Deleted Added
full compact
if_nge.c (219902) if_nge.c (221407)
1/*-
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2000, 2001
4 * Bill Paul <wpaul@bsdi.com>. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2000, 2001
4 * Bill Paul <wpaul@bsdi.com>. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/dev/nge/if_nge.c 219902 2011-03-23 13:10:15Z jhb $");
35__FBSDID("$FreeBSD: head/sys/dev/nge/if_nge.c 221407 2011-05-03 19:51:29Z marius $");
36
37/*
38 * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39 * for FreeBSD. Datasheets are available from:
40 *
41 * http://www.national.com/ds/DP/DP83820.pdf
42 * http://www.national.com/ds/DP/DP83821.pdf
43 *
44 * These chips are used on several low cost gigabit ethernet NICs
45 * sold by D-Link, Addtron, SMC and Asante. Both parts are
46 * virtually the same, except the 83820 is a 64-bit/32-bit part,
47 * while the 83821 is 32-bit only.
48 *
49 * Many cards also use National gigE transceivers, such as the
50 * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51 * contains a full register description that applies to all of these
52 * components:
53 *
54 * http://www.national.com/ds/DP/DP83861.pdf
55 *
56 * Written by Bill Paul <wpaul@bsdi.com>
57 * BSDi Open Source Solutions
58 */
59
60/*
61 * The NatSemi DP83820 and 83821 controllers are enhanced versions
62 * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63 * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64 * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65 * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66 * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67 * matching buffers, one perfect address filter buffer and interrupt
68 * moderation. The 83820 supports both 64-bit and 32-bit addressing
69 * and data transfers: the 64-bit support can be toggled on or off
70 * via software. This affects the size of certain fields in the DMA
71 * descriptors.
72 *
73 * There are two bugs/misfeatures in the 83820/83821 that I have
74 * discovered so far:
75 *
76 * - Receive buffers must be aligned on 64-bit boundaries, which means
77 * you must resort to copying data in order to fix up the payload
78 * alignment.
79 *
80 * - In order to transmit jumbo frames larger than 8170 bytes, you have
81 * to turn off transmit checksum offloading, because the chip can't
82 * compute the checksum on an outgoing frame unless it fits entirely
83 * within the TX FIFO, which is only 8192 bytes in size. If you have
84 * TX checksum offload enabled and you transmit attempt to transmit a
85 * frame larger than 8170 bytes, the transmitter will wedge.
86 *
87 * To work around the latter problem, TX checksum offload is disabled
88 * if the user selects an MTU larger than 8152 (8170 - 18).
89 */
90
91#ifdef HAVE_KERNEL_OPTION_HEADERS
92#include "opt_device_polling.h"
93#endif
94
95#include <sys/param.h>
96#include <sys/systm.h>
97#include <sys/bus.h>
98#include <sys/endian.h>
99#include <sys/kernel.h>
100#include <sys/lock.h>
101#include <sys/malloc.h>
102#include <sys/mbuf.h>
103#include <sys/module.h>
104#include <sys/mutex.h>
105#include <sys/rman.h>
106#include <sys/socket.h>
107#include <sys/sockio.h>
108#include <sys/sysctl.h>
109
110#include <net/bpf.h>
111#include <net/if.h>
112#include <net/if_arp.h>
113#include <net/ethernet.h>
114#include <net/if_dl.h>
115#include <net/if_media.h>
116#include <net/if_types.h>
117#include <net/if_vlan_var.h>
118
119#include <dev/mii/mii.h>
120#include <dev/mii/miivar.h>
121
122#include <dev/pci/pcireg.h>
123#include <dev/pci/pcivar.h>
124
125#include <machine/bus.h>
126
127#include <dev/nge/if_ngereg.h>
128
129/* "device miibus" required. See GENERIC if you get errors here. */
130#include "miibus_if.h"
131
132MODULE_DEPEND(nge, pci, 1, 1, 1);
133MODULE_DEPEND(nge, ether, 1, 1, 1);
134MODULE_DEPEND(nge, miibus, 1, 1, 1);
135
136#define NGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
137
138/*
139 * Various supported device vendors/types and their names.
140 */
141static struct nge_type nge_devs[] = {
142 { NGE_VENDORID, NGE_DEVICEID,
143 "National Semiconductor Gigabit Ethernet" },
144 { 0, 0, NULL }
145};
146
147static int nge_probe(device_t);
148static int nge_attach(device_t);
149static int nge_detach(device_t);
150static int nge_shutdown(device_t);
151static int nge_suspend(device_t);
152static int nge_resume(device_t);
153
154static __inline void nge_discard_rxbuf(struct nge_softc *, int);
155static int nge_newbuf(struct nge_softc *, int);
156static int nge_encap(struct nge_softc *, struct mbuf **);
157#ifndef __NO_STRICT_ALIGNMENT
158static __inline void nge_fixup_rx(struct mbuf *);
159#endif
160static int nge_rxeof(struct nge_softc *);
161static void nge_txeof(struct nge_softc *);
162static void nge_intr(void *);
163static void nge_tick(void *);
164static void nge_stats_update(struct nge_softc *);
165static void nge_start(struct ifnet *);
166static void nge_start_locked(struct ifnet *);
167static int nge_ioctl(struct ifnet *, u_long, caddr_t);
168static void nge_init(void *);
169static void nge_init_locked(struct nge_softc *);
170static int nge_stop_mac(struct nge_softc *);
171static void nge_stop(struct nge_softc *);
172static void nge_wol(struct nge_softc *);
173static void nge_watchdog(struct nge_softc *);
174static int nge_mediachange(struct ifnet *);
175static void nge_mediastatus(struct ifnet *, struct ifmediareq *);
176
177static void nge_delay(struct nge_softc *);
178static void nge_eeprom_idle(struct nge_softc *);
179static void nge_eeprom_putbyte(struct nge_softc *, int);
180static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
181static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int);
182
183static void nge_mii_sync(struct nge_softc *);
184static void nge_mii_send(struct nge_softc *, uint32_t, int);
185static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
186static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
187
188static int nge_miibus_readreg(device_t, int, int);
189static int nge_miibus_writereg(device_t, int, int, int);
190static void nge_miibus_statchg(device_t);
191
192static void nge_rxfilter(struct nge_softc *);
193static void nge_reset(struct nge_softc *);
194static void nge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
195static int nge_dma_alloc(struct nge_softc *);
196static void nge_dma_free(struct nge_softc *);
197static int nge_list_rx_init(struct nge_softc *);
198static int nge_list_tx_init(struct nge_softc *);
199static void nge_sysctl_node(struct nge_softc *);
200static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
201static int sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS);
202
203static device_method_t nge_methods[] = {
204 /* Device interface */
205 DEVMETHOD(device_probe, nge_probe),
206 DEVMETHOD(device_attach, nge_attach),
207 DEVMETHOD(device_detach, nge_detach),
208 DEVMETHOD(device_shutdown, nge_shutdown),
209 DEVMETHOD(device_suspend, nge_suspend),
210 DEVMETHOD(device_resume, nge_resume),
211
212 /* bus interface */
213 DEVMETHOD(bus_print_child, bus_generic_print_child),
214 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
215
216 /* MII interface */
217 DEVMETHOD(miibus_readreg, nge_miibus_readreg),
218 DEVMETHOD(miibus_writereg, nge_miibus_writereg),
219 DEVMETHOD(miibus_statchg, nge_miibus_statchg),
220
221 { NULL, NULL }
222};
223
224static driver_t nge_driver = {
225 "nge",
226 nge_methods,
227 sizeof(struct nge_softc)
228};
229
230static devclass_t nge_devclass;
231
232DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
233DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
234
235#define NGE_SETBIT(sc, reg, x) \
236 CSR_WRITE_4(sc, reg, \
237 CSR_READ_4(sc, reg) | (x))
238
239#define NGE_CLRBIT(sc, reg, x) \
240 CSR_WRITE_4(sc, reg, \
241 CSR_READ_4(sc, reg) & ~(x))
242
243#define SIO_SET(x) \
244 CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
245
246#define SIO_CLR(x) \
247 CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
248
249static void
250nge_delay(struct nge_softc *sc)
251{
252 int idx;
253
254 for (idx = (300 / 33) + 1; idx > 0; idx--)
255 CSR_READ_4(sc, NGE_CSR);
256}
257
258static void
259nge_eeprom_idle(struct nge_softc *sc)
260{
261 int i;
262
263 SIO_SET(NGE_MEAR_EE_CSEL);
264 nge_delay(sc);
265 SIO_SET(NGE_MEAR_EE_CLK);
266 nge_delay(sc);
267
268 for (i = 0; i < 25; i++) {
269 SIO_CLR(NGE_MEAR_EE_CLK);
270 nge_delay(sc);
271 SIO_SET(NGE_MEAR_EE_CLK);
272 nge_delay(sc);
273 }
274
275 SIO_CLR(NGE_MEAR_EE_CLK);
276 nge_delay(sc);
277 SIO_CLR(NGE_MEAR_EE_CSEL);
278 nge_delay(sc);
279 CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
280}
281
282/*
283 * Send a read command and address to the EEPROM, check for ACK.
284 */
285static void
286nge_eeprom_putbyte(struct nge_softc *sc, int addr)
287{
288 int d, i;
289
290 d = addr | NGE_EECMD_READ;
291
292 /*
293 * Feed in each bit and stobe the clock.
294 */
295 for (i = 0x400; i; i >>= 1) {
296 if (d & i) {
297 SIO_SET(NGE_MEAR_EE_DIN);
298 } else {
299 SIO_CLR(NGE_MEAR_EE_DIN);
300 }
301 nge_delay(sc);
302 SIO_SET(NGE_MEAR_EE_CLK);
303 nge_delay(sc);
304 SIO_CLR(NGE_MEAR_EE_CLK);
305 nge_delay(sc);
306 }
307}
308
309/*
310 * Read a word of data stored in the EEPROM at address 'addr.'
311 */
312static void
313nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
314{
315 int i;
316 uint16_t word = 0;
317
318 /* Force EEPROM to idle state. */
319 nge_eeprom_idle(sc);
320
321 /* Enter EEPROM access mode. */
322 nge_delay(sc);
323 SIO_CLR(NGE_MEAR_EE_CLK);
324 nge_delay(sc);
325 SIO_SET(NGE_MEAR_EE_CSEL);
326 nge_delay(sc);
327
328 /*
329 * Send address of word we want to read.
330 */
331 nge_eeprom_putbyte(sc, addr);
332
333 /*
334 * Start reading bits from EEPROM.
335 */
336 for (i = 0x8000; i; i >>= 1) {
337 SIO_SET(NGE_MEAR_EE_CLK);
338 nge_delay(sc);
339 if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
340 word |= i;
341 nge_delay(sc);
342 SIO_CLR(NGE_MEAR_EE_CLK);
343 nge_delay(sc);
344 }
345
346 /* Turn off EEPROM access mode. */
347 nge_eeprom_idle(sc);
348
349 *dest = word;
350}
351
352/*
353 * Read a sequence of words from the EEPROM.
354 */
355static void
356nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt)
357{
358 int i;
359 uint16_t word = 0, *ptr;
360
361 for (i = 0; i < cnt; i++) {
362 nge_eeprom_getword(sc, off + i, &word);
363 ptr = (uint16_t *)(dest + (i * 2));
364 *ptr = word;
365 }
366}
367
368/*
369 * Sync the PHYs by setting data bit and strobing the clock 32 times.
370 */
371static void
372nge_mii_sync(struct nge_softc *sc)
373{
374 int i;
375
376 SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
377
378 for (i = 0; i < 32; i++) {
379 SIO_SET(NGE_MEAR_MII_CLK);
380 DELAY(1);
381 SIO_CLR(NGE_MEAR_MII_CLK);
382 DELAY(1);
383 }
384}
385
386/*
387 * Clock a series of bits through the MII.
388 */
389static void
390nge_mii_send(struct nge_softc *sc, uint32_t bits, int cnt)
391{
392 int i;
393
394 SIO_CLR(NGE_MEAR_MII_CLK);
395
396 for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
397 if (bits & i) {
398 SIO_SET(NGE_MEAR_MII_DATA);
399 } else {
400 SIO_CLR(NGE_MEAR_MII_DATA);
401 }
402 DELAY(1);
403 SIO_CLR(NGE_MEAR_MII_CLK);
404 DELAY(1);
405 SIO_SET(NGE_MEAR_MII_CLK);
406 }
407}
408
409/*
410 * Read an PHY register through the MII.
411 */
412static int
413nge_mii_readreg(struct nge_softc *sc, struct nge_mii_frame *frame)
414{
415 int i, ack;
416
417 /*
418 * Set up frame for RX.
419 */
420 frame->mii_stdelim = NGE_MII_STARTDELIM;
421 frame->mii_opcode = NGE_MII_READOP;
422 frame->mii_turnaround = 0;
423 frame->mii_data = 0;
424
425 CSR_WRITE_4(sc, NGE_MEAR, 0);
426
427 /*
428 * Turn on data xmit.
429 */
430 SIO_SET(NGE_MEAR_MII_DIR);
431
432 nge_mii_sync(sc);
433
434 /*
435 * Send command/address info.
436 */
437 nge_mii_send(sc, frame->mii_stdelim, 2);
438 nge_mii_send(sc, frame->mii_opcode, 2);
439 nge_mii_send(sc, frame->mii_phyaddr, 5);
440 nge_mii_send(sc, frame->mii_regaddr, 5);
441
442 /* Idle bit */
443 SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
444 DELAY(1);
445 SIO_SET(NGE_MEAR_MII_CLK);
446 DELAY(1);
447
448 /* Turn off xmit. */
449 SIO_CLR(NGE_MEAR_MII_DIR);
450 /* Check for ack */
451 SIO_CLR(NGE_MEAR_MII_CLK);
452 DELAY(1);
453 ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
454 SIO_SET(NGE_MEAR_MII_CLK);
455 DELAY(1);
456
457 /*
458 * Now try reading data bits. If the ack failed, we still
459 * need to clock through 16 cycles to keep the PHY(s) in sync.
460 */
461 if (ack) {
462 for (i = 0; i < 16; i++) {
463 SIO_CLR(NGE_MEAR_MII_CLK);
464 DELAY(1);
465 SIO_SET(NGE_MEAR_MII_CLK);
466 DELAY(1);
467 }
468 goto fail;
469 }
470
471 for (i = 0x8000; i; i >>= 1) {
472 SIO_CLR(NGE_MEAR_MII_CLK);
473 DELAY(1);
474 if (!ack) {
475 if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
476 frame->mii_data |= i;
477 DELAY(1);
478 }
479 SIO_SET(NGE_MEAR_MII_CLK);
480 DELAY(1);
481 }
482
483fail:
484
485 SIO_CLR(NGE_MEAR_MII_CLK);
486 DELAY(1);
487 SIO_SET(NGE_MEAR_MII_CLK);
488 DELAY(1);
489
490 if (ack)
491 return (1);
492 return (0);
493}
494
495/*
496 * Write to a PHY register through the MII.
497 */
498static int
499nge_mii_writereg(struct nge_softc *sc, struct nge_mii_frame *frame)
500{
501
502 /*
503 * Set up frame for TX.
504 */
505
506 frame->mii_stdelim = NGE_MII_STARTDELIM;
507 frame->mii_opcode = NGE_MII_WRITEOP;
508 frame->mii_turnaround = NGE_MII_TURNAROUND;
509
510 /*
511 * Turn on data output.
512 */
513 SIO_SET(NGE_MEAR_MII_DIR);
514
515 nge_mii_sync(sc);
516
517 nge_mii_send(sc, frame->mii_stdelim, 2);
518 nge_mii_send(sc, frame->mii_opcode, 2);
519 nge_mii_send(sc, frame->mii_phyaddr, 5);
520 nge_mii_send(sc, frame->mii_regaddr, 5);
521 nge_mii_send(sc, frame->mii_turnaround, 2);
522 nge_mii_send(sc, frame->mii_data, 16);
523
524 /* Idle bit. */
525 SIO_SET(NGE_MEAR_MII_CLK);
526 DELAY(1);
527 SIO_CLR(NGE_MEAR_MII_CLK);
528 DELAY(1);
529
530 /*
531 * Turn off xmit.
532 */
533 SIO_CLR(NGE_MEAR_MII_DIR);
534
535 return (0);
536}
537
538static int
539nge_miibus_readreg(device_t dev, int phy, int reg)
540{
541 struct nge_softc *sc;
542 struct nge_mii_frame frame;
543 int rv;
544
545 sc = device_get_softc(dev);
546 if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
547 /* Pretend PHY is at address 0. */
548 if (phy != 0)
549 return (0);
550 switch (reg) {
551 case MII_BMCR:
552 reg = NGE_TBI_BMCR;
553 break;
554 case MII_BMSR:
555 /* 83820/83821 has different bit layout for BMSR. */
556 rv = BMSR_ANEG | BMSR_EXTCAP | BMSR_EXTSTAT;
557 reg = CSR_READ_4(sc, NGE_TBI_BMSR);
558 if ((reg & NGE_TBIBMSR_ANEG_DONE) != 0)
559 rv |= BMSR_ACOMP;
560 if ((reg & NGE_TBIBMSR_LINKSTAT) != 0)
561 rv |= BMSR_LINK;
562 return (rv);
563 case MII_ANAR:
564 reg = NGE_TBI_ANAR;
565 break;
566 case MII_ANLPAR:
567 reg = NGE_TBI_ANLPAR;
568 break;
569 case MII_ANER:
570 reg = NGE_TBI_ANER;
571 break;
572 case MII_EXTSR:
573 reg = NGE_TBI_ESR;
574 break;
575 case MII_PHYIDR1:
576 case MII_PHYIDR2:
577 return (0);
578 default:
579 device_printf(sc->nge_dev,
580 "bad phy register read : %d\n", reg);
581 return (0);
582 }
583 return (CSR_READ_4(sc, reg));
584 }
585
586 bzero((char *)&frame, sizeof(frame));
587
588 frame.mii_phyaddr = phy;
589 frame.mii_regaddr = reg;
590 nge_mii_readreg(sc, &frame);
591
592 return (frame.mii_data);
593}
594
595static int
596nge_miibus_writereg(device_t dev, int phy, int reg, int data)
597{
598 struct nge_softc *sc;
599 struct nge_mii_frame frame;
600
601 sc = device_get_softc(dev);
602 if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
603 /* Pretend PHY is at address 0. */
604 if (phy != 0)
605 return (0);
606 switch (reg) {
607 case MII_BMCR:
608 reg = NGE_TBI_BMCR;
609 break;
610 case MII_BMSR:
611 return (0);
612 case MII_ANAR:
613 reg = NGE_TBI_ANAR;
614 break;
615 case MII_ANLPAR:
616 reg = NGE_TBI_ANLPAR;
617 break;
618 case MII_ANER:
619 reg = NGE_TBI_ANER;
620 break;
621 case MII_EXTSR:
622 reg = NGE_TBI_ESR;
623 break;
624 case MII_PHYIDR1:
625 case MII_PHYIDR2:
626 return (0);
627 default:
628 device_printf(sc->nge_dev,
629 "bad phy register write : %d\n", reg);
630 return (0);
631 }
632 CSR_WRITE_4(sc, reg, data);
633 return (0);
634 }
635
636 bzero((char *)&frame, sizeof(frame));
637
638 frame.mii_phyaddr = phy;
639 frame.mii_regaddr = reg;
640 frame.mii_data = data;
641 nge_mii_writereg(sc, &frame);
642
643 return (0);
644}
645
646/*
647 * media status/link state change handler.
648 */
649static void
650nge_miibus_statchg(device_t dev)
651{
652 struct nge_softc *sc;
653 struct mii_data *mii;
654 struct ifnet *ifp;
655 struct nge_txdesc *txd;
656 uint32_t done, reg, status;
657 int i;
658
659 sc = device_get_softc(dev);
660 NGE_LOCK_ASSERT(sc);
661
662 mii = device_get_softc(sc->nge_miibus);
663 ifp = sc->nge_ifp;
664 if (mii == NULL || ifp == NULL ||
665 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
666 return;
667
668 sc->nge_flags &= ~NGE_FLAG_LINK;
669 if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
670 (IFM_AVALID | IFM_ACTIVE)) {
671 switch (IFM_SUBTYPE(mii->mii_media_active)) {
672 case IFM_10_T:
673 case IFM_100_TX:
674 case IFM_1000_T:
675 case IFM_1000_SX:
676 case IFM_1000_LX:
677 case IFM_1000_CX:
678 sc->nge_flags |= NGE_FLAG_LINK;
679 break;
680 default:
681 break;
682 }
683 }
684
685 /* Stop Tx/Rx MACs. */
686 if (nge_stop_mac(sc) == ETIMEDOUT)
687 device_printf(sc->nge_dev,
688 "%s: unable to stop Tx/Rx MAC\n", __func__);
689 nge_txeof(sc);
690 nge_rxeof(sc);
691 if (sc->nge_head != NULL) {
692 m_freem(sc->nge_head);
693 sc->nge_head = sc->nge_tail = NULL;
694 }
695
696 /* Release queued frames. */
697 for (i = 0; i < NGE_TX_RING_CNT; i++) {
698 txd = &sc->nge_cdata.nge_txdesc[i];
699 if (txd->tx_m != NULL) {
700 bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
701 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
702 bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
703 txd->tx_dmamap);
704 m_freem(txd->tx_m);
705 txd->tx_m = NULL;
706 }
707 }
708
709 /* Program MAC with resolved speed/duplex. */
710 if ((sc->nge_flags & NGE_FLAG_LINK) != 0) {
711 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
712 NGE_SETBIT(sc, NGE_TX_CFG,
713 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
714 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
715#ifdef notyet
716 /* Enable flow-control. */
717 if ((IFM_OPTIONS(mii->mii_media_active) &
718 (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) != 0)
719 NGE_SETBIT(sc, NGE_PAUSECSR,
720 NGE_PAUSECSR_PAUSE_ENB);
721#endif
722 } else {
723 NGE_CLRBIT(sc, NGE_TX_CFG,
724 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
725 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
726 NGE_CLRBIT(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ENB);
727 }
728 /* If we have a 1000Mbps link, set the mode_1000 bit. */
729 reg = CSR_READ_4(sc, NGE_CFG);
730 switch (IFM_SUBTYPE(mii->mii_media_active)) {
731 case IFM_1000_SX:
732 case IFM_1000_LX:
733 case IFM_1000_CX:
734 case IFM_1000_T:
735 reg |= NGE_CFG_MODE_1000;
736 break;
737 default:
738 reg &= ~NGE_CFG_MODE_1000;
739 break;
740 }
741 CSR_WRITE_4(sc, NGE_CFG, reg);
742
743 /* Reset Tx/Rx MAC. */
744 reg = CSR_READ_4(sc, NGE_CSR);
745 reg |= NGE_CSR_TX_RESET | NGE_CSR_RX_RESET;
746 CSR_WRITE_4(sc, NGE_CSR, reg);
747 /* Check the completion of reset. */
748 done = 0;
749 for (i = 0; i < NGE_TIMEOUT; i++) {
750 DELAY(1);
751 status = CSR_READ_4(sc, NGE_ISR);
752 if ((status & NGE_ISR_RX_RESET_DONE) != 0)
753 done |= NGE_ISR_RX_RESET_DONE;
754 if ((status & NGE_ISR_TX_RESET_DONE) != 0)
755 done |= NGE_ISR_TX_RESET_DONE;
756 if (done ==
757 (NGE_ISR_TX_RESET_DONE | NGE_ISR_RX_RESET_DONE))
758 break;
759 }
760 if (i == NGE_TIMEOUT)
761 device_printf(sc->nge_dev,
762 "%s: unable to reset Tx/Rx MAC\n", __func__);
763 /* Reuse Rx buffer and reset consumer pointer. */
764 sc->nge_cdata.nge_rx_cons = 0;
765 /*
766 * It seems that resetting Rx/Tx MAC results in
767 * resetting Tx/Rx descriptor pointer registers such
768 * that reloading Tx/Rx lists address are needed.
769 */
770 CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
771 NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
772 CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
773 NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
774 CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
775 NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
776 CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
777 NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
778 /* Reinitialize Tx buffers. */
779 nge_list_tx_init(sc);
780
781 /* Restart Rx MAC. */
782 reg = CSR_READ_4(sc, NGE_CSR);
783 reg |= NGE_CSR_RX_ENABLE;
784 CSR_WRITE_4(sc, NGE_CSR, reg);
785 for (i = 0; i < NGE_TIMEOUT; i++) {
786 if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RX_ENABLE) != 0)
787 break;
788 DELAY(1);
789 }
790 if (i == NGE_TIMEOUT)
791 device_printf(sc->nge_dev,
792 "%s: unable to restart Rx MAC\n", __func__);
793 }
794
795 /* Data LED off for TBI mode */
796 if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
797 CSR_WRITE_4(sc, NGE_GPIO,
798 CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
799}
800
801static void
802nge_rxfilter(struct nge_softc *sc)
803{
804 struct ifnet *ifp;
805 struct ifmultiaddr *ifma;
806 uint32_t h, i, rxfilt;
807 int bit, index;
808
809 NGE_LOCK_ASSERT(sc);
810 ifp = sc->nge_ifp;
811
812 /* Make sure to stop Rx filtering. */
813 rxfilt = CSR_READ_4(sc, NGE_RXFILT_CTL);
814 rxfilt &= ~NGE_RXFILTCTL_ENABLE;
815 CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
816 CSR_BARRIER_WRITE_4(sc, NGE_RXFILT_CTL);
817
818 rxfilt &= ~(NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_ALLPHYS);
819 rxfilt &= ~NGE_RXFILTCTL_BROAD;
820 /*
821 * We don't want to use the hash table for matching unicast
822 * addresses.
