Deleted Added
sdiff udiff text old ( 225617 ) new ( 239347 )
full compact
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/kern_time.c 225617 2011-09-16 13:58:51Z kmacy $");
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/limits.h>
38#include <sys/clock.h>
39#include <sys/lock.h>
40#include <sys/mutex.h>
41#include <sys/sysproto.h>
42#include <sys/eventhandler.h>
43#include <sys/resourcevar.h>
44#include <sys/signalvar.h>
45#include <sys/kernel.h>
46#include <sys/syscallsubr.h>
47#include <sys/sysctl.h>
48#include <sys/sysent.h>
49#include <sys/priv.h>
50#include <sys/proc.h>
51#include <sys/posix4.h>
52#include <sys/time.h>
53#include <sys/timers.h>
54#include <sys/timetc.h>
55#include <sys/vnode.h>
56
57#include <vm/vm.h>
58#include <vm/vm_extern.h>
59
60#define MAX_CLOCKS (CLOCK_MONOTONIC+1)
61
62static struct kclock posix_clocks[MAX_CLOCKS];
63static uma_zone_t itimer_zone = NULL;
64
65/*
66 * Time of day and interval timer support.
67 *
68 * These routines provide the kernel entry points to get and set
69 * the time-of-day and per-process interval timers. Subroutines
70 * here provide support for adding and subtracting timeval structures
71 * and decrementing interval timers, optionally reloading the interval
72 * timers when they expire.
73 */
74
75static int settime(struct thread *, struct timeval *);
76static void timevalfix(struct timeval *);
77
78static void itimer_start(void);
79static int itimer_init(void *, int, int);
80static void itimer_fini(void *, int);
81static void itimer_enter(struct itimer *);
82static void itimer_leave(struct itimer *);
83static struct itimer *itimer_find(struct proc *, int);
84static void itimers_alloc(struct proc *);
85static void itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp);
86static void itimers_event_hook_exit(void *arg, struct proc *p);
87static int realtimer_create(struct itimer *);
88static int realtimer_gettime(struct itimer *, struct itimerspec *);
89static int realtimer_settime(struct itimer *, int,
90 struct itimerspec *, struct itimerspec *);
91static int realtimer_delete(struct itimer *);
92static void realtimer_clocktime(clockid_t, struct timespec *);
93static void realtimer_expire(void *);
94static int kern_timer_create(struct thread *, clockid_t,
95 struct sigevent *, int *, int);
96static int kern_timer_delete(struct thread *, int);
97
98int register_posix_clock(int, struct kclock *);
99void itimer_fire(struct itimer *it);
100int itimespecfix(struct timespec *ts);
101
102#define CLOCK_CALL(clock, call, arglist) \
103 ((*posix_clocks[clock].call) arglist)
104
105SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
106
107
108static int
109settime(struct thread *td, struct timeval *tv)
110{
111 struct timeval delta, tv1, tv2;
112 static struct timeval maxtime, laststep;
113 struct timespec ts;
114 int s;
115
116 s = splclock();
117 microtime(&tv1);
118 delta = *tv;
119 timevalsub(&delta, &tv1);
120
121 /*
122 * If the system is secure, we do not allow the time to be
123 * set to a value earlier than 1 second less than the highest
124 * time we have yet seen. The worst a miscreant can do in
125 * this circumstance is "freeze" time. He couldn't go
126 * back to the past.
127 *
128 * We similarly do not allow the clock to be stepped more
129 * than one second, nor more than once per second. This allows
130 * a miscreant to make the clock march double-time, but no worse.
131 */
132 if (securelevel_gt(td->td_ucred, 1) != 0) {
133 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
134 /*
135 * Update maxtime to latest time we've seen.
136 */
137 if (tv1.tv_sec > maxtime.tv_sec)
138 maxtime = tv1;
139 tv2 = *tv;
140 timevalsub(&tv2, &maxtime);
141 if (tv2.tv_sec < -1) {
142 tv->tv_sec = maxtime.tv_sec - 1;
143 printf("Time adjustment clamped to -1 second\n");
144 }
145 } else {
146 if (tv1.tv_sec == laststep.tv_sec) {
147 splx(s);
148 return (EPERM);
149 }
150 if (delta.tv_sec > 1) {
151 tv->tv_sec = tv1.tv_sec + 1;
152 printf("Time adjustment clamped to +1 second\n");
153 }
154 laststep = *tv;
155 }
156 }
157
158 ts.tv_sec = tv->tv_sec;
159 ts.tv_nsec = tv->tv_usec * 1000;
160 mtx_lock(&Giant);
161 tc_setclock(&ts);
162 resettodr();
163 mtx_unlock(&Giant);
164 return (0);
165}
166
167#ifndef _SYS_SYSPROTO_H_
168struct clock_gettime_args {
169 clockid_t clock_id;
170 struct timespec *tp;
171};
172#endif
173/* ARGSUSED */
174int
175sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
176{
177 struct timespec ats;
178 int error;
179
180 error = kern_clock_gettime(td, uap->clock_id, &ats);
181 if (error == 0)
182 error = copyout(&ats, uap->tp, sizeof(ats));
183
184 return (error);
