Deleted Added
full compact
kern_resource.c (129050) kern_resource.c (130344)
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kern_resource.c 8.5 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_resource.c 129050 2004-05-08 08:56:05Z julian $");
38__FBSDID("$FreeBSD: head/sys/kern/kern_resource.c 130344 2004-06-11 11:16:26Z phk $");
39
40#include "opt_compat.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/sysproto.h>
45#include <sys/file.h>
46#include <sys/kernel.h>
47#include <sys/lock.h>
48#include <sys/malloc.h>
49#include <sys/mutex.h>
50#include <sys/proc.h>
51#include <sys/resourcevar.h>
52#include <sys/sched.h>
53#include <sys/sx.h>
54#include <sys/sysent.h>
55#include <sys/time.h>
56
57#include <vm/vm.h>
58#include <vm/vm_param.h>
59#include <vm/pmap.h>
60#include <vm/vm_map.h>
61
62static int donice(struct thread *td, struct proc *chgp, int n);
63
64static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
65static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
66#define UIHASH(uid) (&uihashtbl[(uid) & uihash])
67static struct mtx uihashtbl_mtx;
68static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
69static u_long uihash; /* size of hash table - 1 */
70
71static struct uidinfo *uilookup(uid_t uid);
72
73/*
74 * Resource controls and accounting.
75 */
76
77#ifndef _SYS_SYSPROTO_H_
78struct getpriority_args {
79 int which;
80 int who;
81};
82#endif
83/*
84 * MPSAFE
85 */
86int
87getpriority(td, uap)
88 struct thread *td;
89 register struct getpriority_args *uap;
90{
91 struct ksegrp *kg;
92 struct proc *p;
93 int error, low;
94
95 error = 0;
96 low = PRIO_MAX + 1;
97 switch (uap->which) {
98
99 case PRIO_PROCESS:
100 if (uap->who == 0)
101 low = td->td_ksegrp->kg_nice;
102 else {
103 p = pfind(uap->who);
104 if (p == NULL)
105 break;
106 if (p_cansee(td, p) == 0) {
107 FOREACH_KSEGRP_IN_PROC(p, kg) {
108 if (kg->kg_nice < low)
109 low = kg->kg_nice;
110 }
111 }
112 PROC_UNLOCK(p);
113 }
114 break;
115
116 case PRIO_PGRP: {
117 register struct pgrp *pg;
118
119 sx_slock(&proctree_lock);
120 if (uap->who == 0) {
121 pg = td->td_proc->p_pgrp;
122 PGRP_LOCK(pg);
123 } else {
124 pg = pgfind(uap->who);
125 if (pg == NULL) {
126 sx_sunlock(&proctree_lock);
127 break;
128 }
129 }
130 sx_sunlock(&proctree_lock);
131 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
132 PROC_LOCK(p);
133 if (!p_cansee(td, p)) {
134 FOREACH_KSEGRP_IN_PROC(p, kg) {
135 if (kg->kg_nice < low)
136 low = kg->kg_nice;
137 }
138 }
139 PROC_UNLOCK(p);
140 }
141 PGRP_UNLOCK(pg);
142 break;
143 }
144
145 case PRIO_USER:
146 if (uap->who == 0)
147 uap->who = td->td_ucred->cr_uid;
148 sx_slock(&allproc_lock);
149 LIST_FOREACH(p, &allproc, p_list) {
150 PROC_LOCK(p);
151 if (!p_cansee(td, p) &&
152 p->p_ucred->cr_uid == uap->who) {
153 FOREACH_KSEGRP_IN_PROC(p, kg) {
154 if (kg->kg_nice < low)
155 low = kg->kg_nice;
156 }
157 }
158 PROC_UNLOCK(p);
159 }
160 sx_sunlock(&allproc_lock);
161 break;
162
163 default:
164 error = EINVAL;
165 break;
166 }
167 if (low == PRIO_MAX + 1 && error == 0)
168 error = ESRCH;
169 td->td_retval[0] = low;
170 return (error);
171}
172
173#ifndef _SYS_SYSPROTO_H_
174struct setpriority_args {
175 int which;
176 int who;
177 int prio;
178};
179#endif
180/*
181 * MPSAFE
182 */
183int
184setpriority(td, uap)
185 struct thread *td;
186 register struct setpriority_args *uap;
187{
188 struct proc *curp;
189 register struct proc *p;
190 int found = 0, error = 0;
191
192 curp = td->td_proc;
193 switch (uap->which) {
194 case PRIO_PROCESS:
195 if (uap->who == 0) {
196 PROC_LOCK(curp);
197 error = donice(td, curp, uap->prio);
198 PROC_UNLOCK(curp);
199 } else {
200 p = pfind(uap->who);
201 if (p == 0)
202 break;
203 if (p_cansee(td, p) == 0)
204 error = donice(td, p, uap->prio);
205 PROC_UNLOCK(p);
206 }
207 found++;
208 break;
209
210 case PRIO_PGRP: {
211 register struct pgrp *pg;
212
213 sx_slock(&proctree_lock);
214 if (uap->who == 0) {
215 pg = curp->p_pgrp;
216 PGRP_LOCK(pg);
217 } else {
218 pg = pgfind(uap->who);
219 if (pg == NULL) {
220 sx_sunlock(&proctree_lock);
221 break;
222 }
223 }
224 sx_sunlock(&proctree_lock);
225 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
226 PROC_LOCK(p);
227 if (!p_cansee(td, p)) {
228 error = donice(td, p, uap->prio);
229 found++;
230 }
231 PROC_UNLOCK(p);
232 }
233 PGRP_UNLOCK(pg);
234 break;
235 }
236
237 case PRIO_USER:
238 if (uap->who == 0)
239 uap->who = td->td_ucred->cr_uid;
240 sx_slock(&allproc_lock);
241 FOREACH_PROC_IN_SYSTEM(p) {
242 PROC_LOCK(p);
243 if (p->p_ucred->cr_uid == uap->who &&
244 !p_cansee(td, p)) {
245 error = donice(td, p, uap->prio);
246 found++;
247 }
248 PROC_UNLOCK(p);
249 }
250 sx_sunlock(&allproc_lock);
251 break;
252
253 default:
254 error = EINVAL;
255 break;
256 }
257 if (found == 0 && error == 0)
258 error = ESRCH;
259 return (error);
260}
261
262/*
263 * Set "nice" for a process. Doesn't really understand threaded processes
264 * well but does try. Has the unfortunate side effect of making all the NICE
265 * values for a process's ksegrps the same. This suggests that
266 * NICE values should be stored as a process nice and deltas for the ksegrps.
267 * (but not yet).
268 */
269static int
270donice(struct thread *td, struct proc *p, int n)
271{
272 struct ksegrp *kg;
273 int error, low;
274
275 low = PRIO_MAX + 1;
276 PROC_LOCK_ASSERT(p, MA_OWNED);
277 if ((error = p_cansched(td, p)))
278 return (error);
279 if (n > PRIO_MAX)
280 n = PRIO_MAX;
281 if (n < PRIO_MIN)
282 n = PRIO_MIN;
283 /*
284 * Only allow nicing if to more than the lowest nice.
285 * E.g., for nices of 4,3,2 allow nice to 3 but not 1
286 */
287 FOREACH_KSEGRP_IN_PROC(p, kg) {
288 if (kg->kg_nice < low)
289 low = kg->kg_nice;
290 }
291 if (n < low && suser(td) != 0)
292 return (EACCES);
293 mtx_lock_spin(&sched_lock);
294 FOREACH_KSEGRP_IN_PROC(p, kg) {
295 sched_nice(kg, n);
296 }
297 mtx_unlock_spin(&sched_lock);
298 return (0);
299}
300
301/*
302 * Set realtime priority
303 *
304 * MPSAFE
305 */
306#ifndef _SYS_SYSPROTO_H_
307struct rtprio_args {
308 int function;
309 pid_t pid;
310 struct rtprio *rtp;
311};
312#endif
313
314int
315rtprio(td, uap)
316 struct thread *td; /* curthread */
317 register struct rtprio_args *uap;
318{
319 struct proc *curp;
320 struct proc *p;
321 struct ksegrp *kg;
322 struct rtprio rtp;
323 int cierror, error;
324
325 /* Perform copyin before acquiring locks if needed. */
326 if (uap->function == RTP_SET)
327 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
328 else
329 cierror = 0;
330
331 curp = td->td_proc;
332 if (uap->pid == 0) {
333 p = curp;
334 PROC_LOCK(p);
335 } else {
336 p = pfind(uap->pid);
337 if (p == NULL)
338 return (ESRCH);
339 }
340
341 switch (uap->function) {
342 case RTP_LOOKUP:
343 if ((error = p_cansee(td, p)))
344 break;
345 mtx_lock_spin(&sched_lock);
346 /*
347 * Return OUR priority if no pid specified,
348 * or if one is, report the highest priority
349 * in the process. There isn't much more you can do as
350 * there is only room to return a single priority.