823 */
824 rxfilt &= ~(NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
825
826 /*
827 * For the NatSemi chip, we have to explicitly enable the
828 * reception of ARP frames, as well as turn on the 'perfect
829 * match' filter where we store the station address, otherwise
830 * we won't receive unicasts meant for this host.
831 */
832 rxfilt |= NGE_RXFILTCTL_ARP | NGE_RXFILTCTL_PERFECT;
833
834 /*
835 * Set the capture broadcast bit to capture broadcast frames.
836 */
837 if ((ifp->if_flags & IFF_BROADCAST) != 0)
838 rxfilt |= NGE_RXFILTCTL_BROAD;
839
840 if ((ifp->if_flags & IFF_PROMISC) != 0 ||
841 (ifp->if_flags & IFF_ALLMULTI) != 0) {
842 rxfilt |= NGE_RXFILTCTL_ALLMULTI;
843 if ((ifp->if_flags & IFF_PROMISC) != 0)
844 rxfilt |= NGE_RXFILTCTL_ALLPHYS;
845 goto done;
846 }
847
848 /*
849 * We have to explicitly enable the multicast hash table
850 * on the NatSemi chip if we want to use it, which we do.
851 */
852 rxfilt |= NGE_RXFILTCTL_MCHASH;
853
854 /* first, zot all the existing hash bits */
855 for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
856 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
857 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
858 }
859
860 /*
861 * From the 11 bits returned by the crc routine, the top 7
862 * bits represent the 16-bit word in the mcast hash table
863 * that needs to be updated, and the lower 4 bits represent
864 * which bit within that byte needs to be set.
865 */
866 if_maddr_rlock(ifp);
867 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
868 if (ifma->ifma_addr->sa_family != AF_LINK)
869 continue;
870 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
871 ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
872 index = (h >> 4) & 0x7F;
873 bit = h & 0xF;
874 CSR_WRITE_4(sc, NGE_RXFILT_CTL,
875 NGE_FILTADDR_MCAST_LO + (index * 2));
876 NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
877 }
878 if_maddr_runlock(ifp);
879
880done:
881 CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
882 /* Turn the receive filter on. */
883 rxfilt |= NGE_RXFILTCTL_ENABLE;
884 CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
885 CSR_BARRIER_WRITE_4(sc, NGE_RXFILT_CTL);
886}
887
888static void
889nge_reset(struct nge_softc *sc)
890{
891 uint32_t v;
892 int i;
893
894 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
895
896 for (i = 0; i < NGE_TIMEOUT; i++) {
897 if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
898 break;
899 DELAY(1);
900 }
901
902 if (i == NGE_TIMEOUT)
903 device_printf(sc->nge_dev, "reset never completed\n");
904
905 /* Wait a little while for the chip to get its brains in order. */
906 DELAY(1000);
907
908 /*
909 * If this is a NetSemi chip, make sure to clear
910 * PME mode.
911 */
912 CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
913 CSR_WRITE_4(sc, NGE_CLKRUN, 0);
914
915 /* Clear WOL events which may interfere normal Rx filter opertaion. */
916 CSR_WRITE_4(sc, NGE_WOLCSR, 0);
917
918 /*
919 * Only DP83820 supports 64bits addressing/data transfers and
920 * 64bit addressing requires different descriptor structures.
921 * To make it simple, disable 64bit addressing/data transfers.
922 */
923 v = CSR_READ_4(sc, NGE_CFG);
924 v &= ~(NGE_CFG_64BIT_ADDR_ENB | NGE_CFG_64BIT_DATA_ENB);
925 CSR_WRITE_4(sc, NGE_CFG, v);
926}
927
928/*
929 * Probe for a NatSemi chip. Check the PCI vendor and device
930 * IDs against our list and return a device name if we find a match.
931 */
932static int
933nge_probe(device_t dev)
934{
935 struct nge_type *t;
936
937 t = nge_devs;
938
939 while (t->nge_name != NULL) {
940 if ((pci_get_vendor(dev) == t->nge_vid) &&
941 (pci_get_device(dev) == t->nge_did)) {
942 device_set_desc(dev, t->nge_name);
943 return (BUS_PROBE_DEFAULT);
944 }
945 t++;
946 }
947
948 return (ENXIO);
949}
950
951/*
952 * Attach the interface. Allocate softc structures, do ifmedia
953 * setup and ethernet/BPF attach.
954 */
955static int
956nge_attach(device_t dev)
957{
958 uint8_t eaddr[ETHER_ADDR_LEN];
959 uint16_t ea[ETHER_ADDR_LEN/2], ea_temp, reg;
960 struct nge_softc *sc;
961 struct ifnet *ifp;
962 int error, i, rid;
963
964 error = 0;
965 sc = device_get_softc(dev);
966 sc->nge_dev = dev;
967
968 NGE_LOCK_INIT(sc, device_get_nameunit(dev));
969 callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0);
970
971 /*
972 * Map control/status registers.
973 */
974 pci_enable_busmaster(dev);
975
976#ifdef NGE_USEIOSPACE
977 sc->nge_res_type = SYS_RES_IOPORT;
978 sc->nge_res_id = PCIR_BAR(0);
979#else
980 sc->nge_res_type = SYS_RES_MEMORY;
981 sc->nge_res_id = PCIR_BAR(1);
982#endif
983 sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
984 &sc->nge_res_id, RF_ACTIVE);
985
986 if (sc->nge_res == NULL) {
987 if (sc->nge_res_type == SYS_RES_MEMORY) {
988 sc->nge_res_type = SYS_RES_IOPORT;
989 sc->nge_res_id = PCIR_BAR(0);
990 } else {
991 sc->nge_res_type = SYS_RES_MEMORY;
992 sc->nge_res_id = PCIR_BAR(1);
993 }
994 sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
995 &sc->nge_res_id, RF_ACTIVE);
996 if (sc->nge_res == NULL) {
997 device_printf(dev, "couldn't allocate %s resources\n",
998 sc->nge_res_type == SYS_RES_MEMORY ? "memory" :
999 "I/O");
1000 NGE_LOCK_DESTROY(sc);
1001 return (ENXIO);
1002 }
1003 }
1004
1005 /* Allocate interrupt */
1006 rid = 0;
1007 sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1008 RF_SHAREABLE | RF_ACTIVE);
1009
1010 if (sc->nge_irq == NULL) {
1011 device_printf(dev, "couldn't map interrupt\n");
1012 error = ENXIO;
1013 goto fail;
1014 }
1015
1016 /* Enable MWI. */
1017 reg = pci_read_config(dev, PCIR_COMMAND, 2);
1018 reg |= PCIM_CMD_MWRICEN;
1019 pci_write_config(dev, PCIR_COMMAND, reg, 2);
1020
1021 /* Reset the adapter. */
1022 nge_reset(sc);
1023
1024 /*
1025 * Get station address from the EEPROM.
1026 */
1027 nge_read_eeprom(sc, (caddr_t)ea, NGE_EE_NODEADDR, 3);
1028 for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1029 ea[i] = le16toh(ea[i]);
1030 ea_temp = ea[0];
1031 ea[0] = ea[2];
1032 ea[2] = ea_temp;
1033 bcopy(ea, eaddr, sizeof(eaddr));
1034
1035 if (nge_dma_alloc(sc) != 0) {
1036 error = ENXIO;
1037 goto fail;
1038 }
1039
1040 nge_sysctl_node(sc);
1041
1042 ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
1043 if (ifp == NULL) {
1044 device_printf(dev, "can not allocate ifnet structure\n");
1045 error = ENOSPC;
1046 goto fail;
1047 }
1048 ifp->if_softc = sc;
1049 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1050 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1051 ifp->if_ioctl = nge_ioctl;
1052 ifp->if_start = nge_start;
1053 ifp->if_init = nge_init;
1054 ifp->if_snd.ifq_drv_maxlen = NGE_TX_RING_CNT - 1;
1055 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1056 IFQ_SET_READY(&ifp->if_snd);
1057 ifp->if_hwassist = NGE_CSUM_FEATURES;
1058 ifp->if_capabilities = IFCAP_HWCSUM;
1059 /*
1060 * It seems that some hardwares doesn't provide 3.3V auxiliary
1061 * supply(3VAUX) to drive PME such that checking PCI power
1062 * management capability is necessary.
1063 */
1064 if (pci_find_cap(sc->nge_dev, PCIY_PMG, &i) == 0)
1065 ifp->if_capabilities |= IFCAP_WOL;
1066 ifp->if_capenable = ifp->if_capabilities;
1067
1068 if ((CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) != 0) {
1069 sc->nge_flags |= NGE_FLAG_TBI;
1070 device_printf(dev, "Using TBI\n");
1071 /* Configure GPIO. */
1072 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1073 | NGE_GPIO_GP4_OUT
1074 | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
1075 | NGE_GPIO_GP3_OUTENB
1076 | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
1077 }
1078
1079 /*
1080 * Do MII setup.
1081 */
1082 error = mii_attach(dev, &sc->nge_miibus, ifp, nge_mediachange,
1083 nge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
1084 if (error != 0) {
1085 device_printf(dev, "attaching PHYs failed\n");
1086 goto fail;
1087 }
1088
1089 /*
1090 * Call MI attach routine.
1091 */
1092 ether_ifattach(ifp, eaddr);
1093
1094 /* VLAN capability setup. */
1095 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1096 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1097 ifp->if_capenable = ifp->if_capabilities;
1098#ifdef DEVICE_POLLING
1099 ifp->if_capabilities |= IFCAP_POLLING;
1100#endif
1101 /*
1102 * Tell the upper layer(s) we support long frames.
1103 * Must appear after the call to ether_ifattach() because
1104 * ether_ifattach() sets ifi_hdrlen to the default value.
1105 */
1106 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1107
1108 /*
1109 * Hookup IRQ last.
1110 */
1111 error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
1112 NULL, nge_intr, sc, &sc->nge_intrhand);
1113 if (error) {
1114 device_printf(dev, "couldn't set up irq\n");
1115 goto fail;
1116 }
1117
1118fail:
1119 if (error != 0)
1120 nge_detach(dev);
1121 return (error);
1122}
1123
1124static int
1125nge_detach(device_t dev)
1126{
1127 struct nge_softc *sc;
1128 struct ifnet *ifp;
1129
1130 sc = device_get_softc(dev);
1131 ifp = sc->nge_ifp;
1132
1133#ifdef DEVICE_POLLING
1134 if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
1135 ether_poll_deregister(ifp);
1136#endif
1137
1138 if (device_is_attached(dev)) {
1139 NGE_LOCK(sc);
1140 sc->nge_flags |= NGE_FLAG_DETACH;
1141 nge_stop(sc);
1142 NGE_UNLOCK(sc);
1143 callout_drain(&sc->nge_stat_ch);
1144 if (ifp != NULL)
1145 ether_ifdetach(ifp);
1146 }
1147
1148 if (sc->nge_miibus != NULL) {
1149 device_delete_child(dev, sc->nge_miibus);
1150 sc->nge_miibus = NULL;
1151 }
1152 bus_generic_detach(dev);
1153 if (sc->nge_intrhand != NULL)
1154 bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1155 if (sc->nge_irq != NULL)
1156 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1157 if (sc->nge_res != NULL)
1158 bus_release_resource(dev, sc->nge_res_type, sc->nge_res_id,
1159 sc->nge_res);
1160
1161 nge_dma_free(sc);
1162 if (ifp != NULL)
1163 if_free(ifp);
1164
1165 NGE_LOCK_DESTROY(sc);
1166
1167 return (0);
1168}
1169
1170struct nge_dmamap_arg {
1171 bus_addr_t nge_busaddr;
1172};
1173
1174static void
1175nge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1176{
1177 struct nge_dmamap_arg *ctx;
1178
1179 if (error != 0)
1180 return;
1181 ctx = arg;
1182 ctx->nge_busaddr = segs[0].ds_addr;
1183}
1184
1185static int
1186nge_dma_alloc(struct nge_softc *sc)
1187{
1188 struct nge_dmamap_arg ctx;
1189 struct nge_txdesc *txd;
1190 struct nge_rxdesc *rxd;
1191 int error, i;
1192
1193 /* Create parent DMA tag. */
1194 error = bus_dma_tag_create(
1195 bus_get_dma_tag(sc->nge_dev), /* parent */
1196 1, 0, /* alignment, boundary */
1197 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1198 BUS_SPACE_MAXADDR, /* highaddr */
1199 NULL, NULL, /* filter, filterarg */
1200 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
1201 0, /* nsegments */
1202 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1203 0, /* flags */
1204 NULL, NULL, /* lockfunc, lockarg */
1205 &sc->nge_cdata.nge_parent_tag);
1206 if (error != 0) {
1207 device_printf(sc->nge_dev, "failed to create parent DMA tag\n");
1208 goto fail;
1209 }
1210 /* Create tag for Tx ring. */
1211 error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1212 NGE_RING_ALIGN, 0, /* alignment, boundary */
1213 BUS_SPACE_MAXADDR, /* lowaddr */
1214 BUS_SPACE_MAXADDR, /* highaddr */
1215 NULL, NULL, /* filter, filterarg */
1216 NGE_TX_RING_SIZE, /* maxsize */
1217 1, /* nsegments */
1218 NGE_TX_RING_SIZE, /* maxsegsize */
1219 0, /* flags */
1220 NULL, NULL, /* lockfunc, lockarg */
1221 &sc->nge_cdata.nge_tx_ring_tag);
1222 if (error != 0) {
1223 device_printf(sc->nge_dev, "failed to create Tx ring DMA tag\n");
1224 goto fail;
1225 }
1226
1227 /* Create tag for Rx ring. */
1228 error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1229 NGE_RING_ALIGN, 0, /* alignment, boundary */
1230 BUS_SPACE_MAXADDR, /* lowaddr */
1231 BUS_SPACE_MAXADDR, /* highaddr */
1232 NULL, NULL, /* filter, filterarg */
1233 NGE_RX_RING_SIZE, /* maxsize */
1234 1, /* nsegments */
1235 NGE_RX_RING_SIZE, /* maxsegsize */
1236 0, /* flags */
1237 NULL, NULL, /* lockfunc, lockarg */
1238 &sc->nge_cdata.nge_rx_ring_tag);
1239 if (error != 0) {
1240 device_printf(sc->nge_dev,
1241 "failed to create Rx ring DMA tag\n");
1242 goto fail;
1243 }
1244
1245 /* Create tag for Tx buffers. */
1246 error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1247 1, 0, /* alignment, boundary */
1248 BUS_SPACE_MAXADDR, /* lowaddr */
1249 BUS_SPACE_MAXADDR, /* highaddr */
1250 NULL, NULL, /* filter, filterarg */
1251 MCLBYTES * NGE_MAXTXSEGS, /* maxsize */
1252 NGE_MAXTXSEGS, /* nsegments */
1253 MCLBYTES, /* maxsegsize */
1254 0, /* flags */
1255 NULL, NULL, /* lockfunc, lockarg */
1256 &sc->nge_cdata.nge_tx_tag);
1257 if (error != 0) {
1258 device_printf(sc->nge_dev, "failed to create Tx DMA tag\n");
1259 goto fail;
1260 }
1261
1262 /* Create tag for Rx buffers. */
1263 error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1264 NGE_RX_ALIGN, 0, /* alignment, boundary */
1265 BUS_SPACE_MAXADDR, /* lowaddr */
1266 BUS_SPACE_MAXADDR, /* highaddr */
1267 NULL, NULL, /* filter, filterarg */
1268 MCLBYTES, /* maxsize */
1269 1, /* nsegments */
1270 MCLBYTES, /* maxsegsize */
1271 0, /* flags */
1272 NULL, NULL, /* lockfunc, lockarg */
1273 &sc->nge_cdata.nge_rx_tag);
1274 if (error != 0) {
1275 device_printf(sc->nge_dev, "failed to create Rx DMA tag\n");
1276 goto fail;
1277 }
1278
1279 /* Allocate DMA'able memory and load the DMA map for Tx ring. */
1280 error = bus_dmamem_alloc(sc->nge_cdata.nge_tx_ring_tag,
1281 (void **)&sc->nge_rdata.nge_tx_ring, BUS_DMA_WAITOK |
1282 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_tx_ring_map);
1283 if (error != 0) {
1284 device_printf(sc->nge_dev,
1285 "failed to allocate DMA'able memory for Tx ring\n");
1286 goto fail;
1287 }
1288
1289 ctx.nge_busaddr = 0;
1290 error = bus_dmamap_load(sc->nge_cdata.nge_tx_ring_tag,
1291 sc->nge_cdata.nge_tx_ring_map, sc->nge_rdata.nge_tx_ring,
1292 NGE_TX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1293 if (error != 0 || ctx.nge_busaddr == 0) {
1294 device_printf(sc->nge_dev,
1295 "failed to load DMA'able memory for Tx ring\n");
1296 goto fail;
1297 }
1298 sc->nge_rdata.nge_tx_ring_paddr = ctx.nge_busaddr;
1299
1300 /* Allocate DMA'able memory and load the DMA map for Rx ring. */
1301 error = bus_dmamem_alloc(sc->nge_cdata.nge_rx_ring_tag,
1302 (void **)&sc->nge_rdata.nge_rx_ring, BUS_DMA_WAITOK |
1303 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_rx_ring_map);
1304 if (error != 0) {
1305 device_printf(sc->nge_dev,
1306 "failed to allocate DMA'able memory for Rx ring\n");
1307 goto fail;
1308 }
1309
1310 ctx.nge_busaddr = 0;
1311 error = bus_dmamap_load(sc->nge_cdata.nge_rx_ring_tag,
1312 sc->nge_cdata.nge_rx_ring_map, sc->nge_rdata.nge_rx_ring,
1313 NGE_RX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1314 if (error != 0 || ctx.nge_busaddr == 0) {
1315 device_printf(sc->nge_dev,
1316 "failed to load DMA'able memory for Rx ring\n");
1317 goto fail;
1318 }
1319 sc->nge_rdata.nge_rx_ring_paddr = ctx.nge_busaddr;
1320
1321 /* Create DMA maps for Tx buffers. */
1322 for (i = 0; i < NGE_TX_RING_CNT; i++) {
1323 txd = &sc->nge_cdata.nge_txdesc[i];
1324 txd->tx_m = NULL;
1325 txd->tx_dmamap = NULL;
1326 error = bus_dmamap_create(sc->nge_cdata.nge_tx_tag, 0,
1327 &txd->tx_dmamap);
1328 if (error != 0) {
1329 device_printf(sc->nge_dev,
1330 "failed to create Tx dmamap\n");
1331 goto fail;
1332 }
1333 }
1334 /* Create DMA maps for Rx buffers. */
1335 if ((error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1336 &sc->nge_cdata.nge_rx_sparemap)) != 0) {
1337 device_printf(sc->nge_dev,
1338 "failed to create spare Rx dmamap\n");
1339 goto fail;
1340 }
1341 for (i = 0; i < NGE_RX_RING_CNT; i++) {
1342 rxd = &sc->nge_cdata.nge_rxdesc[i];
1343 rxd->rx_m = NULL;
1344 rxd->rx_dmamap = NULL;
1345 error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1346 &rxd->rx_dmamap);
1347 if (error != 0) {
1348 device_printf(sc->nge_dev,
1349 "failed to create Rx dmamap\n");
1350 goto fail;
1351 }
1352 }
1353
1354fail:
1355 return (error);
1356}
1357
1358static void
1359nge_dma_free(struct nge_softc *sc)
1360{
1361 struct nge_txdesc *txd;
1362 struct nge_rxdesc *rxd;
1363 int i;
1364
1365 /* Tx ring. */
1366 if (sc->nge_cdata.nge_tx_ring_tag) {
1367 if (sc->nge_cdata.nge_tx_ring_map)
1368 bus_dmamap_unload(sc->nge_cdata.nge_tx_ring_tag,
1369 sc->nge_cdata.nge_tx_ring_map);
1370 if (sc->nge_cdata.nge_tx_ring_map &&
1371 sc->nge_rdata.nge_tx_ring)
1372 bus_dmamem_free(sc->nge_cdata.nge_tx_ring_tag,
1373 sc->nge_rdata.nge_tx_ring,
1374 sc->nge_cdata.nge_tx_ring_map);
1375 sc->nge_rdata.nge_tx_ring = NULL;
1376 sc->nge_cdata.nge_tx_ring_map = NULL;
1377 bus_dma_tag_destroy(sc->nge_cdata.nge_tx_ring_tag);
1378 sc->nge_cdata.nge_tx_ring_tag = NULL;
1379 }
1380 /* Rx ring. */
1381 if (sc->nge_cdata.nge_rx_ring_tag) {
1382 if (sc->nge_cdata.nge_rx_ring_map)
1383 bus_dmamap_unload(sc->nge_cdata.nge_rx_ring_tag,
1384 sc->nge_cdata.nge_rx_ring_map);
1385 if (sc->nge_cdata.nge_rx_ring_map &&
1386 sc->nge_rdata.nge_rx_ring)
1387 bus_dmamem_free(sc->nge_cdata.nge_rx_ring_tag,
1388 sc->nge_rdata.nge_rx_ring,
1389 sc->nge_cdata.nge_rx_ring_map);
1390 sc->nge_rdata.nge_rx_ring = NULL;
1391 sc->nge_cdata.nge_rx_ring_map = NULL;
1392 bus_dma_tag_destroy(sc->nge_cdata.nge_rx_ring_tag);
1393 sc->nge_cdata.nge_rx_ring_tag = NULL;
1394 }
1395 /* Tx buffers. */
1396 if (sc->nge_cdata.nge_tx_tag) {
1397 for (i = 0; i < NGE_TX_RING_CNT; i++) {
1398 txd = &sc->nge_cdata.nge_txdesc[i];
1399 if (txd->tx_dmamap) {
1400 bus_dmamap_destroy(sc->nge_cdata.nge_tx_tag,
1401 txd->tx_dmamap);
1402 txd->tx_dmamap = NULL;
1403 }
1404 }
1405 bus_dma_tag_destroy(sc->nge_cdata.nge_tx_tag);
1406 sc->nge_cdata.nge_tx_tag = NULL;
1407 }
1408 /* Rx buffers. */
1409 if (sc->nge_cdata.nge_rx_tag) {
1410 for (i = 0; i < NGE_RX_RING_CNT; i++) {
1411 rxd = &sc->nge_cdata.nge_rxdesc[i];
1412 if (rxd->rx_dmamap) {
1413 bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1414 rxd->rx_dmamap);
1415 rxd->rx_dmamap = NULL;
1416 }
1417 }
1418 if (sc->nge_cdata.nge_rx_sparemap) {
1419 bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1420 sc->nge_cdata.nge_rx_sparemap);
1421 sc->nge_cdata.nge_rx_sparemap = 0;
1422 }
1423 bus_dma_tag_destroy(sc->nge_cdata.nge_rx_tag);
1424 sc->nge_cdata.nge_rx_tag = NULL;
1425 }
1426
1427 if (sc->nge_cdata.nge_parent_tag) {
1428 bus_dma_tag_destroy(sc->nge_cdata.nge_parent_tag);
1429 sc->nge_cdata.nge_parent_tag = NULL;
1430 }
1431}
1432
1433/*
1434 * Initialize the transmit descriptors.
1435 */
1436static int
1437nge_list_tx_init(struct nge_softc *sc)
1438{
1439 struct nge_ring_data *rd;
1440 struct nge_txdesc *txd;
1441 bus_addr_t addr;
1442 int i;
1443
1444 sc->nge_cdata.nge_tx_prod = 0;
1445 sc->nge_cdata.nge_tx_cons = 0;
1446 sc->nge_cdata.nge_tx_cnt = 0;
1447
1448 rd = &sc->nge_rdata;
1449 bzero(rd->nge_tx_ring, sizeof(struct nge_desc) * NGE_TX_RING_CNT);
1450 for (i = 0; i < NGE_TX_RING_CNT; i++) {
1451 if (i == NGE_TX_RING_CNT - 1)
1452 addr = NGE_TX_RING_ADDR(sc, 0);
1453 else
1454 addr = NGE_TX_RING_ADDR(sc, i + 1);
1455 rd->nge_tx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1456 txd = &sc->nge_cdata.nge_txdesc[i];
1457 txd->tx_m = NULL;
1458 }
1459
1460 bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1461 sc->nge_cdata.nge_tx_ring_map,
1462 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1463
1464 return (0);
1465}
1466
1467/*
1468 * Initialize the RX descriptors and allocate mbufs for them. Note that
1469 * we arrange the descriptors in a closed ring, so that the last descriptor
1470 * points back to the first.
