Deleted Added
full compact
kern_ntptime.c (44574) kern_ntptime.c (44666)
1/***********************************************************************
2 * *
3 * Copyright (c) David L. Mills 1993-1998 *
4 * *
5 * Permission to use, copy, modify, and distribute this software and *
6 * its documentation for any purpose and without fee is hereby *
7 * granted, provided that the above copyright notice appears in all *
8 * copies and that both the copyright notice and this permission *
9 * notice appear in supporting documentation, and that the name *
10 * University of Delaware not be used in advertising or publicity *
11 * pertaining to distribution of the software without specific, *
12 * written prior permission. The University of Delaware makes no *
13 * representations about the suitability this software for any *
14 * purpose. It is provided "as is" without express or implied *
15 * warranty. *
16 * *
17 **********************************************************************/
18
19/*
20 * Adapted from the original sources for FreeBSD and timecounters by:
1/***********************************************************************
2 * *
3 * Copyright (c) David L. Mills 1993-1998 *
4 * *
5 * Permission to use, copy, modify, and distribute this software and *
6 * its documentation for any purpose and without fee is hereby *
7 * granted, provided that the above copyright notice appears in all *
8 * copies and that both the copyright notice and this permission *
9 * notice appear in supporting documentation, and that the name *
10 * University of Delaware not be used in advertising or publicity *
11 * pertaining to distribution of the software without specific, *
12 * written prior permission. The University of Delaware makes no *
13 * representations about the suitability this software for any *
14 * purpose. It is provided "as is" without express or implied *
15 * warranty. *
16 * *
17 **********************************************************************/
18
19/*
20 * Adapted from the original sources for FreeBSD and timecounters by:
21 * Poul-Henning Kamp
21 * Poul-Henning Kamp <phk@FreeBSD.org>.
22 *
23 * The 32bit version of the "LP" macros seems a bit past its "sell by"
24 * date so I have retained only the 64bit version and included it directly
25 * in this file.
26 *
27 * Only minor changes done to interface with the timecounters over in
28 * sys/kern/kern_clock.c. Some of the comments below may be (even more)
29 * confusing and/or plain wrong in that context.
22 *
23 * The 32bit version of the "LP" macros seems a bit past its "sell by"
24 * date so I have retained only the 64bit version and included it directly
25 * in this file.
26 *
27 * Only minor changes done to interface with the timecounters over in
28 * sys/kern/kern_clock.c. Some of the comments below may be (even more)
29 * confusing and/or plain wrong in that context.
30 *
31 * The PPS_SYNC/hardpps() is currently not supported.
32 *
33 */
34
30 */
31
32#include "opt_ntp.h"
33
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/sysproto.h>
38#include <sys/kernel.h>
39#include <sys/proc.h>
40#include <sys/time.h>
41#include <sys/timex.h>
42#include <sys/timepps.h>
43#include <sys/sysctl.h>
44
45/*
46 * Single-precision macros for 64-bit machines
47 */
48typedef long long l_fp;
49#define L_ADD(v, u) ((v) += (u))
50#define L_SUB(v, u) ((v) -= (u))
51#define L_ADDHI(v, a) ((v) += (long long)(a) << 32)
52#define L_NEG(v) ((v) = -(v))
53#define L_RSHIFT(v, n) \
54 do { \
55 if ((v) < 0) \
56 (v) = -(-(v) >> (n)); \
57 else \
58 (v) = (v) >> (n); \
59 } while (0)
60#define L_MPY(v, a) ((v) *= (a))
61#define L_CLR(v) ((v) = 0)
62#define L_ISNEG(v) ((v) < 0)
63#define L_LINT(v, a) ((v) = (long long)(a) << 32)
64#define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
65
66/*
67 * Generic NTP kernel interface
68 *
69 * These routines constitute the Network Time Protocol (NTP) interfaces
70 * for user and daemon application programs. The ntp_gettime() routine
71 * provides the time, maximum error (synch distance) and estimated error
72 * (dispersion) to client user application programs. The ntp_adjtime()
73 * routine is used by the NTP daemon to adjust the system clock to an
74 * externally derived time. The time offset and related variables set by
75 * this routine are used by other routines in this module to adjust the
76 * phase and frequency of the clock discipline loop which controls the
77 * system clock.
78 *
79 * When the kernel time is reckoned directly in nanoseconds (NANO
80 * defined), the time at each tick interrupt is derived directly from
81 * the kernel time variable. When the kernel time is reckoned in
82 * microseconds, (NANO undefined), the time is derived from the kernel
83 * time variable together with a variable representing the leftover
84 * nanoseconds at the last tick interrupt. In either case, the current
85 * nanosecond time is reckoned from these values plus an interpolated
86 * value derived by the clock routines in another architecture-specific
87 * module. The interpolation can use either a dedicated counter or a
88 * processor cycle counter (PCC) implemented in some architectures.
89 *
90 * Note that all routines must run at priority splclock or higher.
91 */
92
93/*
94 * Phase/frequency-lock loop (PLL/FLL) definitions
95 *
96 * The nanosecond clock discipline uses two variable types, time
97 * variables and frequency variables. Both types are represented as 64-
98 * bit fixed-point quantities with the decimal point between two 32-bit
99 * halves. On a 32-bit machine, each half is represented as a single
100 * word and mathematical operations are done using multiple-precision
101 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
102 * used.
103 *
104 * A time variable is a signed 64-bit fixed-point number in ns and
105 * fraction. It represents the remaining time offset to be amortized
106 * over succeeding tick interrupts. The maximum time offset is about
107 * 0.512 s and the resolution is about 2.3e-10 ns.
108 *
109 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
110 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
111 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
112 * |s s s| ns |
113 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
114 * | fraction |
115 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
116 *
117 * A frequency variable is a signed 64-bit fixed-point number in ns/s
118 * and fraction. It represents the ns and fraction to be added to the
119 * kernel time variable at each second. The maximum frequency offset is
120 * about +-512000 ns/s and the resolution is about 2.3e-10 ns/s.
121 *
122 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
123 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
124 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
125 * |s s s s s s s s s s s s s| ns/s |
126 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
127 * | fraction |
128 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129 */
130/*
131 * The following variables establish the state of the PLL/FLL and the
132 * residual time and frequency offset of the local clock.
133 */
134#define SHIFT_PLL 4 /* PLL loop gain (shift) */
135#define SHIFT_FLL 2 /* FLL loop gain (shift) */
136
137static int time_state = TIME_OK; /* clock state */
138static int time_status = STA_UNSYNC; /* clock status bits */
139static long time_constant; /* poll interval (shift) (s) */
140static long time_precision = 1; /* clock precision (ns) */
141static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
142static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
143static long time_reftime; /* time at last adjustment (s) */
144static long time_tick; /* nanoseconds per tick (ns) */
145static l_fp time_offset; /* time offset (ns) */
146static l_fp time_freq; /* frequency offset (ns/s) */
147
148#ifdef PPS_SYNC
149/*
150 * The following variables are used when a pulse-per-second (PPS) signal
151 * is available and connected via a modem control lead. They establish
152 * the engineering parameters of the clock discipline loop when
153 * controlled by the PPS signal.
