Deleted Added
full compact
kern_proc.c (130551) kern_proc.c (130640)
1/*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
1/*
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
30 * $FreeBSD: head/sys/kern/kern_proc.c 130551 2004-06-16 00:26:31Z julian $
30 * $FreeBSD: head/sys/kern/kern_proc.c 130640 2004-06-17 17:16:53Z phk $
31 */
32
33#include <sys/cdefs.h>
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/kern/kern_proc.c 130551 2004-06-16 00:26:31Z julian $");
34__FBSDID("$FreeBSD: head/sys/kern/kern_proc.c 130640 2004-06-17 17:16:53Z phk $");
35
36#include "opt_ktrace.h"
37#include "opt_kstack_pages.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/lock.h>
43#include <sys/malloc.h>
44#include <sys/mutex.h>
45#include <sys/proc.h>
46#include <sys/sysent.h>
47#include <sys/sched.h>
48#include <sys/smp.h>
49#include <sys/sysctl.h>
50#include <sys/filedesc.h>
51#include <sys/tty.h>
52#include <sys/signalvar.h>
53#include <sys/sx.h>
54#include <sys/user.h>
55#include <sys/jail.h>
56#ifdef KTRACE
57#include <sys/uio.h>
58#include <sys/ktrace.h>
59#endif
60
61#include <vm/vm.h>
62#include <vm/vm_extern.h>
63#include <vm/pmap.h>
64#include <vm/vm_map.h>
65#include <vm/uma.h>
66#include <machine/critical.h>
67
68MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
69MALLOC_DEFINE(M_SESSION, "session", "session header");
70static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
71MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
72
73static void doenterpgrp(struct proc *, struct pgrp *);
74static void orphanpg(struct pgrp *pg);
75static void pgadjustjobc(struct pgrp *pgrp, int entering);
76static void pgdelete(struct pgrp *);
77static void proc_ctor(void *mem, int size, void *arg);
78static void proc_dtor(void *mem, int size, void *arg);
79static void proc_init(void *mem, int size);
80static void proc_fini(void *mem, int size);
81
82/*
83 * Other process lists
84 */
85struct pidhashhead *pidhashtbl;
86u_long pidhash;
87struct pgrphashhead *pgrphashtbl;
88u_long pgrphash;
89struct proclist allproc;
90struct proclist zombproc;
91struct sx allproc_lock;
92struct sx proctree_lock;
93struct mtx pargs_ref_lock;
94struct mtx ppeers_lock;
95uma_zone_t proc_zone;
96uma_zone_t ithread_zone;
97
98int kstack_pages = KSTACK_PAGES;
99int uarea_pages = UAREA_PAGES;
100SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "");
101SYSCTL_INT(_kern, OID_AUTO, uarea_pages, CTLFLAG_RD, &uarea_pages, 0, "");
102
103#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
104
105CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
106
107/*
108 * Initialize global process hashing structures.
109 */
110void
111procinit()
112{
113
114 sx_init(&allproc_lock, "allproc");
115 sx_init(&proctree_lock, "proctree");
116 mtx_init(&pargs_ref_lock, "struct pargs.ref", NULL, MTX_DEF);
117 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
118 LIST_INIT(&allproc);
119 LIST_INIT(&zombproc);
120 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
121 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
122 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
123 proc_ctor, proc_dtor, proc_init, proc_fini,
124 UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
125 uihashinit();
126}
127
128/*
129 * Prepare a proc for use.
130 */
131static void
132proc_ctor(void *mem, int size, void *arg)
133{
134 struct proc *p;
135
136 p = (struct proc *)mem;
137}
138
139/*
140 * Reclaim a proc after use.
141 */
142static void
143proc_dtor(void *mem, int size, void *arg)
144{
145 struct proc *p;
146 struct thread *td;
147 struct ksegrp *kg;
148 struct kse *ke;
149
150 /* INVARIANTS checks go here */
151 p = (struct proc *)mem;
152 KASSERT((p->p_numthreads == 1),
153 ("bad number of threads in exiting process"));
154 td = FIRST_THREAD_IN_PROC(p);
155 KASSERT((td != NULL), ("proc_dtor: bad thread pointer"));
156 kg = FIRST_KSEGRP_IN_PROC(p);
157 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer"));
158 ke = FIRST_KSE_IN_KSEGRP(kg);
159 KASSERT((ke != NULL), ("proc_dtor: bad ke pointer"));
160
161 /* Dispose of an alternate kstack, if it exists.
162 * XXX What if there are more than one thread in the proc?
163 * The first thread in the proc is special and not
164 * freed, so you gotta do this here.
165 */
166 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0))
167 vm_thread_dispose_altkstack(td);
168
169 /*
170 * We want to make sure we know the initial linkages.
171 * so for now tear them down and remake them.
172 * This is probably un-needed as we can probably rely
173 * on the state coming in here from wait4().
174 */
175 proc_linkup(p, kg, ke, td);
176}
177
178/*
179 * Initialize type-stable parts of a proc (when newly created).
180 */
181static void
182proc_init(void *mem, int size)
183{
184 struct proc *p;
185 struct thread *td;
186 struct ksegrp *kg;
187 struct kse *ke;
188
189 p = (struct proc *)mem;
190 p->p_sched = (struct p_sched *)&p[1];
191 vm_proc_new(p);
192 td = thread_alloc();
193 ke = kse_alloc();
194 kg = ksegrp_alloc();
195 proc_linkup(p, kg, ke, td);
196 bzero(&p->p_mtx, sizeof(struct mtx));
197 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
198}
199
200/*
201 * Tear down type-stable parts of a proc (just before being discarded)
202 */
203static void
204proc_fini(void *mem, int size)
205{
206 struct proc *p;
207 struct thread *td;
208 struct ksegrp *kg;
209 struct kse *ke;
210
211 p = (struct proc *)mem;
212 KASSERT((p->p_numthreads == 1),
213 ("bad number of threads in freeing process"));
214 td = FIRST_THREAD_IN_PROC(p);
215 KASSERT((td != NULL), ("proc_dtor: bad thread pointer"));
216 kg = FIRST_KSEGRP_IN_PROC(p);
217 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer"));
218 ke = FIRST_KSE_IN_KSEGRP(kg);
219 KASSERT((ke != NULL), ("proc_dtor: bad ke pointer"));
220 vm_proc_dispose(p);
221 thread_free(td);
222 ksegrp_free(kg);
223 kse_free(ke);
224 mtx_destroy(&p->p_mtx);
225}
226
227/*
228 * Is p an inferior of the current process?
229 */
230int
231inferior(p)
232 register struct proc *p;
233{
234
235 sx_assert(&proctree_lock, SX_LOCKED);
236 for (; p != curproc; p = p->p_pptr)
237 if (p->p_pid == 0)
238 return (0);
239 return (1);
240}
241
242/*
243 * Locate a process by number
244 */
245struct proc *
246pfind(pid)
247 register pid_t pid;
248{
249 register struct proc *p;
250
251 sx_slock(&allproc_lock);
252 LIST_FOREACH(p, PIDHASH(pid), p_hash)
253 if (p->p_pid == pid) {
254 PROC_LOCK(p);
255 break;
256 }
257 sx_sunlock(&allproc_lock);
258 return (p);
259}
260
261/*
262 * Locate a process group by number.
263 * The caller must hold proctree_lock.
264 */
265struct pgrp *
266pgfind(pgid)
267 register pid_t pgid;
268{
269 register struct pgrp *pgrp;
270
271 sx_assert(&proctree_lock, SX_LOCKED);
272
273 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
274 if (pgrp->pg_id == pgid) {
275 PGRP_LOCK(pgrp);
276 return (pgrp);
277 }
278 }
279 return (NULL);
280}
281
282/*
283 * Create a new process group.
284 * pgid must be equal to the pid of p.
285 * Begin a new session if required.
286 */
287int
288enterpgrp(p, pgid, pgrp, sess)
289 register struct proc *p;
290 pid_t pgid;
291 struct pgrp *pgrp;
292 struct session *sess;
293{
294 struct pgrp *pgrp2;
295
296 sx_assert(&proctree_lock, SX_XLOCKED);
297
298 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
299 KASSERT(p->p_pid == pgid,
300 ("enterpgrp: new pgrp and pid != pgid"));
301
302 pgrp2 = pgfind(pgid);
303
304 KASSERT(pgrp2 == NULL,
305 ("enterpgrp: pgrp with pgid exists"));
306 KASSERT(!SESS_LEADER(p),
307 ("enterpgrp: session leader attempted setpgrp"));
308
309 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
310
311 if (sess != NULL) {
312 /*
313 * new session
314 */
315 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
316 PROC_LOCK(p);
317 p->p_flag &= ~P_CONTROLT;
318 PROC_UNLOCK(p);
319 PGRP_LOCK(pgrp);
320 sess->s_leader = p;
321 sess->s_sid = p->p_pid;
322 sess->s_count = 1;
323 sess->s_ttyvp = NULL;
324 sess->s_ttyp = NULL;
325 bcopy(p->p_session->s_login, sess->s_login,
326 sizeof(sess->s_login));
327 pgrp->pg_session = sess;
328 KASSERT(p == curproc,
329 ("enterpgrp: mksession and p != curproc"));
330 } else {
331 pgrp->pg_session = p->p_session;
332 SESS_LOCK(pgrp->pg_session);
333 pgrp->pg_session->s_count++;
334 SESS_UNLOCK(pgrp->pg_session);
335 PGRP_LOCK(pgrp);
336 }
337 pgrp->pg_id = pgid;
338 LIST_INIT(&pgrp->pg_members);
339
340 /*
341 * As we have an exclusive lock of proctree_lock,
342 * this should not deadlock.