185}
186
187int
188kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
189{
190 struct timeval sys, user;
191 struct proc *p;
192 uint64_t runtime, curtime, switchtime;
193
194 p = td->td_proc;
195 switch (clock_id) {
196 case CLOCK_REALTIME: /* Default to precise. */
197 case CLOCK_REALTIME_PRECISE:
198 nanotime(ats);
199 break;
200 case CLOCK_REALTIME_FAST:
201 getnanotime(ats);
202 break;
203 case CLOCK_VIRTUAL:
204 PROC_LOCK(p);
205 PROC_SLOCK(p);
206 calcru(p, &user, &sys);
207 PROC_SUNLOCK(p);
208 PROC_UNLOCK(p);
209 TIMEVAL_TO_TIMESPEC(&user, ats);
210 break;
211 case CLOCK_PROF:
212 PROC_LOCK(p);
213 PROC_SLOCK(p);
214 calcru(p, &user, &sys);
215 PROC_SUNLOCK(p);
216 PROC_UNLOCK(p);
217 timevaladd(&user, &sys);
218 TIMEVAL_TO_TIMESPEC(&user, ats);
219 break;
220 case CLOCK_MONOTONIC: /* Default to precise. */
221 case CLOCK_MONOTONIC_PRECISE:
222 case CLOCK_UPTIME:
223 case CLOCK_UPTIME_PRECISE:
224 nanouptime(ats);
225 break;
226 case CLOCK_UPTIME_FAST:
227 case CLOCK_MONOTONIC_FAST:
228 getnanouptime(ats);
229 break;
230 case CLOCK_SECOND:
231 ats->tv_sec = time_second;
232 ats->tv_nsec = 0;
233 break;
234 case CLOCK_THREAD_CPUTIME_ID:
235 critical_enter();
236 switchtime = PCPU_GET(switchtime);
237 curtime = cpu_ticks();
238 runtime = td->td_runtime;
239 critical_exit();
240 runtime = cputick2usec(runtime + curtime - switchtime);
241 ats->tv_sec = runtime / 1000000;
242 ats->tv_nsec = runtime % 1000000 * 1000;
243 break;
244 default:
245 return (EINVAL);
246 }
247 return (0);
248}
249
250#ifndef _SYS_SYSPROTO_H_
251struct clock_settime_args {
252 clockid_t clock_id;
253 const struct timespec *tp;
254};
255#endif
256/* ARGSUSED */
257int
258sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
259{
260 struct timespec ats;
261 int error;
262
263 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
264 return (error);
265 return (kern_clock_settime(td, uap->clock_id, &ats));
266}
267
268int
269kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
270{
271 struct timeval atv;
272 int error;
273
274 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
275 return (error);
276 if (clock_id != CLOCK_REALTIME)
277 return (EINVAL);
278 if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
279 return (EINVAL);
280 /* XXX Don't convert nsec->usec and back */
281 TIMESPEC_TO_TIMEVAL(&atv, ats);
282 error = settime(td, &atv);
283 return (error);
284}
285
286#ifndef _SYS_SYSPROTO_H_
287struct clock_getres_args {
288 clockid_t clock_id;
289 struct timespec *tp;
290};
291#endif
292int
293sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
294{
295 struct timespec ts;
296 int error;
297
298 if (uap->tp == NULL)
299 return (0);
300
301 error = kern_clock_getres(td, uap->clock_id, &ts);
302 if (error == 0)
303 error = copyout(&ts, uap->tp, sizeof(ts));
304 return (error);
305}
306
307int
308kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
309{
310
311 ts->tv_sec = 0;
312 switch (clock_id) {
313 case CLOCK_REALTIME:
314 case CLOCK_REALTIME_FAST:
315 case CLOCK_REALTIME_PRECISE:
316 case CLOCK_MONOTONIC:
317 case CLOCK_MONOTONIC_FAST:
318 case CLOCK_MONOTONIC_PRECISE:
319 case CLOCK_UPTIME:
320 case CLOCK_UPTIME_FAST:
321 case CLOCK_UPTIME_PRECISE:
322 /*
323 * Round up the result of the division cheaply by adding 1.
324 * Rounding up is especially important if rounding down
325 * would give 0. Perfect rounding is unimportant.
326 */
327 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
328 break;
329 case CLOCK_VIRTUAL:
330 case CLOCK_PROF:
331 /* Accurately round up here because we can do so cheaply. */
332 ts->tv_nsec = (1000000000 + hz - 1) / hz;
333 break;
334 case CLOCK_SECOND:
335 ts->tv_sec = 1;
336 ts->tv_nsec = 0;
337 break;
338 case CLOCK_THREAD_CPUTIME_ID:
339 /* sync with cputick2usec */
340 ts->tv_nsec = 1000000 / cpu_tickrate();
341 if (ts->tv_nsec == 0)
342 ts->tv_nsec = 1000;
343 break;
344 default:
345 return (EINVAL);
346 }
347 return (0);
348}
349
350static int nanowait;
351
352int
353kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
354{
355 struct timespec ts, ts2, ts3;
356 struct timeval tv;
357 int error;
358
359 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
360 return (EINVAL);
361 if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
362 return (0);
363 getnanouptime(&ts);
364 timespecadd(&ts, rqt);
365 TIMESPEC_TO_TIMEVAL(&tv, rqt);
366 for (;;) {
367 error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
368 tvtohz(&tv));
369 getnanouptime(&ts2);
370 if (error != EWOULDBLOCK) {
371 if (error == ERESTART)
372 error = EINTR;
373 if (rmt != NULL) {
374 timespecsub(&ts, &ts2);
375 if (ts.tv_sec < 0)