1471 */
1472static int
1473nge_list_rx_init(struct nge_softc *sc)
1474{
1475 struct nge_ring_data *rd;
1476 bus_addr_t addr;
1477 int i;
1478
1479 sc->nge_cdata.nge_rx_cons = 0;
1480 sc->nge_head = sc->nge_tail = NULL;
1481
1482 rd = &sc->nge_rdata;
1483 bzero(rd->nge_rx_ring, sizeof(struct nge_desc) * NGE_RX_RING_CNT);
1484 for (i = 0; i < NGE_RX_RING_CNT; i++) {
1485 if (nge_newbuf(sc, i) != 0)
1486 return (ENOBUFS);
1487 if (i == NGE_RX_RING_CNT - 1)
1488 addr = NGE_RX_RING_ADDR(sc, 0);
1489 else
1490 addr = NGE_RX_RING_ADDR(sc, i + 1);
1491 rd->nge_rx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1492 }
1493
1494 bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1495 sc->nge_cdata.nge_rx_ring_map,
1496 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1497
1498 return (0);
1499}
1500
1501static __inline void
1502nge_discard_rxbuf(struct nge_softc *sc, int idx)
1503{
1504 struct nge_desc *desc;
1505
1506 desc = &sc->nge_rdata.nge_rx_ring[idx];
1507 desc->nge_cmdsts = htole32(MCLBYTES - sizeof(uint64_t));
1508 desc->nge_extsts = 0;
1509}
1510
1511/*
1512 * Initialize an RX descriptor and attach an MBUF cluster.
1513 */
1514static int
1515nge_newbuf(struct nge_softc *sc, int idx)
1516{
1517 struct nge_desc *desc;
1518 struct nge_rxdesc *rxd;
1519 struct mbuf *m;
1520 bus_dma_segment_t segs[1];
1521 bus_dmamap_t map;
1522 int nsegs;
1523
1524 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1525 if (m == NULL)
1526 return (ENOBUFS);
1527 m->m_len = m->m_pkthdr.len = MCLBYTES;
1528 m_adj(m, sizeof(uint64_t));
1529
1530 if (bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_rx_tag,
1531 sc->nge_cdata.nge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1532 m_freem(m);
1533 return (ENOBUFS);
1534 }
1535 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1536
1537 rxd = &sc->nge_cdata.nge_rxdesc[idx];
1538 if (rxd->rx_m != NULL) {
1539 bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1540 BUS_DMASYNC_POSTREAD);
1541 bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap);
1542 }
1543 map = rxd->rx_dmamap;
1544 rxd->rx_dmamap = sc->nge_cdata.nge_rx_sparemap;
1545 sc->nge_cdata.nge_rx_sparemap = map;
1546 bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1547 BUS_DMASYNC_PREREAD);
1548 rxd->rx_m = m;
1549 desc = &sc->nge_rdata.nge_rx_ring[idx];
1550 desc->nge_ptr = htole32(NGE_ADDR_LO(segs[0].ds_addr));
1551 desc->nge_cmdsts = htole32(segs[0].ds_len);
1552 desc->nge_extsts = 0;
1553
1554 return (0);
1555}
1556
1557#ifndef __NO_STRICT_ALIGNMENT
1558static __inline void
1559nge_fixup_rx(struct mbuf *m)
1560{
1561 int i;
1562 uint16_t *src, *dst;
1563
1564 src = mtod(m, uint16_t *);
1565 dst = src - 1;
1566
1567 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1568 *dst++ = *src++;
1569
1570 m->m_data -= ETHER_ALIGN;
1571}
1572#endif
1573
1574/*
1575 * A frame has been uploaded: pass the resulting mbuf chain up to
1576 * the higher level protocols.
1577 */
1578static int
1579nge_rxeof(struct nge_softc *sc)
1580{
1581 struct mbuf *m;
1582 struct ifnet *ifp;
1583 struct nge_desc *cur_rx;
1584 struct nge_rxdesc *rxd;
1585 int cons, prog, rx_npkts, total_len;
1586 uint32_t cmdsts, extsts;
1587
1588 NGE_LOCK_ASSERT(sc);
1589
1590 ifp = sc->nge_ifp;
1591 cons = sc->nge_cdata.nge_rx_cons;
1592 rx_npkts = 0;
1593
1594 bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1595 sc->nge_cdata.nge_rx_ring_map,
1596 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1597
1598 for (prog = 0; prog < NGE_RX_RING_CNT &&
1599 (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1600 NGE_INC(cons, NGE_RX_RING_CNT)) {
1601#ifdef DEVICE_POLLING
1602 if (ifp->if_capenable & IFCAP_POLLING) {
1603 if (sc->rxcycles <= 0)
1604 break;
1605 sc->rxcycles--;
1606 }
1607#endif
1608 cur_rx = &sc->nge_rdata.nge_rx_ring[cons];
1609 cmdsts = le32toh(cur_rx->nge_cmdsts);
1610 extsts = le32toh(cur_rx->nge_extsts);
1611 if ((cmdsts & NGE_CMDSTS_OWN) == 0)
1612 break;
1613 prog++;
1614 rxd = &sc->nge_cdata.nge_rxdesc[cons];
1615 m = rxd->rx_m;
1616 total_len = cmdsts & NGE_CMDSTS_BUFLEN;
1617
1618 if ((cmdsts & NGE_CMDSTS_MORE) != 0) {
1619 if (nge_newbuf(sc, cons) != 0) {
1620 ifp->if_iqdrops++;
1621 if (sc->nge_head != NULL) {
1622 m_freem(sc->nge_head);
1623 sc->nge_head = sc->nge_tail = NULL;
1624 }
1625 nge_discard_rxbuf(sc, cons);
1626 continue;
1627 }
1628 m->m_len = total_len;
1629 if (sc->nge_head == NULL) {
1630 m->m_pkthdr.len = total_len;
1631 sc->nge_head = sc->nge_tail = m;
1632 } else {
1633 m->m_flags &= ~M_PKTHDR;
1634 sc->nge_head->m_pkthdr.len += total_len;
1635 sc->nge_tail->m_next = m;
1636 sc->nge_tail = m;
1637 }
1638 continue;
1639 }
1640
1641 /*
1642 * If an error occurs, update stats, clear the
1643 * status word and leave the mbuf cluster in place:
1644 * it should simply get re-used next time this descriptor
1645 * comes up in the ring.
1646 */
1647 if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1648 if ((cmdsts & NGE_RXSTAT_RUNT) &&
1649 total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN - 4)) {
1650 /*
1651 * Work-around hardware bug, accept runt frames
1652 * if its length is larger than or equal to 56.
1653 */
1654 } else {
1655 /*
1656 * Input error counters are updated by hardware.
1657 */
1658 if (sc->nge_head != NULL) {
1659 m_freem(sc->nge_head);
1660 sc->nge_head = sc->nge_tail = NULL;
1661 }
1662 nge_discard_rxbuf(sc, cons);
1663 continue;
1664 }
1665 }
1666
1667 /* Try conjure up a replacement mbuf. */
1668
1669 if (nge_newbuf(sc, cons) != 0) {
1670 ifp->if_iqdrops++;
1671 if (sc->nge_head != NULL) {
1672 m_freem(sc->nge_head);
1673 sc->nge_head = sc->nge_tail = NULL;
1674 }
1675 nge_discard_rxbuf(sc, cons);
1676 continue;
1677 }
1678
1679 /* Chain received mbufs. */
1680 if (sc->nge_head != NULL) {
1681 m->m_len = total_len;
1682 m->m_flags &= ~M_PKTHDR;
1683 sc->nge_tail->m_next = m;
1684 m = sc->nge_head;
1685 m->m_pkthdr.len += total_len;
1686 sc->nge_head = sc->nge_tail = NULL;
1687 } else
1688 m->m_pkthdr.len = m->m_len = total_len;
1689
1690 /*
1691 * Ok. NatSemi really screwed up here. This is the
1692 * only gigE chip I know of with alignment constraints
1693 * on receive buffers. RX buffers must be 64-bit aligned.
1694 */
1695 /*
1696 * By popular demand, ignore the alignment problems
1697 * on the non-strict alignment platform. The performance hit
1698 * incurred due to unaligned accesses is much smaller
1699 * than the hit produced by forcing buffer copies all
1700 * the time, especially with jumbo frames. We still
1701 * need to fix up the alignment everywhere else though.
1702 */
1703#ifndef __NO_STRICT_ALIGNMENT
1704 nge_fixup_rx(m);
1705#endif
1706 m->m_pkthdr.rcvif = ifp;
1707 ifp->if_ipackets++;
1708
1709 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1710 /* Do IP checksum checking. */
1711 if ((extsts & NGE_RXEXTSTS_IPPKT) != 0)
1712 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1713 if ((extsts & NGE_RXEXTSTS_IPCSUMERR) == 0)
1714 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1715 if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1716 !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1717 (extsts & NGE_RXEXTSTS_UDPPKT &&
1718 !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1719 m->m_pkthdr.csum_flags |=
1720 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1721 m->m_pkthdr.csum_data = 0xffff;
1722 }
1723 }
1724
1725 /*
1726 * If we received a packet with a vlan tag, pass it
1727 * to vlan_input() instead of ether_input().
1728 */
1729 if ((extsts & NGE_RXEXTSTS_VLANPKT) != 0 &&
1730 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1731 m->m_pkthdr.ether_vtag =
1732 bswap16(extsts & NGE_RXEXTSTS_VTCI);
1733 m->m_flags |= M_VLANTAG;
1734 }
1735 NGE_UNLOCK(sc);
1736 (*ifp->if_input)(ifp, m);
1737 NGE_LOCK(sc);
1738 rx_npkts++;
1739 }
1740
1741 if (prog > 0) {
1742 sc->nge_cdata.nge_rx_cons = cons;
1743 bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1744 sc->nge_cdata.nge_rx_ring_map,
1745 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1746 }
1747 return (rx_npkts);
1748}
1749
1750/*
1751 * A frame was downloaded to the chip. It's safe for us to clean up
1752 * the list buffers.
1753 */
1754static void
1755nge_txeof(struct nge_softc *sc)
1756{
1757 struct nge_desc *cur_tx;
1758 struct nge_txdesc *txd;
1759 struct ifnet *ifp;
1760 uint32_t cmdsts;
1761 int cons, prod;
1762
1763 NGE_LOCK_ASSERT(sc);
1764 ifp = sc->nge_ifp;
1765
1766 cons = sc->nge_cdata.nge_tx_cons;
1767 prod = sc->nge_cdata.nge_tx_prod;
1768 if (cons == prod)
1769 return;
1770
1771 bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1772 sc->nge_cdata.nge_tx_ring_map,
1773 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1774
1775 /*
1776 * Go through our tx list and free mbufs for those
1777 * frames that have been transmitted.
1778 */
1779 for (; cons != prod; NGE_INC(cons, NGE_TX_RING_CNT)) {
1780 cur_tx = &sc->nge_rdata.nge_tx_ring[cons];
1781 cmdsts = le32toh(cur_tx->nge_cmdsts);
1782 if ((cmdsts & NGE_CMDSTS_OWN) != 0)
1783 break;
1784 sc->nge_cdata.nge_tx_cnt--;
1785 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1786 if ((cmdsts & NGE_CMDSTS_MORE) != 0)
1787 continue;
1788
1789 txd = &sc->nge_cdata.nge_txdesc[cons];
1790 bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap,
1791 BUS_DMASYNC_POSTWRITE);
1792 bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap);
1793 if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1794 ifp->if_oerrors++;
1795 if ((cmdsts & NGE_TXSTAT_EXCESSCOLLS) != 0)
1796 ifp->if_collisions++;
1797 if ((cmdsts & NGE_TXSTAT_OUTOFWINCOLL) != 0)
1798 ifp->if_collisions++;
1799 } else
1800 ifp->if_opackets++;
1801
1802 ifp->if_collisions += (cmdsts & NGE_TXSTAT_COLLCNT) >> 16;
1803 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1804 __func__));
1805 m_freem(txd->tx_m);
1806 txd->tx_m = NULL;
1807 }
1808
1809 sc->nge_cdata.nge_tx_cons = cons;
1810 if (sc->nge_cdata.nge_tx_cnt == 0)
1811 sc->nge_watchdog_timer = 0;
1812}
1813
1814static void
1815nge_tick(void *xsc)
1816{
1817 struct nge_softc *sc;
1818 struct mii_data *mii;
1819
1820 sc = xsc;
1821 NGE_LOCK_ASSERT(sc);
1822 mii = device_get_softc(sc->nge_miibus);
1823 mii_tick(mii);
1824 /*
1825 * For PHYs that does not reset established link, it is
1826 * necessary to check whether driver still have a valid
1827 * link(e.g link state change callback is not called).
1828 * Otherwise, driver think it lost link because driver
1829 * initialization routine clears link state flag.
1830 */
1831 if ((sc->nge_flags & NGE_FLAG_LINK) == 0)
1832 nge_miibus_statchg(sc->nge_dev);
1833 nge_stats_update(sc);
1834 nge_watchdog(sc);
1835 callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1836}
1837
1838static void
1839nge_stats_update(struct nge_softc *sc)
1840{
1841 struct ifnet *ifp;
1842 struct nge_stats now, *stats, *nstats;
1843
1844 NGE_LOCK_ASSERT(sc);
1845
1846 ifp = sc->nge_ifp;
1847 stats = &now;
1848 stats->rx_pkts_errs =
1849 CSR_READ_4(sc, NGE_MIB_RXERRPKT) & 0xFFFF;
1850 stats->rx_crc_errs =
1851 CSR_READ_4(sc, NGE_MIB_RXERRFCS) & 0xFFFF;
1852 stats->rx_fifo_oflows =
1853 CSR_READ_4(sc, NGE_MIB_RXERRMISSEDPKT) & 0xFFFF;
1854 stats->rx_align_errs =
1855 CSR_READ_4(sc, NGE_MIB_RXERRALIGN) & 0xFFFF;
1856 stats->rx_sym_errs =
1857 CSR_READ_4(sc, NGE_MIB_RXERRSYM) & 0xFFFF;
1858 stats->rx_pkts_jumbos =
1859 CSR_READ_4(sc, NGE_MIB_RXERRGIANT) & 0xFFFF;
1860 stats->rx_len_errs =
1861 CSR_READ_4(sc, NGE_MIB_RXERRRANGLEN) & 0xFFFF;
1862 stats->rx_unctl_frames =
1863 CSR_READ_4(sc, NGE_MIB_RXBADOPCODE) & 0xFFFF;
1864 stats->rx_pause =
1865 CSR_READ_4(sc, NGE_MIB_RXPAUSEPKTS) & 0xFFFF;
1866 stats->tx_pause =
1867 CSR_READ_4(sc, NGE_MIB_TXPAUSEPKTS) & 0xFFFF;
1868 stats->tx_seq_errs =
1869 CSR_READ_4(sc, NGE_MIB_TXERRSQE) & 0xFF;
1870
1871 /*
1872 * Since we've accept errored frames exclude Rx length errors.
1873 */
1874 ifp->if_ierrors += stats->rx_pkts_errs + stats->rx_crc_errs +
1875 stats->rx_fifo_oflows + stats->rx_sym_errs;
1876
1877 nstats = &sc->nge_stats;
1878 nstats->rx_pkts_errs += stats->rx_pkts_errs;
1879 nstats->rx_crc_errs += stats->rx_crc_errs;
1880 nstats->rx_fifo_oflows += stats->rx_fifo_oflows;
1881 nstats->rx_align_errs += stats->rx_align_errs;
1882 nstats->rx_sym_errs += stats->rx_sym_errs;
1883 nstats->rx_pkts_jumbos += stats->rx_pkts_jumbos;
1884 nstats->rx_len_errs += stats->rx_len_errs;
1885 nstats->rx_unctl_frames += stats->rx_unctl_frames;
1886 nstats->rx_pause += stats->rx_pause;
1887 nstats->tx_pause += stats->tx_pause;
1888 nstats->tx_seq_errs += stats->tx_seq_errs;
1889}
1890
1891#ifdef DEVICE_POLLING
1892static poll_handler_t nge_poll;
1893
1894static int
1895nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1896{
1897 struct nge_softc *sc;
1898 int rx_npkts = 0;
1899
1900 sc = ifp->if_softc;
1901
1902 NGE_LOCK(sc);
1903 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1904 NGE_UNLOCK(sc);
1905 return (rx_npkts);
1906 }
1907
1908 /*
1909 * On the nge, reading the status register also clears it.
1910 * So before returning to intr mode we must make sure that all
1911 * possible pending sources of interrupts have been served.
1912 * In practice this means run to completion the *eof routines,
1913 * and then call the interrupt routine.
1914 */
1915 sc->rxcycles = count;
1916 rx_npkts = nge_rxeof(sc);
1917 nge_txeof(sc);
1918 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1919 nge_start_locked(ifp);
1920
1921 if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1922 uint32_t status;
1923
1924 /* Reading the ISR register clears all interrupts. */
1925 status = CSR_READ_4(sc, NGE_ISR);
1926
1927 if ((status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) != 0)
1928 rx_npkts += nge_rxeof(sc);
1929
1930 if ((status & NGE_ISR_RX_IDLE) != 0)
1931 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1932
1933 if ((status & NGE_ISR_SYSERR) != 0) {
1934 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1935 nge_init_locked(sc);
1936 }
1937 }
1938 NGE_UNLOCK(sc);
1939 return (rx_npkts);
1940}
1941#endif /* DEVICE_POLLING */
1942
1943static void
1944nge_intr(void *arg)
1945{
1946 struct nge_softc *sc;
1947 struct ifnet *ifp;
1948 uint32_t status;
1949
1950 sc = (struct nge_softc *)arg;
1951 ifp = sc->nge_ifp;
1952
1953 NGE_LOCK(sc);
1954
1955 if ((sc->nge_flags & NGE_FLAG_SUSPENDED) != 0)
1956 goto done_locked;
1957
1958 /* Reading the ISR register clears all interrupts. */
1959 status = CSR_READ_4(sc, NGE_ISR);
1960 if (status == 0xffffffff || (status & NGE_INTRS) == 0)
1961 goto done_locked;
1962#ifdef DEVICE_POLLING
1963 if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1964 goto done_locked;
1965#endif
1966 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1967 goto done_locked;
1968
1969 /* Disable interrupts. */
1970 CSR_WRITE_4(sc, NGE_IER, 0);
1971
1972 /* Data LED on for TBI mode */
1973 if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1974 CSR_WRITE_4(sc, NGE_GPIO,
1975 CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT);
1976
1977 for (; (status & NGE_INTRS) != 0;) {
1978 if ((status & (NGE_ISR_TX_DESC_OK | NGE_ISR_TX_ERR |
1979 NGE_ISR_TX_OK | NGE_ISR_TX_IDLE)) != 0)
1980 nge_txeof(sc);
1981
1982 if ((status & (NGE_ISR_RX_DESC_OK | NGE_ISR_RX_ERR |
1983 NGE_ISR_RX_OFLOW | NGE_ISR_RX_FIFO_OFLOW |
1984 NGE_ISR_RX_IDLE | NGE_ISR_RX_OK)) != 0)
1985 nge_rxeof(sc);
1986
1987 if ((status & NGE_ISR_RX_IDLE) != 0)
1988 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1989
1990 if ((status & NGE_ISR_SYSERR) != 0) {
1991 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1992 nge_init_locked(sc);
1993 }
1994 /* Reading the ISR register clears all interrupts. */
1995 status = CSR_READ_4(sc, NGE_ISR);
1996 }
1997
1998 /* Re-enable interrupts. */
1999 CSR_WRITE_4(sc, NGE_IER, 1);
2000
2001 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2002 nge_start_locked(ifp);
2003
2004 /* Data LED off for TBI mode */
2005 if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
2006 CSR_WRITE_4(sc, NGE_GPIO,
2007 CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
2008
2009done_locked:
2010 NGE_UNLOCK(sc);
2011}
2012
2013/*
2014 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2015 * pointers to the fragment pointers.
2016 */
2017static int
2018nge_encap(struct nge_softc *sc, struct mbuf **m_head)
2019{
2020 struct nge_txdesc *txd, *txd_last;
2021 struct nge_desc *desc;
2022 struct mbuf *m;
2023 bus_dmamap_t map;
2024 bus_dma_segment_t txsegs[NGE_MAXTXSEGS];
2025 int error, i, nsegs, prod, si;
2026
2027 NGE_LOCK_ASSERT(sc);
2028
2029 m = *m_head;
2030 prod = sc->nge_cdata.nge_tx_prod;
2031 txd = &sc->nge_cdata.nge_txdesc[prod];
2032 txd_last = txd;
2033 map = txd->tx_dmamap;
2034 error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, map,
2035 *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
2036 if (error == EFBIG) {
2037 m = m_collapse(*m_head, M_DONTWAIT, NGE_MAXTXSEGS);
2038 if (m == NULL) {
2039 m_freem(*m_head);
2040 *m_head = NULL;
2041 return (ENOBUFS);
2042 }
2043 *m_head = m;
2044 error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag,
2045 map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
2046 if (error != 0) {
2047 m_freem(*m_head);
2048 *m_head = NULL;
2049 return (error);
2050 }
2051 } else if (error != 0)
2052 return (error);
2053 if (nsegs == 0) {
2054 m_freem(*m_head);
2055 *m_head = NULL;
2056 return (EIO);
2057 }
2058
2059 /* Check number of available descriptors. */
2060 if (sc->nge_cdata.nge_tx_cnt + nsegs >= (NGE_TX_RING_CNT - 1)) {
2061 bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, map);
2062 return (ENOBUFS);
2063 }
2064
2065 bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, map, BUS_DMASYNC_PREWRITE);
2066
2067 si = prod;
2068 for (i = 0; i < nsegs; i++) {
2069 desc = &sc->nge_rdata.nge_tx_ring[prod];
2070 desc->nge_ptr = htole32(NGE_ADDR_LO(txsegs[i].ds_addr));
2071 if (i == 0)
2072 desc->nge_cmdsts = htole32(txsegs[i].ds_len |
2073 NGE_CMDSTS_MORE);
2074 else
2075 desc->nge_cmdsts = htole32(txsegs[i].ds_len |
2076 NGE_CMDSTS_MORE | NGE_CMDSTS_OWN);
2077 desc->nge_extsts = 0;
2078 sc->nge_cdata.nge_tx_cnt++;
2079 NGE_INC(prod, NGE_TX_RING_CNT);
2080 }
2081 /* Update producer index. */
2082 sc->nge_cdata.nge_tx_prod = prod;
2083
2084 prod = (prod + NGE_TX_RING_CNT - 1) % NGE_TX_RING_CNT;
2085 desc = &sc->nge_rdata.nge_tx_ring[prod];
2086 /* Check if we have a VLAN tag to insert. */
2087 if ((m->m_flags & M_VLANTAG) != 0)
2088 desc->nge_extsts |= htole32(NGE_TXEXTSTS_VLANPKT |
2089 bswap16(m->m_pkthdr.ether_vtag));
2090 /* Set EOP on the last desciptor. */
2091 desc->nge_cmdsts &= htole32(~NGE_CMDSTS_MORE);
2092
2093 /* Set checksum offload in the first descriptor. */
2094 desc = &sc->nge_rdata.nge_tx_ring[si];
2095 if ((m->m_pkthdr.csum_flags & NGE_CSUM_FEATURES) != 0) {
2096 if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2097 desc->nge_extsts |= htole32(NGE_TXEXTSTS_IPCSUM);
2098 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2099 desc->nge_extsts |= htole32(NGE_TXEXTSTS_TCPCSUM);
2100 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2101 desc->nge_extsts |= htole32(NGE_TXEXTSTS_UDPCSUM);
2102 }
2103 /* Lastly, turn the first descriptor ownership to hardware. */
2104 desc->nge_cmdsts |= htole32(NGE_CMDSTS_OWN);
2105
2106 txd = &sc->nge_cdata.nge_txdesc[prod];
2107 map = txd_last->tx_dmamap;
2108 txd_last->tx_dmamap = txd->tx_dmamap;
2109 txd->tx_dmamap = map;
2110 txd->tx_m = m;
2111
2112 return (0);
2113}
2114
2115/*
2116 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2117 * to the mbuf data regions directly in the transmit lists. We also save a
2118 * copy of the pointers since the transmit list fragment pointers are
2119 * physical addresses.
2120 */
2121
2122static void
2123nge_start(struct ifnet *ifp)
2124{
2125 struct nge_softc *sc;
2126
2127 sc = ifp->if_softc;
2128 NGE_LOCK(sc);
2129 nge_start_locked(ifp);
2130 NGE_UNLOCK(sc);
2131}
2132
2133static void
2134nge_start_locked(struct ifnet *ifp)
2135{
2136 struct nge_softc *sc;
2137 struct mbuf *m_head;
2138 int enq;
2139
2140 sc = ifp->if_softc;
2141
2142 NGE_LOCK_ASSERT(sc);
2143
2144 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2145 IFF_DRV_RUNNING || (sc->nge_flags & NGE_FLAG_LINK) == 0)
2146 return;
2147
2148 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2149 sc->nge_cdata.nge_tx_cnt < NGE_TX_RING_CNT - 2; ) {
2150 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2151 if (m_head == NULL)
2152 break;
2153 /*
2154 * Pack the data into the transmit ring. If we
2155 * don't have room, set the OACTIVE flag and wait
2156 * for the NIC to drain the ring.