351 * XXXKSE Maybe need a new interface to report
352 * priorities of multiple system scope threads.
353 * Note: specifying our own pid is not the same
354 * as leaving it zero.
355 */
356 if (uap->pid == 0) {
357 pri_to_rtp(td->td_ksegrp, &rtp);
358 } else {
359 struct rtprio rtp2;
360
361 rtp.type = RTP_PRIO_IDLE;
362 rtp.prio = RTP_PRIO_MAX;
363 FOREACH_KSEGRP_IN_PROC(p, kg) {
364 pri_to_rtp(kg, &rtp2);
365 if ((rtp2.type < rtp.type) ||
366 ((rtp2.type == rtp.type) &&
367 (rtp2.prio < rtp.prio))) {
368 rtp.type = rtp2.type;
369 rtp.prio = rtp2.prio;
370 }
371 }
372 }
373 mtx_unlock_spin(&sched_lock);
374 PROC_UNLOCK(p);
375 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
376 case RTP_SET:
377 if ((error = p_cansched(td, p)) || (error = cierror))
378 break;
379 /* disallow setting rtprio in most cases if not superuser */
380 if (suser(td) != 0) {
381 /* can't set someone else's */
382 if (uap->pid) {
383 error = EPERM;
384 break;
385 }
386 /* can't set realtime priority */
387/*
388 * Realtime priority has to be restricted for reasons which should be
389 * obvious. However, for idle priority, there is a potential for
390 * system deadlock if an idleprio process gains a lock on a resource
391 * that other processes need (and the idleprio process can't run
392 * due to a CPU-bound normal process). Fix me! XXX
393 */
394#if 0
395 if (RTP_PRIO_IS_REALTIME(rtp.type))
396#endif
397 if (rtp.type != RTP_PRIO_NORMAL) {
398 error = EPERM;
399 break;
400 }
401 }
402 mtx_lock_spin(&sched_lock);
403 /*
404 * If we are setting our own priority, set just our
405 * KSEGRP but if we are doing another process,
406 * do all the groups on that process. If we
407 * specify our own pid we do the latter.
408 */
409 if (uap->pid == 0) {
410 error = rtp_to_pri(&rtp, td->td_ksegrp);
411 } else {
412 FOREACH_KSEGRP_IN_PROC(p, kg) {
413 if ((error = rtp_to_pri(&rtp, kg)) != 0) {
414 break;
415 }
416 }
417 }
418 mtx_unlock_spin(&sched_lock);
419 break;
420 default:
421 error = EINVAL;
422 break;
423 }
424 PROC_UNLOCK(p);
425 return (error);
426}
427
428int
429rtp_to_pri(struct rtprio *rtp, struct ksegrp *kg)
430{
431
432 mtx_assert(&sched_lock, MA_OWNED);
433 if (rtp->prio > RTP_PRIO_MAX)
434 return (EINVAL);
435 switch (RTP_PRIO_BASE(rtp->type)) {
436 case RTP_PRIO_REALTIME:
437 kg->kg_user_pri = PRI_MIN_REALTIME + rtp->prio;
438 break;
439 case RTP_PRIO_NORMAL:
440 kg->kg_user_pri = PRI_MIN_TIMESHARE + rtp->prio;
441 break;
442 case RTP_PRIO_IDLE:
443 kg->kg_user_pri = PRI_MIN_IDLE + rtp->prio;
444 break;
445 default:
446 return (EINVAL);
447 }
448 sched_class(kg, rtp->type);
449 if (curthread->td_ksegrp == kg) {
450 curthread->td_base_pri = kg->kg_user_pri;
451 sched_prio(curthread, kg->kg_user_pri); /* XXX dubious */
452 }
453 return (0);
454}
455
456void
457pri_to_rtp(struct ksegrp *kg, struct rtprio *rtp)
458{
459
460 mtx_assert(&sched_lock, MA_OWNED);
461 switch (PRI_BASE(kg->kg_pri_class)) {
462 case PRI_REALTIME:
463 rtp->prio = kg->kg_user_pri - PRI_MIN_REALTIME;
464 break;
465 case PRI_TIMESHARE:
466 rtp->prio = kg->kg_user_pri - PRI_MIN_TIMESHARE;
467 break;
468 case PRI_IDLE:
469 rtp->prio = kg->kg_user_pri - PRI_MIN_IDLE;
470 break;
471 default:
472 break;
473 }
474 rtp->type = kg->kg_pri_class;
475}
476
39
40#include "opt_compat.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/sysproto.h>
45#include <sys/file.h>
46#include <sys/kernel.h>
47#include <sys/lock.h>
48#include <sys/malloc.h>
49#include <sys/mutex.h>
50#include <sys/proc.h>
51#include <sys/resourcevar.h>
52#include <sys/sched.h>
53#include <sys/sx.h>
54#include <sys/sysent.h>
55#include <sys/time.h>
56
57#include <vm/vm.h>
58#include <vm/vm_param.h>
59#include <vm/pmap.h>
60#include <vm/vm_map.h>
61
62static int donice(struct thread *td, struct proc *chgp, int n);
63
64static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
65static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
66#define UIHASH(uid) (&uihashtbl[(uid) & uihash])
67static struct mtx uihashtbl_mtx;
68static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
69static u_long uihash; /* size of hash table - 1 */
70
71static struct uidinfo *uilookup(uid_t uid);
72
73/*
74 * Resource controls and accounting.
75 */
76
77#ifndef _SYS_SYSPROTO_H_
78struct getpriority_args {
79 int which;
80 int who;
81};
82#endif
83/*
84 * MPSAFE
85 */
86int
87getpriority(td, uap)
88 struct thread *td;
89 register struct getpriority_args *uap;
90{
91 struct ksegrp *kg;
92 struct proc *p;
93 int error, low;
94
95 error = 0;
96 low = PRIO_MAX + 1;
97 switch (uap->which) {
98
99 case PRIO_PROCESS:
100 if (uap->who == 0)
101 low = td->td_ksegrp->kg_nice;
102 else {
103 p = pfind(uap->who);
104 if (p == NULL)
105 break;
106 if (p_cansee(td, p) == 0) {
107 FOREACH_KSEGRP_IN_PROC(p, kg) {
108 if (kg->kg_nice < low)
109 low = kg->kg_nice;
110 }
111 }
112 PROC_UNLOCK(p);
113 }
114 break;
115
116 case PRIO_PGRP: {
117 register struct pgrp *pg;
118
119 sx_slock(&proctree_lock);
120 if (uap->who == 0) {
121 pg = td->td_proc->p_pgrp;
122 PGRP_LOCK(pg);
123 } else {
124 pg = pgfind(uap->who);
125 if (pg == NULL) {
126 sx_sunlock(&proctree_lock);
127 break;
128 }
129 }
130 sx_sunlock(&proctree_lock);
131 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
132 PROC_LOCK(p);
133 if (!p_cansee(td, p)) {
134 FOREACH_KSEGRP_IN_PROC(p, kg) {
135 if (kg->kg_nice < low)
136 low = kg->kg_nice;
137 }
138 }
139 PROC_UNLOCK(p);
140 }
141 PGRP_UNLOCK(pg);
142 break;
143 }
144
145 case PRIO_USER:
146 if (uap->who == 0)
147 uap->who = td->td_ucred->cr_uid;
148 sx_slock(&allproc_lock);
149 LIST_FOREACH(p, &allproc, p_list) {
150 PROC_LOCK(p);
151 if (!p_cansee(td, p) &&
152 p->p_ucred->cr_uid == uap->who) {
153 FOREACH_KSEGRP_IN_PROC(p, kg) {
154 if (kg->kg_nice < low)
155 low = kg->kg_nice;
156 }
157 }
158 PROC_UNLOCK(p);
159 }
160 sx_sunlock(&allproc_lock);
161 break;
162
163 default:
164 error = EINVAL;
165 break;
166 }
167 if (low == PRIO_MAX + 1 && error == 0)
168 error = ESRCH;
169 td->td_retval[0] = low;
170 return (error);
171}
172
173#ifndef _SYS_SYSPROTO_H_
174struct setpriority_args {
175 int which;
176 int who;
177 int prio;
178};
179#endif
180/*
181 * MPSAFE
182 */
183int
184setpriority(td, uap)
185 struct thread *td;
186 register struct setpriority_args *uap;
187{
188 struct proc *curp;
189 register struct proc *p;
190 int found = 0, error = 0;
191
192 curp = td->td_proc;
193 switch (uap->which) {
194 case PRIO_PROCESS:
195 if (uap->who == 0) {
196 PROC_LOCK(curp);
197 error = donice(td, curp, uap->prio);
198 PROC_UNLOCK(curp);
199 } else {
200 p = pfind(uap->who);
201 if (p == 0)
202 break;
203 if (p_cansee(td, p) == 0)
204 error = donice(td, p, uap->prio);
205 PROC_UNLOCK(p);
206 }
207 found++;
208 break;
209
210 case PRIO_PGRP: {
211 register struct pgrp *pg;
212
213 sx_slock(&proctree_lock);
214 if (uap->who == 0) {
215 pg = curp->p_pgrp;
216 PGRP_LOCK(pg);
217 } else {
218 pg = pgfind(uap->who);
219 if (pg == NULL) {
220 sx_sunlock(&proctree_lock);
221 break;
222 }
223 }
224 sx_sunlock(&proctree_lock);
225 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
226 PROC_LOCK(p);
227 if (!p_cansee(td, p)) {
228 error = donice(td, p, uap->prio);
229 found++;
230 }
231 PROC_UNLOCK(p);
232 }
233 PGRP_UNLOCK(pg);
234 break;
235 }
236
237 case PRIO_USER:
238 if (uap->who == 0)
239 uap->who = td->td_ucred->cr_uid;
240 sx_slock(&allproc_lock);
241 FOREACH_PROC_IN_SYSTEM(p) {
242 PROC_LOCK(p);
243 if (p->p_ucred->cr_uid == uap->who &&
244 !p_cansee(td, p)) {
245 error = donice(td, p, uap->prio);
246 found++;
247 }
248 PROC_UNLOCK(p);
249 }
250 sx_sunlock(&allproc_lock);
251 break;
252
253 default:
254 error = EINVAL;
255 break;
256 }
257 if (found == 0 && error == 0)
258 error = ESRCH;
259 return (error);
260}
261
262/*
263 * Set "nice" for a process. Doesn't really understand threaded processes
264 * well but does try. Has the unfortunate side effect of making all the NICE
265 * values for a process's ksegrps the same. This suggests that
266 * NICE values should be stored as a process nice and deltas for the ksegrps.
