Deleted Added
full compact
if_fxp.c (111119) if_fxp.c (111578)
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice unmodified, this list of conditions, and the following
11 * disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice unmodified, this list of conditions, and the following
11 * disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: head/sys/dev/fxp/if_fxp.c 111119 2003-02-19 05:47:46Z imp $
28 * $FreeBSD: head/sys/dev/fxp/if_fxp.c 111578 2003-02-26 22:12:04Z wpaul $
29 */
30
31/*
32 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33 */
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/mbuf.h>
38#include <sys/malloc.h>
39 /* #include <sys/mutex.h> */
40#include <sys/kernel.h>
41#include <sys/socket.h>
42#include <sys/sysctl.h>
43
44#include <net/if.h>
45#include <net/if_dl.h>
46#include <net/if_media.h>
47
48#ifdef NS
49#include <netns/ns.h>
50#include <netns/ns_if.h>
51#endif
52
53#include <net/bpf.h>
54#include <sys/sockio.h>
55#include <sys/bus.h>
56#include <machine/bus.h>
57#include <sys/rman.h>
58#include <machine/resource.h>
59
60#include <net/ethernet.h>
61#include <net/if_arp.h>
62
63#include <vm/vm.h> /* for vtophys */
64#include <vm/pmap.h> /* for vtophys */
65#include <machine/clock.h> /* for DELAY */
66
67#include <net/if_types.h>
68#include <net/if_vlan_var.h>
69
29 */
30
31/*
32 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33 */
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/mbuf.h>
38#include <sys/malloc.h>
39 /* #include <sys/mutex.h> */
40#include <sys/kernel.h>
41#include <sys/socket.h>
42#include <sys/sysctl.h>
43
44#include <net/if.h>
45#include <net/if_dl.h>
46#include <net/if_media.h>
47
48#ifdef NS
49#include <netns/ns.h>
50#include <netns/ns_if.h>
51#endif
52
53#include <net/bpf.h>
54#include <sys/sockio.h>
55#include <sys/bus.h>
56#include <machine/bus.h>
57#include <sys/rman.h>
58#include <machine/resource.h>
59
60#include <net/ethernet.h>
61#include <net/if_arp.h>
62
63#include <vm/vm.h> /* for vtophys */
64#include <vm/pmap.h> /* for vtophys */
65#include <machine/clock.h> /* for DELAY */
66
67#include <net/if_types.h>
68#include <net/if_vlan_var.h>
69
70#ifdef FXP_IP_CSUM_WAR
71#include <netinet/in.h>
72#include <netinet/in_systm.h>
73#include <netinet/ip.h>
74#include <machine/in_cksum.h>
75#endif
76
70#include <pci/pcivar.h>
71#include <pci/pcireg.h> /* for PCIM_CMD_xxx */
72
73#include <dev/mii/mii.h>
74#include <dev/mii/miivar.h>
75
76#include <dev/fxp/if_fxpreg.h>
77#include <dev/fxp/if_fxpvar.h>
78#include <dev/fxp/rcvbundl.h>
79
80MODULE_DEPEND(fxp, miibus, 1, 1, 1);
81#include "miibus_if.h"
82
83/*
84 * NOTE! On the Alpha, we have an alignment constraint. The
85 * card DMAs the packet immediately following the RFA. However,
86 * the first thing in the packet is a 14-byte Ethernet header.
87 * This means that the packet is misaligned. To compensate,
88 * we actually offset the RFA 2 bytes into the cluster. This
89 * alignes the packet after the Ethernet header at a 32-bit
90 * boundary. HOWEVER! This means that the RFA is misaligned!
91 */
92#define RFA_ALIGNMENT_FUDGE 2
93
94/*
95 * Set initial transmit threshold at 64 (512 bytes). This is
96 * increased by 64 (512 bytes) at a time, to maximum of 192
97 * (1536 bytes), if an underrun occurs.
98 */
99static int tx_threshold = 64;
100
101/*
102 * The configuration byte map has several undefined fields which
103 * must be one or must be zero. Set up a template for these bits
104 * only, (assuming a 82557 chip) leaving the actual configuration
105 * to fxp_init.
106 *
107 * See struct fxp_cb_config for the bit definitions.
108 */
109static u_char fxp_cb_config_template[] = {
110 0x0, 0x0, /* cb_status */
111 0x0, 0x0, /* cb_command */
112 0x0, 0x0, 0x0, 0x0, /* link_addr */
113 0x0, /* 0 */
114 0x0, /* 1 */
115 0x0, /* 2 */
116 0x0, /* 3 */
117 0x0, /* 4 */
118 0x0, /* 5 */
119 0x32, /* 6 */
120 0x0, /* 7 */
121 0x0, /* 8 */
122 0x0, /* 9 */
123 0x6, /* 10 */
124 0x0, /* 11 */
125 0x0, /* 12 */
126 0x0, /* 13 */
127 0xf2, /* 14 */
128 0x48, /* 15 */
129 0x0, /* 16 */
130 0x40, /* 17 */
131 0xf0, /* 18 */
132 0x0, /* 19 */
133 0x3f, /* 20 */
134 0x5 /* 21 */
135};
136
137struct fxp_ident {
138 u_int16_t devid;
139 char *name;
140};
141
142/*
143 * Claim various Intel PCI device identifiers for this driver. The
144 * sub-vendor and sub-device field are extensively used to identify
145 * particular variants, but we don't currently differentiate between
146 * them.
147 */
148static struct fxp_ident fxp_ident_table[] = {
149 { 0x1229, "Intel Pro 10/100B/100+ Ethernet" },
150 { 0x2449, "Intel Pro/100 Ethernet" },
151 { 0x1209, "Intel Embedded 10/100 Ethernet" },
152 { 0x1029, "Intel Pro/100 Ethernet" },
153 { 0x1030, "Intel Pro/100 Ethernet" },
154 { 0x1031, "Intel Pro/100 Ethernet" },
155 { 0x1032, "Intel Pro/100 Ethernet" },
156 { 0x1033, "Intel Pro/100 Ethernet" },
157 { 0x1034, "Intel Pro/100 Ethernet" },
158 { 0x1035, "Intel Pro/100 Ethernet" },
159 { 0x1036, "Intel Pro/100 Ethernet" },
160 { 0x1037, "Intel Pro/100 Ethernet" },
161 { 0x1038, "Intel Pro/100 Ethernet" },
162 { 0x1039, "Intel Pro/100 Ethernet" },
163 { 0x103A, "Intel Pro/100 Ethernet" },
164 { 0x103B, "Intel Pro/100 Ethernet" },
165 { 0x103C, "Intel Pro/100 Ethernet" },
166 { 0x103D, "Intel Pro/100 Ethernet" },
167 { 0x103E, "Intel Pro/100 Ethernet" },
168 { 0x1059, "Intel Pro/100 M Mobile Connection" },
169 { 0, NULL },
170};
171
77#include <pci/pcivar.h>
78#include <pci/pcireg.h> /* for PCIM_CMD_xxx */
79
80#include <dev/mii/mii.h>
81#include <dev/mii/miivar.h>
82
83#include <dev/fxp/if_fxpreg.h>
84#include <dev/fxp/if_fxpvar.h>
85#include <dev/fxp/rcvbundl.h>
86
87MODULE_DEPEND(fxp, miibus, 1, 1, 1);
88#include "miibus_if.h"
89
90/*
91 * NOTE! On the Alpha, we have an alignment constraint. The
92 * card DMAs the packet immediately following the RFA. However,
93 * the first thing in the packet is a 14-byte Ethernet header.
94 * This means that the packet is misaligned. To compensate,
95 * we actually offset the RFA 2 bytes into the cluster. This
96 * alignes the packet after the Ethernet header at a 32-bit
97 * boundary. HOWEVER! This means that the RFA is misaligned!
98 */
99#define RFA_ALIGNMENT_FUDGE 2
100
101/*
102 * Set initial transmit threshold at 64 (512 bytes). This is
103 * increased by 64 (512 bytes) at a time, to maximum of 192
104 * (1536 bytes), if an underrun occurs.
105 */
106static int tx_threshold = 64;
107
108/*
109 * The configuration byte map has several undefined fields which
110 * must be one or must be zero. Set up a template for these bits
111 * only, (assuming a 82557 chip) leaving the actual configuration
112 * to fxp_init.
113 *
114 * See struct fxp_cb_config for the bit definitions.
115 */
116static u_char fxp_cb_config_template[] = {
117 0x0, 0x0, /* cb_status */
118 0x0, 0x0, /* cb_command */
119 0x0, 0x0, 0x0, 0x0, /* link_addr */
120 0x0, /* 0 */
121 0x0, /* 1 */
122 0x0, /* 2 */
123 0x0, /* 3 */
124 0x0, /* 4 */
125 0x0, /* 5 */
126 0x32, /* 6 */
127 0x0, /* 7 */
128 0x0, /* 8 */
129 0x0, /* 9 */
130 0x6, /* 10 */
131 0x0, /* 11 */
132 0x0, /* 12 */
133 0x0, /* 13 */
134 0xf2, /* 14 */
135 0x48, /* 15 */
136 0x0, /* 16 */
137 0x40, /* 17 */
138 0xf0, /* 18 */
139 0x0, /* 19 */
140 0x3f, /* 20 */
141 0x5 /* 21 */
142};
143
144struct fxp_ident {
145 u_int16_t devid;
146 char *name;
147};
148
149/*
150 * Claim various Intel PCI device identifiers for this driver. The
151 * sub-vendor and sub-device field are extensively used to identify
152 * particular variants, but we don't currently differentiate between
153 * them.
154 */
155static struct fxp_ident fxp_ident_table[] = {
156 { 0x1229, "Intel Pro 10/100B/100+ Ethernet" },
157 { 0x2449, "Intel Pro/100 Ethernet" },
158 { 0x1209, "Intel Embedded 10/100 Ethernet" },
159 { 0x1029, "Intel Pro/100 Ethernet" },
160 { 0x1030, "Intel Pro/100 Ethernet" },
161 { 0x1031, "Intel Pro/100 Ethernet" },
162 { 0x1032, "Intel Pro/100 Ethernet" },
163 { 0x1033, "Intel Pro/100 Ethernet" },
164 { 0x1034, "Intel Pro/100 Ethernet" },
165 { 0x1035, "Intel Pro/100 Ethernet" },
166 { 0x1036, "Intel Pro/100 Ethernet" },
167 { 0x1037, "Intel Pro/100 Ethernet" },
168 { 0x1038, "Intel Pro/100 Ethernet" },
169 { 0x1039, "Intel Pro/100 Ethernet" },
170 { 0x103A, "Intel Pro/100 Ethernet" },
171 { 0x103B, "Intel Pro/100 Ethernet" },
172 { 0x103C, "Intel Pro/100 Ethernet" },
173 { 0x103D, "Intel Pro/100 Ethernet" },
174 { 0x103E, "Intel Pro/100 Ethernet" },
175 { 0x1059, "Intel Pro/100 M Mobile Connection" },
176 { 0, NULL },
177};
178
179#ifdef FXP_IP_CSUM_WAR
180#define FXP_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
181#else
182#define FXP_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
183#endif
184
172static int fxp_probe(device_t dev);
173static int fxp_attach(device_t dev);
174static int fxp_detach(device_t dev);
175static int fxp_shutdown(device_t dev);
176static int fxp_suspend(device_t dev);
177static int fxp_resume(device_t dev);
178
179static void fxp_intr(void *xsc);
180static void fxp_init(void *xsc);
181static void fxp_tick(void *xsc);
182static void fxp_powerstate_d0(device_t dev);
183static void fxp_start(struct ifnet *ifp);
184static void fxp_stop(struct fxp_softc *sc);
185static void fxp_release(struct fxp_softc *sc);
186static int fxp_ioctl(struct ifnet *ifp, u_long command,
187 caddr_t data);
188static void fxp_watchdog(struct ifnet *ifp);
189static int fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
190static int fxp_mc_addrs(struct fxp_softc *sc);
191static void fxp_mc_setup(struct fxp_softc *sc);
192static u_int16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset,
193 int autosize);
194static void fxp_eeprom_putword(struct fxp_softc *sc, int offset,
195 u_int16_t data);
196static void fxp_autosize_eeprom(struct fxp_softc *sc);
197static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
198 int offset, int words);
199static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
200 int offset, int words);
201static int fxp_ifmedia_upd(struct ifnet *ifp);
202static void fxp_ifmedia_sts(struct ifnet *ifp,
203 struct ifmediareq *ifmr);
204static int fxp_serial_ifmedia_upd(struct ifnet *ifp);
205static void fxp_serial_ifmedia_sts(struct ifnet *ifp,
206 struct ifmediareq *ifmr);
207static volatile int fxp_miibus_readreg(device_t dev, int phy, int reg);
208static void fxp_miibus_writereg(device_t dev, int phy, int reg,
209 int value);
210static void fxp_load_ucode(struct fxp_softc *sc);
211static int sysctl_int_range(SYSCTL_HANDLER_ARGS,
212 int low, int high);
213static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
214static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
215static __inline void fxp_lwcopy(volatile u_int32_t *src,
216 volatile u_int32_t *dst);
217static __inline void fxp_scb_wait(struct fxp_softc *sc);
218static __inline void fxp_scb_cmd(struct fxp_softc *sc, int cmd);
219static __inline void fxp_dma_wait(volatile u_int16_t *status,
220 struct fxp_softc *sc);
221
222static device_method_t fxp_methods[] = {
223 /* Device interface */
224 DEVMETHOD(device_probe, fxp_probe),
225 DEVMETHOD(device_attach, fxp_attach),
226 DEVMETHOD(device_detach, fxp_detach),
227 DEVMETHOD(device_shutdown, fxp_shutdown),
228 DEVMETHOD(device_suspend, fxp_suspend),
229 DEVMETHOD(device_resume, fxp_resume),
230
231 /* MII interface */
232 DEVMETHOD(miibus_readreg, fxp_miibus_readreg),
233 DEVMETHOD(miibus_writereg, fxp_miibus_writereg),
234
235 { 0, 0 }
236};
237
238static driver_t fxp_driver = {
239 "fxp",
240 fxp_methods,
241 sizeof(struct fxp_softc),
242};
243
244static devclass_t fxp_devclass;
245
246DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
247DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
248DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
249
250static int fxp_rnr;
251SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
252
253/*
254 * Inline function to copy a 16-bit aligned 32-bit quantity.
255 */
256static __inline void
257fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
258{
259#ifdef __i386__
260 *dst = *src;
261#else
262 volatile u_int16_t *a = (volatile u_int16_t *)src;
263 volatile u_int16_t *b = (volatile u_int16_t *)dst;
264
265 b[0] = a[0];
266 b[1] = a[1];
267#endif
268}
269
270/*
271 * Wait for the previous command to be accepted (but not necessarily
272 * completed).
273 */
274static __inline void
275fxp_scb_wait(struct fxp_softc *sc)
276{
277 int i = 10000;
278
279 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
280 DELAY(2);
281 if (i == 0)
282 device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
283 CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
284 CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
285 CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
286 CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
287}
288
289static __inline void
290fxp_scb_cmd(struct fxp_softc *sc, int cmd)
291{
292
293 if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
294 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
295 fxp_scb_wait(sc);
296 }
297 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
298}
299
300static __inline void
301fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
302{
303 int i = 10000;
304
305 while (!(*status & FXP_CB_STATUS_C) && --i)
306 DELAY(2);
307 if (i == 0)
308 device_printf(sc->dev, "DMA timeout\n");
309}
310
311/*
312 * Return identification string if this is device is ours.
313 */
314static int
315fxp_probe(device_t dev)
316{
317 u_int16_t devid;
318 struct fxp_ident *ident;
319
320 if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
321 devid = pci_get_device(dev);
322 for (ident = fxp_ident_table; ident->name != NULL; ident++) {
323 if (ident->devid == devid) {
324 device_set_desc(dev, ident->name);
325 return (0);
326 }
327 }
328 }
329 return (ENXIO);
330}
331
332static void
333fxp_powerstate_d0(device_t dev)
334{
335#if __FreeBSD_version >= 430002
336 u_int32_t iobase, membase, irq;
337
338 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
339 /* Save important PCI config data. */
340 iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
341 membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
342 irq = pci_read_config(dev, PCIR_INTLINE, 4);
343
344 /* Reset the power state. */
345 device_printf(dev, "chip is in D%d power mode "
346 "-- setting to D0\n", pci_get_powerstate(dev));
347
348 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
349
350 /* Restore PCI config data. */
351 pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
352 pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
353 pci_write_config(dev, PCIR_INTLINE, irq, 4);
354 }
355#endif
356}
357
358static int
359fxp_attach(device_t dev)
360{
361 int error = 0;
362 struct fxp_softc *sc = device_get_softc(dev);
363 struct ifnet *ifp;
364 u_int32_t val;
365 u_int16_t data;
366 int i, rid, m1, m2, prefer_iomap;
367 int s;
368
369 bzero(sc, sizeof(*sc));
370 sc->dev = dev;
371 callout_handle_init(&sc->stat_ch);
372 sysctl_ctx_init(&sc->sysctl_ctx);
373 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
374 MTX_DEF | MTX_RECURSE);
375
376 s = splimp();
377
378 /*
379 * Enable bus mastering. Enable memory space too, in case
380 * BIOS/Prom forgot about it.
