Deleted Added
full compact
e1000_api.c (287990) e1000_api.c (295323)
1/******************************************************************************
2
3 Copyright (c) 2001-2015, Intel Corporation
4 All rights reserved.
5
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
8
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
11
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
15
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
19
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
1/******************************************************************************
2
3 Copyright (c) 2001-2015, Intel Corporation
4 All rights reserved.
5
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
8
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
11
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
15
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
19
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD: head/sys/dev/e1000/e1000_api.c 287990 2015-09-19 18:22:59Z sbruno $*/
33/*$FreeBSD: head/sys/dev/e1000/e1000_api.c 295323 2016-02-05 17:14:37Z erj $*/
34
35#include "e1000_api.h"
36
37/**
38 * e1000_init_mac_params - Initialize MAC function pointers
39 * @hw: pointer to the HW structure
40 *
41 * This function initializes the function pointers for the MAC
42 * set of functions. Called by drivers or by e1000_setup_init_funcs.
43 **/
44s32 e1000_init_mac_params(struct e1000_hw *hw)
45{
46 s32 ret_val = E1000_SUCCESS;
47
48 if (hw->mac.ops.init_params) {
49 ret_val = hw->mac.ops.init_params(hw);
50 if (ret_val) {
51 DEBUGOUT("MAC Initialization Error\n");
52 goto out;
53 }
54 } else {
55 DEBUGOUT("mac.init_mac_params was NULL\n");
56 ret_val = -E1000_ERR_CONFIG;
57 }
58
59out:
60 return ret_val;
61}
62
63/**
64 * e1000_init_nvm_params - Initialize NVM function pointers
65 * @hw: pointer to the HW structure
66 *
67 * This function initializes the function pointers for the NVM
68 * set of functions. Called by drivers or by e1000_setup_init_funcs.
69 **/
70s32 e1000_init_nvm_params(struct e1000_hw *hw)
71{
72 s32 ret_val = E1000_SUCCESS;
73
74 if (hw->nvm.ops.init_params) {
75 ret_val = hw->nvm.ops.init_params(hw);
76 if (ret_val) {
77 DEBUGOUT("NVM Initialization Error\n");
78 goto out;
79 }
80 } else {
81 DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 ret_val = -E1000_ERR_CONFIG;
83 }
84
85out:
86 return ret_val;
87}
88
89/**
90 * e1000_init_phy_params - Initialize PHY function pointers
91 * @hw: pointer to the HW structure
92 *
93 * This function initializes the function pointers for the PHY
94 * set of functions. Called by drivers or by e1000_setup_init_funcs.
95 **/
96s32 e1000_init_phy_params(struct e1000_hw *hw)
97{
98 s32 ret_val = E1000_SUCCESS;
99
100 if (hw->phy.ops.init_params) {
101 ret_val = hw->phy.ops.init_params(hw);
102 if (ret_val) {
103 DEBUGOUT("PHY Initialization Error\n");
104 goto out;
105 }
106 } else {
107 DEBUGOUT("phy.init_phy_params was NULL\n");
108 ret_val = -E1000_ERR_CONFIG;
109 }
110
111out:
112 return ret_val;
113}
114
115/**
116 * e1000_init_mbx_params - Initialize mailbox function pointers
117 * @hw: pointer to the HW structure
118 *
119 * This function initializes the function pointers for the PHY
120 * set of functions. Called by drivers or by e1000_setup_init_funcs.
121 **/
122s32 e1000_init_mbx_params(struct e1000_hw *hw)
123{
124 s32 ret_val = E1000_SUCCESS;
125
126 if (hw->mbx.ops.init_params) {
127 ret_val = hw->mbx.ops.init_params(hw);
128 if (ret_val) {
129 DEBUGOUT("Mailbox Initialization Error\n");
130 goto out;
131 }
132 } else {
133 DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 ret_val = -E1000_ERR_CONFIG;
135 }
136
137out:
138 return ret_val;
139}
140
141/**
142 * e1000_set_mac_type - Sets MAC type
143 * @hw: pointer to the HW structure
144 *
145 * This function sets the mac type of the adapter based on the
146 * device ID stored in the hw structure.
147 * MUST BE FIRST FUNCTION CALLED (explicitly or through
148 * e1000_setup_init_funcs()).
149 **/
150s32 e1000_set_mac_type(struct e1000_hw *hw)
151{
152 struct e1000_mac_info *mac = &hw->mac;
153 s32 ret_val = E1000_SUCCESS;
154
155 DEBUGFUNC("e1000_set_mac_type");
156
157 switch (hw->device_id) {
158 case E1000_DEV_ID_82542:
159 mac->type = e1000_82542;
160 break;
161 case E1000_DEV_ID_82543GC_FIBER:
162 case E1000_DEV_ID_82543GC_COPPER:
163 mac->type = e1000_82543;
164 break;
165 case E1000_DEV_ID_82544EI_COPPER:
166 case E1000_DEV_ID_82544EI_FIBER:
167 case E1000_DEV_ID_82544GC_COPPER:
168 case E1000_DEV_ID_82544GC_LOM:
169 mac->type = e1000_82544;
170 break;
171 case E1000_DEV_ID_82540EM:
172 case E1000_DEV_ID_82540EM_LOM:
173 case E1000_DEV_ID_82540EP:
174 case E1000_DEV_ID_82540EP_LOM:
175 case E1000_DEV_ID_82540EP_LP:
176 mac->type = e1000_82540;
177 break;
178 case E1000_DEV_ID_82545EM_COPPER:
179 case E1000_DEV_ID_82545EM_FIBER:
180 mac->type = e1000_82545;
181 break;
182 case E1000_DEV_ID_82545GM_COPPER:
183 case E1000_DEV_ID_82545GM_FIBER:
184 case E1000_DEV_ID_82545GM_SERDES:
185 mac->type = e1000_82545_rev_3;
186 break;
187 case E1000_DEV_ID_82546EB_COPPER:
188 case E1000_DEV_ID_82546EB_FIBER:
189 case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 mac->type = e1000_82546;
191 break;
192 case E1000_DEV_ID_82546GB_COPPER:
193 case E1000_DEV_ID_82546GB_FIBER:
194 case E1000_DEV_ID_82546GB_SERDES:
195 case E1000_DEV_ID_82546GB_PCIE:
196 case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 mac->type = e1000_82546_rev_3;
199 break;
200 case E1000_DEV_ID_82541EI:
201 case E1000_DEV_ID_82541EI_MOBILE:
202 case E1000_DEV_ID_82541ER_LOM:
203 mac->type = e1000_82541;
204 break;
205 case E1000_DEV_ID_82541ER:
206 case E1000_DEV_ID_82541GI:
207 case E1000_DEV_ID_82541GI_LF:
208 case E1000_DEV_ID_82541GI_MOBILE:
209 mac->type = e1000_82541_rev_2;
210 break;
211 case E1000_DEV_ID_82547EI:
212 case E1000_DEV_ID_82547EI_MOBILE:
213 mac->type = e1000_82547;
214 break;
215 case E1000_DEV_ID_82547GI:
216 mac->type = e1000_82547_rev_2;
217 break;
218 case E1000_DEV_ID_82571EB_COPPER:
219 case E1000_DEV_ID_82571EB_FIBER:
220 case E1000_DEV_ID_82571EB_SERDES:
221 case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 mac->type = e1000_82571;
228 break;
229 case E1000_DEV_ID_82572EI:
230 case E1000_DEV_ID_82572EI_COPPER:
231 case E1000_DEV_ID_82572EI_FIBER:
232 case E1000_DEV_ID_82572EI_SERDES:
233 mac->type = e1000_82572;
234 break;
235 case E1000_DEV_ID_82573E:
236 case E1000_DEV_ID_82573E_IAMT:
237 case E1000_DEV_ID_82573L:
238 mac->type = e1000_82573;
239 break;
240 case E1000_DEV_ID_82574L:
241 case E1000_DEV_ID_82574LA:
242 mac->type = e1000_82574;
243 break;
244 case E1000_DEV_ID_82583V:
245 mac->type = e1000_82583;
246 break;
247 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 mac->type = e1000_80003es2lan;
252 break;
253 case E1000_DEV_ID_ICH8_IFE:
254 case E1000_DEV_ID_ICH8_IFE_GT:
255 case E1000_DEV_ID_ICH8_IFE_G:
256 case E1000_DEV_ID_ICH8_IGP_M:
257 case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 case E1000_DEV_ID_ICH8_IGP_AMT:
259 case E1000_DEV_ID_ICH8_IGP_C:
260 case E1000_DEV_ID_ICH8_82567V_3:
261 mac->type = e1000_ich8lan;
262 break;
263 case E1000_DEV_ID_ICH9_IFE:
264 case E1000_DEV_ID_ICH9_IFE_GT:
265 case E1000_DEV_ID_ICH9_IFE_G:
266 case E1000_DEV_ID_ICH9_IGP_M:
267 case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 case E1000_DEV_ID_ICH9_IGP_M_V:
269 case E1000_DEV_ID_ICH9_IGP_AMT:
270 case E1000_DEV_ID_ICH9_BM:
271 case E1000_DEV_ID_ICH9_IGP_C:
272 case E1000_DEV_ID_ICH10_R_BM_LM:
273 case E1000_DEV_ID_ICH10_R_BM_LF:
274 case E1000_DEV_ID_ICH10_R_BM_V:
275 mac->type = e1000_ich9lan;
276 break;
277 case E1000_DEV_ID_ICH10_D_BM_LM:
278 case E1000_DEV_ID_ICH10_D_BM_LF:
279 case E1000_DEV_ID_ICH10_D_BM_V:
280 mac->type = e1000_ich10lan;
281 break;
282 case E1000_DEV_ID_PCH_D_HV_DM:
283 case E1000_DEV_ID_PCH_D_HV_DC:
284 case E1000_DEV_ID_PCH_M_HV_LM:
285 case E1000_DEV_ID_PCH_M_HV_LC:
286 mac->type = e1000_pchlan;
287 break;
288 case E1000_DEV_ID_PCH2_LV_LM:
289 case E1000_DEV_ID_PCH2_LV_V:
290 mac->type = e1000_pch2lan;
291 break;
292 case E1000_DEV_ID_PCH_LPT_I217_LM:
293 case E1000_DEV_ID_PCH_LPT_I217_V:
294 case E1000_DEV_ID_PCH_LPTLP_I218_LM:
295 case E1000_DEV_ID_PCH_LPTLP_I218_V:
296 case E1000_DEV_ID_PCH_I218_LM2:
297 case E1000_DEV_ID_PCH_I218_V2:
298 case E1000_DEV_ID_PCH_I218_LM3:
299 case E1000_DEV_ID_PCH_I218_V3:
300 mac->type = e1000_pch_lpt;
301 break;
34
35#include "e1000_api.h"
36
37/**
38 * e1000_init_mac_params - Initialize MAC function pointers
39 * @hw: pointer to the HW structure
40 *
41 * This function initializes the function pointers for the MAC
42 * set of functions. Called by drivers or by e1000_setup_init_funcs.