154 */
155#define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
156#define PPS_FAVGMAX 8 /* max freq avg interval (s) (shift) */
157#define PPS_PAVG 4 /* phase avg interval (s) (shift) */
158#define PPS_VALID 120 /* PPS signal watchdog max (s) */
159#define MAXTIME 500000 /* max PPS error (jitter) (ns) */
160#define MAXWANDER 500000 /* max PPS wander (ns/s/s) */
161
162struct ppstime {
163 long sec; /* PPS seconds */
164 long nsec; /* PPS nanoseconds */
165 long count; /* PPS nanosecond counter */
166};
167static struct ppstime pps_tf[3]; /* phase median filter */
168static struct ppstime pps_filt; /* phase offset */
169static l_fp pps_freq; /* scaled frequency offset (ns/s) */
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/sysproto.h>
37#include <sys/kernel.h>
38#include <sys/proc.h>
39#include <sys/time.h>
40#include <sys/timex.h>
41#include <sys/timepps.h>
42#include <sys/sysctl.h>
43
44/*
45 * Single-precision macros for 64-bit machines
46 */
47typedef long long l_fp;
48#define L_ADD(v, u) ((v) += (u))
49#define L_SUB(v, u) ((v) -= (u))
50#define L_ADDHI(v, a) ((v) += (long long)(a) << 32)
51#define L_NEG(v) ((v) = -(v))
52#define L_RSHIFT(v, n) \
53 do { \
54 if ((v) < 0) \
55 (v) = -(-(v) >> (n)); \
56 else \
57 (v) = (v) >> (n); \
58 } while (0)
59#define L_MPY(v, a) ((v) *= (a))
60#define L_CLR(v) ((v) = 0)
61#define L_ISNEG(v) ((v) < 0)
62#define L_LINT(v, a) ((v) = (long long)(a) << 32)
63#define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
64
65/*
66 * Generic NTP kernel interface
67 *
68 * These routines constitute the Network Time Protocol (NTP) interfaces
69 * for user and daemon application programs. The ntp_gettime() routine
70 * provides the time, maximum error (synch distance) and estimated error
71 * (dispersion) to client user application programs. The ntp_adjtime()
72 * routine is used by the NTP daemon to adjust the system clock to an
73 * externally derived time. The time offset and related variables set by
74 * this routine are used by other routines in this module to adjust the
75 * phase and frequency of the clock discipline loop which controls the
76 * system clock.
77 *
78 * When the kernel time is reckoned directly in nanoseconds (NANO
79 * defined), the time at each tick interrupt is derived directly from
80 * the kernel time variable. When the kernel time is reckoned in
81 * microseconds, (NANO undefined), the time is derived from the kernel
82 * time variable together with a variable representing the leftover
83 * nanoseconds at the last tick interrupt. In either case, the current
84 * nanosecond time is reckoned from these values plus an interpolated
85 * value derived by the clock routines in another architecture-specific
86 * module. The interpolation can use either a dedicated counter or a
87 * processor cycle counter (PCC) implemented in some architectures.
88 *
89 * Note that all routines must run at priority splclock or higher.
90 */
91
92/*
93 * Phase/frequency-lock loop (PLL/FLL) definitions
94 *
95 * The nanosecond clock discipline uses two variable types, time
96 * variables and frequency variables. Both types are represented as 64-
97 * bit fixed-point quantities with the decimal point between two 32-bit
98 * halves. On a 32-bit machine, each half is represented as a single
99 * word and mathematical operations are done using multiple-precision
100 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
101 * used.
102 *
103 * A time variable is a signed 64-bit fixed-point number in ns and
104 * fraction. It represents the remaining time offset to be amortized
105 * over succeeding tick interrupts. The maximum time offset is about
106 * 0.512 s and the resolution is about 2.3e-10 ns.
107 *
108 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
109 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
110 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
111 * |s s s| ns |
112 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
113 * | fraction |
114 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
115 *
116 * A frequency variable is a signed 64-bit fixed-point number in ns/s
117 * and fraction. It represents the ns and fraction to be added to the
118 * kernel time variable at each second. The maximum frequency offset is
119 * about +-512000 ns/s and the resolution is about 2.3e-10 ns/s.
120 *
121 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
122 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
123 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
124 * |s s s s s s s s s s s s s| ns/s |
125 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
126 * | fraction |
127 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
128 */
129/*
130 * The following variables establish the state of the PLL/FLL and the
131 * residual time and frequency offset of the local clock.
132 */
133#define SHIFT_PLL 4 /* PLL loop gain (shift) */
134#define SHIFT_FLL 2 /* FLL loop gain (shift) */
135
136static int time_state = TIME_OK; /* clock state */
137static int time_status = STA_UNSYNC; /* clock status bits */
138static long time_constant; /* poll interval (shift) (s) */
139static long time_precision = 1; /* clock precision (ns) */
140static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
141static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
142static long time_reftime; /* time at last adjustment (s) */
143static long time_tick; /* nanoseconds per tick (ns) */
144static l_fp time_offset; /* time offset (ns) */
145static l_fp time_freq; /* frequency offset (ns/s) */
146
147#ifdef PPS_SYNC
148/*
149 * The following variables are used when a pulse-per-second (PPS) signal
150 * is available and connected via a modem control lead. They establish
151 * the engineering parameters of the clock discipline loop when
152 * controlled by the PPS signal.
153 */
154#define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
155#define PPS_FAVGMAX 8 /* max freq avg interval (s) (shift) */
156#define PPS_PAVG 4 /* phase avg interval (s) (shift) */
157#define PPS_VALID 120 /* PPS signal watchdog max (s) */
158#define MAXTIME 500000 /* max PPS error (jitter) (ns) */
159#define MAXWANDER 500000 /* max PPS wander (ns/s/s) */
160
161struct ppstime {
162 long sec; /* PPS seconds */
163 long nsec; /* PPS nanoseconds */
164 long count; /* PPS nanosecond counter */
165};
166static struct ppstime pps_tf[3]; /* phase median filter */
167static struct ppstime pps_filt; /* phase offset */
168static l_fp pps_freq; /* scaled frequency offset (ns/s) */
170static long pps_lastfreq; /* last scaled freq offset (ns/s) */
171static long pps_offacc; /* offset accumulator */
172static long pps_jitter; /* scaled time dispersion (ns) */
173static long pps_stabil; /* scaled frequency dispersion (ns/s) */
174static long pps_lastcount; /* last counter offset */
175static long pps_lastsec; /* time at last calibration (s) */
176static int pps_valid; /* signal watchdog counter */
177static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
178static int pps_intcnt; /* wander counter */
179static int pps_offcnt; /* offset accumulator counter */
180
181/*
182 * PPS signal quality monitors
183 */
184static long pps_calcnt; /* calibration intervals */
185static long pps_jitcnt; /* jitter limit exceeded */
186static long pps_stbcnt; /* stability limit exceeded */
187static long pps_errcnt; /* calibration errors */
188#endif /* PPS_SYNC */
189/*
190 * End of phase/frequency-lock loop (PLL/FLL) definitions
191 */
192
193static void ntp_init(void);
194static void hardupdate(long offset);
195
196/*
197 * ntp_gettime() - NTP user application interface
198 *
199 * See the timex.h header file for synopsis and API description.
200 */
201static int
202ntp_sysctl SYSCTL_HANDLER_ARGS
203{
204 struct ntptimeval ntv; /* temporary structure */
205 struct timespec atv; /* nanosecond time */
206
207 nanotime(&atv);
208 ntv.time.tv_sec = atv.tv_sec;
209 ntv.time.tv_nsec = atv.tv_nsec;
210 ntv.maxerror = time_maxerror;
211 ntv.esterror = time_esterror;
212 ntv.time_state = time_state;
213
214 /*
215 * Status word error decode. If any of these conditions occur,
216 * an error is returned, instead of the status word. Most
217 * applications will care only about the fact the system clock
218 * may not be trusted, not about the details.