381 */
382 val = pci_read_config(dev, PCIR_COMMAND, 2);
383 val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
384 pci_write_config(dev, PCIR_COMMAND, val, 2);
385 val = pci_read_config(dev, PCIR_COMMAND, 2);
386
387 fxp_powerstate_d0(dev);
388
389 /*
390 * Figure out which we should try first - memory mapping or i/o mapping?
391 * We default to memory mapping. Then we accept an override from the
392 * command line. Then we check to see which one is enabled.
393 */
394 m1 = PCIM_CMD_MEMEN;
395 m2 = PCIM_CMD_PORTEN;
396 prefer_iomap = 0;
397 if (resource_int_value(device_get_name(dev), device_get_unit(dev),
398 "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
399 m1 = PCIM_CMD_PORTEN;
400 m2 = PCIM_CMD_MEMEN;
401 }
402
403 if (val & m1) {
404 sc->rtp =
405 (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
406 sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
407 sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
408 0, ~0, 1, RF_ACTIVE);
409 }
410 if (sc->mem == NULL && (val & m2)) {
411 sc->rtp =
412 (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
413 sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
414 sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
415 0, ~0, 1, RF_ACTIVE);
416 }
417
418 if (!sc->mem) {
419 device_printf(dev, "could not map device registers\n");
420 error = ENXIO;
421 goto fail;
422 }
423 if (bootverbose) {
424 device_printf(dev, "using %s space register mapping\n",
425 sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
426 }
427
428 sc->sc_st = rman_get_bustag(sc->mem);
429 sc->sc_sh = rman_get_bushandle(sc->mem);
430
431 /*
432 * Allocate our interrupt.
433 */
434 rid = 0;
435 sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
436 RF_SHAREABLE | RF_ACTIVE);
437 if (sc->irq == NULL) {
438 device_printf(dev, "could not map interrupt\n");
439 error = ENXIO;
440 goto fail;
441 }
442
443 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
444 fxp_intr, sc, &sc->ih);
445 if (error) {
446 device_printf(dev, "could not setup irq\n");
447 goto fail;
448 }
449
450 /*
451 * Reset to a stable state.
452 */
453 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
454 DELAY(10);
455
456 sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
457 M_DEVBUF, M_NOWAIT | M_ZERO);
458 if (sc->cbl_base == NULL)
459 goto failmem;
460
461 sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
462 M_NOWAIT | M_ZERO);
463 if (sc->fxp_stats == NULL)
464 goto failmem;
465
466 sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
467 if (sc->mcsp == NULL)
468 goto failmem;
469
470 /*
471 * Pre-allocate our receive buffers.
472 */
473 for (i = 0; i < FXP_NRFABUFS; i++) {
474 if (fxp_add_rfabuf(sc, NULL) != 0) {
475 goto failmem;
476 }
477 }
478
479 /*
480 * Find out how large of an SEEPROM we have.
481 */
482 fxp_autosize_eeprom(sc);
483
484 /*
485 * Determine whether we must use the 503 serial interface.
486 */
487 fxp_read_eeprom(sc, &data, 6, 1);
488 if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
489 (data & FXP_PHY_SERIAL_ONLY))
490 sc->flags |= FXP_FLAG_SERIAL_MEDIA;
491
492 /*
493 * Create the sysctl tree
494 */
495 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
496 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
497 device_get_nameunit(dev), CTLFLAG_RD, 0, "");
498 if (sc->sysctl_tree == NULL)
499 goto fail;
500 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
501 OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
502 &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
503 "FXP driver receive interrupt microcode bundling delay");
504 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
505 OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
506 &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
507 "FXP driver receive interrupt microcode bundle size limit");
508
509 /*
510 * Pull in device tunables.
511 */
512 sc->tunable_int_delay = TUNABLE_INT_DELAY;
513 sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
514 (void) resource_int_value(device_get_name(dev), device_get_unit(dev),
515 "int_delay", &sc->tunable_int_delay);
516 (void) resource_int_value(device_get_name(dev), device_get_unit(dev),
517 "bundle_max", &sc->tunable_bundle_max);
518
519 /*
520 * Find out the chip revision; lump all 82557 revs together.
521 */
522 fxp_read_eeprom(sc, &data, 5, 1);
523 if ((data >> 8) == 1)
524 sc->revision = FXP_REV_82557;
525 else
526 sc->revision = pci_get_revid(dev);
527
528 /*
529 * Enable workarounds for certain chip revision deficiencies.
530 *
531 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
532 * some systems based a normal 82559 design, have a defect where
533 * the chip can cause a PCI protocol violation if it receives
534 * a CU_RESUME command when it is entering the IDLE state. The
535 * workaround is to disable Dynamic Standby Mode, so the chip never
536 * deasserts CLKRUN#, and always remains in an active state.
537 *
538 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
539 */
540 i = pci_get_device(dev);
541 if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
542 sc->revision >= FXP_REV_82559_A0) {
543 fxp_read_eeprom(sc, &data, 10, 1);
544 if (data & 0x02) { /* STB enable */
545 u_int16_t cksum;
546 int i;
547
548 device_printf(dev,
549 "Disabling dynamic standby mode in EEPROM\n");
550 data &= ~0x02;
551 fxp_write_eeprom(sc, &data, 10, 1);
552 device_printf(dev, "New EEPROM ID: 0x%x\n", data);
553 cksum = 0;
554 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
555 fxp_read_eeprom(sc, &data, i, 1);
556 cksum += data;
557 }
558 i = (1 << sc->eeprom_size) - 1;
559 cksum = 0xBABA - cksum;
560 fxp_read_eeprom(sc, &data, i, 1);
561 fxp_write_eeprom(sc, &cksum, i, 1);
562 device_printf(dev,
563 "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
564 i, data, cksum);
565#if 1
566 /*
567 * If the user elects to continue, try the software
568 * workaround, as it is better than nothing.
569 */
570 sc->flags |= FXP_FLAG_CU_RESUME_BUG;
571#endif
572 }
573 }
574
575 /*
576 * If we are not a 82557 chip, we can enable extended features.
577 */
578 if (sc->revision != FXP_REV_82557) {
579 /*
580 * If MWI is enabled in the PCI configuration, and there
581 * is a valid cacheline size (8 or 16 dwords), then tell
582 * the board to turn on MWI.
583 */
584 if (val & PCIM_CMD_MWRICEN &&
585 pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
586 sc->flags |= FXP_FLAG_MWI_ENABLE;
587
588 /* turn on the extended TxCB feature */
589 sc->flags |= FXP_FLAG_EXT_TXCB;
590
591 /* enable reception of long frames for VLAN */
592 sc->flags |= FXP_FLAG_LONG_PKT_EN;
593 }
594
595 /*
185static int fxp_probe(device_t dev);
186static int fxp_attach(device_t dev);
187static int fxp_detach(device_t dev);
188static int fxp_shutdown(device_t dev);
189static int fxp_suspend(device_t dev);
190static int fxp_resume(device_t dev);
191
192static void fxp_intr(void *xsc);
193static void fxp_init(void *xsc);
194static void fxp_tick(void *xsc);
195static void fxp_powerstate_d0(device_t dev);
196static void fxp_start(struct ifnet *ifp);
197static void fxp_stop(struct fxp_softc *sc);
198static void fxp_release(struct fxp_softc *sc);
199static int fxp_ioctl(struct ifnet *ifp, u_long command,
200 caddr_t data);
201static void fxp_watchdog(struct ifnet *ifp);
202static int fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
203static int fxp_mc_addrs(struct fxp_softc *sc);
204static void fxp_mc_setup(struct fxp_softc *sc);
205static u_int16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset,
206 int autosize);
207static void fxp_eeprom_putword(struct fxp_softc *sc, int offset,
208 u_int16_t data);
209static void fxp_autosize_eeprom(struct fxp_softc *sc);
210static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
211 int offset, int words);
212static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
213 int offset, int words);
214static int fxp_ifmedia_upd(struct ifnet *ifp);
215static void fxp_ifmedia_sts(struct ifnet *ifp,
216 struct ifmediareq *ifmr);
217static int fxp_serial_ifmedia_upd(struct ifnet *ifp);
218static void fxp_serial_ifmedia_sts(struct ifnet *ifp,
219 struct ifmediareq *ifmr);
220static volatile int fxp_miibus_readreg(device_t dev, int phy, int reg);
221static void fxp_miibus_writereg(device_t dev, int phy, int reg,
222 int value);
223static void fxp_load_ucode(struct fxp_softc *sc);
224static int sysctl_int_range(SYSCTL_HANDLER_ARGS,
225 int low, int high);
226static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
227static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
228static __inline void fxp_lwcopy(volatile u_int32_t *src,
229 volatile u_int32_t *dst);
230static __inline void fxp_scb_wait(struct fxp_softc *sc);
231static __inline void fxp_scb_cmd(struct fxp_softc *sc, int cmd);
232static __inline void fxp_dma_wait(volatile u_int16_t *status,
233 struct fxp_softc *sc);
234
235static device_method_t fxp_methods[] = {
236 /* Device interface */
237 DEVMETHOD(device_probe, fxp_probe),
238 DEVMETHOD(device_attach, fxp_attach),
239 DEVMETHOD(device_detach, fxp_detach),
240 DEVMETHOD(device_shutdown, fxp_shutdown),
241 DEVMETHOD(device_suspend, fxp_suspend),
242 DEVMETHOD(device_resume, fxp_resume),
243
244 /* MII interface */
245 DEVMETHOD(miibus_readreg, fxp_miibus_readreg),
246 DEVMETHOD(miibus_writereg, fxp_miibus_writereg),
247
248 { 0, 0 }
249};
250
251static driver_t fxp_driver = {
252 "fxp",
253 fxp_methods,
254 sizeof(struct fxp_softc),
255};
256
257static devclass_t fxp_devclass;
258
259DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
260DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
261DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
262
263static int fxp_rnr;
264SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
265
266/*
267 * Inline function to copy a 16-bit aligned 32-bit quantity.
268 */
269static __inline void
270fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
271{
272#ifdef __i386__
273 *dst = *src;
274#else
275 volatile u_int16_t *a = (volatile u_int16_t *)src;
276 volatile u_int16_t *b = (volatile u_int16_t *)dst;
277
278 b[0] = a[0];
279 b[1] = a[1];
280#endif
281}
282
283/*
284 * Wait for the previous command to be accepted (but not necessarily
285 * completed).
286 */
287static __inline void
288fxp_scb_wait(struct fxp_softc *sc)
289{
290 int i = 10000;
291
292 while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
293 DELAY(2);
294 if (i == 0)
295 device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
296 CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
297 CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
298 CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
299 CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
300}
301
302static __inline void
303fxp_scb_cmd(struct fxp_softc *sc, int cmd)
304{
305
306 if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
307 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
308 fxp_scb_wait(sc);
309 }
310 CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
311}
312
313static __inline void
314fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
315{
316 int i = 10000;
317
318 while (!(*status & FXP_CB_STATUS_C) && --i)
319 DELAY(2);
320 if (i == 0)
321 device_printf(sc->dev, "DMA timeout\n");
322}
323
324/*
325 * Return identification string if this is device is ours.
326 */
327static int
328fxp_probe(device_t dev)
329{
330 u_int16_t devid;
331 struct fxp_ident *ident;
332
333 if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
334 devid = pci_get_device(dev);
335 for (ident = fxp_ident_table; ident->name != NULL; ident++) {
336 if (ident->devid == devid) {
337 device_set_desc(dev, ident->name);
338 return (0);
339 }
340 }
341 }
342 return (ENXIO);
343}
344
345static void
346fxp_powerstate_d0(device_t dev)
347{
348#if __FreeBSD_version >= 430002
349 u_int32_t iobase, membase, irq;
350
351 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
352 /* Save important PCI config data. */
353 iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
354 membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
355 irq = pci_read_config(dev, PCIR_INTLINE, 4);
356
357 /* Reset the power state. */
358 device_printf(dev, "chip is in D%d power mode "
359 "-- setting to D0\n", pci_get_powerstate(dev));
360
361 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
362
363 /* Restore PCI config data. */
364 pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
365 pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
366 pci_write_config(dev, PCIR_INTLINE, irq, 4);
367 }
368#endif
369}
370
371static int
372fxp_attach(device_t dev)
373{
374 int error = 0;
375 struct fxp_softc *sc = device_get_softc(dev);
376 struct ifnet *ifp;
377 u_int32_t val;
378 u_int16_t data;
379 int i, rid, m1, m2, prefer_iomap;
380 int s;
381
382 bzero(sc, sizeof(*sc));
383 sc->dev = dev;
384 callout_handle_init(&sc->stat_ch);
385 sysctl_ctx_init(&sc->sysctl_ctx);
386 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
387 MTX_DEF | MTX_RECURSE);
388
389 s = splimp();
390
391 /*
392 * Enable bus mastering. Enable memory space too, in case
393 * BIOS/Prom forgot about it.
394 */
395 val = pci_read_config(dev, PCIR_COMMAND, 2);
396 val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
397 pci_write_config(dev, PCIR_COMMAND, val, 2);
398 val = pci_read_config(dev, PCIR_COMMAND, 2);
399
400 fxp_powerstate_d0(dev);
401
402 /*
403 * Figure out which we should try first - memory mapping or i/o mapping?
404 * We default to memory mapping. Then we accept an override from the
405 * command line. Then we check to see which one is enabled.
406 */
407 m1 = PCIM_CMD_MEMEN;
408 m2 = PCIM_CMD_PORTEN;
409 prefer_iomap = 0;
410 if (resource_int_value(device_get_name(dev), device_get_unit(dev),
411 "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
412 m1 = PCIM_CMD_PORTEN;
413 m2 = PCIM_CMD_MEMEN;
414 }
415
416 if (val & m1) {
417 sc->rtp =
418 (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
419 sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
420 sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
421 0, ~0, 1, RF_ACTIVE);
422 }
423 if (sc->mem == NULL && (val & m2)) {
424 sc->rtp =
425 (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
426 sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
427 sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
428 0, ~0, 1, RF_ACTIVE);
429 }
430
431 if (!sc->mem) {
432 device_printf(dev, "could not map device registers\n");
433 error = ENXIO;
434 goto fail;
435 }
436 if (bootverbose) {
437 device_printf(dev, "using %s space register mapping\n",
438 sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
439 }
440
441 sc->sc_st = rman_get_bustag(sc->mem);
442 sc->sc_sh = rman_get_bushandle(sc->mem);
443
444 /*
445 * Allocate our interrupt.
446 */
447 rid = 0;
448 sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
449 RF_SHAREABLE | RF_ACTIVE);
450 if (sc->irq == NULL) {
451 device_printf(dev, "could not map interrupt\n");
452 error = ENXIO;
453 goto fail;
454 }
455
456 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
457 fxp_intr, sc, &sc->ih);
458 if (error) {
459 device_printf(dev, "could not setup irq\n");
460 goto fail;
461 }
462
463 /*
464 * Reset to a stable state.
465 */
466 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
467 DELAY(10);
468
469 sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
470 M_DEVBUF, M_NOWAIT | M_ZERO);
471 if (sc->cbl_base == NULL)
472 goto failmem;
473
474 sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
475 M_NOWAIT | M_ZERO);
476 if (sc->fxp_stats == NULL)
477 goto failmem;
478
479 sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
480 if (sc->mcsp == NULL)
481 goto failmem;
482
483 /*
484 * Pre-allocate our receive buffers.
485 */
486 for (i = 0; i < FXP_NRFABUFS; i++) {
487 if (fxp_add_rfabuf(sc, NULL) != 0) {
488 goto failmem;
489 }
490 }
491
492 /*
493 * Find out how large of an SEEPROM we have.
494 */
495 fxp_autosize_eeprom(sc);
496
497 /*
498 * Determine whether we must use the 503 serial interface.
499 */
500 fxp_read_eeprom(sc, &data, 6, 1);
501 if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
502 (data & FXP_PHY_SERIAL_ONLY))
503 sc->flags |= FXP_FLAG_SERIAL_MEDIA;
504
505 /*
506 * Create the sysctl tree
507 */
508 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
509 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
510 device_get_nameunit(dev), CTLFLAG_RD, 0, "");
511 if (sc->sysctl_tree == NULL)
512 goto fail;
513 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
514 OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
515 &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
516 "FXP driver receive interrupt microcode bundling delay");
517 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
518 OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
519 &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
520 "FXP driver receive interrupt microcode bundle size limit");
521
522 /*
523 * Pull in device tunables.
524 */
525 sc->tunable_int_delay = TUNABLE_INT_DELAY;
526 sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
527 (void) resource_int_value(device_get_name(dev), device_get_unit(dev),
528 "int_delay", &sc->tunable_int_delay);
529 (void) resource_int_value(device_get_name(dev), device_get_unit(dev),
530 "bundle_max", &sc->tunable_bundle_max);
531
532 /*
533 * Find out the chip revision; lump all 82557 revs together.
534 */
535 fxp_read_eeprom(sc, &data, 5, 1);
536 if ((data >> 8) == 1)
537 sc->revision = FXP_REV_82557;
538 else
539 sc->revision = pci_get_revid(dev);
540
541 /*
542 * Enable workarounds for certain chip revision deficiencies.