43 **/
44s32 e1000_init_mac_params(struct e1000_hw *hw)
45{
46 s32 ret_val = E1000_SUCCESS;
47
48 if (hw->mac.ops.init_params) {
49 ret_val = hw->mac.ops.init_params(hw);
50 if (ret_val) {
51 DEBUGOUT("MAC Initialization Error\n");
52 goto out;
53 }
54 } else {
55 DEBUGOUT("mac.init_mac_params was NULL\n");
56 ret_val = -E1000_ERR_CONFIG;
57 }
58
59out:
60 return ret_val;
61}
62
63/**
64 * e1000_init_nvm_params - Initialize NVM function pointers
65 * @hw: pointer to the HW structure
66 *
67 * This function initializes the function pointers for the NVM
68 * set of functions. Called by drivers or by e1000_setup_init_funcs.
69 **/
70s32 e1000_init_nvm_params(struct e1000_hw *hw)
71{
72 s32 ret_val = E1000_SUCCESS;
73
74 if (hw->nvm.ops.init_params) {
75 ret_val = hw->nvm.ops.init_params(hw);
76 if (ret_val) {
77 DEBUGOUT("NVM Initialization Error\n");
78 goto out;
79 }
80 } else {
81 DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 ret_val = -E1000_ERR_CONFIG;
83 }
84
85out:
86 return ret_val;
87}
88
89/**
90 * e1000_init_phy_params - Initialize PHY function pointers
91 * @hw: pointer to the HW structure
92 *
93 * This function initializes the function pointers for the PHY
94 * set of functions. Called by drivers or by e1000_setup_init_funcs.
95 **/
96s32 e1000_init_phy_params(struct e1000_hw *hw)
97{
98 s32 ret_val = E1000_SUCCESS;
99
100 if (hw->phy.ops.init_params) {
101 ret_val = hw->phy.ops.init_params(hw);
102 if (ret_val) {
103 DEBUGOUT("PHY Initialization Error\n");
104 goto out;
105 }
106 } else {
107 DEBUGOUT("phy.init_phy_params was NULL\n");
108 ret_val = -E1000_ERR_CONFIG;
109 }
110
111out:
112 return ret_val;
113}
114
115/**
116 * e1000_init_mbx_params - Initialize mailbox function pointers
117 * @hw: pointer to the HW structure
118 *
119 * This function initializes the function pointers for the PHY
120 * set of functions. Called by drivers or by e1000_setup_init_funcs.
121 **/
122s32 e1000_init_mbx_params(struct e1000_hw *hw)
123{
124 s32 ret_val = E1000_SUCCESS;
125
126 if (hw->mbx.ops.init_params) {
127 ret_val = hw->mbx.ops.init_params(hw);
128 if (ret_val) {
129 DEBUGOUT("Mailbox Initialization Error\n");
130 goto out;
131 }
132 } else {
133 DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 ret_val = -E1000_ERR_CONFIG;
135 }
136
137out:
138 return ret_val;
139}
140
141/**
142 * e1000_set_mac_type - Sets MAC type
143 * @hw: pointer to the HW structure
144 *
145 * This function sets the mac type of the adapter based on the
146 * device ID stored in the hw structure.
147 * MUST BE FIRST FUNCTION CALLED (explicitly or through
148 * e1000_setup_init_funcs()).
149 **/
150s32 e1000_set_mac_type(struct e1000_hw *hw)
151{
152 struct e1000_mac_info *mac = &hw->mac;
153 s32 ret_val = E1000_SUCCESS;
154
155 DEBUGFUNC("e1000_set_mac_type");
156
157 switch (hw->device_id) {
158 case E1000_DEV_ID_82542:
159 mac->type = e1000_82542;
160 break;
161 case E1000_DEV_ID_82543GC_FIBER:
162 case E1000_DEV_ID_82543GC_COPPER:
163 mac->type = e1000_82543;
164 break;
165 case E1000_DEV_ID_82544EI_COPPER:
166 case E1000_DEV_ID_82544EI_FIBER:
167 case E1000_DEV_ID_82544GC_COPPER:
168 case E1000_DEV_ID_82544GC_LOM:
169 mac->type = e1000_82544;
170 break;
171 case E1000_DEV_ID_82540EM:
172 case E1000_DEV_ID_82540EM_LOM:
173 case E1000_DEV_ID_82540EP:
174 case E1000_DEV_ID_82540EP_LOM:
175 case E1000_DEV_ID_82540EP_LP:
176 mac->type = e1000_82540;
177 break;
178 case E1000_DEV_ID_82545EM_COPPER:
179 case E1000_DEV_ID_82545EM_FIBER:
180 mac->type = e1000_82545;
181 break;
182 case E1000_DEV_ID_82545GM_COPPER:
183 case E1000_DEV_ID_82545GM_FIBER:
184 case E1000_DEV_ID_82545GM_SERDES:
185 mac->type = e1000_82545_rev_3;
186 break;
187 case E1000_DEV_ID_82546EB_COPPER:
188 case E1000_DEV_ID_82546EB_FIBER:
189 case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 mac->type = e1000_82546;
191 break;
192 case E1000_DEV_ID_82546GB_COPPER:
193 case E1000_DEV_ID_82546GB_FIBER:
194 case E1000_DEV_ID_82546GB_SERDES:
195 case E1000_DEV_ID_82546GB_PCIE:
196 case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 mac->type = e1000_82546_rev_3;
199 break;
200 case E1000_DEV_ID_82541EI:
201 case E1000_DEV_ID_82541EI_MOBILE:
202 case E1000_DEV_ID_82541ER_LOM:
203 mac->type = e1000_82541;
204 break;
205 case E1000_DEV_ID_82541ER:
206 case E1000_DEV_ID_82541GI:
207 case E1000_DEV_ID_82541GI_LF:
208 case E1000_DEV_ID_82541GI_MOBILE:
209 mac->type = e1000_82541_rev_2;
210 break;
211 case E1000_DEV_ID_82547EI:
212 case E1000_DEV_ID_82547EI_MOBILE:
213 mac->type = e1000_82547;
214 break;
215 case E1000_DEV_ID_82547GI:
216 mac->type = e1000_82547_rev_2;
217 break;
218 case E1000_DEV_ID_82571EB_COPPER:
219 case E1000_DEV_ID_82571EB_FIBER:
220 case E1000_DEV_ID_82571EB_SERDES:
221 case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 mac->type = e1000_82571;
228 break;
229 case E1000_DEV_ID_82572EI:
230 case E1000_DEV_ID_82572EI_COPPER:
231 case E1000_DEV_ID_82572EI_FIBER:
232 case E1000_DEV_ID_82572EI_SERDES:
233 mac->type = e1000_82572;
234 break;
235 case E1000_DEV_ID_82573E:
236 case E1000_DEV_ID_82573E_IAMT:
237 case E1000_DEV_ID_82573L:
238 mac->type = e1000_82573;
239 break;
240 case E1000_DEV_ID_82574L:
241 case E1000_DEV_ID_82574LA:
242 mac->type = e1000_82574;
243 break;
244 case E1000_DEV_ID_82583V:
245 mac->type = e1000_82583;
246 break;
247 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 mac->type = e1000_80003es2lan;
252 break;
253 case E1000_DEV_ID_ICH8_IFE:
254 case E1000_DEV_ID_ICH8_IFE_GT:
255 case E1000_DEV_ID_ICH8_IFE_G:
256 case E1000_DEV_ID_ICH8_IGP_M:
257 case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 case E1000_DEV_ID_ICH8_IGP_AMT:
259 case E1000_DEV_ID_ICH8_IGP_C:
260 case E1000_DEV_ID_ICH8_82567V_3:
261 mac->type = e1000_ich8lan;
262 break;
263 case E1000_DEV_ID_ICH9_IFE:
264 case E1000_DEV_ID_ICH9_IFE_GT:
265 case E1000_DEV_ID_ICH9_IFE_G:
266 case E1000_DEV_ID_ICH9_IGP_M:
267 case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 case E1000_DEV_ID_ICH9_IGP_M_V:
269 case E1000_DEV_ID_ICH9_IGP_AMT:
270 case E1000_DEV_ID_ICH9_BM:
271 case E1000_DEV_ID_ICH9_IGP_C:
272 case E1000_DEV_ID_ICH10_R_BM_LM:
273 case E1000_DEV_ID_ICH10_R_BM_LF:
274 case E1000_DEV_ID_ICH10_R_BM_V:
275 mac->type = e1000_ich9lan;
276 break;
277 case E1000_DEV_ID_ICH10_D_BM_LM:
278 case E1000_DEV_ID_ICH10_D_BM_LF:
279 case E1000_DEV_ID_ICH10_D_BM_V:
280 mac->type = e1000_ich10lan;
281 break;
282 case E1000_DEV_ID_PCH_D_HV_DM:
283 case E1000_DEV_ID_PCH_D_HV_DC:
284 case E1000_DEV_ID_PCH_M_HV_LM:
285 case E1000_DEV_ID_PCH_M_HV_LC:
286 mac->type = e1000_pchlan;
287 break;
288 case E1000_DEV_ID_PCH2_LV_LM:
289 case E1000_DEV_ID_PCH2_LV_V:
290 mac->type = e1000_pch2lan;
291 break;
292 case E1000_DEV_ID_PCH_LPT_I217_LM:
293 case E1000_DEV_ID_PCH_LPT_I217_V:
294 case E1000_DEV_ID_PCH_LPTLP_I218_LM:
295 case E1000_DEV_ID_PCH_LPTLP_I218_V:
296 case E1000_DEV_ID_PCH_I218_LM2:
297 case E1000_DEV_ID_PCH_I218_V2:
298 case E1000_DEV_ID_PCH_I218_LM3:
299 case E1000_DEV_ID_PCH_I218_V3:
300 mac->type = e1000_pch_lpt;
301 break;
302 case E1000_DEV_ID_PCH_SPT_I219_LM:
303 case E1000_DEV_ID_PCH_SPT_I219_V:
304 case E1000_DEV_ID_PCH_SPT_I219_LM2:
305 case E1000_DEV_ID_PCH_SPT_I219_V2:
306 case E1000_DEV_ID_PCH_LBG_I219_LM3:
307 mac->type = e1000_pch_spt;
308 break;
302 case E1000_DEV_ID_82575EB_COPPER:
303 case E1000_DEV_ID_82575EB_FIBER_SERDES:
304 case E1000_DEV_ID_82575GB_QUAD_COPPER:
305 mac->type = e1000_82575;
306 break;
307 case E1000_DEV_ID_82576:
308 case E1000_DEV_ID_82576_FIBER:
309 case E1000_DEV_ID_82576_SERDES:
310 case E1000_DEV_ID_82576_QUAD_COPPER:
311 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
312 case E1000_DEV_ID_82576_NS:
