Deleted Added
sdiff udiff text old ( 212131 ) new ( 213804 )
full compact
1/* $OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */
2/* $FreeBSD: head/sys/dev/usb/wlan/if_upgt.c 213804 2010-10-13 20:56:54Z hselasky $ */
3
4/*
5 * Copyright (c) 2007 Marcus Glocker <mglocker@openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20#include <sys/param.h>
21#include <sys/systm.h>
22#include <sys/kernel.h>
23#include <sys/endian.h>
24#include <sys/firmware.h>
25#include <sys/linker.h>
26#include <sys/mbuf.h>
27#include <sys/malloc.h>
28#include <sys/module.h>
29#include <sys/socket.h>
30#include <sys/sockio.h>
31#include <sys/sysctl.h>
32
33#include <net/if.h>
34#include <net/if_arp.h>
35#include <net/ethernet.h>
36#include <net/if_dl.h>
37#include <net/if_media.h>
38#include <net/if_types.h>
39
40#include <sys/bus.h>
41#include <machine/bus.h>
42
43#include <net80211/ieee80211_var.h>
44#include <net80211/ieee80211_phy.h>
45#include <net80211/ieee80211_radiotap.h>
46#include <net80211/ieee80211_regdomain.h>
47
48#include <net/bpf.h>
49
50#include <dev/usb/usb.h>
51#include <dev/usb/usbdi.h>
52#include "usbdevs.h"
53
54#include <dev/usb/wlan/if_upgtvar.h>
55
56/*
57 * Driver for the USB PrismGT devices.
58 *
59 * For now just USB 2.0 devices with the GW3887 chipset are supported.
60 * The driver has been written based on the firmware version 2.13.1.0_LM87.
61 *
62 * TODO's:
63 * - MONITOR mode test.
64 * - Add HOSTAP mode.
65 * - Add IBSS mode.
66 * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets).
67 *
68 * Parts of this driver has been influenced by reading the p54u driver
69 * written by Jean-Baptiste Note <jean-baptiste.note@m4x.org> and
70 * Sebastien Bourdeauducq <lekernel@prism54.org>.
71 */
72
73SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD, 0,
74 "USB PrismGT GW3887 driver parameters");
75
76#ifdef UPGT_DEBUG
77int upgt_debug = 0;
78SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RW, &upgt_debug,
79 0, "control debugging printfs");
80TUNABLE_INT("hw.upgt.debug", &upgt_debug);
81enum {
82 UPGT_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
83 UPGT_DEBUG_RECV = 0x00000002, /* basic recv operation */
84 UPGT_DEBUG_RESET = 0x00000004, /* reset processing */
85 UPGT_DEBUG_INTR = 0x00000008, /* INTR */
86 UPGT_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */
87 UPGT_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */
88 UPGT_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */
89 UPGT_DEBUG_STAT = 0x00000080, /* statistic */
90 UPGT_DEBUG_FW = 0x00000100, /* firmware */
91 UPGT_DEBUG_ANY = 0xffffffff
92};
93#define DPRINTF(sc, m, fmt, ...) do { \
94 if (sc->sc_debug & (m)) \
95 printf(fmt, __VA_ARGS__); \
96} while (0)
97#else
98#define DPRINTF(sc, m, fmt, ...) do { \
99 (void) sc; \
100} while (0)
101#endif
102
103/*
104 * Prototypes.
105 */
106static device_probe_t upgt_match;
107static device_attach_t upgt_attach;
108static device_detach_t upgt_detach;
109static int upgt_alloc_tx(struct upgt_softc *);
110static int upgt_alloc_rx(struct upgt_softc *);
111static int upgt_device_reset(struct upgt_softc *);
112static void upgt_bulk_tx(struct upgt_softc *, struct upgt_data *);
113static int upgt_fw_verify(struct upgt_softc *);
114static int upgt_mem_init(struct upgt_softc *);
115static int upgt_fw_load(struct upgt_softc *);
116static int upgt_fw_copy(const uint8_t *, char *, int);
117static uint32_t upgt_crc32_le(const void *, size_t);
118static struct mbuf *
119 upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *);
120static struct mbuf *
121 upgt_rx(struct upgt_softc *, uint8_t *, int, int *);
122static void upgt_txeof(struct usb_xfer *, struct upgt_data *);
123static int upgt_eeprom_read(struct upgt_softc *);
124static int upgt_eeprom_parse(struct upgt_softc *);
125static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *);
126static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int);
127static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int);
128static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int);
129static uint32_t upgt_chksum_le(const uint32_t *, size_t);
130static void upgt_tx_done(struct upgt_softc *, uint8_t *);
131static void upgt_init(void *);
132static void upgt_init_locked(struct upgt_softc *);
133static int upgt_ioctl(struct ifnet *, u_long, caddr_t);
134static void upgt_start(struct ifnet *);
135static int upgt_raw_xmit(struct ieee80211_node *, struct mbuf *,
136 const struct ieee80211_bpf_params *);
137static void upgt_scan_start(struct ieee80211com *);
138static void upgt_scan_end(struct ieee80211com *);
139static void upgt_set_channel(struct ieee80211com *);
140static struct ieee80211vap *upgt_vap_create(struct ieee80211com *,
141 const char name[IFNAMSIZ], int unit, int opmode,
142 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
143 const uint8_t mac[IEEE80211_ADDR_LEN]);
144static void upgt_vap_delete(struct ieee80211vap *);
145static void upgt_update_mcast(struct ifnet *);
146static uint8_t upgt_rx_rate(struct upgt_softc *, const int);
147static void upgt_set_multi(void *);
148static void upgt_stop(struct upgt_softc *);
149static void upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *);
150static int upgt_set_macfilter(struct upgt_softc *, uint8_t);
151static int upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int);
152static void upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *);
153static void upgt_set_led(struct upgt_softc *, int);
154static void upgt_set_led_blink(void *);
155static void upgt_get_stats(struct upgt_softc *);
156static void upgt_mem_free(struct upgt_softc *, uint32_t);
157static uint32_t upgt_mem_alloc(struct upgt_softc *);
158static void upgt_free_tx(struct upgt_softc *);
159static void upgt_free_rx(struct upgt_softc *);
160static void upgt_watchdog(void *);
161static void upgt_abort_xfers(struct upgt_softc *);
162static void upgt_abort_xfers_locked(struct upgt_softc *);
163static void upgt_sysctl_node(struct upgt_softc *);
164static struct upgt_data *
165 upgt_getbuf(struct upgt_softc *);
166static struct upgt_data *
167 upgt_gettxbuf(struct upgt_softc *);
168static int upgt_tx_start(struct upgt_softc *, struct mbuf *,
169 struct ieee80211_node *, struct upgt_data *);
170
171static const char *upgt_fwname = "upgt-gw3887";
172
173static const struct usb_device_id upgt_devs_2[] = {
174#define UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
175 /* version 2 devices */
176 UPGT_DEV(ACCTON, PRISM_GT),
177 UPGT_DEV(BELKIN, F5D7050),
178 UPGT_DEV(CISCOLINKSYS, WUSB54AG),
179 UPGT_DEV(CONCEPTRONIC, PRISM_GT),
180 UPGT_DEV(DELL, PRISM_GT_1),
181 UPGT_DEV(DELL, PRISM_GT_2),
182 UPGT_DEV(FSC, E5400),
183 UPGT_DEV(GLOBESPAN, PRISM_GT_1),
184 UPGT_DEV(GLOBESPAN, PRISM_GT_2),
185 UPGT_DEV(NETGEAR, WG111V2_2),
186 UPGT_DEV(INTERSIL, PRISM_GT),
187 UPGT_DEV(SMC, 2862WG),
188 UPGT_DEV(USR, USR5422),
189 UPGT_DEV(WISTRONNEWEB, UR045G),
190 UPGT_DEV(XYRATEX, PRISM_GT_1),
191 UPGT_DEV(XYRATEX, PRISM_GT_2),
192 UPGT_DEV(ZCOM, XG703A),
193 UPGT_DEV(ZCOM, XM142)
194};
195
196static usb_callback_t upgt_bulk_rx_callback;
197static usb_callback_t upgt_bulk_tx_callback;
198
199static const struct usb_config upgt_config[UPGT_N_XFERS] = {
200 [UPGT_BULK_TX] = {
201 .type = UE_BULK,
202 .endpoint = UE_ADDR_ANY,
203 .direction = UE_DIR_OUT,
204 .bufsize = MCLBYTES,
205 .flags = {
206 .ext_buffer = 1,
207 .force_short_xfer = 1,
208 .pipe_bof = 1
209 },
210 .callback = upgt_bulk_tx_callback,
211 .timeout = UPGT_USB_TIMEOUT, /* ms */
212 },
213 [UPGT_BULK_RX] = {
214 .type = UE_BULK,
215 .endpoint = UE_ADDR_ANY,
216 .direction = UE_DIR_IN,
217 .bufsize = MCLBYTES,
218 .flags = {
219 .ext_buffer = 1,
220 .pipe_bof = 1,
221 .short_xfer_ok = 1
222 },
223 .callback = upgt_bulk_rx_callback,
224 },
225};
226
227static int
228upgt_match(device_t dev)
229{
230 struct usb_attach_arg *uaa = device_get_ivars(dev);
231
232 if (uaa->usb_mode != USB_MODE_HOST)
233 return (ENXIO);
234 if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX)
235 return (ENXIO);
236 if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX)