543 *
544 * Systems based on the ICH2/ICH2-M chip from Intel, and possibly
545 * some systems based a normal 82559 design, have a defect where
546 * the chip can cause a PCI protocol violation if it receives
547 * a CU_RESUME command when it is entering the IDLE state. The
548 * workaround is to disable Dynamic Standby Mode, so the chip never
549 * deasserts CLKRUN#, and always remains in an active state.
550 *
551 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
552 */
553 i = pci_get_device(dev);
554 if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
555 sc->revision >= FXP_REV_82559_A0) {
556 fxp_read_eeprom(sc, &data, 10, 1);
557 if (data & 0x02) { /* STB enable */
558 u_int16_t cksum;
559 int i;
560
561 device_printf(dev,
562 "Disabling dynamic standby mode in EEPROM\n");
563 data &= ~0x02;
564 fxp_write_eeprom(sc, &data, 10, 1);
565 device_printf(dev, "New EEPROM ID: 0x%x\n", data);
566 cksum = 0;
567 for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
568 fxp_read_eeprom(sc, &data, i, 1);
569 cksum += data;
570 }
571 i = (1 << sc->eeprom_size) - 1;
572 cksum = 0xBABA - cksum;
573 fxp_read_eeprom(sc, &data, i, 1);
574 fxp_write_eeprom(sc, &cksum, i, 1);
575 device_printf(dev,
576 "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
577 i, data, cksum);
578#if 1
579 /*
580 * If the user elects to continue, try the software
581 * workaround, as it is better than nothing.
582 */
583 sc->flags |= FXP_FLAG_CU_RESUME_BUG;
584#endif
585 }
586 }
587
588 /*
589 * If we are not a 82557 chip, we can enable extended features.
590 */
591 if (sc->revision != FXP_REV_82557) {
592 /*
593 * If MWI is enabled in the PCI configuration, and there
594 * is a valid cacheline size (8 or 16 dwords), then tell
595 * the board to turn on MWI.
596 */
597 if (val & PCIM_CMD_MWRICEN &&
598 pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
599 sc->flags |= FXP_FLAG_MWI_ENABLE;
600
601 /* turn on the extended TxCB feature */
602 sc->flags |= FXP_FLAG_EXT_TXCB;
603
604 /* enable reception of long frames for VLAN */
605 sc->flags |= FXP_FLAG_LONG_PKT_EN;
606 }
607
608 /*
609 * Enable use of extended RFDs and TCBs for 82550
610 * and later chips. Note: we need extended TXCB support
611 * too, but that's already enabled by the code above.
612 * Be careful to do this only on the right devices.
613 */
614
615 if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C) {
616 sc->rfa_size = sizeof (struct fxp_rfa);
617 sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
618 sc->flags |= FXP_FLAG_EXT_RFA;
619 } else {
620 sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
621 sc->tx_cmd = FXP_CB_COMMAND_XMIT;
622 }
623
624 /*
596 * Read MAC address.
597 */
598 fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
599 device_printf(dev, "Ethernet address %6D%s\n",
600 sc->arpcom.ac_enaddr, ":",
601 sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
602 if (bootverbose) {
603 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
604 pci_get_vendor(dev), pci_get_device(dev),
605 pci_get_subvendor(dev), pci_get_subdevice(dev),
606 pci_get_revid(dev));
607 fxp_read_eeprom(sc, &data, 10, 1);
608 device_printf(dev, "Dynamic Standby mode is %s\n",
609 data & 0x02 ? "enabled" : "disabled");
610 }
611
612 /*
613 * If this is only a 10Mbps device, then there is no MII, and
614 * the PHY will use a serial interface instead.
615 *
616 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
617 * doesn't have a programming interface of any sort. The
618 * media is sensed automatically based on how the link partner
619 * is configured. This is, in essence, manual configuration.
620 */
621 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
622 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
623 fxp_serial_ifmedia_sts);
624 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
625 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
626 } else {
627 if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
628 fxp_ifmedia_sts)) {
629 device_printf(dev, "MII without any PHY!\n");
630 error = ENXIO;
631 goto fail;
632 }
633 }
634
635 ifp = &sc->arpcom.ac_if;
636 ifp->if_unit = device_get_unit(dev);
637 ifp->if_name = "fxp";
638 ifp->if_output = ether_output;
639 ifp->if_baudrate = 100000000;
640 ifp->if_init = fxp_init;
641 ifp->if_softc = sc;
642 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
643 ifp->if_ioctl = fxp_ioctl;
644 ifp->if_start = fxp_start;
645 ifp->if_watchdog = fxp_watchdog;
646
625 * Read MAC address.
626 */
627 fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
628 device_printf(dev, "Ethernet address %6D%s\n",
629 sc->arpcom.ac_enaddr, ":",
630 sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
631 if (bootverbose) {
632 device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
633 pci_get_vendor(dev), pci_get_device(dev),
634 pci_get_subvendor(dev), pci_get_subdevice(dev),
635 pci_get_revid(dev));
636 fxp_read_eeprom(sc, &data, 10, 1);
637 device_printf(dev, "Dynamic Standby mode is %s\n",
638 data & 0x02 ? "enabled" : "disabled");
639 }
640
641 /*
642 * If this is only a 10Mbps device, then there is no MII, and
643 * the PHY will use a serial interface instead.
644 *
645 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
646 * doesn't have a programming interface of any sort. The
647 * media is sensed automatically based on how the link partner
648 * is configured. This is, in essence, manual configuration.
649 */
650 if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
651 ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
652 fxp_serial_ifmedia_sts);
653 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
654 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
655 } else {
656 if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
657 fxp_ifmedia_sts)) {
658 device_printf(dev, "MII without any PHY!\n");
659 error = ENXIO;
660 goto fail;
661 }
662 }
663
664 ifp = &sc->arpcom.ac_if;
665 ifp->if_unit = device_get_unit(dev);
666 ifp->if_name = "fxp";
667 ifp->if_output = ether_output;
668 ifp->if_baudrate = 100000000;
669 ifp->if_init = fxp_init;
670 ifp->if_softc = sc;
671 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
672 ifp->if_ioctl = fxp_ioctl;
673 ifp->if_start = fxp_start;
674 ifp->if_watchdog = fxp_watchdog;
675
676 /* Enable checksum offload for 82550 or better chips */
677
678 if (sc->flags & FXP_FLAG_EXT_RFA) {
679 ifp->if_hwassist = FXP_CSUM_FEATURES;
680 ifp->if_capabilities = IFCAP_HWCSUM;
681 }
682
647 /*
648 * Attach the interface.
649 */
650 ether_ifattach(ifp, sc->arpcom.ac_enaddr);
651
652 /*
653 * Tell the upper layer(s) we support long frames.
654 */
655 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
656 ifp->if_capabilities |= IFCAP_VLAN_MTU;
657
658 /*
659 * Let the system queue as many packets as we have available
660 * TX descriptors.
661 */
662 ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
663
664 splx(s);
665 return (0);
666
667failmem:
668 device_printf(dev, "Failed to malloc memory\n");
669 error = ENOMEM;
670fail:
671 splx(s);
672 fxp_release(sc);
673 return (error);
674}
675
676/*
677 * release all resources
678 */
679static void
680fxp_release(struct fxp_softc *sc)
681{
682
683 bus_generic_detach(sc->dev);
684 if (sc->miibus)
685 device_delete_child(sc->dev, sc->miibus);
686
687 if (sc->cbl_base)
688 free(sc->cbl_base, M_DEVBUF);
689 if (sc->fxp_stats)
690 free(sc->fxp_stats, M_DEVBUF);
691 if (sc->mcsp)
692 free(sc->mcsp, M_DEVBUF);
693 if (sc->rfa_headm)
694 m_freem(sc->rfa_headm);
695
696 if (sc->ih)
697 bus_teardown_intr(sc->dev, sc->irq, sc->ih);
698 if (sc->irq)
699 bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
700 if (sc->mem)
701 bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
702
703 sysctl_ctx_free(&sc->sysctl_ctx);
704
705 mtx_destroy(&sc->sc_mtx);
706}
707
708/*
709 * Detach interface.
710 */
711static int
712fxp_detach(device_t dev)
713{
714 struct fxp_softc *sc = device_get_softc(dev);
715 int s;
716
717 /* disable interrupts */
718 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
719
720 s = splimp();
721
722 /*
723 * Stop DMA and drop transmit queue.
724 */
725 fxp_stop(sc);
726
727 /*
728 * Close down routes etc.
729 */
730 ether_ifdetach(&sc->arpcom.ac_if);
731
732 /*
733 * Free all media structures.
734 */
735 ifmedia_removeall(&sc->sc_media);
736
737 splx(s);
738
739 /* Release our allocated resources. */
740 fxp_release(sc);
741
742 return (0);
743}
744
745/*
746 * Device shutdown routine. Called at system shutdown after sync. The
747 * main purpose of this routine is to shut off receiver DMA so that
748 * kernel memory doesn't get clobbered during warmboot.
749 */
750static int
751fxp_shutdown(device_t dev)
752{
753 /*
754 * Make sure that DMA is disabled prior to reboot. Not doing
755 * do could allow DMA to corrupt kernel memory during the
756 * reboot before the driver initializes.
757 */
758 fxp_stop((struct fxp_softc *) device_get_softc(dev));
759 return (0);
760}
761
762/*
763 * Device suspend routine. Stop the interface and save some PCI
764 * settings in case the BIOS doesn't restore them properly on
765 * resume.
766 */
767static int
768fxp_suspend(device_t dev)
769{
770 struct fxp_softc *sc = device_get_softc(dev);
771 int i, s;
772
773 s = splimp();
774
775 fxp_stop(sc);
776
777 for (i = 0; i < 5; i++)
778 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
779 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
780 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
781 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
782 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
783
784 sc->suspended = 1;
785
786 splx(s);
787 return (0);
788}
789
790/*
791 * Device resume routine. Restore some PCI settings in case the BIOS
792 * doesn't, re-enable busmastering, and restart the interface if
793 * appropriate.
794 */
795static int
796fxp_resume(device_t dev)
797{
798 struct fxp_softc *sc = device_get_softc(dev);
799 struct ifnet *ifp = &sc->sc_if;
800 u_int16_t pci_command;
801 int i, s;
802
803 s = splimp();
804
805 fxp_powerstate_d0(dev);
806
807 /* better way to do this? */
808 for (i = 0; i < 5; i++)
809 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
810 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
811 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
812 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
813 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
814
815 /* reenable busmastering */
816 pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
817 pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
818 pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
819
820 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
821 DELAY(10);
822
823 /* reinitialize interface if necessary */
824 if (ifp->if_flags & IFF_UP)
825 fxp_init(sc);
826
827 sc->suspended = 0;
828
829 splx(s);
830 return (0);
831}
832
833static void
834fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
835{
836 u_int16_t reg;
837 int x;
838
839 /*
840 * Shift in data.
841 */
842 for (x = 1 << (length - 1); x; x >>= 1) {
843 if (data & x)
844 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
845 else
846 reg = FXP_EEPROM_EECS;
847 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
848 DELAY(1);
849 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
850 DELAY(1);
851 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
852 DELAY(1);
853 }
854}
855
856/*
857 * Read from the serial EEPROM. Basically, you manually shift in
858 * the read opcode (one bit at a time) and then shift in the address,
859 * and then you shift out the data (all of this one bit at a time).
860 * The word size is 16 bits, so you have to provide the address for
861 * every 16 bits of data.
862 */
863static u_int16_t
864fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
865{
866 u_int16_t reg, data;
867 int x;
868
869 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
870 /*
871 * Shift in read opcode.
872 */
873 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
874 /*
875 * Shift in address.
876 */
877 data = 0;
878 for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
879 if (offset & x)
880 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
881 else
882 reg = FXP_EEPROM_EECS;
883 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
884 DELAY(1);
885 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
886 DELAY(1);
887 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
888 DELAY(1);
889 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
890 data++;
891 if (autosize && reg == 0) {
892 sc->eeprom_size = data;
893 break;
894 }
895 }
896 /*
897 * Shift out data.
898 */
899 data = 0;
900 reg = FXP_EEPROM_EECS;
901 for (x = 1 << 15; x; x >>= 1) {
902 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
903 DELAY(1);
904 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
905 data |= x;
906 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
907 DELAY(1);
908 }
909 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
910 DELAY(1);
911
912 return (data);
913}
914
915static void
916fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
917{
918 int i;
919
920 /*
921 * Erase/write enable.
922 */
923 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
924 fxp_eeprom_shiftin(sc, 0x4, 3);
925 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
926 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
927 DELAY(1);
928 /*
929 * Shift in write opcode, address, data.
930 */
931 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
932 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
933 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
934 fxp_eeprom_shiftin(sc, data, 16);
935 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
936 DELAY(1);
937 /*
938 * Wait for EEPROM to finish up.
939 */
940 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
941 DELAY(1);
942 for (i = 0; i < 1000; i++) {
943 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
944 break;
945 DELAY(50);
946 }
947 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
948 DELAY(1);
949 /*
950 * Erase/write disable.
951 */
952 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
953 fxp_eeprom_shiftin(sc, 0x4, 3);
954 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
955 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
956 DELAY(1);
957}
958
959/*
960 * From NetBSD:
961 *
962 * Figure out EEPROM size.
963 *
964 * 559's can have either 64-word or 256-word EEPROMs, the 558
965 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
966 * talks about the existance of 16 to 256 word EEPROMs.
967 *
968 * The only known sizes are 64 and 256, where the 256 version is used
969 * by CardBus cards to store CIS information.
970 *
971 * The address is shifted in msb-to-lsb, and after the last
972 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
973 * after which follows the actual data. We try to detect this zero, by
974 * probing the data-out bit in the EEPROM control register just after
975 * having shifted in a bit. If the bit is zero, we assume we've
976 * shifted enough address bits. The data-out should be tri-state,
977 * before this, which should translate to a logical one.
978 */
979static void
980fxp_autosize_eeprom(struct fxp_softc *sc)
981{
982
983 /* guess maximum size of 256 words */
984 sc->eeprom_size = 8;
985
986 /* autosize */
987 (void) fxp_eeprom_getword(sc, 0, 1);
988}
989
990static void
991fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
992{
993 int i;
994
995 for (i = 0; i < words; i++)
996 data[i] = fxp_eeprom_getword(sc, offset + i, 0);
997}
998
999static void
1000fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1001{
1002 int i;
1003
1004 for (i = 0; i < words; i++)
1005 fxp_eeprom_putword(sc, offset + i, data[i]);
1006}
1007
1008/*
1009 * Start packet transmission on the interface.
1010 */
1011static void
1012fxp_start(struct ifnet *ifp)
1013{
1014 struct fxp_softc *sc = ifp->if_softc;
1015 struct fxp_cb_tx *txp;
683 /*
684 * Attach the interface.
685 */
686 ether_ifattach(ifp, sc->arpcom.ac_enaddr);
687
688 /*
689 * Tell the upper layer(s) we support long frames.
690 */
691 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
692 ifp->if_capabilities |= IFCAP_VLAN_MTU;
693
694 /*
695 * Let the system queue as many packets as we have available
696 * TX descriptors.
697 */
698 ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
699
700 splx(s);
701 return (0);
702
703failmem:
704 device_printf(dev, "Failed to malloc memory\n");
705 error = ENOMEM;
706fail:
707 splx(s);
708 fxp_release(sc);
709 return (error);
710}
711
712/*
713 * release all resources
714 */
715static void
716fxp_release(struct fxp_softc *sc)
717{
718
719 bus_generic_detach(sc->dev);
720 if (sc->miibus)
721 device_delete_child(sc->dev, sc->miibus);
722
723 if (sc->cbl_base)
724 free(sc->cbl_base, M_DEVBUF);
725 if (sc->fxp_stats)
726 free(sc->fxp_stats, M_DEVBUF);
727 if (sc->mcsp)
728 free(sc->mcsp, M_DEVBUF);
729 if (sc->rfa_headm)
730 m_freem(sc->rfa_headm);
731
732 if (sc->ih)
733 bus_teardown_intr(sc->dev, sc->irq, sc->ih);
734 if (sc->irq)
735 bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
736 if (sc->mem)
737 bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
738
739 sysctl_ctx_free(&sc->sysctl_ctx);
740
741 mtx_destroy(&sc->sc_mtx);
742}
743
744/*
745 * Detach interface.
746 */
747static int
748fxp_detach(device_t dev)
749{
750 struct fxp_softc *sc = device_get_softc(dev);
751 int s;
752
753 /* disable interrupts */
754 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
755
756 s = splimp();
757
758 /*
759 * Stop DMA and drop transmit queue.
760 */
761 fxp_stop(sc);
762
763 /*
764 * Close down routes etc.
765 */
766 ether_ifdetach(&sc->arpcom.ac_if);
767
768 /*
769 * Free all media structures.
770 */
771 ifmedia_removeall(&sc->sc_media);
772
773 splx(s);
774
775 /* Release our allocated resources. */
776 fxp_release(sc);
777
778 return (0);
779}
780
781/*
782 * Device shutdown routine. Called at system shutdown after sync. The
783 * main purpose of this routine is to shut off receiver DMA so that
784 * kernel memory doesn't get clobbered during warmboot.
