Deleted Added
full compact
if_re.c (271849) if_re.c (271864)
1/*-
2 * Copyright (c) 1997, 1998-2003
3 * Bill Paul <wpaul@windriver.com>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 1997, 1998-2003
3 * Bill Paul <wpaul@windriver.com>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 271849 2014-09-19 03:51:26Z glebius $");
34__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 271864 2014-09-19 10:32:20Z glebius $");
35
36/*
37 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * This driver is designed to support RealTek's next generation of
46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 * o Descriptor based DMA mechanism. Each descriptor represents
56 * a single packet fragment. Data buffers may be aligned on
57 * any byte boundary.
58 *
59 * o 64-bit DMA
60 *
61 * o TCP/IP checksum offload for both RX and TX
62 *
63 * o High and normal priority transmit DMA rings
64 *
65 * o VLAN tag insertion and extraction
66 *
67 * o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 * o 1000Mbps mode
79 *
80 * o Jumbo frames
81 *
82 * o GMII and TBI ports/registers for interfacing with copper
83 * or fiber PHYs
84 *
85 * o RX and TX DMA rings can have up to 1024 descriptors
86 * (the 8139C+ allows a maximum of 64)
87 *
88 * o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7440, so the max MTU possible with this
108 * driver is 7422 bytes.
109 */
110
111#ifdef HAVE_KERNEL_OPTION_HEADERS
112#include "opt_device_polling.h"
113#endif
114
115#include <sys/param.h>
116#include <sys/endian.h>
117#include <sys/systm.h>
118#include <sys/sockio.h>
119#include <sys/mbuf.h>
120#include <sys/malloc.h>
121#include <sys/module.h>
122#include <sys/kernel.h>
123#include <sys/socket.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/sysctl.h>
127#include <sys/taskqueue.h>
128
129#include <net/if.h>
130#include <net/if_var.h>
131#include <net/if_arp.h>
132#include <net/ethernet.h>
133#include <net/if_dl.h>
134#include <net/if_media.h>
135#include <net/if_types.h>
136#include <net/if_vlan_var.h>
137
138#include <net/bpf.h>
139
140#include <machine/bus.h>
141#include <machine/resource.h>
142#include <sys/bus.h>
143#include <sys/rman.h>
144
145#include <dev/mii/mii.h>
146#include <dev/mii/miivar.h>
147
148#include <dev/pci/pcireg.h>
149#include <dev/pci/pcivar.h>
150
35
36/*
37 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * This driver is designed to support RealTek's next generation of
46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 * o Descriptor based DMA mechanism. Each descriptor represents
56 * a single packet fragment. Data buffers may be aligned on
57 * any byte boundary.
58 *
59 * o 64-bit DMA
60 *
61 * o TCP/IP checksum offload for both RX and TX
62 *
63 * o High and normal priority transmit DMA rings
64 *
65 * o VLAN tag insertion and extraction
66 *
67 * o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 * o 1000Mbps mode
79 *
80 * o Jumbo frames
81 *
82 * o GMII and TBI ports/registers for interfacing with copper
83 * or fiber PHYs
84 *
85 * o RX and TX DMA rings can have up to 1024 descriptors
86 * (the 8139C+ allows a maximum of 64)
87 *
88 * o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7440, so the max MTU possible with this
108 * driver is 7422 bytes.
109 */
110
111#ifdef HAVE_KERNEL_OPTION_HEADERS
112#include "opt_device_polling.h"
113#endif
114
115#include <sys/param.h>
116#include <sys/endian.h>
117#include <sys/systm.h>
118#include <sys/sockio.h>
119#include <sys/mbuf.h>
120#include <sys/malloc.h>
121#include <sys/module.h>
122#include <sys/kernel.h>
123#include <sys/socket.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/sysctl.h>
127#include <sys/taskqueue.h>
128
129#include <net/if.h>
130#include <net/if_var.h>
131#include <net/if_arp.h>
132#include <net/ethernet.h>
133#include <net/if_dl.h>
134#include <net/if_media.h>
135#include <net/if_types.h>
136#include <net/if_vlan_var.h>
137
138#include <net/bpf.h>
139
140#include <machine/bus.h>
141#include <machine/resource.h>
142#include <sys/bus.h>
143#include <sys/rman.h>
144
145#include <dev/mii/mii.h>
146#include <dev/mii/miivar.h>
147
148#include <dev/pci/pcireg.h>
149#include <dev/pci/pcivar.h>
150
151#include <pci/if_rlreg.h>
151#include <dev/rl/if_rlreg.h>
152
153MODULE_DEPEND(re, pci, 1, 1, 1);
154MODULE_DEPEND(re, ether, 1, 1, 1);
155MODULE_DEPEND(re, miibus, 1, 1, 1);
156
157/* "device miibus" required. See GENERIC if you get errors here. */
158#include "miibus_if.h"
159
160/* Tunables. */
161static int intr_filter = 0;
162TUNABLE_INT("hw.re.intr_filter", &intr_filter);
163static int msi_disable = 0;
164TUNABLE_INT("hw.re.msi_disable", &msi_disable);
165static int msix_disable = 0;
166TUNABLE_INT("hw.re.msix_disable", &msix_disable);
167static int prefer_iomap = 0;
168TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap);
169
170#define RE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
171
172/*
173 * Various supported device vendors/types and their names.
174 */
175static const struct rl_type re_devs[] = {
176 { DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
177 "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
178 { DLINK_VENDORID, DLINK_DEVICEID_530T_REVC, 0,
179 "D-Link DGE-530(T) Gigabit Ethernet Adapter" },
180 { RT_VENDORID, RT_DEVICEID_8139, 0,
181 "RealTek 8139C+ 10/100BaseTX" },
182 { RT_VENDORID, RT_DEVICEID_8101E, 0,
183 "RealTek 810xE PCIe 10/100baseTX" },
184 { RT_VENDORID, RT_DEVICEID_8168, 0,
185 "RealTek 8168/8111 B/C/CP/D/DP/E/F/G PCIe Gigabit Ethernet" },
186 { RT_VENDORID, RT_DEVICEID_8169, 0,
187 "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
188 { RT_VENDORID, RT_DEVICEID_8169SC, 0,
189 "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
190 { COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
191 "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
192 { LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
193 "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
194 { USR_VENDORID, USR_DEVICEID_997902, 0,
195 "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
196};
197
198static const struct rl_hwrev re_hwrevs[] = {
199 { RL_HWREV_8139, RL_8139, "", RL_MTU },
200 { RL_HWREV_8139A, RL_8139, "A", RL_MTU },
201 { RL_HWREV_8139AG, RL_8139, "A-G", RL_MTU },
202 { RL_HWREV_8139B, RL_8139, "B", RL_MTU },
203 { RL_HWREV_8130, RL_8139, "8130", RL_MTU },
204 { RL_HWREV_8139C, RL_8139, "C", RL_MTU },
205 { RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C", RL_MTU },
206 { RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+", RL_MTU },
207 { RL_HWREV_8168B_SPIN1, RL_8169, "8168", RL_JUMBO_MTU },
208 { RL_HWREV_8169, RL_8169, "8169", RL_JUMBO_MTU },
209 { RL_HWREV_8169S, RL_8169, "8169S", RL_JUMBO_MTU },
210 { RL_HWREV_8110S, RL_8169, "8110S", RL_JUMBO_MTU },
211 { RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB", RL_JUMBO_MTU },
212 { RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
213 { RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL", RL_JUMBO_MTU },
214 { RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
215 { RL_HWREV_8100, RL_8139, "8100", RL_MTU },
216 { RL_HWREV_8101, RL_8139, "8101", RL_MTU },
217 { RL_HWREV_8100E, RL_8169, "8100E", RL_MTU },
218 { RL_HWREV_8101E, RL_8169, "8101E", RL_MTU },
219 { RL_HWREV_8102E, RL_8169, "8102E", RL_MTU },
220 { RL_HWREV_8102EL, RL_8169, "8102EL", RL_MTU },
221 { RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL", RL_MTU },
222 { RL_HWREV_8103E, RL_8169, "8103E", RL_MTU },
223 { RL_HWREV_8401E, RL_8169, "8401E", RL_MTU },
224 { RL_HWREV_8402, RL_8169, "8402", RL_MTU },
225 { RL_HWREV_8105E, RL_8169, "8105E", RL_MTU },
226 { RL_HWREV_8105E_SPIN1, RL_8169, "8105E", RL_MTU },
227 { RL_HWREV_8106E, RL_8169, "8106E", RL_MTU },
228 { RL_HWREV_8168B_SPIN2, RL_8169, "8168", RL_JUMBO_MTU },
229 { RL_HWREV_8168B_SPIN3, RL_8169, "8168", RL_JUMBO_MTU },
230 { RL_HWREV_8168C, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
231 { RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
232 { RL_HWREV_8168CP, RL_8169, "8168CP/8111CP", RL_JUMBO_MTU_6K },
233 { RL_HWREV_8168D, RL_8169, "8168D/8111D", RL_JUMBO_MTU_9K },
234 { RL_HWREV_8168DP, RL_8169, "8168DP/8111DP", RL_JUMBO_MTU_9K },
235 { RL_HWREV_8168E, RL_8169, "8168E/8111E", RL_JUMBO_MTU_9K},
236 { RL_HWREV_8168E_VL, RL_8169, "8168E/8111E-VL", RL_JUMBO_MTU_6K},
237 { RL_HWREV_8168EP, RL_8169, "8168EP/8111EP", RL_JUMBO_MTU_9K},
238 { RL_HWREV_8168F, RL_8169, "8168F/8111F", RL_JUMBO_MTU_9K},
239 { RL_HWREV_8168G, RL_8169, "8168G/8111G", RL_JUMBO_MTU_9K},
240 { RL_HWREV_8168GU, RL_8169, "8168GU/8111GU", RL_JUMBO_MTU_9K},
241 { RL_HWREV_8411, RL_8169, "8411", RL_JUMBO_MTU_9K},
242 { RL_HWREV_8411B, RL_8169, "8411B", RL_JUMBO_MTU_9K},
243 { 0, 0, NULL, 0 }
244};
245
246static int re_probe (device_t);
247static int re_attach (device_t);
248static int re_detach (device_t);
249
250static int re_encap (struct rl_softc *, struct mbuf **);
251
252static void re_dma_map_addr (void *, bus_dma_segment_t *, int, int);
253static int re_allocmem (device_t, struct rl_softc *);
254static __inline void re_discard_rxbuf
255 (struct rl_softc *, int);
256static int re_newbuf (struct rl_softc *, int);
257static int re_jumbo_newbuf (struct rl_softc *, int);
258static int re_rx_list_init (struct rl_softc *);
259static int re_jrx_list_init (struct rl_softc *);
260static int re_tx_list_init (struct rl_softc *);
261#ifdef RE_FIXUP_RX
262static __inline void re_fixup_rx
263 (struct mbuf *);
264#endif
265static int re_rxeof (struct rl_softc *, int *);
266static void re_txeof (struct rl_softc *);
267#ifdef DEVICE_POLLING
268static int re_poll (struct ifnet *, enum poll_cmd, int);
269static int re_poll_locked (struct ifnet *, enum poll_cmd, int);
270#endif
271static int re_intr (void *);
272static void re_intr_msi (void *);
273static void re_tick (void *);
274static void re_int_task (void *, int);
275static void re_start (struct ifnet *);
276static void re_start_locked (struct ifnet *);
277static int re_ioctl (struct ifnet *, u_long, caddr_t);
278static void re_init (void *);
279static void re_init_locked (struct rl_softc *);
280static void re_stop (struct rl_softc *);
281static void re_watchdog (struct rl_softc *);
282static int re_suspend (device_t);
283static int re_resume (device_t);
284static int re_shutdown (device_t);
285static int re_ifmedia_upd (struct ifnet *);
286static void re_ifmedia_sts (struct ifnet *, struct ifmediareq *);
287
288static void re_eeprom_putbyte (struct rl_softc *, int);
289static void re_eeprom_getword (struct rl_softc *, int, u_int16_t *);
290static void re_read_eeprom (struct rl_softc *, caddr_t, int, int);
291static int re_gmii_readreg (device_t, int, int);
292static int re_gmii_writereg (device_t, int, int, int);
293
294static int re_miibus_readreg (device_t, int, int);
295static int re_miibus_writereg (device_t, int, int, int);
296static void re_miibus_statchg (device_t);
297
298static void re_set_jumbo (struct rl_softc *, int);
299static void re_set_rxmode (struct rl_softc *);
300static void re_reset (struct rl_softc *);
301static void re_setwol (struct rl_softc *);
302static void re_clrwol (struct rl_softc *);
303static void re_set_linkspeed (struct rl_softc *);
304
305#ifdef DEV_NETMAP /* see ixgbe.c for details */
306#include <dev/netmap/if_re_netmap.h>
307#endif /* !DEV_NETMAP */
308
309#ifdef RE_DIAG
310static int re_diag (struct rl_softc *);
311#endif
312
313static void re_add_sysctls (struct rl_softc *);
314static int re_sysctl_stats (SYSCTL_HANDLER_ARGS);
315static int sysctl_int_range (SYSCTL_HANDLER_ARGS, int, int);
316static int sysctl_hw_re_int_mod (SYSCTL_HANDLER_ARGS);
317
318static device_method_t re_methods[] = {
319 /* Device interface */
320 DEVMETHOD(device_probe, re_probe),
321 DEVMETHOD(device_attach, re_attach),
322 DEVMETHOD(device_detach, re_detach),
323 DEVMETHOD(device_suspend, re_suspend),
324 DEVMETHOD(device_resume, re_resume),
325 DEVMETHOD(device_shutdown, re_shutdown),
326
327 /* MII interface */
328 DEVMETHOD(miibus_readreg, re_miibus_readreg),
329 DEVMETHOD(miibus_writereg, re_miibus_writereg),
330 DEVMETHOD(miibus_statchg, re_miibus_statchg),
331
332 DEVMETHOD_END
333};
334
335static driver_t re_driver = {
336 "re",
337 re_methods,
338 sizeof(struct rl_softc)
339};
340
341static devclass_t re_devclass;
342
343DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
344DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
345
346#define EE_SET(x) \
347 CSR_WRITE_1(sc, RL_EECMD, \
348 CSR_READ_1(sc, RL_EECMD) | x)
349
350#define EE_CLR(x) \
351 CSR_WRITE_1(sc, RL_EECMD, \
352 CSR_READ_1(sc, RL_EECMD) & ~x)
353
354/*
355 * Send a read command and address to the EEPROM, check for ACK.
356 */
357static void
358re_eeprom_putbyte(struct rl_softc *sc, int addr)
359{
360 int d, i;
361
362 d = addr | (RL_9346_READ << sc->rl_eewidth);
363
364 /*
365 * Feed in each bit and strobe the clock.
366 */
367
368 for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
369 if (d & i) {
370 EE_SET(RL_EE_DATAIN);
371 } else {
372 EE_CLR(RL_EE_DATAIN);
373 }
374 DELAY(100);
375 EE_SET(RL_EE_CLK);
376 DELAY(150);
377 EE_CLR(RL_EE_CLK);
378 DELAY(100);
379 }
380}
381
382/*
383 * Read a word of data stored in the EEPROM at address 'addr.'
384 */
385static void
386re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
387{
388 int i;
389 u_int16_t word = 0;
390
391 /*
392 * Send address of word we want to read.
393 */
394 re_eeprom_putbyte(sc, addr);
395
396 /*
397 * Start reading bits from EEPROM.
398 */
399 for (i = 0x8000; i; i >>= 1) {
400 EE_SET(RL_EE_CLK);
401 DELAY(100);
402 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
403 word |= i;
404 EE_CLR(RL_EE_CLK);
405 DELAY(100);
406 }
407
408 *dest = word;
409}
410
411/*
412 * Read a sequence of words from the EEPROM.
413 */
414static void
415re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
416{
417 int i;
418 u_int16_t word = 0, *ptr;
419
420 CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
421
422 DELAY(100);
423
424 for (i = 0; i < cnt; i++) {
425 CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
426 re_eeprom_getword(sc, off + i, &word);
427 CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
428 ptr = (u_int16_t *)(dest + (i * 2));
429 *ptr = word;
430 }
431
432 CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
433}
434
435static int
436re_gmii_readreg(device_t dev, int phy, int reg)
437{
438 struct rl_softc *sc;
439 u_int32_t rval;
440 int i;
441
442 sc = device_get_softc(dev);
443
444 /* Let the rgephy driver read the GMEDIASTAT register */
445
446 if (reg == RL_GMEDIASTAT) {
447 rval = CSR_READ_1(sc, RL_GMEDIASTAT);
448 return (rval);
449 }
450
451 CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
452
453 for (i = 0; i < RL_PHY_TIMEOUT; i++) {
454 rval = CSR_READ_4(sc, RL_PHYAR);
455 if (rval & RL_PHYAR_BUSY)
456 break;
457 DELAY(25);
458 }
459
460 if (i == RL_PHY_TIMEOUT) {
461 device_printf(sc->rl_dev, "PHY read failed\n");
462 return (0);
463 }
464
465 /*
466 * Controller requires a 20us delay to process next MDIO request.
467 */
468 DELAY(20);
469
470 return (rval & RL_PHYAR_PHYDATA);
471}
472
473static int
474re_gmii_writereg(device_t dev, int phy, int reg, int data)
475{
476 struct rl_softc *sc;
477 u_int32_t rval;
478 int i;
479
480 sc = device_get_softc(dev);
481
482 CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
483 (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
484
485 for (i = 0; i < RL_PHY_TIMEOUT; i++) {
486 rval = CSR_READ_4(sc, RL_PHYAR);
487 if (!(rval & RL_PHYAR_BUSY))
488 break;
489 DELAY(25);
490 }
491
492 if (i == RL_PHY_TIMEOUT) {
493 device_printf(sc->rl_dev, "PHY write failed\n");
494 return (0);
495 }
496
497 /*
498 * Controller requires a 20us delay to process next MDIO request.
499 */
500 DELAY(20);
501
502 return (0);
503}
504
505static int
506re_miibus_readreg(device_t dev, int phy, int reg)
507{
508 struct rl_softc *sc;
509 u_int16_t rval = 0;
510 u_int16_t re8139_reg = 0;
511
512 sc = device_get_softc(dev);
513
514 if (sc->rl_type == RL_8169) {
515 rval = re_gmii_readreg(dev, phy, reg);
516 return (rval);
517 }
518
519 switch (reg) {
520 case MII_BMCR:
521 re8139_reg = RL_BMCR;
522 break;
523 case MII_BMSR:
524 re8139_reg = RL_BMSR;
525 break;
526 case MII_ANAR:
527 re8139_reg = RL_ANAR;
528 break;
529 case MII_ANER:
530 re8139_reg = RL_ANER;
531 break;
532 case MII_ANLPAR:
533 re8139_reg = RL_LPAR;
534 break;
535 case MII_PHYIDR1:
536 case MII_PHYIDR2:
537 return (0);
538 /*
539 * Allow the rlphy driver to read the media status
540 * register. If we have a link partner which does not
541 * support NWAY, this is the register which will tell
542 * us the results of parallel detection.
543 */
544 case RL_MEDIASTAT:
545 rval = CSR_READ_1(sc, RL_MEDIASTAT);
546 return (rval);
547 default:
548 device_printf(sc->rl_dev, "bad phy register\n");
549 return (0);
550 }
551 rval = CSR_READ_2(sc, re8139_reg);
552 if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
553 /* 8139C+ has different bit layout. */
554 rval &= ~(BMCR_LOOP | BMCR_ISO);
555 }
556 return (rval);
557}
558
559static int
560re_miibus_writereg(device_t dev, int phy, int reg, int data)
561{
562 struct rl_softc *sc;
563 u_int16_t re8139_reg = 0;
564 int rval = 0;
565
566 sc = device_get_softc(dev);
567
568 if (sc->rl_type == RL_8169) {
569 rval = re_gmii_writereg(dev, phy, reg, data);
570 return (rval);
571 }
572
573 switch (reg) {
574 case MII_BMCR:
575 re8139_reg = RL_BMCR;
576 if (sc->rl_type == RL_8139CPLUS) {
577 /* 8139C+ has different bit layout. */
578 data &= ~(BMCR_LOOP | BMCR_ISO);
579 }
580 break;
581 case MII_BMSR:
582 re8139_reg = RL_BMSR;
583 break;
584 case MII_ANAR:
585 re8139_reg = RL_ANAR;
586 break;
587 case MII_ANER:
588 re8139_reg = RL_ANER;
589 break;
590 case MII_ANLPAR:
591 re8139_reg = RL_LPAR;
592 break;
593 case MII_PHYIDR1:
594 case MII_PHYIDR2:
595 return (0);
596 break;
597 default:
598 device_printf(sc->rl_dev, "bad phy register\n");
599 return (0);
600 }
601 CSR_WRITE_2(sc, re8139_reg, data);
602 return (0);
603}
604
605static void
606re_miibus_statchg(device_t dev)
607{
608 struct rl_softc *sc;
609 struct ifnet *ifp;
610 struct mii_data *mii;
611
612 sc = device_get_softc(dev);
613 mii = device_get_softc(sc->rl_miibus);
614 ifp = sc->rl_ifp;
615 if (mii == NULL || ifp == NULL ||
616 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
617 return;
618
619 sc->rl_flags &= ~RL_FLAG_LINK;
620 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
621 (IFM_ACTIVE | IFM_AVALID)) {
622 switch (IFM_SUBTYPE(mii->mii_media_active)) {
623 case IFM_10_T:
624 case IFM_100_TX:
625 sc->rl_flags |= RL_FLAG_LINK;
626 break;
627 case IFM_1000_T:
628 if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
629 break;
630 sc->rl_flags |= RL_FLAG_LINK;
631 break;
632 default:
633 break;
634 }
635 }
636 /*
637 * RealTek controllers does not provide any interface to
638 * Tx/Rx MACs for resolved speed, duplex and flow-control
639 * parameters.
640 */
641}
642
643/*
644 * Set the RX configuration and 64-bit multicast hash filter.
645 */
646static void
647re_set_rxmode(struct rl_softc *sc)
648{
649 struct ifnet *ifp;
650 struct ifmultiaddr *ifma;
651 uint32_t hashes[2] = { 0, 0 };
652 uint32_t h, rxfilt;
653
654 RL_LOCK_ASSERT(sc);
655
656 ifp = sc->rl_ifp;
657
658 rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
659 if ((sc->rl_flags & RL_FLAG_EARLYOFF) != 0)
660 rxfilt |= RL_RXCFG_EARLYOFF;
661 else if ((sc->rl_flags & RL_FLAG_EARLYOFFV2) != 0)
662 rxfilt |= RL_RXCFG_EARLYOFFV2;
663
664 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
665 if (ifp->if_flags & IFF_PROMISC)
666 rxfilt |= RL_RXCFG_RX_ALLPHYS;
667 /*
668 * Unlike other hardwares, we have to explicitly set
669 * RL_RXCFG_RX_MULTI to receive multicast frames in
670 * promiscuous mode.
671 */
672 rxfilt |= RL_RXCFG_RX_MULTI;
673 hashes[0] = hashes[1] = 0xffffffff;
674 goto done;
675 }
676
677 if_maddr_rlock(ifp);
678 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
679 if (ifma->ifma_addr->sa_family != AF_LINK)
680 continue;
681 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
682 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
683 if (h < 32)
684 hashes[0] |= (1 << h);
685 else
686 hashes[1] |= (1 << (h - 32));
687 }
688 if_maddr_runlock(ifp);
689
690 if (hashes[0] != 0 || hashes[1] != 0) {
691 /*
692 * For some unfathomable reason, RealTek decided to
693 * reverse the order of the multicast hash registers
694 * in the PCI Express parts. This means we have to
695 * write the hash pattern in reverse order for those
696 * devices.
697 */
698 if ((sc->rl_flags & RL_FLAG_PCIE) != 0) {
699 h = bswap32(hashes[0]);
700 hashes[0] = bswap32(hashes[1]);
701 hashes[1] = h;
702 }
703 rxfilt |= RL_RXCFG_RX_MULTI;
704 }
705
706done:
707 CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
708 CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
709 CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
710}
711
712static void
713re_reset(struct rl_softc *sc)
714{
715 int i;
716
717 RL_LOCK_ASSERT(sc);
718
719 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
720
721 for (i = 0; i < RL_TIMEOUT; i++) {
722 DELAY(10);
723 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
724 break;
725 }
726 if (i == RL_TIMEOUT)
727 device_printf(sc->rl_dev, "reset never completed!\n");
728
729 if ((sc->rl_flags & RL_FLAG_MACRESET) != 0)
730 CSR_WRITE_1(sc, 0x82, 1);
731 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169S)
732 re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0);
733}
734
735#ifdef RE_DIAG
736
737/*
738 * The following routine is designed to test for a defect on some
739 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
740 * lines connected to the bus, however for a 32-bit only card, they
741 * should be pulled high. The result of this defect is that the
742 * NIC will not work right if you plug it into a 64-bit slot: DMA
743 * operations will be done with 64-bit transfers, which will fail
744 * because the 64-bit data lines aren't connected.
745 *
746 * There's no way to work around this (short of talking a soldering
747 * iron to the board), however we can detect it. The method we use
748 * here is to put the NIC into digital loopback mode, set the receiver
749 * to promiscuous mode, and then try to send a frame. We then compare
750 * the frame data we sent to what was received. If the data matches,
751 * then the NIC is working correctly, otherwise we know the user has
752 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
753 * slot. In the latter case, there's no way the NIC can work correctly,
754 * so we print out a message on the console and abort the device attach.
755 */
756
757static int
758re_diag(struct rl_softc *sc)
759{
760 struct ifnet *ifp = sc->rl_ifp;
761 struct mbuf *m0;
762 struct ether_header *eh;
763 struct rl_desc *cur_rx;
764 u_int16_t status;
765 u_int32_t rxstat;
766 int total_len, i, error = 0, phyaddr;
767 u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
768 u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
769
770 /* Allocate a single mbuf */
771 MGETHDR(m0, M_NOWAIT, MT_DATA);
772 if (m0 == NULL)
773 return (ENOBUFS);
774
775 RL_LOCK(sc);
776
777 /*
778 * Initialize the NIC in test mode. This sets the chip up
779 * so that it can send and receive frames, but performs the
780 * following special functions:
781 * - Puts receiver in promiscuous mode
782 * - Enables digital loopback mode
783 * - Leaves interrupts turned off
784 */
785
786 ifp->if_flags |= IFF_PROMISC;
787 sc->rl_testmode = 1;
788 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
789 re_init_locked(sc);
790 sc->rl_flags |= RL_FLAG_LINK;
791 if (sc->rl_type == RL_8169)
792 phyaddr = 1;
793 else
794 phyaddr = 0;
795
796 re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
797 for (i = 0; i < RL_TIMEOUT; i++) {
798 status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
799 if (!(status & BMCR_RESET))
800 break;
801 }
802
803 re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
804 CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
805
806 DELAY(100000);
807
808 /* Put some data in the mbuf */
809
810 eh = mtod(m0, struct ether_header *);
811 bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
812 bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
813 eh->ether_type = htons(ETHERTYPE_IP);
814 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
815
816 /*
817 * Queue the packet, start transmission.
818 * Note: IF_HANDOFF() ultimately calls re_start() for us.
819 */
820
821 CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
822 RL_UNLOCK(sc);
823 /* XXX: re_diag must not be called when in ALTQ mode */
824 IF_HANDOFF(&ifp->if_snd, m0, ifp);
825 RL_LOCK(sc);
826 m0 = NULL;
827
828 /* Wait for it to propagate through the chip */
829
830 DELAY(100000);
831 for (i = 0; i < RL_TIMEOUT; i++) {
832 status = CSR_READ_2(sc, RL_ISR);
833 CSR_WRITE_2(sc, RL_ISR, status);
834 if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
835 (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
836 break;
837 DELAY(10);
838 }
839
840 if (i == RL_TIMEOUT) {
841 device_printf(sc->rl_dev,
842 "diagnostic failed, failed to receive packet in"
843 " loopback mode\n");
844 error = EIO;
845 goto done;
846 }
847
848 /*
849 * The packet should have been dumped into the first
850 * entry in the RX DMA ring. Grab it from there.
851 */
852
853 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
854 sc->rl_ldata.rl_rx_list_map,
855 BUS_DMASYNC_POSTREAD);
856 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
857 sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
858 BUS_DMASYNC_POSTREAD);
859 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
860 sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
861
862 m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
863 sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
864 eh = mtod(m0, struct ether_header *);
865
866 cur_rx = &sc->rl_ldata.rl_rx_list[0];
867 total_len = RL_RXBYTES(cur_rx);
868 rxstat = le32toh(cur_rx->rl_cmdstat);
869
870 if (total_len != ETHER_MIN_LEN) {
871 device_printf(sc->rl_dev,
872 "diagnostic failed, received short packet\n");
873 error = EIO;
874 goto done;
875 }
876
877 /* Test that the received packet data matches what we sent. */
878
879 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
880 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
881 ntohs(eh->ether_type) != ETHERTYPE_IP) {
882 device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
883 device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
884 dst, ":", src, ":", ETHERTYPE_IP);
885 device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
886 eh->ether_dhost, ":", eh->ether_shost, ":",
887 ntohs(eh->ether_type));
888 device_printf(sc->rl_dev, "You may have a defective 32-bit "
889 "NIC plugged into a 64-bit PCI slot.\n");
890 device_printf(sc->rl_dev, "Please re-install the NIC in a "
891 "32-bit slot for proper operation.\n");
892 device_printf(sc->rl_dev, "Read the re(4) man page for more "
893 "details.\n");
894 error = EIO;
895 }
896
897done:
898 /* Turn interface off, release resources */
899
900 sc->rl_testmode = 0;
901 sc->rl_flags &= ~RL_FLAG_LINK;
902 ifp->if_flags &= ~IFF_PROMISC;
903 re_stop(sc);
904 if (m0 != NULL)
905 m_freem(m0);
906
907 RL_UNLOCK(sc);
908
909 return (error);
910}
911
912#endif
913
914/*
915 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
916 * IDs against our list and return a device name if we find a match.
917 */
918static int
919re_probe(device_t dev)
920{
921 const struct rl_type *t;
922 uint16_t devid, vendor;
923 uint16_t revid, sdevid;
924 int i;
925
926 vendor = pci_get_vendor(dev);
927 devid = pci_get_device(dev);
928 revid = pci_get_revid(dev);
929 sdevid = pci_get_subdevice(dev);
930
931 if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
932 if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
933 /*
934 * Only attach to rev. 3 of the Linksys EG1032 adapter.
935 * Rev. 2 is supported by sk(4).
936 */
937 return (ENXIO);
938 }
939 }
940
941 if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
942 if (revid != 0x20) {
943 /* 8139, let rl(4) take care of this device. */
944 return (ENXIO);
945 }
946 }
947
948 t = re_devs;
949 for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
950 if (vendor == t->rl_vid && devid == t->rl_did) {
951 device_set_desc(dev, t->rl_name);
952 return (BUS_PROBE_DEFAULT);
953 }
954 }
955
956 return (ENXIO);
957}
958
959/*
960 * Map a single buffer address.
961 */
962
963static void
964re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
965{
966 bus_addr_t *addr;
967
968 if (error)
969 return;
970
971 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
972 addr = arg;
973 *addr = segs->ds_addr;
974}
975
976static int
977re_allocmem(device_t dev, struct rl_softc *sc)
978{
979 bus_addr_t lowaddr;
980 bus_size_t rx_list_size, tx_list_size;
981 int error;
982 int i;
983
984 rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
985 tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
986
987 /*
988 * Allocate the parent bus DMA tag appropriate for PCI.
989 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
990 * register should be set. However some RealTek chips are known
991 * to be buggy on DAC handling, therefore disable DAC by limiting
992 * DMA address space to 32bit. PCIe variants of RealTek chips
993 * may not have the limitation.
994 */
995 lowaddr = BUS_SPACE_MAXADDR;
996 if ((sc->rl_flags & RL_FLAG_PCIE) == 0)
997 lowaddr = BUS_SPACE_MAXADDR_32BIT;
998 error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
999 lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
1000 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1001 NULL, NULL, &sc->rl_parent_tag);
1002 if (error) {
1003 device_printf(dev, "could not allocate parent DMA tag\n");
1004 return (error);
1005 }
1006
1007 /*
1008 * Allocate map for TX mbufs.