219 *
220 * Hardware or software error
221 */
222 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
223
224 /*
225 * PPS signal lost when either time or frequency synchronization
226 * requested
227 */
228 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
229 !(time_status & STA_PPSSIGNAL)) ||
230
231 /*
232 * PPS jitter exceeded when time synchronization requested
233 */
234 (time_status & STA_PPSTIME &&
235 time_status & STA_PPSJITTER) ||
236
237 /*
238 * PPS wander exceeded or calibration error when frequency
239 * synchronization requested
240 */
241 (time_status & STA_PPSFREQ &&
242 time_status & (STA_PPSWANDER | STA_PPSERROR)))
243 ntv.time_state = TIME_ERROR;
244 return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
245}
246
247SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
248SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
249 0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
250
251
252/*
253 * ntp_adjtime() - NTP daemon application interface
254 *
255 * See the timex.h header file for synopsis and API description.
256 */
257#ifndef _SYS_SYSPROTO_H_
258struct ntp_adjtime_args {
259 struct timex *tp;
260};
261#endif
262
263int
264ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap)
265{
266 struct timex ntv; /* temporary structure */
267 int modes; /* mode bits from structure */
268 int s; /* caller priority */
269 int error;
270
271 error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
272 if (error)
273 return(error);
274
275 /*
276 * Update selected clock variables - only the superuser can
277 * change anything. Note that there is no error checking here on
278 * the assumption the superuser should know what it is doing.
279 */
280 modes = ntv.modes;
281 error = suser(p->p_cred->pc_ucred, &p->p_acflag);
282 if (error)
283 return (error);
284 s = splclock();
285 if (modes & MOD_FREQUENCY) {
286 L_LINT(time_freq, ntv.freq / SCALE_PPM);
287#ifdef PPS_SYNC
288 pps_freq = time_freq;
289#endif /* PPS_SYNC */
290 }
291 if (modes & MOD_MAXERROR)
292 time_maxerror = ntv.maxerror;
293 if (modes & MOD_ESTERROR)
294 time_esterror = ntv.esterror;
295 if (modes & MOD_STATUS) {
296 time_status &= STA_RONLY;
297 time_status |= ntv.status & ~STA_RONLY;
298 }
299 if (modes & MOD_TIMECONST)
300 time_constant = ntv.constant;
301 if (modes & MOD_NANO)
302 time_status |= STA_NANO;
303 if (modes & MOD_MICRO)
304 time_status &= ~STA_NANO;
305 if (modes & MOD_CLKB)
306 time_status |= STA_CLK;
307 if (modes & MOD_CLKA)
308 time_status &= ~STA_CLK;
309 if (modes & MOD_OFFSET) {
310 if (time_status & STA_NANO)
311 hardupdate(ntv.offset);
312 else
313 hardupdate(ntv.offset * 1000);
314 }
315
316 /*
317 * Retrieve all clock variables
318 */
319 if (time_status & STA_NANO)
320 ntv.offset = L_GINT(time_offset);
321 else
322 ntv.offset = L_GINT(time_offset) / 1000;
323 ntv.freq = L_GINT(time_freq) * SCALE_PPM;
324 ntv.maxerror = time_maxerror;
325 ntv.esterror = time_esterror;
326 ntv.status = time_status;
327 if (ntv.constant < 0)
328 time_constant = 0;
329 else if (ntv.constant > MAXTC)
330 time_constant = MAXTC;
331 else
332 time_constant = ntv.constant;
333 if (time_status & STA_NANO)
334 ntv.precision = time_precision;
335 else
336 ntv.precision = time_precision / 1000;
337 ntv.tolerance = MAXFREQ * SCALE_PPM;
338#ifdef PPS_SYNC
339 ntv.shift = pps_shift;
340 ntv.ppsfreq = L_GINT(pps_freq) * SCALE_PPM;
341 ntv.jitter = pps_jitter;
342 if (time_status & STA_NANO)
343 ntv.jitter = pps_jitter;
344 else
345 ntv.jitter = pps_jitter / 1000;
346 ntv.stabil = pps_stabil;
347 ntv.calcnt = pps_calcnt;
348 ntv.errcnt = pps_errcnt;
349 ntv.jitcnt = pps_jitcnt;
350 ntv.stbcnt = pps_stbcnt;
351#endif /* PPS_SYNC */
352 splx(s);
353
354 error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
355 if (error)
356 return (error);
357
358 /*
359 * Status word error decode. See comments in
360 * ntp_gettime() routine.
361 */
362 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
363 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
364 !(time_status & STA_PPSSIGNAL)) ||
365 (time_status & STA_PPSTIME &&
366 time_status & STA_PPSJITTER) ||
367 (time_status & STA_PPSFREQ &&
368 time_status & (STA_PPSWANDER | STA_PPSERROR)))
369 return (TIME_ERROR);
370 return (time_state);
371}
372
373/*
374 * second_overflow() - called after ntp_tick_adjust()
375 *
376 * This routine is ordinarily called immediately following the above
377 * routine ntp_tick_adjust(). While these two routines are normally
378 * combined, they are separated here only for the purposes of
379 * simulation.
380 */
381void
382ntp_update_second(struct timecounter *tcp)
383{
384 u_int32_t *newsec;
169static long pps_offacc; /* offset accumulator */
170static long pps_jitter; /* scaled time dispersion (ns) */
171static long pps_stabil; /* scaled frequency dispersion (ns/s) */
172static long pps_lastcount; /* last counter offset */
173static long pps_lastsec; /* time at last calibration (s) */
174static int pps_valid; /* signal watchdog counter */
175static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
176static int pps_intcnt; /* wander counter */
177static int pps_offcnt; /* offset accumulator counter */
178
179/*
180 * PPS signal quality monitors
181 */
182static long pps_calcnt; /* calibration intervals */
183static long pps_jitcnt; /* jitter limit exceeded */
184static long pps_stbcnt; /* stability limit exceeded */
185static long pps_errcnt; /* calibration errors */
186#endif /* PPS_SYNC */
187/*
188 * End of phase/frequency-lock loop (PLL/FLL) definitions
189 */
190
191static void ntp_init(void);
192static void hardupdate(long offset);
193
194/*
195 * ntp_gettime() - NTP user application interface
196 *
197 * See the timex.h header file for synopsis and API description.
198 */
199static int
200ntp_sysctl SYSCTL_HANDLER_ARGS
201{
202 struct ntptimeval ntv; /* temporary structure */
203 struct timespec atv; /* nanosecond time */
204
205 nanotime(&atv);
206 ntv.time.tv_sec = atv.tv_sec;
207 ntv.time.tv_nsec = atv.tv_nsec;
208 ntv.maxerror = time_maxerror;
209 ntv.esterror = time_esterror;
210 ntv.time_state = time_state;
211
212 /*
213 * Status word error decode. If any of these conditions occur,
214 * an error is returned, instead of the status word. Most
215 * applications will care only about the fact the system clock
216 * may not be trusted, not about the details.
217 *
218 * Hardware or software error
219 */
220 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
221
222 /*
223 * PPS signal lost when either time or frequency synchronization
224 * requested
225 */
226 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
227 !(time_status & STA_PPSSIGNAL)) ||
228
229 /*
230 * PPS jitter exceeded when time synchronization requested
231 */
232 (time_status & STA_PPSTIME &&
233 time_status & STA_PPSJITTER) ||
234
235 /*
236 * PPS wander exceeded or calibration error when frequency
237 * synchronization requested
238 */
239 (time_status & STA_PPSFREQ &&
240 time_status & (STA_PPSWANDER | STA_PPSERROR)))
241 ntv.time_state = TIME_ERROR;
242 return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
243}
244
245SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
246SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
247 0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
248
249
250/*
251 * ntp_adjtime() - NTP daemon application interface
252 *
253 * See the timex.h header file for synopsis and API description.