2157 */
2158 if (nge_encap(sc, &m_head)) {
2159 if (m_head == NULL)
2160 break;
2161 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2162 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2163 break;
2164 }
2165
2166 enq++;
2167 /*
2168 * If there's a BPF listener, bounce a copy of this frame
2169 * to him.
2170 */
2171 ETHER_BPF_MTAP(ifp, m_head);
2172 }
2173
2174 if (enq > 0) {
2175 bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
2176 sc->nge_cdata.nge_tx_ring_map,
2177 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2178 /* Transmit */
2179 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
2180
2181 /* Set a timeout in case the chip goes out to lunch. */
2182 sc->nge_watchdog_timer = 5;
2183 }
2184}
2185
2186static void
2187nge_init(void *xsc)
2188{
2189 struct nge_softc *sc = xsc;
2190
2191 NGE_LOCK(sc);
2192 nge_init_locked(sc);
2193 NGE_UNLOCK(sc);
2194}
2195
2196static void
2197nge_init_locked(struct nge_softc *sc)
2198{
2199 struct ifnet *ifp = sc->nge_ifp;
2200 struct mii_data *mii;
2201 uint8_t *eaddr;
2202 uint32_t reg;
2203
2204 NGE_LOCK_ASSERT(sc);
2205
2206 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2207 return;
2208
2209 /*
2210 * Cancel pending I/O and free all RX/TX buffers.
2211 */
2212 nge_stop(sc);
2213
2214 /* Reset the adapter. */
2215 nge_reset(sc);
2216
2217 /* Disable Rx filter prior to programming Rx filter. */
2218 CSR_WRITE_4(sc, NGE_RXFILT_CTL, 0);
2219 CSR_BARRIER_WRITE_4(sc, NGE_RXFILT_CTL);
2220
2221 mii = device_get_softc(sc->nge_miibus);
2222
2223 /* Set MAC address. */
2224 eaddr = IF_LLADDR(sc->nge_ifp);
2225 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
2226 CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[1] << 8) | eaddr[0]);
2227 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
2228 CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[3] << 8) | eaddr[2]);
2229 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
2230 CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[5] << 8) | eaddr[4]);
2231
2232 /* Init circular RX list. */
2233 if (nge_list_rx_init(sc) == ENOBUFS) {
2234 device_printf(sc->nge_dev, "initialization failed: no "
2235 "memory for rx buffers\n");
2236 nge_stop(sc);
2237 return;
2238 }
2239
2240 /*
2241 * Init tx descriptors.
2242 */
2243 nge_list_tx_init(sc);
2244
2245 /*
2246 * For the NatSemi chip, we have to explicitly enable the
2247 * reception of ARP frames, as well as turn on the 'perfect
2248 * match' filter where we store the station address, otherwise
2249 * we won't receive unicasts meant for this host.
2250 */
2251 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
2252 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
2253
2254 /*
2255 * Set the capture broadcast bit to capture broadcast frames.
2256 */
2257 if (ifp->if_flags & IFF_BROADCAST) {
2258 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
2259 } else {
2260 NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
2261 }
2262
2263 /* Turn the receive filter on. */
2264 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
2265
2266 /* Set Rx filter. */
2267 nge_rxfilter(sc);
2268
2269 /* Disable PRIQ ctl. */
2270 CSR_WRITE_4(sc, NGE_PRIOQCTL, 0);
2271
2272 /*
2273 * Set pause frames paramters.
2274 * Rx stat FIFO hi-threshold : 2 or more packets
2275 * Rx stat FIFO lo-threshold : less than 2 packets
2276 * Rx data FIFO hi-threshold : 2K or more bytes
2277 * Rx data FIFO lo-threshold : less than 2K bytes
2278 * pause time : (512ns * 0xffff) -> 33.55ms
2279 */
2280 CSR_WRITE_4(sc, NGE_PAUSECSR,
2281 NGE_PAUSECSR_PAUSE_ON_MCAST |
2282 NGE_PAUSECSR_PAUSE_ON_DA |
2283 ((1 << 24) & NGE_PAUSECSR_RX_STATFIFO_THR_HI) |
2284 ((1 << 22) & NGE_PAUSECSR_RX_STATFIFO_THR_LO) |
2285 ((1 << 20) & NGE_PAUSECSR_RX_DATAFIFO_THR_HI) |
2286 ((1 << 18) & NGE_PAUSECSR_RX_DATAFIFO_THR_LO) |
2287 NGE_PAUSECSR_CNT);
2288
2289 /*
2290 * Load the address of the RX and TX lists.
2291 */
2292 CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
2293 NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
2294 CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
2295 NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
2296 CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
2297 NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
2298 CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
2299 NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
2300
2301 /* Set RX configuration. */
2302 CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
2303
2304 CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, 0);
2305 /*
2306 * Enable hardware checksum validation for all IPv4
2307 * packets, do not reject packets with bad checksums.
2308 */
2309 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2310 NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
2311
2312 /*
2313 * Tell the chip to detect and strip VLAN tag info from
2314 * received frames. The tag will be provided in the extsts
2315 * field in the RX descriptors.
2316 */
2317 NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB);
2318 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2319 NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB);
2320
2321 /* Set TX configuration. */
2322 CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
2323
2324 /*
2325 * Enable TX IPv4 checksumming on a per-packet basis.
2326 */
2327 CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
2328
2329 /*
2330 * Tell the chip to insert VLAN tags on a per-packet basis as
2331 * dictated by the code in the frame encapsulation routine.
2332 */
2333 NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
2334
2335 /*
2336 * Enable the delivery of PHY interrupts based on
2337 * link/speed/duplex status changes. Also enable the
2338 * extsts field in the DMA descriptors (needed for
2339 * TCP/IP checksum offload on transmit).
2340 */
2341 NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
2342 NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
2343
2344 /*
2345 * Configure interrupt holdoff (moderation). We can
2346 * have the chip delay interrupt delivery for a certain
2347 * period. Units are in 100us, and the max setting
2348 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
2349 */
2350 CSR_WRITE_4(sc, NGE_IHR, sc->nge_int_holdoff);
2351
2352 /*
2353 * Enable MAC statistics counters and clear.
2354 */
2355 reg = CSR_READ_4(sc, NGE_MIBCTL);
2356 reg &= ~NGE_MIBCTL_FREEZE_CNT;
2357 reg |= NGE_MIBCTL_CLEAR_CNT;
2358 CSR_WRITE_4(sc, NGE_MIBCTL, reg);
2359
2360 /*
2361 * Enable interrupts.
2362 */
2363 CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
2364#ifdef DEVICE_POLLING
2365 /*
2366 * ... only enable interrupts if we are not polling, make sure
2367 * they are off otherwise.
2368 */
2369 if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2370 CSR_WRITE_4(sc, NGE_IER, 0);
2371 else
2372#endif
2373 CSR_WRITE_4(sc, NGE_IER, 1);
2374
2375 sc->nge_flags &= ~NGE_FLAG_LINK;
2376 mii_mediachg(mii);
2377
2378 sc->nge_watchdog_timer = 0;
2379 callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
2380
2381 ifp->if_drv_flags |= IFF_DRV_RUNNING;
2382 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2383}
2384
2385/*
2386 * Set media options.
2387 */
2388static int
2389nge_mediachange(struct ifnet *ifp)
2390{
2391 struct nge_softc *sc;
2392 struct mii_data *mii;
2393 struct mii_softc *miisc;
2394 int error;
2395
2396 sc = ifp->if_softc;
2397 NGE_LOCK(sc);
2398 mii = device_get_softc(sc->nge_miibus);
36
37/*
38 * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39 * for FreeBSD. Datasheets are available from:
40 *
41 * http://www.national.com/ds/DP/DP83820.pdf
42 * http://www.national.com/ds/DP/DP83821.pdf
43 *
44 * These chips are used on several low cost gigabit ethernet NICs
45 * sold by D-Link, Addtron, SMC and Asante. Both parts are
46 * virtually the same, except the 83820 is a 64-bit/32-bit part,
47 * while the 83821 is 32-bit only.
48 *
49 * Many cards also use National gigE transceivers, such as the
50 * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51 * contains a full register description that applies to all of these
52 * components:
53 *
54 * http://www.national.com/ds/DP/DP83861.pdf
55 *
56 * Written by Bill Paul <wpaul@bsdi.com>
57 * BSDi Open Source Solutions
58 */
59
60/*
61 * The NatSemi DP83820 and 83821 controllers are enhanced versions
62 * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63 * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64 * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65 * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66 * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67 * matching buffers, one perfect address filter buffer and interrupt
68 * moderation. The 83820 supports both 64-bit and 32-bit addressing
69 * and data transfers: the 64-bit support can be toggled on or off
70 * via software. This affects the size of certain fields in the DMA
71 * descriptors.
72 *
73 * There are two bugs/misfeatures in the 83820/83821 that I have
74 * discovered so far:
75 *
76 * - Receive buffers must be aligned on 64-bit boundaries, which means
77 * you must resort to copying data in order to fix up the payload
78 * alignment.
79 *
80 * - In order to transmit jumbo frames larger than 8170 bytes, you have
81 * to turn off transmit checksum offloading, because the chip can't
82 * compute the checksum on an outgoing frame unless it fits entirely
83 * within the TX FIFO, which is only 8192 bytes in size. If you have
84 * TX checksum offload enabled and you transmit attempt to transmit a
85 * frame larger than 8170 bytes, the transmitter will wedge.
86 *
87 * To work around the latter problem, TX checksum offload is disabled
88 * if the user selects an MTU larger than 8152 (8170 - 18).
89 */
90
91#ifdef HAVE_KERNEL_OPTION_HEADERS
92#include "opt_device_polling.h"
93#endif
94
95#include <sys/param.h>
96#include <sys/systm.h>
97#include <sys/bus.h>
98#include <sys/endian.h>
99#include <sys/kernel.h>
100#include <sys/lock.h>
101#include <sys/malloc.h>
102#include <sys/mbuf.h>
103#include <sys/module.h>
104#include <sys/mutex.h>
105#include <sys/rman.h>
106#include <sys/socket.h>
107#include <sys/sockio.h>
108#include <sys/sysctl.h>
109
110#include <net/bpf.h>
111#include <net/if.h>
112#include <net/if_arp.h>
113#include <net/ethernet.h>
114#include <net/if_dl.h>
115#include <net/if_media.h>
116#include <net/if_types.h>
117#include <net/if_vlan_var.h>
118
119#include <dev/mii/mii.h>
120#include <dev/mii/miivar.h>
121
122#include <dev/pci/pcireg.h>
123#include <dev/pci/pcivar.h>
124
125#include <machine/bus.h>
126
127#include <dev/nge/if_ngereg.h>
128
129/* "device miibus" required. See GENERIC if you get errors here. */
130#include "miibus_if.h"
131
132MODULE_DEPEND(nge, pci, 1, 1, 1);
133MODULE_DEPEND(nge, ether, 1, 1, 1);
134MODULE_DEPEND(nge, miibus, 1, 1, 1);
135
136#define NGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
137
138/*
139 * Various supported device vendors/types and their names.
140 */
141static struct nge_type nge_devs[] = {
142 { NGE_VENDORID, NGE_DEVICEID,
143 "National Semiconductor Gigabit Ethernet" },
144 { 0, 0, NULL }
145};
146
147static int nge_probe(device_t);
148static int nge_attach(device_t);
149static int nge_detach(device_t);
150static int nge_shutdown(device_t);
151static int nge_suspend(device_t);
152static int nge_resume(device_t);
153
154static __inline void nge_discard_rxbuf(struct nge_softc *, int);
155static int nge_newbuf(struct nge_softc *, int);
156static int nge_encap(struct nge_softc *, struct mbuf **);
157#ifndef __NO_STRICT_ALIGNMENT
158static __inline void nge_fixup_rx(struct mbuf *);
159#endif
160static int nge_rxeof(struct nge_softc *);
161static void nge_txeof(struct nge_softc *);
162static void nge_intr(void *);
163static void nge_tick(void *);
164static void nge_stats_update(struct nge_softc *);
165static void nge_start(struct ifnet *);
166static void nge_start_locked(struct ifnet *);
167static int nge_ioctl(struct ifnet *, u_long, caddr_t);
168static void nge_init(void *);
169static void nge_init_locked(struct nge_softc *);
170static int nge_stop_mac(struct nge_softc *);
171static void nge_stop(struct nge_softc *);
172static void nge_wol(struct nge_softc *);
173static void nge_watchdog(struct nge_softc *);
174static int nge_mediachange(struct ifnet *);
175static void nge_mediastatus(struct ifnet *, struct ifmediareq *);
176
177static void nge_delay(struct nge_softc *);
178static void nge_eeprom_idle(struct nge_softc *);
179static void nge_eeprom_putbyte(struct nge_softc *, int);
180static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
181static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int);
182
183static void nge_mii_sync(struct nge_softc *);
184static void nge_mii_send(struct nge_softc *, uint32_t, int);
185static int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
186static int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
187
188static int nge_miibus_readreg(device_t, int, int);
189static int nge_miibus_writereg(device_t, int, int, int);
190static void nge_miibus_statchg(device_t);
191
192static void nge_rxfilter(struct nge_softc *);
193static void nge_reset(struct nge_softc *);
194static void nge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
195static int nge_dma_alloc(struct nge_softc *);
196static void nge_dma_free(struct nge_softc *);
197static int nge_list_rx_init(struct nge_softc *);
198static int nge_list_tx_init(struct nge_softc *);
199static void nge_sysctl_node(struct nge_softc *);
200static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
201static int sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS);
202
203static device_method_t nge_methods[] = {
204 /* Device interface */
205 DEVMETHOD(device_probe, nge_probe),
206 DEVMETHOD(device_attach, nge_attach),
207 DEVMETHOD(device_detach, nge_detach),
208 DEVMETHOD(device_shutdown, nge_shutdown),
209 DEVMETHOD(device_suspend, nge_suspend),
210 DEVMETHOD(device_resume, nge_resume),
211
212 /* bus interface */
213 DEVMETHOD(bus_print_child, bus_generic_print_child),
214 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
215
216 /* MII interface */
217 DEVMETHOD(miibus_readreg, nge_miibus_readreg),
218 DEVMETHOD(miibus_writereg, nge_miibus_writereg),
219 DEVMETHOD(miibus_statchg, nge_miibus_statchg),
220
221 { NULL, NULL }
222};
223
224static driver_t nge_driver = {
225 "nge",
226 nge_methods,
227 sizeof(struct nge_softc)
228};
229
230static devclass_t nge_devclass;
231
232DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
233DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
234
235#define NGE_SETBIT(sc, reg, x) \
236 CSR_WRITE_4(sc, reg, \
237 CSR_READ_4(sc, reg) | (x))
238
239#define NGE_CLRBIT(sc, reg, x) \
240 CSR_WRITE_4(sc, reg, \
241 CSR_READ_4(sc, reg) & ~(x))
242
243#define SIO_SET(x) \
244 CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
245
246#define SIO_CLR(x) \
247 CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
248
249static void
250nge_delay(struct nge_softc *sc)
251{
252 int idx;
253
254 for (idx = (300 / 33) + 1; idx > 0; idx--)
255 CSR_READ_4(sc, NGE_CSR);
256}
257
258static void
259nge_eeprom_idle(struct nge_softc *sc)
260{
261 int i;
262
263 SIO_SET(NGE_MEAR_EE_CSEL);
264 nge_delay(sc);
265 SIO_SET(NGE_MEAR_EE_CLK);
266 nge_delay(sc);
267
268 for (i = 0; i < 25; i++) {
269 SIO_CLR(NGE_MEAR_EE_CLK);
270 nge_delay(sc);
271 SIO_SET(NGE_MEAR_EE_CLK);
272 nge_delay(sc);
273 }
274
275 SIO_CLR(NGE_MEAR_EE_CLK);
276 nge_delay(sc);
277 SIO_CLR(NGE_MEAR_EE_CSEL);
278 nge_delay(sc);
279 CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
280}
281
282/*
283 * Send a read command and address to the EEPROM, check for ACK.
284 */
285static void
286nge_eeprom_putbyte(struct nge_softc *sc, int addr)
287{
288 int d, i;
289
290 d = addr | NGE_EECMD_READ;
291
292 /*
293 * Feed in each bit and stobe the clock.
294 */
295 for (i = 0x400; i; i >>= 1) {
296 if (d & i) {
297 SIO_SET(NGE_MEAR_EE_DIN);
298 } else {
299 SIO_CLR(NGE_MEAR_EE_DIN);
300 }
301 nge_delay(sc);
302 SIO_SET(NGE_MEAR_EE_CLK);
303 nge_delay(sc);
304 SIO_CLR(NGE_MEAR_EE_CLK);
305 nge_delay(sc);
306 }
307}
308
309/*
310 * Read a word of data stored in the EEPROM at address 'addr.'
311 */
312static void
313nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
314{
315 int i;
316 uint16_t word = 0;
317
318 /* Force EEPROM to idle state. */
319 nge_eeprom_idle(sc);
320
321 /* Enter EEPROM access mode. */
322 nge_delay(sc);
323 SIO_CLR(NGE_MEAR_EE_CLK);
324 nge_delay(sc);
325 SIO_SET(NGE_MEAR_EE_CSEL);
326 nge_delay(sc);
327
328 /*
329 * Send address of word we want to read.
330 */
331 nge_eeprom_putbyte(sc, addr);
332
333 /*
334 * Start reading bits from EEPROM.
335 */
336 for (i = 0x8000; i; i >>= 1) {
337 SIO_SET(NGE_MEAR_EE_CLK);
338 nge_delay(sc);
339 if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
340 word |= i;
341 nge_delay(sc);
342 SIO_CLR(NGE_MEAR_EE_CLK);
343 nge_delay(sc);
344 }
345
346 /* Turn off EEPROM access mode. */
347 nge_eeprom_idle(sc);
348
349 *dest = word;
350}
351
352/*
353 * Read a sequence of words from the EEPROM.
354 */
355static void
356nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt)
357{
358 int i;
359 uint16_t word = 0, *ptr;
360
361 for (i = 0; i < cnt; i++) {
362 nge_eeprom_getword(sc, off + i, &word);
363 ptr = (uint16_t *)(dest + (i * 2));
364 *ptr = word;
365 }
366}
367
368/*
369 * Sync the PHYs by setting data bit and strobing the clock 32 times.
370 */
371static void
372nge_mii_sync(struct nge_softc *sc)
373{
374 int i;
375
376 SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
377
378 for (i = 0; i < 32; i++) {
379 SIO_SET(NGE_MEAR_MII_CLK);
380 DELAY(1);
381 SIO_CLR(NGE_MEAR_MII_CLK);
382 DELAY(1);
383 }
384}
385
386/*
387 * Clock a series of bits through the MII.
388 */
389static void
390nge_mii_send(struct nge_softc *sc, uint32_t bits, int cnt)
391{
392 int i;
393
394 SIO_CLR(NGE_MEAR_MII_CLK);
395
396 for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
397 if (bits & i) {
398 SIO_SET(NGE_MEAR_MII_DATA);
399 } else {
400 SIO_CLR(NGE_MEAR_MII_DATA);
401 }
402 DELAY(1);
403 SIO_CLR(NGE_MEAR_MII_CLK);
404 DELAY(1);
405 SIO_SET(NGE_MEAR_MII_CLK);
406 }
407}
408
409/*
410 * Read an PHY register through the MII.
411 */
412static int
413nge_mii_readreg(struct nge_softc *sc, struct nge_mii_frame *frame)
414{
415 int i, ack;
416
417 /*
418 * Set up frame for RX.
419 */
420 frame->mii_stdelim = NGE_MII_STARTDELIM;
421 frame->mii_opcode = NGE_MII_READOP;
422 frame->mii_turnaround = 0;
423 frame->mii_data = 0;
424
425 CSR_WRITE_4(sc, NGE_MEAR, 0);
426
427 /*
428 * Turn on data xmit.
429 */
430 SIO_SET(NGE_MEAR_MII_DIR);
431
432 nge_mii_sync(sc);
433
434 /*
435 * Send command/address info.
436 */
437 nge_mii_send(sc, frame->mii_stdelim, 2);
438 nge_mii_send(sc, frame->mii_opcode, 2);
439 nge_mii_send(sc, frame->mii_phyaddr, 5);
440 nge_mii_send(sc, frame->mii_regaddr, 5);
441
442 /* Idle bit */
443 SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
444 DELAY(1);
445 SIO_SET(NGE_MEAR_MII_CLK);
446 DELAY(1);
447
448 /* Turn off xmit. */
449 SIO_CLR(NGE_MEAR_MII_DIR);
450 /* Check for ack */
451 SIO_CLR(NGE_MEAR_MII_CLK);
452 DELAY(1);
453 ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
454 SIO_SET(NGE_MEAR_MII_CLK);
455 DELAY(1);
456
457 /*
458 * Now try reading data bits. If the ack failed, we still
459 * need to clock through 16 cycles to keep the PHY(s) in sync.
460 */
461 if (ack) {
462 for (i = 0; i < 16; i++) {
463 SIO_CLR(NGE_MEAR_MII_CLK);
464 DELAY(1);
465 SIO_SET(NGE_MEAR_MII_CLK);
466 DELAY(1);
467 }
468 goto fail;
469 }
470
471 for (i = 0x8000; i; i >>= 1) {
472 SIO_CLR(NGE_MEAR_MII_CLK);
473 DELAY(1);
474 if (!ack) {
475 if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
476 frame->mii_data |= i;
477 DELAY(1);
478 }
479 SIO_SET(NGE_MEAR_MII_CLK);
480 DELAY(1);
481 }
482
483fail:
484
485 SIO_CLR(NGE_MEAR_MII_CLK);
486 DELAY(1);
487 SIO_SET(NGE_MEAR_MII_CLK);
488 DELAY(1);
489
490 if (ack)
491 return (1);
492 return (0);
493}
494
495/*
496 * Write to a PHY register through the MII.
497 */
498static int
499nge_mii_writereg(struct nge_softc *sc, struct nge_mii_frame *frame)
500{
501
502 /*
503 * Set up frame for TX.
504 */
505
506 frame->mii_stdelim = NGE_MII_STARTDELIM;
507 frame->mii_opcode = NGE_MII_WRITEOP;
508 frame->mii_turnaround = NGE_MII_TURNAROUND;
509
510 /*
511 * Turn on data output.
512 */
513 SIO_SET(NGE_MEAR_MII_DIR);
514
515 nge_mii_sync(sc);
516
517 nge_mii_send(sc, frame->mii_stdelim, 2);
518 nge_mii_send(sc, frame->mii_opcode, 2);
519 nge_mii_send(sc, frame->mii_phyaddr, 5);
520 nge_mii_send(sc, frame->mii_regaddr, 5);
521 nge_mii_send(sc, frame->mii_turnaround, 2);
522 nge_mii_send(sc, frame->mii_data, 16);
523
524 /* Idle bit. */
525 SIO_SET(NGE_MEAR_MII_CLK);
526 DELAY(1);
527 SIO_CLR(NGE_MEAR_MII_CLK);
528 DELAY(1);
529
530 /*
531 * Turn off xmit.