267 * (but not yet).
268 */
269static int
270donice(struct thread *td, struct proc *p, int n)
271{
272 struct ksegrp *kg;
273 int error, low;
274
275 low = PRIO_MAX + 1;
276 PROC_LOCK_ASSERT(p, MA_OWNED);
277 if ((error = p_cansched(td, p)))
278 return (error);
279 if (n > PRIO_MAX)
280 n = PRIO_MAX;
281 if (n < PRIO_MIN)
282 n = PRIO_MIN;
283 /*
284 * Only allow nicing if to more than the lowest nice.
285 * E.g., for nices of 4,3,2 allow nice to 3 but not 1
286 */
287 FOREACH_KSEGRP_IN_PROC(p, kg) {
288 if (kg->kg_nice < low)
289 low = kg->kg_nice;
290 }
291 if (n < low && suser(td) != 0)
292 return (EACCES);
293 mtx_lock_spin(&sched_lock);
294 FOREACH_KSEGRP_IN_PROC(p, kg) {
295 sched_nice(kg, n);
296 }
297 mtx_unlock_spin(&sched_lock);
298 return (0);
299}
300
301/*
302 * Set realtime priority
303 *
304 * MPSAFE
305 */
306#ifndef _SYS_SYSPROTO_H_
307struct rtprio_args {
308 int function;
309 pid_t pid;
310 struct rtprio *rtp;
311};
312#endif
313
314int
315rtprio(td, uap)
316 struct thread *td; /* curthread */
317 register struct rtprio_args *uap;
318{
319 struct proc *curp;
320 struct proc *p;
321 struct ksegrp *kg;
322 struct rtprio rtp;
323 int cierror, error;
324
325 /* Perform copyin before acquiring locks if needed. */
326 if (uap->function == RTP_SET)
327 cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
328 else
329 cierror = 0;
330
331 curp = td->td_proc;
332 if (uap->pid == 0) {
333 p = curp;
334 PROC_LOCK(p);
335 } else {
336 p = pfind(uap->pid);
337 if (p == NULL)
338 return (ESRCH);
339 }
340
341 switch (uap->function) {
342 case RTP_LOOKUP:
343 if ((error = p_cansee(td, p)))
344 break;
345 mtx_lock_spin(&sched_lock);
346 /*
347 * Return OUR priority if no pid specified,
348 * or if one is, report the highest priority
349 * in the process. There isn't much more you can do as
350 * there is only room to return a single priority.
351 * XXXKSE Maybe need a new interface to report
352 * priorities of multiple system scope threads.
353 * Note: specifying our own pid is not the same
354 * as leaving it zero.
355 */
356 if (uap->pid == 0) {
357 pri_to_rtp(td->td_ksegrp, &rtp);
358 } else {
359 struct rtprio rtp2;
360
361 rtp.type = RTP_PRIO_IDLE;
362 rtp.prio = RTP_PRIO_MAX;
363 FOREACH_KSEGRP_IN_PROC(p, kg) {
364 pri_to_rtp(kg, &rtp2);
365 if ((rtp2.type < rtp.type) ||
366 ((rtp2.type == rtp.type) &&
367 (rtp2.prio < rtp.prio))) {
368 rtp.type = rtp2.type;
369 rtp.prio = rtp2.prio;
370 }
371 }
372 }
373 mtx_unlock_spin(&sched_lock);
374 PROC_UNLOCK(p);
375 return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
376 case RTP_SET:
377 if ((error = p_cansched(td, p)) || (error = cierror))
378 break;
379 /* disallow setting rtprio in most cases if not superuser */
380 if (suser(td) != 0) {
381 /* can't set someone else's */
382 if (uap->pid) {
383 error = EPERM;
384 break;
385 }
386 /* can't set realtime priority */
387/*
388 * Realtime priority has to be restricted for reasons which should be
389 * obvious. However, for idle priority, there is a potential for
390 * system deadlock if an idleprio process gains a lock on a resource
391 * that other processes need (and the idleprio process can't run
392 * due to a CPU-bound normal process). Fix me! XXX
393 */
394#if 0
395 if (RTP_PRIO_IS_REALTIME(rtp.type))
396#endif
397 if (rtp.type != RTP_PRIO_NORMAL) {
398 error = EPERM;
399 break;
400 }
401 }
402 mtx_lock_spin(&sched_lock);
403 /*
404 * If we are setting our own priority, set just our
405 * KSEGRP but if we are doing another process,
406 * do all the groups on that process. If we
407 * specify our own pid we do the latter.