254 */
255#ifndef _SYS_SYSPROTO_H_
256struct ntp_adjtime_args {
257 struct timex *tp;
258};
259#endif
260
261int
262ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap)
263{
264 struct timex ntv; /* temporary structure */
265 int modes; /* mode bits from structure */
266 int s; /* caller priority */
267 int error;
268
269 error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
270 if (error)
271 return(error);
272
273 /*
274 * Update selected clock variables - only the superuser can
275 * change anything. Note that there is no error checking here on
276 * the assumption the superuser should know what it is doing.
277 */
278 modes = ntv.modes;
279 error = suser(p->p_cred->pc_ucred, &p->p_acflag);
280 if (error)
281 return (error);
282 s = splclock();
283 if (modes & MOD_FREQUENCY) {
284 L_LINT(time_freq, ntv.freq / SCALE_PPM);
285#ifdef PPS_SYNC
286 pps_freq = time_freq;
287#endif /* PPS_SYNC */
288 }
289 if (modes & MOD_MAXERROR)
290 time_maxerror = ntv.maxerror;
291 if (modes & MOD_ESTERROR)
292 time_esterror = ntv.esterror;
293 if (modes & MOD_STATUS) {
294 time_status &= STA_RONLY;
295 time_status |= ntv.status & ~STA_RONLY;
296 }
297 if (modes & MOD_TIMECONST)
298 time_constant = ntv.constant;
299 if (modes & MOD_NANO)
300 time_status |= STA_NANO;
301 if (modes & MOD_MICRO)
302 time_status &= ~STA_NANO;
303 if (modes & MOD_CLKB)
304 time_status |= STA_CLK;
305 if (modes & MOD_CLKA)
306 time_status &= ~STA_CLK;
307 if (modes & MOD_OFFSET) {
308 if (time_status & STA_NANO)
309 hardupdate(ntv.offset);
310 else
311 hardupdate(ntv.offset * 1000);
312 }
313
314 /*
315 * Retrieve all clock variables
316 */
317 if (time_status & STA_NANO)
318 ntv.offset = L_GINT(time_offset);
319 else
320 ntv.offset = L_GINT(time_offset) / 1000;
321 ntv.freq = L_GINT(time_freq) * SCALE_PPM;
322 ntv.maxerror = time_maxerror;
323 ntv.esterror = time_esterror;
324 ntv.status = time_status;
325 if (ntv.constant < 0)
326 time_constant = 0;
327 else if (ntv.constant > MAXTC)
328 time_constant = MAXTC;
329 else
330 time_constant = ntv.constant;
331 if (time_status & STA_NANO)
332 ntv.precision = time_precision;
333 else
334 ntv.precision = time_precision / 1000;
335 ntv.tolerance = MAXFREQ * SCALE_PPM;
336#ifdef PPS_SYNC
337 ntv.shift = pps_shift;
338 ntv.ppsfreq = L_GINT(pps_freq) * SCALE_PPM;
339 ntv.jitter = pps_jitter;
340 if (time_status & STA_NANO)
341 ntv.jitter = pps_jitter;
342 else
343 ntv.jitter = pps_jitter / 1000;
344 ntv.stabil = pps_stabil;
345 ntv.calcnt = pps_calcnt;
346 ntv.errcnt = pps_errcnt;
347 ntv.jitcnt = pps_jitcnt;
348 ntv.stbcnt = pps_stbcnt;
349#endif /* PPS_SYNC */
350 splx(s);
351
352 error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
353 if (error)
354 return (error);
355
356 /*
357 * Status word error decode. See comments in
358 * ntp_gettime() routine.
359 */
360 if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
361 (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
362 !(time_status & STA_PPSSIGNAL)) ||
363 (time_status & STA_PPSTIME &&
364 time_status & STA_PPSJITTER) ||
365 (time_status & STA_PPSFREQ &&
366 time_status & (STA_PPSWANDER | STA_PPSERROR)))
367 return (TIME_ERROR);
368 return (time_state);
369}
370
371/*
372 * second_overflow() - called after ntp_tick_adjust()
373 *
374 * This routine is ordinarily called immediately following the above
375 * routine ntp_tick_adjust(). While these two routines are normally
376 * combined, they are separated here only for the purposes of
377 * simulation.
378 */
379void
380ntp_update_second(struct timecounter *tcp)
381{
382 u_int32_t *newsec;
385 l_fp ftemp, time_adj; /* 32/64-bit temporary */
383 l_fp ftemp, time_adj; /* 32/64-bit temporaries */
386
387 newsec = &tcp->tc_offset_sec;
388 time_maxerror += MAXFREQ / 1000;
389
390 /*
391 * Leap second processing. If in leap-insert state at
392 * the end of the day, the system clock is set back one
393 * second; if in leap-delete state, the system clock is
394 * set ahead one second. The nano_time() routine or
395 * external clock driver will insure that reported time
396 * is always monotonic.
397 */
398 switch (time_state) {
399
400 /*
401 * No warning.
402 */
403 case TIME_OK:
404 if (time_status & STA_INS)
405 time_state = TIME_INS;
406 else if (time_status & STA_DEL)
407 time_state = TIME_DEL;
408 break;
409
410 /*
411 * Insert second 23:59:60 following second
412 * 23:59:59.
413 */
414 case TIME_INS:
415 if (!(time_status & STA_INS))
416 time_state = TIME_OK;
417 else if ((*newsec) % 86400 == 0) {
418 (*newsec)--;
419 time_state = TIME_OOP;
420 }
421 break;
422
423 /*
424 * Delete second 23:59:59.
425 */
426 case TIME_DEL:
427 if (!(time_status & STA_DEL))
428 time_state = TIME_OK;
429 else if (((*newsec) + 1) % 86400 == 0) {
430 (*newsec)++;
431 time_state = TIME_WAIT;
432 }
433 break;
434
435 /*
436 * Insert second in progress.
437 */
438 case TIME_OOP:
439 time_state = TIME_WAIT;
440 break;
441
442 /*
443 * Wait for status bits to clear.
444 */
445 case TIME_WAIT:
446 if (!(time_status & (STA_INS | STA_DEL)))
447 time_state = TIME_OK;
448 }
449
450 /*
451 * Compute the total time adjustment for the next
452 * second in ns. The offset is reduced by a factor
453 * depending on FLL or PLL mode and whether the PPS
454 * signal is operating. Note that the value is in effect
455 * scaled by the clock frequency, since the adjustment
456 * is added at each tick interrupt.
457 */
458 ftemp = time_offset;
459#ifdef PPS_SYNC
460 if (time_status & STA_PPSTIME && time_status &
461 STA_PPSSIGNAL)
462 L_RSHIFT(ftemp, PPS_FAVG);
463 else if (time_status & STA_MODE)
464#else
465 if (time_status & STA_MODE)
466#endif /* PPS_SYNC */
467 L_RSHIFT(ftemp, SHIFT_FLL);
468 else
469 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
470 time_adj = ftemp;
471 L_SUB(time_offset, ftemp);
472 L_ADD(time_adj, time_freq);
473 tcp->tc_adjustment = time_adj;
474#ifdef PPS_SYNC
475 if (pps_valid > 0)
476 pps_valid--;
477 else
478 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
479 STA_PPSWANDER | STA_PPSERROR);
480#endif /* PPS_SYNC */
481}
482
483/*
484 * ntp_init() - initialize variables and structures
485 *
486 * This routine must be called after the kernel variables hz and tick
487 * are set or changed and before the next tick interrupt. In this
488 * particular implementation, these values are assumed set elsewhere in
489 * the kernel. The design allows the clock frequency and tick interval
490 * to be changed while the system is running. So, this routine should
491 * probably be integrated with the code that does that.
