PROC_SUNLOCK(p);
333 PROC_UNLOCK(p);
334 TIMEVAL_TO_TIMESPEC(&user, ats);
335 break;
336 case CLOCK_PROF:
337 PROC_LOCK(p);
338 PROC_SLOCK(p);
339 calcru(p, &user, &sys);
340 PROC_SUNLOCK(p);
341 PROC_UNLOCK(p);
342 timevaladd(&user, &sys);
343 TIMEVAL_TO_TIMESPEC(&user, ats);
344 break;
345 case CLOCK_MONOTONIC: /* Default to precise. */
346 case CLOCK_MONOTONIC_PRECISE:
347 case CLOCK_UPTIME:
348 case CLOCK_UPTIME_PRECISE:
349 nanouptime(ats);
350 break;
351 case CLOCK_UPTIME_FAST:
352 case CLOCK_MONOTONIC_FAST:
353 getnanouptime(ats);
354 break;
355 case CLOCK_SECOND:
356 ats->tv_sec = time_second;
357 ats->tv_nsec = 0;
358 break;
359 case CLOCK_THREAD_CPUTIME_ID:
235 critical_enter();
236 switchtime = PCPU_GET(switchtime);
237 curtime = cpu_ticks();
238 runtime = td->td_runtime;
239 critical_exit();
240 runtime = cputick2usec(runtime + curtime - switchtime);
241 ats->tv_sec = runtime / 1000000;
242 ats->tv_nsec = runtime % 1000000 * 1000;
360 get_thread_cputime(NULL, ats);
361 break;
362 case CLOCK_PROCESS_CPUTIME_ID:
363 PROC_LOCK(p);
364 get_process_cputime(p, ats);
365 PROC_UNLOCK(p);
366 break;
367 default:
245 return (EINVAL);
368 if ((int)clock_id >= 0)
369 return (EINVAL);
370 return (get_cputime(td, clock_id, ats));
371 }
372 return (0);
373}
374
375#ifndef _SYS_SYSPROTO_H_
376struct clock_settime_args {
377 clockid_t clock_id;
378 const struct timespec *tp;
379};
380#endif
381/* ARGSUSED */
382int
383sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
384{
385 struct timespec ats;
386 int error;
387
388 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
389 return (error);
390 return (kern_clock_settime(td, uap->clock_id, &ats));
391}
392
393int
394kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
395{
396 struct timeval atv;
397 int error;
398
399 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
400 return (error);
401 if (clock_id != CLOCK_REALTIME)
402 return (EINVAL);
403 if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
404 return (EINVAL);
405 /* XXX Don't convert nsec->usec and back */
406 TIMESPEC_TO_TIMEVAL(&atv, ats);
407 error = settime(td, &atv);
408 return (error);
409}
410
411#ifndef _SYS_SYSPROTO_H_
412struct clock_getres_args {
413 clockid_t clock_id;
414 struct timespec *tp;
415};
416#endif
417int
418sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
419{
420 struct timespec ts;
421 int error;
422
423 if (uap->tp == NULL)
424 return (0);
425
426 error = kern_clock_getres(td, uap->clock_id, &ts);
427 if (error == 0)
428 error = copyout(&ts, uap->tp, sizeof(ts));
429 return (error);
430}
431
432int
433kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
434{
435
436 ts->tv_sec = 0;
437 switch (clock_id) {
438 case CLOCK_REALTIME:
439 case CLOCK_REALTIME_FAST:
440 case CLOCK_REALTIME_PRECISE:
441 case CLOCK_MONOTONIC:
442 case CLOCK_MONOTONIC_FAST:
443 case CLOCK_MONOTONIC_PRECISE:
444 case CLOCK_UPTIME:
445 case CLOCK_UPTIME_FAST:
446 case CLOCK_UPTIME_PRECISE:
447 /*
448 * Round up the result of the division cheaply by adding 1.
449 * Rounding up is especially important if rounding down
450 * would give 0. Perfect rounding is unimportant.