1009 */
1010 error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
1011 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1012 NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
1013 NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
1014 if (error) {
1015 device_printf(dev, "could not allocate TX DMA tag\n");
1016 return (error);
1017 }
1018
1019 /*
1020 * Allocate map for RX mbufs.
1021 */
1022
1023 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1024 error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t),
1025 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1026 MJUM9BYTES, 1, MJUM9BYTES, 0, NULL, NULL,
1027 &sc->rl_ldata.rl_jrx_mtag);
1028 if (error) {
1029 device_printf(dev,
1030 "could not allocate jumbo RX DMA tag\n");
1031 return (error);
1032 }
1033 }
1034 error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
1035 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1036 MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
1037 if (error) {
1038 device_printf(dev, "could not allocate RX DMA tag\n");
1039 return (error);
1040 }
1041
1042 /*
1043 * Allocate map for TX descriptor list.
1044 */
1045 error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1046 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1047 NULL, tx_list_size, 1, tx_list_size, 0,
1048 NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1049 if (error) {
1050 device_printf(dev, "could not allocate TX DMA ring tag\n");
1051 return (error);
1052 }
1053
1054 /* Allocate DMA'able memory for the TX ring */
1055
1056 error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1057 (void **)&sc->rl_ldata.rl_tx_list,
1058 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1059 &sc->rl_ldata.rl_tx_list_map);
1060 if (error) {
1061 device_printf(dev, "could not allocate TX DMA ring\n");
1062 return (error);
1063 }
1064
1065 /* Load the map for the TX ring. */
1066
1067 sc->rl_ldata.rl_tx_list_addr = 0;
1068 error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1069 sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1070 tx_list_size, re_dma_map_addr,
1071 &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1072 if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1073 device_printf(dev, "could not load TX DMA ring\n");
1074 return (ENOMEM);
1075 }
1076
1077 /* Create DMA maps for TX buffers */
1078
1079 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1080 error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1081 &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1082 if (error) {
1083 device_printf(dev, "could not create DMA map for TX\n");
1084 return (error);
1085 }
1086 }
1087
1088 /*
1089 * Allocate map for RX descriptor list.
1090 */
1091 error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1092 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1093 NULL, rx_list_size, 1, rx_list_size, 0,
1094 NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1095 if (error) {
1096 device_printf(dev, "could not create RX DMA ring tag\n");
1097 return (error);
1098 }
1099
1100 /* Allocate DMA'able memory for the RX ring */
1101
1102 error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1103 (void **)&sc->rl_ldata.rl_rx_list,
1104 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1105 &sc->rl_ldata.rl_rx_list_map);
1106 if (error) {
1107 device_printf(dev, "could not allocate RX DMA ring\n");
1108 return (error);
1109 }
1110
1111 /* Load the map for the RX ring. */
1112
1113 sc->rl_ldata.rl_rx_list_addr = 0;
1114 error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1115 sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1116 rx_list_size, re_dma_map_addr,
1117 &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1118 if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1119 device_printf(dev, "could not load RX DMA ring\n");
1120 return (ENOMEM);
1121 }
1122
1123 /* Create DMA maps for RX buffers */
1124
1125 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1126 error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1127 &sc->rl_ldata.rl_jrx_sparemap);
1128 if (error) {
1129 device_printf(dev,
1130 "could not create spare DMA map for jumbo RX\n");
1131 return (error);
1132 }
1133 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1134 error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1135 &sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1136 if (error) {
1137 device_printf(dev,
1138 "could not create DMA map for jumbo RX\n");
1139 return (error);
1140 }
1141 }
1142 }
1143 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1144 &sc->rl_ldata.rl_rx_sparemap);
1145 if (error) {
1146 device_printf(dev, "could not create spare DMA map for RX\n");
1147 return (error);
1148 }
1149 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1150 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1151 &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1152 if (error) {
1153 device_printf(dev, "could not create DMA map for RX\n");
1154 return (error);
1155 }
1156 }
1157
1158 /* Create DMA map for statistics. */
1159 error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0,
1160 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1161 sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL,
1162 &sc->rl_ldata.rl_stag);
1163 if (error) {
1164 device_printf(dev, "could not create statistics DMA tag\n");
1165 return (error);
1166 }
1167 /* Allocate DMA'able memory for statistics. */
1168 error = bus_dmamem_alloc(sc->rl_ldata.rl_stag,
1169 (void **)&sc->rl_ldata.rl_stats,
1170 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1171 &sc->rl_ldata.rl_smap);
1172 if (error) {
1173 device_printf(dev,
1174 "could not allocate statistics DMA memory\n");
1175 return (error);
1176 }
1177 /* Load the map for statistics. */
1178 sc->rl_ldata.rl_stats_addr = 0;
1179 error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap,
1180 sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr,
1181 &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT);
1182 if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) {
1183 device_printf(dev, "could not load statistics DMA memory\n");
1184 return (ENOMEM);
1185 }
1186
1187 return (0);
1188}
1189
1190/*
1191 * Attach the interface. Allocate softc structures, do ifmedia
1192 * setup and ethernet/BPF attach.
1193 */
1194static int
1195re_attach(device_t dev)
1196{
1197 u_char eaddr[ETHER_ADDR_LEN];
1198 u_int16_t as[ETHER_ADDR_LEN / 2];
1199 struct rl_softc *sc;
1200 struct ifnet *ifp;
1201 const struct rl_hwrev *hw_rev;
1202 u_int32_t cap, ctl;
1203 int hwrev;
1204 u_int16_t devid, re_did = 0;
1205 int error = 0, i, phy, rid;
1206 int msic, msixc, reg;
1207 uint8_t cfg;
1208
1209 sc = device_get_softc(dev);
1210 sc->rl_dev = dev;
1211
1212 mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1213 MTX_DEF);
1214 callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1215
1216 /*
1217 * Map control/status registers.
1218 */
1219 pci_enable_busmaster(dev);
1220
1221 devid = pci_get_device(dev);
1222 /*
1223 * Prefer memory space register mapping over IO space.
1224 * Because RTL8169SC does not seem to work when memory mapping
1225 * is used always activate io mapping.
1226 */
1227 if (devid == RT_DEVICEID_8169SC)
1228 prefer_iomap = 1;
1229 if (prefer_iomap == 0) {
1230 sc->rl_res_id = PCIR_BAR(1);
1231 sc->rl_res_type = SYS_RES_MEMORY;
1232 /* RTL8168/8101E seems to use different BARs. */
1233 if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1234 sc->rl_res_id = PCIR_BAR(2);
1235 } else {
1236 sc->rl_res_id = PCIR_BAR(0);
1237 sc->rl_res_type = SYS_RES_IOPORT;
1238 }
1239 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1240 &sc->rl_res_id, RF_ACTIVE);
1241 if (sc->rl_res == NULL && prefer_iomap == 0) {
1242 sc->rl_res_id = PCIR_BAR(0);
1243 sc->rl_res_type = SYS_RES_IOPORT;
1244 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1245 &sc->rl_res_id, RF_ACTIVE);
1246 }
1247 if (sc->rl_res == NULL) {
1248 device_printf(dev, "couldn't map ports/memory\n");
1249 error = ENXIO;
1250 goto fail;
1251 }
1252
1253 sc->rl_btag = rman_get_bustag(sc->rl_res);
1254 sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1255
1256 msic = pci_msi_count(dev);
1257 msixc = pci_msix_count(dev);
1258 if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
1259 sc->rl_flags |= RL_FLAG_PCIE;
1260 sc->rl_expcap = reg;
1261 }
1262 if (bootverbose) {
1263 device_printf(dev, "MSI count : %d\n", msic);
1264 device_printf(dev, "MSI-X count : %d\n", msixc);
1265 }
1266 if (msix_disable > 0)
1267 msixc = 0;
1268 if (msi_disable > 0)
1269 msic = 0;
1270 /* Prefer MSI-X to MSI. */
1271 if (msixc > 0) {
1272 msixc = RL_MSI_MESSAGES;
1273 rid = PCIR_BAR(4);
1274 sc->rl_res_pba = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1275 &rid, RF_ACTIVE);
1276 if (sc->rl_res_pba == NULL) {
1277 device_printf(sc->rl_dev,
1278 "could not allocate MSI-X PBA resource\n");
1279 }
1280 if (sc->rl_res_pba != NULL &&
1281 pci_alloc_msix(dev, &msixc) == 0) {
1282 if (msixc == RL_MSI_MESSAGES) {
1283 device_printf(dev, "Using %d MSI-X message\n",
1284 msixc);
1285 sc->rl_flags |= RL_FLAG_MSIX;
1286 } else
1287 pci_release_msi(dev);
1288 }
1289 if ((sc->rl_flags & RL_FLAG_MSIX) == 0) {
1290 if (sc->rl_res_pba != NULL)
1291 bus_release_resource(dev, SYS_RES_MEMORY, rid,
1292 sc->rl_res_pba);
1293 sc->rl_res_pba = NULL;
1294 msixc = 0;
1295 }
1296 }
1297 /* Prefer MSI to INTx. */
1298 if (msixc == 0 && msic > 0) {
1299 msic = RL_MSI_MESSAGES;
1300 if (pci_alloc_msi(dev, &msic) == 0) {
1301 if (msic == RL_MSI_MESSAGES) {
1302 device_printf(dev, "Using %d MSI message\n",
1303 msic);
1304 sc->rl_flags |= RL_FLAG_MSI;
1305 /* Explicitly set MSI enable bit. */
1306 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1307 cfg = CSR_READ_1(sc, RL_CFG2);
1308 cfg |= RL_CFG2_MSI;
1309 CSR_WRITE_1(sc, RL_CFG2, cfg);
1310 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1311 } else
1312 pci_release_msi(dev);
1313 }
1314 if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1315 msic = 0;
1316 }
1317
1318 /* Allocate interrupt */
1319 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) {
1320 rid = 0;
1321 sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1322 RF_SHAREABLE | RF_ACTIVE);
1323 if (sc->rl_irq[0] == NULL) {
1324 device_printf(dev, "couldn't allocate IRQ resources\n");
1325 error = ENXIO;
1326 goto fail;
1327 }
1328 } else {
1329 for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1330 sc->rl_irq[i] = bus_alloc_resource_any(dev,
1331 SYS_RES_IRQ, &rid, RF_ACTIVE);
1332 if (sc->rl_irq[i] == NULL) {
1333 device_printf(dev,
1334 "couldn't allocate IRQ resources for "
1335 "message %d\n", rid);
1336 error = ENXIO;
1337 goto fail;
1338 }
1339 }
1340 }
1341
1342 if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1343 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1344 cfg = CSR_READ_1(sc, RL_CFG2);
1345 if ((cfg & RL_CFG2_MSI) != 0) {
1346 device_printf(dev, "turning off MSI enable bit.\n");
1347 cfg &= ~RL_CFG2_MSI;
1348 CSR_WRITE_1(sc, RL_CFG2, cfg);
1349 }
1350 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1351 }
1352
1353 /* Disable ASPM L0S/L1. */
1354 if (sc->rl_expcap != 0) {
1355 cap = pci_read_config(dev, sc->rl_expcap +
1356 PCIER_LINK_CAP, 2);
1357 if ((cap & PCIEM_LINK_CAP_ASPM) != 0) {
1358 ctl = pci_read_config(dev, sc->rl_expcap +
1359 PCIER_LINK_CTL, 2);
1360 if ((ctl & PCIEM_LINK_CTL_ASPMC) != 0) {
1361 ctl &= ~PCIEM_LINK_CTL_ASPMC;
1362 pci_write_config(dev, sc->rl_expcap +
1363 PCIER_LINK_CTL, ctl, 2);
1364 device_printf(dev, "ASPM disabled\n");
1365 }
1366 } else
1367 device_printf(dev, "no ASPM capability\n");
1368 }
1369
1370 hw_rev = re_hwrevs;
1371 hwrev = CSR_READ_4(sc, RL_TXCFG);
1372 switch (hwrev & 0x70000000) {
1373 case 0x00000000:
1374 case 0x10000000:
1375 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000);
1376 hwrev &= (RL_TXCFG_HWREV | 0x80000000);
1377 break;
1378 default:
1379 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1380 sc->rl_macrev = hwrev & 0x00700000;
1381 hwrev &= RL_TXCFG_HWREV;
1382 break;
1383 }
1384 device_printf(dev, "MAC rev. 0x%08x\n", sc->rl_macrev);
1385 while (hw_rev->rl_desc != NULL) {
1386 if (hw_rev->rl_rev == hwrev) {
1387 sc->rl_type = hw_rev->rl_type;
1388 sc->rl_hwrev = hw_rev;
1389 break;
1390 }
1391 hw_rev++;
1392 }
1393 if (hw_rev->rl_desc == NULL) {
1394 device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1395 error = ENXIO;
1396 goto fail;
1397 }
1398
1399 switch (hw_rev->rl_rev) {
1400 case RL_HWREV_8139CPLUS:
1401 sc->rl_flags |= RL_FLAG_FASTETHER | RL_FLAG_AUTOPAD;
1402 break;
1403 case RL_HWREV_8100E:
1404 case RL_HWREV_8101E:
1405 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER;
1406 break;
1407 case RL_HWREV_8102E:
1408 case RL_HWREV_8102EL:
1409 case RL_HWREV_8102EL_SPIN1:
1410 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1411 RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1412 RL_FLAG_AUTOPAD;
1413 break;
1414 case RL_HWREV_8103E:
1415 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1416 RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1417 RL_FLAG_AUTOPAD | RL_FLAG_MACSLEEP;
1418 break;
1419 case RL_HWREV_8401E:
1420 case RL_HWREV_8105E:
1421 case RL_HWREV_8105E_SPIN1:
1422 case RL_HWREV_8106E:
1423 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1424 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1425 RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
1426 break;
1427 case RL_HWREV_8402:
1428 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1429 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1430 RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD |
1431 RL_FLAG_CMDSTOP_WAIT_TXQ;
1432 break;
1433 case RL_HWREV_8168B_SPIN1:
1434 case RL_HWREV_8168B_SPIN2:
1435 sc->rl_flags |= RL_FLAG_WOLRXENB;
1436 /* FALLTHROUGH */
1437 case RL_HWREV_8168B_SPIN3:
1438 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT;
1439 break;
1440 case RL_HWREV_8168C_SPIN2:
1441 sc->rl_flags |= RL_FLAG_MACSLEEP;
1442 /* FALLTHROUGH */
1443 case RL_HWREV_8168C:
1444 if (sc->rl_macrev == 0x00200000)
1445 sc->rl_flags |= RL_FLAG_MACSLEEP;
1446 /* FALLTHROUGH */
1447 case RL_HWREV_8168CP:
1448 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1449 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1450 RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK;
1451 break;
1452 case RL_HWREV_8168D:
1453 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1454 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1455 RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1456 RL_FLAG_WOL_MANLINK;
1457 break;
1458 case RL_HWREV_8168DP:
1459 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1460 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_AUTOPAD |
1461 RL_FLAG_JUMBOV2 | RL_FLAG_WAIT_TXPOLL | RL_FLAG_WOL_MANLINK;
1462 break;
1463 case RL_HWREV_8168E:
1464 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1465 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1466 RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1467 RL_FLAG_WOL_MANLINK;
1468 break;
1469 case RL_HWREV_8168E_VL:
1470 case RL_HWREV_8168F:
1471 sc->rl_flags |= RL_FLAG_EARLYOFF;
1472 /* FALLTHROUGH */
1473 case RL_HWREV_8411:
1474 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1475 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1476 RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1477 RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK;
1478 break;
1479 case RL_HWREV_8168EP:
1480 case RL_HWREV_8168G:
1481 case RL_HWREV_8411B:
1482 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1483 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1484 RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1485 RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK |
1486 RL_FLAG_EARLYOFFV2 | RL_FLAG_RXDV_GATED;
1487 break;
1488 case RL_HWREV_8168GU:
1489 if (pci_get_device(dev) == RT_DEVICEID_8101E) {
1490 /* RTL8106EUS */
1491 sc->rl_flags |= RL_FLAG_FASTETHER;
1492 } else
1493 sc->rl_flags |= RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK;
1494
1495 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1496 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1497 RL_FLAG_AUTOPAD | RL_FLAG_CMDSTOP_WAIT_TXQ |
1498 RL_FLAG_EARLYOFFV2 | RL_FLAG_RXDV_GATED;
1499 break;
1500 case RL_HWREV_8169_8110SB:
1501 case RL_HWREV_8169_8110SBL:
1502 case RL_HWREV_8169_8110SC:
1503 case RL_HWREV_8169_8110SCE:
1504 sc->rl_flags |= RL_FLAG_PHYWAKE;
1505 /* FALLTHROUGH */
1506 case RL_HWREV_8169:
1507 case RL_HWREV_8169S:
1508 case RL_HWREV_8110S:
1509 sc->rl_flags |= RL_FLAG_MACRESET;
1510 break;
1511 default:
1512 break;
1513 }
1514
1515 if (sc->rl_hwrev->rl_rev == RL_HWREV_8139CPLUS) {
1516 sc->rl_cfg0 = RL_8139_CFG0;
1517 sc->rl_cfg1 = RL_8139_CFG1;
1518 sc->rl_cfg2 = 0;
1519 sc->rl_cfg3 = RL_8139_CFG3;
1520 sc->rl_cfg4 = RL_8139_CFG4;
1521 sc->rl_cfg5 = RL_8139_CFG5;
1522 } else {
1523 sc->rl_cfg0 = RL_CFG0;
1524 sc->rl_cfg1 = RL_CFG1;
1525 sc->rl_cfg2 = RL_CFG2;
1526 sc->rl_cfg3 = RL_CFG3;
1527 sc->rl_cfg4 = RL_CFG4;
1528 sc->rl_cfg5 = RL_CFG5;
1529 }
1530
1531 /* Reset the adapter. */
1532 RL_LOCK(sc);
1533 re_reset(sc);
1534 RL_UNLOCK(sc);
1535
1536 /* Enable PME. */
1537 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1538 cfg = CSR_READ_1(sc, sc->rl_cfg1);
1539 cfg |= RL_CFG1_PME;
1540 CSR_WRITE_1(sc, sc->rl_cfg1, cfg);
1541 cfg = CSR_READ_1(sc, sc->rl_cfg5);
1542 cfg &= RL_CFG5_PME_STS;
1543 CSR_WRITE_1(sc, sc->rl_cfg5, cfg);
1544 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1545
1546 if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1547 /*
1548 * XXX Should have a better way to extract station
1549 * address from EEPROM.
1550 */
1551 for (i = 0; i < ETHER_ADDR_LEN; i++)
1552 eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1553 } else {
1554 sc->rl_eewidth = RL_9356_ADDR_LEN;
1555 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1556 if (re_did != 0x8129)
1557 sc->rl_eewidth = RL_9346_ADDR_LEN;
1558
1559 /*
1560 * Get station address from the EEPROM.
1561 */
1562 re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1563 for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1564 as[i] = le16toh(as[i]);
1565 bcopy(as, eaddr, ETHER_ADDR_LEN);
1566 }
1567
1568 if (sc->rl_type == RL_8169) {
1569 /* Set RX length mask and number of descriptors. */
1570 sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1571 sc->rl_txstart = RL_GTXSTART;
1572 sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1573 sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1574 } else {
1575 /* Set RX length mask and number of descriptors. */
1576 sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1577 sc->rl_txstart = RL_TXSTART;
1578 sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1579 sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1580 }
1581
1582 error = re_allocmem(dev, sc);
1583 if (error)
1584 goto fail;
1585 re_add_sysctls(sc);
1586
1587 ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1588 if (ifp == NULL) {
1589 device_printf(dev, "can not if_alloc()\n");
1590 error = ENOSPC;
1591 goto fail;
1592 }
1593
1594 /* Take controller out of deep sleep mode. */
1595 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
1596 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
1597 CSR_WRITE_1(sc, RL_GPIO,
1598 CSR_READ_1(sc, RL_GPIO) | 0x01);
1599 else
1600 CSR_WRITE_1(sc, RL_GPIO,
1601 CSR_READ_1(sc, RL_GPIO) & ~0x01);
1602 }
1603
1604 /* Take PHY out of power down mode. */
1605 if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) {
1606 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80);
1607 if (hw_rev->rl_rev == RL_HWREV_8401E)
1608 CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08);
1609 }
1610 if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1611 re_gmii_writereg(dev, 1, 0x1f, 0);
1612 re_gmii_writereg(dev, 1, 0x0e, 0);
1613 }
1614
1615 ifp->if_softc = sc;
1616 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1617 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1618 ifp->if_ioctl = re_ioctl;
1619 ifp->if_start = re_start;
1620 /*
1621 * RTL8168/8111C generates wrong IP checksummed frame if the
1622 * packet has IP options so disable TX checksum offloading.
1623 */
1624 if (sc->rl_hwrev->rl_rev == RL_HWREV_8168C ||
1625 sc->rl_hwrev->rl_rev == RL_HWREV_8168C_SPIN2 ||
1626 sc->rl_hwrev->rl_rev == RL_HWREV_8168CP) {
1627 ifp->if_hwassist = 0;
1628 ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TSO4;
1629 } else {
1630 ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
1631 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
1632 }
1633 ifp->if_hwassist |= CSUM_TSO;
1634 ifp->if_capenable = ifp->if_capabilities;
1635 ifp->if_init = re_init;
1636 IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1637 ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1638 IFQ_SET_READY(&ifp->if_snd);
1639
1640 TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1641
1642#define RE_PHYAD_INTERNAL 0
1643
1644 /* Do MII setup. */
1645 phy = RE_PHYAD_INTERNAL;
1646 if (sc->rl_type == RL_8169)
1647 phy = 1;
1648 error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd,
1649 re_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, MIIF_DOPAUSE);
1650 if (error != 0) {
1651 device_printf(dev, "attaching PHYs failed\n");
1652 goto fail;
1653 }
1654
1655 /*
1656 * Call MI attach routine.
1657 */
1658 ether_ifattach(ifp, eaddr);
1659
1660 /* VLAN capability setup */
1661 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1662 if (ifp->if_capabilities & IFCAP_HWCSUM)
1663 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1664 /* Enable WOL if PM is supported. */
1665 if (pci_find_cap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1666 ifp->if_capabilities |= IFCAP_WOL;
1667 ifp->if_capenable = ifp->if_capabilities;
1668 ifp->if_capenable &= ~(IFCAP_WOL_UCAST | IFCAP_WOL_MCAST);
1669 /*
1670 * Don't enable TSO by default. It is known to generate
1671 * corrupted TCP segments(bad TCP options) under certain
1672 * circumstances.
1673 */
1674 ifp->if_hwassist &= ~CSUM_TSO;
1675 ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
1676#ifdef DEVICE_POLLING
1677 ifp->if_capabilities |= IFCAP_POLLING;
1678#endif
1679 /*
1680 * Tell the upper layer(s) we support long frames.
1681 * Must appear after the call to ether_ifattach() because
1682 * ether_ifattach() sets ifi_hdrlen to the default value.
1683 */
1684 ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1685
1686#ifdef DEV_NETMAP
1687 re_netmap_attach(sc);
1688#endif /* DEV_NETMAP */
1689#ifdef RE_DIAG
1690 /*
1691 * Perform hardware diagnostic on the original RTL8169.
1692 * Some 32-bit cards were incorrectly wired and would
1693 * malfunction if plugged into a 64-bit slot.
1694 */
1695
1696 if (hwrev == RL_HWREV_8169) {
1697 error = re_diag(sc);
1698 if (error) {
1699 device_printf(dev,
1700 "attach aborted due to hardware diag failure\n");
1701 ether_ifdetach(ifp);
1702 goto fail;
1703 }
1704 }
1705#endif
1706
1707#ifdef RE_TX_MODERATION
1708 intr_filter = 1;
1709#endif
1710 /* Hook interrupt last to avoid having to lock softc */
1711 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
1712 intr_filter == 0) {
1713 error = bus_setup_intr(dev, sc->rl_irq[0],
1714 INTR_TYPE_NET | INTR_MPSAFE, NULL, re_intr_msi, sc,
1715 &sc->rl_intrhand[0]);
1716 } else {
1717 error = bus_setup_intr(dev, sc->rl_irq[0],
1718 INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1719 &sc->rl_intrhand[0]);
1720 }
1721 if (error) {
1722 device_printf(dev, "couldn't set up irq\n");
1723 ether_ifdetach(ifp);
1724 }
1725
1726fail:
1727
1728 if (error)
1729 re_detach(dev);
1730
1731 return (error);
1732}
1733
1734/*
1735 * Shutdown hardware and free up resources. This can be called any
1736 * time after the mutex has been initialized. It is called in both
1737 * the error case in attach and the normal detach case so it needs
1738 * to be careful about only freeing resources that have actually been
1739 * allocated.
1740 */
1741static int
1742re_detach(device_t dev)
1743{
1744 struct rl_softc *sc;
1745 struct ifnet *ifp;
1746 int i, rid;
1747
1748 sc = device_get_softc(dev);
1749 ifp = sc->rl_ifp;
1750 KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1751
1752 /* These should only be active if attach succeeded */
1753 if (device_is_attached(dev)) {
1754#ifdef DEVICE_POLLING
1755 if (ifp->if_capenable & IFCAP_POLLING)
1756 ether_poll_deregister(ifp);
1757#endif
1758 RL_LOCK(sc);
1759#if 0
1760 sc->suspended = 1;
1761#endif
1762 re_stop(sc);
1763 RL_UNLOCK(sc);
1764 callout_drain(&sc->rl_stat_callout);
1765 taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1766 /*
1767 * Force off the IFF_UP flag here, in case someone
1768 * still had a BPF descriptor attached to this
1769 * interface. If they do, ether_ifdetach() will cause
1770 * the BPF code to try and clear the promisc mode
1771 * flag, which will bubble down to re_ioctl(),
1772 * which will try to call re_init() again. This will
1773 * turn the NIC back on and restart the MII ticker,
1774 * which will panic the system when the kernel tries
1775 * to invoke the re_tick() function that isn't there
1776 * anymore.
1777 */
1778 ifp->if_flags &= ~IFF_UP;
1779 ether_ifdetach(ifp);
1780 }
1781 if (sc->rl_miibus)
1782 device_delete_child(dev, sc->rl_miibus);
1783 bus_generic_detach(dev);
1784
1785 /*
1786 * The rest is resource deallocation, so we should already be
1787 * stopped here.
1788 */
1789
1790 if (sc->rl_intrhand[0] != NULL) {
1791 bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
1792 sc->rl_intrhand[0] = NULL;
1793 }
1794 if (ifp != NULL) {
1795#ifdef DEV_NETMAP
1796 netmap_detach(ifp);
1797#endif /* DEV_NETMAP */
1798 if_free(ifp);
1799 }
1800 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
1801 rid = 0;
1802 else
1803 rid = 1;
1804 if (sc->rl_irq[0] != NULL) {
1805 bus_release_resource(dev, SYS_RES_IRQ, rid, sc->rl_irq[0]);
1806 sc->rl_irq[0] = NULL;
1807 }
1808 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0)
1809 pci_release_msi(dev);
1810 if (sc->rl_res_pba) {
1811 rid = PCIR_BAR(4);
1812 bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->rl_res_pba);
1813 }
1814 if (sc->rl_res)
1815 bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1816 sc->rl_res);
1817
1818 /* Unload and free the RX DMA ring memory and map */
1819
1820 if (sc->rl_ldata.rl_rx_list_tag) {
1821 if (sc->rl_ldata.rl_rx_list_addr)
1822 bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1823 sc->rl_ldata.rl_rx_list_map);
1824 if (sc->rl_ldata.rl_rx_list)
1825 bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1826 sc->rl_ldata.rl_rx_list,
1827 sc->rl_ldata.rl_rx_list_map);
1828 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1829 }
1830
1831 /* Unload and free the TX DMA ring memory and map */
1832
1833 if (sc->rl_ldata.rl_tx_list_tag) {
1834 if (sc->rl_ldata.rl_tx_list_addr)
1835 bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1836 sc->rl_ldata.rl_tx_list_map);
1837 if (sc->rl_ldata.rl_tx_list)
1838 bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1839 sc->rl_ldata.rl_tx_list,
1840 sc->rl_ldata.rl_tx_list_map);
1841 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1842 }
1843
1844 /* Destroy all the RX and TX buffer maps */
1845
1846 if (sc->rl_ldata.rl_tx_mtag) {
1847 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1848 if (sc->rl_ldata.rl_tx_desc[i].tx_dmamap)
1849 bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1850 sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1851 }
1852 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1853 }
1854 if (sc->rl_ldata.rl_rx_mtag) {
1855 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1856 if (sc->rl_ldata.rl_rx_desc[i].rx_dmamap)
1857 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1858 sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1859 }
1860 if (sc->rl_ldata.rl_rx_sparemap)
1861 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1862 sc->rl_ldata.rl_rx_sparemap);
1863 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1864 }
1865 if (sc->rl_ldata.rl_jrx_mtag) {
1866 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1867 if (sc->rl_ldata.rl_jrx_desc[i].rx_dmamap)
1868 bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1869 sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1870 }
1871 if (sc->rl_ldata.rl_jrx_sparemap)
1872 bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1873 sc->rl_ldata.rl_jrx_sparemap);
1874 bus_dma_tag_destroy(sc->rl_ldata.rl_jrx_mtag);
1875 }
1876 /* Unload and free the stats buffer and map */
1877
1878 if (sc->rl_ldata.rl_stag) {
1879 if (sc->rl_ldata.rl_stats_addr)
1880 bus_dmamap_unload(sc->rl_ldata.rl_stag,
1881 sc->rl_ldata.rl_smap);
1882 if (sc->rl_ldata.rl_stats)
1883 bus_dmamem_free(sc->rl_ldata.rl_stag,
1884 sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap);
1885 bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1886 }
1887
1888 if (sc->rl_parent_tag)
1889 bus_dma_tag_destroy(sc->rl_parent_tag);
1890
1891 mtx_destroy(&sc->rl_mtx);
1892
1893 return (0);
1894}
1895
1896static __inline void
1897re_discard_rxbuf(struct rl_softc *sc, int idx)
1898{
1899 struct rl_desc *desc;
1900 struct rl_rxdesc *rxd;
1901 uint32_t cmdstat;
1902
1903 if (sc->rl_ifp->if_mtu > RL_MTU &&
1904 (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
1905 rxd = &sc->rl_ldata.rl_jrx_desc[idx];
1906 else
1907 rxd = &sc->rl_ldata.rl_rx_desc[idx];
1908 desc = &sc->rl_ldata.rl_rx_list[idx];
1909 desc->rl_vlanctl = 0;
1910 cmdstat = rxd->rx_size;
1911 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1912 cmdstat |= RL_RDESC_CMD_EOR;
1913 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1914}
1915
1916static int
1917re_newbuf(struct rl_softc *sc, int idx)
1918{
1919 struct mbuf *m;
1920 struct rl_rxdesc *rxd;
1921 bus_dma_segment_t segs[1];
1922 bus_dmamap_t map;
1923 struct rl_desc *desc;
1924 uint32_t cmdstat;
1925 int error, nsegs;
1926
1927 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1928 if (m == NULL)
1929 return (ENOBUFS);
1930
1931 m->m_len = m->m_pkthdr.len = MCLBYTES;
1932#ifdef RE_FIXUP_RX
1933 /*
1934 * This is part of an evil trick to deal with non-x86 platforms.
1935 * The RealTek chip requires RX buffers to be aligned on 64-bit
1936 * boundaries, but that will hose non-x86 machines. To get around
1937 * this, we leave some empty space at the start of each buffer
1938 * and for non-x86 hosts, we copy the buffer back six bytes
1939 * to achieve word alignment. This is slightly more efficient
1940 * than allocating a new buffer, copying the contents, and
1941 * discarding the old buffer.