237 return (ENXIO);
238
239 return (usbd_lookup_id_by_uaa(upgt_devs_2, sizeof(upgt_devs_2), uaa));
240}
241
242static int
243upgt_attach(device_t dev)
244{
245 int error;
246 struct ieee80211com *ic;
247 struct ifnet *ifp;
248 struct upgt_softc *sc = device_get_softc(dev);
249 struct usb_attach_arg *uaa = device_get_ivars(dev);
250 uint8_t bands, iface_index = UPGT_IFACE_INDEX;
251
252 sc->sc_dev = dev;
253 sc->sc_udev = uaa->device;
254#ifdef UPGT_DEBUG
255 sc->sc_debug = upgt_debug;
256#endif
257 device_set_usb_desc(dev);
258
259 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK,
260 MTX_DEF);
261 callout_init(&sc->sc_led_ch, 0);
262 callout_init(&sc->sc_watchdog_ch, 0);
263
264 /* Allocate TX and RX xfers. */
265 error = upgt_alloc_tx(sc);
266 if (error)
267 goto fail1;
268 error = upgt_alloc_rx(sc);
269 if (error)
270 goto fail2;
271
272 error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
273 upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx);
274 if (error) {
275 device_printf(dev, "could not allocate USB transfers, "
276 "err=%s\n", usbd_errstr(error));
277 goto fail3;
278 }
279
280 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
281 if (ifp == NULL) {
282 device_printf(dev, "can not if_alloc()\n");
283 goto fail4;
284 }
285
286 /* Initialize the device. */
287 error = upgt_device_reset(sc);
288 if (error)
289 goto fail5;
290 /* Verify the firmware. */
291 error = upgt_fw_verify(sc);
292 if (error)
293 goto fail5;
294 /* Calculate device memory space. */
295 if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) {
296 device_printf(dev,
297 "could not find memory space addresses on FW\n");
298 error = EIO;
299 goto fail5;
300 }
301 sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1;
302 sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1;
303
304 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n",
305 sc->sc_memaddr_frame_start);
306 DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n",
307 sc->sc_memaddr_frame_end);
308 DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n",
309 sc->sc_memaddr_rx_start);
310
311 upgt_mem_init(sc);
312
313 /* Load the firmware. */
314 error = upgt_fw_load(sc);
315 if (error)
316 goto fail5;
317
318 /* Read the whole EEPROM content and parse it. */
319 error = upgt_eeprom_read(sc);
320 if (error)
321 goto fail5;
322 error = upgt_eeprom_parse(sc);
323 if (error)
324 goto fail5;
325
326 /* all works related with the device have done here. */
327 upgt_abort_xfers(sc);
328
329 /* Setup the 802.11 device. */
330 ifp->if_softc = sc;
331 if_initname(ifp, "upgt", device_get_unit(sc->sc_dev));
332 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
333 ifp->if_init = upgt_init;
334 ifp->if_ioctl = upgt_ioctl;
335 ifp->if_start = upgt_start;
336 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
337 IFQ_SET_READY(&ifp->if_snd);
338
339 ic = ifp->if_l2com;
340 ic->ic_ifp = ifp;
341 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
342 ic->ic_opmode = IEEE80211_M_STA;
343 /* set device capabilities */
344 ic->ic_caps =
345 IEEE80211_C_STA /* station mode */
346 | IEEE80211_C_MONITOR /* monitor mode */
347 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
348 | IEEE80211_C_SHSLOT /* short slot time supported */
349 | IEEE80211_C_BGSCAN /* capable of bg scanning */
350 | IEEE80211_C_WPA /* 802.11i */
351 ;
352
353 bands = 0;
354 setbit(&bands, IEEE80211_MODE_11B);
355 setbit(&bands, IEEE80211_MODE_11G);
356 ieee80211_init_channels(ic, NULL, &bands);
357
358 ieee80211_ifattach(ic, sc->sc_myaddr);
359 ic->ic_raw_xmit = upgt_raw_xmit;
360 ic->ic_scan_start = upgt_scan_start;
361 ic->ic_scan_end = upgt_scan_end;
362 ic->ic_set_channel = upgt_set_channel;
363
364 ic->ic_vap_create = upgt_vap_create;
365 ic->ic_vap_delete = upgt_vap_delete;
366 ic->ic_update_mcast = upgt_update_mcast;
367
368 ieee80211_radiotap_attach(ic,
369 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
370 UPGT_TX_RADIOTAP_PRESENT,
371 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
372 UPGT_RX_RADIOTAP_PRESENT);
373
374 upgt_sysctl_node(sc);
375
376 if (bootverbose)
377 ieee80211_announce(ic);
378
379 return (0);
380
381fail5: if_free(ifp);
382fail4: usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
383fail3: upgt_free_rx(sc);
384fail2: upgt_free_tx(sc);
385fail1: mtx_destroy(&sc->sc_mtx);
386
387 return (error);
388}
389
390static void
391upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data)
392{
393 struct upgt_softc *sc = usbd_xfer_softc(xfer);
394 struct ifnet *ifp = sc->sc_ifp;
395 struct mbuf *m;
396
397 UPGT_ASSERT_LOCKED(sc);
398
399 /*
400 * Do any tx complete callback. Note this must be done before releasing
401 * the node reference.
402 */
403 if (data->m) {
404 m = data->m;
405 if (m->m_flags & M_TXCB) {
406 /* XXX status? */
407 ieee80211_process_callback(data->ni, m, 0);
408 }
409 m_freem(m);
410 data->m = NULL;
411 }
412 if (data->ni) {
413 ieee80211_free_node(data->ni);
414 data->ni = NULL;
415 }
416 ifp->if_opackets++;
417}
418
419static void
420upgt_get_stats(struct upgt_softc *sc)
421{
422 struct upgt_data *data_cmd;
423 struct upgt_lmac_mem *mem;
424 struct upgt_lmac_stats *stats;
425
426 data_cmd = upgt_getbuf(sc);
427 if (data_cmd == NULL) {
428 device_printf(sc->sc_dev, "%s: out of buffer.\n", __func__);
429 return;
430 }
431
432 /*
433 * Transmit the URB containing the CMD data.
434 */
435 bzero(data_cmd->buf, MCLBYTES);
436
437 mem = (struct upgt_lmac_mem *)data_cmd->buf;
438 mem->addr = htole32(sc->sc_memaddr_frame_start +
439 UPGT_MEMSIZE_FRAME_HEAD);
440
441 stats = (struct upgt_lmac_stats *)(mem + 1);
442
443 stats->header1.flags = 0;
444 stats->header1.type = UPGT_H1_TYPE_CTRL;
445 stats->header1.len = htole16(
446 sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header));
447
448 stats->header2.reqid = htole32(sc->sc_memaddr_frame_start);
449 stats->header2.type = htole16(UPGT_H2_TYPE_STATS);
450 stats->header2.flags = 0;
451
452 data_cmd->buflen = sizeof(*mem) + sizeof(*stats);
453
454 mem->chksum = upgt_chksum_le((uint32_t *)stats,
455 data_cmd->buflen - sizeof(*mem));
456
457 upgt_bulk_tx(sc, data_cmd);
458}
459
460static int
461upgt_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
462{
463 struct upgt_softc *sc = ifp->if_softc;
464 struct ieee80211com *ic = ifp->if_l2com;
465 struct ifreq *ifr = (struct ifreq *) data;
466 int error = 0, startall = 0;
467
468 switch (cmd) {
469 case SIOCSIFFLAGS:
470 if (ifp->if_flags & IFF_UP) {
471 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
472 if ((ifp->if_flags ^ sc->sc_if_flags) &
473 (IFF_ALLMULTI | IFF_PROMISC))
474 upgt_set_multi(sc);
475 } else {
476 upgt_init(sc);
477 startall = 1;
478 }
479 } else {
480 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
481 upgt_stop(sc);
482 }
483 sc->sc_if_flags = ifp->if_flags;
484 if (startall)
485 ieee80211_start_all(ic);
486 break;
487 case SIOCGIFMEDIA:
488 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
489 break;
490 case SIOCGIFADDR:
491 error = ether_ioctl(ifp, cmd, data);
492 break;
493 default:
494 error = EINVAL;
495 break;
496 }
497 return error;
498}
499
500static void
501upgt_stop_locked(struct upgt_softc *sc)
502{
503 struct ifnet *ifp = sc->sc_ifp;
504
505 UPGT_ASSERT_LOCKED(sc);
506
507 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
508 upgt_set_macfilter(sc, IEEE80211_S_INIT);
509 upgt_abort_xfers_locked(sc);
510}
511
512static void
513upgt_stop(struct upgt_softc *sc)
514{
515 struct ifnet *ifp = sc->sc_ifp;
516
517 UPGT_LOCK(sc);
518 upgt_stop_locked(sc);
519 UPGT_UNLOCK(sc);
520
521 /* device down */
522 sc->sc_tx_timer = 0;
523 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
524 sc->sc_flags &= ~UPGT_FLAG_INITDONE;
525}
526
527static void
528upgt_set_led(struct upgt_softc *sc, int action)
529{
530 struct upgt_data *data_cmd;
531 struct upgt_lmac_mem *mem;
532 struct upgt_lmac_led *led;
533
534 data_cmd = upgt_getbuf(sc);
535 if (data_cmd == NULL) {
536 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
537 return;
538 }
539
540 /*
541 * Transmit the URB containing the CMD data.