376 timespecclear(&ts);
377 *rmt = ts;
378 }
379 return (error);
380 }
381 if (timespeccmp(&ts2, &ts, >=))
382 return (0);
383 ts3 = ts;
384 timespecsub(&ts3, &ts2);
385 TIMESPEC_TO_TIMEVAL(&tv, &ts3);
386 }
387}
388
389#ifndef _SYS_SYSPROTO_H_
390struct nanosleep_args {
391 struct timespec *rqtp;
392 struct timespec *rmtp;
393};
394#endif
395/* ARGSUSED */
396int
397sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
398{
399 struct timespec rmt, rqt;
400 int error;
401
402 error = copyin(uap->rqtp, &rqt, sizeof(rqt));
403 if (error)
404 return (error);
405
406 if (uap->rmtp &&
407 !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
408 return (EFAULT);
409 error = kern_nanosleep(td, &rqt, &rmt);
410 if (error && uap->rmtp) {
411 int error2;
412
413 error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
414 if (error2)
415 error = error2;
416 }
417 return (error);
418}
419
420#ifndef _SYS_SYSPROTO_H_
421struct gettimeofday_args {
422 struct timeval *tp;
423 struct timezone *tzp;
424};
425#endif
426/* ARGSUSED */
427int
428sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
429{
430 struct timeval atv;
431 struct timezone rtz;
432 int error = 0;
433
434 if (uap->tp) {
435 microtime(&atv);
436 error = copyout(&atv, uap->tp, sizeof (atv));
437 }
438 if (error == 0 && uap->tzp != NULL) {
439 rtz.tz_minuteswest = tz_minuteswest;
440 rtz.tz_dsttime = tz_dsttime;
441 error = copyout(&rtz, uap->tzp, sizeof (rtz));
442 }
443 return (error);
444}
445
446#ifndef _SYS_SYSPROTO_H_
447struct settimeofday_args {
448 struct timeval *tv;
449 struct timezone *tzp;
450};
451#endif
452/* ARGSUSED */
453int
454sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
455{
456 struct timeval atv, *tvp;
457 struct timezone atz, *tzp;
458 int error;
459
460 if (uap->tv) {
461 error = copyin(uap->tv, &atv, sizeof(atv));
462 if (error)
463 return (error);
464 tvp = &atv;
465 } else
466 tvp = NULL;
467 if (uap->tzp) {
468 error = copyin(uap->tzp, &atz, sizeof(atz));
469 if (error)
470 return (error);
471 tzp = &atz;
472 } else
473 tzp = NULL;
474 return (kern_settimeofday(td, tvp, tzp));
475}
476
477int
478kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
479{
480 int error;
481
482 error = priv_check(td, PRIV_SETTIMEOFDAY);
483 if (error)
484 return (error);
485 /* Verify all parameters before changing time. */
486 if (tv) {
487 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
488 return (EINVAL);
489 error = settime(td, tv);
490 }
491 if (tzp && error == 0) {
492 tz_minuteswest = tzp->tz_minuteswest;
493 tz_dsttime = tzp->tz_dsttime;
494 }
495 return (error);
496}
497
498/*
499 * Get value of an interval timer. The process virtual and profiling virtual
500 * time timers are kept in the p_stats area, since they can be swapped out.
501 * These are kept internally in the way they are specified externally: in
502 * time until they expire.
503 *
504 * The real time interval timer is kept in the process table slot for the
505 * process, and its value (it_value) is kept as an absolute time rather than
506 * as a delta, so that it is easy to keep periodic real-time signals from
507 * drifting.
508 *
509 * Virtual time timers are processed in the hardclock() routine of
510 * kern_clock.c. The real time timer is processed by a timeout routine,
511 * called from the softclock() routine. Since a callout may be delayed in
512 * real time due to interrupt processing in the system, it is possible for
513 * the real time timeout routine (realitexpire, given below), to be delayed
514 * in real time past when it is supposed to occur. It does not suffice,
515 * therefore, to reload the real timer .it_value from the real time timers
516 * .it_interval. Rather, we compute the next time in absolute time the timer
517 * should go off.
518 */
519#ifndef _SYS_SYSPROTO_H_
520struct getitimer_args {
521 u_int which;
522 struct itimerval *itv;
523};
524#endif
525int
526sys_getitimer(struct thread *td, struct getitimer_args *uap)
527{
528 struct itimerval aitv;
529 int error;
530
531 error = kern_getitimer(td, uap->which, &aitv);
532 if (error != 0)
533 return (error);
534 return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
535}
536
537int
538kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
539{
540 struct proc *p = td->td_proc;
541 struct timeval ctv;
542
543 if (which > ITIMER_PROF)
544 return (EINVAL);
545
546 if (which == ITIMER_REAL) {
547 /*
548 * Convert from absolute to relative time in .it_value
549 * part of real time timer. If time for real time timer
550 * has passed return 0, else return difference between
551 * current time and time for the timer to go off.