785 */
786static int
787fxp_shutdown(device_t dev)
788{
789 /*
790 * Make sure that DMA is disabled prior to reboot. Not doing
791 * do could allow DMA to corrupt kernel memory during the
792 * reboot before the driver initializes.
793 */
794 fxp_stop((struct fxp_softc *) device_get_softc(dev));
795 return (0);
796}
797
798/*
799 * Device suspend routine. Stop the interface and save some PCI
800 * settings in case the BIOS doesn't restore them properly on
801 * resume.
802 */
803static int
804fxp_suspend(device_t dev)
805{
806 struct fxp_softc *sc = device_get_softc(dev);
807 int i, s;
808
809 s = splimp();
810
811 fxp_stop(sc);
812
813 for (i = 0; i < 5; i++)
814 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
815 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
816 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
817 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
818 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
819
820 sc->suspended = 1;
821
822 splx(s);
823 return (0);
824}
825
826/*
827 * Device resume routine. Restore some PCI settings in case the BIOS
828 * doesn't, re-enable busmastering, and restart the interface if
829 * appropriate.
830 */
831static int
832fxp_resume(device_t dev)
833{
834 struct fxp_softc *sc = device_get_softc(dev);
835 struct ifnet *ifp = &sc->sc_if;
836 u_int16_t pci_command;
837 int i, s;
838
839 s = splimp();
840
841 fxp_powerstate_d0(dev);
842
843 /* better way to do this? */
844 for (i = 0; i < 5; i++)
845 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
846 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
847 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
848 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
849 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
850
851 /* reenable busmastering */
852 pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
853 pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
854 pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
855
856 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
857 DELAY(10);
858
859 /* reinitialize interface if necessary */
860 if (ifp->if_flags & IFF_UP)
861 fxp_init(sc);
862
863 sc->suspended = 0;
864
865 splx(s);
866 return (0);
867}
868
869static void
870fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
871{
872 u_int16_t reg;
873 int x;
874
875 /*
876 * Shift in data.
877 */
878 for (x = 1 << (length - 1); x; x >>= 1) {
879 if (data & x)
880 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
881 else
882 reg = FXP_EEPROM_EECS;
883 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
884 DELAY(1);
885 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
886 DELAY(1);
887 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
888 DELAY(1);
889 }
890}
891
892/*
893 * Read from the serial EEPROM. Basically, you manually shift in
894 * the read opcode (one bit at a time) and then shift in the address,
895 * and then you shift out the data (all of this one bit at a time).
896 * The word size is 16 bits, so you have to provide the address for
897 * every 16 bits of data.
898 */
899static u_int16_t
900fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
901{
902 u_int16_t reg, data;
903 int x;
904
905 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
906 /*
907 * Shift in read opcode.
908 */
909 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
910 /*
911 * Shift in address.
912 */
913 data = 0;
914 for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
915 if (offset & x)
916 reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
917 else
918 reg = FXP_EEPROM_EECS;
919 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
920 DELAY(1);
921 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
922 DELAY(1);
923 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
924 DELAY(1);
925 reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
926 data++;
927 if (autosize && reg == 0) {
928 sc->eeprom_size = data;
929 break;
930 }
931 }
932 /*
933 * Shift out data.
934 */
935 data = 0;
936 reg = FXP_EEPROM_EECS;
937 for (x = 1 << 15; x; x >>= 1) {
938 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
939 DELAY(1);
940 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
941 data |= x;
942 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
943 DELAY(1);
944 }
945 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
946 DELAY(1);
947
948 return (data);
949}
950
951static void
952fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
953{
954 int i;
955
956 /*
957 * Erase/write enable.
958 */
959 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
960 fxp_eeprom_shiftin(sc, 0x4, 3);
961 fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
962 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
963 DELAY(1);
964 /*
965 * Shift in write opcode, address, data.
966 */
967 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
968 fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
969 fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
970 fxp_eeprom_shiftin(sc, data, 16);
971 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
972 DELAY(1);
973 /*
974 * Wait for EEPROM to finish up.
975 */
976 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
977 DELAY(1);
978 for (i = 0; i < 1000; i++) {
979 if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
980 break;
981 DELAY(50);
982 }
983 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
984 DELAY(1);
985 /*
986 * Erase/write disable.
987 */
988 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
989 fxp_eeprom_shiftin(sc, 0x4, 3);
990 fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
991 CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
992 DELAY(1);
993}
994
995/*
996 * From NetBSD:
997 *
998 * Figure out EEPROM size.
999 *
1000 * 559's can have either 64-word or 256-word EEPROMs, the 558
1001 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1002 * talks about the existance of 16 to 256 word EEPROMs.
1003 *
1004 * The only known sizes are 64 and 256, where the 256 version is used
1005 * by CardBus cards to store CIS information.
1006 *
1007 * The address is shifted in msb-to-lsb, and after the last
1008 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1009 * after which follows the actual data. We try to detect this zero, by
1010 * probing the data-out bit in the EEPROM control register just after
1011 * having shifted in a bit. If the bit is zero, we assume we've
1012 * shifted enough address bits. The data-out should be tri-state,
1013 * before this, which should translate to a logical one.
1014 */
1015static void
1016fxp_autosize_eeprom(struct fxp_softc *sc)
1017{
1018
1019 /* guess maximum size of 256 words */
1020 sc->eeprom_size = 8;
1021
1022 /* autosize */
1023 (void) fxp_eeprom_getword(sc, 0, 1);
1024}
1025
1026static void
1027fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1028{
1029 int i;
1030
1031 for (i = 0; i < words; i++)
1032 data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1033}
1034
1035static void
1036fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1037{
1038 int i;
1039
1040 for (i = 0; i < words; i++)
1041 fxp_eeprom_putword(sc, offset + i, data[i]);
1042}
1043
1044/*
1045 * Start packet transmission on the interface.
1046 */
1047static void
1048fxp_start(struct ifnet *ifp)
1049{
1050 struct fxp_softc *sc = ifp->if_softc;
1051 struct fxp_cb_tx *txp;
1052 volatile struct fxp_tbd *bdptr;
1016
1017 /*
1018 * See if we need to suspend xmit until the multicast filter
1019 * has been reprogrammed (which can only be done at the head
1020 * of the command chain).
1021 */
1022 if (sc->need_mcsetup) {
1023 return;
1024 }
1025
1026 txp = NULL;
1027
1028 /*
1029 * We're finished if there is nothing more to add to the list or if
1030 * we're all filled up with buffers to transmit.
1031 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1032 * a NOP command when needed.
1033 */
1034 while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1035 struct mbuf *m, *mb_head;
1036 int segment;
1037
1038 /*
1039 * Grab a packet to transmit.
1040 */
1041 IF_DEQUEUE(&ifp->if_snd, mb_head);
1042
1043 /*
1044 * Get pointer to next available tx desc.
1045 */
1046 txp = sc->cbl_last->next;
1047
1048 /*
1053
1054 /*
1055 * See if we need to suspend xmit until the multicast filter
1056 * has been reprogrammed (which can only be done at the head
1057 * of the command chain).
1058 */
1059 if (sc->need_mcsetup) {
1060 return;
1061 }
1062
1063 txp = NULL;
1064
1065 /*
1066 * We're finished if there is nothing more to add to the list or if
1067 * we're all filled up with buffers to transmit.
1068 * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1069 * a NOP command when needed.
1070 */
1071 while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1072 struct mbuf *m, *mb_head;
1073 int segment;
1074
1075 /*
1076 * Grab a packet to transmit.
1077 */
1078 IF_DEQUEUE(&ifp->if_snd, mb_head);
1079
1080 /*
1081 * Get pointer to next available tx desc.
1082 */
1083 txp = sc->cbl_last->next;
1084
1085 /*
1086 * If this is an 82550/82551, then we're using extended
1087 * TxCBs _and_ we're using checksum offload. This means
1088 * that the TxCB is really an IPCB. One major difference
1089 * between the two is that with plain extended TxCBs,
1090 * the bottom half of the TxCB contains two entries from
1091 * the TBD array, whereas IPCBs contain just one entry:
1092 * one entry (8 bytes) has been sacrificed for the TCP/IP
1093 * checksum offload control bits. So to make things work
1094 * right, we have to start filling in the TBD array
1095 * starting from a different place depending on whether
1096 * the chip is an 82550/82551 or not.
1097 */
1098
1099 bdptr = &txp->tbd[0];
1100 if (sc->flags & FXP_FLAG_EXT_RFA)
1101 bdptr++;
1102
1103 /*
1104 * Deal with TCP/IP checksum offload. Note that
1105 * in order for TCP checksum offload to work,
1106 * the pseudo header checksum must have already
1107 * been computed and stored in the checksum field
1108 * in the TCP header. The stack should have
1109 * already done this for us.
1110 */
1111
1112 if (mb_head->m_pkthdr.csum_flags) {
1113 if (mb_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1114 txp->ipcb_ip_activation_high =
1115 FXP_IPCB_HARDWAREPARSING_ENABLE;
1116 txp->ipcb_ip_schedule =
1117 FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
1118 if (mb_head->m_pkthdr.csum_flags & CSUM_TCP)
1119 txp->ipcb_ip_schedule |=
1120 FXP_IPCB_TCP_PACKET;
1121 }
1122#ifdef FXP_IP_CSUM_WAR
1123 /*
1124 * XXX The 82550 chip appears to have trouble
1125 * dealing with IP header checksums in very small
1126 * datagrams, namely fragments from 1 to 3 bytes
1127 * in size. For example, say you want to transmit
1128 * a UDP packet of 1473 bytes. The packet will be
1129 * fragmented over two IP datagrams, the latter
1130 * containing only one byte of data. The 82550 will
1131 * botch the header checksum on the 1-byte fragment.
1132 * As long as the datagram contains 4 or more bytes
1133 * of data, you're ok.
1134 *
1135 * The following code attempts to work around this
1136 * problem: if the datagram is less than 38 bytes
1137 * in size (14 bytes ether header, 20 bytes IP header,
1138 * plus 4 bytes of data), we punt and compute the IP
1139 * header checksum by hand. This workaround doesn't
1140 * work very well, however, since it can be fooled
1141 * by things like VLAN tags and IP options that make
1142 * the header sizes/offsets vary.
1143 */
1144
1145 if (mb_head->m_pkthdr.csum_flags & CSUM_IP) {
1146 if (mb_head->m_pkthdr.len < 38) {
1147 struct ip *ip;
1148 mb_head->m_data += ETHER_HDR_LEN;
1149 ip = mtod(mb_head, struct ip *);
1150 ip->ip_sum = in_cksum(mb_head,
1151 ip->ip_hl << 2);
1152 mb_head->m_data -= ETHER_HDR_LEN;
1153 } else {
1154 txp->ipcb_ip_activation_high =
1155 FXP_IPCB_HARDWAREPARSING_ENABLE;
1156 txp->ipcb_ip_schedule |=
1157 FXP_IPCB_IP_CHECKSUM_ENABLE;
1158 }
1159 }
1160#endif
1161 }
1162
1163 /*
1049 * Go through each of the mbufs in the chain and initialize
1050 * the transmit buffer descriptors with the physical address
1051 * and size of the mbuf.
1052 */
1053tbdinit:
1054 for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1055 if (m->m_len != 0) {
1164 * Go through each of the mbufs in the chain and initialize
1165 * the transmit buffer descriptors with the physical address
1166 * and size of the mbuf.
1167 */
1168tbdinit:
1169 for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1170 if (m->m_len != 0) {
1056 if (segment == FXP_NTXSEG)
1171 if (segment == (FXP_NTXSEG - 1))
1057 break;
1172 break;
1058 txp->tbd[segment].tb_addr =
1173 bdptr[segment].tb_addr =
1059 vtophys(mtod(m, vm_offset_t));
1174 vtophys(mtod(m, vm_offset_t));
1060 txp->tbd[segment].tb_size = m->m_len;
1175 bdptr[segment].tb_size = m->m_len;
1061 segment++;
1062 }
1063 }
1064 if (m != NULL) {
1065 struct mbuf *mn;
1066
1067 /*
1068 * We ran out of segments. We have to recopy this
1069 * mbuf chain first. Bail out if we can't get the
1070 * new buffers.
1071 */
1072 MGETHDR(mn, M_DONTWAIT, MT_DATA);
1073 if (mn == NULL) {
1074 m_freem(mb_head);
1075 break;
1076 }
1077 if (mb_head->m_pkthdr.len > MHLEN) {
1078 MCLGET(mn, M_DONTWAIT);
1079 if ((mn->m_flags & M_EXT) == 0) {
1080 m_freem(mn);
1081 m_freem(mb_head);
1082 break;
1083 }
1084 }
1085 m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1086 mtod(mn, caddr_t));
1087 mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1088 m_freem(mb_head);
1089 mb_head = mn;
1090 goto tbdinit;
1091 }
1092
1176 segment++;
1177 }
1178 }
1179 if (m != NULL) {
1180 struct mbuf *mn;
1181
1182 /*
1183 * We ran out of segments. We have to recopy this
1184 * mbuf chain first. Bail out if we can't get the
1185 * new buffers.
1186 */
1187 MGETHDR(mn, M_DONTWAIT, MT_DATA);
1188 if (mn == NULL) {
1189 m_freem(mb_head);
1190 break;
1191 }
1192 if (mb_head->m_pkthdr.len > MHLEN) {
1193 MCLGET(mn, M_DONTWAIT);
1194 if ((mn->m_flags & M_EXT) == 0) {
1195 m_freem(mn);
1196 m_freem(mb_head);
1197 break;
1198 }
1199 }
1200 m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1201 mtod(mn, caddr_t));
1202 mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1203 m_freem(mb_head);
1204 mb_head = mn;
1205 goto tbdinit;
1206 }
1207
1208 txp->byte_count = 0;
1093 txp->tbd_number = segment;
1094 txp->mb_head = mb_head;
1095 txp->cb_status = 0;
1096 if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1097 txp->cb_command =
1209 txp->tbd_number = segment;
1210 txp->mb_head = mb_head;
1211 txp->cb_status = 0;
1212 if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1213 txp->cb_command =
1098 FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1214 sc->tx_cmd | FXP_CB_COMMAND_SF |
1099 FXP_CB_COMMAND_S;
1100 } else {
1101 txp->cb_command =
1215 FXP_CB_COMMAND_S;
1216 } else {
1217 txp->cb_command =
1102 FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1218 sc->tx_cmd | FXP_CB_COMMAND_SF |
1103 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1104 /*
1105 * Set a 5 second timer just in case we don't hear
1106 * from the card again.
1107 */
1108 ifp->if_timer = 5;
1109 }
1110 txp->tx_threshold = tx_threshold;
1111
1112 /*
1113 * Advance the end of list forward.
1114 */
1115
1116#ifdef __alpha__
1117 /*
1118 * On platforms which can't access memory in 16-bit
1119 * granularities, we must prevent the card from DMA'ing
1120 * up the status while we update the command field.
1121 * This could cause us to overwrite the completion status.
1122 */
1123 atomic_clear_short(&sc->cbl_last->cb_command,
1124 FXP_CB_COMMAND_S);
1125#else
1126 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1127#endif /*__alpha__*/
1128 sc->cbl_last = txp;
1129
1130 /*
1131 * Advance the beginning of the list forward if there are
1132 * no other packets queued (when nothing is queued, cbl_first
1133 * sits on the last TxCB that was sent out).
1134 */
1135 if (sc->tx_queued == 0)
1136 sc->cbl_first = txp;
1137
1138 sc->tx_queued++;
1139
1140 /*
1141 * Pass packet to bpf if there is a listener.
1142 */
1143 BPF_MTAP(ifp, mb_head);
1144 }
1145
1146 /*
1147 * We're finished. If we added to the list, issue a RESUME to get DMA
1148 * going again if suspended.
1149 */
1150 if (txp != NULL) {
1151 fxp_scb_wait(sc);
1152 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1153 }
1154}
1155
1156static void fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count);
1157
1158#ifdef DEVICE_POLLING
1159static poll_handler_t fxp_poll;
1160
1161static void
1162fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1163{
1164 struct fxp_softc *sc = ifp->if_softc;
1165 u_int8_t statack;
1166
1167 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1168 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1169 return;
1170 }
1171 statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1172 FXP_SCB_STATACK_FR;
1173 if (cmd == POLL_AND_CHECK_STATUS) {
1174 u_int8_t tmp;
1175
1176 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1177 if (tmp == 0xff || tmp == 0)
1178 return; /* nothing to do */
1179 tmp &= ~statack;
1180 /* ack what we can */
1181 if (tmp != 0)
1182 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1183 statack |= tmp;
1184 }
1185 fxp_intr_body(sc, statack, count);
1186}
1187#endif /* DEVICE_POLLING */
1188
1189/*
1190 * Process interface interrupts.
1191 */
1192static void
1193fxp_intr(void *xsc)
1194{
1195 struct fxp_softc *sc = xsc;
1196 u_int8_t statack;
1197
1198#ifdef DEVICE_POLLING
1199 struct ifnet *ifp = &sc->sc_if;
1200
1201 if (ifp->if_flags & IFF_POLLING)
1202 return;
1203 if (ether_poll_register(fxp_poll, ifp)) {
1204 /* disable interrupts */
1205 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1206 fxp_poll(ifp, 0, 1);
1207 return;
1208 }
1209#endif
1210
1211 if (sc->suspended) {
1212 return;
1213 }
1214
1215 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1216 /*
1217 * It should not be possible to have all bits set; the
1218 * FXP_SCB_INTR_SWI bit always returns 0 on a read. If
1219 * all bits are set, this may indicate that the card has
1220 * been physically ejected, so ignore it.