542 */
543 bzero(data_cmd->buf, MCLBYTES);
544
545 mem = (struct upgt_lmac_mem *)data_cmd->buf;
546 mem->addr = htole32(sc->sc_memaddr_frame_start +
547 UPGT_MEMSIZE_FRAME_HEAD);
548
549 led = (struct upgt_lmac_led *)(mem + 1);
550
551 led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
552 led->header1.type = UPGT_H1_TYPE_CTRL;
553 led->header1.len = htole16(
554 sizeof(struct upgt_lmac_led) -
555 sizeof(struct upgt_lmac_header));
556
557 led->header2.reqid = htole32(sc->sc_memaddr_frame_start);
558 led->header2.type = htole16(UPGT_H2_TYPE_LED);
559 led->header2.flags = 0;
560
561 switch (action) {
562 case UPGT_LED_OFF:
563 led->mode = htole16(UPGT_LED_MODE_SET);
564 led->action_fix = 0;
565 led->action_tmp = htole16(UPGT_LED_ACTION_OFF);
566 led->action_tmp_dur = 0;
567 break;
568 case UPGT_LED_ON:
569 led->mode = htole16(UPGT_LED_MODE_SET);
570 led->action_fix = 0;
571 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
572 led->action_tmp_dur = 0;
573 break;
574 case UPGT_LED_BLINK:
575 if (sc->sc_state != IEEE80211_S_RUN) {
576 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
577 return;
578 }
579 if (sc->sc_led_blink) {
580 /* previous blink was not finished */
581 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
582 return;
583 }
584 led->mode = htole16(UPGT_LED_MODE_SET);
585 led->action_fix = htole16(UPGT_LED_ACTION_OFF);
586 led->action_tmp = htole16(UPGT_LED_ACTION_ON);
587 led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR);
588 /* lock blink */
589 sc->sc_led_blink = 1;
590 callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc);
591 break;
592 default:
593 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next);
594 return;
595 }
596
597 data_cmd->buflen = sizeof(*mem) + sizeof(*led);
598
599 mem->chksum = upgt_chksum_le((uint32_t *)led,
600 data_cmd->buflen - sizeof(*mem));
601
602 upgt_bulk_tx(sc, data_cmd);
603}
604
605static void
606upgt_set_led_blink(void *arg)
607{
608 struct upgt_softc *sc = arg;
609
610 /* blink finished, we are ready for a next one */
611 sc->sc_led_blink = 0;
612}
613
614static void
615upgt_init(void *priv)
616{
617 struct upgt_softc *sc = priv;
618 struct ifnet *ifp = sc->sc_ifp;
619 struct ieee80211com *ic = ifp->if_l2com;
620
621 UPGT_LOCK(sc);
622 upgt_init_locked(sc);
623 UPGT_UNLOCK(sc);
624
625 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
626 ieee80211_start_all(ic); /* start all vap's */
627}
628
629static void
630upgt_init_locked(struct upgt_softc *sc)
631{
632 struct ifnet *ifp = sc->sc_ifp;
633
634 UPGT_ASSERT_LOCKED(sc);
635
636 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
637 upgt_stop_locked(sc);
638
639 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
640
641 (void)upgt_set_macfilter(sc, IEEE80211_S_SCAN);
642
643 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
644 ifp->if_drv_flags |= IFF_DRV_RUNNING;
645 sc->sc_flags |= UPGT_FLAG_INITDONE;
646
647 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
648}
649
650static int
651upgt_set_macfilter(struct upgt_softc *sc, uint8_t state)
652{
653 struct ifnet *ifp = sc->sc_ifp;
654 struct ieee80211com *ic = ifp->if_l2com;
655 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
656 struct ieee80211_node *ni;
657 struct upgt_data *data_cmd;
658 struct upgt_lmac_mem *mem;
659 struct upgt_lmac_filter *filter;
660 uint8_t broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
661
662 UPGT_ASSERT_LOCKED(sc);
663
664 data_cmd = upgt_getbuf(sc);
665 if (data_cmd == NULL) {
666 device_printf(sc->sc_dev, "out of TX buffers.\n");
667 return (ENOBUFS);
668 }
669
670 /*
671 * Transmit the URB containing the CMD data.
672 */
673 bzero(data_cmd->buf, MCLBYTES);
674
675 mem = (struct upgt_lmac_mem *)data_cmd->buf;
676 mem->addr = htole32(sc->sc_memaddr_frame_start +
677 UPGT_MEMSIZE_FRAME_HEAD);
678
679 filter = (struct upgt_lmac_filter *)(mem + 1);
680
681 filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
682 filter->header1.type = UPGT_H1_TYPE_CTRL;
683 filter->header1.len = htole16(
684 sizeof(struct upgt_lmac_filter) -
685 sizeof(struct upgt_lmac_header));
686
687 filter->header2.reqid = htole32(sc->sc_memaddr_frame_start);
688 filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER);
689 filter->header2.flags = 0;
690
691 switch (state) {
692 case IEEE80211_S_INIT:
693 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n",
694 __func__);
695 filter->type = htole16(UPGT_FILTER_TYPE_RESET);
696 break;
697 case IEEE80211_S_SCAN:
698 DPRINTF(sc, UPGT_DEBUG_STATE,
699 "set MAC filter to SCAN (bssid %s)\n",
700 ether_sprintf(broadcast));
701 filter->type = htole16(UPGT_FILTER_TYPE_NONE);
702 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
703 IEEE80211_ADDR_COPY(filter->src, broadcast);
704 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
705 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
706 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
707 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
708 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
709 break;
710 case IEEE80211_S_RUN:
711 ni = ieee80211_ref_node(vap->iv_bss);
712 /* XXX monitor mode isn't tested yet. */
713 if (vap->iv_opmode == IEEE80211_M_MONITOR) {
714 filter->type = htole16(UPGT_FILTER_TYPE_MONITOR);
715 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
716 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
717 filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1);
718 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
719 filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2);
720 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
721 filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3);
722 } else {
723 DPRINTF(sc, UPGT_DEBUG_STATE,
724 "set MAC filter to RUN (bssid %s)\n",
725 ether_sprintf(ni->ni_bssid));
726 filter->type = htole16(UPGT_FILTER_TYPE_STA);
727 IEEE80211_ADDR_COPY(filter->dst, sc->sc_myaddr);
728 IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid);
729 filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1);
730 filter->rxaddr = htole32(sc->sc_memaddr_rx_start);
731 filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2);
732 filter->rxhw = htole32(sc->sc_eeprom_hwrx);
733 filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3);
734 }
735 ieee80211_free_node(ni);
736 break;
737 default:
738 device_printf(sc->sc_dev,
739 "MAC filter does not know that state\n");
740 break;
741 }
742
743 data_cmd->buflen = sizeof(*mem) + sizeof(*filter);
744
745 mem->chksum = upgt_chksum_le((uint32_t *)filter,
746 data_cmd->buflen - sizeof(*mem));
747
748 upgt_bulk_tx(sc, data_cmd);
749
750 return (0);
751}
752
753static void
754upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic)
755{
756 struct ifnet *ifp = ic->ic_ifp;
757 struct upgt_softc *sc = ifp->if_softc;
758 const struct ieee80211_txparam *tp;
759
760 /*
761 * 0x01 = OFMD6 0x10 = DS1
762 * 0x04 = OFDM9 0x11 = DS2
763 * 0x06 = OFDM12 0x12 = DS5
764 * 0x07 = OFDM18 0x13 = DS11
765 * 0x08 = OFDM24
766 * 0x09 = OFDM36
767 * 0x0a = OFDM48
768 * 0x0b = OFDM54
769 */
770 const uint8_t rateset_auto_11b[] =
771 { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 };
772 const uint8_t rateset_auto_11g[] =
773 { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 };
774 const uint8_t rateset_fix_11bg[] =
775 { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07,
776 0x08, 0x09, 0x0a, 0x0b };
777
778 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
779
780 /* XXX */
781 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
782 /*
783 * Automatic rate control is done by the device.
784 * We just pass the rateset from which the device
785 * will pickup a rate.
786 */
787 if (ic->ic_curmode == IEEE80211_MODE_11B)
788 bcopy(rateset_auto_11b, sc->sc_cur_rateset,
789 sizeof(sc->sc_cur_rateset));
790 if (ic->ic_curmode == IEEE80211_MODE_11G ||
791 ic->ic_curmode == IEEE80211_MODE_AUTO)
792 bcopy(rateset_auto_11g, sc->sc_cur_rateset,
793 sizeof(sc->sc_cur_rateset));
794 } else {
795 /* set a fixed rate */
796 memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate],
797 sizeof(sc->sc_cur_rateset));
798 }
799}
800
801static void
802upgt_set_multi(void *arg)
803{
804 struct upgt_softc *sc = arg;
805 struct ifnet *ifp = sc->sc_ifp;
806
807 if (!(ifp->if_flags & IFF_UP))
808 return;
809
810 /*
811 * XXX don't know how to set a device. Lack of docs. Just try to set
812 * IFF_ALLMULTI flag here.
813 */
814 ifp->if_flags |= IFF_ALLMULTI;
815}
816
817static void
818upgt_start(struct ifnet *ifp)
819{
820 struct upgt_softc *sc = ifp->if_softc;
821 struct upgt_data *data_tx;
822 struct ieee80211_node *ni;
823 struct mbuf *m;
824
825 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
826 return;
827
828 UPGT_LOCK(sc);
829 for (;;) {
830 IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
831 if (m == NULL)
832 break;
833
834 data_tx = upgt_gettxbuf(sc);
835 if (data_tx == NULL) {
836 IFQ_DRV_PREPEND(&ifp->if_snd, m);
837 break;
838 }
839
840 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
841 m->m_pkthdr.rcvif = NULL;
842
843 if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
844 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
845 UPGT_STAT_INC(sc, st_tx_inactive);
846 ieee80211_free_node(ni);
847 ifp->if_oerrors++;
848 continue;
849 }
850 sc->sc_tx_timer = 5;
851 }
852 UPGT_UNLOCK(sc);
853}
854
855static int
856upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
857 const struct ieee80211_bpf_params *params)
858{
859 struct ieee80211com *ic = ni->ni_ic;
860 struct ifnet *ifp = ic->ic_ifp;
861 struct upgt_softc *sc = ifp->if_softc;
862 struct upgt_data *data_tx = NULL;
863
864 /* prevent management frames from being sent if we're not ready */
865 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
866 m_freem(m);
867 ieee80211_free_node(ni);
868 return ENETDOWN;
869 }
870
871 UPGT_LOCK(sc);
872 data_tx = upgt_gettxbuf(sc);
873 if (data_tx == NULL) {
874 ieee80211_free_node(ni);
875 m_freem(m);
876 UPGT_UNLOCK(sc);
877 return (ENOBUFS);
878 }
879
880 if (upgt_tx_start(sc, m, ni, data_tx) != 0) {
881 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next);
882 UPGT_STAT_INC(sc, st_tx_inactive);
883 ieee80211_free_node(ni);
884 ifp->if_oerrors++;
885 UPGT_UNLOCK(sc);
886 return (EIO);
887 }
888 UPGT_UNLOCK(sc);
889
890 sc->sc_tx_timer = 5;
891 return (0);
892}
893
894static void
895upgt_watchdog(void *arg)
896{
897 struct upgt_softc *sc = arg;
898 struct ifnet *ifp = sc->sc_ifp;
899
900 if (sc->sc_tx_timer > 0) {
901 if (--sc->sc_tx_timer == 0) {
902 device_printf(sc->sc_dev, "watchdog timeout\n");
903 /* upgt_init(ifp); XXX needs a process context ? */
904 ifp->if_oerrors++;
905 return;
906 }
907 callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc);
908 }
909}
910
911static uint32_t
912upgt_mem_alloc(struct upgt_softc *sc)
913{
914 int i;
915
916 for (i = 0; i < sc->sc_memory.pages; i++) {
917 if (sc->sc_memory.page[i].used == 0) {
918 sc->sc_memory.page[i].used = 1;
919 return (sc->sc_memory.page[i].addr);
920 }
921 }
922
923 return (0);
924}
925
926static void
927upgt_scan_start(struct ieee80211com *ic)
928{
929 /* do nothing. */
930}
931
932static void
933upgt_scan_end(struct ieee80211com *ic)
934{
935 /* do nothing. */
936}
937
938static void
939upgt_set_channel(struct ieee80211com *ic)
940{
941 struct upgt_softc *sc = ic->ic_ifp->if_softc;
942
943 UPGT_LOCK(sc);
944 upgt_set_chan(sc, ic->ic_curchan);
945 UPGT_UNLOCK(sc);
946}
947
948static void
949upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c)
950{
951 struct ifnet *ifp = sc->sc_ifp;
952 struct ieee80211com *ic = ifp->if_l2com;
953 struct upgt_data *data_cmd;
954 struct upgt_lmac_mem *mem;
955 struct upgt_lmac_channel *chan;
956 int channel;
957
958 UPGT_ASSERT_LOCKED(sc);
959
960 channel = ieee80211_chan2ieee(ic, c);
961 if (channel == 0 || channel == IEEE80211_CHAN_ANY) {
962 /* XXX should NEVER happen */
963 device_printf(sc->sc_dev,
964 "%s: invalid channel %x\n", __func__, channel);
965 return;
966 }
967
968 DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel);
969
970 data_cmd = upgt_getbuf(sc);
971 if (data_cmd == NULL) {
972 device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__);
973 return;
974 }
975 /*
976 * Transmit the URB containing the CMD data.