532 */
533 SIO_CLR(NGE_MEAR_MII_DIR);
534
535 return (0);
536}
537
538static int
539nge_miibus_readreg(device_t dev, int phy, int reg)
540{
541 struct nge_softc *sc;
542 struct nge_mii_frame frame;
543 int rv;
544
545 sc = device_get_softc(dev);
546 if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
547 /* Pretend PHY is at address 0. */
548 if (phy != 0)
549 return (0);
550 switch (reg) {
551 case MII_BMCR:
552 reg = NGE_TBI_BMCR;
553 break;
554 case MII_BMSR:
555 /* 83820/83821 has different bit layout for BMSR. */
556 rv = BMSR_ANEG | BMSR_EXTCAP | BMSR_EXTSTAT;
557 reg = CSR_READ_4(sc, NGE_TBI_BMSR);
558 if ((reg & NGE_TBIBMSR_ANEG_DONE) != 0)
559 rv |= BMSR_ACOMP;
560 if ((reg & NGE_TBIBMSR_LINKSTAT) != 0)
561 rv |= BMSR_LINK;
562 return (rv);
563 case MII_ANAR:
564 reg = NGE_TBI_ANAR;
565 break;
566 case MII_ANLPAR:
567 reg = NGE_TBI_ANLPAR;
568 break;
569 case MII_ANER:
570 reg = NGE_TBI_ANER;
571 break;
572 case MII_EXTSR:
573 reg = NGE_TBI_ESR;
574 break;
575 case MII_PHYIDR1:
576 case MII_PHYIDR2:
577 return (0);
578 default:
579 device_printf(sc->nge_dev,
580 "bad phy register read : %d\n", reg);
581 return (0);
582 }
583 return (CSR_READ_4(sc, reg));
584 }
585
586 bzero((char *)&frame, sizeof(frame));
587
588 frame.mii_phyaddr = phy;
589 frame.mii_regaddr = reg;
590 nge_mii_readreg(sc, &frame);
591
592 return (frame.mii_data);
593}
594
595static int
596nge_miibus_writereg(device_t dev, int phy, int reg, int data)
597{
598 struct nge_softc *sc;
599 struct nge_mii_frame frame;
600
601 sc = device_get_softc(dev);
602 if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
603 /* Pretend PHY is at address 0. */
604 if (phy != 0)
605 return (0);
606 switch (reg) {
607 case MII_BMCR:
608 reg = NGE_TBI_BMCR;
609 break;
610 case MII_BMSR:
611 return (0);
612 case MII_ANAR:
613 reg = NGE_TBI_ANAR;
614 break;
615 case MII_ANLPAR:
616 reg = NGE_TBI_ANLPAR;
617 break;
618 case MII_ANER:
619 reg = NGE_TBI_ANER;
620 break;
621 case MII_EXTSR:
622 reg = NGE_TBI_ESR;
623 break;
624 case MII_PHYIDR1:
625 case MII_PHYIDR2:
626 return (0);
627 default:
628 device_printf(sc->nge_dev,
629 "bad phy register write : %d\n", reg);
630 return (0);
631 }
632 CSR_WRITE_4(sc, reg, data);
633 return (0);
634 }
635
636 bzero((char *)&frame, sizeof(frame));
637
638 frame.mii_phyaddr = phy;
639 frame.mii_regaddr = reg;
640 frame.mii_data = data;
641 nge_mii_writereg(sc, &frame);
642
643 return (0);
644}
645
646/*
647 * media status/link state change handler.
648 */
649static void
650nge_miibus_statchg(device_t dev)
651{
652 struct nge_softc *sc;
653 struct mii_data *mii;
654 struct ifnet *ifp;
655 struct nge_txdesc *txd;
656 uint32_t done, reg, status;
657 int i;
658
659 sc = device_get_softc(dev);
660 NGE_LOCK_ASSERT(sc);
661
662 mii = device_get_softc(sc->nge_miibus);
663 ifp = sc->nge_ifp;
664 if (mii == NULL || ifp == NULL ||
665 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
666 return;
667
668 sc->nge_flags &= ~NGE_FLAG_LINK;
669 if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
670 (IFM_AVALID | IFM_ACTIVE)) {
671 switch (IFM_SUBTYPE(mii->mii_media_active)) {
672 case IFM_10_T:
673 case IFM_100_TX:
674 case IFM_1000_T:
675 case IFM_1000_SX:
676 case IFM_1000_LX:
677 case IFM_1000_CX:
678 sc->nge_flags |= NGE_FLAG_LINK;
679 break;
680 default:
681 break;
682 }
683 }
684
685 /* Stop Tx/Rx MACs. */
686 if (nge_stop_mac(sc) == ETIMEDOUT)
687 device_printf(sc->nge_dev,
688 "%s: unable to stop Tx/Rx MAC\n", __func__);
689 nge_txeof(sc);
690 nge_rxeof(sc);
691 if (sc->nge_head != NULL) {
692 m_freem(sc->nge_head);
693 sc->nge_head = sc->nge_tail = NULL;
694 }
695
696 /* Release queued frames. */
697 for (i = 0; i < NGE_TX_RING_CNT; i++) {
698 txd = &sc->nge_cdata.nge_txdesc[i];
699 if (txd->tx_m != NULL) {
700 bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
701 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
702 bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
703 txd->tx_dmamap);
704 m_freem(txd->tx_m);
705 txd->tx_m = NULL;
706 }
707 }
708
709 /* Program MAC with resolved speed/duplex. */
710 if ((sc->nge_flags & NGE_FLAG_LINK) != 0) {
711 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
712 NGE_SETBIT(sc, NGE_TX_CFG,
713 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
714 NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
715#ifdef notyet
716 /* Enable flow-control. */
717 if ((IFM_OPTIONS(mii->mii_media_active) &
718 (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) != 0)
719 NGE_SETBIT(sc, NGE_PAUSECSR,
720 NGE_PAUSECSR_PAUSE_ENB);
721#endif
722 } else {
723 NGE_CLRBIT(sc, NGE_TX_CFG,
724 (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
725 NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
726 NGE_CLRBIT(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ENB);
727 }
728 /* If we have a 1000Mbps link, set the mode_1000 bit. */
729 reg = CSR_READ_4(sc, NGE_CFG);
730 switch (IFM_SUBTYPE(mii->mii_media_active)) {
731 case IFM_1000_SX:
732 case IFM_1000_LX:
733 case IFM_1000_CX:
734 case IFM_1000_T:
735 reg |= NGE_CFG_MODE_1000;
736 break;
737 default:
738 reg &= ~NGE_CFG_MODE_1000;
739 break;
740 }
741 CSR_WRITE_4(sc, NGE_CFG, reg);
742
743 /* Reset Tx/Rx MAC. */
744 reg = CSR_READ_4(sc, NGE_CSR);
745 reg |= NGE_CSR_TX_RESET | NGE_CSR_RX_RESET;
746 CSR_WRITE_4(sc, NGE_CSR, reg);
747 /* Check the completion of reset. */
748 done = 0;
749 for (i = 0; i < NGE_TIMEOUT; i++) {
750 DELAY(1);
751 status = CSR_READ_4(sc, NGE_ISR);
752 if ((status & NGE_ISR_RX_RESET_DONE) != 0)
753 done |= NGE_ISR_RX_RESET_DONE;
754 if ((status & NGE_ISR_TX_RESET_DONE) != 0)
755 done |= NGE_ISR_TX_RESET_DONE;
756 if (done ==
757 (NGE_ISR_TX_RESET_DONE | NGE_ISR_RX_RESET_DONE))
758 break;
759 }
760 if (i == NGE_TIMEOUT)
761 device_printf(sc->nge_dev,
762 "%s: unable to reset Tx/Rx MAC\n", __func__);
763 /* Reuse Rx buffer and reset consumer pointer. */
764 sc->nge_cdata.nge_rx_cons = 0;
765 /*
766 * It seems that resetting Rx/Tx MAC results in
767 * resetting Tx/Rx descriptor pointer registers such
768 * that reloading Tx/Rx lists address are needed.
769 */
770 CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
771 NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
772 CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
773 NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
774 CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
775 NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
776 CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
777 NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
778 /* Reinitialize Tx buffers. */
779 nge_list_tx_init(sc);
780
781 /* Restart Rx MAC. */
782 reg = CSR_READ_4(sc, NGE_CSR);
783 reg |= NGE_CSR_RX_ENABLE;
784 CSR_WRITE_4(sc, NGE_CSR, reg);
785 for (i = 0; i < NGE_TIMEOUT; i++) {
786 if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RX_ENABLE) != 0)
787 break;
788 DELAY(1);
789 }
790 if (i == NGE_TIMEOUT)
791 device_printf(sc->nge_dev,
792 "%s: unable to restart Rx MAC\n", __func__);
793 }
794
795 /* Data LED off for TBI mode */
796 if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
797 CSR_WRITE_4(sc, NGE_GPIO,
798 CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
799}
800
801static void
802nge_rxfilter(struct nge_softc *sc)
803{
804 struct ifnet *ifp;
805 struct ifmultiaddr *ifma;
806 uint32_t h, i, rxfilt;
807 int bit, index;
808
809 NGE_LOCK_ASSERT(sc);
810 ifp = sc->nge_ifp;
811
812 /* Make sure to stop Rx filtering. */
813 rxfilt = CSR_READ_4(sc, NGE_RXFILT_CTL);
814 rxfilt &= ~NGE_RXFILTCTL_ENABLE;
815 CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
816 CSR_BARRIER_WRITE_4(sc, NGE_RXFILT_CTL);
817
818 rxfilt &= ~(NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_ALLPHYS);
819 rxfilt &= ~NGE_RXFILTCTL_BROAD;
820 /*
821 * We don't want to use the hash table for matching unicast
822 * addresses.
823 */
824 rxfilt &= ~(NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
825
826 /*
827 * For the NatSemi chip, we have to explicitly enable the
828 * reception of ARP frames, as well as turn on the 'perfect
829 * match' filter where we store the station address, otherwise
830 * we won't receive unicasts meant for this host.
831 */
832 rxfilt |= NGE_RXFILTCTL_ARP | NGE_RXFILTCTL_PERFECT;
833
834 /*
835 * Set the capture broadcast bit to capture broadcast frames.
836 */
837 if ((ifp->if_flags & IFF_BROADCAST) != 0)
838 rxfilt |= NGE_RXFILTCTL_BROAD;
839
840 if ((ifp->if_flags & IFF_PROMISC) != 0 ||
841 (ifp->if_flags & IFF_ALLMULTI) != 0) {
842 rxfilt |= NGE_RXFILTCTL_ALLMULTI;
843 if ((ifp->if_flags & IFF_PROMISC) != 0)
844 rxfilt |= NGE_RXFILTCTL_ALLPHYS;
845 goto done;
846 }
847
848 /*
849 * We have to explicitly enable the multicast hash table
850 * on the NatSemi chip if we want to use it, which we do.
851 */
852 rxfilt |= NGE_RXFILTCTL_MCHASH;
853
854 /* first, zot all the existing hash bits */
855 for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
856 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
857 CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
858 }
859
860 /*
861 * From the 11 bits returned by the crc routine, the top 7
862 * bits represent the 16-bit word in the mcast hash table
863 * that needs to be updated, and the lower 4 bits represent
864 * which bit within that byte needs to be set.
865 */
866 if_maddr_rlock(ifp);
867 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
868 if (ifma->ifma_addr->sa_family != AF_LINK)
869 continue;
870 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
871 ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
872 index = (h >> 4) & 0x7F;
873 bit = h & 0xF;
874 CSR_WRITE_4(sc, NGE_RXFILT_CTL,
875 NGE_FILTADDR_MCAST_LO + (index * 2));
876 NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
877 }
878 if_maddr_runlock(ifp);
879
880done:
881 CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
882 /* Turn the receive filter on. */
883 rxfilt |= NGE_RXFILTCTL_ENABLE;
884 CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
885 CSR_BARRIER_WRITE_4(sc, NGE_RXFILT_CTL);
886}
887
888static void
889nge_reset(struct nge_softc *sc)
890{
891 uint32_t v;
892 int i;
893
894 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
895
896 for (i = 0; i < NGE_TIMEOUT; i++) {
897 if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
898 break;
899 DELAY(1);
900 }
901
902 if (i == NGE_TIMEOUT)
903 device_printf(sc->nge_dev, "reset never completed\n");
904
905 /* Wait a little while for the chip to get its brains in order. */
906 DELAY(1000);
907
908 /*
909 * If this is a NetSemi chip, make sure to clear
910 * PME mode.
911 */
912 CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
913 CSR_WRITE_4(sc, NGE_CLKRUN, 0);
914
915 /* Clear WOL events which may interfere normal Rx filter opertaion. */
916 CSR_WRITE_4(sc, NGE_WOLCSR, 0);
917
918 /*
919 * Only DP83820 supports 64bits addressing/data transfers and
920 * 64bit addressing requires different descriptor structures.
921 * To make it simple, disable 64bit addressing/data transfers.
922 */
923 v = CSR_READ_4(sc, NGE_CFG);
924 v &= ~(NGE_CFG_64BIT_ADDR_ENB | NGE_CFG_64BIT_DATA_ENB);
925 CSR_WRITE_4(sc, NGE_CFG, v);
926}
927
928/*
929 * Probe for a NatSemi chip. Check the PCI vendor and device
930 * IDs against our list and return a device name if we find a match.
931 */
932static int
933nge_probe(device_t dev)
934{
935 struct nge_type *t;
936
937 t = nge_devs;
938
939 while (t->nge_name != NULL) {
940 if ((pci_get_vendor(dev) == t->nge_vid) &&
941 (pci_get_device(dev) == t->nge_did)) {
942 device_set_desc(dev, t->nge_name);
943 return (BUS_PROBE_DEFAULT);
944 }
945 t++;
946 }
947
948 return (ENXIO);
949}
950
951/*
952 * Attach the interface. Allocate softc structures, do ifmedia
953 * setup and ethernet/BPF attach.
954 */
955static int
956nge_attach(device_t dev)
957{
958 uint8_t eaddr[ETHER_ADDR_LEN];
959 uint16_t ea[ETHER_ADDR_LEN/2], ea_temp, reg;
960 struct nge_softc *sc;
961 struct ifnet *ifp;
962 int error, i, rid;
963
964 error = 0;
965 sc = device_get_softc(dev);
966 sc->nge_dev = dev;
967
968 NGE_LOCK_INIT(sc, device_get_nameunit(dev));
969 callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0);
970
971 /*
972 * Map control/status registers.
973 */
974 pci_enable_busmaster(dev);
975
976#ifdef NGE_USEIOSPACE
977 sc->nge_res_type = SYS_RES_IOPORT;
978 sc->nge_res_id = PCIR_BAR(0);
979#else
980 sc->nge_res_type = SYS_RES_MEMORY;
981 sc->nge_res_id = PCIR_BAR(1);
982#endif
983 sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
984 &sc->nge_res_id, RF_ACTIVE);
985
986 if (sc->nge_res == NULL) {
987 if (sc->nge_res_type == SYS_RES_MEMORY) {
988 sc->nge_res_type = SYS_RES_IOPORT;
989 sc->nge_res_id = PCIR_BAR(0);
990 } else {
991 sc->nge_res_type = SYS_RES_MEMORY;
992 sc->nge_res_id = PCIR_BAR(1);
993 }
994 sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
995 &sc->nge_res_id, RF_ACTIVE);
996 if (sc->nge_res == NULL) {
997 device_printf(dev, "couldn't allocate %s resources\n",
998 sc->nge_res_type == SYS_RES_MEMORY ? "memory" :
999 "I/O");
1000 NGE_LOCK_DESTROY(sc);
1001 return (ENXIO);
1002 }
1003 }
1004
1005 /* Allocate interrupt */
1006 rid = 0;
1007 sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1008 RF_SHAREABLE | RF_ACTIVE);
1009
1010 if (sc->nge_irq == NULL) {
1011 device_printf(dev, "couldn't map interrupt\n");
1012 error = ENXIO;
1013 goto fail;
1014 }
1015
1016 /* Enable MWI. */
1017 reg = pci_read_config(dev, PCIR_COMMAND, 2);
1018 reg |= PCIM_CMD_MWRICEN;
1019 pci_write_config(dev, PCIR_COMMAND, reg, 2);
1020
1021 /* Reset the adapter. */
1022 nge_reset(sc);
1023
1024 /*
1025 * Get station address from the EEPROM.
1026 */
1027 nge_read_eeprom(sc, (caddr_t)ea, NGE_EE_NODEADDR, 3);
1028 for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1029 ea[i] = le16toh(ea[i]);
1030 ea_temp = ea[0];
1031 ea[0] = ea[2];
1032 ea[2] = ea_temp;
1033 bcopy(ea, eaddr, sizeof(eaddr));
1034
1035 if (nge_dma_alloc(sc) != 0) {
1036 error = ENXIO;
1037 goto fail;
1038 }
1039
1040 nge_sysctl_node(sc);
1041
1042 ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
1043 if (ifp == NULL) {
1044 device_printf(dev, "can not allocate ifnet structure\n");
1045 error = ENOSPC;
1046 goto fail;
1047 }
1048 ifp->if_softc = sc;
1049 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1050 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1051 ifp->if_ioctl = nge_ioctl;
1052 ifp->if_start = nge_start;
1053 ifp->if_init = nge_init;
1054 ifp->if_snd.ifq_drv_maxlen = NGE_TX_RING_CNT - 1;
1055 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1056 IFQ_SET_READY(&ifp->if_snd);
1057 ifp->if_hwassist = NGE_CSUM_FEATURES;
1058 ifp->if_capabilities = IFCAP_HWCSUM;
1059 /*
1060 * It seems that some hardwares doesn't provide 3.3V auxiliary
1061 * supply(3VAUX) to drive PME such that checking PCI power
1062 * management capability is necessary.
1063 */
1064 if (pci_find_cap(sc->nge_dev, PCIY_PMG, &i) == 0)
1065 ifp->if_capabilities |= IFCAP_WOL;
1066 ifp->if_capenable = ifp->if_capabilities;
1067
1068 if ((CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) != 0) {
1069 sc->nge_flags |= NGE_FLAG_TBI;
1070 device_printf(dev, "Using TBI\n");
1071 /* Configure GPIO. */
1072 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1073 | NGE_GPIO_GP4_OUT
1074 | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
1075 | NGE_GPIO_GP3_OUTENB
1076 | NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
1077 }
1078
1079 /*
1080 * Do MII setup.
1081 */
1082 error = mii_attach(dev, &sc->nge_miibus, ifp, nge_mediachange,
1083 nge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
1084 if (error != 0) {
1085 device_printf(dev, "attaching PHYs failed\n");
1086 goto fail;
1087 }
1088
1089 /*
1090 * Call MI attach routine.
1091 */
1092 ether_ifattach(ifp, eaddr);
1093
1094 /* VLAN capability setup. */
1095 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1096 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1097 ifp->if_capenable = ifp->if_capabilities;
1098#ifdef DEVICE_POLLING
1099 ifp->if_capabilities |= IFCAP_POLLING;
1100#endif
1101 /*
1102 * Tell the upper layer(s) we support long frames.
1103 * Must appear after the call to ether_ifattach() because
1104 * ether_ifattach() sets ifi_hdrlen to the default value.
1105 */
1106 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1107
1108 /*
1109 * Hookup IRQ last.
1110 */
1111 error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
1112 NULL, nge_intr, sc, &sc->nge_intrhand);
1113 if (error) {
1114 device_printf(dev, "couldn't set up irq\n");
1115 goto fail;
1116 }
1117
1118fail:
1119 if (error != 0)
1120 nge_detach(dev);
1121 return (error);
1122}
1123
1124static int
1125nge_detach(device_t dev)
1126{
1127 struct nge_softc *sc;
1128 struct ifnet *ifp;
1129
1130 sc = device_get_softc(dev);
1131 ifp = sc->nge_ifp;
1132
1133#ifdef DEVICE_POLLING
1134 if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
1135 ether_poll_deregister(ifp);
1136#endif
1137
1138 if (device_is_attached(dev)) {
1139 NGE_LOCK(sc);
1140 sc->nge_flags |= NGE_FLAG_DETACH;
1141 nge_stop(sc);
1142 NGE_UNLOCK(sc);
1143 callout_drain(&sc->nge_stat_ch);
1144 if (ifp != NULL)
1145 ether_ifdetach(ifp);
1146 }
1147
1148 if (sc->nge_miibus != NULL) {
1149 device_delete_child(dev, sc->nge_miibus);
1150 sc->nge_miibus = NULL;
1151 }
1152 bus_generic_detach(dev);
1153 if (sc->nge_intrhand != NULL)
1154 bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1155 if (sc->nge_irq != NULL)
1156 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1157 if (sc->nge_res != NULL)
1158 bus_release_resource(dev, sc->nge_res_type, sc->nge_res_id,
1159 sc->nge_res);
1160
1161 nge_dma_free(sc);
1162 if (ifp != NULL)
1163 if_free(ifp);
1164
1165 NGE_LOCK_DESTROY(sc);
1166
1167 return (0);
1168}
1169
1170struct nge_dmamap_arg {
1171 bus_addr_t nge_busaddr;
1172};
1173
1174static void
1175nge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1176{
1177 struct nge_dmamap_arg *ctx;
1178
1179 if (error != 0)
1180 return;
1181 ctx = arg;
1182 ctx->nge_busaddr = segs[0].ds_addr;
1183}
1184
1185static int
1186nge_dma_alloc(struct nge_softc *sc)
1187{
1188 struct nge_dmamap_arg ctx;
1189 struct nge_txdesc *txd;
1190 struct nge_rxdesc *rxd;
1191 int error, i;
1192
1193 /* Create parent DMA tag. */
1194 error = bus_dma_tag_create(
1195 bus_get_dma_tag(sc->nge_dev), /* parent */
1196 1, 0, /* alignment, boundary */
1197 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1198 BUS_SPACE_MAXADDR, /* highaddr */
1199 NULL, NULL, /* filter, filterarg */
1200 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
1201 0, /* nsegments */
1202 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1203 0, /* flags */
1204 NULL, NULL, /* lockfunc, lockarg */
1205 &sc->nge_cdata.nge_parent_tag);
1206 if (error != 0) {
1207 device_printf(sc->nge_dev, "failed to create parent DMA tag\n");
1208 goto fail;
1209 }
1210 /* Create tag for Tx ring. */
1211 error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1212 NGE_RING_ALIGN, 0, /* alignment, boundary */
1213 BUS_SPACE_MAXADDR, /* lowaddr */
1214 BUS_SPACE_MAXADDR, /* highaddr */
1215 NULL, NULL, /* filter, filterarg */
1216 NGE_TX_RING_SIZE, /* maxsize */
1217 1, /* nsegments */
1218 NGE_TX_RING_SIZE, /* maxsegsize */
1219 0, /* flags */
1220 NULL, NULL, /* lockfunc, lockarg */
1221 &sc->nge_cdata.nge_tx_ring_tag);
1222 if (error != 0) {
1223 device_printf(sc->nge_dev, "failed to create Tx ring DMA tag\n");
1224 goto fail;
1225 }
1226
1227 /* Create tag for Rx ring. */
1228 error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1229 NGE_RING_ALIGN, 0, /* alignment, boundary */
1230 BUS_SPACE_MAXADDR, /* lowaddr */
1231 BUS_SPACE_MAXADDR, /* highaddr */
1232 NULL, NULL, /* filter, filterarg */
1233 NGE_RX_RING_SIZE, /* maxsize */
1234 1, /* nsegments */
1235 NGE_RX_RING_SIZE, /* maxsegsize */
1236 0, /* flags */
1237 NULL, NULL, /* lockfunc, lockarg */
1238 &sc->nge_cdata.nge_rx_ring_tag);
1239 if (error != 0) {
1240 device_printf(sc->nge_dev,
1241 "failed to create Rx ring DMA tag\n");
1242 goto fail;
1243 }
1244
1245 /* Create tag for Tx buffers. */
1246 error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1247 1, 0, /* alignment, boundary */
1248 BUS_SPACE_MAXADDR, /* lowaddr */
1249 BUS_SPACE_MAXADDR, /* highaddr */
1250 NULL, NULL, /* filter, filterarg */
1251 MCLBYTES * NGE_MAXTXSEGS, /* maxsize */
1252 NGE_MAXTXSEGS, /* nsegments */
1253 MCLBYTES, /* maxsegsize */
1254 0, /* flags */
1255 NULL, NULL, /* lockfunc, lockarg */
1256 &sc->nge_cdata.nge_tx_tag);
1257 if (error != 0) {
1258 device_printf(sc->nge_dev, "failed to create Tx DMA tag\n");
1259 goto fail;
1260 }
1261
1262 /* Create tag for Rx buffers. */
1263 error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
1264 NGE_RX_ALIGN, 0, /* alignment, boundary */
1265 BUS_SPACE_MAXADDR, /* lowaddr */
1266 BUS_SPACE_MAXADDR, /* highaddr */
1267 NULL, NULL, /* filter, filterarg */
1268 MCLBYTES, /* maxsize */
1269 1, /* nsegments */
1270 MCLBYTES, /* maxsegsize */
1271 0, /* flags */
1272 NULL, NULL, /* lockfunc, lockarg */
1273 &sc->nge_cdata.nge_rx_tag);
1274 if (error != 0) {
1275 device_printf(sc->nge_dev, "failed to create Rx DMA tag\n");
1276 goto fail;
1277 }
1278
1279 /* Allocate DMA'able memory and load the DMA map for Tx ring. */
1280 error = bus_dmamem_alloc(sc->nge_cdata.nge_tx_ring_tag,
1281 (void **)&sc->nge_rdata.nge_tx_ring, BUS_DMA_WAITOK |
1282 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_tx_ring_map);
1283 if (error != 0) {
1284 device_printf(sc->nge_dev,
1285 "failed to allocate DMA'able memory for Tx ring\n");
1286 goto fail;
1287 }
1288
1289 ctx.nge_busaddr = 0;
1290 error = bus_dmamap_load(sc->nge_cdata.nge_tx_ring_tag,
1291 sc->nge_cdata.nge_tx_ring_map, sc->nge_rdata.nge_tx_ring,
1292 NGE_TX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1293 if (error != 0 || ctx.nge_busaddr == 0) {
1294 device_printf(sc->nge_dev,
1295 "failed to load DMA'able memory for Tx ring\n");
1296 goto fail;
1297 }
1298 sc->nge_rdata.nge_tx_ring_paddr = ctx.nge_busaddr;
1299
1300 /* Allocate DMA'able memory and load the DMA map for Rx ring. */
1301 error = bus_dmamem_alloc(sc->nge_cdata.nge_rx_ring_tag,
1302 (void **)&sc->nge_rdata.nge_rx_ring, BUS_DMA_WAITOK |
1303 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_rx_ring_map);
1304 if (error != 0) {
1305 device_printf(sc->nge_dev,
1306 "failed to allocate DMA'able memory for Rx ring\n");
1307 goto fail;
1308 }
1309
1310 ctx.nge_busaddr = 0;
1311 error = bus_dmamap_load(sc->nge_cdata.nge_rx_ring_tag,
1312 sc->nge_cdata.nge_rx_ring_map, sc->nge_rdata.nge_rx_ring,
1313 NGE_RX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
1314 if (error != 0 || ctx.nge_busaddr == 0) {
1315 device_printf(sc->nge_dev,
1316 "failed to load DMA'able memory for Rx ring\n");
1317 goto fail;
1318 }
1319 sc->nge_rdata.nge_rx_ring_paddr = ctx.nge_busaddr;
1320
1321 /* Create DMA maps for Tx buffers. */
1322 for (i = 0; i < NGE_TX_RING_CNT; i++) {
1323 txd = &sc->nge_cdata.nge_txdesc[i];
1324 txd->tx_m = NULL;
1325 txd->tx_dmamap = NULL;
1326 error = bus_dmamap_create(sc->nge_cdata.nge_tx_tag, 0,
1327 &txd->tx_dmamap);
1328 if (error != 0) {
1329 device_printf(sc->nge_dev,
1330 "failed to create Tx dmamap\n");
1331 goto fail;
1332 }
1333 }
1334 /* Create DMA maps for Rx buffers. */
1335 if ((error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1336 &sc->nge_cdata.nge_rx_sparemap)) != 0) {
1337 device_printf(sc->nge_dev,
1338 "failed to create spare Rx dmamap\n");
1339 goto fail;
1340 }
1341 for (i = 0; i < NGE_RX_RING_CNT; i++) {
1342 rxd = &sc->nge_cdata.nge_rxdesc[i];
1343 rxd->rx_m = NULL;
1344 rxd->rx_dmamap = NULL;
1345 error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
1346 &rxd->rx_dmamap);
1347 if (error != 0) {
1348 device_printf(sc->nge_dev,
1349 "failed to create Rx dmamap\n");
1350 goto fail;
1351 }
1352 }
1353
1354fail:
1355 return (error);
1356}
1357
1358static void
1359nge_dma_free(struct nge_softc *sc)
1360{
1361 struct nge_txdesc *txd;
1362 struct nge_rxdesc *rxd;
1363 int i;
1364
1365 /* Tx ring. */
1366 if (sc->nge_cdata.nge_tx_ring_tag) {
1367 if (sc->nge_cdata.nge_tx_ring_map)
1368 bus_dmamap_unload(sc->nge_cdata.nge_tx_ring_tag,
1369 sc->nge_cdata.nge_tx_ring_map);
1370 if (sc->nge_cdata.nge_tx_ring_map &&
1371 sc->nge_rdata.nge_tx_ring)
1372 bus_dmamem_free(sc->nge_cdata.nge_tx_ring_tag,
1373 sc->nge_rdata.nge_tx_ring,
1374 sc->nge_cdata.nge_tx_ring_map);
1375 sc->nge_rdata.nge_tx_ring = NULL;
1376 sc->nge_cdata.nge_tx_ring_map = NULL;
1377 bus_dma_tag_destroy(sc->nge_cdata.nge_tx_ring_tag);
1378 sc->nge_cdata.nge_tx_ring_tag = NULL;
1379 }
1380 /* Rx ring. */
1381 if (sc->nge_cdata.nge_rx_ring_tag) {
1382 if (sc->nge_cdata.nge_rx_ring_map)
1383 bus_dmamap_unload(sc->nge_cdata.nge_rx_ring_tag,
1384 sc->nge_cdata.nge_rx_ring_map);
1385 if (sc->nge_cdata.nge_rx_ring_map &&
1386 sc->nge_rdata.nge_rx_ring)
1387 bus_dmamem_free(sc->nge_cdata.nge_rx_ring_tag,
1388 sc->nge_rdata.nge_rx_ring,
1389 sc->nge_cdata.nge_rx_ring_map);
1390 sc->nge_rdata.nge_rx_ring = NULL;
1391 sc->nge_cdata.nge_rx_ring_map = NULL;
1392 bus_dma_tag_destroy(sc->nge_cdata.nge_rx_ring_tag);
1393 sc->nge_cdata.nge_rx_ring_tag = NULL;
1394 }
1395 /* Tx buffers. */
1396 if (sc->nge_cdata.nge_tx_tag) {
1397 for (i = 0; i < NGE_TX_RING_CNT; i++) {
1398 txd = &sc->nge_cdata.nge_txdesc[i];
1399 if (txd->tx_dmamap) {
1400 bus_dmamap_destroy(sc->nge_cdata.nge_tx_tag,
1401 txd->tx_dmamap);
1402 txd->tx_dmamap = NULL;
1403 }
1404 }
1405 bus_dma_tag_destroy(sc->nge_cdata.nge_tx_tag);
1406 sc->nge_cdata.nge_tx_tag = NULL;
1407 }
1408 /* Rx buffers. */
1409 if (sc->nge_cdata.nge_rx_tag) {
1410 for (i = 0; i < NGE_RX_RING_CNT; i++) {
1411 rxd = &sc->nge_cdata.nge_rxdesc[i];
1412 if (rxd->rx_dmamap) {
1413 bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1414 rxd->rx_dmamap);
1415 rxd->rx_dmamap = NULL;
1416 }
1417 }
1418 if (sc->nge_cdata.nge_rx_sparemap) {
1419 bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
1420 sc->nge_cdata.nge_rx_sparemap);
1421 sc->nge_cdata.nge_rx_sparemap = 0;
1422 }
1423 bus_dma_tag_destroy(sc->nge_cdata.nge_rx_tag);
1424 sc->nge_cdata.nge_rx_tag = NULL;
1425 }
1426
1427 if (sc->nge_cdata.nge_parent_tag) {
1428 bus_dma_tag_destroy(sc->nge_cdata.nge_parent_tag);
1429 sc->nge_cdata.nge_parent_tag = NULL;
1430 }
1431}
1432
1433/*
1434 * Initialize the transmit descriptors.