313 case E1000_DEV_ID_82576_NS_SERDES:
314 case E1000_DEV_ID_82576_SERDES_QUAD:
315 mac->type = e1000_82576;
316 break;
317 case E1000_DEV_ID_82580_COPPER:
318 case E1000_DEV_ID_82580_FIBER:
319 case E1000_DEV_ID_82580_SERDES:
320 case E1000_DEV_ID_82580_SGMII:
321 case E1000_DEV_ID_82580_COPPER_DUAL:
322 case E1000_DEV_ID_82580_QUAD_FIBER:
323 case E1000_DEV_ID_DH89XXCC_SGMII:
324 case E1000_DEV_ID_DH89XXCC_SERDES:
325 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
326 case E1000_DEV_ID_DH89XXCC_SFP:
327 mac->type = e1000_82580;
328 break;
329 case E1000_DEV_ID_I350_COPPER:
330 case E1000_DEV_ID_I350_FIBER:
331 case E1000_DEV_ID_I350_SERDES:
332 case E1000_DEV_ID_I350_SGMII:
333 case E1000_DEV_ID_I350_DA4:
334 mac->type = e1000_i350;
335 break;
336 case E1000_DEV_ID_I210_COPPER_FLASHLESS:
337 case E1000_DEV_ID_I210_SERDES_FLASHLESS:
338 case E1000_DEV_ID_I210_COPPER:
339 case E1000_DEV_ID_I210_COPPER_OEM1:
340 case E1000_DEV_ID_I210_COPPER_IT:
341 case E1000_DEV_ID_I210_FIBER:
342 case E1000_DEV_ID_I210_SERDES:
343 case E1000_DEV_ID_I210_SGMII:
344 mac->type = e1000_i210;
345 break;
346 case E1000_DEV_ID_I211_COPPER:
347 mac->type = e1000_i211;
348 break;
349 case E1000_DEV_ID_82576_VF:
350 case E1000_DEV_ID_82576_VF_HV:
351 mac->type = e1000_vfadapt;
352 break;
353 case E1000_DEV_ID_I350_VF:
354 case E1000_DEV_ID_I350_VF_HV:
355 mac->type = e1000_vfadapt_i350;
356 break;
357
358 case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
359 case E1000_DEV_ID_I354_SGMII:
360 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
361 mac->type = e1000_i354;
362 break;
363 default:
364 /* Should never have loaded on this device */
365 ret_val = -E1000_ERR_MAC_INIT;
366 break;
367 }
368
369 return ret_val;
370}
371
372/**
373 * e1000_setup_init_funcs - Initializes function pointers
374 * @hw: pointer to the HW structure
375 * @init_device: TRUE will initialize the rest of the function pointers
376 * getting the device ready for use. FALSE will only set
377 * MAC type and the function pointers for the other init
378 * functions. Passing FALSE will not generate any hardware
379 * reads or writes.
380 *
381 * This function must be called by a driver in order to use the rest
382 * of the 'shared' code files. Called by drivers only.
383 **/
384s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
385{
386 s32 ret_val;
387
388 /* Can't do much good without knowing the MAC type. */
389 ret_val = e1000_set_mac_type(hw);
390 if (ret_val) {
391 DEBUGOUT("ERROR: MAC type could not be set properly.\n");
392 goto out;
393 }
394
395 if (!hw->hw_addr) {
396 DEBUGOUT("ERROR: Registers not mapped\n");
397 ret_val = -E1000_ERR_CONFIG;
398 goto out;
399 }
400
401 /*
402 * Init function pointers to generic implementations. We do this first
403 * allowing a driver module to override it afterward.
404 */
405 e1000_init_mac_ops_generic(hw);
406 e1000_init_phy_ops_generic(hw);
407 e1000_init_nvm_ops_generic(hw);
408 e1000_init_mbx_ops_generic(hw);
409
410 /*
411 * Set up the init function pointers. These are functions within the
412 * adapter family file that sets up function pointers for the rest of
413 * the functions in that family.
414 */
415 switch (hw->mac.type) {
416 case e1000_82542:
417 e1000_init_function_pointers_82542(hw);
418 break;
419 case e1000_82543:
420 case e1000_82544:
421 e1000_init_function_pointers_82543(hw);
422 break;
423 case e1000_82540:
424 case e1000_82545:
425 case e1000_82545_rev_3:
426 case e1000_82546:
427 case e1000_82546_rev_3:
428 e1000_init_function_pointers_82540(hw);
429 break;
430 case e1000_82541:
431 case e1000_82541_rev_2:
432 case e1000_82547:
433 case e1000_82547_rev_2:
434 e1000_init_function_pointers_82541(hw);
435 break;
436 case e1000_82571:
437 case e1000_82572:
438 case e1000_82573:
439 case e1000_82574:
440 case e1000_82583:
441 e1000_init_function_pointers_82571(hw);
442 break;
443 case e1000_80003es2lan:
444 e1000_init_function_pointers_80003es2lan(hw);
445 break;
446 case e1000_ich8lan:
447 case e1000_ich9lan:
448 case e1000_ich10lan:
449 case e1000_pchlan:
450 case e1000_pch2lan:
451 case e1000_pch_lpt:
309 case E1000_DEV_ID_82575EB_COPPER:
310 case E1000_DEV_ID_82575EB_FIBER_SERDES:
311 case E1000_DEV_ID_82575GB_QUAD_COPPER:
312 mac->type = e1000_82575;
313 break;
314 case E1000_DEV_ID_82576:
315 case E1000_DEV_ID_82576_FIBER:
316 case E1000_DEV_ID_82576_SERDES:
317 case E1000_DEV_ID_82576_QUAD_COPPER:
318 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
319 case E1000_DEV_ID_82576_NS:
320 case E1000_DEV_ID_82576_NS_SERDES:
321 case E1000_DEV_ID_82576_SERDES_QUAD:
322 mac->type = e1000_82576;
323 break;
324 case E1000_DEV_ID_82580_COPPER:
325 case E1000_DEV_ID_82580_FIBER:
326 case E1000_DEV_ID_82580_SERDES:
327 case E1000_DEV_ID_82580_SGMII:
328 case E1000_DEV_ID_82580_COPPER_DUAL:
329 case E1000_DEV_ID_82580_QUAD_FIBER:
330 case E1000_DEV_ID_DH89XXCC_SGMII:
331 case E1000_DEV_ID_DH89XXCC_SERDES:
332 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
333 case E1000_DEV_ID_DH89XXCC_SFP:
334 mac->type = e1000_82580;
335 break;
336 case E1000_DEV_ID_I350_COPPER:
337 case E1000_DEV_ID_I350_FIBER:
338 case E1000_DEV_ID_I350_SERDES:
339 case E1000_DEV_ID_I350_SGMII:
340 case E1000_DEV_ID_I350_DA4:
341 mac->type = e1000_i350;
342 break;
343 case E1000_DEV_ID_I210_COPPER_FLASHLESS:
344 case E1000_DEV_ID_I210_SERDES_FLASHLESS:
345 case E1000_DEV_ID_I210_COPPER:
346 case E1000_DEV_ID_I210_COPPER_OEM1:
347 case E1000_DEV_ID_I210_COPPER_IT:
348 case E1000_DEV_ID_I210_FIBER:
349 case E1000_DEV_ID_I210_SERDES:
350 case E1000_DEV_ID_I210_SGMII:
351 mac->type = e1000_i210;
352 break;
353 case E1000_DEV_ID_I211_COPPER:
354 mac->type = e1000_i211;
355 break;
356 case E1000_DEV_ID_82576_VF:
357 case E1000_DEV_ID_82576_VF_HV:
358 mac->type = e1000_vfadapt;
359 break;
360 case E1000_DEV_ID_I350_VF:
361 case E1000_DEV_ID_I350_VF_HV:
362 mac->type = e1000_vfadapt_i350;
363 break;
364
365 case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
366 case E1000_DEV_ID_I354_SGMII:
367 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
368 mac->type = e1000_i354;
369 break;
370 default:
371 /* Should never have loaded on this device */
372 ret_val = -E1000_ERR_MAC_INIT;
373 break;
374 }
375
376 return ret_val;
377}
378
379/**
380 * e1000_setup_init_funcs - Initializes function pointers
381 * @hw: pointer to the HW structure
382 * @init_device: TRUE will initialize the rest of the function pointers
383 * getting the device ready for use. FALSE will only set
384 * MAC type and the function pointers for the other init
385 * functions. Passing FALSE will not generate any hardware
386 * reads or writes.
387 *
388 * This function must be called by a driver in order to use the rest
389 * of the 'shared' code files. Called by drivers only.
390 **/
391s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
392{
393 s32 ret_val;
394
395 /* Can't do much good without knowing the MAC type. */
396 ret_val = e1000_set_mac_type(hw);
397 if (ret_val) {
398 DEBUGOUT("ERROR: MAC type could not be set properly.\n");
399 goto out;
400 }
401
402 if (!hw->hw_addr) {
403 DEBUGOUT("ERROR: Registers not mapped\n");
404 ret_val = -E1000_ERR_CONFIG;
405 goto out;
406 }
407
408 /*
409 * Init function pointers to generic implementations. We do this first
410 * allowing a driver module to override it afterward.
411 */
412 e1000_init_mac_ops_generic(hw);
413 e1000_init_phy_ops_generic(hw);
414 e1000_init_nvm_ops_generic(hw);
415 e1000_init_mbx_ops_generic(hw);
416
417 /*
418 * Set up the init function pointers. These are functions within the
419 * adapter family file that sets up function pointers for the rest of
420 * the functions in that family.