343 */
344 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
345 pgrp->pg_jobc = 0;
346 SLIST_INIT(&pgrp->pg_sigiolst);
347 PGRP_UNLOCK(pgrp);
348
349 doenterpgrp(p, pgrp);
350
351 return (0);
352}
353
354/*
355 * Move p to an existing process group
356 */
357int
358enterthispgrp(p, pgrp)
359 register struct proc *p;
360 struct pgrp *pgrp;
361{
362
363 sx_assert(&proctree_lock, SX_XLOCKED);
364 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
365 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
366 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
367 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
368 KASSERT(pgrp->pg_session == p->p_session,
369 ("%s: pgrp's session %p, p->p_session %p.\n",
370 __func__,
371 pgrp->pg_session,
372 p->p_session));
373 KASSERT(pgrp != p->p_pgrp,
374 ("%s: p belongs to pgrp.", __func__));
375
376 doenterpgrp(p, pgrp);
377
378 return (0);
379}
380
381/*
382 * Move p to a process group
383 */
384static void
385doenterpgrp(p, pgrp)
386 struct proc *p;
387 struct pgrp *pgrp;
388{
389 struct pgrp *savepgrp;
390
391 sx_assert(&proctree_lock, SX_XLOCKED);
392 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
393 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
394 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
395 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
396
397 savepgrp = p->p_pgrp;
398
399 /*
400 * Adjust eligibility of affected pgrps to participate in job control.
401 * Increment eligibility counts before decrementing, otherwise we
402 * could reach 0 spuriously during the first call.
403 */
404 fixjobc(p, pgrp, 1);
405 fixjobc(p, p->p_pgrp, 0);
406
407 PGRP_LOCK(pgrp);
408 PGRP_LOCK(savepgrp);
409 PROC_LOCK(p);
410 LIST_REMOVE(p, p_pglist);
411 p->p_pgrp = pgrp;
412 PROC_UNLOCK(p);
413 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
414 PGRP_UNLOCK(savepgrp);
415 PGRP_UNLOCK(pgrp);
416 if (LIST_EMPTY(&savepgrp->pg_members))
417 pgdelete(savepgrp);
418}
419
420/*
421 * remove process from process group
422 */
423int
424leavepgrp(p)
425 register struct proc *p;
426{
427 struct pgrp *savepgrp;
428
429 sx_assert(&proctree_lock, SX_XLOCKED);
430 savepgrp = p->p_pgrp;
431 PGRP_LOCK(savepgrp);
432 PROC_LOCK(p);
433 LIST_REMOVE(p, p_pglist);
434 p->p_pgrp = NULL;
435 PROC_UNLOCK(p);
436 PGRP_UNLOCK(savepgrp);
437 if (LIST_EMPTY(&savepgrp->pg_members))
438 pgdelete(savepgrp);
439 return (0);
440}
441
442/*
443 * delete a process group
444 */
445static void
446pgdelete(pgrp)
447 register struct pgrp *pgrp;
448{
449 struct session *savesess;
450 int i;
451
452 sx_assert(&proctree_lock, SX_XLOCKED);
453 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
454 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
455
456 /*
457 * Reset any sigio structures pointing to us as a result of
458 * F_SETOWN with our pgid.
459 */
460 funsetownlst(&pgrp->pg_sigiolst);
461
462 PGRP_LOCK(pgrp);
463 if (pgrp->pg_session->s_ttyp != NULL &&
464 pgrp->pg_session->s_ttyp->t_pgrp == pgrp)
465 pgrp->pg_session->s_ttyp->t_pgrp = NULL;
466 LIST_REMOVE(pgrp, pg_hash);
467 savesess = pgrp->pg_session;
468 SESS_LOCK(savesess);
469 i = --savesess->s_count;
470 SESS_UNLOCK(savesess);
471 PGRP_UNLOCK(pgrp);
472 if (i == 0) {
473 if (savesess->s_ttyp != NULL)
474 ttyrel(savesess->s_ttyp);
475 mtx_destroy(&savesess->s_mtx);
476 FREE(savesess, M_SESSION);
477 }
478 mtx_destroy(&pgrp->pg_mtx);
479 FREE(pgrp, M_PGRP);
480}
481
482static void
483pgadjustjobc(pgrp, entering)
484 struct pgrp *pgrp;
485 int entering;
486{
487
488 PGRP_LOCK(pgrp);
489 if (entering)
490 pgrp->pg_jobc++;
491 else {
492 --pgrp->pg_jobc;
493 if (pgrp->pg_jobc == 0)
494 orphanpg(pgrp);
495 }
496 PGRP_UNLOCK(pgrp);
497}
498
499/*
500 * Adjust pgrp jobc counters when specified process changes process group.
501 * We count the number of processes in each process group that "qualify"
502 * the group for terminal job control (those with a parent in a different
503 * process group of the same session). If that count reaches zero, the
504 * process group becomes orphaned. Check both the specified process'
505 * process group and that of its children.
506 * entering == 0 => p is leaving specified group.
507 * entering == 1 => p is entering specified group.
508 */
509void
510fixjobc(p, pgrp, entering)
511 register struct proc *p;
512 register struct pgrp *pgrp;
513 int entering;
514{
515 register struct pgrp *hispgrp;
516 register struct session *mysession;
517
518 sx_assert(&proctree_lock, SX_LOCKED);
519 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
520 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
521 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
522
523 /*
524 * Check p's parent to see whether p qualifies its own process
525 * group; if so, adjust count for p's process group.
526 */
527 mysession = pgrp->pg_session;
528 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
529 hispgrp->pg_session == mysession)
530 pgadjustjobc(pgrp, entering);
531
532 /*
533 * Check this process' children to see whether they qualify
534 * their process groups; if so, adjust counts for children's
535 * process groups.
536 */
537 LIST_FOREACH(p, &p->p_children, p_sibling) {
538 hispgrp = p->p_pgrp;
539 if (hispgrp == pgrp ||
540 hispgrp->pg_session != mysession)
541 continue;
542 PROC_LOCK(p);
543 if (p->p_state == PRS_ZOMBIE) {
544 PROC_UNLOCK(p);
545 continue;
546 }
547 PROC_UNLOCK(p);
548 pgadjustjobc(hispgrp, entering);
549 }
550}
551
552/*
553 * A process group has become orphaned;
554 * if there are any stopped processes in the group,
555 * hang-up all process in that group.
556 */
557static void
558orphanpg(pg)
559 struct pgrp *pg;
560{
561 register struct proc *p;
562
563 PGRP_LOCK_ASSERT(pg, MA_OWNED);
564
565 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
566 PROC_LOCK(p);
567 if (P_SHOULDSTOP(p)) {
568 PROC_UNLOCK(p);
569 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
570 PROC_LOCK(p);
571 psignal(p, SIGHUP);
572 psignal(p, SIGCONT);
573 PROC_UNLOCK(p);
574 }
575 return;
576 }
577 PROC_UNLOCK(p);
578 }
579}
580
581#include "opt_ddb.h"
582#ifdef DDB
583#include <ddb/ddb.h>
584
585DB_SHOW_COMMAND(pgrpdump, pgrpdump)
586{
587 register struct pgrp *pgrp;
588 register struct proc *p;
589 register int i;
590
591 for (i = 0; i <= pgrphash; i++) {
592 if (!LIST_EMPTY(&pgrphashtbl[i])) {
593 printf("\tindx %d\n", i);
594 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
595 printf(
596 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
597 (void *)pgrp, (long)pgrp->pg_id,
598 (void *)pgrp->pg_session,
599 pgrp->pg_session->s_count,
600 (void *)LIST_FIRST(&pgrp->pg_members));
601 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
602 printf("\t\tpid %ld addr %p pgrp %p\n",
603 (long)p->p_pid, (void *)p,
604 (void *)p->p_pgrp);
605 }
606 }
607 }
608 }
609}
610#endif /* DDB */
611void
612fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp);
613
614/*
615 * Fill in a kinfo_proc structure for the specified process.
616 * Must be called with the target process locked.