408 */
409 if (uap->pid == 0) {
410 error = rtp_to_pri(&rtp, td->td_ksegrp);
411 } else {
412 FOREACH_KSEGRP_IN_PROC(p, kg) {
413 if ((error = rtp_to_pri(&rtp, kg)) != 0) {
414 break;
415 }
416 }
417 }
418 mtx_unlock_spin(&sched_lock);
419 break;
420 default:
421 error = EINVAL;
422 break;
423 }
424 PROC_UNLOCK(p);
425 return (error);
426}
427
428int
429rtp_to_pri(struct rtprio *rtp, struct ksegrp *kg)
430{
431
432 mtx_assert(&sched_lock, MA_OWNED);
433 if (rtp->prio > RTP_PRIO_MAX)
434 return (EINVAL);
435 switch (RTP_PRIO_BASE(rtp->type)) {
436 case RTP_PRIO_REALTIME:
437 kg->kg_user_pri = PRI_MIN_REALTIME + rtp->prio;
438 break;
439 case RTP_PRIO_NORMAL:
440 kg->kg_user_pri = PRI_MIN_TIMESHARE + rtp->prio;
441 break;
442 case RTP_PRIO_IDLE:
443 kg->kg_user_pri = PRI_MIN_IDLE + rtp->prio;
444 break;
445 default:
446 return (EINVAL);
447 }
448 sched_class(kg, rtp->type);
449 if (curthread->td_ksegrp == kg) {
450 curthread->td_base_pri = kg->kg_user_pri;
451 sched_prio(curthread, kg->kg_user_pri); /* XXX dubious */
452 }
453 return (0);
454}
455
456void
457pri_to_rtp(struct ksegrp *kg, struct rtprio *rtp)
458{
459
460 mtx_assert(&sched_lock, MA_OWNED);
461 switch (PRI_BASE(kg->kg_pri_class)) {
462 case PRI_REALTIME:
463 rtp->prio = kg->kg_user_pri - PRI_MIN_REALTIME;
464 break;
465 case PRI_TIMESHARE:
466 rtp->prio = kg->kg_user_pri - PRI_MIN_TIMESHARE;
467 break;
468 case PRI_IDLE:
469 rtp->prio = kg->kg_user_pri - PRI_MIN_IDLE;
470 break;
471 default:
472 break;
473 }
474 rtp->type = kg->kg_pri_class;
475}
476
477#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
477#if defined(COMPAT_43)
478#ifndef _SYS_SYSPROTO_H_
479struct osetrlimit_args {
480 u_int which;
481 struct orlimit *rlp;
482};
483#endif
484/*
485 * MPSAFE
486 */
487int
488osetrlimit(td, uap)
489 struct thread *td;
490 register struct osetrlimit_args *uap;
491{
492 struct orlimit olim;
493 struct rlimit lim;
494 int error;
495
496 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
497 return (error);
498 lim.rlim_cur = olim.rlim_cur;
499 lim.rlim_max = olim.rlim_max;
500 error = kern_setrlimit(td, uap->which, &lim);
501 return (error);
502}
503
504#ifndef _SYS_SYSPROTO_H_
505struct ogetrlimit_args {
506 u_int which;
507 struct orlimit *rlp;
508};
509#endif
510/*
511 * MPSAFE
512 */
513int
514ogetrlimit(td, uap)
515 struct thread *td;
516 register struct ogetrlimit_args *uap;
517{
518 struct orlimit olim;
519 struct rlimit rl;
520 struct proc *p;
521 int error;
522
523 if (uap->which >= RLIM_NLIMITS)
524 return (EINVAL);
525 p = td->td_proc;
526 PROC_LOCK(p);
527 lim_rlimit(p, uap->which, &rl);
528 PROC_UNLOCK(p);
529
530 /*
531 * XXX would be more correct to convert only RLIM_INFINITY to the
532 * old RLIM_INFINITY and fail with EOVERFLOW for other larger
533 * values. Most 64->32 and 32->16 conversions, including not
534 * unimportant ones of uids are even more broken than what we
535 * do here (they blindly truncate). We don't do this correctly
536 * here since we have little experience with EOVERFLOW yet.
537 * Elsewhere, getuid() can't fail...
538 */
539 olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
540 olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
541 error = copyout(&olim, uap->rlp, sizeof(olim));
542 return (error);
543}
478#ifndef _SYS_SYSPROTO_H_
479struct osetrlimit_args {
480 u_int which;
481 struct orlimit *rlp;
482};
483#endif
484/*
485 * MPSAFE
486 */
487int
488osetrlimit(td, uap)
489 struct thread *td;
490 register struct osetrlimit_args *uap;
491{
492 struct orlimit olim;
493 struct rlimit lim;
494 int error;
495
496 if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
497 return (error);
498 lim.rlim_cur = olim.rlim_cur;
499 lim.rlim_max = olim.rlim_max;
500 error = kern_setrlimit(td, uap->which, &lim);
501 return (error);
502}
503
504#ifndef _SYS_SYSPROTO_H_
505struct ogetrlimit_args {
506 u_int which;
507 struct orlimit *rlp;
508};
509#endif
510/*
511 * MPSAFE
512 */
513int
514ogetrlimit(td, uap)
515 struct thread *td;
516 register struct ogetrlimit_args *uap;
517{
518 struct orlimit olim;
519 struct rlimit rl;
520 struct proc *p;
521 int error;
522
523 if (uap->which >= RLIM_NLIMITS)
524 return (EINVAL);
525 p = td->td_proc;
526 PROC_LOCK(p);
527 lim_rlimit(p, uap->which, &rl);
528 PROC_UNLOCK(p);
529
530 /*
531 * XXX would be more correct to convert only RLIM_INFINITY to the
532 * old RLIM_INFINITY and fail with EOVERFLOW for other larger
533 * values. Most 64->32 and 32->16 conversions, including not
534 * unimportant ones of uids are even more broken than what we
535 * do here (they blindly truncate). We don't do this correctly
536 * here since we have little experience with EOVERFLOW yet.
537 * Elsewhere, getuid() can't fail...
538 */
539 olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
540 olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
541 error = copyout(&olim, uap->rlp, sizeof(olim));
542 return (error);
543}
544#endif /* COMPAT_43 || COMPAT_SUNOS */
544#endif /* COMPAT_43 */
545
546#ifndef _SYS_SYSPROTO_H_
547struct __setrlimit_args {
548 u_int which;
549 struct rlimit *rlp;
550};
551#endif
552/*
553 * MPSAFE
554 */
555int
556setrlimit(td, uap)
557 struct thread *td;
558 register struct __setrlimit_args *uap;
559{
560 struct rlimit alim;
561 int error;
562
563 if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
564 return (error);
565 error = kern_setrlimit(td, uap->which, &alim);
566 return (error);
567}
568
569int
570kern_setrlimit(td, which, limp)
571 struct thread *td;
572 u_int which;
573 struct rlimit *limp;
574{
575 struct plimit *newlim, *oldlim;
576 struct proc *p;
577 register struct rlimit *alimp;
578 rlim_t oldssiz;
579 int error;
580
581 if (which >= RLIM_NLIMITS)
582 return (EINVAL);
583
584 /*
585 * Preserve historical bugs by treating negative limits as unsigned.
586 */
587 if (limp->rlim_cur < 0)
588 limp->rlim_cur = RLIM_INFINITY;
589 if (limp->rlim_max < 0)
590 limp->rlim_max = RLIM_INFINITY;
591
592 oldssiz = 0;
593 p = td->td_proc;
594 newlim = lim_alloc();
595 PROC_LOCK(p);
596 oldlim = p->p_limit;
597 alimp = &oldlim->pl_rlimit[which];
598 if (limp->rlim_cur > alimp->rlim_max ||
599 limp->rlim_max > alimp->rlim_max)
600 if ((error = suser_cred(td->td_ucred, PRISON_ROOT))) {
601 PROC_UNLOCK(p);
602 lim_free(newlim);
603 return (error);
604 }
605 if (limp->rlim_cur > limp->rlim_max)
606 limp->rlim_cur = limp->rlim_max;
607 lim_copy(newlim, oldlim);
608 alimp = &newlim->pl_rlimit[which];
609
610 switch (which) {
611
612 case RLIMIT_CPU:
613 mtx_lock_spin(&sched_lock);
614 p->p_cpulimit = limp->rlim_cur;
615 mtx_unlock_spin(&sched_lock);
616 break;
617 case RLIMIT_DATA:
618 if (limp->rlim_cur > maxdsiz)
619 limp->rlim_cur = maxdsiz;
620 if (limp->rlim_max > maxdsiz)
621 limp->rlim_max = maxdsiz;
622 break;
623
624 case RLIMIT_STACK:
625 if (limp->rlim_cur > maxssiz)
626 limp->rlim_cur = maxssiz;
627 if (limp->rlim_max > maxssiz)
628 limp->rlim_max = maxssiz;
629 oldssiz = alimp->rlim_cur;
630 break;
631
632 case RLIMIT_NOFILE:
633 if (limp->rlim_cur > maxfilesperproc)
634 limp->rlim_cur = maxfilesperproc;
635 if (limp->rlim_max > maxfilesperproc)
636 limp->rlim_max = maxfilesperproc;
637 break;
638
639 case RLIMIT_NPROC:
640 if (limp->rlim_cur > maxprocperuid)
641 limp->rlim_cur = maxprocperuid;
642 if (limp->rlim_max > maxprocperuid)
643 limp->rlim_max = maxprocperuid;
644 if (limp->rlim_cur < 1)
645 limp->rlim_cur = 1;
646 if (limp->rlim_max < 1)
647 limp->rlim_max = 1;
648 break;
649 }
650 *alimp = *limp;
651 p->p_limit = newlim;
652 PROC_UNLOCK(p);
653 lim_free(oldlim);
654
655 if (which == RLIMIT_STACK) {
656 /*
657 * Stack is allocated to the max at exec time with only
658 * "rlim_cur" bytes accessible. If stack limit is going
659 * up make more accessible, if going down make inaccessible.