421 */
422 switch (hw->mac.type) {
423 case e1000_82542:
424 e1000_init_function_pointers_82542(hw);
425 break;
426 case e1000_82543:
427 case e1000_82544:
428 e1000_init_function_pointers_82543(hw);
429 break;
430 case e1000_82540:
431 case e1000_82545:
432 case e1000_82545_rev_3:
433 case e1000_82546:
434 case e1000_82546_rev_3:
435 e1000_init_function_pointers_82540(hw);
436 break;
437 case e1000_82541:
438 case e1000_82541_rev_2:
439 case e1000_82547:
440 case e1000_82547_rev_2:
441 e1000_init_function_pointers_82541(hw);
442 break;
443 case e1000_82571:
444 case e1000_82572:
445 case e1000_82573:
446 case e1000_82574:
447 case e1000_82583:
448 e1000_init_function_pointers_82571(hw);
449 break;
450 case e1000_80003es2lan:
451 e1000_init_function_pointers_80003es2lan(hw);
452 break;
453 case e1000_ich8lan:
454 case e1000_ich9lan:
455 case e1000_ich10lan:
456 case e1000_pchlan:
457 case e1000_pch2lan:
458 case e1000_pch_lpt:
459 case e1000_pch_spt:
452 e1000_init_function_pointers_ich8lan(hw);
453 break;
454 case e1000_82575:
455 case e1000_82576:
456 case e1000_82580:
457 case e1000_i350:
458 case e1000_i354:
459 e1000_init_function_pointers_82575(hw);
460 break;
461 case e1000_i210:
462 case e1000_i211:
463 e1000_init_function_pointers_i210(hw);
464 break;
465 case e1000_vfadapt:
466 e1000_init_function_pointers_vf(hw);
467 break;
468 case e1000_vfadapt_i350:
469 e1000_init_function_pointers_vf(hw);
470 break;
471 default:
472 DEBUGOUT("Hardware not supported\n");
473 ret_val = -E1000_ERR_CONFIG;
474 break;
475 }
476
477 /*
478 * Initialize the rest of the function pointers. These require some
479 * register reads/writes in some cases.
480 */
481 if (!(ret_val) && init_device) {
482 ret_val = e1000_init_mac_params(hw);
483 if (ret_val)
484 goto out;
485
486 ret_val = e1000_init_nvm_params(hw);
487 if (ret_val)
488 goto out;
489
490 ret_val = e1000_init_phy_params(hw);
491 if (ret_val)
492 goto out;
493
494 ret_val = e1000_init_mbx_params(hw);
495 if (ret_val)
496 goto out;
497 }
498
499out:
500 return ret_val;
501}
502
503/**
504 * e1000_get_bus_info - Obtain bus information for adapter
505 * @hw: pointer to the HW structure
506 *
507 * This will obtain information about the HW bus for which the
508 * adapter is attached and stores it in the hw structure. This is a
509 * function pointer entry point called by drivers.
510 **/
511s32 e1000_get_bus_info(struct e1000_hw *hw)
512{
513 if (hw->mac.ops.get_bus_info)
514 return hw->mac.ops.get_bus_info(hw);
515
516 return E1000_SUCCESS;
517}
518
519/**
520 * e1000_clear_vfta - Clear VLAN filter table
521 * @hw: pointer to the HW structure
522 *
523 * This clears the VLAN filter table on the adapter. This is a function
524 * pointer entry point called by drivers.
525 **/
526void e1000_clear_vfta(struct e1000_hw *hw)
527{
528 if (hw->mac.ops.clear_vfta)
529 hw->mac.ops.clear_vfta(hw);
530}
531
532/**
533 * e1000_write_vfta - Write value to VLAN filter table
534 * @hw: pointer to the HW structure
535 * @offset: the 32-bit offset in which to write the value to.
536 * @value: the 32-bit value to write at location offset.
537 *
538 * This writes a 32-bit value to a 32-bit offset in the VLAN filter
539 * table. This is a function pointer entry point called by drivers.
540 **/
541void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
542{
543 if (hw->mac.ops.write_vfta)
544 hw->mac.ops.write_vfta(hw, offset, value);
545}
546
547/**
548 * e1000_update_mc_addr_list - Update Multicast addresses
549 * @hw: pointer to the HW structure
550 * @mc_addr_list: array of multicast addresses to program
551 * @mc_addr_count: number of multicast addresses to program
552 *
553 * Updates the Multicast Table Array.
554 * The caller must have a packed mc_addr_list of multicast addresses.
555 **/
556void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
557 u32 mc_addr_count)
558{
559 if (hw->mac.ops.update_mc_addr_list)
560 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
561 mc_addr_count);
562}
563
564/**
565 * e1000_force_mac_fc - Force MAC flow control
566 * @hw: pointer to the HW structure
567 *
568 * Force the MAC's flow control settings. Currently no func pointer exists
569 * and all implementations are handled in the generic version of this
570 * function.
571 **/
572s32 e1000_force_mac_fc(struct e1000_hw *hw)
573{
574 return e1000_force_mac_fc_generic(hw);
575}
576
577/**
578 * e1000_check_for_link - Check/Store link connection
579 * @hw: pointer to the HW structure
580 *
581 * This checks the link condition of the adapter and stores the
582 * results in the hw->mac structure. This is a function pointer entry
583 * point called by drivers.
584 **/
585s32 e1000_check_for_link(struct e1000_hw *hw)
586{
587 if (hw->mac.ops.check_for_link)
588 return hw->mac.ops.check_for_link(hw);
589
590 return -E1000_ERR_CONFIG;
591}
592
593/**
594 * e1000_check_mng_mode - Check management mode
595 * @hw: pointer to the HW structure
596 *
597 * This checks if the adapter has manageability enabled.
598 * This is a function pointer entry point called by drivers.
599 **/
600bool e1000_check_mng_mode(struct e1000_hw *hw)
601{
602 if (hw->mac.ops.check_mng_mode)
603 return hw->mac.ops.check_mng_mode(hw);
604
605 return FALSE;
606}
607
608/**
609 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface
610 * @hw: pointer to the HW structure
611 * @buffer: pointer to the host interface
612 * @length: size of the buffer
613 *
614 * Writes the DHCP information to the host interface.
615 **/
616s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
617{
618 return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
619}
620
621/**
622 * e1000_reset_hw - Reset hardware
623 * @hw: pointer to the HW structure
624 *
625 * This resets the hardware into a known state. This is a function pointer
626 * entry point called by drivers.
627 **/
628s32 e1000_reset_hw(struct e1000_hw *hw)
629{
630 if (hw->mac.ops.reset_hw)
631 return hw->mac.ops.reset_hw(hw);
632
633 return -E1000_ERR_CONFIG;
634}
635
636/**
637 * e1000_init_hw - Initialize hardware
638 * @hw: pointer to the HW structure
639 *
640 * This inits the hardware readying it for operation. This is a function
641 * pointer entry point called by drivers.
642 **/
643s32 e1000_init_hw(struct e1000_hw *hw)
644{
645 if (hw->mac.ops.init_hw)
646 return hw->mac.ops.init_hw(hw);
647
648 return -E1000_ERR_CONFIG;
649}
650
651/**
652 * e1000_setup_link - Configures link and flow control
653 * @hw: pointer to the HW structure
654 *
655 * This configures link and flow control settings for the adapter. This
656 * is a function pointer entry point called by drivers. While modules can
657 * also call this, they probably call their own version of this function.
658 **/
659s32 e1000_setup_link(struct e1000_hw *hw)
660{
661 if (hw->mac.ops.setup_link)
662 return hw->mac.ops.setup_link(hw);
663
664 return -E1000_ERR_CONFIG;
665}
666
667/**
668 * e1000_get_speed_and_duplex - Returns current speed and duplex
669 * @hw: pointer to the HW structure
670 * @speed: pointer to a 16-bit value to store the speed
671 * @duplex: pointer to a 16-bit value to store the duplex.
672 *
673 * This returns the speed and duplex of the adapter in the two 'out'
674 * variables passed in. This is a function pointer entry point called
675 * by drivers.
676 **/
677s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
678{
679 if (hw->mac.ops.get_link_up_info)
680 return hw->mac.ops.get_link_up_info(hw, speed, duplex);
681
682 return -E1000_ERR_CONFIG;
683}
684
685/**
686 * e1000_setup_led - Configures SW controllable LED
687 * @hw: pointer to the HW structure
688 *
689 * This prepares the SW controllable LED for use and saves the current state
690 * of the LED so it can be later restored. This is a function pointer entry
691 * point called by drivers.
692 **/
693s32 e1000_setup_led(struct e1000_hw *hw)
694{
695 if (hw->mac.ops.setup_led)
696 return hw->mac.ops.setup_led(hw);
697
698 return E1000_SUCCESS;
699}
700
701/**
702 * e1000_cleanup_led - Restores SW controllable LED
703 * @hw: pointer to the HW structure
704 *
705 * This restores the SW controllable LED to the value saved off by
706 * e1000_setup_led. This is a function pointer entry point called by drivers.
707 **/
708s32 e1000_cleanup_led(struct e1000_hw *hw)
709{
710 if (hw->mac.ops.cleanup_led)
711 return hw->mac.ops.cleanup_led(hw);
712
713 return E1000_SUCCESS;
714}
715
716/**
717 * e1000_blink_led - Blink SW controllable LED
718 * @hw: pointer to the HW structure
719 *
720 * This starts the adapter LED blinking. Request the LED to be setup first
721 * and cleaned up after. This is a function pointer entry point called by
722 * drivers.
723 **/
724s32 e1000_blink_led(struct e1000_hw *hw)
725{
726 if (hw->mac.ops.blink_led)
727 return hw->mac.ops.blink_led(hw);
728
729 return E1000_SUCCESS;
730}
731
732/**
733 * e1000_id_led_init - store LED configurations in SW
734 * @hw: pointer to the HW structure
735 *
736 * Initializes the LED config in SW. This is a function pointer entry point
737 * called by drivers.
738 **/
739s32 e1000_id_led_init(struct e1000_hw *hw)
740{
741 if (hw->mac.ops.id_led_init)
742 return hw->mac.ops.id_led_init(hw);
743
744 return E1000_SUCCESS;
745}
746
747/**
748 * e1000_led_on - Turn on SW controllable LED
749 * @hw: pointer to the HW structure
750 *
751 * Turns the SW defined LED on. This is a function pointer entry point
752 * called by drivers.
753 **/
754s32 e1000_led_on(struct e1000_hw *hw)
755{
756 if (hw->mac.ops.led_on)
757 return hw->mac.ops.led_on(hw);
758
759 return E1000_SUCCESS;
760}
761
762/**
763 * e1000_led_off - Turn off SW controllable LED
764 * @hw: pointer to the HW structure
765 *
766 * Turns the SW defined LED off. This is a function pointer entry point
767 * called by drivers.
