Deleted Added
full compact
mrsas_fp.c (282533) mrsas_fp.c (299670)
1/*
2 * Copyright (c) 2015, AVAGO Tech. All rights reserved. Author: Marian Choy
3 * Copyright (c) 2014, LSI Corp. All rights reserved. Author: Marian Choy
4 * Support: freebsdraid@avagotech.com
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 2. Redistributions
12 * in binary form must reproduce the above copyright notice, this list of
13 * conditions and the following disclaimer in the documentation and/or other
14 * materials provided with the distribution. 3. Neither the name of the
15 * <ORGANIZATION> nor the names of its contributors may be used to endorse or
16 * promote products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * The views and conclusions contained in the software and documentation are
32 * those of the authors and should not be interpreted as representing
33 * official policies,either expressed or implied, of the FreeBSD Project.
34 *
35 * Send feedback to: <megaraidfbsd@avagotech.com> Mail to: AVAGO TECHNOLOGIES, 1621
36 * Barber Lane, Milpitas, CA 95035 ATTN: MegaRaid FreeBSD
37 *
38 */
39
40#include <sys/cdefs.h>
1/*
2 * Copyright (c) 2015, AVAGO Tech. All rights reserved. Author: Marian Choy
3 * Copyright (c) 2014, LSI Corp. All rights reserved. Author: Marian Choy
4 * Support: freebsdraid@avagotech.com
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 2. Redistributions
12 * in binary form must reproduce the above copyright notice, this list of
13 * conditions and the following disclaimer in the documentation and/or other
14 * materials provided with the distribution. 3. Neither the name of the
15 * <ORGANIZATION> nor the names of its contributors may be used to endorse or
16 * promote products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * The views and conclusions contained in the software and documentation are
32 * those of the authors and should not be interpreted as representing
33 * official policies,either expressed or implied, of the FreeBSD Project.
34 *
35 * Send feedback to: <megaraidfbsd@avagotech.com> Mail to: AVAGO TECHNOLOGIES, 1621
36 * Barber Lane, Milpitas, CA 95035 ATTN: MegaRaid FreeBSD
37 *
38 */
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: head/sys/dev/mrsas/mrsas_fp.c 282533 2015-05-06 10:46:28Z kadesai $");
41__FBSDID("$FreeBSD: head/sys/dev/mrsas/mrsas_fp.c 299670 2016-05-13 12:18:12Z kadesai $");
42
43#include <dev/mrsas/mrsas.h>
44
45#include <cam/cam.h>
46#include <cam/cam_ccb.h>
47#include <cam/cam_sim.h>
48#include <cam/cam_xpt_sim.h>
49#include <cam/cam_debug.h>
50#include <cam/cam_periph.h>
51#include <cam/cam_xpt_periph.h>
52
53
54/*
55 * Function prototypes
56 */
57u_int8_t MR_ValidateMapInfo(struct mrsas_softc *sc);
58u_int8_t
59mrsas_get_best_arm_pd(struct mrsas_softc *sc,
60 PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
61u_int8_t
62MR_BuildRaidContext(struct mrsas_softc *sc,
63 struct IO_REQUEST_INFO *io_info,
64 RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map);
65u_int8_t
66MR_GetPhyParams(struct mrsas_softc *sc, u_int32_t ld,
67 u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
68 RAID_CONTEXT * pRAID_Context,
69 MR_DRV_RAID_MAP_ALL * map);
70u_int16_t MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map);
71u_int32_t MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map);
72u_int16_t MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
73u_int16_t
74mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
75 PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
76u_int32_t mega_mod64(u_int64_t dividend, u_int32_t divisor);
77u_int32_t
78MR_GetSpanBlock(u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
79 MR_DRV_RAID_MAP_ALL * map, int *div_error);
80u_int64_t mega_div64_32(u_int64_t dividend, u_int32_t divisor);
81void
82mrsas_update_load_balance_params(struct mrsas_softc *sc,
83 MR_DRV_RAID_MAP_ALL * map, PLD_LOAD_BALANCE_INFO lbInfo);
84void
85mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request,
86 u_int8_t cdb_len, struct IO_REQUEST_INFO *io_info, union ccb *ccb,
87 MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
88 u_int32_t ld_block_size);
89static u_int16_t
90MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span,
91 MR_DRV_RAID_MAP_ALL * map);
92static u_int16_t MR_PdDevHandleGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL * map);
93static u_int16_t
94MR_ArPdGet(u_int32_t ar, u_int32_t arm,
95 MR_DRV_RAID_MAP_ALL * map);
96static MR_LD_SPAN *
97MR_LdSpanPtrGet(u_int32_t ld, u_int32_t span,
98 MR_DRV_RAID_MAP_ALL * map);
99static u_int8_t
100MR_LdDataArmGet(u_int32_t ld, u_int32_t armIdx,
101 MR_DRV_RAID_MAP_ALL * map);
102static MR_SPAN_BLOCK_INFO *
103MR_LdSpanInfoGet(u_int32_t ld,
104 MR_DRV_RAID_MAP_ALL * map);
105MR_LD_RAID *MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
106void MR_PopulateDrvRaidMap(struct mrsas_softc *sc);
107
108
109/*
110 * Spanset related function prototypes Added for PRL11 configuration (Uneven
111 * span support)
112 */
113void mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo);
114static u_int8_t
115mr_spanset_get_phy_params(struct mrsas_softc *sc, u_int32_t ld,
116 u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
117 RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map);
118static u_int64_t
119get_row_from_strip(struct mrsas_softc *sc, u_int32_t ld,
120 u_int64_t strip, MR_DRV_RAID_MAP_ALL * map);
121static u_int32_t
122mr_spanset_get_span_block(struct mrsas_softc *sc,
123 u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
124 MR_DRV_RAID_MAP_ALL * map, int *div_error);
125static u_int8_t
126get_arm(struct mrsas_softc *sc, u_int32_t ld, u_int8_t span,
127 u_int64_t stripe, MR_DRV_RAID_MAP_ALL * map);
128
129
130/*
131 * Spanset related defines Added for PRL11 configuration(Uneven span support)
132 */
133#define SPAN_ROW_SIZE(map, ld, index_) MR_LdSpanPtrGet(ld, index_, map)->spanRowSize
134#define SPAN_ROW_DATA_SIZE(map_, ld, index_) \
135 MR_LdSpanPtrGet(ld, index_, map)->spanRowDataSize
136#define SPAN_INVALID 0xff
137#define SPAN_DEBUG 0
138
139/*
140 * Related Defines
141 */
142
143typedef u_int64_t REGION_KEY;
144typedef u_int32_t REGION_LEN;
145
146#define MR_LD_STATE_OPTIMAL 3
147#define FALSE 0
148#define TRUE 1
149
150#define LB_PENDING_CMDS_DEFAULT 4
151
152
153/*
154 * Related Macros
155 */
156
157#define ABS_DIFF(a,b) ( ((a) > (b)) ? ((a) - (b)) : ((b) - (a)) )
158
159#define swap32(x) \
160 ((unsigned int)( \
161 (((unsigned int)(x) & (unsigned int)0x000000ffUL) << 24) | \
162 (((unsigned int)(x) & (unsigned int)0x0000ff00UL) << 8) | \
163 (((unsigned int)(x) & (unsigned int)0x00ff0000UL) >> 8) | \
164 (((unsigned int)(x) & (unsigned int)0xff000000UL) >> 24) ))
165
166
167/*
168 * In-line functions for mod and divide of 64-bit dividend and 32-bit
169 * divisor. Assumes a check for a divisor of zero is not possible.
170 *
171 * @param dividend: Dividend
172 * @param divisor: Divisor
173 * @return remainder
174 */
175
176#define mega_mod64(dividend, divisor) ({ \
177int remainder; \
178remainder = ((u_int64_t) (dividend)) % (u_int32_t) (divisor); \
179remainder;})
180
181#define mega_div64_32(dividend, divisor) ({ \
182int quotient; \
183quotient = ((u_int64_t) (dividend)) / (u_int32_t) (divisor); \
184quotient;})
185
186
187/*
188 * Various RAID map access functions. These functions access the various
189 * parts of the RAID map and returns the appropriate parameters.
190 */
191
192MR_LD_RAID *
193MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
194{
195 return (&map->raidMap.ldSpanMap[ld].ldRaid);
196}
197
198u_int16_t
199MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
200{
201 return (map->raidMap.ldSpanMap[ld].ldRaid.targetId);
202}
203
204static u_int16_t
205MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map)
206{
207 return map->raidMap.ldSpanMap[ld].spanBlock[span].span.arrayRef;
208}
209
210static u_int8_t
211MR_LdDataArmGet(u_int32_t ld, u_int32_t armIdx, MR_DRV_RAID_MAP_ALL * map)
212{
213 return map->raidMap.ldSpanMap[ld].dataArmMap[armIdx];
214}
215
216static u_int16_t
217MR_PdDevHandleGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL * map)
218{
219 return map->raidMap.devHndlInfo[pd].curDevHdl;
220}
221
222static u_int16_t
223MR_ArPdGet(u_int32_t ar, u_int32_t arm, MR_DRV_RAID_MAP_ALL * map)
224{
225 return map->raidMap.arMapInfo[ar].pd[arm];
226}
227
228static MR_LD_SPAN *
229MR_LdSpanPtrGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map)
230{
231 return &map->raidMap.ldSpanMap[ld].spanBlock[span].span;
232}
233
234static MR_SPAN_BLOCK_INFO *
235MR_LdSpanInfoGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
236{
237 return &map->raidMap.ldSpanMap[ld].spanBlock[0];
238}
239
240u_int16_t
241MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map)
242{
243 return map->raidMap.ldTgtIdToLd[ldTgtId];
244}
245
246u_int32_t
247MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map)
248{
249 MR_LD_RAID *raid;
250 u_int32_t ld, ldBlockSize = MRSAS_SCSIBLOCKSIZE;
251
252 ld = MR_TargetIdToLdGet(ldTgtId, map);
253
254 /*
255 * Check if logical drive was removed.
256 */
257 if (ld >= MAX_LOGICAL_DRIVES)
258 return ldBlockSize;
259
260 raid = MR_LdRaidGet(ld, map);
261 ldBlockSize = raid->logicalBlockLength;
262 if (!ldBlockSize)
263 ldBlockSize = MRSAS_SCSIBLOCKSIZE;
264
265 return ldBlockSize;
266}
267
268/*
269 * This function will Populate Driver Map using firmware raid map
270 */
271void
272MR_PopulateDrvRaidMap(struct mrsas_softc *sc)
273{
274 MR_FW_RAID_MAP_ALL *fw_map_old = NULL;
275 MR_FW_RAID_MAP *pFwRaidMap = NULL;
276 unsigned int i;
277
278 MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
279 MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
280
281 if (sc->max256vdSupport) {
282 memcpy(sc->ld_drv_map[sc->map_id & 1],
283 sc->raidmap_mem[sc->map_id & 1],
284 sc->current_map_sz);
285 /*
286 * New Raid map will not set totalSize, so keep expected
287 * value for legacy code in ValidateMapInfo
288 */
289 pDrvRaidMap->totalSize = sizeof(MR_FW_RAID_MAP_EXT);
290 } else {
291 fw_map_old = (MR_FW_RAID_MAP_ALL *) sc->raidmap_mem[(sc->map_id & 1)];
292 pFwRaidMap = &fw_map_old->raidMap;
293
294#if VD_EXT_DEBUG
295 for (i = 0; i < pFwRaidMap->ldCount; i++) {
296 device_printf(sc->mrsas_dev,
297 "Index 0x%x Target Id 0x%x Seq Num 0x%x Size 0/%lx\n", i,
298 fw_map_old->raidMap.ldSpanMap[i].ldRaid.targetId,
299 fw_map_old->raidMap.ldSpanMap[i].ldRaid.seqNum,
300 fw_map_old->raidMap.ldSpanMap[i].ldRaid.size);
301 }
302#endif
303
304 memset(drv_map, 0, sc->drv_map_sz);
305 pDrvRaidMap->totalSize = pFwRaidMap->totalSize;
306 pDrvRaidMap->ldCount = pFwRaidMap->ldCount;
307 pDrvRaidMap->fpPdIoTimeoutSec =
308 pFwRaidMap->fpPdIoTimeoutSec;
309
310 for (i = 0; i < MAX_RAIDMAP_LOGICAL_DRIVES + MAX_RAIDMAP_VIEWS; i++) {
311 pDrvRaidMap->ldTgtIdToLd[i] =
312 (u_int8_t)pFwRaidMap->ldTgtIdToLd[i];
313 }
314
315 for (i = 0; i < pDrvRaidMap->ldCount; i++) {
316 pDrvRaidMap->ldSpanMap[i] =
317 pFwRaidMap->ldSpanMap[i];
318
319#if VD_EXT_DEBUG
320 device_printf(sc->mrsas_dev, "pFwRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x "
321 "pFwRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
322 i, i, pFwRaidMap->ldSpanMap[i].ldRaid.targetId,
323 pFwRaidMap->ldSpanMap[i].ldRaid.seqNum,
324 (u_int32_t)pFwRaidMap->ldSpanMap[i].ldRaid.rowSize);
325 device_printf(sc->mrsas_dev, "pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x"
326 "pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n", i, i,
327 pDrvRaidMap->ldSpanMap[i].ldRaid.targetId,
328 pDrvRaidMap->ldSpanMap[i].ldRaid.seqNum,
329 (u_int32_t)pDrvRaidMap->ldSpanMap[i].ldRaid.rowSize);
330 device_printf(sc->mrsas_dev, "drv raid map all %p raid map %p LD RAID MAP %p/%p\n",
331 drv_map, pDrvRaidMap,
332 &pFwRaidMap->ldSpanMap[i].ldRaid, &pDrvRaidMap->ldSpanMap[i].ldRaid);
333#endif
334 }
335
336 memcpy(pDrvRaidMap->arMapInfo, pFwRaidMap->arMapInfo,
337 sizeof(MR_ARRAY_INFO) * MAX_RAIDMAP_ARRAYS);
338 memcpy(pDrvRaidMap->devHndlInfo, pFwRaidMap->devHndlInfo,
339 sizeof(MR_DEV_HANDLE_INFO) *
340 MAX_RAIDMAP_PHYSICAL_DEVICES);
341 }
342}
343
344/*
345 * MR_ValidateMapInfo: Validate RAID map
346 * input: Adapter instance soft state
347 *
348 * This function checks and validates the loaded RAID map. It returns 0 if
349 * successful, and 1 otherwise.