492 */
493static void
494ntp_init()
495{
496
497 /*
498 * The following variable must be initialized any time the
499 * kernel variable hz is changed.
500 */
501 time_tick = NANOSECOND / hz;
502
503 /*
504 * The following variables are initialized only at startup. Only
505 * those structures not cleared by the compiler need to be
506 * initialized, and these only in the simulator. In the actual
507 * kernel, any nonzero values here will quickly evaporate.
508 */
509 L_CLR(time_offset);
510 L_CLR(time_freq);
511#ifdef PPS_SYNC
512 pps_filt.sec = pps_filt.nsec = pps_filt.count = 0;
513 pps_tf[0] = pps_tf[1] = pps_tf[2] = pps_filt;
514 L_CLR(pps_freq);
515#endif /* PPS_SYNC */
516}
517
518SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, ntp_init, NULL)
519
520/*
521 * hardupdate() - local clock update
522 *
523 * This routine is called by ntp_adjtime() to update the local clock
524 * phase and frequency. The implementation is of an adaptive-parameter,
525 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
526 * time and frequency offset estimates for each call. If the kernel PPS
527 * discipline code is configured (PPS_SYNC), the PPS signal itself
528 * determines the new time offset, instead of the calling argument.
529 * Presumably, calls to ntp_adjtime() occur only when the caller
530 * believes the local clock is valid within some bound (+-128 ms with
531 * NTP). If the caller's time is far different than the PPS time, an
532 * argument will ensue, and it's not clear who will lose.
533 *
534 * For uncompensated quartz crystal oscillators and nominal update
535 * intervals less than 256 s, operation should be in phase-lock mode,
536 * where the loop is disciplined to phase. For update intervals greater
537 * than 1024 s, operation should be in frequency-lock mode, where the
538 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
539 * is selected by the STA_MODE status bit.
540 */
541static void
542hardupdate(offset)
543 long offset; /* clock offset (ns) */
544{
545 long ltemp, mtemp;
546 l_fp ftemp;
547
548 /*
549 * Select how the phase is to be controlled and from which
550 * source. If the PPS signal is present and enabled to
551 * discipline the time, the PPS offset is used; otherwise, the
552 * argument offset is used.
553 */
554 ltemp = offset;
555 if (ltemp > MAXPHASE)
556 ltemp = MAXPHASE;
557 else if (ltemp < -MAXPHASE)
558 ltemp = -MAXPHASE;
559 if (!(time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL))
560 L_LINT(time_offset, ltemp);
561
562 /*
563 * Select how the frequency is to be controlled and in which
564 * mode (PLL or FLL). If the PPS signal is present and enabled
565 * to discipline the frequency, the PPS frequency is used;
566 * otherwise, the argument offset is used to compute it.
567 */
568 if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
569 time_reftime = time_second;
570 return;
571 }
572 if (time_status & STA_FREQHOLD || time_reftime == 0)
573 time_reftime = time_second;
574 mtemp = time_second - time_reftime;
575 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)
576 ) {
577 L_LINT(ftemp, (ltemp << 4) / mtemp);
578 L_RSHIFT(ftemp, SHIFT_FLL + 4);
579 L_ADD(time_freq, ftemp);
580 time_status |= STA_MODE;
581 } else {
582 L_LINT(ftemp, ltemp);
583 L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
584 L_MPY(ftemp, mtemp);
585 L_ADD(time_freq, ftemp);
586 time_status &= ~STA_MODE;
587 }
588 time_reftime = time_second;
589 if (L_GINT(time_freq) > MAXFREQ)
590 L_LINT(time_freq, MAXFREQ);
591 else if (L_GINT(time_freq) < -MAXFREQ)
592 L_LINT(time_freq, -MAXFREQ);
593}
594
595#ifdef PPS_SYNC
596/*
597 * hardpps() - discipline CPU clock oscillator to external PPS signal
598 *
599 * This routine is called at each PPS interrupt in order to discipline
600 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
601 * and leaves it in a handy spot for the hardclock() routine. It
602 * integrates successive PPS phase differences and calculates the
603 * frequency offset. This is used in hardclock() to discipline the CPU
604 * clock oscillator so that the intrinsic frequency error is cancelled
605 * out. The code requires the caller to capture the time and
606 * architecture-dependent hardware counter values in nanoseconds at the
607 * on-time PPS signal transition.
608 *
609 * Note that, on some Unix systems this routine runs at an interrupt
610 * priority level higher than the timer interrupt routine hardclock().
611 * Therefore, the variables used are distinct from the hardclock()
612 * variables, except for the actual time and frequency variables, which
613 * are determined by this routine and updated atomically.
614 */
615void
616hardpps(tsp, nsec)
617 struct timespec *tsp; /* time at PPS */
618 long nsec; /* hardware counter at PPS */
619{
620 long u_sec, u_nsec, v_nsec; /* temps */
621 l_fp ftemp;
622
623 /*
624 * The signal is first processed by a frequency discriminator
625 * which rejects noise and input signals with frequencies
626 * outside the range 1 +-MAXFREQ PPS. If two hits occur in the
627 * same second, we ignore the later hit; if not and a hit occurs
628 * outside the range gate, keep the later hit but do not
629 * process it.
630 */
631 time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
632 time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
633 pps_valid = PPS_VALID;
634 u_sec = tsp->tv_sec;
635 u_nsec = tsp->tv_nsec;
636 if (u_nsec >= (NANOSECOND >> 1)) {
637 u_nsec -= NANOSECOND;
638 u_sec++;
639 }
640 v_nsec = u_nsec - pps_tf[0].nsec;
641 if (u_sec == pps_tf[0].sec && v_nsec < -MAXFREQ) {
642 return;
643 }
644 pps_tf[2] = pps_tf[1];
645 pps_tf[1] = pps_tf[0];
646 pps_tf[0].sec = u_sec;
647 pps_tf[0].nsec = u_nsec;
648
649 /*
650 * Compute the difference between the current and previous
651 * counter values. If the difference exceeds 0.5 s, assume it
652 * has wrapped around, so correct 1.0 s. If the result exceeds
653 * the tick interval, the sample point has crossed a tick
654 * boundary during the last second, so correct the tick. Very
655 * intricate.
656 */
384
385 newsec = &tcp->tc_offset_sec;
386 time_maxerror += MAXFREQ / 1000;
387
388 /*
389 * Leap second processing. If in leap-insert state at
390 * the end of the day, the system clock is set back one
391 * second; if in leap-delete state, the system clock is
392 * set ahead one second. The nano_time() routine or
393 * external clock driver will insure that reported time
394 * is always monotonic.
395 */
396 switch (time_state) {
397
398 /*
399 * No warning.
400 */
401 case TIME_OK:
402 if (time_status & STA_INS)
403 time_state = TIME_INS;
404 else if (time_status & STA_DEL)
405 time_state = TIME_DEL;
406 break;
407
408 /*
409 * Insert second 23:59:60 following second
410 * 23:59:59.
411 */
412 case TIME_INS:
413 if (!(time_status & STA_INS))
414 time_state = TIME_OK;
415 else if ((*newsec) % 86400 == 0) {
416 (*newsec)--;
417 time_state = TIME_OOP;
418 }
419 break;
420
421 /*
422 * Delete second 23:59:59.
