Deleted Added
full compact
if_wpi.c (217511) if_wpi.c (218909)
1/*-
2 * Copyright (c) 2006,2007
3 * Damien Bergamini <damien.bergamini@free.fr>
4 * Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 2006,2007
3 * Damien Bergamini <damien.bergamini@free.fr>
4 * Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 217511 2011-01-17 20:15:15Z bschmidt $");
22__FBSDID("$FreeBSD: head/sys/dev/wpi/if_wpi.c 218909 2011-02-21 09:01:34Z brucec $");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the the SRAM to the firmware.
32 * communicate by way of circular dma rings via the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include <sys/param.h>
63#include <sys/sysctl.h>
64#include <sys/sockio.h>
65#include <sys/mbuf.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/systm.h>
69#include <sys/malloc.h>
70#include <sys/queue.h>
71#include <sys/taskqueue.h>
72#include <sys/module.h>
73#include <sys/bus.h>
74#include <sys/endian.h>
75#include <sys/linker.h>
76#include <sys/firmware.h>
77
78#include <machine/bus.h>
79#include <machine/resource.h>
80#include <sys/rman.h>
81
82#include <dev/pci/pcireg.h>
83#include <dev/pci/pcivar.h>
84
85#include <net/bpf.h>
86#include <net/if.h>
87#include <net/if_arp.h>
88#include <net/ethernet.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_types.h>
92
93#include <net80211/ieee80211_var.h>
94#include <net80211/ieee80211_radiotap.h>
95#include <net80211/ieee80211_regdomain.h>
96#include <net80211/ieee80211_ratectl.h>
97
98#include <netinet/in.h>
99#include <netinet/in_systm.h>
100#include <netinet/in_var.h>
101#include <netinet/ip.h>
102#include <netinet/if_ether.h>
103
104#include <dev/wpi/if_wpireg.h>
105#include <dev/wpi/if_wpivar.h>
106
107#define WPI_DEBUG
108
109#ifdef WPI_DEBUG
110#define DPRINTF(x) do { if (wpi_debug != 0) printf x; } while (0)
111#define DPRINTFN(n, x) do { if (wpi_debug & n) printf x; } while (0)
112#define WPI_DEBUG_SET (wpi_debug != 0)
113
114enum {
115 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */
116 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */
117 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/
118 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */
119 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/
120 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */
121 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */
122 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */
123 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */
124 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */
125 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */
126 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */
127 WPI_DEBUG_ANY = 0xffffffff
128};
129
130static int wpi_debug = 0;
131SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
132TUNABLE_INT("debug.wpi", &wpi_debug);
133
134#else
135#define DPRINTF(x)
136#define DPRINTFN(n, x)
137#define WPI_DEBUG_SET 0
138#endif
139
140struct wpi_ident {
141 uint16_t vendor;
142 uint16_t device;
143 uint16_t subdevice;
144 const char *name;
145};
146
147static const struct wpi_ident wpi_ident_table[] = {
148 /* The below entries support ABG regardless of the subid */
149 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" },
150 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" },
151 /* The below entries only support BG */
152 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" },
153 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" },
154 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" },
155 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" },
156 { 0, 0, 0, NULL }
157};
158
159static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
160 const char name[IFNAMSIZ], int unit, int opmode,
161 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
162 const uint8_t mac[IEEE80211_ADDR_LEN]);
163static void wpi_vap_delete(struct ieee80211vap *);
164static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
165 void **, bus_size_t, bus_size_t, int);
166static void wpi_dma_contig_free(struct wpi_dma_info *);
167static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
168static int wpi_alloc_shared(struct wpi_softc *);
169static void wpi_free_shared(struct wpi_softc *);
170static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
174 int, int);
175static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
177static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
178static void wpi_mem_lock(struct wpi_softc *);
179static void wpi_mem_unlock(struct wpi_softc *);
180static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
181static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
182static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
183 const uint32_t *, int);
184static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
185static int wpi_alloc_fwmem(struct wpi_softc *);
186static void wpi_free_fwmem(struct wpi_softc *);
187static int wpi_load_firmware(struct wpi_softc *);
188static void wpi_unload_firmware(struct wpi_softc *);
189static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
190static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
191 struct wpi_rx_data *);
192static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
193static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
194static void wpi_notif_intr(struct wpi_softc *);
195static void wpi_intr(void *);
196static uint8_t wpi_plcp_signal(int);
197static void wpi_watchdog(void *);
198static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
199 struct ieee80211_node *, int);
200static void wpi_start(struct ifnet *);
201static void wpi_start_locked(struct ifnet *);
202static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
203 const struct ieee80211_bpf_params *);
204static void wpi_scan_start(struct ieee80211com *);
205static void wpi_scan_end(struct ieee80211com *);
206static void wpi_set_channel(struct ieee80211com *);
207static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
208static void wpi_scan_mindwell(struct ieee80211_scan_state *);
209static int wpi_ioctl(struct ifnet *, u_long, caddr_t);
210static void wpi_read_eeprom(struct wpi_softc *,
211 uint8_t macaddr[IEEE80211_ADDR_LEN]);
212static void wpi_read_eeprom_channels(struct wpi_softc *, int);
213static void wpi_read_eeprom_group(struct wpi_softc *, int);
214static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
215static int wpi_wme_update(struct ieee80211com *);
216static int wpi_mrr_setup(struct wpi_softc *);
217static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
218static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
219#if 0
220static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
221#endif
222static int wpi_auth(struct wpi_softc *, struct ieee80211vap *);
223static int wpi_run(struct wpi_softc *, struct ieee80211vap *);
224static int wpi_scan(struct wpi_softc *);
225static int wpi_config(struct wpi_softc *);
226static void wpi_stop_master(struct wpi_softc *);
227static int wpi_power_up(struct wpi_softc *);
228static int wpi_reset(struct wpi_softc *);
229static void wpi_hwreset(void *, int);
230static void wpi_rfreset(void *, int);
231static void wpi_hw_config(struct wpi_softc *);
232static void wpi_init(void *);
233static void wpi_init_locked(struct wpi_softc *, int);
234static void wpi_stop(struct wpi_softc *);
235static void wpi_stop_locked(struct wpi_softc *);
236
237static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
238 int);
239static void wpi_calib_timeout(void *);
240static void wpi_power_calibration(struct wpi_softc *, int);
241static int wpi_get_power_index(struct wpi_softc *,
242 struct wpi_power_group *, struct ieee80211_channel *, int);
243#ifdef WPI_DEBUG
244static const char *wpi_cmd_str(int);
245#endif
246static int wpi_probe(device_t);
247static int wpi_attach(device_t);
248static int wpi_detach(device_t);
249static int wpi_shutdown(device_t);
250static int wpi_suspend(device_t);
251static int wpi_resume(device_t);
252
253
254static device_method_t wpi_methods[] = {
255 /* Device interface */
256 DEVMETHOD(device_probe, wpi_probe),
257 DEVMETHOD(device_attach, wpi_attach),
258 DEVMETHOD(device_detach, wpi_detach),
259 DEVMETHOD(device_shutdown, wpi_shutdown),
260 DEVMETHOD(device_suspend, wpi_suspend),
261 DEVMETHOD(device_resume, wpi_resume),
262
263 { 0, 0 }
264};
265
266static driver_t wpi_driver = {
267 "wpi",
268 wpi_methods,
269 sizeof (struct wpi_softc)
270};
271
272static devclass_t wpi_devclass;
273
274DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
275
276static const uint8_t wpi_ridx_to_plcp[] = {
277 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
278 /* R1-R4 (ral/ural is R4-R1) */
279 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
280 /* CCK: device-dependent */
281 10, 20, 55, 110
282};
283static const uint8_t wpi_ridx_to_rate[] = {
284 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
285 2, 4, 11, 22 /*CCK */
286};
287
288
289static int
290wpi_probe(device_t dev)
291{
292 const struct wpi_ident *ident;
293
294 for (ident = wpi_ident_table; ident->name != NULL; ident++) {
295 if (pci_get_vendor(dev) == ident->vendor &&
296 pci_get_device(dev) == ident->device) {
297 device_set_desc(dev, ident->name);
298 return 0;
299 }
300 }
301 return ENXIO;
302}
303
304/**
305 * Load the firmare image from disk to the allocated dma buffer.
306 * we also maintain the reference to the firmware pointer as there
307 * is times where we may need to reload the firmware but we are not
308 * in a context that can access the filesystem (ie taskq cause by restart)
309 *
310 * @return 0 on success, an errno on failure
311 */
312static int
313wpi_load_firmware(struct wpi_softc *sc)
314{
315 const struct firmware *fp;
316 struct wpi_dma_info *dma = &sc->fw_dma;
317 const struct wpi_firmware_hdr *hdr;
318 const uint8_t *itext, *idata, *rtext, *rdata, *btext;
319 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
320 int error;
321
322 DPRINTFN(WPI_DEBUG_FIRMWARE,
323 ("Attempting Loading Firmware from wpi_fw module\n"));
324
325 WPI_UNLOCK(sc);
326
327 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
328 device_printf(sc->sc_dev,
329 "could not load firmware image 'wpifw'\n");
330 error = ENOENT;
331 WPI_LOCK(sc);
332 goto fail;
333 }
334
335 fp = sc->fw_fp;
336
337 WPI_LOCK(sc);
338
339 /* Validate the firmware is minimum a particular version */
340 if (fp->version < WPI_FW_MINVERSION) {
341 device_printf(sc->sc_dev,
342 "firmware version is too old. Need %d, got %d\n",
343 WPI_FW_MINVERSION,
344 fp->version);
345 error = ENXIO;
346 goto fail;
347 }
348
349 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
350 device_printf(sc->sc_dev,
351 "firmware file too short: %zu bytes\n", fp->datasize);
352 error = ENXIO;
353 goto fail;
354 }
355
356 hdr = (const struct wpi_firmware_hdr *)fp->data;
357
358 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW |
359 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
360
361 rtextsz = le32toh(hdr->rtextsz);
362 rdatasz = le32toh(hdr->rdatasz);
363 itextsz = le32toh(hdr->itextsz);
364 idatasz = le32toh(hdr->idatasz);
365 btextsz = le32toh(hdr->btextsz);
366
367 /* check that all firmware segments are present */
368 if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
369 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
370 device_printf(sc->sc_dev,
371 "firmware file too short: %zu bytes\n", fp->datasize);
372 error = ENXIO; /* XXX appropriate error code? */
373 goto fail;
374 }
375
376 /* get pointers to firmware segments */
377 rtext = (const uint8_t *)(hdr + 1);
378 rdata = rtext + rtextsz;
379 itext = rdata + rdatasz;
380 idata = itext + itextsz;
381 btext = idata + idatasz;
382
383 DPRINTFN(WPI_DEBUG_FIRMWARE,
384 ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
385 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
386 (le32toh(hdr->version) & 0xff000000) >> 24,
387 (le32toh(hdr->version) & 0x00ff0000) >> 16,
388 (le32toh(hdr->version) & 0x0000ffff),
389 rtextsz, rdatasz,
390 itextsz, idatasz, btextsz));
391
392 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
393 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
394 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
395 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
396 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
397
398 /* sanity checks */
399 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
400 rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
401 itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
402 idatasz > WPI_FW_INIT_DATA_MAXSZ ||
403 btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
404 (btextsz & 3) != 0) {
405 device_printf(sc->sc_dev, "firmware invalid\n");
406 error = EINVAL;
407 goto fail;
408 }
409
410 /* copy initialization images into pre-allocated DMA-safe memory */
411 memcpy(dma->vaddr, idata, idatasz);
412 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
413
414 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
415
416 /* tell adapter where to find initialization images */
417 wpi_mem_lock(sc);
418 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
419 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
420 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
421 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
422 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
423 wpi_mem_unlock(sc);
424
425 /* load firmware boot code */
426 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
427 device_printf(sc->sc_dev, "Failed to load microcode\n");
428 goto fail;
429 }
430
431 /* now press "execute" */
432 WPI_WRITE(sc, WPI_RESET, 0);
433
434 /* wait at most one second for the first alive notification */
435 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
436 device_printf(sc->sc_dev,
437 "timeout waiting for adapter to initialize\n");
438 goto fail;
439 }
440
441 /* copy runtime images into pre-allocated DMA-sage memory */
442 memcpy(dma->vaddr, rdata, rdatasz);
443 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
444 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
445
446 /* tell adapter where to find runtime images */
447 wpi_mem_lock(sc);
448 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
449 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
450 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
451 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
452 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
453 wpi_mem_unlock(sc);
454
455 /* wait at most one second for the first alive notification */
456 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
457 device_printf(sc->sc_dev,
458 "timeout waiting for adapter to initialize2\n");
459 goto fail;
460 }
461
462 DPRINTFN(WPI_DEBUG_FIRMWARE,
463 ("Firmware loaded to driver successfully\n"));
464 return error;
465fail:
466 wpi_unload_firmware(sc);
467 return error;
468}
469
470/**
471 * Free the referenced firmware image
472 */
473static void
474wpi_unload_firmware(struct wpi_softc *sc)
475{
476
477 if (sc->fw_fp) {
478 WPI_UNLOCK(sc);
479 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
480 WPI_LOCK(sc);
481 sc->fw_fp = NULL;
482 }
483}
484
485static int
486wpi_attach(device_t dev)
487{
488 struct wpi_softc *sc = device_get_softc(dev);
489 struct ifnet *ifp;
490 struct ieee80211com *ic;
491 int ac, error, supportsa = 1;
492 uint32_t tmp;
493 const struct wpi_ident *ident;
494 uint8_t macaddr[IEEE80211_ADDR_LEN];
495
496 sc->sc_dev = dev;
497
498 if (bootverbose || WPI_DEBUG_SET)
499 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
500
501 /*
502 * Some card's only support 802.11b/g not a, check to see if
503 * this is one such card. A 0x0 in the subdevice table indicates
504 * the entire subdevice range is to be ignored.
505 */
506 for (ident = wpi_ident_table; ident->name != NULL; ident++) {
507 if (ident->subdevice &&
508 pci_get_subdevice(dev) == ident->subdevice) {
509 supportsa = 0;
510 break;
511 }
512 }
513
514 /* Create the tasks that can be queued */
515 TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
516 TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
517
518 WPI_LOCK_INIT(sc);
519
520 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
521 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
522
523 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
524 device_printf(dev, "chip is in D%d power mode "
525 "-- setting to D0\n", pci_get_powerstate(dev));
526 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
527 }
528
529 /* disable the retry timeout register */
530 pci_write_config(dev, 0x41, 0, 1);
531
532 /* enable bus-mastering */
533 pci_enable_busmaster(dev);
534
535 sc->mem_rid = PCIR_BAR(0);
536 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
537 RF_ACTIVE);
538 if (sc->mem == NULL) {
539 device_printf(dev, "could not allocate memory resource\n");
540 error = ENOMEM;
541 goto fail;
542 }
543
544 sc->sc_st = rman_get_bustag(sc->mem);
545 sc->sc_sh = rman_get_bushandle(sc->mem);
546
547 sc->irq_rid = 0;
548 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
549 RF_ACTIVE | RF_SHAREABLE);
550 if (sc->irq == NULL) {
551 device_printf(dev, "could not allocate interrupt resource\n");
552 error = ENOMEM;
553 goto fail;
554 }
555
556 /*
557 * Allocate DMA memory for firmware transfers.
558 */
559 if ((error = wpi_alloc_fwmem(sc)) != 0) {
560 printf(": could not allocate firmware memory\n");
561 error = ENOMEM;
562 goto fail;
563 }
564
565 /*
566 * Put adapter into a known state.
567 */
568 if ((error = wpi_reset(sc)) != 0) {
569 device_printf(dev, "could not reset adapter\n");
570 goto fail;
571 }
572
573 wpi_mem_lock(sc);
574 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
575 if (bootverbose || WPI_DEBUG_SET)
576 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
577
578 wpi_mem_unlock(sc);
579
580 /* Allocate shared page */
581 if ((error = wpi_alloc_shared(sc)) != 0) {
582 device_printf(dev, "could not allocate shared page\n");
583 goto fail;
584 }
585
586 /* tx data queues - 4 for QoS purposes */
587 for (ac = 0; ac < WME_NUM_AC; ac++) {
588 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
589 if (error != 0) {
590 device_printf(dev, "could not allocate Tx ring %d\n",ac);
591 goto fail;
592 }
593 }
594
595 /* command queue to talk to the card's firmware */
596 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
597 if (error != 0) {
598 device_printf(dev, "could not allocate command ring\n");
599 goto fail;
600 }
601
602 /* receive data queue */
603 error = wpi_alloc_rx_ring(sc, &sc->rxq);
604 if (error != 0) {
605 device_printf(dev, "could not allocate Rx ring\n");
606 goto fail;
607 }
608
609 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
610 if (ifp == NULL) {
611 device_printf(dev, "can not if_alloc()\n");
612 error = ENOMEM;
613 goto fail;
614 }
615 ic = ifp->if_l2com;
616
617 ic->ic_ifp = ifp;
618 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
619 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
620
621 /* set device capabilities */
622 ic->ic_caps =
623 IEEE80211_C_STA /* station mode supported */
624 | IEEE80211_C_MONITOR /* monitor mode supported */
625 | IEEE80211_C_TXPMGT /* tx power management */
626 | IEEE80211_C_SHSLOT /* short slot time supported */
627 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
628 | IEEE80211_C_WPA /* 802.11i */
629/* XXX looks like WME is partly supported? */
630#if 0
631 | IEEE80211_C_IBSS /* IBSS mode support */
632 | IEEE80211_C_BGSCAN /* capable of bg scanning */
633 | IEEE80211_C_WME /* 802.11e */
634 | IEEE80211_C_HOSTAP /* Host access point mode */
635#endif
636 ;
637
638 /*
639 * Read in the eeprom and also setup the channels for
640 * net80211. We don't set the rates as net80211 does this for us
641 */
642 wpi_read_eeprom(sc, macaddr);
643
644 if (bootverbose || WPI_DEBUG_SET) {
645 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
646 device_printf(sc->sc_dev, "Hardware Type: %c\n",
647 sc->type > 1 ? 'B': '?');
648 device_printf(sc->sc_dev, "Hardware Revision: %c\n",
649 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
650 device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
651 supportsa ? "does" : "does not");
652
653 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
654 what sc->rev really represents - benjsc 20070615 */
655 }
656
657 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
658 ifp->if_softc = sc;
659 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
660 ifp->if_init = wpi_init;
661 ifp->if_ioctl = wpi_ioctl;
662 ifp->if_start = wpi_start;
663 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
664 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
665 IFQ_SET_READY(&ifp->if_snd);
666
667 ieee80211_ifattach(ic, macaddr);
668 /* override default methods */
669 ic->ic_raw_xmit = wpi_raw_xmit;
670 ic->ic_wme.wme_update = wpi_wme_update;
671 ic->ic_scan_start = wpi_scan_start;
672 ic->ic_scan_end = wpi_scan_end;
673 ic->ic_set_channel = wpi_set_channel;
674 ic->ic_scan_curchan = wpi_scan_curchan;
675 ic->ic_scan_mindwell = wpi_scan_mindwell;
676
677 ic->ic_vap_create = wpi_vap_create;
678 ic->ic_vap_delete = wpi_vap_delete;
679
680 ieee80211_radiotap_attach(ic,
681 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
682 WPI_TX_RADIOTAP_PRESENT,
683 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
684 WPI_RX_RADIOTAP_PRESENT);
685
686 /*
687 * Hook our interrupt after all initialization is complete.
688 */
689 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
690 NULL, wpi_intr, sc, &sc->sc_ih);
691 if (error != 0) {
692 device_printf(dev, "could not set up interrupt\n");
693 goto fail;
694 }
695
696 if (bootverbose)
697 ieee80211_announce(ic);
698#ifdef XXX_DEBUG
699 ieee80211_announce_channels(ic);
700#endif
701 return 0;
702
703fail: wpi_detach(dev);
704 return ENXIO;
705}
706
707static int
708wpi_detach(device_t dev)
709{
710 struct wpi_softc *sc = device_get_softc(dev);
711 struct ifnet *ifp = sc->sc_ifp;
712 struct ieee80211com *ic;
713 int ac;
714
715 if (ifp != NULL) {
716 ic = ifp->if_l2com;
717
718 ieee80211_draintask(ic, &sc->sc_restarttask);
719 ieee80211_draintask(ic, &sc->sc_radiotask);
720 wpi_stop(sc);
721 callout_drain(&sc->watchdog_to);
722 callout_drain(&sc->calib_to);
723 ieee80211_ifdetach(ic);
724 }
725
726 WPI_LOCK(sc);
727 if (sc->txq[0].data_dmat) {
728 for (ac = 0; ac < WME_NUM_AC; ac++)
729 wpi_free_tx_ring(sc, &sc->txq[ac]);
730
731 wpi_free_tx_ring(sc, &sc->cmdq);
732 wpi_free_rx_ring(sc, &sc->rxq);
733 wpi_free_shared(sc);
734 }
735
736 if (sc->fw_fp != NULL) {
737 wpi_unload_firmware(sc);
738 }
739
740 if (sc->fw_dma.tag)
741 wpi_free_fwmem(sc);
742 WPI_UNLOCK(sc);
743
744 if (sc->irq != NULL) {
745 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
746 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
747 }
748
749 if (sc->mem != NULL)
750 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
751
752 if (ifp != NULL)
753 if_free(ifp);
754
755 WPI_LOCK_DESTROY(sc);
756
757 return 0;
758}
759
760static struct ieee80211vap *
761wpi_vap_create(struct ieee80211com *ic,
762 const char name[IFNAMSIZ], int unit, int opmode, int flags,
763 const uint8_t bssid[IEEE80211_ADDR_LEN],
764 const uint8_t mac[IEEE80211_ADDR_LEN])
765{
766 struct wpi_vap *wvp;
767 struct ieee80211vap *vap;
768
769 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
770 return NULL;
771 wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
772 M_80211_VAP, M_NOWAIT | M_ZERO);
773 if (wvp == NULL)
774 return NULL;
775 vap = &wvp->vap;
776 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
777 /* override with driver methods */
778 wvp->newstate = vap->iv_newstate;
779 vap->iv_newstate = wpi_newstate;
780
781 ieee80211_ratectl_init(vap);
782 /* complete setup */
783 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
784 ic->ic_opmode = opmode;
785 return vap;
786}
787
788static void
789wpi_vap_delete(struct ieee80211vap *vap)
790{
791 struct wpi_vap *wvp = WPI_VAP(vap);
792
793 ieee80211_ratectl_deinit(vap);
794 ieee80211_vap_detach(vap);
795 free(wvp, M_80211_VAP);
796}
797
798static void
799wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
800{
801 if (error != 0)
802 return;
803
804 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
805
806 *(bus_addr_t *)arg = segs[0].ds_addr;
807}
808
809/*
810 * Allocates a contiguous block of dma memory of the requested size and
811 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
812 * allocations greater than 4096 may fail. Hence if the requested alignment is
813 * greater we allocate 'alignment' size extra memory and shift the vaddr and
814 * paddr after the dma load. This bypasses the problem at the cost of a little
815 * more memory.
816 */
817static int
818wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
819 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
820{
821 int error;
822 bus_size_t align;
823 bus_size_t reqsize;
824
825 DPRINTFN(WPI_DEBUG_DMA,
826 ("Size: %zd - alignment %zd\n", size, alignment));
827
828 dma->size = size;
829 dma->tag = NULL;
830
831 if (alignment > 4096) {
832 align = PAGE_SIZE;
833 reqsize = size + alignment;
834 } else {
835 align = alignment;
836 reqsize = size;
837 }
838 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
839 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
840 NULL, NULL, reqsize,
841 1, reqsize, flags,
842 NULL, NULL, &dma->tag);
843 if (error != 0) {
844 device_printf(sc->sc_dev,
845 "could not create shared page DMA tag\n");
846 goto fail;
847 }
848 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
849 flags | BUS_DMA_ZERO, &dma->map);
850 if (error != 0) {
851 device_printf(sc->sc_dev,
852 "could not allocate shared page DMA memory\n");
853 goto fail;
854 }
855
856 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
857 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags);
858
859 /* Save the original pointers so we can free all the memory */
860 dma->paddr = dma->paddr_start;
861 dma->vaddr = dma->vaddr_start;
862
863 /*
864 * Check the alignment and increment by 4096 until we get the
865 * requested alignment. Fail if can't obtain the alignment
866 * we requested.
867 */
868 if ((dma->paddr & (alignment -1 )) != 0) {
869 int i;
870
871 for (i = 0; i < alignment / 4096; i++) {
872 if ((dma->paddr & (alignment - 1 )) == 0)
873 break;
874 dma->paddr += 4096;
875 dma->vaddr += 4096;
876 }
877 if (i == alignment / 4096) {
878 device_printf(sc->sc_dev,
879 "alignment requirement was not satisfied\n");
880 goto fail;
881 }
882 }
883
884 if (error != 0) {
885 device_printf(sc->sc_dev,
886 "could not load shared page DMA map\n");
887 goto fail;
888 }
889
890 if (kvap != NULL)
891 *kvap = dma->vaddr;
892
893 return 0;
894
895fail:
896 wpi_dma_contig_free(dma);
897 return error;
898}
899
900static void
901wpi_dma_contig_free(struct wpi_dma_info *dma)
902{
903 if (dma->tag) {
904 if (dma->map != NULL) {
905 if (dma->paddr_start != 0) {
906 bus_dmamap_sync(dma->tag, dma->map,
907 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
908 bus_dmamap_unload(dma->tag, dma->map);
909 }
910 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
911 }
912 bus_dma_tag_destroy(dma->tag);
913 }
914}
915
916/*
917 * Allocate a shared page between host and NIC.
918 */
919static int
920wpi_alloc_shared(struct wpi_softc *sc)
921{
922 int error;
923
924 error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
925 (void **)&sc->shared, sizeof (struct wpi_shared),
926 PAGE_SIZE,
927 BUS_DMA_NOWAIT);
928
929 if (error != 0) {
930 device_printf(sc->sc_dev,
931 "could not allocate shared area DMA memory\n");
932 }
933
934 return error;
935}
936
937static void
938wpi_free_shared(struct wpi_softc *sc)
939{
940 wpi_dma_contig_free(&sc->shared_dma);
941}
942
943static int
944wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
945{
946
947 int i, error;
948
949 ring->cur = 0;
950
951 error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
952 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
953 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
954
955 if (error != 0) {
956 device_printf(sc->sc_dev,
957 "%s: could not allocate rx ring DMA memory, error %d\n",
958 __func__, error);
959 goto fail;
960 }
961
962 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
963 BUS_SPACE_MAXADDR_32BIT,
964 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
965 MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
966 if (error != 0) {
967 device_printf(sc->sc_dev,
968 "%s: bus_dma_tag_create_failed, error %d\n",
969 __func__, error);
970 goto fail;
971 }
972
973 /*
974 * Setup Rx buffers.
975 */
976 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
977 struct wpi_rx_data *data = &ring->data[i];
978 struct mbuf *m;
979 bus_addr_t paddr;
980
981 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
982 if (error != 0) {
983 device_printf(sc->sc_dev,
984 "%s: bus_dmamap_create failed, error %d\n",
985 __func__, error);
986 goto fail;
987 }
988 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
989 if (m == NULL) {
990 device_printf(sc->sc_dev,
991 "%s: could not allocate rx mbuf\n", __func__);
992 error = ENOMEM;
993 goto fail;
994 }
995 /* map page */
996 error = bus_dmamap_load(ring->data_dmat, data->map,
997 mtod(m, caddr_t), MJUMPAGESIZE,
998 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
999 if (error != 0 && error != EFBIG) {
1000 device_printf(sc->sc_dev,
1001 "%s: bus_dmamap_load failed, error %d\n",
1002 __func__, error);
1003 m_freem(m);
1004 error = ENOMEM; /* XXX unique code */
1005 goto fail;
1006 }
1007 bus_dmamap_sync(ring->data_dmat, data->map,
1008 BUS_DMASYNC_PREWRITE);
1009
1010 data->m = m;
1011 ring->desc[i] = htole32(paddr);
1012 }
1013 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1014 BUS_DMASYNC_PREWRITE);
1015 return 0;
1016fail:
1017 wpi_free_rx_ring(sc, ring);
1018 return error;
1019}
1020
1021static void
1022wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1023{
1024 int ntries;
1025
1026 wpi_mem_lock(sc);
1027
1028 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1029
1030 for (ntries = 0; ntries < 100; ntries++) {
1031 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1032 break;
1033 DELAY(10);
1034 }
1035
1036 wpi_mem_unlock(sc);
1037
1038#ifdef WPI_DEBUG
1039 if (ntries == 100 && wpi_debug > 0)
1040 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1041#endif
1042
1043 ring->cur = 0;
1044}
1045
1046static void
1047wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1048{
1049 int i;
1050
1051 wpi_dma_contig_free(&ring->desc_dma);
1052
1053 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1054 struct wpi_rx_data *data = &ring->data[i];
1055
1056 if (data->m != NULL) {
1057 bus_dmamap_sync(ring->data_dmat, data->map,
1058 BUS_DMASYNC_POSTREAD);
1059 bus_dmamap_unload(ring->data_dmat, data->map);
1060 m_freem(data->m);
1061 }
1062 if (data->map != NULL)
1063 bus_dmamap_destroy(ring->data_dmat, data->map);
1064 }
1065}
1066
1067static int
1068wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1069 int qid)
1070{
1071 struct wpi_tx_data *data;
1072 int i, error;
1073
1074 ring->qid = qid;
1075 ring->count = count;
1076 ring->queued = 0;
1077 ring->cur = 0;
1078 ring->data = NULL;
1079
1080 error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1081 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1082 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1083
1084 if (error != 0) {
1085 device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1086 goto fail;
1087 }
1088
1089 /* update shared page with ring's base address */
1090 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1091
1092 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1093 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1094 BUS_DMA_NOWAIT);
1095
1096 if (error != 0) {
1097 device_printf(sc->sc_dev,
1098 "could not allocate tx command DMA memory\n");
1099 goto fail;
1100 }
1101
1102 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1103 M_NOWAIT | M_ZERO);
1104 if (ring->data == NULL) {
1105 device_printf(sc->sc_dev,
1106 "could not allocate tx data slots\n");
1107 goto fail;
1108 }
1109
1110 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1111 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1112 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1113 &ring->data_dmat);
1114 if (error != 0) {
1115 device_printf(sc->sc_dev, "could not create data DMA tag\n");
1116 goto fail;
1117 }
1118
1119 for (i = 0; i < count; i++) {
1120 data = &ring->data[i];
1121
1122 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1123 if (error != 0) {
1124 device_printf(sc->sc_dev,
1125 "could not create tx buf DMA map\n");
1126 goto fail;
1127 }
1128 bus_dmamap_sync(ring->data_dmat, data->map,
1129 BUS_DMASYNC_PREWRITE);
1130 }
1131
1132 return 0;
1133
1134fail:
1135 wpi_free_tx_ring(sc, ring);
1136 return error;
1137}
1138
1139static void
1140wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1141{
1142 struct wpi_tx_data *data;
1143 int i, ntries;
1144
1145 wpi_mem_lock(sc);
1146
1147 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1148 for (ntries = 0; ntries < 100; ntries++) {
1149 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1150 break;
1151 DELAY(10);
1152 }
1153#ifdef WPI_DEBUG
1154 if (ntries == 100 && wpi_debug > 0)
1155 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1156 ring->qid);
1157#endif
1158 wpi_mem_unlock(sc);
1159
1160 for (i = 0; i < ring->count; i++) {
1161 data = &ring->data[i];
1162
1163 if (data->m != NULL) {
1164 bus_dmamap_unload(ring->data_dmat, data->map);
1165 m_freem(data->m);
1166 data->m = NULL;
1167 }
1168 }
1169
1170 ring->queued = 0;
1171 ring->cur = 0;
1172}
1173
1174static void
1175wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1176{
1177 struct wpi_tx_data *data;
1178 int i;
1179
1180 wpi_dma_contig_free(&ring->desc_dma);
1181 wpi_dma_contig_free(&ring->cmd_dma);
1182
1183 if (ring->data != NULL) {
1184 for (i = 0; i < ring->count; i++) {
1185 data = &ring->data[i];
1186
1187 if (data->m != NULL) {
1188 bus_dmamap_sync(ring->data_dmat, data->map,
1189 BUS_DMASYNC_POSTWRITE);
1190 bus_dmamap_unload(ring->data_dmat, data->map);
1191 m_freem(data->m);
1192 data->m = NULL;
1193 }
1194 }
1195 free(ring->data, M_DEVBUF);
1196 }
1197
1198 if (ring->data_dmat != NULL)
1199 bus_dma_tag_destroy(ring->data_dmat);
1200}
1201
1202static int
1203wpi_shutdown(device_t dev)
1204{
1205 struct wpi_softc *sc = device_get_softc(dev);
1206
1207 WPI_LOCK(sc);
1208 wpi_stop_locked(sc);
1209 wpi_unload_firmware(sc);
1210 WPI_UNLOCK(sc);
1211
1212 return 0;
1213}
1214
1215static int
1216wpi_suspend(device_t dev)
1217{
1218 struct wpi_softc *sc = device_get_softc(dev);
1219
1220 wpi_stop(sc);
1221 return 0;
1222}
1223
1224static int
1225wpi_resume(device_t dev)
1226{
1227 struct wpi_softc *sc = device_get_softc(dev);
1228 struct ifnet *ifp = sc->sc_ifp;
1229
1230 pci_write_config(dev, 0x41, 0, 1);
1231
1232 if (ifp->if_flags & IFF_UP) {
1233 wpi_init(ifp->if_softc);
1234 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1235 wpi_start(ifp);
1236 }
1237 return 0;
1238}
1239
1240/**
1241 * Called by net80211 when ever there is a change to 80211 state machine
1242 */
1243static int
1244wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1245{
1246 struct wpi_vap *wvp = WPI_VAP(vap);
1247 struct ieee80211com *ic = vap->iv_ic;
1248 struct ifnet *ifp = ic->ic_ifp;
1249 struct wpi_softc *sc = ifp->if_softc;
1250 int error;
1251
1252 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1253 ieee80211_state_name[vap->iv_state],
1254 ieee80211_state_name[nstate], sc->flags));
1255
1256 IEEE80211_UNLOCK(ic);
1257 WPI_LOCK(sc);
1258 if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1259 /*
1260 * On !INIT -> SCAN transitions, we need to clear any possible
1261 * knowledge about associations.
1262 */
1263 error = wpi_config(sc);
1264 if (error != 0) {
1265 device_printf(sc->sc_dev,
1266 "%s: device config failed, error %d\n",
1267 __func__, error);
1268 }
1269 }
1270 if (nstate == IEEE80211_S_AUTH ||
1271 (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1272 /*
1273 * The node must be registered in the firmware before auth.
1274 * Also the associd must be cleared on RUN -> ASSOC
1275 * transitions.
1276 */
1277 error = wpi_auth(sc, vap);
1278 if (error != 0) {
1279 device_printf(sc->sc_dev,
1280 "%s: could not move to auth state, error %d\n",
1281 __func__, error);
1282 }
1283 }
1284 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1285 error = wpi_run(sc, vap);
1286 if (error != 0) {
1287 device_printf(sc->sc_dev,
1288 "%s: could not move to run state, error %d\n",
1289 __func__, error);
1290 }
1291 }
1292 if (nstate == IEEE80211_S_RUN) {
1293 /* RUN -> RUN transition; just restart the timers */
1294 wpi_calib_timeout(sc);
1295 /* XXX split out rate control timer */
1296 }
1297 WPI_UNLOCK(sc);
1298 IEEE80211_LOCK(ic);
1299 return wvp->newstate(vap, nstate, arg);
1300}
1301
1302/*
1303 * Grab exclusive access to NIC memory.
1304 */
1305static void
1306wpi_mem_lock(struct wpi_softc *sc)
1307{
1308 int ntries;
1309 uint32_t tmp;
1310
1311 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1312 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1313
1314 /* spin until we actually get the lock */
1315 for (ntries = 0; ntries < 100; ntries++) {
1316 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1317 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1318 break;
1319 DELAY(10);
1320 }
1321 if (ntries == 100)
1322 device_printf(sc->sc_dev, "could not lock memory\n");
1323}
1324
1325/*
1326 * Release lock on NIC memory.
1327 */
1328static void
1329wpi_mem_unlock(struct wpi_softc *sc)
1330{
1331 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1332 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1333}
1334
1335static uint32_t
1336wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1337{
1338 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1339 return WPI_READ(sc, WPI_READ_MEM_DATA);
1340}
1341
1342static void
1343wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1344{
1345 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1346 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1347}
1348
1349static void
1350wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1351 const uint32_t *data, int wlen)
1352{
1353 for (; wlen > 0; wlen--, data++, addr+=4)
1354 wpi_mem_write(sc, addr, *data);
1355}
1356
1357/*
1358 * Read data from the EEPROM. We access EEPROM through the MAC instead of
1359 * using the traditional bit-bang method. Data is read up until len bytes have
1360 * been obtained.
1361 */
1362static uint16_t
1363wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1364{
1365 int ntries;
1366 uint32_t val;
1367 uint8_t *out = data;
1368
1369 wpi_mem_lock(sc);
1370
1371 for (; len > 0; len -= 2, addr++) {
1372 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1373
1374 for (ntries = 0; ntries < 10; ntries++) {
1375 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1376 break;
1377 DELAY(5);
1378 }
1379
1380 if (ntries == 10) {
1381 device_printf(sc->sc_dev, "could not read EEPROM\n");
1382 return ETIMEDOUT;
1383 }
1384
1385 *out++= val >> 16;
1386 if (len > 1)
1387 *out ++= val >> 24;
1388 }
1389
1390 wpi_mem_unlock(sc);
1391
1392 return 0;
1393}
1394
1395/*
1396 * The firmware text and data segments are transferred to the NIC using DMA.
1397 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1398 * where to find it. Once the NIC has copied the firmware into its internal
1399 * memory, we can free our local copy in the driver.
1400 */
1401static int
1402wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1403{
1404 int error, ntries;
1405
1406 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size));
1407
1408 size /= sizeof(uint32_t);
1409
1410 wpi_mem_lock(sc);
1411
1412 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1413 (const uint32_t *)fw, size);
1414
1415 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1416 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1417 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1418
1419 /* run microcode */
1420 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1421
1422 /* wait while the adapter is busy copying the firmware */
1423 for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1424 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1425 DPRINTFN(WPI_DEBUG_HW,
1426 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1427 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1428 if (status & WPI_TX_IDLE(6)) {
1429 DPRINTFN(WPI_DEBUG_HW,
1430 ("Status Match! - ntries = %d\n", ntries));
1431 break;
1432 }
1433 DELAY(10);
1434 }
1435 if (ntries == 1000) {
1436 device_printf(sc->sc_dev, "timeout transferring firmware\n");
1437 error = ETIMEDOUT;
1438 }
1439
1440 /* start the microcode executing */
1441 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1442
1443 wpi_mem_unlock(sc);
1444
1445 return (error);
1446}
1447
1448static void
1449wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1450 struct wpi_rx_data *data)
1451{
1452 struct ifnet *ifp = sc->sc_ifp;
1453 struct ieee80211com *ic = ifp->if_l2com;
1454 struct wpi_rx_ring *ring = &sc->rxq;
1455 struct wpi_rx_stat *stat;
1456 struct wpi_rx_head *head;
1457 struct wpi_rx_tail *tail;
1458 struct ieee80211_node *ni;
1459 struct mbuf *m, *mnew;
1460 bus_addr_t paddr;
1461 int error;
1462
1463 stat = (struct wpi_rx_stat *)(desc + 1);
1464
1465 if (stat->len > WPI_STAT_MAXLEN) {
1466 device_printf(sc->sc_dev, "invalid rx statistic header\n");
1467 ifp->if_ierrors++;
1468 return;
1469 }
1470
1471 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1472 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1473 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1474
1475 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1476 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1477 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1478 (uintmax_t)le64toh(tail->tstamp)));
1479
1480 /* discard Rx frames with bad CRC early */
1481 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1482 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1483 le32toh(tail->flags)));
1484 ifp->if_ierrors++;
1485 return;
1486 }
1487 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1488 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1489 le16toh(head->len)));
1490 ifp->if_ierrors++;
1491 return;
1492 }
1493
1494 /* XXX don't need mbuf, just dma buffer */
1495 mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1496 if (mnew == NULL) {
1497 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1498 __func__));
1499 ifp->if_ierrors++;
1500 return;
1501 }
1502 bus_dmamap_unload(ring->data_dmat, data->map);
1503
1504 error = bus_dmamap_load(ring->data_dmat, data->map,
1505 mtod(mnew, caddr_t), MJUMPAGESIZE,
1506 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1507 if (error != 0 && error != EFBIG) {
1508 device_printf(sc->sc_dev,
1509 "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1510 m_freem(mnew);
1511 ifp->if_ierrors++;
1512 return;
1513 }
1514 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1515
1516 /* finalize mbuf and swap in new one */
1517 m = data->m;
1518 m->m_pkthdr.rcvif = ifp;
1519 m->m_data = (caddr_t)(head + 1);
1520 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1521
1522 data->m = mnew;
1523 /* update Rx descriptor */
1524 ring->desc[ring->cur] = htole32(paddr);
1525
1526 if (ieee80211_radiotap_active(ic)) {
1527 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1528
1529 tap->wr_flags = 0;
1530 tap->wr_chan_freq =
1531 htole16(ic->ic_channels[head->chan].ic_freq);
1532 tap->wr_chan_flags =
1533 htole16(ic->ic_channels[head->chan].ic_flags);
1534 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1535 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1536 tap->wr_tsft = tail->tstamp;
1537 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1538 switch (head->rate) {
1539 /* CCK rates */
1540 case 10: tap->wr_rate = 2; break;
1541 case 20: tap->wr_rate = 4; break;
1542 case 55: tap->wr_rate = 11; break;
1543 case 110: tap->wr_rate = 22; break;
1544 /* OFDM rates */
1545 case 0xd: tap->wr_rate = 12; break;
1546 case 0xf: tap->wr_rate = 18; break;
1547 case 0x5: tap->wr_rate = 24; break;
1548 case 0x7: tap->wr_rate = 36; break;
1549 case 0x9: tap->wr_rate = 48; break;
1550 case 0xb: tap->wr_rate = 72; break;
1551 case 0x1: tap->wr_rate = 96; break;
1552 case 0x3: tap->wr_rate = 108; break;
1553 /* unknown rate: should not happen */
1554 default: tap->wr_rate = 0;
1555 }
1556 if (le16toh(head->flags) & 0x4)
1557 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1558 }
1559
1560 WPI_UNLOCK(sc);
1561
1562 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1563 if (ni != NULL) {
1564 (void) ieee80211_input(ni, m, stat->rssi, 0);
1565 ieee80211_free_node(ni);
1566 } else
1567 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
1568
1569 WPI_LOCK(sc);
1570}
1571
1572static void
1573wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1574{
1575 struct ifnet *ifp = sc->sc_ifp;
1576 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1577 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1578 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1579 struct ieee80211_node *ni = txdata->ni;
1580 struct ieee80211vap *vap = ni->ni_vap;
1581 int retrycnt = 0;
1582
1583 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1584 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1585 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1586 le32toh(stat->status)));
1587
1588 /*
1589 * Update rate control statistics for the node.
1590 * XXX we should not count mgmt frames since they're always sent at
1591 * the lowest available bit-rate.
1592 * XXX frames w/o ACK shouldn't be used either
1593 */
1594 if (stat->ntries > 0) {
1595 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1596 retrycnt = 1;
1597 }
1598 ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1599 &retrycnt, NULL);
1600
1601 /* XXX oerrors should only count errors !maxtries */
1602 if ((le32toh(stat->status) & 0xff) != 1)
1603 ifp->if_oerrors++;
1604 else
1605 ifp->if_opackets++;
1606
1607 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1608 bus_dmamap_unload(ring->data_dmat, txdata->map);
1609 /* XXX handle M_TXCB? */
1610 m_freem(txdata->m);
1611 txdata->m = NULL;
1612 ieee80211_free_node(txdata->ni);
1613 txdata->ni = NULL;
1614
1615 ring->queued--;
1616
1617 sc->sc_tx_timer = 0;
1618 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1619 wpi_start_locked(ifp);
1620}
1621
1622static void
1623wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1624{
1625 struct wpi_tx_ring *ring = &sc->cmdq;
1626 struct wpi_tx_data *data;
1627
1628 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1629 "type=%s len=%d\n", desc->qid, desc->idx,
1630 desc->flags, wpi_cmd_str(desc->type),
1631 le32toh(desc->len)));
1632
1633 if ((desc->qid & 7) != 4)
1634 return; /* not a command ack */
1635
1636 data = &ring->data[desc->idx];
1637
1638 /* if the command was mapped in a mbuf, free it */
1639 if (data->m != NULL) {
1640 bus_dmamap_unload(ring->data_dmat, data->map);
1641 m_freem(data->m);
1642 data->m = NULL;
1643 }
1644
1645 sc->flags &= ~WPI_FLAG_BUSY;
1646 wakeup(&ring->cmd[desc->idx]);
1647}
1648
1649static void
1650wpi_notif_intr(struct wpi_softc *sc)
1651{
1652 struct ifnet *ifp = sc->sc_ifp;
1653 struct ieee80211com *ic = ifp->if_l2com;
1654 struct wpi_rx_desc *desc;
1655 struct wpi_rx_data *data;
1656 uint32_t hw;
1657
1658 bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1659 BUS_DMASYNC_POSTREAD);
1660
1661 hw = le32toh(sc->shared->next);
1662 while (sc->rxq.cur != hw) {
1663 data = &sc->rxq.data[sc->rxq.cur];
1664
1665 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1666 BUS_DMASYNC_POSTREAD);
1667 desc = (void *)data->m->m_ext.ext_buf;
1668
1669 DPRINTFN(WPI_DEBUG_NOTIFY,
1670 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1671 desc->qid,
1672 desc->idx,
1673 desc->flags,
1674 desc->type,
1675 le32toh(desc->len)));
1676
1677 if (!(desc->qid & 0x80)) /* reply to a command */
1678 wpi_cmd_intr(sc, desc);
1679
1680 switch (desc->type) {
1681 case WPI_RX_DONE:
1682 /* a 802.11 frame was received */
1683 wpi_rx_intr(sc, desc, data);
1684 break;
1685
1686 case WPI_TX_DONE:
1687 /* a 802.11 frame has been transmitted */
1688 wpi_tx_intr(sc, desc);
1689 break;
1690
1691 case WPI_UC_READY:
1692 {
1693 struct wpi_ucode_info *uc =
1694 (struct wpi_ucode_info *)(desc + 1);
1695
1696 /* the microcontroller is ready */
1697 DPRINTF(("microcode alive notification version %x "
1698 "alive %x\n", le32toh(uc->version),
1699 le32toh(uc->valid)));
1700
1701 if (le32toh(uc->valid) != 1) {
1702 device_printf(sc->sc_dev,
1703 "microcontroller initialization failed\n");
1704 wpi_stop_locked(sc);
1705 }
1706 break;
1707 }
1708 case WPI_STATE_CHANGED:
1709 {
1710 uint32_t *status = (uint32_t *)(desc + 1);
1711
1712 /* enabled/disabled notification */
1713 DPRINTF(("state changed to %x\n", le32toh(*status)));
1714
1715 if (le32toh(*status) & 1) {
1716 device_printf(sc->sc_dev,
1717 "Radio transmitter is switched off\n");
1718 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1719 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1720 /* Disable firmware commands */
1721 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1722 }
1723 break;
1724 }
1725 case WPI_START_SCAN:
1726 {
1727#ifdef WPI_DEBUG
1728 struct wpi_start_scan *scan =
1729 (struct wpi_start_scan *)(desc + 1);
1730#endif
1731
1732 DPRINTFN(WPI_DEBUG_SCANNING,
1733 ("scanning channel %d status %x\n",
1734 scan->chan, le32toh(scan->status)));
1735 break;
1736 }
1737 case WPI_STOP_SCAN:
1738 {
1739#ifdef WPI_DEBUG
1740 struct wpi_stop_scan *scan =
1741 (struct wpi_stop_scan *)(desc + 1);
1742#endif
1743 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1744
1745 DPRINTFN(WPI_DEBUG_SCANNING,
1746 ("scan finished nchan=%d status=%d chan=%d\n",
1747 scan->nchan, scan->status, scan->chan));
1748
1749 sc->sc_scan_timer = 0;
1750 ieee80211_scan_next(vap);
1751 break;
1752 }
1753 case WPI_MISSED_BEACON:
1754 {
1755 struct wpi_missed_beacon *beacon =
1756 (struct wpi_missed_beacon *)(desc + 1);
1757 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1758
1759 if (le32toh(beacon->consecutive) >=
1760 vap->iv_bmissthreshold) {
1761 DPRINTF(("Beacon miss: %u >= %u\n",
1762 le32toh(beacon->consecutive),
1763 vap->iv_bmissthreshold));
1764 ieee80211_beacon_miss(ic);
1765 }
1766 break;
1767 }
1768 }
1769
1770 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1771 }
1772
1773 /* tell the firmware what we have processed */
1774 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1775 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1776}
1777
1778static void
1779wpi_intr(void *arg)
1780{
1781 struct wpi_softc *sc = arg;
1782 uint32_t r;
1783
1784 WPI_LOCK(sc);
1785
1786 r = WPI_READ(sc, WPI_INTR);
1787 if (r == 0 || r == 0xffffffff) {
1788 WPI_UNLOCK(sc);
1789 return;
1790 }
1791
1792 /* disable interrupts */
1793 WPI_WRITE(sc, WPI_MASK, 0);
1794 /* ack interrupts */
1795 WPI_WRITE(sc, WPI_INTR, r);
1796
1797 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1798 struct ifnet *ifp = sc->sc_ifp;
1799 struct ieee80211com *ic = ifp->if_l2com;
1800 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1801
1802 device_printf(sc->sc_dev, "fatal firmware error\n");
1803 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1804 "(Hardware Error)"));
1805 if (vap != NULL)
1806 ieee80211_cancel_scan(vap);
1807 ieee80211_runtask(ic, &sc->sc_restarttask);
1808 sc->flags &= ~WPI_FLAG_BUSY;
1809 WPI_UNLOCK(sc);
1810 return;
1811 }
1812
1813 if (r & WPI_RX_INTR)
1814 wpi_notif_intr(sc);
1815
1816 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1817 wakeup(sc);
1818
1819 /* re-enable interrupts */
1820 if (sc->sc_ifp->if_flags & IFF_UP)
1821 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1822
1823 WPI_UNLOCK(sc);
1824}
1825
1826static uint8_t
1827wpi_plcp_signal(int rate)
1828{
1829 switch (rate) {
1830 /* CCK rates (returned values are device-dependent) */
1831 case 2: return 10;
1832 case 4: return 20;
1833 case 11: return 55;
1834 case 22: return 110;
1835
1836 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1837 /* R1-R4 (ral/ural is R4-R1) */
1838 case 12: return 0xd;
1839 case 18: return 0xf;
1840 case 24: return 0x5;
1841 case 36: return 0x7;
1842 case 48: return 0x9;
1843 case 72: return 0xb;
1844 case 96: return 0x1;
1845 case 108: return 0x3;
1846
1847 /* unsupported rates (should not get there) */
1848 default: return 0;
1849 }
1850}
1851
1852/* quickly determine if a given rate is CCK or OFDM */
1853#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1854
1855/*
1856 * Construct the data packet for a transmit buffer and acutally put
1857 * the buffer onto the transmit ring, kicking the card to process the
1858 * the buffer.
1859 */
1860static int
1861wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1862 int ac)
1863{
1864 struct ieee80211vap *vap = ni->ni_vap;
1865 struct ifnet *ifp = sc->sc_ifp;
1866 struct ieee80211com *ic = ifp->if_l2com;
1867 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1868 struct wpi_tx_ring *ring = &sc->txq[ac];
1869 struct wpi_tx_desc *desc;
1870 struct wpi_tx_data *data;
1871 struct wpi_tx_cmd *cmd;
1872 struct wpi_cmd_data *tx;
1873 struct ieee80211_frame *wh;
1874 const struct ieee80211_txparam *tp;
1875 struct ieee80211_key *k;
1876 struct mbuf *mnew;
1877 int i, error, nsegs, rate, hdrlen, ismcast;
1878 bus_dma_segment_t segs[WPI_MAX_SCATTER];
1879
1880 desc = &ring->desc[ring->cur];
1881 data = &ring->data[ring->cur];
1882
1883 wh = mtod(m0, struct ieee80211_frame *);
1884
1885 hdrlen = ieee80211_hdrsize(wh);
1886 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1887
1888 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1889 k = ieee80211_crypto_encap(ni, m0);
1890 if (k == NULL) {
1891 m_freem(m0);
1892 return ENOBUFS;
1893 }
1894 /* packet header may have moved, reset our local pointer */
1895 wh = mtod(m0, struct ieee80211_frame *);
1896 }
1897
1898 cmd = &ring->cmd[ring->cur];
1899 cmd->code = WPI_CMD_TX_DATA;
1900 cmd->flags = 0;
1901 cmd->qid = ring->qid;
1902 cmd->idx = ring->cur;
1903
1904 tx = (struct wpi_cmd_data *)cmd->data;
1905 tx->flags = htole32(WPI_TX_AUTO_SEQ);
1906 tx->timeout = htole16(0);
1907 tx->ofdm_mask = 0xff;
1908 tx->cck_mask = 0x0f;
1909 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1910 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1911 tx->len = htole16(m0->m_pkthdr.len);
1912
1913 if (!ismcast) {
1914 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1915 !cap->cap_wmeParams[ac].wmep_noackPolicy)
1916 tx->flags |= htole32(WPI_TX_NEED_ACK);
1917 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1918 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1919 tx->rts_ntries = 7;
1920 }
1921 }
1922 /* pick a rate */
1923 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1924 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1925 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1926 /* tell h/w to set timestamp in probe responses */
1927 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1928 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1929 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1930 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1931 tx->timeout = htole16(3);
1932 else
1933 tx->timeout = htole16(2);
1934 rate = tp->mgmtrate;
1935 } else if (ismcast) {
1936 rate = tp->mcastrate;
1937 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1938 rate = tp->ucastrate;
1939 } else {
1940 (void) ieee80211_ratectl_rate(ni, NULL, 0);
1941 rate = ni->ni_txrate;
1942 }
1943 tx->rate = wpi_plcp_signal(rate);
1944
1945 /* be very persistant at sending frames out */
1946#if 0
1947 tx->data_ntries = tp->maxretry;
1948#else
1949 tx->data_ntries = 15; /* XXX way too high */
1950#endif
1951
1952 if (ieee80211_radiotap_active_vap(vap)) {
1953 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1954 tap->wt_flags = 0;
1955 tap->wt_rate = rate;
1956 tap->wt_hwqueue = ac;
1957 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1958 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1959
1960 ieee80211_radiotap_tx(vap, m0);
1961 }
1962
1963 /* save and trim IEEE802.11 header */
1964 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1965 m_adj(m0, hdrlen);
1966
1967 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1968 &nsegs, BUS_DMA_NOWAIT);
1969 if (error != 0 && error != EFBIG) {
1970 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1971 error);
1972 m_freem(m0);
1973 return error;
1974 }
1975 if (error != 0) {
1976 /* XXX use m_collapse */
1977 mnew = m_defrag(m0, M_DONTWAIT);
1978 if (mnew == NULL) {
1979 device_printf(sc->sc_dev,
1980 "could not defragment mbuf\n");
1981 m_freem(m0);
1982 return ENOBUFS;
1983 }
1984 m0 = mnew;
1985
1986 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1987 m0, segs, &nsegs, BUS_DMA_NOWAIT);
1988 if (error != 0) {
1989 device_printf(sc->sc_dev,
1990 "could not map mbuf (error %d)\n", error);
1991 m_freem(m0);
1992 return error;
1993 }
1994 }
1995
1996 data->m = m0;
1997 data->ni = ni;
1998
1999 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2000 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
2001
2002 /* first scatter/gather segment is used by the tx data command */
2003 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2004 (1 + nsegs) << 24);
2005 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2006 ring->cur * sizeof (struct wpi_tx_cmd));
2007 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data));
2008 for (i = 1; i <= nsegs; i++) {
2009 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2010 desc->segs[i].len = htole32(segs[i - 1].ds_len);
2011 }
2012
2013 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2014 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2015 BUS_DMASYNC_PREWRITE);
2016
2017 ring->queued++;
2018
2019 /* kick ring */
2020 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2021 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2022
2023 return 0;
2024}
2025
2026/**
2027 * Process data waiting to be sent on the IFNET output queue
2028 */
2029static void
2030wpi_start(struct ifnet *ifp)
2031{
2032 struct wpi_softc *sc = ifp->if_softc;
2033
2034 WPI_LOCK(sc);
2035 wpi_start_locked(ifp);
2036 WPI_UNLOCK(sc);
2037}
2038
2039static void
2040wpi_start_locked(struct ifnet *ifp)
2041{
2042 struct wpi_softc *sc = ifp->if_softc;
2043 struct ieee80211_node *ni;
2044 struct mbuf *m;
2045 int ac;
2046
2047 WPI_LOCK_ASSERT(sc);
2048
2049 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2050 return;
2051
2052 for (;;) {
2053 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2054 if (m == NULL)
2055 break;
2056 ac = M_WME_GETAC(m);
2057 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2058 /* there is no place left in this ring */
2059 IFQ_DRV_PREPEND(&ifp->if_snd, m);
2060 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2061 break;
2062 }
2063 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2064 if (wpi_tx_data(sc, m, ni, ac) != 0) {
2065 ieee80211_free_node(ni);
2066 ifp->if_oerrors++;
2067 break;
2068 }
2069 sc->sc_tx_timer = 5;
2070 }
2071}
2072
2073static int
2074wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2075 const struct ieee80211_bpf_params *params)
2076{
2077 struct ieee80211com *ic = ni->ni_ic;
2078 struct ifnet *ifp = ic->ic_ifp;
2079 struct wpi_softc *sc = ifp->if_softc;
2080
2081 /* prevent management frames from being sent if we're not ready */
2082 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2083 m_freem(m);
2084 ieee80211_free_node(ni);
2085 return ENETDOWN;
2086 }
2087 WPI_LOCK(sc);
2088
2089 /* management frames go into ring 0 */
2090 if (sc->txq[0].queued > sc->txq[0].count - 8) {
2091 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2092 m_freem(m);
2093 WPI_UNLOCK(sc);
2094 ieee80211_free_node(ni);
2095 return ENOBUFS; /* XXX */
2096 }
2097
2098 ifp->if_opackets++;
2099 if (wpi_tx_data(sc, m, ni, 0) != 0)
2100 goto bad;
2101 sc->sc_tx_timer = 5;
2102 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2103
2104 WPI_UNLOCK(sc);
2105 return 0;
2106bad:
2107 ifp->if_oerrors++;
2108 WPI_UNLOCK(sc);
2109 ieee80211_free_node(ni);
2110 return EIO; /* XXX */
2111}
2112
2113static int
2114wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2115{
2116 struct wpi_softc *sc = ifp->if_softc;
2117 struct ieee80211com *ic = ifp->if_l2com;
2118 struct ifreq *ifr = (struct ifreq *) data;
2119 int error = 0, startall = 0;
2120
2121 switch (cmd) {
2122 case SIOCSIFFLAGS:
2123 WPI_LOCK(sc);
2124 if ((ifp->if_flags & IFF_UP)) {
2125 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2126 wpi_init_locked(sc, 0);
2127 startall = 1;
2128 }
2129 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2130 (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2131 wpi_stop_locked(sc);
2132 WPI_UNLOCK(sc);
2133 if (startall)
2134 ieee80211_start_all(ic);
2135 break;
2136 case SIOCGIFMEDIA:
2137 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2138 break;
2139 case SIOCGIFADDR:
2140 error = ether_ioctl(ifp, cmd, data);
2141 break;
2142 default:
2143 error = EINVAL;
2144 break;
2145 }
2146 return error;
2147}
2148
2149/*
2150 * Extract various information from EEPROM.
2151 */
2152static void
2153wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2154{
2155 int i;
2156
2157 /* read the hardware capabilities, revision and SKU type */
2158 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2159 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2160 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2161
2162 /* read the regulatory domain */
2163 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2164
2165 /* read in the hw MAC address */
2166 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2167
2168 /* read the list of authorized channels */
2169 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2170 wpi_read_eeprom_channels(sc,i);
2171
2172 /* read the power level calibration info for each group */
2173 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2174 wpi_read_eeprom_group(sc,i);
2175}
2176
2177/*
2178 * Send a command to the firmware.
2179 */
2180static int
2181wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2182{
2183 struct wpi_tx_ring *ring = &sc->cmdq;
2184 struct wpi_tx_desc *desc;
2185 struct wpi_tx_cmd *cmd;
2186
2187#ifdef WPI_DEBUG
2188 if (!async) {
2189 WPI_LOCK_ASSERT(sc);
2190 }
2191#endif
2192
2193 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2194 async));
2195
2196 if (sc->flags & WPI_FLAG_BUSY) {
2197 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2198 __func__, code);
2199 return EAGAIN;
2200 }
2201 sc->flags|= WPI_FLAG_BUSY;
2202
2203 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2204 code, size));
2205
2206 desc = &ring->desc[ring->cur];
2207 cmd = &ring->cmd[ring->cur];
2208
2209 cmd->code = code;
2210 cmd->flags = 0;
2211 cmd->qid = ring->qid;
2212 cmd->idx = ring->cur;
2213 memcpy(cmd->data, buf, size);
2214
2215 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2216 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2217 ring->cur * sizeof (struct wpi_tx_cmd));
2218 desc->segs[0].len = htole32(4 + size);
2219
2220 /* kick cmd ring */
2221 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2222 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2223
2224 if (async) {
2225 sc->flags &= ~ WPI_FLAG_BUSY;
2226 return 0;
2227 }
2228
2229 return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2230}
2231
2232static int
2233wpi_wme_update(struct ieee80211com *ic)
2234{
2235#define WPI_EXP2(v) htole16((1 << (v)) - 1)
2236#define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2237 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2238 const struct wmeParams *wmep;
2239 struct wpi_wme_setup wme;
2240 int ac;
2241
2242 /* don't override default WME values if WME is not actually enabled */
2243 if (!(ic->ic_flags & IEEE80211_F_WME))
2244 return 0;
2245
2246 wme.flags = 0;
2247 for (ac = 0; ac < WME_NUM_AC; ac++) {
2248 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2249 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2250 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2251 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2252 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2253
2254 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2255 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2256 wme.ac[ac].cwmax, wme.ac[ac].txop));
2257 }
2258 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2259#undef WPI_USEC
2260#undef WPI_EXP2
2261}
2262
2263/*
2264 * Configure h/w multi-rate retries.
2265 */
2266static int
2267wpi_mrr_setup(struct wpi_softc *sc)
2268{
2269 struct ifnet *ifp = sc->sc_ifp;
2270 struct ieee80211com *ic = ifp->if_l2com;
2271 struct wpi_mrr_setup mrr;
2272 int i, error;
2273
2274 memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2275
2276 /* CCK rates (not used with 802.11a) */
2277 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2278 mrr.rates[i].flags = 0;
2279 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2280 /* fallback to the immediate lower CCK rate (if any) */
2281 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2282 /* try one time at this rate before falling back to "next" */
2283 mrr.rates[i].ntries = 1;
2284 }
2285
2286 /* OFDM rates (not used with 802.11b) */
2287 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2288 mrr.rates[i].flags = 0;
2289 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2290 /* fallback to the immediate lower OFDM rate (if any) */
2291 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2292 mrr.rates[i].next = (i == WPI_OFDM6) ?
2293 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2294 WPI_OFDM6 : WPI_CCK2) :
2295 i - 1;
2296 /* try one time at this rate before falling back to "next" */
2297 mrr.rates[i].ntries = 1;
2298 }
2299
2300 /* setup MRR for control frames */
2301 mrr.which = htole32(WPI_MRR_CTL);
2302 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2303 if (error != 0) {
2304 device_printf(sc->sc_dev,
2305 "could not setup MRR for control frames\n");
2306 return error;
2307 }
2308
2309 /* setup MRR for data frames */
2310 mrr.which = htole32(WPI_MRR_DATA);
2311 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2312 if (error != 0) {
2313 device_printf(sc->sc_dev,
2314 "could not setup MRR for data frames\n");
2315 return error;
2316 }
2317
2318 return 0;
2319}
2320
2321static void
2322wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2323{
2324 struct wpi_cmd_led led;
2325
2326 led.which = which;
2327 led.unit = htole32(100000); /* on/off in unit of 100ms */
2328 led.off = off;
2329 led.on = on;
2330
2331 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2332}
2333
2334static void
2335wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2336{
2337 struct wpi_cmd_tsf tsf;
2338 uint64_t val, mod;
2339
2340 memset(&tsf, 0, sizeof tsf);
2341 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2342 tsf.bintval = htole16(ni->ni_intval);
2343 tsf.lintval = htole16(10);
2344
2345 /* compute remaining time until next beacon */
2346 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */
2347 mod = le64toh(tsf.tstamp) % val;
2348 tsf.binitval = htole32((uint32_t)(val - mod));
2349
2350 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2351 device_printf(sc->sc_dev, "could not enable TSF\n");
2352}
2353
2354#if 0
2355/*
2356 * Build a beacon frame that the firmware will broadcast periodically in
2357 * IBSS or HostAP modes.
2358 */
2359static int
2360wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2361{
2362 struct ifnet *ifp = sc->sc_ifp;
2363 struct ieee80211com *ic = ifp->if_l2com;
2364 struct wpi_tx_ring *ring = &sc->cmdq;
2365 struct wpi_tx_desc *desc;
2366 struct wpi_tx_data *data;
2367 struct wpi_tx_cmd *cmd;
2368 struct wpi_cmd_beacon *bcn;
2369 struct ieee80211_beacon_offsets bo;
2370 struct mbuf *m0;
2371 bus_addr_t physaddr;
2372 int error;
2373
2374 desc = &ring->desc[ring->cur];
2375 data = &ring->data[ring->cur];
2376
2377 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2378 if (m0 == NULL) {
2379 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2380 return ENOMEM;
2381 }
2382
2383 cmd = &ring->cmd[ring->cur];
2384 cmd->code = WPI_CMD_SET_BEACON;
2385 cmd->flags = 0;
2386 cmd->qid = ring->qid;
2387 cmd->idx = ring->cur;
2388
2389 bcn = (struct wpi_cmd_beacon *)cmd->data;
2390 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2391 bcn->id = WPI_ID_BROADCAST;
2392 bcn->ofdm_mask = 0xff;
2393 bcn->cck_mask = 0x0f;
2394 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2395 bcn->len = htole16(m0->m_pkthdr.len);
2396 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2397 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2398 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2399
2400 /* save and trim IEEE802.11 header */
2401 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2402 m_adj(m0, sizeof (struct ieee80211_frame));
2403
2404 /* assume beacon frame is contiguous */
2405 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2406 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2407 if (error != 0) {
2408 device_printf(sc->sc_dev, "could not map beacon\n");
2409 m_freem(m0);
2410 return error;
2411 }
2412
2413 data->m = m0;
2414
2415 /* first scatter/gather segment is used by the beacon command */
2416 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2417 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2418 ring->cur * sizeof (struct wpi_tx_cmd));
2419 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2420 desc->segs[1].addr = htole32(physaddr);
2421 desc->segs[1].len = htole32(m0->m_pkthdr.len);
2422
2423 /* kick cmd ring */
2424 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2425 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2426
2427 return 0;
2428}
2429#endif
2430
2431static int
2432wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2433{
2434 struct ieee80211com *ic = vap->iv_ic;
2435 struct ieee80211_node *ni = vap->iv_bss;
2436 struct wpi_node_info node;
2437 int error;
2438
2439
2440 /* update adapter's configuration */
2441 sc->config.associd = 0;
2442 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2443 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2444 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2445 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2446 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2447 WPI_CONFIG_24GHZ);
2448 } else {
2449 sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2450 WPI_CONFIG_24GHZ);
2451 }
2452 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2453 sc->config.cck_mask = 0;
2454 sc->config.ofdm_mask = 0x15;
2455 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2456 sc->config.cck_mask = 0x03;
2457 sc->config.ofdm_mask = 0;
2458 } else {
2459 /* XXX assume 802.11b/g */
2460 sc->config.cck_mask = 0x0f;
2461 sc->config.ofdm_mask = 0x15;
2462 }
2463
2464 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2465 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2466 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2467 sizeof (struct wpi_config), 1);
2468 if (error != 0) {
2469 device_printf(sc->sc_dev, "could not configure\n");
2470 return error;
2471 }
2472
2473 /* configuration has changed, set Tx power accordingly */
2474 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2475 device_printf(sc->sc_dev, "could not set Tx power\n");
2476 return error;
2477 }
2478
2479 /* add default node */
2480 memset(&node, 0, sizeof node);
2481 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2482 node.id = WPI_ID_BSS;
2483 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2484 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2485 node.action = htole32(WPI_ACTION_SET_RATE);
2486 node.antenna = WPI_ANTENNA_BOTH;
2487 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2488 if (error != 0)
2489 device_printf(sc->sc_dev, "could not add BSS node\n");
2490
2491 return (error);
2492}
2493
2494static int
2495wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2496{
2497 struct ieee80211com *ic = vap->iv_ic;
2498 struct ieee80211_node *ni = vap->iv_bss;
2499 int error;
2500
2501 if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2502 /* link LED blinks while monitoring */
2503 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2504 return 0;
2505 }
2506
2507 wpi_enable_tsf(sc, ni);
2508
2509 /* update adapter's configuration */
2510 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2511 /* short preamble/slot time are negotiated when associating */
2512 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2513 WPI_CONFIG_SHSLOT);
2514 if (ic->ic_flags & IEEE80211_F_SHSLOT)
2515 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2516 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2517 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2518 sc->config.filter |= htole32(WPI_FILTER_BSS);
2519
2520 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2521
2522 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2523 sc->config.flags));
2524 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2525 wpi_config), 1);
2526 if (error != 0) {
2527 device_printf(sc->sc_dev, "could not update configuration\n");
2528 return error;
2529 }
2530
2531 error = wpi_set_txpower(sc, ni->ni_chan, 1);
2532 if (error != 0) {
2533 device_printf(sc->sc_dev, "could set txpower\n");
2534 return error;
2535 }
2536
2537 /* link LED always on while associated */
2538 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2539
2540 /* start automatic rate control timer */
2541 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2542
2543 return (error);
2544}
2545
2546/*
2547 * Send a scan request to the firmware. Since this command is huge, we map it
2548 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2549 * much of this code is similar to that in wpi_cmd but because we must manually
2550 * construct the probe & channels, we duplicate what's needed here. XXX In the
2551 * future, this function should be modified to use wpi_cmd to help cleanup the
2552 * code base.
2553 */
2554static int
2555wpi_scan(struct wpi_softc *sc)
2556{
2557 struct ifnet *ifp = sc->sc_ifp;
2558 struct ieee80211com *ic = ifp->if_l2com;
2559 struct ieee80211_scan_state *ss = ic->ic_scan;
2560 struct wpi_tx_ring *ring = &sc->cmdq;
2561 struct wpi_tx_desc *desc;
2562 struct wpi_tx_data *data;
2563 struct wpi_tx_cmd *cmd;
2564 struct wpi_scan_hdr *hdr;
2565 struct wpi_scan_chan *chan;
2566 struct ieee80211_frame *wh;
2567 struct ieee80211_rateset *rs;
2568 struct ieee80211_channel *c;
2569 enum ieee80211_phymode mode;
2570 uint8_t *frm;
2571 int nrates, pktlen, error, i, nssid;
2572 bus_addr_t physaddr;
2573
2574 desc = &ring->desc[ring->cur];
2575 data = &ring->data[ring->cur];
2576
2577 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2578 if (data->m == NULL) {
2579 device_printf(sc->sc_dev,
2580 "could not allocate mbuf for scan command\n");
2581 return ENOMEM;
2582 }
2583
2584 cmd = mtod(data->m, struct wpi_tx_cmd *);
2585 cmd->code = WPI_CMD_SCAN;
2586 cmd->flags = 0;
2587 cmd->qid = ring->qid;
2588 cmd->idx = ring->cur;
2589
2590 hdr = (struct wpi_scan_hdr *)cmd->data;
2591 memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2592
2593 /*
2594 * Move to the next channel if no packets are received within 5 msecs
2595 * after sending the probe request (this helps to reduce the duration
2596 * of active scans).
2597 */
2598 hdr->quiet = htole16(5);
2599 hdr->threshold = htole16(1);
2600
2601 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2602 /* send probe requests at 6Mbps */
2603 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2604
2605 /* Enable crc checking */
2606 hdr->promotion = htole16(1);
2607 } else {
2608 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2609 /* send probe requests at 1Mbps */
2610 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2611 }
2612 hdr->tx.id = WPI_ID_BROADCAST;
2613 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2614 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2615
2616 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2617 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2618 for (i = 0; i < nssid; i++) {
2619 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2620 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2621 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2622 hdr->scan_essids[i].esslen);
2623#ifdef WPI_DEBUG
2624 if (wpi_debug & WPI_DEBUG_SCANNING) {
2625 printf("Scanning Essid: ");
2626 ieee80211_print_essid(hdr->scan_essids[i].essid,
2627 hdr->scan_essids[i].esslen);
2628 printf("\n");
2629 }
2630#endif
2631 }
2632
2633 /*
2634 * Build a probe request frame. Most of the following code is a
2635 * copy & paste of what is done in net80211.
2636 */
2637 wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2638 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2639 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2640 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2641 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2642 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2643 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2644 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2645 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2646
2647 frm = (uint8_t *)(wh + 1);
2648
2649 /* add essid IE, the hardware will fill this in for us */
2650 *frm++ = IEEE80211_ELEMID_SSID;
2651 *frm++ = 0;
2652
2653 mode = ieee80211_chan2mode(ic->ic_curchan);
2654 rs = &ic->ic_sup_rates[mode];
2655
2656 /* add supported rates IE */
2657 *frm++ = IEEE80211_ELEMID_RATES;
2658 nrates = rs->rs_nrates;
2659 if (nrates > IEEE80211_RATE_SIZE)
2660 nrates = IEEE80211_RATE_SIZE;
2661 *frm++ = nrates;
2662 memcpy(frm, rs->rs_rates, nrates);
2663 frm += nrates;
2664
2665 /* add supported xrates IE */
2666 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2667 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2668 *frm++ = IEEE80211_ELEMID_XRATES;
2669 *frm++ = nrates;
2670 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2671 frm += nrates;
2672 }
2673
2674 /* setup length of probe request */
2675 hdr->tx.len = htole16(frm - (uint8_t *)wh);
2676
2677 /*
2678 * Construct information about the channel that we
2679 * want to scan. The firmware expects this to be directly
2680 * after the scan probe request
2681 */
2682 c = ic->ic_curchan;
2683 chan = (struct wpi_scan_chan *)frm;
2684 chan->chan = ieee80211_chan2ieee(ic, c);
2685 chan->flags = 0;
2686 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2687 chan->flags |= WPI_CHAN_ACTIVE;
2688 if (nssid != 0)
2689 chan->flags |= WPI_CHAN_DIRECT;
2690 }
2691 chan->gain_dsp = 0x6e; /* Default level */
2692 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2693 chan->active = htole16(10);
2694 chan->passive = htole16(ss->ss_maxdwell);
2695 chan->gain_radio = 0x3b;
2696 } else {
2697 chan->active = htole16(20);
2698 chan->passive = htole16(ss->ss_maxdwell);
2699 chan->gain_radio = 0x28;
2700 }
2701
2702 DPRINTFN(WPI_DEBUG_SCANNING,
2703 ("Scanning %u Passive: %d\n",
2704 chan->chan,
2705 c->ic_flags & IEEE80211_CHAN_PASSIVE));
2706
2707 hdr->nchan++;
2708 chan++;
2709
2710 frm += sizeof (struct wpi_scan_chan);
2711#if 0
2712 // XXX All Channels....
2713 for (c = &ic->ic_channels[1];
2714 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2715 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2716 continue;
2717
2718 chan->chan = ieee80211_chan2ieee(ic, c);
2719 chan->flags = 0;
2720 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2721 chan->flags |= WPI_CHAN_ACTIVE;
2722 if (ic->ic_des_ssid[0].len != 0)
2723 chan->flags |= WPI_CHAN_DIRECT;
2724 }
2725 chan->gain_dsp = 0x6e; /* Default level */
2726 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2727 chan->active = htole16(10);
2728 chan->passive = htole16(110);
2729 chan->gain_radio = 0x3b;
2730 } else {
2731 chan->active = htole16(20);
2732 chan->passive = htole16(120);
2733 chan->gain_radio = 0x28;
2734 }
2735
2736 DPRINTFN(WPI_DEBUG_SCANNING,
2737 ("Scanning %u Passive: %d\n",
2738 chan->chan,
2739 c->ic_flags & IEEE80211_CHAN_PASSIVE));
2740
2741 hdr->nchan++;
2742 chan++;
2743
2744 frm += sizeof (struct wpi_scan_chan);
2745 }
2746#endif
2747
2748 hdr->len = htole16(frm - (uint8_t *)hdr);
2749 pktlen = frm - (uint8_t *)cmd;
2750
2751 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2752 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2753 if (error != 0) {
2754 device_printf(sc->sc_dev, "could not map scan command\n");
2755 m_freem(data->m);
2756 data->m = NULL;
2757 return error;
2758 }
2759
2760 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2761 desc->segs[0].addr = htole32(physaddr);
2762 desc->segs[0].len = htole32(pktlen);
2763
2764 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2765 BUS_DMASYNC_PREWRITE);
2766 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2767
2768 /* kick cmd ring */
2769 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2770 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2771
2772 sc->sc_scan_timer = 5;
2773 return 0; /* will be notified async. of failure/success */
2774}
2775
2776/**
2777 * Configure the card to listen to a particular channel, this transisions the
2778 * card in to being able to receive frames from remote devices.
2779 */
2780static int
2781wpi_config(struct wpi_softc *sc)
2782{
2783 struct ifnet *ifp = sc->sc_ifp;
2784 struct ieee80211com *ic = ifp->if_l2com;
2785 struct wpi_power power;
2786 struct wpi_bluetooth bluetooth;
2787 struct wpi_node_info node;
2788 int error;
2789
2790 /* set power mode */
2791 memset(&power, 0, sizeof power);
2792 power.flags = htole32(WPI_POWER_CAM|0x8);
2793 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2794 if (error != 0) {
2795 device_printf(sc->sc_dev, "could not set power mode\n");
2796 return error;
2797 }
2798
2799 /* configure bluetooth coexistence */
2800 memset(&bluetooth, 0, sizeof bluetooth);
2801 bluetooth.flags = 3;
2802 bluetooth.lead = 0xaa;
2803 bluetooth.kill = 1;
2804 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2805 0);
2806 if (error != 0) {
2807 device_printf(sc->sc_dev,
2808 "could not configure bluetooth coexistence\n");
2809 return error;
2810 }
2811
2812 /* configure adapter */
2813 memset(&sc->config, 0, sizeof (struct wpi_config));
2814 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2815 /*set default channel*/
2816 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2817 sc->config.flags = htole32(WPI_CONFIG_TSF);
2818 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2819 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2820 WPI_CONFIG_24GHZ);
2821 }
2822 sc->config.filter = 0;
2823 switch (ic->ic_opmode) {
2824 case IEEE80211_M_STA:
2825 case IEEE80211_M_WDS: /* No know setup, use STA for now */
2826 sc->config.mode = WPI_MODE_STA;
2827 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2828 break;
2829 case IEEE80211_M_IBSS:
2830 case IEEE80211_M_AHDEMO:
2831 sc->config.mode = WPI_MODE_IBSS;
2832 sc->config.filter |= htole32(WPI_FILTER_BEACON |
2833 WPI_FILTER_MULTICAST);
2834 break;
2835 case IEEE80211_M_HOSTAP:
2836 sc->config.mode = WPI_MODE_HOSTAP;
2837 break;
2838 case IEEE80211_M_MONITOR:
2839 sc->config.mode = WPI_MODE_MONITOR;
2840 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2841 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2842 break;
2843 default:
2844 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2845 return EINVAL;
2846 }
2847 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2848 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2849 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2850 sizeof (struct wpi_config), 0);
2851 if (error != 0) {
2852 device_printf(sc->sc_dev, "configure command failed\n");
2853 return error;
2854 }
2855
2856 /* configuration has changed, set Tx power accordingly */
2857 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2858 device_printf(sc->sc_dev, "could not set Tx power\n");
2859 return error;
2860 }
2861
2862 /* add broadcast node */
2863 memset(&node, 0, sizeof node);
2864 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2865 node.id = WPI_ID_BROADCAST;
2866 node.rate = wpi_plcp_signal(2);
2867 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2868 if (error != 0) {
2869 device_printf(sc->sc_dev, "could not add broadcast node\n");
2870 return error;
2871 }
2872
2873 /* Setup rate scalling */
2874 error = wpi_mrr_setup(sc);
2875 if (error != 0) {
2876 device_printf(sc->sc_dev, "could not setup MRR\n");
2877 return error;
2878 }
2879
2880 return 0;
2881}
2882
2883static void
2884wpi_stop_master(struct wpi_softc *sc)
2885{
2886 uint32_t tmp;
2887 int ntries;
2888
2889 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2890
2891 tmp = WPI_READ(sc, WPI_RESET);
2892 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2893
2894 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2895 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2896 return; /* already asleep */
2897
2898 for (ntries = 0; ntries < 100; ntries++) {
2899 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2900 break;
2901 DELAY(10);
2902 }
2903 if (ntries == 100) {
2904 device_printf(sc->sc_dev, "timeout waiting for master\n");
2905 }
2906}
2907
2908static int
2909wpi_power_up(struct wpi_softc *sc)
2910{
2911 uint32_t tmp;
2912 int ntries;
2913
2914 wpi_mem_lock(sc);
2915 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2916 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2917 wpi_mem_unlock(sc);
2918
2919 for (ntries = 0; ntries < 5000; ntries++) {
2920 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2921 break;
2922 DELAY(10);
2923 }
2924 if (ntries == 5000) {
2925 device_printf(sc->sc_dev,
2926 "timeout waiting for NIC to power up\n");
2927 return ETIMEDOUT;
2928 }
2929 return 0;
2930}
2931
2932static int
2933wpi_reset(struct wpi_softc *sc)
2934{
2935 uint32_t tmp;
2936 int ntries;
2937
2938 DPRINTFN(WPI_DEBUG_HW,
2939 ("Resetting the card - clearing any uploaded firmware\n"));
2940
2941 /* clear any pending interrupts */
2942 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2943
2944 tmp = WPI_READ(sc, WPI_PLL_CTL);
2945 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2946
2947 tmp = WPI_READ(sc, WPI_CHICKEN);
2948 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2949
2950 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2951 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2952
2953 /* wait for clock stabilization */
2954 for (ntries = 0; ntries < 25000; ntries++) {
2955 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2956 break;
2957 DELAY(10);
2958 }
2959 if (ntries == 25000) {
2960 device_printf(sc->sc_dev,
2961 "timeout waiting for clock stabilization\n");
2962 return ETIMEDOUT;
2963 }
2964
2965 /* initialize EEPROM */
2966 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2967
2968 if ((tmp & WPI_EEPROM_VERSION) == 0) {
2969 device_printf(sc->sc_dev, "EEPROM not found\n");
2970 return EIO;
2971 }
2972 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2973
2974 return 0;
2975}
2976
2977static void
2978wpi_hw_config(struct wpi_softc *sc)
2979{
2980 uint32_t rev, hw;
2981
2982 /* voodoo from the Linux "driver".. */
2983 hw = WPI_READ(sc, WPI_HWCONFIG);
2984
2985 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2986 if ((rev & 0xc0) == 0x40)
2987 hw |= WPI_HW_ALM_MB;
2988 else if (!(rev & 0x80))
2989 hw |= WPI_HW_ALM_MM;
2990
2991 if (sc->cap == 0x80)
2992 hw |= WPI_HW_SKU_MRC;
2993
2994 hw &= ~WPI_HW_REV_D;
2995 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2996 hw |= WPI_HW_REV_D;
2997
2998 if (sc->type > 1)
2999 hw |= WPI_HW_TYPE_B;
3000
3001 WPI_WRITE(sc, WPI_HWCONFIG, hw);
3002}
3003
3004static void
3005wpi_rfkill_resume(struct wpi_softc *sc)
3006{
3007 struct ifnet *ifp = sc->sc_ifp;
3008 struct ieee80211com *ic = ifp->if_l2com;
3009 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3010 int ntries;
3011
3012 /* enable firmware again */
3013 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3014 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3015
3016 /* wait for thermal sensors to calibrate */
3017 for (ntries = 0; ntries < 1000; ntries++) {
3018 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3019 break;
3020 DELAY(10);
3021 }
3022
3023 if (ntries == 1000) {
3024 device_printf(sc->sc_dev,
3025 "timeout waiting for thermal calibration\n");
3026 return;
3027 }
3028 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3029
3030 if (wpi_config(sc) != 0) {
3031 device_printf(sc->sc_dev, "device config failed\n");
3032 return;
3033 }
3034
3035 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3036 ifp->if_drv_flags |= IFF_DRV_RUNNING;
3037 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3038
3039 if (vap != NULL) {
3040 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3041 if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3042 ieee80211_beacon_miss(ic);
3043 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3044 } else
3045 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3046 } else {
3047 ieee80211_scan_next(vap);
3048 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3049 }
3050 }
3051
3052 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3053}
3054
3055static void
3056wpi_init_locked(struct wpi_softc *sc, int force)
3057{
3058 struct ifnet *ifp = sc->sc_ifp;
3059 uint32_t tmp;
3060 int ntries, qid;
3061
3062 wpi_stop_locked(sc);
3063 (void)wpi_reset(sc);
3064
3065 wpi_mem_lock(sc);
3066 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3067 DELAY(20);
3068 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3069 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3070 wpi_mem_unlock(sc);
3071
3072 (void)wpi_power_up(sc);
3073 wpi_hw_config(sc);
3074
3075 /* init Rx ring */
3076 wpi_mem_lock(sc);
3077 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3078 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3079 offsetof(struct wpi_shared, next));
3080 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3081 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3082 wpi_mem_unlock(sc);
3083
3084 /* init Tx rings */
3085 wpi_mem_lock(sc);
3086 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3087 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3088 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3089 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3090 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3091 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3092 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3093
3094 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3095 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3096
3097 for (qid = 0; qid < 6; qid++) {
3098 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3099 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3100 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3101 }
3102 wpi_mem_unlock(sc);
3103
3104 /* clear "radio off" and "disable command" bits (reversed logic) */
3105 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3106 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3107 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3108
3109 /* clear any pending interrupts */
3110 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3111
3112 /* enable interrupts */
3113 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3114
3115 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3116 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3117
3118 if ((wpi_load_firmware(sc)) != 0) {
3119 device_printf(sc->sc_dev,
3120 "A problem occurred loading the firmware to the driver\n");
3121 return;
3122 }
3123
3124 /* At this point the firmware is up and running. If the hardware
3125 * RF switch is turned off thermal calibration will fail, though
3126 * the card is still happy to continue to accept commands, catch
3127 * this case and schedule a task to watch for it to be turned on.
3128 */
3129 wpi_mem_lock(sc);
3130 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3131 wpi_mem_unlock(sc);
3132
3133 if (!(tmp & 0x1)) {
3134 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3135 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3136 goto out;
3137 }
3138
3139 /* wait for thermal sensors to calibrate */
3140 for (ntries = 0; ntries < 1000; ntries++) {
3141 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3142 break;
3143 DELAY(10);
3144 }
3145
3146 if (ntries == 1000) {
3147 device_printf(sc->sc_dev,
3148 "timeout waiting for thermal sensors calibration\n");
3149 return;
3150 }
3151 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3152
3153 if (wpi_config(sc) != 0) {
3154 device_printf(sc->sc_dev, "device config failed\n");
3155 return;
3156 }
3157
3158 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3159 ifp->if_drv_flags |= IFF_DRV_RUNNING;
3160out:
3161 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3162}
3163
3164static void
3165wpi_init(void *arg)
3166{
3167 struct wpi_softc *sc = arg;
3168 struct ifnet *ifp = sc->sc_ifp;
3169 struct ieee80211com *ic = ifp->if_l2com;
3170
3171 WPI_LOCK(sc);
3172 wpi_init_locked(sc, 0);
3173 WPI_UNLOCK(sc);
3174
3175 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3176 ieee80211_start_all(ic); /* start all vaps */
3177}
3178
3179static void
3180wpi_stop_locked(struct wpi_softc *sc)
3181{
3182 struct ifnet *ifp = sc->sc_ifp;
3183 uint32_t tmp;
3184 int ac;
3185
3186 sc->sc_tx_timer = 0;
3187 sc->sc_scan_timer = 0;
3188 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3189 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3190 callout_stop(&sc->watchdog_to);
3191 callout_stop(&sc->calib_to);
3192
3193
3194 /* disable interrupts */
3195 WPI_WRITE(sc, WPI_MASK, 0);
3196 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3197 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3198 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3199
3200 wpi_mem_lock(sc);
3201 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3202 wpi_mem_unlock(sc);
3203
3204 /* reset all Tx rings */
3205 for (ac = 0; ac < 4; ac++)
3206 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3207 wpi_reset_tx_ring(sc, &sc->cmdq);
3208
3209 /* reset Rx ring */
3210 wpi_reset_rx_ring(sc, &sc->rxq);
3211
3212 wpi_mem_lock(sc);
3213 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3214 wpi_mem_unlock(sc);
3215
3216 DELAY(5);
3217
3218 wpi_stop_master(sc);
3219
3220 tmp = WPI_READ(sc, WPI_RESET);
3221 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3222 sc->flags &= ~WPI_FLAG_BUSY;
3223}
3224
3225static void
3226wpi_stop(struct wpi_softc *sc)
3227{
3228 WPI_LOCK(sc);
3229 wpi_stop_locked(sc);
3230 WPI_UNLOCK(sc);
3231}
3232
3233static void
3234wpi_calib_timeout(void *arg)
3235{
3236 struct wpi_softc *sc = arg;
3237 struct ifnet *ifp = sc->sc_ifp;
3238 struct ieee80211com *ic = ifp->if_l2com;
3239 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3240 int temp;
3241
3242 if (vap->iv_state != IEEE80211_S_RUN)
3243 return;
3244
3245 /* update sensor data */
3246 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3247 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3248
3249 wpi_power_calibration(sc, temp);
3250
3251 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3252}
3253
3254/*
3255 * This function is called periodically (every 60 seconds) to adjust output
3256 * power to temperature changes.
3257 */
3258static void
3259wpi_power_calibration(struct wpi_softc *sc, int temp)
3260{
3261 struct ifnet *ifp = sc->sc_ifp;
3262 struct ieee80211com *ic = ifp->if_l2com;
3263 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3264
3265 /* sanity-check read value */
3266 if (temp < -260 || temp > 25) {
3267 /* this can't be correct, ignore */
3268 DPRINTFN(WPI_DEBUG_TEMP,
3269 ("out-of-range temperature reported: %d\n", temp));
3270 return;
3271 }
3272
3273 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3274
3275 /* adjust Tx power if need be */
3276 if (abs(temp - sc->temp) <= 6)
3277 return;
3278
3279 sc->temp = temp;
3280
3281 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3282 /* just warn, too bad for the automatic calibration... */
3283 device_printf(sc->sc_dev,"could not adjust Tx power\n");
3284 }
3285}
3286
3287/**
3288 * Read the eeprom to find out what channels are valid for the given
3289 * band and update net80211 with what we find.
3290 */
3291static void
3292wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3293{
3294 struct ifnet *ifp = sc->sc_ifp;
3295 struct ieee80211com *ic = ifp->if_l2com;
3296 const struct wpi_chan_band *band = &wpi_bands[n];
3297 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3298 struct ieee80211_channel *c;
3299 int chan, i, passive;
3300
3301 wpi_read_prom_data(sc, band->addr, channels,
3302 band->nchan * sizeof (struct wpi_eeprom_chan));
3303
3304 for (i = 0; i < band->nchan; i++) {
3305 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3306 DPRINTFN(WPI_DEBUG_HW,
3307 ("Channel Not Valid: %d, band %d\n",
3308 band->chan[i],n));
3309 continue;
3310 }
3311
3312 passive = 0;
3313 chan = band->chan[i];
3314 c = &ic->ic_channels[ic->ic_nchans++];
3315
3316 /* is active scan allowed on this channel? */
3317 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3318 passive = IEEE80211_CHAN_PASSIVE;
3319 }
3320
3321 if (n == 0) { /* 2GHz band */
3322 c->ic_ieee = chan;
3323 c->ic_freq = ieee80211_ieee2mhz(chan,
3324 IEEE80211_CHAN_2GHZ);
3325 c->ic_flags = IEEE80211_CHAN_B | passive;
3326
3327 c = &ic->ic_channels[ic->ic_nchans++];
3328 c->ic_ieee = chan;
3329 c->ic_freq = ieee80211_ieee2mhz(chan,
3330 IEEE80211_CHAN_2GHZ);
3331 c->ic_flags = IEEE80211_CHAN_G | passive;
3332
3333 } else { /* 5GHz band */
3334 /*
3335 * Some 3945ABG adapters support channels 7, 8, 11
3336 * and 12 in the 2GHz *and* 5GHz bands.
3337 * Because of limitations in our net80211(9) stack,
3338 * we can't support these channels in 5GHz band.
3339 * XXX not true; just need to map to proper frequency
3340 */
3341 if (chan <= 14)
3342 continue;
3343
3344 c->ic_ieee = chan;
3345 c->ic_freq = ieee80211_ieee2mhz(chan,
3346 IEEE80211_CHAN_5GHZ);
3347 c->ic_flags = IEEE80211_CHAN_A | passive;
3348 }
3349
3350 /* save maximum allowed power for this channel */
3351 sc->maxpwr[chan] = channels[i].maxpwr;
3352
3353#if 0
3354 // XXX We can probably use this an get rid of maxpwr - ben 20070617
3355 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3356 //ic->ic_channels[chan].ic_minpower...
3357 //ic->ic_channels[chan].ic_maxregtxpower...
3358#endif
3359
3360 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3361 " passive=%d, offset %d\n", chan, c->ic_freq,
3362 channels[i].flags, sc->maxpwr[chan],
3363 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3364 ic->ic_nchans));
3365 }
3366}
3367
3368static void
3369wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3370{
3371 struct wpi_power_group *group = &sc->groups[n];
3372 struct wpi_eeprom_group rgroup;
3373 int i;
3374
3375 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3376 sizeof rgroup);
3377
3378 /* save power group information */
3379 group->chan = rgroup.chan;
3380 group->maxpwr = rgroup.maxpwr;
3381 /* temperature at which the samples were taken */
3382 group->temp = (int16_t)le16toh(rgroup.temp);
3383
3384 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3385 group->chan, group->maxpwr, group->temp));
3386
3387 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3388 group->samples[i].index = rgroup.samples[i].index;
3389 group->samples[i].power = rgroup.samples[i].power;
3390
3391 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3392 group->samples[i].index, group->samples[i].power));
3393 }
3394}
3395
3396/*
3397 * Update Tx power to match what is defined for channel `c'.
3398 */
3399static int
3400wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3401{
3402 struct ifnet *ifp = sc->sc_ifp;
3403 struct ieee80211com *ic = ifp->if_l2com;
3404 struct wpi_power_group *group;
3405 struct wpi_cmd_txpower txpower;
3406 u_int chan;
3407 int i;
3408
3409 /* get channel number */
3410 chan = ieee80211_chan2ieee(ic, c);
3411
3412 /* find the power group to which this channel belongs */
3413 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3414 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3415 if (chan <= group->chan)
3416 break;
3417 } else
3418 group = &sc->groups[0];
3419
3420 memset(&txpower, 0, sizeof txpower);
3421 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3422 txpower.channel = htole16(chan);
3423
3424 /* set Tx power for all OFDM and CCK rates */
3425 for (i = 0; i <= 11 ; i++) {
3426 /* retrieve Tx power for this channel/rate combination */
3427 int idx = wpi_get_power_index(sc, group, c,
3428 wpi_ridx_to_rate[i]);
3429
3430 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3431
3432 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3433 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3434 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3435 } else {
3436 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3437 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3438 }
3439 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3440 chan, wpi_ridx_to_rate[i], idx));
3441 }
3442
3443 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3444}
3445
3446/*
3447 * Determine Tx power index for a given channel/rate combination.
3448 * This takes into account the regulatory information from EEPROM and the
3449 * current temperature.
3450 */
3451static int
3452wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3453 struct ieee80211_channel *c, int rate)
3454{
3455/* fixed-point arithmetic division using a n-bit fractional part */
3456#define fdivround(a, b, n) \
3457 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3458
3459/* linear interpolation */
3460#define interpolate(x, x1, y1, x2, y2, n) \
3461 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3462
3463 struct ifnet *ifp = sc->sc_ifp;
3464 struct ieee80211com *ic = ifp->if_l2com;
3465 struct wpi_power_sample *sample;
3466 int pwr, idx;
3467 u_int chan;
3468
3469 /* get channel number */
3470 chan = ieee80211_chan2ieee(ic, c);
3471
3472 /* default power is group's maximum power - 3dB */
3473 pwr = group->maxpwr / 2;
3474
3475 /* decrease power for highest OFDM rates to reduce distortion */
3476 switch (rate) {
3477 case 72: /* 36Mb/s */
3478 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
3479 break;
3480 case 96: /* 48Mb/s */
3481 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3482 break;
3483 case 108: /* 54Mb/s */
3484 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3485 break;
3486 }
3487
3488 /* never exceed channel's maximum allowed Tx power */
3489 pwr = min(pwr, sc->maxpwr[chan]);
3490
3491 /* retrieve power index into gain tables from samples */
3492 for (sample = group->samples; sample < &group->samples[3]; sample++)
3493 if (pwr > sample[1].power)
3494 break;
3495 /* fixed-point linear interpolation using a 19-bit fractional part */
3496 idx = interpolate(pwr, sample[0].power, sample[0].index,
3497 sample[1].power, sample[1].index, 19);
3498
3499 /*
3500 * Adjust power index based on current temperature
3501 * - if colder than factory-calibrated: decreate output power
3502 * - if warmer than factory-calibrated: increase output power
3503 */
3504 idx -= (sc->temp - group->temp) * 11 / 100;
3505
3506 /* decrease power for CCK rates (-5dB) */
3507 if (!WPI_RATE_IS_OFDM(rate))
3508 idx += 10;
3509
3510 /* keep power index in a valid range */
3511 if (idx < 0)
3512 return 0;
3513 if (idx > WPI_MAX_PWR_INDEX)
3514 return WPI_MAX_PWR_INDEX;
3515 return idx;
3516
3517#undef interpolate
3518#undef fdivround
3519}
3520
3521/**
3522 * Called by net80211 framework to indicate that a scan
3523 * is starting. This function doesn't actually do the scan,
3524 * wpi_scan_curchan starts things off. This function is more
3525 * of an early warning from the framework we should get ready
3526 * for the scan.
3527 */
3528static void
3529wpi_scan_start(struct ieee80211com *ic)
3530{
3531 struct ifnet *ifp = ic->ic_ifp;
3532 struct wpi_softc *sc = ifp->if_softc;
3533
3534 WPI_LOCK(sc);
3535 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3536 WPI_UNLOCK(sc);
3537}
3538
3539/**
3540 * Called by the net80211 framework, indicates that the
3541 * scan has ended. If there is a scan in progress on the card
3542 * then it should be aborted.
3543 */
3544static void
3545wpi_scan_end(struct ieee80211com *ic)
3546{
3547 /* XXX ignore */
3548}
3549
3550/**
3551 * Called by the net80211 framework to indicate to the driver
3552 * that the channel should be changed
3553 */
3554static void
3555wpi_set_channel(struct ieee80211com *ic)
3556{
3557 struct ifnet *ifp = ic->ic_ifp;
3558 struct wpi_softc *sc = ifp->if_softc;
3559 int error;
3560
3561 /*
3562 * Only need to set the channel in Monitor mode. AP scanning and auth
3563 * are already taken care of by their respective firmware commands.
3564 */
3565 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3566 WPI_LOCK(sc);
3567 error = wpi_config(sc);
3568 WPI_UNLOCK(sc);
3569 if (error != 0)
3570 device_printf(sc->sc_dev,
3571 "error %d settting channel\n", error);
3572 }
3573}
3574
3575/**
3576 * Called by net80211 to indicate that we need to scan the current
3577 * channel. The channel is previously be set via the wpi_set_channel
3578 * callback.
3579 */
3580static void
3581wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3582{
3583 struct ieee80211vap *vap = ss->ss_vap;
3584 struct ifnet *ifp = vap->iv_ic->ic_ifp;
3585 struct wpi_softc *sc = ifp->if_softc;
3586
3587 WPI_LOCK(sc);
3588 if (wpi_scan(sc))
3589 ieee80211_cancel_scan(vap);
3590 WPI_UNLOCK(sc);
3591}
3592
3593/**
3594 * Called by the net80211 framework to indicate
3595 * the minimum dwell time has been met, terminate the scan.
3596 * We don't actually terminate the scan as the firmware will notify
3597 * us when it's finished and we have no way to interrupt it.
3598 */
3599static void
3600wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3601{
3602 /* NB: don't try to abort scan; wait for firmware to finish */
3603}
3604
3605static void
3606wpi_hwreset(void *arg, int pending)
3607{
3608 struct wpi_softc *sc = arg;
3609
3610 WPI_LOCK(sc);
3611 wpi_init_locked(sc, 0);
3612 WPI_UNLOCK(sc);
3613}
3614
3615static void
3616wpi_rfreset(void *arg, int pending)
3617{
3618 struct wpi_softc *sc = arg;
3619
3620 WPI_LOCK(sc);
3621 wpi_rfkill_resume(sc);
3622 WPI_UNLOCK(sc);
3623}
3624
3625/*
3626 * Allocate DMA-safe memory for firmware transfer.
3627 */
3628static int
3629wpi_alloc_fwmem(struct wpi_softc *sc)
3630{
3631 /* allocate enough contiguous space to store text and data */
3632 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3633 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3634 BUS_DMA_NOWAIT);
3635}
3636
3637static void
3638wpi_free_fwmem(struct wpi_softc *sc)
3639{
3640 wpi_dma_contig_free(&sc->fw_dma);
3641}
3642
3643/**
3644 * Called every second, wpi_watchdog used by the watch dog timer
3645 * to check that the card is still alive
3646 */
3647static void
3648wpi_watchdog(void *arg)
3649{
3650 struct wpi_softc *sc = arg;
3651 struct ifnet *ifp = sc->sc_ifp;
3652 struct ieee80211com *ic = ifp->if_l2com;
3653 uint32_t tmp;
3654
3655 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3656
3657 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3658 /* No need to lock firmware memory */
3659 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3660
3661 if ((tmp & 0x1) == 0) {
3662 /* Radio kill switch is still off */
3663 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3664 return;
3665 }
3666
3667 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3668 ieee80211_runtask(ic, &sc->sc_radiotask);
3669 return;
3670 }
3671
3672 if (sc->sc_tx_timer > 0) {
3673 if (--sc->sc_tx_timer == 0) {
3674 device_printf(sc->sc_dev,"device timeout\n");
3675 ifp->if_oerrors++;
3676 ieee80211_runtask(ic, &sc->sc_restarttask);
3677 }
3678 }
3679 if (sc->sc_scan_timer > 0) {
3680 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3681 if (--sc->sc_scan_timer == 0 && vap != NULL) {
3682 device_printf(sc->sc_dev,"scan timeout\n");
3683 ieee80211_cancel_scan(vap);
3684 ieee80211_runtask(ic, &sc->sc_restarttask);
3685 }
3686 }
3687
3688 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3689 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3690}
3691
3692#ifdef WPI_DEBUG
3693static const char *wpi_cmd_str(int cmd)
3694{
3695 switch (cmd) {
3696 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD";
3697 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
3698 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
3699 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME";
3700 case WPI_CMD_TSF: return "WPI_CMD_TSF";
3701 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE";
3702 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA";
3703 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
3704 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED";
3705 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3706 case WPI_CMD_SCAN: return "WPI_CMD_SCAN";
3707 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3708 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER";
3709 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
3710
3711 default:
3712 KASSERT(1, ("Unknown Command: %d\n", cmd));
3713 return "UNKNOWN CMD"; /* Make the compiler happy */
3714 }
3715}
3716#endif
3717
3718MODULE_DEPEND(wpi, pci, 1, 1, 1);
3719MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3720MODULE_DEPEND(wpi, firmware, 1, 1, 1);
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include <sys/param.h>
63#include <sys/sysctl.h>
64#include <sys/sockio.h>
65#include <sys/mbuf.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/systm.h>
69#include <sys/malloc.h>
70#include <sys/queue.h>
71#include <sys/taskqueue.h>
72#include <sys/module.h>
73#include <sys/bus.h>
74#include <sys/endian.h>
75#include <sys/linker.h>
76#include <sys/firmware.h>
77
78#include <machine/bus.h>
79#include <machine/resource.h>
80#include <sys/rman.h>
81
82#include <dev/pci/pcireg.h>
83#include <dev/pci/pcivar.h>
84
85#include <net/bpf.h>
86#include <net/if.h>
87#include <net/if_arp.h>
88#include <net/ethernet.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_types.h>
92
93#include <net80211/ieee80211_var.h>
94#include <net80211/ieee80211_radiotap.h>
95#include <net80211/ieee80211_regdomain.h>
96#include <net80211/ieee80211_ratectl.h>
97
98#include <netinet/in.h>
99#include <netinet/in_systm.h>
100#include <netinet/in_var.h>
101#include <netinet/ip.h>
102#include <netinet/if_ether.h>
103
104#include <dev/wpi/if_wpireg.h>
105#include <dev/wpi/if_wpivar.h>
106
107#define WPI_DEBUG
108
109#ifdef WPI_DEBUG
110#define DPRINTF(x) do { if (wpi_debug != 0) printf x; } while (0)
111#define DPRINTFN(n, x) do { if (wpi_debug & n) printf x; } while (0)
112#define WPI_DEBUG_SET (wpi_debug != 0)
113
114enum {
115 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */
116 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */
117 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/
118 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */
119 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/
120 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */
121 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */
122 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */
123 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */
124 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */
125 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */
126 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */
127 WPI_DEBUG_ANY = 0xffffffff
128};
129
130static int wpi_debug = 0;
131SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
132TUNABLE_INT("debug.wpi", &wpi_debug);
133
134#else
135#define DPRINTF(x)
136#define DPRINTFN(n, x)
137#define WPI_DEBUG_SET 0
138#endif
139
140struct wpi_ident {
141 uint16_t vendor;
142 uint16_t device;
143 uint16_t subdevice;
144 const char *name;
145};
146
147static const struct wpi_ident wpi_ident_table[] = {
148 /* The below entries support ABG regardless of the subid */
149 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" },
150 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" },
151 /* The below entries only support BG */
152 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" },
153 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" },
154 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" },
155 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" },
156 { 0, 0, 0, NULL }
157};
158
159static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
160 const char name[IFNAMSIZ], int unit, int opmode,
161 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
162 const uint8_t mac[IEEE80211_ADDR_LEN]);
163static void wpi_vap_delete(struct ieee80211vap *);
164static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
165 void **, bus_size_t, bus_size_t, int);
166static void wpi_dma_contig_free(struct wpi_dma_info *);
167static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
168static int wpi_alloc_shared(struct wpi_softc *);
169static void wpi_free_shared(struct wpi_softc *);
170static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
174 int, int);
175static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
177static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
178static void wpi_mem_lock(struct wpi_softc *);
179static void wpi_mem_unlock(struct wpi_softc *);
180static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
181static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
182static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
183 const uint32_t *, int);
184static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
185static int wpi_alloc_fwmem(struct wpi_softc *);
186static void wpi_free_fwmem(struct wpi_softc *);
187static int wpi_load_firmware(struct wpi_softc *);
188static void wpi_unload_firmware(struct wpi_softc *);
189static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
190static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
191 struct wpi_rx_data *);
192static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
193static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
194static void wpi_notif_intr(struct wpi_softc *);
195static void wpi_intr(void *);
196static uint8_t wpi_plcp_signal(int);
197static void wpi_watchdog(void *);
198static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
199 struct ieee80211_node *, int);
200static void wpi_start(struct ifnet *);
201static void wpi_start_locked(struct ifnet *);
202static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
203 const struct ieee80211_bpf_params *);
204static void wpi_scan_start(struct ieee80211com *);
205static void wpi_scan_end(struct ieee80211com *);
206static void wpi_set_channel(struct ieee80211com *);
207static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
208static void wpi_scan_mindwell(struct ieee80211_scan_state *);
209static int wpi_ioctl(struct ifnet *, u_long, caddr_t);
210static void wpi_read_eeprom(struct wpi_softc *,
211 uint8_t macaddr[IEEE80211_ADDR_LEN]);
212static void wpi_read_eeprom_channels(struct wpi_softc *, int);
213static void wpi_read_eeprom_group(struct wpi_softc *, int);
214static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
215static int wpi_wme_update(struct ieee80211com *);
216static int wpi_mrr_setup(struct wpi_softc *);
217static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
218static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
219#if 0
220static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
221#endif
222static int wpi_auth(struct wpi_softc *, struct ieee80211vap *);
223static int wpi_run(struct wpi_softc *, struct ieee80211vap *);
224static int wpi_scan(struct wpi_softc *);
225static int wpi_config(struct wpi_softc *);
226static void wpi_stop_master(struct wpi_softc *);
227static int wpi_power_up(struct wpi_softc *);
228static int wpi_reset(struct wpi_softc *);
229static void wpi_hwreset(void *, int);
230static void wpi_rfreset(void *, int);
231static void wpi_hw_config(struct wpi_softc *);
232static void wpi_init(void *);
233static void wpi_init_locked(struct wpi_softc *, int);
234static void wpi_stop(struct wpi_softc *);
235static void wpi_stop_locked(struct wpi_softc *);
236
237static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
238 int);
239static void wpi_calib_timeout(void *);
240static void wpi_power_calibration(struct wpi_softc *, int);
241static int wpi_get_power_index(struct wpi_softc *,
242 struct wpi_power_group *, struct ieee80211_channel *, int);
243#ifdef WPI_DEBUG
244static const char *wpi_cmd_str(int);
245#endif
246static int wpi_probe(device_t);
247static int wpi_attach(device_t);
248static int wpi_detach(device_t);
249static int wpi_shutdown(device_t);
250static int wpi_suspend(device_t);
251static int wpi_resume(device_t);
252
253
254static device_method_t wpi_methods[] = {
255 /* Device interface */
256 DEVMETHOD(device_probe, wpi_probe),
257 DEVMETHOD(device_attach, wpi_attach),
258 DEVMETHOD(device_detach, wpi_detach),
259 DEVMETHOD(device_shutdown, wpi_shutdown),
260 DEVMETHOD(device_suspend, wpi_suspend),
261 DEVMETHOD(device_resume, wpi_resume),
262
263 { 0, 0 }
264};
265
266static driver_t wpi_driver = {
267 "wpi",
268 wpi_methods,
269 sizeof (struct wpi_softc)
270};
271
272static devclass_t wpi_devclass;
273
274DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
275
276static const uint8_t wpi_ridx_to_plcp[] = {
277 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
278 /* R1-R4 (ral/ural is R4-R1) */
279 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
280 /* CCK: device-dependent */
281 10, 20, 55, 110
282};
283static const uint8_t wpi_ridx_to_rate[] = {
284 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
285 2, 4, 11, 22 /*CCK */
286};
287
288
289static int
290wpi_probe(device_t dev)
291{
292 const struct wpi_ident *ident;
293
294 for (ident = wpi_ident_table; ident->name != NULL; ident++) {
295 if (pci_get_vendor(dev) == ident->vendor &&
296 pci_get_device(dev) == ident->device) {
297 device_set_desc(dev, ident->name);
298 return 0;
299 }
300 }
301 return ENXIO;
302}
303
304/**
305 * Load the firmare image from disk to the allocated dma buffer.
306 * we also maintain the reference to the firmware pointer as there
307 * is times where we may need to reload the firmware but we are not
308 * in a context that can access the filesystem (ie taskq cause by restart)
309 *
310 * @return 0 on success, an errno on failure
311 */
312static int
313wpi_load_firmware(struct wpi_softc *sc)
314{
315 const struct firmware *fp;
316 struct wpi_dma_info *dma = &sc->fw_dma;
317 const struct wpi_firmware_hdr *hdr;
318 const uint8_t *itext, *idata, *rtext, *rdata, *btext;
319 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
320 int error;
321
322 DPRINTFN(WPI_DEBUG_FIRMWARE,
323 ("Attempting Loading Firmware from wpi_fw module\n"));
324
325 WPI_UNLOCK(sc);
326
327 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
328 device_printf(sc->sc_dev,
329 "could not load firmware image 'wpifw'\n");
330 error = ENOENT;
331 WPI_LOCK(sc);
332 goto fail;
333 }
334
335 fp = sc->fw_fp;
336
337 WPI_LOCK(sc);
338
339 /* Validate the firmware is minimum a particular version */
340 if (fp->version < WPI_FW_MINVERSION) {
341 device_printf(sc->sc_dev,
342 "firmware version is too old. Need %d, got %d\n",
343 WPI_FW_MINVERSION,
344 fp->version);
345 error = ENXIO;
346 goto fail;
347 }
348
349 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
350 device_printf(sc->sc_dev,
351 "firmware file too short: %zu bytes\n", fp->datasize);
352 error = ENXIO;
353 goto fail;
354 }
355
356 hdr = (const struct wpi_firmware_hdr *)fp->data;
357
358 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW |
359 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
360
361 rtextsz = le32toh(hdr->rtextsz);
362 rdatasz = le32toh(hdr->rdatasz);
363 itextsz = le32toh(hdr->itextsz);
364 idatasz = le32toh(hdr->idatasz);
365 btextsz = le32toh(hdr->btextsz);
366
367 /* check that all firmware segments are present */
368 if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
369 rtextsz + rdatasz + itextsz + idatasz + btextsz) {
370 device_printf(sc->sc_dev,
371 "firmware file too short: %zu bytes\n", fp->datasize);
372 error = ENXIO; /* XXX appropriate error code? */
373 goto fail;
374 }
375
376 /* get pointers to firmware segments */
377 rtext = (const uint8_t *)(hdr + 1);
378 rdata = rtext + rtextsz;
379 itext = rdata + rdatasz;
380 idata = itext + itextsz;
381 btext = idata + idatasz;
382
383 DPRINTFN(WPI_DEBUG_FIRMWARE,
384 ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
385 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
386 (le32toh(hdr->version) & 0xff000000) >> 24,
387 (le32toh(hdr->version) & 0x00ff0000) >> 16,
388 (le32toh(hdr->version) & 0x0000ffff),
389 rtextsz, rdatasz,
390 itextsz, idatasz, btextsz));
391
392 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
393 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
394 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
395 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
396 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
397
398 /* sanity checks */
399 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
400 rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
401 itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
402 idatasz > WPI_FW_INIT_DATA_MAXSZ ||
403 btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
404 (btextsz & 3) != 0) {
405 device_printf(sc->sc_dev, "firmware invalid\n");
406 error = EINVAL;
407 goto fail;
408 }
409
410 /* copy initialization images into pre-allocated DMA-safe memory */
411 memcpy(dma->vaddr, idata, idatasz);
412 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
413
414 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
415
416 /* tell adapter where to find initialization images */
417 wpi_mem_lock(sc);
418 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
419 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
420 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
421 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
422 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
423 wpi_mem_unlock(sc);
424
425 /* load firmware boot code */
426 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
427 device_printf(sc->sc_dev, "Failed to load microcode\n");
428 goto fail;
429 }
430
431 /* now press "execute" */
432 WPI_WRITE(sc, WPI_RESET, 0);
433
434 /* wait at most one second for the first alive notification */
435 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
436 device_printf(sc->sc_dev,
437 "timeout waiting for adapter to initialize\n");
438 goto fail;
439 }
440
441 /* copy runtime images into pre-allocated DMA-sage memory */
442 memcpy(dma->vaddr, rdata, rdatasz);
443 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
444 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
445
446 /* tell adapter where to find runtime images */
447 wpi_mem_lock(sc);
448 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
449 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
450 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
451 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
452 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
453 wpi_mem_unlock(sc);
454
455 /* wait at most one second for the first alive notification */
456 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
457 device_printf(sc->sc_dev,
458 "timeout waiting for adapter to initialize2\n");
459 goto fail;
460 }
461
462 DPRINTFN(WPI_DEBUG_FIRMWARE,
463 ("Firmware loaded to driver successfully\n"));
464 return error;
465fail:
466 wpi_unload_firmware(sc);
467 return error;
468}
469
470/**
471 * Free the referenced firmware image
472 */
473static void
474wpi_unload_firmware(struct wpi_softc *sc)
475{
476
477 if (sc->fw_fp) {
478 WPI_UNLOCK(sc);
479 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
480 WPI_LOCK(sc);
481 sc->fw_fp = NULL;
482 }
483}
484
485static int
486wpi_attach(device_t dev)
487{
488 struct wpi_softc *sc = device_get_softc(dev);
489 struct ifnet *ifp;
490 struct ieee80211com *ic;
491 int ac, error, supportsa = 1;
492 uint32_t tmp;
493 const struct wpi_ident *ident;
494 uint8_t macaddr[IEEE80211_ADDR_LEN];
495
496 sc->sc_dev = dev;
497
498 if (bootverbose || WPI_DEBUG_SET)
499 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
500
501 /*
502 * Some card's only support 802.11b/g not a, check to see if
503 * this is one such card. A 0x0 in the subdevice table indicates
504 * the entire subdevice range is to be ignored.
505 */
506 for (ident = wpi_ident_table; ident->name != NULL; ident++) {
507 if (ident->subdevice &&
508 pci_get_subdevice(dev) == ident->subdevice) {
509 supportsa = 0;
510 break;
511 }
512 }
513
514 /* Create the tasks that can be queued */
515 TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
516 TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
517
518 WPI_LOCK_INIT(sc);
519
520 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
521 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
522
523 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
524 device_printf(dev, "chip is in D%d power mode "
525 "-- setting to D0\n", pci_get_powerstate(dev));
526 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
527 }
528
529 /* disable the retry timeout register */
530 pci_write_config(dev, 0x41, 0, 1);
531
532 /* enable bus-mastering */
533 pci_enable_busmaster(dev);
534
535 sc->mem_rid = PCIR_BAR(0);
536 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
537 RF_ACTIVE);
538 if (sc->mem == NULL) {
539 device_printf(dev, "could not allocate memory resource\n");
540 error = ENOMEM;
541 goto fail;
542 }
543
544 sc->sc_st = rman_get_bustag(sc->mem);
545 sc->sc_sh = rman_get_bushandle(sc->mem);
546
547 sc->irq_rid = 0;
548 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
549 RF_ACTIVE | RF_SHAREABLE);
550 if (sc->irq == NULL) {
551 device_printf(dev, "could not allocate interrupt resource\n");
552 error = ENOMEM;
553 goto fail;
554 }
555
556 /*
557 * Allocate DMA memory for firmware transfers.
558 */
559 if ((error = wpi_alloc_fwmem(sc)) != 0) {
560 printf(": could not allocate firmware memory\n");
561 error = ENOMEM;
562 goto fail;
563 }
564
565 /*
566 * Put adapter into a known state.
567 */
568 if ((error = wpi_reset(sc)) != 0) {
569 device_printf(dev, "could not reset adapter\n");
570 goto fail;
571 }
572
573 wpi_mem_lock(sc);
574 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
575 if (bootverbose || WPI_DEBUG_SET)
576 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
577
578 wpi_mem_unlock(sc);
579
580 /* Allocate shared page */
581 if ((error = wpi_alloc_shared(sc)) != 0) {
582 device_printf(dev, "could not allocate shared page\n");
583 goto fail;
584 }
585
586 /* tx data queues - 4 for QoS purposes */
587 for (ac = 0; ac < WME_NUM_AC; ac++) {
588 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
589 if (error != 0) {
590 device_printf(dev, "could not allocate Tx ring %d\n",ac);
591 goto fail;
592 }
593 }
594
595 /* command queue to talk to the card's firmware */
596 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
597 if (error != 0) {
598 device_printf(dev, "could not allocate command ring\n");
599 goto fail;
600 }
601
602 /* receive data queue */
603 error = wpi_alloc_rx_ring(sc, &sc->rxq);
604 if (error != 0) {
605 device_printf(dev, "could not allocate Rx ring\n");
606 goto fail;
607 }
608
609 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
610 if (ifp == NULL) {
611 device_printf(dev, "can not if_alloc()\n");
612 error = ENOMEM;
613 goto fail;
614 }
615 ic = ifp->if_l2com;
616
617 ic->ic_ifp = ifp;
618 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
619 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
620
621 /* set device capabilities */
622 ic->ic_caps =
623 IEEE80211_C_STA /* station mode supported */
624 | IEEE80211_C_MONITOR /* monitor mode supported */
625 | IEEE80211_C_TXPMGT /* tx power management */
626 | IEEE80211_C_SHSLOT /* short slot time supported */
627 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
628 | IEEE80211_C_WPA /* 802.11i */
629/* XXX looks like WME is partly supported? */
630#if 0
631 | IEEE80211_C_IBSS /* IBSS mode support */
632 | IEEE80211_C_BGSCAN /* capable of bg scanning */
633 | IEEE80211_C_WME /* 802.11e */
634 | IEEE80211_C_HOSTAP /* Host access point mode */
635#endif
636 ;
637
638 /*
639 * Read in the eeprom and also setup the channels for
640 * net80211. We don't set the rates as net80211 does this for us
641 */
642 wpi_read_eeprom(sc, macaddr);
643
644 if (bootverbose || WPI_DEBUG_SET) {
645 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
646 device_printf(sc->sc_dev, "Hardware Type: %c\n",
647 sc->type > 1 ? 'B': '?');
648 device_printf(sc->sc_dev, "Hardware Revision: %c\n",
649 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
650 device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
651 supportsa ? "does" : "does not");
652
653 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
654 what sc->rev really represents - benjsc 20070615 */
655 }
656
657 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
658 ifp->if_softc = sc;
659 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
660 ifp->if_init = wpi_init;
661 ifp->if_ioctl = wpi_ioctl;
662 ifp->if_start = wpi_start;
663 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
664 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
665 IFQ_SET_READY(&ifp->if_snd);
666
667 ieee80211_ifattach(ic, macaddr);
668 /* override default methods */
669 ic->ic_raw_xmit = wpi_raw_xmit;
670 ic->ic_wme.wme_update = wpi_wme_update;
671 ic->ic_scan_start = wpi_scan_start;
672 ic->ic_scan_end = wpi_scan_end;
673 ic->ic_set_channel = wpi_set_channel;
674 ic->ic_scan_curchan = wpi_scan_curchan;
675 ic->ic_scan_mindwell = wpi_scan_mindwell;
676
677 ic->ic_vap_create = wpi_vap_create;
678 ic->ic_vap_delete = wpi_vap_delete;
679
680 ieee80211_radiotap_attach(ic,
681 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
682 WPI_TX_RADIOTAP_PRESENT,
683 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
684 WPI_RX_RADIOTAP_PRESENT);
685
686 /*
687 * Hook our interrupt after all initialization is complete.
688 */
689 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
690 NULL, wpi_intr, sc, &sc->sc_ih);
691 if (error != 0) {
692 device_printf(dev, "could not set up interrupt\n");
693 goto fail;
694 }
695
696 if (bootverbose)
697 ieee80211_announce(ic);
698#ifdef XXX_DEBUG
699 ieee80211_announce_channels(ic);
700#endif
701 return 0;
702
703fail: wpi_detach(dev);
704 return ENXIO;
705}
706
707static int
708wpi_detach(device_t dev)
709{
710 struct wpi_softc *sc = device_get_softc(dev);
711 struct ifnet *ifp = sc->sc_ifp;
712 struct ieee80211com *ic;
713 int ac;
714
715 if (ifp != NULL) {
716 ic = ifp->if_l2com;
717
718 ieee80211_draintask(ic, &sc->sc_restarttask);
719 ieee80211_draintask(ic, &sc->sc_radiotask);
720 wpi_stop(sc);
721 callout_drain(&sc->watchdog_to);
722 callout_drain(&sc->calib_to);
723 ieee80211_ifdetach(ic);
724 }
725
726 WPI_LOCK(sc);
727 if (sc->txq[0].data_dmat) {
728 for (ac = 0; ac < WME_NUM_AC; ac++)
729 wpi_free_tx_ring(sc, &sc->txq[ac]);
730
731 wpi_free_tx_ring(sc, &sc->cmdq);
732 wpi_free_rx_ring(sc, &sc->rxq);
733 wpi_free_shared(sc);
734 }
735
736 if (sc->fw_fp != NULL) {
737 wpi_unload_firmware(sc);
738 }
739
740 if (sc->fw_dma.tag)
741 wpi_free_fwmem(sc);
742 WPI_UNLOCK(sc);
743
744 if (sc->irq != NULL) {
745 bus_teardown_intr(dev, sc->irq, sc->sc_ih);
746 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
747 }
748
749 if (sc->mem != NULL)
750 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
751
752 if (ifp != NULL)
753 if_free(ifp);
754
755 WPI_LOCK_DESTROY(sc);
756
757 return 0;
758}
759
760static struct ieee80211vap *
761wpi_vap_create(struct ieee80211com *ic,
762 const char name[IFNAMSIZ], int unit, int opmode, int flags,
763 const uint8_t bssid[IEEE80211_ADDR_LEN],
764 const uint8_t mac[IEEE80211_ADDR_LEN])
765{
766 struct wpi_vap *wvp;
767 struct ieee80211vap *vap;
768
769 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
770 return NULL;
771 wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
772 M_80211_VAP, M_NOWAIT | M_ZERO);
773 if (wvp == NULL)
774 return NULL;
775 vap = &wvp->vap;
776 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
777 /* override with driver methods */
778 wvp->newstate = vap->iv_newstate;
779 vap->iv_newstate = wpi_newstate;
780
781 ieee80211_ratectl_init(vap);
782 /* complete setup */
783 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
784 ic->ic_opmode = opmode;
785 return vap;
786}
787
788static void
789wpi_vap_delete(struct ieee80211vap *vap)
790{
791 struct wpi_vap *wvp = WPI_VAP(vap);
792
793 ieee80211_ratectl_deinit(vap);
794 ieee80211_vap_detach(vap);
795 free(wvp, M_80211_VAP);
796}
797
798static void
799wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
800{
801 if (error != 0)
802 return;
803
804 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
805
806 *(bus_addr_t *)arg = segs[0].ds_addr;
807}
808
809/*
810 * Allocates a contiguous block of dma memory of the requested size and
811 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
812 * allocations greater than 4096 may fail. Hence if the requested alignment is
813 * greater we allocate 'alignment' size extra memory and shift the vaddr and
814 * paddr after the dma load. This bypasses the problem at the cost of a little
815 * more memory.
816 */
817static int
818wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
819 void **kvap, bus_size_t size, bus_size_t alignment, int flags)
820{
821 int error;
822 bus_size_t align;
823 bus_size_t reqsize;
824
825 DPRINTFN(WPI_DEBUG_DMA,
826 ("Size: %zd - alignment %zd\n", size, alignment));
827
828 dma->size = size;
829 dma->tag = NULL;
830
831 if (alignment > 4096) {
832 align = PAGE_SIZE;
833 reqsize = size + alignment;
834 } else {
835 align = alignment;
836 reqsize = size;
837 }
838 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
839 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
840 NULL, NULL, reqsize,
841 1, reqsize, flags,
842 NULL, NULL, &dma->tag);
843 if (error != 0) {
844 device_printf(sc->sc_dev,
845 "could not create shared page DMA tag\n");
846 goto fail;
847 }
848 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
849 flags | BUS_DMA_ZERO, &dma->map);
850 if (error != 0) {
851 device_printf(sc->sc_dev,
852 "could not allocate shared page DMA memory\n");
853 goto fail;
854 }
855
856 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
857 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags);
858
859 /* Save the original pointers so we can free all the memory */
860 dma->paddr = dma->paddr_start;
861 dma->vaddr = dma->vaddr_start;
862
863 /*
864 * Check the alignment and increment by 4096 until we get the
865 * requested alignment. Fail if can't obtain the alignment
866 * we requested.
867 */
868 if ((dma->paddr & (alignment -1 )) != 0) {
869 int i;
870
871 for (i = 0; i < alignment / 4096; i++) {
872 if ((dma->paddr & (alignment - 1 )) == 0)
873 break;
874 dma->paddr += 4096;
875 dma->vaddr += 4096;
876 }
877 if (i == alignment / 4096) {
878 device_printf(sc->sc_dev,
879 "alignment requirement was not satisfied\n");
880 goto fail;
881 }
882 }
883
884 if (error != 0) {
885 device_printf(sc->sc_dev,
886 "could not load shared page DMA map\n");
887 goto fail;
888 }
889
890 if (kvap != NULL)
891 *kvap = dma->vaddr;
892
893 return 0;
894
895fail:
896 wpi_dma_contig_free(dma);
897 return error;
898}
899
900static void
901wpi_dma_contig_free(struct wpi_dma_info *dma)
902{
903 if (dma->tag) {
904 if (dma->map != NULL) {
905 if (dma->paddr_start != 0) {
906 bus_dmamap_sync(dma->tag, dma->map,
907 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
908 bus_dmamap_unload(dma->tag, dma->map);
909 }
910 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
911 }
912 bus_dma_tag_destroy(dma->tag);
913 }
914}
915
916/*
917 * Allocate a shared page between host and NIC.
918 */
919static int
920wpi_alloc_shared(struct wpi_softc *sc)
921{
922 int error;
923
924 error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
925 (void **)&sc->shared, sizeof (struct wpi_shared),
926 PAGE_SIZE,
927 BUS_DMA_NOWAIT);
928
929 if (error != 0) {
930 device_printf(sc->sc_dev,
931 "could not allocate shared area DMA memory\n");
932 }
933
934 return error;
935}
936
937static void
938wpi_free_shared(struct wpi_softc *sc)
939{
940 wpi_dma_contig_free(&sc->shared_dma);
941}
942
943static int
944wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
945{
946
947 int i, error;
948
949 ring->cur = 0;
950
951 error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
952 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
953 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
954
955 if (error != 0) {
956 device_printf(sc->sc_dev,
957 "%s: could not allocate rx ring DMA memory, error %d\n",
958 __func__, error);
959 goto fail;
960 }
961
962 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
963 BUS_SPACE_MAXADDR_32BIT,
964 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
965 MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
966 if (error != 0) {
967 device_printf(sc->sc_dev,
968 "%s: bus_dma_tag_create_failed, error %d\n",
969 __func__, error);
970 goto fail;
971 }
972
973 /*
974 * Setup Rx buffers.
975 */
976 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
977 struct wpi_rx_data *data = &ring->data[i];
978 struct mbuf *m;
979 bus_addr_t paddr;
980
981 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
982 if (error != 0) {
983 device_printf(sc->sc_dev,
984 "%s: bus_dmamap_create failed, error %d\n",
985 __func__, error);
986 goto fail;
987 }
988 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
989 if (m == NULL) {
990 device_printf(sc->sc_dev,
991 "%s: could not allocate rx mbuf\n", __func__);
992 error = ENOMEM;
993 goto fail;
994 }
995 /* map page */
996 error = bus_dmamap_load(ring->data_dmat, data->map,
997 mtod(m, caddr_t), MJUMPAGESIZE,
998 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
999 if (error != 0 && error != EFBIG) {
1000 device_printf(sc->sc_dev,
1001 "%s: bus_dmamap_load failed, error %d\n",
1002 __func__, error);
1003 m_freem(m);
1004 error = ENOMEM; /* XXX unique code */
1005 goto fail;
1006 }
1007 bus_dmamap_sync(ring->data_dmat, data->map,
1008 BUS_DMASYNC_PREWRITE);
1009
1010 data->m = m;
1011 ring->desc[i] = htole32(paddr);
1012 }
1013 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1014 BUS_DMASYNC_PREWRITE);
1015 return 0;
1016fail:
1017 wpi_free_rx_ring(sc, ring);
1018 return error;
1019}
1020
1021static void
1022wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1023{
1024 int ntries;
1025
1026 wpi_mem_lock(sc);
1027
1028 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1029
1030 for (ntries = 0; ntries < 100; ntries++) {
1031 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1032 break;
1033 DELAY(10);
1034 }
1035
1036 wpi_mem_unlock(sc);
1037
1038#ifdef WPI_DEBUG
1039 if (ntries == 100 && wpi_debug > 0)
1040 device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1041#endif
1042
1043 ring->cur = 0;
1044}
1045
1046static void
1047wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1048{
1049 int i;
1050
1051 wpi_dma_contig_free(&ring->desc_dma);
1052
1053 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1054 struct wpi_rx_data *data = &ring->data[i];
1055
1056 if (data->m != NULL) {
1057 bus_dmamap_sync(ring->data_dmat, data->map,
1058 BUS_DMASYNC_POSTREAD);
1059 bus_dmamap_unload(ring->data_dmat, data->map);
1060 m_freem(data->m);
1061 }
1062 if (data->map != NULL)
1063 bus_dmamap_destroy(ring->data_dmat, data->map);
1064 }
1065}
1066
1067static int
1068wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1069 int qid)
1070{
1071 struct wpi_tx_data *data;
1072 int i, error;
1073
1074 ring->qid = qid;
1075 ring->count = count;
1076 ring->queued = 0;
1077 ring->cur = 0;
1078 ring->data = NULL;
1079
1080 error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1081 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1082 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1083
1084 if (error != 0) {
1085 device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1086 goto fail;
1087 }
1088
1089 /* update shared page with ring's base address */
1090 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1091
1092 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1093 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1094 BUS_DMA_NOWAIT);
1095
1096 if (error != 0) {
1097 device_printf(sc->sc_dev,
1098 "could not allocate tx command DMA memory\n");
1099 goto fail;
1100 }
1101
1102 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1103 M_NOWAIT | M_ZERO);
1104 if (ring->data == NULL) {
1105 device_printf(sc->sc_dev,
1106 "could not allocate tx data slots\n");
1107 goto fail;
1108 }
1109
1110 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1111 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1112 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1113 &ring->data_dmat);
1114 if (error != 0) {
1115 device_printf(sc->sc_dev, "could not create data DMA tag\n");
1116 goto fail;
1117 }
1118
1119 for (i = 0; i < count; i++) {
1120 data = &ring->data[i];
1121
1122 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1123 if (error != 0) {
1124 device_printf(sc->sc_dev,
1125 "could not create tx buf DMA map\n");
1126 goto fail;
1127 }
1128 bus_dmamap_sync(ring->data_dmat, data->map,
1129 BUS_DMASYNC_PREWRITE);
1130 }
1131
1132 return 0;
1133
1134fail:
1135 wpi_free_tx_ring(sc, ring);
1136 return error;
1137}
1138
1139static void
1140wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1141{
1142 struct wpi_tx_data *data;
1143 int i, ntries;
1144
1145 wpi_mem_lock(sc);
1146
1147 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1148 for (ntries = 0; ntries < 100; ntries++) {
1149 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1150 break;
1151 DELAY(10);
1152 }
1153#ifdef WPI_DEBUG
1154 if (ntries == 100 && wpi_debug > 0)
1155 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1156 ring->qid);
1157#endif
1158 wpi_mem_unlock(sc);
1159
1160 for (i = 0; i < ring->count; i++) {
1161 data = &ring->data[i];
1162
1163 if (data->m != NULL) {
1164 bus_dmamap_unload(ring->data_dmat, data->map);
1165 m_freem(data->m);
1166 data->m = NULL;
1167 }
1168 }
1169
1170 ring->queued = 0;
1171 ring->cur = 0;
1172}
1173
1174static void
1175wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1176{
1177 struct wpi_tx_data *data;
1178 int i;
1179
1180 wpi_dma_contig_free(&ring->desc_dma);
1181 wpi_dma_contig_free(&ring->cmd_dma);
1182
1183 if (ring->data != NULL) {
1184 for (i = 0; i < ring->count; i++) {
1185 data = &ring->data[i];
1186
1187 if (data->m != NULL) {
1188 bus_dmamap_sync(ring->data_dmat, data->map,
1189 BUS_DMASYNC_POSTWRITE);
1190 bus_dmamap_unload(ring->data_dmat, data->map);
1191 m_freem(data->m);
1192 data->m = NULL;
1193 }
1194 }
1195 free(ring->data, M_DEVBUF);
1196 }
1197
1198 if (ring->data_dmat != NULL)
1199 bus_dma_tag_destroy(ring->data_dmat);
1200}
1201
1202static int
1203wpi_shutdown(device_t dev)
1204{
1205 struct wpi_softc *sc = device_get_softc(dev);
1206
1207 WPI_LOCK(sc);
1208 wpi_stop_locked(sc);
1209 wpi_unload_firmware(sc);
1210 WPI_UNLOCK(sc);
1211
1212 return 0;
1213}
1214
1215static int
1216wpi_suspend(device_t dev)
1217{
1218 struct wpi_softc *sc = device_get_softc(dev);
1219
1220 wpi_stop(sc);
1221 return 0;
1222}
1223
1224static int
1225wpi_resume(device_t dev)
1226{
1227 struct wpi_softc *sc = device_get_softc(dev);
1228 struct ifnet *ifp = sc->sc_ifp;
1229
1230 pci_write_config(dev, 0x41, 0, 1);
1231
1232 if (ifp->if_flags & IFF_UP) {
1233 wpi_init(ifp->if_softc);
1234 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1235 wpi_start(ifp);
1236 }
1237 return 0;
1238}
1239
1240/**
1241 * Called by net80211 when ever there is a change to 80211 state machine
1242 */
1243static int
1244wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1245{
1246 struct wpi_vap *wvp = WPI_VAP(vap);
1247 struct ieee80211com *ic = vap->iv_ic;
1248 struct ifnet *ifp = ic->ic_ifp;
1249 struct wpi_softc *sc = ifp->if_softc;
1250 int error;
1251
1252 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1253 ieee80211_state_name[vap->iv_state],
1254 ieee80211_state_name[nstate], sc->flags));
1255
1256 IEEE80211_UNLOCK(ic);
1257 WPI_LOCK(sc);
1258 if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1259 /*
1260 * On !INIT -> SCAN transitions, we need to clear any possible
1261 * knowledge about associations.
1262 */
1263 error = wpi_config(sc);
1264 if (error != 0) {
1265 device_printf(sc->sc_dev,
1266 "%s: device config failed, error %d\n",
1267 __func__, error);
1268 }
1269 }
1270 if (nstate == IEEE80211_S_AUTH ||
1271 (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1272 /*
1273 * The node must be registered in the firmware before auth.
1274 * Also the associd must be cleared on RUN -> ASSOC
1275 * transitions.
1276 */
1277 error = wpi_auth(sc, vap);
1278 if (error != 0) {
1279 device_printf(sc->sc_dev,
1280 "%s: could not move to auth state, error %d\n",
1281 __func__, error);
1282 }
1283 }
1284 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1285 error = wpi_run(sc, vap);
1286 if (error != 0) {
1287 device_printf(sc->sc_dev,
1288 "%s: could not move to run state, error %d\n",
1289 __func__, error);
1290 }
1291 }
1292 if (nstate == IEEE80211_S_RUN) {
1293 /* RUN -> RUN transition; just restart the timers */
1294 wpi_calib_timeout(sc);
1295 /* XXX split out rate control timer */
1296 }
1297 WPI_UNLOCK(sc);
1298 IEEE80211_LOCK(ic);
1299 return wvp->newstate(vap, nstate, arg);
1300}
1301
1302/*
1303 * Grab exclusive access to NIC memory.
1304 */
1305static void
1306wpi_mem_lock(struct wpi_softc *sc)
1307{
1308 int ntries;
1309 uint32_t tmp;
1310
1311 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1312 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1313
1314 /* spin until we actually get the lock */
1315 for (ntries = 0; ntries < 100; ntries++) {
1316 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1317 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1318 break;
1319 DELAY(10);
1320 }
1321 if (ntries == 100)
1322 device_printf(sc->sc_dev, "could not lock memory\n");
1323}
1324
1325/*
1326 * Release lock on NIC memory.
1327 */
1328static void
1329wpi_mem_unlock(struct wpi_softc *sc)
1330{
1331 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1332 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1333}
1334
1335static uint32_t
1336wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1337{
1338 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1339 return WPI_READ(sc, WPI_READ_MEM_DATA);
1340}
1341
1342static void
1343wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1344{
1345 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1346 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1347}
1348
1349static void
1350wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1351 const uint32_t *data, int wlen)
1352{
1353 for (; wlen > 0; wlen--, data++, addr+=4)
1354 wpi_mem_write(sc, addr, *data);
1355}
1356
1357/*
1358 * Read data from the EEPROM. We access EEPROM through the MAC instead of
1359 * using the traditional bit-bang method. Data is read up until len bytes have
1360 * been obtained.
1361 */
1362static uint16_t
1363wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1364{
1365 int ntries;
1366 uint32_t val;
1367 uint8_t *out = data;
1368
1369 wpi_mem_lock(sc);
1370
1371 for (; len > 0; len -= 2, addr++) {
1372 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1373
1374 for (ntries = 0; ntries < 10; ntries++) {
1375 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1376 break;
1377 DELAY(5);
1378 }
1379
1380 if (ntries == 10) {
1381 device_printf(sc->sc_dev, "could not read EEPROM\n");
1382 return ETIMEDOUT;
1383 }
1384
1385 *out++= val >> 16;
1386 if (len > 1)
1387 *out ++= val >> 24;
1388 }
1389
1390 wpi_mem_unlock(sc);
1391
1392 return 0;
1393}
1394
1395/*
1396 * The firmware text and data segments are transferred to the NIC using DMA.
1397 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1398 * where to find it. Once the NIC has copied the firmware into its internal
1399 * memory, we can free our local copy in the driver.
1400 */
1401static int
1402wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1403{
1404 int error, ntries;
1405
1406 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size));
1407
1408 size /= sizeof(uint32_t);
1409
1410 wpi_mem_lock(sc);
1411
1412 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1413 (const uint32_t *)fw, size);
1414
1415 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1416 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1417 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1418
1419 /* run microcode */
1420 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1421
1422 /* wait while the adapter is busy copying the firmware */
1423 for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1424 uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1425 DPRINTFN(WPI_DEBUG_HW,
1426 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1427 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1428 if (status & WPI_TX_IDLE(6)) {
1429 DPRINTFN(WPI_DEBUG_HW,
1430 ("Status Match! - ntries = %d\n", ntries));
1431 break;
1432 }
1433 DELAY(10);
1434 }
1435 if (ntries == 1000) {
1436 device_printf(sc->sc_dev, "timeout transferring firmware\n");
1437 error = ETIMEDOUT;
1438 }
1439
1440 /* start the microcode executing */
1441 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1442
1443 wpi_mem_unlock(sc);
1444
1445 return (error);
1446}
1447
1448static void
1449wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1450 struct wpi_rx_data *data)
1451{
1452 struct ifnet *ifp = sc->sc_ifp;
1453 struct ieee80211com *ic = ifp->if_l2com;
1454 struct wpi_rx_ring *ring = &sc->rxq;
1455 struct wpi_rx_stat *stat;
1456 struct wpi_rx_head *head;
1457 struct wpi_rx_tail *tail;
1458 struct ieee80211_node *ni;
1459 struct mbuf *m, *mnew;
1460 bus_addr_t paddr;
1461 int error;
1462
1463 stat = (struct wpi_rx_stat *)(desc + 1);
1464
1465 if (stat->len > WPI_STAT_MAXLEN) {
1466 device_printf(sc->sc_dev, "invalid rx statistic header\n");
1467 ifp->if_ierrors++;
1468 return;
1469 }
1470
1471 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1472 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1473 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1474
1475 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1476 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1477 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1478 (uintmax_t)le64toh(tail->tstamp)));
1479
1480 /* discard Rx frames with bad CRC early */
1481 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1482 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1483 le32toh(tail->flags)));
1484 ifp->if_ierrors++;
1485 return;
1486 }
1487 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1488 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1489 le16toh(head->len)));
1490 ifp->if_ierrors++;
1491 return;
1492 }
1493
1494 /* XXX don't need mbuf, just dma buffer */
1495 mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1496 if (mnew == NULL) {
1497 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1498 __func__));
1499 ifp->if_ierrors++;
1500 return;
1501 }
1502 bus_dmamap_unload(ring->data_dmat, data->map);
1503
1504 error = bus_dmamap_load(ring->data_dmat, data->map,
1505 mtod(mnew, caddr_t), MJUMPAGESIZE,
1506 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1507 if (error != 0 && error != EFBIG) {
1508 device_printf(sc->sc_dev,
1509 "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1510 m_freem(mnew);
1511 ifp->if_ierrors++;
1512 return;
1513 }
1514 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1515
1516 /* finalize mbuf and swap in new one */
1517 m = data->m;
1518 m->m_pkthdr.rcvif = ifp;
1519 m->m_data = (caddr_t)(head + 1);
1520 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1521
1522 data->m = mnew;
1523 /* update Rx descriptor */
1524 ring->desc[ring->cur] = htole32(paddr);
1525
1526 if (ieee80211_radiotap_active(ic)) {
1527 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1528
1529 tap->wr_flags = 0;
1530 tap->wr_chan_freq =
1531 htole16(ic->ic_channels[head->chan].ic_freq);
1532 tap->wr_chan_flags =
1533 htole16(ic->ic_channels[head->chan].ic_flags);
1534 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1535 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1536 tap->wr_tsft = tail->tstamp;
1537 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1538 switch (head->rate) {
1539 /* CCK rates */
1540 case 10: tap->wr_rate = 2; break;
1541 case 20: tap->wr_rate = 4; break;
1542 case 55: tap->wr_rate = 11; break;
1543 case 110: tap->wr_rate = 22; break;
1544 /* OFDM rates */
1545 case 0xd: tap->wr_rate = 12; break;
1546 case 0xf: tap->wr_rate = 18; break;
1547 case 0x5: tap->wr_rate = 24; break;
1548 case 0x7: tap->wr_rate = 36; break;
1549 case 0x9: tap->wr_rate = 48; break;
1550 case 0xb: tap->wr_rate = 72; break;
1551 case 0x1: tap->wr_rate = 96; break;
1552 case 0x3: tap->wr_rate = 108; break;
1553 /* unknown rate: should not happen */
1554 default: tap->wr_rate = 0;
1555 }
1556 if (le16toh(head->flags) & 0x4)
1557 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1558 }
1559
1560 WPI_UNLOCK(sc);
1561
1562 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1563 if (ni != NULL) {
1564 (void) ieee80211_input(ni, m, stat->rssi, 0);
1565 ieee80211_free_node(ni);
1566 } else
1567 (void) ieee80211_input_all(ic, m, stat->rssi, 0);
1568
1569 WPI_LOCK(sc);
1570}
1571
1572static void
1573wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1574{
1575 struct ifnet *ifp = sc->sc_ifp;
1576 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1577 struct wpi_tx_data *txdata = &ring->data[desc->idx];
1578 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1579 struct ieee80211_node *ni = txdata->ni;
1580 struct ieee80211vap *vap = ni->ni_vap;
1581 int retrycnt = 0;
1582
1583 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1584 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1585 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1586 le32toh(stat->status)));
1587
1588 /*
1589 * Update rate control statistics for the node.
1590 * XXX we should not count mgmt frames since they're always sent at
1591 * the lowest available bit-rate.
1592 * XXX frames w/o ACK shouldn't be used either
1593 */
1594 if (stat->ntries > 0) {
1595 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1596 retrycnt = 1;
1597 }
1598 ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1599 &retrycnt, NULL);
1600
1601 /* XXX oerrors should only count errors !maxtries */
1602 if ((le32toh(stat->status) & 0xff) != 1)
1603 ifp->if_oerrors++;
1604 else
1605 ifp->if_opackets++;
1606
1607 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1608 bus_dmamap_unload(ring->data_dmat, txdata->map);
1609 /* XXX handle M_TXCB? */
1610 m_freem(txdata->m);
1611 txdata->m = NULL;
1612 ieee80211_free_node(txdata->ni);
1613 txdata->ni = NULL;
1614
1615 ring->queued--;
1616
1617 sc->sc_tx_timer = 0;
1618 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1619 wpi_start_locked(ifp);
1620}
1621
1622static void
1623wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1624{
1625 struct wpi_tx_ring *ring = &sc->cmdq;
1626 struct wpi_tx_data *data;
1627
1628 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1629 "type=%s len=%d\n", desc->qid, desc->idx,
1630 desc->flags, wpi_cmd_str(desc->type),
1631 le32toh(desc->len)));
1632
1633 if ((desc->qid & 7) != 4)
1634 return; /* not a command ack */
1635
1636 data = &ring->data[desc->idx];
1637
1638 /* if the command was mapped in a mbuf, free it */
1639 if (data->m != NULL) {
1640 bus_dmamap_unload(ring->data_dmat, data->map);
1641 m_freem(data->m);
1642 data->m = NULL;
1643 }
1644
1645 sc->flags &= ~WPI_FLAG_BUSY;
1646 wakeup(&ring->cmd[desc->idx]);
1647}
1648
1649static void
1650wpi_notif_intr(struct wpi_softc *sc)
1651{
1652 struct ifnet *ifp = sc->sc_ifp;
1653 struct ieee80211com *ic = ifp->if_l2com;
1654 struct wpi_rx_desc *desc;
1655 struct wpi_rx_data *data;
1656 uint32_t hw;
1657
1658 bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1659 BUS_DMASYNC_POSTREAD);
1660
1661 hw = le32toh(sc->shared->next);
1662 while (sc->rxq.cur != hw) {
1663 data = &sc->rxq.data[sc->rxq.cur];
1664
1665 bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1666 BUS_DMASYNC_POSTREAD);
1667 desc = (void *)data->m->m_ext.ext_buf;
1668
1669 DPRINTFN(WPI_DEBUG_NOTIFY,
1670 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1671 desc->qid,
1672 desc->idx,
1673 desc->flags,
1674 desc->type,
1675 le32toh(desc->len)));
1676
1677 if (!(desc->qid & 0x80)) /* reply to a command */
1678 wpi_cmd_intr(sc, desc);
1679
1680 switch (desc->type) {
1681 case WPI_RX_DONE:
1682 /* a 802.11 frame was received */
1683 wpi_rx_intr(sc, desc, data);
1684 break;
1685
1686 case WPI_TX_DONE:
1687 /* a 802.11 frame has been transmitted */
1688 wpi_tx_intr(sc, desc);
1689 break;
1690
1691 case WPI_UC_READY:
1692 {
1693 struct wpi_ucode_info *uc =
1694 (struct wpi_ucode_info *)(desc + 1);
1695
1696 /* the microcontroller is ready */
1697 DPRINTF(("microcode alive notification version %x "
1698 "alive %x\n", le32toh(uc->version),
1699 le32toh(uc->valid)));
1700
1701 if (le32toh(uc->valid) != 1) {
1702 device_printf(sc->sc_dev,
1703 "microcontroller initialization failed\n");
1704 wpi_stop_locked(sc);
1705 }
1706 break;
1707 }
1708 case WPI_STATE_CHANGED:
1709 {
1710 uint32_t *status = (uint32_t *)(desc + 1);
1711
1712 /* enabled/disabled notification */
1713 DPRINTF(("state changed to %x\n", le32toh(*status)));
1714
1715 if (le32toh(*status) & 1) {
1716 device_printf(sc->sc_dev,
1717 "Radio transmitter is switched off\n");
1718 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1719 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1720 /* Disable firmware commands */
1721 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1722 }
1723 break;
1724 }
1725 case WPI_START_SCAN:
1726 {
1727#ifdef WPI_DEBUG
1728 struct wpi_start_scan *scan =
1729 (struct wpi_start_scan *)(desc + 1);
1730#endif
1731
1732 DPRINTFN(WPI_DEBUG_SCANNING,
1733 ("scanning channel %d status %x\n",
1734 scan->chan, le32toh(scan->status)));
1735 break;
1736 }
1737 case WPI_STOP_SCAN:
1738 {
1739#ifdef WPI_DEBUG
1740 struct wpi_stop_scan *scan =
1741 (struct wpi_stop_scan *)(desc + 1);
1742#endif
1743 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1744
1745 DPRINTFN(WPI_DEBUG_SCANNING,
1746 ("scan finished nchan=%d status=%d chan=%d\n",
1747 scan->nchan, scan->status, scan->chan));
1748
1749 sc->sc_scan_timer = 0;
1750 ieee80211_scan_next(vap);
1751 break;
1752 }
1753 case WPI_MISSED_BEACON:
1754 {
1755 struct wpi_missed_beacon *beacon =
1756 (struct wpi_missed_beacon *)(desc + 1);
1757 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1758
1759 if (le32toh(beacon->consecutive) >=
1760 vap->iv_bmissthreshold) {
1761 DPRINTF(("Beacon miss: %u >= %u\n",
1762 le32toh(beacon->consecutive),
1763 vap->iv_bmissthreshold));
1764 ieee80211_beacon_miss(ic);
1765 }
1766 break;
1767 }
1768 }
1769
1770 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1771 }
1772
1773 /* tell the firmware what we have processed */
1774 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1775 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1776}
1777
1778static void
1779wpi_intr(void *arg)
1780{
1781 struct wpi_softc *sc = arg;
1782 uint32_t r;
1783
1784 WPI_LOCK(sc);
1785
1786 r = WPI_READ(sc, WPI_INTR);
1787 if (r == 0 || r == 0xffffffff) {
1788 WPI_UNLOCK(sc);
1789 return;
1790 }
1791
1792 /* disable interrupts */
1793 WPI_WRITE(sc, WPI_MASK, 0);
1794 /* ack interrupts */
1795 WPI_WRITE(sc, WPI_INTR, r);
1796
1797 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1798 struct ifnet *ifp = sc->sc_ifp;
1799 struct ieee80211com *ic = ifp->if_l2com;
1800 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1801
1802 device_printf(sc->sc_dev, "fatal firmware error\n");
1803 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1804 "(Hardware Error)"));
1805 if (vap != NULL)
1806 ieee80211_cancel_scan(vap);
1807 ieee80211_runtask(ic, &sc->sc_restarttask);
1808 sc->flags &= ~WPI_FLAG_BUSY;
1809 WPI_UNLOCK(sc);
1810 return;
1811 }
1812
1813 if (r & WPI_RX_INTR)
1814 wpi_notif_intr(sc);
1815
1816 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1817 wakeup(sc);
1818
1819 /* re-enable interrupts */
1820 if (sc->sc_ifp->if_flags & IFF_UP)
1821 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1822
1823 WPI_UNLOCK(sc);
1824}
1825
1826static uint8_t
1827wpi_plcp_signal(int rate)
1828{
1829 switch (rate) {
1830 /* CCK rates (returned values are device-dependent) */
1831 case 2: return 10;
1832 case 4: return 20;
1833 case 11: return 55;
1834 case 22: return 110;
1835
1836 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1837 /* R1-R4 (ral/ural is R4-R1) */
1838 case 12: return 0xd;
1839 case 18: return 0xf;
1840 case 24: return 0x5;
1841 case 36: return 0x7;
1842 case 48: return 0x9;
1843 case 72: return 0xb;
1844 case 96: return 0x1;
1845 case 108: return 0x3;
1846
1847 /* unsupported rates (should not get there) */
1848 default: return 0;
1849 }
1850}
1851
1852/* quickly determine if a given rate is CCK or OFDM */
1853#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1854
1855/*
1856 * Construct the data packet for a transmit buffer and acutally put
1857 * the buffer onto the transmit ring, kicking the card to process the
1858 * the buffer.
1859 */
1860static int
1861wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1862 int ac)
1863{
1864 struct ieee80211vap *vap = ni->ni_vap;
1865 struct ifnet *ifp = sc->sc_ifp;
1866 struct ieee80211com *ic = ifp->if_l2com;
1867 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1868 struct wpi_tx_ring *ring = &sc->txq[ac];
1869 struct wpi_tx_desc *desc;
1870 struct wpi_tx_data *data;
1871 struct wpi_tx_cmd *cmd;
1872 struct wpi_cmd_data *tx;
1873 struct ieee80211_frame *wh;
1874 const struct ieee80211_txparam *tp;
1875 struct ieee80211_key *k;
1876 struct mbuf *mnew;
1877 int i, error, nsegs, rate, hdrlen, ismcast;
1878 bus_dma_segment_t segs[WPI_MAX_SCATTER];
1879
1880 desc = &ring->desc[ring->cur];
1881 data = &ring->data[ring->cur];
1882
1883 wh = mtod(m0, struct ieee80211_frame *);
1884
1885 hdrlen = ieee80211_hdrsize(wh);
1886 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1887
1888 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1889 k = ieee80211_crypto_encap(ni, m0);
1890 if (k == NULL) {
1891 m_freem(m0);
1892 return ENOBUFS;
1893 }
1894 /* packet header may have moved, reset our local pointer */
1895 wh = mtod(m0, struct ieee80211_frame *);
1896 }
1897
1898 cmd = &ring->cmd[ring->cur];
1899 cmd->code = WPI_CMD_TX_DATA;
1900 cmd->flags = 0;
1901 cmd->qid = ring->qid;
1902 cmd->idx = ring->cur;
1903
1904 tx = (struct wpi_cmd_data *)cmd->data;
1905 tx->flags = htole32(WPI_TX_AUTO_SEQ);
1906 tx->timeout = htole16(0);
1907 tx->ofdm_mask = 0xff;
1908 tx->cck_mask = 0x0f;
1909 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1910 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1911 tx->len = htole16(m0->m_pkthdr.len);
1912
1913 if (!ismcast) {
1914 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1915 !cap->cap_wmeParams[ac].wmep_noackPolicy)
1916 tx->flags |= htole32(WPI_TX_NEED_ACK);
1917 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1918 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1919 tx->rts_ntries = 7;
1920 }
1921 }
1922 /* pick a rate */
1923 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1924 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1925 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1926 /* tell h/w to set timestamp in probe responses */
1927 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1928 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1929 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1930 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1931 tx->timeout = htole16(3);
1932 else
1933 tx->timeout = htole16(2);
1934 rate = tp->mgmtrate;
1935 } else if (ismcast) {
1936 rate = tp->mcastrate;
1937 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1938 rate = tp->ucastrate;
1939 } else {
1940 (void) ieee80211_ratectl_rate(ni, NULL, 0);
1941 rate = ni->ni_txrate;
1942 }
1943 tx->rate = wpi_plcp_signal(rate);
1944
1945 /* be very persistant at sending frames out */
1946#if 0
1947 tx->data_ntries = tp->maxretry;
1948#else
1949 tx->data_ntries = 15; /* XXX way too high */
1950#endif
1951
1952 if (ieee80211_radiotap_active_vap(vap)) {
1953 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1954 tap->wt_flags = 0;
1955 tap->wt_rate = rate;
1956 tap->wt_hwqueue = ac;
1957 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1958 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1959
1960 ieee80211_radiotap_tx(vap, m0);
1961 }
1962
1963 /* save and trim IEEE802.11 header */
1964 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1965 m_adj(m0, hdrlen);
1966
1967 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1968 &nsegs, BUS_DMA_NOWAIT);
1969 if (error != 0 && error != EFBIG) {
1970 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1971 error);
1972 m_freem(m0);
1973 return error;
1974 }
1975 if (error != 0) {
1976 /* XXX use m_collapse */
1977 mnew = m_defrag(m0, M_DONTWAIT);
1978 if (mnew == NULL) {
1979 device_printf(sc->sc_dev,
1980 "could not defragment mbuf\n");
1981 m_freem(m0);
1982 return ENOBUFS;
1983 }
1984 m0 = mnew;
1985
1986 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1987 m0, segs, &nsegs, BUS_DMA_NOWAIT);
1988 if (error != 0) {
1989 device_printf(sc->sc_dev,
1990 "could not map mbuf (error %d)\n", error);
1991 m_freem(m0);
1992 return error;
1993 }
1994 }
1995
1996 data->m = m0;
1997 data->ni = ni;
1998
1999 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2000 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
2001
2002 /* first scatter/gather segment is used by the tx data command */
2003 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2004 (1 + nsegs) << 24);
2005 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2006 ring->cur * sizeof (struct wpi_tx_cmd));
2007 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data));
2008 for (i = 1; i <= nsegs; i++) {
2009 desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2010 desc->segs[i].len = htole32(segs[i - 1].ds_len);
2011 }
2012
2013 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2014 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2015 BUS_DMASYNC_PREWRITE);
2016
2017 ring->queued++;
2018
2019 /* kick ring */
2020 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2021 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2022
2023 return 0;
2024}
2025
2026/**
2027 * Process data waiting to be sent on the IFNET output queue
2028 */
2029static void
2030wpi_start(struct ifnet *ifp)
2031{
2032 struct wpi_softc *sc = ifp->if_softc;
2033
2034 WPI_LOCK(sc);
2035 wpi_start_locked(ifp);
2036 WPI_UNLOCK(sc);
2037}
2038
2039static void
2040wpi_start_locked(struct ifnet *ifp)
2041{
2042 struct wpi_softc *sc = ifp->if_softc;
2043 struct ieee80211_node *ni;
2044 struct mbuf *m;
2045 int ac;
2046
2047 WPI_LOCK_ASSERT(sc);
2048
2049 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2050 return;
2051
2052 for (;;) {
2053 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2054 if (m == NULL)
2055 break;
2056 ac = M_WME_GETAC(m);
2057 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2058 /* there is no place left in this ring */
2059 IFQ_DRV_PREPEND(&ifp->if_snd, m);
2060 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2061 break;
2062 }
2063 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2064 if (wpi_tx_data(sc, m, ni, ac) != 0) {
2065 ieee80211_free_node(ni);
2066 ifp->if_oerrors++;
2067 break;
2068 }
2069 sc->sc_tx_timer = 5;
2070 }
2071}
2072
2073static int
2074wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2075 const struct ieee80211_bpf_params *params)
2076{
2077 struct ieee80211com *ic = ni->ni_ic;
2078 struct ifnet *ifp = ic->ic_ifp;
2079 struct wpi_softc *sc = ifp->if_softc;
2080
2081 /* prevent management frames from being sent if we're not ready */
2082 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2083 m_freem(m);
2084 ieee80211_free_node(ni);
2085 return ENETDOWN;
2086 }
2087 WPI_LOCK(sc);
2088
2089 /* management frames go into ring 0 */
2090 if (sc->txq[0].queued > sc->txq[0].count - 8) {
2091 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2092 m_freem(m);
2093 WPI_UNLOCK(sc);
2094 ieee80211_free_node(ni);
2095 return ENOBUFS; /* XXX */
2096 }
2097
2098 ifp->if_opackets++;
2099 if (wpi_tx_data(sc, m, ni, 0) != 0)
2100 goto bad;
2101 sc->sc_tx_timer = 5;
2102 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2103
2104 WPI_UNLOCK(sc);
2105 return 0;
2106bad:
2107 ifp->if_oerrors++;
2108 WPI_UNLOCK(sc);
2109 ieee80211_free_node(ni);
2110 return EIO; /* XXX */
2111}
2112
2113static int
2114wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2115{
2116 struct wpi_softc *sc = ifp->if_softc;
2117 struct ieee80211com *ic = ifp->if_l2com;
2118 struct ifreq *ifr = (struct ifreq *) data;
2119 int error = 0, startall = 0;
2120
2121 switch (cmd) {
2122 case SIOCSIFFLAGS:
2123 WPI_LOCK(sc);
2124 if ((ifp->if_flags & IFF_UP)) {
2125 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2126 wpi_init_locked(sc, 0);
2127 startall = 1;
2128 }
2129 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2130 (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2131 wpi_stop_locked(sc);
2132 WPI_UNLOCK(sc);
2133 if (startall)
2134 ieee80211_start_all(ic);
2135 break;
2136 case SIOCGIFMEDIA:
2137 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2138 break;
2139 case SIOCGIFADDR:
2140 error = ether_ioctl(ifp, cmd, data);
2141 break;
2142 default:
2143 error = EINVAL;
2144 break;
2145 }
2146 return error;
2147}
2148
2149/*
2150 * Extract various information from EEPROM.
2151 */
2152static void
2153wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2154{
2155 int i;
2156
2157 /* read the hardware capabilities, revision and SKU type */
2158 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2159 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2160 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2161
2162 /* read the regulatory domain */
2163 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2164
2165 /* read in the hw MAC address */
2166 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2167
2168 /* read the list of authorized channels */
2169 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2170 wpi_read_eeprom_channels(sc,i);
2171
2172 /* read the power level calibration info for each group */
2173 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2174 wpi_read_eeprom_group(sc,i);
2175}
2176
2177/*
2178 * Send a command to the firmware.
2179 */
2180static int
2181wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2182{
2183 struct wpi_tx_ring *ring = &sc->cmdq;
2184 struct wpi_tx_desc *desc;
2185 struct wpi_tx_cmd *cmd;
2186
2187#ifdef WPI_DEBUG
2188 if (!async) {
2189 WPI_LOCK_ASSERT(sc);
2190 }
2191#endif
2192
2193 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2194 async));
2195
2196 if (sc->flags & WPI_FLAG_BUSY) {
2197 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2198 __func__, code);
2199 return EAGAIN;
2200 }
2201 sc->flags|= WPI_FLAG_BUSY;
2202
2203 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2204 code, size));
2205
2206 desc = &ring->desc[ring->cur];
2207 cmd = &ring->cmd[ring->cur];
2208
2209 cmd->code = code;
2210 cmd->flags = 0;
2211 cmd->qid = ring->qid;
2212 cmd->idx = ring->cur;
2213 memcpy(cmd->data, buf, size);
2214
2215 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2216 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2217 ring->cur * sizeof (struct wpi_tx_cmd));
2218 desc->segs[0].len = htole32(4 + size);
2219
2220 /* kick cmd ring */
2221 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2222 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2223
2224 if (async) {
2225 sc->flags &= ~ WPI_FLAG_BUSY;
2226 return 0;
2227 }
2228
2229 return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2230}
2231
2232static int
2233wpi_wme_update(struct ieee80211com *ic)
2234{
2235#define WPI_EXP2(v) htole16((1 << (v)) - 1)
2236#define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2237 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2238 const struct wmeParams *wmep;
2239 struct wpi_wme_setup wme;
2240 int ac;
2241
2242 /* don't override default WME values if WME is not actually enabled */
2243 if (!(ic->ic_flags & IEEE80211_F_WME))
2244 return 0;
2245
2246 wme.flags = 0;
2247 for (ac = 0; ac < WME_NUM_AC; ac++) {
2248 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2249 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2250 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2251 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2252 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2253
2254 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2255 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2256 wme.ac[ac].cwmax, wme.ac[ac].txop));
2257 }
2258 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2259#undef WPI_USEC
2260#undef WPI_EXP2
2261}
2262
2263/*
2264 * Configure h/w multi-rate retries.
2265 */
2266static int
2267wpi_mrr_setup(struct wpi_softc *sc)
2268{
2269 struct ifnet *ifp = sc->sc_ifp;
2270 struct ieee80211com *ic = ifp->if_l2com;
2271 struct wpi_mrr_setup mrr;
2272 int i, error;
2273
2274 memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2275
2276 /* CCK rates (not used with 802.11a) */
2277 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2278 mrr.rates[i].flags = 0;
2279 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2280 /* fallback to the immediate lower CCK rate (if any) */
2281 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2282 /* try one time at this rate before falling back to "next" */
2283 mrr.rates[i].ntries = 1;
2284 }
2285
2286 /* OFDM rates (not used with 802.11b) */
2287 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2288 mrr.rates[i].flags = 0;
2289 mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2290 /* fallback to the immediate lower OFDM rate (if any) */
2291 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2292 mrr.rates[i].next = (i == WPI_OFDM6) ?
2293 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2294 WPI_OFDM6 : WPI_CCK2) :
2295 i - 1;
2296 /* try one time at this rate before falling back to "next" */
2297 mrr.rates[i].ntries = 1;
2298 }
2299
2300 /* setup MRR for control frames */
2301 mrr.which = htole32(WPI_MRR_CTL);
2302 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2303 if (error != 0) {
2304 device_printf(sc->sc_dev,
2305 "could not setup MRR for control frames\n");
2306 return error;
2307 }
2308
2309 /* setup MRR for data frames */
2310 mrr.which = htole32(WPI_MRR_DATA);
2311 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2312 if (error != 0) {
2313 device_printf(sc->sc_dev,
2314 "could not setup MRR for data frames\n");
2315 return error;
2316 }
2317
2318 return 0;
2319}
2320
2321static void
2322wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2323{
2324 struct wpi_cmd_led led;
2325
2326 led.which = which;
2327 led.unit = htole32(100000); /* on/off in unit of 100ms */
2328 led.off = off;
2329 led.on = on;
2330
2331 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2332}
2333
2334static void
2335wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2336{
2337 struct wpi_cmd_tsf tsf;
2338 uint64_t val, mod;
2339
2340 memset(&tsf, 0, sizeof tsf);
2341 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2342 tsf.bintval = htole16(ni->ni_intval);
2343 tsf.lintval = htole16(10);
2344
2345 /* compute remaining time until next beacon */
2346 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */
2347 mod = le64toh(tsf.tstamp) % val;
2348 tsf.binitval = htole32((uint32_t)(val - mod));
2349
2350 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2351 device_printf(sc->sc_dev, "could not enable TSF\n");
2352}
2353
2354#if 0
2355/*
2356 * Build a beacon frame that the firmware will broadcast periodically in
2357 * IBSS or HostAP modes.
2358 */
2359static int
2360wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2361{
2362 struct ifnet *ifp = sc->sc_ifp;
2363 struct ieee80211com *ic = ifp->if_l2com;
2364 struct wpi_tx_ring *ring = &sc->cmdq;
2365 struct wpi_tx_desc *desc;
2366 struct wpi_tx_data *data;
2367 struct wpi_tx_cmd *cmd;
2368 struct wpi_cmd_beacon *bcn;
2369 struct ieee80211_beacon_offsets bo;
2370 struct mbuf *m0;
2371 bus_addr_t physaddr;
2372 int error;
2373
2374 desc = &ring->desc[ring->cur];
2375 data = &ring->data[ring->cur];
2376
2377 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2378 if (m0 == NULL) {
2379 device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2380 return ENOMEM;
2381 }
2382
2383 cmd = &ring->cmd[ring->cur];
2384 cmd->code = WPI_CMD_SET_BEACON;
2385 cmd->flags = 0;
2386 cmd->qid = ring->qid;
2387 cmd->idx = ring->cur;
2388
2389 bcn = (struct wpi_cmd_beacon *)cmd->data;
2390 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2391 bcn->id = WPI_ID_BROADCAST;
2392 bcn->ofdm_mask = 0xff;
2393 bcn->cck_mask = 0x0f;
2394 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2395 bcn->len = htole16(m0->m_pkthdr.len);
2396 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2397 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2398 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2399
2400 /* save and trim IEEE802.11 header */
2401 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2402 m_adj(m0, sizeof (struct ieee80211_frame));
2403
2404 /* assume beacon frame is contiguous */
2405 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2406 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2407 if (error != 0) {
2408 device_printf(sc->sc_dev, "could not map beacon\n");
2409 m_freem(m0);
2410 return error;
2411 }
2412
2413 data->m = m0;
2414
2415 /* first scatter/gather segment is used by the beacon command */
2416 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2417 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2418 ring->cur * sizeof (struct wpi_tx_cmd));
2419 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2420 desc->segs[1].addr = htole32(physaddr);
2421 desc->segs[1].len = htole32(m0->m_pkthdr.len);
2422
2423 /* kick cmd ring */
2424 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2425 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2426
2427 return 0;
2428}
2429#endif
2430
2431static int
2432wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2433{
2434 struct ieee80211com *ic = vap->iv_ic;
2435 struct ieee80211_node *ni = vap->iv_bss;
2436 struct wpi_node_info node;
2437 int error;
2438
2439
2440 /* update adapter's configuration */
2441 sc->config.associd = 0;
2442 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2443 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2444 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2445 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2446 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2447 WPI_CONFIG_24GHZ);
2448 } else {
2449 sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2450 WPI_CONFIG_24GHZ);
2451 }
2452 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2453 sc->config.cck_mask = 0;
2454 sc->config.ofdm_mask = 0x15;
2455 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2456 sc->config.cck_mask = 0x03;
2457 sc->config.ofdm_mask = 0;
2458 } else {
2459 /* XXX assume 802.11b/g */
2460 sc->config.cck_mask = 0x0f;
2461 sc->config.ofdm_mask = 0x15;
2462 }
2463
2464 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2465 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2466 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2467 sizeof (struct wpi_config), 1);
2468 if (error != 0) {
2469 device_printf(sc->sc_dev, "could not configure\n");
2470 return error;
2471 }
2472
2473 /* configuration has changed, set Tx power accordingly */
2474 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2475 device_printf(sc->sc_dev, "could not set Tx power\n");
2476 return error;
2477 }
2478
2479 /* add default node */
2480 memset(&node, 0, sizeof node);
2481 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2482 node.id = WPI_ID_BSS;
2483 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2484 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2485 node.action = htole32(WPI_ACTION_SET_RATE);
2486 node.antenna = WPI_ANTENNA_BOTH;
2487 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2488 if (error != 0)
2489 device_printf(sc->sc_dev, "could not add BSS node\n");
2490
2491 return (error);
2492}
2493
2494static int
2495wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2496{
2497 struct ieee80211com *ic = vap->iv_ic;
2498 struct ieee80211_node *ni = vap->iv_bss;
2499 int error;
2500
2501 if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2502 /* link LED blinks while monitoring */
2503 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2504 return 0;
2505 }
2506
2507 wpi_enable_tsf(sc, ni);
2508
2509 /* update adapter's configuration */
2510 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2511 /* short preamble/slot time are negotiated when associating */
2512 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2513 WPI_CONFIG_SHSLOT);
2514 if (ic->ic_flags & IEEE80211_F_SHSLOT)
2515 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2516 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2517 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2518 sc->config.filter |= htole32(WPI_FILTER_BSS);
2519
2520 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2521
2522 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2523 sc->config.flags));
2524 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2525 wpi_config), 1);
2526 if (error != 0) {
2527 device_printf(sc->sc_dev, "could not update configuration\n");
2528 return error;
2529 }
2530
2531 error = wpi_set_txpower(sc, ni->ni_chan, 1);
2532 if (error != 0) {
2533 device_printf(sc->sc_dev, "could set txpower\n");
2534 return error;
2535 }
2536
2537 /* link LED always on while associated */
2538 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2539
2540 /* start automatic rate control timer */
2541 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2542
2543 return (error);
2544}
2545
2546/*
2547 * Send a scan request to the firmware. Since this command is huge, we map it
2548 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2549 * much of this code is similar to that in wpi_cmd but because we must manually
2550 * construct the probe & channels, we duplicate what's needed here. XXX In the
2551 * future, this function should be modified to use wpi_cmd to help cleanup the
2552 * code base.
2553 */
2554static int
2555wpi_scan(struct wpi_softc *sc)
2556{
2557 struct ifnet *ifp = sc->sc_ifp;
2558 struct ieee80211com *ic = ifp->if_l2com;
2559 struct ieee80211_scan_state *ss = ic->ic_scan;
2560 struct wpi_tx_ring *ring = &sc->cmdq;
2561 struct wpi_tx_desc *desc;
2562 struct wpi_tx_data *data;
2563 struct wpi_tx_cmd *cmd;
2564 struct wpi_scan_hdr *hdr;
2565 struct wpi_scan_chan *chan;
2566 struct ieee80211_frame *wh;
2567 struct ieee80211_rateset *rs;
2568 struct ieee80211_channel *c;
2569 enum ieee80211_phymode mode;
2570 uint8_t *frm;
2571 int nrates, pktlen, error, i, nssid;
2572 bus_addr_t physaddr;
2573
2574 desc = &ring->desc[ring->cur];
2575 data = &ring->data[ring->cur];
2576
2577 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2578 if (data->m == NULL) {
2579 device_printf(sc->sc_dev,
2580 "could not allocate mbuf for scan command\n");
2581 return ENOMEM;
2582 }
2583
2584 cmd = mtod(data->m, struct wpi_tx_cmd *);
2585 cmd->code = WPI_CMD_SCAN;
2586 cmd->flags = 0;
2587 cmd->qid = ring->qid;
2588 cmd->idx = ring->cur;
2589
2590 hdr = (struct wpi_scan_hdr *)cmd->data;
2591 memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2592
2593 /*
2594 * Move to the next channel if no packets are received within 5 msecs
2595 * after sending the probe request (this helps to reduce the duration
2596 * of active scans).
2597 */
2598 hdr->quiet = htole16(5);
2599 hdr->threshold = htole16(1);
2600
2601 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2602 /* send probe requests at 6Mbps */
2603 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2604
2605 /* Enable crc checking */
2606 hdr->promotion = htole16(1);
2607 } else {
2608 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2609 /* send probe requests at 1Mbps */
2610 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2611 }
2612 hdr->tx.id = WPI_ID_BROADCAST;
2613 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2614 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2615
2616 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2617 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2618 for (i = 0; i < nssid; i++) {
2619 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2620 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2621 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2622 hdr->scan_essids[i].esslen);
2623#ifdef WPI_DEBUG
2624 if (wpi_debug & WPI_DEBUG_SCANNING) {
2625 printf("Scanning Essid: ");
2626 ieee80211_print_essid(hdr->scan_essids[i].essid,
2627 hdr->scan_essids[i].esslen);
2628 printf("\n");
2629 }
2630#endif
2631 }
2632
2633 /*
2634 * Build a probe request frame. Most of the following code is a
2635 * copy & paste of what is done in net80211.
2636 */
2637 wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2638 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2639 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2640 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2641 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2642 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2643 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2644 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2645 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2646
2647 frm = (uint8_t *)(wh + 1);
2648
2649 /* add essid IE, the hardware will fill this in for us */
2650 *frm++ = IEEE80211_ELEMID_SSID;
2651 *frm++ = 0;
2652
2653 mode = ieee80211_chan2mode(ic->ic_curchan);
2654 rs = &ic->ic_sup_rates[mode];
2655
2656 /* add supported rates IE */
2657 *frm++ = IEEE80211_ELEMID_RATES;
2658 nrates = rs->rs_nrates;
2659 if (nrates > IEEE80211_RATE_SIZE)
2660 nrates = IEEE80211_RATE_SIZE;
2661 *frm++ = nrates;
2662 memcpy(frm, rs->rs_rates, nrates);
2663 frm += nrates;
2664
2665 /* add supported xrates IE */
2666 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2667 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2668 *frm++ = IEEE80211_ELEMID_XRATES;
2669 *frm++ = nrates;
2670 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2671 frm += nrates;
2672 }
2673
2674 /* setup length of probe request */
2675 hdr->tx.len = htole16(frm - (uint8_t *)wh);
2676
2677 /*
2678 * Construct information about the channel that we
2679 * want to scan. The firmware expects this to be directly
2680 * after the scan probe request
2681 */
2682 c = ic->ic_curchan;
2683 chan = (struct wpi_scan_chan *)frm;
2684 chan->chan = ieee80211_chan2ieee(ic, c);
2685 chan->flags = 0;
2686 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2687 chan->flags |= WPI_CHAN_ACTIVE;
2688 if (nssid != 0)
2689 chan->flags |= WPI_CHAN_DIRECT;
2690 }
2691 chan->gain_dsp = 0x6e; /* Default level */
2692 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2693 chan->active = htole16(10);
2694 chan->passive = htole16(ss->ss_maxdwell);
2695 chan->gain_radio = 0x3b;
2696 } else {
2697 chan->active = htole16(20);
2698 chan->passive = htole16(ss->ss_maxdwell);
2699 chan->gain_radio = 0x28;
2700 }
2701
2702 DPRINTFN(WPI_DEBUG_SCANNING,
2703 ("Scanning %u Passive: %d\n",
2704 chan->chan,
2705 c->ic_flags & IEEE80211_CHAN_PASSIVE));
2706
2707 hdr->nchan++;
2708 chan++;
2709
2710 frm += sizeof (struct wpi_scan_chan);
2711#if 0
2712 // XXX All Channels....
2713 for (c = &ic->ic_channels[1];
2714 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2715 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2716 continue;
2717
2718 chan->chan = ieee80211_chan2ieee(ic, c);
2719 chan->flags = 0;
2720 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2721 chan->flags |= WPI_CHAN_ACTIVE;
2722 if (ic->ic_des_ssid[0].len != 0)
2723 chan->flags |= WPI_CHAN_DIRECT;
2724 }
2725 chan->gain_dsp = 0x6e; /* Default level */
2726 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2727 chan->active = htole16(10);
2728 chan->passive = htole16(110);
2729 chan->gain_radio = 0x3b;
2730 } else {
2731 chan->active = htole16(20);
2732 chan->passive = htole16(120);
2733 chan->gain_radio = 0x28;
2734 }
2735
2736 DPRINTFN(WPI_DEBUG_SCANNING,
2737 ("Scanning %u Passive: %d\n",
2738 chan->chan,
2739 c->ic_flags & IEEE80211_CHAN_PASSIVE));
2740
2741 hdr->nchan++;
2742 chan++;
2743
2744 frm += sizeof (struct wpi_scan_chan);
2745 }
2746#endif
2747
2748 hdr->len = htole16(frm - (uint8_t *)hdr);
2749 pktlen = frm - (uint8_t *)cmd;
2750
2751 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2752 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2753 if (error != 0) {
2754 device_printf(sc->sc_dev, "could not map scan command\n");
2755 m_freem(data->m);
2756 data->m = NULL;
2757 return error;
2758 }
2759
2760 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2761 desc->segs[0].addr = htole32(physaddr);
2762 desc->segs[0].len = htole32(pktlen);
2763
2764 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2765 BUS_DMASYNC_PREWRITE);
2766 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2767
2768 /* kick cmd ring */
2769 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2770 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2771
2772 sc->sc_scan_timer = 5;
2773 return 0; /* will be notified async. of failure/success */
2774}
2775
2776/**
2777 * Configure the card to listen to a particular channel, this transisions the
2778 * card in to being able to receive frames from remote devices.
2779 */
2780static int
2781wpi_config(struct wpi_softc *sc)
2782{
2783 struct ifnet *ifp = sc->sc_ifp;
2784 struct ieee80211com *ic = ifp->if_l2com;
2785 struct wpi_power power;
2786 struct wpi_bluetooth bluetooth;
2787 struct wpi_node_info node;
2788 int error;
2789
2790 /* set power mode */
2791 memset(&power, 0, sizeof power);
2792 power.flags = htole32(WPI_POWER_CAM|0x8);
2793 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2794 if (error != 0) {
2795 device_printf(sc->sc_dev, "could not set power mode\n");
2796 return error;
2797 }
2798
2799 /* configure bluetooth coexistence */
2800 memset(&bluetooth, 0, sizeof bluetooth);
2801 bluetooth.flags = 3;
2802 bluetooth.lead = 0xaa;
2803 bluetooth.kill = 1;
2804 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2805 0);
2806 if (error != 0) {
2807 device_printf(sc->sc_dev,
2808 "could not configure bluetooth coexistence\n");
2809 return error;
2810 }
2811
2812 /* configure adapter */
2813 memset(&sc->config, 0, sizeof (struct wpi_config));
2814 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2815 /*set default channel*/
2816 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2817 sc->config.flags = htole32(WPI_CONFIG_TSF);
2818 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2819 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2820 WPI_CONFIG_24GHZ);
2821 }
2822 sc->config.filter = 0;
2823 switch (ic->ic_opmode) {
2824 case IEEE80211_M_STA:
2825 case IEEE80211_M_WDS: /* No know setup, use STA for now */
2826 sc->config.mode = WPI_MODE_STA;
2827 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2828 break;
2829 case IEEE80211_M_IBSS:
2830 case IEEE80211_M_AHDEMO:
2831 sc->config.mode = WPI_MODE_IBSS;
2832 sc->config.filter |= htole32(WPI_FILTER_BEACON |
2833 WPI_FILTER_MULTICAST);
2834 break;
2835 case IEEE80211_M_HOSTAP:
2836 sc->config.mode = WPI_MODE_HOSTAP;
2837 break;
2838 case IEEE80211_M_MONITOR:
2839 sc->config.mode = WPI_MODE_MONITOR;
2840 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2841 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2842 break;
2843 default:
2844 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2845 return EINVAL;
2846 }
2847 sc->config.cck_mask = 0x0f; /* not yet negotiated */
2848 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
2849 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2850 sizeof (struct wpi_config), 0);
2851 if (error != 0) {
2852 device_printf(sc->sc_dev, "configure command failed\n");
2853 return error;
2854 }
2855
2856 /* configuration has changed, set Tx power accordingly */
2857 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2858 device_printf(sc->sc_dev, "could not set Tx power\n");
2859 return error;
2860 }
2861
2862 /* add broadcast node */
2863 memset(&node, 0, sizeof node);
2864 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2865 node.id = WPI_ID_BROADCAST;
2866 node.rate = wpi_plcp_signal(2);
2867 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2868 if (error != 0) {
2869 device_printf(sc->sc_dev, "could not add broadcast node\n");
2870 return error;
2871 }
2872
2873 /* Setup rate scalling */
2874 error = wpi_mrr_setup(sc);
2875 if (error != 0) {
2876 device_printf(sc->sc_dev, "could not setup MRR\n");
2877 return error;
2878 }
2879
2880 return 0;
2881}
2882
2883static void
2884wpi_stop_master(struct wpi_softc *sc)
2885{
2886 uint32_t tmp;
2887 int ntries;
2888
2889 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2890
2891 tmp = WPI_READ(sc, WPI_RESET);
2892 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2893
2894 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2895 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2896 return; /* already asleep */
2897
2898 for (ntries = 0; ntries < 100; ntries++) {
2899 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2900 break;
2901 DELAY(10);
2902 }
2903 if (ntries == 100) {
2904 device_printf(sc->sc_dev, "timeout waiting for master\n");
2905 }
2906}
2907
2908static int
2909wpi_power_up(struct wpi_softc *sc)
2910{
2911 uint32_t tmp;
2912 int ntries;
2913
2914 wpi_mem_lock(sc);
2915 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2916 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2917 wpi_mem_unlock(sc);
2918
2919 for (ntries = 0; ntries < 5000; ntries++) {
2920 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2921 break;
2922 DELAY(10);
2923 }
2924 if (ntries == 5000) {
2925 device_printf(sc->sc_dev,
2926 "timeout waiting for NIC to power up\n");
2927 return ETIMEDOUT;
2928 }
2929 return 0;
2930}
2931
2932static int
2933wpi_reset(struct wpi_softc *sc)
2934{
2935 uint32_t tmp;
2936 int ntries;
2937
2938 DPRINTFN(WPI_DEBUG_HW,
2939 ("Resetting the card - clearing any uploaded firmware\n"));
2940
2941 /* clear any pending interrupts */
2942 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2943
2944 tmp = WPI_READ(sc, WPI_PLL_CTL);
2945 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2946
2947 tmp = WPI_READ(sc, WPI_CHICKEN);
2948 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2949
2950 tmp = WPI_READ(sc, WPI_GPIO_CTL);
2951 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2952
2953 /* wait for clock stabilization */
2954 for (ntries = 0; ntries < 25000; ntries++) {
2955 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2956 break;
2957 DELAY(10);
2958 }
2959 if (ntries == 25000) {
2960 device_printf(sc->sc_dev,
2961 "timeout waiting for clock stabilization\n");
2962 return ETIMEDOUT;
2963 }
2964
2965 /* initialize EEPROM */
2966 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2967
2968 if ((tmp & WPI_EEPROM_VERSION) == 0) {
2969 device_printf(sc->sc_dev, "EEPROM not found\n");
2970 return EIO;
2971 }
2972 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2973
2974 return 0;
2975}
2976
2977static void
2978wpi_hw_config(struct wpi_softc *sc)
2979{
2980 uint32_t rev, hw;
2981
2982 /* voodoo from the Linux "driver".. */
2983 hw = WPI_READ(sc, WPI_HWCONFIG);
2984
2985 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2986 if ((rev & 0xc0) == 0x40)
2987 hw |= WPI_HW_ALM_MB;
2988 else if (!(rev & 0x80))
2989 hw |= WPI_HW_ALM_MM;
2990
2991 if (sc->cap == 0x80)
2992 hw |= WPI_HW_SKU_MRC;
2993
2994 hw &= ~WPI_HW_REV_D;
2995 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2996 hw |= WPI_HW_REV_D;
2997
2998 if (sc->type > 1)
2999 hw |= WPI_HW_TYPE_B;
3000
3001 WPI_WRITE(sc, WPI_HWCONFIG, hw);
3002}
3003
3004static void
3005wpi_rfkill_resume(struct wpi_softc *sc)
3006{
3007 struct ifnet *ifp = sc->sc_ifp;
3008 struct ieee80211com *ic = ifp->if_l2com;
3009 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3010 int ntries;
3011
3012 /* enable firmware again */
3013 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3014 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3015
3016 /* wait for thermal sensors to calibrate */
3017 for (ntries = 0; ntries < 1000; ntries++) {
3018 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3019 break;
3020 DELAY(10);
3021 }
3022
3023 if (ntries == 1000) {
3024 device_printf(sc->sc_dev,
3025 "timeout waiting for thermal calibration\n");
3026 return;
3027 }
3028 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3029
3030 if (wpi_config(sc) != 0) {
3031 device_printf(sc->sc_dev, "device config failed\n");
3032 return;
3033 }
3034
3035 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3036 ifp->if_drv_flags |= IFF_DRV_RUNNING;
3037 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3038
3039 if (vap != NULL) {
3040 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3041 if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3042 ieee80211_beacon_miss(ic);
3043 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3044 } else
3045 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3046 } else {
3047 ieee80211_scan_next(vap);
3048 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3049 }
3050 }
3051
3052 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3053}
3054
3055static void
3056wpi_init_locked(struct wpi_softc *sc, int force)
3057{
3058 struct ifnet *ifp = sc->sc_ifp;
3059 uint32_t tmp;
3060 int ntries, qid;
3061
3062 wpi_stop_locked(sc);
3063 (void)wpi_reset(sc);
3064
3065 wpi_mem_lock(sc);
3066 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3067 DELAY(20);
3068 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3069 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3070 wpi_mem_unlock(sc);
3071
3072 (void)wpi_power_up(sc);
3073 wpi_hw_config(sc);
3074
3075 /* init Rx ring */
3076 wpi_mem_lock(sc);
3077 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3078 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3079 offsetof(struct wpi_shared, next));
3080 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3081 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3082 wpi_mem_unlock(sc);
3083
3084 /* init Tx rings */
3085 wpi_mem_lock(sc);
3086 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3087 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3088 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3089 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3090 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3091 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3092 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3093
3094 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3095 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3096
3097 for (qid = 0; qid < 6; qid++) {
3098 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3099 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3100 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3101 }
3102 wpi_mem_unlock(sc);
3103
3104 /* clear "radio off" and "disable command" bits (reversed logic) */
3105 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3106 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3107 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3108
3109 /* clear any pending interrupts */
3110 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3111
3112 /* enable interrupts */
3113 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3114
3115 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3116 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3117
3118 if ((wpi_load_firmware(sc)) != 0) {
3119 device_printf(sc->sc_dev,
3120 "A problem occurred loading the firmware to the driver\n");
3121 return;
3122 }
3123
3124 /* At this point the firmware is up and running. If the hardware
3125 * RF switch is turned off thermal calibration will fail, though
3126 * the card is still happy to continue to accept commands, catch
3127 * this case and schedule a task to watch for it to be turned on.
3128 */
3129 wpi_mem_lock(sc);
3130 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3131 wpi_mem_unlock(sc);
3132
3133 if (!(tmp & 0x1)) {
3134 sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3135 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3136 goto out;
3137 }
3138
3139 /* wait for thermal sensors to calibrate */
3140 for (ntries = 0; ntries < 1000; ntries++) {
3141 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3142 break;
3143 DELAY(10);
3144 }
3145
3146 if (ntries == 1000) {
3147 device_printf(sc->sc_dev,
3148 "timeout waiting for thermal sensors calibration\n");
3149 return;
3150 }
3151 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3152
3153 if (wpi_config(sc) != 0) {
3154 device_printf(sc->sc_dev, "device config failed\n");
3155 return;
3156 }
3157
3158 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3159 ifp->if_drv_flags |= IFF_DRV_RUNNING;
3160out:
3161 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3162}
3163
3164static void
3165wpi_init(void *arg)
3166{
3167 struct wpi_softc *sc = arg;
3168 struct ifnet *ifp = sc->sc_ifp;
3169 struct ieee80211com *ic = ifp->if_l2com;
3170
3171 WPI_LOCK(sc);
3172 wpi_init_locked(sc, 0);
3173 WPI_UNLOCK(sc);
3174
3175 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3176 ieee80211_start_all(ic); /* start all vaps */
3177}
3178
3179static void
3180wpi_stop_locked(struct wpi_softc *sc)
3181{
3182 struct ifnet *ifp = sc->sc_ifp;
3183 uint32_t tmp;
3184 int ac;
3185
3186 sc->sc_tx_timer = 0;
3187 sc->sc_scan_timer = 0;
3188 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3189 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3190 callout_stop(&sc->watchdog_to);
3191 callout_stop(&sc->calib_to);
3192
3193
3194 /* disable interrupts */
3195 WPI_WRITE(sc, WPI_MASK, 0);
3196 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3197 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3198 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3199
3200 wpi_mem_lock(sc);
3201 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3202 wpi_mem_unlock(sc);
3203
3204 /* reset all Tx rings */
3205 for (ac = 0; ac < 4; ac++)
3206 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3207 wpi_reset_tx_ring(sc, &sc->cmdq);
3208
3209 /* reset Rx ring */
3210 wpi_reset_rx_ring(sc, &sc->rxq);
3211
3212 wpi_mem_lock(sc);
3213 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3214 wpi_mem_unlock(sc);
3215
3216 DELAY(5);
3217
3218 wpi_stop_master(sc);
3219
3220 tmp = WPI_READ(sc, WPI_RESET);
3221 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3222 sc->flags &= ~WPI_FLAG_BUSY;
3223}
3224
3225static void
3226wpi_stop(struct wpi_softc *sc)
3227{
3228 WPI_LOCK(sc);
3229 wpi_stop_locked(sc);
3230 WPI_UNLOCK(sc);
3231}
3232
3233static void
3234wpi_calib_timeout(void *arg)
3235{
3236 struct wpi_softc *sc = arg;
3237 struct ifnet *ifp = sc->sc_ifp;
3238 struct ieee80211com *ic = ifp->if_l2com;
3239 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3240 int temp;
3241
3242 if (vap->iv_state != IEEE80211_S_RUN)
3243 return;
3244
3245 /* update sensor data */
3246 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3247 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3248
3249 wpi_power_calibration(sc, temp);
3250
3251 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3252}
3253
3254/*
3255 * This function is called periodically (every 60 seconds) to adjust output
3256 * power to temperature changes.
3257 */
3258static void
3259wpi_power_calibration(struct wpi_softc *sc, int temp)
3260{
3261 struct ifnet *ifp = sc->sc_ifp;
3262 struct ieee80211com *ic = ifp->if_l2com;
3263 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3264
3265 /* sanity-check read value */
3266 if (temp < -260 || temp > 25) {
3267 /* this can't be correct, ignore */
3268 DPRINTFN(WPI_DEBUG_TEMP,
3269 ("out-of-range temperature reported: %d\n", temp));
3270 return;
3271 }
3272
3273 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3274
3275 /* adjust Tx power if need be */
3276 if (abs(temp - sc->temp) <= 6)
3277 return;
3278
3279 sc->temp = temp;
3280
3281 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3282 /* just warn, too bad for the automatic calibration... */
3283 device_printf(sc->sc_dev,"could not adjust Tx power\n");
3284 }
3285}
3286
3287/**
3288 * Read the eeprom to find out what channels are valid for the given
3289 * band and update net80211 with what we find.
3290 */
3291static void
3292wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3293{
3294 struct ifnet *ifp = sc->sc_ifp;
3295 struct ieee80211com *ic = ifp->if_l2com;
3296 const struct wpi_chan_band *band = &wpi_bands[n];
3297 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3298 struct ieee80211_channel *c;
3299 int chan, i, passive;
3300
3301 wpi_read_prom_data(sc, band->addr, channels,
3302 band->nchan * sizeof (struct wpi_eeprom_chan));
3303
3304 for (i = 0; i < band->nchan; i++) {
3305 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3306 DPRINTFN(WPI_DEBUG_HW,
3307 ("Channel Not Valid: %d, band %d\n",
3308 band->chan[i],n));
3309 continue;
3310 }
3311
3312 passive = 0;
3313 chan = band->chan[i];
3314 c = &ic->ic_channels[ic->ic_nchans++];
3315
3316 /* is active scan allowed on this channel? */
3317 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3318 passive = IEEE80211_CHAN_PASSIVE;
3319 }
3320
3321 if (n == 0) { /* 2GHz band */
3322 c->ic_ieee = chan;
3323 c->ic_freq = ieee80211_ieee2mhz(chan,
3324 IEEE80211_CHAN_2GHZ);
3325 c->ic_flags = IEEE80211_CHAN_B | passive;
3326
3327 c = &ic->ic_channels[ic->ic_nchans++];
3328 c->ic_ieee = chan;
3329 c->ic_freq = ieee80211_ieee2mhz(chan,
3330 IEEE80211_CHAN_2GHZ);
3331 c->ic_flags = IEEE80211_CHAN_G | passive;
3332
3333 } else { /* 5GHz band */
3334 /*
3335 * Some 3945ABG adapters support channels 7, 8, 11
3336 * and 12 in the 2GHz *and* 5GHz bands.
3337 * Because of limitations in our net80211(9) stack,
3338 * we can't support these channels in 5GHz band.
3339 * XXX not true; just need to map to proper frequency
3340 */
3341 if (chan <= 14)
3342 continue;
3343
3344 c->ic_ieee = chan;
3345 c->ic_freq = ieee80211_ieee2mhz(chan,
3346 IEEE80211_CHAN_5GHZ);
3347 c->ic_flags = IEEE80211_CHAN_A | passive;
3348 }
3349
3350 /* save maximum allowed power for this channel */
3351 sc->maxpwr[chan] = channels[i].maxpwr;
3352
3353#if 0
3354 // XXX We can probably use this an get rid of maxpwr - ben 20070617
3355 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3356 //ic->ic_channels[chan].ic_minpower...
3357 //ic->ic_channels[chan].ic_maxregtxpower...
3358#endif
3359
3360 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3361 " passive=%d, offset %d\n", chan, c->ic_freq,
3362 channels[i].flags, sc->maxpwr[chan],
3363 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3364 ic->ic_nchans));
3365 }
3366}
3367
3368static void
3369wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3370{
3371 struct wpi_power_group *group = &sc->groups[n];
3372 struct wpi_eeprom_group rgroup;
3373 int i;
3374
3375 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3376 sizeof rgroup);
3377
3378 /* save power group information */
3379 group->chan = rgroup.chan;
3380 group->maxpwr = rgroup.maxpwr;
3381 /* temperature at which the samples were taken */
3382 group->temp = (int16_t)le16toh(rgroup.temp);
3383
3384 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3385 group->chan, group->maxpwr, group->temp));
3386
3387 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3388 group->samples[i].index = rgroup.samples[i].index;
3389 group->samples[i].power = rgroup.samples[i].power;
3390
3391 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3392 group->samples[i].index, group->samples[i].power));
3393 }
3394}
3395
3396/*
3397 * Update Tx power to match what is defined for channel `c'.
3398 */
3399static int
3400wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3401{
3402 struct ifnet *ifp = sc->sc_ifp;
3403 struct ieee80211com *ic = ifp->if_l2com;
3404 struct wpi_power_group *group;
3405 struct wpi_cmd_txpower txpower;
3406 u_int chan;
3407 int i;
3408
3409 /* get channel number */
3410 chan = ieee80211_chan2ieee(ic, c);
3411
3412 /* find the power group to which this channel belongs */
3413 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3414 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3415 if (chan <= group->chan)
3416 break;
3417 } else
3418 group = &sc->groups[0];
3419
3420 memset(&txpower, 0, sizeof txpower);
3421 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3422 txpower.channel = htole16(chan);
3423
3424 /* set Tx power for all OFDM and CCK rates */
3425 for (i = 0; i <= 11 ; i++) {
3426 /* retrieve Tx power for this channel/rate combination */
3427 int idx = wpi_get_power_index(sc, group, c,
3428 wpi_ridx_to_rate[i]);
3429
3430 txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3431
3432 if (IEEE80211_IS_CHAN_5GHZ(c)) {
3433 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3434 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3435 } else {
3436 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3437 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3438 }
3439 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3440 chan, wpi_ridx_to_rate[i], idx));
3441 }
3442
3443 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3444}
3445
3446/*
3447 * Determine Tx power index for a given channel/rate combination.
3448 * This takes into account the regulatory information from EEPROM and the
3449 * current temperature.
3450 */
3451static int
3452wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3453 struct ieee80211_channel *c, int rate)
3454{
3455/* fixed-point arithmetic division using a n-bit fractional part */
3456#define fdivround(a, b, n) \
3457 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3458
3459/* linear interpolation */
3460#define interpolate(x, x1, y1, x2, y2, n) \
3461 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3462
3463 struct ifnet *ifp = sc->sc_ifp;
3464 struct ieee80211com *ic = ifp->if_l2com;
3465 struct wpi_power_sample *sample;
3466 int pwr, idx;
3467 u_int chan;
3468
3469 /* get channel number */
3470 chan = ieee80211_chan2ieee(ic, c);
3471
3472 /* default power is group's maximum power - 3dB */
3473 pwr = group->maxpwr / 2;
3474
3475 /* decrease power for highest OFDM rates to reduce distortion */
3476 switch (rate) {
3477 case 72: /* 36Mb/s */
3478 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
3479 break;
3480 case 96: /* 48Mb/s */
3481 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3482 break;
3483 case 108: /* 54Mb/s */
3484 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3485 break;
3486 }
3487
3488 /* never exceed channel's maximum allowed Tx power */
3489 pwr = min(pwr, sc->maxpwr[chan]);
3490
3491 /* retrieve power index into gain tables from samples */
3492 for (sample = group->samples; sample < &group->samples[3]; sample++)
3493 if (pwr > sample[1].power)
3494 break;
3495 /* fixed-point linear interpolation using a 19-bit fractional part */
3496 idx = interpolate(pwr, sample[0].power, sample[0].index,
3497 sample[1].power, sample[1].index, 19);
3498
3499 /*
3500 * Adjust power index based on current temperature
3501 * - if colder than factory-calibrated: decreate output power
3502 * - if warmer than factory-calibrated: increase output power
3503 */
3504 idx -= (sc->temp - group->temp) * 11 / 100;
3505
3506 /* decrease power for CCK rates (-5dB) */
3507 if (!WPI_RATE_IS_OFDM(rate))
3508 idx += 10;
3509
3510 /* keep power index in a valid range */
3511 if (idx < 0)
3512 return 0;
3513 if (idx > WPI_MAX_PWR_INDEX)
3514 return WPI_MAX_PWR_INDEX;
3515 return idx;
3516
3517#undef interpolate
3518#undef fdivround
3519}
3520
3521/**
3522 * Called by net80211 framework to indicate that a scan
3523 * is starting. This function doesn't actually do the scan,
3524 * wpi_scan_curchan starts things off. This function is more
3525 * of an early warning from the framework we should get ready
3526 * for the scan.
3527 */
3528static void
3529wpi_scan_start(struct ieee80211com *ic)
3530{
3531 struct ifnet *ifp = ic->ic_ifp;
3532 struct wpi_softc *sc = ifp->if_softc;
3533
3534 WPI_LOCK(sc);
3535 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3536 WPI_UNLOCK(sc);
3537}
3538
3539/**
3540 * Called by the net80211 framework, indicates that the
3541 * scan has ended. If there is a scan in progress on the card
3542 * then it should be aborted.
3543 */
3544static void
3545wpi_scan_end(struct ieee80211com *ic)
3546{
3547 /* XXX ignore */
3548}
3549
3550/**
3551 * Called by the net80211 framework to indicate to the driver
3552 * that the channel should be changed
3553 */
3554static void
3555wpi_set_channel(struct ieee80211com *ic)
3556{
3557 struct ifnet *ifp = ic->ic_ifp;
3558 struct wpi_softc *sc = ifp->if_softc;
3559 int error;
3560
3561 /*
3562 * Only need to set the channel in Monitor mode. AP scanning and auth
3563 * are already taken care of by their respective firmware commands.
3564 */
3565 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3566 WPI_LOCK(sc);
3567 error = wpi_config(sc);
3568 WPI_UNLOCK(sc);
3569 if (error != 0)
3570 device_printf(sc->sc_dev,
3571 "error %d settting channel\n", error);
3572 }
3573}
3574
3575/**
3576 * Called by net80211 to indicate that we need to scan the current
3577 * channel. The channel is previously be set via the wpi_set_channel
3578 * callback.
3579 */
3580static void
3581wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3582{
3583 struct ieee80211vap *vap = ss->ss_vap;
3584 struct ifnet *ifp = vap->iv_ic->ic_ifp;
3585 struct wpi_softc *sc = ifp->if_softc;
3586
3587 WPI_LOCK(sc);
3588 if (wpi_scan(sc))
3589 ieee80211_cancel_scan(vap);
3590 WPI_UNLOCK(sc);
3591}
3592
3593/**
3594 * Called by the net80211 framework to indicate
3595 * the minimum dwell time has been met, terminate the scan.
3596 * We don't actually terminate the scan as the firmware will notify
3597 * us when it's finished and we have no way to interrupt it.
3598 */
3599static void
3600wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3601{
3602 /* NB: don't try to abort scan; wait for firmware to finish */
3603}
3604
3605static void
3606wpi_hwreset(void *arg, int pending)
3607{
3608 struct wpi_softc *sc = arg;
3609
3610 WPI_LOCK(sc);
3611 wpi_init_locked(sc, 0);
3612 WPI_UNLOCK(sc);
3613}
3614
3615static void
3616wpi_rfreset(void *arg, int pending)
3617{
3618 struct wpi_softc *sc = arg;
3619
3620 WPI_LOCK(sc);
3621 wpi_rfkill_resume(sc);
3622 WPI_UNLOCK(sc);
3623}
3624
3625/*
3626 * Allocate DMA-safe memory for firmware transfer.
3627 */
3628static int
3629wpi_alloc_fwmem(struct wpi_softc *sc)
3630{
3631 /* allocate enough contiguous space to store text and data */
3632 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3633 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3634 BUS_DMA_NOWAIT);
3635}
3636
3637static void
3638wpi_free_fwmem(struct wpi_softc *sc)
3639{
3640 wpi_dma_contig_free(&sc->fw_dma);
3641}
3642
3643/**
3644 * Called every second, wpi_watchdog used by the watch dog timer
3645 * to check that the card is still alive
3646 */
3647static void
3648wpi_watchdog(void *arg)
3649{
3650 struct wpi_softc *sc = arg;
3651 struct ifnet *ifp = sc->sc_ifp;
3652 struct ieee80211com *ic = ifp->if_l2com;
3653 uint32_t tmp;
3654
3655 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3656
3657 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3658 /* No need to lock firmware memory */
3659 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3660
3661 if ((tmp & 0x1) == 0) {
3662 /* Radio kill switch is still off */
3663 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3664 return;
3665 }
3666
3667 device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3668 ieee80211_runtask(ic, &sc->sc_radiotask);
3669 return;
3670 }
3671
3672 if (sc->sc_tx_timer > 0) {
3673 if (--sc->sc_tx_timer == 0) {
3674 device_printf(sc->sc_dev,"device timeout\n");
3675 ifp->if_oerrors++;
3676 ieee80211_runtask(ic, &sc->sc_restarttask);
3677 }
3678 }
3679 if (sc->sc_scan_timer > 0) {
3680 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3681 if (--sc->sc_scan_timer == 0 && vap != NULL) {
3682 device_printf(sc->sc_dev,"scan timeout\n");
3683 ieee80211_cancel_scan(vap);
3684 ieee80211_runtask(ic, &sc->sc_restarttask);
3685 }
3686 }
3687
3688 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3689 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3690}
3691
3692#ifdef WPI_DEBUG
3693static const char *wpi_cmd_str(int cmd)
3694{
3695 switch (cmd) {
3696 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD";
3697 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE";
3698 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE";
3699 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME";
3700 case WPI_CMD_TSF: return "WPI_CMD_TSF";
3701 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE";
3702 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA";
3703 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP";
3704 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED";
3705 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3706 case WPI_CMD_SCAN: return "WPI_CMD_SCAN";
3707 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3708 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER";
3709 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH";
3710
3711 default:
3712 KASSERT(1, ("Unknown Command: %d\n", cmd));
3713 return "UNKNOWN CMD"; /* Make the compiler happy */
3714 }
3715}
3716#endif
3717
3718MODULE_DEPEND(wpi, pci, 1, 1, 1);
3719MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3720MODULE_DEPEND(wpi, firmware, 1, 1, 1);