977 */
978 bzero(data_cmd->buf, MCLBYTES);
979
980 mem = (struct upgt_lmac_mem *)data_cmd->buf;
981 mem->addr = htole32(sc->sc_memaddr_frame_start +
982 UPGT_MEMSIZE_FRAME_HEAD);
983
984 chan = (struct upgt_lmac_channel *)(mem + 1);
985
986 chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK;
987 chan->header1.type = UPGT_H1_TYPE_CTRL;
988 chan->header1.len = htole16(
989 sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header));
990
991 chan->header2.reqid = htole32(sc->sc_memaddr_frame_start);
992 chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL);
993 chan->header2.flags = 0;
994
995 chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1);
996 chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2);
997 chan->freq6 = sc->sc_eeprom_freq6[channel];
998 chan->settings = sc->sc_eeprom_freq6_settings;
999 chan->unknown3 = UPGT_CHANNEL_UNKNOWN3;
1000
1001 bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_1,
1002 sizeof(chan->freq3_1));
1003 bcopy(&sc->sc_eeprom_freq4[channel], chan->freq4,
1004 sizeof(sc->sc_eeprom_freq4[channel]));
1005 bcopy(&sc->sc_eeprom_freq3[channel].data, chan->freq3_2,
1006 sizeof(chan->freq3_2));
1007
1008 data_cmd->buflen = sizeof(*mem) + sizeof(*chan);
1009
1010 mem->chksum = upgt_chksum_le((uint32_t *)chan,
1011 data_cmd->buflen - sizeof(*mem));
1012
1013 upgt_bulk_tx(sc, data_cmd);
1014}
1015
1016static struct ieee80211vap *
1017upgt_vap_create(struct ieee80211com *ic,
1018 const char name[IFNAMSIZ], int unit, int opmode, int flags,
1019 const uint8_t bssid[IEEE80211_ADDR_LEN],
1020 const uint8_t mac[IEEE80211_ADDR_LEN])
1021{
1022 struct upgt_vap *uvp;
1023 struct ieee80211vap *vap;
1024
1025 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
1026 return NULL;
1027 uvp = (struct upgt_vap *) malloc(sizeof(struct upgt_vap),
1028 M_80211_VAP, M_NOWAIT | M_ZERO);
1029 if (uvp == NULL)
1030 return NULL;
1031 vap = &uvp->vap;
1032 /* enable s/w bmiss handling for sta mode */
1033 ieee80211_vap_setup(ic, vap, name, unit, opmode,
1034 flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
1035
1036 /* override state transition machine */
1037 uvp->newstate = vap->iv_newstate;
1038 vap->iv_newstate = upgt_newstate;
1039
1040 /* setup device rates */
1041 upgt_setup_rates(vap, ic);
1042
1043 /* complete setup */
1044 ieee80211_vap_attach(vap, ieee80211_media_change,
1045 ieee80211_media_status);
1046 ic->ic_opmode = opmode;
1047 return vap;
1048}
1049
1050static int
1051upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1052{
1053 struct upgt_vap *uvp = UPGT_VAP(vap);
1054 struct ieee80211com *ic = vap->iv_ic;
1055 struct upgt_softc *sc = ic->ic_ifp->if_softc;
1056
1057 /* do it in a process context */
1058 sc->sc_state = nstate;
1059
1060 IEEE80211_UNLOCK(ic);
1061 UPGT_LOCK(sc);
1062 callout_stop(&sc->sc_led_ch);
1063 callout_stop(&sc->sc_watchdog_ch);
1064
1065 switch (nstate) {
1066 case IEEE80211_S_INIT:
1067 /* do not accept any frames if the device is down */
1068 (void)upgt_set_macfilter(sc, sc->sc_state);
1069 upgt_set_led(sc, UPGT_LED_OFF);
1070 break;
1071 case IEEE80211_S_SCAN:
1072 upgt_set_chan(sc, ic->ic_curchan);
1073 break;
1074 case IEEE80211_S_AUTH:
1075 upgt_set_chan(sc, ic->ic_curchan);
1076 break;
1077 case IEEE80211_S_ASSOC:
1078 break;
1079 case IEEE80211_S_RUN:
1080 upgt_set_macfilter(sc, sc->sc_state);
1081 upgt_set_led(sc, UPGT_LED_ON);
1082 break;
1083 default:
1084 break;
1085 }
1086 UPGT_UNLOCK(sc);
1087 IEEE80211_LOCK(ic);
1088 return (uvp->newstate(vap, nstate, arg));
1089}
1090
1091static void
1092upgt_vap_delete(struct ieee80211vap *vap)
1093{
1094 struct upgt_vap *uvp = UPGT_VAP(vap);
1095
1096 ieee80211_vap_detach(vap);
1097 free(uvp, M_80211_VAP);
1098}
1099
1100static void
1101upgt_update_mcast(struct ifnet *ifp)
1102{
1103 struct upgt_softc *sc = ifp->if_softc;
1104
1105 upgt_set_multi(sc);
1106}
1107
1108static int
1109upgt_eeprom_parse(struct upgt_softc *sc)
1110{
1111 struct upgt_eeprom_header *eeprom_header;
1112 struct upgt_eeprom_option *eeprom_option;
1113 uint16_t option_len;
1114 uint16_t option_type;
1115 uint16_t preamble_len;
1116 int option_end = 0;
1117
1118 /* calculate eeprom options start offset */
1119 eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom;
1120 preamble_len = le16toh(eeprom_header->preamble_len);
1121 eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom +
1122 (sizeof(struct upgt_eeprom_header) + preamble_len));
1123
1124 while (!option_end) {
1125 /* the eeprom option length is stored in words */
1126 option_len =
1127 (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t);
1128 option_type =
1129 le16toh(eeprom_option->type);
1130
1131 switch (option_type) {
1132 case UPGT_EEPROM_TYPE_NAME:
1133 DPRINTF(sc, UPGT_DEBUG_FW,
1134 "EEPROM name len=%d\n", option_len);
1135 break;
1136 case UPGT_EEPROM_TYPE_SERIAL:
1137 DPRINTF(sc, UPGT_DEBUG_FW,
1138 "EEPROM serial len=%d\n", option_len);
1139 break;
1140 case UPGT_EEPROM_TYPE_MAC:
1141 DPRINTF(sc, UPGT_DEBUG_FW,
1142 "EEPROM mac len=%d\n", option_len);
1143
1144 IEEE80211_ADDR_COPY(sc->sc_myaddr, eeprom_option->data);
1145 break;
1146 case UPGT_EEPROM_TYPE_HWRX:
1147 DPRINTF(sc, UPGT_DEBUG_FW,
1148 "EEPROM hwrx len=%d\n", option_len);
1149
1150 upgt_eeprom_parse_hwrx(sc, eeprom_option->data);
1151 break;
1152 case UPGT_EEPROM_TYPE_CHIP:
1153 DPRINTF(sc, UPGT_DEBUG_FW,
1154 "EEPROM chip len=%d\n", option_len);
1155 break;
1156 case UPGT_EEPROM_TYPE_FREQ3:
1157 DPRINTF(sc, UPGT_DEBUG_FW,
1158 "EEPROM freq3 len=%d\n", option_len);
1159
1160 upgt_eeprom_parse_freq3(sc, eeprom_option->data,
1161 option_len);
1162 break;
1163 case UPGT_EEPROM_TYPE_FREQ4:
1164 DPRINTF(sc, UPGT_DEBUG_FW,
1165 "EEPROM freq4 len=%d\n", option_len);
1166
1167 upgt_eeprom_parse_freq4(sc, eeprom_option->data,
1168 option_len);
1169 break;
1170 case UPGT_EEPROM_TYPE_FREQ5:
1171 DPRINTF(sc, UPGT_DEBUG_FW,
1172 "EEPROM freq5 len=%d\n", option_len);
1173 break;
1174 case UPGT_EEPROM_TYPE_FREQ6:
1175 DPRINTF(sc, UPGT_DEBUG_FW,
1176 "EEPROM freq6 len=%d\n", option_len);
1177
1178 upgt_eeprom_parse_freq6(sc, eeprom_option->data,
1179 option_len);
1180 break;
1181 case UPGT_EEPROM_TYPE_END:
1182 DPRINTF(sc, UPGT_DEBUG_FW,
1183 "EEPROM end len=%d\n", option_len);
1184 option_end = 1;
1185 break;
1186 case UPGT_EEPROM_TYPE_OFF:
1187 DPRINTF(sc, UPGT_DEBUG_FW,
1188 "%s: EEPROM off without end option\n", __func__);
1189 return (EIO);
1190 default:
1191 DPRINTF(sc, UPGT_DEBUG_FW,
1192 "EEPROM unknown type 0x%04x len=%d\n",
1193 option_type, option_len);
1194 break;
1195 }
1196
1197 /* jump to next EEPROM option */
1198 eeprom_option = (struct upgt_eeprom_option *)
1199 (eeprom_option->data + option_len);
1200 }
1201
1202 return (0);
1203}
1204
1205static void
1206upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len)
1207{
1208 struct upgt_eeprom_freq3_header *freq3_header;
1209 struct upgt_lmac_freq3 *freq3;
1210 int i, elements, flags;
1211 unsigned channel;
1212
1213 freq3_header = (struct upgt_eeprom_freq3_header *)data;
1214 freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1);
1215
1216 flags = freq3_header->flags;
1217 elements = freq3_header->elements;
1218
1219 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n",
1220 flags, elements);
1221
1222 for (i = 0; i < elements; i++) {
1223 channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0);
1224 if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
1225 continue;
1226
1227 sc->sc_eeprom_freq3[channel] = freq3[i];
1228
1229 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1230 le16toh(sc->sc_eeprom_freq3[channel].freq), channel);