350 */
351u_int8_t
352MR_ValidateMapInfo(struct mrsas_softc *sc)
353{
354 if (!sc) {
355 return 1;
356 }
357 MR_PopulateDrvRaidMap(sc);
358
359 MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
360 MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
361
362 u_int32_t expected_map_size;
363
364 drv_map = sc->ld_drv_map[(sc->map_id & 1)];
365 pDrvRaidMap = &drv_map->raidMap;
366 PLD_SPAN_INFO ldSpanInfo = (PLD_SPAN_INFO) & sc->log_to_span;
367
368 if (sc->max256vdSupport)
369 expected_map_size = sizeof(MR_FW_RAID_MAP_EXT);
370 else
371 expected_map_size =
372 (sizeof(MR_FW_RAID_MAP) - sizeof(MR_LD_SPAN_MAP)) +
373 (sizeof(MR_LD_SPAN_MAP) * pDrvRaidMap->ldCount);
374
375 if (pDrvRaidMap->totalSize != expected_map_size) {
376 device_printf(sc->mrsas_dev, "map size %x not matching ld count\n", expected_map_size);
377 device_printf(sc->mrsas_dev, "span map= %x\n", (unsigned int)sizeof(MR_LD_SPAN_MAP));
378 device_printf(sc->mrsas_dev, "pDrvRaidMap->totalSize=%x\n", pDrvRaidMap->totalSize);
379 return 1;
380 }
381 if (sc->UnevenSpanSupport) {
382 mr_update_span_set(drv_map, ldSpanInfo);
383 }
384 mrsas_update_load_balance_params(sc, drv_map, sc->load_balance_info);
385
386 return 0;
387}
388
389/*
390 *
391 * Function to print info about span set created in driver from FW raid map
392 *
393 * Inputs: map
394 * ldSpanInfo: ld map span info per HBA instance
395 *
396 *
397 */
398#if SPAN_DEBUG
399static int
400getSpanInfo(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo)
401{
402
403 u_int8_t span;
404 u_int32_t element;
405 MR_LD_RAID *raid;
406 LD_SPAN_SET *span_set;
407 MR_QUAD_ELEMENT *quad;
408 int ldCount;
409 u_int16_t ld;
410
411 for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
412 ld = MR_TargetIdToLdGet(ldCount, map);
413 if (ld >= MAX_LOGICAL_DRIVES) {
414 continue;
415 }
416 raid = MR_LdRaidGet(ld, map);
417 printf("LD %x: span_depth=%x\n", ld, raid->spanDepth);
418 for (span = 0; span < raid->spanDepth; span++)
419 printf("Span=%x, number of quads=%x\n", span,
420 map->raidMap.ldSpanMap[ld].spanBlock[span].
421 block_span_info.noElements);
422 for (element = 0; element < MAX_QUAD_DEPTH; element++) {
423 span_set = &(ldSpanInfo[ld].span_set[element]);
424 if (span_set->span_row_data_width == 0)
425 break;
426
427 printf("Span Set %x: width=%x, diff=%x\n", element,
428 (unsigned int)span_set->span_row_data_width,
429 (unsigned int)span_set->diff);
430 printf("logical LBA start=0x%08lx, end=0x%08lx\n",
431 (long unsigned int)span_set->log_start_lba,
432 (long unsigned int)span_set->log_end_lba);
433 printf("span row start=0x%08lx, end=0x%08lx\n",
434 (long unsigned int)span_set->span_row_start,
435 (long unsigned int)span_set->span_row_end);
436 printf("data row start=0x%08lx, end=0x%08lx\n",
437 (long unsigned int)span_set->data_row_start,
438 (long unsigned int)span_set->data_row_end);
439 printf("data strip start=0x%08lx, end=0x%08lx\n",
440 (long unsigned int)span_set->data_strip_start,
441 (long unsigned int)span_set->data_strip_end);
442
443 for (span = 0; span < raid->spanDepth; span++) {
444 if (map->raidMap.ldSpanMap[ld].spanBlock[span].
445 block_span_info.noElements >= element + 1) {
446 quad = &map->raidMap.ldSpanMap[ld].
447 spanBlock[span].block_span_info.
448 quad[element];
449 printf("Span=%x, Quad=%x, diff=%x\n", span,
450 element, quad->diff);
451 printf("offset_in_span=0x%08lx\n",
452 (long unsigned int)quad->offsetInSpan);
453 printf("logical start=0x%08lx, end=0x%08lx\n",
454 (long unsigned int)quad->logStart,
455 (long unsigned int)quad->logEnd);
456 }
457 }
458 }
459 }
460 return 0;
461}
462
463#endif
464/*
465 *
466 * This routine calculates the Span block for given row using spanset.
467 *
468 * Inputs : HBA instance
469 * ld: Logical drive number
470 * row: Row number
471 * map: LD map
472 *
473 * Outputs : span - Span number block
474 * - Absolute Block number in the physical disk
475 * div_error - Devide error code.
476 */
477
478u_int32_t
479mr_spanset_get_span_block(struct mrsas_softc *sc, u_int32_t ld, u_int64_t row,
480 u_int64_t *span_blk, MR_DRV_RAID_MAP_ALL * map, int *div_error)
481{
482 MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
483 LD_SPAN_SET *span_set;
484 MR_QUAD_ELEMENT *quad;
485 u_int32_t span, info;
486 PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
487
488 for (info = 0; info < MAX_QUAD_DEPTH; info++) {
489 span_set = &(ldSpanInfo[ld].span_set[info]);
490
491 if (span_set->span_row_data_width == 0)
492 break;
493 if (row > span_set->data_row_end)
494 continue;
495
496 for (span = 0; span < raid->spanDepth; span++)
497 if (map->raidMap.ldSpanMap[ld].spanBlock[span].
498 block_span_info.noElements >= info + 1) {
499 quad = &map->raidMap.ldSpanMap[ld].
500 spanBlock[span].
501 block_span_info.quad[info];
502 if (quad->diff == 0) {
503 *div_error = 1;
504 return span;
505 }
506 if (quad->logStart <= row &&
507 row <= quad->logEnd &&
508 (mega_mod64(row - quad->logStart,
509 quad->diff)) == 0) {
510 if (span_blk != NULL) {
511 u_int64_t blk;
512
513 blk = mega_div64_32
514 ((row - quad->logStart),
515 quad->diff);
516 blk = (blk + quad->offsetInSpan)
517 << raid->stripeShift;
518 *span_blk = blk;
519 }
520 return span;
521 }
522 }
523 }
524 return SPAN_INVALID;
525}
526
527/*
528 *
529 * This routine calculates the row for given strip using spanset.
530 *
531 * Inputs : HBA instance
532 * ld: Logical drive number
533 * Strip: Strip
534 * map: LD map
535 *
536 * Outputs : row - row associated with strip
537 */
538
539static u_int64_t
540get_row_from_strip(struct mrsas_softc *sc,
541 u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map)
542{
543 MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
544 LD_SPAN_SET *span_set;
545 PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
546 u_int32_t info, strip_offset, span, span_offset;
547 u_int64_t span_set_Strip, span_set_Row;
548
549 for (info = 0; info < MAX_QUAD_DEPTH; info++) {
550 span_set = &(ldSpanInfo[ld].span_set[info]);
551
552 if (span_set->span_row_data_width == 0)
553 break;
554 if (strip > span_set->data_strip_end)
555 continue;
556
557 span_set_Strip = strip - span_set->data_strip_start;
558 strip_offset = mega_mod64(span_set_Strip,
559 span_set->span_row_data_width);
560 span_set_Row = mega_div64_32(span_set_Strip,
561 span_set->span_row_data_width) * span_set->diff;
562 for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
563 if (map->raidMap.ldSpanMap[ld].spanBlock[span].
564 block_span_info.noElements >= info + 1) {
565 if (strip_offset >=
566 span_set->strip_offset[span])
567 span_offset++;
568 else
569 break;
570 }
571 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : Strip 0x%llx, span_set_Strip 0x%llx, span_set_Row 0x%llx "
572 "data width 0x%llx span offset 0x%llx\n", (unsigned long long)strip,
573 (unsigned long long)span_set_Strip,
574 (unsigned long long)span_set_Row,
575 (unsigned long long)span_set->span_row_data_width, (unsigned long long)span_offset);
576 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : For strip 0x%llx row is 0x%llx\n", (unsigned long long)strip,
577 (unsigned long long)span_set->data_row_start +
578 (unsigned long long)span_set_Row + (span_offset - 1));
579 return (span_set->data_row_start + span_set_Row + (span_offset - 1));
580 }
581 return -1LLU;
582}
583
584
585/*
586 *
587 * This routine calculates the Start Strip for given row using spanset.
588 *
589 * Inputs: HBA instance
590 * ld: Logical drive number
591 * row: Row number
592 * map: LD map
593 *
594 * Outputs : Strip - Start strip associated with row
595 */
596
597static u_int64_t
598get_strip_from_row(struct mrsas_softc *sc,
599 u_int32_t ld, u_int64_t row, MR_DRV_RAID_MAP_ALL * map)
600{
601 MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
602 LD_SPAN_SET *span_set;
603 MR_QUAD_ELEMENT *quad;
604 PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
605 u_int32_t span, info;
606 u_int64_t strip;
607
608 for (info = 0; info < MAX_QUAD_DEPTH; info++) {
609 span_set = &(ldSpanInfo[ld].span_set[info]);
610
611 if (span_set->span_row_data_width == 0)
612 break;
613 if (row > span_set->data_row_end)
614 continue;
615
616 for (span = 0; span < raid->spanDepth; span++)
617 if (map->raidMap.ldSpanMap[ld].spanBlock[span].
618 block_span_info.noElements >= info + 1) {
619 quad = &map->raidMap.ldSpanMap[ld].
620 spanBlock[span].block_span_info.quad[info];
621 if (quad->logStart <= row &&
622 row <= quad->logEnd &&
623 mega_mod64((row - quad->logStart),
624 quad->diff) == 0) {
625 strip = mega_div64_32
626 (((row - span_set->data_row_start)
627 - quad->logStart),
628 quad->diff);
629 strip *= span_set->span_row_data_width;
630 strip += span_set->data_strip_start;
631 strip += span_set->strip_offset[span];
632 return strip;
633 }
634 }
635 }
636 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug - get_strip_from_row: returns invalid "
637 "strip for ld=%x, row=%lx\n", ld, (long unsigned int)row);
638 return -1;
639}
640
641/*
642 * *****************************************************************************
643 *
644 *
645 * This routine calculates the Physical Arm for given strip using spanset.
646 *
647 * Inputs : HBA instance
648 * Logical drive number
649 * Strip
650 * LD map
651 *
652 * Outputs : Phys Arm - Phys Arm associated with strip
653 */
654
655static u_int32_t
656get_arm_from_strip(struct mrsas_softc *sc,
657 u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map)
658{
659 MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
660 LD_SPAN_SET *span_set;
661 PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
662 u_int32_t info, strip_offset, span, span_offset;
663
664 for (info = 0; info < MAX_QUAD_DEPTH; info++) {
665 span_set = &(ldSpanInfo[ld].span_set[info]);
666
667 if (span_set->span_row_data_width == 0)
668 break;
669 if (strip > span_set->data_strip_end)
670 continue;
671
672 strip_offset = (u_int32_t)mega_mod64
673 ((strip - span_set->data_strip_start),
674 span_set->span_row_data_width);
675
676 for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
677 if (map->raidMap.ldSpanMap[ld].spanBlock[span].
678 block_span_info.noElements >= info + 1) {
679 if (strip_offset >= span_set->strip_offset[span])
680 span_offset = span_set->strip_offset[span];
681 else
682 break;
683 }
684 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO PRL11: get_arm_from_strip: "
685 "for ld=0x%x strip=0x%lx arm is 0x%x\n", ld,
686 (long unsigned int)strip, (strip_offset - span_offset));
687 return (strip_offset - span_offset);
688 }
689
690 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: - get_arm_from_strip: returns invalid arm"
691 " for ld=%x strip=%lx\n", ld, (long unsigned int)strip);
692
693 return -1;
694}
695
696
697/* This Function will return Phys arm */
698u_int8_t
699get_arm(struct mrsas_softc *sc, u_int32_t ld, u_int8_t span, u_int64_t stripe,
700 MR_DRV_RAID_MAP_ALL * map)
701{
702 MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
703
704 /* Need to check correct default value */
705 u_int32_t arm = 0;
706
707 switch (raid->level) {
708 case 0:
709 case 5:
710 case 6:
711 arm = mega_mod64(stripe, SPAN_ROW_SIZE(map, ld, span));
712 break;
713 case 1:
714 /* start with logical arm */
715 arm = get_arm_from_strip(sc, ld, stripe, map);
716 arm *= 2;
717 break;
718 }
719
720 return arm;
721}
722
723/*
724 *
725 * This routine calculates the arm, span and block for the specified stripe and
726 * reference in stripe using spanset
727 *
728 * Inputs :
729 * sc - HBA instance
730 * ld - Logical drive number
731 * stripRow: Stripe number
732 * stripRef: Reference in stripe
733 *
734 * Outputs : span - Span number block - Absolute Block
735 * number in the physical disk
736 */
737static u_int8_t
738mr_spanset_get_phy_params(struct mrsas_softc *sc, u_int32_t ld, u_int64_t stripRow,
739 u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
740 RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
741{
742 MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
743 u_int32_t pd, arRef;
744 u_int8_t physArm, span;
745 u_int64_t row;
746 u_int8_t retval = TRUE;
747 u_int64_t *pdBlock = &io_info->pdBlock;
748 u_int16_t *pDevHandle = &io_info->devHandle;
749 u_int32_t logArm, rowMod, armQ, arm;
750 u_int8_t do_invader = 0;
751
42
43#include <dev/mrsas/mrsas.h>
44
45#include <cam/cam.h>
46#include <cam/cam_ccb.h>
47#include <cam/cam_sim.h>
48#include <cam/cam_xpt_sim.h>
49#include <cam/cam_debug.h>
50#include <cam/cam_periph.h>
51#include <cam/cam_xpt_periph.h>
52
53
54/*
55 * Function prototypes
56 */
57u_int8_t MR_ValidateMapInfo(struct mrsas_softc *sc);
58u_int8_t
59mrsas_get_best_arm_pd(struct mrsas_softc *sc,
60 PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
61u_int8_t
62MR_BuildRaidContext(struct mrsas_softc *sc,
63 struct IO_REQUEST_INFO *io_info,
64 RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map);
65u_int8_t
66MR_GetPhyParams(struct mrsas_softc *sc, u_int32_t ld,
67 u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
68 RAID_CONTEXT * pRAID_Context,
69 MR_DRV_RAID_MAP_ALL * map);
70u_int16_t MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map);
71u_int32_t MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map);
72u_int16_t MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
73u_int16_t
74mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
75 PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info);
76u_int32_t mega_mod64(u_int64_t dividend, u_int32_t divisor);
77u_int32_t
78MR_GetSpanBlock(u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
79 MR_DRV_RAID_MAP_ALL * map, int *div_error);
80u_int64_t mega_div64_32(u_int64_t dividend, u_int32_t divisor);
81void
82mrsas_update_load_balance_params(struct mrsas_softc *sc,
83 MR_DRV_RAID_MAP_ALL * map, PLD_LOAD_BALANCE_INFO lbInfo);
84void
85mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request,
86 u_int8_t cdb_len, struct IO_REQUEST_INFO *io_info, union ccb *ccb,
87 MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
88 u_int32_t ld_block_size);
89static u_int16_t
90MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span,
91 MR_DRV_RAID_MAP_ALL * map);
92static u_int16_t MR_PdDevHandleGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL * map);
93static u_int16_t
94MR_ArPdGet(u_int32_t ar, u_int32_t arm,
95 MR_DRV_RAID_MAP_ALL * map);
96static MR_LD_SPAN *
97MR_LdSpanPtrGet(u_int32_t ld, u_int32_t span,
98 MR_DRV_RAID_MAP_ALL * map);
99static u_int8_t
100MR_LdDataArmGet(u_int32_t ld, u_int32_t armIdx,
101 MR_DRV_RAID_MAP_ALL * map);
102static MR_SPAN_BLOCK_INFO *
103MR_LdSpanInfoGet(u_int32_t ld,
104 MR_DRV_RAID_MAP_ALL * map);
105MR_LD_RAID *MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map);
106void MR_PopulateDrvRaidMap(struct mrsas_softc *sc);
107
108
109/*
110 * Spanset related function prototypes Added for PRL11 configuration (Uneven
111 * span support)
112 */
113void mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo);
114static u_int8_t
115mr_spanset_get_phy_params(struct mrsas_softc *sc, u_int32_t ld,
116 u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
117 RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map);
118static u_int64_t
119get_row_from_strip(struct mrsas_softc *sc, u_int32_t ld,
120 u_int64_t strip, MR_DRV_RAID_MAP_ALL * map);
121static u_int32_t
122mr_spanset_get_span_block(struct mrsas_softc *sc,
123 u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
124 MR_DRV_RAID_MAP_ALL * map, int *div_error);
125static u_int8_t
126get_arm(struct mrsas_softc *sc, u_int32_t ld, u_int8_t span,
127 u_int64_t stripe, MR_DRV_RAID_MAP_ALL * map);
128
129
130/*
131 * Spanset related defines Added for PRL11 configuration(Uneven span support)
132 */
133#define SPAN_ROW_SIZE(map, ld, index_) MR_LdSpanPtrGet(ld, index_, map)->spanRowSize
134#define SPAN_ROW_DATA_SIZE(map_, ld, index_) \
135 MR_LdSpanPtrGet(ld, index_, map)->spanRowDataSize
136#define SPAN_INVALID 0xff
137#define SPAN_DEBUG 0
138
139/*
140 * Related Defines
141 */
142
143typedef u_int64_t REGION_KEY;
144typedef u_int32_t REGION_LEN;
145
146#define MR_LD_STATE_OPTIMAL 3
147#define FALSE 0
148#define TRUE 1
149
150#define LB_PENDING_CMDS_DEFAULT 4
151
152
153/*
154 * Related Macros
155 */
156
157#define ABS_DIFF(a,b) ( ((a) > (b)) ? ((a) - (b)) : ((b) - (a)) )
158
159#define swap32(x) \
160 ((unsigned int)( \
161 (((unsigned int)(x) & (unsigned int)0x000000ffUL) << 24) | \
162 (((unsigned int)(x) & (unsigned int)0x0000ff00UL) << 8) | \
163 (((unsigned int)(x) & (unsigned int)0x00ff0000UL) >> 8) | \
164 (((unsigned int)(x) & (unsigned int)0xff000000UL) >> 24) ))
165
166
167/*
168 * In-line functions for mod and divide of 64-bit dividend and 32-bit
169 * divisor. Assumes a check for a divisor of zero is not possible.