1221 */
1222 if (statack == 0xff)
1223 return;
1224
1225 /*
1226 * First ACK all the interrupts in this pass.
1227 */
1228 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1229 fxp_intr_body(sc, statack, -1);
1230 }
1231}
1232
1233static void
1234fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1235{
1236 struct ifnet *ifp = &sc->sc_if;
1237 struct mbuf *m;
1238 struct fxp_rfa *rfa;
1239 int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1240
1241 if (rnr)
1242 fxp_rnr++;
1243#ifdef DEVICE_POLLING
1244 /* Pick up a deferred RNR condition if `count' ran out last time. */
1245 if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1246 sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1247 rnr = 1;
1248 }
1249#endif
1250
1251 /*
1252 * Free any finished transmit mbuf chains.
1253 *
1254 * Handle the CNA event likt a CXTNO event. It used to
1255 * be that this event (control unit not ready) was not
1256 * encountered, but it is now with the SMPng modifications.
1257 * The exact sequence of events that occur when the interface
1258 * is brought up are different now, and if this event
1259 * goes unhandled, the configuration/rxfilter setup sequence
1260 * can stall for several seconds. The result is that no
1261 * packets go out onto the wire for about 5 to 10 seconds
1262 * after the interface is ifconfig'ed for the first time.
1263 */
1264 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1265 struct fxp_cb_tx *txp;
1266
1267 for (txp = sc->cbl_first; sc->tx_queued &&
1268 (txp->cb_status & FXP_CB_STATUS_C) != 0;
1269 txp = txp->next) {
1270 if (txp->mb_head != NULL) {
1271 m_freem(txp->mb_head);
1272 txp->mb_head = NULL;
1219 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1220 /*
1221 * Set a 5 second timer just in case we don't hear
1222 * from the card again.
1223 */
1224 ifp->if_timer = 5;
1225 }
1226 txp->tx_threshold = tx_threshold;
1227
1228 /*
1229 * Advance the end of list forward.
1230 */
1231
1232#ifdef __alpha__
1233 /*
1234 * On platforms which can't access memory in 16-bit
1235 * granularities, we must prevent the card from DMA'ing
1236 * up the status while we update the command field.
1237 * This could cause us to overwrite the completion status.
1238 */
1239 atomic_clear_short(&sc->cbl_last->cb_command,
1240 FXP_CB_COMMAND_S);
1241#else
1242 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1243#endif /*__alpha__*/
1244 sc->cbl_last = txp;
1245
1246 /*
1247 * Advance the beginning of the list forward if there are
1248 * no other packets queued (when nothing is queued, cbl_first
1249 * sits on the last TxCB that was sent out).
1250 */
1251 if (sc->tx_queued == 0)
1252 sc->cbl_first = txp;
1253
1254 sc->tx_queued++;
1255
1256 /*
1257 * Pass packet to bpf if there is a listener.
1258 */
1259 BPF_MTAP(ifp, mb_head);
1260 }
1261
1262 /*
1263 * We're finished. If we added to the list, issue a RESUME to get DMA
1264 * going again if suspended.
1265 */
1266 if (txp != NULL) {
1267 fxp_scb_wait(sc);
1268 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1269 }
1270}
1271
1272static void fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count);
1273
1274#ifdef DEVICE_POLLING
1275static poll_handler_t fxp_poll;
1276
1277static void
1278fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1279{
1280 struct fxp_softc *sc = ifp->if_softc;
1281 u_int8_t statack;
1282
1283 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1284 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1285 return;
1286 }
1287 statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
1288 FXP_SCB_STATACK_FR;
1289 if (cmd == POLL_AND_CHECK_STATUS) {
1290 u_int8_t tmp;
1291
1292 tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
1293 if (tmp == 0xff || tmp == 0)
1294 return; /* nothing to do */
1295 tmp &= ~statack;
1296 /* ack what we can */
1297 if (tmp != 0)
1298 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
1299 statack |= tmp;
1300 }
1301 fxp_intr_body(sc, statack, count);
1302}
1303#endif /* DEVICE_POLLING */
1304
1305/*
1306 * Process interface interrupts.
1307 */
1308static void
1309fxp_intr(void *xsc)
1310{
1311 struct fxp_softc *sc = xsc;
1312 u_int8_t statack;
1313
1314#ifdef DEVICE_POLLING
1315 struct ifnet *ifp = &sc->sc_if;
1316
1317 if (ifp->if_flags & IFF_POLLING)
1318 return;
1319 if (ether_poll_register(fxp_poll, ifp)) {
1320 /* disable interrupts */
1321 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1322 fxp_poll(ifp, 0, 1);
1323 return;
1324 }
1325#endif
1326
1327 if (sc->suspended) {
1328 return;
1329 }
1330
1331 while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1332 /*
1333 * It should not be possible to have all bits set; the
1334 * FXP_SCB_INTR_SWI bit always returns 0 on a read. If
1335 * all bits are set, this may indicate that the card has
1336 * been physically ejected, so ignore it.
1337 */
1338 if (statack == 0xff)
1339 return;
1340
1341 /*
1342 * First ACK all the interrupts in this pass.
1343 */
1344 CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1345 fxp_intr_body(sc, statack, -1);
1346 }
1347}
1348
1349static void
1350fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
1351{
1352 struct ifnet *ifp = &sc->sc_if;
1353 struct mbuf *m;
1354 struct fxp_rfa *rfa;
1355 int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
1356
1357 if (rnr)
1358 fxp_rnr++;
1359#ifdef DEVICE_POLLING
1360 /* Pick up a deferred RNR condition if `count' ran out last time. */
1361 if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
1362 sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
1363 rnr = 1;
1364 }
1365#endif
1366
1367 /*
1368 * Free any finished transmit mbuf chains.
1369 *
1370 * Handle the CNA event likt a CXTNO event. It used to
1371 * be that this event (control unit not ready) was not
1372 * encountered, but it is now with the SMPng modifications.
1373 * The exact sequence of events that occur when the interface
1374 * is brought up are different now, and if this event
1375 * goes unhandled, the configuration/rxfilter setup sequence
1376 * can stall for several seconds. The result is that no
1377 * packets go out onto the wire for about 5 to 10 seconds
1378 * after the interface is ifconfig'ed for the first time.
1379 */
1380 if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1381 struct fxp_cb_tx *txp;
1382
1383 for (txp = sc->cbl_first; sc->tx_queued &&
1384 (txp->cb_status & FXP_CB_STATUS_C) != 0;
1385 txp = txp->next) {
1386 if (txp->mb_head != NULL) {
1387 m_freem(txp->mb_head);
1388 txp->mb_head = NULL;
1389 /* clear this to reset csum offload bits */
1390 txp->tbd[0].tb_addr = 0;
1273 }
1274 sc->tx_queued--;
1275 }
1276 sc->cbl_first = txp;
1277 ifp->if_timer = 0;
1278 if (sc->tx_queued == 0) {
1279 if (sc->need_mcsetup)
1280 fxp_mc_setup(sc);
1281 }
1282 /*
1283 * Try to start more packets transmitting.
1284 */
1285 if (ifp->if_snd.ifq_head != NULL)
1286 fxp_start(ifp);
1287 }
1288
1289 /*
1290 * Just return if nothing happened on the receive side.
1291 */
1292 if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1293 return;
1294
1295 /*
1296 * Process receiver interrupts. If a no-resource (RNR)
1297 * condition exists, get whatever packets we can and
1298 * re-start the receiver.
1299 *
1300 * When using polling, we do not process the list to completion,
1301 * so when we get an RNR interrupt we must defer the restart
1302 * until we hit the last buffer with the C bit set.
1303 * If we run out of cycles and rfa_headm has the C bit set,
1304 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1305 * that the info will be used in the subsequent polling cycle.
1306 */
1307 for (;;) {
1308 m = sc->rfa_headm;
1309 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1310 RFA_ALIGNMENT_FUDGE);
1311
1312#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1313 if (count >= 0 && count-- == 0) {
1314 if (rnr) {
1315 /* Defer RNR processing until the next time. */
1316 sc->flags |= FXP_FLAG_DEFERRED_RNR;
1317 rnr = 0;
1318 }
1319 break;
1320 }
1321#endif /* DEVICE_POLLING */
1322
1323 if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1324 break;
1325
1326 /*
1327 * Remove first packet from the chain.
1328 */
1329 sc->rfa_headm = m->m_next;
1330 m->m_next = NULL;
1331
1332 /*
1333 * Add a new buffer to the receive chain.
1334 * If this fails, the old buffer is recycled
1335 * instead.
1336 */
1337 if (fxp_add_rfabuf(sc, m) == 0) {
1338 int total_len;
1339
1340 /*
1341 * Fetch packet length (the top 2 bits of
1342 * actual_size are flags set by the controller
1343 * upon completion), and drop the packet in case
1344 * of bogus length or CRC errors.
1345 */
1346 total_len = rfa->actual_size & 0x3fff;
1347 if (total_len < sizeof(struct ether_header) ||
1348 total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1349 sizeof(struct fxp_rfa) ||
1350 rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1351 m_freem(m);
1352 continue;
1353 }
1354
1391 }
1392 sc->tx_queued--;
1393 }
1394 sc->cbl_first = txp;
1395 ifp->if_timer = 0;
1396 if (sc->tx_queued == 0) {
1397 if (sc->need_mcsetup)
1398 fxp_mc_setup(sc);
1399 }
1400 /*
1401 * Try to start more packets transmitting.
1402 */
1403 if (ifp->if_snd.ifq_head != NULL)
1404 fxp_start(ifp);
1405 }
1406
1407 /*
1408 * Just return if nothing happened on the receive side.
1409 */
1410 if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
1411 return;
1412
1413 /*
1414 * Process receiver interrupts. If a no-resource (RNR)
1415 * condition exists, get whatever packets we can and
1416 * re-start the receiver.
1417 *
1418 * When using polling, we do not process the list to completion,
1419 * so when we get an RNR interrupt we must defer the restart
1420 * until we hit the last buffer with the C bit set.
1421 * If we run out of cycles and rfa_headm has the C bit set,
1422 * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
1423 * that the info will be used in the subsequent polling cycle.
1424 */
1425 for (;;) {
1426 m = sc->rfa_headm;
1427 rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1428 RFA_ALIGNMENT_FUDGE);
1429
1430#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
1431 if (count >= 0 && count-- == 0) {
1432 if (rnr) {
1433 /* Defer RNR processing until the next time. */
1434 sc->flags |= FXP_FLAG_DEFERRED_RNR;
1435 rnr = 0;
1436 }
1437 break;
1438 }
1439#endif /* DEVICE_POLLING */
1440
1441 if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
1442 break;
1443
1444 /*
1445 * Remove first packet from the chain.
1446 */
1447 sc->rfa_headm = m->m_next;
1448 m->m_next = NULL;
1449
1450 /*
1451 * Add a new buffer to the receive chain.
1452 * If this fails, the old buffer is recycled
1453 * instead.
1454 */
1455 if (fxp_add_rfabuf(sc, m) == 0) {
1456 int total_len;
1457
1458 /*
1459 * Fetch packet length (the top 2 bits of
1460 * actual_size are flags set by the controller
1461 * upon completion), and drop the packet in case
1462 * of bogus length or CRC errors.
1463 */
1464 total_len = rfa->actual_size & 0x3fff;
1465 if (total_len < sizeof(struct ether_header) ||
1466 total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
1467 sizeof(struct fxp_rfa) ||
1468 rfa->rfa_status & FXP_RFA_STATUS_CRC) {
1469 m_freem(m);
1470 continue;
1471 }
1472
1473 /* Do IP checksum checking. */
1474 if (rfa->rfa_status & FXP_RFA_STATUS_PARSE) {
1475 if (rfa->rfax_csum_sts &
1476 FXP_RFDX_CS_IP_CSUM_BIT_VALID)
1477 m->m_pkthdr.csum_flags |=
1478 CSUM_IP_CHECKED;
1479 if (rfa->rfax_csum_sts &
1480 FXP_RFDX_CS_IP_CSUM_VALID)
1481 m->m_pkthdr.csum_flags |=
1482 CSUM_IP_VALID;
1483 if ((rfa->rfax_csum_sts &
1484 FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
1485 (rfa->rfax_csum_sts &
1486 FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
1487 m->m_pkthdr.csum_flags |=
1488 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1489 m->m_pkthdr.csum_data = 0xffff;
1490 }
1491 }
1492
1355 m->m_pkthdr.len = m->m_len = total_len;
1356 m->m_pkthdr.rcvif = ifp;
1357
1358 (*ifp->if_input)(ifp, m);
1359 }
1360 }
1361 if (rnr) {
1362 fxp_scb_wait(sc);
1363 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1364 vtophys(sc->rfa_headm->m_ext.ext_buf) +
1365 RFA_ALIGNMENT_FUDGE);
1366 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1367 }
1368}
1369
1370/*
1371 * Update packet in/out/collision statistics. The i82557 doesn't
1372 * allow you to access these counters without doing a fairly
1373 * expensive DMA to get _all_ of the statistics it maintains, so
1374 * we do this operation here only once per second. The statistics
1375 * counters in the kernel are updated from the previous dump-stats
1376 * DMA and then a new dump-stats DMA is started. The on-chip
1377 * counters are zeroed when the DMA completes. If we can't start
1378 * the DMA immediately, we don't wait - we just prepare to read
1379 * them again next time.
1380 */
1381static void
1382fxp_tick(void *xsc)
1383{
1384 struct fxp_softc *sc = xsc;
1385 struct ifnet *ifp = &sc->sc_if;
1386 struct fxp_stats *sp = sc->fxp_stats;
1387 struct fxp_cb_tx *txp;
1388 int s;
1389
1390 ifp->if_opackets += sp->tx_good;
1391 ifp->if_collisions += sp->tx_total_collisions;
1392 if (sp->rx_good) {
1393 ifp->if_ipackets += sp->rx_good;
1394 sc->rx_idle_secs = 0;
1395 } else {
1396 /*
1397 * Receiver's been idle for another second.
1398 */
1399 sc->rx_idle_secs++;
1400 }
1401 ifp->if_ierrors +=
1402 sp->rx_crc_errors +
1403 sp->rx_alignment_errors +
1404 sp->rx_rnr_errors +
1405 sp->rx_overrun_errors;
1406 /*
1407 * If any transmit underruns occured, bump up the transmit
1408 * threshold by another 512 bytes (64 * 8).
1409 */
1410 if (sp->tx_underruns) {
1411 ifp->if_oerrors += sp->tx_underruns;
1412 if (tx_threshold < 192)
1413 tx_threshold += 64;
1414 }
1415 s = splimp();
1416 /*
1417 * Release any xmit buffers that have completed DMA. This isn't
1418 * strictly necessary to do here, but it's advantagous for mbufs
1419 * with external storage to be released in a timely manner rather
1420 * than being defered for a potentially long time. This limits
1421 * the delay to a maximum of one second.
1422 */
1423 for (txp = sc->cbl_first; sc->tx_queued &&
1424 (txp->cb_status & FXP_CB_STATUS_C) != 0;
1425 txp = txp->next) {
1426 if (txp->mb_head != NULL) {
1427 m_freem(txp->mb_head);
1428 txp->mb_head = NULL;
1493 m->m_pkthdr.len = m->m_len = total_len;
1494 m->m_pkthdr.rcvif = ifp;
1495
1496 (*ifp->if_input)(ifp, m);
1497 }
1498 }
1499 if (rnr) {
1500 fxp_scb_wait(sc);
1501 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1502 vtophys(sc->rfa_headm->m_ext.ext_buf) +
1503 RFA_ALIGNMENT_FUDGE);
1504 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1505 }
1506}
1507
1508/*
1509 * Update packet in/out/collision statistics. The i82557 doesn't
1510 * allow you to access these counters without doing a fairly
1511 * expensive DMA to get _all_ of the statistics it maintains, so
1512 * we do this operation here only once per second. The statistics
1513 * counters in the kernel are updated from the previous dump-stats
1514 * DMA and then a new dump-stats DMA is started. The on-chip
1515 * counters are zeroed when the DMA completes. If we can't start
1516 * the DMA immediately, we don't wait - we just prepare to read
1517 * them again next time.
1518 */
1519static void
1520fxp_tick(void *xsc)
1521{
1522 struct fxp_softc *sc = xsc;
1523 struct ifnet *ifp = &sc->sc_if;
1524 struct fxp_stats *sp = sc->fxp_stats;
1525 struct fxp_cb_tx *txp;
1526 int s;
1527
1528 ifp->if_opackets += sp->tx_good;
1529 ifp->if_collisions += sp->tx_total_collisions;
1530 if (sp->rx_good) {
1531 ifp->if_ipackets += sp->rx_good;
1532 sc->rx_idle_secs = 0;
1533 } else {
1534 /*
1535 * Receiver's been idle for another second.