768 **/
769s32 e1000_led_off(struct e1000_hw *hw)
770{
771 if (hw->mac.ops.led_off)
772 return hw->mac.ops.led_off(hw);
773
774 return E1000_SUCCESS;
775}
776
777/**
778 * e1000_reset_adaptive - Reset adaptive IFS
779 * @hw: pointer to the HW structure
780 *
781 * Resets the adaptive IFS. Currently no func pointer exists and all
782 * implementations are handled in the generic version of this function.
783 **/
784void e1000_reset_adaptive(struct e1000_hw *hw)
785{
786 e1000_reset_adaptive_generic(hw);
787}
788
789/**
790 * e1000_update_adaptive - Update adaptive IFS
791 * @hw: pointer to the HW structure
792 *
793 * Updates adapter IFS. Currently no func pointer exists and all
794 * implementations are handled in the generic version of this function.
795 **/
796void e1000_update_adaptive(struct e1000_hw *hw)
797{
798 e1000_update_adaptive_generic(hw);
799}
800
801/**
802 * e1000_disable_pcie_master - Disable PCI-Express master access
803 * @hw: pointer to the HW structure
804 *
805 * Disables PCI-Express master access and verifies there are no pending
806 * requests. Currently no func pointer exists and all implementations are
807 * handled in the generic version of this function.
808 **/
809s32 e1000_disable_pcie_master(struct e1000_hw *hw)
810{
811 return e1000_disable_pcie_master_generic(hw);
812}
813
814/**
815 * e1000_config_collision_dist - Configure collision distance
816 * @hw: pointer to the HW structure
817 *
818 * Configures the collision distance to the default value and is used
819 * during link setup.
820 **/
821void e1000_config_collision_dist(struct e1000_hw *hw)
822{
823 if (hw->mac.ops.config_collision_dist)
824 hw->mac.ops.config_collision_dist(hw);
825}
826
827/**
828 * e1000_rar_set - Sets a receive address register
829 * @hw: pointer to the HW structure
830 * @addr: address to set the RAR to
831 * @index: the RAR to set
832 *
833 * Sets a Receive Address Register (RAR) to the specified address.
834 **/
835int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
836{
837 if (hw->mac.ops.rar_set)
838 return hw->mac.ops.rar_set(hw, addr, index);
839
840 return E1000_SUCCESS;
841}
842
843/**
844 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
845 * @hw: pointer to the HW structure
846 *
847 * Ensures that the MDI/MDIX SW state is valid.
848 **/
849s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
850{
851 if (hw->mac.ops.validate_mdi_setting)
852 return hw->mac.ops.validate_mdi_setting(hw);
853
854 return E1000_SUCCESS;
855}
856
857/**
858 * e1000_hash_mc_addr - Determines address location in multicast table
859 * @hw: pointer to the HW structure
860 * @mc_addr: Multicast address to hash.
861 *
862 * This hashes an address to determine its location in the multicast
863 * table. Currently no func pointer exists and all implementations
864 * are handled in the generic version of this function.
865 **/
866u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
867{
868 return e1000_hash_mc_addr_generic(hw, mc_addr);
869}
870
871/**
872 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
873 * @hw: pointer to the HW structure
874 *
875 * Enables packet filtering on transmit packets if manageability is enabled
876 * and host interface is enabled.
877 * Currently no func pointer exists and all implementations are handled in the
878 * generic version of this function.
879 **/
880bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
881{
882 return e1000_enable_tx_pkt_filtering_generic(hw);
883}
884
885/**
886 * e1000_mng_host_if_write - Writes to the manageability host interface
887 * @hw: pointer to the HW structure
888 * @buffer: pointer to the host interface buffer
889 * @length: size of the buffer
890 * @offset: location in the buffer to write to
891 * @sum: sum of the data (not checksum)
892 *
893 * This function writes the buffer content at the offset given on the host if.
894 * It also does alignment considerations to do the writes in most efficient
895 * way. Also fills up the sum of the buffer in *buffer parameter.
896 **/
897s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
898 u16 offset, u8 *sum)
899{
900 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
901}
902
903/**
904 * e1000_mng_write_cmd_header - Writes manageability command header
905 * @hw: pointer to the HW structure
906 * @hdr: pointer to the host interface command header
907 *
908 * Writes the command header after does the checksum calculation.
909 **/
910s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
911 struct e1000_host_mng_command_header *hdr)
912{
913 return e1000_mng_write_cmd_header_generic(hw, hdr);
914}
915
916/**
917 * e1000_mng_enable_host_if - Checks host interface is enabled
918 * @hw: pointer to the HW structure
919 *
920 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
921 *
922 * This function checks whether the HOST IF is enabled for command operation
923 * and also checks whether the previous command is completed. It busy waits
924 * in case of previous command is not completed.
925 **/
926s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
927{
928 return e1000_mng_enable_host_if_generic(hw);
929}
930
931/**
932 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
933 * @hw: pointer to the HW structure
934 * @itr: u32 indicating itr value
935 *
936 * Set the OBFF timer based on the given interrupt rate.
937 **/
938s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
939{
940 if (hw->mac.ops.set_obff_timer)
941 return hw->mac.ops.set_obff_timer(hw, itr);
942
943 return E1000_SUCCESS;
944}
945
946/**
947 * e1000_check_reset_block - Verifies PHY can be reset
948 * @hw: pointer to the HW structure
949 *
950 * Checks if the PHY is in a state that can be reset or if manageability
951 * has it tied up. This is a function pointer entry point called by drivers.
952 **/
953s32 e1000_check_reset_block(struct e1000_hw *hw)
954{
955 if (hw->phy.ops.check_reset_block)
956 return hw->phy.ops.check_reset_block(hw);
957
958 return E1000_SUCCESS;
959}
960
961/**
962 * e1000_read_phy_reg - Reads PHY register
963 * @hw: pointer to the HW structure
964 * @offset: the register to read
965 * @data: the buffer to store the 16-bit read.
966 *
967 * Reads the PHY register and returns the value in data.
968 * This is a function pointer entry point called by drivers.
969 **/
970s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
971{
972 if (hw->phy.ops.read_reg)
973 return hw->phy.ops.read_reg(hw, offset, data);
974
975 return E1000_SUCCESS;
976}
977
978/**
979 * e1000_write_phy_reg - Writes PHY register
980 * @hw: pointer to the HW structure
981 * @offset: the register to write
982 * @data: the value to write.
983 *
984 * Writes the PHY register at offset with the value in data.
985 * This is a function pointer entry point called by drivers.
986 **/
987s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
988{
989 if (hw->phy.ops.write_reg)
990 return hw->phy.ops.write_reg(hw, offset, data);
991
992 return E1000_SUCCESS;
993}
994
995/**
996 * e1000_release_phy - Generic release PHY
997 * @hw: pointer to the HW structure
998 *
999 * Return if silicon family does not require a semaphore when accessing the
1000 * PHY.
1001 **/
1002void e1000_release_phy(struct e1000_hw *hw)
1003{
1004 if (hw->phy.ops.release)
1005 hw->phy.ops.release(hw);
1006}
1007
1008/**
1009 * e1000_acquire_phy - Generic acquire PHY
1010 * @hw: pointer to the HW structure
1011 *
1012 * Return success if silicon family does not require a semaphore when
1013 * accessing the PHY.
1014 **/
1015s32 e1000_acquire_phy(struct e1000_hw *hw)
1016{
1017 if (hw->phy.ops.acquire)
1018 return hw->phy.ops.acquire(hw);
1019
1020 return E1000_SUCCESS;
1021}
1022
1023/**
1024 * e1000_cfg_on_link_up - Configure PHY upon link up
1025 * @hw: pointer to the HW structure
1026 **/
1027s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1028{
1029 if (hw->phy.ops.cfg_on_link_up)
1030 return hw->phy.ops.cfg_on_link_up(hw);
1031
1032 return E1000_SUCCESS;
1033}
1034
1035/**
1036 * e1000_read_kmrn_reg - Reads register using Kumeran interface
1037 * @hw: pointer to the HW structure
1038 * @offset: the register to read
1039 * @data: the location to store the 16-bit value read.
1040 *
1041 * Reads a register out of the Kumeran interface. Currently no func pointer
1042 * exists and all implementations are handled in the generic version of
1043 * this function.
1044 **/
1045s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1046{
1047 return e1000_read_kmrn_reg_generic(hw, offset, data);
1048}
1049
1050/**
1051 * e1000_write_kmrn_reg - Writes register using Kumeran interface
1052 * @hw: pointer to the HW structure
1053 * @offset: the register to write
1054 * @data: the value to write.
1055 *
1056 * Writes a register to the Kumeran interface. Currently no func pointer
1057 * exists and all implementations are handled in the generic version of
1058 * this function.
1059 **/
1060s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1061{
1062 return e1000_write_kmrn_reg_generic(hw, offset, data);
1063}
1064
1065/**
1066 * e1000_get_cable_length - Retrieves cable length estimation
1067 * @hw: pointer to the HW structure
1068 *
1069 * This function estimates the cable length and stores them in
1070 * hw->phy.min_length and hw->phy.max_length. This is a function pointer
1071 * entry point called by drivers.
1072 **/
1073s32 e1000_get_cable_length(struct e1000_hw *hw)
1074{
1075 if (hw->phy.ops.get_cable_length)
1076 return hw->phy.ops.get_cable_length(hw);
1077
1078 return E1000_SUCCESS;
1079}
1080
1081/**
1082 * e1000_get_phy_info - Retrieves PHY information from registers
1083 * @hw: pointer to the HW structure
1084 *
1085 * This function gets some information from various PHY registers and
1086 * populates hw->phy values with it. This is a function pointer entry
1087 * point called by drivers.
1088 **/
1089s32 e1000_get_phy_info(struct e1000_hw *hw)
1090{
1091 if (hw->phy.ops.get_info)
1092 return hw->phy.ops.get_info(hw);
1093
1094 return E1000_SUCCESS;
1095}
1096
1097/**
1098 * e1000_phy_hw_reset - Hard PHY reset
1099 * @hw: pointer to the HW structure
1100 *
1101 * Performs a hard PHY reset. This is a function pointer entry point called
1102 * by drivers.