1942 */
1943 m_adj(m, RE_ETHER_ALIGN);
1944#endif
1945 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1946 sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1947 if (error != 0) {
1948 m_freem(m);
1949 return (ENOBUFS);
1950 }
1951 KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1952
1953 rxd = &sc->rl_ldata.rl_rx_desc[idx];
1954 if (rxd->rx_m != NULL) {
1955 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1956 BUS_DMASYNC_POSTREAD);
1957 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1958 }
1959
1960 rxd->rx_m = m;
1961 map = rxd->rx_dmamap;
1962 rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1963 rxd->rx_size = segs[0].ds_len;
1964 sc->rl_ldata.rl_rx_sparemap = map;
1965 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1966 BUS_DMASYNC_PREREAD);
1967
1968 desc = &sc->rl_ldata.rl_rx_list[idx];
1969 desc->rl_vlanctl = 0;
1970 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1971 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1972 cmdstat = segs[0].ds_len;
1973 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1974 cmdstat |= RL_RDESC_CMD_EOR;
1975 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1976
1977 return (0);
1978}
1979
1980static int
1981re_jumbo_newbuf(struct rl_softc *sc, int idx)
1982{
1983 struct mbuf *m;
1984 struct rl_rxdesc *rxd;
1985 bus_dma_segment_t segs[1];
1986 bus_dmamap_t map;
1987 struct rl_desc *desc;
1988 uint32_t cmdstat;
1989 int error, nsegs;
1990
1991 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1992 if (m == NULL)
1993 return (ENOBUFS);
1994 m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1995#ifdef RE_FIXUP_RX
1996 m_adj(m, RE_ETHER_ALIGN);
1997#endif
1998 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_jrx_mtag,
1999 sc->rl_ldata.rl_jrx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
2000 if (error != 0) {
2001 m_freem(m);
2002 return (ENOBUFS);
2003 }
2004 KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
2005
2006 rxd = &sc->rl_ldata.rl_jrx_desc[idx];
2007 if (rxd->rx_m != NULL) {
2008 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
2009 BUS_DMASYNC_POSTREAD);
2010 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap);
2011 }
2012
2013 rxd->rx_m = m;
2014 map = rxd->rx_dmamap;
2015 rxd->rx_dmamap = sc->rl_ldata.rl_jrx_sparemap;
2016 rxd->rx_size = segs[0].ds_len;
2017 sc->rl_ldata.rl_jrx_sparemap = map;
2018 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
2019 BUS_DMASYNC_PREREAD);
2020
2021 desc = &sc->rl_ldata.rl_rx_list[idx];
2022 desc->rl_vlanctl = 0;
2023 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
2024 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
2025 cmdstat = segs[0].ds_len;
2026 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
2027 cmdstat |= RL_RDESC_CMD_EOR;
2028 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
2029
2030 return (0);
2031}
2032
2033#ifdef RE_FIXUP_RX
2034static __inline void
2035re_fixup_rx(struct mbuf *m)
2036{
2037 int i;
2038 uint16_t *src, *dst;
2039
2040 src = mtod(m, uint16_t *);
2041 dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
2042
2043 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2044 *dst++ = *src++;
2045
2046 m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
2047}
2048#endif
2049
2050static int
2051re_tx_list_init(struct rl_softc *sc)
2052{
2053 struct rl_desc *desc;
2054 int i;
2055
2056 RL_LOCK_ASSERT(sc);
2057
2058 bzero(sc->rl_ldata.rl_tx_list,
2059 sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
2060 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
2061 sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
2062#ifdef DEV_NETMAP
2063 re_netmap_tx_init(sc);
2064#endif /* DEV_NETMAP */
2065 /* Set EOR. */
2066 desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
2067 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
2068
2069 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2070 sc->rl_ldata.rl_tx_list_map,
2071 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2072
2073 sc->rl_ldata.rl_tx_prodidx = 0;
2074 sc->rl_ldata.rl_tx_considx = 0;
2075 sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
2076
2077 return (0);
2078}
2079
2080static int
2081re_rx_list_init(struct rl_softc *sc)
2082{
2083 int error, i;
2084
2085 bzero(sc->rl_ldata.rl_rx_list,
2086 sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2087 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2088 sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
2089 if ((error = re_newbuf(sc, i)) != 0)
2090 return (error);
2091 }
2092#ifdef DEV_NETMAP
2093 re_netmap_rx_init(sc);
2094#endif /* DEV_NETMAP */
2095
2096 /* Flush the RX descriptors */
2097
2098 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2099 sc->rl_ldata.rl_rx_list_map,
2100 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2101
2102 sc->rl_ldata.rl_rx_prodidx = 0;
2103 sc->rl_head = sc->rl_tail = NULL;
2104 sc->rl_int_rx_act = 0;
2105
2106 return (0);
2107}
2108
2109static int
2110re_jrx_list_init(struct rl_softc *sc)
2111{
2112 int error, i;
2113
2114 bzero(sc->rl_ldata.rl_rx_list,
2115 sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2116 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2117 sc->rl_ldata.rl_jrx_desc[i].rx_m = NULL;
2118 if ((error = re_jumbo_newbuf(sc, i)) != 0)
2119 return (error);
2120 }
2121
2122 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2123 sc->rl_ldata.rl_rx_list_map,
2124 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2125
2126 sc->rl_ldata.rl_rx_prodidx = 0;
2127 sc->rl_head = sc->rl_tail = NULL;
2128 sc->rl_int_rx_act = 0;
2129
2130 return (0);
2131}
2132
2133/*
2134 * RX handler for C+ and 8169. For the gigE chips, we support
2135 * the reception of jumbo frames that have been fragmented
2136 * across multiple 2K mbuf cluster buffers.
2137 */
2138static int
2139re_rxeof(struct rl_softc *sc, int *rx_npktsp)
2140{
2141 struct mbuf *m;
2142 struct ifnet *ifp;
2143 int i, rxerr, total_len;
2144 struct rl_desc *cur_rx;
2145 u_int32_t rxstat, rxvlan;
2146 int jumbo, maxpkt = 16, rx_npkts = 0;
2147
2148 RL_LOCK_ASSERT(sc);
2149
2150 ifp = sc->rl_ifp;
2151#ifdef DEV_NETMAP
2152 if (netmap_rx_irq(ifp, 0, &rx_npkts))
2153 return 0;
2154#endif /* DEV_NETMAP */
2155 if (ifp->if_mtu > RL_MTU && (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
2156 jumbo = 1;
2157 else
2158 jumbo = 0;
2159
2160 /* Invalidate the descriptor memory */
2161
2162 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2163 sc->rl_ldata.rl_rx_list_map,
2164 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2165
2166 for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
2167 i = RL_RX_DESC_NXT(sc, i)) {
2168 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2169 break;
2170 cur_rx = &sc->rl_ldata.rl_rx_list[i];
2171 rxstat = le32toh(cur_rx->rl_cmdstat);
2172 if ((rxstat & RL_RDESC_STAT_OWN) != 0)
2173 break;
2174 total_len = rxstat & sc->rl_rxlenmask;
2175 rxvlan = le32toh(cur_rx->rl_vlanctl);
2176 if (jumbo != 0)
2177 m = sc->rl_ldata.rl_jrx_desc[i].rx_m;
2178 else
2179 m = sc->rl_ldata.rl_rx_desc[i].rx_m;
2180
2181 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
2182 (rxstat & (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) !=
2183 (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) {
2184 /*
2185 * RTL8168C or later controllers do not
2186 * support multi-fragment packet.
2187 */
2188 re_discard_rxbuf(sc, i);
2189 continue;
2190 } else if ((rxstat & RL_RDESC_STAT_EOF) == 0) {
2191 if (re_newbuf(sc, i) != 0) {
2192 /*
2193 * If this is part of a multi-fragment packet,
2194 * discard all the pieces.
2195 */
2196 if (sc->rl_head != NULL) {
2197 m_freem(sc->rl_head);
2198 sc->rl_head = sc->rl_tail = NULL;
2199 }
2200 re_discard_rxbuf(sc, i);
2201 continue;
2202 }
2203 m->m_len = RE_RX_DESC_BUFLEN;
2204 if (sc->rl_head == NULL)
2205 sc->rl_head = sc->rl_tail = m;
2206 else {
2207 m->m_flags &= ~M_PKTHDR;
2208 sc->rl_tail->m_next = m;
2209 sc->rl_tail = m;
2210 }
2211 continue;
2212 }
2213
2214 /*
2215 * NOTE: for the 8139C+, the frame length field
2216 * is always 12 bits in size, but for the gigE chips,
2217 * it is 13 bits (since the max RX frame length is 16K).
2218 * Unfortunately, all 32 bits in the status word
2219 * were already used, so to make room for the extra
2220 * length bit, RealTek took out the 'frame alignment
2221 * error' bit and shifted the other status bits
2222 * over one slot. The OWN, EOR, FS and LS bits are
2223 * still in the same places. We have already extracted
2224 * the frame length and checked the OWN bit, so rather
2225 * than using an alternate bit mapping, we shift the
2226 * status bits one space to the right so we can evaluate
2227 * them using the 8169 status as though it was in the
2228 * same format as that of the 8139C+.
2229 */
2230 if (sc->rl_type == RL_8169)
2231 rxstat >>= 1;
2232
2233 /*
2234 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
2235 * set, but if CRC is clear, it will still be a valid frame.
2236 */
2237 if ((rxstat & RL_RDESC_STAT_RXERRSUM) != 0) {
2238 rxerr = 1;
2239 if ((sc->rl_flags & RL_FLAG_JUMBOV2) == 0 &&
2240 total_len > 8191 &&
2241 (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)
2242 rxerr = 0;
2243 if (rxerr != 0) {
2244 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2245 /*
2246 * If this is part of a multi-fragment packet,
2247 * discard all the pieces.
2248 */
2249 if (sc->rl_head != NULL) {
2250 m_freem(sc->rl_head);
2251 sc->rl_head = sc->rl_tail = NULL;
2252 }
2253 re_discard_rxbuf(sc, i);
2254 continue;
2255 }
2256 }
2257
2258 /*
2259 * If allocating a replacement mbuf fails,
2260 * reload the current one.
2261 */
2262 if (jumbo != 0)
2263 rxerr = re_jumbo_newbuf(sc, i);
2264 else
2265 rxerr = re_newbuf(sc, i);
2266 if (rxerr != 0) {
2267 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2268 if (sc->rl_head != NULL) {
2269 m_freem(sc->rl_head);
2270 sc->rl_head = sc->rl_tail = NULL;
2271 }
2272 re_discard_rxbuf(sc, i);
2273 continue;
2274 }
2275
2276 if (sc->rl_head != NULL) {
2277 if (jumbo != 0)
2278 m->m_len = total_len;
2279 else {
2280 m->m_len = total_len % RE_RX_DESC_BUFLEN;
2281 if (m->m_len == 0)
2282 m->m_len = RE_RX_DESC_BUFLEN;
2283 }
2284 /*
2285 * Special case: if there's 4 bytes or less
2286 * in this buffer, the mbuf can be discarded:
2287 * the last 4 bytes is the CRC, which we don't
2288 * care about anyway.
2289 */
2290 if (m->m_len <= ETHER_CRC_LEN) {
2291 sc->rl_tail->m_len -=
2292 (ETHER_CRC_LEN - m->m_len);
2293 m_freem(m);
2294 } else {
2295 m->m_len -= ETHER_CRC_LEN;
2296 m->m_flags &= ~M_PKTHDR;
2297 sc->rl_tail->m_next = m;
2298 }
2299 m = sc->rl_head;
2300 sc->rl_head = sc->rl_tail = NULL;
2301 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2302 } else
2303 m->m_pkthdr.len = m->m_len =
2304 (total_len - ETHER_CRC_LEN);
2305
2306#ifdef RE_FIXUP_RX
2307 re_fixup_rx(m);
2308#endif
2309 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2310 m->m_pkthdr.rcvif = ifp;
2311
2312 /* Do RX checksumming if enabled */
2313
2314 if (ifp->if_capenable & IFCAP_RXCSUM) {
2315 if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2316 /* Check IP header checksum */
2317 if (rxstat & RL_RDESC_STAT_PROTOID)
2318 m->m_pkthdr.csum_flags |=
2319 CSUM_IP_CHECKED;
2320 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
2321 m->m_pkthdr.csum_flags |=
2322 CSUM_IP_VALID;
2323
2324 /* Check TCP/UDP checksum */
2325 if ((RL_TCPPKT(rxstat) &&
2326 !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2327 (RL_UDPPKT(rxstat) &&
2328 !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2329 m->m_pkthdr.csum_flags |=
2330 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2331 m->m_pkthdr.csum_data = 0xffff;
2332 }
2333 } else {
2334 /*
2335 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
2336 */
2337 if ((rxstat & RL_RDESC_STAT_PROTOID) &&
2338 (rxvlan & RL_RDESC_IPV4))
2339 m->m_pkthdr.csum_flags |=
2340 CSUM_IP_CHECKED;
2341 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
2342 (rxvlan & RL_RDESC_IPV4))
2343 m->m_pkthdr.csum_flags |=
2344 CSUM_IP_VALID;
2345 if (((rxstat & RL_RDESC_STAT_TCP) &&
2346 !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2347 ((rxstat & RL_RDESC_STAT_UDP) &&
2348 !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2349 m->m_pkthdr.csum_flags |=
2350 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2351 m->m_pkthdr.csum_data = 0xffff;
2352 }
2353 }
2354 }
2355 maxpkt--;
2356 if (rxvlan & RL_RDESC_VLANCTL_TAG) {
2357 m->m_pkthdr.ether_vtag =
2358 bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
2359 m->m_flags |= M_VLANTAG;
2360 }
2361 RL_UNLOCK(sc);
2362 (*ifp->if_input)(ifp, m);
2363 RL_LOCK(sc);
2364 rx_npkts++;
2365 }
2366
2367 /* Flush the RX DMA ring */
2368
2369 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2370 sc->rl_ldata.rl_rx_list_map,
2371 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2372
2373 sc->rl_ldata.rl_rx_prodidx = i;
2374
2375 if (rx_npktsp != NULL)
2376 *rx_npktsp = rx_npkts;
2377 if (maxpkt)
2378 return (EAGAIN);
2379
2380 return (0);
2381}
2382
2383static void
2384re_txeof(struct rl_softc *sc)
2385{
2386 struct ifnet *ifp;
2387 struct rl_txdesc *txd;
2388 u_int32_t txstat;
2389 int cons;
2390
2391 cons = sc->rl_ldata.rl_tx_considx;
2392 if (cons == sc->rl_ldata.rl_tx_prodidx)
2393 return;
2394
2395 ifp = sc->rl_ifp;
2396#ifdef DEV_NETMAP
2397 if (netmap_tx_irq(ifp, 0))
2398 return;
2399#endif /* DEV_NETMAP */
2400 /* Invalidate the TX descriptor list */
2401 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2402 sc->rl_ldata.rl_tx_list_map,
2403 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2404
2405 for (; cons != sc->rl_ldata.rl_tx_prodidx;
2406 cons = RL_TX_DESC_NXT(sc, cons)) {
2407 txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
2408 if (txstat & RL_TDESC_STAT_OWN)
2409 break;
2410 /*
2411 * We only stash mbufs in the last descriptor
2412 * in a fragment chain, which also happens to
2413 * be the only place where the TX status bits
2414 * are valid.
2415 */
2416 if (txstat & RL_TDESC_CMD_EOF) {
2417 txd = &sc->rl_ldata.rl_tx_desc[cons];
2418 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2419 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2420 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2421 txd->tx_dmamap);
2422 KASSERT(txd->tx_m != NULL,
2423 ("%s: freeing NULL mbufs!", __func__));
2424 m_freem(txd->tx_m);
2425 txd->tx_m = NULL;
2426 if (txstat & (RL_TDESC_STAT_EXCESSCOL|
2427 RL_TDESC_STAT_COLCNT))
2428 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
2429 if (txstat & RL_TDESC_STAT_TXERRSUM)
2430 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2431 else
2432 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2433 }
2434 sc->rl_ldata.rl_tx_free++;
2435 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2436 }
2437 sc->rl_ldata.rl_tx_considx = cons;
2438
2439 /* No changes made to the TX ring, so no flush needed */
2440
2441 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
2442#ifdef RE_TX_MODERATION
2443 /*
2444 * If not all descriptors have been reaped yet, reload
2445 * the timer so that we will eventually get another
2446 * interrupt that will cause us to re-enter this routine.
2447 * This is done in case the transmitter has gone idle.
2448 */
2449 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2450#endif
2451 } else
2452 sc->rl_watchdog_timer = 0;
2453}
2454
2455static void
2456re_tick(void *xsc)
2457{
2458 struct rl_softc *sc;
2459 struct mii_data *mii;
2460
2461 sc = xsc;
2462
2463 RL_LOCK_ASSERT(sc);
2464
2465 mii = device_get_softc(sc->rl_miibus);
2466 mii_tick(mii);
2467 if ((sc->rl_flags & RL_FLAG_LINK) == 0)
2468 re_miibus_statchg(sc->rl_dev);
2469 /*
2470 * Reclaim transmitted frames here. Technically it is not
2471 * necessary to do here but it ensures periodic reclamation
2472 * regardless of Tx completion interrupt which seems to be
2473 * lost on PCIe based controllers under certain situations.
2474 */
2475 re_txeof(sc);
2476 re_watchdog(sc);
2477 callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2478}
2479
2480#ifdef DEVICE_POLLING
2481static int
2482re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2483{
2484 struct rl_softc *sc = ifp->if_softc;
2485 int rx_npkts = 0;
2486
2487 RL_LOCK(sc);
2488 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2489 rx_npkts = re_poll_locked(ifp, cmd, count);
2490 RL_UNLOCK(sc);
2491 return (rx_npkts);
2492}
2493
2494static int
2495re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2496{
2497 struct rl_softc *sc = ifp->if_softc;
2498 int rx_npkts;
2499
2500 RL_LOCK_ASSERT(sc);
2501
2502 sc->rxcycles = count;
2503 re_rxeof(sc, &rx_npkts);
2504 re_txeof(sc);
2505
2506 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2507 re_start_locked(ifp);
2508
2509 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2510 u_int16_t status;
2511
2512 status = CSR_READ_2(sc, RL_ISR);
2513 if (status == 0xffff)
2514 return (rx_npkts);
2515 if (status)
2516 CSR_WRITE_2(sc, RL_ISR, status);
2517 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2518 (sc->rl_flags & RL_FLAG_PCIE))
2519 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2520
2521 /*
2522 * XXX check behaviour on receiver stalls.
2523 */
2524
2525 if (status & RL_ISR_SYSTEM_ERR) {
2526 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2527 re_init_locked(sc);
2528 }
2529 }
2530 return (rx_npkts);
2531}
2532#endif /* DEVICE_POLLING */
2533
2534static int
2535re_intr(void *arg)
2536{
2537 struct rl_softc *sc;
2538 uint16_t status;
2539
2540 sc = arg;
2541
2542 status = CSR_READ_2(sc, RL_ISR);
2543 if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2544 return (FILTER_STRAY);
2545 CSR_WRITE_2(sc, RL_IMR, 0);
2546
2547 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2548
2549 return (FILTER_HANDLED);
2550}
2551
2552static void
2553re_int_task(void *arg, int npending)
2554{
2555 struct rl_softc *sc;
2556 struct ifnet *ifp;
2557 u_int16_t status;
2558 int rval = 0;
2559
2560 sc = arg;
2561 ifp = sc->rl_ifp;
2562
2563 RL_LOCK(sc);
2564
2565 status = CSR_READ_2(sc, RL_ISR);
2566 CSR_WRITE_2(sc, RL_ISR, status);
2567
2568 if (sc->suspended ||
2569 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2570 RL_UNLOCK(sc);
2571 return;
2572 }
2573
2574#ifdef DEVICE_POLLING
2575 if (ifp->if_capenable & IFCAP_POLLING) {
2576 RL_UNLOCK(sc);
2577 return;
2578 }
2579#endif
2580
2581 if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2582 rval = re_rxeof(sc, NULL);
2583
2584 /*
2585 * Some chips will ignore a second TX request issued
2586 * while an existing transmission is in progress. If
2587 * the transmitter goes idle but there are still
2588 * packets waiting to be sent, we need to restart the
2589 * channel here to flush them out. This only seems to
2590 * be required with the PCIe devices.
2591 */
2592 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2593 (sc->rl_flags & RL_FLAG_PCIE))
2594 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2595 if (status & (
2596#ifdef RE_TX_MODERATION
2597 RL_ISR_TIMEOUT_EXPIRED|
2598#else
2599 RL_ISR_TX_OK|
2600#endif
2601 RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2602 re_txeof(sc);
2603
2604 if (status & RL_ISR_SYSTEM_ERR) {
2605 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2606 re_init_locked(sc);
2607 }
2608
2609 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2610 re_start_locked(ifp);
2611
2612 RL_UNLOCK(sc);
2613
2614 if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2615 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2616 return;
2617 }
2618
2619 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2620}
2621
2622static void
2623re_intr_msi(void *xsc)
2624{
2625 struct rl_softc *sc;
2626 struct ifnet *ifp;
2627 uint16_t intrs, status;
2628
2629 sc = xsc;
2630 RL_LOCK(sc);
2631
2632 ifp = sc->rl_ifp;
2633#ifdef DEVICE_POLLING
2634 if (ifp->if_capenable & IFCAP_POLLING) {
2635 RL_UNLOCK(sc);
2636 return;
2637 }
2638#endif
2639 /* Disable interrupts. */
2640 CSR_WRITE_2(sc, RL_IMR, 0);
2641 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2642 RL_UNLOCK(sc);
2643 return;
2644 }
2645
2646 intrs = RL_INTRS_CPLUS;
2647 status = CSR_READ_2(sc, RL_ISR);
2648 CSR_WRITE_2(sc, RL_ISR, status);
2649 if (sc->rl_int_rx_act > 0) {
2650 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2651 RL_ISR_RX_OVERRUN);
2652 status &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2653 RL_ISR_RX_OVERRUN);
2654 }
2655
2656 if (status & (RL_ISR_TIMEOUT_EXPIRED | RL_ISR_RX_OK | RL_ISR_RX_ERR |
2657 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) {
2658 re_rxeof(sc, NULL);
2659 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2660 if (sc->rl_int_rx_mod != 0 &&
2661 (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR |
2662 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) != 0) {
2663 /* Rearm one-shot timer. */
2664 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2665 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR |
2666 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN);
2667 sc->rl_int_rx_act = 1;
2668 } else {
2669 intrs |= RL_ISR_RX_OK | RL_ISR_RX_ERR |
2670 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN;
2671 sc->rl_int_rx_act = 0;
2672 }
2673 }
2674 }
2675
2676 /*
2677 * Some chips will ignore a second TX request issued
2678 * while an existing transmission is in progress. If
2679 * the transmitter goes idle but there are still
2680 * packets waiting to be sent, we need to restart the
2681 * channel here to flush them out. This only seems to
2682 * be required with the PCIe devices.
2683 */
2684 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2685 (sc->rl_flags & RL_FLAG_PCIE))
2686 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2687 if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR | RL_ISR_TX_DESC_UNAVAIL))
2688 re_txeof(sc);
2689
2690 if (status & RL_ISR_SYSTEM_ERR) {
2691 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2692 re_init_locked(sc);
2693 }
2694
2695 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2696 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2697 re_start_locked(ifp);
2698 CSR_WRITE_2(sc, RL_IMR, intrs);
2699 }
2700 RL_UNLOCK(sc);
2701}
2702
2703static int
2704re_encap(struct rl_softc *sc, struct mbuf **m_head)
2705{
2706 struct rl_txdesc *txd, *txd_last;
2707 bus_dma_segment_t segs[RL_NTXSEGS];
2708 bus_dmamap_t map;
2709 struct mbuf *m_new;
2710 struct rl_desc *desc;
2711 int nsegs, prod;
2712 int i, error, ei, si;
2713 int padlen;
2714 uint32_t cmdstat, csum_flags, vlanctl;
2715
2716 RL_LOCK_ASSERT(sc);
2717 M_ASSERTPKTHDR((*m_head));
2718
2719 /*
2720 * With some of the RealTek chips, using the checksum offload
2721 * support in conjunction with the autopadding feature results
2722 * in the transmission of corrupt frames. For example, if we
2723 * need to send a really small IP fragment that's less than 60
2724 * bytes in size, and IP header checksumming is enabled, the
2725 * resulting ethernet frame that appears on the wire will
2726 * have garbled payload. To work around this, if TX IP checksum
2727 * offload is enabled, we always manually pad short frames out
2728 * to the minimum ethernet frame size.
2729 */
2730 if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 &&
2731 (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2732 ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2733 padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2734 if (M_WRITABLE(*m_head) == 0) {
2735 /* Get a writable copy. */
2736 m_new = m_dup(*m_head, M_NOWAIT);
2737 m_freem(*m_head);
2738 if (m_new == NULL) {
2739 *m_head = NULL;
2740 return (ENOBUFS);
2741 }
2742 *m_head = m_new;
2743 }
2744 if ((*m_head)->m_next != NULL ||
2745 M_TRAILINGSPACE(*m_head) < padlen) {
2746 m_new = m_defrag(*m_head, M_NOWAIT);
2747 if (m_new == NULL) {
2748 m_freem(*m_head);
2749 *m_head = NULL;
2750 return (ENOBUFS);
2751 }
2752 } else
2753 m_new = *m_head;
2754
2755 /*
2756 * Manually pad short frames, and zero the pad space
2757 * to avoid leaking data.
2758 */
2759 bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2760 m_new->m_pkthdr.len += padlen;
2761 m_new->m_len = m_new->m_pkthdr.len;
2762 *m_head = m_new;
2763 }
2764
2765 prod = sc->rl_ldata.rl_tx_prodidx;
2766 txd = &sc->rl_ldata.rl_tx_desc[prod];
2767 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2768 *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2769 if (error == EFBIG) {
2770 m_new = m_collapse(*m_head, M_NOWAIT, RL_NTXSEGS);
2771 if (m_new == NULL) {
2772 m_freem(*m_head);
2773 *m_head = NULL;
2774 return (ENOBUFS);
2775 }
2776 *m_head = m_new;
2777 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2778 txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2779 if (error != 0) {
2780 m_freem(*m_head);
2781 *m_head = NULL;
2782 return (error);
2783 }
2784 } else if (error != 0)
2785 return (error);
2786 if (nsegs == 0) {
2787 m_freem(*m_head);
2788 *m_head = NULL;
2789 return (EIO);
2790 }
2791
2792 /* Check for number of available descriptors. */
2793 if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2794 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2795 return (ENOBUFS);
2796 }
2797
2798 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2799 BUS_DMASYNC_PREWRITE);
2800
2801 /*
2802 * Set up checksum offload. Note: checksum offload bits must
2803 * appear in all descriptors of a multi-descriptor transmit
2804 * attempt. This is according to testing done with an 8169
2805 * chip. This is a requirement.
2806 */
2807 vlanctl = 0;
2808 csum_flags = 0;
2809 if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2810 if ((sc->rl_flags & RL_FLAG_DESCV2) != 0) {
2811 csum_flags |= RL_TDESC_CMD_LGSEND;
2812 vlanctl |= ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2813 RL_TDESC_CMD_MSSVALV2_SHIFT);
2814 } else {
2815 csum_flags |= RL_TDESC_CMD_LGSEND |
2816 ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2817 RL_TDESC_CMD_MSSVAL_SHIFT);
2818 }
2819 } else {
2820 /*
2821 * Unconditionally enable IP checksum if TCP or UDP
2822 * checksum is required. Otherwise, TCP/UDP checksum
2823 * doesn't make effects.
2824 */
2825 if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2826 if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2827 csum_flags |= RL_TDESC_CMD_IPCSUM;
2828 if (((*m_head)->m_pkthdr.csum_flags &
2829 CSUM_TCP) != 0)
2830 csum_flags |= RL_TDESC_CMD_TCPCSUM;
2831 if (((*m_head)->m_pkthdr.csum_flags &
2832 CSUM_UDP) != 0)
2833 csum_flags |= RL_TDESC_CMD_UDPCSUM;
2834 } else {
2835 vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2836 if (((*m_head)->m_pkthdr.csum_flags &
2837 CSUM_TCP) != 0)
2838 vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2839 if (((*m_head)->m_pkthdr.csum_flags &
2840 CSUM_UDP) != 0)
2841 vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2842 }
2843 }
2844 }
2845
2846 /*
2847 * Set up hardware VLAN tagging. Note: vlan tag info must
2848 * appear in all descriptors of a multi-descriptor
2849 * transmission attempt.
2850 */
2851 if ((*m_head)->m_flags & M_VLANTAG)
2852 vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
2853 RL_TDESC_VLANCTL_TAG;
2854
2855 si = prod;
2856 for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2857 desc = &sc->rl_ldata.rl_tx_list[prod];
2858 desc->rl_vlanctl = htole32(vlanctl);
2859 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2860 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2861 cmdstat = segs[i].ds_len;
2862 if (i != 0)
2863 cmdstat |= RL_TDESC_CMD_OWN;
2864 if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2865 cmdstat |= RL_TDESC_CMD_EOR;
2866 desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2867 sc->rl_ldata.rl_tx_free--;
2868 }
2869 /* Update producer index. */
2870 sc->rl_ldata.rl_tx_prodidx = prod;
2871
2872 /* Set EOF on the last descriptor. */
2873 ei = RL_TX_DESC_PRV(sc, prod);
2874 desc = &sc->rl_ldata.rl_tx_list[ei];
2875 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2876
2877 desc = &sc->rl_ldata.rl_tx_list[si];
2878 /* Set SOF and transfer ownership of packet to the chip. */
2879 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2880
2881 /*
2882 * Insure that the map for this transmission
2883 * is placed at the array index of the last descriptor
2884 * in this chain. (Swap last and first dmamaps.)
2885 */
2886 txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2887 map = txd->tx_dmamap;
2888 txd->tx_dmamap = txd_last->tx_dmamap;
2889 txd_last->tx_dmamap = map;
2890 txd_last->tx_m = *m_head;
2891
2892 return (0);
2893}
2894
2895static void
2896re_start(struct ifnet *ifp)
2897{
2898 struct rl_softc *sc;
2899
2900 sc = ifp->if_softc;
2901 RL_LOCK(sc);
2902 re_start_locked(ifp);
2903 RL_UNLOCK(sc);
2904}
2905
2906/*
2907 * Main transmit routine for C+ and gigE NICs.
2908 */
2909static void
2910re_start_locked(struct ifnet *ifp)
2911{
2912 struct rl_softc *sc;
2913 struct mbuf *m_head;
2914 int queued;
2915
2916 sc = ifp->if_softc;
2917
2918#ifdef DEV_NETMAP
2919 /* XXX is this necessary ? */
2920 if (ifp->if_capenable & IFCAP_NETMAP) {
2921 struct netmap_kring *kring = &NA(ifp)->tx_rings[0];
2922 if (sc->rl_ldata.rl_tx_prodidx != kring->nr_hwcur) {
2923 /* kick the tx unit */
2924 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2925#ifdef RE_TX_MODERATION
2926 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2927#endif
2928 sc->rl_watchdog_timer = 5;
2929 }
2930 return;
2931 }
2932#endif /* DEV_NETMAP */
2933 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2934 IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
2935 return;
2936
2937 for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2938 sc->rl_ldata.rl_tx_free > 1;) {
2939 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2940 if (m_head == NULL)
2941 break;
2942
2943 if (re_encap(sc, &m_head) != 0) {
2944 if (m_head == NULL)
2945 break;
2946 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2947 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2948 break;
2949 }
2950
2951 /*
2952 * If there's a BPF listener, bounce a copy of this frame
2953 * to him.
2954 */
2955 ETHER_BPF_MTAP(ifp, m_head);
2956
2957 queued++;
2958 }
2959
2960 if (queued == 0) {
2961#ifdef RE_TX_MODERATION
2962 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2963 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2964#endif
2965 return;
2966 }
2967
2968 /* Flush the TX descriptors */
2969
2970 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2971 sc->rl_ldata.rl_tx_list_map,
2972 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2973
2974 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2975
2976#ifdef RE_TX_MODERATION
2977 /*
2978 * Use the countdown timer for interrupt moderation.
2979 * 'TX done' interrupts are disabled. Instead, we reset the
2980 * countdown timer, which will begin counting until it hits
2981 * the value in the TIMERINT register, and then trigger an
2982 * interrupt. Each time we write to the TIMERCNT register,
2983 * the timer count is reset to 0.
2984 */
2985 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2986#endif
2987
2988 /*
2989 * Set a timeout in case the chip goes out to lunch.
