Deleted Added
full compact
kern_malloc.c (292117) kern_malloc.c (295222)
1/*-
2 * Copyright (c) 1987, 1991, 1993
3 * The Regents of the University of California.
4 * Copyright (c) 2005-2009 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
32 */
33
34/*
35 * Kernel malloc(9) implementation -- general purpose kernel memory allocator
36 * based on memory types. Back end is implemented using the UMA(9) zone
37 * allocator. A set of fixed-size buckets are used for smaller allocations,
38 * and a special UMA allocation interface is used for larger allocations.
39 * Callers declare memory types, and statistics are maintained independently
40 * for each memory type. Statistics are maintained per-CPU for performance
41 * reasons. See malloc(9) and comments in malloc.h for a detailed
42 * description.
43 */
44
45#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 1987, 1991, 1993
3 * The Regents of the University of California.
4 * Copyright (c) 2005-2009 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
32 */
33
34/*
35 * Kernel malloc(9) implementation -- general purpose kernel memory allocator
36 * based on memory types. Back end is implemented using the UMA(9) zone
37 * allocator. A set of fixed-size buckets are used for smaller allocations,
38 * and a special UMA allocation interface is used for larger allocations.
39 * Callers declare memory types, and statistics are maintained independently
40 * for each memory type. Statistics are maintained per-CPU for performance
41 * reasons. See malloc(9) and comments in malloc.h for a detailed
42 * description.
43 */
44
45#include <sys/cdefs.h>
46__FBSDID("$FreeBSD: head/sys/kern/kern_malloc.c 292117 2015-12-11 20:05:07Z markj $");
46__FBSDID("$FreeBSD: head/sys/kern/kern_malloc.c 295222 2016-02-03 23:30:17Z glebius $");
47
48#include "opt_ddb.h"
49#include "opt_vm.h"
50
51#include <sys/param.h>
52#include <sys/systm.h>
53#include <sys/kdb.h>
54#include <sys/kernel.h>
55#include <sys/lock.h>
56#include <sys/malloc.h>
57#include <sys/mutex.h>
58#include <sys/vmmeter.h>
59#include <sys/proc.h>
60#include <sys/sbuf.h>
61#include <sys/sysctl.h>
47
48#include "opt_ddb.h"
49#include "opt_vm.h"
50
51#include <sys/param.h>
52#include <sys/systm.h>
53#include <sys/kdb.h>
54#include <sys/kernel.h>
55#include <sys/lock.h>
56#include <sys/malloc.h>
57#include <sys/mutex.h>
58#include <sys/vmmeter.h>
59#include <sys/proc.h>
60#include <sys/sbuf.h>
61#include <sys/sysctl.h>
62#include <sys/taskqueue.h>
62#include <sys/time.h>
63#include <sys/vmem.h>
64
65#include <vm/vm.h>
66#include <vm/pmap.h>
67#include <vm/vm_pageout.h>
68#include <vm/vm_param.h>
69#include <vm/vm_kern.h>
70#include <vm/vm_extern.h>
71#include <vm/vm_map.h>
72#include <vm/vm_page.h>
73#include <vm/uma.h>
74#include <vm/uma_int.h>
75#include <vm/uma_dbg.h>
76
77#ifdef DEBUG_MEMGUARD
78#include <vm/memguard.h>
79#endif
80#ifdef DEBUG_REDZONE
81#include <vm/redzone.h>
82#endif
83
84#if defined(INVARIANTS) && defined(__i386__)
85#include <machine/cpu.h>
86#endif
87
88#include <ddb/ddb.h>
89
90#ifdef KDTRACE_HOOKS
91#include <sys/dtrace_bsd.h>
92
93dtrace_malloc_probe_func_t dtrace_malloc_probe;
94#endif
95
96/*
97 * When realloc() is called, if the new size is sufficiently smaller than
98 * the old size, realloc() will allocate a new, smaller block to avoid
99 * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
100 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
101 */
102#ifndef REALLOC_FRACTION
103#define REALLOC_FRACTION 1 /* new block if <= half the size */
104#endif
105
106/*
107 * Centrally define some common malloc types.
108 */
109MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
110MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
111MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
112
113MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
114MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
115
116static struct malloc_type *kmemstatistics;
117static int kmemcount;
118
119#define KMEM_ZSHIFT 4
120#define KMEM_ZBASE 16
121#define KMEM_ZMASK (KMEM_ZBASE - 1)
122
123#define KMEM_ZMAX 65536
124#define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT)
125static uint8_t kmemsize[KMEM_ZSIZE + 1];
126
127#ifndef MALLOC_DEBUG_MAXZONES
128#define MALLOC_DEBUG_MAXZONES 1
129#endif
130static int numzones = MALLOC_DEBUG_MAXZONES;
131
132/*
133 * Small malloc(9) memory allocations are allocated from a set of UMA buckets
134 * of various sizes.
135 *
136 * XXX: The comment here used to read "These won't be powers of two for
137 * long." It's possible that a significant amount of wasted memory could be
138 * recovered by tuning the sizes of these buckets.
139 */
140struct {
141 int kz_size;
142 char *kz_name;
143 uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
144} kmemzones[] = {
145 {16, "16", },
146 {32, "32", },
147 {64, "64", },
148 {128, "128", },
149 {256, "256", },
150 {512, "512", },
151 {1024, "1024", },
152 {2048, "2048", },
153 {4096, "4096", },
154 {8192, "8192", },
155 {16384, "16384", },
156 {32768, "32768", },
157 {65536, "65536", },
158 {0, NULL},
159};
160
161/*
162 * Zone to allocate malloc type descriptions from. For ABI reasons, memory
163 * types are described by a data structure passed by the declaring code, but
164 * the malloc(9) implementation has its own data structure describing the
165 * type and statistics. This permits the malloc(9)-internal data structures
166 * to be modified without breaking binary-compiled kernel modules that
167 * declare malloc types.
168 */
169static uma_zone_t mt_zone;
170
171u_long vm_kmem_size;
172SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
173 "Size of kernel memory");
174
175static u_long kmem_zmax = KMEM_ZMAX;
176SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0,
177 "Maximum allocation size that malloc(9) would use UMA as backend");
178
179static u_long vm_kmem_size_min;
180SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
181 "Minimum size of kernel memory");
182
183static u_long vm_kmem_size_max;
184SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
185 "Maximum size of kernel memory");
186
187static u_int vm_kmem_size_scale;
188SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
189 "Scale factor for kernel memory size");
190
191static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
192SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
193 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
194 sysctl_kmem_map_size, "LU", "Current kmem allocation size");
195
196static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
197SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
198 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
199 sysctl_kmem_map_free, "LU", "Free space in kmem");
200
201/*
202 * The malloc_mtx protects the kmemstatistics linked list.
203 */
204struct mtx malloc_mtx;
205
206#ifdef MALLOC_PROFILE
207uint64_t krequests[KMEM_ZSIZE + 1];
208
209static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
210#endif
211
212static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
213
214/*
215 * time_uptime of the last malloc(9) failure (induced or real).
216 */
217static time_t t_malloc_fail;
218
219#if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
220static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
221 "Kernel malloc debugging options");
222#endif
223
224/*
225 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
226 * the caller specifies M_NOWAIT. If set to 0, no failures are caused.
227 */
228#ifdef MALLOC_MAKE_FAILURES
229static int malloc_failure_rate;
230static int malloc_nowait_count;
231static int malloc_failure_count;
232SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN,
233 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
234SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
235 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
236#endif
237
238static int
239sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
240{
241 u_long size;
242
243 size = vmem_size(kmem_arena, VMEM_ALLOC);
244 return (sysctl_handle_long(oidp, &size, 0, req));
245}
246
247static int
248sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
249{
250 u_long size;
251
252 size = vmem_size(kmem_arena, VMEM_FREE);
253 return (sysctl_handle_long(oidp, &size, 0, req));
254}
255
256/*
257 * malloc(9) uma zone separation -- sub-page buffer overruns in one
258 * malloc type will affect only a subset of other malloc types.