617 */
618void
619fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
620{
621 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp);
622}
623
624void
625fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp)
626{
627 struct proc *p;
628 struct thread *td0;
629 struct kse *ke;
630 struct ksegrp *kg;
631 struct tty *tp;
632 struct session *sp;
633 struct timeval tv;
634 struct sigacts *ps;
635
636 p = td->td_proc;
637
638 bzero(kp, sizeof(*kp));
639
640 kp->ki_structsize = sizeof(*kp);
641 kp->ki_paddr = p;
642 PROC_LOCK_ASSERT(p, MA_OWNED);
643 kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */
644 kp->ki_args = p->p_args;
645 kp->ki_textvp = p->p_textvp;
646#ifdef KTRACE
647 kp->ki_tracep = p->p_tracevp;
648 mtx_lock(&ktrace_mtx);
649 kp->ki_traceflag = p->p_traceflag;
650 mtx_unlock(&ktrace_mtx);
651#endif
652 kp->ki_fd = p->p_fd;
653 kp->ki_vmspace = p->p_vmspace;
654 if (p->p_ucred) {
655 kp->ki_uid = p->p_ucred->cr_uid;
656 kp->ki_ruid = p->p_ucred->cr_ruid;
657 kp->ki_svuid = p->p_ucred->cr_svuid;
658 /* XXX bde doesn't like KI_NGROUPS */
659 kp->ki_ngroups = min(p->p_ucred->cr_ngroups, KI_NGROUPS);
660 bcopy(p->p_ucred->cr_groups, kp->ki_groups,
661 kp->ki_ngroups * sizeof(gid_t));
662 kp->ki_rgid = p->p_ucred->cr_rgid;
663 kp->ki_svgid = p->p_ucred->cr_svgid;
664 }
665 if (p->p_sigacts) {
666 ps = p->p_sigacts;
667 mtx_lock(&ps->ps_mtx);
668 kp->ki_sigignore = ps->ps_sigignore;
669 kp->ki_sigcatch = ps->ps_sigcatch;
670 mtx_unlock(&ps->ps_mtx);
671 }
672 mtx_lock_spin(&sched_lock);
673 if (p->p_state != PRS_NEW &&
674 p->p_state != PRS_ZOMBIE &&
675 p->p_vmspace != NULL) {
676 struct vmspace *vm = p->p_vmspace;
677
678 kp->ki_size = vm->vm_map.size;
679 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
680 if (p->p_sflag & PS_INMEM)
681 kp->ki_rssize += UAREA_PAGES;
682 FOREACH_THREAD_IN_PROC(p, td0) {
683 if (!TD_IS_SWAPPED(td0))
684 kp->ki_rssize += td0->td_kstack_pages;
685 if (td0->td_altkstack_obj != NULL)
686 kp->ki_rssize += td0->td_altkstack_pages;
687 }
688 kp->ki_swrss = vm->vm_swrss;
689 kp->ki_tsize = vm->vm_tsize;
690 kp->ki_dsize = vm->vm_dsize;
691 kp->ki_ssize = vm->vm_ssize;
692 }
693 if ((p->p_sflag & PS_INMEM) && p->p_stats) {
694 kp->ki_start = p->p_stats->p_start;
695 timevaladd(&kp->ki_start, &boottime);
696 kp->ki_rusage = p->p_stats->p_ru;
697 kp->ki_childtime.tv_sec = p->p_stats->p_cru.ru_utime.tv_sec +
698 p->p_stats->p_cru.ru_stime.tv_sec;
699 kp->ki_childtime.tv_usec = p->p_stats->p_cru.ru_utime.tv_usec +
700 p->p_stats->p_cru.ru_stime.tv_usec;
701 }
702 if (p->p_state != PRS_ZOMBIE) {
703#if 0
704 if (td == NULL) {
705 /* XXXKSE: This should never happen. */
706 printf("fill_kinfo_proc(): pid %d has no threads!\n",
707 p->p_pid);
708 mtx_unlock_spin(&sched_lock);
709 return;
710 }
711#endif
712 if (td->td_wmesg != NULL) {
713 strlcpy(kp->ki_wmesg, td->td_wmesg,
714 sizeof(kp->ki_wmesg));
715 }
716 if (TD_ON_LOCK(td)) {
717 kp->ki_kiflag |= KI_LOCKBLOCK;
718 strlcpy(kp->ki_lockname, td->td_lockname,
719 sizeof(kp->ki_lockname));
720 }
721
722 if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */
723 if (TD_ON_RUNQ(td) ||
724 TD_CAN_RUN(td) ||
725 TD_IS_RUNNING(td)) {
726 kp->ki_stat = SRUN;
727 } else if (P_SHOULDSTOP(p)) {
728 kp->ki_stat = SSTOP;
729 } else if (TD_IS_SLEEPING(td)) {
730 kp->ki_stat = SSLEEP;
731 } else if (TD_ON_LOCK(td)) {
732 kp->ki_stat = SLOCK;
733 } else {
734 kp->ki_stat = SWAIT;
735 }
736 } else {
737 kp->ki_stat = SIDL;
738 }
739
740 kp->ki_sflag = p->p_sflag;
741 kp->ki_swtime = p->p_swtime;
742 kp->ki_pid = p->p_pid;
743 kp->ki_nice = p->p_nice;
744 kg = td->td_ksegrp;
745 ke = td->td_kse;
746 bintime2timeval(&p->p_runtime, &tv);
747 kp->ki_runtime =
748 tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec;
749
750 /* things in the KSE GROUP */
751 kp->ki_estcpu = kg->kg_estcpu;
752 kp->ki_slptime = kg->kg_slptime;
753 kp->ki_pri.pri_user = kg->kg_user_pri;
754 kp->ki_pri.pri_class = kg->kg_pri_class;
755
756 /* Things in the thread */
757 kp->ki_wchan = td->td_wchan;
758 kp->ki_pri.pri_level = td->td_priority;
759 kp->ki_pri.pri_native = td->td_base_pri;
760 kp->ki_lastcpu = td->td_lastcpu;
761 kp->ki_oncpu = td->td_oncpu;
762 kp->ki_tdflags = td->td_flags;
763 kp->ki_pcb = td->td_pcb;
764 kp->ki_kstack = (void *)td->td_kstack;
765 kp->ki_pctcpu = sched_pctcpu(td);
766
767 /* Things in the kse */
768 if (ke)
769 kp->ki_rqindex = ke->ke_rqindex;
770 else
771 kp->ki_rqindex = 0;
772
773 } else {
774 kp->ki_stat = SZOMB;
775 }
776 mtx_unlock_spin(&sched_lock);
777 sp = NULL;
778 tp = NULL;
779 if (p->p_pgrp) {
780 kp->ki_pgid = p->p_pgrp->pg_id;
781 kp->ki_jobc = p->p_pgrp->pg_jobc;
782 sp = p->p_pgrp->pg_session;
783
784 if (sp != NULL) {
785 kp->ki_sid = sp->s_sid;
786 SESS_LOCK(sp);
787 strlcpy(kp->ki_login, sp->s_login,
788 sizeof(kp->ki_login));
789 if (sp->s_ttyvp)
790 kp->ki_kiflag |= KI_CTTY;
791 if (SESS_LEADER(p))
792 kp->ki_kiflag |= KI_SLEADER;
793 tp = sp->s_ttyp;
794 SESS_UNLOCK(sp);
795 }
796 }
797 if ((p->p_flag & P_CONTROLT) && tp != NULL) {
798 kp->ki_tdev = dev2udev(tp->t_dev);
799 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
800 if (tp->t_session)
801 kp->ki_tsid = tp->t_session->s_sid;
802 } else
35
36#include "opt_ktrace.h"
37#include "opt_kstack_pages.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/lock.h>
43#include <sys/malloc.h>
44#include <sys/mutex.h>
45#include <sys/proc.h>
46#include <sys/sysent.h>
47#include <sys/sched.h>
48#include <sys/smp.h>
49#include <sys/sysctl.h>
50#include <sys/filedesc.h>
51#include <sys/tty.h>
52#include <sys/signalvar.h>
53#include <sys/sx.h>
54#include <sys/user.h>
55#include <sys/jail.h>
56#ifdef KTRACE
57#include <sys/uio.h>
58#include <sys/ktrace.h>
59#endif
60
61#include <vm/vm.h>
62#include <vm/vm_extern.h>
63#include <vm/pmap.h>
64#include <vm/vm_map.h>
65#include <vm/uma.h>
66#include <machine/critical.h>
67
68MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
69MALLOC_DEFINE(M_SESSION, "session", "session header");
70static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
71MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
72
73static void doenterpgrp(struct proc *, struct pgrp *);
74static void orphanpg(struct pgrp *pg);
75static void pgadjustjobc(struct pgrp *pgrp, int entering);
76static void pgdelete(struct pgrp *);
77static void proc_ctor(void *mem, int size, void *arg);
78static void proc_dtor(void *mem, int size, void *arg);
79static void proc_init(void *mem, int size);
80static void proc_fini(void *mem, int size);
81
82/*
83 * Other process lists
84 */
85struct pidhashhead *pidhashtbl;
86u_long pidhash;
87struct pgrphashhead *pgrphashtbl;
88u_long pgrphash;
89struct proclist allproc;
90struct proclist zombproc;
91struct sx allproc_lock;
92struct sx proctree_lock;
93struct mtx pargs_ref_lock;
94struct mtx ppeers_lock;
95uma_zone_t proc_zone;
96uma_zone_t ithread_zone;
97
98int kstack_pages = KSTACK_PAGES;
99int uarea_pages = UAREA_PAGES;
100SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "");
101SYSCTL_INT(_kern, OID_AUTO, uarea_pages, CTLFLAG_RD, &uarea_pages, 0, "");
102
103#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
104
105CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
106
107/*
108 * Initialize global process hashing structures.
109 */
110void
111procinit()
112{
113
114 sx_init(&allproc_lock, "allproc");
115 sx_init(&proctree_lock, "proctree");
116 mtx_init(&pargs_ref_lock, "struct pargs.ref", NULL, MTX_DEF);
117 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
118 LIST_INIT(&allproc);
119 LIST_INIT(&zombproc);
120 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
121 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
122 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
123 proc_ctor, proc_dtor, proc_init, proc_fini,
124 UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
125 uihashinit();
126}
127
128/*
129 * Prepare a proc for use.