423 */
424 case TIME_DEL:
425 if (!(time_status & STA_DEL))
426 time_state = TIME_OK;
427 else if (((*newsec) + 1) % 86400 == 0) {
428 (*newsec)++;
429 time_state = TIME_WAIT;
430 }
431 break;
432
433 /*
434 * Insert second in progress.
435 */
436 case TIME_OOP:
437 time_state = TIME_WAIT;
438 break;
439
440 /*
441 * Wait for status bits to clear.
442 */
443 case TIME_WAIT:
444 if (!(time_status & (STA_INS | STA_DEL)))
445 time_state = TIME_OK;
446 }
447
448 /*
449 * Compute the total time adjustment for the next
450 * second in ns. The offset is reduced by a factor
451 * depending on FLL or PLL mode and whether the PPS
452 * signal is operating. Note that the value is in effect
453 * scaled by the clock frequency, since the adjustment
454 * is added at each tick interrupt.
455 */
456 ftemp = time_offset;
457#ifdef PPS_SYNC
458 if (time_status & STA_PPSTIME && time_status &
459 STA_PPSSIGNAL)
460 L_RSHIFT(ftemp, PPS_FAVG);
461 else if (time_status & STA_MODE)
462#else
463 if (time_status & STA_MODE)
464#endif /* PPS_SYNC */
465 L_RSHIFT(ftemp, SHIFT_FLL);
466 else
467 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
468 time_adj = ftemp;
469 L_SUB(time_offset, ftemp);
470 L_ADD(time_adj, time_freq);
471 tcp->tc_adjustment = time_adj;
472#ifdef PPS_SYNC
473 if (pps_valid > 0)
474 pps_valid--;
475 else
476 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
477 STA_PPSWANDER | STA_PPSERROR);
478#endif /* PPS_SYNC */
479}
480
481/*
482 * ntp_init() - initialize variables and structures
483 *
484 * This routine must be called after the kernel variables hz and tick
485 * are set or changed and before the next tick interrupt. In this
486 * particular implementation, these values are assumed set elsewhere in
487 * the kernel. The design allows the clock frequency and tick interval
488 * to be changed while the system is running. So, this routine should
489 * probably be integrated with the code that does that.
490 */
491static void
492ntp_init()
493{
494
495 /*
496 * The following variable must be initialized any time the
497 * kernel variable hz is changed.
498 */
499 time_tick = NANOSECOND / hz;
500
501 /*
502 * The following variables are initialized only at startup. Only
503 * those structures not cleared by the compiler need to be
504 * initialized, and these only in the simulator. In the actual
505 * kernel, any nonzero values here will quickly evaporate.
506 */
507 L_CLR(time_offset);
508 L_CLR(time_freq);
509#ifdef PPS_SYNC
510 pps_filt.sec = pps_filt.nsec = pps_filt.count = 0;
511 pps_tf[0] = pps_tf[1] = pps_tf[2] = pps_filt;
512 L_CLR(pps_freq);
513#endif /* PPS_SYNC */
514}
515
516SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, ntp_init, NULL)
517
518/*
519 * hardupdate() - local clock update
520 *
521 * This routine is called by ntp_adjtime() to update the local clock
522 * phase and frequency. The implementation is of an adaptive-parameter,
523 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
524 * time and frequency offset estimates for each call. If the kernel PPS
525 * discipline code is configured (PPS_SYNC), the PPS signal itself
526 * determines the new time offset, instead of the calling argument.
527 * Presumably, calls to ntp_adjtime() occur only when the caller
528 * believes the local clock is valid within some bound (+-128 ms with
529 * NTP). If the caller's time is far different than the PPS time, an
530 * argument will ensue, and it's not clear who will lose.
531 *
532 * For uncompensated quartz crystal oscillators and nominal update
533 * intervals less than 256 s, operation should be in phase-lock mode,
534 * where the loop is disciplined to phase. For update intervals greater
535 * than 1024 s, operation should be in frequency-lock mode, where the
536 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
537 * is selected by the STA_MODE status bit.
538 */
539static void
540hardupdate(offset)
541 long offset; /* clock offset (ns) */
542{
543 long ltemp, mtemp;
544 l_fp ftemp;
545
546 /*
547 * Select how the phase is to be controlled and from which
548 * source. If the PPS signal is present and enabled to
549 * discipline the time, the PPS offset is used; otherwise, the
550 * argument offset is used.
551 */
552 ltemp = offset;
553 if (ltemp > MAXPHASE)
554 ltemp = MAXPHASE;
555 else if (ltemp < -MAXPHASE)
556 ltemp = -MAXPHASE;
557 if (!(time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL))
558 L_LINT(time_offset, ltemp);
559
560 /*
561 * Select how the frequency is to be controlled and in which
562 * mode (PLL or FLL). If the PPS signal is present and enabled
563 * to discipline the frequency, the PPS frequency is used;
564 * otherwise, the argument offset is used to compute it.
565 */
566 if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
567 time_reftime = time_second;
568 return;
569 }
570 if (time_status & STA_FREQHOLD || time_reftime == 0)
571 time_reftime = time_second;
572 mtemp = time_second - time_reftime;
573 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)
574 ) {
575 L_LINT(ftemp, (ltemp << 4) / mtemp);
576 L_RSHIFT(ftemp, SHIFT_FLL + 4);
577 L_ADD(time_freq, ftemp);
578 time_status |= STA_MODE;
579 } else {
580 L_LINT(ftemp, ltemp);
581 L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
582 L_MPY(ftemp, mtemp);
583 L_ADD(time_freq, ftemp);
584 time_status &= ~STA_MODE;
585 }
586 time_reftime = time_second;
587 if (L_GINT(time_freq) > MAXFREQ)
588 L_LINT(time_freq, MAXFREQ);
589 else if (L_GINT(time_freq) < -MAXFREQ)
590 L_LINT(time_freq, -MAXFREQ);
591}
592
593#ifdef PPS_SYNC
594/*
595 * hardpps() - discipline CPU clock oscillator to external PPS signal
596 *
597 * This routine is called at each PPS interrupt in order to discipline
598 * the CPU clock oscillator to the PPS signal. It measures the PPS phase
599 * and leaves it in a handy spot for the hardclock() routine. It
600 * integrates successive PPS phase differences and calculates the
601 * frequency offset. This is used in hardclock() to discipline the CPU
602 * clock oscillator so that the intrinsic frequency error is cancelled
603 * out. The code requires the caller to capture the time and
604 * architecture-dependent hardware counter values in nanoseconds at the
605 * on-time PPS signal transition.
606 *
607 * Note that, on some Unix systems this routine runs at an interrupt
608 * priority level higher than the timer interrupt routine hardclock().
609 * Therefore, the variables used are distinct from the hardclock()
610 * variables, except for the actual time and frequency variables, which
611 * are determined by this routine and updated atomically.
612 */
613void
614hardpps(tsp, nsec)
615 struct timespec *tsp; /* time at PPS */
616 long nsec; /* hardware counter at PPS */
617{
618 long u_sec, u_nsec, v_nsec; /* temps */
619 l_fp ftemp;
620
621 /*
622 * The signal is first processed by a frequency discriminator
623 * which rejects noise and input signals with frequencies
624 * outside the range 1 +-MAXFREQ PPS. If two hits occur in the
625 * same second, we ignore the later hit; if not and a hit occurs
626 * outside the range gate, keep the later hit but do not
627 * process it.