1435 */
1436static int
1437nge_list_tx_init(struct nge_softc *sc)
1438{
1439 struct nge_ring_data *rd;
1440 struct nge_txdesc *txd;
1441 bus_addr_t addr;
1442 int i;
1443
1444 sc->nge_cdata.nge_tx_prod = 0;
1445 sc->nge_cdata.nge_tx_cons = 0;
1446 sc->nge_cdata.nge_tx_cnt = 0;
1447
1448 rd = &sc->nge_rdata;
1449 bzero(rd->nge_tx_ring, sizeof(struct nge_desc) * NGE_TX_RING_CNT);
1450 for (i = 0; i < NGE_TX_RING_CNT; i++) {
1451 if (i == NGE_TX_RING_CNT - 1)
1452 addr = NGE_TX_RING_ADDR(sc, 0);
1453 else
1454 addr = NGE_TX_RING_ADDR(sc, i + 1);
1455 rd->nge_tx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1456 txd = &sc->nge_cdata.nge_txdesc[i];
1457 txd->tx_m = NULL;
1458 }
1459
1460 bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1461 sc->nge_cdata.nge_tx_ring_map,
1462 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1463
1464 return (0);
1465}
1466
1467/*
1468 * Initialize the RX descriptors and allocate mbufs for them. Note that
1469 * we arrange the descriptors in a closed ring, so that the last descriptor
1470 * points back to the first.
1471 */
1472static int
1473nge_list_rx_init(struct nge_softc *sc)
1474{
1475 struct nge_ring_data *rd;
1476 bus_addr_t addr;
1477 int i;
1478
1479 sc->nge_cdata.nge_rx_cons = 0;
1480 sc->nge_head = sc->nge_tail = NULL;
1481
1482 rd = &sc->nge_rdata;
1483 bzero(rd->nge_rx_ring, sizeof(struct nge_desc) * NGE_RX_RING_CNT);
1484 for (i = 0; i < NGE_RX_RING_CNT; i++) {
1485 if (nge_newbuf(sc, i) != 0)
1486 return (ENOBUFS);
1487 if (i == NGE_RX_RING_CNT - 1)
1488 addr = NGE_RX_RING_ADDR(sc, 0);
1489 else
1490 addr = NGE_RX_RING_ADDR(sc, i + 1);
1491 rd->nge_rx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
1492 }
1493
1494 bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1495 sc->nge_cdata.nge_rx_ring_map,
1496 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1497
1498 return (0);
1499}
1500
1501static __inline void
1502nge_discard_rxbuf(struct nge_softc *sc, int idx)
1503{
1504 struct nge_desc *desc;
1505
1506 desc = &sc->nge_rdata.nge_rx_ring[idx];
1507 desc->nge_cmdsts = htole32(MCLBYTES - sizeof(uint64_t));
1508 desc->nge_extsts = 0;
1509}
1510
1511/*
1512 * Initialize an RX descriptor and attach an MBUF cluster.
1513 */
1514static int
1515nge_newbuf(struct nge_softc *sc, int idx)
1516{
1517 struct nge_desc *desc;
1518 struct nge_rxdesc *rxd;
1519 struct mbuf *m;
1520 bus_dma_segment_t segs[1];
1521 bus_dmamap_t map;
1522 int nsegs;
1523
1524 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1525 if (m == NULL)
1526 return (ENOBUFS);
1527 m->m_len = m->m_pkthdr.len = MCLBYTES;
1528 m_adj(m, sizeof(uint64_t));
1529
1530 if (bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_rx_tag,
1531 sc->nge_cdata.nge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1532 m_freem(m);
1533 return (ENOBUFS);
1534 }
1535 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1536
1537 rxd = &sc->nge_cdata.nge_rxdesc[idx];
1538 if (rxd->rx_m != NULL) {
1539 bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1540 BUS_DMASYNC_POSTREAD);
1541 bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap);
1542 }
1543 map = rxd->rx_dmamap;
1544 rxd->rx_dmamap = sc->nge_cdata.nge_rx_sparemap;
1545 sc->nge_cdata.nge_rx_sparemap = map;
1546 bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
1547 BUS_DMASYNC_PREREAD);
1548 rxd->rx_m = m;
1549 desc = &sc->nge_rdata.nge_rx_ring[idx];
1550 desc->nge_ptr = htole32(NGE_ADDR_LO(segs[0].ds_addr));
1551 desc->nge_cmdsts = htole32(segs[0].ds_len);
1552 desc->nge_extsts = 0;
1553
1554 return (0);
1555}
1556
1557#ifndef __NO_STRICT_ALIGNMENT
1558static __inline void
1559nge_fixup_rx(struct mbuf *m)
1560{
1561 int i;
1562 uint16_t *src, *dst;
1563
1564 src = mtod(m, uint16_t *);
1565 dst = src - 1;
1566
1567 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1568 *dst++ = *src++;
1569
1570 m->m_data -= ETHER_ALIGN;
1571}
1572#endif
1573
1574/*
1575 * A frame has been uploaded: pass the resulting mbuf chain up to
1576 * the higher level protocols.
1577 */
1578static int
1579nge_rxeof(struct nge_softc *sc)
1580{
1581 struct mbuf *m;
1582 struct ifnet *ifp;
1583 struct nge_desc *cur_rx;
1584 struct nge_rxdesc *rxd;
1585 int cons, prog, rx_npkts, total_len;
1586 uint32_t cmdsts, extsts;
1587
1588 NGE_LOCK_ASSERT(sc);
1589
1590 ifp = sc->nge_ifp;
1591 cons = sc->nge_cdata.nge_rx_cons;
1592 rx_npkts = 0;
1593
1594 bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1595 sc->nge_cdata.nge_rx_ring_map,
1596 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1597
1598 for (prog = 0; prog < NGE_RX_RING_CNT &&
1599 (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1600 NGE_INC(cons, NGE_RX_RING_CNT)) {
1601#ifdef DEVICE_POLLING
1602 if (ifp->if_capenable & IFCAP_POLLING) {
1603 if (sc->rxcycles <= 0)
1604 break;
1605 sc->rxcycles--;
1606 }
1607#endif
1608 cur_rx = &sc->nge_rdata.nge_rx_ring[cons];
1609 cmdsts = le32toh(cur_rx->nge_cmdsts);
1610 extsts = le32toh(cur_rx->nge_extsts);
1611 if ((cmdsts & NGE_CMDSTS_OWN) == 0)
1612 break;
1613 prog++;
1614 rxd = &sc->nge_cdata.nge_rxdesc[cons];
1615 m = rxd->rx_m;
1616 total_len = cmdsts & NGE_CMDSTS_BUFLEN;
1617
1618 if ((cmdsts & NGE_CMDSTS_MORE) != 0) {
1619 if (nge_newbuf(sc, cons) != 0) {
1620 ifp->if_iqdrops++;
1621 if (sc->nge_head != NULL) {
1622 m_freem(sc->nge_head);
1623 sc->nge_head = sc->nge_tail = NULL;
1624 }
1625 nge_discard_rxbuf(sc, cons);
1626 continue;
1627 }
1628 m->m_len = total_len;
1629 if (sc->nge_head == NULL) {
1630 m->m_pkthdr.len = total_len;
1631 sc->nge_head = sc->nge_tail = m;
1632 } else {
1633 m->m_flags &= ~M_PKTHDR;
1634 sc->nge_head->m_pkthdr.len += total_len;
1635 sc->nge_tail->m_next = m;
1636 sc->nge_tail = m;
1637 }
1638 continue;
1639 }
1640
1641 /*
1642 * If an error occurs, update stats, clear the
1643 * status word and leave the mbuf cluster in place:
1644 * it should simply get re-used next time this descriptor
1645 * comes up in the ring.
1646 */
1647 if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1648 if ((cmdsts & NGE_RXSTAT_RUNT) &&
1649 total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN - 4)) {
1650 /*
1651 * Work-around hardware bug, accept runt frames
1652 * if its length is larger than or equal to 56.
1653 */
1654 } else {
1655 /*
1656 * Input error counters are updated by hardware.
1657 */
1658 if (sc->nge_head != NULL) {
1659 m_freem(sc->nge_head);
1660 sc->nge_head = sc->nge_tail = NULL;
1661 }
1662 nge_discard_rxbuf(sc, cons);
1663 continue;
1664 }
1665 }
1666
1667 /* Try conjure up a replacement mbuf. */
1668
1669 if (nge_newbuf(sc, cons) != 0) {
1670 ifp->if_iqdrops++;
1671 if (sc->nge_head != NULL) {
1672 m_freem(sc->nge_head);
1673 sc->nge_head = sc->nge_tail = NULL;
1674 }
1675 nge_discard_rxbuf(sc, cons);
1676 continue;
1677 }
1678
1679 /* Chain received mbufs. */
1680 if (sc->nge_head != NULL) {
1681 m->m_len = total_len;
1682 m->m_flags &= ~M_PKTHDR;
1683 sc->nge_tail->m_next = m;
1684 m = sc->nge_head;
1685 m->m_pkthdr.len += total_len;
1686 sc->nge_head = sc->nge_tail = NULL;
1687 } else
1688 m->m_pkthdr.len = m->m_len = total_len;
1689
1690 /*
1691 * Ok. NatSemi really screwed up here. This is the
1692 * only gigE chip I know of with alignment constraints
1693 * on receive buffers. RX buffers must be 64-bit aligned.
1694 */
1695 /*
1696 * By popular demand, ignore the alignment problems
1697 * on the non-strict alignment platform. The performance hit
1698 * incurred due to unaligned accesses is much smaller
1699 * than the hit produced by forcing buffer copies all
1700 * the time, especially with jumbo frames. We still
1701 * need to fix up the alignment everywhere else though.
1702 */
1703#ifndef __NO_STRICT_ALIGNMENT
1704 nge_fixup_rx(m);
1705#endif
1706 m->m_pkthdr.rcvif = ifp;
1707 ifp->if_ipackets++;
1708
1709 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1710 /* Do IP checksum checking. */
1711 if ((extsts & NGE_RXEXTSTS_IPPKT) != 0)
1712 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1713 if ((extsts & NGE_RXEXTSTS_IPCSUMERR) == 0)
1714 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1715 if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1716 !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1717 (extsts & NGE_RXEXTSTS_UDPPKT &&
1718 !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1719 m->m_pkthdr.csum_flags |=
1720 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1721 m->m_pkthdr.csum_data = 0xffff;
1722 }
1723 }
1724
1725 /*
1726 * If we received a packet with a vlan tag, pass it
1727 * to vlan_input() instead of ether_input().
1728 */
1729 if ((extsts & NGE_RXEXTSTS_VLANPKT) != 0 &&
1730 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1731 m->m_pkthdr.ether_vtag =
1732 bswap16(extsts & NGE_RXEXTSTS_VTCI);
1733 m->m_flags |= M_VLANTAG;
1734 }
1735 NGE_UNLOCK(sc);
1736 (*ifp->if_input)(ifp, m);
1737 NGE_LOCK(sc);
1738 rx_npkts++;
1739 }
1740
1741 if (prog > 0) {
1742 sc->nge_cdata.nge_rx_cons = cons;
1743 bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
1744 sc->nge_cdata.nge_rx_ring_map,
1745 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1746 }
1747 return (rx_npkts);
1748}
1749
1750/*
1751 * A frame was downloaded to the chip. It's safe for us to clean up
1752 * the list buffers.
1753 */
1754static void
1755nge_txeof(struct nge_softc *sc)
1756{
1757 struct nge_desc *cur_tx;
1758 struct nge_txdesc *txd;
1759 struct ifnet *ifp;
1760 uint32_t cmdsts;
1761 int cons, prod;
1762
1763 NGE_LOCK_ASSERT(sc);
1764 ifp = sc->nge_ifp;
1765
1766 cons = sc->nge_cdata.nge_tx_cons;
1767 prod = sc->nge_cdata.nge_tx_prod;
1768 if (cons == prod)
1769 return;
1770
1771 bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
1772 sc->nge_cdata.nge_tx_ring_map,
1773 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1774
1775 /*
1776 * Go through our tx list and free mbufs for those
1777 * frames that have been transmitted.
1778 */
1779 for (; cons != prod; NGE_INC(cons, NGE_TX_RING_CNT)) {
1780 cur_tx = &sc->nge_rdata.nge_tx_ring[cons];
1781 cmdsts = le32toh(cur_tx->nge_cmdsts);
1782 if ((cmdsts & NGE_CMDSTS_OWN) != 0)
1783 break;
1784 sc->nge_cdata.nge_tx_cnt--;
1785 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1786 if ((cmdsts & NGE_CMDSTS_MORE) != 0)
1787 continue;
1788
1789 txd = &sc->nge_cdata.nge_txdesc[cons];
1790 bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap,
1791 BUS_DMASYNC_POSTWRITE);
1792 bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap);
1793 if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
1794 ifp->if_oerrors++;
1795 if ((cmdsts & NGE_TXSTAT_EXCESSCOLLS) != 0)
1796 ifp->if_collisions++;
1797 if ((cmdsts & NGE_TXSTAT_OUTOFWINCOLL) != 0)
1798 ifp->if_collisions++;
1799 } else
1800 ifp->if_opackets++;
1801
1802 ifp->if_collisions += (cmdsts & NGE_TXSTAT_COLLCNT) >> 16;
1803 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1804 __func__));
1805 m_freem(txd->tx_m);
1806 txd->tx_m = NULL;
1807 }
1808
1809 sc->nge_cdata.nge_tx_cons = cons;
1810 if (sc->nge_cdata.nge_tx_cnt == 0)
1811 sc->nge_watchdog_timer = 0;
1812}
1813
1814static void
1815nge_tick(void *xsc)
1816{
1817 struct nge_softc *sc;
1818 struct mii_data *mii;
1819
1820 sc = xsc;
1821 NGE_LOCK_ASSERT(sc);
1822 mii = device_get_softc(sc->nge_miibus);
1823 mii_tick(mii);
1824 /*
1825 * For PHYs that does not reset established link, it is
1826 * necessary to check whether driver still have a valid
1827 * link(e.g link state change callback is not called).
1828 * Otherwise, driver think it lost link because driver
1829 * initialization routine clears link state flag.
1830 */
1831 if ((sc->nge_flags & NGE_FLAG_LINK) == 0)
1832 nge_miibus_statchg(sc->nge_dev);
1833 nge_stats_update(sc);
1834 nge_watchdog(sc);
1835 callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
1836}
1837
1838static void
1839nge_stats_update(struct nge_softc *sc)
1840{
1841 struct ifnet *ifp;
1842 struct nge_stats now, *stats, *nstats;
1843
1844 NGE_LOCK_ASSERT(sc);
1845
1846 ifp = sc->nge_ifp;
1847 stats = &now;
1848 stats->rx_pkts_errs =
1849 CSR_READ_4(sc, NGE_MIB_RXERRPKT) & 0xFFFF;
1850 stats->rx_crc_errs =
1851 CSR_READ_4(sc, NGE_MIB_RXERRFCS) & 0xFFFF;
1852 stats->rx_fifo_oflows =
1853 CSR_READ_4(sc, NGE_MIB_RXERRMISSEDPKT) & 0xFFFF;
1854 stats->rx_align_errs =
1855 CSR_READ_4(sc, NGE_MIB_RXERRALIGN) & 0xFFFF;
1856 stats->rx_sym_errs =
1857 CSR_READ_4(sc, NGE_MIB_RXERRSYM) & 0xFFFF;
1858 stats->rx_pkts_jumbos =
1859 CSR_READ_4(sc, NGE_MIB_RXERRGIANT) & 0xFFFF;
1860 stats->rx_len_errs =
1861 CSR_READ_4(sc, NGE_MIB_RXERRRANGLEN) & 0xFFFF;
1862 stats->rx_unctl_frames =
1863 CSR_READ_4(sc, NGE_MIB_RXBADOPCODE) & 0xFFFF;
1864 stats->rx_pause =
1865 CSR_READ_4(sc, NGE_MIB_RXPAUSEPKTS) & 0xFFFF;
1866 stats->tx_pause =
1867 CSR_READ_4(sc, NGE_MIB_TXPAUSEPKTS) & 0xFFFF;
1868 stats->tx_seq_errs =
1869 CSR_READ_4(sc, NGE_MIB_TXERRSQE) & 0xFF;
1870
1871 /*
1872 * Since we've accept errored frames exclude Rx length errors.
1873 */
1874 ifp->if_ierrors += stats->rx_pkts_errs + stats->rx_crc_errs +
1875 stats->rx_fifo_oflows + stats->rx_sym_errs;
1876
1877 nstats = &sc->nge_stats;
1878 nstats->rx_pkts_errs += stats->rx_pkts_errs;
1879 nstats->rx_crc_errs += stats->rx_crc_errs;
1880 nstats->rx_fifo_oflows += stats->rx_fifo_oflows;
1881 nstats->rx_align_errs += stats->rx_align_errs;
1882 nstats->rx_sym_errs += stats->rx_sym_errs;
1883 nstats->rx_pkts_jumbos += stats->rx_pkts_jumbos;
1884 nstats->rx_len_errs += stats->rx_len_errs;
1885 nstats->rx_unctl_frames += stats->rx_unctl_frames;
1886 nstats->rx_pause += stats->rx_pause;
1887 nstats->tx_pause += stats->tx_pause;
1888 nstats->tx_seq_errs += stats->tx_seq_errs;
1889}
1890
1891#ifdef DEVICE_POLLING
1892static poll_handler_t nge_poll;
1893
1894static int
1895nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1896{
1897 struct nge_softc *sc;
1898 int rx_npkts = 0;
1899
1900 sc = ifp->if_softc;
1901
1902 NGE_LOCK(sc);
1903 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1904 NGE_UNLOCK(sc);
1905 return (rx_npkts);
1906 }
1907
1908 /*
1909 * On the nge, reading the status register also clears it.
1910 * So before returning to intr mode we must make sure that all
1911 * possible pending sources of interrupts have been served.
1912 * In practice this means run to completion the *eof routines,
1913 * and then call the interrupt routine.