259 */
260#if MALLOC_DEBUG_MAXZONES > 1
261static void
262tunable_set_numzones(void)
263{
264
265 TUNABLE_INT_FETCH("debug.malloc.numzones",
266 &numzones);
267
268 /* Sanity check the number of malloc uma zones. */
269 if (numzones <= 0)
270 numzones = 1;
271 if (numzones > MALLOC_DEBUG_MAXZONES)
272 numzones = MALLOC_DEBUG_MAXZONES;
273}
274SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
275SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
276 &numzones, 0, "Number of malloc uma subzones");
277
278/*
279 * Any number that changes regularly is an okay choice for the
280 * offset. Build numbers are pretty good of you have them.
281 */
282static u_int zone_offset = __FreeBSD_version;
283TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
284SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
285 &zone_offset, 0, "Separate malloc types by examining the "
286 "Nth character in the malloc type short description.");
287
288static u_int
289mtp_get_subzone(const char *desc)
290{
291 size_t len;
292 u_int val;
293
294 if (desc == NULL || (len = strlen(desc)) == 0)
295 return (0);
296 val = desc[zone_offset % len];
297 return (val % numzones);
298}
299#elif MALLOC_DEBUG_MAXZONES == 0
300#error "MALLOC_DEBUG_MAXZONES must be positive."
301#else
302static inline u_int
303mtp_get_subzone(const char *desc)
304{
305
306 return (0);
307}
308#endif /* MALLOC_DEBUG_MAXZONES > 1 */
309
310int
311malloc_last_fail(void)
312{
313
314 return (time_uptime - t_malloc_fail);
315}
316
317/*
318 * An allocation has succeeded -- update malloc type statistics for the
319 * amount of bucket size. Occurs within a critical section so that the
320 * thread isn't preempted and doesn't migrate while updating per-PCU
321 * statistics.
322 */
323static void
324malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
325 int zindx)
326{
327 struct malloc_type_internal *mtip;
328 struct malloc_type_stats *mtsp;
329
330 critical_enter();
331 mtip = mtp->ks_handle;
332 mtsp = &mtip->mti_stats[curcpu];
333 if (size > 0) {
334 mtsp->mts_memalloced += size;
335 mtsp->mts_numallocs++;
336 }
337 if (zindx != -1)
338 mtsp->mts_size |= 1 << zindx;
339
340#ifdef KDTRACE_HOOKS
341 if (dtrace_malloc_probe != NULL) {
342 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
343 if (probe_id != 0)
344 (dtrace_malloc_probe)(probe_id,
345 (uintptr_t) mtp, (uintptr_t) mtip,
346 (uintptr_t) mtsp, size, zindx);
347 }
348#endif
349
350 critical_exit();
351}
352
353void
354malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
355{
356
357 if (size > 0)
358 malloc_type_zone_allocated(mtp, size, -1);
359}
360
361/*
362 * A free operation has occurred -- update malloc type statistics for the
363 * amount of the bucket size. Occurs within a critical section so that the
364 * thread isn't preempted and doesn't migrate while updating per-CPU
365 * statistics.
366 */
367void
368malloc_type_freed(struct malloc_type *mtp, unsigned long size)
369{
370 struct malloc_type_internal *mtip;
371 struct malloc_type_stats *mtsp;
372
373 critical_enter();
374 mtip = mtp->ks_handle;
375 mtsp = &mtip->mti_stats[curcpu];
376 mtsp->mts_memfreed += size;
377 mtsp->mts_numfrees++;
378
379#ifdef KDTRACE_HOOKS
380 if (dtrace_malloc_probe != NULL) {
381 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
382 if (probe_id != 0)
383 (dtrace_malloc_probe)(probe_id,
384 (uintptr_t) mtp, (uintptr_t) mtip,
385 (uintptr_t) mtsp, size, 0);
386 }
387#endif
388
389 critical_exit();
390}
391
392/*
393 * contigmalloc:
394 *
395 * Allocate a block of physically contiguous memory.
396 *
397 * If M_NOWAIT is set, this routine will not block and return NULL if
398 * the allocation fails.
399 */
400void *
401contigmalloc(unsigned long size, struct malloc_type *type, int flags,
402 vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
403 vm_paddr_t boundary)
404{
405 void *ret;
406
407 ret = (void *)kmem_alloc_contig(kernel_arena, size, flags, low, high,
408 alignment, boundary, VM_MEMATTR_DEFAULT);
409 if (ret != NULL)
410 malloc_type_allocated(type, round_page(size));
411 return (ret);
412}
413
414/*
415 * contigfree:
416 *
417 * Free a block of memory allocated by contigmalloc.
418 *
419 * This routine may not block.
420 */
421void
422contigfree(void *addr, unsigned long size, struct malloc_type *type)
423{
424
425 kmem_free(kernel_arena, (vm_offset_t)addr, size);
426 malloc_type_freed(type, round_page(size));
427}
428
429/*
430 * malloc:
431 *
432 * Allocate a block of memory.
433 *
434 * If M_NOWAIT is set, this routine will not block and return NULL if
435 * the allocation fails.
436 */
437void *
438malloc(unsigned long size, struct malloc_type *mtp, int flags)
439{
440 int indx;
441 struct malloc_type_internal *mtip;
442 caddr_t va;
443 uma_zone_t zone;
444#if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE)
445 unsigned long osize = size;
446#endif
447
448#ifdef INVARIANTS
449 KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic"));
450 /*
451 * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
452 */
453 indx = flags & (M_WAITOK | M_NOWAIT);
454 if (indx != M_NOWAIT && indx != M_WAITOK) {
455 static struct timeval lasterr;
456 static int curerr, once;
457 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
458 printf("Bad malloc flags: %x\n", indx);
459 kdb_backtrace();
460 flags |= M_WAITOK;
461 once++;
462 }
463 }
464#endif
465#ifdef MALLOC_MAKE_FAILURES
466 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
467 atomic_add_int(&malloc_nowait_count, 1);
468 if ((malloc_nowait_count % malloc_failure_rate) == 0) {
469 atomic_add_int(&malloc_failure_count, 1);
470 t_malloc_fail = time_uptime;
471 return (NULL);
472 }
473 }
474#endif
475 if (flags & M_WAITOK)
476 KASSERT(curthread->td_intr_nesting_level == 0,
477 ("malloc(M_WAITOK) in interrupt context"));
478 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
479 ("malloc: called with spinlock or critical section held"));
480
481#ifdef DEBUG_MEMGUARD
482 if (memguard_cmp_mtp(mtp, size)) {
483 va = memguard_alloc(size, flags);
484 if (va != NULL)
485 return (va);
486 /* This is unfortunate but should not be fatal. */
487 }
488#endif
489
490#ifdef DEBUG_REDZONE
491 size = redzone_size_ntor(size);
492#endif
493
494 if (size <= kmem_zmax) {
495 mtip = mtp->ks_handle;
496 if (size & KMEM_ZMASK)
497 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
498 indx = kmemsize[size >> KMEM_ZSHIFT];
499 KASSERT(mtip->mti_zone < numzones,
500 ("mti_zone %u out of range %d",
501 mtip->mti_zone, numzones));
502 zone = kmemzones[indx].kz_zone[mtip->mti_zone];
503#ifdef MALLOC_PROFILE
504 krequests[size >> KMEM_ZSHIFT]++;
505#endif
506 va = uma_zalloc(zone, flags);
507 if (va != NULL)
508 size = zone->uz_size;
509 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
510 } else {
511 size = roundup(size, PAGE_SIZE);
512 zone = NULL;
513 va = uma_large_malloc(size, flags);
514 malloc_type_allocated(mtp, va == NULL ? 0 : size);
515 }
516 if (flags & M_WAITOK)
517 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
518 else if (va == NULL)
519 t_malloc_fail = time_uptime;
520#ifdef DIAGNOSTIC
521 if (va != NULL && !(flags & M_ZERO)) {
522 memset(va, 0x70, osize);
523 }
524#endif
525#ifdef DEBUG_REDZONE
526 if (va != NULL)
527 va = redzone_setup(va, osize);
528#endif
529 return ((void *) va);
530}
531
532/*
533 * free:
534 *
535 * Free a block of memory allocated by malloc.