628 */
629 time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
630 time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
631 pps_valid = PPS_VALID;
632 u_sec = tsp->tv_sec;
633 u_nsec = tsp->tv_nsec;
634 if (u_nsec >= (NANOSECOND >> 1)) {
635 u_nsec -= NANOSECOND;
636 u_sec++;
637 }
638 v_nsec = u_nsec - pps_tf[0].nsec;
639 if (u_sec == pps_tf[0].sec && v_nsec < -MAXFREQ) {
640 return;
641 }
642 pps_tf[2] = pps_tf[1];
643 pps_tf[1] = pps_tf[0];
644 pps_tf[0].sec = u_sec;
645 pps_tf[0].nsec = u_nsec;
646
647 /*
648 * Compute the difference between the current and previous
649 * counter values. If the difference exceeds 0.5 s, assume it
650 * has wrapped around, so correct 1.0 s. If the result exceeds
651 * the tick interval, the sample point has crossed a tick
652 * boundary during the last second, so correct the tick. Very
653 * intricate.
654 */
657 u_nsec = nsec - pps_lastcount;
658 pps_lastcount = nsec;
655 u_nsec = nsec;
659 if (u_nsec > (NANOSECOND >> 1))
660 u_nsec -= NANOSECOND;
661 else if (u_nsec < -(NANOSECOND >> 1))
662 u_nsec += NANOSECOND;
656 if (u_nsec > (NANOSECOND >> 1))
657 u_nsec -= NANOSECOND;
658 else if (u_nsec < -(NANOSECOND >> 1))
659 u_nsec += NANOSECOND;
660#if 0
663 if (u_nsec > (time_tick >> 1))
664 u_nsec -= time_tick;
665 else if (u_nsec < -(time_tick >> 1))
666 u_nsec += time_tick;
661 if (u_nsec > (time_tick >> 1))
662 u_nsec -= time_tick;
663 else if (u_nsec < -(time_tick >> 1))
664 u_nsec += time_tick;
665#endif
667 pps_tf[0].count = pps_tf[1].count + u_nsec;
668 if (v_nsec > MAXFREQ) {
669 return;
670 }
671 time_status &= ~STA_PPSJITTER;
672
673 /*
674 * A three-stage median filter is used to help denoise the PPS
675 * time. The median sample becomes the time offset estimate; the
676 * difference between the other two samples becomes the time
677 * dispersion (jitter) estimate.
678 */
679 if (pps_tf[0].nsec > pps_tf[1].nsec) {
680 if (pps_tf[1].nsec > pps_tf[2].nsec) {
681 pps_filt = pps_tf[1]; /* 0 1 2 */
682 u_nsec = pps_tf[0].nsec - pps_tf[2].nsec;
683 } else if (pps_tf[2].nsec > pps_tf[0].nsec) {
684 pps_filt = pps_tf[0]; /* 2 0 1 */
685 u_nsec = pps_tf[2].nsec - pps_tf[1].nsec;
686 } else {
687 pps_filt = pps_tf[2]; /* 0 2 1 */
688 u_nsec = pps_tf[0].nsec - pps_tf[1].nsec;
689 }
690 } else {
691 if (pps_tf[1].nsec < pps_tf[2].nsec) {
692 pps_filt = pps_tf[1]; /* 2 1 0 */
693 u_nsec = pps_tf[2].nsec - pps_tf[0].nsec;
694 } else if (pps_tf[2].nsec < pps_tf[0].nsec) {
695 pps_filt = pps_tf[0]; /* 1 0 2 */
696 u_nsec = pps_tf[1].nsec - pps_tf[2].nsec;
697 } else {
698 pps_filt = pps_tf[2]; /* 1 2 0 */
699 u_nsec = pps_tf[1].nsec - pps_tf[0].nsec;
700 }
701 }
702
703 /*
704 * Nominal jitter is due to PPS signal noise and interrupt
705 * latency. If it exceeds the jitter limit, the sample is
706 * discarded. otherwise, if so enabled, the time offset is
707 * updated. The offsets are accumulated over the phase averaging
708 * interval to improve accuracy. The jitter is averaged only for
709 * performance monitoring. We can tolerate a modest loss of data
710 * here without degrading time accuracy.
711 */
712 if (u_nsec > MAXTIME) {
713 time_status |= STA_PPSJITTER;
714 pps_jitcnt++;
715 } else if (time_status & STA_PPSTIME) {
716 pps_offacc -= pps_filt.nsec;
717 pps_offcnt++;
718 }
719 if (pps_offcnt >= (1 << PPS_PAVG)) {
720 if (time_status & STA_PPSTIME) {
721 L_LINT(time_offset, pps_offacc);
722 L_RSHIFT(time_offset, PPS_PAVG);
723 }
724 pps_offacc = 0;
725 pps_offcnt = 0;
726
727 }
728 pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
729 u_sec = pps_tf[0].sec - pps_lastsec;
730 if (u_sec < (1 << pps_shift))
731 return;
732
733 /*
734 * At the end of the calibration interval the difference between
735 * the first and last counter values becomes the scaled
736 * frequency. It will later be divided by the length of the
737 * interval to determine the frequency update. If the frequency
738 * exceeds a sanity threshold, or if the actual calibration
739 * interval is not equal to the expected length, the data are
740 * discarded. We can tolerate a modest loss of data here without
741 * degrading frequency ccuracy.
742 */
743 pps_calcnt++;
744 v_nsec = -pps_filt.count;
745 pps_lastsec = pps_tf[0].sec;
746 pps_tf[0].count = 0;
747 u_nsec = MAXFREQ << pps_shift;
748 if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
749 pps_shift)) {
750 time_status |= STA_PPSERROR;
751 pps_errcnt++;
752 return;
753 }
754
755 /*
756 * If the actual calibration interval is not equal to the
757 * expected length, the data are discarded. If the wander is
758 * less than the wander threshold for four consecutive
759 * intervals, the interval is doubled; if it is greater than the
760 * threshold for four consecutive intervals, the interval is
761 * halved. The scaled frequency offset is converted to frequency
762 * offset. The stability metric is calculated as the average of
763 * recent frequency changes, but is used only for performance
764 * monitoring.
765 */
766 L_LINT(ftemp, v_nsec);
767 L_RSHIFT(ftemp, pps_shift);
768 L_SUB(ftemp, pps_freq);
769 u_nsec = L_GINT(ftemp);
770 if (u_nsec > MAXWANDER) {
771 L_LINT(ftemp, MAXWANDER);
772 pps_intcnt--;
773 time_status |= STA_PPSWANDER;
774 pps_stbcnt++;
775 } else if (u_nsec < -MAXWANDER) {
776 L_LINT(ftemp, -MAXWANDER);
777 pps_intcnt--;
778 time_status |= STA_PPSWANDER;
779 pps_stbcnt++;
780 } else {
781 pps_intcnt++;
782 }
783 if (pps_intcnt >= 4) {
784 pps_intcnt = 4;
785 if (pps_shift < PPS_FAVGMAX) {
786 pps_shift++;
787 pps_intcnt = 0;
788 }
789 } else if (pps_intcnt <= -4) {
790 pps_intcnt = -4;
791 if (pps_shift > PPS_FAVG) {
792 pps_shift--;
793 pps_intcnt = 0;
794 }
795 }
796 if (u_nsec < 0)
797 u_nsec = -u_nsec;
798 pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
799
800 /*
801 * The frequency offset is averaged into the PPS frequency. If
802 * enabled, the system clock frequency is updated as well.