451 */
452 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
453 break;
454 case CLOCK_VIRTUAL:
455 case CLOCK_PROF:
456 /* Accurately round up here because we can do so cheaply. */
457 ts->tv_nsec = (1000000000 + hz - 1) / hz;
458 break;
459 case CLOCK_SECOND:
460 ts->tv_sec = 1;
461 ts->tv_nsec = 0;
462 break;
463 case CLOCK_THREAD_CPUTIME_ID:
464 case CLOCK_PROCESS_CPUTIME_ID:
465 cputime:
466 /* sync with cputick2usec */
467 ts->tv_nsec = 1000000 / cpu_tickrate();
468 if (ts->tv_nsec == 0)
469 ts->tv_nsec = 1000;
470 break;
471 default:
472 if ((int)clock_id < 0)
473 goto cputime;
474 return (EINVAL);
475 }
476 return (0);
477}
478
479static int nanowait;
480
481int
482kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
483{
484 struct timespec ts, ts2, ts3;
485 struct timeval tv;
486 int error;
487
488 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
489 return (EINVAL);
490 if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
491 return (0);
492 getnanouptime(&ts);
493 timespecadd(&ts, rqt);
494 TIMESPEC_TO_TIMEVAL(&tv, rqt);
495 for (;;) {
496 error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
497 tvtohz(&tv));
498 getnanouptime(&ts2);
499 if (error != EWOULDBLOCK) {
500 if (error == ERESTART)
501 error = EINTR;
502 if (rmt != NULL) {
503 timespecsub(&ts, &ts2);
504 if (ts.tv_sec < 0)
505 timespecclear(&ts);
506 *rmt = ts;
507 }
508 return (error);
509 }
510 if (timespeccmp(&ts2, &ts, >=))
511 return (0);
512 ts3 = ts;
513 timespecsub(&ts3, &ts2);
514 TIMESPEC_TO_TIMEVAL(&tv, &ts3);
515 }
516}
517
518#ifndef _SYS_SYSPROTO_H_
519struct nanosleep_args {
520 struct timespec *rqtp;
521 struct timespec *rmtp;
522};
523#endif
524/* ARGSUSED */
525int
526sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
527{
528 struct timespec rmt, rqt;
529 int error;
530
531 error = copyin(uap->rqtp, &rqt, sizeof(rqt));
532 if (error)
533 return (error);
534
535 if (uap->rmtp &&
536 !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
537 return (EFAULT);
538 error = kern_nanosleep(td, &rqt, &rmt);
539 if (error && uap->rmtp) {
540 int error2;
541
542 error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
543 if (error2)
544 error = error2;
545 }
546 return (error);
547}
548
549#ifndef _SYS_SYSPROTO_H_
550struct gettimeofday_args {
551 struct timeval *tp;
552 struct timezone *tzp;
553};
554#endif
555/* ARGSUSED */
556int
557sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
558{
559 struct timeval atv;
560 struct timezone rtz;
561 int error = 0;
562
563 if (uap->tp) {
564 microtime(&atv);
565 error = copyout(&atv, uap->tp, sizeof (atv));
566 }
567 if (error == 0 && uap->tzp != NULL) {
568 rtz.tz_minuteswest = tz_minuteswest;
569 rtz.tz_dsttime = tz_dsttime;
570 error = copyout(&rtz, uap->tzp, sizeof (rtz));
571 }
572 return (error);
573}
574
575#ifndef _SYS_SYSPROTO_H_
576struct settimeofday_args {
577 struct timeval *tv;
578 struct timezone *tzp;
579};
580#endif
581/* ARGSUSED */
582int
583sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
584{
585 struct timeval atv, *tvp;
586 struct timezone atz, *tzp;
587 int error;
588
589 if (uap->tv) {
590 error = copyin(uap->tv, &atv, sizeof(atv));
591 if (error)
592 return (error);
593 tvp = &atv;
594 } else
595 tvp = NULL;
596 if (uap->tzp) {
597 error = copyin(uap->tzp, &atz, sizeof(atz));
598 if (error)
599 return (error);
600 tzp = &atz;
601 } else
602 tzp = NULL;
603 return (kern_settimeofday(td, tvp, tzp));
604}
605
606int
607kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
608{
609 int error;
610
611 error = priv_check(td, PRIV_SETTIMEOFDAY);
612 if (error)
613 return (error);
614 /* Verify all parameters before changing time. */
615 if (tv) {
616 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
617 return (EINVAL);
618 error = settime(td, tv);
619 }
620 if (tzp && error == 0) {
621 tz_minuteswest = tzp->tz_minuteswest;
622 tz_dsttime = tzp->tz_dsttime;
623 }
624 return (error);
625}
626
627/*
628 * Get value of an interval timer. The process virtual and profiling virtual
629 * time timers are kept in the p_stats area, since they can be swapped out.
630 * These are kept internally in the way they are specified externally: in
631 * time until they expire.
632 *
633 * The real time interval timer is kept in the process table slot for the
634 * process, and its value (it_value) is kept as an absolute time rather than
635 * as a delta, so that it is easy to keep periodic real-time signals from
636 * drifting.
637 *
638 * Virtual time timers are processed in the hardclock() routine of
639 * kern_clock.c. The real time timer is processed by a timeout routine,
640 * called from the softclock() routine. Since a callout may be delayed in
641 * real time due to interrupt processing in the system, it is possible for
642 * the real time timeout routine (realitexpire, given below), to be delayed
643 * in real time past when it is supposed to occur. It does not suffice,
644 * therefore, to reload the real timer .it_value from the real time timers
645 * .it_interval. Rather, we compute the next time in absolute time the timer
646 * should go off.