2990 */
2991 sc->rl_watchdog_timer = 5;
2992}
2993
2994static void
2995re_set_jumbo(struct rl_softc *sc, int jumbo)
2996{
2997
2998 if (sc->rl_hwrev->rl_rev == RL_HWREV_8168E_VL) {
2999 pci_set_max_read_req(sc->rl_dev, 4096);
3000 return;
3001 }
3002
3003 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
3004 if (jumbo != 0) {
3005 CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) |
3006 RL_CFG3_JUMBO_EN0);
3007 switch (sc->rl_hwrev->rl_rev) {
3008 case RL_HWREV_8168DP:
3009 break;
3010 case RL_HWREV_8168E:
3011 CSR_WRITE_1(sc, sc->rl_cfg4,
3012 CSR_READ_1(sc, sc->rl_cfg4) | 0x01);
3013 break;
3014 default:
3015 CSR_WRITE_1(sc, sc->rl_cfg4,
3016 CSR_READ_1(sc, sc->rl_cfg4) | RL_CFG4_JUMBO_EN1);
3017 }
3018 } else {
3019 CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) &
3020 ~RL_CFG3_JUMBO_EN0);
3021 switch (sc->rl_hwrev->rl_rev) {
3022 case RL_HWREV_8168DP:
3023 break;
3024 case RL_HWREV_8168E:
3025 CSR_WRITE_1(sc, sc->rl_cfg4,
3026 CSR_READ_1(sc, sc->rl_cfg4) & ~0x01);
3027 break;
3028 default:
3029 CSR_WRITE_1(sc, sc->rl_cfg4,
3030 CSR_READ_1(sc, sc->rl_cfg4) & ~RL_CFG4_JUMBO_EN1);
3031 }
3032 }
3033 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3034
3035 switch (sc->rl_hwrev->rl_rev) {
3036 case RL_HWREV_8168DP:
3037 pci_set_max_read_req(sc->rl_dev, 4096);
3038 break;
3039 default:
3040 if (jumbo != 0)
3041 pci_set_max_read_req(sc->rl_dev, 512);
3042 else
3043 pci_set_max_read_req(sc->rl_dev, 4096);
3044 }
3045}
3046
3047static void
3048re_init(void *xsc)
3049{
3050 struct rl_softc *sc = xsc;
3051
3052 RL_LOCK(sc);
3053 re_init_locked(sc);
3054 RL_UNLOCK(sc);
3055}
3056
3057static void
3058re_init_locked(struct rl_softc *sc)
3059{
3060 struct ifnet *ifp = sc->rl_ifp;
3061 struct mii_data *mii;
3062 uint32_t reg;
3063 uint16_t cfg;
3064 union {
3065 uint32_t align_dummy;
3066 u_char eaddr[ETHER_ADDR_LEN];
3067 } eaddr;
3068
3069 RL_LOCK_ASSERT(sc);
3070
3071 mii = device_get_softc(sc->rl_miibus);
3072
3073 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3074 return;
3075
3076 /*
3077 * Cancel pending I/O and free all RX/TX buffers.
3078 */
3079 re_stop(sc);
3080
3081 /* Put controller into known state. */
3082 re_reset(sc);
3083
3084 /*
3085 * For C+ mode, initialize the RX descriptors and mbufs.
3086 */
3087 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3088 if (ifp->if_mtu > RL_MTU) {
3089 if (re_jrx_list_init(sc) != 0) {
3090 device_printf(sc->rl_dev,
3091 "no memory for jumbo RX buffers\n");
3092 re_stop(sc);
3093 return;
3094 }
3095 /* Disable checksum offloading for jumbo frames. */
3096 ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_TSO4);
3097 ifp->if_hwassist &= ~(RE_CSUM_FEATURES | CSUM_TSO);
3098 } else {
3099 if (re_rx_list_init(sc) != 0) {
3100 device_printf(sc->rl_dev,
3101 "no memory for RX buffers\n");
3102 re_stop(sc);
3103 return;
3104 }
3105 }
3106 re_set_jumbo(sc, ifp->if_mtu > RL_MTU);
3107 } else {
3108 if (re_rx_list_init(sc) != 0) {
3109 device_printf(sc->rl_dev, "no memory for RX buffers\n");
3110 re_stop(sc);
3111 return;
3112 }
3113 if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3114 pci_get_device(sc->rl_dev) != RT_DEVICEID_8101E) {
3115 if (ifp->if_mtu > RL_MTU)
3116 pci_set_max_read_req(sc->rl_dev, 512);
3117 else
3118 pci_set_max_read_req(sc->rl_dev, 4096);
3119 }
3120 }
3121 re_tx_list_init(sc);
3122
3123 /*
3124 * Enable C+ RX and TX mode, as well as VLAN stripping and
3125 * RX checksum offload. We must configure the C+ register
3126 * before all others.
3127 */
3128 cfg = RL_CPLUSCMD_PCI_MRW;
3129 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3130 cfg |= RL_CPLUSCMD_RXCSUM_ENB;
3131 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3132 cfg |= RL_CPLUSCMD_VLANSTRIP;
3133 if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
3134 cfg |= RL_CPLUSCMD_MACSTAT_DIS;
3135 /* XXX magic. */
3136 cfg |= 0x0001;
3137 } else
3138 cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
3139 CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
3140 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SC ||
3141 sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) {
3142 reg = 0x000fff00;
3143 if ((CSR_READ_1(sc, sc->rl_cfg2) & RL_CFG2_PCI66MHZ) != 0)
3144 reg |= 0x000000ff;
3145 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE)
3146 reg |= 0x00f00000;
3147 CSR_WRITE_4(sc, 0x7c, reg);
3148 /* Disable interrupt mitigation. */
3149 CSR_WRITE_2(sc, 0xe2, 0);
3150 }
3151 /*
3152 * Disable TSO if interface MTU size is greater than MSS
3153 * allowed in controller.
3154 */
3155 if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
3156 ifp->if_capenable &= ~IFCAP_TSO4;
3157 ifp->if_hwassist &= ~CSUM_TSO;
3158 }
3159
3160 /*
3161 * Init our MAC address. Even though the chipset
3162 * documentation doesn't mention it, we need to enter "Config
3163 * register write enable" mode to modify the ID registers.
3164 */
3165 /* Copy MAC address on stack to align. */
3166 bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
3167 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
3168 CSR_WRITE_4(sc, RL_IDR0,
3169 htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
3170 CSR_WRITE_4(sc, RL_IDR4,
3171 htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
3172 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3173
3174 /*
3175 * Load the addresses of the RX and TX lists into the chip.
3176 */
3177
3178 CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
3179 RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
3180 CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
3181 RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
3182
3183 CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
3184 RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
3185 CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
3186 RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
3187
3188 if ((sc->rl_flags & RL_FLAG_RXDV_GATED) != 0)
3189 CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) &
3190 ~0x00080000);
3191
3192 /*
3193 * Enable transmit and receive.
3194 */
3195 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
3196
3197 /*
3198 * Set the initial TX configuration.
3199 */
3200 if (sc->rl_testmode) {
3201 if (sc->rl_type == RL_8169)
3202 CSR_WRITE_4(sc, RL_TXCFG,
3203 RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
3204 else
3205 CSR_WRITE_4(sc, RL_TXCFG,
3206 RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
3207 } else
3208 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
3209
3210 CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
3211
3212 /*
3213 * Set the initial RX configuration.
3214 */
3215 re_set_rxmode(sc);
3216
3217 /* Configure interrupt moderation. */
3218 if (sc->rl_type == RL_8169) {
3219 /* Magic from vendor. */
3220 CSR_WRITE_2(sc, RL_INTRMOD, 0x5100);
3221 }
3222
3223#ifdef DEVICE_POLLING
3224 /*
3225 * Disable interrupts if we are polling.
3226 */
3227 if (ifp->if_capenable & IFCAP_POLLING)
3228 CSR_WRITE_2(sc, RL_IMR, 0);
3229 else /* otherwise ... */
3230#endif
3231
3232 /*
3233 * Enable interrupts.
3234 */
3235 if (sc->rl_testmode)
3236 CSR_WRITE_2(sc, RL_IMR, 0);
3237 else
3238 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3239 CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
3240
3241 /* Set initial TX threshold */
3242 sc->rl_txthresh = RL_TX_THRESH_INIT;
3243
3244 /* Start RX/TX process. */
3245 CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
3246#ifdef notdef
3247 /* Enable receiver and transmitter. */
3248 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
3249#endif
3250
3251 /*
3252 * Initialize the timer interrupt register so that
3253 * a timer interrupt will be generated once the timer
3254 * reaches a certain number of ticks. The timer is
3255 * reloaded on each transmit.
3256 */
3257#ifdef RE_TX_MODERATION
3258 /*
3259 * Use timer interrupt register to moderate TX interrupt
3260 * moderation, which dramatically improves TX frame rate.
3261 */
3262 if (sc->rl_type == RL_8169)
3263 CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
3264 else
3265 CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
3266#else
3267 /*
3268 * Use timer interrupt register to moderate RX interrupt
3269 * moderation.
3270 */
3271 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
3272 intr_filter == 0) {
3273 if (sc->rl_type == RL_8169)
3274 CSR_WRITE_4(sc, RL_TIMERINT_8169,
3275 RL_USECS(sc->rl_int_rx_mod));
3276 } else {
3277 if (sc->rl_type == RL_8169)
3278 CSR_WRITE_4(sc, RL_TIMERINT_8169, RL_USECS(0));
3279 }
3280#endif
3281
3282 /*
3283 * For 8169 gigE NICs, set the max allowed RX packet
3284 * size so we can receive jumbo frames.
3285 */
3286 if (sc->rl_type == RL_8169) {
3287 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3288 /*
3289 * For controllers that use new jumbo frame scheme,
3290 * set maximum size of jumbo frame depending on
3291 * controller revisions.
3292 */
3293 if (ifp->if_mtu > RL_MTU)
3294 CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3295 sc->rl_hwrev->rl_max_mtu +
3296 ETHER_VLAN_ENCAP_LEN + ETHER_HDR_LEN +
3297 ETHER_CRC_LEN);
3298 else
3299 CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3300 RE_RX_DESC_BUFLEN);
3301 } else if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3302 sc->rl_hwrev->rl_max_mtu == RL_MTU) {
3303 /* RTL810x has no jumbo frame support. */
3304 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, RE_RX_DESC_BUFLEN);
3305 } else
3306 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
3307 }
3308
3309 if (sc->rl_testmode)
3310 return;
3311
3312 CSR_WRITE_1(sc, sc->rl_cfg1, CSR_READ_1(sc, sc->rl_cfg1) |
3313 RL_CFG1_DRVLOAD);
3314
3315 ifp->if_drv_flags |= IFF_DRV_RUNNING;
3316 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3317
3318 sc->rl_flags &= ~RL_FLAG_LINK;
3319 mii_mediachg(mii);
3320
3321 sc->rl_watchdog_timer = 0;
3322 callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
3323}
3324
3325/*
3326 * Set media options.
3327 */
3328static int
3329re_ifmedia_upd(struct ifnet *ifp)
3330{
3331 struct rl_softc *sc;
3332 struct mii_data *mii;
3333 int error;
3334
3335 sc = ifp->if_softc;
3336 mii = device_get_softc(sc->rl_miibus);
3337 RL_LOCK(sc);
3338 error = mii_mediachg(mii);
3339 RL_UNLOCK(sc);
3340
3341 return (error);
3342}
3343
3344/*
3345 * Report current media status.
3346 */
3347static void
3348re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3349{
3350 struct rl_softc *sc;
3351 struct mii_data *mii;
3352
3353 sc = ifp->if_softc;
3354 mii = device_get_softc(sc->rl_miibus);
3355
3356 RL_LOCK(sc);
3357 mii_pollstat(mii);
3358 ifmr->ifm_active = mii->mii_media_active;
3359 ifmr->ifm_status = mii->mii_media_status;
3360 RL_UNLOCK(sc);
3361}
3362
3363static int
3364re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3365{
3366 struct rl_softc *sc = ifp->if_softc;
3367 struct ifreq *ifr = (struct ifreq *) data;
3368 struct mii_data *mii;
3369 int error = 0;
3370
3371 switch (command) {
3372 case SIOCSIFMTU:
3373 if (ifr->ifr_mtu < ETHERMIN ||
3374 ifr->ifr_mtu > sc->rl_hwrev->rl_max_mtu ||
3375 ((sc->rl_flags & RL_FLAG_FASTETHER) != 0 &&
3376 ifr->ifr_mtu > RL_MTU)) {
3377 error = EINVAL;
3378 break;
3379 }
3380 RL_LOCK(sc);
3381 if (ifp->if_mtu != ifr->ifr_mtu) {
3382 ifp->if_mtu = ifr->ifr_mtu;
3383 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3384 (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3385 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3386 re_init_locked(sc);
3387 }
3388 if (ifp->if_mtu > RL_TSO_MTU &&
3389 (ifp->if_capenable & IFCAP_TSO4) != 0) {
3390 ifp->if_capenable &= ~(IFCAP_TSO4 |
3391 IFCAP_VLAN_HWTSO);
3392 ifp->if_hwassist &= ~CSUM_TSO;
3393 }
3394 VLAN_CAPABILITIES(ifp);
3395 }
3396 RL_UNLOCK(sc);
3397 break;
3398 case SIOCSIFFLAGS:
3399 RL_LOCK(sc);
3400 if ((ifp->if_flags & IFF_UP) != 0) {
3401 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3402 if (((ifp->if_flags ^ sc->rl_if_flags)
3403 & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
3404 re_set_rxmode(sc);
3405 } else
3406 re_init_locked(sc);
3407 } else {
3408 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3409 re_stop(sc);
3410 }
3411 sc->rl_if_flags = ifp->if_flags;
3412 RL_UNLOCK(sc);
3413 break;
3414 case SIOCADDMULTI:
3415 case SIOCDELMULTI:
3416 RL_LOCK(sc);
3417 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3418 re_set_rxmode(sc);
3419 RL_UNLOCK(sc);
3420 break;
3421 case SIOCGIFMEDIA:
3422 case SIOCSIFMEDIA:
3423 mii = device_get_softc(sc->rl_miibus);
3424 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3425 break;
3426 case SIOCSIFCAP:
3427 {
3428 int mask, reinit;
3429
3430 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3431 reinit = 0;
3432#ifdef DEVICE_POLLING
3433 if (mask & IFCAP_POLLING) {
3434 if (ifr->ifr_reqcap & IFCAP_POLLING) {
3435 error = ether_poll_register(re_poll, ifp);
3436 if (error)
3437 return (error);
3438 RL_LOCK(sc);
3439 /* Disable interrupts */
3440 CSR_WRITE_2(sc, RL_IMR, 0x0000);
3441 ifp->if_capenable |= IFCAP_POLLING;
3442 RL_UNLOCK(sc);
3443 } else {
3444 error = ether_poll_deregister(ifp);
3445 /* Enable interrupts. */
3446 RL_LOCK(sc);
3447 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3448 ifp->if_capenable &= ~IFCAP_POLLING;
3449 RL_UNLOCK(sc);
3450 }
3451 }
3452#endif /* DEVICE_POLLING */
3453 RL_LOCK(sc);
3454 if ((mask & IFCAP_TXCSUM) != 0 &&
3455 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3456 ifp->if_capenable ^= IFCAP_TXCSUM;
3457 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
3458 ifp->if_hwassist |= RE_CSUM_FEATURES;
3459 else
3460 ifp->if_hwassist &= ~RE_CSUM_FEATURES;
3461 reinit = 1;
3462 }
3463 if ((mask & IFCAP_RXCSUM) != 0 &&
3464 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
3465 ifp->if_capenable ^= IFCAP_RXCSUM;
3466 reinit = 1;
3467 }
3468 if ((mask & IFCAP_TSO4) != 0 &&
3469 (ifp->if_capabilities & IFCAP_TSO4) != 0) {
3470 ifp->if_capenable ^= IFCAP_TSO4;
3471 if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
3472 ifp->if_hwassist |= CSUM_TSO;
3473 else
3474 ifp->if_hwassist &= ~CSUM_TSO;
3475 if (ifp->if_mtu > RL_TSO_MTU &&
3476 (ifp->if_capenable & IFCAP_TSO4) != 0) {
3477 ifp->if_capenable &= ~IFCAP_TSO4;
3478 ifp->if_hwassist &= ~CSUM_TSO;
3479 }
3480 }
3481 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
3482 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
3483 ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
3484 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3485 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
3486 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3487 /* TSO over VLAN requires VLAN hardware tagging. */
3488 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
3489 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
3490 reinit = 1;
3491 }
3492 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3493 (mask & (IFCAP_HWCSUM | IFCAP_TSO4 |
3494 IFCAP_VLAN_HWTSO)) != 0)
3495 reinit = 1;
3496 if ((mask & IFCAP_WOL) != 0 &&
3497 (ifp->if_capabilities & IFCAP_WOL) != 0) {
3498 if ((mask & IFCAP_WOL_UCAST) != 0)
3499 ifp->if_capenable ^= IFCAP_WOL_UCAST;
3500 if ((mask & IFCAP_WOL_MCAST) != 0)
3501 ifp->if_capenable ^= IFCAP_WOL_MCAST;
3502 if ((mask & IFCAP_WOL_MAGIC) != 0)
3503 ifp->if_capenable ^= IFCAP_WOL_MAGIC;
3504 }
3505 if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) {
3506 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3507 re_init_locked(sc);
3508 }
3509 RL_UNLOCK(sc);
3510 VLAN_CAPABILITIES(ifp);
3511 }
3512 break;
3513 default:
3514 error = ether_ioctl(ifp, command, data);
3515 break;
3516 }
3517
3518 return (error);
3519}
3520
3521static void
3522re_watchdog(struct rl_softc *sc)
3523{
3524 struct ifnet *ifp;
3525
3526 RL_LOCK_ASSERT(sc);
3527
3528 if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
3529 return;
3530
3531 ifp = sc->rl_ifp;
3532 re_txeof(sc);
3533 if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) {
3534 if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
3535 "-- recovering\n");
3536 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3537 re_start_locked(ifp);
3538 return;
3539 }
3540
3541 if_printf(ifp, "watchdog timeout\n");
3542 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3543
3544 re_rxeof(sc, NULL);
3545 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3546 re_init_locked(sc);
3547 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3548 re_start_locked(ifp);
3549}
3550
3551/*
3552 * Stop the adapter and free any mbufs allocated to the
3553 * RX and TX lists.
3554 */
3555static void
3556re_stop(struct rl_softc *sc)
3557{
3558 int i;
3559 struct ifnet *ifp;
3560 struct rl_txdesc *txd;
3561 struct rl_rxdesc *rxd;
3562
3563 RL_LOCK_ASSERT(sc);
3564
3565 ifp = sc->rl_ifp;
3566
3567 sc->rl_watchdog_timer = 0;
3568 callout_stop(&sc->rl_stat_callout);
3569 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3570
3571 /*
3572 * Disable accepting frames to put RX MAC into idle state.
3573 * Otherwise it's possible to get frames while stop command
3574 * execution is in progress and controller can DMA the frame
3575 * to already freed RX buffer during that period.
3576 */
3577 CSR_WRITE_4(sc, RL_RXCFG, CSR_READ_4(sc, RL_RXCFG) &
3578 ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_MULTI |
3579 RL_RXCFG_RX_BROAD));
3580
3581 if ((sc->rl_flags & RL_FLAG_WAIT_TXPOLL) != 0) {
3582 for (i = RL_TIMEOUT; i > 0; i--) {
3583 if ((CSR_READ_1(sc, sc->rl_txstart) &
3584 RL_TXSTART_START) == 0)
3585 break;
3586 DELAY(20);
3587 }
3588 if (i == 0)
3589 device_printf(sc->rl_dev,
3590 "stopping TX poll timed out!\n");
3591 CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3592 } else if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0) {
3593 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
3594 RL_CMD_RX_ENB);
3595 if ((sc->rl_flags & RL_FLAG_CMDSTOP_WAIT_TXQ) != 0) {
3596 for (i = RL_TIMEOUT; i > 0; i--) {
3597 if ((CSR_READ_4(sc, RL_TXCFG) &
3598 RL_TXCFG_QUEUE_EMPTY) != 0)
3599 break;
3600 DELAY(100);
3601 }
3602 if (i == 0)
3603 device_printf(sc->rl_dev,
3604 "stopping TXQ timed out!\n");
3605 }
3606 } else
3607 CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3608 DELAY(1000);
3609 CSR_WRITE_2(sc, RL_IMR, 0x0000);
3610 CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
3611
3612 if (sc->rl_head != NULL) {
3613 m_freem(sc->rl_head);
3614 sc->rl_head = sc->rl_tail = NULL;
3615 }
3616
3617 /* Free the TX list buffers. */
3618 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
3619 txd = &sc->rl_ldata.rl_tx_desc[i];
3620 if (txd->tx_m != NULL) {
3621 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3622 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3623 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
3624 txd->tx_dmamap);
3625 m_freem(txd->tx_m);
3626 txd->tx_m = NULL;
3627 }
3628 }
3629
3630 /* Free the RX list buffers. */
3631 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3632 rxd = &sc->rl_ldata.rl_rx_desc[i];
3633 if (rxd->rx_m != NULL) {
3634 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
3635 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3636 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
3637 rxd->rx_dmamap);
3638 m_freem(rxd->rx_m);
3639 rxd->rx_m = NULL;
3640 }
3641 }
3642
3643 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3644 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3645 rxd = &sc->rl_ldata.rl_jrx_desc[i];
3646 if (rxd->rx_m != NULL) {
3647 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag,
3648 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3649 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag,
3650 rxd->rx_dmamap);
3651 m_freem(rxd->rx_m);
3652 rxd->rx_m = NULL;
3653 }
3654 }
3655 }
3656}
3657
3658/*
3659 * Device suspend routine. Stop the interface and save some PCI
3660 * settings in case the BIOS doesn't restore them properly on
3661 * resume.
3662 */
3663static int
3664re_suspend(device_t dev)
3665{
3666 struct rl_softc *sc;
3667
3668 sc = device_get_softc(dev);
3669
3670 RL_LOCK(sc);
3671 re_stop(sc);
3672 re_setwol(sc);
3673 sc->suspended = 1;
3674 RL_UNLOCK(sc);
3675
3676 return (0);
3677}
3678
3679/*
3680 * Device resume routine. Restore some PCI settings in case the BIOS
3681 * doesn't, re-enable busmastering, and restart the interface if
3682 * appropriate.
3683 */
3684static int
3685re_resume(device_t dev)
3686{
3687 struct rl_softc *sc;
3688 struct ifnet *ifp;
3689
3690 sc = device_get_softc(dev);
3691
3692 RL_LOCK(sc);
3693
3694 ifp = sc->rl_ifp;
3695 /* Take controller out of sleep mode. */
3696 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3697 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3698 CSR_WRITE_1(sc, RL_GPIO,
3699 CSR_READ_1(sc, RL_GPIO) | 0x01);
3700 }
3701
3702 /*
3703 * Clear WOL matching such that normal Rx filtering
3704 * wouldn't interfere with WOL patterns.
3705 */
3706 re_clrwol(sc);
3707
3708 /* reinitialize interface if necessary */
3709 if (ifp->if_flags & IFF_UP)
3710 re_init_locked(sc);
3711
3712 sc->suspended = 0;
3713 RL_UNLOCK(sc);
3714
3715 return (0);
3716}
3717
3718/*
3719 * Stop all chip I/O so that the kernel's probe routines don't
3720 * get confused by errant DMAs when rebooting.
3721 */
3722static int
3723re_shutdown(device_t dev)
3724{
3725 struct rl_softc *sc;
3726
3727 sc = device_get_softc(dev);
3728
3729 RL_LOCK(sc);
3730 re_stop(sc);
3731 /*
3732 * Mark interface as down since otherwise we will panic if
3733 * interrupt comes in later on, which can happen in some
3734 * cases.
3735 */
3736 sc->rl_ifp->if_flags &= ~IFF_UP;
3737 re_setwol(sc);
3738 RL_UNLOCK(sc);
3739
3740 return (0);
3741}
3742
3743static void
3744re_set_linkspeed(struct rl_softc *sc)
3745{
3746 struct mii_softc *miisc;
3747 struct mii_data *mii;
3748 int aneg, i, phyno;
3749
3750 RL_LOCK_ASSERT(sc);
3751
3752 mii = device_get_softc(sc->rl_miibus);
3753 mii_pollstat(mii);
3754 aneg = 0;
3755 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
3756 (IFM_ACTIVE | IFM_AVALID)) {
3757 switch IFM_SUBTYPE(mii->mii_media_active) {
3758 case IFM_10_T:
3759 case IFM_100_TX:
3760 return;
3761 case IFM_1000_T:
3762 aneg++;
3763 break;
3764 default:
3765 break;
3766 }
3767 }
3768 miisc = LIST_FIRST(&mii->mii_phys);
3769 phyno = miisc->mii_phy;
3770 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3771 PHY_RESET(miisc);
3772 re_miibus_writereg(sc->rl_dev, phyno, MII_100T2CR, 0);
3773 re_miibus_writereg(sc->rl_dev, phyno,
3774 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
3775 re_miibus_writereg(sc->rl_dev, phyno,
3776 MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
3777 DELAY(1000);
3778 if (aneg != 0) {
3779 /*
3780 * Poll link state until re(4) get a 10/100Mbps link.
3781 */
3782 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
3783 mii_pollstat(mii);
3784 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
3785 == (IFM_ACTIVE | IFM_AVALID)) {
3786 switch (IFM_SUBTYPE(mii->mii_media_active)) {
3787 case IFM_10_T:
3788 case IFM_100_TX:
3789 return;
3790 default:
3791 break;
3792 }
3793 }
3794 RL_UNLOCK(sc);
3795 pause("relnk", hz);
3796 RL_LOCK(sc);
3797 }
3798 if (i == MII_ANEGTICKS_GIGE)
3799 device_printf(sc->rl_dev,
3800 "establishing a link failed, WOL may not work!");
3801 }
3802 /*
3803 * No link, force MAC to have 100Mbps, full-duplex link.
3804 * MAC does not require reprogramming on resolved speed/duplex,
3805 * so this is just for completeness.
3806 */
3807 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
3808 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
3809}
3810
3811static void
3812re_setwol(struct rl_softc *sc)
3813{
3814 struct ifnet *ifp;
3815 int pmc;
3816 uint16_t pmstat;
3817 uint8_t v;
3818
3819 RL_LOCK_ASSERT(sc);
3820
3821 if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3822 return;
3823
3824 ifp = sc->rl_ifp;
3825 /* Put controller into sleep mode. */
3826 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3827 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3828 CSR_WRITE_1(sc, RL_GPIO,
3829 CSR_READ_1(sc, RL_GPIO) & ~0x01);
3830 }
3831 if ((ifp->if_capenable & IFCAP_WOL) != 0) {
3832 re_set_rxmode(sc);
3833 if ((sc->rl_flags & RL_FLAG_WOL_MANLINK) != 0)
3834 re_set_linkspeed(sc);
3835 if ((sc->rl_flags & RL_FLAG_WOLRXENB) != 0)
3836 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB);
3837 }
3838 /* Enable config register write. */
3839 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3840
3841 /* Enable PME. */
3842 v = CSR_READ_1(sc, sc->rl_cfg1);
3843 v &= ~RL_CFG1_PME;
3844 if ((ifp->if_capenable & IFCAP_WOL) != 0)
3845 v |= RL_CFG1_PME;
3846 CSR_WRITE_1(sc, sc->rl_cfg1, v);
3847
3848 v = CSR_READ_1(sc, sc->rl_cfg3);
3849 v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3850 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3851 v |= RL_CFG3_WOL_MAGIC;
3852 CSR_WRITE_1(sc, sc->rl_cfg3, v);
3853
3854 v = CSR_READ_1(sc, sc->rl_cfg5);
3855 v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST |
3856 RL_CFG5_WOL_LANWAKE);
3857 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
3858 v |= RL_CFG5_WOL_UCAST;
3859 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
3860 v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3861 if ((ifp->if_capenable & IFCAP_WOL) != 0)
3862 v |= RL_CFG5_WOL_LANWAKE;
3863 CSR_WRITE_1(sc, sc->rl_cfg5, v);
3864
3865 /* Config register write done. */
3866 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3867
3868 if ((ifp->if_capenable & IFCAP_WOL) == 0 &&
3869 (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
3870 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80);
3871 /*
3872 * It seems that hardware resets its link speed to 100Mbps in
3873 * power down mode so switching to 100Mbps in driver is not
3874 * needed.
3875 */
3876
3877 /* Request PME if WOL is requested. */
3878 pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3879 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3880 if ((ifp->if_capenable & IFCAP_WOL) != 0)
3881 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3882 pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3883}
3884
3885static void
3886re_clrwol(struct rl_softc *sc)
3887{
3888 int pmc;
3889 uint8_t v;
3890
3891 RL_LOCK_ASSERT(sc);
3892
3893 if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3894 return;
3895
3896 /* Enable config register write. */
3897 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3898
3899 v = CSR_READ_1(sc, sc->rl_cfg3);
3900 v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3901 CSR_WRITE_1(sc, sc->rl_cfg3, v);
3902
3903 /* Config register write done. */
3904 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3905
3906 v = CSR_READ_1(sc, sc->rl_cfg5);
3907 v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3908 v &= ~RL_CFG5_WOL_LANWAKE;
3909 CSR_WRITE_1(sc, sc->rl_cfg5, v);
3910}
3911
3912static void
3913re_add_sysctls(struct rl_softc *sc)
3914{
3915 struct sysctl_ctx_list *ctx;
3916 struct sysctl_oid_list *children;
3917 int error;
3918
3919 ctx = device_get_sysctl_ctx(sc->rl_dev);
3920 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
3921
3922 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats",
3923 CTLTYPE_INT | CTLFLAG_RW, sc, 0, re_sysctl_stats, "I",
3924 "Statistics Information");
3925 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
3926 return;
3927
3928 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "int_rx_mod",
3929 CTLTYPE_INT | CTLFLAG_RW, &sc->rl_int_rx_mod, 0,
3930 sysctl_hw_re_int_mod, "I", "re RX interrupt moderation");
3931 /* Pull in device tunables. */
3932 sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3933 error = resource_int_value(device_get_name(sc->rl_dev),
3934 device_get_unit(sc->rl_dev), "int_rx_mod", &sc->rl_int_rx_mod);
3935 if (error == 0) {
3936 if (sc->rl_int_rx_mod < RL_TIMER_MIN ||
3937 sc->rl_int_rx_mod > RL_TIMER_MAX) {
3938 device_printf(sc->rl_dev, "int_rx_mod value out of "
3939 "range; using default: %d\n",
3940 RL_TIMER_DEFAULT);
3941 sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3942 }
3943 }
3944
3945}
3946
3947static int
3948re_sysctl_stats(SYSCTL_HANDLER_ARGS)
3949{
3950 struct rl_softc *sc;
3951 struct rl_stats *stats;
3952 int error, i, result;
3953
3954 result = -1;
3955 error = sysctl_handle_int(oidp, &result, 0, req);
3956 if (error || req->newptr == NULL)
3957 return (error);
3958
3959 if (result == 1) {
3960 sc = (struct rl_softc *)arg1;
3961 RL_LOCK(sc);
3962 if ((sc->rl_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3963 RL_UNLOCK(sc);
3964 goto done;
3965 }
3966 bus_dmamap_sync(sc->rl_ldata.rl_stag,
3967 sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD);
3968 CSR_WRITE_4(sc, RL_DUMPSTATS_HI,
3969 RL_ADDR_HI(sc->rl_ldata.rl_stats_addr));
3970 CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3971 RL_ADDR_LO(sc->rl_ldata.rl_stats_addr));
3972 CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3973 RL_ADDR_LO(sc->rl_ldata.rl_stats_addr |
3974 RL_DUMPSTATS_START));
3975 for (i = RL_TIMEOUT; i > 0; i--) {
3976 if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) &
3977 RL_DUMPSTATS_START) == 0)
3978 break;
3979 DELAY(1000);
3980 }
3981 bus_dmamap_sync(sc->rl_ldata.rl_stag,
3982 sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD);
3983 RL_UNLOCK(sc);
3984 if (i == 0) {
3985 device_printf(sc->rl_dev,
3986 "DUMP statistics request timed out\n");
3987 return (ETIMEDOUT);
3988 }
3989done:
3990 stats = sc->rl_ldata.rl_stats;
3991 printf("%s statistics:\n", device_get_nameunit(sc->rl_dev));
3992 printf("Tx frames : %ju\n",
3993 (uintmax_t)le64toh(stats->rl_tx_pkts));
3994 printf("Rx frames : %ju\n",
3995 (uintmax_t)le64toh(stats->rl_rx_pkts));
3996 printf("Tx errors : %ju\n",
3997 (uintmax_t)le64toh(stats->rl_tx_errs));
3998 printf("Rx errors : %u\n",
3999 le32toh(stats->rl_rx_errs));
4000 printf("Rx missed frames : %u\n",
4001 (uint32_t)le16toh(stats->rl_missed_pkts));
4002 printf("Rx frame alignment errs : %u\n",
4003 (uint32_t)le16toh(stats->rl_rx_framealign_errs));
4004 printf("Tx single collisions : %u\n",
4005 le32toh(stats->rl_tx_onecoll));
4006 printf("Tx multiple collisions : %u\n",
4007 le32toh(stats->rl_tx_multicolls));
4008 printf("Rx unicast frames : %ju\n",
4009 (uintmax_t)le64toh(stats->rl_rx_ucasts));
4010 printf("Rx broadcast frames : %ju\n",
4011 (uintmax_t)le64toh(stats->rl_rx_bcasts));
4012 printf("Rx multicast frames : %u\n",
4013 le32toh(stats->rl_rx_mcasts));
4014 printf("Tx aborts : %u\n",
4015 (uint32_t)le16toh(stats->rl_tx_aborts));
4016 printf("Tx underruns : %u\n",
4017 (uint32_t)le16toh(stats->rl_rx_underruns));
4018 }
4019
4020 return (error);
4021}
4022
4023static int
4024sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4025{
4026 int error, value;
4027
4028 if (arg1 == NULL)
4029 return (EINVAL);
4030 value = *(int *)arg1;
4031 error = sysctl_handle_int(oidp, &value, 0, req);
4032 if (error || req->newptr == NULL)
4033 return (error);
4034 if (value < low || value > high)
4035 return (EINVAL);
4036 *(int *)arg1 = value;
4037
4038 return (0);
4039}
4040
4041static int
4042sysctl_hw_re_int_mod(SYSCTL_HANDLER_ARGS)
4043{
4044
4045 return (sysctl_int_range(oidp, arg1, arg2, req, RL_TIMER_MIN,
4046 RL_TIMER_MAX));
4047}
152
153MODULE_DEPEND(re, pci, 1, 1, 1);
154MODULE_DEPEND(re, ether, 1, 1, 1);
155MODULE_DEPEND(re, miibus, 1, 1, 1);
156
157/* "device miibus" required. See GENERIC if you get errors here. */
158#include "miibus_if.h"
159
160/* Tunables. */
161static int intr_filter = 0;
162TUNABLE_INT("hw.re.intr_filter", &intr_filter);
163static int msi_disable = 0;
164TUNABLE_INT("hw.re.msi_disable", &msi_disable);
165static int msix_disable = 0;
166TUNABLE_INT("hw.re.msix_disable", &msix_disable);
167static int prefer_iomap = 0;
168TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap);
169
170#define RE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
171
172/*
173 * Various supported device vendors/types and their names.