1231 }
1232}
1233
1234void
1235upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len)
1236{
1237 struct upgt_eeprom_freq4_header *freq4_header;
1238 struct upgt_eeprom_freq4_1 *freq4_1;
1239 struct upgt_eeprom_freq4_2 *freq4_2;
1240 int i, j, elements, settings, flags;
1241 unsigned channel;
1242
1243 freq4_header = (struct upgt_eeprom_freq4_header *)data;
1244 freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1);
1245 flags = freq4_header->flags;
1246 elements = freq4_header->elements;
1247 settings = freq4_header->settings;
1248
1249 /* we need this value later */
1250 sc->sc_eeprom_freq6_settings = freq4_header->settings;
1251
1252 DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n",
1253 flags, elements, settings);
1254
1255 for (i = 0; i < elements; i++) {
1256 channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0);
1257 if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
1258 continue;
1259
1260 freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data;
1261 for (j = 0; j < settings; j++) {
1262 sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j];
1263 sc->sc_eeprom_freq4[channel][j].pad = 0;
1264 }
1265
1266 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1267 le16toh(freq4_1[i].freq), channel);
1268 }
1269}
1270
1271void
1272upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len)
1273{
1274 struct upgt_lmac_freq6 *freq6;
1275 int i, elements;
1276 unsigned channel;
1277
1278 freq6 = (struct upgt_lmac_freq6 *)data;
1279 elements = len / sizeof(struct upgt_lmac_freq6);
1280
1281 DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements);
1282
1283 for (i = 0; i < elements; i++) {
1284 channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0);
1285 if (!(channel >= 0 && channel < IEEE80211_CHAN_MAX))
1286 continue;
1287
1288 sc->sc_eeprom_freq6[channel] = freq6[i];
1289
1290 DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n",
1291 le16toh(sc->sc_eeprom_freq6[channel].freq), channel);
1292 }
1293}
1294
1295static void
1296upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data)
1297{
1298 struct upgt_eeprom_option_hwrx *option_hwrx;
1299
1300 option_hwrx = (struct upgt_eeprom_option_hwrx *)data;
1301
1302 sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST;
1303
1304 DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n",
1305 sc->sc_eeprom_hwrx);
1306}
1307
1308static int
1309upgt_eeprom_read(struct upgt_softc *sc)
1310{
1311 struct upgt_data *data_cmd;
1312 struct upgt_lmac_mem *mem;
1313 struct upgt_lmac_eeprom *eeprom;
1314 int block, error, offset;
1315
1316 UPGT_LOCK(sc);
1317 usb_pause_mtx(&sc->sc_mtx, 100);
1318
1319 offset = 0;
1320 block = UPGT_EEPROM_BLOCK_SIZE;
1321 while (offset < UPGT_EEPROM_SIZE) {
1322 DPRINTF(sc, UPGT_DEBUG_FW,
1323 "request EEPROM block (offset=%d, len=%d)\n", offset, block);
1324
1325 data_cmd = upgt_getbuf(sc);
1326 if (data_cmd == NULL) {
1327 UPGT_UNLOCK(sc);
1328 return (ENOBUFS);
1329 }
1330
1331 /*
1332 * Transmit the URB containing the CMD data.
1333 */
1334 bzero(data_cmd->buf, MCLBYTES);
1335
1336 mem = (struct upgt_lmac_mem *)data_cmd->buf;
1337 mem->addr = htole32(sc->sc_memaddr_frame_start +
1338 UPGT_MEMSIZE_FRAME_HEAD);
1339
1340 eeprom = (struct upgt_lmac_eeprom *)(mem + 1);
1341 eeprom->header1.flags = 0;
1342 eeprom->header1.type = UPGT_H1_TYPE_CTRL;
1343 eeprom->header1.len = htole16((
1344 sizeof(struct upgt_lmac_eeprom) -
1345 sizeof(struct upgt_lmac_header)) + block);
1346
1347 eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start);
1348 eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM);
1349 eeprom->header2.flags = 0;
1350
1351 eeprom->offset = htole16(offset);
1352 eeprom->len = htole16(block);
1353
1354 data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block;
1355
1356 mem->chksum = upgt_chksum_le((uint32_t *)eeprom,
1357 data_cmd->buflen - sizeof(*mem));
1358 upgt_bulk_tx(sc, data_cmd);
1359
1360 error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz);
1361 if (error != 0) {
1362 device_printf(sc->sc_dev,
1363 "timeout while waiting for EEPROM data\n");
1364 UPGT_UNLOCK(sc);
1365 return (EIO);
1366 }
1367
1368 offset += block;
1369 if (UPGT_EEPROM_SIZE - offset < block)
1370 block = UPGT_EEPROM_SIZE - offset;
1371 }
1372
1373 UPGT_UNLOCK(sc);
1374 return (0);
1375}
1376
1377/*
1378 * When a rx data came in the function returns a mbuf and a rssi values.
1379 */
1380static struct mbuf *
1381upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi)
1382{
1383 struct mbuf *m = NULL;
1384 struct upgt_softc *sc = usbd_xfer_softc(xfer);
1385 struct upgt_lmac_header *header;
1386 struct upgt_lmac_eeprom *eeprom;
1387 uint8_t h1_type;
1388 uint16_t h2_type;
1389 int actlen, sumlen;
1390
1391 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
1392
1393 UPGT_ASSERT_LOCKED(sc);
1394
1395 if (actlen < 1)
1396 return (NULL);
1397
1398 /* Check only at the very beginning. */
1399 if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) &&
1400 (memcmp(data->buf, "OK", 2) == 0)) {
1401 sc->sc_flags |= UPGT_FLAG_FWLOADED;
1402 wakeup_one(sc);
1403 return (NULL);
1404 }
1405
1406 if (actlen < UPGT_RX_MINSZ)
1407 return (NULL);
1408
1409 /*
1410 * Check what type of frame came in.
1411 */
1412 header = (struct upgt_lmac_header *)(data->buf + 4);
1413
1414 h1_type = header->header1.type;
1415 h2_type = le16toh(header->header2.type);
1416
1417 if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) {
1418 eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4);
1419 uint16_t eeprom_offset = le16toh(eeprom->offset);
1420 uint16_t eeprom_len = le16toh(eeprom->len);
1421
1422 DPRINTF(sc, UPGT_DEBUG_FW,
1423 "received EEPROM block (offset=%d, len=%d)\n",
1424 eeprom_offset, eeprom_len);
1425
1426 bcopy(data->buf + sizeof(struct upgt_lmac_eeprom) + 4,
1427 sc->sc_eeprom + eeprom_offset, eeprom_len);
1428
1429 /* EEPROM data has arrived in time, wakeup. */
1430 wakeup(sc);
1431 } else if (h1_type == UPGT_H1_TYPE_CTRL &&
1432 h2_type == UPGT_H2_TYPE_TX_DONE) {
1433 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n",
1434 __func__);
1435 upgt_tx_done(sc, data->buf + 4);
1436 } else if (h1_type == UPGT_H1_TYPE_RX_DATA ||
1437 h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) {
1438 DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n",
1439 __func__);
1440 m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len),
1441 rssi);
1442 } else if (h1_type == UPGT_H1_TYPE_CTRL &&
1443 h2_type == UPGT_H2_TYPE_STATS) {
1444 DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n",
1445 __func__);
1446 /* TODO: what could we do with the statistic data? */
1447 } else {
1448 /* ignore unknown frame types */
1449 DPRINTF(sc, UPGT_DEBUG_INTR,
1450 "received unknown frame type 0x%02x\n",
1451 header->header1.type);
1452 }
1453 return (m);
1454}
1455
1456/*
1457 * The firmware awaits a checksum for each frame we send to it.
1458 * The algorithm used therefor is uncommon but somehow similar to CRC32.
1459 */
1460static uint32_t
1461upgt_chksum_le(const uint32_t *buf, size_t size)
1462{
1463 int i;
1464 uint32_t crc = 0;
1465
1466 for (i = 0; i < size; i += sizeof(uint32_t)) {
1467 crc = htole32(crc ^ *buf++);
1468 crc = htole32((crc >> 5) ^ (crc << 3));
1469 }
1470
1471 return (crc);
1472}
1473
1474static struct mbuf *
1475upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi)
1476{
1477 struct ifnet *ifp = sc->sc_ifp;
1478 struct ieee80211com *ic = ifp->if_l2com;
1479 struct upgt_lmac_rx_desc *rxdesc;
1480 struct mbuf *m;
1481
1482 /*
1483 * don't pass packets to the ieee80211 framework if the driver isn't
1484 * RUNNING.