647 */
648#ifndef _SYS_SYSPROTO_H_
649struct getitimer_args {
650 u_int which;
651 struct itimerval *itv;
652};
653#endif
654int
655sys_getitimer(struct thread *td, struct getitimer_args *uap)
656{
657 struct itimerval aitv;
658 int error;
659
660 error = kern_getitimer(td, uap->which, &aitv);
661 if (error != 0)
662 return (error);
663 return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
664}
665
666int
667kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
668{
669 struct proc *p = td->td_proc;
670 struct timeval ctv;
671
672 if (which > ITIMER_PROF)
673 return (EINVAL);
674
675 if (which == ITIMER_REAL) {
676 /*
677 * Convert from absolute to relative time in .it_value
678 * part of real time timer. If time for real time timer
679 * has passed return 0, else return difference between
680 * current time and time for the timer to go off.
681 */
682 PROC_LOCK(p);
683 *aitv = p->p_realtimer;
684 PROC_UNLOCK(p);
685 if (timevalisset(&aitv->it_value)) {
686 getmicrouptime(&ctv);
687 if (timevalcmp(&aitv->it_value, &ctv, <))
688 timevalclear(&aitv->it_value);
689 else
690 timevalsub(&aitv->it_value, &ctv);
691 }
692 } else {
693 PROC_SLOCK(p);
694 *aitv = p->p_stats->p_timer[which];
695 PROC_SUNLOCK(p);
696 }
697 return (0);
698}
699
700#ifndef _SYS_SYSPROTO_H_
701struct setitimer_args {
702 u_int which;
703 struct itimerval *itv, *oitv;
704};
705#endif
706int
707sys_setitimer(struct thread *td, struct setitimer_args *uap)
708{
709 struct itimerval aitv, oitv;
710 int error;
711
712 if (uap->itv == NULL) {
713 uap->itv = uap->oitv;
714 return (sys_getitimer(td, (struct getitimer_args *)uap));
715 }
716
717 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
718 return (error);
719 error = kern_setitimer(td, uap->which, &aitv, &oitv);
720 if (error != 0 || uap->oitv == NULL)
721 return (error);
722 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
723}
724
725int
726kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
727 struct itimerval *oitv)
728{
729 struct proc *p = td->td_proc;
730 struct timeval ctv;
731
732 if (aitv == NULL)
733 return (kern_getitimer(td, which, oitv));
734
735 if (which > ITIMER_PROF)
736 return (EINVAL);
737 if (itimerfix(&aitv->it_value))
738 return (EINVAL);
739 if (!timevalisset(&aitv->it_value))
740 timevalclear(&aitv->it_interval);
741 else if (itimerfix(&aitv->it_interval))
742 return (EINVAL);
743
744 if (which == ITIMER_REAL) {
745 PROC_LOCK(p);
746 if (timevalisset(&p->p_realtimer.it_value))
747 callout_stop(&p->p_itcallout);
748 getmicrouptime(&ctv);
749 if (timevalisset(&aitv->it_value)) {
750 callout_reset(&p->p_itcallout, tvtohz(&aitv->it_value),
751 realitexpire, p);
752 timevaladd(&aitv->it_value, &ctv);
753 }
754 *oitv = p->p_realtimer;
755 p->p_realtimer = *aitv;
756 PROC_UNLOCK(p);
757 if (timevalisset(&oitv->it_value)) {
758 if (timevalcmp(&oitv->it_value, &ctv, <))
759 timevalclear(&oitv->it_value);
760 else
761 timevalsub(&oitv->it_value, &ctv);
762 }
763 } else {
764 PROC_SLOCK(p);
765 *oitv = p->p_stats->p_timer[which];
766 p->p_stats->p_timer[which] = *aitv;
767 PROC_SUNLOCK(p);
768 }
769 return (0);
770}
771
772/*
773 * Real interval timer expired:
774 * send process whose timer expired an alarm signal.
775 * If time is not set up to reload, then just return.
776 * Else compute next time timer should go off which is > current time.
777 * This is where delay in processing this timeout causes multiple
778 * SIGALRM calls to be compressed into one.
779 * tvtohz() always adds 1 to allow for the time until the next clock
780 * interrupt being strictly less than 1 clock tick, but we don't want
781 * that here since we want to appear to be in sync with the clock
782 * interrupt even when we're delayed.
783 */
784void
785realitexpire(void *arg)
786{
787 struct proc *p;
788 struct timeval ctv, ntv;
789
790 p = (struct proc *)arg;
791 PROC_LOCK(p);
792 kern_psignal(p, SIGALRM);
793 if (!timevalisset(&p->p_realtimer.it_interval)) {
794 timevalclear(&p->p_realtimer.it_value);
795 if (p->p_flag & P_WEXIT)
796 wakeup(&p->p_itcallout);
797 PROC_UNLOCK(p);
798 return;
799 }
800 for (;;) {
801 timevaladd(&p->p_realtimer.it_value,
802 &p->p_realtimer.it_interval);
803 getmicrouptime(&ctv);
804 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
805 ntv = p->p_realtimer.it_value;
806 timevalsub(&ntv, &ctv);
807 callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
808 realitexpire, p);
809 PROC_UNLOCK(p);
810 return;
811 }
812 }
813 /*NOTREACHED*/
814}
815
816/*
817 * Check that a proposed value to load into the .it_value or
818 * .it_interval part of an interval timer is acceptable, and
819 * fix it to have at least minimal value (i.e. if it is less
820 * than the resolution of the clock, round it up.)