803 */
804 L_RSHIFT(ftemp, PPS_FAVG);
805 L_ADD(pps_freq, ftemp);
806 u_nsec = L_GINT(pps_freq);
807 if (u_nsec > MAXFREQ)
808 L_LINT(pps_freq, MAXFREQ);
809 else if (u_nsec < -MAXFREQ)
810 L_LINT(pps_freq, -MAXFREQ);
811 if (time_status & STA_PPSFREQ)
812 time_freq = pps_freq;
813}
814#endif /* PPS_SYNC */
666 pps_tf[0].count = pps_tf[1].count + u_nsec;
667 if (v_nsec > MAXFREQ) {
668 return;
669 }
670 time_status &= ~STA_PPSJITTER;
671
672 /*
673 * A three-stage median filter is used to help denoise the PPS
674 * time. The median sample becomes the time offset estimate; the
675 * difference between the other two samples becomes the time
676 * dispersion (jitter) estimate.
677 */
678 if (pps_tf[0].nsec > pps_tf[1].nsec) {
679 if (pps_tf[1].nsec > pps_tf[2].nsec) {
680 pps_filt = pps_tf[1]; /* 0 1 2 */
681 u_nsec = pps_tf[0].nsec - pps_tf[2].nsec;
682 } else if (pps_tf[2].nsec > pps_tf[0].nsec) {
683 pps_filt = pps_tf[0]; /* 2 0 1 */
684 u_nsec = pps_tf[2].nsec - pps_tf[1].nsec;
685 } else {
686 pps_filt = pps_tf[2]; /* 0 2 1 */
687 u_nsec = pps_tf[0].nsec - pps_tf[1].nsec;
688 }
689 } else {
690 if (pps_tf[1].nsec < pps_tf[2].nsec) {
691 pps_filt = pps_tf[1]; /* 2 1 0 */
692 u_nsec = pps_tf[2].nsec - pps_tf[0].nsec;
693 } else if (pps_tf[2].nsec < pps_tf[0].nsec) {
694 pps_filt = pps_tf[0]; /* 1 0 2 */
695 u_nsec = pps_tf[1].nsec - pps_tf[2].nsec;
696 } else {
697 pps_filt = pps_tf[2]; /* 1 2 0 */
698 u_nsec = pps_tf[1].nsec - pps_tf[0].nsec;
699 }
700 }
701
702 /*
703 * Nominal jitter is due to PPS signal noise and interrupt
704 * latency. If it exceeds the jitter limit, the sample is
705 * discarded. otherwise, if so enabled, the time offset is
706 * updated. The offsets are accumulated over the phase averaging
707 * interval to improve accuracy. The jitter is averaged only for
708 * performance monitoring. We can tolerate a modest loss of data
709 * here without degrading time accuracy.
710 */
711 if (u_nsec > MAXTIME) {
712 time_status |= STA_PPSJITTER;
713 pps_jitcnt++;
714 } else if (time_status & STA_PPSTIME) {
715 pps_offacc -= pps_filt.nsec;
716 pps_offcnt++;
717 }
718 if (pps_offcnt >= (1 << PPS_PAVG)) {
719 if (time_status & STA_PPSTIME) {
720 L_LINT(time_offset, pps_offacc);
721 L_RSHIFT(time_offset, PPS_PAVG);
722 }
723 pps_offacc = 0;
724 pps_offcnt = 0;
725
726 }
727 pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
728 u_sec = pps_tf[0].sec - pps_lastsec;
729 if (u_sec < (1 << pps_shift))
730 return;
731
732 /*
733 * At the end of the calibration interval the difference between
734 * the first and last counter values becomes the scaled
735 * frequency. It will later be divided by the length of the
736 * interval to determine the frequency update. If the frequency
737 * exceeds a sanity threshold, or if the actual calibration
738 * interval is not equal to the expected length, the data are
739 * discarded. We can tolerate a modest loss of data here without
740 * degrading frequency ccuracy.
741 */
742 pps_calcnt++;
743 v_nsec = -pps_filt.count;
744 pps_lastsec = pps_tf[0].sec;
745 pps_tf[0].count = 0;
746 u_nsec = MAXFREQ << pps_shift;
747 if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
748 pps_shift)) {
749 time_status |= STA_PPSERROR;
750 pps_errcnt++;
751 return;
752 }
753
754 /*
755 * If the actual calibration interval is not equal to the
756 * expected length, the data are discarded. If the wander is
757 * less than the wander threshold for four consecutive
758 * intervals, the interval is doubled; if it is greater than the
759 * threshold for four consecutive intervals, the interval is
760 * halved. The scaled frequency offset is converted to frequency
761 * offset. The stability metric is calculated as the average of
762 * recent frequency changes, but is used only for performance
763 * monitoring.
764 */
765 L_LINT(ftemp, v_nsec);
766 L_RSHIFT(ftemp, pps_shift);
767 L_SUB(ftemp, pps_freq);
768 u_nsec = L_GINT(ftemp);
769 if (u_nsec > MAXWANDER) {
770 L_LINT(ftemp, MAXWANDER);
771 pps_intcnt--;
772 time_status |= STA_PPSWANDER;
773 pps_stbcnt++;
774 } else if (u_nsec < -MAXWANDER) {
775 L_LINT(ftemp, -MAXWANDER);
776 pps_intcnt--;
777 time_status |= STA_PPSWANDER;
778 pps_stbcnt++;
779 } else {
780 pps_intcnt++;
781 }
782 if (pps_intcnt >= 4) {
783 pps_intcnt = 4;
784 if (pps_shift < PPS_FAVGMAX) {
785 pps_shift++;
786 pps_intcnt = 0;
787 }
788 } else if (pps_intcnt <= -4) {
789 pps_intcnt = -4;
790 if (pps_shift > PPS_FAVG) {
791 pps_shift--;
792 pps_intcnt = 0;
793 }
794 }
795 if (u_nsec < 0)
796 u_nsec = -u_nsec;
797 pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
798
799 /*
800 * The frequency offset is averaged into the PPS frequency. If
801 * enabled, the system clock frequency is updated as well.
802 */
803 L_RSHIFT(ftemp, PPS_FAVG);
804 L_ADD(pps_freq, ftemp);
805 u_nsec = L_GINT(pps_freq);
806 if (u_nsec > MAXFREQ)
807 L_LINT(pps_freq, MAXFREQ);
808 else if (u_nsec < -MAXFREQ)
809 L_LINT(pps_freq, -MAXFREQ);
810 if (time_status & STA_PPSFREQ)
811 time_freq = pps_freq;
812}
813#endif /* PPS_SYNC */
815
816int
817std_pps_ioctl(u_long cmd, caddr_t data, pps_params_t *pp, pps_info_t *pi, int ppscap)
818{
819 pps_params_t *app;
820 pps_info_t *api;
821
822 switch (cmd) {
823 case PPS_IOC_CREATE:
824 return (0);
825 case PPS_IOC_DESTROY:
826 return (0);
827 case PPS_IOC_SETPARAMS:
828 app = (pps_params_t *)data;
829 if (app->mode & ~ppscap)
830 return (EINVAL);
831 *pp = *app;
832 return (0);
833 case PPS_IOC_GETPARAMS:
834 app = (pps_params_t *)data;
835 *app = *pp;
836 return (0);
837 case PPS_IOC_GETCAP:
838 *(int*)data = ppscap;
839 return (0);
840 case PPS_IOC_FETCH:
841 api = (pps_info_t *)data;
842 *api = *pi;
843 pi->current_mode = pp->mode;
844 return (0);
845 case PPS_IOC_WAIT:
846 return (EOPNOTSUPP);
847 default:
848 return (ENODEV);
849 }
850}