1103 **/
1104s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1105{
1106 if (hw->phy.ops.reset)
1107 return hw->phy.ops.reset(hw);
1108
1109 return E1000_SUCCESS;
1110}
1111
1112/**
1113 * e1000_phy_commit - Soft PHY reset
1114 * @hw: pointer to the HW structure
1115 *
1116 * Performs a soft PHY reset on those that apply. This is a function pointer
1117 * entry point called by drivers.
1118 **/
1119s32 e1000_phy_commit(struct e1000_hw *hw)
1120{
1121 if (hw->phy.ops.commit)
1122 return hw->phy.ops.commit(hw);
1123
1124 return E1000_SUCCESS;
1125}
1126
1127/**
1128 * e1000_set_d0_lplu_state - Sets low power link up state for D0
1129 * @hw: pointer to the HW structure
1130 * @active: boolean used to enable/disable lplu
1131 *
1132 * Success returns 0, Failure returns 1
1133 *
1134 * The low power link up (lplu) state is set to the power management level D0
1135 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1136 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1137 * is used during Dx states where the power conservation is most important.
1138 * During driver activity, SmartSpeed should be enabled so performance is
1139 * maintained. This is a function pointer entry point called by drivers.
1140 **/
1141s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1142{
1143 if (hw->phy.ops.set_d0_lplu_state)
1144 return hw->phy.ops.set_d0_lplu_state(hw, active);
1145
1146 return E1000_SUCCESS;
1147}
1148
1149/**
1150 * e1000_set_d3_lplu_state - Sets low power link up state for D3
1151 * @hw: pointer to the HW structure
1152 * @active: boolean used to enable/disable lplu
1153 *
1154 * Success returns 0, Failure returns 1
1155 *
1156 * The low power link up (lplu) state is set to the power management level D3
1157 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1158 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1159 * is used during Dx states where the power conservation is most important.
1160 * During driver activity, SmartSpeed should be enabled so performance is
1161 * maintained. This is a function pointer entry point called by drivers.
1162 **/
1163s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1164{
1165 if (hw->phy.ops.set_d3_lplu_state)
1166 return hw->phy.ops.set_d3_lplu_state(hw, active);
1167
1168 return E1000_SUCCESS;
1169}
1170
1171/**
1172 * e1000_read_mac_addr - Reads MAC address
1173 * @hw: pointer to the HW structure
1174 *
1175 * Reads the MAC address out of the adapter and stores it in the HW structure.
1176 * Currently no func pointer exists and all implementations are handled in the
1177 * generic version of this function.
1178 **/
1179s32 e1000_read_mac_addr(struct e1000_hw *hw)
1180{
1181 if (hw->mac.ops.read_mac_addr)
1182 return hw->mac.ops.read_mac_addr(hw);
1183
1184 return e1000_read_mac_addr_generic(hw);
1185}
1186
1187/**
1188 * e1000_read_pba_string - Read device part number string
1189 * @hw: pointer to the HW structure
1190 * @pba_num: pointer to device part number
1191 * @pba_num_size: size of part number buffer
1192 *
1193 * Reads the product board assembly (PBA) number from the EEPROM and stores
1194 * the value in pba_num.
1195 * Currently no func pointer exists and all implementations are handled in the
1196 * generic version of this function.
1197 **/
1198s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1199{
1200 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1201}
1202
1203/**
1204 * e1000_read_pba_length - Read device part number string length
1205 * @hw: pointer to the HW structure
1206 * @pba_num_size: size of part number buffer
1207 *
1208 * Reads the product board assembly (PBA) number length from the EEPROM and
1209 * stores the value in pba_num.
1210 * Currently no func pointer exists and all implementations are handled in the
1211 * generic version of this function.
1212 **/
1213s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1214{
1215 return e1000_read_pba_length_generic(hw, pba_num_size);
1216}
1217
1218/**
1219 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1220 * @hw: pointer to the HW structure
1221 *
1222 * Validates the NVM checksum is correct. This is a function pointer entry
1223 * point called by drivers.
1224 **/
1225s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1226{
1227 if (hw->nvm.ops.validate)
1228 return hw->nvm.ops.validate(hw);
1229
1230 return -E1000_ERR_CONFIG;
1231}
1232
1233/**
1234 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1235 * @hw: pointer to the HW structure
1236 *
1237 * Updates the NVM checksum. Currently no func pointer exists and all
1238 * implementations are handled in the generic version of this function.
1239 **/
1240s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1241{
1242 if (hw->nvm.ops.update)
1243 return hw->nvm.ops.update(hw);
1244
1245 return -E1000_ERR_CONFIG;
1246}
1247
1248/**
1249 * e1000_reload_nvm - Reloads EEPROM
1250 * @hw: pointer to the HW structure
1251 *
1252 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1253 * extended control register.
1254 **/
1255void e1000_reload_nvm(struct e1000_hw *hw)
1256{
1257 if (hw->nvm.ops.reload)
1258 hw->nvm.ops.reload(hw);
1259}
1260
1261/**
1262 * e1000_read_nvm - Reads NVM (EEPROM)
1263 * @hw: pointer to the HW structure
1264 * @offset: the word offset to read
1265 * @words: number of 16-bit words to read
1266 * @data: pointer to the properly sized buffer for the data.
1267 *
1268 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1269 * pointer entry point called by drivers.
1270 **/
1271s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1272{
1273 if (hw->nvm.ops.read)
1274 return hw->nvm.ops.read(hw, offset, words, data);
1275
1276 return -E1000_ERR_CONFIG;
1277}
1278
1279/**
1280 * e1000_write_nvm - Writes to NVM (EEPROM)
1281 * @hw: pointer to the HW structure
1282 * @offset: the word offset to read
1283 * @words: number of 16-bit words to write
1284 * @data: pointer to the properly sized buffer for the data.
1285 *
1286 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1287 * pointer entry point called by drivers.
1288 **/
1289s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1290{
1291 if (hw->nvm.ops.write)
1292 return hw->nvm.ops.write(hw, offset, words, data);
1293
1294 return E1000_SUCCESS;
1295}
1296
1297/**
1298 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1299 * @hw: pointer to the HW structure
1300 * @reg: 32bit register offset
1301 * @offset: the register to write
1302 * @data: the value to write.
1303 *
1304 * Writes the PHY register at offset with the value in data.
1305 * This is a function pointer entry point called by drivers.
1306 **/
1307s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1308 u8 data)
1309{
1310 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1311}
1312
1313/**
1314 * e1000_power_up_phy - Restores link in case of PHY power down
1315 * @hw: pointer to the HW structure
1316 *
1317 * The phy may be powered down to save power, to turn off link when the
1318 * driver is unloaded, or wake on lan is not enabled (among others).
1319 **/
1320void e1000_power_up_phy(struct e1000_hw *hw)
1321{
1322 if (hw->phy.ops.power_up)
1323 hw->phy.ops.power_up(hw);
1324
1325 e1000_setup_link(hw);
1326}
1327
1328/**
1329 * e1000_power_down_phy - Power down PHY
1330 * @hw: pointer to the HW structure
1331 *
1332 * The phy may be powered down to save power, to turn off link when the
1333 * driver is unloaded, or wake on lan is not enabled (among others).
1334 **/
1335void e1000_power_down_phy(struct e1000_hw *hw)
1336{
1337 if (hw->phy.ops.power_down)
1338 hw->phy.ops.power_down(hw);
1339}
1340
1341/**
1342 * e1000_power_up_fiber_serdes_link - Power up serdes link
1343 * @hw: pointer to the HW structure
1344 *
1345 * Power on the optics and PCS.
1346 **/
1347void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1348{
1349 if (hw->mac.ops.power_up_serdes)
1350 hw->mac.ops.power_up_serdes(hw);
1351}
1352
1353/**
1354 * e1000_shutdown_fiber_serdes_link - Remove link during power down
1355 * @hw: pointer to the HW structure
1356 *
1357 * Shutdown the optics and PCS on driver unload.
1358 **/
1359void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1360{
1361 if (hw->mac.ops.shutdown_serdes)
1362 hw->mac.ops.shutdown_serdes(hw);
1363}
1364
460 e1000_init_function_pointers_ich8lan(hw);
461 break;
462 case e1000_82575:
463 case e1000_82576:
464 case e1000_82580:
465 case e1000_i350:
466 case e1000_i354:
467 e1000_init_function_pointers_82575(hw);
468 break;
469 case e1000_i210:
470 case e1000_i211:
471 e1000_init_function_pointers_i210(hw);
472 break;
473 case e1000_vfadapt:
474 e1000_init_function_pointers_vf(hw);
475 break;
476 case e1000_vfadapt_i350:
477 e1000_init_function_pointers_vf(hw);
478 break;
479 default:
480 DEBUGOUT("Hardware not supported\n");
481 ret_val = -E1000_ERR_CONFIG;
482 break;
483 }
484
485 /*
486 * Initialize the rest of the function pointers. These require some
487 * register reads/writes in some cases.
488 */
489 if (!(ret_val) && init_device) {
490 ret_val = e1000_init_mac_params(hw);
491 if (ret_val)
492 goto out;
493
494 ret_val = e1000_init_nvm_params(hw);
495 if (ret_val)
496 goto out;
497
498 ret_val = e1000_init_phy_params(hw);
499 if (ret_val)
500 goto out;
501
502 ret_val = e1000_init_mbx_params(hw);
503 if (ret_val)
504 goto out;
505 }
506
507out:
508 return ret_val;
509}
510
511/**
512 * e1000_get_bus_info - Obtain bus information for adapter
513 * @hw: pointer to the HW structure
514 *
515 * This will obtain information about the HW bus for which the
516 * adapter is attached and stores it in the hw structure. This is a
517 * function pointer entry point called by drivers.
518 **/
519s32 e1000_get_bus_info(struct e1000_hw *hw)
520{
521 if (hw->mac.ops.get_bus_info)
522 return hw->mac.ops.get_bus_info(hw);
523
524 return E1000_SUCCESS;
525}
526
527/**
528 * e1000_clear_vfta - Clear VLAN filter table
529 * @hw: pointer to the HW structure
530 *
531 * This clears the VLAN filter table on the adapter. This is a function
532 * pointer entry point called by drivers.
533 **/
534void e1000_clear_vfta(struct e1000_hw *hw)
535{
536 if (hw->mac.ops.clear_vfta)
537 hw->mac.ops.clear_vfta(hw);
538}
539
540/**
541 * e1000_write_vfta - Write value to VLAN filter table
542 * @hw: pointer to the HW structure
543 * @offset: the 32-bit offset in which to write the value to.
544 * @value: the 32-bit value to write at location offset.