130 */
131static void
132proc_ctor(void *mem, int size, void *arg)
133{
134 struct proc *p;
135
136 p = (struct proc *)mem;
137}
138
139/*
140 * Reclaim a proc after use.
141 */
142static void
143proc_dtor(void *mem, int size, void *arg)
144{
145 struct proc *p;
146 struct thread *td;
147 struct ksegrp *kg;
148 struct kse *ke;
149
150 /* INVARIANTS checks go here */
151 p = (struct proc *)mem;
152 KASSERT((p->p_numthreads == 1),
153 ("bad number of threads in exiting process"));
154 td = FIRST_THREAD_IN_PROC(p);
155 KASSERT((td != NULL), ("proc_dtor: bad thread pointer"));
156 kg = FIRST_KSEGRP_IN_PROC(p);
157 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer"));
158 ke = FIRST_KSE_IN_KSEGRP(kg);
159 KASSERT((ke != NULL), ("proc_dtor: bad ke pointer"));
160
161 /* Dispose of an alternate kstack, if it exists.
162 * XXX What if there are more than one thread in the proc?
163 * The first thread in the proc is special and not
164 * freed, so you gotta do this here.
165 */
166 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0))
167 vm_thread_dispose_altkstack(td);
168
169 /*
170 * We want to make sure we know the initial linkages.
171 * so for now tear them down and remake them.
172 * This is probably un-needed as we can probably rely
173 * on the state coming in here from wait4().
174 */
175 proc_linkup(p, kg, ke, td);
176}
177
178/*
179 * Initialize type-stable parts of a proc (when newly created).
180 */
181static void
182proc_init(void *mem, int size)
183{
184 struct proc *p;
185 struct thread *td;
186 struct ksegrp *kg;
187 struct kse *ke;
188
189 p = (struct proc *)mem;
190 p->p_sched = (struct p_sched *)&p[1];
191 vm_proc_new(p);
192 td = thread_alloc();
193 ke = kse_alloc();
194 kg = ksegrp_alloc();
195 proc_linkup(p, kg, ke, td);
196 bzero(&p->p_mtx, sizeof(struct mtx));
197 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
198}
199
200/*
201 * Tear down type-stable parts of a proc (just before being discarded)
202 */
203static void
204proc_fini(void *mem, int size)
205{
206 struct proc *p;
207 struct thread *td;
208 struct ksegrp *kg;
209 struct kse *ke;
210
211 p = (struct proc *)mem;
212 KASSERT((p->p_numthreads == 1),
213 ("bad number of threads in freeing process"));
214 td = FIRST_THREAD_IN_PROC(p);
215 KASSERT((td != NULL), ("proc_dtor: bad thread pointer"));
216 kg = FIRST_KSEGRP_IN_PROC(p);
217 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer"));
218 ke = FIRST_KSE_IN_KSEGRP(kg);
219 KASSERT((ke != NULL), ("proc_dtor: bad ke pointer"));
220 vm_proc_dispose(p);
221 thread_free(td);
222 ksegrp_free(kg);
223 kse_free(ke);
224 mtx_destroy(&p->p_mtx);
225}
226
227/*
228 * Is p an inferior of the current process?
229 */
230int
231inferior(p)
232 register struct proc *p;
233{
234
235 sx_assert(&proctree_lock, SX_LOCKED);
236 for (; p != curproc; p = p->p_pptr)
237 if (p->p_pid == 0)
238 return (0);
239 return (1);
240}
241
242/*
243 * Locate a process by number
244 */
245struct proc *
246pfind(pid)
247 register pid_t pid;
248{
249 register struct proc *p;
250
251 sx_slock(&allproc_lock);
252 LIST_FOREACH(p, PIDHASH(pid), p_hash)
253 if (p->p_pid == pid) {
254 PROC_LOCK(p);
255 break;
256 }
257 sx_sunlock(&allproc_lock);
258 return (p);
259}
260
261/*
262 * Locate a process group by number.
263 * The caller must hold proctree_lock.
264 */
265struct pgrp *
266pgfind(pgid)
267 register pid_t pgid;
268{
269 register struct pgrp *pgrp;
270
271 sx_assert(&proctree_lock, SX_LOCKED);
272
273 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
274 if (pgrp->pg_id == pgid) {
275 PGRP_LOCK(pgrp);
276 return (pgrp);
277 }
278 }
279 return (NULL);
280}
281
282/*
283 * Create a new process group.
284 * pgid must be equal to the pid of p.
285 * Begin a new session if required.
286 */
287int
288enterpgrp(p, pgid, pgrp, sess)
289 register struct proc *p;
290 pid_t pgid;
291 struct pgrp *pgrp;
292 struct session *sess;
293{
294 struct pgrp *pgrp2;
295
296 sx_assert(&proctree_lock, SX_XLOCKED);
297
298 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
299 KASSERT(p->p_pid == pgid,
300 ("enterpgrp: new pgrp and pid != pgid"));
301
302 pgrp2 = pgfind(pgid);
303
304 KASSERT(pgrp2 == NULL,
305 ("enterpgrp: pgrp with pgid exists"));
306 KASSERT(!SESS_LEADER(p),
307 ("enterpgrp: session leader attempted setpgrp"));
308
309 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
310
311 if (sess != NULL) {
312 /*
313 * new session
314 */
315 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
316 PROC_LOCK(p);
317 p->p_flag &= ~P_CONTROLT;
318 PROC_UNLOCK(p);
319 PGRP_LOCK(pgrp);
320 sess->s_leader = p;
321 sess->s_sid = p->p_pid;
322 sess->s_count = 1;
323 sess->s_ttyvp = NULL;
324 sess->s_ttyp = NULL;
325 bcopy(p->p_session->s_login, sess->s_login,
326 sizeof(sess->s_login));
327 pgrp->pg_session = sess;
328 KASSERT(p == curproc,
329 ("enterpgrp: mksession and p != curproc"));
330 } else {
331 pgrp->pg_session = p->p_session;
332 SESS_LOCK(pgrp->pg_session);
333 pgrp->pg_session->s_count++;
334 SESS_UNLOCK(pgrp->pg_session);
335 PGRP_LOCK(pgrp);
336 }
337 pgrp->pg_id = pgid;
338 LIST_INIT(&pgrp->pg_members);
339
340 /*
341 * As we have an exclusive lock of proctree_lock,
342 * this should not deadlock.
343 */
344 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
345 pgrp->pg_jobc = 0;
346 SLIST_INIT(&pgrp->pg_sigiolst);
347 PGRP_UNLOCK(pgrp);
348
349 doenterpgrp(p, pgrp);
350
351 return (0);
352}
353
354/*
355 * Move p to an existing process group
356 */
357int
358enterthispgrp(p, pgrp)
359 register struct proc *p;
360 struct pgrp *pgrp;
361{
362
363 sx_assert(&proctree_lock, SX_XLOCKED);
364 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
365 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
366 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
367 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
368 KASSERT(pgrp->pg_session == p->p_session,
369 ("%s: pgrp's session %p, p->p_session %p.\n",
370 __func__,
371 pgrp->pg_session,
372 p->p_session));
373 KASSERT(pgrp != p->p_pgrp,
374 ("%s: p belongs to pgrp.", __func__));
375
376 doenterpgrp(p, pgrp);
377
378 return (0);
379}
380
381/*
382 * Move p to a process group
383 */
384static void
385doenterpgrp(p, pgrp)
386 struct proc *p;
387 struct pgrp *pgrp;
388{
389 struct pgrp *savepgrp;
390
391 sx_assert(&proctree_lock, SX_XLOCKED);
392 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
393 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
394 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
395 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
396
397 savepgrp = p->p_pgrp;
398
399 /*
400 * Adjust eligibility of affected pgrps to participate in job control.
401 * Increment eligibility counts before decrementing, otherwise we
402 * could reach 0 spuriously during the first call.
403 */
404 fixjobc(p, pgrp, 1);
405 fixjobc(p, p->p_pgrp, 0);
406
407 PGRP_LOCK(pgrp);
408 PGRP_LOCK(savepgrp);
409 PROC_LOCK(p);
410 LIST_REMOVE(p, p_pglist);
411 p->p_pgrp = pgrp;
412 PROC_UNLOCK(p);
413 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
414 PGRP_UNLOCK(savepgrp);
415 PGRP_UNLOCK(pgrp);
416 if (LIST_EMPTY(&savepgrp->pg_members))
417 pgdelete(savepgrp);
418}
419
420/*
421 * remove process from process group
422 */
423int
424leavepgrp(p)
425 register struct proc *p;
426{
427 struct pgrp *savepgrp;
428
429 sx_assert(&proctree_lock, SX_XLOCKED);
430 savepgrp = p->p_pgrp;
431 PGRP_LOCK(savepgrp);
432 PROC_LOCK(p);
433 LIST_REMOVE(p, p_pglist);
434 p->p_pgrp = NULL;
435 PROC_UNLOCK(p);
436 PGRP_UNLOCK(savepgrp);
437 if (LIST_EMPTY(&savepgrp->pg_members))
438 pgdelete(savepgrp);
439 return (0);
440}
441
442/*
443 * delete a process group
444 */
445static void
446pgdelete(pgrp)
447 register struct pgrp *pgrp;
448{
449 struct session *savesess;
450 int i;
451
452 sx_assert(&proctree_lock, SX_XLOCKED);
453 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
454 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
455
456 /*
457 * Reset any sigio structures pointing to us as a result of
458 * F_SETOWN with our pgid.