536 *
537 * This routine may not block.
538 */
539void
540free(void *addr, struct malloc_type *mtp)
541{
542 uma_slab_t slab;
543 u_long size;
544
545 KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic"));
546 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
547 ("free: called with spinlock or critical section held"));
548
549 /* free(NULL, ...) does nothing */
550 if (addr == NULL)
551 return;
552
553#ifdef DEBUG_MEMGUARD
554 if (is_memguard_addr(addr)) {
555 memguard_free(addr);
556 return;
557 }
558#endif
559
560#ifdef DEBUG_REDZONE
561 redzone_check(addr);
562 addr = redzone_addr_ntor(addr);
563#endif
564
565 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
566
567 if (slab == NULL)
568 panic("free: address %p(%p) has not been allocated.\n",
569 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
570
571 if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
572#ifdef INVARIANTS
573 struct malloc_type **mtpp = addr;
574#endif
575 size = slab->us_keg->uk_size;
576#ifdef INVARIANTS
577 /*
578 * Cache a pointer to the malloc_type that most recently freed
579 * this memory here. This way we know who is most likely to
580 * have stepped on it later.
581 *
582 * This code assumes that size is a multiple of 8 bytes for
583 * 64 bit machines
584 */
585 mtpp = (struct malloc_type **)
586 ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
587 mtpp += (size - sizeof(struct malloc_type *)) /
588 sizeof(struct malloc_type *);
589 *mtpp = mtp;
590#endif
591 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
592 } else {
593 size = slab->us_size;
594 uma_large_free(slab);
595 }
596 malloc_type_freed(mtp, size);
597}
598
599/*
600 * realloc: change the size of a memory block
601 */
602void *
603realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
604{
605 uma_slab_t slab;
606 unsigned long alloc;
607 void *newaddr;
608
609 KASSERT(mtp->ks_magic == M_MAGIC,
610 ("realloc: bad malloc type magic"));
611 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
612 ("realloc: called with spinlock or critical section held"));
613
614 /* realloc(NULL, ...) is equivalent to malloc(...) */
615 if (addr == NULL)
616 return (malloc(size, mtp, flags));
617
618 /*
619 * XXX: Should report free of old memory and alloc of new memory to
620 * per-CPU stats.
621 */
622
623#ifdef DEBUG_MEMGUARD
624 if (is_memguard_addr(addr))
625 return (memguard_realloc(addr, size, mtp, flags));
626#endif
627
628#ifdef DEBUG_REDZONE
629 slab = NULL;
630 alloc = redzone_get_size(addr);
631#else
632 slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
633
634 /* Sanity check */
635 KASSERT(slab != NULL,
636 ("realloc: address %p out of range", (void *)addr));
637
638 /* Get the size of the original block */
639 if (!(slab->us_flags & UMA_SLAB_MALLOC))
640 alloc = slab->us_keg->uk_size;
641 else
642 alloc = slab->us_size;
643
644 /* Reuse the original block if appropriate */
645 if (size <= alloc
646 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
647 return (addr);
648#endif /* !DEBUG_REDZONE */
649
650 /* Allocate a new, bigger (or smaller) block */
651 if ((newaddr = malloc(size, mtp, flags)) == NULL)
652 return (NULL);
653
654 /* Copy over original contents */
655 bcopy(addr, newaddr, min(size, alloc));
656 free(addr, mtp);
657 return (newaddr);
658}
659
660/*
661 * reallocf: same as realloc() but free memory on failure.
662 */
663void *
664reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
665{
666 void *mem;
667
668 if ((mem = realloc(addr, size, mtp, flags)) == NULL)
669 free(addr, mtp);
670 return (mem);
671}
672
673/*
674 * Wake the uma reclamation pagedaemon thread when we exhaust KVA. It
675 * will call the lowmem handler and uma_reclaim() callbacks in a
676 * context that is safe.
677 */
678static void
679kmem_reclaim(vmem_t *vm, int flags)
680{
681
682 uma_reclaim_wakeup();
683 pagedaemon_wakeup();
684}
685
686#ifndef __sparc64__
687CTASSERT(VM_KMEM_SIZE_SCALE >= 1);
688#endif
689
690/*
691 * Initialize the kernel memory (kmem) arena.
692 */
693void
694kmeminit(void)
695{
696 u_long mem_size;
697 u_long tmp;
698
699#ifdef VM_KMEM_SIZE
700 if (vm_kmem_size == 0)
701 vm_kmem_size = VM_KMEM_SIZE;
702#endif
703#ifdef VM_KMEM_SIZE_MIN
704 if (vm_kmem_size_min == 0)
705 vm_kmem_size_min = VM_KMEM_SIZE_MIN;
706#endif
707#ifdef VM_KMEM_SIZE_MAX
708 if (vm_kmem_size_max == 0)
709 vm_kmem_size_max = VM_KMEM_SIZE_MAX;
710#endif
711 /*
712 * Calculate the amount of kernel virtual address (KVA) space that is
713 * preallocated to the kmem arena. In order to support a wide range
714 * of machines, it is a function of the physical memory size,
715 * specifically,
716 *
717 * min(max(physical memory size / VM_KMEM_SIZE_SCALE,
718 * VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX)
719 *
720 * Every architecture must define an integral value for
721 * VM_KMEM_SIZE_SCALE. However, the definitions of VM_KMEM_SIZE_MIN
722 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and
723 * ceiling on this preallocation, are optional. Typically,
724 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on
725 * a given architecture.
726 */
727 mem_size = vm_cnt.v_page_count;
728 if (mem_size <= 32768) /* delphij XXX 128MB */
729 kmem_zmax = PAGE_SIZE;
730
731 if (vm_kmem_size_scale < 1)
732 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
733
734 /*
735 * Check if we should use defaults for the "vm_kmem_size"
736 * variable:
737 */
738 if (vm_kmem_size == 0) {
739 vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
740
741 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min)
742 vm_kmem_size = vm_kmem_size_min;
743 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
744 vm_kmem_size = vm_kmem_size_max;
745 }
746
747 /*
748 * The amount of KVA space that is preallocated to the
749 * kmem arena can be set statically at compile-time or manually
750 * through the kernel environment. However, it is still limited to
751 * twice the physical memory size, which has been sufficient to handle
752 * the most severe cases of external fragmentation in the kmem arena.
753 */
754 if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
755 vm_kmem_size = 2 * mem_size * PAGE_SIZE;
756
757 vm_kmem_size = round_page(vm_kmem_size);
758#ifdef DEBUG_MEMGUARD
759 tmp = memguard_fudge(vm_kmem_size, kernel_map);
760#else
761 tmp = vm_kmem_size;
762#endif
763 vmem_init(kmem_arena, "kmem arena", kva_alloc(tmp), tmp, PAGE_SIZE,
764 0, 0);
765 vmem_set_reclaim(kmem_arena, kmem_reclaim);
766
767#ifdef DEBUG_MEMGUARD
768 /*
769 * Initialize MemGuard if support compiled in. MemGuard is a
770 * replacement allocator used for detecting tamper-after-free
771 * scenarios as they occur. It is only used for debugging.