1536 */
1537 sc->rx_idle_secs++;
1538 }
1539 ifp->if_ierrors +=
1540 sp->rx_crc_errors +
1541 sp->rx_alignment_errors +
1542 sp->rx_rnr_errors +
1543 sp->rx_overrun_errors;
1544 /*
1545 * If any transmit underruns occured, bump up the transmit
1546 * threshold by another 512 bytes (64 * 8).
1547 */
1548 if (sp->tx_underruns) {
1549 ifp->if_oerrors += sp->tx_underruns;
1550 if (tx_threshold < 192)
1551 tx_threshold += 64;
1552 }
1553 s = splimp();
1554 /*
1555 * Release any xmit buffers that have completed DMA. This isn't
1556 * strictly necessary to do here, but it's advantagous for mbufs
1557 * with external storage to be released in a timely manner rather
1558 * than being defered for a potentially long time. This limits
1559 * the delay to a maximum of one second.
1560 */
1561 for (txp = sc->cbl_first; sc->tx_queued &&
1562 (txp->cb_status & FXP_CB_STATUS_C) != 0;
1563 txp = txp->next) {
1564 if (txp->mb_head != NULL) {
1565 m_freem(txp->mb_head);
1566 txp->mb_head = NULL;
1567 /* clear this to reset csum offload bits */
1568 txp->tbd[0].tb_addr = 0;
1429 }
1430 sc->tx_queued--;
1431 }
1432 sc->cbl_first = txp;
1433 /*
1434 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1435 * then assume the receiver has locked up and attempt to clear
1436 * the condition by reprogramming the multicast filter. This is
1437 * a work-around for a bug in the 82557 where the receiver locks
1438 * up if it gets certain types of garbage in the syncronization
1439 * bits prior to the packet header. This bug is supposed to only
1440 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1441 * mode as well (perhaps due to a 10/100 speed transition).
1442 */
1443 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1444 sc->rx_idle_secs = 0;
1445 fxp_mc_setup(sc);
1446 }
1447 /*
1448 * If there is no pending command, start another stats
1449 * dump. Otherwise punt for now.
1450 */
1451 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1452 /*
1453 * Start another stats dump.
1454 */
1455 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1456 } else {
1457 /*
1458 * A previous command is still waiting to be accepted.
1459 * Just zero our copy of the stats and wait for the
1460 * next timer event to update them.
1461 */
1462 sp->tx_good = 0;
1463 sp->tx_underruns = 0;
1464 sp->tx_total_collisions = 0;
1465
1466 sp->rx_good = 0;
1467 sp->rx_crc_errors = 0;
1468 sp->rx_alignment_errors = 0;
1469 sp->rx_rnr_errors = 0;
1470 sp->rx_overrun_errors = 0;
1471 }
1472 if (sc->miibus != NULL)
1473 mii_tick(device_get_softc(sc->miibus));
1474 splx(s);
1475 /*
1476 * Schedule another timeout one second from now.
1477 */
1478 sc->stat_ch = timeout(fxp_tick, sc, hz);
1479}
1480
1481/*
1482 * Stop the interface. Cancels the statistics updater and resets
1483 * the interface.
1484 */
1485static void
1486fxp_stop(struct fxp_softc *sc)
1487{
1488 struct ifnet *ifp = &sc->sc_if;
1489 struct fxp_cb_tx *txp;
1490 int i;
1491
1492 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1493 ifp->if_timer = 0;
1494
1495#ifdef DEVICE_POLLING
1496 ether_poll_deregister(ifp);
1497#endif
1498 /*
1499 * Cancel stats updater.
1500 */
1501 untimeout(fxp_tick, sc, sc->stat_ch);
1502
1503 /*
1504 * Issue software reset, which also unloads the microcode.
1505 */
1506 sc->flags &= ~FXP_FLAG_UCODE;
1507 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1508 DELAY(50);
1509
1510 /*
1511 * Release any xmit buffers.
1512 */
1513 txp = sc->cbl_base;
1514 if (txp != NULL) {
1515 for (i = 0; i < FXP_NTXCB; i++) {
1516 if (txp[i].mb_head != NULL) {
1517 m_freem(txp[i].mb_head);
1518 txp[i].mb_head = NULL;
1569 }
1570 sc->tx_queued--;
1571 }
1572 sc->cbl_first = txp;
1573 /*
1574 * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1575 * then assume the receiver has locked up and attempt to clear
1576 * the condition by reprogramming the multicast filter. This is
1577 * a work-around for a bug in the 82557 where the receiver locks
1578 * up if it gets certain types of garbage in the syncronization
1579 * bits prior to the packet header. This bug is supposed to only
1580 * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1581 * mode as well (perhaps due to a 10/100 speed transition).
1582 */
1583 if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1584 sc->rx_idle_secs = 0;
1585 fxp_mc_setup(sc);
1586 }
1587 /*
1588 * If there is no pending command, start another stats
1589 * dump. Otherwise punt for now.
1590 */
1591 if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1592 /*
1593 * Start another stats dump.
1594 */
1595 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1596 } else {
1597 /*
1598 * A previous command is still waiting to be accepted.
1599 * Just zero our copy of the stats and wait for the
1600 * next timer event to update them.
1601 */
1602 sp->tx_good = 0;
1603 sp->tx_underruns = 0;
1604 sp->tx_total_collisions = 0;
1605
1606 sp->rx_good = 0;
1607 sp->rx_crc_errors = 0;
1608 sp->rx_alignment_errors = 0;
1609 sp->rx_rnr_errors = 0;
1610 sp->rx_overrun_errors = 0;
1611 }
1612 if (sc->miibus != NULL)
1613 mii_tick(device_get_softc(sc->miibus));
1614 splx(s);
1615 /*
1616 * Schedule another timeout one second from now.
1617 */
1618 sc->stat_ch = timeout(fxp_tick, sc, hz);
1619}
1620
1621/*
1622 * Stop the interface. Cancels the statistics updater and resets
1623 * the interface.
1624 */
1625static void
1626fxp_stop(struct fxp_softc *sc)
1627{
1628 struct ifnet *ifp = &sc->sc_if;
1629 struct fxp_cb_tx *txp;
1630 int i;
1631
1632 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1633 ifp->if_timer = 0;
1634
1635#ifdef DEVICE_POLLING
1636 ether_poll_deregister(ifp);
1637#endif
1638 /*
1639 * Cancel stats updater.
1640 */
1641 untimeout(fxp_tick, sc, sc->stat_ch);
1642
1643 /*
1644 * Issue software reset, which also unloads the microcode.
1645 */
1646 sc->flags &= ~FXP_FLAG_UCODE;
1647 CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
1648 DELAY(50);
1649
1650 /*
1651 * Release any xmit buffers.
1652 */
1653 txp = sc->cbl_base;
1654 if (txp != NULL) {
1655 for (i = 0; i < FXP_NTXCB; i++) {
1656 if (txp[i].mb_head != NULL) {
1657 m_freem(txp[i].mb_head);
1658 txp[i].mb_head = NULL;
1659 /* clear this to reset csum offload bits */
1660 txp[i].tbd[0].tb_addr = 0;
1519 }
1520 }
1521 }
1522 sc->tx_queued = 0;
1523
1524 /*
1525 * Free all the receive buffers then reallocate/reinitialize
1526 */
1527 if (sc->rfa_headm != NULL)
1528 m_freem(sc->rfa_headm);
1529 sc->rfa_headm = NULL;
1530 sc->rfa_tailm = NULL;
1531 for (i = 0; i < FXP_NRFABUFS; i++) {
1532 if (fxp_add_rfabuf(sc, NULL) != 0) {
1533 /*
1534 * This "can't happen" - we're at splimp()
1535 * and we just freed all the buffers we need
1536 * above.
1537 */
1538 panic("fxp_stop: no buffers!");
1539 }
1540 }
1541}
1542
1543/*
1544 * Watchdog/transmission transmit timeout handler. Called when a
1545 * transmission is started on the interface, but no interrupt is
1546 * received before the timeout. This usually indicates that the
1547 * card has wedged for some reason.
1548 */
1549static void
1550fxp_watchdog(struct ifnet *ifp)
1551{
1552 struct fxp_softc *sc = ifp->if_softc;
1553
1554 device_printf(sc->dev, "device timeout\n");
1555 ifp->if_oerrors++;
1556
1557 fxp_init(sc);
1558}
1559
1560static void
1561fxp_init(void *xsc)
1562{
1563 struct fxp_softc *sc = xsc;
1564 struct ifnet *ifp = &sc->sc_if;
1565 struct fxp_cb_config *cbp;
1566 struct fxp_cb_ias *cb_ias;
1567 struct fxp_cb_tx *txp;
1568 struct fxp_cb_mcs *mcsp;
1569 int i, prm, s;
1570
1571 s = splimp();
1572 /*
1573 * Cancel any pending I/O
1574 */
1575 fxp_stop(sc);
1576
1577 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1578
1579 /*
1580 * Initialize base of CBL and RFA memory. Loading with zero
1581 * sets it up for regular linear addressing.
1582 */
1583 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1584 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1585
1586 fxp_scb_wait(sc);
1587 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1588
1589 /*
1590 * Initialize base of dump-stats buffer.
1591 */
1592 fxp_scb_wait(sc);
1593 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1594 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1595
1596 /*
1597 * Attempt to load microcode if requested.
1598 */
1599 if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1600 fxp_load_ucode(sc);
1601
1602 /*
1603 * Initialize the multicast address list.
1604 */
1605 if (fxp_mc_addrs(sc)) {
1606 mcsp = sc->mcsp;
1607 mcsp->cb_status = 0;
1608 mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1609 mcsp->link_addr = -1;
1610 /*
1611 * Start the multicast setup command.
1612 */
1613 fxp_scb_wait(sc);
1614 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1615 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1616 /* ...and wait for it to complete. */
1617 fxp_dma_wait(&mcsp->cb_status, sc);
1618 }
1619
1620 /*
1621 * We temporarily use memory that contains the TxCB list to
1622 * construct the config CB. The TxCB list memory is rebuilt
1623 * later.
1624 */
1625 cbp = (struct fxp_cb_config *) sc->cbl_base;
1626
1627 /*
1628 * This bcopy is kind of disgusting, but there are a bunch of must be
1629 * zero and must be one bits in this structure and this is the easiest
1630 * way to initialize them all to proper values.
1631 */
1632 bcopy(fxp_cb_config_template,
1633 (void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1634 sizeof(fxp_cb_config_template));
1635
1636 cbp->cb_status = 0;
1637 cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1638 cbp->link_addr = -1; /* (no) next command */
1661 }
1662 }
1663 }
1664 sc->tx_queued = 0;
1665
1666 /*
1667 * Free all the receive buffers then reallocate/reinitialize
1668 */
1669 if (sc->rfa_headm != NULL)
1670 m_freem(sc->rfa_headm);
1671 sc->rfa_headm = NULL;
1672 sc->rfa_tailm = NULL;
1673 for (i = 0; i < FXP_NRFABUFS; i++) {
1674 if (fxp_add_rfabuf(sc, NULL) != 0) {
1675 /*
1676 * This "can't happen" - we're at splimp()
1677 * and we just freed all the buffers we need
1678 * above.
1679 */
1680 panic("fxp_stop: no buffers!");
1681 }
1682 }
1683}
1684
1685/*
1686 * Watchdog/transmission transmit timeout handler. Called when a
1687 * transmission is started on the interface, but no interrupt is
1688 * received before the timeout. This usually indicates that the
1689 * card has wedged for some reason.
1690 */
1691static void
1692fxp_watchdog(struct ifnet *ifp)
1693{
1694 struct fxp_softc *sc = ifp->if_softc;
1695
1696 device_printf(sc->dev, "device timeout\n");
1697 ifp->if_oerrors++;
1698
1699 fxp_init(sc);
1700}
1701
1702static void
1703fxp_init(void *xsc)
1704{
1705 struct fxp_softc *sc = xsc;
1706 struct ifnet *ifp = &sc->sc_if;
1707 struct fxp_cb_config *cbp;
1708 struct fxp_cb_ias *cb_ias;
1709 struct fxp_cb_tx *txp;
1710 struct fxp_cb_mcs *mcsp;
1711 int i, prm, s;
1712
1713 s = splimp();
1714 /*
1715 * Cancel any pending I/O
1716 */
1717 fxp_stop(sc);
1718
1719 prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1720
1721 /*
1722 * Initialize base of CBL and RFA memory. Loading with zero
1723 * sets it up for regular linear addressing.
1724 */
1725 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1726 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1727
1728 fxp_scb_wait(sc);
1729 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1730
1731 /*
1732 * Initialize base of dump-stats buffer.
1733 */
1734 fxp_scb_wait(sc);
1735 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1736 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1737
1738 /*
1739 * Attempt to load microcode if requested.
1740 */
1741 if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
1742 fxp_load_ucode(sc);
1743
1744 /*
1745 * Initialize the multicast address list.
1746 */
1747 if (fxp_mc_addrs(sc)) {
1748 mcsp = sc->mcsp;
1749 mcsp->cb_status = 0;
1750 mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
1751 mcsp->link_addr = -1;
1752 /*
1753 * Start the multicast setup command.
1754 */
1755 fxp_scb_wait(sc);
1756 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
1757 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1758 /* ...and wait for it to complete. */
1759 fxp_dma_wait(&mcsp->cb_status, sc);
1760 }
1761
1762 /*
1763 * We temporarily use memory that contains the TxCB list to
1764 * construct the config CB. The TxCB list memory is rebuilt
1765 * later.
1766 */
1767 cbp = (struct fxp_cb_config *) sc->cbl_base;
1768
1769 /*
1770 * This bcopy is kind of disgusting, but there are a bunch of must be
1771 * zero and must be one bits in this structure and this is the easiest
1772 * way to initialize them all to proper values.
1773 */
1774 bcopy(fxp_cb_config_template,
1775 (void *)(uintptr_t)(volatile void *)&cbp->cb_status,
1776 sizeof(fxp_cb_config_template));
1777
1778 cbp->cb_status = 0;
1779 cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1780 cbp->link_addr = -1; /* (no) next command */
1639 cbp->byte_count = 22; /* (22) bytes to config */
1781 cbp->byte_count = sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
1640 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1641 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1642 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1643 cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1644 cbp->type_enable = 0; /* actually reserved */
1645 cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1646 cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1647 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1648 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1649 cbp->dma_mbce = 0; /* (disable) dma max counters */
1650 cbp->late_scb = 0; /* (don't) defer SCB update */
1651 cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */
1652 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1653 cbp->ci_int = 1; /* interrupt on CU idle */
1654 cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1655 cbp->ext_stats_dis = 1; /* disable extended counters */
1656 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1657 cbp->save_bf = sc->revision == FXP_REV_82557 ? 1 : prm;
1658 cbp->disc_short_rx = !prm; /* discard short packets */
1659 cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */
1660 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1661 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1782 cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
1783 cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
1784 cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
1785 cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1786 cbp->type_enable = 0; /* actually reserved */
1787 cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1788 cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1789 cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
1790 cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
1791 cbp->dma_mbce = 0; /* (disable) dma max counters */
1792 cbp->late_scb = 0; /* (don't) defer SCB update */
1793 cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */
1794 cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
1795 cbp->ci_int = 1; /* interrupt on CU idle */
1796 cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1797 cbp->ext_stats_dis = 1; /* disable extended counters */
1798 cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
1799 cbp->save_bf = sc->revision == FXP_REV_82557 ? 1 : prm;
1800 cbp->disc_short_rx = !prm; /* discard short packets */
1801 cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */
1802 cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
1803 cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
1804 cbp->ext_rfa = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
1662 cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1663 cbp->csma_dis = 0; /* (don't) disable link */
1664 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1665 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1666 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1667 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1668 cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */
1669 cbp->nsai = 1; /* (don't) disable source addr insert */
1670 cbp->preamble_length = 2; /* (7 byte) preamble */
1671 cbp->loopback = 0; /* (don't) loopback */
1672 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1673 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1674 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1675 cbp->promiscuous = prm; /* promiscuous mode */
1676 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1677 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1678 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1679 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1680 cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1681
1682 cbp->stripping = !prm; /* truncate rx packet to byte count */
1683 cbp->padding = 1; /* (do) pad short tx packets */
1684 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1685 cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1686 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1687 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1688 /* must set wake_en in PMCSR also */
1689 cbp->force_fdx = 0; /* (don't) force full duplex */
1690 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1691 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1692 cbp->mc_all = sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1805 cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1806 cbp->csma_dis = 0; /* (don't) disable link */
1807 cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
1808 cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
1809 cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
1810 cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
1811 cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */
1812 cbp->nsai = 1; /* (don't) disable source addr insert */
1813 cbp->preamble_length = 2; /* (7 byte) preamble */
1814 cbp->loopback = 0; /* (don't) loopback */
1815 cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
1816 cbp->linear_pri_mode = 0; /* (wait after xmit only) */
1817 cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
1818 cbp->promiscuous = prm; /* promiscuous mode */
1819 cbp->bcast_disable = 0; /* (don't) disable broadcasts */
1820 cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
1821 cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
1822 cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
1823 cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1824
1825 cbp->stripping = !prm; /* truncate rx packet to byte count */
1826 cbp->padding = 1; /* (do) pad short tx packets */
1827 cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
1828 cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1829 cbp->ia_wake_en = 0; /* (don't) wake up on address match */
1830 cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
1831 /* must set wake_en in PMCSR also */
1832 cbp->force_fdx = 0; /* (don't) force full duplex */
1833 cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
1834 cbp->multi_ia = 0; /* (don't) accept multiple IAs */
1835 cbp->mc_all = sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1836 cbp->gamla_rx = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
1693
1694 if (sc->revision == FXP_REV_82557) {
1695 /*
1696 * The 82557 has no hardware flow control, the values
1697 * below are the defaults for the chip.