1485 */
1486 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1487 return (NULL);
1488
1489 /* access RX packet descriptor */
1490 rxdesc = (struct upgt_lmac_rx_desc *)data;
1491
1492 /* create mbuf which is suitable for strict alignment archs */
1493 KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES,
1494 ("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN));
1495 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1496 if (m == NULL) {
1497 device_printf(sc->sc_dev, "could not create RX mbuf\n");
1498 return (NULL);
1499 }
1500 m_adj(m, ETHER_ALIGN);
1501 bcopy(rxdesc->data, mtod(m, char *), pkglen);
1502 /* trim FCS */
1503 m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN;
1504 m->m_pkthdr.rcvif = ifp;
1505
1506 if (ieee80211_radiotap_active(ic)) {
1507 struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap;
1508
1509 tap->wr_flags = 0;
1510 tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate);
1511 tap->wr_antsignal = rxdesc->rssi;
1512 }
1513 ifp->if_ipackets++;
1514
1515 DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__);
1516 *rssi = rxdesc->rssi;
1517 return (m);
1518}
1519
1520static uint8_t
1521upgt_rx_rate(struct upgt_softc *sc, const int rate)
1522{
1523 struct ifnet *ifp = sc->sc_ifp;
1524 struct ieee80211com *ic = ifp->if_l2com;
1525 static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 };
1526 static const uint8_t ofdm_upgt2rate[12] =
1527 { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 };
1528
1529 if (ic->ic_curmode == IEEE80211_MODE_11B &&
1530 !(rate < 0 || rate > 3))
1531 return cck_upgt2rate[rate & 0xf];
1532
1533 if (ic->ic_curmode == IEEE80211_MODE_11G &&
1534 !(rate < 0 || rate > 11))
1535 return ofdm_upgt2rate[rate & 0xf];
1536
1537 return (0);
1538}
1539
1540static void
1541upgt_tx_done(struct upgt_softc *sc, uint8_t *data)
1542{
1543 struct ifnet *ifp = sc->sc_ifp;
1544 struct upgt_lmac_tx_done_desc *desc;
1545 int i, freed = 0;
1546
1547 UPGT_ASSERT_LOCKED(sc);
1548
1549 desc = (struct upgt_lmac_tx_done_desc *)data;
1550
1551 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1552 struct upgt_data *data_tx = &sc->sc_tx_data[i];
1553
1554 if (data_tx->addr == le32toh(desc->header2.reqid)) {
1555 upgt_mem_free(sc, data_tx->addr);
1556 data_tx->ni = NULL;
1557 data_tx->addr = 0;
1558 data_tx->m = NULL;
1559 data_tx->use = 0;
1560
1561 DPRINTF(sc, UPGT_DEBUG_TX_PROC,
1562 "TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ",
1563 le32toh(desc->header2.reqid),
1564 le16toh(desc->status), le16toh(desc->rssi));
1565 DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n",
1566 le16toh(desc->seq));
1567
1568 freed++;
1569 }
1570 }
1571
1572 if (freed != 0) {
1573 sc->sc_tx_timer = 0;
1574 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1575 UPGT_UNLOCK(sc);
1576 upgt_start(ifp);
1577 UPGT_LOCK(sc);
1578 }
1579}
1580
1581static void
1582upgt_mem_free(struct upgt_softc *sc, uint32_t addr)
1583{
1584 int i;
1585
1586 for (i = 0; i < sc->sc_memory.pages; i++) {
1587 if (sc->sc_memory.page[i].addr == addr) {
1588 sc->sc_memory.page[i].used = 0;
1589 return;
1590 }
1591 }
1592
1593 device_printf(sc->sc_dev,
1594 "could not free memory address 0x%08x\n", addr);
1595}
1596
1597static int
1598upgt_fw_load(struct upgt_softc *sc)
1599{
1600 const struct firmware *fw;
1601 struct upgt_data *data_cmd;
1602 struct upgt_fw_x2_header *x2;
1603 char start_fwload_cmd[] = { 0x3c, 0x0d };
1604 int error = 0, offset, bsize, n;
1605 uint32_t crc32;
1606
1607 fw = firmware_get(upgt_fwname);
1608 if (fw == NULL) {
1609 device_printf(sc->sc_dev, "could not read microcode %s\n",
1610 upgt_fwname);
1611 return (EIO);
1612 }
1613
1614 UPGT_LOCK(sc);
1615
1616 /* send firmware start load command */
1617 data_cmd = upgt_getbuf(sc);
1618 if (data_cmd == NULL) {
1619 error = ENOBUFS;
1620 goto fail;
1621 }
1622 data_cmd->buflen = sizeof(start_fwload_cmd);
1623 bcopy(start_fwload_cmd, data_cmd->buf, data_cmd->buflen);
1624 upgt_bulk_tx(sc, data_cmd);
1625
1626 /* send X2 header */
1627 data_cmd = upgt_getbuf(sc);
1628 if (data_cmd == NULL) {
1629 error = ENOBUFS;
1630 goto fail;
1631 }
1632 data_cmd->buflen = sizeof(struct upgt_fw_x2_header);
1633 x2 = (struct upgt_fw_x2_header *)data_cmd->buf;
1634 bcopy(UPGT_X2_SIGNATURE, x2->signature, UPGT_X2_SIGNATURE_SIZE);
1635 x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START);
1636 x2->len = htole32(fw->datasize);
1637 x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf +
1638 UPGT_X2_SIGNATURE_SIZE,
1639 sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE -
1640 sizeof(uint32_t));
1641 upgt_bulk_tx(sc, data_cmd);
1642
1643 /* download firmware */
1644 for (offset = 0; offset < fw->datasize; offset += bsize) {
1645 if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE)
1646 bsize = UPGT_FW_BLOCK_SIZE;
1647 else
1648 bsize = fw->datasize - offset;
1649
1650 data_cmd = upgt_getbuf(sc);
1651 if (data_cmd == NULL) {
1652 error = ENOBUFS;
1653 goto fail;
1654 }
1655 n = upgt_fw_copy((const uint8_t *)fw->data + offset,
1656 data_cmd->buf, bsize);
1657 data_cmd->buflen = bsize;
1658 upgt_bulk_tx(sc, data_cmd);
1659
1660 DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%d, read=%d, sent=%d\n",
1661 offset, n, bsize);
1662 bsize = n;
1663 }
1664 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__);
1665
1666 /* load firmware */
1667 data_cmd = upgt_getbuf(sc);
1668 if (data_cmd == NULL) {
1669 error = ENOBUFS;
1670 goto fail;
1671 }
1672 crc32 = upgt_crc32_le(fw->data, fw->datasize);
1673 *((uint32_t *)(data_cmd->buf) ) = crc32;
1674 *((uint8_t *)(data_cmd->buf) + 4) = 'g';
1675 *((uint8_t *)(data_cmd->buf) + 5) = '\r';
1676 data_cmd->buflen = 6;
1677 upgt_bulk_tx(sc, data_cmd);
1678
1679 /* waiting 'OK' response. */
1680 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]);
1681 error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz);
1682 if (error != 0) {
1683 device_printf(sc->sc_dev, "firmware load failed\n");
1684 error = EIO;
1685 }
1686
1687 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__);
1688fail:
1689 UPGT_UNLOCK(sc);
1690 firmware_put(fw, FIRMWARE_UNLOAD);
1691 return (error);
1692}
1693
1694static uint32_t
1695upgt_crc32_le(const void *buf, size_t size)
1696{
1697 uint32_t crc;
1698
1699 crc = ether_crc32_le(buf, size);
1700
1701 /* apply final XOR value as common for CRC-32 */
1702 crc = htole32(crc ^ 0xffffffffU);
1703
1704 return (crc);
1705}
1706
1707/*
1708 * While copying the version 2 firmware, we need to replace two characters:
1709 *
1710 * 0x7e -> 0x7d 0x5e
1711 * 0x7d -> 0x7d 0x5d
1712 */
1713static int
1714upgt_fw_copy(const uint8_t *src, char *dst, int size)
1715{
1716 int i, j;
1717
1718 for (i = 0, j = 0; i < size && j < size; i++) {
1719 switch (src[i]) {
1720 case 0x7e:
1721 dst[j] = 0x7d;
1722 j++;
1723 dst[j] = 0x5e;
1724 j++;
1725 break;
1726 case 0x7d:
1727 dst[j] = 0x7d;
1728 j++;
1729 dst[j] = 0x5d;
1730 j++;
1731 break;
1732 default:
1733 dst[j] = src[i];
1734 j++;
1735 break;
1736 }
1737 }
1738
1739 return (i);
1740}
1741
1742static int
1743upgt_mem_init(struct upgt_softc *sc)
1744{
1745 int i;
1746
1747 for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) {
1748 sc->sc_memory.page[i].used = 0;
1749
1750 if (i == 0) {
1751 /*
1752 * The first memory page is always reserved for
1753 * command data.
1754 */
1755 sc->sc_memory.page[i].addr =
1756 sc->sc_memaddr_frame_start + MCLBYTES;
1757 } else {
1758 sc->sc_memory.page[i].addr =
1759 sc->sc_memory.page[i - 1].addr + MCLBYTES;
1760 }
1761
1762 if (sc->sc_memory.page[i].addr + MCLBYTES >=
1763 sc->sc_memaddr_frame_end)
1764 break;
1765
1766 DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n",
1767 i, sc->sc_memory.page[i].addr);
1768 }
1769
1770 sc->sc_memory.pages = i;
1771
1772 DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages);
1773 return (0);
1774}
1775
1776static int
1777upgt_fw_verify(struct upgt_softc *sc)
1778{
1779 const struct firmware *fw;
1780 const struct upgt_fw_bra_option *bra_opt;
1781 const struct upgt_fw_bra_descr *descr;
1782 const uint8_t *p;
1783 const uint32_t *uc;
1784 uint32_t bra_option_type, bra_option_len;
1785 int offset, bra_end = 0, error = 0;
1786
1787 fw = firmware_get(upgt_fwname);
1788 if (fw == NULL) {
1789 device_printf(sc->sc_dev, "could not read microcode %s\n",
1790 upgt_fwname);
1791 return EIO;
1792 }
1793
1794 /*
1795 * Seek to beginning of Boot Record Area (BRA).