170 *
171 * @param dividend: Dividend
172 * @param divisor: Divisor
173 * @return remainder
174 */
175
176#define mega_mod64(dividend, divisor) ({ \
177int remainder; \
178remainder = ((u_int64_t) (dividend)) % (u_int32_t) (divisor); \
179remainder;})
180
181#define mega_div64_32(dividend, divisor) ({ \
182int quotient; \
183quotient = ((u_int64_t) (dividend)) / (u_int32_t) (divisor); \
184quotient;})
185
186
187/*
188 * Various RAID map access functions. These functions access the various
189 * parts of the RAID map and returns the appropriate parameters.
190 */
191
192MR_LD_RAID *
193MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
194{
195 return (&map->raidMap.ldSpanMap[ld].ldRaid);
196}
197
198u_int16_t
199MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
200{
201 return (map->raidMap.ldSpanMap[ld].ldRaid.targetId);
202}
203
204static u_int16_t
205MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map)
206{
207 return map->raidMap.ldSpanMap[ld].spanBlock[span].span.arrayRef;
208}
209
210static u_int8_t
211MR_LdDataArmGet(u_int32_t ld, u_int32_t armIdx, MR_DRV_RAID_MAP_ALL * map)
212{
213 return map->raidMap.ldSpanMap[ld].dataArmMap[armIdx];
214}
215
216static u_int16_t
217MR_PdDevHandleGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL * map)
218{
219 return map->raidMap.devHndlInfo[pd].curDevHdl;
220}
221
222static u_int16_t
223MR_ArPdGet(u_int32_t ar, u_int32_t arm, MR_DRV_RAID_MAP_ALL * map)
224{
225 return map->raidMap.arMapInfo[ar].pd[arm];
226}
227
228static MR_LD_SPAN *
229MR_LdSpanPtrGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map)
230{
231 return &map->raidMap.ldSpanMap[ld].spanBlock[span].span;
232}
233
234static MR_SPAN_BLOCK_INFO *
235MR_LdSpanInfoGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map)
236{
237 return &map->raidMap.ldSpanMap[ld].spanBlock[0];
238}
239
240u_int16_t
241MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map)
242{
243 return map->raidMap.ldTgtIdToLd[ldTgtId];
244}
245
246u_int32_t
247MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map)
248{
249 MR_LD_RAID *raid;
250 u_int32_t ld, ldBlockSize = MRSAS_SCSIBLOCKSIZE;
251
252 ld = MR_TargetIdToLdGet(ldTgtId, map);
253
254 /*
255 * Check if logical drive was removed.
256 */
257 if (ld >= MAX_LOGICAL_DRIVES)
258 return ldBlockSize;
259
260 raid = MR_LdRaidGet(ld, map);
261 ldBlockSize = raid->logicalBlockLength;
262 if (!ldBlockSize)
263 ldBlockSize = MRSAS_SCSIBLOCKSIZE;
264
265 return ldBlockSize;
266}
267
268/*
269 * This function will Populate Driver Map using firmware raid map
270 */
271void
272MR_PopulateDrvRaidMap(struct mrsas_softc *sc)
273{
274 MR_FW_RAID_MAP_ALL *fw_map_old = NULL;
275 MR_FW_RAID_MAP *pFwRaidMap = NULL;
276 unsigned int i;
277
278 MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
279 MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
280
281 if (sc->max256vdSupport) {
282 memcpy(sc->ld_drv_map[sc->map_id & 1],
283 sc->raidmap_mem[sc->map_id & 1],
284 sc->current_map_sz);
285 /*
286 * New Raid map will not set totalSize, so keep expected
287 * value for legacy code in ValidateMapInfo
288 */
289 pDrvRaidMap->totalSize = sizeof(MR_FW_RAID_MAP_EXT);
290 } else {
291 fw_map_old = (MR_FW_RAID_MAP_ALL *) sc->raidmap_mem[(sc->map_id & 1)];
292 pFwRaidMap = &fw_map_old->raidMap;
293
294#if VD_EXT_DEBUG
295 for (i = 0; i < pFwRaidMap->ldCount; i++) {
296 device_printf(sc->mrsas_dev,
297 "Index 0x%x Target Id 0x%x Seq Num 0x%x Size 0/%lx\n", i,
298 fw_map_old->raidMap.ldSpanMap[i].ldRaid.targetId,
299 fw_map_old->raidMap.ldSpanMap[i].ldRaid.seqNum,
300 fw_map_old->raidMap.ldSpanMap[i].ldRaid.size);
301 }
302#endif
303
304 memset(drv_map, 0, sc->drv_map_sz);
305 pDrvRaidMap->totalSize = pFwRaidMap->totalSize;
306 pDrvRaidMap->ldCount = pFwRaidMap->ldCount;
307 pDrvRaidMap->fpPdIoTimeoutSec =
308 pFwRaidMap->fpPdIoTimeoutSec;
309
310 for (i = 0; i < MAX_RAIDMAP_LOGICAL_DRIVES + MAX_RAIDMAP_VIEWS; i++) {
311 pDrvRaidMap->ldTgtIdToLd[i] =
312 (u_int8_t)pFwRaidMap->ldTgtIdToLd[i];
313 }
314
315 for (i = 0; i < pDrvRaidMap->ldCount; i++) {
316 pDrvRaidMap->ldSpanMap[i] =
317 pFwRaidMap->ldSpanMap[i];
318
319#if VD_EXT_DEBUG
320 device_printf(sc->mrsas_dev, "pFwRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x "
321 "pFwRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n",
322 i, i, pFwRaidMap->ldSpanMap[i].ldRaid.targetId,
323 pFwRaidMap->ldSpanMap[i].ldRaid.seqNum,
324 (u_int32_t)pFwRaidMap->ldSpanMap[i].ldRaid.rowSize);
325 device_printf(sc->mrsas_dev, "pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x"
326 "pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n", i, i,
327 pDrvRaidMap->ldSpanMap[i].ldRaid.targetId,
328 pDrvRaidMap->ldSpanMap[i].ldRaid.seqNum,
329 (u_int32_t)pDrvRaidMap->ldSpanMap[i].ldRaid.rowSize);
330 device_printf(sc->mrsas_dev, "drv raid map all %p raid map %p LD RAID MAP %p/%p\n",
331 drv_map, pDrvRaidMap,
332 &pFwRaidMap->ldSpanMap[i].ldRaid, &pDrvRaidMap->ldSpanMap[i].ldRaid);
333#endif
334 }
335
336 memcpy(pDrvRaidMap->arMapInfo, pFwRaidMap->arMapInfo,
337 sizeof(MR_ARRAY_INFO) * MAX_RAIDMAP_ARRAYS);
338 memcpy(pDrvRaidMap->devHndlInfo, pFwRaidMap->devHndlInfo,
339 sizeof(MR_DEV_HANDLE_INFO) *
340 MAX_RAIDMAP_PHYSICAL_DEVICES);
341 }
342}
343
344/*
345 * MR_ValidateMapInfo: Validate RAID map
346 * input: Adapter instance soft state
347 *
348 * This function checks and validates the loaded RAID map. It returns 0 if
349 * successful, and 1 otherwise.
350 */
351u_int8_t
352MR_ValidateMapInfo(struct mrsas_softc *sc)
353{
354 if (!sc) {
355 return 1;
356 }
357 MR_PopulateDrvRaidMap(sc);
358
359 MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)];
360 MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap;
361
362 u_int32_t expected_map_size;
363
364 drv_map = sc->ld_drv_map[(sc->map_id & 1)];
365 pDrvRaidMap = &drv_map->raidMap;
366 PLD_SPAN_INFO ldSpanInfo = (PLD_SPAN_INFO) & sc->log_to_span;
367
368 if (sc->max256vdSupport)
369 expected_map_size = sizeof(MR_FW_RAID_MAP_EXT);
370 else
371 expected_map_size =
372 (sizeof(MR_FW_RAID_MAP) - sizeof(MR_LD_SPAN_MAP)) +
373 (sizeof(MR_LD_SPAN_MAP) * pDrvRaidMap->ldCount);
374
375 if (pDrvRaidMap->totalSize != expected_map_size) {
376 device_printf(sc->mrsas_dev, "map size %x not matching ld count\n", expected_map_size);
377 device_printf(sc->mrsas_dev, "span map= %x\n", (unsigned int)sizeof(MR_LD_SPAN_MAP));
378 device_printf(sc->mrsas_dev, "pDrvRaidMap->totalSize=%x\n", pDrvRaidMap->totalSize);
379 return 1;
380 }
381 if (sc->UnevenSpanSupport) {
382 mr_update_span_set(drv_map, ldSpanInfo);
383 }
384 mrsas_update_load_balance_params(sc, drv_map, sc->load_balance_info);
385
386 return 0;
387}
388
389/*
390 *
391 * Function to print info about span set created in driver from FW raid map
392 *
393 * Inputs: map
394 * ldSpanInfo: ld map span info per HBA instance
395 *
396 *
397 */
398#if SPAN_DEBUG
399static int
400getSpanInfo(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo)
401{
402
403 u_int8_t span;
404 u_int32_t element;
405 MR_LD_RAID *raid;
406 LD_SPAN_SET *span_set;
407 MR_QUAD_ELEMENT *quad;
408 int ldCount;
409 u_int16_t ld;
410
411 for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
412 ld = MR_TargetIdToLdGet(ldCount, map);
413 if (ld >= MAX_LOGICAL_DRIVES) {
414 continue;
415 }
416 raid = MR_LdRaidGet(ld, map);
417 printf("LD %x: span_depth=%x\n", ld, raid->spanDepth);
418 for (span = 0; span < raid->spanDepth; span++)
419 printf("Span=%x, number of quads=%x\n", span,
420 map->raidMap.ldSpanMap[ld].spanBlock[span].
421 block_span_info.noElements);
422 for (element = 0; element < MAX_QUAD_DEPTH; element++) {
423 span_set = &(ldSpanInfo[ld].span_set[element]);
424 if (span_set->span_row_data_width == 0)
425 break;
426
427 printf("Span Set %x: width=%x, diff=%x\n", element,
428 (unsigned int)span_set->span_row_data_width,
429 (unsigned int)span_set->diff);
430 printf("logical LBA start=0x%08lx, end=0x%08lx\n",
431 (long unsigned int)span_set->log_start_lba,
432 (long unsigned int)span_set->log_end_lba);
433 printf("span row start=0x%08lx, end=0x%08lx\n",
434 (long unsigned int)span_set->span_row_start,
435 (long unsigned int)span_set->span_row_end);
436 printf("data row start=0x%08lx, end=0x%08lx\n",
437 (long unsigned int)span_set->data_row_start,
438 (long unsigned int)span_set->data_row_end);
439 printf("data strip start=0x%08lx, end=0x%08lx\n",
440 (long unsigned int)span_set->data_strip_start,
441 (long unsigned int)span_set->data_strip_end);
442
443 for (span = 0; span < raid->spanDepth; span++) {
444 if (map->raidMap.ldSpanMap[ld].spanBlock[span].
445 block_span_info.noElements >= element + 1) {
446 quad = &map->raidMap.ldSpanMap[ld].
447 spanBlock[span].block_span_info.
448 quad[element];
449 printf("Span=%x, Quad=%x, diff=%x\n", span,
450 element, quad->diff);
451 printf("offset_in_span=0x%08lx\n",
452 (long unsigned int)quad->offsetInSpan);
453 printf("logical start=0x%08lx, end=0x%08lx\n",
454 (long unsigned int)quad->logStart,
455 (long unsigned int)quad->logEnd);
456 }
457 }
458 }
459 }
460 return 0;
461}
462
463#endif
464/*
465 *
466 * This routine calculates the Span block for given row using spanset.
467 *
468 * Inputs : HBA instance
469 * ld: Logical drive number
470 * row: Row number
471 * map: LD map
472 *
473 * Outputs : span - Span number block
474 * - Absolute Block number in the physical disk
475 * div_error - Devide error code.
476 */
477
478u_int32_t
479mr_spanset_get_span_block(struct mrsas_softc *sc, u_int32_t ld, u_int64_t row,
480 u_int64_t *span_blk, MR_DRV_RAID_MAP_ALL * map, int *div_error)
481{
482 MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
483 LD_SPAN_SET *span_set;
484 MR_QUAD_ELEMENT *quad;
485 u_int32_t span, info;
486 PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
487
488 for (info = 0; info < MAX_QUAD_DEPTH; info++) {
489 span_set = &(ldSpanInfo[ld].span_set[info]);
490
491 if (span_set->span_row_data_width == 0)
492 break;
493 if (row > span_set->data_row_end)
494 continue;
495
496 for (span = 0; span < raid->spanDepth; span++)
497 if (map->raidMap.ldSpanMap[ld].spanBlock[span].
498 block_span_info.noElements >= info + 1) {
499 quad = &map->raidMap.ldSpanMap[ld].
500 spanBlock[span].
501 block_span_info.quad[info];
502 if (quad->diff == 0) {
503 *div_error = 1;
504 return span;
505 }
506 if (quad->logStart <= row &&
507 row <= quad->logEnd &&
508 (mega_mod64(row - quad->logStart,
509 quad->diff)) == 0) {
510 if (span_blk != NULL) {
511 u_int64_t blk;
512
513 blk = mega_div64_32
514 ((row - quad->logStart),
515 quad->diff);
516 blk = (blk + quad->offsetInSpan)
517 << raid->stripeShift;
518 *span_blk = blk;
519 }
520 return span;
521 }
522 }
523 }
524 return SPAN_INVALID;
525}
526
527/*
528 *
529 * This routine calculates the row for given strip using spanset.