174 */
175static const struct rl_type re_devs[] = {
176 { DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
177 "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
178 { DLINK_VENDORID, DLINK_DEVICEID_530T_REVC, 0,
179 "D-Link DGE-530(T) Gigabit Ethernet Adapter" },
180 { RT_VENDORID, RT_DEVICEID_8139, 0,
181 "RealTek 8139C+ 10/100BaseTX" },
182 { RT_VENDORID, RT_DEVICEID_8101E, 0,
183 "RealTek 810xE PCIe 10/100baseTX" },
184 { RT_VENDORID, RT_DEVICEID_8168, 0,
185 "RealTek 8168/8111 B/C/CP/D/DP/E/F/G PCIe Gigabit Ethernet" },
186 { RT_VENDORID, RT_DEVICEID_8169, 0,
187 "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
188 { RT_VENDORID, RT_DEVICEID_8169SC, 0,
189 "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
190 { COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
191 "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
192 { LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
193 "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
194 { USR_VENDORID, USR_DEVICEID_997902, 0,
195 "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
196};
197
198static const struct rl_hwrev re_hwrevs[] = {
199 { RL_HWREV_8139, RL_8139, "", RL_MTU },
200 { RL_HWREV_8139A, RL_8139, "A", RL_MTU },
201 { RL_HWREV_8139AG, RL_8139, "A-G", RL_MTU },
202 { RL_HWREV_8139B, RL_8139, "B", RL_MTU },
203 { RL_HWREV_8130, RL_8139, "8130", RL_MTU },
204 { RL_HWREV_8139C, RL_8139, "C", RL_MTU },
205 { RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C", RL_MTU },
206 { RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+", RL_MTU },
207 { RL_HWREV_8168B_SPIN1, RL_8169, "8168", RL_JUMBO_MTU },
208 { RL_HWREV_8169, RL_8169, "8169", RL_JUMBO_MTU },
209 { RL_HWREV_8169S, RL_8169, "8169S", RL_JUMBO_MTU },
210 { RL_HWREV_8110S, RL_8169, "8110S", RL_JUMBO_MTU },
211 { RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB", RL_JUMBO_MTU },
212 { RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
213 { RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL", RL_JUMBO_MTU },
214 { RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
215 { RL_HWREV_8100, RL_8139, "8100", RL_MTU },
216 { RL_HWREV_8101, RL_8139, "8101", RL_MTU },
217 { RL_HWREV_8100E, RL_8169, "8100E", RL_MTU },
218 { RL_HWREV_8101E, RL_8169, "8101E", RL_MTU },
219 { RL_HWREV_8102E, RL_8169, "8102E", RL_MTU },
220 { RL_HWREV_8102EL, RL_8169, "8102EL", RL_MTU },
221 { RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL", RL_MTU },
222 { RL_HWREV_8103E, RL_8169, "8103E", RL_MTU },
223 { RL_HWREV_8401E, RL_8169, "8401E", RL_MTU },
224 { RL_HWREV_8402, RL_8169, "8402", RL_MTU },
225 { RL_HWREV_8105E, RL_8169, "8105E", RL_MTU },
226 { RL_HWREV_8105E_SPIN1, RL_8169, "8105E", RL_MTU },
227 { RL_HWREV_8106E, RL_8169, "8106E", RL_MTU },
228 { RL_HWREV_8168B_SPIN2, RL_8169, "8168", RL_JUMBO_MTU },
229 { RL_HWREV_8168B_SPIN3, RL_8169, "8168", RL_JUMBO_MTU },
230 { RL_HWREV_8168C, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
231 { RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
232 { RL_HWREV_8168CP, RL_8169, "8168CP/8111CP", RL_JUMBO_MTU_6K },
233 { RL_HWREV_8168D, RL_8169, "8168D/8111D", RL_JUMBO_MTU_9K },
234 { RL_HWREV_8168DP, RL_8169, "8168DP/8111DP", RL_JUMBO_MTU_9K },
235 { RL_HWREV_8168E, RL_8169, "8168E/8111E", RL_JUMBO_MTU_9K},
236 { RL_HWREV_8168E_VL, RL_8169, "8168E/8111E-VL", RL_JUMBO_MTU_6K},
237 { RL_HWREV_8168EP, RL_8169, "8168EP/8111EP", RL_JUMBO_MTU_9K},
238 { RL_HWREV_8168F, RL_8169, "8168F/8111F", RL_JUMBO_MTU_9K},
239 { RL_HWREV_8168G, RL_8169, "8168G/8111G", RL_JUMBO_MTU_9K},
240 { RL_HWREV_8168GU, RL_8169, "8168GU/8111GU", RL_JUMBO_MTU_9K},
241 { RL_HWREV_8411, RL_8169, "8411", RL_JUMBO_MTU_9K},
242 { RL_HWREV_8411B, RL_8169, "8411B", RL_JUMBO_MTU_9K},
243 { 0, 0, NULL, 0 }
244};
245
246static int re_probe (device_t);
247static int re_attach (device_t);
248static int re_detach (device_t);
249
250static int re_encap (struct rl_softc *, struct mbuf **);
251
252static void re_dma_map_addr (void *, bus_dma_segment_t *, int, int);
253static int re_allocmem (device_t, struct rl_softc *);
254static __inline void re_discard_rxbuf
255 (struct rl_softc *, int);
256static int re_newbuf (struct rl_softc *, int);
257static int re_jumbo_newbuf (struct rl_softc *, int);
258static int re_rx_list_init (struct rl_softc *);
259static int re_jrx_list_init (struct rl_softc *);
260static int re_tx_list_init (struct rl_softc *);
261#ifdef RE_FIXUP_RX
262static __inline void re_fixup_rx
263 (struct mbuf *);
264#endif
265static int re_rxeof (struct rl_softc *, int *);
266static void re_txeof (struct rl_softc *);
267#ifdef DEVICE_POLLING
268static int re_poll (struct ifnet *, enum poll_cmd, int);
269static int re_poll_locked (struct ifnet *, enum poll_cmd, int);
270#endif
271static int re_intr (void *);
272static void re_intr_msi (void *);
273static void re_tick (void *);
274static void re_int_task (void *, int);
275static void re_start (struct ifnet *);
276static void re_start_locked (struct ifnet *);
277static int re_ioctl (struct ifnet *, u_long, caddr_t);
278static void re_init (void *);
279static void re_init_locked (struct rl_softc *);
280static void re_stop (struct rl_softc *);
281static void re_watchdog (struct rl_softc *);
282static int re_suspend (device_t);
283static int re_resume (device_t);
284static int re_shutdown (device_t);
285static int re_ifmedia_upd (struct ifnet *);
286static void re_ifmedia_sts (struct ifnet *, struct ifmediareq *);
287
288static void re_eeprom_putbyte (struct rl_softc *, int);
289static void re_eeprom_getword (struct rl_softc *, int, u_int16_t *);
290static void re_read_eeprom (struct rl_softc *, caddr_t, int, int);
291static int re_gmii_readreg (device_t, int, int);
292static int re_gmii_writereg (device_t, int, int, int);
293
294static int re_miibus_readreg (device_t, int, int);
295static int re_miibus_writereg (device_t, int, int, int);
296static void re_miibus_statchg (device_t);
297
298static void re_set_jumbo (struct rl_softc *, int);
299static void re_set_rxmode (struct rl_softc *);
300static void re_reset (struct rl_softc *);
301static void re_setwol (struct rl_softc *);
302static void re_clrwol (struct rl_softc *);
303static void re_set_linkspeed (struct rl_softc *);
304
305#ifdef DEV_NETMAP /* see ixgbe.c for details */
306#include <dev/netmap/if_re_netmap.h>
307#endif /* !DEV_NETMAP */
308
309#ifdef RE_DIAG
310static int re_diag (struct rl_softc *);
311#endif
312
313static void re_add_sysctls (struct rl_softc *);
314static int re_sysctl_stats (SYSCTL_HANDLER_ARGS);
315static int sysctl_int_range (SYSCTL_HANDLER_ARGS, int, int);
316static int sysctl_hw_re_int_mod (SYSCTL_HANDLER_ARGS);
317
318static device_method_t re_methods[] = {
319 /* Device interface */
320 DEVMETHOD(device_probe, re_probe),
321 DEVMETHOD(device_attach, re_attach),
322 DEVMETHOD(device_detach, re_detach),
323 DEVMETHOD(device_suspend, re_suspend),
324 DEVMETHOD(device_resume, re_resume),
325 DEVMETHOD(device_shutdown, re_shutdown),
326
327 /* MII interface */
328 DEVMETHOD(miibus_readreg, re_miibus_readreg),
329 DEVMETHOD(miibus_writereg, re_miibus_writereg),
330 DEVMETHOD(miibus_statchg, re_miibus_statchg),
331
332 DEVMETHOD_END
333};
334
335static driver_t re_driver = {
336 "re",
337 re_methods,
338 sizeof(struct rl_softc)
339};
340
341static devclass_t re_devclass;
342
343DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
344DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
345
346#define EE_SET(x) \
347 CSR_WRITE_1(sc, RL_EECMD, \
348 CSR_READ_1(sc, RL_EECMD) | x)
349
350#define EE_CLR(x) \
351 CSR_WRITE_1(sc, RL_EECMD, \
352 CSR_READ_1(sc, RL_EECMD) & ~x)
353
354/*
355 * Send a read command and address to the EEPROM, check for ACK.
356 */
357static void
358re_eeprom_putbyte(struct rl_softc *sc, int addr)
359{
360 int d, i;
361
362 d = addr | (RL_9346_READ << sc->rl_eewidth);
363
364 /*
365 * Feed in each bit and strobe the clock.
366 */
367
368 for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
369 if (d & i) {
370 EE_SET(RL_EE_DATAIN);
371 } else {
372 EE_CLR(RL_EE_DATAIN);
373 }
374 DELAY(100);
375 EE_SET(RL_EE_CLK);
376 DELAY(150);
377 EE_CLR(RL_EE_CLK);
378 DELAY(100);
379 }
380}
381
382/*
383 * Read a word of data stored in the EEPROM at address 'addr.'
384 */
385static void
386re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
387{
388 int i;
389 u_int16_t word = 0;
390
391 /*
392 * Send address of word we want to read.
393 */
394 re_eeprom_putbyte(sc, addr);
395
396 /*
397 * Start reading bits from EEPROM.
398 */
399 for (i = 0x8000; i; i >>= 1) {
400 EE_SET(RL_EE_CLK);
401 DELAY(100);
402 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
403 word |= i;
404 EE_CLR(RL_EE_CLK);
405 DELAY(100);
406 }
407
408 *dest = word;
409}
410
411/*
412 * Read a sequence of words from the EEPROM.
413 */
414static void
415re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
416{
417 int i;
418 u_int16_t word = 0, *ptr;
419
420 CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
421
422 DELAY(100);
423
424 for (i = 0; i < cnt; i++) {
425 CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
426 re_eeprom_getword(sc, off + i, &word);
427 CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
428 ptr = (u_int16_t *)(dest + (i * 2));
429 *ptr = word;
430 }
431
432 CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
433}
434
435static int
436re_gmii_readreg(device_t dev, int phy, int reg)
437{
438 struct rl_softc *sc;
439 u_int32_t rval;
440 int i;
441
442 sc = device_get_softc(dev);
443
444 /* Let the rgephy driver read the GMEDIASTAT register */
445
446 if (reg == RL_GMEDIASTAT) {
447 rval = CSR_READ_1(sc, RL_GMEDIASTAT);
448 return (rval);
449 }
450
451 CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
452
453 for (i = 0; i < RL_PHY_TIMEOUT; i++) {
454 rval = CSR_READ_4(sc, RL_PHYAR);
455 if (rval & RL_PHYAR_BUSY)
456 break;
457 DELAY(25);
458 }
459
460 if (i == RL_PHY_TIMEOUT) {
461 device_printf(sc->rl_dev, "PHY read failed\n");
462 return (0);
463 }
464
465 /*
466 * Controller requires a 20us delay to process next MDIO request.
467 */
468 DELAY(20);
469
470 return (rval & RL_PHYAR_PHYDATA);
471}
472
473static int
474re_gmii_writereg(device_t dev, int phy, int reg, int data)
475{
476 struct rl_softc *sc;
477 u_int32_t rval;
478 int i;
479
480 sc = device_get_softc(dev);
481
482 CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
483 (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
484
485 for (i = 0; i < RL_PHY_TIMEOUT; i++) {
486 rval = CSR_READ_4(sc, RL_PHYAR);
487 if (!(rval & RL_PHYAR_BUSY))
488 break;
489 DELAY(25);
490 }
491
492 if (i == RL_PHY_TIMEOUT) {
493 device_printf(sc->rl_dev, "PHY write failed\n");
494 return (0);
495 }
496
497 /*
498 * Controller requires a 20us delay to process next MDIO request.
499 */
500 DELAY(20);
501
502 return (0);
503}
504
505static int
506re_miibus_readreg(device_t dev, int phy, int reg)
507{
508 struct rl_softc *sc;
509 u_int16_t rval = 0;
510 u_int16_t re8139_reg = 0;
511
512 sc = device_get_softc(dev);
513
514 if (sc->rl_type == RL_8169) {
515 rval = re_gmii_readreg(dev, phy, reg);
516 return (rval);
517 }
518
519 switch (reg) {
520 case MII_BMCR:
521 re8139_reg = RL_BMCR;
522 break;
523 case MII_BMSR:
524 re8139_reg = RL_BMSR;
525 break;
526 case MII_ANAR:
527 re8139_reg = RL_ANAR;
528 break;
529 case MII_ANER:
530 re8139_reg = RL_ANER;
531 break;
532 case MII_ANLPAR:
533 re8139_reg = RL_LPAR;
534 break;
535 case MII_PHYIDR1:
536 case MII_PHYIDR2:
537 return (0);
538 /*
539 * Allow the rlphy driver to read the media status
540 * register. If we have a link partner which does not
541 * support NWAY, this is the register which will tell
542 * us the results of parallel detection.
543 */
544 case RL_MEDIASTAT:
545 rval = CSR_READ_1(sc, RL_MEDIASTAT);
546 return (rval);
547 default:
548 device_printf(sc->rl_dev, "bad phy register\n");
549 return (0);
550 }
551 rval = CSR_READ_2(sc, re8139_reg);
552 if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
553 /* 8139C+ has different bit layout. */
554 rval &= ~(BMCR_LOOP | BMCR_ISO);
555 }
556 return (rval);
557}
558
559static int
560re_miibus_writereg(device_t dev, int phy, int reg, int data)
561{
562 struct rl_softc *sc;
563 u_int16_t re8139_reg = 0;
564 int rval = 0;
565
566 sc = device_get_softc(dev);
567
568 if (sc->rl_type == RL_8169) {
569 rval = re_gmii_writereg(dev, phy, reg, data);
570 return (rval);
571 }
572
573 switch (reg) {
574 case MII_BMCR:
575 re8139_reg = RL_BMCR;
576 if (sc->rl_type == RL_8139CPLUS) {
577 /* 8139C+ has different bit layout. */
578 data &= ~(BMCR_LOOP | BMCR_ISO);
579 }
580 break;
581 case MII_BMSR:
582 re8139_reg = RL_BMSR;
583 break;
584 case MII_ANAR:
585 re8139_reg = RL_ANAR;
586 break;
587 case MII_ANER:
588 re8139_reg = RL_ANER;
589 break;
590 case MII_ANLPAR:
591 re8139_reg = RL_LPAR;
592 break;
593 case MII_PHYIDR1:
594 case MII_PHYIDR2:
595 return (0);
596 break;
597 default:
598 device_printf(sc->rl_dev, "bad phy register\n");
599 return (0);
600 }
601 CSR_WRITE_2(sc, re8139_reg, data);
602 return (0);
603}
604
605static void
606re_miibus_statchg(device_t dev)
607{
608 struct rl_softc *sc;
609 struct ifnet *ifp;
610 struct mii_data *mii;
611
612 sc = device_get_softc(dev);
613 mii = device_get_softc(sc->rl_miibus);
614 ifp = sc->rl_ifp;
615 if (mii == NULL || ifp == NULL ||
616 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
617 return;
618
619 sc->rl_flags &= ~RL_FLAG_LINK;
620 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
621 (IFM_ACTIVE | IFM_AVALID)) {
622 switch (IFM_SUBTYPE(mii->mii_media_active)) {
623 case IFM_10_T:
624 case IFM_100_TX:
625 sc->rl_flags |= RL_FLAG_LINK;
626 break;
627 case IFM_1000_T:
628 if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
629 break;
630 sc->rl_flags |= RL_FLAG_LINK;
631 break;
632 default:
633 break;
634 }
635 }
636 /*
637 * RealTek controllers does not provide any interface to
638 * Tx/Rx MACs for resolved speed, duplex and flow-control
639 * parameters.
640 */
641}
642
643/*
644 * Set the RX configuration and 64-bit multicast hash filter.
645 */
646static void
647re_set_rxmode(struct rl_softc *sc)
648{
649 struct ifnet *ifp;
650 struct ifmultiaddr *ifma;
651 uint32_t hashes[2] = { 0, 0 };
652 uint32_t h, rxfilt;
653
654 RL_LOCK_ASSERT(sc);
655
656 ifp = sc->rl_ifp;
657
658 rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
659 if ((sc->rl_flags & RL_FLAG_EARLYOFF) != 0)
660 rxfilt |= RL_RXCFG_EARLYOFF;
661 else if ((sc->rl_flags & RL_FLAG_EARLYOFFV2) != 0)
662 rxfilt |= RL_RXCFG_EARLYOFFV2;
663
664 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
665 if (ifp->if_flags & IFF_PROMISC)
666 rxfilt |= RL_RXCFG_RX_ALLPHYS;
667 /*
668 * Unlike other hardwares, we have to explicitly set
669 * RL_RXCFG_RX_MULTI to receive multicast frames in
670 * promiscuous mode.
671 */
672 rxfilt |= RL_RXCFG_RX_MULTI;
673 hashes[0] = hashes[1] = 0xffffffff;
674 goto done;
675 }
676
677 if_maddr_rlock(ifp);
678 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
679 if (ifma->ifma_addr->sa_family != AF_LINK)
680 continue;
681 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
682 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
683 if (h < 32)
684 hashes[0] |= (1 << h);
685 else
686 hashes[1] |= (1 << (h - 32));
687 }
688 if_maddr_runlock(ifp);
689
690 if (hashes[0] != 0 || hashes[1] != 0) {
691 /*
692 * For some unfathomable reason, RealTek decided to
693 * reverse the order of the multicast hash registers
694 * in the PCI Express parts. This means we have to
695 * write the hash pattern in reverse order for those
696 * devices.
697 */
698 if ((sc->rl_flags & RL_FLAG_PCIE) != 0) {
699 h = bswap32(hashes[0]);
700 hashes[0] = bswap32(hashes[1]);
701 hashes[1] = h;
702 }
703 rxfilt |= RL_RXCFG_RX_MULTI;
704 }
705
706done:
707 CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
708 CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
709 CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
710}
711
712static void
713re_reset(struct rl_softc *sc)
714{
715 int i;
716
717 RL_LOCK_ASSERT(sc);
718
719 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
720
721 for (i = 0; i < RL_TIMEOUT; i++) {
722 DELAY(10);
723 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
724 break;
725 }
726 if (i == RL_TIMEOUT)
727 device_printf(sc->rl_dev, "reset never completed!\n");
728
729 if ((sc->rl_flags & RL_FLAG_MACRESET) != 0)
730 CSR_WRITE_1(sc, 0x82, 1);
731 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169S)
732 re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0);
733}
734
735#ifdef RE_DIAG
736
737/*
738 * The following routine is designed to test for a defect on some
739 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
740 * lines connected to the bus, however for a 32-bit only card, they
741 * should be pulled high. The result of this defect is that the
742 * NIC will not work right if you plug it into a 64-bit slot: DMA
743 * operations will be done with 64-bit transfers, which will fail
744 * because the 64-bit data lines aren't connected.
745 *
746 * There's no way to work around this (short of talking a soldering
747 * iron to the board), however we can detect it. The method we use
748 * here is to put the NIC into digital loopback mode, set the receiver
749 * to promiscuous mode, and then try to send a frame. We then compare
750 * the frame data we sent to what was received. If the data matches,
751 * then the NIC is working correctly, otherwise we know the user has
752 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
753 * slot. In the latter case, there's no way the NIC can work correctly,
754 * so we print out a message on the console and abort the device attach.
755 */
756
757static int
758re_diag(struct rl_softc *sc)
759{
760 struct ifnet *ifp = sc->rl_ifp;
761 struct mbuf *m0;
762 struct ether_header *eh;
763 struct rl_desc *cur_rx;
764 u_int16_t status;
765 u_int32_t rxstat;
766 int total_len, i, error = 0, phyaddr;
767 u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
768 u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
769
770 /* Allocate a single mbuf */
771 MGETHDR(m0, M_NOWAIT, MT_DATA);
772 if (m0 == NULL)
773 return (ENOBUFS);
774
775 RL_LOCK(sc);
776
777 /*
778 * Initialize the NIC in test mode. This sets the chip up
779 * so that it can send and receive frames, but performs the
780 * following special functions:
781 * - Puts receiver in promiscuous mode
782 * - Enables digital loopback mode
783 * - Leaves interrupts turned off
784 */
785
786 ifp->if_flags |= IFF_PROMISC;
787 sc->rl_testmode = 1;
788 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
789 re_init_locked(sc);
790 sc->rl_flags |= RL_FLAG_LINK;
791 if (sc->rl_type == RL_8169)
792 phyaddr = 1;
793 else
794 phyaddr = 0;
795
796 re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
797 for (i = 0; i < RL_TIMEOUT; i++) {
798 status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
799 if (!(status & BMCR_RESET))
800 break;
801 }
802
803 re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
804 CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
805
806 DELAY(100000);
807
808 /* Put some data in the mbuf */
809
810 eh = mtod(m0, struct ether_header *);
811 bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
812 bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
813 eh->ether_type = htons(ETHERTYPE_IP);
814 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
815
816 /*
817 * Queue the packet, start transmission.
818 * Note: IF_HANDOFF() ultimately calls re_start() for us.
819 */
820
821 CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
822 RL_UNLOCK(sc);
823 /* XXX: re_diag must not be called when in ALTQ mode */
824 IF_HANDOFF(&ifp->if_snd, m0, ifp);
825 RL_LOCK(sc);
826 m0 = NULL;
827
828 /* Wait for it to propagate through the chip */
829
830 DELAY(100000);
831 for (i = 0; i < RL_TIMEOUT; i++) {
832 status = CSR_READ_2(sc, RL_ISR);
833 CSR_WRITE_2(sc, RL_ISR, status);
834 if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
835 (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
836 break;
837 DELAY(10);
838 }
839
840 if (i == RL_TIMEOUT) {
841 device_printf(sc->rl_dev,
842 "diagnostic failed, failed to receive packet in"
843 " loopback mode\n");
844 error = EIO;
845 goto done;
846 }
847
848 /*
849 * The packet should have been dumped into the first
850 * entry in the RX DMA ring. Grab it from there.
851 */
852
853 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
854 sc->rl_ldata.rl_rx_list_map,
855 BUS_DMASYNC_POSTREAD);
856 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
857 sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
858 BUS_DMASYNC_POSTREAD);
859 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
860 sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
861
862 m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
863 sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
864 eh = mtod(m0, struct ether_header *);
865
866 cur_rx = &sc->rl_ldata.rl_rx_list[0];
867 total_len = RL_RXBYTES(cur_rx);
868 rxstat = le32toh(cur_rx->rl_cmdstat);
869
870 if (total_len != ETHER_MIN_LEN) {
871 device_printf(sc->rl_dev,
872 "diagnostic failed, received short packet\n");
873 error = EIO;
874 goto done;
875 }
876
877 /* Test that the received packet data matches what we sent. */
878
879 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
880 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
881 ntohs(eh->ether_type) != ETHERTYPE_IP) {
882 device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
883 device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
884 dst, ":", src, ":", ETHERTYPE_IP);
885 device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
886 eh->ether_dhost, ":", eh->ether_shost, ":",
887 ntohs(eh->ether_type));
888 device_printf(sc->rl_dev, "You may have a defective 32-bit "
889 "NIC plugged into a 64-bit PCI slot.\n");
890 device_printf(sc->rl_dev, "Please re-install the NIC in a "
891 "32-bit slot for proper operation.\n");
892 device_printf(sc->rl_dev, "Read the re(4) man page for more "
893 "details.\n");
894 error = EIO;
895 }
896
897done:
898 /* Turn interface off, release resources */
899
900 sc->rl_testmode = 0;
901 sc->rl_flags &= ~RL_FLAG_LINK;
902 ifp->if_flags &= ~IFF_PROMISC;
903 re_stop(sc);
904 if (m0 != NULL)
905 m_freem(m0);
906
907 RL_UNLOCK(sc);
908
909 return (error);
910}
911
912#endif
913
914/*
915 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
916 * IDs against our list and return a device name if we find a match.
917 */
918static int
919re_probe(device_t dev)
920{
921 const struct rl_type *t;
922 uint16_t devid, vendor;
923 uint16_t revid, sdevid;
924 int i;
925
926 vendor = pci_get_vendor(dev);
927 devid = pci_get_device(dev);
928 revid = pci_get_revid(dev);
929 sdevid = pci_get_subdevice(dev);
930
931 if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
932 if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
933 /*
934 * Only attach to rev. 3 of the Linksys EG1032 adapter.
935 * Rev. 2 is supported by sk(4).
936 */
937 return (ENXIO);
938 }
939 }
940
941 if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
942 if (revid != 0x20) {
943 /* 8139, let rl(4) take care of this device. */
944 return (ENXIO);
945 }
946 }
947
948 t = re_devs;
949 for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
950 if (vendor == t->rl_vid && devid == t->rl_did) {
951 device_set_desc(dev, t->rl_name);
952 return (BUS_PROBE_DEFAULT);
953 }
954 }
955
956 return (ENXIO);
957}
958
959/*
960 * Map a single buffer address.
961 */
962
963static void
964re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
965{
966 bus_addr_t *addr;
967
968 if (error)
969 return;
970
971 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
972 addr = arg;
973 *addr = segs->ds_addr;
974}
975
976static int
977re_allocmem(device_t dev, struct rl_softc *sc)
978{
979 bus_addr_t lowaddr;
980 bus_size_t rx_list_size, tx_list_size;
981 int error;
982 int i;
983
984 rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
985 tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
986
987 /*
988 * Allocate the parent bus DMA tag appropriate for PCI.
989 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
990 * register should be set. However some RealTek chips are known
991 * to be buggy on DAC handling, therefore disable DAC by limiting
992 * DMA address space to 32bit. PCIe variants of RealTek chips
993 * may not have the limitation.
994 */
995 lowaddr = BUS_SPACE_MAXADDR;
996 if ((sc->rl_flags & RL_FLAG_PCIE) == 0)
997 lowaddr = BUS_SPACE_MAXADDR_32BIT;
998 error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
999 lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
1000 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1001 NULL, NULL, &sc->rl_parent_tag);
1002 if (error) {
1003 device_printf(dev, "could not allocate parent DMA tag\n");
1004 return (error);
1005 }
1006
1007 /*
1008 * Allocate map for TX mbufs.
1009 */
1010 error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
1011 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1012 NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
1013 NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
1014 if (error) {
1015 device_printf(dev, "could not allocate TX DMA tag\n");
1016 return (error);
1017 }
1018
1019 /*
1020 * Allocate map for RX mbufs.
1021 */
1022
1023 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1024 error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t),
1025 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1026 MJUM9BYTES, 1, MJUM9BYTES, 0, NULL, NULL,
1027 &sc->rl_ldata.rl_jrx_mtag);
1028 if (error) {
1029 device_printf(dev,
1030 "could not allocate jumbo RX DMA tag\n");
1031 return (error);
1032 }
1033 }
1034 error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
1035 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1036 MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
1037 if (error) {
1038 device_printf(dev, "could not allocate RX DMA tag\n");
1039 return (error);
1040 }
1041
1042 /*
1043 * Allocate map for TX descriptor list.
1044 */
1045 error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1046 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1047 NULL, tx_list_size, 1, tx_list_size, 0,
1048 NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1049 if (error) {
1050 device_printf(dev, "could not allocate TX DMA ring tag\n");
1051 return (error);
1052 }
1053
1054 /* Allocate DMA'able memory for the TX ring */
1055
1056 error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1057 (void **)&sc->rl_ldata.rl_tx_list,
1058 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1059 &sc->rl_ldata.rl_tx_list_map);
1060 if (error) {
1061 device_printf(dev, "could not allocate TX DMA ring\n");
1062 return (error);
1063 }
1064
1065 /* Load the map for the TX ring. */
1066
1067 sc->rl_ldata.rl_tx_list_addr = 0;
1068 error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1069 sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1070 tx_list_size, re_dma_map_addr,
1071 &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1072 if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1073 device_printf(dev, "could not load TX DMA ring\n");
1074 return (ENOMEM);
1075 }
1076
1077 /* Create DMA maps for TX buffers */
1078
1079 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1080 error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1081 &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1082 if (error) {
1083 device_printf(dev, "could not create DMA map for TX\n");
1084 return (error);
1085 }
1086 }
1087
1088 /*
1089 * Allocate map for RX descriptor list.