459 */
460 funsetownlst(&pgrp->pg_sigiolst);
461
462 PGRP_LOCK(pgrp);
463 if (pgrp->pg_session->s_ttyp != NULL &&
464 pgrp->pg_session->s_ttyp->t_pgrp == pgrp)
465 pgrp->pg_session->s_ttyp->t_pgrp = NULL;
466 LIST_REMOVE(pgrp, pg_hash);
467 savesess = pgrp->pg_session;
468 SESS_LOCK(savesess);
469 i = --savesess->s_count;
470 SESS_UNLOCK(savesess);
471 PGRP_UNLOCK(pgrp);
472 if (i == 0) {
473 if (savesess->s_ttyp != NULL)
474 ttyrel(savesess->s_ttyp);
475 mtx_destroy(&savesess->s_mtx);
476 FREE(savesess, M_SESSION);
477 }
478 mtx_destroy(&pgrp->pg_mtx);
479 FREE(pgrp, M_PGRP);
480}
481
482static void
483pgadjustjobc(pgrp, entering)
484 struct pgrp *pgrp;
485 int entering;
486{
487
488 PGRP_LOCK(pgrp);
489 if (entering)
490 pgrp->pg_jobc++;
491 else {
492 --pgrp->pg_jobc;
493 if (pgrp->pg_jobc == 0)
494 orphanpg(pgrp);
495 }
496 PGRP_UNLOCK(pgrp);
497}
498
499/*
500 * Adjust pgrp jobc counters when specified process changes process group.
501 * We count the number of processes in each process group that "qualify"
502 * the group for terminal job control (those with a parent in a different
503 * process group of the same session). If that count reaches zero, the
504 * process group becomes orphaned. Check both the specified process'
505 * process group and that of its children.
506 * entering == 0 => p is leaving specified group.
507 * entering == 1 => p is entering specified group.
508 */
509void
510fixjobc(p, pgrp, entering)
511 register struct proc *p;
512 register struct pgrp *pgrp;
513 int entering;
514{
515 register struct pgrp *hispgrp;
516 register struct session *mysession;
517
518 sx_assert(&proctree_lock, SX_LOCKED);
519 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
520 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
521 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
522
523 /*
524 * Check p's parent to see whether p qualifies its own process
525 * group; if so, adjust count for p's process group.
526 */
527 mysession = pgrp->pg_session;
528 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
529 hispgrp->pg_session == mysession)
530 pgadjustjobc(pgrp, entering);
531
532 /*
533 * Check this process' children to see whether they qualify
534 * their process groups; if so, adjust counts for children's
535 * process groups.
536 */
537 LIST_FOREACH(p, &p->p_children, p_sibling) {
538 hispgrp = p->p_pgrp;
539 if (hispgrp == pgrp ||
540 hispgrp->pg_session != mysession)
541 continue;
542 PROC_LOCK(p);
543 if (p->p_state == PRS_ZOMBIE) {
544 PROC_UNLOCK(p);
545 continue;
546 }
547 PROC_UNLOCK(p);
548 pgadjustjobc(hispgrp, entering);
549 }
550}
551
552/*
553 * A process group has become orphaned;
554 * if there are any stopped processes in the group,
555 * hang-up all process in that group.
556 */
557static void
558orphanpg(pg)
559 struct pgrp *pg;
560{
561 register struct proc *p;
562
563 PGRP_LOCK_ASSERT(pg, MA_OWNED);
564
565 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
566 PROC_LOCK(p);
567 if (P_SHOULDSTOP(p)) {
568 PROC_UNLOCK(p);
569 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
570 PROC_LOCK(p);
571 psignal(p, SIGHUP);
572 psignal(p, SIGCONT);
573 PROC_UNLOCK(p);
574 }
575 return;
576 }
577 PROC_UNLOCK(p);
578 }
579}
580
581#include "opt_ddb.h"
582#ifdef DDB
583#include <ddb/ddb.h>
584
585DB_SHOW_COMMAND(pgrpdump, pgrpdump)
586{
587 register struct pgrp *pgrp;
588 register struct proc *p;
589 register int i;
590
591 for (i = 0; i <= pgrphash; i++) {
592 if (!LIST_EMPTY(&pgrphashtbl[i])) {
593 printf("\tindx %d\n", i);
594 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
595 printf(
596 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
597 (void *)pgrp, (long)pgrp->pg_id,
598 (void *)pgrp->pg_session,
599 pgrp->pg_session->s_count,
600 (void *)LIST_FIRST(&pgrp->pg_members));
601 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
602 printf("\t\tpid %ld addr %p pgrp %p\n",
603 (long)p->p_pid, (void *)p,
604 (void *)p->p_pgrp);
605 }
606 }
607 }
608 }
609}
610#endif /* DDB */
611void
612fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp);
613
614/*
615 * Fill in a kinfo_proc structure for the specified process.
616 * Must be called with the target process locked.
617 */
618void
619fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
620{
621 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp);
622}
623
624void
625fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp)
626{
627 struct proc *p;
628 struct thread *td0;
629 struct kse *ke;
630 struct ksegrp *kg;
631 struct tty *tp;
632 struct session *sp;
633 struct timeval tv;
634 struct sigacts *ps;
635
636 p = td->td_proc;
637
638 bzero(kp, sizeof(*kp));
639
640 kp->ki_structsize = sizeof(*kp);
641 kp->ki_paddr = p;
642 PROC_LOCK_ASSERT(p, MA_OWNED);
643 kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */
644 kp->ki_args = p->p_args;
645 kp->ki_textvp = p->p_textvp;
646#ifdef KTRACE
647 kp->ki_tracep = p->p_tracevp;
648 mtx_lock(&ktrace_mtx);
649 kp->ki_traceflag = p->p_traceflag;
650 mtx_unlock(&ktrace_mtx);
651#endif
652 kp->ki_fd = p->p_fd;
653 kp->ki_vmspace = p->p_vmspace;
654 if (p->p_ucred) {
655 kp->ki_uid = p->p_ucred->cr_uid;
656 kp->ki_ruid = p->p_ucred->cr_ruid;
657 kp->ki_svuid = p->p_ucred->cr_svuid;
658 /* XXX bde doesn't like KI_NGROUPS */
659 kp->ki_ngroups = min(p->p_ucred->cr_ngroups, KI_NGROUPS);
660 bcopy(p->p_ucred->cr_groups, kp->ki_groups,
661 kp->ki_ngroups * sizeof(gid_t));
662 kp->ki_rgid = p->p_ucred->cr_rgid;
663 kp->ki_svgid = p->p_ucred->cr_svgid;
664 }
665 if (p->p_sigacts) {
666 ps = p->p_sigacts;
667 mtx_lock(&ps->ps_mtx);
668 kp->ki_sigignore = ps->ps_sigignore;
669 kp->ki_sigcatch = ps->ps_sigcatch;
670 mtx_unlock(&ps->ps_mtx);
671 }
672 mtx_lock_spin(&sched_lock);
673 if (p->p_state != PRS_NEW &&
674 p->p_state != PRS_ZOMBIE &&
675 p->p_vmspace != NULL) {
676 struct vmspace *vm = p->p_vmspace;
677
678 kp->ki_size = vm->vm_map.size;
679 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
680 if (p->p_sflag & PS_INMEM)
681 kp->ki_rssize += UAREA_PAGES;
682 FOREACH_THREAD_IN_PROC(p, td0) {
683 if (!TD_IS_SWAPPED(td0))
684 kp->ki_rssize += td0->td_kstack_pages;
685 if (td0->td_altkstack_obj != NULL)
686 kp->ki_rssize += td0->td_altkstack_pages;
687 }
688 kp->ki_swrss = vm->vm_swrss;
689 kp->ki_tsize = vm->vm_tsize;
690 kp->ki_dsize = vm->vm_dsize;
691 kp->ki_ssize = vm->vm_ssize;
692 }
693 if ((p->p_sflag & PS_INMEM) && p->p_stats) {
694 kp->ki_start = p->p_stats->p_start;
695 timevaladd(&kp->ki_start, &boottime);
696 kp->ki_rusage = p->p_stats->p_ru;
697 kp->ki_childtime.tv_sec = p->p_stats->p_cru.ru_utime.tv_sec +
698 p->p_stats->p_cru.ru_stime.tv_sec;
699 kp->ki_childtime.tv_usec = p->p_stats->p_cru.ru_utime.tv_usec +
700 p->p_stats->p_cru.ru_stime.tv_usec;
701 }