821 */
822int
823itimerfix(struct timeval *tv)
824{
825
826 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
827 return (EINVAL);
828 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
829 tv->tv_usec = tick;
830 return (0);
831}
832
833/*
834 * Decrement an interval timer by a specified number
835 * of microseconds, which must be less than a second,
836 * i.e. < 1000000. If the timer expires, then reload
837 * it. In this case, carry over (usec - old value) to
838 * reduce the value reloaded into the timer so that
839 * the timer does not drift. This routine assumes
840 * that it is called in a context where the timers
841 * on which it is operating cannot change in value.
842 */
843int
844itimerdecr(struct itimerval *itp, int usec)
845{
846
847 if (itp->it_value.tv_usec < usec) {
848 if (itp->it_value.tv_sec == 0) {
849 /* expired, and already in next interval */
850 usec -= itp->it_value.tv_usec;
851 goto expire;
852 }
853 itp->it_value.tv_usec += 1000000;
854 itp->it_value.tv_sec--;
855 }
856 itp->it_value.tv_usec -= usec;
857 usec = 0;
858 if (timevalisset(&itp->it_value))
859 return (1);
860 /* expired, exactly at end of interval */
861expire:
862 if (timevalisset(&itp->it_interval)) {
863 itp->it_value = itp->it_interval;
864 itp->it_value.tv_usec -= usec;
865 if (itp->it_value.tv_usec < 0) {
866 itp->it_value.tv_usec += 1000000;
867 itp->it_value.tv_sec--;
868 }
869 } else
870 itp->it_value.tv_usec = 0; /* sec is already 0 */
871 return (0);
872}
873
874/*
875 * Add and subtract routines for timevals.
876 * N.B.: subtract routine doesn't deal with
877 * results which are before the beginning,
878 * it just gets very confused in this case.
879 * Caveat emptor.
880 */
881void
882timevaladd(struct timeval *t1, const struct timeval *t2)
883{
884
885 t1->tv_sec += t2->tv_sec;
886 t1->tv_usec += t2->tv_usec;
887 timevalfix(t1);
888}
889
890void
891timevalsub(struct timeval *t1, const struct timeval *t2)
892{
893
894 t1->tv_sec -= t2->tv_sec;
895 t1->tv_usec -= t2->tv_usec;
896 timevalfix(t1);
897}
898
899static void
900timevalfix(struct timeval *t1)
901{
902
903 if (t1->tv_usec < 0) {
904 t1->tv_sec--;
905 t1->tv_usec += 1000000;
906 }
907 if (t1->tv_usec >= 1000000) {
908 t1->tv_sec++;
909 t1->tv_usec -= 1000000;
910 }
911}
912
913/*
914 * ratecheck(): simple time-based rate-limit checking.
915 */
916int
917ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
918{
919 struct timeval tv, delta;
920 int rv = 0;
921
922 getmicrouptime(&tv); /* NB: 10ms precision */
923 delta = tv;
924 timevalsub(&delta, lasttime);
925
926 /*
927 * check for 0,0 is so that the message will be seen at least once,
928 * even if interval is huge.
929 */
930 if (timevalcmp(&delta, mininterval, >=) ||
931 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
932 *lasttime = tv;
933 rv = 1;
934 }
935
936 return (rv);
937}
938
939/*
940 * ppsratecheck(): packets (or events) per second limitation.
941 *
942 * Return 0 if the limit is to be enforced (e.g. the caller
943 * should drop a packet because of the rate limitation).
944 *
945 * maxpps of 0 always causes zero to be returned. maxpps of -1
946 * always causes 1 to be returned; this effectively defeats rate
947 * limiting.
948 *
949 * Note that we maintain the struct timeval for compatibility
950 * with other bsd systems. We reuse the storage and just monitor
951 * clock ticks for minimal overhead.
952 */
953int
954ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
955{
956 int now;
957
958 /*
959 * Reset the last time and counter if this is the first call
960 * or more than a second has passed since the last update of
961 * lasttime.