552 */
553 PROC_LOCK(p);
554 *aitv = p->p_realtimer;
555 PROC_UNLOCK(p);
556 if (timevalisset(&aitv->it_value)) {
557 getmicrouptime(&ctv);
558 if (timevalcmp(&aitv->it_value, &ctv, <))
559 timevalclear(&aitv->it_value);
560 else
561 timevalsub(&aitv->it_value, &ctv);
562 }
563 } else {
564 PROC_SLOCK(p);
565 *aitv = p->p_stats->p_timer[which];
566 PROC_SUNLOCK(p);
567 }
568 return (0);
569}
570
571#ifndef _SYS_SYSPROTO_H_
572struct setitimer_args {
573 u_int which;
574 struct itimerval *itv, *oitv;
575};
576#endif
577int
578sys_setitimer(struct thread *td, struct setitimer_args *uap)
579{
580 struct itimerval aitv, oitv;
581 int error;
582
583 if (uap->itv == NULL) {
584 uap->itv = uap->oitv;
585 return (sys_getitimer(td, (struct getitimer_args *)uap));
586 }
587
588 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
589 return (error);
590 error = kern_setitimer(td, uap->which, &aitv, &oitv);
591 if (error != 0 || uap->oitv == NULL)
592 return (error);
593 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
594}
595
596int
597kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
598 struct itimerval *oitv)
599{
600 struct proc *p = td->td_proc;
601 struct timeval ctv;
602
603 if (aitv == NULL)
604 return (kern_getitimer(td, which, oitv));
605
606 if (which > ITIMER_PROF)
607 return (EINVAL);
608 if (itimerfix(&aitv->it_value))
609 return (EINVAL);
610 if (!timevalisset(&aitv->it_value))
611 timevalclear(&aitv->it_interval);
612 else if (itimerfix(&aitv->it_interval))
613 return (EINVAL);
614
615 if (which == ITIMER_REAL) {
616 PROC_LOCK(p);
617 if (timevalisset(&p->p_realtimer.it_value))
618 callout_stop(&p->p_itcallout);
619 getmicrouptime(&ctv);
620 if (timevalisset(&aitv->it_value)) {
621 callout_reset(&p->p_itcallout, tvtohz(&aitv->it_value),
622 realitexpire, p);
623 timevaladd(&aitv->it_value, &ctv);
624 }
625 *oitv = p->p_realtimer;
626 p->p_realtimer = *aitv;
627 PROC_UNLOCK(p);
628 if (timevalisset(&oitv->it_value)) {
629 if (timevalcmp(&oitv->it_value, &ctv, <))
630 timevalclear(&oitv->it_value);
631 else
632 timevalsub(&oitv->it_value, &ctv);
633 }
634 } else {
635 PROC_SLOCK(p);
636 *oitv = p->p_stats->p_timer[which];
637 p->p_stats->p_timer[which] = *aitv;
638 PROC_SUNLOCK(p);
639 }
640 return (0);
641}
642
643/*
644 * Real interval timer expired:
645 * send process whose timer expired an alarm signal.
646 * If time is not set up to reload, then just return.
647 * Else compute next time timer should go off which is > current time.
648 * This is where delay in processing this timeout causes multiple
649 * SIGALRM calls to be compressed into one.
650 * tvtohz() always adds 1 to allow for the time until the next clock
651 * interrupt being strictly less than 1 clock tick, but we don't want
652 * that here since we want to appear to be in sync with the clock
653 * interrupt even when we're delayed.
654 */
655void
656realitexpire(void *arg)
657{
658 struct proc *p;
659 struct timeval ctv, ntv;
660
661 p = (struct proc *)arg;
662 PROC_LOCK(p);
663 kern_psignal(p, SIGALRM);
664 if (!timevalisset(&p->p_realtimer.it_interval)) {
665 timevalclear(&p->p_realtimer.it_value);
666 if (p->p_flag & P_WEXIT)
667 wakeup(&p->p_itcallout);
668 PROC_UNLOCK(p);
669 return;
670 }
671 for (;;) {
672 timevaladd(&p->p_realtimer.it_value,
673 &p->p_realtimer.it_interval);
674 getmicrouptime(&ctv);
675 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
676 ntv = p->p_realtimer.it_value;
677 timevalsub(&ntv, &ctv);
678 callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
679 realitexpire, p);
680 PROC_UNLOCK(p);
681 return;
682 }
683 }
684 /*NOTREACHED*/
685}
686
687/*
688 * Check that a proposed value to load into the .it_value or
689 * .it_interval part of an interval timer is acceptable, and
690 * fix it to have at least minimal value (i.e. if it is less
691 * than the resolution of the clock, round it up.)
692 */
693int
694itimerfix(struct timeval *tv)
695{
696
697 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
698 return (EINVAL);
699 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
700 tv->tv_usec = tick;
701 return (0);
702}
703
704/*
705 * Decrement an interval timer by a specified number
706 * of microseconds, which must be less than a second,
707 * i.e. < 1000000. If the timer expires, then reload
708 * it. In this case, carry over (usec - old value) to
709 * reduce the value reloaded into the timer so that
710 * the timer does not drift. This routine assumes
711 * that it is called in a context where the timers
712 * on which it is operating cannot change in value.
713 */
714int
715itimerdecr(struct itimerval *itp, int usec)
716{
717
718 if (itp->it_value.tv_usec < usec) {
719 if (itp->it_value.tv_sec == 0) {
720 /* expired, and already in next interval */
721 usec -= itp->it_value.tv_usec;
722 goto expire;
723 }
724 itp->it_value.tv_usec += 1000000;
725 itp->it_value.tv_sec--;
726 }
727 itp->it_value.tv_usec -= usec;
728 usec = 0;
729 if (timevalisset(&itp->it_value))
730 return (1);
731 /* expired, exactly at end of interval */
732expire:
733 if (timevalisset(&itp->it_interval)) {
734 itp->it_value = itp->it_interval;
735 itp->it_value.tv_usec -= usec;
736 if (itp->it_value.tv_usec < 0) {
737 itp->it_value.tv_usec += 1000000;
738 itp->it_value.tv_sec--;
739 }
740 } else
741 itp->it_value.tv_usec = 0; /* sec is already 0 */
742 return (0);
743}
744
745/*
746 * Add and subtract routines for timevals.
747 * N.B.: subtract routine doesn't deal with
748 * results which are before the beginning,
749 * it just gets very confused in this case.
750 * Caveat emptor.