545 *
546 * This writes a 32-bit value to a 32-bit offset in the VLAN filter
547 * table. This is a function pointer entry point called by drivers.
548 **/
549void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
550{
551 if (hw->mac.ops.write_vfta)
552 hw->mac.ops.write_vfta(hw, offset, value);
553}
554
555/**
556 * e1000_update_mc_addr_list - Update Multicast addresses
557 * @hw: pointer to the HW structure
558 * @mc_addr_list: array of multicast addresses to program
559 * @mc_addr_count: number of multicast addresses to program
560 *
561 * Updates the Multicast Table Array.
562 * The caller must have a packed mc_addr_list of multicast addresses.
563 **/
564void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
565 u32 mc_addr_count)
566{
567 if (hw->mac.ops.update_mc_addr_list)
568 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
569 mc_addr_count);
570}
571
572/**
573 * e1000_force_mac_fc - Force MAC flow control
574 * @hw: pointer to the HW structure
575 *
576 * Force the MAC's flow control settings. Currently no func pointer exists
577 * and all implementations are handled in the generic version of this
578 * function.
579 **/
580s32 e1000_force_mac_fc(struct e1000_hw *hw)
581{
582 return e1000_force_mac_fc_generic(hw);
583}
584
585/**
586 * e1000_check_for_link - Check/Store link connection
587 * @hw: pointer to the HW structure
588 *
589 * This checks the link condition of the adapter and stores the
590 * results in the hw->mac structure. This is a function pointer entry
591 * point called by drivers.
592 **/
593s32 e1000_check_for_link(struct e1000_hw *hw)
594{
595 if (hw->mac.ops.check_for_link)
596 return hw->mac.ops.check_for_link(hw);
597
598 return -E1000_ERR_CONFIG;
599}
600
601/**
602 * e1000_check_mng_mode - Check management mode
603 * @hw: pointer to the HW structure
604 *
605 * This checks if the adapter has manageability enabled.
606 * This is a function pointer entry point called by drivers.
607 **/
608bool e1000_check_mng_mode(struct e1000_hw *hw)
609{
610 if (hw->mac.ops.check_mng_mode)
611 return hw->mac.ops.check_mng_mode(hw);
612
613 return FALSE;
614}
615
616/**
617 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface
618 * @hw: pointer to the HW structure
619 * @buffer: pointer to the host interface
620 * @length: size of the buffer
621 *
622 * Writes the DHCP information to the host interface.
623 **/
624s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
625{
626 return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
627}
628
629/**
630 * e1000_reset_hw - Reset hardware
631 * @hw: pointer to the HW structure
632 *
633 * This resets the hardware into a known state. This is a function pointer
634 * entry point called by drivers.
635 **/
636s32 e1000_reset_hw(struct e1000_hw *hw)
637{
638 if (hw->mac.ops.reset_hw)
639 return hw->mac.ops.reset_hw(hw);
640
641 return -E1000_ERR_CONFIG;
642}
643
644/**
645 * e1000_init_hw - Initialize hardware
646 * @hw: pointer to the HW structure
647 *
648 * This inits the hardware readying it for operation. This is a function
649 * pointer entry point called by drivers.
650 **/
651s32 e1000_init_hw(struct e1000_hw *hw)
652{
653 if (hw->mac.ops.init_hw)
654 return hw->mac.ops.init_hw(hw);
655
656 return -E1000_ERR_CONFIG;
657}
658
659/**
660 * e1000_setup_link - Configures link and flow control
661 * @hw: pointer to the HW structure
662 *
663 * This configures link and flow control settings for the adapter. This
664 * is a function pointer entry point called by drivers. While modules can
665 * also call this, they probably call their own version of this function.
666 **/
667s32 e1000_setup_link(struct e1000_hw *hw)
668{
669 if (hw->mac.ops.setup_link)
670 return hw->mac.ops.setup_link(hw);
671
672 return -E1000_ERR_CONFIG;
673}
674
675/**
676 * e1000_get_speed_and_duplex - Returns current speed and duplex
677 * @hw: pointer to the HW structure
678 * @speed: pointer to a 16-bit value to store the speed
679 * @duplex: pointer to a 16-bit value to store the duplex.
680 *
681 * This returns the speed and duplex of the adapter in the two 'out'
682 * variables passed in. This is a function pointer entry point called
683 * by drivers.
684 **/
685s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
686{
687 if (hw->mac.ops.get_link_up_info)
688 return hw->mac.ops.get_link_up_info(hw, speed, duplex);
689
690 return -E1000_ERR_CONFIG;
691}
692
693/**
694 * e1000_setup_led - Configures SW controllable LED
695 * @hw: pointer to the HW structure
696 *
697 * This prepares the SW controllable LED for use and saves the current state
698 * of the LED so it can be later restored. This is a function pointer entry
699 * point called by drivers.
700 **/
701s32 e1000_setup_led(struct e1000_hw *hw)
702{
703 if (hw->mac.ops.setup_led)
704 return hw->mac.ops.setup_led(hw);
705
706 return E1000_SUCCESS;
707}
708
709/**
710 * e1000_cleanup_led - Restores SW controllable LED
711 * @hw: pointer to the HW structure
712 *
713 * This restores the SW controllable LED to the value saved off by
714 * e1000_setup_led. This is a function pointer entry point called by drivers.
715 **/
716s32 e1000_cleanup_led(struct e1000_hw *hw)
717{
718 if (hw->mac.ops.cleanup_led)
719 return hw->mac.ops.cleanup_led(hw);
720
721 return E1000_SUCCESS;
722}
723
724/**
725 * e1000_blink_led - Blink SW controllable LED
726 * @hw: pointer to the HW structure
727 *
728 * This starts the adapter LED blinking. Request the LED to be setup first
729 * and cleaned up after. This is a function pointer entry point called by
730 * drivers.
731 **/
732s32 e1000_blink_led(struct e1000_hw *hw)
733{
734 if (hw->mac.ops.blink_led)
735 return hw->mac.ops.blink_led(hw);
736
737 return E1000_SUCCESS;
738}
739
740/**
741 * e1000_id_led_init - store LED configurations in SW
742 * @hw: pointer to the HW structure
743 *
744 * Initializes the LED config in SW. This is a function pointer entry point
745 * called by drivers.
746 **/
747s32 e1000_id_led_init(struct e1000_hw *hw)
748{
749 if (hw->mac.ops.id_led_init)
750 return hw->mac.ops.id_led_init(hw);
751
752 return E1000_SUCCESS;
753}
754
755/**
756 * e1000_led_on - Turn on SW controllable LED
757 * @hw: pointer to the HW structure
758 *
759 * Turns the SW defined LED on. This is a function pointer entry point
760 * called by drivers.
761 **/
762s32 e1000_led_on(struct e1000_hw *hw)
763{
764 if (hw->mac.ops.led_on)
765 return hw->mac.ops.led_on(hw);
766
767 return E1000_SUCCESS;
768}
769
770/**
771 * e1000_led_off - Turn off SW controllable LED
772 * @hw: pointer to the HW structure
773 *
774 * Turns the SW defined LED off. This is a function pointer entry point
775 * called by drivers.
776 **/
777s32 e1000_led_off(struct e1000_hw *hw)
778{
779 if (hw->mac.ops.led_off)
780 return hw->mac.ops.led_off(hw);
781
782 return E1000_SUCCESS;
783}
784
785/**
786 * e1000_reset_adaptive - Reset adaptive IFS
787 * @hw: pointer to the HW structure
788 *
789 * Resets the adaptive IFS. Currently no func pointer exists and all
790 * implementations are handled in the generic version of this function.
791 **/
792void e1000_reset_adaptive(struct e1000_hw *hw)
793{
794 e1000_reset_adaptive_generic(hw);
795}
796
797/**
798 * e1000_update_adaptive - Update adaptive IFS
799 * @hw: pointer to the HW structure
800 *
801 * Updates adapter IFS. Currently no func pointer exists and all
802 * implementations are handled in the generic version of this function.
803 **/
804void e1000_update_adaptive(struct e1000_hw *hw)
805{
806 e1000_update_adaptive_generic(hw);
807}
808
809/**
810 * e1000_disable_pcie_master - Disable PCI-Express master access
811 * @hw: pointer to the HW structure
812 *
813 * Disables PCI-Express master access and verifies there are no pending
814 * requests. Currently no func pointer exists and all implementations are
815 * handled in the generic version of this function.
816 **/
817s32 e1000_disable_pcie_master(struct e1000_hw *hw)
818{
819 return e1000_disable_pcie_master_generic(hw);
820}
821
822/**
823 * e1000_config_collision_dist - Configure collision distance
824 * @hw: pointer to the HW structure
825 *
826 * Configures the collision distance to the default value and is used
827 * during link setup.
828 **/
829void e1000_config_collision_dist(struct e1000_hw *hw)
830{
831 if (hw->mac.ops.config_collision_dist)
832 hw->mac.ops.config_collision_dist(hw);
833}
834
835/**
836 * e1000_rar_set - Sets a receive address register
837 * @hw: pointer to the HW structure
838 * @addr: address to set the RAR to
839 * @index: the RAR to set
840 *
841 * Sets a Receive Address Register (RAR) to the specified address.
842 **/
843int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
844{
845 if (hw->mac.ops.rar_set)
846 return hw->mac.ops.rar_set(hw, addr, index);
847
848 return E1000_SUCCESS;
849}
850
851/**
852 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
853 * @hw: pointer to the HW structure
854 *
855 * Ensures that the MDI/MDIX SW state is valid.
856 **/
857s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
858{
859 if (hw->mac.ops.validate_mdi_setting)
860 return hw->mac.ops.validate_mdi_setting(hw);
861
862 return E1000_SUCCESS;
863}
864
865/**
866 * e1000_hash_mc_addr - Determines address location in multicast table
867 * @hw: pointer to the HW structure
868 * @mc_addr: Multicast address to hash.
869 *
870 * This hashes an address to determine its location in the multicast
871 * table. Currently no func pointer exists and all implementations
872 * are handled in the generic version of this function.
873 **/
874u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
875{
876 return e1000_hash_mc_addr_generic(hw, mc_addr);
877}
878
879/**
880 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
881 * @hw: pointer to the HW structure
882 *
883 * Enables packet filtering on transmit packets if manageability is enabled
884 * and host interface is enabled.
885 * Currently no func pointer exists and all implementations are handled in the
886 * generic version of this function.