702 if (p->p_state != PRS_ZOMBIE) {
703#if 0
704 if (td == NULL) {
705 /* XXXKSE: This should never happen. */
706 printf("fill_kinfo_proc(): pid %d has no threads!\n",
707 p->p_pid);
708 mtx_unlock_spin(&sched_lock);
709 return;
710 }
711#endif
712 if (td->td_wmesg != NULL) {
713 strlcpy(kp->ki_wmesg, td->td_wmesg,
714 sizeof(kp->ki_wmesg));
715 }
716 if (TD_ON_LOCK(td)) {
717 kp->ki_kiflag |= KI_LOCKBLOCK;
718 strlcpy(kp->ki_lockname, td->td_lockname,
719 sizeof(kp->ki_lockname));
720 }
721
722 if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */
723 if (TD_ON_RUNQ(td) ||
724 TD_CAN_RUN(td) ||
725 TD_IS_RUNNING(td)) {
726 kp->ki_stat = SRUN;
727 } else if (P_SHOULDSTOP(p)) {
728 kp->ki_stat = SSTOP;
729 } else if (TD_IS_SLEEPING(td)) {
730 kp->ki_stat = SSLEEP;
731 } else if (TD_ON_LOCK(td)) {
732 kp->ki_stat = SLOCK;
733 } else {
734 kp->ki_stat = SWAIT;
735 }
736 } else {
737 kp->ki_stat = SIDL;
738 }
739
740 kp->ki_sflag = p->p_sflag;
741 kp->ki_swtime = p->p_swtime;
742 kp->ki_pid = p->p_pid;
743 kp->ki_nice = p->p_nice;
744 kg = td->td_ksegrp;
745 ke = td->td_kse;
746 bintime2timeval(&p->p_runtime, &tv);
747 kp->ki_runtime =
748 tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec;
749
750 /* things in the KSE GROUP */
751 kp->ki_estcpu = kg->kg_estcpu;
752 kp->ki_slptime = kg->kg_slptime;
753 kp->ki_pri.pri_user = kg->kg_user_pri;
754 kp->ki_pri.pri_class = kg->kg_pri_class;
755
756 /* Things in the thread */
757 kp->ki_wchan = td->td_wchan;
758 kp->ki_pri.pri_level = td->td_priority;
759 kp->ki_pri.pri_native = td->td_base_pri;
760 kp->ki_lastcpu = td->td_lastcpu;
761 kp->ki_oncpu = td->td_oncpu;
762 kp->ki_tdflags = td->td_flags;
763 kp->ki_pcb = td->td_pcb;
764 kp->ki_kstack = (void *)td->td_kstack;
765 kp->ki_pctcpu = sched_pctcpu(td);
766
767 /* Things in the kse */
768 if (ke)
769 kp->ki_rqindex = ke->ke_rqindex;
770 else
771 kp->ki_rqindex = 0;
772
773 } else {
774 kp->ki_stat = SZOMB;
775 }
776 mtx_unlock_spin(&sched_lock);
777 sp = NULL;
778 tp = NULL;
779 if (p->p_pgrp) {
780 kp->ki_pgid = p->p_pgrp->pg_id;
781 kp->ki_jobc = p->p_pgrp->pg_jobc;
782 sp = p->p_pgrp->pg_session;
783
784 if (sp != NULL) {
785 kp->ki_sid = sp->s_sid;
786 SESS_LOCK(sp);
787 strlcpy(kp->ki_login, sp->s_login,
788 sizeof(kp->ki_login));
789 if (sp->s_ttyvp)
790 kp->ki_kiflag |= KI_CTTY;
791 if (SESS_LEADER(p))
792 kp->ki_kiflag |= KI_SLEADER;
793 tp = sp->s_ttyp;
794 SESS_UNLOCK(sp);
795 }
796 }
797 if ((p->p_flag & P_CONTROLT) && tp != NULL) {
798 kp->ki_tdev = dev2udev(tp->t_dev);
799 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
800 if (tp->t_session)
801 kp->ki_tsid = tp->t_session->s_sid;
802 } else
803 kp->ki_tdev = NOUDEV;
803 kp->ki_tdev = NODEV;
804 if (p->p_comm[0] != '\0') {
805 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
806 strlcpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm));
807 }
808 kp->ki_siglist = p->p_siglist;
809 SIGSETOR(kp->ki_siglist, td->td_siglist);
810 kp->ki_sigmask = td->td_sigmask;
811 kp->ki_xstat = p->p_xstat;
812 kp->ki_acflag = p->p_acflag;
813 kp->ki_flag = p->p_flag;
814 /* If jailed(p->p_ucred), emulate the old P_JAILED flag. */
815 if (jailed(p->p_ucred))
816 kp->ki_flag |= P_JAILED;
817 kp->ki_lock = p->p_lock;
818 if (p->p_pptr)
819 kp->ki_ppid = p->p_pptr->p_pid;
820}
821
822/*
823 * Locate a zombie process by number
824 */
825struct proc *
826zpfind(pid_t pid)
827{
828 struct proc *p;
829
830 sx_slock(&allproc_lock);
831 LIST_FOREACH(p, &zombproc, p_list)
832 if (p->p_pid == pid) {
833 PROC_LOCK(p);
834 break;
835 }
836 sx_sunlock(&allproc_lock);
837 return (p);
838}
839
840#define KERN_PROC_ZOMBMASK 0x3
841#define KERN_PROC_NOTHREADS 0x4
842
843/*
844 * Must be called with the process locked and will return with it unlocked.
845 */
846static int
847sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
848{
849 struct thread *td;
850 struct kinfo_proc kinfo_proc;
851 int error = 0;
852 struct proc *np;
853 pid_t pid = p->p_pid;
854
855 PROC_LOCK_ASSERT(p, MA_OWNED);
856
857 if (flags & KERN_PROC_NOTHREADS) {
858 fill_kinfo_proc(p, &kinfo_proc);
859 PROC_UNLOCK(p);
860 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
861 sizeof(kinfo_proc));
862 PROC_LOCK(p);
863 } else {
864 _PHOLD(p);
865 FOREACH_THREAD_IN_PROC(p, td) {
866 fill_kinfo_thread(td, &kinfo_proc);
867 PROC_UNLOCK(p);
868 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
869 sizeof(kinfo_proc));
870 PROC_LOCK(p);
871 if (error)
872 break;
873 }
874 _PRELE(p);
875 }
876 PROC_UNLOCK(p);
877 if (error)
878 return (error);
879 if (flags & KERN_PROC_ZOMBMASK)
880 np = zpfind(pid);
881 else {
882 if (pid == 0)
883 return (0);
884 np = pfind(pid);
885 }
886 if (np == NULL)
887 return EAGAIN;
888 if (np != p) {
889 PROC_UNLOCK(np);
890 return EAGAIN;
891 }
892 PROC_UNLOCK(np);
893 return (0);
894}
895
896static int
897sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
898{
899 int *name = (int*) arg1;
900 u_int namelen = arg2;
901 struct proc *p;
902 int flags, doingzomb, oid_number;
903 int error = 0;
904
905 oid_number = oidp->oid_number;
906 if (oid_number != KERN_PROC_ALL &&
907 (oid_number & KERN_PROC_INC_THREAD) == 0)
908 flags = KERN_PROC_NOTHREADS;
909 else {
910 flags = 0;
911 oid_number &= ~KERN_PROC_INC_THREAD;
912 }
913 if (oid_number == KERN_PROC_PID) {
914 if (namelen != 1)
915 return (EINVAL);
916 p = pfind((pid_t)name[0]);
917 if (!p)
918 return (ESRCH);
919 if ((error = p_cansee(curthread, p))) {
920 PROC_UNLOCK(p);
921 return (error);
922 }
923 error = sysctl_out_proc(p, req, flags);
924 return (error);
925 }
926
927 switch (oid_number) {
928 case KERN_PROC_ALL:
929 if (namelen != 0)
930 return (EINVAL);
931 break;
932 case KERN_PROC_PROC:
933 if (namelen != 0 && namelen != 1)
934 return (EINVAL);
935 break;
936 default:
937 if (namelen != 1)
938 return (EINVAL);
939 break;
940 }
941
942 if (!req->oldptr) {
943 /* overestimate by 5 procs */
944 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
945 if (error)
946 return (error);
947 }
948 error = sysctl_wire_old_buffer(req, 0);
949 if (error != 0)
950 return (error);
951 sx_slock(&allproc_lock);
952 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
953 if (!doingzomb)
954 p = LIST_FIRST(&allproc);
955 else
956 p = LIST_FIRST(&zombproc);
957 for (; p != 0; p = LIST_NEXT(p, p_list)) {
958 /*
959 * Skip embryonic processes.
960 */
961 mtx_lock_spin(&sched_lock);
962 if (p->p_state == PRS_NEW) {
963 mtx_unlock_spin(&sched_lock);
964 continue;
965 }
966 mtx_unlock_spin(&sched_lock);
967 PROC_LOCK(p);
968 /*
969 * Show a user only appropriate processes.
970 */
971 if (p_cansee(curthread, p)) {
972 PROC_UNLOCK(p);
973 continue;
974 }
975 /*
976 * TODO - make more efficient (see notes below).
977 * do by session.