1914 */
1915 sc->rxcycles = count;
1916 rx_npkts = nge_rxeof(sc);
1917 nge_txeof(sc);
1918 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1919 nge_start_locked(ifp);
1920
1921 if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1922 uint32_t status;
1923
1924 /* Reading the ISR register clears all interrupts. */
1925 status = CSR_READ_4(sc, NGE_ISR);
1926
1927 if ((status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) != 0)
1928 rx_npkts += nge_rxeof(sc);
1929
1930 if ((status & NGE_ISR_RX_IDLE) != 0)
1931 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1932
1933 if ((status & NGE_ISR_SYSERR) != 0) {
1934 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1935 nge_init_locked(sc);
1936 }
1937 }
1938 NGE_UNLOCK(sc);
1939 return (rx_npkts);
1940}
1941#endif /* DEVICE_POLLING */
1942
1943static void
1944nge_intr(void *arg)
1945{
1946 struct nge_softc *sc;
1947 struct ifnet *ifp;
1948 uint32_t status;
1949
1950 sc = (struct nge_softc *)arg;
1951 ifp = sc->nge_ifp;
1952
1953 NGE_LOCK(sc);
1954
1955 if ((sc->nge_flags & NGE_FLAG_SUSPENDED) != 0)
1956 goto done_locked;
1957
1958 /* Reading the ISR register clears all interrupts. */
1959 status = CSR_READ_4(sc, NGE_ISR);
1960 if (status == 0xffffffff || (status & NGE_INTRS) == 0)
1961 goto done_locked;
1962#ifdef DEVICE_POLLING
1963 if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1964 goto done_locked;
1965#endif
1966 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1967 goto done_locked;
1968
1969 /* Disable interrupts. */
1970 CSR_WRITE_4(sc, NGE_IER, 0);
1971
1972 /* Data LED on for TBI mode */
1973 if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
1974 CSR_WRITE_4(sc, NGE_GPIO,
1975 CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT);
1976
1977 for (; (status & NGE_INTRS) != 0;) {
1978 if ((status & (NGE_ISR_TX_DESC_OK | NGE_ISR_TX_ERR |
1979 NGE_ISR_TX_OK | NGE_ISR_TX_IDLE)) != 0)
1980 nge_txeof(sc);
1981
1982 if ((status & (NGE_ISR_RX_DESC_OK | NGE_ISR_RX_ERR |
1983 NGE_ISR_RX_OFLOW | NGE_ISR_RX_FIFO_OFLOW |
1984 NGE_ISR_RX_IDLE | NGE_ISR_RX_OK)) != 0)
1985 nge_rxeof(sc);
1986
1987 if ((status & NGE_ISR_RX_IDLE) != 0)
1988 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1989
1990 if ((status & NGE_ISR_SYSERR) != 0) {
1991 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1992 nge_init_locked(sc);
1993 }
1994 /* Reading the ISR register clears all interrupts. */
1995 status = CSR_READ_4(sc, NGE_ISR);
1996 }
1997
1998 /* Re-enable interrupts. */
1999 CSR_WRITE_4(sc, NGE_IER, 1);
2000
2001 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2002 nge_start_locked(ifp);
2003
2004 /* Data LED off for TBI mode */
2005 if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
2006 CSR_WRITE_4(sc, NGE_GPIO,
2007 CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
2008
2009done_locked:
2010 NGE_UNLOCK(sc);
2011}
2012
2013/*
2014 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2015 * pointers to the fragment pointers.
2016 */
2017static int
2018nge_encap(struct nge_softc *sc, struct mbuf **m_head)
2019{
2020 struct nge_txdesc *txd, *txd_last;
2021 struct nge_desc *desc;
2022 struct mbuf *m;
2023 bus_dmamap_t map;
2024 bus_dma_segment_t txsegs[NGE_MAXTXSEGS];
2025 int error, i, nsegs, prod, si;
2026
2027 NGE_LOCK_ASSERT(sc);
2028
2029 m = *m_head;
2030 prod = sc->nge_cdata.nge_tx_prod;
2031 txd = &sc->nge_cdata.nge_txdesc[prod];
2032 txd_last = txd;
2033 map = txd->tx_dmamap;
2034 error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, map,
2035 *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
2036 if (error == EFBIG) {
2037 m = m_collapse(*m_head, M_DONTWAIT, NGE_MAXTXSEGS);
2038 if (m == NULL) {
2039 m_freem(*m_head);
2040 *m_head = NULL;
2041 return (ENOBUFS);
2042 }
2043 *m_head = m;
2044 error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag,
2045 map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
2046 if (error != 0) {
2047 m_freem(*m_head);
2048 *m_head = NULL;
2049 return (error);
2050 }
2051 } else if (error != 0)
2052 return (error);
2053 if (nsegs == 0) {
2054 m_freem(*m_head);
2055 *m_head = NULL;
2056 return (EIO);
2057 }
2058
2059 /* Check number of available descriptors. */
2060 if (sc->nge_cdata.nge_tx_cnt + nsegs >= (NGE_TX_RING_CNT - 1)) {
2061 bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, map);
2062 return (ENOBUFS);
2063 }
2064
2065 bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, map, BUS_DMASYNC_PREWRITE);
2066
2067 si = prod;
2068 for (i = 0; i < nsegs; i++) {
2069 desc = &sc->nge_rdata.nge_tx_ring[prod];
2070 desc->nge_ptr = htole32(NGE_ADDR_LO(txsegs[i].ds_addr));
2071 if (i == 0)
2072 desc->nge_cmdsts = htole32(txsegs[i].ds_len |
2073 NGE_CMDSTS_MORE);
2074 else
2075 desc->nge_cmdsts = htole32(txsegs[i].ds_len |
2076 NGE_CMDSTS_MORE | NGE_CMDSTS_OWN);
2077 desc->nge_extsts = 0;
2078 sc->nge_cdata.nge_tx_cnt++;
2079 NGE_INC(prod, NGE_TX_RING_CNT);
2080 }
2081 /* Update producer index. */
2082 sc->nge_cdata.nge_tx_prod = prod;
2083
2084 prod = (prod + NGE_TX_RING_CNT - 1) % NGE_TX_RING_CNT;
2085 desc = &sc->nge_rdata.nge_tx_ring[prod];
2086 /* Check if we have a VLAN tag to insert. */
2087 if ((m->m_flags & M_VLANTAG) != 0)
2088 desc->nge_extsts |= htole32(NGE_TXEXTSTS_VLANPKT |
2089 bswap16(m->m_pkthdr.ether_vtag));
2090 /* Set EOP on the last desciptor. */
2091 desc->nge_cmdsts &= htole32(~NGE_CMDSTS_MORE);
2092
2093 /* Set checksum offload in the first descriptor. */
2094 desc = &sc->nge_rdata.nge_tx_ring[si];
2095 if ((m->m_pkthdr.csum_flags & NGE_CSUM_FEATURES) != 0) {
2096 if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
2097 desc->nge_extsts |= htole32(NGE_TXEXTSTS_IPCSUM);
2098 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2099 desc->nge_extsts |= htole32(NGE_TXEXTSTS_TCPCSUM);
2100 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2101 desc->nge_extsts |= htole32(NGE_TXEXTSTS_UDPCSUM);
2102 }
2103 /* Lastly, turn the first descriptor ownership to hardware. */
2104 desc->nge_cmdsts |= htole32(NGE_CMDSTS_OWN);
2105
2106 txd = &sc->nge_cdata.nge_txdesc[prod];
2107 map = txd_last->tx_dmamap;
2108 txd_last->tx_dmamap = txd->tx_dmamap;
2109 txd->tx_dmamap = map;
2110 txd->tx_m = m;
2111
2112 return (0);
2113}
2114
2115/*
2116 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2117 * to the mbuf data regions directly in the transmit lists. We also save a
2118 * copy of the pointers since the transmit list fragment pointers are
2119 * physical addresses.
2120 */
2121
2122static void
2123nge_start(struct ifnet *ifp)
2124{
2125 struct nge_softc *sc;
2126
2127 sc = ifp->if_softc;
2128 NGE_LOCK(sc);
2129 nge_start_locked(ifp);
2130 NGE_UNLOCK(sc);
2131}
2132
2133static void
2134nge_start_locked(struct ifnet *ifp)
2135{
2136 struct nge_softc *sc;
2137 struct mbuf *m_head;
2138 int enq;
2139
2140 sc = ifp->if_softc;
2141
2142 NGE_LOCK_ASSERT(sc);
2143
2144 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2145 IFF_DRV_RUNNING || (sc->nge_flags & NGE_FLAG_LINK) == 0)
2146 return;
2147
2148 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2149 sc->nge_cdata.nge_tx_cnt < NGE_TX_RING_CNT - 2; ) {
2150 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2151 if (m_head == NULL)
2152 break;
2153 /*
2154 * Pack the data into the transmit ring. If we
2155 * don't have room, set the OACTIVE flag and wait
2156 * for the NIC to drain the ring.
2157 */
2158 if (nge_encap(sc, &m_head)) {
2159 if (m_head == NULL)
2160 break;
2161 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2162 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2163 break;
2164 }
2165
2166 enq++;
2167 /*
2168 * If there's a BPF listener, bounce a copy of this frame
2169 * to him.
2170 */
2171 ETHER_BPF_MTAP(ifp, m_head);
2172 }
2173
2174 if (enq > 0) {
2175 bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
2176 sc->nge_cdata.nge_tx_ring_map,
2177 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2178 /* Transmit */
2179 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
2180
2181 /* Set a timeout in case the chip goes out to lunch. */
2182 sc->nge_watchdog_timer = 5;
2183 }
2184}
2185
2186static void
2187nge_init(void *xsc)
2188{
2189 struct nge_softc *sc = xsc;
2190
2191 NGE_LOCK(sc);
2192 nge_init_locked(sc);
2193 NGE_UNLOCK(sc);
2194}
2195
2196static void
2197nge_init_locked(struct nge_softc *sc)
2198{
2199 struct ifnet *ifp = sc->nge_ifp;
2200 struct mii_data *mii;
2201 uint8_t *eaddr;
2202 uint32_t reg;
2203
2204 NGE_LOCK_ASSERT(sc);
2205
2206 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2207 return;
2208
2209 /*
2210 * Cancel pending I/O and free all RX/TX buffers.
2211 */
2212 nge_stop(sc);
2213
2214 /* Reset the adapter. */
2215 nge_reset(sc);
2216
2217 /* Disable Rx filter prior to programming Rx filter. */
2218 CSR_WRITE_4(sc, NGE_RXFILT_CTL, 0);
2219 CSR_BARRIER_WRITE_4(sc, NGE_RXFILT_CTL);
2220
2221 mii = device_get_softc(sc->nge_miibus);
2222
2223 /* Set MAC address. */
2224 eaddr = IF_LLADDR(sc->nge_ifp);
2225 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
2226 CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[1] << 8) | eaddr[0]);
2227 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
2228 CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[3] << 8) | eaddr[2]);
2229 CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
2230 CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[5] << 8) | eaddr[4]);
2231
2232 /* Init circular RX list. */
2233 if (nge_list_rx_init(sc) == ENOBUFS) {
2234 device_printf(sc->nge_dev, "initialization failed: no "
2235 "memory for rx buffers\n");
2236 nge_stop(sc);
2237 return;
2238 }
2239
2240 /*
2241 * Init tx descriptors.
2242 */
2243 nge_list_tx_init(sc);
2244
2245 /*
2246 * For the NatSemi chip, we have to explicitly enable the
2247 * reception of ARP frames, as well as turn on the 'perfect
2248 * match' filter where we store the station address, otherwise
2249 * we won't receive unicasts meant for this host.
2250 */
2251 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
2252 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
2253
2254 /*
2255 * Set the capture broadcast bit to capture broadcast frames.
2256 */
2257 if (ifp->if_flags & IFF_BROADCAST) {
2258 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
2259 } else {
2260 NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
2261 }
2262
2263 /* Turn the receive filter on. */
2264 NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
2265
2266 /* Set Rx filter. */
2267 nge_rxfilter(sc);
2268
2269 /* Disable PRIQ ctl. */
2270 CSR_WRITE_4(sc, NGE_PRIOQCTL, 0);
2271
2272 /*
2273 * Set pause frames paramters.
2274 * Rx stat FIFO hi-threshold : 2 or more packets
2275 * Rx stat FIFO lo-threshold : less than 2 packets
2276 * Rx data FIFO hi-threshold : 2K or more bytes
2277 * Rx data FIFO lo-threshold : less than 2K bytes
2278 * pause time : (512ns * 0xffff) -> 33.55ms
2279 */
2280 CSR_WRITE_4(sc, NGE_PAUSECSR,
2281 NGE_PAUSECSR_PAUSE_ON_MCAST |
2282 NGE_PAUSECSR_PAUSE_ON_DA |
2283 ((1 << 24) & NGE_PAUSECSR_RX_STATFIFO_THR_HI) |
2284 ((1 << 22) & NGE_PAUSECSR_RX_STATFIFO_THR_LO) |
2285 ((1 << 20) & NGE_PAUSECSR_RX_DATAFIFO_THR_HI) |
2286 ((1 << 18) & NGE_PAUSECSR_RX_DATAFIFO_THR_LO) |
2287 NGE_PAUSECSR_CNT);
2288
2289 /*
2290 * Load the address of the RX and TX lists.
2291 */
2292 CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
2293 NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
2294 CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
2295 NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
2296 CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
2297 NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
2298 CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
2299 NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
2300
2301 /* Set RX configuration. */
2302 CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
2303
2304 CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, 0);
2305 /*
2306 * Enable hardware checksum validation for all IPv4
2307 * packets, do not reject packets with bad checksums.
2308 */
2309 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2310 NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
2311
2312 /*
2313 * Tell the chip to detect and strip VLAN tag info from
2314 * received frames. The tag will be provided in the extsts
2315 * field in the RX descriptors.
2316 */
2317 NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB);
2318 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2319 NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB);
2320
2321 /* Set TX configuration. */
2322 CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
2323
2324 /*
2325 * Enable TX IPv4 checksumming on a per-packet basis.
2326 */
2327 CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
2328
2329 /*
2330 * Tell the chip to insert VLAN tags on a per-packet basis as
2331 * dictated by the code in the frame encapsulation routine.
2332 */
2333 NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
2334
2335 /*
2336 * Enable the delivery of PHY interrupts based on
2337 * link/speed/duplex status changes. Also enable the
2338 * extsts field in the DMA descriptors (needed for
2339 * TCP/IP checksum offload on transmit).
2340 */
2341 NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
2342 NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
2343
2344 /*
2345 * Configure interrupt holdoff (moderation). We can
2346 * have the chip delay interrupt delivery for a certain
2347 * period. Units are in 100us, and the max setting
2348 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
2349 */
2350 CSR_WRITE_4(sc, NGE_IHR, sc->nge_int_holdoff);
2351
2352 /*
2353 * Enable MAC statistics counters and clear.
2354 */
2355 reg = CSR_READ_4(sc, NGE_MIBCTL);
2356 reg &= ~NGE_MIBCTL_FREEZE_CNT;
2357 reg |= NGE_MIBCTL_CLEAR_CNT;
2358 CSR_WRITE_4(sc, NGE_MIBCTL, reg);
2359
2360 /*
2361 * Enable interrupts.
2362 */
2363 CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
2364#ifdef DEVICE_POLLING
2365 /*
2366 * ... only enable interrupts if we are not polling, make sure
2367 * they are off otherwise.
2368 */
2369 if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2370 CSR_WRITE_4(sc, NGE_IER, 0);
2371 else
2372#endif
2373 CSR_WRITE_4(sc, NGE_IER, 1);
2374
2375 sc->nge_flags &= ~NGE_FLAG_LINK;
2376 mii_mediachg(mii);
2377
2378 sc->nge_watchdog_timer = 0;
2379 callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
2380
2381 ifp->if_drv_flags |= IFF_DRV_RUNNING;
2382 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2383}
2384
2385/*
2386 * Set media options.
2387 */
2388static int
2389nge_mediachange(struct ifnet *ifp)
2390{
2391 struct nge_softc *sc;
2392 struct mii_data *mii;
2393 struct mii_softc *miisc;
2394 int error;
2395
2396 sc = ifp->if_softc;
2397 NGE_LOCK(sc);
2398 mii = device_get_softc(sc->nge_miibus);
2399 if (mii->mii_instance) {
2400 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2401 mii_phy_reset(miisc);
2402 }
2399 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2400 PHY_RESET(miisc);
2403 error = mii_mediachg(mii);
2404 NGE_UNLOCK(sc);
2405
2406 return (error);
2407}
2408
2409/*
2410 * Report current media status.
2411 */
2412static void
2413nge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2414{
2415 struct nge_softc *sc;
2416 struct mii_data *mii;
2417
2418 sc = ifp->if_softc;
2419 NGE_LOCK(sc);
2420 mii = device_get_softc(sc->nge_miibus);
2421 mii_pollstat(mii);
2422 NGE_UNLOCK(sc);
2423 ifmr->ifm_active = mii->mii_media_active;
2424 ifmr->ifm_status = mii->mii_media_status;
2425}
2426
2427static int
2428nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2429{
2430 struct nge_softc *sc = ifp->if_softc;
2431 struct ifreq *ifr = (struct ifreq *) data;
2432 struct mii_data *mii;
2433 int error = 0, mask;
2434
2435 switch (command) {
2436 case SIOCSIFMTU:
2437 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NGE_JUMBO_MTU)
2438 error = EINVAL;
2439 else {
2440 NGE_LOCK(sc);
2441 ifp->if_mtu = ifr->ifr_mtu;
2442 /*
2443 * Workaround: if the MTU is larger than
2444 * 8152 (TX FIFO size minus 64 minus 18), turn off
2445 * TX checksum offloading.
2446 */
2447 if (ifr->ifr_mtu >= 8152) {
2448 ifp->if_capenable &= ~IFCAP_TXCSUM;
2449 ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2450 } else {
2451 ifp->if_capenable |= IFCAP_TXCSUM;
2452 ifp->if_hwassist |= NGE_CSUM_FEATURES;
2453 }
2454 NGE_UNLOCK(sc);
2455 VLAN_CAPABILITIES(ifp);
2456 }
2457 break;
2458 case SIOCSIFFLAGS:
2459 NGE_LOCK(sc);
2460 if ((ifp->if_flags & IFF_UP) != 0) {
2461 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2462 if ((ifp->if_flags ^ sc->nge_if_flags) &
2463 (IFF_PROMISC | IFF_ALLMULTI))
2464 nge_rxfilter(sc);
2465 } else {
2466 if ((sc->nge_flags & NGE_FLAG_DETACH) == 0)
2467 nge_init_locked(sc);
2468 }
2469 } else {
2470 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2471 nge_stop(sc);
2472 }
2473 sc->nge_if_flags = ifp->if_flags;
2474 NGE_UNLOCK(sc);
2475 error = 0;
2476 break;
2477 case SIOCADDMULTI:
2478 case SIOCDELMULTI:
2479 NGE_LOCK(sc);
2480 nge_rxfilter(sc);
2481 NGE_UNLOCK(sc);
2482 error = 0;
2483 break;
2484 case SIOCGIFMEDIA:
2485 case SIOCSIFMEDIA:
2486 mii = device_get_softc(sc->nge_miibus);
2487 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2488 break;
2489 case SIOCSIFCAP:
2490 NGE_LOCK(sc);
2491 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2492#ifdef DEVICE_POLLING
2493 if ((mask & IFCAP_POLLING) != 0 &&
2494 (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2495 ifp->if_capenable ^= IFCAP_POLLING;
2496 if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2497 error = ether_poll_register(nge_poll, ifp);
2498 if (error != 0) {
2499 NGE_UNLOCK(sc);
2500 break;
2501 }
2502 /* Disable interrupts. */
2503 CSR_WRITE_4(sc, NGE_IER, 0);
2504 } else {
2505 error = ether_poll_deregister(ifp);
2506 /* Enable interrupts. */
2507 CSR_WRITE_4(sc, NGE_IER, 1);
2508 }
2509 }
2510#endif /* DEVICE_POLLING */
2511 if ((mask & IFCAP_TXCSUM) != 0 &&
2512 (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2513 ifp->if_capenable ^= IFCAP_TXCSUM;
2514 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2515 ifp->if_hwassist |= NGE_CSUM_FEATURES;
2516 else
2517 ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2518 }
2519 if ((mask & IFCAP_RXCSUM) != 0 &&
2520 (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2521 ifp->if_capenable ^= IFCAP_RXCSUM;
2522
2523 if ((mask & IFCAP_WOL) != 0 &&
2524 (ifp->if_capabilities & IFCAP_WOL) != 0) {
2525 if ((mask & IFCAP_WOL_UCAST) != 0)
2526 ifp->if_capenable ^= IFCAP_WOL_UCAST;
2527 if ((mask & IFCAP_WOL_MCAST) != 0)
2528 ifp->if_capenable ^= IFCAP_WOL_MCAST;
2529 if ((mask & IFCAP_WOL_MAGIC) != 0)
2530 ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2531 }
2532
2533 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2534 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2535 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2536 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2537 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2538 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2539 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2540 if ((ifp->if_capenable &
2541 IFCAP_VLAN_HWTAGGING) != 0)
2542 NGE_SETBIT(sc,
2543 NGE_VLAN_IP_RXCTL,
2544 NGE_VIPRXCTL_TAG_STRIP_ENB);
2545 else
2546 NGE_CLRBIT(sc,
2547 NGE_VLAN_IP_RXCTL,
2548 NGE_VIPRXCTL_TAG_STRIP_ENB);
2549 }
2550 }
2551 /*
2552 * Both VLAN hardware tagging and checksum offload is
2553 * required to do checksum offload on VLAN interface.
2554 */
2555 if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2556 ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2557 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2558 ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2559 NGE_UNLOCK(sc);
2560 VLAN_CAPABILITIES(ifp);
2561 break;
2562 default:
2563 error = ether_ioctl(ifp, command, data);
2564 break;
2565 }
2566
2567 return (error);
2568}
2569
2570static void
2571nge_watchdog(struct nge_softc *sc)
2572{
2573 struct ifnet *ifp;
2574
2575 NGE_LOCK_ASSERT(sc);
2576
2577 if (sc->nge_watchdog_timer == 0 || --sc->nge_watchdog_timer)
2578 return;
2579
2580 ifp = sc->nge_ifp;
2581 ifp->if_oerrors++;
2582 if_printf(ifp, "watchdog timeout\n");
2583
2584 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2585 nge_init_locked(sc);
2586
2587 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2588 nge_start_locked(ifp);
2589}
2590
2591static int
2592nge_stop_mac(struct nge_softc *sc)
2593{
2594 uint32_t reg;
2595 int i;
2596
2597 NGE_LOCK_ASSERT(sc);
2598
2599 reg = CSR_READ_4(sc, NGE_CSR);
2600 if ((reg & (NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE)) != 0) {
2601 reg &= ~(NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE);
2602 reg |= NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE;
2603 CSR_WRITE_4(sc, NGE_CSR, reg);
2604 for (i = 0; i < NGE_TIMEOUT; i++) {
2605 DELAY(1);
2606 if ((CSR_READ_4(sc, NGE_CSR) &
2607 (NGE_CSR_RX_ENABLE | NGE_CSR_TX_ENABLE)) == 0)
2608 break;
2609 }
2610 if (i == NGE_TIMEOUT)
2611 return (ETIMEDOUT);
2612 }
2613
2614 return (0);
2615}
2616
2617/*
2618 * Stop the adapter and free any mbufs allocated to the
2619 * RX and TX lists.
2620 */
2621static void
2622nge_stop(struct nge_softc *sc)
2623{
2624 struct nge_txdesc *txd;
2625 struct nge_rxdesc *rxd;
2626 int i;
2627 struct ifnet *ifp;
2628
2629 NGE_LOCK_ASSERT(sc);
2630 ifp = sc->nge_ifp;
2631
2632 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2633 sc->nge_flags &= ~NGE_FLAG_LINK;
2634 callout_stop(&sc->nge_stat_ch);
2635 sc->nge_watchdog_timer = 0;
2636
2637 CSR_WRITE_4(sc, NGE_IER, 0);
2638 CSR_WRITE_4(sc, NGE_IMR, 0);
2639 if (nge_stop_mac(sc) == ETIMEDOUT)
2640 device_printf(sc->nge_dev,
2641 "%s: unable to stop Tx/Rx MAC\n", __func__);
2642 CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 0);
2643 CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 0);
2644 CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2645 CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2646 nge_stats_update(sc);
2647 if (sc->nge_head != NULL) {
2648 m_freem(sc->nge_head);
2649 sc->nge_head = sc->nge_tail = NULL;
2650 }
2651
2652 /*
2653 * Free RX and TX mbufs still in the queues.
2654 */
2655 for (i = 0; i < NGE_RX_RING_CNT; i++) {
2656 rxd = &sc->nge_cdata.nge_rxdesc[i];
2657 if (rxd->rx_m != NULL) {
2658 bus_dmamap_sync(sc->nge_cdata.nge_rx_tag,
2659 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2660 bus_dmamap_unload(sc->nge_cdata.nge_rx_tag,
2661 rxd->rx_dmamap);
2662 m_freem(rxd->rx_m);
2663 rxd->rx_m = NULL;
2664 }
2665 }
2666 for (i = 0; i < NGE_TX_RING_CNT; i++) {
2667 txd = &sc->nge_cdata.nge_txdesc[i];
2668 if (txd->tx_m != NULL) {
2669 bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
2670 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2671 bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
2672 txd->tx_dmamap);
2673 m_freem(txd->tx_m);
2674 txd->tx_m = NULL;
2675 }
2676 }
2677}
2678
2679/*
2680 * Before setting WOL bits, caller should have stopped Receiver.