1090 */
1091 error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1092 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1093 NULL, rx_list_size, 1, rx_list_size, 0,
1094 NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1095 if (error) {
1096 device_printf(dev, "could not create RX DMA ring tag\n");
1097 return (error);
1098 }
1099
1100 /* Allocate DMA'able memory for the RX ring */
1101
1102 error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1103 (void **)&sc->rl_ldata.rl_rx_list,
1104 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1105 &sc->rl_ldata.rl_rx_list_map);
1106 if (error) {
1107 device_printf(dev, "could not allocate RX DMA ring\n");
1108 return (error);
1109 }
1110
1111 /* Load the map for the RX ring. */
1112
1113 sc->rl_ldata.rl_rx_list_addr = 0;
1114 error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1115 sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1116 rx_list_size, re_dma_map_addr,
1117 &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1118 if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1119 device_printf(dev, "could not load RX DMA ring\n");
1120 return (ENOMEM);
1121 }
1122
1123 /* Create DMA maps for RX buffers */
1124
1125 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1126 error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1127 &sc->rl_ldata.rl_jrx_sparemap);
1128 if (error) {
1129 device_printf(dev,
1130 "could not create spare DMA map for jumbo RX\n");
1131 return (error);
1132 }
1133 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1134 error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1135 &sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1136 if (error) {
1137 device_printf(dev,
1138 "could not create DMA map for jumbo RX\n");
1139 return (error);
1140 }
1141 }
1142 }
1143 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1144 &sc->rl_ldata.rl_rx_sparemap);
1145 if (error) {
1146 device_printf(dev, "could not create spare DMA map for RX\n");
1147 return (error);
1148 }
1149 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1150 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1151 &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1152 if (error) {
1153 device_printf(dev, "could not create DMA map for RX\n");
1154 return (error);
1155 }
1156 }
1157
1158 /* Create DMA map for statistics. */
1159 error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0,
1160 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1161 sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL,
1162 &sc->rl_ldata.rl_stag);
1163 if (error) {
1164 device_printf(dev, "could not create statistics DMA tag\n");
1165 return (error);
1166 }
1167 /* Allocate DMA'able memory for statistics. */
1168 error = bus_dmamem_alloc(sc->rl_ldata.rl_stag,
1169 (void **)&sc->rl_ldata.rl_stats,
1170 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1171 &sc->rl_ldata.rl_smap);
1172 if (error) {
1173 device_printf(dev,
1174 "could not allocate statistics DMA memory\n");
1175 return (error);
1176 }
1177 /* Load the map for statistics. */
1178 sc->rl_ldata.rl_stats_addr = 0;
1179 error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap,
1180 sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr,
1181 &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT);
1182 if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) {
1183 device_printf(dev, "could not load statistics DMA memory\n");
1184 return (ENOMEM);
1185 }
1186
1187 return (0);
1188}
1189
1190/*
1191 * Attach the interface. Allocate softc structures, do ifmedia
1192 * setup and ethernet/BPF attach.
1193 */
1194static int
1195re_attach(device_t dev)
1196{
1197 u_char eaddr[ETHER_ADDR_LEN];
1198 u_int16_t as[ETHER_ADDR_LEN / 2];
1199 struct rl_softc *sc;
1200 struct ifnet *ifp;
1201 const struct rl_hwrev *hw_rev;
1202 u_int32_t cap, ctl;
1203 int hwrev;
1204 u_int16_t devid, re_did = 0;
1205 int error = 0, i, phy, rid;
1206 int msic, msixc, reg;
1207 uint8_t cfg;
1208
1209 sc = device_get_softc(dev);
1210 sc->rl_dev = dev;
1211
1212 mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1213 MTX_DEF);
1214 callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1215
1216 /*
1217 * Map control/status registers.
1218 */
1219 pci_enable_busmaster(dev);
1220
1221 devid = pci_get_device(dev);
1222 /*
1223 * Prefer memory space register mapping over IO space.
1224 * Because RTL8169SC does not seem to work when memory mapping
1225 * is used always activate io mapping.
1226 */
1227 if (devid == RT_DEVICEID_8169SC)
1228 prefer_iomap = 1;
1229 if (prefer_iomap == 0) {
1230 sc->rl_res_id = PCIR_BAR(1);
1231 sc->rl_res_type = SYS_RES_MEMORY;
1232 /* RTL8168/8101E seems to use different BARs. */
1233 if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1234 sc->rl_res_id = PCIR_BAR(2);
1235 } else {
1236 sc->rl_res_id = PCIR_BAR(0);
1237 sc->rl_res_type = SYS_RES_IOPORT;
1238 }
1239 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1240 &sc->rl_res_id, RF_ACTIVE);
1241 if (sc->rl_res == NULL && prefer_iomap == 0) {
1242 sc->rl_res_id = PCIR_BAR(0);
1243 sc->rl_res_type = SYS_RES_IOPORT;
1244 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1245 &sc->rl_res_id, RF_ACTIVE);
1246 }
1247 if (sc->rl_res == NULL) {
1248 device_printf(dev, "couldn't map ports/memory\n");
1249 error = ENXIO;
1250 goto fail;
1251 }
1252
1253 sc->rl_btag = rman_get_bustag(sc->rl_res);
1254 sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1255
1256 msic = pci_msi_count(dev);
1257 msixc = pci_msix_count(dev);
1258 if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
1259 sc->rl_flags |= RL_FLAG_PCIE;
1260 sc->rl_expcap = reg;
1261 }
1262 if (bootverbose) {
1263 device_printf(dev, "MSI count : %d\n", msic);
1264 device_printf(dev, "MSI-X count : %d\n", msixc);
1265 }
1266 if (msix_disable > 0)
1267 msixc = 0;
1268 if (msi_disable > 0)
1269 msic = 0;
1270 /* Prefer MSI-X to MSI. */
1271 if (msixc > 0) {
1272 msixc = RL_MSI_MESSAGES;
1273 rid = PCIR_BAR(4);
1274 sc->rl_res_pba = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1275 &rid, RF_ACTIVE);
1276 if (sc->rl_res_pba == NULL) {
1277 device_printf(sc->rl_dev,
1278 "could not allocate MSI-X PBA resource\n");
1279 }
1280 if (sc->rl_res_pba != NULL &&
1281 pci_alloc_msix(dev, &msixc) == 0) {
1282 if (msixc == RL_MSI_MESSAGES) {
1283 device_printf(dev, "Using %d MSI-X message\n",
1284 msixc);
1285 sc->rl_flags |= RL_FLAG_MSIX;
1286 } else
1287 pci_release_msi(dev);
1288 }
1289 if ((sc->rl_flags & RL_FLAG_MSIX) == 0) {
1290 if (sc->rl_res_pba != NULL)
1291 bus_release_resource(dev, SYS_RES_MEMORY, rid,
1292 sc->rl_res_pba);
1293 sc->rl_res_pba = NULL;
1294 msixc = 0;
1295 }
1296 }
1297 /* Prefer MSI to INTx. */
1298 if (msixc == 0 && msic > 0) {
1299 msic = RL_MSI_MESSAGES;
1300 if (pci_alloc_msi(dev, &msic) == 0) {
1301 if (msic == RL_MSI_MESSAGES) {
1302 device_printf(dev, "Using %d MSI message\n",
1303 msic);
1304 sc->rl_flags |= RL_FLAG_MSI;
1305 /* Explicitly set MSI enable bit. */
1306 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1307 cfg = CSR_READ_1(sc, RL_CFG2);
1308 cfg |= RL_CFG2_MSI;
1309 CSR_WRITE_1(sc, RL_CFG2, cfg);
1310 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1311 } else
1312 pci_release_msi(dev);
1313 }
1314 if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1315 msic = 0;
1316 }
1317
1318 /* Allocate interrupt */
1319 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) {
1320 rid = 0;
1321 sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1322 RF_SHAREABLE | RF_ACTIVE);
1323 if (sc->rl_irq[0] == NULL) {
1324 device_printf(dev, "couldn't allocate IRQ resources\n");
1325 error = ENXIO;
1326 goto fail;
1327 }
1328 } else {
1329 for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1330 sc->rl_irq[i] = bus_alloc_resource_any(dev,
1331 SYS_RES_IRQ, &rid, RF_ACTIVE);
1332 if (sc->rl_irq[i] == NULL) {
1333 device_printf(dev,
1334 "couldn't allocate IRQ resources for "
1335 "message %d\n", rid);
1336 error = ENXIO;
1337 goto fail;
1338 }
1339 }
1340 }
1341
1342 if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1343 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1344 cfg = CSR_READ_1(sc, RL_CFG2);
1345 if ((cfg & RL_CFG2_MSI) != 0) {
1346 device_printf(dev, "turning off MSI enable bit.\n");
1347 cfg &= ~RL_CFG2_MSI;
1348 CSR_WRITE_1(sc, RL_CFG2, cfg);
1349 }
1350 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1351 }
1352
1353 /* Disable ASPM L0S/L1. */
1354 if (sc->rl_expcap != 0) {
1355 cap = pci_read_config(dev, sc->rl_expcap +
1356 PCIER_LINK_CAP, 2);
1357 if ((cap & PCIEM_LINK_CAP_ASPM) != 0) {
1358 ctl = pci_read_config(dev, sc->rl_expcap +
1359 PCIER_LINK_CTL, 2);
1360 if ((ctl & PCIEM_LINK_CTL_ASPMC) != 0) {
1361 ctl &= ~PCIEM_LINK_CTL_ASPMC;
1362 pci_write_config(dev, sc->rl_expcap +
1363 PCIER_LINK_CTL, ctl, 2);
1364 device_printf(dev, "ASPM disabled\n");
1365 }
1366 } else
1367 device_printf(dev, "no ASPM capability\n");
1368 }
1369
1370 hw_rev = re_hwrevs;
1371 hwrev = CSR_READ_4(sc, RL_TXCFG);
1372 switch (hwrev & 0x70000000) {
1373 case 0x00000000:
1374 case 0x10000000:
1375 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000);
1376 hwrev &= (RL_TXCFG_HWREV | 0x80000000);
1377 break;
1378 default:
1379 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1380 sc->rl_macrev = hwrev & 0x00700000;
1381 hwrev &= RL_TXCFG_HWREV;
1382 break;
1383 }
1384 device_printf(dev, "MAC rev. 0x%08x\n", sc->rl_macrev);
1385 while (hw_rev->rl_desc != NULL) {
1386 if (hw_rev->rl_rev == hwrev) {
1387 sc->rl_type = hw_rev->rl_type;
1388 sc->rl_hwrev = hw_rev;
1389 break;
1390 }
1391 hw_rev++;
1392 }
1393 if (hw_rev->rl_desc == NULL) {
1394 device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1395 error = ENXIO;
1396 goto fail;
1397 }
1398
1399 switch (hw_rev->rl_rev) {
1400 case RL_HWREV_8139CPLUS:
1401 sc->rl_flags |= RL_FLAG_FASTETHER | RL_FLAG_AUTOPAD;
1402 break;
1403 case RL_HWREV_8100E:
1404 case RL_HWREV_8101E:
1405 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER;
1406 break;
1407 case RL_HWREV_8102E:
1408 case RL_HWREV_8102EL:
1409 case RL_HWREV_8102EL_SPIN1:
1410 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1411 RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1412 RL_FLAG_AUTOPAD;
1413 break;
1414 case RL_HWREV_8103E:
1415 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1416 RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1417 RL_FLAG_AUTOPAD | RL_FLAG_MACSLEEP;
1418 break;
1419 case RL_HWREV_8401E:
1420 case RL_HWREV_8105E:
1421 case RL_HWREV_8105E_SPIN1:
1422 case RL_HWREV_8106E:
1423 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1424 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1425 RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
1426 break;
1427 case RL_HWREV_8402:
1428 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1429 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1430 RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD |
1431 RL_FLAG_CMDSTOP_WAIT_TXQ;
1432 break;
1433 case RL_HWREV_8168B_SPIN1:
1434 case RL_HWREV_8168B_SPIN2:
1435 sc->rl_flags |= RL_FLAG_WOLRXENB;
1436 /* FALLTHROUGH */
1437 case RL_HWREV_8168B_SPIN3:
1438 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT;
1439 break;
1440 case RL_HWREV_8168C_SPIN2:
1441 sc->rl_flags |= RL_FLAG_MACSLEEP;
1442 /* FALLTHROUGH */
1443 case RL_HWREV_8168C:
1444 if (sc->rl_macrev == 0x00200000)
1445 sc->rl_flags |= RL_FLAG_MACSLEEP;
1446 /* FALLTHROUGH */
1447 case RL_HWREV_8168CP:
1448 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1449 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1450 RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK;
1451 break;
1452 case RL_HWREV_8168D:
1453 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1454 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1455 RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1456 RL_FLAG_WOL_MANLINK;
1457 break;
1458 case RL_HWREV_8168DP:
1459 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1460 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_AUTOPAD |
1461 RL_FLAG_JUMBOV2 | RL_FLAG_WAIT_TXPOLL | RL_FLAG_WOL_MANLINK;
1462 break;
1463 case RL_HWREV_8168E:
1464 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1465 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1466 RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1467 RL_FLAG_WOL_MANLINK;
1468 break;
1469 case RL_HWREV_8168E_VL:
1470 case RL_HWREV_8168F:
1471 sc->rl_flags |= RL_FLAG_EARLYOFF;
1472 /* FALLTHROUGH */
1473 case RL_HWREV_8411:
1474 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1475 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1476 RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1477 RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK;
1478 break;
1479 case RL_HWREV_8168EP:
1480 case RL_HWREV_8168G:
1481 case RL_HWREV_8411B:
1482 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1483 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1484 RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1485 RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK |
1486 RL_FLAG_EARLYOFFV2 | RL_FLAG_RXDV_GATED;
1487 break;
1488 case RL_HWREV_8168GU:
1489 if (pci_get_device(dev) == RT_DEVICEID_8101E) {
1490 /* RTL8106EUS */
1491 sc->rl_flags |= RL_FLAG_FASTETHER;
1492 } else
1493 sc->rl_flags |= RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK;
1494
1495 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1496 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1497 RL_FLAG_AUTOPAD | RL_FLAG_CMDSTOP_WAIT_TXQ |
1498 RL_FLAG_EARLYOFFV2 | RL_FLAG_RXDV_GATED;
1499 break;
1500 case RL_HWREV_8169_8110SB:
1501 case RL_HWREV_8169_8110SBL:
1502 case RL_HWREV_8169_8110SC:
1503 case RL_HWREV_8169_8110SCE:
1504 sc->rl_flags |= RL_FLAG_PHYWAKE;
1505 /* FALLTHROUGH */
1506 case RL_HWREV_8169:
1507 case RL_HWREV_8169S:
1508 case RL_HWREV_8110S:
1509 sc->rl_flags |= RL_FLAG_MACRESET;
1510 break;
1511 default:
1512 break;
1513 }
1514
1515 if (sc->rl_hwrev->rl_rev == RL_HWREV_8139CPLUS) {
1516 sc->rl_cfg0 = RL_8139_CFG0;
1517 sc->rl_cfg1 = RL_8139_CFG1;
1518 sc->rl_cfg2 = 0;
1519 sc->rl_cfg3 = RL_8139_CFG3;
1520 sc->rl_cfg4 = RL_8139_CFG4;
1521 sc->rl_cfg5 = RL_8139_CFG5;
1522 } else {
1523 sc->rl_cfg0 = RL_CFG0;
1524 sc->rl_cfg1 = RL_CFG1;
1525 sc->rl_cfg2 = RL_CFG2;
1526 sc->rl_cfg3 = RL_CFG3;
1527 sc->rl_cfg4 = RL_CFG4;
1528 sc->rl_cfg5 = RL_CFG5;
1529 }
1530
1531 /* Reset the adapter. */
1532 RL_LOCK(sc);
1533 re_reset(sc);
1534 RL_UNLOCK(sc);
1535
1536 /* Enable PME. */
1537 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1538 cfg = CSR_READ_1(sc, sc->rl_cfg1);
1539 cfg |= RL_CFG1_PME;
1540 CSR_WRITE_1(sc, sc->rl_cfg1, cfg);
1541 cfg = CSR_READ_1(sc, sc->rl_cfg5);
1542 cfg &= RL_CFG5_PME_STS;
1543 CSR_WRITE_1(sc, sc->rl_cfg5, cfg);
1544 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1545
1546 if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1547 /*
1548 * XXX Should have a better way to extract station
1549 * address from EEPROM.
1550 */
1551 for (i = 0; i < ETHER_ADDR_LEN; i++)
1552 eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1553 } else {
1554 sc->rl_eewidth = RL_9356_ADDR_LEN;
1555 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1556 if (re_did != 0x8129)
1557 sc->rl_eewidth = RL_9346_ADDR_LEN;
1558
1559 /*
1560 * Get station address from the EEPROM.
1561 */
1562 re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1563 for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1564 as[i] = le16toh(as[i]);
1565 bcopy(as, eaddr, ETHER_ADDR_LEN);
1566 }
1567
1568 if (sc->rl_type == RL_8169) {
1569 /* Set RX length mask and number of descriptors. */
1570 sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1571 sc->rl_txstart = RL_GTXSTART;
1572 sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1573 sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1574 } else {
1575 /* Set RX length mask and number of descriptors. */
1576 sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1577 sc->rl_txstart = RL_TXSTART;
1578 sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1579 sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1580 }
1581
1582 error = re_allocmem(dev, sc);
1583 if (error)
1584 goto fail;
1585 re_add_sysctls(sc);
1586
1587 ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1588 if (ifp == NULL) {
1589 device_printf(dev, "can not if_alloc()\n");
1590 error = ENOSPC;
1591 goto fail;
1592 }
1593
1594 /* Take controller out of deep sleep mode. */
1595 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
1596 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
1597 CSR_WRITE_1(sc, RL_GPIO,
1598 CSR_READ_1(sc, RL_GPIO) | 0x01);
1599 else
1600 CSR_WRITE_1(sc, RL_GPIO,
1601 CSR_READ_1(sc, RL_GPIO) & ~0x01);
1602 }
1603
1604 /* Take PHY out of power down mode. */
1605 if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) {
1606 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80);
1607 if (hw_rev->rl_rev == RL_HWREV_8401E)
1608 CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08);
1609 }
1610 if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1611 re_gmii_writereg(dev, 1, 0x1f, 0);
1612 re_gmii_writereg(dev, 1, 0x0e, 0);
1613 }
1614
1615 ifp->if_softc = sc;
1616 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1617 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1618 ifp->if_ioctl = re_ioctl;
1619 ifp->if_start = re_start;
1620 /*
1621 * RTL8168/8111C generates wrong IP checksummed frame if the
1622 * packet has IP options so disable TX checksum offloading.
1623 */
1624 if (sc->rl_hwrev->rl_rev == RL_HWREV_8168C ||
1625 sc->rl_hwrev->rl_rev == RL_HWREV_8168C_SPIN2 ||
1626 sc->rl_hwrev->rl_rev == RL_HWREV_8168CP) {
1627 ifp->if_hwassist = 0;
1628 ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TSO4;
1629 } else {
1630 ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
1631 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
1632 }
1633 ifp->if_hwassist |= CSUM_TSO;
1634 ifp->if_capenable = ifp->if_capabilities;
1635 ifp->if_init = re_init;
1636 IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1637 ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1638 IFQ_SET_READY(&ifp->if_snd);
1639
1640 TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1641
1642#define RE_PHYAD_INTERNAL 0
1643
1644 /* Do MII setup. */
1645 phy = RE_PHYAD_INTERNAL;
1646 if (sc->rl_type == RL_8169)
1647 phy = 1;
1648 error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd,
1649 re_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, MIIF_DOPAUSE);
1650 if (error != 0) {
1651 device_printf(dev, "attaching PHYs failed\n");
1652 goto fail;
1653 }
1654
1655 /*
1656 * Call MI attach routine.
1657 */
1658 ether_ifattach(ifp, eaddr);
1659
1660 /* VLAN capability setup */
1661 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1662 if (ifp->if_capabilities & IFCAP_HWCSUM)
1663 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1664 /* Enable WOL if PM is supported. */
1665 if (pci_find_cap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1666 ifp->if_capabilities |= IFCAP_WOL;
1667 ifp->if_capenable = ifp->if_capabilities;
1668 ifp->if_capenable &= ~(IFCAP_WOL_UCAST | IFCAP_WOL_MCAST);
1669 /*
1670 * Don't enable TSO by default. It is known to generate
1671 * corrupted TCP segments(bad TCP options) under certain
1672 * circumstances.
1673 */
1674 ifp->if_hwassist &= ~CSUM_TSO;
1675 ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
1676#ifdef DEVICE_POLLING
1677 ifp->if_capabilities |= IFCAP_POLLING;
1678#endif
1679 /*
1680 * Tell the upper layer(s) we support long frames.
1681 * Must appear after the call to ether_ifattach() because
1682 * ether_ifattach() sets ifi_hdrlen to the default value.
1683 */
1684 ifp->if_hdrlen = sizeof(struct ether_vlan_header);
1685
1686#ifdef DEV_NETMAP
1687 re_netmap_attach(sc);
1688#endif /* DEV_NETMAP */
1689#ifdef RE_DIAG
1690 /*
1691 * Perform hardware diagnostic on the original RTL8169.
1692 * Some 32-bit cards were incorrectly wired and would
1693 * malfunction if plugged into a 64-bit slot.
1694 */
1695
1696 if (hwrev == RL_HWREV_8169) {
1697 error = re_diag(sc);
1698 if (error) {
1699 device_printf(dev,
1700 "attach aborted due to hardware diag failure\n");
1701 ether_ifdetach(ifp);
1702 goto fail;
1703 }
1704 }
1705#endif
1706
1707#ifdef RE_TX_MODERATION
1708 intr_filter = 1;
1709#endif
1710 /* Hook interrupt last to avoid having to lock softc */
1711 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
1712 intr_filter == 0) {
1713 error = bus_setup_intr(dev, sc->rl_irq[0],
1714 INTR_TYPE_NET | INTR_MPSAFE, NULL, re_intr_msi, sc,
1715 &sc->rl_intrhand[0]);
1716 } else {
1717 error = bus_setup_intr(dev, sc->rl_irq[0],
1718 INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1719 &sc->rl_intrhand[0]);
1720 }
1721 if (error) {
1722 device_printf(dev, "couldn't set up irq\n");
1723 ether_ifdetach(ifp);
1724 }
1725
1726fail:
1727
1728 if (error)
1729 re_detach(dev);
1730
1731 return (error);
1732}
1733
1734/*
1735 * Shutdown hardware and free up resources. This can be called any
1736 * time after the mutex has been initialized. It is called in both
1737 * the error case in attach and the normal detach case so it needs
1738 * to be careful about only freeing resources that have actually been
1739 * allocated.
1740 */
1741static int
1742re_detach(device_t dev)
1743{
1744 struct rl_softc *sc;
1745 struct ifnet *ifp;
1746 int i, rid;
1747
1748 sc = device_get_softc(dev);
1749 ifp = sc->rl_ifp;
1750 KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1751
1752 /* These should only be active if attach succeeded */
1753 if (device_is_attached(dev)) {
1754#ifdef DEVICE_POLLING
1755 if (ifp->if_capenable & IFCAP_POLLING)
1756 ether_poll_deregister(ifp);
1757#endif
1758 RL_LOCK(sc);
1759#if 0
1760 sc->suspended = 1;
1761#endif
1762 re_stop(sc);
1763 RL_UNLOCK(sc);
1764 callout_drain(&sc->rl_stat_callout);
1765 taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1766 /*
1767 * Force off the IFF_UP flag here, in case someone
1768 * still had a BPF descriptor attached to this
1769 * interface. If they do, ether_ifdetach() will cause
1770 * the BPF code to try and clear the promisc mode
1771 * flag, which will bubble down to re_ioctl(),
1772 * which will try to call re_init() again. This will
1773 * turn the NIC back on and restart the MII ticker,
1774 * which will panic the system when the kernel tries
1775 * to invoke the re_tick() function that isn't there
1776 * anymore.
1777 */
1778 ifp->if_flags &= ~IFF_UP;
1779 ether_ifdetach(ifp);
1780 }
1781 if (sc->rl_miibus)
1782 device_delete_child(dev, sc->rl_miibus);
1783 bus_generic_detach(dev);
1784
1785 /*
1786 * The rest is resource deallocation, so we should already be
1787 * stopped here.
1788 */
1789
1790 if (sc->rl_intrhand[0] != NULL) {
1791 bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
1792 sc->rl_intrhand[0] = NULL;
1793 }
1794 if (ifp != NULL) {
1795#ifdef DEV_NETMAP
1796 netmap_detach(ifp);
1797#endif /* DEV_NETMAP */
1798 if_free(ifp);
1799 }
1800 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
1801 rid = 0;
1802 else
1803 rid = 1;
1804 if (sc->rl_irq[0] != NULL) {
1805 bus_release_resource(dev, SYS_RES_IRQ, rid, sc->rl_irq[0]);
1806 sc->rl_irq[0] = NULL;
1807 }
1808 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0)
1809 pci_release_msi(dev);
1810 if (sc->rl_res_pba) {
1811 rid = PCIR_BAR(4);
1812 bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->rl_res_pba);
1813 }
1814 if (sc->rl_res)
1815 bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1816 sc->rl_res);
1817
1818 /* Unload and free the RX DMA ring memory and map */
1819
1820 if (sc->rl_ldata.rl_rx_list_tag) {
1821 if (sc->rl_ldata.rl_rx_list_addr)
1822 bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1823 sc->rl_ldata.rl_rx_list_map);
1824 if (sc->rl_ldata.rl_rx_list)
1825 bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1826 sc->rl_ldata.rl_rx_list,
1827 sc->rl_ldata.rl_rx_list_map);
1828 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1829 }
1830
1831 /* Unload and free the TX DMA ring memory and map */
1832
1833 if (sc->rl_ldata.rl_tx_list_tag) {
1834 if (sc->rl_ldata.rl_tx_list_addr)
1835 bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1836 sc->rl_ldata.rl_tx_list_map);
1837 if (sc->rl_ldata.rl_tx_list)
1838 bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1839 sc->rl_ldata.rl_tx_list,
1840 sc->rl_ldata.rl_tx_list_map);
1841 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1842 }
1843
1844 /* Destroy all the RX and TX buffer maps */
1845
1846 if (sc->rl_ldata.rl_tx_mtag) {
1847 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1848 if (sc->rl_ldata.rl_tx_desc[i].tx_dmamap)
1849 bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1850 sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1851 }
1852 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1853 }
1854 if (sc->rl_ldata.rl_rx_mtag) {
1855 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1856 if (sc->rl_ldata.rl_rx_desc[i].rx_dmamap)
1857 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1858 sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1859 }
1860 if (sc->rl_ldata.rl_rx_sparemap)
1861 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1862 sc->rl_ldata.rl_rx_sparemap);
1863 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1864 }
1865 if (sc->rl_ldata.rl_jrx_mtag) {
1866 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1867 if (sc->rl_ldata.rl_jrx_desc[i].rx_dmamap)
1868 bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1869 sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1870 }
1871 if (sc->rl_ldata.rl_jrx_sparemap)
1872 bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1873 sc->rl_ldata.rl_jrx_sparemap);
1874 bus_dma_tag_destroy(sc->rl_ldata.rl_jrx_mtag);
1875 }
1876 /* Unload and free the stats buffer and map */
1877
1878 if (sc->rl_ldata.rl_stag) {
1879 if (sc->rl_ldata.rl_stats_addr)
1880 bus_dmamap_unload(sc->rl_ldata.rl_stag,
1881 sc->rl_ldata.rl_smap);
1882 if (sc->rl_ldata.rl_stats)
1883 bus_dmamem_free(sc->rl_ldata.rl_stag,
1884 sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap);
1885 bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1886 }
1887
1888 if (sc->rl_parent_tag)
1889 bus_dma_tag_destroy(sc->rl_parent_tag);
1890
1891 mtx_destroy(&sc->rl_mtx);
1892
1893 return (0);
1894}
1895
1896static __inline void
1897re_discard_rxbuf(struct rl_softc *sc, int idx)
1898{
1899 struct rl_desc *desc;
1900 struct rl_rxdesc *rxd;
1901 uint32_t cmdstat;
1902
1903 if (sc->rl_ifp->if_mtu > RL_MTU &&
1904 (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
1905 rxd = &sc->rl_ldata.rl_jrx_desc[idx];
1906 else
1907 rxd = &sc->rl_ldata.rl_rx_desc[idx];
1908 desc = &sc->rl_ldata.rl_rx_list[idx];
1909 desc->rl_vlanctl = 0;
1910 cmdstat = rxd->rx_size;
1911 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1912 cmdstat |= RL_RDESC_CMD_EOR;
1913 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1914}
1915
1916static int
1917re_newbuf(struct rl_softc *sc, int idx)
1918{
1919 struct mbuf *m;
1920 struct rl_rxdesc *rxd;
1921 bus_dma_segment_t segs[1];
1922 bus_dmamap_t map;
1923 struct rl_desc *desc;
1924 uint32_t cmdstat;
1925 int error, nsegs;
1926
1927 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1928 if (m == NULL)
1929 return (ENOBUFS);
1930
1931 m->m_len = m->m_pkthdr.len = MCLBYTES;
1932#ifdef RE_FIXUP_RX
1933 /*
1934 * This is part of an evil trick to deal with non-x86 platforms.
1935 * The RealTek chip requires RX buffers to be aligned on 64-bit
1936 * boundaries, but that will hose non-x86 machines. To get around
1937 * this, we leave some empty space at the start of each buffer
1938 * and for non-x86 hosts, we copy the buffer back six bytes
1939 * to achieve word alignment. This is slightly more efficient
1940 * than allocating a new buffer, copying the contents, and
1941 * discarding the old buffer.