1796 */
1797 for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) {
1798 uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1799 if (*uc == 0)
1800 break;
1801 }
1802 for (; offset < fw->datasize; offset += sizeof(*uc)) {
1803 uc = (const uint32_t *)((const uint8_t *)fw->data + offset);
1804 if (*uc != 0)
1805 break;
1806 }
1807 if (offset == fw->datasize) {
1808 device_printf(sc->sc_dev,
1809 "firmware Boot Record Area not found\n");
1810 error = EIO;
1811 goto fail;
1812 }
1813
1814 DPRINTF(sc, UPGT_DEBUG_FW,
1815 "firmware Boot Record Area found at offset %d\n", offset);
1816
1817 /*
1818 * Parse Boot Record Area (BRA) options.
1819 */
1820 while (offset < fw->datasize && bra_end == 0) {
1821 /* get current BRA option */
1822 p = (const uint8_t *)fw->data + offset;
1823 bra_opt = (const struct upgt_fw_bra_option *)p;
1824 bra_option_type = le32toh(bra_opt->type);
1825 bra_option_len = le32toh(bra_opt->len) * sizeof(*uc);
1826
1827 switch (bra_option_type) {
1828 case UPGT_BRA_TYPE_FW:
1829 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n",
1830 bra_option_len);
1831
1832 if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) {
1833 device_printf(sc->sc_dev,
1834 "wrong UPGT_BRA_TYPE_FW len\n");
1835 error = EIO;
1836 goto fail;
1837 }
1838 if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data,
1839 bra_option_len) == 0) {
1840 sc->sc_fw_type = UPGT_FWTYPE_LM86;
1841 break;
1842 }
1843 if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data,
1844 bra_option_len) == 0) {
1845 sc->sc_fw_type = UPGT_FWTYPE_LM87;
1846 break;
1847 }
1848 device_printf(sc->sc_dev,
1849 "unsupported firmware type\n");
1850 error = EIO;
1851 goto fail;
1852 case UPGT_BRA_TYPE_VERSION:
1853 DPRINTF(sc, UPGT_DEBUG_FW,
1854 "UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len);
1855 break;
1856 case UPGT_BRA_TYPE_DEPIF:
1857 DPRINTF(sc, UPGT_DEBUG_FW,
1858 "UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len);
1859 break;
1860 case UPGT_BRA_TYPE_EXPIF:
1861 DPRINTF(sc, UPGT_DEBUG_FW,
1862 "UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len);
1863 break;
1864 case UPGT_BRA_TYPE_DESCR:
1865 DPRINTF(sc, UPGT_DEBUG_FW,
1866 "UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len);
1867
1868 descr = (const struct upgt_fw_bra_descr *)bra_opt->data;
1869
1870 sc->sc_memaddr_frame_start =
1871 le32toh(descr->memaddr_space_start);
1872 sc->sc_memaddr_frame_end =
1873 le32toh(descr->memaddr_space_end);
1874
1875 DPRINTF(sc, UPGT_DEBUG_FW,
1876 "memory address space start=0x%08x\n",
1877 sc->sc_memaddr_frame_start);
1878 DPRINTF(sc, UPGT_DEBUG_FW,
1879 "memory address space end=0x%08x\n",
1880 sc->sc_memaddr_frame_end);
1881 break;
1882 case UPGT_BRA_TYPE_END:
1883 DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n",
1884 bra_option_len);
1885 bra_end = 1;
1886 break;
1887 default:
1888 DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n",
1889 bra_option_len);
1890 error = EIO;
1891 goto fail;
1892 }
1893
1894 /* jump to next BRA option */
1895 offset += sizeof(struct upgt_fw_bra_option) + bra_option_len;
1896 }
1897
1898 DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__);
1899fail:
1900 firmware_put(fw, FIRMWARE_UNLOAD);
1901 return (error);
1902}
1903
1904static void
1905upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data)
1906{
1907
1908 UPGT_ASSERT_LOCKED(sc);
1909
1910 STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next);
1911 UPGT_STAT_INC(sc, st_tx_pending);
1912 usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]);
1913}
1914
1915static int
1916upgt_device_reset(struct upgt_softc *sc)
1917{
1918 struct upgt_data *data;
1919 char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e };
1920
1921 UPGT_LOCK(sc);
1922
1923 data = upgt_getbuf(sc);
1924 if (data == NULL) {
1925 UPGT_UNLOCK(sc);
1926 return (ENOBUFS);
1927 }
1928 bcopy(init_cmd, data->buf, sizeof(init_cmd));
1929 data->buflen = sizeof(init_cmd);
1930 upgt_bulk_tx(sc, data);
1931 usb_pause_mtx(&sc->sc_mtx, 100);
1932
1933 UPGT_UNLOCK(sc);
1934 DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__);
1935 return (0);
1936}
1937
1938static int
1939upgt_alloc_tx(struct upgt_softc *sc)
1940{
1941 int i;
1942
1943 STAILQ_INIT(&sc->sc_tx_active);
1944 STAILQ_INIT(&sc->sc_tx_inactive);
1945 STAILQ_INIT(&sc->sc_tx_pending);
1946
1947 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
1948 struct upgt_data *data = &sc->sc_tx_data[i];
1949
1950 data->buf = malloc(MCLBYTES, M_USBDEV, M_NOWAIT | M_ZERO);
1951 if (data->buf == NULL) {
1952 device_printf(sc->sc_dev,
1953 "could not allocate TX buffer\n");
1954 return (ENOMEM);
1955 }
1956 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
1957 UPGT_STAT_INC(sc, st_tx_inactive);
1958 }
1959
1960 return (0);
1961}
1962
1963static int
1964upgt_alloc_rx(struct upgt_softc *sc)
1965{
1966 int i;
1967
1968 STAILQ_INIT(&sc->sc_rx_active);
1969 STAILQ_INIT(&sc->sc_rx_inactive);
1970
1971 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
1972 struct upgt_data *data = &sc->sc_rx_data[i];
1973
1974 data->buf = malloc(MCLBYTES, M_USBDEV, M_NOWAIT | M_ZERO);
1975 if (data->buf == NULL) {
1976 device_printf(sc->sc_dev,
1977 "could not allocate RX buffer\n");
1978 return (ENOMEM);
1979 }
1980 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
1981 }
1982
1983 return (0);
1984}
1985
1986static int
1987upgt_detach(device_t dev)
1988{
1989 struct upgt_softc *sc = device_get_softc(dev);
1990 struct ifnet *ifp = sc->sc_ifp;
1991 struct ieee80211com *ic = ifp->if_l2com;
1992
1993 if (!device_is_attached(dev))
1994 return 0;
1995
1996 upgt_stop(sc);
1997
1998 callout_drain(&sc->sc_led_ch);
1999 callout_drain(&sc->sc_watchdog_ch);
2000
2001 usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS);
2002 ieee80211_ifdetach(ic);
2003 upgt_free_rx(sc);
2004 upgt_free_tx(sc);
2005
2006 if_free(ifp);
2007 mtx_destroy(&sc->sc_mtx);
2008
2009 return (0);
2010}
2011
2012static void
2013upgt_free_rx(struct upgt_softc *sc)
2014{
2015 int i;
2016
2017 for (i = 0; i < UPGT_RX_MAXCOUNT; i++) {
2018 struct upgt_data *data = &sc->sc_rx_data[i];
2019
2020 free(data->buf, M_USBDEV);
2021 data->ni = NULL;
2022 }
2023}
2024
2025static void
2026upgt_free_tx(struct upgt_softc *sc)
2027{
2028 int i;
2029
2030 for (i = 0; i < UPGT_TX_MAXCOUNT; i++) {
2031 struct upgt_data *data = &sc->sc_tx_data[i];
2032
2033 free(data->buf, M_USBDEV);
2034 data->ni = NULL;
2035 }
2036}
2037
2038static void
2039upgt_abort_xfers_locked(struct upgt_softc *sc)
2040{
2041 int i;
2042
2043 UPGT_ASSERT_LOCKED(sc);
2044 /* abort any pending transfers */
2045 for (i = 0; i < UPGT_N_XFERS; i++)
2046 usbd_transfer_stop(sc->sc_xfer[i]);
2047}
2048
2049static void
2050upgt_abort_xfers(struct upgt_softc *sc)
2051{
2052
2053 UPGT_LOCK(sc);
2054 upgt_abort_xfers_locked(sc);
2055 UPGT_UNLOCK(sc);
2056}
2057
2058#define UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d) \
2059 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2060
2061static void
2062upgt_sysctl_node(struct upgt_softc *sc)
2063{
2064 struct sysctl_ctx_list *ctx;
2065 struct sysctl_oid_list *child;
2066 struct sysctl_oid *tree;
2067 struct upgt_stat *stats;
2068
2069 stats = &sc->sc_stat;
2070 ctx = device_get_sysctl_ctx(sc->sc_dev);
2071 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev));
2072
2073 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2074 NULL, "UPGT statistics");
2075 child = SYSCTL_CHILDREN(tree);
2076 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active",
2077 &stats->st_tx_active, "Active numbers in TX queue");
2078 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive",
2079 &stats->st_tx_inactive, "Inactive numbers in TX queue");
2080 UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending",
2081 &stats->st_tx_pending, "Pending numbers in TX queue");
2082}
2083
2084#undef UPGT_SYSCTL_STAT_ADD32
2085
2086static struct upgt_data *
2087_upgt_getbuf(struct upgt_softc *sc)
2088{
2089 struct upgt_data *bf;
2090
2091 bf = STAILQ_FIRST(&sc->sc_tx_inactive);
2092 if (bf != NULL) {
2093 STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next);
2094 UPGT_STAT_DEC(sc, st_tx_inactive);
2095 } else
2096 bf = NULL;
2097 if (bf == NULL)
2098 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__,
2099 "out of xmit buffers");
2100 return (bf);
2101}
2102
2103static struct upgt_data *
2104upgt_getbuf(struct upgt_softc *sc)
2105{
2106 struct upgt_data *bf;
2107
2108 UPGT_ASSERT_LOCKED(sc);
2109
2110 bf = _upgt_getbuf(sc);
2111 if (bf == NULL) {
2112 struct ifnet *ifp = sc->sc_ifp;
2113
2114 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__);
2115 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2116 }
2117
2118 return (bf);
2119}
2120
2121static struct upgt_data *
2122upgt_gettxbuf(struct upgt_softc *sc)
2123{
2124 struct upgt_data *bf;
2125
2126 UPGT_ASSERT_LOCKED(sc);
2127
2128 bf = upgt_getbuf(sc);
2129 if (bf == NULL)
2130 return (NULL);
2131
2132 bf->addr = upgt_mem_alloc(sc);
2133 if (bf->addr == 0) {
2134 struct ifnet *ifp = sc->sc_ifp;
2135
2136 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n",
2137 __func__);
2138 STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next);
2139 UPGT_STAT_INC(sc, st_tx_inactive);
2140 if (!(ifp->if_drv_flags & IFF_DRV_OACTIVE))
2141 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2142 return (NULL);
2143 }
2144 return (bf);
2145}
2146
2147static int
2148upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2149 struct upgt_data *data)
2150{
2151 struct ieee80211vap *vap = ni->ni_vap;
2152 int error = 0, len;
2153 struct ieee80211_frame *wh;
2154 struct ieee80211_key *k;
2155 struct ifnet *ifp = sc->sc_ifp;
2156 struct upgt_lmac_mem *mem;
2157 struct upgt_lmac_tx_desc *txdesc;
2158
2159 UPGT_ASSERT_LOCKED(sc);
2160
2161 upgt_set_led(sc, UPGT_LED_BLINK);
2162
2163 /*
2164 * Software crypto.