660 */
661 if (limp->rlim_cur != oldssiz) {
662 vm_offset_t addr;
663 vm_size_t size;
664 vm_prot_t prot;
665
666 mtx_lock(&Giant);
667 if (limp->rlim_cur > oldssiz) {
668 prot = p->p_sysent->sv_stackprot;
669 size = limp->rlim_cur - oldssiz;
670 addr = p->p_sysent->sv_usrstack -
671 limp->rlim_cur;
672 } else {
673 prot = VM_PROT_NONE;
674 size = oldssiz - limp->rlim_cur;
675 addr = p->p_sysent->sv_usrstack -
676 oldssiz;
677 }
678 addr = trunc_page(addr);
679 size = round_page(size);
680 (void) vm_map_protect(&p->p_vmspace->vm_map,
681 addr, addr+size, prot, FALSE);
682 mtx_unlock(&Giant);
683 }
684 }
685 return (0);
686}
687
688#ifndef _SYS_SYSPROTO_H_
689struct __getrlimit_args {
690 u_int which;
691 struct rlimit *rlp;
692};
693#endif
694/*
695 * MPSAFE
696 */
697/* ARGSUSED */
698int
699getrlimit(td, uap)
700 struct thread *td;
701 register struct __getrlimit_args *uap;
702{
703 struct rlimit rlim;
704 struct proc *p;
705 int error;
706
707 if (uap->which >= RLIM_NLIMITS)
708 return (EINVAL);
709 p = td->td_proc;
710 PROC_LOCK(p);
711 lim_rlimit(p, uap->which, &rlim);
712 PROC_UNLOCK(p);
713 error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
714 return(error);
715}
716
717/*
718 * Transform the running time and tick information in proc p into user,
719 * system, and interrupt time usage.
720 */
721void
722calcru(p, up, sp, ip)
723 struct proc *p;
724 struct timeval *up;
725 struct timeval *sp;
726 struct timeval *ip;
727{
728 struct bintime bt;
729 struct timeval tv;
730 /* {user, system, interrupt, total} {ticks, usec}; previous tu: */
731 u_int64_t ut, uu, st, su, it, iu, tt, tu, ptu;
732
733 mtx_assert(&sched_lock, MA_OWNED);
734 /* XXX: why spl-protect ? worst case is an off-by-one report */
735
736 ut = p->p_uticks;
737 st = p->p_sticks;
738 it = p->p_iticks;
739
740 tt = ut + st + it;
741 if (tt == 0) {
742 st = 1;
743 tt = 1;
744 }
745 if (p == curthread->td_proc) {
746 /*
747 * Adjust for the current time slice. This is actually fairly
748 * important since the error here is on the order of a time
749 * quantum, which is much greater than the sampling error.
750 * XXXKSE use a different test due to threads on other
751 * processors also being 'current'.
752 */
753 binuptime(&bt);
754 bintime_sub(&bt, PCPU_PTR(switchtime));
755 bintime_add(&bt, &p->p_runtime);
756 } else
757 bt = p->p_runtime;
758 bintime2timeval(&bt, &tv);
759 tu = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
760 ptu = p->p_uu + p->p_su + p->p_iu;
761 if (tu < ptu || (int64_t)tu < 0) {
762 printf("calcru: negative time of %jd usec for pid %d (%s)\n",
763 (intmax_t)tu, p->p_pid, p->p_comm);
764 tu = ptu;
765 }
766
767 /* Subdivide tu. */
768 uu = (tu * ut) / tt;
769 su = (tu * st) / tt;
770 iu = tu - uu - su;
771
772 /* Enforce monotonicity. */
773 if (uu < p->p_uu || su < p->p_su || iu < p->p_iu) {
774 if (uu < p->p_uu)
775 uu = p->p_uu;
776 else if (uu + p->p_su + p->p_iu > tu)
777 uu = tu - p->p_su - p->p_iu;
778 if (st == 0)
779 su = p->p_su;
780 else {
781 su = ((tu - uu) * st) / (st + it);
782 if (su < p->p_su)
783 su = p->p_su;
784 else if (uu + su + p->p_iu > tu)
785 su = tu - uu - p->p_iu;
786 }
787 KASSERT(uu + su + p->p_iu <= tu,
788 ("calcru: monotonisation botch 1"));
789 iu = tu - uu - su;
790 KASSERT(iu >= p->p_iu,
791 ("calcru: monotonisation botch 2"));
792 }
793 p->p_uu = uu;
794 p->p_su = su;
795 p->p_iu = iu;
796
797 up->tv_sec = uu / 1000000;
798 up->tv_usec = uu % 1000000;
799 sp->tv_sec = su / 1000000;
800 sp->tv_usec = su % 1000000;
801 if (ip != NULL) {
802 ip->tv_sec = iu / 1000000;
803 ip->tv_usec = iu % 1000000;
804 }
805}
806
807#ifndef _SYS_SYSPROTO_H_
808struct getrusage_args {
809 int who;
810 struct rusage *rusage;
811};
812#endif
813/*
814 * MPSAFE
815 */
816/* ARGSUSED */
817int
818getrusage(td, uap)
819 register struct thread *td;
820 register struct getrusage_args *uap;
821{
822 struct rusage ru;
823 struct proc *p;
824
825 p = td->td_proc;
826 switch (uap->who) {
827
828 case RUSAGE_SELF:
829 mtx_lock(&Giant);
830 mtx_lock_spin(&sched_lock);
831 calcru(p, &p->p_stats->p_ru.ru_utime, &p->p_stats->p_ru.ru_stime,
832 NULL);
833 mtx_unlock_spin(&sched_lock);
834 ru = p->p_stats->p_ru;
835 mtx_unlock(&Giant);
836 break;
837
838 case RUSAGE_CHILDREN:
839 mtx_lock(&Giant);
840 ru = p->p_stats->p_cru;
841 mtx_unlock(&Giant);
842 break;
843
844 default:
845 return (EINVAL);
846 break;
847 }
848 return (copyout(&ru, uap->rusage, sizeof(struct rusage)));
849}
850
851void
852ruadd(ru, ru2)
853 register struct rusage *ru, *ru2;
854{
855 register long *ip, *ip2;
856 register int i;
857
858 timevaladd(&ru->ru_utime, &ru2->ru_utime);
859 timevaladd(&ru->ru_stime, &ru2->ru_stime);
860 if (ru->ru_maxrss < ru2->ru_maxrss)
861 ru->ru_maxrss = ru2->ru_maxrss;
862 ip = &ru->ru_first; ip2 = &ru2->ru_first;
863 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
864 *ip++ += *ip2++;
865}
866
867/*
868 * Allocate a new resource limits structure and initialize its
869 * reference count and mutex pointer.
870 */
871struct plimit *
872lim_alloc()
873{
874 struct plimit *limp;
875
876 limp = (struct plimit *)malloc(sizeof(struct plimit), M_PLIMIT,
877 M_WAITOK);
878 limp->pl_refcnt = 1;
879 limp->pl_mtx = mtx_pool_alloc(mtxpool_sleep);
880 return (limp);
881}
882
883struct plimit *
884lim_hold(limp)
885 struct plimit *limp;
886{
887
888 LIM_LOCK(limp);
889 limp->pl_refcnt++;
890 LIM_UNLOCK(limp);
891 return (limp);
892}
893
894void
895lim_free(limp)
896 struct plimit *limp;
897{
898
899 LIM_LOCK(limp);
900 KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow"));
901 if (--limp->pl_refcnt == 0) {
902 LIM_UNLOCK(limp);
903 free((void *)limp, M_PLIMIT);
904 return;
905 }
906 LIM_UNLOCK(limp);
907}
908
909/*
910 * Make a copy of the plimit structure.
911 * We share these structures copy-on-write after fork.
912 */
913void
914lim_copy(dst, src)
915 struct plimit *dst, *src;
916{
917
918 KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit"));
919 bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
920}
921
922/*
923 * Return the hard limit for a particular system resource. The
924 * which parameter specifies the index into the rlimit array.
925 */
926rlim_t
927lim_max(struct proc *p, int which)
928{
929 struct rlimit rl;
930
931 lim_rlimit(p, which, &rl);
932 return (rl.rlim_max);
933}
934
935/*
936 * Return the current (soft) limit for a particular system resource.
937 * The which parameter which specifies the index into the rlimit array
938 */
939rlim_t
940lim_cur(struct proc *p, int which)
941{
942 struct rlimit rl;
943
944 lim_rlimit(p, which, &rl);
945 return (rl.rlim_cur);
946}
947
948/*
949 * Return a copy of the entire rlimit structure for the system limit
950 * specified by 'which' in the rlimit structure pointed to by 'rlp'.