530 *
531 * Inputs : HBA instance
532 * ld: Logical drive number
533 * Strip: Strip
534 * map: LD map
535 *
536 * Outputs : row - row associated with strip
537 */
538
539static u_int64_t
540get_row_from_strip(struct mrsas_softc *sc,
541 u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map)
542{
543 MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
544 LD_SPAN_SET *span_set;
545 PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
546 u_int32_t info, strip_offset, span, span_offset;
547 u_int64_t span_set_Strip, span_set_Row;
548
549 for (info = 0; info < MAX_QUAD_DEPTH; info++) {
550 span_set = &(ldSpanInfo[ld].span_set[info]);
551
552 if (span_set->span_row_data_width == 0)
553 break;
554 if (strip > span_set->data_strip_end)
555 continue;
556
557 span_set_Strip = strip - span_set->data_strip_start;
558 strip_offset = mega_mod64(span_set_Strip,
559 span_set->span_row_data_width);
560 span_set_Row = mega_div64_32(span_set_Strip,
561 span_set->span_row_data_width) * span_set->diff;
562 for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
563 if (map->raidMap.ldSpanMap[ld].spanBlock[span].
564 block_span_info.noElements >= info + 1) {
565 if (strip_offset >=
566 span_set->strip_offset[span])
567 span_offset++;
568 else
569 break;
570 }
571 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : Strip 0x%llx, span_set_Strip 0x%llx, span_set_Row 0x%llx "
572 "data width 0x%llx span offset 0x%llx\n", (unsigned long long)strip,
573 (unsigned long long)span_set_Strip,
574 (unsigned long long)span_set_Row,
575 (unsigned long long)span_set->span_row_data_width, (unsigned long long)span_offset);
576 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : For strip 0x%llx row is 0x%llx\n", (unsigned long long)strip,
577 (unsigned long long)span_set->data_row_start +
578 (unsigned long long)span_set_Row + (span_offset - 1));
579 return (span_set->data_row_start + span_set_Row + (span_offset - 1));
580 }
581 return -1LLU;
582}
583
584
585/*
586 *
587 * This routine calculates the Start Strip for given row using spanset.
588 *
589 * Inputs: HBA instance
590 * ld: Logical drive number
591 * row: Row number
592 * map: LD map
593 *
594 * Outputs : Strip - Start strip associated with row
595 */
596
597static u_int64_t
598get_strip_from_row(struct mrsas_softc *sc,
599 u_int32_t ld, u_int64_t row, MR_DRV_RAID_MAP_ALL * map)
600{
601 MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
602 LD_SPAN_SET *span_set;
603 MR_QUAD_ELEMENT *quad;
604 PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
605 u_int32_t span, info;
606 u_int64_t strip;
607
608 for (info = 0; info < MAX_QUAD_DEPTH; info++) {
609 span_set = &(ldSpanInfo[ld].span_set[info]);
610
611 if (span_set->span_row_data_width == 0)
612 break;
613 if (row > span_set->data_row_end)
614 continue;
615
616 for (span = 0; span < raid->spanDepth; span++)
617 if (map->raidMap.ldSpanMap[ld].spanBlock[span].
618 block_span_info.noElements >= info + 1) {
619 quad = &map->raidMap.ldSpanMap[ld].
620 spanBlock[span].block_span_info.quad[info];
621 if (quad->logStart <= row &&
622 row <= quad->logEnd &&
623 mega_mod64((row - quad->logStart),
624 quad->diff) == 0) {
625 strip = mega_div64_32
626 (((row - span_set->data_row_start)
627 - quad->logStart),
628 quad->diff);
629 strip *= span_set->span_row_data_width;
630 strip += span_set->data_strip_start;
631 strip += span_set->strip_offset[span];
632 return strip;
633 }
634 }
635 }
636 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug - get_strip_from_row: returns invalid "
637 "strip for ld=%x, row=%lx\n", ld, (long unsigned int)row);
638 return -1;
639}
640
641/*
642 * *****************************************************************************
643 *
644 *
645 * This routine calculates the Physical Arm for given strip using spanset.
646 *
647 * Inputs : HBA instance
648 * Logical drive number
649 * Strip
650 * LD map
651 *
652 * Outputs : Phys Arm - Phys Arm associated with strip
653 */
654
655static u_int32_t
656get_arm_from_strip(struct mrsas_softc *sc,
657 u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map)
658{
659 MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
660 LD_SPAN_SET *span_set;
661 PLD_SPAN_INFO ldSpanInfo = sc->log_to_span;
662 u_int32_t info, strip_offset, span, span_offset;
663
664 for (info = 0; info < MAX_QUAD_DEPTH; info++) {
665 span_set = &(ldSpanInfo[ld].span_set[info]);
666
667 if (span_set->span_row_data_width == 0)
668 break;
669 if (strip > span_set->data_strip_end)
670 continue;
671
672 strip_offset = (u_int32_t)mega_mod64
673 ((strip - span_set->data_strip_start),
674 span_set->span_row_data_width);
675
676 for (span = 0, span_offset = 0; span < raid->spanDepth; span++)
677 if (map->raidMap.ldSpanMap[ld].spanBlock[span].
678 block_span_info.noElements >= info + 1) {
679 if (strip_offset >= span_set->strip_offset[span])
680 span_offset = span_set->strip_offset[span];
681 else
682 break;
683 }
684 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO PRL11: get_arm_from_strip: "
685 "for ld=0x%x strip=0x%lx arm is 0x%x\n", ld,
686 (long unsigned int)strip, (strip_offset - span_offset));
687 return (strip_offset - span_offset);
688 }
689
690 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: - get_arm_from_strip: returns invalid arm"
691 " for ld=%x strip=%lx\n", ld, (long unsigned int)strip);
692
693 return -1;
694}
695
696
697/* This Function will return Phys arm */
698u_int8_t
699get_arm(struct mrsas_softc *sc, u_int32_t ld, u_int8_t span, u_int64_t stripe,
700 MR_DRV_RAID_MAP_ALL * map)
701{
702 MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
703
704 /* Need to check correct default value */
705 u_int32_t arm = 0;
706
707 switch (raid->level) {
708 case 0:
709 case 5:
710 case 6:
711 arm = mega_mod64(stripe, SPAN_ROW_SIZE(map, ld, span));
712 break;
713 case 1:
714 /* start with logical arm */
715 arm = get_arm_from_strip(sc, ld, stripe, map);
716 arm *= 2;
717 break;
718 }
719
720 return arm;
721}
722
723/*
724 *
725 * This routine calculates the arm, span and block for the specified stripe and
726 * reference in stripe using spanset
727 *
728 * Inputs :
729 * sc - HBA instance
730 * ld - Logical drive number
731 * stripRow: Stripe number
732 * stripRef: Reference in stripe
733 *
734 * Outputs : span - Span number block - Absolute Block
735 * number in the physical disk
736 */
737static u_int8_t
738mr_spanset_get_phy_params(struct mrsas_softc *sc, u_int32_t ld, u_int64_t stripRow,
739 u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
740 RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
741{
742 MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
743 u_int32_t pd, arRef;
744 u_int8_t physArm, span;
745 u_int64_t row;
746 u_int8_t retval = TRUE;
747 u_int64_t *pdBlock = &io_info->pdBlock;
748 u_int16_t *pDevHandle = &io_info->devHandle;
749 u_int32_t logArm, rowMod, armQ, arm;
750 u_int8_t do_invader = 0;
751
752 if ((sc->device_id == MRSAS_INVADER) || (sc->device_id == MRSAS_FURY))
752 if ((sc->device_id == MRSAS_INVADER) ||
753 (sc->device_id == MRSAS_FURY) ||
754 (sc->device_id == MRSAS_INTRUDER) ||
755 (sc->device_id == MRSAS_INTRUDER_24))
753 do_invader = 1;
754
755 /* Get row and span from io_info for Uneven Span IO. */
756 row = io_info->start_row;
757 span = io_info->start_span;
758
759
760 if (raid->level == 6) {
761 logArm = get_arm_from_strip(sc, ld, stripRow, map);
762 rowMod = mega_mod64(row, SPAN_ROW_SIZE(map, ld, span));
763 armQ = SPAN_ROW_SIZE(map, ld, span) - 1 - rowMod;
764 arm = armQ + 1 + logArm;
765 if (arm >= SPAN_ROW_SIZE(map, ld, span))
766 arm -= SPAN_ROW_SIZE(map, ld, span);
767 physArm = (u_int8_t)arm;
768 } else
769 /* Calculate the arm */
770 physArm = get_arm(sc, ld, span, stripRow, map);
771
772
773 arRef = MR_LdSpanArrayGet(ld, span, map);
774 pd = MR_ArPdGet(arRef, physArm, map);
775
776 if (pd != MR_PD_INVALID)
777 *pDevHandle = MR_PdDevHandleGet(pd, map);
778 else {
779 *pDevHandle = MR_PD_INVALID;
780 if ((raid->level >= 5) && ((!do_invader) || (do_invader &&
781 raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))
782 pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE;
783 else if (raid->level == 1) {
784 pd = MR_ArPdGet(arRef, physArm + 1, map);
785 if (pd != MR_PD_INVALID)
786 *pDevHandle = MR_PdDevHandleGet(pd, map);
787 }
788 }
789
790 *pdBlock += stripRef + MR_LdSpanPtrGet(ld, span, map)->startBlk;
791 pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
792 io_info->span_arm = pRAID_Context->spanArm;
793 return retval;
794}
795
796/*
797 * MR_BuildRaidContext: Set up Fast path RAID context
798 *
799 * This function will initiate command processing. The start/end row and strip
800 * information is calculated then the lock is acquired. This function will
801 * return 0 if region lock was acquired OR return num strips.
802 */
803u_int8_t
804MR_BuildRaidContext(struct mrsas_softc *sc, struct IO_REQUEST_INFO *io_info,
805 RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
806{
807 MR_LD_RAID *raid;
808 u_int32_t ld, stripSize, stripe_mask;
809 u_int64_t endLba, endStrip, endRow, start_row, start_strip;
810 REGION_KEY regStart;
811 REGION_LEN regSize;
812 u_int8_t num_strips, numRows;
813 u_int16_t ref_in_start_stripe, ref_in_end_stripe;
814 u_int64_t ldStartBlock;
815 u_int32_t numBlocks, ldTgtId;
816 u_int8_t isRead, stripIdx;
817 u_int8_t retval = 0;
818 u_int8_t startlba_span = SPAN_INVALID;
819 u_int64_t *pdBlock = &io_info->pdBlock;
820 int error_code = 0;
821
822 ldStartBlock = io_info->ldStartBlock;
823 numBlocks = io_info->numBlocks;
824 ldTgtId = io_info->ldTgtId;
825 isRead = io_info->isRead;
826
827 io_info->IoforUnevenSpan = 0;
828 io_info->start_span = SPAN_INVALID;
829
830 ld = MR_TargetIdToLdGet(ldTgtId, map);
831 raid = MR_LdRaidGet(ld, map);
832
833 if (raid->rowDataSize == 0) {
834 if (MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize == 0)
835 return FALSE;
836 else if (sc->UnevenSpanSupport) {
837 io_info->IoforUnevenSpan = 1;
838 } else {
839 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: raid->rowDataSize is 0, but has SPAN[0] rowDataSize = 0x%0x,"
840 " but there is _NO_ UnevenSpanSupport\n",
841 MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize);
842 return FALSE;
843 }
844 }
845 stripSize = 1 << raid->stripeShift;
846 stripe_mask = stripSize - 1;
847 /*
848 * calculate starting row and stripe, and number of strips and rows
849 */
850 start_strip = ldStartBlock >> raid->stripeShift;
851 ref_in_start_stripe = (u_int16_t)(ldStartBlock & stripe_mask);
852 endLba = ldStartBlock + numBlocks - 1;
853 ref_in_end_stripe = (u_int16_t)(endLba & stripe_mask);
854 endStrip = endLba >> raid->stripeShift;
855 num_strips = (u_int8_t)(endStrip - start_strip + 1); /* End strip */
856 if (io_info->IoforUnevenSpan) {
857 start_row = get_row_from_strip(sc, ld, start_strip, map);
858 endRow = get_row_from_strip(sc, ld, endStrip, map);
859 if (raid->spanDepth == 1) {
860 startlba_span = 0;
861 *pdBlock = start_row << raid->stripeShift;
862 } else {
863 startlba_span = (u_int8_t)mr_spanset_get_span_block(sc, ld, start_row,
864 pdBlock, map, &error_code);
865 if (error_code == 1) {
866 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: return from %s %d. Send IO w/o region lock.\n",
867 __func__, __LINE__);
868 return FALSE;
869 }
870 }
871 if (startlba_span == SPAN_INVALID) {
872 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: return from %s %d for row 0x%llx,"
873 "start strip %llx endSrip %llx\n", __func__,
874 __LINE__, (unsigned long long)start_row,
875 (unsigned long long)start_strip,
876 (unsigned long long)endStrip);
877 return FALSE;
878 }
879 io_info->start_span = startlba_span;
880 io_info->start_row = start_row;
881 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: Check Span number from %s %d for row 0x%llx, "
882 " start strip 0x%llx endSrip 0x%llx span 0x%x\n",
883 __func__, __LINE__, (unsigned long long)start_row,
884 (unsigned long long)start_strip,
885 (unsigned long long)endStrip, startlba_span);
886 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : 1. start_row 0x%llx endRow 0x%llx Start span 0x%x\n",
887 (unsigned long long)start_row, (unsigned long long)endRow, startlba_span);
888 } else {
889 start_row = mega_div64_32(start_strip, raid->rowDataSize);
890 endRow = mega_div64_32(endStrip, raid->rowDataSize);
891 }
892
893 numRows = (u_int8_t)(endRow - start_row + 1); /* get the row count */
894
895 /*
896 * Calculate region info. (Assume region at start of first row, and
897 * assume this IO needs the full row - will adjust if not true.)