1942 */
1943 m_adj(m, RE_ETHER_ALIGN);
1944#endif
1945 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1946 sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1947 if (error != 0) {
1948 m_freem(m);
1949 return (ENOBUFS);
1950 }
1951 KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1952
1953 rxd = &sc->rl_ldata.rl_rx_desc[idx];
1954 if (rxd->rx_m != NULL) {
1955 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1956 BUS_DMASYNC_POSTREAD);
1957 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1958 }
1959
1960 rxd->rx_m = m;
1961 map = rxd->rx_dmamap;
1962 rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1963 rxd->rx_size = segs[0].ds_len;
1964 sc->rl_ldata.rl_rx_sparemap = map;
1965 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1966 BUS_DMASYNC_PREREAD);
1967
1968 desc = &sc->rl_ldata.rl_rx_list[idx];
1969 desc->rl_vlanctl = 0;
1970 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1971 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1972 cmdstat = segs[0].ds_len;
1973 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1974 cmdstat |= RL_RDESC_CMD_EOR;
1975 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1976
1977 return (0);
1978}
1979
1980static int
1981re_jumbo_newbuf(struct rl_softc *sc, int idx)
1982{
1983 struct mbuf *m;
1984 struct rl_rxdesc *rxd;
1985 bus_dma_segment_t segs[1];
1986 bus_dmamap_t map;
1987 struct rl_desc *desc;
1988 uint32_t cmdstat;
1989 int error, nsegs;
1990
1991 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1992 if (m == NULL)
1993 return (ENOBUFS);
1994 m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1995#ifdef RE_FIXUP_RX
1996 m_adj(m, RE_ETHER_ALIGN);
1997#endif
1998 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_jrx_mtag,
1999 sc->rl_ldata.rl_jrx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
2000 if (error != 0) {
2001 m_freem(m);
2002 return (ENOBUFS);
2003 }
2004 KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
2005
2006 rxd = &sc->rl_ldata.rl_jrx_desc[idx];
2007 if (rxd->rx_m != NULL) {
2008 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
2009 BUS_DMASYNC_POSTREAD);
2010 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap);
2011 }
2012
2013 rxd->rx_m = m;
2014 map = rxd->rx_dmamap;
2015 rxd->rx_dmamap = sc->rl_ldata.rl_jrx_sparemap;
2016 rxd->rx_size = segs[0].ds_len;
2017 sc->rl_ldata.rl_jrx_sparemap = map;
2018 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
2019 BUS_DMASYNC_PREREAD);
2020
2021 desc = &sc->rl_ldata.rl_rx_list[idx];
2022 desc->rl_vlanctl = 0;
2023 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
2024 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
2025 cmdstat = segs[0].ds_len;
2026 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
2027 cmdstat |= RL_RDESC_CMD_EOR;
2028 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
2029
2030 return (0);
2031}
2032
2033#ifdef RE_FIXUP_RX
2034static __inline void
2035re_fixup_rx(struct mbuf *m)
2036{
2037 int i;
2038 uint16_t *src, *dst;
2039
2040 src = mtod(m, uint16_t *);
2041 dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
2042
2043 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2044 *dst++ = *src++;
2045
2046 m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
2047}
2048#endif
2049
2050static int
2051re_tx_list_init(struct rl_softc *sc)
2052{
2053 struct rl_desc *desc;
2054 int i;
2055
2056 RL_LOCK_ASSERT(sc);
2057
2058 bzero(sc->rl_ldata.rl_tx_list,
2059 sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
2060 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
2061 sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
2062#ifdef DEV_NETMAP
2063 re_netmap_tx_init(sc);
2064#endif /* DEV_NETMAP */
2065 /* Set EOR. */
2066 desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
2067 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
2068
2069 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2070 sc->rl_ldata.rl_tx_list_map,
2071 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2072
2073 sc->rl_ldata.rl_tx_prodidx = 0;
2074 sc->rl_ldata.rl_tx_considx = 0;
2075 sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
2076
2077 return (0);
2078}
2079
2080static int
2081re_rx_list_init(struct rl_softc *sc)
2082{
2083 int error, i;
2084
2085 bzero(sc->rl_ldata.rl_rx_list,
2086 sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2087 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2088 sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
2089 if ((error = re_newbuf(sc, i)) != 0)
2090 return (error);
2091 }
2092#ifdef DEV_NETMAP
2093 re_netmap_rx_init(sc);
2094#endif /* DEV_NETMAP */
2095
2096 /* Flush the RX descriptors */
2097
2098 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2099 sc->rl_ldata.rl_rx_list_map,
2100 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2101
2102 sc->rl_ldata.rl_rx_prodidx = 0;
2103 sc->rl_head = sc->rl_tail = NULL;
2104 sc->rl_int_rx_act = 0;
2105
2106 return (0);
2107}
2108
2109static int
2110re_jrx_list_init(struct rl_softc *sc)
2111{
2112 int error, i;
2113
2114 bzero(sc->rl_ldata.rl_rx_list,
2115 sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2116 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2117 sc->rl_ldata.rl_jrx_desc[i].rx_m = NULL;
2118 if ((error = re_jumbo_newbuf(sc, i)) != 0)
2119 return (error);
2120 }
2121
2122 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2123 sc->rl_ldata.rl_rx_list_map,
2124 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2125
2126 sc->rl_ldata.rl_rx_prodidx = 0;
2127 sc->rl_head = sc->rl_tail = NULL;
2128 sc->rl_int_rx_act = 0;
2129
2130 return (0);
2131}
2132
2133/*
2134 * RX handler for C+ and 8169. For the gigE chips, we support
2135 * the reception of jumbo frames that have been fragmented
2136 * across multiple 2K mbuf cluster buffers.
2137 */
2138static int
2139re_rxeof(struct rl_softc *sc, int *rx_npktsp)
2140{
2141 struct mbuf *m;
2142 struct ifnet *ifp;
2143 int i, rxerr, total_len;
2144 struct rl_desc *cur_rx;
2145 u_int32_t rxstat, rxvlan;
2146 int jumbo, maxpkt = 16, rx_npkts = 0;
2147
2148 RL_LOCK_ASSERT(sc);
2149
2150 ifp = sc->rl_ifp;
2151#ifdef DEV_NETMAP
2152 if (netmap_rx_irq(ifp, 0, &rx_npkts))
2153 return 0;
2154#endif /* DEV_NETMAP */
2155 if (ifp->if_mtu > RL_MTU && (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
2156 jumbo = 1;
2157 else
2158 jumbo = 0;
2159
2160 /* Invalidate the descriptor memory */
2161
2162 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2163 sc->rl_ldata.rl_rx_list_map,
2164 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2165
2166 for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
2167 i = RL_RX_DESC_NXT(sc, i)) {
2168 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2169 break;
2170 cur_rx = &sc->rl_ldata.rl_rx_list[i];
2171 rxstat = le32toh(cur_rx->rl_cmdstat);
2172 if ((rxstat & RL_RDESC_STAT_OWN) != 0)
2173 break;
2174 total_len = rxstat & sc->rl_rxlenmask;
2175 rxvlan = le32toh(cur_rx->rl_vlanctl);
2176 if (jumbo != 0)
2177 m = sc->rl_ldata.rl_jrx_desc[i].rx_m;
2178 else
2179 m = sc->rl_ldata.rl_rx_desc[i].rx_m;
2180
2181 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
2182 (rxstat & (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) !=
2183 (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) {
2184 /*
2185 * RTL8168C or later controllers do not
2186 * support multi-fragment packet.
2187 */
2188 re_discard_rxbuf(sc, i);
2189 continue;
2190 } else if ((rxstat & RL_RDESC_STAT_EOF) == 0) {
2191 if (re_newbuf(sc, i) != 0) {
2192 /*
2193 * If this is part of a multi-fragment packet,
2194 * discard all the pieces.
2195 */
2196 if (sc->rl_head != NULL) {
2197 m_freem(sc->rl_head);
2198 sc->rl_head = sc->rl_tail = NULL;
2199 }
2200 re_discard_rxbuf(sc, i);
2201 continue;
2202 }
2203 m->m_len = RE_RX_DESC_BUFLEN;
2204 if (sc->rl_head == NULL)
2205 sc->rl_head = sc->rl_tail = m;
2206 else {
2207 m->m_flags &= ~M_PKTHDR;
2208 sc->rl_tail->m_next = m;
2209 sc->rl_tail = m;
2210 }
2211 continue;
2212 }
2213
2214 /*
2215 * NOTE: for the 8139C+, the frame length field
2216 * is always 12 bits in size, but for the gigE chips,
2217 * it is 13 bits (since the max RX frame length is 16K).
2218 * Unfortunately, all 32 bits in the status word
2219 * were already used, so to make room for the extra
2220 * length bit, RealTek took out the 'frame alignment
2221 * error' bit and shifted the other status bits
2222 * over one slot. The OWN, EOR, FS and LS bits are
2223 * still in the same places. We have already extracted
2224 * the frame length and checked the OWN bit, so rather
2225 * than using an alternate bit mapping, we shift the
2226 * status bits one space to the right so we can evaluate
2227 * them using the 8169 status as though it was in the
2228 * same format as that of the 8139C+.
2229 */
2230 if (sc->rl_type == RL_8169)
2231 rxstat >>= 1;
2232
2233 /*
2234 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
2235 * set, but if CRC is clear, it will still be a valid frame.
2236 */
2237 if ((rxstat & RL_RDESC_STAT_RXERRSUM) != 0) {
2238 rxerr = 1;
2239 if ((sc->rl_flags & RL_FLAG_JUMBOV2) == 0 &&
2240 total_len > 8191 &&
2241 (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)
2242 rxerr = 0;
2243 if (rxerr != 0) {
2244 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2245 /*
2246 * If this is part of a multi-fragment packet,
2247 * discard all the pieces.
2248 */
2249 if (sc->rl_head != NULL) {
2250 m_freem(sc->rl_head);
2251 sc->rl_head = sc->rl_tail = NULL;
2252 }
2253 re_discard_rxbuf(sc, i);
2254 continue;
2255 }
2256 }
2257
2258 /*
2259 * If allocating a replacement mbuf fails,
2260 * reload the current one.
2261 */
2262 if (jumbo != 0)
2263 rxerr = re_jumbo_newbuf(sc, i);
2264 else
2265 rxerr = re_newbuf(sc, i);
2266 if (rxerr != 0) {
2267 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2268 if (sc->rl_head != NULL) {
2269 m_freem(sc->rl_head);
2270 sc->rl_head = sc->rl_tail = NULL;
2271 }
2272 re_discard_rxbuf(sc, i);
2273 continue;
2274 }
2275
2276 if (sc->rl_head != NULL) {
2277 if (jumbo != 0)
2278 m->m_len = total_len;
2279 else {
2280 m->m_len = total_len % RE_RX_DESC_BUFLEN;
2281 if (m->m_len == 0)
2282 m->m_len = RE_RX_DESC_BUFLEN;
2283 }
2284 /*
2285 * Special case: if there's 4 bytes or less
2286 * in this buffer, the mbuf can be discarded:
2287 * the last 4 bytes is the CRC, which we don't
2288 * care about anyway.
2289 */
2290 if (m->m_len <= ETHER_CRC_LEN) {
2291 sc->rl_tail->m_len -=
2292 (ETHER_CRC_LEN - m->m_len);
2293 m_freem(m);
2294 } else {
2295 m->m_len -= ETHER_CRC_LEN;
2296 m->m_flags &= ~M_PKTHDR;
2297 sc->rl_tail->m_next = m;
2298 }
2299 m = sc->rl_head;
2300 sc->rl_head = sc->rl_tail = NULL;
2301 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2302 } else
2303 m->m_pkthdr.len = m->m_len =
2304 (total_len - ETHER_CRC_LEN);
2305
2306#ifdef RE_FIXUP_RX
2307 re_fixup_rx(m);
2308#endif
2309 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2310 m->m_pkthdr.rcvif = ifp;
2311
2312 /* Do RX checksumming if enabled */
2313
2314 if (ifp->if_capenable & IFCAP_RXCSUM) {
2315 if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2316 /* Check IP header checksum */
2317 if (rxstat & RL_RDESC_STAT_PROTOID)
2318 m->m_pkthdr.csum_flags |=
2319 CSUM_IP_CHECKED;
2320 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
2321 m->m_pkthdr.csum_flags |=
2322 CSUM_IP_VALID;
2323
2324 /* Check TCP/UDP checksum */
2325 if ((RL_TCPPKT(rxstat) &&
2326 !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2327 (RL_UDPPKT(rxstat) &&
2328 !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2329 m->m_pkthdr.csum_flags |=
2330 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2331 m->m_pkthdr.csum_data = 0xffff;
2332 }
2333 } else {
2334 /*
2335 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
2336 */
2337 if ((rxstat & RL_RDESC_STAT_PROTOID) &&
2338 (rxvlan & RL_RDESC_IPV4))
2339 m->m_pkthdr.csum_flags |=
2340 CSUM_IP_CHECKED;
2341 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
2342 (rxvlan & RL_RDESC_IPV4))
2343 m->m_pkthdr.csum_flags |=
2344 CSUM_IP_VALID;
2345 if (((rxstat & RL_RDESC_STAT_TCP) &&
2346 !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2347 ((rxstat & RL_RDESC_STAT_UDP) &&
2348 !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2349 m->m_pkthdr.csum_flags |=
2350 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2351 m->m_pkthdr.csum_data = 0xffff;
2352 }
2353 }
2354 }
2355 maxpkt--;
2356 if (rxvlan & RL_RDESC_VLANCTL_TAG) {
2357 m->m_pkthdr.ether_vtag =
2358 bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
2359 m->m_flags |= M_VLANTAG;
2360 }
2361 RL_UNLOCK(sc);
2362 (*ifp->if_input)(ifp, m);
2363 RL_LOCK(sc);
2364 rx_npkts++;
2365 }
2366
2367 /* Flush the RX DMA ring */
2368
2369 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2370 sc->rl_ldata.rl_rx_list_map,
2371 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2372
2373 sc->rl_ldata.rl_rx_prodidx = i;
2374
2375 if (rx_npktsp != NULL)
2376 *rx_npktsp = rx_npkts;
2377 if (maxpkt)
2378 return (EAGAIN);
2379
2380 return (0);
2381}
2382
2383static void
2384re_txeof(struct rl_softc *sc)
2385{
2386 struct ifnet *ifp;
2387 struct rl_txdesc *txd;
2388 u_int32_t txstat;
2389 int cons;
2390
2391 cons = sc->rl_ldata.rl_tx_considx;
2392 if (cons == sc->rl_ldata.rl_tx_prodidx)
2393 return;
2394
2395 ifp = sc->rl_ifp;
2396#ifdef DEV_NETMAP
2397 if (netmap_tx_irq(ifp, 0))
2398 return;
2399#endif /* DEV_NETMAP */
2400 /* Invalidate the TX descriptor list */
2401 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2402 sc->rl_ldata.rl_tx_list_map,
2403 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2404
2405 for (; cons != sc->rl_ldata.rl_tx_prodidx;
2406 cons = RL_TX_DESC_NXT(sc, cons)) {
2407 txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
2408 if (txstat & RL_TDESC_STAT_OWN)
2409 break;
2410 /*
2411 * We only stash mbufs in the last descriptor
2412 * in a fragment chain, which also happens to
2413 * be the only place where the TX status bits
2414 * are valid.
2415 */
2416 if (txstat & RL_TDESC_CMD_EOF) {
2417 txd = &sc->rl_ldata.rl_tx_desc[cons];
2418 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2419 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2420 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2421 txd->tx_dmamap);
2422 KASSERT(txd->tx_m != NULL,
2423 ("%s: freeing NULL mbufs!", __func__));
2424 m_freem(txd->tx_m);
2425 txd->tx_m = NULL;
2426 if (txstat & (RL_TDESC_STAT_EXCESSCOL|
2427 RL_TDESC_STAT_COLCNT))
2428 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
2429 if (txstat & RL_TDESC_STAT_TXERRSUM)
2430 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2431 else
2432 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2433 }
2434 sc->rl_ldata.rl_tx_free++;
2435 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2436 }
2437 sc->rl_ldata.rl_tx_considx = cons;
2438
2439 /* No changes made to the TX ring, so no flush needed */
2440
2441 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
2442#ifdef RE_TX_MODERATION
2443 /*
2444 * If not all descriptors have been reaped yet, reload
2445 * the timer so that we will eventually get another
2446 * interrupt that will cause us to re-enter this routine.
2447 * This is done in case the transmitter has gone idle.
2448 */
2449 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2450#endif
2451 } else
2452 sc->rl_watchdog_timer = 0;
2453}
2454
2455static void
2456re_tick(void *xsc)
2457{
2458 struct rl_softc *sc;
2459 struct mii_data *mii;
2460
2461 sc = xsc;
2462
2463 RL_LOCK_ASSERT(sc);
2464
2465 mii = device_get_softc(sc->rl_miibus);
2466 mii_tick(mii);
2467 if ((sc->rl_flags & RL_FLAG_LINK) == 0)
2468 re_miibus_statchg(sc->rl_dev);
2469 /*
2470 * Reclaim transmitted frames here. Technically it is not
2471 * necessary to do here but it ensures periodic reclamation
2472 * regardless of Tx completion interrupt which seems to be
2473 * lost on PCIe based controllers under certain situations.
2474 */
2475 re_txeof(sc);
2476 re_watchdog(sc);
2477 callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2478}
2479
2480#ifdef DEVICE_POLLING
2481static int
2482re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2483{
2484 struct rl_softc *sc = ifp->if_softc;
2485 int rx_npkts = 0;
2486
2487 RL_LOCK(sc);
2488 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2489 rx_npkts = re_poll_locked(ifp, cmd, count);
2490 RL_UNLOCK(sc);
2491 return (rx_npkts);
2492}
2493
2494static int
2495re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2496{
2497 struct rl_softc *sc = ifp->if_softc;
2498 int rx_npkts;
2499
2500 RL_LOCK_ASSERT(sc);
2501
2502 sc->rxcycles = count;
2503 re_rxeof(sc, &rx_npkts);
2504 re_txeof(sc);
2505
2506 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2507 re_start_locked(ifp);
2508
2509 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2510 u_int16_t status;
2511
2512 status = CSR_READ_2(sc, RL_ISR);
2513 if (status == 0xffff)
2514 return (rx_npkts);
2515 if (status)
2516 CSR_WRITE_2(sc, RL_ISR, status);
2517 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2518 (sc->rl_flags & RL_FLAG_PCIE))
2519 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2520
2521 /*
2522 * XXX check behaviour on receiver stalls.
2523 */
2524
2525 if (status & RL_ISR_SYSTEM_ERR) {
2526 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2527 re_init_locked(sc);
2528 }
2529 }
2530 return (rx_npkts);
2531}
2532#endif /* DEVICE_POLLING */
2533
2534static int
2535re_intr(void *arg)
2536{
2537 struct rl_softc *sc;
2538 uint16_t status;
2539
2540 sc = arg;
2541
2542 status = CSR_READ_2(sc, RL_ISR);
2543 if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2544 return (FILTER_STRAY);
2545 CSR_WRITE_2(sc, RL_IMR, 0);
2546
2547 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2548
2549 return (FILTER_HANDLED);
2550}
2551
2552static void
2553re_int_task(void *arg, int npending)
2554{
2555 struct rl_softc *sc;
2556 struct ifnet *ifp;
2557 u_int16_t status;
2558 int rval = 0;
2559
2560 sc = arg;
2561 ifp = sc->rl_ifp;
2562
2563 RL_LOCK(sc);
2564
2565 status = CSR_READ_2(sc, RL_ISR);
2566 CSR_WRITE_2(sc, RL_ISR, status);
2567
2568 if (sc->suspended ||
2569 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2570 RL_UNLOCK(sc);
2571 return;
2572 }
2573
2574#ifdef DEVICE_POLLING
2575 if (ifp->if_capenable & IFCAP_POLLING) {
2576 RL_UNLOCK(sc);
2577 return;
2578 }
2579#endif
2580
2581 if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2582 rval = re_rxeof(sc, NULL);
2583
2584 /*
2585 * Some chips will ignore a second TX request issued
2586 * while an existing transmission is in progress. If
2587 * the transmitter goes idle but there are still
2588 * packets waiting to be sent, we need to restart the
2589 * channel here to flush them out. This only seems to
2590 * be required with the PCIe devices.
2591 */
2592 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2593 (sc->rl_flags & RL_FLAG_PCIE))
2594 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2595 if (status & (
2596#ifdef RE_TX_MODERATION
2597 RL_ISR_TIMEOUT_EXPIRED|
2598#else
2599 RL_ISR_TX_OK|
2600#endif
2601 RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2602 re_txeof(sc);
2603
2604 if (status & RL_ISR_SYSTEM_ERR) {
2605 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2606 re_init_locked(sc);
2607 }
2608
2609 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2610 re_start_locked(ifp);
2611
2612 RL_UNLOCK(sc);
2613
2614 if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2615 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2616 return;
2617 }
2618
2619 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2620}
2621
2622static void
2623re_intr_msi(void *xsc)
2624{
2625 struct rl_softc *sc;
2626 struct ifnet *ifp;
2627 uint16_t intrs, status;
2628
2629 sc = xsc;
2630 RL_LOCK(sc);
2631
2632 ifp = sc->rl_ifp;
2633#ifdef DEVICE_POLLING
2634 if (ifp->if_capenable & IFCAP_POLLING) {
2635 RL_UNLOCK(sc);
2636 return;
2637 }
2638#endif
2639 /* Disable interrupts. */
2640 CSR_WRITE_2(sc, RL_IMR, 0);
2641 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2642 RL_UNLOCK(sc);
2643 return;
2644 }
2645
2646 intrs = RL_INTRS_CPLUS;
2647 status = CSR_READ_2(sc, RL_ISR);
2648 CSR_WRITE_2(sc, RL_ISR, status);
2649 if (sc->rl_int_rx_act > 0) {
2650 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2651 RL_ISR_RX_OVERRUN);
2652 status &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2653 RL_ISR_RX_OVERRUN);
2654 }
2655
2656 if (status & (RL_ISR_TIMEOUT_EXPIRED | RL_ISR_RX_OK | RL_ISR_RX_ERR |
2657 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) {
2658 re_rxeof(sc, NULL);
2659 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2660 if (sc->rl_int_rx_mod != 0 &&
2661 (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR |
2662 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) != 0) {
2663 /* Rearm one-shot timer. */
2664 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2665 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR |
2666 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN);
2667 sc->rl_int_rx_act = 1;
2668 } else {
2669 intrs |= RL_ISR_RX_OK | RL_ISR_RX_ERR |
2670 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN;
2671 sc->rl_int_rx_act = 0;
2672 }
2673 }
2674 }
2675
2676 /*
2677 * Some chips will ignore a second TX request issued
2678 * while an existing transmission is in progress. If
2679 * the transmitter goes idle but there are still
2680 * packets waiting to be sent, we need to restart the
2681 * channel here to flush them out. This only seems to
2682 * be required with the PCIe devices.
2683 */
2684 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2685 (sc->rl_flags & RL_FLAG_PCIE))
2686 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2687 if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR | RL_ISR_TX_DESC_UNAVAIL))
2688 re_txeof(sc);
2689
2690 if (status & RL_ISR_SYSTEM_ERR) {
2691 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2692 re_init_locked(sc);
2693 }
2694
2695 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2696 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2697 re_start_locked(ifp);
2698 CSR_WRITE_2(sc, RL_IMR, intrs);
2699 }
2700 RL_UNLOCK(sc);
2701}
2702
2703static int
2704re_encap(struct rl_softc *sc, struct mbuf **m_head)
2705{
2706 struct rl_txdesc *txd, *txd_last;
2707 bus_dma_segment_t segs[RL_NTXSEGS];
2708 bus_dmamap_t map;
2709 struct mbuf *m_new;
2710 struct rl_desc *desc;
2711 int nsegs, prod;
2712 int i, error, ei, si;
2713 int padlen;
2714 uint32_t cmdstat, csum_flags, vlanctl;
2715
2716 RL_LOCK_ASSERT(sc);
2717 M_ASSERTPKTHDR((*m_head));
2718
2719 /*
2720 * With some of the RealTek chips, using the checksum offload
2721 * support in conjunction with the autopadding feature results
2722 * in the transmission of corrupt frames. For example, if we
2723 * need to send a really small IP fragment that's less than 60
2724 * bytes in size, and IP header checksumming is enabled, the
2725 * resulting ethernet frame that appears on the wire will
2726 * have garbled payload. To work around this, if TX IP checksum
2727 * offload is enabled, we always manually pad short frames out
2728 * to the minimum ethernet frame size.
2729 */
2730 if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 &&
2731 (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2732 ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2733 padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2734 if (M_WRITABLE(*m_head) == 0) {
2735 /* Get a writable copy. */
2736 m_new = m_dup(*m_head, M_NOWAIT);
2737 m_freem(*m_head);
2738 if (m_new == NULL) {
2739 *m_head = NULL;
2740 return (ENOBUFS);
2741 }
2742 *m_head = m_new;
2743 }
2744 if ((*m_head)->m_next != NULL ||
2745 M_TRAILINGSPACE(*m_head) < padlen) {
2746 m_new = m_defrag(*m_head, M_NOWAIT);
2747 if (m_new == NULL) {
2748 m_freem(*m_head);
2749 *m_head = NULL;
2750 return (ENOBUFS);
2751 }
2752 } else
2753 m_new = *m_head;
2754
2755 /*
2756 * Manually pad short frames, and zero the pad space
2757 * to avoid leaking data.
2758 */
2759 bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2760 m_new->m_pkthdr.len += padlen;
2761 m_new->m_len = m_new->m_pkthdr.len;
2762 *m_head = m_new;
2763 }
2764
2765 prod = sc->rl_ldata.rl_tx_prodidx;
2766 txd = &sc->rl_ldata.rl_tx_desc[prod];
2767 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2768 *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2769 if (error == EFBIG) {
2770 m_new = m_collapse(*m_head, M_NOWAIT, RL_NTXSEGS);
2771 if (m_new == NULL) {
2772 m_freem(*m_head);
2773 *m_head = NULL;
2774 return (ENOBUFS);
2775 }
2776 *m_head = m_new;
2777 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2778 txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2779 if (error != 0) {
2780 m_freem(*m_head);
2781 *m_head = NULL;
2782 return (error);
2783 }
2784 } else if (error != 0)
2785 return (error);
2786 if (nsegs == 0) {
2787 m_freem(*m_head);
2788 *m_head = NULL;
2789 return (EIO);
2790 }
2791
2792 /* Check for number of available descriptors. */
2793 if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2794 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2795 return (ENOBUFS);
2796 }
2797
2798 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2799 BUS_DMASYNC_PREWRITE);
2800
2801 /*
2802 * Set up checksum offload. Note: checksum offload bits must
2803 * appear in all descriptors of a multi-descriptor transmit
2804 * attempt. This is according to testing done with an 8169
2805 * chip. This is a requirement.
2806 */
2807 vlanctl = 0;
2808 csum_flags = 0;
2809 if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2810 if ((sc->rl_flags & RL_FLAG_DESCV2) != 0) {
2811 csum_flags |= RL_TDESC_CMD_LGSEND;
2812 vlanctl |= ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2813 RL_TDESC_CMD_MSSVALV2_SHIFT);
2814 } else {
2815 csum_flags |= RL_TDESC_CMD_LGSEND |
2816 ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2817 RL_TDESC_CMD_MSSVAL_SHIFT);
2818 }
2819 } else {
2820 /*
2821 * Unconditionally enable IP checksum if TCP or UDP
2822 * checksum is required. Otherwise, TCP/UDP checksum
2823 * doesn't make effects.
2824 */
2825 if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2826 if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2827 csum_flags |= RL_TDESC_CMD_IPCSUM;
2828 if (((*m_head)->m_pkthdr.csum_flags &
2829 CSUM_TCP) != 0)
2830 csum_flags |= RL_TDESC_CMD_TCPCSUM;
2831 if (((*m_head)->m_pkthdr.csum_flags &
2832 CSUM_UDP) != 0)
2833 csum_flags |= RL_TDESC_CMD_UDPCSUM;
2834 } else {
2835 vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2836 if (((*m_head)->m_pkthdr.csum_flags &
2837 CSUM_TCP) != 0)
2838 vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2839 if (((*m_head)->m_pkthdr.csum_flags &
2840 CSUM_UDP) != 0)
2841 vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2842 }
2843 }
2844 }
2845
2846 /*
2847 * Set up hardware VLAN tagging. Note: vlan tag info must
2848 * appear in all descriptors of a multi-descriptor
2849 * transmission attempt.
2850 */
2851 if ((*m_head)->m_flags & M_VLANTAG)
2852 vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
2853 RL_TDESC_VLANCTL_TAG;
2854
2855 si = prod;
2856 for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2857 desc = &sc->rl_ldata.rl_tx_list[prod];
2858 desc->rl_vlanctl = htole32(vlanctl);
2859 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2860 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2861 cmdstat = segs[i].ds_len;
2862 if (i != 0)
2863 cmdstat |= RL_TDESC_CMD_OWN;
2864 if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2865 cmdstat |= RL_TDESC_CMD_EOR;
2866 desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2867 sc->rl_ldata.rl_tx_free--;
2868 }
2869 /* Update producer index. */
2870 sc->rl_ldata.rl_tx_prodidx = prod;
2871
2872 /* Set EOF on the last descriptor. */
2873 ei = RL_TX_DESC_PRV(sc, prod);
2874 desc = &sc->rl_ldata.rl_tx_list[ei];
2875 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2876
2877 desc = &sc->rl_ldata.rl_tx_list[si];
2878 /* Set SOF and transfer ownership of packet to the chip. */
2879 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2880
2881 /*
2882 * Insure that the map for this transmission
2883 * is placed at the array index of the last descriptor
2884 * in this chain. (Swap last and first dmamaps.)
2885 */
2886 txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2887 map = txd->tx_dmamap;
2888 txd->tx_dmamap = txd_last->tx_dmamap;
2889 txd_last->tx_dmamap = map;
2890 txd_last->tx_m = *m_head;
2891
2892 return (0);
2893}
2894
2895static void
2896re_start(struct ifnet *ifp)
2897{
2898 struct rl_softc *sc;
2899
2900 sc = ifp->if_softc;
2901 RL_LOCK(sc);
2902 re_start_locked(ifp);
2903 RL_UNLOCK(sc);
2904}
2905
2906/*
2907 * Main transmit routine for C+ and gigE NICs.
2908 */
2909static void
2910re_start_locked(struct ifnet *ifp)
2911{
2912 struct rl_softc *sc;
2913 struct mbuf *m_head;
2914 int queued;
2915
2916 sc = ifp->if_softc;
2917
2918#ifdef DEV_NETMAP
2919 /* XXX is this necessary ? */
2920 if (ifp->if_capenable & IFCAP_NETMAP) {
2921 struct netmap_kring *kring = &NA(ifp)->tx_rings[0];
2922 if (sc->rl_ldata.rl_tx_prodidx != kring->nr_hwcur) {
2923 /* kick the tx unit */
2924 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2925#ifdef RE_TX_MODERATION
2926 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2927#endif
2928 sc->rl_watchdog_timer = 5;
2929 }
2930 return;
2931 }
2932#endif /* DEV_NETMAP */
2933 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2934 IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
2935 return;
2936
2937 for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2938 sc->rl_ldata.rl_tx_free > 1;) {
2939 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2940 if (m_head == NULL)
2941 break;
2942
2943 if (re_encap(sc, &m_head) != 0) {
2944 if (m_head == NULL)
2945 break;
2946 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2947 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2948 break;
2949 }
2950
2951 /*
2952 * If there's a BPF listener, bounce a copy of this frame
2953 * to him.
2954 */
2955 ETHER_BPF_MTAP(ifp, m_head);
2956
2957 queued++;
2958 }
2959
2960 if (queued == 0) {
2961#ifdef RE_TX_MODERATION
2962 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2963 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2964#endif
2965 return;
2966 }
2967
2968 /* Flush the TX descriptors */
2969
2970 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2971 sc->rl_ldata.rl_tx_list_map,
2972 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2973
2974 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2975
2976#ifdef RE_TX_MODERATION
2977 /*
2978 * Use the countdown timer for interrupt moderation.
2979 * 'TX done' interrupts are disabled. Instead, we reset the
2980 * countdown timer, which will begin counting until it hits
2981 * the value in the TIMERINT register, and then trigger an
2982 * interrupt. Each time we write to the TIMERCNT register,
2983 * the timer count is reset to 0.
2984 */
2985 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2986#endif
2987
2988 /*
2989 * Set a timeout in case the chip goes out to lunch.
2990 */
2991 sc->rl_watchdog_timer = 5;
2992}
2993
2994static void
2995re_set_jumbo(struct rl_softc *sc, int jumbo)
2996{
2997
2998 if (sc->rl_hwrev->rl_rev == RL_HWREV_8168E_VL) {
2999 pci_set_max_read_req(sc->rl_dev, 4096);
3000 return;
3001 }
3002
3003 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
3004 if (jumbo != 0) {
3005 CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) |
3006 RL_CFG3_JUMBO_EN0);
3007 switch (sc->rl_hwrev->rl_rev) {
3008 case RL_HWREV_8168DP:
3009 break;
3010 case RL_HWREV_8168E:
3011 CSR_WRITE_1(sc, sc->rl_cfg4,
3012 CSR_READ_1(sc, sc->rl_cfg4) | 0x01);
3013 break;
3014 default:
3015 CSR_WRITE_1(sc, sc->rl_cfg4,
3016 CSR_READ_1(sc, sc->rl_cfg4) | RL_CFG4_JUMBO_EN1);
3017 }
3018 } else {
3019 CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) &
3020 ~RL_CFG3_JUMBO_EN0);
3021 switch (sc->rl_hwrev->rl_rev) {
3022 case RL_HWREV_8168DP:
3023 break;
3024 case RL_HWREV_8168E:
3025 CSR_WRITE_1(sc, sc->rl_cfg4,
3026 CSR_READ_1(sc, sc->rl_cfg4) & ~0x01);
3027 break;
3028 default:
3029 CSR_WRITE_1(sc, sc->rl_cfg4,
3030 CSR_READ_1(sc, sc->rl_cfg4) & ~RL_CFG4_JUMBO_EN1);
3031 }
3032 }
3033 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3034
3035 switch (sc->rl_hwrev->rl_rev) {
3036 case RL_HWREV_8168DP:
3037 pci_set_max_read_req(sc->rl_dev, 4096);
3038 break;
3039 default:
3040 if (jumbo != 0)
3041 pci_set_max_read_req(sc->rl_dev, 512);
3042 else
3043 pci_set_max_read_req(sc->rl_dev, 4096);
3044 }
3045}
3046
3047static void
3048re_init(void *xsc)
3049{
3050 struct rl_softc *sc = xsc;
3051
3052 RL_LOCK(sc);
3053 re_init_locked(sc);
3054 RL_UNLOCK(sc);
3055}
3056
3057static void
3058re_init_locked(struct rl_softc *sc)
3059{
3060 struct ifnet *ifp = sc->rl_ifp;
3061 struct mii_data *mii;
3062 uint32_t reg;
3063 uint16_t cfg;
3064 union {
3065 uint32_t align_dummy;
3066 u_char eaddr[ETHER_ADDR_LEN];
3067 } eaddr;
3068
3069 RL_LOCK_ASSERT(sc);
3070
3071 mii = device_get_softc(sc->rl_miibus);
3072
3073 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3074 return;
3075
3076 /*
3077 * Cancel pending I/O and free all RX/TX buffers.