751 */
752void
753timevaladd(struct timeval *t1, const struct timeval *t2)
754{
755
756 t1->tv_sec += t2->tv_sec;
757 t1->tv_usec += t2->tv_usec;
758 timevalfix(t1);
759}
760
761void
762timevalsub(struct timeval *t1, const struct timeval *t2)
763{
764
765 t1->tv_sec -= t2->tv_sec;
766 t1->tv_usec -= t2->tv_usec;
767 timevalfix(t1);
768}
769
770static void
771timevalfix(struct timeval *t1)
772{
773
774 if (t1->tv_usec < 0) {
775 t1->tv_sec--;
776 t1->tv_usec += 1000000;
777 }
778 if (t1->tv_usec >= 1000000) {
779 t1->tv_sec++;
780 t1->tv_usec -= 1000000;
781 }
782}
783
784/*
785 * ratecheck(): simple time-based rate-limit checking.
786 */
787int
788ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
789{
790 struct timeval tv, delta;
791 int rv = 0;
792
793 getmicrouptime(&tv); /* NB: 10ms precision */
794 delta = tv;
795 timevalsub(&delta, lasttime);
796
797 /*
798 * check for 0,0 is so that the message will be seen at least once,
799 * even if interval is huge.
800 */
801 if (timevalcmp(&delta, mininterval, >=) ||
802 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
803 *lasttime = tv;
804 rv = 1;
805 }
806
807 return (rv);
808}
809
810/*
811 * ppsratecheck(): packets (or events) per second limitation.
812 *
813 * Return 0 if the limit is to be enforced (e.g. the caller
814 * should drop a packet because of the rate limitation).
815 *
816 * maxpps of 0 always causes zero to be returned. maxpps of -1
817 * always causes 1 to be returned; this effectively defeats rate
818 * limiting.
819 *
820 * Note that we maintain the struct timeval for compatibility
821 * with other bsd systems. We reuse the storage and just monitor
822 * clock ticks for minimal overhead.
823 */
824int
825ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
826{
827 int now;
828
829 /*
830 * Reset the last time and counter if this is the first call
831 * or more than a second has passed since the last update of
832 * lasttime.
833 */
834 now = ticks;
835 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
836 lasttime->tv_sec = now;
837 *curpps = 1;
838 return (maxpps != 0);
839 } else {
840 (*curpps)++; /* NB: ignore potential overflow */
841 return (maxpps < 0 || *curpps < maxpps);
842 }
843}
844
845static void
846itimer_start(void)
847{
848 struct kclock rt_clock = {
849 .timer_create = realtimer_create,
850 .timer_delete = realtimer_delete,
851 .timer_settime = realtimer_settime,
852 .timer_gettime = realtimer_gettime,
853 .event_hook = NULL
854 };
855
856 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
857 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
858 register_posix_clock(CLOCK_REALTIME, &rt_clock);
859 register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
860 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
861 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
862 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
863 EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit,
864 (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY);
865 EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec,
866 (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY);
867}
868
869int
870register_posix_clock(int clockid, struct kclock *clk)
871{
872 if ((unsigned)clockid >= MAX_CLOCKS) {
873 printf("%s: invalid clockid\n", __func__);
874 return (0);
875 }
876 posix_clocks[clockid] = *clk;
877 return (1);
878}
879
880static int
881itimer_init(void *mem, int size, int flags)
882{
883 struct itimer *it;
884
885 it = (struct itimer *)mem;
886 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
887 return (0);
888}
889
890static void
891itimer_fini(void *mem, int size)
892{
893 struct itimer *it;
894
895 it = (struct itimer *)mem;
896 mtx_destroy(&it->it_mtx);
897}
898
899static void
900itimer_enter(struct itimer *it)
901{
902
903 mtx_assert(&it->it_mtx, MA_OWNED);
904 it->it_usecount++;
905}
906
907static void
908itimer_leave(struct itimer *it)
909{
910
911 mtx_assert(&it->it_mtx, MA_OWNED);
912 KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
913
914 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
915 wakeup(it);
916}
917
918#ifndef _SYS_SYSPROTO_H_
919struct ktimer_create_args {
920 clockid_t clock_id;
921 struct sigevent * evp;
922 int * timerid;
923};
924#endif
925int
926sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
927{
928 struct sigevent *evp1, ev;
929 int id;
930 int error;
931
932 if (uap->evp != NULL) {
933 error = copyin(uap->evp, &ev, sizeof(ev));
934 if (error != 0)
935 return (error);
936 evp1 = &ev;
937 } else
938 evp1 = NULL;
939
940 error = kern_timer_create(td, uap->clock_id, evp1, &id, -1);
941
942 if (error == 0) {
943 error = copyout(&id, uap->timerid, sizeof(int));
944 if (error != 0)
945 kern_timer_delete(td, id);
946 }
947 return (error);
948}
949
950static int
951kern_timer_create(struct thread *td, clockid_t clock_id,
952 struct sigevent *evp, int *timerid, int preset_id)
953{
954 struct proc *p = td->td_proc;
955 struct itimer *it;
956 int id;
957 int error;
958
959 if (clock_id < 0 || clock_id >= MAX_CLOCKS)
960 return (EINVAL);
961
962 if (posix_clocks[clock_id].timer_create == NULL)
963 return (EINVAL);
964
965 if (evp != NULL) {
966 if (evp->sigev_notify != SIGEV_NONE &&
967 evp->sigev_notify != SIGEV_SIGNAL &&
968 evp->sigev_notify != SIGEV_THREAD_ID)
969 return (EINVAL);
970 if ((evp->sigev_notify == SIGEV_SIGNAL ||
971 evp->sigev_notify == SIGEV_THREAD_ID) &&
972 !_SIG_VALID(evp->sigev_signo))
973 return (EINVAL);
974 }
975
976 if (p->p_itimers == NULL)
977 itimers_alloc(p);
978
979 it = uma_zalloc(itimer_zone, M_WAITOK);
980 it->it_flags = 0;
981 it->it_usecount = 0;
982 it->it_active = 0;
983 timespecclear(&it->it_time.it_value);
984 timespecclear(&it->it_time.it_interval);
985 it->it_overrun = 0;
986 it->it_overrun_last = 0;
987 it->it_clockid = clock_id;
988 it->it_timerid = -1;
989 it->it_proc = p;
990 ksiginfo_init(&it->it_ksi);
991 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
992 error = CLOCK_CALL(clock_id, timer_create, (it));
993 if (error != 0)
994 goto out;
995
996 PROC_LOCK(p);
997 if (preset_id != -1) {
998 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
999 id = preset_id;
1000 if (p->p_itimers->its_timers[id] != NULL) {
1001 PROC_UNLOCK(p);
1002 error = 0;
1003 goto out;
1004 }
1005 } else {
1006 /*
1007 * Find a free timer slot, skipping those reserved
1008 * for setitimer().