898 */
899 regStart = start_row << raid->stripeShift;
900 regSize = stripSize;
901
902 /* Check if we can send this I/O via FastPath */
903 if (raid->capability.fpCapable) {
904 if (isRead)
905 io_info->fpOkForIo = (raid->capability.fpReadCapable &&
906 ((num_strips == 1) ||
907 raid->capability.fpReadAcrossStripe));
908 else
909 io_info->fpOkForIo = (raid->capability.fpWriteCapable &&
910 ((num_strips == 1) ||
911 raid->capability.fpWriteAcrossStripe));
912 } else
913 io_info->fpOkForIo = FALSE;
914
915 if (numRows == 1) {
916 if (num_strips == 1) {
917 regStart += ref_in_start_stripe;
918 regSize = numBlocks;
919 }
920 } else if (io_info->IoforUnevenSpan == 0) {
921 /*
922 * For Even span region lock optimization. If the start strip
923 * is the last in the start row
924 */
925 if (start_strip == (start_row + 1) * raid->rowDataSize - 1) {
926 regStart += ref_in_start_stripe;
927 /*
928 * initialize count to sectors from startRef to end
929 * of strip
930 */
931 regSize = stripSize - ref_in_start_stripe;
932 }
933 /* add complete rows in the middle of the transfer */
934 if (numRows > 2)
935 regSize += (numRows - 2) << raid->stripeShift;
936
937 /* if IO ends within first strip of last row */
938 if (endStrip == endRow * raid->rowDataSize)
939 regSize += ref_in_end_stripe + 1;
940 else
941 regSize += stripSize;
942 } else {
943 if (start_strip == (get_strip_from_row(sc, ld, start_row, map) +
944 SPAN_ROW_DATA_SIZE(map, ld, startlba_span) - 1)) {
945 regStart += ref_in_start_stripe;
946 /*
947 * initialize count to sectors from startRef to end
948 * of strip
949 */
950 regSize = stripSize - ref_in_start_stripe;
951 }
952 /* add complete rows in the middle of the transfer */
953 if (numRows > 2)
954 regSize += (numRows - 2) << raid->stripeShift;
955
956 /* if IO ends within first strip of last row */
957 if (endStrip == get_strip_from_row(sc, ld, endRow, map))
958 regSize += ref_in_end_stripe + 1;
959 else
960 regSize += stripSize;
961 }
962 pRAID_Context->timeoutValue = map->raidMap.fpPdIoTimeoutSec;
756 do_invader = 1;
757
758 /* Get row and span from io_info for Uneven Span IO. */
759 row = io_info->start_row;
760 span = io_info->start_span;
761
762
763 if (raid->level == 6) {
764 logArm = get_arm_from_strip(sc, ld, stripRow, map);
765 rowMod = mega_mod64(row, SPAN_ROW_SIZE(map, ld, span));
766 armQ = SPAN_ROW_SIZE(map, ld, span) - 1 - rowMod;
767 arm = armQ + 1 + logArm;
768 if (arm >= SPAN_ROW_SIZE(map, ld, span))
769 arm -= SPAN_ROW_SIZE(map, ld, span);
770 physArm = (u_int8_t)arm;
771 } else
772 /* Calculate the arm */
773 physArm = get_arm(sc, ld, span, stripRow, map);
774
775
776 arRef = MR_LdSpanArrayGet(ld, span, map);
777 pd = MR_ArPdGet(arRef, physArm, map);
778
779 if (pd != MR_PD_INVALID)
780 *pDevHandle = MR_PdDevHandleGet(pd, map);
781 else {
782 *pDevHandle = MR_PD_INVALID;
783 if ((raid->level >= 5) && ((!do_invader) || (do_invader &&
784 raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))
785 pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE;
786 else if (raid->level == 1) {
787 pd = MR_ArPdGet(arRef, physArm + 1, map);
788 if (pd != MR_PD_INVALID)
789 *pDevHandle = MR_PdDevHandleGet(pd, map);
790 }
791 }
792
793 *pdBlock += stripRef + MR_LdSpanPtrGet(ld, span, map)->startBlk;
794 pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
795 io_info->span_arm = pRAID_Context->spanArm;
796 return retval;
797}
798
799/*
800 * MR_BuildRaidContext: Set up Fast path RAID context
801 *
802 * This function will initiate command processing. The start/end row and strip
803 * information is calculated then the lock is acquired. This function will
804 * return 0 if region lock was acquired OR return num strips.
805 */
806u_int8_t
807MR_BuildRaidContext(struct mrsas_softc *sc, struct IO_REQUEST_INFO *io_info,
808 RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
809{
810 MR_LD_RAID *raid;
811 u_int32_t ld, stripSize, stripe_mask;
812 u_int64_t endLba, endStrip, endRow, start_row, start_strip;
813 REGION_KEY regStart;
814 REGION_LEN regSize;
815 u_int8_t num_strips, numRows;
816 u_int16_t ref_in_start_stripe, ref_in_end_stripe;
817 u_int64_t ldStartBlock;
818 u_int32_t numBlocks, ldTgtId;
819 u_int8_t isRead, stripIdx;
820 u_int8_t retval = 0;
821 u_int8_t startlba_span = SPAN_INVALID;
822 u_int64_t *pdBlock = &io_info->pdBlock;
823 int error_code = 0;
824
825 ldStartBlock = io_info->ldStartBlock;
826 numBlocks = io_info->numBlocks;
827 ldTgtId = io_info->ldTgtId;
828 isRead = io_info->isRead;
829
830 io_info->IoforUnevenSpan = 0;
831 io_info->start_span = SPAN_INVALID;
832
833 ld = MR_TargetIdToLdGet(ldTgtId, map);
834 raid = MR_LdRaidGet(ld, map);
835
836 if (raid->rowDataSize == 0) {
837 if (MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize == 0)
838 return FALSE;
839 else if (sc->UnevenSpanSupport) {
840 io_info->IoforUnevenSpan = 1;
841 } else {
842 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: raid->rowDataSize is 0, but has SPAN[0] rowDataSize = 0x%0x,"
843 " but there is _NO_ UnevenSpanSupport\n",
844 MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize);
845 return FALSE;
846 }
847 }
848 stripSize = 1 << raid->stripeShift;
849 stripe_mask = stripSize - 1;
850 /*
851 * calculate starting row and stripe, and number of strips and rows
852 */
853 start_strip = ldStartBlock >> raid->stripeShift;
854 ref_in_start_stripe = (u_int16_t)(ldStartBlock & stripe_mask);
855 endLba = ldStartBlock + numBlocks - 1;
856 ref_in_end_stripe = (u_int16_t)(endLba & stripe_mask);
857 endStrip = endLba >> raid->stripeShift;
858 num_strips = (u_int8_t)(endStrip - start_strip + 1); /* End strip */
859 if (io_info->IoforUnevenSpan) {
860 start_row = get_row_from_strip(sc, ld, start_strip, map);
861 endRow = get_row_from_strip(sc, ld, endStrip, map);
862 if (raid->spanDepth == 1) {
863 startlba_span = 0;
864 *pdBlock = start_row << raid->stripeShift;
865 } else {
866 startlba_span = (u_int8_t)mr_spanset_get_span_block(sc, ld, start_row,
867 pdBlock, map, &error_code);
868 if (error_code == 1) {
869 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: return from %s %d. Send IO w/o region lock.\n",
870 __func__, __LINE__);
871 return FALSE;
872 }
873 }
874 if (startlba_span == SPAN_INVALID) {
875 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: return from %s %d for row 0x%llx,"
876 "start strip %llx endSrip %llx\n", __func__,
877 __LINE__, (unsigned long long)start_row,
878 (unsigned long long)start_strip,
879 (unsigned long long)endStrip);
880 return FALSE;
881 }
882 io_info->start_span = startlba_span;
883 io_info->start_row = start_row;
884 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: Check Span number from %s %d for row 0x%llx, "
885 " start strip 0x%llx endSrip 0x%llx span 0x%x\n",
886 __func__, __LINE__, (unsigned long long)start_row,
887 (unsigned long long)start_strip,
888 (unsigned long long)endStrip, startlba_span);
889 mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : 1. start_row 0x%llx endRow 0x%llx Start span 0x%x\n",
890 (unsigned long long)start_row, (unsigned long long)endRow, startlba_span);
891 } else {
892 start_row = mega_div64_32(start_strip, raid->rowDataSize);
893 endRow = mega_div64_32(endStrip, raid->rowDataSize);
894 }
895
896 numRows = (u_int8_t)(endRow - start_row + 1); /* get the row count */
897
898 /*
899 * Calculate region info. (Assume region at start of first row, and
900 * assume this IO needs the full row - will adjust if not true.)
901 */
902 regStart = start_row << raid->stripeShift;
903 regSize = stripSize;
904
905 /* Check if we can send this I/O via FastPath */
906 if (raid->capability.fpCapable) {
907 if (isRead)
908 io_info->fpOkForIo = (raid->capability.fpReadCapable &&
909 ((num_strips == 1) ||
910 raid->capability.fpReadAcrossStripe));
911 else
912 io_info->fpOkForIo = (raid->capability.fpWriteCapable &&
913 ((num_strips == 1) ||
914 raid->capability.fpWriteAcrossStripe));
915 } else
916 io_info->fpOkForIo = FALSE;
917
918 if (numRows == 1) {
919 if (num_strips == 1) {
920 regStart += ref_in_start_stripe;
921 regSize = numBlocks;
922 }
923 } else if (io_info->IoforUnevenSpan == 0) {
924 /*
925 * For Even span region lock optimization. If the start strip
926 * is the last in the start row
927 */
928 if (start_strip == (start_row + 1) * raid->rowDataSize - 1) {
929 regStart += ref_in_start_stripe;
930 /*
931 * initialize count to sectors from startRef to end
932 * of strip
933 */
934 regSize = stripSize - ref_in_start_stripe;
935 }
936 /* add complete rows in the middle of the transfer */
937 if (numRows > 2)
938 regSize += (numRows - 2) << raid->stripeShift;
939
940 /* if IO ends within first strip of last row */
941 if (endStrip == endRow * raid->rowDataSize)
942 regSize += ref_in_end_stripe + 1;
943 else
944 regSize += stripSize;
945 } else {
946 if (start_strip == (get_strip_from_row(sc, ld, start_row, map) +
947 SPAN_ROW_DATA_SIZE(map, ld, startlba_span) - 1)) {
948 regStart += ref_in_start_stripe;
949 /*
950 * initialize count to sectors from startRef to end
951 * of strip
952 */
953 regSize = stripSize - ref_in_start_stripe;
954 }
955 /* add complete rows in the middle of the transfer */
956 if (numRows > 2)
957 regSize += (numRows - 2) << raid->stripeShift;
958
959 /* if IO ends within first strip of last row */
960 if (endStrip == get_strip_from_row(sc, ld, endRow, map))
961 regSize += ref_in_end_stripe + 1;
962 else
963 regSize += stripSize;
964 }
965 pRAID_Context->timeoutValue = map->raidMap.fpPdIoTimeoutSec;
963 if ((sc->device_id == MRSAS_INVADER) || (sc->device_id == MRSAS_FURY))
966 if ((sc->device_id == MRSAS_INVADER) ||
967 (sc->device_id == MRSAS_FURY) ||
968 (sc->device_id == MRSAS_INTRUDER) ||
969 (sc->device_id == MRSAS_INTRUDER_24))
964 pRAID_Context->regLockFlags = (isRead) ? raid->regTypeReqOnRead : raid->regTypeReqOnWrite;
965 else
966 pRAID_Context->regLockFlags = (isRead) ? REGION_TYPE_SHARED_READ : raid->regTypeReqOnWrite;
967 pRAID_Context->VirtualDiskTgtId = raid->targetId;
968 pRAID_Context->regLockRowLBA = regStart;
969 pRAID_Context->regLockLength = regSize;
970 pRAID_Context->configSeqNum = raid->seqNum;
971
972 /*
973 * Get Phy Params only if FP capable, or else leave it to MR firmware
974 * to do the calculation.
975 */
976 if (io_info->fpOkForIo) {
977 retval = io_info->IoforUnevenSpan ?
978 mr_spanset_get_phy_params(sc, ld, start_strip,
979 ref_in_start_stripe, io_info, pRAID_Context, map) :
980 MR_GetPhyParams(sc, ld, start_strip,
981 ref_in_start_stripe, io_info, pRAID_Context, map);
982 /* If IO on an invalid Pd, then FP is not possible */
983 if (io_info->devHandle == MR_PD_INVALID)
984 io_info->fpOkForIo = FALSE;
985 return retval;
986 } else if (isRead) {
987 for (stripIdx = 0; stripIdx < num_strips; stripIdx++) {
988 retval = io_info->IoforUnevenSpan ?
989 mr_spanset_get_phy_params(sc, ld, start_strip + stripIdx,
990 ref_in_start_stripe, io_info, pRAID_Context, map) :
991 MR_GetPhyParams(sc, ld, start_strip + stripIdx,
992 ref_in_start_stripe, io_info, pRAID_Context, map);
993 if (!retval)
994 return TRUE;
995 }
996 }
997#if SPAN_DEBUG
998 /* Just for testing what arm we get for strip. */
999 get_arm_from_strip(sc, ld, start_strip, map);
1000#endif
1001 return TRUE;
1002}
1003
1004/*
1005 *
1006 * This routine pepare spanset info from Valid Raid map and store it into local
1007 * copy of ldSpanInfo per instance data structure.
1008 *
1009 * Inputs : LD map
1010 * ldSpanInfo per HBA instance
1011 *
1012 */
1013void
1014mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo)
1015{
1016 u_int8_t span, count;
1017 u_int32_t element, span_row_width;
1018 u_int64_t span_row;
1019 MR_LD_RAID *raid;
1020 LD_SPAN_SET *span_set, *span_set_prev;
1021 MR_QUAD_ELEMENT *quad;
1022 int ldCount;
1023 u_int16_t ld;
1024
1025 for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
1026 ld = MR_TargetIdToLdGet(ldCount, map);
1027 if (ld >= MAX_LOGICAL_DRIVES)
1028 continue;
1029 raid = MR_LdRaidGet(ld, map);
1030 for (element = 0; element < MAX_QUAD_DEPTH; element++) {
1031 for (span = 0; span < raid->spanDepth; span++) {
1032 if (map->raidMap.ldSpanMap[ld].spanBlock[span].
1033 block_span_info.noElements < element + 1)
1034 continue;
1035 /* TO-DO */
1036 span_set = &(ldSpanInfo[ld].span_set[element]);
1037 quad = &map->raidMap.ldSpanMap[ld].
1038 spanBlock[span].block_span_info.quad[element];
1039
1040 span_set->diff = quad->diff;
1041
1042 for (count = 0, span_row_width = 0;
1043 count < raid->spanDepth; count++) {
1044 if (map->raidMap.ldSpanMap[ld].spanBlock[count].
1045 block_span_info.noElements >= element + 1) {
1046 span_set->strip_offset[count] = span_row_width;
1047 span_row_width +=
1048 MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize;
1049#if SPAN_DEBUG
1050 printf("AVAGO Debug span %x rowDataSize %x\n", count,
1051 MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize);
1052#endif
1053 }
1054 }
1055
1056 span_set->span_row_data_width = span_row_width;
1057 span_row = mega_div64_32(((quad->logEnd -
1058 quad->logStart) + quad->diff), quad->diff);
1059
1060 if (element == 0) {
1061 span_set->log_start_lba = 0;
1062 span_set->log_end_lba =
1063 ((span_row << raid->stripeShift) * span_row_width) - 1;
1064
1065 span_set->span_row_start = 0;
1066 span_set->span_row_end = span_row - 1;
1067
1068 span_set->data_strip_start = 0;
1069 span_set->data_strip_end = (span_row * span_row_width) - 1;
1070
1071 span_set->data_row_start = 0;
1072 span_set->data_row_end = (span_row * quad->diff) - 1;
1073 } else {
1074 span_set_prev = &(ldSpanInfo[ld].span_set[element - 1]);
1075 span_set->log_start_lba = span_set_prev->log_end_lba + 1;
1076 span_set->log_end_lba = span_set->log_start_lba +
1077 ((span_row << raid->stripeShift) * span_row_width) - 1;
1078
1079 span_set->span_row_start = span_set_prev->span_row_end + 1;
1080 span_set->span_row_end =
1081 span_set->span_row_start + span_row - 1;
1082
1083 span_set->data_strip_start =
1084 span_set_prev->data_strip_end + 1;
1085 span_set->data_strip_end = span_set->data_strip_start +
1086 (span_row * span_row_width) - 1;
1087
1088 span_set->data_row_start = span_set_prev->data_row_end + 1;
1089 span_set->data_row_end = span_set->data_row_start +
1090 (span_row * quad->diff) - 1;
1091 }
1092 break;
1093 }
1094 if (span == raid->spanDepth)
1095 break; /* no quads remain */
1096 }
1097 }
1098#if SPAN_DEBUG
1099 getSpanInfo(map, ldSpanInfo); /* to get span set info */
1100#endif
1101}
1102
1103/*
1104 * mrsas_update_load_balance_params: Update load balance parmas
1105 * Inputs:
1106 * sc - driver softc instance
1107 * drv_map - driver RAID map
1108 * lbInfo - Load balance info
1109 *
1110 * This function updates the load balance parameters for the LD config of a two
1111 * drive optimal RAID-1.