3078 */
3079 re_stop(sc);
3080
3081 /* Put controller into known state. */
3082 re_reset(sc);
3083
3084 /*
3085 * For C+ mode, initialize the RX descriptors and mbufs.
3086 */
3087 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3088 if (ifp->if_mtu > RL_MTU) {
3089 if (re_jrx_list_init(sc) != 0) {
3090 device_printf(sc->rl_dev,
3091 "no memory for jumbo RX buffers\n");
3092 re_stop(sc);
3093 return;
3094 }
3095 /* Disable checksum offloading for jumbo frames. */
3096 ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_TSO4);
3097 ifp->if_hwassist &= ~(RE_CSUM_FEATURES | CSUM_TSO);
3098 } else {
3099 if (re_rx_list_init(sc) != 0) {
3100 device_printf(sc->rl_dev,
3101 "no memory for RX buffers\n");
3102 re_stop(sc);
3103 return;
3104 }
3105 }
3106 re_set_jumbo(sc, ifp->if_mtu > RL_MTU);
3107 } else {
3108 if (re_rx_list_init(sc) != 0) {
3109 device_printf(sc->rl_dev, "no memory for RX buffers\n");
3110 re_stop(sc);
3111 return;
3112 }
3113 if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3114 pci_get_device(sc->rl_dev) != RT_DEVICEID_8101E) {
3115 if (ifp->if_mtu > RL_MTU)
3116 pci_set_max_read_req(sc->rl_dev, 512);
3117 else
3118 pci_set_max_read_req(sc->rl_dev, 4096);
3119 }
3120 }
3121 re_tx_list_init(sc);
3122
3123 /*
3124 * Enable C+ RX and TX mode, as well as VLAN stripping and
3125 * RX checksum offload. We must configure the C+ register
3126 * before all others.
3127 */
3128 cfg = RL_CPLUSCMD_PCI_MRW;
3129 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3130 cfg |= RL_CPLUSCMD_RXCSUM_ENB;
3131 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3132 cfg |= RL_CPLUSCMD_VLANSTRIP;
3133 if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
3134 cfg |= RL_CPLUSCMD_MACSTAT_DIS;
3135 /* XXX magic. */
3136 cfg |= 0x0001;
3137 } else
3138 cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
3139 CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
3140 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SC ||
3141 sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) {
3142 reg = 0x000fff00;
3143 if ((CSR_READ_1(sc, sc->rl_cfg2) & RL_CFG2_PCI66MHZ) != 0)
3144 reg |= 0x000000ff;
3145 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE)
3146 reg |= 0x00f00000;
3147 CSR_WRITE_4(sc, 0x7c, reg);
3148 /* Disable interrupt mitigation. */
3149 CSR_WRITE_2(sc, 0xe2, 0);
3150 }
3151 /*
3152 * Disable TSO if interface MTU size is greater than MSS
3153 * allowed in controller.
3154 */
3155 if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
3156 ifp->if_capenable &= ~IFCAP_TSO4;
3157 ifp->if_hwassist &= ~CSUM_TSO;
3158 }
3159
3160 /*
3161 * Init our MAC address. Even though the chipset
3162 * documentation doesn't mention it, we need to enter "Config
3163 * register write enable" mode to modify the ID registers.
3164 */
3165 /* Copy MAC address on stack to align. */
3166 bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
3167 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
3168 CSR_WRITE_4(sc, RL_IDR0,
3169 htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
3170 CSR_WRITE_4(sc, RL_IDR4,
3171 htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
3172 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3173
3174 /*
3175 * Load the addresses of the RX and TX lists into the chip.
3176 */
3177
3178 CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
3179 RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
3180 CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
3181 RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
3182
3183 CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
3184 RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
3185 CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
3186 RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
3187
3188 if ((sc->rl_flags & RL_FLAG_RXDV_GATED) != 0)
3189 CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) &
3190 ~0x00080000);
3191
3192 /*
3193 * Enable transmit and receive.
3194 */
3195 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
3196
3197 /*
3198 * Set the initial TX configuration.
3199 */
3200 if (sc->rl_testmode) {
3201 if (sc->rl_type == RL_8169)
3202 CSR_WRITE_4(sc, RL_TXCFG,
3203 RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
3204 else
3205 CSR_WRITE_4(sc, RL_TXCFG,
3206 RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
3207 } else
3208 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
3209
3210 CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
3211
3212 /*
3213 * Set the initial RX configuration.
3214 */
3215 re_set_rxmode(sc);
3216
3217 /* Configure interrupt moderation. */
3218 if (sc->rl_type == RL_8169) {
3219 /* Magic from vendor. */
3220 CSR_WRITE_2(sc, RL_INTRMOD, 0x5100);
3221 }
3222
3223#ifdef DEVICE_POLLING
3224 /*
3225 * Disable interrupts if we are polling.
3226 */
3227 if (ifp->if_capenable & IFCAP_POLLING)
3228 CSR_WRITE_2(sc, RL_IMR, 0);
3229 else /* otherwise ... */
3230#endif
3231
3232 /*
3233 * Enable interrupts.
3234 */
3235 if (sc->rl_testmode)
3236 CSR_WRITE_2(sc, RL_IMR, 0);
3237 else
3238 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3239 CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
3240
3241 /* Set initial TX threshold */
3242 sc->rl_txthresh = RL_TX_THRESH_INIT;
3243
3244 /* Start RX/TX process. */
3245 CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
3246#ifdef notdef
3247 /* Enable receiver and transmitter. */
3248 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
3249#endif
3250
3251 /*
3252 * Initialize the timer interrupt register so that
3253 * a timer interrupt will be generated once the timer
3254 * reaches a certain number of ticks. The timer is
3255 * reloaded on each transmit.
3256 */
3257#ifdef RE_TX_MODERATION
3258 /*
3259 * Use timer interrupt register to moderate TX interrupt
3260 * moderation, which dramatically improves TX frame rate.
3261 */
3262 if (sc->rl_type == RL_8169)
3263 CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
3264 else
3265 CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
3266#else
3267 /*
3268 * Use timer interrupt register to moderate RX interrupt
3269 * moderation.
3270 */
3271 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
3272 intr_filter == 0) {
3273 if (sc->rl_type == RL_8169)
3274 CSR_WRITE_4(sc, RL_TIMERINT_8169,
3275 RL_USECS(sc->rl_int_rx_mod));
3276 } else {
3277 if (sc->rl_type == RL_8169)
3278 CSR_WRITE_4(sc, RL_TIMERINT_8169, RL_USECS(0));
3279 }
3280#endif
3281
3282 /*
3283 * For 8169 gigE NICs, set the max allowed RX packet
3284 * size so we can receive jumbo frames.
3285 */
3286 if (sc->rl_type == RL_8169) {
3287 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3288 /*
3289 * For controllers that use new jumbo frame scheme,
3290 * set maximum size of jumbo frame depending on
3291 * controller revisions.
3292 */
3293 if (ifp->if_mtu > RL_MTU)
3294 CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3295 sc->rl_hwrev->rl_max_mtu +
3296 ETHER_VLAN_ENCAP_LEN + ETHER_HDR_LEN +
3297 ETHER_CRC_LEN);
3298 else
3299 CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3300 RE_RX_DESC_BUFLEN);
3301 } else if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3302 sc->rl_hwrev->rl_max_mtu == RL_MTU) {
3303 /* RTL810x has no jumbo frame support. */
3304 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, RE_RX_DESC_BUFLEN);
3305 } else
3306 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
3307 }
3308
3309 if (sc->rl_testmode)
3310 return;
3311
3312 CSR_WRITE_1(sc, sc->rl_cfg1, CSR_READ_1(sc, sc->rl_cfg1) |
3313 RL_CFG1_DRVLOAD);
3314
3315 ifp->if_drv_flags |= IFF_DRV_RUNNING;
3316 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3317
3318 sc->rl_flags &= ~RL_FLAG_LINK;
3319 mii_mediachg(mii);
3320
3321 sc->rl_watchdog_timer = 0;
3322 callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
3323}
3324
3325/*
3326 * Set media options.
3327 */
3328static int
3329re_ifmedia_upd(struct ifnet *ifp)
3330{
3331 struct rl_softc *sc;
3332 struct mii_data *mii;
3333 int error;
3334
3335 sc = ifp->if_softc;
3336 mii = device_get_softc(sc->rl_miibus);
3337 RL_LOCK(sc);
3338 error = mii_mediachg(mii);
3339 RL_UNLOCK(sc);
3340
3341 return (error);
3342}
3343
3344/*
3345 * Report current media status.
3346 */
3347static void
3348re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3349{
3350 struct rl_softc *sc;
3351 struct mii_data *mii;
3352
3353 sc = ifp->if_softc;
3354 mii = device_get_softc(sc->rl_miibus);
3355
3356 RL_LOCK(sc);
3357 mii_pollstat(mii);
3358 ifmr->ifm_active = mii->mii_media_active;
3359 ifmr->ifm_status = mii->mii_media_status;
3360 RL_UNLOCK(sc);
3361}
3362
3363static int
3364re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3365{
3366 struct rl_softc *sc = ifp->if_softc;
3367 struct ifreq *ifr = (struct ifreq *) data;
3368 struct mii_data *mii;
3369 int error = 0;
3370
3371 switch (command) {
3372 case SIOCSIFMTU:
3373 if (ifr->ifr_mtu < ETHERMIN ||
3374 ifr->ifr_mtu > sc->rl_hwrev->rl_max_mtu ||
3375 ((sc->rl_flags & RL_FLAG_FASTETHER) != 0 &&
3376 ifr->ifr_mtu > RL_MTU)) {
3377 error = EINVAL;
3378 break;
3379 }
3380 RL_LOCK(sc);
3381 if (ifp->if_mtu != ifr->ifr_mtu) {
3382 ifp->if_mtu = ifr->ifr_mtu;
3383 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3384 (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3385 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3386 re_init_locked(sc);
3387 }
3388 if (ifp->if_mtu > RL_TSO_MTU &&
3389 (ifp->if_capenable & IFCAP_TSO4) != 0) {
3390 ifp->if_capenable &= ~(IFCAP_TSO4 |
3391 IFCAP_VLAN_HWTSO);
3392 ifp->if_hwassist &= ~CSUM_TSO;
3393 }
3394 VLAN_CAPABILITIES(ifp);
3395 }
3396 RL_UNLOCK(sc);
3397 break;
3398 case SIOCSIFFLAGS:
3399 RL_LOCK(sc);
3400 if ((ifp->if_flags & IFF_UP) != 0) {
3401 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3402 if (((ifp->if_flags ^ sc->rl_if_flags)
3403 & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
3404 re_set_rxmode(sc);
3405 } else
3406 re_init_locked(sc);
3407 } else {
3408 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3409 re_stop(sc);
3410 }
3411 sc->rl_if_flags = ifp->if_flags;
3412 RL_UNLOCK(sc);
3413 break;
3414 case SIOCADDMULTI:
3415 case SIOCDELMULTI:
3416 RL_LOCK(sc);
3417 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3418 re_set_rxmode(sc);
3419 RL_UNLOCK(sc);
3420 break;
3421 case SIOCGIFMEDIA:
3422 case SIOCSIFMEDIA:
3423 mii = device_get_softc(sc->rl_miibus);
3424 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3425 break;
3426 case SIOCSIFCAP:
3427 {
3428 int mask, reinit;
3429
3430 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3431 reinit = 0;
3432#ifdef DEVICE_POLLING
3433 if (mask & IFCAP_POLLING) {
3434 if (ifr->ifr_reqcap & IFCAP_POLLING) {
3435 error = ether_poll_register(re_poll, ifp);
3436 if (error)
3437 return (error);
3438 RL_LOCK(sc);
3439 /* Disable interrupts */
3440 CSR_WRITE_2(sc, RL_IMR, 0x0000);
3441 ifp->if_capenable |= IFCAP_POLLING;
3442 RL_UNLOCK(sc);
3443 } else {
3444 error = ether_poll_deregister(ifp);
3445 /* Enable interrupts. */
3446 RL_LOCK(sc);
3447 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3448 ifp->if_capenable &= ~IFCAP_POLLING;
3449 RL_UNLOCK(sc);
3450 }
3451 }
3452#endif /* DEVICE_POLLING */
3453 RL_LOCK(sc);
3454 if ((mask & IFCAP_TXCSUM) != 0 &&
3455 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3456 ifp->if_capenable ^= IFCAP_TXCSUM;
3457 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
3458 ifp->if_hwassist |= RE_CSUM_FEATURES;
3459 else
3460 ifp->if_hwassist &= ~RE_CSUM_FEATURES;
3461 reinit = 1;
3462 }
3463 if ((mask & IFCAP_RXCSUM) != 0 &&
3464 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
3465 ifp->if_capenable ^= IFCAP_RXCSUM;
3466 reinit = 1;
3467 }
3468 if ((mask & IFCAP_TSO4) != 0 &&
3469 (ifp->if_capabilities & IFCAP_TSO4) != 0) {
3470 ifp->if_capenable ^= IFCAP_TSO4;
3471 if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
3472 ifp->if_hwassist |= CSUM_TSO;
3473 else
3474 ifp->if_hwassist &= ~CSUM_TSO;
3475 if (ifp->if_mtu > RL_TSO_MTU &&
3476 (ifp->if_capenable & IFCAP_TSO4) != 0) {
3477 ifp->if_capenable &= ~IFCAP_TSO4;
3478 ifp->if_hwassist &= ~CSUM_TSO;
3479 }
3480 }
3481 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
3482 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
3483 ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
3484 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3485 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
3486 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3487 /* TSO over VLAN requires VLAN hardware tagging. */
3488 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
3489 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
3490 reinit = 1;
3491 }
3492 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3493 (mask & (IFCAP_HWCSUM | IFCAP_TSO4 |
3494 IFCAP_VLAN_HWTSO)) != 0)
3495 reinit = 1;
3496 if ((mask & IFCAP_WOL) != 0 &&
3497 (ifp->if_capabilities & IFCAP_WOL) != 0) {
3498 if ((mask & IFCAP_WOL_UCAST) != 0)
3499 ifp->if_capenable ^= IFCAP_WOL_UCAST;
3500 if ((mask & IFCAP_WOL_MCAST) != 0)
3501 ifp->if_capenable ^= IFCAP_WOL_MCAST;
3502 if ((mask & IFCAP_WOL_MAGIC) != 0)
3503 ifp->if_capenable ^= IFCAP_WOL_MAGIC;
3504 }
3505 if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) {
3506 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3507 re_init_locked(sc);
3508 }
3509 RL_UNLOCK(sc);
3510 VLAN_CAPABILITIES(ifp);
3511 }
3512 break;
3513 default:
3514 error = ether_ioctl(ifp, command, data);
3515 break;
3516 }
3517
3518 return (error);
3519}
3520
3521static void
3522re_watchdog(struct rl_softc *sc)
3523{
3524 struct ifnet *ifp;
3525
3526 RL_LOCK_ASSERT(sc);
3527
3528 if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
3529 return;
3530
3531 ifp = sc->rl_ifp;
3532 re_txeof(sc);
3533 if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) {
3534 if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
3535 "-- recovering\n");
3536 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3537 re_start_locked(ifp);
3538 return;
3539 }
3540
3541 if_printf(ifp, "watchdog timeout\n");
3542 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3543
3544 re_rxeof(sc, NULL);
3545 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3546 re_init_locked(sc);
3547 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3548 re_start_locked(ifp);
3549}
3550
3551/*
3552 * Stop the adapter and free any mbufs allocated to the
3553 * RX and TX lists.
3554 */
3555static void
3556re_stop(struct rl_softc *sc)
3557{
3558 int i;
3559 struct ifnet *ifp;
3560 struct rl_txdesc *txd;
3561 struct rl_rxdesc *rxd;
3562
3563 RL_LOCK_ASSERT(sc);
3564
3565 ifp = sc->rl_ifp;
3566
3567 sc->rl_watchdog_timer = 0;
3568 callout_stop(&sc->rl_stat_callout);
3569 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3570
3571 /*
3572 * Disable accepting frames to put RX MAC into idle state.
3573 * Otherwise it's possible to get frames while stop command
3574 * execution is in progress and controller can DMA the frame
3575 * to already freed RX buffer during that period.
3576 */
3577 CSR_WRITE_4(sc, RL_RXCFG, CSR_READ_4(sc, RL_RXCFG) &
3578 ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_MULTI |
3579 RL_RXCFG_RX_BROAD));
3580
3581 if ((sc->rl_flags & RL_FLAG_WAIT_TXPOLL) != 0) {
3582 for (i = RL_TIMEOUT; i > 0; i--) {
3583 if ((CSR_READ_1(sc, sc->rl_txstart) &
3584 RL_TXSTART_START) == 0)
3585 break;
3586 DELAY(20);
3587 }
3588 if (i == 0)
3589 device_printf(sc->rl_dev,
3590 "stopping TX poll timed out!\n");
3591 CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3592 } else if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0) {
3593 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
3594 RL_CMD_RX_ENB);
3595 if ((sc->rl_flags & RL_FLAG_CMDSTOP_WAIT_TXQ) != 0) {
3596 for (i = RL_TIMEOUT; i > 0; i--) {
3597 if ((CSR_READ_4(sc, RL_TXCFG) &
3598 RL_TXCFG_QUEUE_EMPTY) != 0)
3599 break;
3600 DELAY(100);
3601 }
3602 if (i == 0)
3603 device_printf(sc->rl_dev,
3604 "stopping TXQ timed out!\n");
3605 }
3606 } else
3607 CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3608 DELAY(1000);
3609 CSR_WRITE_2(sc, RL_IMR, 0x0000);
3610 CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
3611
3612 if (sc->rl_head != NULL) {
3613 m_freem(sc->rl_head);
3614 sc->rl_head = sc->rl_tail = NULL;
3615 }
3616
3617 /* Free the TX list buffers. */
3618 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
3619 txd = &sc->rl_ldata.rl_tx_desc[i];
3620 if (txd->tx_m != NULL) {
3621 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3622 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3623 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
3624 txd->tx_dmamap);
3625 m_freem(txd->tx_m);
3626 txd->tx_m = NULL;
3627 }
3628 }
3629
3630 /* Free the RX list buffers. */
3631 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3632 rxd = &sc->rl_ldata.rl_rx_desc[i];
3633 if (rxd->rx_m != NULL) {
3634 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
3635 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3636 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
3637 rxd->rx_dmamap);
3638 m_freem(rxd->rx_m);
3639 rxd->rx_m = NULL;
3640 }
3641 }
3642
3643 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3644 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3645 rxd = &sc->rl_ldata.rl_jrx_desc[i];
3646 if (rxd->rx_m != NULL) {
3647 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag,
3648 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3649 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag,
3650 rxd->rx_dmamap);
3651 m_freem(rxd->rx_m);
3652 rxd->rx_m = NULL;
3653 }
3654 }
3655 }
3656}
3657
3658/*
3659 * Device suspend routine. Stop the interface and save some PCI
3660 * settings in case the BIOS doesn't restore them properly on
3661 * resume.
3662 */
3663static int
3664re_suspend(device_t dev)
3665{
3666 struct rl_softc *sc;
3667
3668 sc = device_get_softc(dev);
3669
3670 RL_LOCK(sc);
3671 re_stop(sc);
3672 re_setwol(sc);
3673 sc->suspended = 1;
3674 RL_UNLOCK(sc);
3675
3676 return (0);
3677}
3678
3679/*
3680 * Device resume routine. Restore some PCI settings in case the BIOS
3681 * doesn't, re-enable busmastering, and restart the interface if
3682 * appropriate.
3683 */
3684static int
3685re_resume(device_t dev)
3686{
3687 struct rl_softc *sc;
3688 struct ifnet *ifp;
3689
3690 sc = device_get_softc(dev);
3691
3692 RL_LOCK(sc);
3693
3694 ifp = sc->rl_ifp;
3695 /* Take controller out of sleep mode. */
3696 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3697 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3698 CSR_WRITE_1(sc, RL_GPIO,
3699 CSR_READ_1(sc, RL_GPIO) | 0x01);
3700 }
3701
3702 /*
3703 * Clear WOL matching such that normal Rx filtering
3704 * wouldn't interfere with WOL patterns.
3705 */
3706 re_clrwol(sc);
3707
3708 /* reinitialize interface if necessary */
3709 if (ifp->if_flags & IFF_UP)
3710 re_init_locked(sc);
3711
3712 sc->suspended = 0;
3713 RL_UNLOCK(sc);
3714
3715 return (0);
3716}
3717
3718/*
3719 * Stop all chip I/O so that the kernel's probe routines don't
3720 * get confused by errant DMAs when rebooting.
3721 */
3722static int
3723re_shutdown(device_t dev)
3724{
3725 struct rl_softc *sc;
3726
3727 sc = device_get_softc(dev);
3728
3729 RL_LOCK(sc);
3730 re_stop(sc);
3731 /*
3732 * Mark interface as down since otherwise we will panic if
3733 * interrupt comes in later on, which can happen in some
3734 * cases.
3735 */
3736 sc->rl_ifp->if_flags &= ~IFF_UP;
3737 re_setwol(sc);
3738 RL_UNLOCK(sc);
3739
3740 return (0);
3741}
3742
3743static void
3744re_set_linkspeed(struct rl_softc *sc)
3745{
3746 struct mii_softc *miisc;
3747 struct mii_data *mii;
3748 int aneg, i, phyno;
3749
3750 RL_LOCK_ASSERT(sc);
3751
3752 mii = device_get_softc(sc->rl_miibus);
3753 mii_pollstat(mii);
3754 aneg = 0;
3755 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
3756 (IFM_ACTIVE | IFM_AVALID)) {
3757 switch IFM_SUBTYPE(mii->mii_media_active) {
3758 case IFM_10_T:
3759 case IFM_100_TX:
3760 return;
3761 case IFM_1000_T:
3762 aneg++;
3763 break;
3764 default:
3765 break;
3766 }
3767 }
3768 miisc = LIST_FIRST(&mii->mii_phys);
3769 phyno = miisc->mii_phy;
3770 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3771 PHY_RESET(miisc);
3772 re_miibus_writereg(sc->rl_dev, phyno, MII_100T2CR, 0);
3773 re_miibus_writereg(sc->rl_dev, phyno,
3774 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
3775 re_miibus_writereg(sc->rl_dev, phyno,
3776 MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
3777 DELAY(1000);
3778 if (aneg != 0) {
3779 /*
3780 * Poll link state until re(4) get a 10/100Mbps link.
3781 */
3782 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
3783 mii_pollstat(mii);
3784 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
3785 == (IFM_ACTIVE | IFM_AVALID)) {
3786 switch (IFM_SUBTYPE(mii->mii_media_active)) {
3787 case IFM_10_T:
3788 case IFM_100_TX:
3789 return;
3790 default:
3791 break;
3792 }
3793 }
3794 RL_UNLOCK(sc);
3795 pause("relnk", hz);
3796 RL_LOCK(sc);
3797 }
3798 if (i == MII_ANEGTICKS_GIGE)
3799 device_printf(sc->rl_dev,
3800 "establishing a link failed, WOL may not work!");
3801 }
3802 /*
3803 * No link, force MAC to have 100Mbps, full-duplex link.
3804 * MAC does not require reprogramming on resolved speed/duplex,
3805 * so this is just for completeness.
3806 */
3807 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
3808 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
3809}
3810
3811static void
3812re_setwol(struct rl_softc *sc)
3813{
3814 struct ifnet *ifp;
3815 int pmc;
3816 uint16_t pmstat;
3817 uint8_t v;
3818
3819 RL_LOCK_ASSERT(sc);
3820
3821 if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3822 return;
3823
3824 ifp = sc->rl_ifp;
3825 /* Put controller into sleep mode. */
3826 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3827 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3828 CSR_WRITE_1(sc, RL_GPIO,
3829 CSR_READ_1(sc, RL_GPIO) & ~0x01);
3830 }
3831 if ((ifp->if_capenable & IFCAP_WOL) != 0) {
3832 re_set_rxmode(sc);
3833 if ((sc->rl_flags & RL_FLAG_WOL_MANLINK) != 0)
3834 re_set_linkspeed(sc);
3835 if ((sc->rl_flags & RL_FLAG_WOLRXENB) != 0)
3836 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB);
3837 }
3838 /* Enable config register write. */
3839 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3840
3841 /* Enable PME. */
3842 v = CSR_READ_1(sc, sc->rl_cfg1);
3843 v &= ~RL_CFG1_PME;
3844 if ((ifp->if_capenable & IFCAP_WOL) != 0)
3845 v |= RL_CFG1_PME;
3846 CSR_WRITE_1(sc, sc->rl_cfg1, v);
3847
3848 v = CSR_READ_1(sc, sc->rl_cfg3);
3849 v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3850 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3851 v |= RL_CFG3_WOL_MAGIC;
3852 CSR_WRITE_1(sc, sc->rl_cfg3, v);
3853
3854 v = CSR_READ_1(sc, sc->rl_cfg5);
3855 v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST |
3856 RL_CFG5_WOL_LANWAKE);
3857 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
3858 v |= RL_CFG5_WOL_UCAST;
3859 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
3860 v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3861 if ((ifp->if_capenable & IFCAP_WOL) != 0)
3862 v |= RL_CFG5_WOL_LANWAKE;
3863 CSR_WRITE_1(sc, sc->rl_cfg5, v);
3864
3865 /* Config register write done. */
3866 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3867
3868 if ((ifp->if_capenable & IFCAP_WOL) == 0 &&
3869 (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
3870 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80);
3871 /*
3872 * It seems that hardware resets its link speed to 100Mbps in
3873 * power down mode so switching to 100Mbps in driver is not
3874 * needed.
3875 */
3876
3877 /* Request PME if WOL is requested. */
3878 pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3879 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3880 if ((ifp->if_capenable & IFCAP_WOL) != 0)
3881 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3882 pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3883}
3884
3885static void
3886re_clrwol(struct rl_softc *sc)
3887{
3888 int pmc;
3889 uint8_t v;
3890
3891 RL_LOCK_ASSERT(sc);
3892
3893 if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3894 return;
3895
3896 /* Enable config register write. */
3897 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3898
3899 v = CSR_READ_1(sc, sc->rl_cfg3);
3900 v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3901 CSR_WRITE_1(sc, sc->rl_cfg3, v);
3902
3903 /* Config register write done. */
3904 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3905
3906 v = CSR_READ_1(sc, sc->rl_cfg5);
3907 v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3908 v &= ~RL_CFG5_WOL_LANWAKE;
3909 CSR_WRITE_1(sc, sc->rl_cfg5, v);
3910}
3911
3912static void
3913re_add_sysctls(struct rl_softc *sc)
3914{
3915 struct sysctl_ctx_list *ctx;
3916 struct sysctl_oid_list *children;
3917 int error;
3918
3919 ctx = device_get_sysctl_ctx(sc->rl_dev);
3920 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
3921
3922 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats",
3923 CTLTYPE_INT | CTLFLAG_RW, sc, 0, re_sysctl_stats, "I",
3924 "Statistics Information");
3925 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
3926 return;
3927
3928 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "int_rx_mod",
3929 CTLTYPE_INT | CTLFLAG_RW, &sc->rl_int_rx_mod, 0,
3930 sysctl_hw_re_int_mod, "I", "re RX interrupt moderation");
3931 /* Pull in device tunables. */
3932 sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3933 error = resource_int_value(device_get_name(sc->rl_dev),
3934 device_get_unit(sc->rl_dev), "int_rx_mod", &sc->rl_int_rx_mod);
3935 if (error == 0) {
3936 if (sc->rl_int_rx_mod < RL_TIMER_MIN ||
3937 sc->rl_int_rx_mod > RL_TIMER_MAX) {
3938 device_printf(sc->rl_dev, "int_rx_mod value out of "
3939 "range; using default: %d\n",
3940 RL_TIMER_DEFAULT);
3941 sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3942 }
3943 }
3944
3945}
3946
3947static int
3948re_sysctl_stats(SYSCTL_HANDLER_ARGS)
3949{
3950 struct rl_softc *sc;
3951 struct rl_stats *stats;
3952 int error, i, result;
3953
3954 result = -1;
3955 error = sysctl_handle_int(oidp, &result, 0, req);
3956 if (error || req->newptr == NULL)
3957 return (error);
3958
3959 if (result == 1) {
3960 sc = (struct rl_softc *)arg1;
3961 RL_LOCK(sc);
3962 if ((sc->rl_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3963 RL_UNLOCK(sc);
3964 goto done;
3965 }
3966 bus_dmamap_sync(sc->rl_ldata.rl_stag,
3967 sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD);
3968 CSR_WRITE_4(sc, RL_DUMPSTATS_HI,
3969 RL_ADDR_HI(sc->rl_ldata.rl_stats_addr));
3970 CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3971 RL_ADDR_LO(sc->rl_ldata.rl_stats_addr));
3972 CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3973 RL_ADDR_LO(sc->rl_ldata.rl_stats_addr |
3974 RL_DUMPSTATS_START));
3975 for (i = RL_TIMEOUT; i > 0; i--) {
3976 if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) &
3977 RL_DUMPSTATS_START) == 0)
3978 break;
3979 DELAY(1000);
3980 }
3981 bus_dmamap_sync(sc->rl_ldata.rl_stag,
3982 sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD);
3983 RL_UNLOCK(sc);
3984 if (i == 0) {
3985 device_printf(sc->rl_dev,
3986 "DUMP statistics request timed out\n");
3987 return (ETIMEDOUT);
3988 }
3989done:
3990 stats = sc->rl_ldata.rl_stats;
3991 printf("%s statistics:\n", device_get_nameunit(sc->rl_dev));
3992 printf("Tx frames : %ju\n",
3993 (uintmax_t)le64toh(stats->rl_tx_pkts));
3994 printf("Rx frames : %ju\n",
3995 (uintmax_t)le64toh(stats->rl_rx_pkts));
3996 printf("Tx errors : %ju\n",
3997 (uintmax_t)le64toh(stats->rl_tx_errs));
3998 printf("Rx errors : %u\n",
3999 le32toh(stats->rl_rx_errs));
4000 printf("Rx missed frames : %u\n",
4001 (uint32_t)le16toh(stats->rl_missed_pkts));
4002 printf("Rx frame alignment errs : %u\n",
4003 (uint32_t)le16toh(stats->rl_rx_framealign_errs));
4004 printf("Tx single collisions : %u\n",
4005 le32toh(stats->rl_tx_onecoll));
4006 printf("Tx multiple collisions : %u\n",
4007 le32toh(stats->rl_tx_multicolls));
4008 printf("Rx unicast frames : %ju\n",
4009 (uintmax_t)le64toh(stats->rl_rx_ucasts));
4010 printf("Rx broadcast frames : %ju\n",
4011 (uintmax_t)le64toh(stats->rl_rx_bcasts));
4012 printf("Rx multicast frames : %u\n",
4013 le32toh(stats->rl_rx_mcasts));
4014 printf("Tx aborts : %u\n",
4015 (uint32_t)le16toh(stats->rl_tx_aborts));
4016 printf("Tx underruns : %u\n",
4017 (uint32_t)le16toh(stats->rl_rx_underruns));
4018 }
4019
4020 return (error);
4021}
4022
4023static int
4024sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4025{
4026 int error, value;
4027
4028 if (arg1 == NULL)
4029 return (EINVAL);
4030 value = *(int *)arg1;
4031 error = sysctl_handle_int(oidp, &value, 0, req);
4032 if (error || req->newptr == NULL)
4033 return (error);
4034 if (value < low || value > high)
4035 return (EINVAL);
4036 *(int *)arg1 = value;
4037
4038 return (0);
4039}
4040
4041static int
4042sysctl_hw_re_int_mod(SYSCTL_HANDLER_ARGS)
4043{
4044
4045 return (sysctl_int_range(oidp, arg1, arg2, req, RL_TIMER_MIN,
4046 RL_TIMER_MAX));
4047}