962 */
963 now = ticks;
964 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
965 lasttime->tv_sec = now;
966 *curpps = 1;
967 return (maxpps != 0);
968 } else {
969 (*curpps)++; /* NB: ignore potential overflow */
970 return (maxpps < 0 || *curpps < maxpps);
971 }
972}
973
974static void
975itimer_start(void)
976{
977 struct kclock rt_clock = {
978 .timer_create = realtimer_create,
979 .timer_delete = realtimer_delete,
980 .timer_settime = realtimer_settime,
981 .timer_gettime = realtimer_gettime,
982 .event_hook = NULL
983 };
984
985 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
986 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
987 register_posix_clock(CLOCK_REALTIME, &rt_clock);
988 register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
989 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
990 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
991 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
992 EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit,
993 (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY);
994 EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec,
995 (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY);
996}
997
998int
999register_posix_clock(int clockid, struct kclock *clk)
1000{
1001 if ((unsigned)clockid >= MAX_CLOCKS) {
1002 printf("%s: invalid clockid\n", __func__);
1003 return (0);
1004 }
1005 posix_clocks[clockid] = *clk;
1006 return (1);
1007}
1008
1009static int
1010itimer_init(void *mem, int size, int flags)
1011{
1012 struct itimer *it;
1013
1014 it = (struct itimer *)mem;
1015 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
1016 return (0);
1017}
1018
1019static void
1020itimer_fini(void *mem, int size)
1021{
1022 struct itimer *it;
1023
1024 it = (struct itimer *)mem;
1025 mtx_destroy(&it->it_mtx);
1026}
1027
1028static void
1029itimer_enter(struct itimer *it)
1030{
1031
1032 mtx_assert(&it->it_mtx, MA_OWNED);
1033 it->it_usecount++;
1034}
1035
1036static void
1037itimer_leave(struct itimer *it)
1038{
1039
1040 mtx_assert(&it->it_mtx, MA_OWNED);
1041 KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
1042
1043 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
1044 wakeup(it);
1045}
1046
1047#ifndef _SYS_SYSPROTO_H_
1048struct ktimer_create_args {
1049 clockid_t clock_id;
1050 struct sigevent * evp;
1051 int * timerid;
1052};
1053#endif
1054int
1055sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
1056{
1057 struct sigevent *evp1, ev;
1058 int id;
1059 int error;
1060
1061 if (uap->evp != NULL) {
1062 error = copyin(uap->evp, &ev, sizeof(ev));
1063 if (error != 0)
1064 return (error);
1065 evp1 = &ev;
1066 } else
1067 evp1 = NULL;
1068
1069 error = kern_timer_create(td, uap->clock_id, evp1, &id, -1);
1070
1071 if (error == 0) {
1072 error = copyout(&id, uap->timerid, sizeof(int));
1073 if (error != 0)
1074 kern_timer_delete(td, id);
1075 }
1076 return (error);
1077}
1078
1079static int
1080kern_timer_create(struct thread *td, clockid_t clock_id,
1081 struct sigevent *evp, int *timerid, int preset_id)
1082{
1083 struct proc *p = td->td_proc;
1084 struct itimer *it;
1085 int id;
1086 int error;
1087
1088 if (clock_id < 0 || clock_id >= MAX_CLOCKS)
1089 return (EINVAL);
1090
1091 if (posix_clocks[clock_id].timer_create == NULL)
1092 return (EINVAL);
1093
1094 if (evp != NULL) {
1095 if (evp->sigev_notify != SIGEV_NONE &&
1096 evp->sigev_notify != SIGEV_SIGNAL &&
1097 evp->sigev_notify != SIGEV_THREAD_ID)
1098 return (EINVAL);
1099 if ((evp->sigev_notify == SIGEV_SIGNAL ||
1100 evp->sigev_notify == SIGEV_THREAD_ID) &&
1101 !_SIG_VALID(evp->sigev_signo))
1102 return (EINVAL);
1103 }
1104
1105 if (p->p_itimers == NULL)
1106 itimers_alloc(p);
1107
1108 it = uma_zalloc(itimer_zone, M_WAITOK);
1109 it->it_flags = 0;
1110 it->it_usecount = 0;
1111 it->it_active = 0;
1112 timespecclear(&it->it_time.it_value);
1113 timespecclear(&it->it_time.it_interval);
1114 it->it_overrun = 0;
1115 it->it_overrun_last = 0;
1116 it->it_clockid = clock_id;
1117 it->it_timerid = -1;
1118 it->it_proc = p;
1119 ksiginfo_init(&it->it_ksi);
1120 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
1121 error = CLOCK_CALL(clock_id, timer_create, (it));
1122 if (error != 0)
1123 goto out;
1124
1125 PROC_LOCK(p);
1126 if (preset_id != -1) {
1127 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
1128 id = preset_id;
1129 if (p->p_itimers->its_timers[id] != NULL) {
1130 PROC_UNLOCK(p);
1131 error = 0;
1132 goto out;
1133 }
1134 } else {
1135 /*
1136 * Find a free timer slot, skipping those reserved
1137 * for setitimer().