1112 */
1113void
1114mrsas_update_load_balance_params(struct mrsas_softc *sc,
1115 MR_DRV_RAID_MAP_ALL * drv_map, PLD_LOAD_BALANCE_INFO lbInfo)
1116{
1117 int ldCount;
1118 u_int16_t ld;
1119 MR_LD_RAID *raid;
1120
1121 if (sc->lb_pending_cmds > 128 || sc->lb_pending_cmds < 1)
1122 sc->lb_pending_cmds = LB_PENDING_CMDS_DEFAULT;
1123
1124 for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES_EXT; ldCount++) {
1125 ld = MR_TargetIdToLdGet(ldCount, drv_map);
1126 if (ld >= MAX_LOGICAL_DRIVES_EXT) {
1127 lbInfo[ldCount].loadBalanceFlag = 0;
1128 continue;
1129 }
1130 raid = MR_LdRaidGet(ld, drv_map);
1131 if ((raid->level != 1) ||
1132 (raid->ldState != MR_LD_STATE_OPTIMAL)) {
1133 lbInfo[ldCount].loadBalanceFlag = 0;
1134 continue;
1135 }
1136 lbInfo[ldCount].loadBalanceFlag = 1;
1137 }
1138}
1139
1140
1141/*
1142 * mrsas_set_pd_lba: Sets PD LBA
1143 * input: io_request pointer
1144 * CDB length
1145 * io_info pointer
1146 * Pointer to CCB
1147 * Local RAID map pointer
1148 * Start block of IO Block Size
1149 *
1150 * Used to set the PD logical block address in CDB for FP IOs.
1151 */
1152void
1153mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request, u_int8_t cdb_len,
1154 struct IO_REQUEST_INFO *io_info, union ccb *ccb,
1155 MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
1156 u_int32_t ld_block_size)
1157{
1158 MR_LD_RAID *raid;
1159 u_int32_t ld;
1160 u_int64_t start_blk = io_info->pdBlock;
1161 u_int8_t *cdb = io_request->CDB.CDB32;
1162 u_int32_t num_blocks = io_info->numBlocks;
1163 u_int8_t opcode = 0, flagvals = 0, groupnum = 0, control = 0;
1164 struct ccb_hdr *ccb_h = &(ccb->ccb_h);
1165
1166 /* Check if T10 PI (DIF) is enabled for this LD */
1167 ld = MR_TargetIdToLdGet(io_info->ldTgtId, local_map_ptr);
1168 raid = MR_LdRaidGet(ld, local_map_ptr);
1169 if (raid->capability.ldPiMode == MR_PROT_INFO_TYPE_CONTROLLER) {
1170 memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1171 cdb[0] = MRSAS_SCSI_VARIABLE_LENGTH_CMD;
1172 cdb[7] = MRSAS_SCSI_ADDL_CDB_LEN;
1173
1174 if (ccb_h->flags == CAM_DIR_OUT)
1175 cdb[9] = MRSAS_SCSI_SERVICE_ACTION_READ32;
1176 else
1177 cdb[9] = MRSAS_SCSI_SERVICE_ACTION_WRITE32;
1178 cdb[10] = MRSAS_RD_WR_PROTECT_CHECK_ALL;
1179
1180 /* LBA */
1181 cdb[12] = (u_int8_t)((start_blk >> 56) & 0xff);
1182 cdb[13] = (u_int8_t)((start_blk >> 48) & 0xff);
1183 cdb[14] = (u_int8_t)((start_blk >> 40) & 0xff);
1184 cdb[15] = (u_int8_t)((start_blk >> 32) & 0xff);
1185 cdb[16] = (u_int8_t)((start_blk >> 24) & 0xff);
1186 cdb[17] = (u_int8_t)((start_blk >> 16) & 0xff);
1187 cdb[18] = (u_int8_t)((start_blk >> 8) & 0xff);
1188 cdb[19] = (u_int8_t)(start_blk & 0xff);
1189
1190 /* Logical block reference tag */
1191 io_request->CDB.EEDP32.PrimaryReferenceTag = swap32(ref_tag);
1192 io_request->CDB.EEDP32.PrimaryApplicationTagMask = 0xffff;
1193 io_request->IoFlags = 32; /* Specify 32-byte cdb */
1194
1195 /* Transfer length */
1196 cdb[28] = (u_int8_t)((num_blocks >> 24) & 0xff);
1197 cdb[29] = (u_int8_t)((num_blocks >> 16) & 0xff);
1198 cdb[30] = (u_int8_t)((num_blocks >> 8) & 0xff);
1199 cdb[31] = (u_int8_t)(num_blocks & 0xff);
1200
1201 /* set SCSI IO EEDP Flags */
1202 if (ccb_h->flags == CAM_DIR_OUT) {
1203 io_request->EEDPFlags =
1204 MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
1205 MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG |
1206 MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP |
1207 MPI2_SCSIIO_EEDPFLAGS_CHECK_APPTAG |
1208 MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD;
1209 } else {
1210 io_request->EEDPFlags =
1211 MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
1212 MPI2_SCSIIO_EEDPFLAGS_INSERT_OP;
1213 }
1214 io_request->Control |= (0x4 << 26);
1215 io_request->EEDPBlockSize = ld_block_size;
1216 } else {
1217 /* Some drives don't support 16/12 byte CDB's, convert to 10 */
1218 if (((cdb_len == 12) || (cdb_len == 16)) &&
1219 (start_blk <= 0xffffffff)) {
1220 if (cdb_len == 16) {
1221 opcode = cdb[0] == READ_16 ? READ_10 : WRITE_10;
1222 flagvals = cdb[1];
1223 groupnum = cdb[14];
1224 control = cdb[15];
1225 } else {
1226 opcode = cdb[0] == READ_12 ? READ_10 : WRITE_10;
1227 flagvals = cdb[1];
1228 groupnum = cdb[10];
1229 control = cdb[11];
1230 }
1231
1232 memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1233
1234 cdb[0] = opcode;
1235 cdb[1] = flagvals;
1236 cdb[6] = groupnum;
1237 cdb[9] = control;
1238
1239 /* Transfer length */
1240 cdb[8] = (u_int8_t)(num_blocks & 0xff);
1241 cdb[7] = (u_int8_t)((num_blocks >> 8) & 0xff);
1242
1243 io_request->IoFlags = 10; /* Specify 10-byte cdb */
1244 cdb_len = 10;
1245 } else if ((cdb_len < 16) && (start_blk > 0xffffffff)) {
1246 /* Convert to 16 byte CDB for large LBA's */
1247 switch (cdb_len) {
1248 case 6:
1249 opcode = cdb[0] == READ_6 ? READ_16 : WRITE_16;
1250 control = cdb[5];
1251 break;
1252 case 10:
1253 opcode = cdb[0] == READ_10 ? READ_16 : WRITE_16;
1254 flagvals = cdb[1];
1255 groupnum = cdb[6];
1256 control = cdb[9];
1257 break;
1258 case 12:
1259 opcode = cdb[0] == READ_12 ? READ_16 : WRITE_16;
1260 flagvals = cdb[1];
1261 groupnum = cdb[10];
1262 control = cdb[11];
1263 break;
1264 }
1265
1266 memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1267
1268 cdb[0] = opcode;
1269 cdb[1] = flagvals;
1270 cdb[14] = groupnum;
1271 cdb[15] = control;
1272
1273 /* Transfer length */
1274 cdb[13] = (u_int8_t)(num_blocks & 0xff);
1275 cdb[12] = (u_int8_t)((num_blocks >> 8) & 0xff);
1276 cdb[11] = (u_int8_t)((num_blocks >> 16) & 0xff);
1277 cdb[10] = (u_int8_t)((num_blocks >> 24) & 0xff);
1278
1279 io_request->IoFlags = 16; /* Specify 16-byte cdb */
1280 cdb_len = 16;
1281 } else if ((cdb_len == 6) && (start_blk > 0x1fffff)) {
1282 /* convert to 10 byte CDB */
1283 opcode = cdb[0] == READ_6 ? READ_10 : WRITE_10;
1284 control = cdb[5];
1285
1286 memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1287 cdb[0] = opcode;
1288 cdb[9] = control;
1289
1290 /* Set transfer length */
1291 cdb[8] = (u_int8_t)(num_blocks & 0xff);
1292 cdb[7] = (u_int8_t)((num_blocks >> 8) & 0xff);
1293
1294 /* Specify 10-byte cdb */
1295 cdb_len = 10;
1296 }
1297 /* Fall through normal case, just load LBA here */
1298 u_int8_t val = cdb[1] & 0xE0;
1299
1300 switch (cdb_len) {
1301 case 6:
1302 cdb[3] = (u_int8_t)(start_blk & 0xff);
1303 cdb[2] = (u_int8_t)((start_blk >> 8) & 0xff);
1304 cdb[1] = val | ((u_int8_t)(start_blk >> 16) & 0x1f);
1305 break;
1306 case 10:
1307 cdb[5] = (u_int8_t)(start_blk & 0xff);
1308 cdb[4] = (u_int8_t)((start_blk >> 8) & 0xff);
1309 cdb[3] = (u_int8_t)((start_blk >> 16) & 0xff);
1310 cdb[2] = (u_int8_t)((start_blk >> 24) & 0xff);
1311 break;
1312 case 12:
1313 cdb[5] = (u_int8_t)(start_blk & 0xff);
1314 cdb[4] = (u_int8_t)((start_blk >> 8) & 0xff);
1315 cdb[3] = (u_int8_t)((start_blk >> 16) & 0xff);
1316 cdb[2] = (u_int8_t)((start_blk >> 24) & 0xff);
1317 break;
1318 case 16:
1319 cdb[9] = (u_int8_t)(start_blk & 0xff);
1320 cdb[8] = (u_int8_t)((start_blk >> 8) & 0xff);
1321 cdb[7] = (u_int8_t)((start_blk >> 16) & 0xff);
1322 cdb[6] = (u_int8_t)((start_blk >> 24) & 0xff);
1323 cdb[5] = (u_int8_t)((start_blk >> 32) & 0xff);
1324 cdb[4] = (u_int8_t)((start_blk >> 40) & 0xff);
1325 cdb[3] = (u_int8_t)((start_blk >> 48) & 0xff);
1326 cdb[2] = (u_int8_t)((start_blk >> 56) & 0xff);
1327 break;
1328 }
1329 }
1330}
1331
1332/*
1333 * mrsas_get_best_arm_pd: Determine the best spindle arm
1334 * Inputs:
1335 * sc - HBA instance
1336 * lbInfo - Load balance info
1337 * io_info - IO request info
1338 *
1339 * This function determines and returns the best arm by looking at the
1340 * parameters of the last PD access.
1341 */
1342u_int8_t
1343mrsas_get_best_arm_pd(struct mrsas_softc *sc,
1344 PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info)
1345{
1346 MR_LD_RAID *raid;
1347 MR_DRV_RAID_MAP_ALL *drv_map;
1348 u_int16_t pend0, pend1, ld;
1349 u_int64_t diff0, diff1;
1350 u_int8_t bestArm, pd0, pd1, span, arm;
1351 u_int32_t arRef, span_row_size;
1352
1353 u_int64_t block = io_info->ldStartBlock;
1354 u_int32_t count = io_info->numBlocks;
1355
1356 span = ((io_info->span_arm & RAID_CTX_SPANARM_SPAN_MASK)
1357 >> RAID_CTX_SPANARM_SPAN_SHIFT);
1358 arm = (io_info->span_arm & RAID_CTX_SPANARM_ARM_MASK);
1359
1360 drv_map = sc->ld_drv_map[(sc->map_id & 1)];
1361 ld = MR_TargetIdToLdGet(io_info->ldTgtId, drv_map);
1362 raid = MR_LdRaidGet(ld, drv_map);
1363 span_row_size = sc->UnevenSpanSupport ?
1364 SPAN_ROW_SIZE(drv_map, ld, span) : raid->rowSize;
1365
1366 arRef = MR_LdSpanArrayGet(ld, span, drv_map);
1367 pd0 = MR_ArPdGet(arRef, arm, drv_map);
1368 pd1 = MR_ArPdGet(arRef, (arm + 1) >= span_row_size ?
1369 (arm + 1 - span_row_size) : arm + 1, drv_map);
1370
1371 /* get the pending cmds for the data and mirror arms */
1372 pend0 = mrsas_atomic_read(&lbInfo->scsi_pending_cmds[pd0]);
1373 pend1 = mrsas_atomic_read(&lbInfo->scsi_pending_cmds[pd1]);
1374
1375 /* Determine the disk whose head is nearer to the req. block */
1376 diff0 = ABS_DIFF(block, lbInfo->last_accessed_block[pd0]);
1377 diff1 = ABS_DIFF(block, lbInfo->last_accessed_block[pd1]);
1378 bestArm = (diff0 <= diff1 ? arm : arm ^ 1);
1379
1380 if ((bestArm == arm && pend0 > pend1 + sc->lb_pending_cmds) ||
1381 (bestArm != arm && pend1 > pend0 + sc->lb_pending_cmds))
1382 bestArm ^= 1;
1383
1384 /* Update the last accessed block on the correct pd */
1385 lbInfo->last_accessed_block[bestArm == arm ? pd0 : pd1] = block + count - 1;
1386 io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | bestArm;
1387 io_info->pd_after_lb = (bestArm == arm) ? pd0 : pd1;
1388#if SPAN_DEBUG
1389 if (arm != bestArm)
1390 printf("AVAGO Debug R1 Load balance occur - span 0x%x arm 0x%x bestArm 0x%x "
1391 "io_info->span_arm 0x%x\n",
1392 span, arm, bestArm, io_info->span_arm);
1393#endif
1394
1395 return io_info->pd_after_lb;
1396}
1397
1398/*
1399 * mrsas_get_updated_dev_handle: Get the update dev handle
1400 * Inputs:
1401 * sc - Adapter instance soft state
1402 * lbInfo - Load balance info
1403 * io_info - io_info pointer
1404 *
1405 * This function determines and returns the updated dev handle.
1406 */
1407u_int16_t
1408mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
1409 PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info)
1410{
1411 u_int8_t arm_pd;
1412 u_int16_t devHandle;
1413 MR_DRV_RAID_MAP_ALL *drv_map;
1414
1415 drv_map = sc->ld_drv_map[(sc->map_id & 1)];
1416
1417 /* get best new arm */
1418 arm_pd = mrsas_get_best_arm_pd(sc, lbInfo, io_info);
1419 devHandle = MR_PdDevHandleGet(arm_pd, drv_map);
1420 mrsas_atomic_inc(&lbInfo->scsi_pending_cmds[arm_pd]);
1421
1422 return devHandle;
1423}
1424
1425/*
1426 * MR_GetPhyParams: Calculates arm, span, and block
1427 * Inputs: Adapter soft state
1428 * Logical drive number (LD)
1429 * Stripe number(stripRow)
1430 * Reference in stripe (stripRef)
1431 *
1432 * Outputs: Absolute Block number in the physical disk
1433 *
1434 * This routine calculates the arm, span and block for the specified stripe and
1435 * reference in stripe.