2681 */
2682static void
2683nge_wol(struct nge_softc *sc)
2684{
2685 struct ifnet *ifp;
2686 uint32_t reg;
2687 uint16_t pmstat;
2688 int pmc;
2689
2690 NGE_LOCK_ASSERT(sc);
2691
2692 if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) != 0)
2693 return;
2694
2695 ifp = sc->nge_ifp;
2696 if ((ifp->if_capenable & IFCAP_WOL) == 0) {
2697 /* Disable WOL & disconnect CLKRUN to save power. */
2698 CSR_WRITE_4(sc, NGE_WOLCSR, 0);
2699 CSR_WRITE_4(sc, NGE_CLKRUN, 0);
2700 } else {
2701 if (nge_stop_mac(sc) == ETIMEDOUT)
2702 device_printf(sc->nge_dev,
2703 "%s: unable to stop Tx/Rx MAC\n", __func__);
2704 /*
2705 * Make sure wake frames will be buffered in the Rx FIFO.
2706 * (i.e. Silent Rx mode.)
2707 */
2708 CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2709 CSR_BARRIER_WRITE_4(sc, NGE_RX_LISTPTR_HI);
2710 CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2711 CSR_BARRIER_WRITE_4(sc, NGE_RX_LISTPTR_LO);
2712 /* Enable Rx again. */
2713 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
2714 CSR_BARRIER_WRITE_4(sc, NGE_CSR);
2715
2716 /* Configure WOL events. */
2717 reg = 0;
2718 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2719 reg |= NGE_WOLCSR_WAKE_ON_UNICAST;
2720 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2721 reg |= NGE_WOLCSR_WAKE_ON_MULTICAST;
2722 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2723 reg |= NGE_WOLCSR_WAKE_ON_MAGICPKT;
2724 CSR_WRITE_4(sc, NGE_WOLCSR, reg);
2725
2726 /* Activate CLKRUN. */
2727 reg = CSR_READ_4(sc, NGE_CLKRUN);
2728 reg |= NGE_CLKRUN_PMEENB | NGE_CLNRUN_CLKRUN_ENB;
2729 CSR_WRITE_4(sc, NGE_CLKRUN, reg);
2730 }
2731
2732 /* Request PME. */
2733 pmstat = pci_read_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, 2);
2734 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2735 if ((ifp->if_capenable & IFCAP_WOL) != 0)
2736 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2737 pci_write_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2738}
2739
2740/*
2741 * Stop all chip I/O so that the kernel's probe routines don't
2742 * get confused by errant DMAs when rebooting.
2743 */
2744static int
2745nge_shutdown(device_t dev)
2746{
2747
2748 return (nge_suspend(dev));
2749}
2750
2751static int
2752nge_suspend(device_t dev)
2753{
2754 struct nge_softc *sc;
2755
2756 sc = device_get_softc(dev);
2757
2758 NGE_LOCK(sc);
2759 nge_stop(sc);
2760 nge_wol(sc);
2761 sc->nge_flags |= NGE_FLAG_SUSPENDED;
2762 NGE_UNLOCK(sc);
2763
2764 return (0);
2765}
2766
2767static int
2768nge_resume(device_t dev)
2769{
2770 struct nge_softc *sc;
2771 struct ifnet *ifp;
2772 uint16_t pmstat;
2773 int pmc;
2774
2775 sc = device_get_softc(dev);
2776
2777 NGE_LOCK(sc);
2778 ifp = sc->nge_ifp;
2779 if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) == 0) {
2780 /* Disable PME and clear PME status. */
2781 pmstat = pci_read_config(sc->nge_dev,
2782 pmc + PCIR_POWER_STATUS, 2);
2783 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2784 pmstat &= ~PCIM_PSTAT_PMEENABLE;
2785 pci_write_config(sc->nge_dev,
2786 pmc + PCIR_POWER_STATUS, pmstat, 2);
2787 }
2788 }
2789 if (ifp->if_flags & IFF_UP) {
2790 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2791 nge_init_locked(sc);
2792 }
2793
2794 sc->nge_flags &= ~NGE_FLAG_SUSPENDED;
2795 NGE_UNLOCK(sc);
2796
2797 return (0);
2798}
2799
2800#define NGE_SYSCTL_STAT_ADD32(c, h, n, p, d) \
2801 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2802
2803static void
2804nge_sysctl_node(struct nge_softc *sc)
2805{
2806 struct sysctl_ctx_list *ctx;
2807 struct sysctl_oid_list *child, *parent;
2808 struct sysctl_oid *tree;
2809 struct nge_stats *stats;
2810 int error;
2811
2812 ctx = device_get_sysctl_ctx(sc->nge_dev);
2813 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nge_dev));
2814 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_holdoff",
2815 CTLTYPE_INT | CTLFLAG_RW, &sc->nge_int_holdoff, 0,
2816 sysctl_hw_nge_int_holdoff, "I", "NGE interrupt moderation");
2817 /* Pull in device tunables. */
2818 sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2819 error = resource_int_value(device_get_name(sc->nge_dev),
2820 device_get_unit(sc->nge_dev), "int_holdoff", &sc->nge_int_holdoff);
2821 if (error == 0) {
2822 if (sc->nge_int_holdoff < NGE_INT_HOLDOFF_MIN ||
2823 sc->nge_int_holdoff > NGE_INT_HOLDOFF_MAX ) {
2824 device_printf(sc->nge_dev,
2825 "int_holdoff value out of range; "
2826 "using default: %d(%d us)\n",
2827 NGE_INT_HOLDOFF_DEFAULT,
2828 NGE_INT_HOLDOFF_DEFAULT * 100);
2829 sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2830 }
2831 }
2832
2833 stats = &sc->nge_stats;
2834 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2835 NULL, "NGE statistics");
2836 parent = SYSCTL_CHILDREN(tree);
2837
2838 /* Rx statistics. */
2839 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2840 NULL, "Rx MAC statistics");
2841 child = SYSCTL_CHILDREN(tree);
2842 NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_errs",
2843 &stats->rx_pkts_errs,
2844 "Packet errors including both wire errors and FIFO overruns");
2845 NGE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
2846 &stats->rx_crc_errs, "CRC errors");
2847 NGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2848 &stats->rx_fifo_oflows, "FIFO overflows");
2849 NGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2850 &stats->rx_align_errs, "Frame alignment errors");
2851 NGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2852 &stats->rx_sym_errs, "One or more symbol errors");
2853 NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_jumbos",
2854 &stats->rx_pkts_jumbos,
2855 "Packets received with length greater than 1518 bytes");
2856 NGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2857 &stats->rx_len_errs, "In Range Length errors");
2858 NGE_SYSCTL_STAT_ADD32(ctx, child, "unctl_frames",
2859 &stats->rx_unctl_frames, "Control frames with unsupported opcode");
2860 NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2861 &stats->rx_pause, "Pause frames");
2862
2863 /* Tx statistics. */
2864 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2865 NULL, "Tx MAC statistics");
2866 child = SYSCTL_CHILDREN(tree);
2867 NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2868 &stats->tx_pause, "Pause frames");
2869 NGE_SYSCTL_STAT_ADD32(ctx, child, "seq_errs",
2870 &stats->tx_seq_errs,
2871 "Loss of collision heartbeat during transmission");
2872}
2873
2874#undef NGE_SYSCTL_STAT_ADD32
2875
2876static int
2877sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2878{
2879 int error, value;
2880
2881 if (arg1 == NULL)
2882 return (EINVAL);
2883 value = *(int *)arg1;
2884 error = sysctl_handle_int(oidp, &value, 0, req);
2885 if (error != 0 || req->newptr == NULL)
2886 return (error);
2887 if (value < low || value > high)
2888 return (EINVAL);
2889 *(int *)arg1 = value;
2890
2891 return (0);
2892}
2893
2894static int
2895sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS)
2896{
2897
2898 return (sysctl_int_range(oidp, arg1, arg2, req, NGE_INT_HOLDOFF_MIN,
2899 NGE_INT_HOLDOFF_MAX));
2900}
2401 error = mii_mediachg(mii);
2402 NGE_UNLOCK(sc);
2403
2404 return (error);
2405}
2406
2407/*
2408 * Report current media status.
2409 */
2410static void
2411nge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2412{
2413 struct nge_softc *sc;
2414 struct mii_data *mii;
2415
2416 sc = ifp->if_softc;
2417 NGE_LOCK(sc);
2418 mii = device_get_softc(sc->nge_miibus);
2419 mii_pollstat(mii);
2420 NGE_UNLOCK(sc);
2421 ifmr->ifm_active = mii->mii_media_active;
2422 ifmr->ifm_status = mii->mii_media_status;
2423}
2424
2425static int
2426nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2427{
2428 struct nge_softc *sc = ifp->if_softc;
2429 struct ifreq *ifr = (struct ifreq *) data;
2430 struct mii_data *mii;
2431 int error = 0, mask;
2432
2433 switch (command) {
2434 case SIOCSIFMTU:
2435 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NGE_JUMBO_MTU)
2436 error = EINVAL;
2437 else {
2438 NGE_LOCK(sc);
2439 ifp->if_mtu = ifr->ifr_mtu;
2440 /*
2441 * Workaround: if the MTU is larger than
2442 * 8152 (TX FIFO size minus 64 minus 18), turn off
2443 * TX checksum offloading.
2444 */
2445 if (ifr->ifr_mtu >= 8152) {
2446 ifp->if_capenable &= ~IFCAP_TXCSUM;
2447 ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2448 } else {
2449 ifp->if_capenable |= IFCAP_TXCSUM;
2450 ifp->if_hwassist |= NGE_CSUM_FEATURES;
2451 }
2452 NGE_UNLOCK(sc);
2453 VLAN_CAPABILITIES(ifp);
2454 }
2455 break;
2456 case SIOCSIFFLAGS:
2457 NGE_LOCK(sc);
2458 if ((ifp->if_flags & IFF_UP) != 0) {
2459 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2460 if ((ifp->if_flags ^ sc->nge_if_flags) &
2461 (IFF_PROMISC | IFF_ALLMULTI))
2462 nge_rxfilter(sc);
2463 } else {
2464 if ((sc->nge_flags & NGE_FLAG_DETACH) == 0)
2465 nge_init_locked(sc);
2466 }
2467 } else {
2468 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2469 nge_stop(sc);
2470 }
2471 sc->nge_if_flags = ifp->if_flags;
2472 NGE_UNLOCK(sc);
2473 error = 0;
2474 break;
2475 case SIOCADDMULTI:
2476 case SIOCDELMULTI:
2477 NGE_LOCK(sc);
2478 nge_rxfilter(sc);
2479 NGE_UNLOCK(sc);
2480 error = 0;
2481 break;
2482 case SIOCGIFMEDIA:
2483 case SIOCSIFMEDIA:
2484 mii = device_get_softc(sc->nge_miibus);
2485 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2486 break;
2487 case SIOCSIFCAP:
2488 NGE_LOCK(sc);
2489 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2490#ifdef DEVICE_POLLING
2491 if ((mask & IFCAP_POLLING) != 0 &&
2492 (IFCAP_POLLING & ifp->if_capabilities) != 0) {
2493 ifp->if_capenable ^= IFCAP_POLLING;
2494 if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
2495 error = ether_poll_register(nge_poll, ifp);
2496 if (error != 0) {
2497 NGE_UNLOCK(sc);
2498 break;
2499 }
2500 /* Disable interrupts. */
2501 CSR_WRITE_4(sc, NGE_IER, 0);
2502 } else {
2503 error = ether_poll_deregister(ifp);
2504 /* Enable interrupts. */
2505 CSR_WRITE_4(sc, NGE_IER, 1);
2506 }
2507 }
2508#endif /* DEVICE_POLLING */
2509 if ((mask & IFCAP_TXCSUM) != 0 &&
2510 (IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2511 ifp->if_capenable ^= IFCAP_TXCSUM;
2512 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2513 ifp->if_hwassist |= NGE_CSUM_FEATURES;
2514 else
2515 ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
2516 }
2517 if ((mask & IFCAP_RXCSUM) != 0 &&
2518 (IFCAP_RXCSUM & ifp->if_capabilities) != 0)
2519 ifp->if_capenable ^= IFCAP_RXCSUM;
2520
2521 if ((mask & IFCAP_WOL) != 0 &&
2522 (ifp->if_capabilities & IFCAP_WOL) != 0) {
2523 if ((mask & IFCAP_WOL_UCAST) != 0)
2524 ifp->if_capenable ^= IFCAP_WOL_UCAST;
2525 if ((mask & IFCAP_WOL_MCAST) != 0)
2526 ifp->if_capenable ^= IFCAP_WOL_MCAST;
2527 if ((mask & IFCAP_WOL_MAGIC) != 0)
2528 ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2529 }
2530
2531 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2532 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2533 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2534 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2535 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2536 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2537 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2538 if ((ifp->if_capenable &
2539 IFCAP_VLAN_HWTAGGING) != 0)
2540 NGE_SETBIT(sc,
2541 NGE_VLAN_IP_RXCTL,
2542 NGE_VIPRXCTL_TAG_STRIP_ENB);
2543 else
2544 NGE_CLRBIT(sc,
2545 NGE_VLAN_IP_RXCTL,
2546 NGE_VIPRXCTL_TAG_STRIP_ENB);
2547 }
2548 }
2549 /*
2550 * Both VLAN hardware tagging and checksum offload is
2551 * required to do checksum offload on VLAN interface.
2552 */
2553 if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2554 ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2555 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2556 ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2557 NGE_UNLOCK(sc);
2558 VLAN_CAPABILITIES(ifp);
2559 break;
2560 default:
2561 error = ether_ioctl(ifp, command, data);
2562 break;
2563 }
2564
2565 return (error);
2566}
2567
2568static void
2569nge_watchdog(struct nge_softc *sc)
2570{
2571 struct ifnet *ifp;
2572
2573 NGE_LOCK_ASSERT(sc);
2574
2575 if (sc->nge_watchdog_timer == 0 || --sc->nge_watchdog_timer)
2576 return;
2577
2578 ifp = sc->nge_ifp;
2579 ifp->if_oerrors++;
2580 if_printf(ifp, "watchdog timeout\n");
2581
2582 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2583 nge_init_locked(sc);
2584
2585 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2586 nge_start_locked(ifp);
2587}
2588
2589static int
2590nge_stop_mac(struct nge_softc *sc)
2591{
2592 uint32_t reg;
2593 int i;
2594
2595 NGE_LOCK_ASSERT(sc);
2596
2597 reg = CSR_READ_4(sc, NGE_CSR);
2598 if ((reg & (NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE)) != 0) {
2599 reg &= ~(NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE);
2600 reg |= NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE;
2601 CSR_WRITE_4(sc, NGE_CSR, reg);
2602 for (i = 0; i < NGE_TIMEOUT; i++) {
2603 DELAY(1);
2604 if ((CSR_READ_4(sc, NGE_CSR) &
2605 (NGE_CSR_RX_ENABLE | NGE_CSR_TX_ENABLE)) == 0)
2606 break;
2607 }
2608 if (i == NGE_TIMEOUT)
2609 return (ETIMEDOUT);
2610 }
2611
2612 return (0);
2613}
2614
2615/*
2616 * Stop the adapter and free any mbufs allocated to the
2617 * RX and TX lists.
2618 */
2619static void
2620nge_stop(struct nge_softc *sc)
2621{
2622 struct nge_txdesc *txd;
2623 struct nge_rxdesc *rxd;
2624 int i;
2625 struct ifnet *ifp;
2626
2627 NGE_LOCK_ASSERT(sc);
2628 ifp = sc->nge_ifp;
2629
2630 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2631 sc->nge_flags &= ~NGE_FLAG_LINK;
2632 callout_stop(&sc->nge_stat_ch);
2633 sc->nge_watchdog_timer = 0;
2634
2635 CSR_WRITE_4(sc, NGE_IER, 0);
2636 CSR_WRITE_4(sc, NGE_IMR, 0);
2637 if (nge_stop_mac(sc) == ETIMEDOUT)
2638 device_printf(sc->nge_dev,
2639 "%s: unable to stop Tx/Rx MAC\n", __func__);
2640 CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 0);
2641 CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 0);
2642 CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2643 CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2644 nge_stats_update(sc);
2645 if (sc->nge_head != NULL) {
2646 m_freem(sc->nge_head);
2647 sc->nge_head = sc->nge_tail = NULL;
2648 }
2649
2650 /*
2651 * Free RX and TX mbufs still in the queues.
2652 */
2653 for (i = 0; i < NGE_RX_RING_CNT; i++) {
2654 rxd = &sc->nge_cdata.nge_rxdesc[i];
2655 if (rxd->rx_m != NULL) {
2656 bus_dmamap_sync(sc->nge_cdata.nge_rx_tag,
2657 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2658 bus_dmamap_unload(sc->nge_cdata.nge_rx_tag,
2659 rxd->rx_dmamap);
2660 m_freem(rxd->rx_m);
2661 rxd->rx_m = NULL;
2662 }
2663 }
2664 for (i = 0; i < NGE_TX_RING_CNT; i++) {
2665 txd = &sc->nge_cdata.nge_txdesc[i];
2666 if (txd->tx_m != NULL) {
2667 bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
2668 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2669 bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
2670 txd->tx_dmamap);
2671 m_freem(txd->tx_m);
2672 txd->tx_m = NULL;
2673 }
2674 }
2675}
2676
2677/*
2678 * Before setting WOL bits, caller should have stopped Receiver.
2679 */
2680static void
2681nge_wol(struct nge_softc *sc)
2682{
2683 struct ifnet *ifp;
2684 uint32_t reg;
2685 uint16_t pmstat;
2686 int pmc;
2687
2688 NGE_LOCK_ASSERT(sc);
2689
2690 if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) != 0)
2691 return;
2692
2693 ifp = sc->nge_ifp;
2694 if ((ifp->if_capenable & IFCAP_WOL) == 0) {
2695 /* Disable WOL & disconnect CLKRUN to save power. */
2696 CSR_WRITE_4(sc, NGE_WOLCSR, 0);
2697 CSR_WRITE_4(sc, NGE_CLKRUN, 0);
2698 } else {
2699 if (nge_stop_mac(sc) == ETIMEDOUT)
2700 device_printf(sc->nge_dev,
2701 "%s: unable to stop Tx/Rx MAC\n", __func__);
2702 /*
2703 * Make sure wake frames will be buffered in the Rx FIFO.
2704 * (i.e. Silent Rx mode.)
2705 */
2706 CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
2707 CSR_BARRIER_WRITE_4(sc, NGE_RX_LISTPTR_HI);
2708 CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
2709 CSR_BARRIER_WRITE_4(sc, NGE_RX_LISTPTR_LO);
2710 /* Enable Rx again. */
2711 NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
2712 CSR_BARRIER_WRITE_4(sc, NGE_CSR);
2713
2714 /* Configure WOL events. */
2715 reg = 0;
2716 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2717 reg |= NGE_WOLCSR_WAKE_ON_UNICAST;
2718 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2719 reg |= NGE_WOLCSR_WAKE_ON_MULTICAST;
2720 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2721 reg |= NGE_WOLCSR_WAKE_ON_MAGICPKT;
2722 CSR_WRITE_4(sc, NGE_WOLCSR, reg);
2723
2724 /* Activate CLKRUN. */
2725 reg = CSR_READ_4(sc, NGE_CLKRUN);
2726 reg |= NGE_CLKRUN_PMEENB | NGE_CLNRUN_CLKRUN_ENB;
2727 CSR_WRITE_4(sc, NGE_CLKRUN, reg);
2728 }
2729
2730 /* Request PME. */
2731 pmstat = pci_read_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, 2);
2732 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2733 if ((ifp->if_capenable & IFCAP_WOL) != 0)
2734 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2735 pci_write_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2736}
2737
2738/*
2739 * Stop all chip I/O so that the kernel's probe routines don't
2740 * get confused by errant DMAs when rebooting.
2741 */
2742static int
2743nge_shutdown(device_t dev)
2744{
2745
2746 return (nge_suspend(dev));
2747}
2748
2749static int
2750nge_suspend(device_t dev)
2751{
2752 struct nge_softc *sc;
2753
2754 sc = device_get_softc(dev);
2755
2756 NGE_LOCK(sc);
2757 nge_stop(sc);
2758 nge_wol(sc);
2759 sc->nge_flags |= NGE_FLAG_SUSPENDED;
2760 NGE_UNLOCK(sc);
2761
2762 return (0);
2763}
2764
2765static int
2766nge_resume(device_t dev)
2767{
2768 struct nge_softc *sc;
2769 struct ifnet *ifp;
2770 uint16_t pmstat;
2771 int pmc;
2772
2773 sc = device_get_softc(dev);
2774
2775 NGE_LOCK(sc);
2776 ifp = sc->nge_ifp;
2777 if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) == 0) {
2778 /* Disable PME and clear PME status. */
2779 pmstat = pci_read_config(sc->nge_dev,
2780 pmc + PCIR_POWER_STATUS, 2);
2781 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2782 pmstat &= ~PCIM_PSTAT_PMEENABLE;
2783 pci_write_config(sc->nge_dev,
2784 pmc + PCIR_POWER_STATUS, pmstat, 2);
2785 }
2786 }
2787 if (ifp->if_flags & IFF_UP) {
2788 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2789 nge_init_locked(sc);
2790 }
2791
2792 sc->nge_flags &= ~NGE_FLAG_SUSPENDED;
2793 NGE_UNLOCK(sc);
2794
2795 return (0);
2796}
2797
2798#define NGE_SYSCTL_STAT_ADD32(c, h, n, p, d) \
2799 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2800
2801static void
2802nge_sysctl_node(struct nge_softc *sc)
2803{
2804 struct sysctl_ctx_list *ctx;
2805 struct sysctl_oid_list *child, *parent;
2806 struct sysctl_oid *tree;
2807 struct nge_stats *stats;
2808 int error;
2809
2810 ctx = device_get_sysctl_ctx(sc->nge_dev);
2811 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nge_dev));
2812 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_holdoff",
2813 CTLTYPE_INT | CTLFLAG_RW, &sc->nge_int_holdoff, 0,
2814 sysctl_hw_nge_int_holdoff, "I", "NGE interrupt moderation");
2815 /* Pull in device tunables. */
2816 sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2817 error = resource_int_value(device_get_name(sc->nge_dev),
2818 device_get_unit(sc->nge_dev), "int_holdoff", &sc->nge_int_holdoff);
2819 if (error == 0) {
2820 if (sc->nge_int_holdoff < NGE_INT_HOLDOFF_MIN ||
2821 sc->nge_int_holdoff > NGE_INT_HOLDOFF_MAX ) {
2822 device_printf(sc->nge_dev,
2823 "int_holdoff value out of range; "
2824 "using default: %d(%d us)\n",
2825 NGE_INT_HOLDOFF_DEFAULT,
2826 NGE_INT_HOLDOFF_DEFAULT * 100);
2827 sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
2828 }
2829 }
2830
2831 stats = &sc->nge_stats;
2832 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2833 NULL, "NGE statistics");
2834 parent = SYSCTL_CHILDREN(tree);
2835
2836 /* Rx statistics. */
2837 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2838 NULL, "Rx MAC statistics");
2839 child = SYSCTL_CHILDREN(tree);
2840 NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_errs",
2841 &stats->rx_pkts_errs,
2842 "Packet errors including both wire errors and FIFO overruns");
2843 NGE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
2844 &stats->rx_crc_errs, "CRC errors");
2845 NGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2846 &stats->rx_fifo_oflows, "FIFO overflows");
2847 NGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2848 &stats->rx_align_errs, "Frame alignment errors");
2849 NGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2850 &stats->rx_sym_errs, "One or more symbol errors");
2851 NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_jumbos",
2852 &stats->rx_pkts_jumbos,
2853 "Packets received with length greater than 1518 bytes");
2854 NGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2855 &stats->rx_len_errs, "In Range Length errors");
2856 NGE_SYSCTL_STAT_ADD32(ctx, child, "unctl_frames",
2857 &stats->rx_unctl_frames, "Control frames with unsupported opcode");
2858 NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2859 &stats->rx_pause, "Pause frames");
2860
2861 /* Tx statistics. */
2862 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2863 NULL, "Tx MAC statistics");
2864 child = SYSCTL_CHILDREN(tree);
2865 NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
2866 &stats->tx_pause, "Pause frames");
2867 NGE_SYSCTL_STAT_ADD32(ctx, child, "seq_errs",
2868 &stats->tx_seq_errs,
2869 "Loss of collision heartbeat during transmission");
2870}
2871
2872#undef NGE_SYSCTL_STAT_ADD32
2873
2874static int
2875sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2876{
2877 int error, value;
2878
2879 if (arg1 == NULL)
2880 return (EINVAL);
2881 value = *(int *)arg1;
2882 error = sysctl_handle_int(oidp, &value, 0, req);
2883 if (error != 0 || req->newptr == NULL)
2884 return (error);
2885 if (value < low || value > high)
2886 return (EINVAL);
2887 *(int *)arg1 = value;
2888
2889 return (0);
2890}
2891
2892static int
2893sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS)
2894{
2895
2896 return (sysctl_int_range(oidp, arg1, arg2, req, NGE_INT_HOLDOFF_MIN,
2897 NGE_INT_HOLDOFF_MAX));
2898}