978 */
979 switch (oid_number) {
980
981 case KERN_PROC_PGRP:
982 /* could do this by traversing pgrp */
983 if (p->p_pgrp == NULL ||
984 p->p_pgrp->pg_id != (pid_t)name[0]) {
985 PROC_UNLOCK(p);
986 continue;
987 }
988 break;
989
990 case KERN_PROC_RGID:
991 if (p->p_ucred == NULL ||
992 p->p_ucred->cr_rgid != (gid_t)name[0]) {
993 PROC_UNLOCK(p);
994 continue;
995 }
996 break;
997
998 case KERN_PROC_SESSION:
999 if (p->p_session == NULL ||
1000 p->p_session->s_sid != (pid_t)name[0]) {
1001 PROC_UNLOCK(p);
1002 continue;
1003 }
1004 break;
1005
1006 case KERN_PROC_TTY:
1007 if ((p->p_flag & P_CONTROLT) == 0 ||
1008 p->p_session == NULL) {
1009 PROC_UNLOCK(p);
1010 continue;
1011 }
1012 SESS_LOCK(p->p_session);
1013 if (p->p_session->s_ttyp == NULL ||
1014 dev2udev(p->p_session->s_ttyp->t_dev) !=
804 if (p->p_comm[0] != '\0') {
805 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
806 strlcpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm));
807 }
808 kp->ki_siglist = p->p_siglist;
809 SIGSETOR(kp->ki_siglist, td->td_siglist);
810 kp->ki_sigmask = td->td_sigmask;
811 kp->ki_xstat = p->p_xstat;
812 kp->ki_acflag = p->p_acflag;
813 kp->ki_flag = p->p_flag;
814 /* If jailed(p->p_ucred), emulate the old P_JAILED flag. */
815 if (jailed(p->p_ucred))
816 kp->ki_flag |= P_JAILED;
817 kp->ki_lock = p->p_lock;
818 if (p->p_pptr)
819 kp->ki_ppid = p->p_pptr->p_pid;
820}
821
822/*
823 * Locate a zombie process by number
824 */
825struct proc *
826zpfind(pid_t pid)
827{
828 struct proc *p;
829
830 sx_slock(&allproc_lock);
831 LIST_FOREACH(p, &zombproc, p_list)
832 if (p->p_pid == pid) {
833 PROC_LOCK(p);
834 break;
835 }
836 sx_sunlock(&allproc_lock);
837 return (p);
838}
839
840#define KERN_PROC_ZOMBMASK 0x3
841#define KERN_PROC_NOTHREADS 0x4
842
843/*
844 * Must be called with the process locked and will return with it unlocked.
845 */
846static int
847sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
848{
849 struct thread *td;
850 struct kinfo_proc kinfo_proc;
851 int error = 0;
852 struct proc *np;
853 pid_t pid = p->p_pid;
854
855 PROC_LOCK_ASSERT(p, MA_OWNED);
856
857 if (flags & KERN_PROC_NOTHREADS) {
858 fill_kinfo_proc(p, &kinfo_proc);
859 PROC_UNLOCK(p);
860 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
861 sizeof(kinfo_proc));
862 PROC_LOCK(p);
863 } else {
864 _PHOLD(p);
865 FOREACH_THREAD_IN_PROC(p, td) {
866 fill_kinfo_thread(td, &kinfo_proc);
867 PROC_UNLOCK(p);
868 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
869 sizeof(kinfo_proc));
870 PROC_LOCK(p);
871 if (error)
872 break;
873 }
874 _PRELE(p);
875 }
876 PROC_UNLOCK(p);
877 if (error)
878 return (error);
879 if (flags & KERN_PROC_ZOMBMASK)
880 np = zpfind(pid);
881 else {
882 if (pid == 0)
883 return (0);
884 np = pfind(pid);
885 }
886 if (np == NULL)
887 return EAGAIN;
888 if (np != p) {
889 PROC_UNLOCK(np);
890 return EAGAIN;
891 }
892 PROC_UNLOCK(np);
893 return (0);
894}
895
896static int
897sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
898{
899 int *name = (int*) arg1;
900 u_int namelen = arg2;
901 struct proc *p;
902 int flags, doingzomb, oid_number;
903 int error = 0;
904
905 oid_number = oidp->oid_number;
906 if (oid_number != KERN_PROC_ALL &&
907 (oid_number & KERN_PROC_INC_THREAD) == 0)
908 flags = KERN_PROC_NOTHREADS;
909 else {
910 flags = 0;
911 oid_number &= ~KERN_PROC_INC_THREAD;
912 }
913 if (oid_number == KERN_PROC_PID) {
914 if (namelen != 1)
915 return (EINVAL);
916 p = pfind((pid_t)name[0]);
917 if (!p)
918 return (ESRCH);
919 if ((error = p_cansee(curthread, p))) {
920 PROC_UNLOCK(p);
921 return (error);
922 }
923 error = sysctl_out_proc(p, req, flags);
924 return (error);
925 }
926
927 switch (oid_number) {
928 case KERN_PROC_ALL:
929 if (namelen != 0)
930 return (EINVAL);
931 break;
932 case KERN_PROC_PROC:
933 if (namelen != 0 && namelen != 1)
934 return (EINVAL);
935 break;
936 default:
937 if (namelen != 1)
938 return (EINVAL);
939 break;
940 }
941
942 if (!req->oldptr) {
943 /* overestimate by 5 procs */
944 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
945 if (error)
946 return (error);
947 }
948 error = sysctl_wire_old_buffer(req, 0);
949 if (error != 0)
950 return (error);
951 sx_slock(&allproc_lock);
952 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
953 if (!doingzomb)
954 p = LIST_FIRST(&allproc);
955 else
956 p = LIST_FIRST(&zombproc);
957 for (; p != 0; p = LIST_NEXT(p, p_list)) {
958 /*
959 * Skip embryonic processes.
960 */
961 mtx_lock_spin(&sched_lock);
962 if (p->p_state == PRS_NEW) {
963 mtx_unlock_spin(&sched_lock);
964 continue;
965 }
966 mtx_unlock_spin(&sched_lock);
967 PROC_LOCK(p);
968 /*
969 * Show a user only appropriate processes.
970 */
971 if (p_cansee(curthread, p)) {
972 PROC_UNLOCK(p);
973 continue;
974 }
975 /*
976 * TODO - make more efficient (see notes below).
977 * do by session.
978 */
979 switch (oid_number) {
980
981 case KERN_PROC_PGRP:
982 /* could do this by traversing pgrp */
983 if (p->p_pgrp == NULL ||
984 p->p_pgrp->pg_id != (pid_t)name[0]) {
985 PROC_UNLOCK(p);
986 continue;
987 }
988 break;
989
990 case KERN_PROC_RGID:
991 if (p->p_ucred == NULL ||
992 p->p_ucred->cr_rgid != (gid_t)name[0]) {
993 PROC_UNLOCK(p);
994 continue;
995 }
996 break;
997
998 case KERN_PROC_SESSION:
999 if (p->p_session == NULL ||
1000 p->p_session->s_sid != (pid_t)name[0]) {
1001 PROC_UNLOCK(p);
1002 continue;
1003 }
1004 break;
1005
1006 case KERN_PROC_TTY:
1007 if ((p->p_flag & P_CONTROLT) == 0 ||
1008 p->p_session == NULL) {
1009 PROC_UNLOCK(p);
1010 continue;
1011 }
1012 SESS_LOCK(p->p_session);
1013 if (p->p_session->s_ttyp == NULL ||
1014 dev2udev(p->p_session->s_ttyp->t_dev) !=
1015 (udev_t)name[0]) {
1015 (dev_t)name[0]) {
1016 SESS_UNLOCK(p->p_session);
1017 PROC_UNLOCK(p);
1018 continue;
1019 }
1020 SESS_UNLOCK(p->p_session);
1021 break;
1022
1023 case KERN_PROC_UID:
1024 if (p->p_ucred == NULL ||
1025 p->p_ucred->cr_uid != (uid_t)name[0]) {
1026 PROC_UNLOCK(p);
1027 continue;
1028 }
1029 break;
1030
1031 case KERN_PROC_RUID:
1032 if (p->p_ucred == NULL ||
1033 p->p_ucred->cr_ruid != (uid_t)name[0]) {
1034 PROC_UNLOCK(p);
1035 continue;
1036 }
1037 break;
1038
1039 case KERN_PROC_PROC:
1040 break;
1041
1042 default:
1043 break;
1044
1045 }
1046
1047 error = sysctl_out_proc(p, req, flags | doingzomb);
1048 if (error) {
1049 sx_sunlock(&allproc_lock);
1050 return (error);
1051 }
1052 }
1053 }
1054 sx_sunlock(&allproc_lock);
1055 return (0);
1056}
1057
1058struct pargs *
1059pargs_alloc(int len)
1060{
1061 struct pargs *pa;
1062
1063 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS,
1064 M_WAITOK);
1065 pa->ar_ref = 1;
1066 pa->ar_length = len;
1067 return (pa);
1068}
1069
1070void
1071pargs_free(struct pargs *pa)
1072{
1073
1074 FREE(pa, M_PARGS);
1075}
1076
1077void
1078pargs_hold(struct pargs *pa)
1079{
1080
1081 if (pa == NULL)
1082 return;
1083 PARGS_LOCK(pa);
1084 pa->ar_ref++;
1085 PARGS_UNLOCK(pa);
1086}
1087
1088void
1089pargs_drop(struct pargs *pa)
1090{
1091
1092 if (pa == NULL)
1093 return;
1094 PARGS_LOCK(pa);
1095 if (--pa->ar_ref == 0) {
1096 PARGS_UNLOCK(pa);
1097 pargs_free(pa);
1098 } else
1099 PARGS_UNLOCK(pa);
1100}
1101
1102/*
1103 * This sysctl allows a process to retrieve the argument list or process
1104 * title for another process without groping around in the address space
1105 * of the other process. It also allow a process to set its own "process
1106 * title to a string of its own choice.