1436 */
1437u_int8_t
1438MR_GetPhyParams(struct mrsas_softc *sc, u_int32_t ld,
1439 u_int64_t stripRow,
1440 u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
1441 RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
1442{
1443 MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
1444 u_int32_t pd, arRef;
1445 u_int8_t physArm, span;
1446 u_int64_t row;
1447 u_int8_t retval = TRUE;
1448 int error_code = 0;
1449 u_int64_t *pdBlock = &io_info->pdBlock;
1450 u_int16_t *pDevHandle = &io_info->devHandle;
1451 u_int32_t rowMod, armQ, arm, logArm;
1452 u_int8_t do_invader = 0;
1453
970 pRAID_Context->regLockFlags = (isRead) ? raid->regTypeReqOnRead : raid->regTypeReqOnWrite;
971 else
972 pRAID_Context->regLockFlags = (isRead) ? REGION_TYPE_SHARED_READ : raid->regTypeReqOnWrite;
973 pRAID_Context->VirtualDiskTgtId = raid->targetId;
974 pRAID_Context->regLockRowLBA = regStart;
975 pRAID_Context->regLockLength = regSize;
976 pRAID_Context->configSeqNum = raid->seqNum;
977
978 /*
979 * Get Phy Params only if FP capable, or else leave it to MR firmware
980 * to do the calculation.
981 */
982 if (io_info->fpOkForIo) {
983 retval = io_info->IoforUnevenSpan ?
984 mr_spanset_get_phy_params(sc, ld, start_strip,
985 ref_in_start_stripe, io_info, pRAID_Context, map) :
986 MR_GetPhyParams(sc, ld, start_strip,
987 ref_in_start_stripe, io_info, pRAID_Context, map);
988 /* If IO on an invalid Pd, then FP is not possible */
989 if (io_info->devHandle == MR_PD_INVALID)
990 io_info->fpOkForIo = FALSE;
991 return retval;
992 } else if (isRead) {
993 for (stripIdx = 0; stripIdx < num_strips; stripIdx++) {
994 retval = io_info->IoforUnevenSpan ?
995 mr_spanset_get_phy_params(sc, ld, start_strip + stripIdx,
996 ref_in_start_stripe, io_info, pRAID_Context, map) :
997 MR_GetPhyParams(sc, ld, start_strip + stripIdx,
998 ref_in_start_stripe, io_info, pRAID_Context, map);
999 if (!retval)
1000 return TRUE;
1001 }
1002 }
1003#if SPAN_DEBUG
1004 /* Just for testing what arm we get for strip. */
1005 get_arm_from_strip(sc, ld, start_strip, map);
1006#endif
1007 return TRUE;
1008}
1009
1010/*
1011 *
1012 * This routine pepare spanset info from Valid Raid map and store it into local
1013 * copy of ldSpanInfo per instance data structure.
1014 *
1015 * Inputs : LD map
1016 * ldSpanInfo per HBA instance
1017 *
1018 */
1019void
1020mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo)
1021{
1022 u_int8_t span, count;
1023 u_int32_t element, span_row_width;
1024 u_int64_t span_row;
1025 MR_LD_RAID *raid;
1026 LD_SPAN_SET *span_set, *span_set_prev;
1027 MR_QUAD_ELEMENT *quad;
1028 int ldCount;
1029 u_int16_t ld;
1030
1031 for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) {
1032 ld = MR_TargetIdToLdGet(ldCount, map);
1033 if (ld >= MAX_LOGICAL_DRIVES)
1034 continue;
1035 raid = MR_LdRaidGet(ld, map);
1036 for (element = 0; element < MAX_QUAD_DEPTH; element++) {
1037 for (span = 0; span < raid->spanDepth; span++) {
1038 if (map->raidMap.ldSpanMap[ld].spanBlock[span].
1039 block_span_info.noElements < element + 1)
1040 continue;
1041 /* TO-DO */
1042 span_set = &(ldSpanInfo[ld].span_set[element]);
1043 quad = &map->raidMap.ldSpanMap[ld].
1044 spanBlock[span].block_span_info.quad[element];
1045
1046 span_set->diff = quad->diff;
1047
1048 for (count = 0, span_row_width = 0;
1049 count < raid->spanDepth; count++) {
1050 if (map->raidMap.ldSpanMap[ld].spanBlock[count].
1051 block_span_info.noElements >= element + 1) {
1052 span_set->strip_offset[count] = span_row_width;
1053 span_row_width +=
1054 MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize;
1055#if SPAN_DEBUG
1056 printf("AVAGO Debug span %x rowDataSize %x\n", count,
1057 MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize);
1058#endif
1059 }
1060 }
1061
1062 span_set->span_row_data_width = span_row_width;
1063 span_row = mega_div64_32(((quad->logEnd -
1064 quad->logStart) + quad->diff), quad->diff);
1065
1066 if (element == 0) {
1067 span_set->log_start_lba = 0;
1068 span_set->log_end_lba =
1069 ((span_row << raid->stripeShift) * span_row_width) - 1;
1070
1071 span_set->span_row_start = 0;
1072 span_set->span_row_end = span_row - 1;
1073
1074 span_set->data_strip_start = 0;
1075 span_set->data_strip_end = (span_row * span_row_width) - 1;
1076
1077 span_set->data_row_start = 0;
1078 span_set->data_row_end = (span_row * quad->diff) - 1;
1079 } else {
1080 span_set_prev = &(ldSpanInfo[ld].span_set[element - 1]);
1081 span_set->log_start_lba = span_set_prev->log_end_lba + 1;
1082 span_set->log_end_lba = span_set->log_start_lba +
1083 ((span_row << raid->stripeShift) * span_row_width) - 1;
1084
1085 span_set->span_row_start = span_set_prev->span_row_end + 1;
1086 span_set->span_row_end =
1087 span_set->span_row_start + span_row - 1;
1088
1089 span_set->data_strip_start =
1090 span_set_prev->data_strip_end + 1;
1091 span_set->data_strip_end = span_set->data_strip_start +
1092 (span_row * span_row_width) - 1;
1093
1094 span_set->data_row_start = span_set_prev->data_row_end + 1;
1095 span_set->data_row_end = span_set->data_row_start +
1096 (span_row * quad->diff) - 1;
1097 }
1098 break;
1099 }
1100 if (span == raid->spanDepth)
1101 break; /* no quads remain */
1102 }
1103 }
1104#if SPAN_DEBUG
1105 getSpanInfo(map, ldSpanInfo); /* to get span set info */
1106#endif
1107}
1108
1109/*
1110 * mrsas_update_load_balance_params: Update load balance parmas
1111 * Inputs:
1112 * sc - driver softc instance
1113 * drv_map - driver RAID map
1114 * lbInfo - Load balance info
1115 *
1116 * This function updates the load balance parameters for the LD config of a two
1117 * drive optimal RAID-1.
1118 */
1119void
1120mrsas_update_load_balance_params(struct mrsas_softc *sc,
1121 MR_DRV_RAID_MAP_ALL * drv_map, PLD_LOAD_BALANCE_INFO lbInfo)
1122{
1123 int ldCount;
1124 u_int16_t ld;
1125 MR_LD_RAID *raid;
1126
1127 if (sc->lb_pending_cmds > 128 || sc->lb_pending_cmds < 1)
1128 sc->lb_pending_cmds = LB_PENDING_CMDS_DEFAULT;
1129
1130 for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES_EXT; ldCount++) {
1131 ld = MR_TargetIdToLdGet(ldCount, drv_map);
1132 if (ld >= MAX_LOGICAL_DRIVES_EXT) {
1133 lbInfo[ldCount].loadBalanceFlag = 0;
1134 continue;
1135 }
1136 raid = MR_LdRaidGet(ld, drv_map);
1137 if ((raid->level != 1) ||
1138 (raid->ldState != MR_LD_STATE_OPTIMAL)) {
1139 lbInfo[ldCount].loadBalanceFlag = 0;
1140 continue;
1141 }
1142 lbInfo[ldCount].loadBalanceFlag = 1;
1143 }
1144}
1145
1146
1147/*
1148 * mrsas_set_pd_lba: Sets PD LBA
1149 * input: io_request pointer
1150 * CDB length
1151 * io_info pointer
1152 * Pointer to CCB
1153 * Local RAID map pointer
1154 * Start block of IO Block Size
1155 *
1156 * Used to set the PD logical block address in CDB for FP IOs.
1157 */
1158void
1159mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request, u_int8_t cdb_len,
1160 struct IO_REQUEST_INFO *io_info, union ccb *ccb,
1161 MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag,
1162 u_int32_t ld_block_size)
1163{
1164 MR_LD_RAID *raid;
1165 u_int32_t ld;
1166 u_int64_t start_blk = io_info->pdBlock;
1167 u_int8_t *cdb = io_request->CDB.CDB32;
1168 u_int32_t num_blocks = io_info->numBlocks;
1169 u_int8_t opcode = 0, flagvals = 0, groupnum = 0, control = 0;
1170 struct ccb_hdr *ccb_h = &(ccb->ccb_h);
1171
1172 /* Check if T10 PI (DIF) is enabled for this LD */
1173 ld = MR_TargetIdToLdGet(io_info->ldTgtId, local_map_ptr);
1174 raid = MR_LdRaidGet(ld, local_map_ptr);
1175 if (raid->capability.ldPiMode == MR_PROT_INFO_TYPE_CONTROLLER) {
1176 memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1177 cdb[0] = MRSAS_SCSI_VARIABLE_LENGTH_CMD;
1178 cdb[7] = MRSAS_SCSI_ADDL_CDB_LEN;
1179
1180 if (ccb_h->flags == CAM_DIR_OUT)
1181 cdb[9] = MRSAS_SCSI_SERVICE_ACTION_READ32;
1182 else
1183 cdb[9] = MRSAS_SCSI_SERVICE_ACTION_WRITE32;
1184 cdb[10] = MRSAS_RD_WR_PROTECT_CHECK_ALL;
1185
1186 /* LBA */
1187 cdb[12] = (u_int8_t)((start_blk >> 56) & 0xff);
1188 cdb[13] = (u_int8_t)((start_blk >> 48) & 0xff);
1189 cdb[14] = (u_int8_t)((start_blk >> 40) & 0xff);
1190 cdb[15] = (u_int8_t)((start_blk >> 32) & 0xff);
1191 cdb[16] = (u_int8_t)((start_blk >> 24) & 0xff);
1192 cdb[17] = (u_int8_t)((start_blk >> 16) & 0xff);
1193 cdb[18] = (u_int8_t)((start_blk >> 8) & 0xff);
1194 cdb[19] = (u_int8_t)(start_blk & 0xff);
1195
1196 /* Logical block reference tag */
1197 io_request->CDB.EEDP32.PrimaryReferenceTag = swap32(ref_tag);
1198 io_request->CDB.EEDP32.PrimaryApplicationTagMask = 0xffff;
1199 io_request->IoFlags = 32; /* Specify 32-byte cdb */
1200
1201 /* Transfer length */
1202 cdb[28] = (u_int8_t)((num_blocks >> 24) & 0xff);
1203 cdb[29] = (u_int8_t)((num_blocks >> 16) & 0xff);
1204 cdb[30] = (u_int8_t)((num_blocks >> 8) & 0xff);
1205 cdb[31] = (u_int8_t)(num_blocks & 0xff);
1206
1207 /* set SCSI IO EEDP Flags */
1208 if (ccb_h->flags == CAM_DIR_OUT) {
1209 io_request->EEDPFlags =
1210 MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
1211 MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG |
1212 MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP |
1213 MPI2_SCSIIO_EEDPFLAGS_CHECK_APPTAG |
1214 MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD;
1215 } else {
1216 io_request->EEDPFlags =
1217 MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG |
1218 MPI2_SCSIIO_EEDPFLAGS_INSERT_OP;
1219 }
1220 io_request->Control |= (0x4 << 26);
1221 io_request->EEDPBlockSize = ld_block_size;
1222 } else {
1223 /* Some drives don't support 16/12 byte CDB's, convert to 10 */
1224 if (((cdb_len == 12) || (cdb_len == 16)) &&
1225 (start_blk <= 0xffffffff)) {
1226 if (cdb_len == 16) {
1227 opcode = cdb[0] == READ_16 ? READ_10 : WRITE_10;
1228 flagvals = cdb[1];
1229 groupnum = cdb[14];
1230 control = cdb[15];
1231 } else {
1232 opcode = cdb[0] == READ_12 ? READ_10 : WRITE_10;
1233 flagvals = cdb[1];
1234 groupnum = cdb[10];
1235 control = cdb[11];
1236 }
1237
1238 memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1239
1240 cdb[0] = opcode;
1241 cdb[1] = flagvals;
1242 cdb[6] = groupnum;
1243 cdb[9] = control;
1244
1245 /* Transfer length */
1246 cdb[8] = (u_int8_t)(num_blocks & 0xff);
1247 cdb[7] = (u_int8_t)((num_blocks >> 8) & 0xff);
1248
1249 io_request->IoFlags = 10; /* Specify 10-byte cdb */
1250 cdb_len = 10;
1251 } else if ((cdb_len < 16) && (start_blk > 0xffffffff)) {
1252 /* Convert to 16 byte CDB for large LBA's */
1253 switch (cdb_len) {
1254 case 6:
1255 opcode = cdb[0] == READ_6 ? READ_16 : WRITE_16;
1256 control = cdb[5];
1257 break;
1258 case 10:
1259 opcode = cdb[0] == READ_10 ? READ_16 : WRITE_16;
1260 flagvals = cdb[1];
1261 groupnum = cdb[6];
1262 control = cdb[9];
1263 break;
1264 case 12:
1265 opcode = cdb[0] == READ_12 ? READ_16 : WRITE_16;
1266 flagvals = cdb[1];
1267 groupnum = cdb[10];
1268 control = cdb[11];
1269 break;
1270 }
1271
1272 memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1273
1274 cdb[0] = opcode;
1275 cdb[1] = flagvals;
1276 cdb[14] = groupnum;
1277 cdb[15] = control;
1278
1279 /* Transfer length */
1280 cdb[13] = (u_int8_t)(num_blocks & 0xff);
1281 cdb[12] = (u_int8_t)((num_blocks >> 8) & 0xff);
1282 cdb[11] = (u_int8_t)((num_blocks >> 16) & 0xff);
1283 cdb[10] = (u_int8_t)((num_blocks >> 24) & 0xff);
1284
1285 io_request->IoFlags = 16; /* Specify 16-byte cdb */
1286 cdb_len = 16;
1287 } else if ((cdb_len == 6) && (start_blk > 0x1fffff)) {
1288 /* convert to 10 byte CDB */
1289 opcode = cdb[0] == READ_6 ? READ_10 : WRITE_10;
1290 control = cdb[5];
1291
1292 memset(cdb, 0, sizeof(io_request->CDB.CDB32));
1293 cdb[0] = opcode;
1294 cdb[9] = control;
1295
1296 /* Set transfer length */
1297 cdb[8] = (u_int8_t)(num_blocks & 0xff);
1298 cdb[7] = (u_int8_t)((num_blocks >> 8) & 0xff);
1299
1300 /* Specify 10-byte cdb */
1301 cdb_len = 10;
1302 }
1303 /* Fall through normal case, just load LBA here */
1304 u_int8_t val = cdb[1] & 0xE0;
1305
1306 switch (cdb_len) {
1307 case 6:
1308 cdb[3] = (u_int8_t)(start_blk & 0xff);
1309 cdb[2] = (u_int8_t)((start_blk >> 8) & 0xff);
1310 cdb[1] = val | ((u_int8_t)(start_blk >> 16) & 0x1f);
1311 break;
1312 case 10:
1313 cdb[5] = (u_int8_t)(start_blk & 0xff);
1314 cdb[4] = (u_int8_t)((start_blk >> 8) & 0xff);
1315 cdb[3] = (u_int8_t)((start_blk >> 16) & 0xff);
1316 cdb[2] = (u_int8_t)((start_blk >> 24) & 0xff);
1317 break;
1318 case 12:
1319 cdb[5] = (u_int8_t)(start_blk & 0xff);
1320 cdb[4] = (u_int8_t)((start_blk >> 8) & 0xff);
1321 cdb[3] = (u_int8_t)((start_blk >> 16) & 0xff);
1322 cdb[2] = (u_int8_t)((start_blk >> 24) & 0xff);
1323 break;
1324 case 16:
1325 cdb[9] = (u_int8_t)(start_blk & 0xff);
1326 cdb[8] = (u_int8_t)((start_blk >> 8) & 0xff);
1327 cdb[7] = (u_int8_t)((start_blk >> 16) & 0xff);
1328 cdb[6] = (u_int8_t)((start_blk >> 24) & 0xff);
1329 cdb[5] = (u_int8_t)((start_blk >> 32) & 0xff);
1330 cdb[4] = (u_int8_t)((start_blk >> 40) & 0xff);
1331 cdb[3] = (u_int8_t)((start_blk >> 48) & 0xff);
1332 cdb[2] = (u_int8_t)((start_blk >> 56) & 0xff);
1333 break;
1334 }
1335 }
1336}
1337
1338/*
1339 * mrsas_get_best_arm_pd: Determine the best spindle arm
1340 * Inputs:
1341 * sc - HBA instance
1342 * lbInfo - Load balance info
1343 * io_info - IO request info
1344 *
1345 * This function determines and returns the best arm by looking at the
1346 * parameters of the last PD access.