951 */
952void
953lim_rlimit(struct proc *p, int which, struct rlimit *rlp)
954{
955
956 PROC_LOCK_ASSERT(p, MA_OWNED);
957 KASSERT(which >= 0 && which < RLIM_NLIMITS,
958 ("request for invalid resource limit"));
959 *rlp = p->p_limit->pl_rlimit[which];
960}
961
962/*
963 * Find the uidinfo structure for a uid. This structure is used to
964 * track the total resource consumption (process count, socket buffer
965 * size, etc.) for the uid and impose limits.
966 */
967void
968uihashinit()
969{
970
971 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
972 mtx_init(&uihashtbl_mtx, "uidinfo hash", NULL, MTX_DEF);
973}
974
975/*
976 * Look up a uidinfo struct for the parameter uid.
977 * uihashtbl_mtx must be locked.
978 */
979static struct uidinfo *
980uilookup(uid)
981 uid_t uid;
982{
983 struct uihashhead *uipp;
984 struct uidinfo *uip;
985
986 mtx_assert(&uihashtbl_mtx, MA_OWNED);
987 uipp = UIHASH(uid);
988 LIST_FOREACH(uip, uipp, ui_hash)
989 if (uip->ui_uid == uid)
990 break;
991
992 return (uip);
993}
994
995/*
996 * Find or allocate a struct uidinfo for a particular uid.
997 * Increase refcount on uidinfo struct returned.
998 * uifree() should be called on a struct uidinfo when released.
999 */
1000struct uidinfo *
1001uifind(uid)
1002 uid_t uid;
1003{
1004 struct uidinfo *old_uip, *uip;
1005
1006 mtx_lock(&uihashtbl_mtx);
1007 uip = uilookup(uid);
1008 if (uip == NULL) {
1009 mtx_unlock(&uihashtbl_mtx);
1010 uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
1011 mtx_lock(&uihashtbl_mtx);
1012 /*
1013 * There's a chance someone created our uidinfo while we
1014 * were in malloc and not holding the lock, so we have to
1015 * make sure we don't insert a duplicate uidinfo.
1016 */
1017 if ((old_uip = uilookup(uid)) != NULL) {
1018 /* Someone else beat us to it. */
1019 free(uip, M_UIDINFO);
1020 uip = old_uip;
1021 } else {
1022 uip->ui_mtxp = mtx_pool_alloc(mtxpool_sleep);
1023 uip->ui_uid = uid;
1024 LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
1025 }
1026 }
1027 uihold(uip);
1028 mtx_unlock(&uihashtbl_mtx);
1029 return (uip);
1030}
1031
1032/*
1033 * Place another refcount on a uidinfo struct.
1034 */
1035void
1036uihold(uip)
1037 struct uidinfo *uip;
1038{
1039
1040 UIDINFO_LOCK(uip);
1041 uip->ui_ref++;
1042 UIDINFO_UNLOCK(uip);
1043}
1044
1045/*-
1046 * Since uidinfo structs have a long lifetime, we use an
1047 * opportunistic refcounting scheme to avoid locking the lookup hash
1048 * for each release.
1049 *
1050 * If the refcount hits 0, we need to free the structure,
1051 * which means we need to lock the hash.
1052 * Optimal case:
1053 * After locking the struct and lowering the refcount, if we find
1054 * that we don't need to free, simply unlock and return.
1055 * Suboptimal case:
1056 * If refcount lowering results in need to free, bump the count
1057 * back up, loose the lock and aquire the locks in the proper
1058 * order to try again.
1059 */
1060void
1061uifree(uip)
1062 struct uidinfo *uip;
1063{
1064
1065 /* Prepare for optimal case. */
1066 UIDINFO_LOCK(uip);
1067
1068 if (--uip->ui_ref != 0) {
1069 UIDINFO_UNLOCK(uip);
1070 return;
1071 }
1072
1073 /* Prepare for suboptimal case. */
1074 uip->ui_ref++;
1075 UIDINFO_UNLOCK(uip);
1076 mtx_lock(&uihashtbl_mtx);
1077 UIDINFO_LOCK(uip);
1078
1079 /*
1080 * We must subtract one from the count again because we backed out
1081 * our initial subtraction before dropping the lock.
1082 * Since another thread may have added a reference after we dropped the
1083 * initial lock we have to test for zero again.
1084 */
1085 if (--uip->ui_ref == 0) {
1086 LIST_REMOVE(uip, ui_hash);
1087 mtx_unlock(&uihashtbl_mtx);
1088 if (uip->ui_sbsize != 0)
1089 printf("freeing uidinfo: uid = %d, sbsize = %jd\n",
1090 uip->ui_uid, (intmax_t)uip->ui_sbsize);
1091 if (uip->ui_proccnt != 0)
1092 printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1093 uip->ui_uid, uip->ui_proccnt);
1094 UIDINFO_UNLOCK(uip);
1095 FREE(uip, M_UIDINFO);
1096 return;
1097 }
1098
1099 mtx_unlock(&uihashtbl_mtx);
1100 UIDINFO_UNLOCK(uip);
1101}
1102
1103/*
1104 * Change the count associated with number of processes
1105 * a given user is using. When 'max' is 0, don't enforce a limit
1106 */
1107int
1108chgproccnt(uip, diff, max)
1109 struct uidinfo *uip;
1110 int diff;
1111 int max;
1112{
1113
1114 UIDINFO_LOCK(uip);
1115 /* Don't allow them to exceed max, but allow subtraction. */
1116 if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) {
1117 UIDINFO_UNLOCK(uip);
1118 return (0);
1119 }
1120 uip->ui_proccnt += diff;
1121 if (uip->ui_proccnt < 0)
1122 printf("negative proccnt for uid = %d\n", uip->ui_uid);
1123 UIDINFO_UNLOCK(uip);
1124 return (1);
1125}
1126
1127/*
1128 * Change the total socket buffer size a user has used.
1129 */
1130int
1131chgsbsize(uip, hiwat, to, max)
1132 struct uidinfo *uip;
1133 u_int *hiwat;
1134 u_int to;
1135 rlim_t max;
1136{
1137 rlim_t new;
1138 int s;
1139
1140 s = splnet();
1141 UIDINFO_LOCK(uip);
1142 new = uip->ui_sbsize + to - *hiwat;
1143 /* Don't allow them to exceed max, but allow subtraction */
1144 if (to > *hiwat && new > max) {
1145 splx(s);
1146 UIDINFO_UNLOCK(uip);
1147 return (0);
1148 }
1149 uip->ui_sbsize = new;
1150 *hiwat = to;
1151 if (uip->ui_sbsize < 0)
1152 printf("negative sbsize for uid = %d\n", uip->ui_uid);
1153 splx(s);
1154 UIDINFO_UNLOCK(uip);
1155 return (1);
1156}
545
546#ifndef _SYS_SYSPROTO_H_
547struct __setrlimit_args {
548 u_int which;
549 struct rlimit *rlp;
550};
551#endif
552/*
553 * MPSAFE
554 */
555int
556setrlimit(td, uap)
557 struct thread *td;
558 register struct __setrlimit_args *uap;
559{
560 struct rlimit alim;
561 int error;
562
563 if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
564 return (error);
565 error = kern_setrlimit(td, uap->which, &alim);
566 return (error);
567}
568
569int
570kern_setrlimit(td, which, limp)
571 struct thread *td;
572 u_int which;
573 struct rlimit *limp;
574{
575 struct plimit *newlim, *oldlim;
576 struct proc *p;
577 register struct rlimit *alimp;
578 rlim_t oldssiz;
579 int error;
580
581 if (which >= RLIM_NLIMITS)
582 return (EINVAL);
583
584 /*
585 * Preserve historical bugs by treating negative limits as unsigned.