1138 */
1139 for (id = 3; id < TIMER_MAX; id++)
1140 if (p->p_itimers->its_timers[id] == NULL)
1141 break;
1142 if (id == TIMER_MAX) {
1143 PROC_UNLOCK(p);
1144 error = EAGAIN;
1145 goto out;
1146 }
1147 }
1148 it->it_timerid = id;
1149 p->p_itimers->its_timers[id] = it;
1150 if (evp != NULL)
1151 it->it_sigev = *evp;
1152 else {
1153 it->it_sigev.sigev_notify = SIGEV_SIGNAL;
1154 switch (clock_id) {
1155 default:
1156 case CLOCK_REALTIME:
1157 it->it_sigev.sigev_signo = SIGALRM;
1158 break;
1159 case CLOCK_VIRTUAL:
1160 it->it_sigev.sigev_signo = SIGVTALRM;
1161 break;
1162 case CLOCK_PROF:
1163 it->it_sigev.sigev_signo = SIGPROF;
1164 break;
1165 }
1166 it->it_sigev.sigev_value.sival_int = id;
1167 }
1168
1169 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1170 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1171 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
1172 it->it_ksi.ksi_code = SI_TIMER;
1173 it->it_ksi.ksi_value = it->it_sigev.sigev_value;
1174 it->it_ksi.ksi_timerid = id;
1175 }
1176 PROC_UNLOCK(p);
1177 *timerid = id;
1178 return (0);
1179
1180out:
1181 ITIMER_LOCK(it);
1182 CLOCK_CALL(it->it_clockid, timer_delete, (it));
1183 ITIMER_UNLOCK(it);
1184 uma_zfree(itimer_zone, it);
1185 return (error);
1186}
1187
1188#ifndef _SYS_SYSPROTO_H_
1189struct ktimer_delete_args {
1190 int timerid;
1191};
1192#endif
1193int
1194sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
1195{
1196 return (kern_timer_delete(td, uap->timerid));
1197}
1198
1199static struct itimer *
1200itimer_find(struct proc *p, int timerid)
1201{
1202 struct itimer *it;
1203
1204 PROC_LOCK_ASSERT(p, MA_OWNED);
1205 if ((p->p_itimers == NULL) ||
1206 (timerid < 0) || (timerid >= TIMER_MAX) ||
1207 (it = p->p_itimers->its_timers[timerid]) == NULL) {
1208 return (NULL);
1209 }
1210 ITIMER_LOCK(it);
1211 if ((it->it_flags & ITF_DELETING) != 0) {
1212 ITIMER_UNLOCK(it);
1213 it = NULL;
1214 }
1215 return (it);
1216}
1217
1218static int
1219kern_timer_delete(struct thread *td, int timerid)
1220{
1221 struct proc *p = td->td_proc;
1222 struct itimer *it;
1223
1224 PROC_LOCK(p);
1225 it = itimer_find(p, timerid);
1226 if (it == NULL) {
1227 PROC_UNLOCK(p);
1228 return (EINVAL);
1229 }
1230 PROC_UNLOCK(p);
1231
1232 it->it_flags |= ITF_DELETING;
1233 while (it->it_usecount > 0) {
1234 it->it_flags |= ITF_WANTED;
1235 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
1236 }
1237 it->it_flags &= ~ITF_WANTED;
1238 CLOCK_CALL(it->it_clockid, timer_delete, (it));
1239 ITIMER_UNLOCK(it);
1240
1241 PROC_LOCK(p);
1242 if (KSI_ONQ(&it->it_ksi))
1243 sigqueue_take(&it->it_ksi);
1244 p->p_itimers->its_timers[timerid] = NULL;
1245 PROC_UNLOCK(p);
1246 uma_zfree(itimer_zone, it);
1247 return (0);
1248}
1249
1250#ifndef _SYS_SYSPROTO_H_
1251struct ktimer_settime_args {
1252 int timerid;
1253 int flags;
1254 const struct itimerspec * value;
1255 struct itimerspec * ovalue;
1256};
1257#endif
1258int
1259sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
1260{
1261 struct proc *p = td->td_proc;
1262 struct itimer *it;
1263 struct itimerspec val, oval, *ovalp;
1264 int error;
1265
1266 error = copyin(uap->value, &val, sizeof(val));
1267 if (error != 0)
1268 return (error);
1269
1270 if (uap->ovalue != NULL)
1271 ovalp = &oval;
1272 else
1273 ovalp = NULL;
1274
1275 PROC_LOCK(p);
1276 if (uap->timerid < 3 ||
1277 (it = itimer_find(p, uap->timerid)) == NULL) {
1278 PROC_UNLOCK(p);
1279 error = EINVAL;
1280 } else {
1281 PROC_UNLOCK(p);
1282 itimer_enter(it);
1283 error = CLOCK_CALL(it->it_clockid, timer_settime,
1284 (it, uap->flags, &val, ovalp));