772 */
773 memguard_init(kmem_arena);
774#endif
775}
776
777/*
778 * Initialize the kernel memory allocator
779 */
780/* ARGSUSED*/
781static void
782mallocinit(void *dummy)
783{
784 int i;
785 uint8_t indx;
786
787 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
788
789 kmeminit();
790
791 uma_startup2();
792
793 if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX)
794 kmem_zmax = KMEM_ZMAX;
795
796 mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
797#ifdef INVARIANTS
798 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
799#else
800 NULL, NULL, NULL, NULL,
801#endif
802 UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
803 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
804 int size = kmemzones[indx].kz_size;
805 char *name = kmemzones[indx].kz_name;
806 int subzone;
807
808 for (subzone = 0; subzone < numzones; subzone++) {
809 kmemzones[indx].kz_zone[subzone] =
810 uma_zcreate(name, size,
811#ifdef INVARIANTS
812 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
813#else
814 NULL, NULL, NULL, NULL,
815#endif
816 UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
817 }
818 for (;i <= size; i+= KMEM_ZBASE)
819 kmemsize[i >> KMEM_ZSHIFT] = indx;
820
821 }
822}
823SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL);
824
825void
826malloc_init(void *data)
827{
828 struct malloc_type_internal *mtip;
829 struct malloc_type *mtp;
830
831 KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init"));
832
833 mtp = data;
834 if (mtp->ks_magic != M_MAGIC)
835 panic("malloc_init: bad malloc type magic");
836
837 mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
838 mtp->ks_handle = mtip;
839 mtip->mti_zone = mtp_get_subzone(mtp->ks_shortdesc);
840
841 mtx_lock(&malloc_mtx);
842 mtp->ks_next = kmemstatistics;
843 kmemstatistics = mtp;
844 kmemcount++;
845 mtx_unlock(&malloc_mtx);
846}
847
848void
849malloc_uninit(void *data)
850{
851 struct malloc_type_internal *mtip;
852 struct malloc_type_stats *mtsp;
853 struct malloc_type *mtp, *temp;
854 uma_slab_t slab;
855 long temp_allocs, temp_bytes;
856 int i;
857
858 mtp = data;
859 KASSERT(mtp->ks_magic == M_MAGIC,
860 ("malloc_uninit: bad malloc type magic"));
861 KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
862
863 mtx_lock(&malloc_mtx);
864 mtip = mtp->ks_handle;
865 mtp->ks_handle = NULL;
866 if (mtp != kmemstatistics) {
867 for (temp = kmemstatistics; temp != NULL;
868 temp = temp->ks_next) {
869 if (temp->ks_next == mtp) {
870 temp->ks_next = mtp->ks_next;
871 break;
872 }
873 }
874 KASSERT(temp,
875 ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
876 } else
877 kmemstatistics = mtp->ks_next;
878 kmemcount--;
879 mtx_unlock(&malloc_mtx);
880
881 /*
882 * Look for memory leaks.
883 */
884 temp_allocs = temp_bytes = 0;
885 for (i = 0; i < MAXCPU; i++) {
886 mtsp = &mtip->mti_stats[i];
887 temp_allocs += mtsp->mts_numallocs;
888 temp_allocs -= mtsp->mts_numfrees;
889 temp_bytes += mtsp->mts_memalloced;
890 temp_bytes -= mtsp->mts_memfreed;
891 }
892 if (temp_allocs > 0 || temp_bytes > 0) {
893 printf("Warning: memory type %s leaked memory on destroy "
894 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
895 temp_allocs, temp_bytes);
896 }
897
898 slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK));
899 uma_zfree_arg(mt_zone, mtip, slab);
900}
901
902struct malloc_type *
903malloc_desc2type(const char *desc)
904{
905 struct malloc_type *mtp;
906
907 mtx_assert(&malloc_mtx, MA_OWNED);
908 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
909 if (strcmp(mtp->ks_shortdesc, desc) == 0)
910 return (mtp);
911 }
912 return (NULL);
913}
914
915static int
916sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
917{
918 struct malloc_type_stream_header mtsh;
919 struct malloc_type_internal *mtip;
920 struct malloc_type_header mth;
921 struct malloc_type *mtp;
922 int error, i;
923 struct sbuf sbuf;
924
925 error = sysctl_wire_old_buffer(req, 0);
926 if (error != 0)
927 return (error);
928 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
929 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
930 mtx_lock(&malloc_mtx);
931
932 /*
933 * Insert stream header.
934 */
935 bzero(&mtsh, sizeof(mtsh));
936 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
937 mtsh.mtsh_maxcpus = MAXCPU;
938 mtsh.mtsh_count = kmemcount;
939 (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
940
941 /*
942 * Insert alternating sequence of type headers and type statistics.
943 */
944 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
945 mtip = (struct malloc_type_internal *)mtp->ks_handle;
946
947 /*
948 * Insert type header.
949 */
950 bzero(&mth, sizeof(mth));
951 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
952 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
953
954 /*
955 * Insert type statistics for each CPU.
956 */
957 for (i = 0; i < MAXCPU; i++) {
958 (void)sbuf_bcat(&sbuf, &mtip->mti_stats[i],
959 sizeof(mtip->mti_stats[i]));
960 }
961 }
962 mtx_unlock(&malloc_mtx);
963 error = sbuf_finish(&sbuf);
964 sbuf_delete(&sbuf);
965 return (error);
966}
967
968SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
969 0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
970 "Return malloc types");
971
972SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
973 "Count of kernel malloc types");
974
975void
976malloc_type_list(malloc_type_list_func_t *func, void *arg)
977{
978 struct malloc_type *mtp, **bufmtp;
979 int count, i;
980 size_t buflen;
981
982 mtx_lock(&malloc_mtx);
983restart:
984 mtx_assert(&malloc_mtx, MA_OWNED);
985 count = kmemcount;
986 mtx_unlock(&malloc_mtx);
987
988 buflen = sizeof(struct malloc_type *) * count;
989 bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
990
991 mtx_lock(&malloc_mtx);
992
993 if (count < kmemcount) {
994 free(bufmtp, M_TEMP);
995 goto restart;
996 }
997
998 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
999 bufmtp[i] = mtp;
1000
1001 mtx_unlock(&malloc_mtx);
1002
1003 for (i = 0; i < count; i++)
1004 (func)(bufmtp[i], arg);
1005
1006 free(bufmtp, M_TEMP);
1007}
1008
1009#ifdef DDB
1010DB_SHOW_COMMAND(malloc, db_show_malloc)
1011{
1012 struct malloc_type_internal *mtip;
1013 struct malloc_type *mtp;
1014 uint64_t allocs, frees;
1015 uint64_t alloced, freed;
1016 int i;
1017
1018 db_printf("%18s %12s %12s %12s\n", "Type", "InUse", "MemUse",
1019 "Requests");
1020 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1021 mtip = (struct malloc_type_internal *)mtp->ks_handle;
1022 allocs = 0;
1023 frees = 0;
1024 alloced = 0;
1025 freed = 0;
1026 for (i = 0; i < MAXCPU; i++) {
1027 allocs += mtip->mti_stats[i].mts_numallocs;
1028 frees += mtip->mti_stats[i].mts_numfrees;
1029 alloced += mtip->mti_stats[i].mts_memalloced;
1030 freed += mtip->mti_stats[i].mts_memfreed;
1031 }
1032 db_printf("%18s %12ju %12juK %12ju\n",
1033 mtp->ks_shortdesc, allocs - frees,
1034 (alloced - freed + 1023) / 1024, allocs);
1035 if (db_pager_quit)
1036 break;
1037 }
1038}
1039
1040#if MALLOC_DEBUG_MAXZONES > 1
1041DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
1042{
1043 struct malloc_type_internal *mtip;
1044 struct malloc_type *mtp;
1045 u_int subzone;
1046
1047 if (!have_addr) {
1048 db_printf("Usage: show multizone_matches <malloc type/addr>\n");
1049 return;
1050 }
1051 mtp = (void *)addr;
1052 if (mtp->ks_magic != M_MAGIC) {
1053 db_printf("Magic %lx does not match expected %x\n",
1054 mtp->ks_magic, M_MAGIC);
1055 return;
1056 }
1057
1058 mtip = mtp->ks_handle;
1059 subzone = mtip->mti_zone;
1060
1061 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1062 mtip = mtp->ks_handle;
1063 if (mtip->mti_zone != subzone)
1064 continue;
1065 db_printf("%s\n", mtp->ks_shortdesc);
1066 if (db_pager_quit)
1067 break;
1068 }
1069}
1070#endif /* MALLOC_DEBUG_MAXZONES > 1 */
1071#endif /* DDB */
1072
1073#ifdef MALLOC_PROFILE
1074
1075static int
1076sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
1077{
1078 struct sbuf sbuf;
1079 uint64_t count;
1080 uint64_t waste;
1081 uint64_t mem;
1082 int error;
1083 int rsize;
1084 int size;
1085 int i;
1086
1087 waste = 0;
1088 mem = 0;
1089
1090 error = sysctl_wire_old_buffer(req, 0);
1091 if (error != 0)
1092 return (error);
1093 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
1094 sbuf_printf(&sbuf,
1095 "\n Size Requests Real Size\n");
1096 for (i = 0; i < KMEM_ZSIZE; i++) {
1097 size = i << KMEM_ZSHIFT;
1098 rsize = kmemzones[kmemsize[i]].kz_size;
1099 count = (long long unsigned)krequests[i];
1100
1101 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
1102 (unsigned long long)count, rsize);
1103
1104 if ((rsize * count) > (size * count))
1105 waste += (rsize * count) - (size * count);
1106 mem += (rsize * count);
1107 }
1108 sbuf_printf(&sbuf,
1109 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
1110 (unsigned long long)mem, (unsigned long long)waste);
1111 error = sbuf_finish(&sbuf);
1112 sbuf_delete(&sbuf);
1113 return (error);
1114}
1115
1116SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
1117 NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
1118#endif /* MALLOC_PROFILE */
63#include <sys/time.h>
64#include <sys/vmem.h>
65
66#include <vm/vm.h>
67#include <vm/pmap.h>
68#include <vm/vm_pageout.h>
69#include <vm/vm_param.h>
70#include <vm/vm_kern.h>
71#include <vm/vm_extern.h>
72#include <vm/vm_map.h>
73#include <vm/vm_page.h>
74#include <vm/uma.h>
75#include <vm/uma_int.h>
76#include <vm/uma_dbg.h>
77
78#ifdef DEBUG_MEMGUARD
79#include <vm/memguard.h>
80#endif
81#ifdef DEBUG_REDZONE
82#include <vm/redzone.h>
83#endif
84
85#if defined(INVARIANTS) && defined(__i386__)
86#include <machine/cpu.h>
87#endif
88
89#include <ddb/ddb.h>
90
91#ifdef KDTRACE_HOOKS
92#include <sys/dtrace_bsd.h>
93
94dtrace_malloc_probe_func_t dtrace_malloc_probe;
95#endif
96
97/*
98 * When realloc() is called, if the new size is sufficiently smaller than
99 * the old size, realloc() will allocate a new, smaller block to avoid
100 * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
101 * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
102 */
103#ifndef REALLOC_FRACTION
104#define REALLOC_FRACTION 1 /* new block if <= half the size */
105#endif
106
107/*
108 * Centrally define some common malloc types.
109 */
110MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
111MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
112MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
113
114MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
115MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
116
117static struct malloc_type *kmemstatistics;
118static int kmemcount;
119
120#define KMEM_ZSHIFT 4
121#define KMEM_ZBASE 16
122#define KMEM_ZMASK (KMEM_ZBASE - 1)
123
124#define KMEM_ZMAX 65536
125#define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT)
126static uint8_t kmemsize[KMEM_ZSIZE + 1];
127
128#ifndef MALLOC_DEBUG_MAXZONES
129#define MALLOC_DEBUG_MAXZONES 1
130#endif
131static int numzones = MALLOC_DEBUG_MAXZONES;
132
133/*
134 * Small malloc(9) memory allocations are allocated from a set of UMA buckets
135 * of various sizes.
136 *
137 * XXX: The comment here used to read "These won't be powers of two for
138 * long." It's possible that a significant amount of wasted memory could be
139 * recovered by tuning the sizes of these buckets.
140 */
141struct {
142 int kz_size;
143 char *kz_name;
144 uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
145} kmemzones[] = {
146 {16, "16", },
147 {32, "32", },
148 {64, "64", },
149 {128, "128", },
150 {256, "256", },
151 {512, "512", },
152 {1024, "1024", },
153 {2048, "2048", },
154 {4096, "4096", },
155 {8192, "8192", },
156 {16384, "16384", },
157 {32768, "32768", },
158 {65536, "65536", },
159 {0, NULL},
160};
161
162/*
163 * Zone to allocate malloc type descriptions from. For ABI reasons, memory
164 * types are described by a data structure passed by the declaring code, but
165 * the malloc(9) implementation has its own data structure describing the
166 * type and statistics. This permits the malloc(9)-internal data structures
167 * to be modified without breaking binary-compiled kernel modules that
168 * declare malloc types.
169 */
170static uma_zone_t mt_zone;
171
172u_long vm_kmem_size;
173SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
174 "Size of kernel memory");
175
176static u_long kmem_zmax = KMEM_ZMAX;
177SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0,
178 "Maximum allocation size that malloc(9) would use UMA as backend");
179
180static u_long vm_kmem_size_min;
181SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
182 "Minimum size of kernel memory");
183
184static u_long vm_kmem_size_max;
185SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
186 "Maximum size of kernel memory");
187
188static u_int vm_kmem_size_scale;
189SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
190 "Scale factor for kernel memory size");
191
192static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
193SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
194 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
195 sysctl_kmem_map_size, "LU", "Current kmem allocation size");
196
197static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
198SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
199 CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
200 sysctl_kmem_map_free, "LU", "Free space in kmem");
201
202/*
203 * The malloc_mtx protects the kmemstatistics linked list.
204 */
205struct mtx malloc_mtx;
206
207#ifdef MALLOC_PROFILE
208uint64_t krequests[KMEM_ZSIZE + 1];
209
210static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
211#endif
212
213static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
214
215/*
216 * time_uptime of the last malloc(9) failure (induced or real).
217 */
218static time_t t_malloc_fail;
219
220#if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
221static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
222 "Kernel malloc debugging options");
223#endif
224
225/*
226 * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
227 * the caller specifies M_NOWAIT. If set to 0, no failures are caused.
228 */
229#ifdef MALLOC_MAKE_FAILURES
230static int malloc_failure_rate;
231static int malloc_nowait_count;
232static int malloc_failure_count;
233SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN,
234 &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
235SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
236 &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
237#endif
238
239static int
240sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
241{
242 u_long size;
243
244 size = vmem_size(kmem_arena, VMEM_ALLOC);
245 return (sysctl_handle_long(oidp, &size, 0, req));
246}
247
248static int
249sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
250{
251 u_long size;
252
253 size = vmem_size(kmem_arena, VMEM_FREE);
254 return (sysctl_handle_long(oidp, &size, 0, req));
255}
256
257/*
258 * malloc(9) uma zone separation -- sub-page buffer overruns in one
259 * malloc type will affect only a subset of other malloc types.
260 */
261#if MALLOC_DEBUG_MAXZONES > 1
262static void
263tunable_set_numzones(void)
264{
265
266 TUNABLE_INT_FETCH("debug.malloc.numzones",
267 &numzones);
268
269 /* Sanity check the number of malloc uma zones. */
270 if (numzones <= 0)
271 numzones = 1;
272 if (numzones > MALLOC_DEBUG_MAXZONES)
273 numzones = MALLOC_DEBUG_MAXZONES;
274}
275SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
276SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
277 &numzones, 0, "Number of malloc uma subzones");
278
279/*
280 * Any number that changes regularly is an okay choice for the
281 * offset. Build numbers are pretty good of you have them.
282 */
283static u_int zone_offset = __FreeBSD_version;
284TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
285SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
286 &zone_offset, 0, "Separate malloc types by examining the "
287 "Nth character in the malloc type short description.");
288
289static u_int
290mtp_get_subzone(const char *desc)
291{
292 size_t len;
293 u_int val;
294
295 if (desc == NULL || (len = strlen(desc)) == 0)
296 return (0);
297 val = desc[zone_offset % len];
298 return (val % numzones);
299}
300#elif MALLOC_DEBUG_MAXZONES == 0
301#error "MALLOC_DEBUG_MAXZONES must be positive."
302#else
303static inline u_int
304mtp_get_subzone(const char *desc)
305{
306
307 return (0);
308}
309#endif /* MALLOC_DEBUG_MAXZONES > 1 */
310
311int
312malloc_last_fail(void)
313{
314
315 return (time_uptime - t_malloc_fail);
316}
317
318/*
319 * An allocation has succeeded -- update malloc type statistics for the
320 * amount of bucket size. Occurs within a critical section so that the
321 * thread isn't preempted and doesn't migrate while updating per-PCU
322 * statistics.
323 */
324static void
325malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
326 int zindx)
327{
328 struct malloc_type_internal *mtip;
329 struct malloc_type_stats *mtsp;
330
331 critical_enter();
332 mtip = mtp->ks_handle;
333 mtsp = &mtip->mti_stats[curcpu];
334 if (size > 0) {
335 mtsp->mts_memalloced += size;
336 mtsp->mts_numallocs++;
337 }
338 if (zindx != -1)
339 mtsp->mts_size |= 1 << zindx;
340
341#ifdef KDTRACE_HOOKS
342 if (dtrace_malloc_probe != NULL) {
343 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
344 if (probe_id != 0)
345 (dtrace_malloc_probe)(probe_id,
346 (uintptr_t) mtp, (uintptr_t) mtip,
347 (uintptr_t) mtsp, size, zindx);
348 }
349#endif
350
351 critical_exit();
352}
353
354void
355malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
356{
357
358 if (size > 0)
359 malloc_type_zone_allocated(mtp, size, -1);
360}
361
362/*
363 * A free operation has occurred -- update malloc type statistics for the
364 * amount of the bucket size. Occurs within a critical section so that the
365 * thread isn't preempted and doesn't migrate while updating per-CPU
366 * statistics.
367 */
368void
369malloc_type_freed(struct malloc_type *mtp, unsigned long size)
370{
371 struct malloc_type_internal *mtip;
372 struct malloc_type_stats *mtsp;
373
374 critical_enter();
375 mtip = mtp->ks_handle;
376 mtsp = &mtip->mti_stats[curcpu];
377 mtsp->mts_memfreed += size;
378 mtsp->mts_numfrees++;
379
380#ifdef KDTRACE_HOOKS
381 if (dtrace_malloc_probe != NULL) {
382 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
383 if (probe_id != 0)
384 (dtrace_malloc_probe)(probe_id,
385 (uintptr_t) mtp, (uintptr_t) mtip,
386 (uintptr_t) mtsp, size, 0);
387 }
388#endif
389
390 critical_exit();
391}
392
393/*
394 * contigmalloc:
395 *
396 * Allocate a block of physically contiguous memory.
397 *
398 * If M_NOWAIT is set, this routine will not block and return NULL if
399 * the allocation fails.
400 */
401void *
402contigmalloc(unsigned long size, struct malloc_type *type, int flags,
403 vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
404 vm_paddr_t boundary)
405{
406 void *ret;
407
408 ret = (void *)kmem_alloc_contig(kernel_arena, size, flags, low, high,
409 alignment, boundary, VM_MEMATTR_DEFAULT);
410 if (ret != NULL)
411 malloc_type_allocated(type, round_page(size));
412 return (ret);
413}
414
415/*
416 * contigfree:
417 *
418 * Free a block of memory allocated by contigmalloc.
419 *
420 * This routine may not block.
421 */
422void
423contigfree(void *addr, unsigned long size, struct malloc_type *type)
424{
425
426 kmem_free(kernel_arena, (vm_offset_t)addr, size);
427 malloc_type_freed(type, round_page(size));
428}
429
430/*
431 * malloc:
432 *
433 * Allocate a block of memory.
434 *
435 * If M_NOWAIT is set, this routine will not block and return NULL if
436 * the allocation fails.
437 */
438void *
439malloc(unsigned long size, struct malloc_type *mtp, int flags)
440{
441 int indx;
442 struct malloc_type_internal *mtip;
443 caddr_t va;
444 uma_zone_t zone;
445#if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE)
446 unsigned long osize = size;
447#endif
448
449#ifdef INVARIANTS
450 KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic"));
451 /*
452 * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
453 */
454 indx = flags & (M_WAITOK | M_NOWAIT);
455 if (indx != M_NOWAIT && indx != M_WAITOK) {
456 static struct timeval lasterr;
457 static int curerr, once;
458 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
459 printf("Bad malloc flags: %x\n", indx);
460 kdb_backtrace();
461 flags |= M_WAITOK;
462 once++;
463 }
464 }
465#endif
466#ifdef MALLOC_MAKE_FAILURES
467 if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
468 atomic_add_int(&malloc_nowait_count, 1);
469 if ((malloc_nowait_count % malloc_failure_rate) == 0) {
470 atomic_add_int(&malloc_failure_count, 1);
471 t_malloc_fail = time_uptime;
472 return (NULL);
473 }
474 }
475#endif
476 if (flags & M_WAITOK)
477 KASSERT(curthread->td_intr_nesting_level == 0,
478 ("malloc(M_WAITOK) in interrupt context"));
479 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
480 ("malloc: called with spinlock or critical section held"));
481
482#ifdef DEBUG_MEMGUARD
483 if (memguard_cmp_mtp(mtp, size)) {
484 va = memguard_alloc(size, flags);
485 if (va != NULL)
486 return (va);
487 /* This is unfortunate but should not be fatal. */
488 }
489#endif
490
491#ifdef DEBUG_REDZONE
492 size = redzone_size_ntor(size);
493#endif
494
495 if (size <= kmem_zmax) {
496 mtip = mtp->ks_handle;
497 if (size & KMEM_ZMASK)
498 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
499 indx = kmemsize[size >> KMEM_ZSHIFT];
500 KASSERT(mtip->mti_zone < numzones,
501 ("mti_zone %u out of range %d",
502 mtip->mti_zone, numzones));
503 zone = kmemzones[indx].kz_zone[mtip->mti_zone];
504#ifdef MALLOC_PROFILE
505 krequests[size >> KMEM_ZSHIFT]++;
506#endif
507 va = uma_zalloc(zone, flags);
508 if (va != NULL)
509 size = zone->uz_size;
510 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
511 } else {
512 size = roundup(size, PAGE_SIZE);
513 zone = NULL;
514 va = uma_large_malloc(size, flags);
515 malloc_type_allocated(mtp, va == NULL ? 0 : size);
516 }
517 if (flags & M_WAITOK)
518 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
519 else if (va == NULL)
520 t_malloc_fail = time_uptime;
521#ifdef DIAGNOSTIC
522 if (va != NULL && !(flags & M_ZERO)) {
523 memset(va, 0x70, osize);
524 }
525#endif
526#ifdef DEBUG_REDZONE
527 if (va != NULL)
528 va = redzone_setup(va, osize);
529#endif
530 return ((void *) va);
531}
532
533/*
534 * free:
535 *
536 * Free a block of memory allocated by malloc.
537 *
538 * This routine may not block.
539 */
540void
541free(void *addr, struct malloc_type *mtp)
542{
543 uma_slab_t slab;
544 u_long size;
545
546 KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic"));
547 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
548 ("free: called with spinlock or critical section held"));
549
550 /* free(NULL, ...) does nothing */
551 if (addr == NULL)
552 return;
553
554#ifdef DEBUG_MEMGUARD
555 if (is_memguard_addr(addr)) {
556 memguard_free(addr);
557 return;
558 }
559#endif
560
561#ifdef DEBUG_REDZONE
562 redzone_check(addr);
563 addr = redzone_addr_ntor(addr);
564#endif
565
566 slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
567
568 if (slab == NULL)
569 panic("free: address %p(%p) has not been allocated.\n",
570 addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
571
572 if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
573#ifdef INVARIANTS
574 struct malloc_type **mtpp = addr;
575#endif
576 size = slab->us_keg->uk_size;
577#ifdef INVARIANTS
578 /*
579 * Cache a pointer to the malloc_type that most recently freed
580 * this memory here. This way we know who is most likely to
581 * have stepped on it later.
582 *
583 * This code assumes that size is a multiple of 8 bytes for
584 * 64 bit machines
585 */
586 mtpp = (struct malloc_type **)
587 ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
588 mtpp += (size - sizeof(struct malloc_type *)) /
589 sizeof(struct malloc_type *);
590 *mtpp = mtp;
591#endif
592 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
593 } else {
594 size = slab->us_size;
595 uma_large_free(slab);
596 }
597 malloc_type_freed(mtp, size);
598}
599
600/*
601 * realloc: change the size of a memory block
602 */
603void *
604realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
605{
606 uma_slab_t slab;
607 unsigned long alloc;
608 void *newaddr;
609
610 KASSERT(mtp->ks_magic == M_MAGIC,
611 ("realloc: bad malloc type magic"));
612 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
613 ("realloc: called with spinlock or critical section held"));
614
615 /* realloc(NULL, ...) is equivalent to malloc(...) */
616 if (addr == NULL)
617 return (malloc(size, mtp, flags));
618
619 /*
620 * XXX: Should report free of old memory and alloc of new memory to
621 * per-CPU stats.
622 */
623
624#ifdef DEBUG_MEMGUARD
625 if (is_memguard_addr(addr))
626 return (memguard_realloc(addr, size, mtp, flags));
627#endif
628
629#ifdef DEBUG_REDZONE
630 slab = NULL;
631 alloc = redzone_get_size(addr);
632#else
633 slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
634
635 /* Sanity check */
636 KASSERT(slab != NULL,
637 ("realloc: address %p out of range", (void *)addr));
638
639 /* Get the size of the original block */
640 if (!(slab->us_flags & UMA_SLAB_MALLOC))
641 alloc = slab->us_keg->uk_size;
642 else
643 alloc = slab->us_size;
644
645 /* Reuse the original block if appropriate */
646 if (size <= alloc
647 && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
648 return (addr);
649#endif /* !DEBUG_REDZONE */
650
651 /* Allocate a new, bigger (or smaller) block */
652 if ((newaddr = malloc(size, mtp, flags)) == NULL)
653 return (NULL);
654
655 /* Copy over original contents */
656 bcopy(addr, newaddr, min(size, alloc));
657 free(addr, mtp);
658 return (newaddr);
659}
660
661/*
662 * reallocf: same as realloc() but free memory on failure.
663 */
664void *
665reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
666{
667 void *mem;
668
669 if ((mem = realloc(addr, size, mtp, flags)) == NULL)
670 free(addr, mtp);
671 return (mem);
672}
673
674/*
675 * Wake the uma reclamation pagedaemon thread when we exhaust KVA. It
676 * will call the lowmem handler and uma_reclaim() callbacks in a
677 * context that is safe.
678 */
679static void
680kmem_reclaim(vmem_t *vm, int flags)
681{
682
683 uma_reclaim_wakeup();
684 pagedaemon_wakeup();
685}
686
687#ifndef __sparc64__
688CTASSERT(VM_KMEM_SIZE_SCALE >= 1);
689#endif
690
691/*
692 * Initialize the kernel memory (kmem) arena.
693 */
694void
695kmeminit(void)
696{
697 u_long mem_size;
698 u_long tmp;
699
700#ifdef VM_KMEM_SIZE
701 if (vm_kmem_size == 0)
702 vm_kmem_size = VM_KMEM_SIZE;
703#endif
704#ifdef VM_KMEM_SIZE_MIN
705 if (vm_kmem_size_min == 0)
706 vm_kmem_size_min = VM_KMEM_SIZE_MIN;
707#endif
708#ifdef VM_KMEM_SIZE_MAX
709 if (vm_kmem_size_max == 0)
710 vm_kmem_size_max = VM_KMEM_SIZE_MAX;
711#endif
712 /*
713 * Calculate the amount of kernel virtual address (KVA) space that is
714 * preallocated to the kmem arena. In order to support a wide range
715 * of machines, it is a function of the physical memory size,
716 * specifically,
717 *
718 * min(max(physical memory size / VM_KMEM_SIZE_SCALE,
719 * VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX)
720 *
721 * Every architecture must define an integral value for
722 * VM_KMEM_SIZE_SCALE. However, the definitions of VM_KMEM_SIZE_MIN
723 * and VM_KMEM_SIZE_MAX, which represent respectively the floor and
724 * ceiling on this preallocation, are optional. Typically,
725 * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on
726 * a given architecture.
727 */
728 mem_size = vm_cnt.v_page_count;
729 if (mem_size <= 32768) /* delphij XXX 128MB */
730 kmem_zmax = PAGE_SIZE;
731
732 if (vm_kmem_size_scale < 1)
733 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
734
735 /*
736 * Check if we should use defaults for the "vm_kmem_size"
737 * variable:
738 */
739 if (vm_kmem_size == 0) {
740 vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
741
742 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min)
743 vm_kmem_size = vm_kmem_size_min;
744 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
745 vm_kmem_size = vm_kmem_size_max;
746 }
747
748 /*
749 * The amount of KVA space that is preallocated to the
750 * kmem arena can be set statically at compile-time or manually
751 * through the kernel environment. However, it is still limited to
752 * twice the physical memory size, which has been sufficient to handle
753 * the most severe cases of external fragmentation in the kmem arena.
754 */
755 if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
756 vm_kmem_size = 2 * mem_size * PAGE_SIZE;
757
758 vm_kmem_size = round_page(vm_kmem_size);
759#ifdef DEBUG_MEMGUARD
760 tmp = memguard_fudge(vm_kmem_size, kernel_map);
761#else
762 tmp = vm_kmem_size;
763#endif
764 vmem_init(kmem_arena, "kmem arena", kva_alloc(tmp), tmp, PAGE_SIZE,
765 0, 0);
766 vmem_set_reclaim(kmem_arena, kmem_reclaim);
767
768#ifdef DEBUG_MEMGUARD
769 /*
770 * Initialize MemGuard if support compiled in. MemGuard is a
771 * replacement allocator used for detecting tamper-after-free
772 * scenarios as they occur. It is only used for debugging.
773 */
774 memguard_init(kmem_arena);
775#endif
776}
777
778/*
779 * Initialize the kernel memory allocator
780 */
781/* ARGSUSED*/
782static void
783mallocinit(void *dummy)
784{
785 int i;
786 uint8_t indx;
787
788 mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
789
790 kmeminit();
791
792 uma_startup2();
793
794 if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX)
795 kmem_zmax = KMEM_ZMAX;
796
797 mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
798#ifdef INVARIANTS
799 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
800#else
801 NULL, NULL, NULL, NULL,
802#endif
803 UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
804 for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
805 int size = kmemzones[indx].kz_size;
806 char *name = kmemzones[indx].kz_name;
807 int subzone;
808
809 for (subzone = 0; subzone < numzones; subzone++) {
810 kmemzones[indx].kz_zone[subzone] =
811 uma_zcreate(name, size,
812#ifdef INVARIANTS
813 mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
814#else
815 NULL, NULL, NULL, NULL,
816#endif
817 UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
818 }
819 for (;i <= size; i+= KMEM_ZBASE)
820 kmemsize[i >> KMEM_ZSHIFT] = indx;
821
822 }
823}
824SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL);
825
826void
827malloc_init(void *data)
828{
829 struct malloc_type_internal *mtip;
830 struct malloc_type *mtp;
831
832 KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init"));
833
834 mtp = data;
835 if (mtp->ks_magic != M_MAGIC)
836 panic("malloc_init: bad malloc type magic");
837
838 mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
839 mtp->ks_handle = mtip;
840 mtip->mti_zone = mtp_get_subzone(mtp->ks_shortdesc);
841
842 mtx_lock(&malloc_mtx);
843 mtp->ks_next = kmemstatistics;
844 kmemstatistics = mtp;
845 kmemcount++;
846 mtx_unlock(&malloc_mtx);
847}
848
849void
850malloc_uninit(void *data)
851{
852 struct malloc_type_internal *mtip;
853 struct malloc_type_stats *mtsp;
854 struct malloc_type *mtp, *temp;
855 uma_slab_t slab;
856 long temp_allocs, temp_bytes;
857 int i;
858
859 mtp = data;
860 KASSERT(mtp->ks_magic == M_MAGIC,
861 ("malloc_uninit: bad malloc type magic"));
862 KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
863
864 mtx_lock(&malloc_mtx);
865 mtip = mtp->ks_handle;
866 mtp->ks_handle = NULL;
867 if (mtp != kmemstatistics) {
868 for (temp = kmemstatistics; temp != NULL;
869 temp = temp->ks_next) {
870 if (temp->ks_next == mtp) {
871 temp->ks_next = mtp->ks_next;
872 break;
873 }
874 }
875 KASSERT(temp,
876 ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
877 } else
878 kmemstatistics = mtp->ks_next;
879 kmemcount--;
880 mtx_unlock(&malloc_mtx);
881
882 /*
883 * Look for memory leaks.
884 */
885 temp_allocs = temp_bytes = 0;
886 for (i = 0; i < MAXCPU; i++) {
887 mtsp = &mtip->mti_stats[i];
888 temp_allocs += mtsp->mts_numallocs;
889 temp_allocs -= mtsp->mts_numfrees;
890 temp_bytes += mtsp->mts_memalloced;
891 temp_bytes -= mtsp->mts_memfreed;
892 }
893 if (temp_allocs > 0 || temp_bytes > 0) {
894 printf("Warning: memory type %s leaked memory on destroy "
895 "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
896 temp_allocs, temp_bytes);
897 }
898
899 slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK));
900 uma_zfree_arg(mt_zone, mtip, slab);
901}
902
903struct malloc_type *
904malloc_desc2type(const char *desc)
905{
906 struct malloc_type *mtp;
907
908 mtx_assert(&malloc_mtx, MA_OWNED);
909 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
910 if (strcmp(mtp->ks_shortdesc, desc) == 0)
911 return (mtp);
912 }
913 return (NULL);
914}
915
916static int
917sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
918{
919 struct malloc_type_stream_header mtsh;
920 struct malloc_type_internal *mtip;
921 struct malloc_type_header mth;
922 struct malloc_type *mtp;
923 int error, i;
924 struct sbuf sbuf;
925
926 error = sysctl_wire_old_buffer(req, 0);
927 if (error != 0)
928 return (error);
929 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
930 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
931 mtx_lock(&malloc_mtx);
932
933 /*
934 * Insert stream header.
935 */
936 bzero(&mtsh, sizeof(mtsh));
937 mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
938 mtsh.mtsh_maxcpus = MAXCPU;
939 mtsh.mtsh_count = kmemcount;
940 (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
941
942 /*
943 * Insert alternating sequence of type headers and type statistics.
944 */
945 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
946 mtip = (struct malloc_type_internal *)mtp->ks_handle;
947
948 /*
949 * Insert type header.
950 */
951 bzero(&mth, sizeof(mth));
952 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
953 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
954
955 /*
956 * Insert type statistics for each CPU.
957 */
958 for (i = 0; i < MAXCPU; i++) {
959 (void)sbuf_bcat(&sbuf, &mtip->mti_stats[i],
960 sizeof(mtip->mti_stats[i]));
961 }
962 }
963 mtx_unlock(&malloc_mtx);
964 error = sbuf_finish(&sbuf);
965 sbuf_delete(&sbuf);
966 return (error);
967}
968
969SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
970 0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
971 "Return malloc types");
972
973SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
974 "Count of kernel malloc types");
975
976void
977malloc_type_list(malloc_type_list_func_t *func, void *arg)
978{
979 struct malloc_type *mtp, **bufmtp;
980 int count, i;
981 size_t buflen;
982
983 mtx_lock(&malloc_mtx);
984restart:
985 mtx_assert(&malloc_mtx, MA_OWNED);
986 count = kmemcount;
987 mtx_unlock(&malloc_mtx);
988
989 buflen = sizeof(struct malloc_type *) * count;
990 bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
991
992 mtx_lock(&malloc_mtx);
993
994 if (count < kmemcount) {
995 free(bufmtp, M_TEMP);
996 goto restart;
997 }
998
999 for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
1000 bufmtp[i] = mtp;
1001
1002 mtx_unlock(&malloc_mtx);
1003
1004 for (i = 0; i < count; i++)
1005 (func)(bufmtp[i], arg);
1006
1007 free(bufmtp, M_TEMP);
1008}
1009
1010#ifdef DDB
1011DB_SHOW_COMMAND(malloc, db_show_malloc)
1012{
1013 struct malloc_type_internal *mtip;
1014 struct malloc_type *mtp;
1015 uint64_t allocs, frees;
1016 uint64_t alloced, freed;
1017 int i;
1018
1019 db_printf("%18s %12s %12s %12s\n", "Type", "InUse", "MemUse",
1020 "Requests");
1021 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1022 mtip = (struct malloc_type_internal *)mtp->ks_handle;
1023 allocs = 0;
1024 frees = 0;
1025 alloced = 0;
1026 freed = 0;
1027 for (i = 0; i < MAXCPU; i++) {
1028 allocs += mtip->mti_stats[i].mts_numallocs;
1029 frees += mtip->mti_stats[i].mts_numfrees;
1030 alloced += mtip->mti_stats[i].mts_memalloced;
1031 freed += mtip->mti_stats[i].mts_memfreed;
1032 }
1033 db_printf("%18s %12ju %12juK %12ju\n",
1034 mtp->ks_shortdesc, allocs - frees,
1035 (alloced - freed + 1023) / 1024, allocs);
1036 if (db_pager_quit)
1037 break;
1038 }
1039}
1040
1041#if MALLOC_DEBUG_MAXZONES > 1
1042DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
1043{
1044 struct malloc_type_internal *mtip;
1045 struct malloc_type *mtp;
1046 u_int subzone;
1047
1048 if (!have_addr) {
1049 db_printf("Usage: show multizone_matches <malloc type/addr>\n");
1050 return;
1051 }
1052 mtp = (void *)addr;
1053 if (mtp->ks_magic != M_MAGIC) {
1054 db_printf("Magic %lx does not match expected %x\n",
1055 mtp->ks_magic, M_MAGIC);
1056 return;
1057 }
1058
1059 mtip = mtp->ks_handle;
1060 subzone = mtip->mti_zone;
1061
1062 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
1063 mtip = mtp->ks_handle;
1064 if (mtip->mti_zone != subzone)
1065 continue;
1066 db_printf("%s\n", mtp->ks_shortdesc);
1067 if (db_pager_quit)
1068 break;
1069 }
1070}
1071#endif /* MALLOC_DEBUG_MAXZONES > 1 */
1072#endif /* DDB */
1073
1074#ifdef MALLOC_PROFILE
1075
1076static int
1077sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
1078{
1079 struct sbuf sbuf;
1080 uint64_t count;
1081 uint64_t waste;
1082 uint64_t mem;
1083 int error;
1084 int rsize;
1085 int size;
1086 int i;
1087
1088 waste = 0;
1089 mem = 0;
1090
1091 error = sysctl_wire_old_buffer(req, 0);
1092 if (error != 0)
1093 return (error);
1094 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
1095 sbuf_printf(&sbuf,
1096 "\n Size Requests Real Size\n");
1097 for (i = 0; i < KMEM_ZSIZE; i++) {
1098 size = i << KMEM_ZSHIFT;
1099 rsize = kmemzones[kmemsize[i]].kz_size;
1100 count = (long long unsigned)krequests[i];
1101
1102 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
1103 (unsigned long long)count, rsize);
1104
1105 if ((rsize * count) > (size * count))
1106 waste += (rsize * count) - (size * count);
1107 mem += (rsize * count);
1108 }
1109 sbuf_printf(&sbuf,
1110 "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
1111 (unsigned long long)mem, (unsigned long long)waste);
1112 error = sbuf_finish(&sbuf);
1113 sbuf_delete(&sbuf);
1114 return (error);
1115}
1116
1117SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
1118 NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
1119#endif /* MALLOC_PROFILE */