1698 */
1699 cbp->fc_delay_lsb = 0;
1700 cbp->fc_delay_msb = 0x40;
1701 cbp->pri_fc_thresh = 3;
1702 cbp->tx_fc_dis = 0;
1703 cbp->rx_fc_restop = 0;
1704 cbp->rx_fc_restart = 0;
1705 cbp->fc_filter = 0;
1706 cbp->pri_fc_loc = 1;
1707 } else {
1708 cbp->fc_delay_lsb = 0x1f;
1709 cbp->fc_delay_msb = 0x01;
1710 cbp->pri_fc_thresh = 3;
1711 cbp->tx_fc_dis = 0; /* enable transmit FC */
1712 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1713 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1714 cbp->fc_filter = !prm; /* drop FC frames to host */
1715 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1716 }
1717
1718 /*
1719 * Start the config command/DMA.
1720 */
1721 fxp_scb_wait(sc);
1722 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1723 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1724 /* ...and wait for it to complete. */
1725 fxp_dma_wait(&cbp->cb_status, sc);
1726
1727 /*
1728 * Now initialize the station address. Temporarily use the TxCB
1729 * memory area like we did above for the config CB.
1730 */
1731 cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1732 cb_ias->cb_status = 0;
1733 cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1734 cb_ias->link_addr = -1;
1735 bcopy(sc->arpcom.ac_enaddr,
1736 (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1737 sizeof(sc->arpcom.ac_enaddr));
1738
1739 /*
1740 * Start the IAS (Individual Address Setup) command/DMA.
1741 */
1742 fxp_scb_wait(sc);
1743 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1744 /* ...and wait for it to complete. */
1745 fxp_dma_wait(&cb_ias->cb_status, sc);
1746
1747 /*
1748 * Initialize transmit control block (TxCB) list.
1749 */
1750
1751 txp = sc->cbl_base;
1752 bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1753 for (i = 0; i < FXP_NTXCB; i++) {
1754 txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1755 txp[i].cb_command = FXP_CB_COMMAND_NOP;
1756 txp[i].link_addr =
1757 vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1758 if (sc->flags & FXP_FLAG_EXT_TXCB)
1759 txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1760 else
1761 txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1762 txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1763 }
1764 /*
1765 * Set the suspend flag on the first TxCB and start the control
1766 * unit. It will execute the NOP and then suspend.
1767 */
1768 txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1769 sc->cbl_first = sc->cbl_last = txp;
1770 sc->tx_queued = 1;
1771
1772 fxp_scb_wait(sc);
1773 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1774
1775 /*
1776 * Initialize receiver buffer area - RFA.
1777 */
1778 fxp_scb_wait(sc);
1779 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1780 vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1781 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1782
1783 /*
1784 * Set current media.
1785 */
1786 if (sc->miibus != NULL)
1787 mii_mediachg(device_get_softc(sc->miibus));
1788
1789 ifp->if_flags |= IFF_RUNNING;
1790 ifp->if_flags &= ~IFF_OACTIVE;
1791
1792 /*
1793 * Enable interrupts.
1794 */
1795#ifdef DEVICE_POLLING
1796 /*
1797 * ... but only do that if we are not polling. And because (presumably)
1798 * the default is interrupts on, we need to disable them explicitly!
1799 */
1800 if ( ifp->if_flags & IFF_POLLING )
1801 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1802 else
1803#endif /* DEVICE_POLLING */
1804 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1805 splx(s);
1806
1807 /*
1808 * Start stats updater.
1809 */
1810 sc->stat_ch = timeout(fxp_tick, sc, hz);
1811}
1812
1813static int
1814fxp_serial_ifmedia_upd(struct ifnet *ifp)
1815{
1816
1817 return (0);
1818}
1819
1820static void
1821fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1822{
1823
1824 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1825}
1826
1827/*
1828 * Change media according to request.
1829 */
1830static int
1831fxp_ifmedia_upd(struct ifnet *ifp)
1832{
1833 struct fxp_softc *sc = ifp->if_softc;
1834 struct mii_data *mii;
1835
1836 mii = device_get_softc(sc->miibus);
1837 mii_mediachg(mii);
1838 return (0);
1839}
1840
1841/*
1842 * Notify the world which media we're using.
1843 */
1844static void
1845fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1846{
1847 struct fxp_softc *sc = ifp->if_softc;
1848 struct mii_data *mii;
1849
1850 mii = device_get_softc(sc->miibus);
1851 mii_pollstat(mii);
1852 ifmr->ifm_active = mii->mii_media_active;
1853 ifmr->ifm_status = mii->mii_media_status;
1854
1855 if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1856 sc->cu_resume_bug = 1;
1857 else
1858 sc->cu_resume_bug = 0;
1859}
1860
1861/*
1862 * Add a buffer to the end of the RFA buffer list.
1863 * Return 0 if successful, 1 for failure. A failure results in
1864 * adding the 'oldm' (if non-NULL) on to the end of the list -
1865 * tossing out its old contents and recycling it.
1866 * The RFA struct is stuck at the beginning of mbuf cluster and the
1867 * data pointer is fixed up to point just past it.
1868 */
1869static int
1870fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1871{
1872 u_int32_t v;
1873 struct mbuf *m;
1874 struct fxp_rfa *rfa, *p_rfa;
1875
1876 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1877 if (m == NULL) { /* try to recycle the old mbuf instead */
1878 if (oldm == NULL)
1879 return 1;
1880 m = oldm;
1881 m->m_data = m->m_ext.ext_buf;
1882 }
1883
1884 /*
1885 * Move the data pointer up so that the incoming data packet
1886 * will be 32-bit aligned.
1887 */
1888 m->m_data += RFA_ALIGNMENT_FUDGE;
1889
1890 /*
1891 * Get a pointer to the base of the mbuf cluster and move
1892 * data start past it.
1893 */
1894 rfa = mtod(m, struct fxp_rfa *);
1837
1838 if (sc->revision == FXP_REV_82557) {
1839 /*
1840 * The 82557 has no hardware flow control, the values
1841 * below are the defaults for the chip.
1842 */
1843 cbp->fc_delay_lsb = 0;
1844 cbp->fc_delay_msb = 0x40;
1845 cbp->pri_fc_thresh = 3;
1846 cbp->tx_fc_dis = 0;
1847 cbp->rx_fc_restop = 0;
1848 cbp->rx_fc_restart = 0;
1849 cbp->fc_filter = 0;
1850 cbp->pri_fc_loc = 1;
1851 } else {
1852 cbp->fc_delay_lsb = 0x1f;
1853 cbp->fc_delay_msb = 0x01;
1854 cbp->pri_fc_thresh = 3;
1855 cbp->tx_fc_dis = 0; /* enable transmit FC */
1856 cbp->rx_fc_restop = 1; /* enable FC restop frames */
1857 cbp->rx_fc_restart = 1; /* enable FC restart frames */
1858 cbp->fc_filter = !prm; /* drop FC frames to host */
1859 cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
1860 }
1861
1862 /*
1863 * Start the config command/DMA.
1864 */
1865 fxp_scb_wait(sc);
1866 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1867 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1868 /* ...and wait for it to complete. */
1869 fxp_dma_wait(&cbp->cb_status, sc);
1870
1871 /*
1872 * Now initialize the station address. Temporarily use the TxCB
1873 * memory area like we did above for the config CB.
1874 */
1875 cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1876 cb_ias->cb_status = 0;
1877 cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1878 cb_ias->link_addr = -1;
1879 bcopy(sc->arpcom.ac_enaddr,
1880 (void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
1881 sizeof(sc->arpcom.ac_enaddr));
1882
1883 /*
1884 * Start the IAS (Individual Address Setup) command/DMA.
1885 */
1886 fxp_scb_wait(sc);
1887 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1888 /* ...and wait for it to complete. */
1889 fxp_dma_wait(&cb_ias->cb_status, sc);
1890
1891 /*
1892 * Initialize transmit control block (TxCB) list.
1893 */
1894
1895 txp = sc->cbl_base;
1896 bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1897 for (i = 0; i < FXP_NTXCB; i++) {
1898 txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1899 txp[i].cb_command = FXP_CB_COMMAND_NOP;
1900 txp[i].link_addr =
1901 vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1902 if (sc->flags & FXP_FLAG_EXT_TXCB)
1903 txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1904 else
1905 txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1906 txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1907 }
1908 /*
1909 * Set the suspend flag on the first TxCB and start the control
1910 * unit. It will execute the NOP and then suspend.
1911 */
1912 txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1913 sc->cbl_first = sc->cbl_last = txp;
1914 sc->tx_queued = 1;
1915
1916 fxp_scb_wait(sc);
1917 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1918
1919 /*
1920 * Initialize receiver buffer area - RFA.
1921 */
1922 fxp_scb_wait(sc);
1923 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1924 vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1925 fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1926
1927 /*
1928 * Set current media.
1929 */
1930 if (sc->miibus != NULL)
1931 mii_mediachg(device_get_softc(sc->miibus));
1932
1933 ifp->if_flags |= IFF_RUNNING;
1934 ifp->if_flags &= ~IFF_OACTIVE;
1935
1936 /*
1937 * Enable interrupts.
1938 */
1939#ifdef DEVICE_POLLING
1940 /*
1941 * ... but only do that if we are not polling. And because (presumably)
1942 * the default is interrupts on, we need to disable them explicitly!
1943 */
1944 if ( ifp->if_flags & IFF_POLLING )
1945 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1946 else
1947#endif /* DEVICE_POLLING */
1948 CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1949 splx(s);
1950
1951 /*
1952 * Start stats updater.
1953 */
1954 sc->stat_ch = timeout(fxp_tick, sc, hz);
1955}
1956
1957static int
1958fxp_serial_ifmedia_upd(struct ifnet *ifp)
1959{
1960
1961 return (0);
1962}
1963
1964static void
1965fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1966{
1967
1968 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1969}
1970
1971/*
1972 * Change media according to request.
1973 */
1974static int
1975fxp_ifmedia_upd(struct ifnet *ifp)
1976{
1977 struct fxp_softc *sc = ifp->if_softc;
1978 struct mii_data *mii;
1979
1980 mii = device_get_softc(sc->miibus);
1981 mii_mediachg(mii);
1982 return (0);
1983}
1984
1985/*
1986 * Notify the world which media we're using.
1987 */
1988static void
1989fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1990{
1991 struct fxp_softc *sc = ifp->if_softc;
1992 struct mii_data *mii;
1993
1994 mii = device_get_softc(sc->miibus);
1995 mii_pollstat(mii);
1996 ifmr->ifm_active = mii->mii_media_active;
1997 ifmr->ifm_status = mii->mii_media_status;
1998
1999 if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
2000 sc->cu_resume_bug = 1;
2001 else
2002 sc->cu_resume_bug = 0;
2003}
2004
2005/*
2006 * Add a buffer to the end of the RFA buffer list.
2007 * Return 0 if successful, 1 for failure. A failure results in
2008 * adding the 'oldm' (if non-NULL) on to the end of the list -
2009 * tossing out its old contents and recycling it.
2010 * The RFA struct is stuck at the beginning of mbuf cluster and the
2011 * data pointer is fixed up to point just past it.
2012 */
2013static int
2014fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
2015{
2016 u_int32_t v;
2017 struct mbuf *m;
2018 struct fxp_rfa *rfa, *p_rfa;
2019
2020 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2021 if (m == NULL) { /* try to recycle the old mbuf instead */
2022 if (oldm == NULL)
2023 return 1;
2024 m = oldm;
2025 m->m_data = m->m_ext.ext_buf;
2026 }
2027
2028 /*
2029 * Move the data pointer up so that the incoming data packet
2030 * will be 32-bit aligned.
2031 */
2032 m->m_data += RFA_ALIGNMENT_FUDGE;
2033
2034 /*
2035 * Get a pointer to the base of the mbuf cluster and move
2036 * data start past it.
2037 */
2038 rfa = mtod(m, struct fxp_rfa *);
1895 m->m_data += sizeof(struct fxp_rfa);
1896 rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
2039 m->m_data += sc->rfa_size;
2040 rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) -
2041 RFA_ALIGNMENT_FUDGE);
1897
1898 /*
1899 * Initialize the rest of the RFA. Note that since the RFA
1900 * is misaligned, we cannot store values directly. Instead,
1901 * we use an optimized, inline copy.
1902 */
1903
1904 rfa->rfa_status = 0;
1905 rfa->rfa_control = FXP_RFA_CONTROL_EL;
1906 rfa->actual_size = 0;
1907
1908 v = -1;
1909 fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
1910 fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
1911
1912 /*
1913 * If there are other buffers already on the list, attach this
1914 * one to the end by fixing up the tail to point to this one.
1915 */
1916 if (sc->rfa_headm != NULL) {
1917 p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
1918 RFA_ALIGNMENT_FUDGE);
1919 sc->rfa_tailm->m_next = m;
1920 v = vtophys(rfa);
1921 fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
1922 p_rfa->rfa_control = 0;
1923 } else {
1924 sc->rfa_headm = m;
1925 }
1926 sc->rfa_tailm = m;
1927
1928 return (m == oldm);
1929}
1930
1931static volatile int
1932fxp_miibus_readreg(device_t dev, int phy, int reg)
1933{
1934 struct fxp_softc *sc = device_get_softc(dev);
1935 int count = 10000;
1936 int value;
1937
1938 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1939 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
1940
1941 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
1942 && count--)
1943 DELAY(10);
1944
1945 if (count <= 0)
1946 device_printf(dev, "fxp_miibus_readreg: timed out\n");
1947
1948 return (value & 0xffff);
1949}
1950
1951static void
1952fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
1953{
1954 struct fxp_softc *sc = device_get_softc(dev);
1955 int count = 10000;
1956
1957 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
1958 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
1959 (value & 0xffff));
1960
1961 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
1962 count--)
1963 DELAY(10);
1964
1965 if (count <= 0)
1966 device_printf(dev, "fxp_miibus_writereg: timed out\n");
1967}
1968
1969static int
1970fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1971{
1972 struct fxp_softc *sc = ifp->if_softc;
1973 struct ifreq *ifr = (struct ifreq *)data;
1974 struct mii_data *mii;
1975 int s, error = 0;
1976
1977 s = splimp();
1978
1979 switch (command) {
1980 case SIOCSIFFLAGS:
1981 if (ifp->if_flags & IFF_ALLMULTI)
1982 sc->flags |= FXP_FLAG_ALL_MCAST;
1983 else
1984 sc->flags &= ~FXP_FLAG_ALL_MCAST;
1985
1986 /*
1987 * If interface is marked up and not running, then start it.
1988 * If it is marked down and running, stop it.
1989 * XXX If it's up then re-initialize it. This is so flags
1990 * such as IFF_PROMISC are handled.
1991 */
1992 if (ifp->if_flags & IFF_UP) {
1993 fxp_init(sc);
1994 } else {
1995 if (ifp->if_flags & IFF_RUNNING)
1996 fxp_stop(sc);
1997 }
1998 break;
1999
2000 case SIOCADDMULTI:
2001 case SIOCDELMULTI:
2002 if (ifp->if_flags & IFF_ALLMULTI)
2003 sc->flags |= FXP_FLAG_ALL_MCAST;
2004 else
2005 sc->flags &= ~FXP_FLAG_ALL_MCAST;
2006 /*
2007 * Multicast list has changed; set the hardware filter
2008 * accordingly.
2009 */
2010 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2011 fxp_mc_setup(sc);
2012 /*
2013 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2014 * again rather than else {}.
2015 */
2016 if (sc->flags & FXP_FLAG_ALL_MCAST)
2017 fxp_init(sc);
2018 error = 0;
2019 break;
2020
2021 case SIOCSIFMEDIA:
2022 case SIOCGIFMEDIA:
2023 if (sc->miibus != NULL) {
2024 mii = device_get_softc(sc->miibus);
2025 error = ifmedia_ioctl(ifp, ifr,
2026 &mii->mii_media, command);
2027 } else {
2028 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2029 }
2030 break;
2031
2032 default:
2033 error = ether_ioctl(ifp, command, data);
2034 }
2035 splx(s);
2036 return (error);
2037}
2038
2039/*
2040 * Fill in the multicast address list and return number of entries.