2165 */
2166 wh = mtod(m, struct ieee80211_frame *);
2167 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2168 k = ieee80211_crypto_encap(ni, m);
2169 if (k == NULL) {
2170 device_printf(sc->sc_dev,
2171 "ieee80211_crypto_encap returns NULL.\n");
2172 error = EIO;
2173 goto done;
2174 }
2175
2176 /* in case packet header moved, reset pointer */
2177 wh = mtod(m, struct ieee80211_frame *);
2178 }
2179
2180 /* Transmit the URB containing the TX data. */
2181 bzero(data->buf, MCLBYTES);
2182 mem = (struct upgt_lmac_mem *)data->buf;
2183 mem->addr = htole32(data->addr);
2184 txdesc = (struct upgt_lmac_tx_desc *)(mem + 1);
2185
2186 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2187 IEEE80211_FC0_TYPE_MGT) {
2188 /* mgmt frames */
2189 txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT;
2190 /* always send mgmt frames at lowest rate (DS1) */
2191 memset(txdesc->rates, 0x10, sizeof(txdesc->rates));
2192 } else {
2193 /* data frames */
2194 txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA;
2195 bcopy(sc->sc_cur_rateset, txdesc->rates, sizeof(txdesc->rates));
2196 }
2197 txdesc->header1.type = UPGT_H1_TYPE_TX_DATA;
2198 txdesc->header1.len = htole16(m->m_pkthdr.len);
2199 txdesc->header2.reqid = htole32(data->addr);
2200 txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES);
2201 txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES);
2202 txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA);
2203 txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE;
2204
2205 if (ieee80211_radiotap_active_vap(vap)) {
2206 struct upgt_tx_radiotap_header *tap = &sc->sc_txtap;
2207
2208 tap->wt_flags = 0;
2209 tap->wt_rate = 0; /* XXX where to get from? */
2210
2211 ieee80211_radiotap_tx(vap, m);
2212 }
2213
2214 /* copy frame below our TX descriptor header */
2215 m_copydata(m, 0, m->m_pkthdr.len,
2216 data->buf + (sizeof(*mem) + sizeof(*txdesc)));
2217 /* calculate frame size */
2218 len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len;
2219 /* we need to align the frame to a 4 byte boundary */
2220 len = (len + 3) & ~3;
2221 /* calculate frame checksum */
2222 mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem));
2223 data->ni = ni;
2224 data->m = m;
2225 data->buflen = len;
2226
2227 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n",
2228 __func__, len);
2229 KASSERT(len <= MCLBYTES, ("mbuf is small for saving data"));
2230
2231 upgt_bulk_tx(sc, data);
2232done:
2233 /*
2234 * If we don't regulary read the device statistics, the RX queue
2235 * will stall. It's strange, but it works, so we keep reading
2236 * the statistics here. *shrug*
2237 */
2238 if (!(ifp->if_opackets % UPGT_TX_STAT_INTERVAL))
2239 upgt_get_stats(sc);
2240
2241 return (error);
2242}
2243
2244static void
2245upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error)
2246{
2247 struct upgt_softc *sc = usbd_xfer_softc(xfer);
2248 struct ifnet *ifp = sc->sc_ifp;
2249 struct ieee80211com *ic = ifp->if_l2com;
2250 struct ieee80211_frame *wh;
2251 struct ieee80211_node *ni;
2252 struct mbuf *m = NULL;
2253 struct upgt_data *data;
2254 int8_t nf;
2255 int rssi = -1;
2256
2257 UPGT_ASSERT_LOCKED(sc);
2258
2259 switch (USB_GET_STATE(xfer)) {
2260 case USB_ST_TRANSFERRED:
2261 data = STAILQ_FIRST(&sc->sc_rx_active);
2262 if (data == NULL)
2263 goto setup;
2264 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2265 m = upgt_rxeof(xfer, data, &rssi);
2266 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2267 /* FALLTHROUGH */
2268 case USB_ST_SETUP:
2269setup:
2270 data = STAILQ_FIRST(&sc->sc_rx_inactive);
2271 if (data == NULL)
2272 return;
2273 STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next);
2274 STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next);
2275 usbd_xfer_set_frame_data(xfer, 0, data->buf,
2276 usbd_xfer_max_len(xfer));
2277 usbd_transfer_submit(xfer);
2278
2279 /*
2280 * To avoid LOR we should unlock our private mutex here to call
2281 * ieee80211_input() because here is at the end of a USB
2282 * callback and safe to unlock.
2283 */
2284 UPGT_UNLOCK(sc);
2285 if (m != NULL) {
2286 wh = mtod(m, struct ieee80211_frame *);
2287 ni = ieee80211_find_rxnode(ic,
2288 (struct ieee80211_frame_min *)wh);
2289 nf = -95; /* XXX */
2290 if (ni != NULL) {
2291 (void) ieee80211_input(ni, m, rssi, nf);
2292 /* node is no longer needed */
2293 ieee80211_free_node(ni);
2294 } else
2295 (void) ieee80211_input_all(ic, m, rssi, nf);
2296 m = NULL;
2297 }
2298 if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
2299 !IFQ_IS_EMPTY(&ifp->if_snd))
2300 upgt_start(ifp);
2301 UPGT_LOCK(sc);
2302 break;
2303 default:
2304 /* needs it to the inactive queue due to a error. */
2305 data = STAILQ_FIRST(&sc->sc_rx_active);
2306 if (data != NULL) {
2307 STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next);
2308 STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next);
2309 }
2310 if (error != USB_ERR_CANCELLED) {
2311 usbd_xfer_set_stall(xfer);
2312 ifp->if_ierrors++;
2313 goto setup;
2314 }
2315 break;
2316 }
2317}
2318
2319static void
2320upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error)
2321{
2322 struct upgt_softc *sc = usbd_xfer_softc(xfer);
2323 struct ifnet *ifp = sc->sc_ifp;
2324 struct upgt_data *data;
2325
2326 UPGT_ASSERT_LOCKED(sc);
2327 switch (USB_GET_STATE(xfer)) {
2328 case USB_ST_TRANSFERRED:
2329 data = STAILQ_FIRST(&sc->sc_tx_active);
2330 if (data == NULL)
2331 goto setup;
2332 STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next);
2333 UPGT_STAT_DEC(sc, st_tx_active);
2334 upgt_txeof(xfer, data);
2335 STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next);
2336 UPGT_STAT_INC(sc, st_tx_inactive);
2337 /* FALLTHROUGH */
2338 case USB_ST_SETUP:
2339setup:
2340 data = STAILQ_FIRST(&sc->sc_tx_pending);
2341 if (data == NULL) {
2342 DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n",
2343 __func__);
2344 return;
2345 }
2346 STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next);
2347 UPGT_STAT_DEC(sc, st_tx_pending);
2348 STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next);
2349 UPGT_STAT_INC(sc, st_tx_active);
2350
2351 usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen);
2352 usbd_transfer_submit(xfer);
2353 UPGT_UNLOCK(sc);
2354 upgt_start(ifp);
2355 UPGT_LOCK(sc);
2356 break;
2357 default:
2358 data = STAILQ_FIRST(&sc->sc_tx_active);
2359 if (data == NULL)
2360 goto setup;
2361 if (data->ni != NULL) {
2362 ieee80211_free_node(data->ni);
2363 data->ni = NULL;
2364 ifp->if_oerrors++;
2365 }
2366 if (error != USB_ERR_CANCELLED) {
2367 usbd_xfer_set_stall(xfer);
2368 goto setup;
2369 }
2370 break;
2371 }
2372}
2373
2374static device_method_t upgt_methods[] = {
2375 /* Device interface */
2376 DEVMETHOD(device_probe, upgt_match),
2377 DEVMETHOD(device_attach, upgt_attach),
2378 DEVMETHOD(device_detach, upgt_detach),
2379
2380 { 0, 0 }
2381};
2382
2383static driver_t upgt_driver = {
2384 "upgt",
2385 upgt_methods,
2386 sizeof(struct upgt_softc)
2387};
2388
2389static devclass_t upgt_devclass;
2390
2391DRIVER_MODULE(if_upgt, uhub, upgt_driver, upgt_devclass, NULL, 0);
2392MODULE_VERSION(if_upgt, 1);
2393MODULE_DEPEND(if_upgt, usb, 1, 1, 1);
2394MODULE_DEPEND(if_upgt, wlan, 1, 1, 1);
2395MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1);