586 */
587 if (limp->rlim_cur < 0)
588 limp->rlim_cur = RLIM_INFINITY;
589 if (limp->rlim_max < 0)
590 limp->rlim_max = RLIM_INFINITY;
591
592 oldssiz = 0;
593 p = td->td_proc;
594 newlim = lim_alloc();
595 PROC_LOCK(p);
596 oldlim = p->p_limit;
597 alimp = &oldlim->pl_rlimit[which];
598 if (limp->rlim_cur > alimp->rlim_max ||
599 limp->rlim_max > alimp->rlim_max)
600 if ((error = suser_cred(td->td_ucred, PRISON_ROOT))) {
601 PROC_UNLOCK(p);
602 lim_free(newlim);
603 return (error);
604 }
605 if (limp->rlim_cur > limp->rlim_max)
606 limp->rlim_cur = limp->rlim_max;
607 lim_copy(newlim, oldlim);
608 alimp = &newlim->pl_rlimit[which];
609
610 switch (which) {
611
612 case RLIMIT_CPU:
613 mtx_lock_spin(&sched_lock);
614 p->p_cpulimit = limp->rlim_cur;
615 mtx_unlock_spin(&sched_lock);
616 break;
617 case RLIMIT_DATA:
618 if (limp->rlim_cur > maxdsiz)
619 limp->rlim_cur = maxdsiz;
620 if (limp->rlim_max > maxdsiz)
621 limp->rlim_max = maxdsiz;
622 break;
623
624 case RLIMIT_STACK:
625 if (limp->rlim_cur > maxssiz)
626 limp->rlim_cur = maxssiz;
627 if (limp->rlim_max > maxssiz)
628 limp->rlim_max = maxssiz;
629 oldssiz = alimp->rlim_cur;
630 break;
631
632 case RLIMIT_NOFILE:
633 if (limp->rlim_cur > maxfilesperproc)
634 limp->rlim_cur = maxfilesperproc;
635 if (limp->rlim_max > maxfilesperproc)
636 limp->rlim_max = maxfilesperproc;
637 break;
638
639 case RLIMIT_NPROC:
640 if (limp->rlim_cur > maxprocperuid)
641 limp->rlim_cur = maxprocperuid;
642 if (limp->rlim_max > maxprocperuid)
643 limp->rlim_max = maxprocperuid;
644 if (limp->rlim_cur < 1)
645 limp->rlim_cur = 1;
646 if (limp->rlim_max < 1)
647 limp->rlim_max = 1;
648 break;
649 }
650 *alimp = *limp;
651 p->p_limit = newlim;
652 PROC_UNLOCK(p);
653 lim_free(oldlim);
654
655 if (which == RLIMIT_STACK) {
656 /*
657 * Stack is allocated to the max at exec time with only
658 * "rlim_cur" bytes accessible. If stack limit is going
659 * up make more accessible, if going down make inaccessible.
660 */
661 if (limp->rlim_cur != oldssiz) {
662 vm_offset_t addr;
663 vm_size_t size;
664 vm_prot_t prot;
665
666 mtx_lock(&Giant);
667 if (limp->rlim_cur > oldssiz) {
668 prot = p->p_sysent->sv_stackprot;
669 size = limp->rlim_cur - oldssiz;
670 addr = p->p_sysent->sv_usrstack -
671 limp->rlim_cur;
672 } else {
673 prot = VM_PROT_NONE;
674 size = oldssiz - limp->rlim_cur;
675 addr = p->p_sysent->sv_usrstack -
676 oldssiz;
677 }
678 addr = trunc_page(addr);
679 size = round_page(size);
680 (void) vm_map_protect(&p->p_vmspace->vm_map,
681 addr, addr+size, prot, FALSE);
682 mtx_unlock(&Giant);
683 }
684 }
685 return (0);
686}
687
688#ifndef _SYS_SYSPROTO_H_
689struct __getrlimit_args {
690 u_int which;
691 struct rlimit *rlp;
692};
693#endif
694/*
695 * MPSAFE
696 */
697/* ARGSUSED */
698int
699getrlimit(td, uap)
700 struct thread *td;
701 register struct __getrlimit_args *uap;
702{
703 struct rlimit rlim;
704 struct proc *p;
705 int error;
706
707 if (uap->which >= RLIM_NLIMITS)
708 return (EINVAL);
709 p = td->td_proc;
710 PROC_LOCK(p);
711 lim_rlimit(p, uap->which, &rlim);
712 PROC_UNLOCK(p);
713 error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
714 return(error);
715}
716
717/*
718 * Transform the running time and tick information in proc p into user,
719 * system, and interrupt time usage.
720 */
721void
722calcru(p, up, sp, ip)
723 struct proc *p;
724 struct timeval *up;
725 struct timeval *sp;
726 struct timeval *ip;
727{
728 struct bintime bt;
729 struct timeval tv;
730 /* {user, system, interrupt, total} {ticks, usec}; previous tu: */
731 u_int64_t ut, uu, st, su, it, iu, tt, tu, ptu;
732
733 mtx_assert(&sched_lock, MA_OWNED);
734 /* XXX: why spl-protect ? worst case is an off-by-one report */
735
736 ut = p->p_uticks;
737 st = p->p_sticks;
738 it = p->p_iticks;
739
740 tt = ut + st + it;
741 if (tt == 0) {
742 st = 1;
743 tt = 1;
744 }
745 if (p == curthread->td_proc) {
746 /*
747 * Adjust for the current time slice. This is actually fairly
748 * important since the error here is on the order of a time
749 * quantum, which is much greater than the sampling error.
750 * XXXKSE use a different test due to threads on other
751 * processors also being 'current'.
752 */
753 binuptime(&bt);
754 bintime_sub(&bt, PCPU_PTR(switchtime));
755 bintime_add(&bt, &p->p_runtime);
756 } else
757 bt = p->p_runtime;
758 bintime2timeval(&bt, &tv);
759 tu = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
760 ptu = p->p_uu + p->p_su + p->p_iu;
761 if (tu < ptu || (int64_t)tu < 0) {
762 printf("calcru: negative time of %jd usec for pid %d (%s)\n",
763 (intmax_t)tu, p->p_pid, p->p_comm);
764 tu = ptu;
765 }
766
767 /* Subdivide tu. */
768 uu = (tu * ut) / tt;
769 su = (tu * st) / tt;
770 iu = tu - uu - su;
771
772 /* Enforce monotonicity. */
773 if (uu < p->p_uu || su < p->p_su || iu < p->p_iu) {
774 if (uu < p->p_uu)
775 uu = p->p_uu;
776 else if (uu + p->p_su + p->p_iu > tu)
777 uu = tu - p->p_su - p->p_iu;
778 if (st == 0)
779 su = p->p_su;
780 else {
781 su = ((tu - uu) * st) / (st + it);
782 if (su < p->p_su)
783 su = p->p_su;
784 else if (uu + su + p->p_iu > tu)
785 su = tu - uu - p->p_iu;
786 }
787 KASSERT(uu + su + p->p_iu <= tu,
788 ("calcru: monotonisation botch 1"));
789 iu = tu - uu - su;
790 KASSERT(iu >= p->p_iu,
791 ("calcru: monotonisation botch 2"));
792 }
793 p->p_uu = uu;
794 p->p_su = su;
795 p->p_iu = iu;
796
797 up->tv_sec = uu / 1000000;
798 up->tv_usec = uu % 1000000;
799 sp->tv_sec = su / 1000000;
800 sp->tv_usec = su % 1000000;
801 if (ip != NULL) {
802 ip->tv_sec = iu / 1000000;
803 ip->tv_usec = iu % 1000000;
804 }
805}
806
807#ifndef _SYS_SYSPROTO_H_
808struct getrusage_args {
809 int who;
810 struct rusage *rusage;
811};
812#endif
813/*
814 * MPSAFE
815 */
816/* ARGSUSED */
817int
818getrusage(td, uap)
819 register struct thread *td;
820 register struct getrusage_args *uap;
821{
822 struct rusage ru;
823 struct proc *p;
824
825 p = td->td_proc;
826 switch (uap->who) {
827
828 case RUSAGE_SELF:
829 mtx_lock(&Giant);
830 mtx_lock_spin(&sched_lock);
831 calcru(p, &p->p_stats->p_ru.ru_utime, &p->p_stats->p_ru.ru_stime,
832 NULL);
833 mtx_unlock_spin(&sched_lock);
834 ru = p->p_stats->p_ru;
835 mtx_unlock(&Giant);
836 break;
837
838 case RUSAGE_CHILDREN:
839 mtx_lock(&Giant);
840 ru = p->p_stats->p_cru;
841 mtx_unlock(&Giant);
842 break;
843
844 default:
845 return (EINVAL);
846 break;
847 }
848 return (copyout(&ru, uap->rusage, sizeof(struct rusage)));
849}
850
851void
852ruadd(ru, ru2)
853 register struct rusage *ru, *ru2;
854{
855 register long *ip, *ip2;
856 register int i;
857
858 timevaladd(&ru->ru_utime, &ru2->ru_utime);
859 timevaladd(&ru->ru_stime, &ru2->ru_stime);
860 if (ru->ru_maxrss < ru2->ru_maxrss)
861 ru->ru_maxrss = ru2->ru_maxrss;
862 ip = &ru->ru_first; ip2 = &ru2->ru_first;
863 for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
864 *ip++ += *ip2++;
865}
866
867/*
868 * Allocate a new resource limits structure and initialize its
869 * reference count and mutex pointer.