1285 itimer_leave(it);
1286 ITIMER_UNLOCK(it);
1287 }
1288 if (error == 0 && uap->ovalue != NULL)
1289 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
1290 return (error);
1291}
1292
1293#ifndef _SYS_SYSPROTO_H_
1294struct ktimer_gettime_args {
1295 int timerid;
1296 struct itimerspec * value;
1297};
1298#endif
1299int
1300sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
1301{
1302 struct proc *p = td->td_proc;
1303 struct itimer *it;
1304 struct itimerspec val;
1305 int error;
1306
1307 PROC_LOCK(p);
1308 if (uap->timerid < 3 ||
1309 (it = itimer_find(p, uap->timerid)) == NULL) {
1310 PROC_UNLOCK(p);
1311 error = EINVAL;
1312 } else {
1313 PROC_UNLOCK(p);
1314 itimer_enter(it);
1315 error = CLOCK_CALL(it->it_clockid, timer_gettime,
1316 (it, &val));
1317 itimer_leave(it);
1318 ITIMER_UNLOCK(it);
1319 }
1320 if (error == 0)
1321 error = copyout(&val, uap->value, sizeof(val));
1322 return (error);
1323}
1324
1325#ifndef _SYS_SYSPROTO_H_
1326struct timer_getoverrun_args {
1327 int timerid;
1328};
1329#endif
1330int
1331sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
1332{
1333 struct proc *p = td->td_proc;
1334 struct itimer *it;
1335 int error ;
1336
1337 PROC_LOCK(p);
1338 if (uap->timerid < 3 ||
1339 (it = itimer_find(p, uap->timerid)) == NULL) {
1340 PROC_UNLOCK(p);
1341 error = EINVAL;
1342 } else {
1343 td->td_retval[0] = it->it_overrun_last;
1344 ITIMER_UNLOCK(it);
1345 PROC_UNLOCK(p);
1346 error = 0;
1347 }
1348 return (error);
1349}
1350
1351static int
1352realtimer_create(struct itimer *it)
1353{
1354 callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
1355 return (0);
1356}
1357
1358static int
1359realtimer_delete(struct itimer *it)
1360{
1361 mtx_assert(&it->it_mtx, MA_OWNED);
1362
1363 /*
1364 * clear timer's value and interval to tell realtimer_expire
1365 * to not rearm the timer.
1366 */
1367 timespecclear(&it->it_time.it_value);
1368 timespecclear(&it->it_time.it_interval);
1369 ITIMER_UNLOCK(it);
1370 callout_drain(&it->it_callout);
1371 ITIMER_LOCK(it);
1372 return (0);
1373}
1374
1375static int
1376realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
1377{
1378 struct timespec cts;
1379
1380 mtx_assert(&it->it_mtx, MA_OWNED);
1381
1382 realtimer_clocktime(it->it_clockid, &cts);
1383 *ovalue = it->it_time;
1384 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
1385 timespecsub(&ovalue->it_value, &cts);
1386 if (ovalue->it_value.tv_sec < 0 ||
1387 (ovalue->it_value.tv_sec == 0 &&
1388 ovalue->it_value.tv_nsec == 0)) {
1389 ovalue->it_value.tv_sec = 0;
1390 ovalue->it_value.tv_nsec = 1;
1391 }
1392 }
1393 return (0);
1394}
1395
1396static int
1397realtimer_settime(struct itimer *it, int flags,
1398 struct itimerspec *value, struct itimerspec *ovalue)
1399{
1400 struct timespec cts, ts;
1401 struct timeval tv;
1402 struct itimerspec val;
1403
1404 mtx_assert(&it->it_mtx, MA_OWNED);
1405
1406 val = *value;
1407 if (itimespecfix(&val.it_value))
1408 return (EINVAL);
1409
1410 if (timespecisset(&val.it_value)) {
1411 if (itimespecfix(&val.it_interval))
1412 return (EINVAL);
1413 } else {
1414 timespecclear(&val.it_interval);
1415 }
1416
1417 if (ovalue != NULL)
1418 realtimer_gettime(it, ovalue);
1419
1420 it->it_time = val;
1421 if (timespecisset(&val.it_value)) {
1422 realtimer_clocktime(it->it_clockid, &cts);
1423 ts = val.it_value;
1424 if ((flags & TIMER_ABSTIME) == 0) {
1425 /* Convert to absolute time. */
1426 timespecadd(&it->it_time.it_value, &cts);
1427 } else {
1428 timespecsub(&ts, &cts);
1429 /*
1430 * We don't care if ts is negative, tztohz will
1431 * fix it.