1347 */
1348u_int8_t
1349mrsas_get_best_arm_pd(struct mrsas_softc *sc,
1350 PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info)
1351{
1352 MR_LD_RAID *raid;
1353 MR_DRV_RAID_MAP_ALL *drv_map;
1354 u_int16_t pend0, pend1, ld;
1355 u_int64_t diff0, diff1;
1356 u_int8_t bestArm, pd0, pd1, span, arm;
1357 u_int32_t arRef, span_row_size;
1358
1359 u_int64_t block = io_info->ldStartBlock;
1360 u_int32_t count = io_info->numBlocks;
1361
1362 span = ((io_info->span_arm & RAID_CTX_SPANARM_SPAN_MASK)
1363 >> RAID_CTX_SPANARM_SPAN_SHIFT);
1364 arm = (io_info->span_arm & RAID_CTX_SPANARM_ARM_MASK);
1365
1366 drv_map = sc->ld_drv_map[(sc->map_id & 1)];
1367 ld = MR_TargetIdToLdGet(io_info->ldTgtId, drv_map);
1368 raid = MR_LdRaidGet(ld, drv_map);
1369 span_row_size = sc->UnevenSpanSupport ?
1370 SPAN_ROW_SIZE(drv_map, ld, span) : raid->rowSize;
1371
1372 arRef = MR_LdSpanArrayGet(ld, span, drv_map);
1373 pd0 = MR_ArPdGet(arRef, arm, drv_map);
1374 pd1 = MR_ArPdGet(arRef, (arm + 1) >= span_row_size ?
1375 (arm + 1 - span_row_size) : arm + 1, drv_map);
1376
1377 /* get the pending cmds for the data and mirror arms */
1378 pend0 = mrsas_atomic_read(&lbInfo->scsi_pending_cmds[pd0]);
1379 pend1 = mrsas_atomic_read(&lbInfo->scsi_pending_cmds[pd1]);
1380
1381 /* Determine the disk whose head is nearer to the req. block */
1382 diff0 = ABS_DIFF(block, lbInfo->last_accessed_block[pd0]);
1383 diff1 = ABS_DIFF(block, lbInfo->last_accessed_block[pd1]);
1384 bestArm = (diff0 <= diff1 ? arm : arm ^ 1);
1385
1386 if ((bestArm == arm && pend0 > pend1 + sc->lb_pending_cmds) ||
1387 (bestArm != arm && pend1 > pend0 + sc->lb_pending_cmds))
1388 bestArm ^= 1;
1389
1390 /* Update the last accessed block on the correct pd */
1391 lbInfo->last_accessed_block[bestArm == arm ? pd0 : pd1] = block + count - 1;
1392 io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | bestArm;
1393 io_info->pd_after_lb = (bestArm == arm) ? pd0 : pd1;
1394#if SPAN_DEBUG
1395 if (arm != bestArm)
1396 printf("AVAGO Debug R1 Load balance occur - span 0x%x arm 0x%x bestArm 0x%x "
1397 "io_info->span_arm 0x%x\n",
1398 span, arm, bestArm, io_info->span_arm);
1399#endif
1400
1401 return io_info->pd_after_lb;
1402}
1403
1404/*
1405 * mrsas_get_updated_dev_handle: Get the update dev handle
1406 * Inputs:
1407 * sc - Adapter instance soft state
1408 * lbInfo - Load balance info
1409 * io_info - io_info pointer
1410 *
1411 * This function determines and returns the updated dev handle.
1412 */
1413u_int16_t
1414mrsas_get_updated_dev_handle(struct mrsas_softc *sc,
1415 PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info)
1416{
1417 u_int8_t arm_pd;
1418 u_int16_t devHandle;
1419 MR_DRV_RAID_MAP_ALL *drv_map;
1420
1421 drv_map = sc->ld_drv_map[(sc->map_id & 1)];
1422
1423 /* get best new arm */
1424 arm_pd = mrsas_get_best_arm_pd(sc, lbInfo, io_info);
1425 devHandle = MR_PdDevHandleGet(arm_pd, drv_map);
1426 mrsas_atomic_inc(&lbInfo->scsi_pending_cmds[arm_pd]);
1427
1428 return devHandle;
1429}
1430
1431/*
1432 * MR_GetPhyParams: Calculates arm, span, and block
1433 * Inputs: Adapter soft state
1434 * Logical drive number (LD)
1435 * Stripe number(stripRow)
1436 * Reference in stripe (stripRef)
1437 *
1438 * Outputs: Absolute Block number in the physical disk
1439 *
1440 * This routine calculates the arm, span and block for the specified stripe and
1441 * reference in stripe.
1442 */
1443u_int8_t
1444MR_GetPhyParams(struct mrsas_softc *sc, u_int32_t ld,
1445 u_int64_t stripRow,
1446 u_int16_t stripRef, struct IO_REQUEST_INFO *io_info,
1447 RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map)
1448{
1449 MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
1450 u_int32_t pd, arRef;
1451 u_int8_t physArm, span;
1452 u_int64_t row;
1453 u_int8_t retval = TRUE;
1454 int error_code = 0;
1455 u_int64_t *pdBlock = &io_info->pdBlock;
1456 u_int16_t *pDevHandle = &io_info->devHandle;
1457 u_int32_t rowMod, armQ, arm, logArm;
1458 u_int8_t do_invader = 0;
1459
1454 if ((sc->device_id == MRSAS_INVADER) || (sc->device_id == MRSAS_FURY))
1460 if ((sc->device_id == MRSAS_INVADER) ||
1461 (sc->device_id == MRSAS_FURY) ||
1462 (sc->device_id == MRSAS_INTRUDER) ||
1463 (sc->device_id == MRSAS_INTRUDER_24))
1455 do_invader = 1;
1456
1457 row = mega_div64_32(stripRow, raid->rowDataSize);
1458
1459 if (raid->level == 6) {
1460 /* logical arm within row */
1461 logArm = mega_mod64(stripRow, raid->rowDataSize);
1462 if (raid->rowSize == 0)
1463 return FALSE;
1464 rowMod = mega_mod64(row, raid->rowSize); /* get logical row mod */
1465 armQ = raid->rowSize - 1 - rowMod; /* index of Q drive */
1466 arm = armQ + 1 + logArm;/* data always logically follows Q */
1467 if (arm >= raid->rowSize) /* handle wrap condition */
1468 arm -= raid->rowSize;
1469 physArm = (u_int8_t)arm;
1470 } else {
1471 if (raid->modFactor == 0)
1472 return FALSE;
1473 physArm = MR_LdDataArmGet(ld, mega_mod64(stripRow, raid->modFactor), map);
1474 }
1475
1476 if (raid->spanDepth == 1) {
1477 span = 0;
1478 *pdBlock = row << raid->stripeShift;
1479 } else {
1480 span = (u_int8_t)MR_GetSpanBlock(ld, row, pdBlock, map, &error_code);
1481 if (error_code == 1)
1482 return FALSE;
1483 }
1484
1485 /* Get the array on which this span is present */
1486 arRef = MR_LdSpanArrayGet(ld, span, map);
1487
1488 pd = MR_ArPdGet(arRef, physArm, map); /* Get the Pd. */
1489
1490 if (pd != MR_PD_INVALID)
1491 /* Get dev handle from Pd */
1492 *pDevHandle = MR_PdDevHandleGet(pd, map);
1493 else {
1494 *pDevHandle = MR_PD_INVALID; /* set dev handle as invalid. */
1495 if ((raid->level >= 5) && ((!do_invader) || (do_invader &&
1496 raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))
1497 pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE;
1498 else if (raid->level == 1) {
1499 /* Get Alternate Pd. */
1500 pd = MR_ArPdGet(arRef, physArm + 1, map);
1501 if (pd != MR_PD_INVALID)
1502 /* Get dev handle from Pd. */
1503 *pDevHandle = MR_PdDevHandleGet(pd, map);
1504 }
1505 }
1506
1507 *pdBlock += stripRef + MR_LdSpanPtrGet(ld, span, map)->startBlk;
1508 pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
1509 io_info->span_arm = pRAID_Context->spanArm;
1510 return retval;
1511}
1512
1513/*
1514 * MR_GetSpanBlock: Calculates span block
1515 * Inputs: LD
1516 * row PD
1517 * span block
1518 * RAID map pointer
1519 *
1520 * Outputs: Span number Error code
1521 *
1522 * This routine calculates the span from the span block info.
1523 */
1524u_int32_t
1525MR_GetSpanBlock(u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
1526 MR_DRV_RAID_MAP_ALL * map, int *div_error)
1527{
1528 MR_SPAN_BLOCK_INFO *pSpanBlock = MR_LdSpanInfoGet(ld, map);
1529 MR_QUAD_ELEMENT *quad;
1530 MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
1531 u_int32_t span, j;
1532 u_int64_t blk, debugBlk;
1533
1534 for (span = 0; span < raid->spanDepth; span++, pSpanBlock++) {
1535 for (j = 0; j < pSpanBlock->block_span_info.noElements; j++) {
1536 quad = &pSpanBlock->block_span_info.quad[j];
1537 if (quad->diff == 0) {
1538 *div_error = 1;
1539 return span;
1540 }
1541 if (quad->logStart <= row && row <= quad->logEnd &&
1542 (mega_mod64(row - quad->logStart, quad->diff)) == 0) {
1543 if (span_blk != NULL) {
1544 blk = mega_div64_32((row - quad->logStart), quad->diff);
1545 debugBlk = blk;
1546 blk = (blk + quad->offsetInSpan) << raid->stripeShift;
1547 *span_blk = blk;
1548 }
1549 return span;
1550 }
1551 }
1552 }
1553 return span;
1554}
1464 do_invader = 1;
1465
1466 row = mega_div64_32(stripRow, raid->rowDataSize);
1467
1468 if (raid->level == 6) {
1469 /* logical arm within row */
1470 logArm = mega_mod64(stripRow, raid->rowDataSize);
1471 if (raid->rowSize == 0)
1472 return FALSE;
1473 rowMod = mega_mod64(row, raid->rowSize); /* get logical row mod */
1474 armQ = raid->rowSize - 1 - rowMod; /* index of Q drive */
1475 arm = armQ + 1 + logArm;/* data always logically follows Q */
1476 if (arm >= raid->rowSize) /* handle wrap condition */
1477 arm -= raid->rowSize;
1478 physArm = (u_int8_t)arm;
1479 } else {
1480 if (raid->modFactor == 0)
1481 return FALSE;
1482 physArm = MR_LdDataArmGet(ld, mega_mod64(stripRow, raid->modFactor), map);
1483 }
1484
1485 if (raid->spanDepth == 1) {
1486 span = 0;
1487 *pdBlock = row << raid->stripeShift;
1488 } else {
1489 span = (u_int8_t)MR_GetSpanBlock(ld, row, pdBlock, map, &error_code);
1490 if (error_code == 1)
1491 return FALSE;
1492 }
1493
1494 /* Get the array on which this span is present */
1495 arRef = MR_LdSpanArrayGet(ld, span, map);
1496
1497 pd = MR_ArPdGet(arRef, physArm, map); /* Get the Pd. */
1498
1499 if (pd != MR_PD_INVALID)
1500 /* Get dev handle from Pd */
1501 *pDevHandle = MR_PdDevHandleGet(pd, map);
1502 else {
1503 *pDevHandle = MR_PD_INVALID; /* set dev handle as invalid. */
1504 if ((raid->level >= 5) && ((!do_invader) || (do_invader &&
1505 raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))
1506 pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE;
1507 else if (raid->level == 1) {
1508 /* Get Alternate Pd. */
1509 pd = MR_ArPdGet(arRef, physArm + 1, map);
1510 if (pd != MR_PD_INVALID)
1511 /* Get dev handle from Pd. */
1512 *pDevHandle = MR_PdDevHandleGet(pd, map);
1513 }
1514 }
1515
1516 *pdBlock += stripRef + MR_LdSpanPtrGet(ld, span, map)->startBlk;
1517 pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm;
1518 io_info->span_arm = pRAID_Context->spanArm;
1519 return retval;
1520}
1521
1522/*
1523 * MR_GetSpanBlock: Calculates span block
1524 * Inputs: LD
1525 * row PD
1526 * span block
1527 * RAID map pointer
1528 *
1529 * Outputs: Span number Error code
1530 *
1531 * This routine calculates the span from the span block info.
1532 */
1533u_int32_t
1534MR_GetSpanBlock(u_int32_t ld, u_int64_t row, u_int64_t *span_blk,
1535 MR_DRV_RAID_MAP_ALL * map, int *div_error)
1536{
1537 MR_SPAN_BLOCK_INFO *pSpanBlock = MR_LdSpanInfoGet(ld, map);
1538 MR_QUAD_ELEMENT *quad;
1539 MR_LD_RAID *raid = MR_LdRaidGet(ld, map);
1540 u_int32_t span, j;
1541 u_int64_t blk, debugBlk;
1542
1543 for (span = 0; span < raid->spanDepth; span++, pSpanBlock++) {
1544 for (j = 0; j < pSpanBlock->block_span_info.noElements; j++) {
1545 quad = &pSpanBlock->block_span_info.quad[j];
1546 if (quad->diff == 0) {
1547 *div_error = 1;
1548 return span;
1549 }
1550 if (quad->logStart <= row && row <= quad->logEnd &&
1551 (mega_mod64(row - quad->logStart, quad->diff)) == 0) {
1552 if (span_blk != NULL) {
1553 blk = mega_div64_32((row - quad->logStart), quad->diff);
1554 debugBlk = blk;
1555 blk = (blk + quad->offsetInSpan) << raid->stripeShift;
1556 *span_blk = blk;
1557 }
1558 return span;
1559 }
1560 }
1561 }
1562 return span;
1563}