2041 */
2042static int
2043fxp_mc_addrs(struct fxp_softc *sc)
2044{
2045 struct fxp_cb_mcs *mcsp = sc->mcsp;
2046 struct ifnet *ifp = &sc->sc_if;
2047 struct ifmultiaddr *ifma;
2048 int nmcasts;
2049
2050 nmcasts = 0;
2051 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2052#if __FreeBSD_version < 500000
2053 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2054#else
2055 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2056#endif
2057 if (ifma->ifma_addr->sa_family != AF_LINK)
2058 continue;
2059 if (nmcasts >= MAXMCADDR) {
2060 sc->flags |= FXP_FLAG_ALL_MCAST;
2061 nmcasts = 0;
2062 break;
2063 }
2064 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2065 (void *)(uintptr_t)(volatile void *)
2066 &sc->mcsp->mc_addr[nmcasts][0], 6);
2067 nmcasts++;
2068 }
2069 }
2070 mcsp->mc_cnt = nmcasts * 6;
2071 return (nmcasts);
2072}
2073
2074/*
2075 * Program the multicast filter.
2076 *
2077 * We have an artificial restriction that the multicast setup command
2078 * must be the first command in the chain, so we take steps to ensure
2079 * this. By requiring this, it allows us to keep up the performance of
2080 * the pre-initialized command ring (esp. link pointers) by not actually
2081 * inserting the mcsetup command in the ring - i.e. its link pointer
2082 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2083 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2084 * lead into the regular TxCB ring when it completes.
2085 *
2086 * This function must be called at splimp.
2087 */
2088static void
2089fxp_mc_setup(struct fxp_softc *sc)
2090{
2091 struct fxp_cb_mcs *mcsp = sc->mcsp;
2092 struct ifnet *ifp = &sc->sc_if;
2093 int count;
2094
2095 /*
2096 * If there are queued commands, we must wait until they are all
2097 * completed. If we are already waiting, then add a NOP command
2098 * with interrupt option so that we're notified when all commands
2099 * have been completed - fxp_start() ensures that no additional
2100 * TX commands will be added when need_mcsetup is true.
2101 */
2102 if (sc->tx_queued) {
2103 struct fxp_cb_tx *txp;
2104
2105 /*
2106 * need_mcsetup will be true if we are already waiting for the
2107 * NOP command to be completed (see below). In this case, bail.
2108 */
2109 if (sc->need_mcsetup)
2110 return;
2111 sc->need_mcsetup = 1;
2112
2113 /*
2114 * Add a NOP command with interrupt so that we are notified
2115 * when all TX commands have been processed.
2116 */
2117 txp = sc->cbl_last->next;
2118 txp->mb_head = NULL;
2119 txp->cb_status = 0;
2120 txp->cb_command = FXP_CB_COMMAND_NOP |
2121 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2122 /*
2123 * Advance the end of list forward.
2124 */
2125 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2126 sc->cbl_last = txp;
2127 sc->tx_queued++;
2128 /*
2129 * Issue a resume in case the CU has just suspended.
2130 */
2131 fxp_scb_wait(sc);
2132 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2133 /*
2134 * Set a 5 second timer just in case we don't hear from the
2135 * card again.
2136 */
2137 ifp->if_timer = 5;
2138
2139 return;
2140 }
2141 sc->need_mcsetup = 0;
2142
2143 /*
2144 * Initialize multicast setup descriptor.
2145 */
2146 mcsp->next = sc->cbl_base;
2147 mcsp->mb_head = NULL;
2148 mcsp->cb_status = 0;
2149 mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2150 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2151 mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2152 (void) fxp_mc_addrs(sc);
2153 sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2154 sc->tx_queued = 1;
2155
2156 /*
2157 * Wait until command unit is not active. This should never
2158 * be the case when nothing is queued, but make sure anyway.
2159 */
2160 count = 100;
2161 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2162 FXP_SCB_CUS_ACTIVE && --count)
2163 DELAY(10);
2164 if (count == 0) {
2165 device_printf(sc->dev, "command queue timeout\n");
2166 return;
2167 }
2168
2169 /*
2170 * Start the multicast setup command.
2171 */
2172 fxp_scb_wait(sc);
2173 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2174 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2175
2176 ifp->if_timer = 2;
2177 return;
2178}
2179
2180static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2181static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2182static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2183static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2184static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2185static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2186
2187#define UCODE(x) x, sizeof(x)
2188
2189struct ucode {
2190 u_int32_t revision;
2191 u_int32_t *ucode;
2192 int length;
2193 u_short int_delay_offset;
2194 u_short bundle_max_offset;
2195} ucode_table[] = {
2196 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2197 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2198 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2199 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2200 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2201 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2202 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2203 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2204 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2205 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2206 { 0, NULL, 0, 0, 0 }
2207};
2208
2209static void
2210fxp_load_ucode(struct fxp_softc *sc)
2211{
2212 struct ucode *uc;
2213 struct fxp_cb_ucode *cbp;
2214
2215 for (uc = ucode_table; uc->ucode != NULL; uc++)
2216 if (sc->revision == uc->revision)
2217 break;
2218 if (uc->ucode == NULL)
2219 return;
2220 cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2221 cbp->cb_status = 0;
2222 cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2223 cbp->link_addr = -1; /* (no) next command */
2224 memcpy(cbp->ucode, uc->ucode, uc->length);
2225 if (uc->int_delay_offset)
2226 *(u_short *)&cbp->ucode[uc->int_delay_offset] =
2227 sc->tunable_int_delay + sc->tunable_int_delay / 2;
2228 if (uc->bundle_max_offset)
2229 *(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2230 sc->tunable_bundle_max;
2231 /*
2232 * Download the ucode to the chip.
2233 */
2234 fxp_scb_wait(sc);
2235 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2236 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2237 /* ...and wait for it to complete. */
2238 fxp_dma_wait(&cbp->cb_status, sc);
2239 device_printf(sc->dev,
2240 "Microcode loaded, int_delay: %d usec bundle_max: %d\n",
2241 sc->tunable_int_delay,
2242 uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2243 sc->flags |= FXP_FLAG_UCODE;
2244}
2245
2246static int
2247sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2248{
2249 int error, value;
2250
2251 value = *(int *)arg1;
2252 error = sysctl_handle_int(oidp, &value, 0, req);
2253 if (error || !req->newptr)
2254 return (error);
2255 if (value < low || value > high)
2256 return (EINVAL);
2257 *(int *)arg1 = value;
2258 return (0);
2259}
2260
2261/*
2262 * Interrupt delay is expressed in microseconds, a multiplier is used
2263 * to convert this to the appropriate clock ticks before using.
2264 */
2265static int
2266sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2267{
2268 return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2269}
2270
2271static int
2272sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2273{
2274 return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2275}
2042
2043 /*
2044 * Initialize the rest of the RFA. Note that since the RFA
2045 * is misaligned, we cannot store values directly. Instead,
2046 * we use an optimized, inline copy.
2047 */
2048
2049 rfa->rfa_status = 0;
2050 rfa->rfa_control = FXP_RFA_CONTROL_EL;
2051 rfa->actual_size = 0;
2052
2053 v = -1;
2054 fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
2055 fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
2056
2057 /*
2058 * If there are other buffers already on the list, attach this
2059 * one to the end by fixing up the tail to point to this one.
2060 */
2061 if (sc->rfa_headm != NULL) {
2062 p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
2063 RFA_ALIGNMENT_FUDGE);
2064 sc->rfa_tailm->m_next = m;
2065 v = vtophys(rfa);
2066 fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
2067 p_rfa->rfa_control = 0;
2068 } else {
2069 sc->rfa_headm = m;
2070 }
2071 sc->rfa_tailm = m;
2072
2073 return (m == oldm);
2074}
2075
2076static volatile int
2077fxp_miibus_readreg(device_t dev, int phy, int reg)
2078{
2079 struct fxp_softc *sc = device_get_softc(dev);
2080 int count = 10000;
2081 int value;
2082
2083 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2084 (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2085
2086 while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2087 && count--)
2088 DELAY(10);
2089
2090 if (count <= 0)
2091 device_printf(dev, "fxp_miibus_readreg: timed out\n");
2092
2093 return (value & 0xffff);
2094}
2095
2096static void
2097fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2098{
2099 struct fxp_softc *sc = device_get_softc(dev);
2100 int count = 10000;
2101
2102 CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2103 (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2104 (value & 0xffff));
2105
2106 while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2107 count--)
2108 DELAY(10);
2109
2110 if (count <= 0)
2111 device_printf(dev, "fxp_miibus_writereg: timed out\n");
2112}
2113
2114static int
2115fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2116{
2117 struct fxp_softc *sc = ifp->if_softc;
2118 struct ifreq *ifr = (struct ifreq *)data;
2119 struct mii_data *mii;
2120 int s, error = 0;
2121
2122 s = splimp();
2123
2124 switch (command) {
2125 case SIOCSIFFLAGS:
2126 if (ifp->if_flags & IFF_ALLMULTI)
2127 sc->flags |= FXP_FLAG_ALL_MCAST;
2128 else
2129 sc->flags &= ~FXP_FLAG_ALL_MCAST;
2130
2131 /*
2132 * If interface is marked up and not running, then start it.
2133 * If it is marked down and running, stop it.
2134 * XXX If it's up then re-initialize it. This is so flags
2135 * such as IFF_PROMISC are handled.
2136 */
2137 if (ifp->if_flags & IFF_UP) {
2138 fxp_init(sc);
2139 } else {
2140 if (ifp->if_flags & IFF_RUNNING)
2141 fxp_stop(sc);
2142 }
2143 break;
2144
2145 case SIOCADDMULTI:
2146 case SIOCDELMULTI:
2147 if (ifp->if_flags & IFF_ALLMULTI)
2148 sc->flags |= FXP_FLAG_ALL_MCAST;
2149 else
2150 sc->flags &= ~FXP_FLAG_ALL_MCAST;
2151 /*
2152 * Multicast list has changed; set the hardware filter
2153 * accordingly.
2154 */
2155 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2156 fxp_mc_setup(sc);
2157 /*
2158 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2159 * again rather than else {}.
2160 */
2161 if (sc->flags & FXP_FLAG_ALL_MCAST)
2162 fxp_init(sc);
2163 error = 0;
2164 break;
2165
2166 case SIOCSIFMEDIA:
2167 case SIOCGIFMEDIA:
2168 if (sc->miibus != NULL) {
2169 mii = device_get_softc(sc->miibus);
2170 error = ifmedia_ioctl(ifp, ifr,
2171 &mii->mii_media, command);
2172 } else {
2173 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2174 }
2175 break;
2176
2177 default:
2178 error = ether_ioctl(ifp, command, data);
2179 }
2180 splx(s);
2181 return (error);
2182}
2183
2184/*
2185 * Fill in the multicast address list and return number of entries.
2186 */
2187static int
2188fxp_mc_addrs(struct fxp_softc *sc)
2189{
2190 struct fxp_cb_mcs *mcsp = sc->mcsp;
2191 struct ifnet *ifp = &sc->sc_if;
2192 struct ifmultiaddr *ifma;
2193 int nmcasts;
2194
2195 nmcasts = 0;
2196 if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2197#if __FreeBSD_version < 500000
2198 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2199#else
2200 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2201#endif
2202 if (ifma->ifma_addr->sa_family != AF_LINK)
2203 continue;
2204 if (nmcasts >= MAXMCADDR) {
2205 sc->flags |= FXP_FLAG_ALL_MCAST;
2206 nmcasts = 0;
2207 break;
2208 }
2209 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2210 (void *)(uintptr_t)(volatile void *)
2211 &sc->mcsp->mc_addr[nmcasts][0], 6);
2212 nmcasts++;
2213 }
2214 }
2215 mcsp->mc_cnt = nmcasts * 6;
2216 return (nmcasts);
2217}
2218
2219/*
2220 * Program the multicast filter.
2221 *
2222 * We have an artificial restriction that the multicast setup command
2223 * must be the first command in the chain, so we take steps to ensure
2224 * this. By requiring this, it allows us to keep up the performance of
2225 * the pre-initialized command ring (esp. link pointers) by not actually
2226 * inserting the mcsetup command in the ring - i.e. its link pointer
2227 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2228 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2229 * lead into the regular TxCB ring when it completes.
2230 *
2231 * This function must be called at splimp.
2232 */
2233static void
2234fxp_mc_setup(struct fxp_softc *sc)
2235{
2236 struct fxp_cb_mcs *mcsp = sc->mcsp;
2237 struct ifnet *ifp = &sc->sc_if;
2238 int count;
2239
2240 /*
2241 * If there are queued commands, we must wait until they are all
2242 * completed. If we are already waiting, then add a NOP command
2243 * with interrupt option so that we're notified when all commands
2244 * have been completed - fxp_start() ensures that no additional
2245 * TX commands will be added when need_mcsetup is true.
2246 */
2247 if (sc->tx_queued) {
2248 struct fxp_cb_tx *txp;
2249
2250 /*
2251 * need_mcsetup will be true if we are already waiting for the
2252 * NOP command to be completed (see below). In this case, bail.
2253 */
2254 if (sc->need_mcsetup)
2255 return;
2256 sc->need_mcsetup = 1;
2257
2258 /*
2259 * Add a NOP command with interrupt so that we are notified
2260 * when all TX commands have been processed.
2261 */
2262 txp = sc->cbl_last->next;
2263 txp->mb_head = NULL;
2264 txp->cb_status = 0;
2265 txp->cb_command = FXP_CB_COMMAND_NOP |
2266 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2267 /*
2268 * Advance the end of list forward.
2269 */
2270 sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2271 sc->cbl_last = txp;
2272 sc->tx_queued++;
2273 /*
2274 * Issue a resume in case the CU has just suspended.
2275 */
2276 fxp_scb_wait(sc);
2277 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2278 /*
2279 * Set a 5 second timer just in case we don't hear from the
2280 * card again.
2281 */
2282 ifp->if_timer = 5;
2283
2284 return;
2285 }
2286 sc->need_mcsetup = 0;
2287
2288 /*
2289 * Initialize multicast setup descriptor.
2290 */
2291 mcsp->next = sc->cbl_base;
2292 mcsp->mb_head = NULL;
2293 mcsp->cb_status = 0;
2294 mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2295 FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2296 mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2297 (void) fxp_mc_addrs(sc);
2298 sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2299 sc->tx_queued = 1;
2300
2301 /*
2302 * Wait until command unit is not active. This should never
2303 * be the case when nothing is queued, but make sure anyway.
2304 */
2305 count = 100;
2306 while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2307 FXP_SCB_CUS_ACTIVE && --count)
2308 DELAY(10);
2309 if (count == 0) {
2310 device_printf(sc->dev, "command queue timeout\n");
2311 return;
2312 }
2313
2314 /*
2315 * Start the multicast setup command.
2316 */
2317 fxp_scb_wait(sc);
2318 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2319 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2320
2321 ifp->if_timer = 2;
2322 return;
2323}
2324
2325static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
2326static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
2327static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
2328static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
2329static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
2330static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
2331
2332#define UCODE(x) x, sizeof(x)
2333
2334struct ucode {
2335 u_int32_t revision;
2336 u_int32_t *ucode;
2337 int length;
2338 u_short int_delay_offset;
2339 u_short bundle_max_offset;
2340} ucode_table[] = {
2341 { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
2342 { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
2343 { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
2344 D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
2345 { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
2346 D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
2347 { FXP_REV_82550, UCODE(fxp_ucode_d102),
2348 D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
2349 { FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
2350 D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
2351 { 0, NULL, 0, 0, 0 }
2352};
2353
2354static void
2355fxp_load_ucode(struct fxp_softc *sc)
2356{
2357 struct ucode *uc;
2358 struct fxp_cb_ucode *cbp;
2359
2360 for (uc = ucode_table; uc->ucode != NULL; uc++)
2361 if (sc->revision == uc->revision)
2362 break;
2363 if (uc->ucode == NULL)
2364 return;
2365 cbp = (struct fxp_cb_ucode *)sc->cbl_base;
2366 cbp->cb_status = 0;
2367 cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
2368 cbp->link_addr = -1; /* (no) next command */
2369 memcpy(cbp->ucode, uc->ucode, uc->length);
2370 if (uc->int_delay_offset)
2371 *(u_short *)&cbp->ucode[uc->int_delay_offset] =
2372 sc->tunable_int_delay + sc->tunable_int_delay / 2;
2373 if (uc->bundle_max_offset)
2374 *(u_short *)&cbp->ucode[uc->bundle_max_offset] =
2375 sc->tunable_bundle_max;
2376 /*
2377 * Download the ucode to the chip.
2378 */
2379 fxp_scb_wait(sc);
2380 CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
2381 fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2382 /* ...and wait for it to complete. */
2383 fxp_dma_wait(&cbp->cb_status, sc);
2384 device_printf(sc->dev,
2385 "Microcode loaded, int_delay: %d usec bundle_max: %d\n",
2386 sc->tunable_int_delay,
2387 uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
2388 sc->flags |= FXP_FLAG_UCODE;
2389}
2390
2391static int
2392sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2393{
2394 int error, value;
2395
2396 value = *(int *)arg1;
2397 error = sysctl_handle_int(oidp, &value, 0, req);
2398 if (error || !req->newptr)
2399 return (error);
2400 if (value < low || value > high)
2401 return (EINVAL);
2402 *(int *)arg1 = value;
2403 return (0);
2404}
2405
2406/*
2407 * Interrupt delay is expressed in microseconds, a multiplier is used
2408 * to convert this to the appropriate clock ticks before using.
2409 */
2410static int
2411sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
2412{
2413 return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
2414}
2415
2416static int
2417sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
2418{
2419 return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
2420}