870 */
871struct plimit *
872lim_alloc()
873{
874 struct plimit *limp;
875
876 limp = (struct plimit *)malloc(sizeof(struct plimit), M_PLIMIT,
877 M_WAITOK);
878 limp->pl_refcnt = 1;
879 limp->pl_mtx = mtx_pool_alloc(mtxpool_sleep);
880 return (limp);
881}
882
883struct plimit *
884lim_hold(limp)
885 struct plimit *limp;
886{
887
888 LIM_LOCK(limp);
889 limp->pl_refcnt++;
890 LIM_UNLOCK(limp);
891 return (limp);
892}
893
894void
895lim_free(limp)
896 struct plimit *limp;
897{
898
899 LIM_LOCK(limp);
900 KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow"));
901 if (--limp->pl_refcnt == 0) {
902 LIM_UNLOCK(limp);
903 free((void *)limp, M_PLIMIT);
904 return;
905 }
906 LIM_UNLOCK(limp);
907}
908
909/*
910 * Make a copy of the plimit structure.
911 * We share these structures copy-on-write after fork.
912 */
913void
914lim_copy(dst, src)
915 struct plimit *dst, *src;
916{
917
918 KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit"));
919 bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
920}
921
922/*
923 * Return the hard limit for a particular system resource. The
924 * which parameter specifies the index into the rlimit array.
925 */
926rlim_t
927lim_max(struct proc *p, int which)
928{
929 struct rlimit rl;
930
931 lim_rlimit(p, which, &rl);
932 return (rl.rlim_max);
933}
934
935/*
936 * Return the current (soft) limit for a particular system resource.
937 * The which parameter which specifies the index into the rlimit array
938 */
939rlim_t
940lim_cur(struct proc *p, int which)
941{
942 struct rlimit rl;
943
944 lim_rlimit(p, which, &rl);
945 return (rl.rlim_cur);
946}
947
948/*
949 * Return a copy of the entire rlimit structure for the system limit
950 * specified by 'which' in the rlimit structure pointed to by 'rlp'.
951 */
952void
953lim_rlimit(struct proc *p, int which, struct rlimit *rlp)
954{
955
956 PROC_LOCK_ASSERT(p, MA_OWNED);
957 KASSERT(which >= 0 && which < RLIM_NLIMITS,
958 ("request for invalid resource limit"));
959 *rlp = p->p_limit->pl_rlimit[which];
960}
961
962/*
963 * Find the uidinfo structure for a uid. This structure is used to
964 * track the total resource consumption (process count, socket buffer
965 * size, etc.) for the uid and impose limits.
966 */
967void
968uihashinit()
969{
970
971 uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
972 mtx_init(&uihashtbl_mtx, "uidinfo hash", NULL, MTX_DEF);
973}
974
975/*
976 * Look up a uidinfo struct for the parameter uid.
977 * uihashtbl_mtx must be locked.
978 */
979static struct uidinfo *
980uilookup(uid)
981 uid_t uid;
982{
983 struct uihashhead *uipp;
984 struct uidinfo *uip;
985
986 mtx_assert(&uihashtbl_mtx, MA_OWNED);
987 uipp = UIHASH(uid);
988 LIST_FOREACH(uip, uipp, ui_hash)
989 if (uip->ui_uid == uid)
990 break;
991
992 return (uip);
993}
994
995/*
996 * Find or allocate a struct uidinfo for a particular uid.
997 * Increase refcount on uidinfo struct returned.
998 * uifree() should be called on a struct uidinfo when released.
999 */
1000struct uidinfo *
1001uifind(uid)
1002 uid_t uid;
1003{
1004 struct uidinfo *old_uip, *uip;
1005
1006 mtx_lock(&uihashtbl_mtx);
1007 uip = uilookup(uid);
1008 if (uip == NULL) {
1009 mtx_unlock(&uihashtbl_mtx);
1010 uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
1011 mtx_lock(&uihashtbl_mtx);
1012 /*
1013 * There's a chance someone created our uidinfo while we
1014 * were in malloc and not holding the lock, so we have to
1015 * make sure we don't insert a duplicate uidinfo.
1016 */
1017 if ((old_uip = uilookup(uid)) != NULL) {
1018 /* Someone else beat us to it. */
1019 free(uip, M_UIDINFO);
1020 uip = old_uip;
1021 } else {
1022 uip->ui_mtxp = mtx_pool_alloc(mtxpool_sleep);
1023 uip->ui_uid = uid;
1024 LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
1025 }
1026 }
1027 uihold(uip);
1028 mtx_unlock(&uihashtbl_mtx);
1029 return (uip);
1030}
1031
1032/*
1033 * Place another refcount on a uidinfo struct.
1034 */
1035void
1036uihold(uip)
1037 struct uidinfo *uip;
1038{
1039
1040 UIDINFO_LOCK(uip);
1041 uip->ui_ref++;
1042 UIDINFO_UNLOCK(uip);
1043}
1044
1045/*-
1046 * Since uidinfo structs have a long lifetime, we use an
1047 * opportunistic refcounting scheme to avoid locking the lookup hash
1048 * for each release.
1049 *
1050 * If the refcount hits 0, we need to free the structure,
1051 * which means we need to lock the hash.
1052 * Optimal case:
1053 * After locking the struct and lowering the refcount, if we find
1054 * that we don't need to free, simply unlock and return.
1055 * Suboptimal case:
1056 * If refcount lowering results in need to free, bump the count
1057 * back up, loose the lock and aquire the locks in the proper
1058 * order to try again.
1059 */
1060void
1061uifree(uip)
1062 struct uidinfo *uip;
1063{
1064
1065 /* Prepare for optimal case. */
1066 UIDINFO_LOCK(uip);
1067
1068 if (--uip->ui_ref != 0) {
1069 UIDINFO_UNLOCK(uip);
1070 return;
1071 }
1072
1073 /* Prepare for suboptimal case. */
1074 uip->ui_ref++;
1075 UIDINFO_UNLOCK(uip);
1076 mtx_lock(&uihashtbl_mtx);
1077 UIDINFO_LOCK(uip);
1078
1079 /*
1080 * We must subtract one from the count again because we backed out
1081 * our initial subtraction before dropping the lock.
1082 * Since another thread may have added a reference after we dropped the
1083 * initial lock we have to test for zero again.
1084 */
1085 if (--uip->ui_ref == 0) {
1086 LIST_REMOVE(uip, ui_hash);
1087 mtx_unlock(&uihashtbl_mtx);
1088 if (uip->ui_sbsize != 0)
1089 printf("freeing uidinfo: uid = %d, sbsize = %jd\n",
1090 uip->ui_uid, (intmax_t)uip->ui_sbsize);
1091 if (uip->ui_proccnt != 0)
1092 printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1093 uip->ui_uid, uip->ui_proccnt);
1094 UIDINFO_UNLOCK(uip);
1095 FREE(uip, M_UIDINFO);
1096 return;
1097 }
1098
1099 mtx_unlock(&uihashtbl_mtx);
1100 UIDINFO_UNLOCK(uip);
1101}
1102
1103/*
1104 * Change the count associated with number of processes
1105 * a given user is using. When 'max' is 0, don't enforce a limit
1106 */
1107int
1108chgproccnt(uip, diff, max)
1109 struct uidinfo *uip;
1110 int diff;
1111 int max;
1112{
1113
1114 UIDINFO_LOCK(uip);
1115 /* Don't allow them to exceed max, but allow subtraction. */
1116 if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) {
1117 UIDINFO_UNLOCK(uip);
1118 return (0);
1119 }
1120 uip->ui_proccnt += diff;
1121 if (uip->ui_proccnt < 0)
1122 printf("negative proccnt for uid = %d\n", uip->ui_uid);
1123 UIDINFO_UNLOCK(uip);
1124 return (1);
1125}
1126
1127/*
1128 * Change the total socket buffer size a user has used.
1129 */
1130int
1131chgsbsize(uip, hiwat, to, max)
1132 struct uidinfo *uip;
1133 u_int *hiwat;
1134 u_int to;
1135 rlim_t max;
1136{
1137 rlim_t new;
1138 int s;
1139
1140 s = splnet();
1141 UIDINFO_LOCK(uip);
1142 new = uip->ui_sbsize + to - *hiwat;
1143 /* Don't allow them to exceed max, but allow subtraction */
1144 if (to > *hiwat && new > max) {
1145 splx(s);
1146 UIDINFO_UNLOCK(uip);
1147 return (0);
1148 }
1149 uip->ui_sbsize = new;
1150 *hiwat = to;
1151 if (uip->ui_sbsize < 0)
1152 printf("negative sbsize for uid = %d\n", uip->ui_uid);
1153 splx(s);
1154 UIDINFO_UNLOCK(uip);
1155 return (1);
1156}