1009 */
1010 for (id = 3; id < TIMER_MAX; id++)
1011 if (p->p_itimers->its_timers[id] == NULL)
1012 break;
1013 if (id == TIMER_MAX) {
1014 PROC_UNLOCK(p);
1015 error = EAGAIN;
1016 goto out;
1017 }
1018 }
1019 it->it_timerid = id;
1020 p->p_itimers->its_timers[id] = it;
1021 if (evp != NULL)
1022 it->it_sigev = *evp;
1023 else {
1024 it->it_sigev.sigev_notify = SIGEV_SIGNAL;
1025 switch (clock_id) {
1026 default:
1027 case CLOCK_REALTIME:
1028 it->it_sigev.sigev_signo = SIGALRM;
1029 break;
1030 case CLOCK_VIRTUAL:
1031 it->it_sigev.sigev_signo = SIGVTALRM;
1032 break;
1033 case CLOCK_PROF:
1034 it->it_sigev.sigev_signo = SIGPROF;
1035 break;
1036 }
1037 it->it_sigev.sigev_value.sival_int = id;
1038 }
1039
1040 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1041 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1042 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
1043 it->it_ksi.ksi_code = SI_TIMER;
1044 it->it_ksi.ksi_value = it->it_sigev.sigev_value;
1045 it->it_ksi.ksi_timerid = id;
1046 }
1047 PROC_UNLOCK(p);
1048 *timerid = id;
1049 return (0);
1050
1051out:
1052 ITIMER_LOCK(it);
1053 CLOCK_CALL(it->it_clockid, timer_delete, (it));
1054 ITIMER_UNLOCK(it);
1055 uma_zfree(itimer_zone, it);
1056 return (error);
1057}
1058
1059#ifndef _SYS_SYSPROTO_H_
1060struct ktimer_delete_args {
1061 int timerid;
1062};
1063#endif
1064int
1065sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
1066{
1067 return (kern_timer_delete(td, uap->timerid));
1068}
1069
1070static struct itimer *
1071itimer_find(struct proc *p, int timerid)
1072{
1073 struct itimer *it;
1074
1075 PROC_LOCK_ASSERT(p, MA_OWNED);
1076 if ((p->p_itimers == NULL) ||
1077 (timerid < 0) || (timerid >= TIMER_MAX) ||
1078 (it = p->p_itimers->its_timers[timerid]) == NULL) {
1079 return (NULL);
1080 }
1081 ITIMER_LOCK(it);
1082 if ((it->it_flags & ITF_DELETING) != 0) {
1083 ITIMER_UNLOCK(it);
1084 it = NULL;
1085 }
1086 return (it);
1087}
1088
1089static int
1090kern_timer_delete(struct thread *td, int timerid)
1091{
1092 struct proc *p = td->td_proc;
1093 struct itimer *it;
1094
1095 PROC_LOCK(p);
1096 it = itimer_find(p, timerid);
1097 if (it == NULL) {
1098 PROC_UNLOCK(p);
1099 return (EINVAL);
1100 }
1101 PROC_UNLOCK(p);
1102
1103 it->it_flags |= ITF_DELETING;
1104 while (it->it_usecount > 0) {
1105 it->it_flags |= ITF_WANTED;
1106 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
1107 }
1108 it->it_flags &= ~ITF_WANTED;
1109 CLOCK_CALL(it->it_clockid, timer_delete, (it));
1110 ITIMER_UNLOCK(it);
1111
1112 PROC_LOCK(p);
1113 if (KSI_ONQ(&it->it_ksi))
1114 sigqueue_take(&it->it_ksi);
1115 p->p_itimers->its_timers[timerid] = NULL;
1116 PROC_UNLOCK(p);
1117 uma_zfree(itimer_zone, it);
1118 return (0);
1119}
1120
1121#ifndef _SYS_SYSPROTO_H_
1122struct ktimer_settime_args {
1123 int timerid;
1124 int flags;
1125 const struct itimerspec * value;
1126 struct itimerspec * ovalue;
1127};
1128#endif
1129int
1130sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
1131{
1132 struct proc *p = td->td_proc;
1133 struct itimer *it;
1134 struct itimerspec val, oval, *ovalp;
1135 int error;
1136
1137 error = copyin(uap->value, &val, sizeof(val));
1138 if (error != 0)
1139 return (error);
1140
1141 if (uap->ovalue != NULL)
1142 ovalp = &oval;
1143 else
1144 ovalp = NULL;
1145
1146 PROC_LOCK(p);
1147 if (uap->timerid < 3 ||
1148 (it = itimer_find(p, uap->timerid)) == NULL) {
1149 PROC_UNLOCK(p);
1150 error = EINVAL;
1151 } else {
1152 PROC_UNLOCK(p);
1153 itimer_enter(it);
1154 error = CLOCK_CALL(it->it_clockid, timer_settime,
1155 (it, uap->flags, &val, ovalp));
1156 itimer_leave(it);
1157 ITIMER_UNLOCK(it);
1158 }
1159 if (error == 0 && uap->ovalue != NULL)
1160 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
1161 return (error);
1162}
1163
1164#ifndef _SYS_SYSPROTO_H_
1165struct ktimer_gettime_args {
1166 int timerid;
1167 struct itimerspec * value;
1168};
1169#endif
1170int
1171sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
1172{
1173 struct proc *p = td->td_proc;
1174 struct itimer *it;
1175 struct itimerspec val;
1176 int error;
1177
1178 PROC_LOCK(p);
1179 if (uap->timerid < 3 ||
1180 (it = itimer_find(p, uap->timerid)) == NULL) {
1181 PROC_UNLOCK(p);
1182 error = EINVAL;
1183 } else {
1184 PROC_UNLOCK(p);
1185 itimer_enter(it);
1186 error = CLOCK_CALL(it->it_clockid, timer_gettime,
1187 (it, &val));
1188 itimer_leave(it);
1189 ITIMER_UNLOCK(it);
1190 }
1191 if (error == 0)
1192 error = copyout(&val, uap->value, sizeof(val));
1193 return (error);
1194}
1195
1196#ifndef _SYS_SYSPROTO_H_
1197struct timer_getoverrun_args {
1198 int timerid;
1199};
1200#endif
1201int
1202sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
1203{
1204 struct proc *p = td->td_proc;
1205 struct itimer *it;
1206 int error ;
1207
1208 PROC_LOCK(p);
1209 if (uap->timerid < 3 ||
1210 (it = itimer_find(p, uap->timerid)) == NULL) {
1211 PROC_UNLOCK(p);
1212 error = EINVAL;
1213 } else {
1214 td->td_retval[0] = it->it_overrun_last;
1215 ITIMER_UNLOCK(it);
1216 PROC_UNLOCK(p);
1217 error = 0;
1218 }
1219 return (error);
1220}
1221
1222static int
1223realtimer_create(struct itimer *it)
1224{
1225 callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
1226 return (0);
1227}
1228
1229static int
1230realtimer_delete(struct itimer *it)
1231{
1232 mtx_assert(&it->it_mtx, MA_OWNED);
1233
1234 /*
1235 * clear timer's value and interval to tell realtimer_expire
1236 * to not rearm the timer.
1237 */
1238 timespecclear(&it->it_time.it_value);
1239 timespecclear(&it->it_time.it_interval);
1240 ITIMER_UNLOCK(it);
1241 callout_drain(&it->it_callout);
1242 ITIMER_LOCK(it);
1243 return (0);
1244}
1245
1246static int
1247realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
1248{
1249 struct timespec cts;
1250
1251 mtx_assert(&it->it_mtx, MA_OWNED);
1252
1253 realtimer_clocktime(it->it_clockid, &cts);
1254 *ovalue = it->it_time;
1255 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
1256 timespecsub(&ovalue->it_value, &cts);
1257 if (ovalue->it_value.tv_sec < 0 ||
1258 (ovalue->it_value.tv_sec == 0 &&
1259 ovalue->it_value.tv_nsec == 0)) {
1260 ovalue->it_value.tv_sec = 0;
1261 ovalue->it_value.tv_nsec = 1;
1262 }
1263 }
1264 return (0);
1265}
1266
1267static int
1268realtimer_settime(struct itimer *it, int flags,
1269 struct itimerspec *value, struct itimerspec *ovalue)
1270{
1271 struct timespec cts, ts;
1272 struct timeval tv;
1273 struct itimerspec val;
1274
1275 mtx_assert(&it->it_mtx, MA_OWNED);
1276
1277 val = *value;
1278 if (itimespecfix(&val.it_value))
1279 return (EINVAL);
1280
1281 if (timespecisset(&val.it_value)) {
1282 if (itimespecfix(&val.it_interval))
1283 return (EINVAL);
1284 } else {
1285 timespecclear(&val.it_interval);
1286 }
1287
1288 if (ovalue != NULL)
1289 realtimer_gettime(it, ovalue);
1290
1291 it->it_time = val;
1292 if (timespecisset(&val.it_value)) {
1293 realtimer_clocktime(it->it_clockid, &cts);
1294 ts = val.it_value;
1295 if ((flags & TIMER_ABSTIME) == 0) {
1296 /* Convert to absolute time. */
1297 timespecadd(&it->it_time.it_value, &cts);
1298 } else {
1299 timespecsub(&ts, &cts);
1300 /*
1301 * We don't care if ts is negative, tztohz will
1302 * fix it.
1303 */
1304 }
1305 TIMESPEC_TO_TIMEVAL(&tv, &ts);
1306 callout_reset(&it->it_callout, tvtohz(&tv),
1307 realtimer_expire, it);
1308 } else {
1309 callout_stop(&it->it_callout);
1310 }
1311
1312 return (0);
1313}
1314
1315static void
1316realtimer_clocktime(clockid_t id, struct timespec *ts)
1317{
1318 if (id == CLOCK_REALTIME)
1319 getnanotime(ts);
1320 else /* CLOCK_MONOTONIC */
1321 getnanouptime(ts);
1322}
1323
1324int
1325itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
1326{
1327 struct itimer *it;
1328
1329 PROC_LOCK_ASSERT(p, MA_OWNED);
1330 it = itimer_find(p, timerid);
1331 if (it != NULL) {
1332 ksi->ksi_overrun = it->it_overrun;
1333 it->it_overrun_last = it->it_overrun;
1334 it->it_overrun = 0;
1335 ITIMER_UNLOCK(it);
1336 return (0);
1337 }
1338 return (EINVAL);
1339}
1340
1341int
1342itimespecfix(struct timespec *ts)
1343{
1344
1345 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1346 return (EINVAL);
1347 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1348 ts->tv_nsec = tick * 1000;
1349 return (0);
1350}
1351
1352/* Timeout callback for realtime timer */
1353static void
1354realtimer_expire(void *arg)
1355{
1356 struct timespec cts, ts;
1357 struct timeval tv;
1358 struct itimer *it;
1359
1360 it = (struct itimer *)arg;
1361
1362 realtimer_clocktime(it->it_clockid, &cts);
1363 /* Only fire if time is reached. */
1364 if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1365 if (timespecisset(&it->it_time.it_interval)) {
1366 timespecadd(&it->it_time.it_value,
1367 &it->it_time.it_interval);
1368 while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1369 if (it->it_overrun < INT_MAX)
1370 it->it_overrun++;
1371 else
1372 it->it_ksi.ksi_errno = ERANGE;
1373 timespecadd(&it->it_time.it_value,
1374 &it->it_time.it_interval);
1375 }
1376 } else {
1377 /* single shot timer ? */
1378 timespecclear(&it->it_time.it_value);
1379 }
1380 if (timespecisset(&it->it_time.it_value)) {
1381 ts = it->it_time.it_value;
1382 timespecsub(&ts, &cts);
1383 TIMESPEC_TO_TIMEVAL(&tv, &ts);
1384 callout_reset(&it->it_callout, tvtohz(&tv),
1385 realtimer_expire, it);
1386 }
1387 itimer_enter(it);
1388 ITIMER_UNLOCK(it);
1389 itimer_fire(it);
1390 ITIMER_LOCK(it);
1391 itimer_leave(it);
1392 } else if (timespecisset(&it->it_time.it_value)) {
1393 ts = it->it_time.it_value;
1394 timespecsub(&ts, &cts);
1395 TIMESPEC_TO_TIMEVAL(&tv, &ts);
1396 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
1397 it);
1398 }
1399}
1400
1401void
1402itimer_fire(struct itimer *it)
1403{
1404 struct proc *p = it->it_proc;
1405 struct thread *td;
1406
1407 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1408 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1409 if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
1410 ITIMER_LOCK(it);
1411 timespecclear(&it->it_time.it_value);
1412 timespecclear(&it->it_time.it_interval);
1413 callout_stop(&it->it_callout);
1414 ITIMER_UNLOCK(it);
1415 return;
1416 }
1417 if (!KSI_ONQ(&it->it_ksi)) {
1418 it->it_ksi.ksi_errno = 0;
1419 ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
1420 tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
1421 } else {
1422 if (it->it_overrun < INT_MAX)
1423 it->it_overrun++;
1424 else
1425 it->it_ksi.ksi_errno = ERANGE;
1426 }
1427 PROC_UNLOCK(p);
1428 }
1429}
1430
1431static void
1432itimers_alloc(struct proc *p)
1433{
1434 struct itimers *its;
1435 int i;
1436
1437 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
1438 LIST_INIT(&its->its_virtual);
1439 LIST_INIT(&its->its_prof);
1440 TAILQ_INIT(&its->its_worklist);
1441 for (i = 0; i < TIMER_MAX; i++)
1442 its->its_timers[i] = NULL;
1443 PROC_LOCK(p);
1444 if (p->p_itimers == NULL) {
1445 p->p_itimers = its;
1446 PROC_UNLOCK(p);
1447 }
1448 else {
1449 PROC_UNLOCK(p);
1450 free(its, M_SUBPROC);
1451 }
1452}
1453
1454static void
1455itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
1456{
1457 itimers_event_hook_exit(arg, p);
1458}
1459
1460/* Clean up timers when some process events are being triggered. */
1461static void
1462itimers_event_hook_exit(void *arg, struct proc *p)
1463{
1464 struct itimers *its;
1465 struct itimer *it;
1466 int event = (int)(intptr_t)arg;
1467 int i;
1468
1469 if (p->p_itimers != NULL) {
1470 its = p->p_itimers;
1471 for (i = 0; i < MAX_CLOCKS; ++i) {
1472 if (posix_clocks[i].event_hook != NULL)
1473 CLOCK_CALL(i, event_hook, (p, i, event));
1474 }
1475 /*
1476 * According to susv3, XSI interval timers should be inherited
1477 * by new image.
1478 */
1479 if (event == ITIMER_EV_EXEC)
1480 i = 3;
1481 else if (event == ITIMER_EV_EXIT)
1482 i = 0;
1483 else
1484 panic("unhandled event");
1485 for (; i < TIMER_MAX; ++i) {
1486 if ((it = its->its_timers[i]) != NULL)
1487 kern_timer_delete(curthread, i);
1488 }
1489 if (its->its_timers[0] == NULL &&
1490 its->its_timers[1] == NULL &&
1491 its->its_timers[2] == NULL) {
1492 free(its, M_SUBPROC);
1493 p->p_itimers = NULL;
1494 }
1495 }
1496}