1107 */
1108static int
1109sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1110{
1111 int *name = (int*) arg1;
1112 u_int namelen = arg2;
1113 struct pargs *newpa, *pa;
1114 struct proc *p;
1115 int error = 0;
1116
1117 if (namelen != 1)
1118 return (EINVAL);
1119
1120 p = pfind((pid_t)name[0]);
1121 if (!p)
1122 return (ESRCH);
1123
1124 if ((error = p_cansee(curthread, p)) != 0) {
1125 PROC_UNLOCK(p);
1126 return (error);
1127 }
1128
1129 if (req->newptr && curproc != p) {
1130 PROC_UNLOCK(p);
1131 return (EPERM);
1132 }
1133
1134 pa = p->p_args;
1135 pargs_hold(pa);
1136 PROC_UNLOCK(p);
1137 if (req->oldptr != NULL && pa != NULL)
1138 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1139 pargs_drop(pa);
1140 if (error != 0 || req->newptr == NULL)
1141 return (error);
1142
1143 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1144 return (ENOMEM);
1145 newpa = pargs_alloc(req->newlen);
1146 error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1147 if (error != 0) {
1148 pargs_free(newpa);
1149 return (error);
1150 }
1151 PROC_LOCK(p);
1152 pa = p->p_args;
1153 p->p_args = newpa;
1154 PROC_UNLOCK(p);
1155 pargs_drop(pa);
1156 return (0);
1157}
1158
1159static int
1160sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1161{
1162 struct proc *p;
1163 char *sv_name;
1164 int *name;
1165 int namelen;
1166 int error;
1167
1168 namelen = arg2;
1169 if (namelen != 1)
1170 return (EINVAL);
1171
1172 name = (int *)arg1;
1173 if ((p = pfind((pid_t)name[0])) == NULL)
1174 return (ESRCH);
1175 if ((error = p_cansee(curthread, p))) {
1176 PROC_UNLOCK(p);
1177 return (error);
1178 }
1179 sv_name = p->p_sysent->sv_name;
1180 PROC_UNLOCK(p);
1181 return (sysctl_handle_string(oidp, sv_name, 0, req));
1182}
1183
1184
1185SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table");
1186
1187SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT,
1188 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table");
1189
1190SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD,
1191 sysctl_kern_proc, "Process table");
1192
1193SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD,
1194 sysctl_kern_proc, "Process table");
1195
1196SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD,
1197 sysctl_kern_proc, "Process table");
1198
1199SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD,
1200 sysctl_kern_proc, "Process table");
1201
1202SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD,
1203 sysctl_kern_proc, "Process table");
1204
1205SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD,
1206 sysctl_kern_proc, "Process table");
1207
1208SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD,
1209 sysctl_kern_proc, "Process table");
1210
1211SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD,
1212 sysctl_kern_proc, "Return process table, no threads");
1213
1214SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY,
1215 sysctl_kern_proc_args, "Process argument list");
1216
1217SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD,
1218 sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)");
1219
1220SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
1221 CTLFLAG_RD, sysctl_kern_proc, "Process table");
1222
1223SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
1224 CTLFLAG_RD, sysctl_kern_proc, "Process table");
1225
1226SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), sid_td,
1227 CTLFLAG_RD, sysctl_kern_proc, "Process table");
1228
1229SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
1230 CTLFLAG_RD, sysctl_kern_proc, "Process table");
1231
1232SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
1233 CTLFLAG_RD, sysctl_kern_proc, "Process table");
1234
1235SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
1236 CTLFLAG_RD, sysctl_kern_proc, "Process table");
1237
1238SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
1239 CTLFLAG_RD, sysctl_kern_proc, "Process table");
1240
1241SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
1242 CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads");
1016 SESS_UNLOCK(p->p_session);
1017 PROC_UNLOCK(p);
1018 continue;
1019 }
1020 SESS_UNLOCK(p->p_session);
1021 break;
1022
1023 case KERN_PROC_UID:
1024 if (p->p_ucred == NULL ||
1025 p->p_ucred->cr_uid != (uid_t)name[0]) {
1026 PROC_UNLOCK(p);
1027 continue;
1028 }
1029 break;
1030
1031 case KERN_PROC_RUID:
1032 if (p->p_ucred == NULL ||
1033 p->p_ucred->cr_ruid != (uid_t)name[0]) {
1034 PROC_UNLOCK(p);
1035 continue;
1036 }
1037 break;
1038
1039 case KERN_PROC_PROC:
1040 break;
1041
1042 default:
1043 break;
1044
1045 }
1046
1047 error = sysctl_out_proc(p, req, flags | doingzomb);
1048 if (error) {
1049 sx_sunlock(&allproc_lock);
1050 return (error);
1051 }
1052 }
1053 }
1054 sx_sunlock(&allproc_lock);
1055 return (0);
1056}
1057
1058struct pargs *
1059pargs_alloc(int len)
1060{
1061 struct pargs *pa;
1062
1063 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS,
1064 M_WAITOK);
1065 pa->ar_ref = 1;
1066 pa->ar_length = len;
1067 return (pa);
1068}
1069
1070void
1071pargs_free(struct pargs *pa)
1072{
1073
1074 FREE(pa, M_PARGS);
1075}
1076
1077void
1078pargs_hold(struct pargs *pa)
1079{
1080
1081 if (pa == NULL)
1082 return;
1083 PARGS_LOCK(pa);
1084 pa->ar_ref++;
1085 PARGS_UNLOCK(pa);
1086}
1087
1088void
1089pargs_drop(struct pargs *pa)
1090{
1091
1092 if (pa == NULL)
1093 return;
1094 PARGS_LOCK(pa);
1095 if (--pa->ar_ref == 0) {
1096 PARGS_UNLOCK(pa);
1097 pargs_free(pa);
1098 } else
1099 PARGS_UNLOCK(pa);
1100}
1101
1102/*
1103 * This sysctl allows a process to retrieve the argument list or process
1104 * title for another process without groping around in the address space
1105 * of the other process. It also allow a process to set its own "process
1106 * title to a string of its own choice.
1107 */
1108static int
1109sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1110{
1111 int *name = (int*) arg1;
1112 u_int namelen = arg2;
1113 struct pargs *newpa, *pa;
1114 struct proc *p;
1115 int error = 0;
1116
1117 if (namelen != 1)
1118 return (EINVAL);
1119
1120 p = pfind((pid_t)name[0]);
1121 if (!p)
1122 return (ESRCH);
1123
1124 if ((error = p_cansee(curthread, p)) != 0) {
1125 PROC_UNLOCK(p);
1126 return (error);
1127 }
1128
1129 if (req->newptr && curproc != p) {
1130 PROC_UNLOCK(p);
1131 return (EPERM);
1132 }
1133
1134 pa = p->p_args;
1135 pargs_hold(pa);
1136 PROC_UNLOCK(p);
1137 if (req->oldptr != NULL && pa != NULL)
1138 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1139 pargs_drop(pa);
1140 if (error != 0 || req->newptr == NULL)
1141 return (error);
1142
1143 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1144 return (ENOMEM);
1145 newpa = pargs_alloc(req->newlen);
1146 error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1147 if (error != 0) {
1148 pargs_free(newpa);
1149 return (error);
1150 }
1151 PROC_LOCK(p);
1152 pa = p->p_args;
1153 p->p_args = newpa;
1154 PROC_UNLOCK(p);
1155 pargs_drop(pa);
1156 return (0);
1157}
1158
1159static int
1160sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1161{
1162 struct proc *p;
1163 char *sv_name;
1164 int *name;
1165 int namelen;
1166 int error;
1167
1168 namelen = arg2;
1169 if (namelen != 1)
1170 return (EINVAL);
1171
1172 name = (int *)arg1;
1173 if ((p = pfind((pid_t)name[0])) == NULL)
1174 return (ESRCH);
1175 if ((error = p_cansee(curthread, p))) {
1176 PROC_UNLOCK(p);
1177 return (error);
1178 }
1179 sv_name = p->p_sysent->sv_name;
1180 PROC_UNLOCK(p);
1181 return (sysctl_handle_string(oidp, sv_name, 0, req));
1182}
1183
1184
1185SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table");
1186
1187SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT,
1188 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table");
1189
1190SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD,
1191 sysctl_kern_proc, "Process table");
1192
1193SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD,
1194 sysctl_kern_proc, "Process table");
1195
1196SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD,
1197 sysctl_kern_proc, "Process table");
1198
1199SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD,
1200 sysctl_kern_proc, "Process table");
1201
1202SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD,
1203 sysctl_kern_proc, "Process table");
1204
1205SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD,
1206 sysctl_kern_proc, "Process table");
1207
1208SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD,
1209 sysctl_kern_proc, "Process table");
1210
1211SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD,
1212 sysctl_kern_proc, "Return process table, no threads");
1213
1214SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY,
1215 sysctl_kern_proc_args, "Process argument list");
1216
1217SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD,
1218 sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)");
1219
1220SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
1221 CTLFLAG_RD, sysctl_kern_proc, "Process table");
1222
1223SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
1224 CTLFLAG_RD, sysctl_kern_proc, "Process table");
1225
1226SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), sid_td,
1227 CTLFLAG_RD, sysctl_kern_proc, "Process table");
1228
1229SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
1230 CTLFLAG_RD, sysctl_kern_proc, "Process table");
1231
1232SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
1233 CTLFLAG_RD, sysctl_kern_proc, "Process table");
1234
1235SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
1236 CTLFLAG_RD, sysctl_kern_proc, "Process table");
1237
1238SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
1239 CTLFLAG_RD, sysctl_kern_proc, "Process table");
1240
1241SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
1242 CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads");