Deleted Added
sdiff udiff text old ( 207554 ) new ( 209447 )
full compact
1/* $OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */
2/* $FreeBSD: head/sys/dev/usb/wlan/if_upgt.c 207554 2010-05-03 07:32:50Z sobomax $ */
3
4/*
5 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20#include <sys/param.h>
21#include <sys/systm.h>
22#include <sys/kernel.h>
23#include <sys/endian.h>
24#include <sys/firmware.h>
25#include <sys/linker.h>
26#include <sys/mbuf.h>
27#include <sys/malloc.h>
28#include <sys/module.h>
29#include <sys/socket.h>
30#include <sys/sockio.h>
31#include <sys/sysctl.h>
32
33#include <net/if.h>
34#include <net/if_arp.h>
35#include <net/ethernet.h>
36#include <net/if_dl.h>
37#include <net/if_media.h>
38#include <net/if_types.h>
39
40#include <sys/bus.h>
41#include <machine/bus.h>
42
43#include <net80211/ieee80211_var.h>
44#include <net80211/ieee80211_phy.h>
45#include <net80211/ieee80211_radiotap.h>
46#include <net80211/ieee80211_regdomain.h>
47
48#include <net/bpf.h>
49
50#include <dev/usb/usb.h>
51#include <dev/usb/usbdi.h>
52#include "usbdevs.h"
53
54#include <dev/usb/wlan/if_upgtvar.h>
55
56/*
57 * Driver for the USB PrismGT devices.
58 *
59 * For now just USB 2.0 devices with the GW3887 chipset are supported.
60 * The driver has been written based on the firmware version 2.13.1.0_LM87.
61 *
62 * TODO's:
63 * - MONITOR mode test.
64 * - Add HOSTAP mode.
65 * - Add IBSS mode.
66 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
67 *
68 * Parts of this driver has been influenced by reading the p54u driver
69 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
70 * Sebastien Bourdeauducq <lekernel@prism54.org>.
71 */
72
73SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD, 0,
74 "USB PrismGT GW3887 driver parameters");
75
76#ifdef UPGT_DEBUG
77int upgt_debug = 0;
78SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RW, &upgt_debug,
79 0, "control debugging printfs");
80TUNABLE_INT("hw.upgt.debug", &upgt_debug);
81enum {
82 UPGT_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
83 UPGT_DEBUG_RECV = 0x00000002, /* basic recv operation */
84 UPGT_DEBUG_RESET = 0x00000004, /* reset processing */
85 UPGT_DEBUG_INTR = 0x00000008, /* INTR */
86 UPGT_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */
87 UPGT_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */
88 UPGT_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */
89 UPGT_DEBUG_STAT = 0x00000080, /* statistic */
90 UPGT_DEBUG_FW = 0x00000100, /* firmware */
91 UPGT_DEBUG_ANY = 0xffffffff
92};
93#define DPRINTF(sc, m, fmt, ...) do { \
94 if (sc->sc_debug & (m)) \
95 printf(fmt, __VA_ARGS__); \
96} while (0)
97#else
98#define DPRINTF(sc, m, fmt, ...) do { \
99 (void) sc; \
100} while (0)
101#endif
102
103/*
104 * Prototypes.
105 */
106static device_probe_t upgt_match;
107static device_attach_t upgt_attach;
108static device_detach_t upgt_detach;
109static int upgt_alloc_tx(struct upgt_softc *);
110static int upgt_alloc_rx(struct upgt_softc *);
111static int upgt_device_reset(struct upgt_softc *);
112static void upgt_bulk_tx(struct upgt_softc *, struct upgt_data *);
113static int upgt_fw_verify(struct upgt_softc *);
114static int upgt_mem_init(struct upgt_softc *);
115static int upgt_fw_load(struct upgt_softc *);
116static int upgt_fw_copy(const uint8_t *, char *, int);
117static uint32_t upgt_crc32_le(const void *, size_t);
118static struct mbuf *
119 upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *);
120static struct mbuf *
121 upgt_rx(struct upgt_softc *, uint8_t *, int, int *);
122static void upgt_txeof(struct usb_xfer *, struct upgt_data *);
123static int upgt_eeprom_read(struct upgt_softc *);
124static int upgt_eeprom_parse(struct upgt_softc *);
125static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
126static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
127static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
128static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
129static uint32_t upgt_chksum_le(const uint32_t *, size_t);
130static void upgt_tx_done(struct upgt_softc *, uint8_t *);
131static void upgt_init(void *);
132static void upgt_init_locked(struct upgt_softc *);
133static int upgt_ioctl(struct ifnet *, u_long, caddr_t);
134static void upgt_start(struct ifnet *);
135static int upgt_raw_xmit(struct ieee80211_node *, struct mbuf *,
136 const struct ieee80211_bpf_params *);
137static void upgt_scan_start(struct ieee80211com *);
138static void upgt_scan_end(struct ieee80211com *);
139static void upgt_set_channel(struct ieee80211com *);
140static struct ieee80211vap *upgt_vap_create(struct ieee80211com *,
141 const char name[IFNAMSIZ], int unit, int opmode,
142 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
143 const uint8_t mac[IEEE80211_ADDR_LEN]);
144static void upgt_vap_delete(struct ieee80211vap *);
145static void upgt_update_mcast(struct ifnet *);
146static uint8_t upgt_rx_rate(struct upgt_softc *, const int);
147static void upgt_set_multi(void *);
148static void upgt_stop(struct upgt_softc *);
149static void upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *);
150static int upgt_set_macfilter(struct upgt_softc *, uint8_t);
151static int upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int);
152static void upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *);
153static void upgt_set_led(struct upgt_softc *, int);
154static void upgt_set_led_blink(void *);
155static void upgt_get_stats(struct upgt_softc *);
156static void upgt_mem_free(struct upgt_softc *, uint32_t);
157static uint32_t upgt_mem_alloc(struct upgt_softc *);
158static void upgt_free_tx(struct upgt_softc *);
159static void upgt_free_rx(struct upgt_softc *);
160static void upgt_watchdog(void *);
161static void upgt_abort_xfers(struct upgt_softc *);
162static void upgt_abort_xfers_locked(struct upgt_softc *);
163static void upgt_sysctl_node(struct upgt_softc *);
164static struct upgt_data *
165 upgt_getbuf(struct upgt_softc *);
166static struct upgt_data *
167 upgt_gettxbuf(struct upgt_softc *);
168static int upgt_tx_start(struct upgt_softc *, struct mbuf *,
169 struct ieee80211_node *, struct upgt_data *);
170
171static const char *upgt_fwname = "upgt-gw3887";
172
173static const struct usb_device_id upgt_devs_2[] = {
174#define UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
175 /* version 2 devices */
176 UPGT_DEV(ACCTON, PRISM_GT),
177 UPGT_DEV(BELKIN, F5D7050),
178 UPGT_DEV(CISCOLINKSYS, WUSB54AG),
179 UPGT_DEV(CONCEPTRONIC, PRISM_GT),
180 UPGT_DEV(DELL, PRISM_GT_1),
181 UPGT_DEV(DELL, PRISM_GT_2),
182 UPGT_DEV(FSC, E5400),
183 UPGT_DEV(GLOBESPAN, PRISM_GT_1),
184 UPGT_DEV(GLOBESPAN, PRISM_GT_2),
185 UPGT_DEV(INTERSIL, PRISM_GT),
186 UPGT_DEV(SMC, 2862WG),
187 UPGT_DEV(WISTRONNEWEB, UR045G),
188 UPGT_DEV(XYRATEX, PRISM_GT_1),
189 UPGT_DEV(XYRATEX, PRISM_GT_2),
190 UPGT_DEV(ZCOM, XG703A),
191 UPGT_DEV(ZCOM, XM142)
192};
193
194static usb_callback_t upgt_bulk_rx_callback;
195static usb_callback_t upgt_bulk_tx_callback;
196
197static const struct usb_config upgt_config[UPGT_N_XFERS] = {
198 [UPGT_BULK_TX] = {
199 .type = UE_BULK,
200 .endpoint = UE_ADDR_ANY,
201 .direction = UE_DIR_OUT,
202 .bufsize = MCLBYTES,
203 .flags = {
204 .ext_buffer = 1,
205 .force_short_xfer = 1,
206 .pipe_bof = 1
207 },
208 .callback = upgt_bulk_tx_callback,
209 .timeout = UPGT_USB_TIMEOUT, /* ms */
210 },
211 [UPGT_BULK_RX] = {
212 .type = UE_BULK,
213 .endpoint = UE_ADDR_ANY,
214 .direction = UE_DIR_IN,
215 .bufsize = MCLBYTES,
216 .flags = {
217 .ext_buffer = 1,
218 .pipe_bof = 1,
219 .short_xfer_ok = 1
220 },
221 .callback = upgt_bulk_rx_callback,
222 },
223};
224
225static int
226upgt_match(device_t dev)
227{
228 struct usb_attach_arg *uaa = device_get_ivars(dev);
229
230 if (uaa->usb_mode != USB_MODE_HOST)
231 return (ENXIO);
232 if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX)
233 return (ENXIO);
234 if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX)
235 return (ENXIO);
236
237 return (usbd_lookup_id_by_uaa(upgt_devs_2, sizeof(upgt_devs_2), uaa));
238}
239
240static int
241upgt_attach(device_t dev)
242{
243 int error;
244 struct ieee80211com *ic;
245 struct ifnet *ifp;
246 struct upgt_softc *sc = device_get_softc(dev);
247 struct usb_attach_arg *uaa = device_get_ivars(dev);
248 uint8_t bands, iface_index = UPGT_IFACE_INDEX;
249
250 sc->sc_dev = dev;
251 sc->sc_udev = uaa->device;
252#ifdef UPGT_DEBUG
253 sc->sc_debug = upgt_debug;
254#endif
255 device_set_usb_desc(dev);
256
257 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK,
258 MTX_DEF);
259 callout_init(&sc->sc_led_ch, 0);
260 callout_init(&sc->sc_watchdog_ch, 0);
261
262 /* Allocate TX and RX xfers. */
263 error = upgt_alloc_tx(sc);
264 if (error)
265 goto fail1;
266 error = upgt_alloc_rx(sc);
267 if (error)
268 goto fail2;
269
270 error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
271 upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx);
272 if (error) {
273 device_printf(dev, "could not allocate USB transfers, "
274 "err=%s\n", usbd_errstr(error));
275 goto fail3;
276 }
277
278 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
279 if (ifp == NULL) {
280 device_printf(dev, "can not if_alloc()\n");
281 goto fail4;
282 }
283
284 /* Initialize the device. */
285 error = upgt_device_reset(sc);
286 if (error)
287 goto fail5;
288 /* Verify the firmware. */
289 error = upgt_fw_verify(sc);
290 if (error)
291 goto fail5;
292 /* Calculate device memory space. */
293 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
294 device_printf(dev,
295 "could not find memory space addresses on FW\n");
296 error = EIO;
297 goto fail5;
298 }
299 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
300 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
301
302 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n",
303 sc->sc_memaddr_frame_start);
304 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n",
305 sc->sc_memaddr_frame_end);
306 DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n",
307 sc->sc_memaddr_rx_start);
308
309 upgt_mem_init(sc);
310
311 /* Load the firmware. */
312 error = upgt_fw_load(sc);
313 if (error)
314 goto fail5;
315
316 /* Read the whole EEPROM content and parse it. */
317 error = upgt_eeprom_read(sc);
318 if (error)
319 goto fail5;
320 error = upgt_eeprom_parse(sc);
321 if (error)
322 goto fail5;
323
324 /* all works related with the device have done here. */
325 upgt_abort_xfers(sc);
326
327 /* Setup the 802.11 device. */
328 ifp->if_softc = sc;
329 if_initname(ifp, "upgt", device_get_unit(sc->sc_dev));
330 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
331 ifp->if_init = upgt_init;
332 ifp->if_ioctl = upgt_ioctl;
333 ifp->if_start = upgt_start;
334 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
335 IFQ_SET_READY(&ifp->if_snd);
336
337 ic = ifp->if_l2com;
338 ic->ic_ifp = ifp;
339 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
340 ic->ic_opmode = IEEE80211_M_STA;
341 /* set device capabilities */
342 ic->ic_caps =
343 IEEE80211_C_STA /* station mode */
344 | IEEE80211_C_MONITOR /* monitor mode */
345 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
346 | IEEE80211_C_SHSLOT /* short slot time supported */
347 | IEEE80211_C_BGSCAN /* capable of bg scanning */
348 | IEEE80211_C_WPA /* 802.11i */
349 ;
350
351 bands = 0;
352 setbit(&bands, IEEE80211_MODE_11B);
353 setbit(&bands, IEEE80211_MODE_11G);
354 ieee80211_init_channels(ic, NULL, &bands);
355
356 ieee80211_ifattach(ic, sc->sc_myaddr);
357 ic->ic_raw_xmit = upgt_raw_xmit;
358 ic->ic_scan_start = upgt_scan_start;
359 ic->ic_scan_end = upgt_scan_end;
360 ic->ic_set_channel = upgt_set_channel;
361
362 ic->ic_vap_create = upgt_vap_create;
363 ic->ic_vap_delete = upgt_vap_delete;
364 ic->ic_update_mcast = upgt_update_mcast;
365
366 ieee80211_radiotap_attach(ic,
367 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
368 UPGT_TX_RADIOTAP_PRESENT,
369 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
370 UPGT_RX_RADIOTAP_PRESENT);
371
372 upgt_sysctl_node(sc);
373
374 if (bootverbose)
375 ieee80211_announce(ic);
376
377 return (0);
378
379fail5: if_free(ifp);
380fail4: usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
381fail3: upgt_free_rx(sc);
382fail2: upgt_free_tx(sc);
383fail1: mtx_destroy(&sc->sc_mtx);
384
385 return (error);
386}
387
388static void
389upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data)
390{
391 struct upgt_softc *sc = usbd_xfer_softc(xfer);
392 struct ifnet *ifp = sc->sc_ifp;
393 struct mbuf *m;
394
395 UPGT_ASSERT_LOCKED(sc);
396
397 /*
398 * Do any tx complete callback. Note this must be done before releasing
399 * the node reference.
400 */
401 if (data->m) {
402 m = data->m;
403 if (m->m_flags & M_TXCB) {
404 /* XXX status? */
405 ieee80211_process_callback(data->ni, m, 0);
406 }
407 m_freem(m);
408 data->m = NULL;
409 }
410 if (data->ni) {
411 ieee80211_free_node(data->ni);
412 data->ni = NULL;
413 }
414 ifp->if_opackets++;
415}
416
417static void
418upgt_get_stats(struct upgt_softc *sc)
419{
420 struct upgt_data *data_cmd;
421 struct upgt_lmac_mem *mem;
422 struct upgt_lmac_stats *stats;
423
424 data_cmd = upgt_getbuf(sc);
425 if (data_cmd == NULL) {
426 device_printf(sc->sc_dev, "%s: out of buffer.\n", __func__);
427 return;
428 }
429
430 /*
431 * Transmit the URB containing the CMD data.
432 */
433 bzero(data_cmd->buf, MCLBYTES);
434
435 mem = (struct upgt_lmac_mem *)data_cmd->buf;
436 mem->addr = htole32(sc->sc_memaddr_frame_start +
437 UPGT_MEMSIZE_FRAME_HEAD);
438
439 stats = (struct upgt_lmac_stats *)(mem + 1);
440
441 stats->header1.flags = 0;
442 stats->header1.type = UPGT_H1_TYPE_CTRL;
443 stats->header1.len = htole16(
444 sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header));
445
446 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
447 stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
448 stats->header2.flags = 0;
449
450 data_cmd->buflen = sizeof(*mem) + sizeof(*stats);
451
452 mem->chksum = upgt_chksum_le((uint32_t *)stats,
453 data_cmd->buflen - sizeof(*mem));
454
455 upgt_bulk_tx(sc, data_cmd);
456}
457
458static int
459upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
460{
461 struct upgt_softc *sc = ifp->if_softc;
462 struct ieee80211com *ic = ifp->if_l2com;
463 struct ifreq *ifr = (struct ifreq *) data;
464 int error = 0, startall = 0;
465
466 switch (cmd) {
467 case SIOCSIFFLAGS:
468 if (ifp->if_flags & IFF_UP) {
469 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
470 if ((ifp->if_flags ^ sc->sc_if_flags) &
471 (IFF_ALLMULTI | IFF_PROMISC))
472 upgt_set_multi(sc);
473 } else {
474 upgt_init(sc);
475 startall = 1;
476 }
477 } else {
478 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
479 upgt_stop(sc);
480 }
481 sc->sc_if_flags = ifp->if_flags;
482 if (startall)
483 ieee80211_start_all(ic);
484 break;
485 case SIOCGIFMEDIA:
486 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
487 break;
488 case SIOCGIFADDR:
489 error = ether_ioctl(ifp, cmd, data);
490 break;
491 default:
492 error = EINVAL;
493 break;
494 }
495 return error;
496}
497
498static void
499upgt_stop_locked(struct upgt_softc *sc)
500{
501 struct ifnet *ifp = sc->sc_ifp;
502
503 UPGT_ASSERT_LOCKED(sc);
504
505 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
506 upgt_set_macfilter(sc, IEEE80211_S_INIT);
507 upgt_abort_xfers_locked(sc);
508}
509
510static void
511upgt_stop(struct upgt_softc *sc)
512{
513 struct ifnet *ifp = sc->sc_ifp;
514
515 UPGT_LOCK(sc);
516 upgt_stop_locked(sc);
517 UPGT_UNLOCK(sc);
518
519 /* device down */
520 sc->sc_tx_timer = 0;
521 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
522 sc->sc_flags &= ~UPGT_FLAG_INITDONE;
523}
524
525static void
526upgt_set_led(struct upgt_softc *sc, int action)
527{
528 struct upgt_data *data_cmd;
529 struct upgt_lmac_mem *mem;
530 struct upgt_lmac_led *led;
531
532 data_cmd = upgt_getbuf(sc);
533 if (data_cmd == NULL) {
534 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
535 return;
536 }
537
538 /*
539 * Transmit the URB containing the CMD data.
540 */
541 bzero(data_cmd->buf, MCLBYTES);
542
543 mem = (struct upgt_lmac_mem *)data_cmd->buf;
544 mem->addr = htole32(sc->sc_memaddr_frame_start +
545 UPGT_MEMSIZE_FRAME_HEAD);
546
547 led = (struct upgt_lmac_led *)(mem + 1);
548
549 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
550 led->header1.type = UPGT_H1_TYPE_CTRL;
551 led->header1.len = htole16(
552 sizeof(struct upgt_lmac_led) -
553 sizeof(struct upgt_lmac_header));
554
555 led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
556 led->header2.type = htole16(UPGT_H2_TYPE_LED);
557 led->header2.flags = 0;
558
559 switch (action) {
560 case UPGT_LED_OFF:
561 led->mode = htole16(UPGT_LED_MODE_SET);
562 led->action_fix = 0;
563 led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
564 led->action_tmp_dur = 0;
565 break;
566 case UPGT_LED_ON:
567 led->mode = htole16(UPGT_LED_MODE_SET);
568 led->action_fix = 0;
569 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
570 led->action_tmp_dur = 0;
571 break;
572 case UPGT_LED_BLINK:
573 if (sc->sc_state != IEEE80211_S_RUN) {
574 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
575 return;
576 }
577 if (sc->sc_led_blink) {
578 /* previous blink was not finished */
579 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
580 return;
581 }
582 led->mode = htole16(UPGT_LED_MODE_SET);
583 led->action_fix = htole16(UPGT_LED_ACTION_OFF);
584 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
585 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
586 /* lock blink */
587 sc->sc_led_blink = 1;
588 callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc);
589 break;
590 default:
591 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
592 return;
593 }
594
595 data_cmd->buflen = sizeof(*mem) + sizeof(*led);
596
597 mem->chksum = upgt_chksum_le((uint32_t *)led,
598 data_cmd->buflen - sizeof(*mem));
599
600 upgt_bulk_tx(sc, data_cmd);
601}
602
603static void
604upgt_set_led_blink(void *arg)
605{
606 struct upgt_softc *sc = arg;
607
608 /* blink finished, we are ready for a next one */
609 sc->sc_led_blink = 0;
610}
611
612static void
613upgt_init(void *priv)
614{
615 struct upgt_softc *sc = priv;
616 struct ifnet *ifp = sc->sc_ifp;
617 struct ieee80211com *ic = ifp->if_l2com;
618
619 UPGT_LOCK(sc);
620 upgt_init_locked(sc);
621 UPGT_UNLOCK(sc);
622
623 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
624 ieee80211_start_all(ic); /* start all vap's */
625}
626
627static void
628upgt_init_locked(struct upgt_softc *sc)
629{
630 struct ifnet *ifp = sc->sc_ifp;
631
632 UPGT_ASSERT_LOCKED(sc);
633
634 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
635 upgt_stop_locked(sc);
636
637 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
638
639 (void)upgt_set_macfilter(sc, IEEE80211_S_SCAN);
640
641 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
642 ifp->if_drv_flags |= IFF_DRV_RUNNING;
643 sc->sc_flags |= UPGT_FLAG_INITDONE;
644
645 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
646}
647
648static int
649upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
650{
651 struct ifnet *ifp = sc->sc_ifp;
652 struct ieee80211com *ic = ifp->if_l2com;
653 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
654 struct ieee80211_node *ni = vap->iv_bss;
655 struct upgt_data *data_cmd;
656 struct upgt_lmac_mem *mem;
657 struct upgt_lmac_filter *filter;
658 uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
659
660 UPGT_ASSERT_LOCKED(sc);
661
662 data_cmd = upgt_getbuf(sc);
663 if (data_cmd == NULL) {
664 device_printf(sc->sc_dev, "out of TX buffers.\n");
665 return (ENOBUFS);
666 }
667
668 /*
669 * Transmit the URB containing the CMD data.
670 */
671 bzero(data_cmd->buf, MCLBYTES);
672
673 mem = (struct upgt_lmac_mem *)data_cmd->buf;
674 mem->addr = htole32(sc->sc_memaddr_frame_start +
675 UPGT_MEMSIZE_FRAME_HEAD);
676
677 filter = (struct upgt_lmac_filter *)(mem + 1);
678
679 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
680 filter->header1.type = UPGT_H1_TYPE_CTRL;
681 filter->header1.len = htole16(
682 sizeof(struct upgt_lmac_filter) -
683 sizeof(struct upgt_lmac_header));
684
685 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
686 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
687 filter->header2.flags = 0;
688
689 switch (state) {
690 case IEEE80211_S_INIT:
691 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n",
692 __func__);
693 filter->type = htole16(UPGT_FILTER_TYPE_RESET);
694 break;
695 case IEEE80211_S_SCAN:
696 DPRINTF(sc, UPGT_DEBUG_STATE,
697 "set MAC filter to SCAN (bssid %s)\n",
698 ether_sprintf(broadcast));
699 filter->type = htole16(UPGT_FILTER_TYPE_NONE);
700 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
701 IEEE80211_ADDR_COPY(filter->src, broadcast);
702 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
703 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
704 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
705 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
706 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
707 break;
708 case IEEE80211_S_RUN:
709 /* XXX monitor mode isn't tested yet. */
710 if (vap->iv_opmode == IEEE80211_M_MONITOR) {
711 filter->type = htole16(UPGT_FILTER_TYPE_MONITOR);
712 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
713 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
714 filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1);
715 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
716 filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2);
717 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
718 filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3);
719 } else {
720 DPRINTF(sc, UPGT_DEBUG_STATE,
721 "set MAC filter to RUN (bssid %s)\n",
722 ether_sprintf(ni->ni_bssid));
723 filter->type = htole16(UPGT_FILTER_TYPE_STA);
724 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
725 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
726 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
727 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
728 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
729 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
730 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
731 }
732 break;
733 default:
734 device_printf(sc->sc_dev,
735 "MAC filter does not know that state\n");
736 break;
737 }
738
739 data_cmd->buflen = sizeof(*mem) + sizeof(*filter);
740
741 mem->chksum = upgt_chksum_le((uint32_t *)filter,
742 data_cmd->buflen - sizeof(*mem));
743
744 upgt_bulk_tx(sc, data_cmd);
745
746 return (0);
747}
748
749static void
750upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic)
751{
752 struct ifnet *ifp = ic->ic_ifp;
753 struct upgt_softc *sc = ifp->if_softc;
754 const struct ieee80211_txparam *tp;
755
756 /*
757 * 0x01 = OFMD6 0x10 = DS1
758 * 0x04 = OFDM9 0x11 = DS2
759 * 0x06 = OFDM12 0x12 = DS5
760 * 0x07 = OFDM18 0x13 = DS11
761 * 0x08 = OFDM24
762 * 0x09 = OFDM36
763 * 0x0a = OFDM48
764 * 0x0b = OFDM54
765 */
766 const uint8_t rateset_auto_11b[] =
767 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
768 const uint8_t rateset_auto_11g[] =
769 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
770 const uint8_t rateset_fix_11bg[] =
771 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
772 0x08, 0x09, 0x0a, 0x0b };
773
774 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
775
776 /* XXX */
777 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
778 /*
779 * Automatic rate control is done by the device.
780 * We just pass the rateset from which the device
781 * will pickup a rate.
782 */
783 if (ic->ic_curmode == IEEE80211_MODE_11B)
784 bcopy(rateset_auto_11b, sc->sc_cur_rateset,
785 sizeof(sc->sc_cur_rateset));
786 if (ic->ic_curmode == IEEE80211_MODE_11G ||
787 ic->ic_curmode == IEEE80211_MODE_AUTO)
788 bcopy(rateset_auto_11g, sc->sc_cur_rateset,
789 sizeof(sc->sc_cur_rateset));
790 } else {
791 /* set a fixed rate */
792 memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate],
793 sizeof(sc->sc_cur_rateset));
794 }
795}
796
797static void
798upgt_set_multi(void *arg)
799{
800 struct upgt_softc *sc = arg;
801 struct ifnet *ifp = sc->sc_ifp;
802
803 if (!(ifp->if_flags & IFF_UP))
804 return;
805
806 /*
807 * XXX don't know how to set a device. Lack of docs. Just try to set
808 * IFF_ALLMULTI flag here.
809 */
810 ifp->if_flags |= IFF_ALLMULTI;
811}
812
813static void
814upgt_start(struct ifnet *ifp)
815{
816 struct upgt_softc *sc = ifp->if_softc;
817 struct upgt_data *data_tx;
818 struct ieee80211_node *ni;
819 struct mbuf *m;
820
821 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
822 return;
823
824 UPGT_LOCK(sc);
825 for (;;) {
826 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
827 if (m == NULL)
828 break;
829
830 data_tx = upgt_gettxbuf(sc);
831 if (data_tx == NULL) {
832 IFQ_DRV_PREPEND(&ifp->if_snd, m);
833 break;
834 }
835
836 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
837 m->m_pkthdr.rcvif = NULL;
838
839 if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
840 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
841 UPGT_STAT_INC(sc, st_tx_inactive);
842 ieee80211_free_node(ni);
843 ifp->if_oerrors++;
844 continue;
845 }
846 sc->sc_tx_timer = 5;
847 }
848 UPGT_UNLOCK(sc);
849}
850
851static int
852upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
853 const struct ieee80211_bpf_params *params)
854{
855 struct ieee80211com *ic = ni->ni_ic;
856 struct ifnet *ifp = ic->ic_ifp;
857 struct upgt_softc *sc = ifp->if_softc;
858 struct upgt_data *data_tx = NULL;
859
860 /* prevent management frames from being sent if we're not ready */
861 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
862 m_freem(m);
863 ieee80211_free_node(ni);
864 return ENETDOWN;
865 }
866
867 UPGT_LOCK(sc);
868 data_tx = upgt_gettxbuf(sc);
869 if (data_tx == NULL) {
870 ieee80211_free_node(ni);
871 m_freem(m);
872 UPGT_UNLOCK(sc);
873 return (ENOBUFS);
874 }
875
876 if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
877 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
878 UPGT_STAT_INC(sc, st_tx_inactive);
879 ieee80211_free_node(ni);
880 ifp->if_oerrors++;
881 UPGT_UNLOCK(sc);
882 return (EIO);
883 }
884 UPGT_UNLOCK(sc);
885
886 sc->sc_tx_timer = 5;
887 return (0);
888}
889
890static void
891upgt_watchdog(void *arg)
892{
893 struct upgt_softc *sc = arg;
894 struct ifnet *ifp = sc->sc_ifp;
895
896 if (sc->sc_tx_timer > 0) {
897 if (--sc->sc_tx_timer == 0) {
898 device_printf(sc->sc_dev, "watchdog timeout\n");
899 /* upgt_init(ifp); XXX needs a process context ? */
900 ifp->if_oerrors++;
901 return;
902 }
903 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
904 }
905}
906
907static uint32_t
908upgt_mem_alloc(struct upgt_softc *sc)
909{
910 int i;
911
912 for (i = 0; i < sc->sc_memory.pages; i++) {
913 if (sc->sc_memory.page[i].used == 0) {
914 sc->sc_memory.page[i].used = 1;
915 return (sc->sc_memory.page[i].addr);
916 }
917 }
918
919 return (0);
920}
921
922static void
923upgt_scan_start(struct ieee80211com *ic)
924{
925 /* do nothing. */
926}
927
928static void
929upgt_scan_end(struct ieee80211com *ic)
930{
931 /* do nothing. */
932}
933
934static void
935upgt_set_channel(struct ieee80211com *ic)
936{
937 struct upgt_softc *sc = ic->ic_ifp->if_softc;
938
939 UPGT_LOCK(sc);
940 upgt_set_chan(sc, ic->ic_curchan);
941 UPGT_UNLOCK(sc);
942}
943
944static void
945upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c)
946{
947 struct ifnet *ifp = sc->sc_ifp;
948 struct ieee80211com *ic = ifp->if_l2com;
949 struct upgt_data *data_cmd;
950 struct upgt_lmac_mem *mem;
951 struct upgt_lmac_channel *chan;
952 int channel;
953
954 UPGT_ASSERT_LOCKED(sc);
955
956 channel = ieee80211_chan2ieee(ic, c);
957 if (channel == 0 || channel == IEEE80211_CHAN_ANY) {
958 /* XXX should NEVER happen */
959 device_printf(sc->sc_dev,
960 "%s: invalid channel %x\n", __func__, channel);
961 return;
962 }
963
964 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel);
965
966 data_cmd = upgt_getbuf(sc);
967 if (data_cmd == NULL) {
968 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
969 return;
970 }
971 /*
972 * Transmit the URB containing the CMD data.
973 */
974 bzero(data_cmd->buf, MCLBYTES);
975
976 mem = (struct upgt_lmac_mem *)data_cmd->buf;
977 mem->addr = htole32(sc->sc_memaddr_frame_start +
978 UPGT_MEMSIZE_FRAME_HEAD);
979
980 chan = (struct upgt_lmac_channel *)(mem + 1);
981
982 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
983 chan->header1.type = UPGT_H1_TYPE_CTRL;
984 chan->header1.len = htole16(
985 sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header));
986
987 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
988 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
989 chan->header2.flags = 0;
990
991 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
992 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
993 chan->freq6 = sc->sc_eeprom_freq6[channel];
994 chan->settings = sc->sc_eeprom_freq6_settings;
995 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
996
997 bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_1,
998 sizeof(chan->freq3_1));
999 bcopy(&sc->sc_eeprom_freq4[channel], chan->freq4,
1000 sizeof(sc->sc_eeprom_freq4[channel]));
1001 bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_2,
1002 sizeof(chan->freq3_2));
1003
1004 data_cmd->buflen = sizeof(*mem) + sizeof(*chan);
1005
1006 mem->chksum = upgt_chksum_le((uint32_t *)chan,
1007 data_cmd->buflen - sizeof(*mem));
1008
1009 upgt_bulk_tx(sc, data_cmd);
1010}
1011
1012static struct ieee80211vap *
1013upgt_vap_create(struct ieee80211com *ic,
1014 const char name[IFNAMSIZ], int unit, int opmode, int flags,
1015 const uint8_t bssid[IEEE80211_ADDR_LEN],
1016 const uint8_t mac[IEEE80211_ADDR_LEN])
1017{
1018 struct upgt_vap *uvp;
1019 struct ieee80211vap *vap;
1020
1021 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
1022 return NULL;
1023 uvp = (struct upgt_vap *) malloc(sizeof(struct upgt_vap),
1024 M_80211_VAP, M_NOWAIT | M_ZERO);
1025 if (uvp == NULL)
1026 return NULL;
1027 vap = &uvp->vap;
1028 /* enable s/w bmiss handling for sta mode */
1029 ieee80211_vap_setup(ic, vap, name, unit, opmode,
1030 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
1031
1032 /* override state transition machine */
1033 uvp->newstate = vap->iv_newstate;
1034 vap->iv_newstate = upgt_newstate;
1035
1036 /* setup device rates */
1037 upgt_setup_rates(vap, ic);
1038
1039 /* complete setup */
1040 ieee80211_vap_attach(vap, ieee80211_media_change,
1041 ieee80211_media_status);
1042 ic->ic_opmode = opmode;
1043 return vap;
1044}
1045
1046static int
1047upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1048{
1049 struct upgt_vap *uvp = UPGT_VAP(vap);
1050 struct ieee80211com *ic = vap->iv_ic;
1051 struct upgt_softc *sc = ic->ic_ifp->if_softc;
1052
1053 /* do it in a process context */
1054 sc->sc_state = nstate;
1055
1056 IEEE80211_UNLOCK(ic);
1057 UPGT_LOCK(sc);
1058 callout_stop(&sc->sc_led_ch);
1059 callout_stop(&sc->sc_watchdog_ch);
1060
1061 switch (nstate) {
1062 case IEEE80211_S_INIT:
1063 /* do not accept any frames if the device is down */
1064 (void)upgt_set_macfilter(sc, sc->sc_state);
1065 upgt_set_led(sc, UPGT_LED_OFF);
1066 break;
1067 case IEEE80211_S_SCAN:
1068 upgt_set_chan(sc, ic->ic_curchan);
1069 break;
1070 case IEEE80211_S_AUTH:
1071 upgt_set_chan(sc, ic->ic_curchan);
1072 break;
1073 case IEEE80211_S_ASSOC:
1074 break;
1075 case IEEE80211_S_RUN:
1076 upgt_set_macfilter(sc, sc->sc_state);
1077 upgt_set_led(sc, UPGT_LED_ON);
1078 break;
1079 default:
1080 break;
1081 }
1082 UPGT_UNLOCK(sc);
1083 IEEE80211_LOCK(ic);
1084 return (uvp->newstate(vap, nstate, arg));
1085}
1086
1087static void
1088upgt_vap_delete(struct ieee80211vap *vap)
1089{
1090 struct upgt_vap *uvp = UPGT_VAP(vap);
1091
1092 ieee80211_vap_detach(vap);
1093 free(uvp, M_80211_VAP);
1094}
1095
1096static void
1097upgt_update_mcast(struct ifnet *ifp)
1098{
1099 struct upgt_softc *sc = ifp->if_softc;
1100
1101 upgt_set_multi(sc);
1102}
1103
1104static int
1105upgt_eeprom_parse(struct upgt_softc *sc)
1106{
1107 struct upgt_eeprom_header *eeprom_header;
1108 struct upgt_eeprom_option *eeprom_option;
1109 uint16_t option_len;
1110 uint16_t option_type;
1111 uint16_t preamble_len;
1112 int option_end = 0;
1113
1114 /* calculate eeprom options start offset */
1115 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1116 preamble_len = le16toh(eeprom_header->preamble_len);
1117 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1118 (sizeof(struct upgt_eeprom_header) + preamble_len));
1119
1120 while (!option_end) {
1121 /* the eeprom option length is stored in words */
1122 option_len =
1123 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1124 option_type =
1125 le16toh(eeprom_option->type);
1126
1127 switch (option_type) {
1128 case UPGT_EEPROM_TYPE_NAME:
1129 DPRINTF(sc, UPGT_DEBUG_FW,
1130 "EEPROM name len=%d\n", option_len);
1131 break;
1132 case UPGT_EEPROM_TYPE_SERIAL:
1133 DPRINTF(sc, UPGT_DEBUG_FW,
1134 "EEPROM serial len=%d\n", option_len);
1135 break;
1136 case UPGT_EEPROM_TYPE_MAC:
1137 DPRINTF(sc, UPGT_DEBUG_FW,
1138 "EEPROM mac len=%d\n", option_len);
1139
1140 IEEE80211_ADDR_COPY(sc->sc_myaddr, eeprom_option->data);
1141 break;
1142 case UPGT_EEPROM_TYPE_HWRX:
1143 DPRINTF(sc, UPGT_DEBUG_FW,
1144 "EEPROM hwrx len=%d\n", option_len);
1145
1146 upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1147 break;
1148 case UPGT_EEPROM_TYPE_CHIP:
1149 DPRINTF(sc, UPGT_DEBUG_FW,
1150 "EEPROM chip len=%d\n", option_len);
1151 break;
1152 case UPGT_EEPROM_TYPE_FREQ3:
1153 DPRINTF(sc, UPGT_DEBUG_FW,
1154 "EEPROM freq3 len=%d\n", option_len);
1155
1156 upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1157 option_len);
1158 break;
1159 case UPGT_EEPROM_TYPE_FREQ4:
1160 DPRINTF(sc, UPGT_DEBUG_FW,
1161 "EEPROM freq4 len=%d\n", option_len);
1162
1163 upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1164 option_len);
1165 break;
1166 case UPGT_EEPROM_TYPE_FREQ5:
1167 DPRINTF(sc, UPGT_DEBUG_FW,
1168 "EEPROM freq5 len=%d\n", option_len);
1169 break;
1170 case UPGT_EEPROM_TYPE_FREQ6:
1171 DPRINTF(sc, UPGT_DEBUG_FW,
1172 "EEPROM freq6 len=%d\n", option_len);
1173
1174 upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1175 option_len);
1176 break;
1177 case UPGT_EEPROM_TYPE_END:
1178 DPRINTF(sc, UPGT_DEBUG_FW,
1179 "EEPROM end len=%d\n", option_len);
1180 option_end = 1;
1181 break;
1182 case UPGT_EEPROM_TYPE_OFF:
1183 DPRINTF(sc, UPGT_DEBUG_FW,
1184 "%s: EEPROM off without end option\n", __func__);
1185 return (EIO);
1186 default:
1187 DPRINTF(sc, UPGT_DEBUG_FW,
1188 "EEPROM unknown type 0x%04x len=%d\n",
1189 option_type, option_len);
1190 break;
1191 }
1192
1193 /* jump to next EEPROM option */
1194 eeprom_option = (struct upgt_eeprom_option *)
1195 (eeprom_option->data + option_len);
1196 }
1197
1198 return (0);
1199}
1200
1201static void
1202upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1203{
1204 struct upgt_eeprom_freq3_header *freq3_header;
1205 struct upgt_lmac_freq3 *freq3;
1206 int i, elements, flags;
1207 unsigned channel;
1208
1209 freq3_header = (struct upgt_eeprom_freq3_header *)data;
1210 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1211
1212 flags = freq3_header->flags;
1213 elements = freq3_header->elements;
1214
1215 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n",
1216 flags, elements);
1217
1218 for (i = 0; i < elements; i++) {
1219 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1220 if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
1221 continue;
1222
1223 sc->sc_eeprom_freq3[channel] = freq3[i];
1224
1225 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1226 le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1227 }
1228}
1229
1230void
1231upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1232{
1233 struct upgt_eeprom_freq4_header *freq4_header;
1234 struct upgt_eeprom_freq4_1 *freq4_1;
1235 struct upgt_eeprom_freq4_2 *freq4_2;
1236 int i, j, elements, settings, flags;
1237 unsigned channel;
1238
1239 freq4_header = (struct upgt_eeprom_freq4_header *)data;
1240 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1241 flags = freq4_header->flags;
1242 elements = freq4_header->elements;
1243 settings = freq4_header->settings;
1244
1245 /* we need this value later */
1246 sc->sc_eeprom_freq6_settings = freq4_header->settings;
1247
1248 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n",
1249 flags, elements, settings);
1250
1251 for (i = 0; i < elements; i++) {
1252 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1253 if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
1254 continue;
1255
1256 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1257 for (j = 0; j < settings; j++) {
1258 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1259 sc->sc_eeprom_freq4[channel][j].pad = 0;
1260 }
1261
1262 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1263 le16toh(freq4_1[i].freq), channel);
1264 }
1265}
1266
1267void
1268upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1269{
1270 struct upgt_lmac_freq6 *freq6;
1271 int i, elements;
1272 unsigned channel;
1273
1274 freq6 = (struct upgt_lmac_freq6 *)data;
1275 elements = len / sizeof(struct upgt_lmac_freq6);
1276
1277 DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements);
1278
1279 for (i = 0; i < elements; i++) {
1280 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1281 if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
1282 continue;
1283
1284 sc->sc_eeprom_freq6[channel] = freq6[i];
1285
1286 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1287 le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1288 }
1289}
1290
1291static void
1292upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1293{
1294 struct upgt_eeprom_option_hwrx *option_hwrx;
1295
1296 option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1297
1298 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1299
1300 DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n",
1301 sc->sc_eeprom_hwrx);
1302}
1303
1304static int
1305upgt_eeprom_read(struct upgt_softc *sc)
1306{
1307 struct upgt_data *data_cmd;
1308 struct upgt_lmac_mem *mem;
1309 struct upgt_lmac_eeprom *eeprom;
1310 int block, error, offset;
1311
1312 UPGT_LOCK(sc);
1313 usb_pause_mtx(&sc->sc_mtx, 100);
1314
1315 offset = 0;
1316 block = UPGT_EEPROM_BLOCK_SIZE;
1317 while (offset < UPGT_EEPROM_SIZE) {
1318 DPRINTF(sc, UPGT_DEBUG_FW,
1319 "request EEPROM block (offset=%d, len=%d)\n", offset, block);
1320
1321 data_cmd = upgt_getbuf(sc);
1322 if (data_cmd == NULL) {
1323 UPGT_UNLOCK(sc);
1324 return (ENOBUFS);
1325 }
1326
1327 /*
1328 * Transmit the URB containing the CMD data.
1329 */
1330 bzero(data_cmd->buf, MCLBYTES);
1331
1332 mem = (struct upgt_lmac_mem *)data_cmd->buf;
1333 mem->addr = htole32(sc->sc_memaddr_frame_start +
1334 UPGT_MEMSIZE_FRAME_HEAD);
1335
1336 eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
1337 eeprom->header1.flags = 0;
1338 eeprom->header1.type = UPGT_H1_TYPE_CTRL;
1339 eeprom->header1.len = htole16((
1340 sizeof(struct upgt_lmac_eeprom) -
1341 sizeof(struct upgt_lmac_header)) + block);
1342
1343 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1344 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
1345 eeprom->header2.flags = 0;
1346
1347 eeprom->offset = htole16(offset);
1348 eeprom->len = htole16(block);
1349
1350 data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block;
1351
1352 mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1353 data_cmd->buflen - sizeof(*mem));
1354 upgt_bulk_tx(sc, data_cmd);
1355
1356 error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz);
1357 if (error != 0) {
1358 device_printf(sc->sc_dev,
1359 "timeout while waiting for EEPROM data\n");
1360 UPGT_UNLOCK(sc);
1361 return (EIO);
1362 }
1363
1364 offset += block;
1365 if (UPGT_EEPROM_SIZE - offset < block)
1366 block = UPGT_EEPROM_SIZE - offset;
1367 }
1368
1369 UPGT_UNLOCK(sc);
1370 return (0);
1371}
1372
1373/*
1374 * When a rx data came in the function returns a mbuf and a rssi values.
1375 */
1376static struct mbuf *
1377upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi)
1378{
1379 struct mbuf *m = NULL;
1380 struct upgt_softc *sc = usbd_xfer_softc(xfer);
1381 struct upgt_lmac_header *header;
1382 struct upgt_lmac_eeprom *eeprom;
1383 uint8_t h1_type;
1384 uint16_t h2_type;
1385 int actlen, sumlen;
1386
1387 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
1388
1389 UPGT_ASSERT_LOCKED(sc);
1390
1391 if (actlen < 1)
1392 return (NULL);
1393
1394 /* Check only at the very beginning. */
1395 if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) &&
1396 (memcmp(data->buf, "OK", 2) == 0)) {
1397 sc->sc_flags |= UPGT_FLAG_FWLOADED;
1398 wakeup_one(sc);
1399 return (NULL);
1400 }
1401
1402 if (actlen < UPGT_RX_MINSZ)
1403 return (NULL);
1404
1405 /*
1406 * Check what type of frame came in.
1407 */
1408 header = (struct upgt_lmac_header *)(data->buf + 4);
1409
1410 h1_type = header->header1.type;
1411 h2_type = le16toh(header->header2.type);
1412
1413 if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) {
1414 eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4);
1415 uint16_t eeprom_offset = le16toh(eeprom->offset);
1416 uint16_t eeprom_len = le16toh(eeprom->len);
1417
1418 DPRINTF(sc, UPGT_DEBUG_FW,
1419 "received EEPROM block (offset=%d, len=%d)\n",
1420 eeprom_offset, eeprom_len);
1421
1422 bcopy(data->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1423 sc->sc_eeprom + eeprom_offset, eeprom_len);
1424
1425 /* EEPROM data has arrived in time, wakeup. */
1426 wakeup(sc);
1427 } else if (h1_type == UPGT_H1_TYPE_CTRL &&
1428 h2_type == UPGT_H2_TYPE_TX_DONE) {
1429 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n",
1430 __func__);
1431 upgt_tx_done(sc, data->buf + 4);
1432 } else if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1433 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1434 DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n",
1435 __func__);
1436 m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len),
1437 rssi);
1438 } else if (h1_type == UPGT_H1_TYPE_CTRL &&
1439 h2_type == UPGT_H2_TYPE_STATS) {
1440 DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n",
1441 __func__);
1442 /* TODO: what could we do with the statistic data? */
1443 } else {
1444 /* ignore unknown frame types */
1445 DPRINTF(sc, UPGT_DEBUG_INTR,
1446 "received unknown frame type 0x%02x\n",
1447 header->header1.type);
1448 }
1449 return (m);
1450}
1451
1452/*
1453 * The firmware awaits a checksum for each frame we send to it.
1454 * The algorithm used therefor is uncommon but somehow similar to CRC32.
1455 */
1456static uint32_t
1457upgt_chksum_le(const uint32_t *buf, size_t size)
1458{
1459 int i;
1460 uint32_t crc = 0;
1461
1462 for (i = 0; i < size; i += sizeof(uint32_t)) {
1463 crc = htole32(crc ^ *buf++);
1464 crc = htole32((crc >> 5) ^ (crc << 3));
1465 }
1466
1467 return (crc);
1468}
1469
1470static struct mbuf *
1471upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi)
1472{
1473 struct ifnet *ifp = sc->sc_ifp;
1474 struct ieee80211com *ic = ifp->if_l2com;
1475 struct upgt_lmac_rx_desc *rxdesc;
1476 struct mbuf *m;
1477
1478 /*
1479 * don't pass packets to the ieee80211 framework if the driver isn't
1480 * RUNNING.
1481 */
1482 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1483 return (NULL);
1484
1485 /* access RX packet descriptor */
1486 rxdesc = (struct upgt_lmac_rx_desc *)data;
1487
1488 /* create mbuf which is suitable for strict alignment archs */
1489 KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES,
1490 ("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN));
1491 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1492 if (m == NULL) {
1493 device_printf(sc->sc_dev, "could not create RX mbuf\n");
1494 return (NULL);
1495 }
1496 m_adj(m, ETHER_ALIGN);
1497 bcopy(rxdesc->data, mtod(m, char *), pkglen);
1498 /* trim FCS */
1499 m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN;
1500 m->m_pkthdr.rcvif = ifp;
1501
1502 if (ieee80211_radiotap_active(ic)) {
1503 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1504
1505 tap->wr_flags = 0;
1506 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1507 tap->wr_antsignal = rxdesc->rssi;
1508 }
1509 ifp->if_ipackets++;
1510
1511 DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__);
1512 *rssi = rxdesc->rssi;
1513 return (m);
1514}
1515
1516static uint8_t
1517upgt_rx_rate(struct upgt_softc *sc, const int rate)
1518{
1519 struct ifnet *ifp = sc->sc_ifp;
1520 struct ieee80211com *ic = ifp->if_l2com;
1521 static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 };
1522 static const uint8_t ofdm_upgt2rate[12] =
1523 { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 };
1524
1525 if (ic->ic_curmode == IEEE80211_MODE_11B &&
1526 !(rate < 0 || rate > 3))
1527 return cck_upgt2rate[rate & 0xf];
1528
1529 if (ic->ic_curmode == IEEE80211_MODE_11G &&
1530 !(rate < 0 || rate > 11))
1531 return ofdm_upgt2rate[rate & 0xf];
1532
1533 return (0);
1534}
1535
1536static void
1537upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1538{
1539 struct ifnet *ifp = sc->sc_ifp;
1540 struct upgt_lmac_tx_done_desc *desc;
1541 int i, freed = 0;
1542
1543 UPGT_ASSERT_LOCKED(sc);
1544
1545 desc = (struct upgt_lmac_tx_done_desc *)data;
1546
1547 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1548 struct upgt_data *data_tx = &sc->sc_tx_data[i];
1549
1550 if (data_tx->addr == le32toh(desc->header2.reqid)) {
1551 upgt_mem_free(sc, data_tx->addr);
1552 data_tx->ni = NULL;
1553 data_tx->addr = 0;
1554 data_tx->m = NULL;
1555 data_tx->use = 0;
1556
1557 DPRINTF(sc, UPGT_DEBUG_TX_PROC,
1558 "TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1559 le32toh(desc->header2.reqid),
1560 le16toh(desc->status), le16toh(desc->rssi));
1561 DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n",
1562 le16toh(desc->seq));
1563
1564 freed++;
1565 }
1566 }
1567
1568 if (freed != 0) {
1569 sc->sc_tx_timer = 0;
1570 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1571 UPGT_UNLOCK(sc);
1572 upgt_start(ifp);
1573 UPGT_LOCK(sc);
1574 }
1575}
1576
1577static void
1578upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
1579{
1580 int i;
1581
1582 for (i = 0; i < sc->sc_memory.pages; i++) {
1583 if (sc->sc_memory.page[i].addr == addr) {
1584 sc->sc_memory.page[i].used = 0;
1585 return;
1586 }
1587 }
1588
1589 device_printf(sc->sc_dev,
1590 "could not free memory address 0x%08x\n", addr);
1591}
1592
1593static int
1594upgt_fw_load(struct upgt_softc *sc)
1595{
1596 const struct firmware *fw;
1597 struct upgt_data *data_cmd;
1598 struct upgt_fw_x2_header *x2;
1599 char start_fwload_cmd[] = { 0x3c, 0x0d };
1600 int error = 0, offset, bsize, n;
1601 uint32_t crc32;
1602
1603 fw = firmware_get(upgt_fwname);
1604 if (fw == NULL) {
1605 device_printf(sc->sc_dev, "could not read microcode %s\n",
1606 upgt_fwname);
1607 return (EIO);
1608 }
1609
1610 UPGT_LOCK(sc);
1611
1612 /* send firmware start load command */
1613 data_cmd = upgt_getbuf(sc);
1614 if (data_cmd == NULL) {
1615 error = ENOBUFS;
1616 goto fail;
1617 }
1618 data_cmd->buflen = sizeof(start_fwload_cmd);
1619 bcopy(start_fwload_cmd, data_cmd->buf, data_cmd->buflen);
1620 upgt_bulk_tx(sc, data_cmd);
1621
1622 /* send X2 header */
1623 data_cmd = upgt_getbuf(sc);
1624 if (data_cmd == NULL) {
1625 error = ENOBUFS;
1626 goto fail;
1627 }
1628 data_cmd->buflen = sizeof(struct upgt_fw_x2_header);
1629 x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
1630 bcopy(UPGT_X2_SIGNATURE, x2->signature, UPGT_X2_SIGNATURE_SIZE);
1631 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
1632 x2->len = htole32(fw->datasize);
1633 x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf +
1634 UPGT_X2_SIGNATURE_SIZE,
1635 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
1636 sizeof(uint32_t));
1637 upgt_bulk_tx(sc, data_cmd);
1638
1639 /* download firmware */
1640 for (offset = 0; offset < fw->datasize; offset += bsize) {
1641 if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE)
1642 bsize = UPGT_FW_BLOCK_SIZE;
1643 else
1644 bsize = fw->datasize - offset;
1645
1646 data_cmd = upgt_getbuf(sc);
1647 if (data_cmd == NULL) {
1648 error = ENOBUFS;
1649 goto fail;
1650 }
1651 n = upgt_fw_copy((const uint8_t *)fw->data + offset,
1652 data_cmd->buf, bsize);
1653 data_cmd->buflen = bsize;
1654 upgt_bulk_tx(sc, data_cmd);
1655
1656 DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%d, read=%d, sent=%d\n",
1657 offset, n, bsize);
1658 bsize = n;
1659 }
1660 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__);
1661
1662 /* load firmware */
1663 data_cmd = upgt_getbuf(sc);
1664 if (data_cmd == NULL) {
1665 error = ENOBUFS;
1666 goto fail;
1667 }
1668 crc32 = upgt_crc32_le(fw->data, fw->datasize);
1669 *((uint32_t *)(data_cmd->buf) ) = crc32;
1670 *((uint8_t *)(data_cmd->buf) + 4) = 'g';
1671 *((uint8_t *)(data_cmd->buf) + 5) = '\r';
1672 data_cmd->buflen = 6;
1673 upgt_bulk_tx(sc, data_cmd);
1674
1675 /* waiting 'OK' response. */
1676 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
1677 error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz);
1678 if (error != 0) {
1679 device_printf(sc->sc_dev, "firmware load failed\n");
1680 error = EIO;
1681 }
1682
1683 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__);
1684fail:
1685 UPGT_UNLOCK(sc);
1686 firmware_put(fw, FIRMWARE_UNLOAD);
1687 return (error);
1688}
1689
1690static uint32_t
1691upgt_crc32_le(const void *buf, size_t size)
1692{
1693 uint32_t crc;
1694
1695 crc = ether_crc32_le(buf, size);
1696
1697 /* apply final XOR value as common for CRC-32 */
1698 crc = htole32(crc ^ 0xffffffffU);
1699
1700 return (crc);
1701}
1702
1703/*
1704 * While copying the version 2 firmware, we need to replace two characters:
1705 *
1706 * 0x7e -> 0x7d 0x5e
1707 * 0x7d -> 0x7d 0x5d
1708 */
1709static int
1710upgt_fw_copy(const uint8_t *src, char *dst, int size)
1711{
1712 int i, j;
1713
1714 for (i = 0, j = 0; i < size && j < size; i++) {
1715 switch (src[i]) {
1716 case 0x7e:
1717 dst[j] = 0x7d;
1718 j++;
1719 dst[j] = 0x5e;
1720 j++;
1721 break;
1722 case 0x7d:
1723 dst[j] = 0x7d;
1724 j++;
1725 dst[j] = 0x5d;
1726 j++;
1727 break;
1728 default:
1729 dst[j] = src[i];
1730 j++;
1731 break;
1732 }
1733 }
1734
1735 return (i);
1736}
1737
1738static int
1739upgt_mem_init(struct upgt_softc *sc)
1740{
1741 int i;
1742
1743 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
1744 sc->sc_memory.page[i].used = 0;
1745
1746 if (i == 0) {
1747 /*
1748 * The first memory page is always reserved for
1749 * command data.
1750 */
1751 sc->sc_memory.page[i].addr =
1752 sc->sc_memaddr_frame_start + MCLBYTES;
1753 } else {
1754 sc->sc_memory.page[i].addr =
1755 sc->sc_memory.page[i - 1].addr + MCLBYTES;
1756 }
1757
1758 if (sc->sc_memory.page[i].addr + MCLBYTES >=
1759 sc->sc_memaddr_frame_end)
1760 break;
1761
1762 DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n",
1763 i, sc->sc_memory.page[i].addr);
1764 }
1765
1766 sc->sc_memory.pages = i;
1767
1768 DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages);
1769 return (0);
1770}
1771
1772static int
1773upgt_fw_verify(struct upgt_softc *sc)
1774{
1775 const struct firmware *fw;
1776 const struct upgt_fw_bra_option *bra_opt;
1777 const struct upgt_fw_bra_descr *descr;
1778 const uint8_t *p;
1779 const uint32_t *uc;
1780 uint32_t bra_option_type, bra_option_len;
1781 int offset, bra_end = 0, error = 0;
1782
1783 fw = firmware_get(upgt_fwname);
1784 if (fw == NULL) {
1785 device_printf(sc->sc_dev, "could not read microcode %s\n",
1786 upgt_fwname);
1787 return EIO;
1788 }
1789
1790 /*
1791 * Seek to beginning of Boot Record Area (BRA).
1792 */
1793 for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) {
1794 uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1795 if (*uc == 0)
1796 break;
1797 }
1798 for (; offset < fw->datasize; offset += sizeof(*uc)) {
1799 uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1800 if (*uc != 0)
1801 break;
1802 }
1803 if (offset == fw->datasize) {
1804 device_printf(sc->sc_dev,
1805 "firmware Boot Record Area not found\n");
1806 error = EIO;
1807 goto fail;
1808 }
1809
1810 DPRINTF(sc, UPGT_DEBUG_FW,
1811 "firmware Boot Record Area found at offset %d\n", offset);
1812
1813 /*
1814 * Parse Boot Record Area (BRA) options.
1815 */
1816 while (offset < fw->datasize && bra_end == 0) {
1817 /* get current BRA option */
1818 p = (const uint8_t *)fw->data + offset;
1819 bra_opt = (const struct upgt_fw_bra_option *)p;
1820 bra_option_type = le32toh(bra_opt->type);
1821 bra_option_len = le32toh(bra_opt->len) * sizeof(*uc);
1822
1823 switch (bra_option_type) {
1824 case UPGT_BRA_TYPE_FW:
1825 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n",
1826 bra_option_len);
1827
1828 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
1829 device_printf(sc->sc_dev,
1830 "wrong UPGT_BRA_TYPE_FW len\n");
1831 error = EIO;
1832 goto fail;
1833 }
1834 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data,
1835 bra_option_len) == 0) {
1836 sc->sc_fw_type = UPGT_FWTYPE_LM86;
1837 break;
1838 }
1839 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data,
1840 bra_option_len) == 0) {
1841 sc->sc_fw_type = UPGT_FWTYPE_LM87;
1842 break;
1843 }
1844 device_printf(sc->sc_dev,
1845 "unsupported firmware type\n");
1846 error = EIO;
1847 goto fail;
1848 case UPGT_BRA_TYPE_VERSION:
1849 DPRINTF(sc, UPGT_DEBUG_FW,
1850 "UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len);
1851 break;
1852 case UPGT_BRA_TYPE_DEPIF:
1853 DPRINTF(sc, UPGT_DEBUG_FW,
1854 "UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len);
1855 break;
1856 case UPGT_BRA_TYPE_EXPIF:
1857 DPRINTF(sc, UPGT_DEBUG_FW,
1858 "UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len);
1859 break;
1860 case UPGT_BRA_TYPE_DESCR:
1861 DPRINTF(sc, UPGT_DEBUG_FW,
1862 "UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len);
1863
1864 descr = (const struct upgt_fw_bra_descr *)bra_opt->data;
1865
1866 sc->sc_memaddr_frame_start =
1867 le32toh(descr->memaddr_space_start);
1868 sc->sc_memaddr_frame_end =
1869 le32toh(descr->memaddr_space_end);
1870
1871 DPRINTF(sc, UPGT_DEBUG_FW,
1872 "memory address space start=0x%08x\n",
1873 sc->sc_memaddr_frame_start);
1874 DPRINTF(sc, UPGT_DEBUG_FW,
1875 "memory address space end=0x%08x\n",
1876 sc->sc_memaddr_frame_end);
1877 break;
1878 case UPGT_BRA_TYPE_END:
1879 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n",
1880 bra_option_len);
1881 bra_end = 1;
1882 break;
1883 default:
1884 DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n",
1885 bra_option_len);
1886 error = EIO;
1887 goto fail;
1888 }
1889
1890 /* jump to next BRA option */
1891 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
1892 }
1893
1894 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__);
1895fail:
1896 firmware_put(fw, FIRMWARE_UNLOAD);
1897 return (error);
1898}
1899
1900static void
1901upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data)
1902{
1903
1904 UPGT_ASSERT_LOCKED(sc);
1905
1906 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next);
1907 UPGT_STAT_INC(sc, st_tx_pending);
1908 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]);
1909}
1910
1911static int
1912upgt_device_reset(struct upgt_softc *sc)
1913{
1914 struct upgt_data *data;
1915 char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
1916
1917 UPGT_LOCK(sc);
1918
1919 data = upgt_getbuf(sc);
1920 if (data == NULL) {
1921 UPGT_UNLOCK(sc);
1922 return (ENOBUFS);
1923 }
1924 bcopy(init_cmd, data->buf, sizeof(init_cmd));
1925 data->buflen = sizeof(init_cmd);
1926 upgt_bulk_tx(sc, data);
1927 usb_pause_mtx(&sc->sc_mtx, 100);
1928
1929 UPGT_UNLOCK(sc);
1930 DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__);
1931 return (0);
1932}
1933
1934static int
1935upgt_alloc_tx(struct upgt_softc *sc)
1936{
1937 int i;
1938
1939 STAILQ_INIT(&sc->sc_tx_active);
1940 STAILQ_INIT(&sc->sc_tx_inactive);
1941 STAILQ_INIT(&sc->sc_tx_pending);
1942
1943 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1944 struct upgt_data *data = &sc->sc_tx_data[i];
1945
1946 data->buf = malloc(MCLBYTES, M_USBDEV, M_NOWAIT | M_ZERO);
1947 if (data->buf == NULL) {
1948 device_printf(sc->sc_dev,
1949 "could not allocate TX buffer\n");
1950 return (ENOMEM);
1951 }
1952 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
1953 UPGT_STAT_INC(sc, st_tx_inactive);
1954 }
1955
1956 return (0);
1957}
1958
1959static int
1960upgt_alloc_rx(struct upgt_softc *sc)
1961{
1962 int i;
1963
1964 STAILQ_INIT(&sc->sc_rx_active);
1965 STAILQ_INIT(&sc->sc_rx_inactive);
1966
1967 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
1968 struct upgt_data *data = &sc->sc_rx_data[i];
1969
1970 data->buf = malloc(MCLBYTES, M_USBDEV, M_NOWAIT | M_ZERO);
1971 if (data->buf == NULL) {
1972 device_printf(sc->sc_dev,
1973 "could not allocate RX buffer\n");
1974 return (ENOMEM);
1975 }
1976 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
1977 }
1978
1979 return (0);
1980}
1981
1982static int
1983upgt_detach(device_t dev)
1984{
1985 struct upgt_softc *sc = device_get_softc(dev);
1986 struct ifnet *ifp = sc->sc_ifp;
1987 struct ieee80211com *ic = ifp->if_l2com;
1988
1989 if (!device_is_attached(dev))
1990 return 0;
1991
1992 upgt_stop(sc);
1993
1994 callout_drain(&sc->sc_led_ch);
1995 callout_drain(&sc->sc_watchdog_ch);
1996
1997 usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
1998 ieee80211_ifdetach(ic);
1999 upgt_free_rx(sc);
2000 upgt_free_tx(sc);
2001
2002 if_free(ifp);
2003 mtx_destroy(&sc->sc_mtx);
2004
2005 return (0);
2006}
2007
2008static void
2009upgt_free_rx(struct upgt_softc *sc)
2010{
2011 int i;
2012
2013 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
2014 struct upgt_data *data = &sc->sc_rx_data[i];
2015
2016 free(data->buf, M_USBDEV);
2017 data->ni = NULL;
2018 }
2019}
2020
2021static void
2022upgt_free_tx(struct upgt_softc *sc)
2023{
2024 int i;
2025
2026 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
2027 struct upgt_data *data = &sc->sc_tx_data[i];
2028
2029 free(data->buf, M_USBDEV);
2030 data->ni = NULL;
2031 }
2032}
2033
2034static void
2035upgt_abort_xfers_locked(struct upgt_softc *sc)
2036{
2037 int i;
2038
2039 UPGT_ASSERT_LOCKED(sc);
2040 /* abort any pending transfers */
2041 for (i = 0; i < UPGT_N_XFERS; i++)
2042 usbd_transfer_stop(sc->sc_xfer[i]);
2043}
2044
2045static void
2046upgt_abort_xfers(struct upgt_softc *sc)
2047{
2048
2049 UPGT_LOCK(sc);
2050 upgt_abort_xfers_locked(sc);
2051 UPGT_UNLOCK(sc);
2052}
2053
2054#define UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d) \
2055 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2056
2057static void
2058upgt_sysctl_node(struct upgt_softc *sc)
2059{
2060 struct sysctl_ctx_list *ctx;
2061 struct sysctl_oid_list *child;
2062 struct sysctl_oid *tree;
2063 struct upgt_stat *stats;
2064
2065 stats = &sc->sc_stat;
2066 ctx = device_get_sysctl_ctx(sc->sc_dev);
2067 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev));
2068
2069 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2070 NULL, "UPGT statistics");
2071 child = SYSCTL_CHILDREN(tree);
2072 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active",
2073 &stats->st_tx_active, "Active numbers in TX queue");
2074 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive",
2075 &stats->st_tx_inactive, "Inactive numbers in TX queue");
2076 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending",
2077 &stats->st_tx_pending, "Pending numbers in TX queue");
2078}
2079
2080#undef UPGT_SYSCTL_STAT_ADD32
2081
2082static struct upgt_data *
2083_upgt_getbuf(struct upgt_softc *sc)
2084{
2085 struct upgt_data *bf;
2086
2087 bf = STAILQ_FIRST(&sc->sc_tx_inactive);
2088 if (bf != NULL) {
2089 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next);
2090 UPGT_STAT_DEC(sc, st_tx_inactive);
2091 } else
2092 bf = NULL;
2093 if (bf == NULL)
2094 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__,
2095 "out of xmit buffers");
2096 return (bf);
2097}
2098
2099static struct upgt_data *
2100upgt_getbuf(struct upgt_softc *sc)
2101{
2102 struct upgt_data *bf;
2103
2104 UPGT_ASSERT_LOCKED(sc);
2105
2106 bf = _upgt_getbuf(sc);
2107 if (bf == NULL) {
2108 struct ifnet *ifp = sc->sc_ifp;
2109
2110 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__);
2111 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2112 }
2113
2114 return (bf);
2115}
2116
2117static struct upgt_data *
2118upgt_gettxbuf(struct upgt_softc *sc)
2119{
2120 struct upgt_data *bf;
2121
2122 UPGT_ASSERT_LOCKED(sc);
2123
2124 bf = upgt_getbuf(sc);
2125 if (bf == NULL)
2126 return (NULL);
2127
2128 bf->addr = upgt_mem_alloc(sc);
2129 if (bf->addr == 0) {
2130 struct ifnet *ifp = sc->sc_ifp;
2131
2132 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n",
2133 __func__);
2134 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
2135 UPGT_STAT_INC(sc, st_tx_inactive);
2136 if (!(ifp->if_drv_flags & IFF_DRV_OACTIVE))
2137 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2138 return (NULL);
2139 }
2140 return (bf);
2141}
2142
2143static int
2144upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2145 struct upgt_data *data)
2146{
2147 struct ieee80211vap *vap = ni->ni_vap;
2148 int error = 0, len;
2149 struct ieee80211_frame *wh;
2150 struct ieee80211_key *k;
2151 struct ifnet *ifp = sc->sc_ifp;
2152 struct upgt_lmac_mem *mem;
2153 struct upgt_lmac_tx_desc *txdesc;
2154
2155 UPGT_ASSERT_LOCKED(sc);
2156
2157 upgt_set_led(sc, UPGT_LED_BLINK);
2158
2159 /*
2160 * Software crypto.
2161 */
2162 wh = mtod(m, struct ieee80211_frame *);
2163 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2164 k = ieee80211_crypto_encap(ni, m);
2165 if (k == NULL) {
2166 device_printf(sc->sc_dev,
2167 "ieee80211_crypto_encap returns NULL.\n");
2168 error = EIO;
2169 goto done;
2170 }
2171
2172 /* in case packet header moved, reset pointer */
2173 wh = mtod(m, struct ieee80211_frame *);
2174 }
2175
2176 /* Transmit the URB containing the TX data. */
2177 bzero(data->buf, MCLBYTES);
2178 mem = (struct upgt_lmac_mem *)data->buf;
2179 mem->addr = htole32(data->addr);
2180 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
2181
2182 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2183 IEEE80211_FC0_TYPE_MGT) {
2184 /* mgmt frames */
2185 txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT;
2186 /* always send mgmt frames at lowest rate (DS1) */
2187 memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
2188 } else {
2189 /* data frames */
2190 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
2191 bcopy(sc->sc_cur_rateset, txdesc->rates, sizeof(txdesc->rates));
2192 }
2193 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
2194 txdesc->header1.len = htole16(m->m_pkthdr.len);
2195 txdesc->header2.reqid = htole32(data->addr);
2196 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
2197 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
2198 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
2199 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
2200
2201 if (ieee80211_radiotap_active_vap(vap)) {
2202 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
2203
2204 tap->wt_flags = 0;
2205 tap->wt_rate = 0; /* XXX where to get from? */
2206
2207 ieee80211_radiotap_tx(vap, m);
2208 }
2209
2210 /* copy frame below our TX descriptor header */
2211 m_copydata(m, 0, m->m_pkthdr.len,
2212 data->buf + (sizeof(*mem) + sizeof(*txdesc)));
2213 /* calculate frame size */
2214 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
2215 /* we need to align the frame to a 4 byte boundary */
2216 len = (len + 3) & ~3;
2217 /* calculate frame checksum */
2218 mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem));
2219 data->ni = ni;
2220 data->m = m;
2221 data->buflen = len;
2222
2223 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n",
2224 __func__, len);
2225 KASSERT(len <= MCLBYTES, ("mbuf is small for saving data"));
2226
2227 upgt_bulk_tx(sc, data);
2228done:
2229 /*
2230 * If we don't regulary read the device statistics, the RX queue
2231 * will stall. It's strange, but it works, so we keep reading
2232 * the statistics here. *shrug*
2233 */
2234 if (!(ifp->if_opackets % UPGT_TX_STAT_INTERVAL))
2235 upgt_get_stats(sc);
2236
2237 return (error);
2238}
2239
2240static void
2241upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2242{
2243 struct upgt_softc *sc = usbd_xfer_softc(xfer);
2244 struct ifnet *ifp = sc->sc_ifp;
2245 struct ieee80211com *ic = ifp->if_l2com;
2246 struct ieee80211_frame *wh;
2247 struct ieee80211_node *ni;
2248 struct mbuf *m = NULL;
2249 struct upgt_data *data;
2250 int8_t nf;
2251 int rssi = -1;
2252
2253 UPGT_ASSERT_LOCKED(sc);
2254
2255 switch (USB_GET_STATE(xfer)) {
2256 case USB_ST_TRANSFERRED:
2257 data = STAILQ_FIRST(&sc->sc_rx_active);
2258 if (data == NULL)
2259 goto setup;
2260 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2261 m = upgt_rxeof(xfer, data, &rssi);
2262 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2263 /* FALLTHROUGH */
2264 case USB_ST_SETUP:
2265setup:
2266 data = STAILQ_FIRST(&sc->sc_rx_inactive);
2267 if (data == NULL)
2268 return;
2269 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next);
2270 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next);
2271 usbd_xfer_set_frame_data(xfer, 0, data->buf,
2272 usbd_xfer_max_len(xfer));
2273 usbd_transfer_submit(xfer);
2274
2275 /*
2276 * To avoid LOR we should unlock our private mutex here to call
2277 * ieee80211_input() because here is at the end of a USB
2278 * callback and safe to unlock.
2279 */
2280 UPGT_UNLOCK(sc);
2281 if (m != NULL) {
2282 wh = mtod(m, struct ieee80211_frame *);
2283 ni = ieee80211_find_rxnode(ic,
2284 (struct ieee80211_frame_min *)wh);
2285 nf = -95; /* XXX */
2286 if (ni != NULL) {
2287 (void) ieee80211_input(ni, m, rssi, nf);
2288 /* node is no longer needed */
2289 ieee80211_free_node(ni);
2290 } else
2291 (void) ieee80211_input_all(ic, m, rssi, nf);
2292 m = NULL;
2293 }
2294 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
2295 !IFQ_IS_EMPTY(&ifp->if_snd))
2296 upgt_start(ifp);
2297 UPGT_LOCK(sc);
2298 break;
2299 default:
2300 /* needs it to the inactive queue due to a error. */
2301 data = STAILQ_FIRST(&sc->sc_rx_active);
2302 if (data != NULL) {
2303 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2304 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2305 }
2306 if (error != USB_ERR_CANCELLED) {
2307 usbd_xfer_set_stall(xfer);
2308 ifp->if_ierrors++;
2309 goto setup;
2310 }
2311 break;
2312 }
2313}
2314
2315static void
2316upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error)
2317{
2318 struct upgt_softc *sc = usbd_xfer_softc(xfer);
2319 struct ifnet *ifp = sc->sc_ifp;
2320 struct upgt_data *data;
2321
2322 UPGT_ASSERT_LOCKED(sc);
2323 switch (USB_GET_STATE(xfer)) {
2324 case USB_ST_TRANSFERRED:
2325 data = STAILQ_FIRST(&sc->sc_tx_active);
2326 if (data == NULL)
2327 goto setup;
2328 STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next);
2329 UPGT_STAT_DEC(sc, st_tx_active);
2330 upgt_txeof(xfer, data);
2331 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
2332 UPGT_STAT_INC(sc, st_tx_inactive);
2333 /* FALLTHROUGH */
2334 case USB_ST_SETUP:
2335setup:
2336 data = STAILQ_FIRST(&sc->sc_tx_pending);
2337 if (data == NULL) {
2338 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n",
2339 __func__);
2340 return;
2341 }
2342 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next);
2343 UPGT_STAT_DEC(sc, st_tx_pending);
2344 STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next);
2345 UPGT_STAT_INC(sc, st_tx_active);
2346
2347 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen);
2348 usbd_transfer_submit(xfer);
2349 UPGT_UNLOCK(sc);
2350 upgt_start(ifp);
2351 UPGT_LOCK(sc);
2352 break;
2353 default:
2354 data = STAILQ_FIRST(&sc->sc_tx_active);
2355 if (data == NULL)
2356 goto setup;
2357 if (data->ni != NULL) {
2358 ieee80211_free_node(data->ni);
2359 data->ni = NULL;
2360 ifp->if_oerrors++;
2361 }
2362 if (error != USB_ERR_CANCELLED) {
2363 usbd_xfer_set_stall(xfer);
2364 goto setup;
2365 }
2366 break;
2367 }
2368}
2369
2370static device_method_t upgt_methods[] = {
2371 /* Device interface */
2372 DEVMETHOD(device_probe, upgt_match),
2373 DEVMETHOD(device_attach, upgt_attach),
2374 DEVMETHOD(device_detach, upgt_detach),
2375
2376 { 0, 0 }
2377};
2378
2379static driver_t upgt_driver = {
2380 "upgt",
2381 upgt_methods,
2382 sizeof(struct upgt_softc)
2383};
2384
2385static devclass_t upgt_devclass;
2386
2387DRIVER_MODULE(if_upgt, uhub, upgt_driver, upgt_devclass, NULL, 0);
2388MODULE_VERSION(if_upgt, 1);
2389MODULE_DEPEND(if_upgt, usb, 1, 1, 1);
2390MODULE_DEPEND(if_upgt, wlan, 1, 1, 1);
2391MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1);