1432 */
1433 }
1434 TIMESPEC_TO_TIMEVAL(&tv, &ts);
1435 callout_reset(&it->it_callout, tvtohz(&tv),
1436 realtimer_expire, it);
1437 } else {
1438 callout_stop(&it->it_callout);
1439 }
1440
1441 return (0);
1442}
1443
1444static void
1445realtimer_clocktime(clockid_t id, struct timespec *ts)
1446{
1447 if (id == CLOCK_REALTIME)
1448 getnanotime(ts);
1449 else /* CLOCK_MONOTONIC */
1450 getnanouptime(ts);
1451}
1452
1453int
1454itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
1455{
1456 struct itimer *it;
1457
1458 PROC_LOCK_ASSERT(p, MA_OWNED);
1459 it = itimer_find(p, timerid);
1460 if (it != NULL) {
1461 ksi->ksi_overrun = it->it_overrun;
1462 it->it_overrun_last = it->it_overrun;
1463 it->it_overrun = 0;
1464 ITIMER_UNLOCK(it);
1465 return (0);
1466 }
1467 return (EINVAL);
1468}
1469
1470int
1471itimespecfix(struct timespec *ts)
1472{
1473
1474 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1475 return (EINVAL);
1476 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1477 ts->tv_nsec = tick * 1000;
1478 return (0);
1479}
1480
1481/* Timeout callback for realtime timer */
1482static void
1483realtimer_expire(void *arg)
1484{
1485 struct timespec cts, ts;
1486 struct timeval tv;
1487 struct itimer *it;
1488
1489 it = (struct itimer *)arg;
1490
1491 realtimer_clocktime(it->it_clockid, &cts);
1492 /* Only fire if time is reached. */
1493 if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1494 if (timespecisset(&it->it_time.it_interval)) {
1495 timespecadd(&it->it_time.it_value,
1496 &it->it_time.it_interval);
1497 while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1498 if (it->it_overrun < INT_MAX)
1499 it->it_overrun++;
1500 else
1501 it->it_ksi.ksi_errno = ERANGE;
1502 timespecadd(&it->it_time.it_value,
1503 &it->it_time.it_interval);
1504 }
1505 } else {
1506 /* single shot timer ? */
1507 timespecclear(&it->it_time.it_value);
1508 }
1509 if (timespecisset(&it->it_time.it_value)) {
1510 ts = it->it_time.it_value;
1511 timespecsub(&ts, &cts);
1512 TIMESPEC_TO_TIMEVAL(&tv, &ts);
1513 callout_reset(&it->it_callout, tvtohz(&tv),
1514 realtimer_expire, it);
1515 }
1516 itimer_enter(it);
1517 ITIMER_UNLOCK(it);
1518 itimer_fire(it);
1519 ITIMER_LOCK(it);
1520 itimer_leave(it);
1521 } else if (timespecisset(&it->it_time.it_value)) {
1522 ts = it->it_time.it_value;
1523 timespecsub(&ts, &cts);
1524 TIMESPEC_TO_TIMEVAL(&tv, &ts);
1525 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
1526 it);
1527 }
1528}
1529
1530void
1531itimer_fire(struct itimer *it)
1532{
1533 struct proc *p = it->it_proc;
1534 struct thread *td;
1535
1536 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1537 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1538 if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
1539 ITIMER_LOCK(it);
1540 timespecclear(&it->it_time.it_value);
1541 timespecclear(&it->it_time.it_interval);
1542 callout_stop(&it->it_callout);
1543 ITIMER_UNLOCK(it);
1544 return;
1545 }
1546 if (!KSI_ONQ(&it->it_ksi)) {
1547 it->it_ksi.ksi_errno = 0;
1548 ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
1549 tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
1550 } else {
1551 if (it->it_overrun < INT_MAX)
1552 it->it_overrun++;
1553 else
1554 it->it_ksi.ksi_errno = ERANGE;
1555 }
1556 PROC_UNLOCK(p);
1557 }
1558}
1559
1560static void
1561itimers_alloc(struct proc *p)
1562{
1563 struct itimers *its;
1564 int i;
1565
1566 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
1567 LIST_INIT(&its->its_virtual);
1568 LIST_INIT(&its->its_prof);
1569 TAILQ_INIT(&its->its_worklist);
1570 for (i = 0; i < TIMER_MAX; i++)
1571 its->its_timers[i] = NULL;
1572 PROC_LOCK(p);
1573 if (p->p_itimers == NULL) {
1574 p->p_itimers = its;
1575 PROC_UNLOCK(p);
1576 }
1577 else {
1578 PROC_UNLOCK(p);
1579 free(its, M_SUBPROC);
1580 }
1581}
1582
1583static void
1584itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
1585{
1586 itimers_event_hook_exit(arg, p);
1587}
1588
1589/* Clean up timers when some process events are being triggered. */
1590static void
1591itimers_event_hook_exit(void *arg, struct proc *p)
1592{
1593 struct itimers *its;
1594 struct itimer *it;
1595 int event = (int)(intptr_t)arg;
1596 int i;
1597
1598 if (p->p_itimers != NULL) {
1599 its = p->p_itimers;
1600 for (i = 0; i < MAX_CLOCKS; ++i) {
1601 if (posix_clocks[i].event_hook != NULL)
1602 CLOCK_CALL(i, event_hook, (p, i, event));
1603 }
1604 /*
1605 * According to susv3, XSI interval timers should be inherited
1606 * by new image.
1607 */
1608 if (event == ITIMER_EV_EXEC)
1609 i = 3;
1610 else if (event == ITIMER_EV_EXIT)
1611 i = 0;
1612 else
1613 panic("unhandled event");
1614 for (; i < TIMER_MAX; ++i) {
1615 if ((it = its->its_timers[i]) != NULL)
1616 kern_timer_delete(curthread, i);
1617 }
1618 if (its->its_timers[0] == NULL &&
1619 its->its_timers[1] == NULL &&
1620 its->its_timers[2] == NULL) {
1621 free(its, M_SUBPROC);
1622 p->p_itimers = NULL;
1623 }
1624 }
1625}