887 **/
888bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
889{
890 return e1000_enable_tx_pkt_filtering_generic(hw);
891}
892
893/**
894 * e1000_mng_host_if_write - Writes to the manageability host interface
895 * @hw: pointer to the HW structure
896 * @buffer: pointer to the host interface buffer
897 * @length: size of the buffer
898 * @offset: location in the buffer to write to
899 * @sum: sum of the data (not checksum)
900 *
901 * This function writes the buffer content at the offset given on the host if.
902 * It also does alignment considerations to do the writes in most efficient
903 * way. Also fills up the sum of the buffer in *buffer parameter.
904 **/
905s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
906 u16 offset, u8 *sum)
907{
908 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
909}
910
911/**
912 * e1000_mng_write_cmd_header - Writes manageability command header
913 * @hw: pointer to the HW structure
914 * @hdr: pointer to the host interface command header
915 *
916 * Writes the command header after does the checksum calculation.
917 **/
918s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
919 struct e1000_host_mng_command_header *hdr)
920{
921 return e1000_mng_write_cmd_header_generic(hw, hdr);
922}
923
924/**
925 * e1000_mng_enable_host_if - Checks host interface is enabled
926 * @hw: pointer to the HW structure
927 *
928 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
929 *
930 * This function checks whether the HOST IF is enabled for command operation
931 * and also checks whether the previous command is completed. It busy waits
932 * in case of previous command is not completed.
933 **/
934s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
935{
936 return e1000_mng_enable_host_if_generic(hw);
937}
938
939/**
940 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
941 * @hw: pointer to the HW structure
942 * @itr: u32 indicating itr value
943 *
944 * Set the OBFF timer based on the given interrupt rate.
945 **/
946s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
947{
948 if (hw->mac.ops.set_obff_timer)
949 return hw->mac.ops.set_obff_timer(hw, itr);
950
951 return E1000_SUCCESS;
952}
953
954/**
955 * e1000_check_reset_block - Verifies PHY can be reset
956 * @hw: pointer to the HW structure
957 *
958 * Checks if the PHY is in a state that can be reset or if manageability
959 * has it tied up. This is a function pointer entry point called by drivers.
960 **/
961s32 e1000_check_reset_block(struct e1000_hw *hw)
962{
963 if (hw->phy.ops.check_reset_block)
964 return hw->phy.ops.check_reset_block(hw);
965
966 return E1000_SUCCESS;
967}
968
969/**
970 * e1000_read_phy_reg - Reads PHY register
971 * @hw: pointer to the HW structure
972 * @offset: the register to read
973 * @data: the buffer to store the 16-bit read.
974 *
975 * Reads the PHY register and returns the value in data.
976 * This is a function pointer entry point called by drivers.
977 **/
978s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
979{
980 if (hw->phy.ops.read_reg)
981 return hw->phy.ops.read_reg(hw, offset, data);
982
983 return E1000_SUCCESS;
984}
985
986/**
987 * e1000_write_phy_reg - Writes PHY register
988 * @hw: pointer to the HW structure
989 * @offset: the register to write
990 * @data: the value to write.
991 *
992 * Writes the PHY register at offset with the value in data.
993 * This is a function pointer entry point called by drivers.
994 **/
995s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
996{
997 if (hw->phy.ops.write_reg)
998 return hw->phy.ops.write_reg(hw, offset, data);
999
1000 return E1000_SUCCESS;
1001}
1002
1003/**
1004 * e1000_release_phy - Generic release PHY
1005 * @hw: pointer to the HW structure
1006 *
1007 * Return if silicon family does not require a semaphore when accessing the
1008 * PHY.
1009 **/
1010void e1000_release_phy(struct e1000_hw *hw)
1011{
1012 if (hw->phy.ops.release)
1013 hw->phy.ops.release(hw);
1014}
1015
1016/**
1017 * e1000_acquire_phy - Generic acquire PHY
1018 * @hw: pointer to the HW structure
1019 *
1020 * Return success if silicon family does not require a semaphore when
1021 * accessing the PHY.
1022 **/
1023s32 e1000_acquire_phy(struct e1000_hw *hw)
1024{
1025 if (hw->phy.ops.acquire)
1026 return hw->phy.ops.acquire(hw);
1027
1028 return E1000_SUCCESS;
1029}
1030
1031/**
1032 * e1000_cfg_on_link_up - Configure PHY upon link up
1033 * @hw: pointer to the HW structure
1034 **/
1035s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1036{
1037 if (hw->phy.ops.cfg_on_link_up)
1038 return hw->phy.ops.cfg_on_link_up(hw);
1039
1040 return E1000_SUCCESS;
1041}
1042
1043/**
1044 * e1000_read_kmrn_reg - Reads register using Kumeran interface
1045 * @hw: pointer to the HW structure
1046 * @offset: the register to read
1047 * @data: the location to store the 16-bit value read.
1048 *
1049 * Reads a register out of the Kumeran interface. Currently no func pointer
1050 * exists and all implementations are handled in the generic version of
1051 * this function.
1052 **/
1053s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1054{
1055 return e1000_read_kmrn_reg_generic(hw, offset, data);
1056}
1057
1058/**
1059 * e1000_write_kmrn_reg - Writes register using Kumeran interface
1060 * @hw: pointer to the HW structure
1061 * @offset: the register to write
1062 * @data: the value to write.
1063 *
1064 * Writes a register to the Kumeran interface. Currently no func pointer
1065 * exists and all implementations are handled in the generic version of
1066 * this function.
1067 **/
1068s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1069{
1070 return e1000_write_kmrn_reg_generic(hw, offset, data);
1071}
1072
1073/**
1074 * e1000_get_cable_length - Retrieves cable length estimation
1075 * @hw: pointer to the HW structure
1076 *
1077 * This function estimates the cable length and stores them in
1078 * hw->phy.min_length and hw->phy.max_length. This is a function pointer
1079 * entry point called by drivers.
1080 **/
1081s32 e1000_get_cable_length(struct e1000_hw *hw)
1082{
1083 if (hw->phy.ops.get_cable_length)
1084 return hw->phy.ops.get_cable_length(hw);
1085
1086 return E1000_SUCCESS;
1087}
1088
1089/**
1090 * e1000_get_phy_info - Retrieves PHY information from registers
1091 * @hw: pointer to the HW structure
1092 *
1093 * This function gets some information from various PHY registers and
1094 * populates hw->phy values with it. This is a function pointer entry
1095 * point called by drivers.
1096 **/
1097s32 e1000_get_phy_info(struct e1000_hw *hw)
1098{
1099 if (hw->phy.ops.get_info)
1100 return hw->phy.ops.get_info(hw);
1101
1102 return E1000_SUCCESS;
1103}
1104
1105/**
1106 * e1000_phy_hw_reset - Hard PHY reset
1107 * @hw: pointer to the HW structure
1108 *
1109 * Performs a hard PHY reset. This is a function pointer entry point called
1110 * by drivers.
1111 **/
1112s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1113{
1114 if (hw->phy.ops.reset)
1115 return hw->phy.ops.reset(hw);
1116
1117 return E1000_SUCCESS;
1118}
1119
1120/**
1121 * e1000_phy_commit - Soft PHY reset
1122 * @hw: pointer to the HW structure
1123 *
1124 * Performs a soft PHY reset on those that apply. This is a function pointer
1125 * entry point called by drivers.
1126 **/
1127s32 e1000_phy_commit(struct e1000_hw *hw)
1128{
1129 if (hw->phy.ops.commit)
1130 return hw->phy.ops.commit(hw);
1131
1132 return E1000_SUCCESS;
1133}
1134
1135/**
1136 * e1000_set_d0_lplu_state - Sets low power link up state for D0
1137 * @hw: pointer to the HW structure
1138 * @active: boolean used to enable/disable lplu
1139 *
1140 * Success returns 0, Failure returns 1
1141 *
1142 * The low power link up (lplu) state is set to the power management level D0
1143 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1144 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1145 * is used during Dx states where the power conservation is most important.
1146 * During driver activity, SmartSpeed should be enabled so performance is
1147 * maintained. This is a function pointer entry point called by drivers.
1148 **/
1149s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1150{
1151 if (hw->phy.ops.set_d0_lplu_state)
1152 return hw->phy.ops.set_d0_lplu_state(hw, active);
1153
1154 return E1000_SUCCESS;
1155}
1156
1157/**
1158 * e1000_set_d3_lplu_state - Sets low power link up state for D3
1159 * @hw: pointer to the HW structure
1160 * @active: boolean used to enable/disable lplu
1161 *
1162 * Success returns 0, Failure returns 1
1163 *
1164 * The low power link up (lplu) state is set to the power management level D3
1165 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1166 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1167 * is used during Dx states where the power conservation is most important.
1168 * During driver activity, SmartSpeed should be enabled so performance is
1169 * maintained. This is a function pointer entry point called by drivers.
1170 **/
1171s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1172{
1173 if (hw->phy.ops.set_d3_lplu_state)
1174 return hw->phy.ops.set_d3_lplu_state(hw, active);
1175
1176 return E1000_SUCCESS;
1177}
1178
1179/**
1180 * e1000_read_mac_addr - Reads MAC address
1181 * @hw: pointer to the HW structure
1182 *
1183 * Reads the MAC address out of the adapter and stores it in the HW structure.
1184 * Currently no func pointer exists and all implementations are handled in the
1185 * generic version of this function.
1186 **/
1187s32 e1000_read_mac_addr(struct e1000_hw *hw)
1188{
1189 if (hw->mac.ops.read_mac_addr)
1190 return hw->mac.ops.read_mac_addr(hw);
1191
1192 return e1000_read_mac_addr_generic(hw);
1193}
1194
1195/**
1196 * e1000_read_pba_string - Read device part number string
1197 * @hw: pointer to the HW structure
1198 * @pba_num: pointer to device part number
1199 * @pba_num_size: size of part number buffer
1200 *
1201 * Reads the product board assembly (PBA) number from the EEPROM and stores
1202 * the value in pba_num.
1203 * Currently no func pointer exists and all implementations are handled in the
1204 * generic version of this function.
1205 **/
1206s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1207{
1208 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1209}
1210
1211/**
1212 * e1000_read_pba_length - Read device part number string length
1213 * @hw: pointer to the HW structure
1214 * @pba_num_size: size of part number buffer
1215 *
1216 * Reads the product board assembly (PBA) number length from the EEPROM and
1217 * stores the value in pba_num.
1218 * Currently no func pointer exists and all implementations are handled in the
1219 * generic version of this function.
1220 **/
1221s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1222{
1223 return e1000_read_pba_length_generic(hw, pba_num_size);
1224}
1225
1226/**
1227 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1228 * @hw: pointer to the HW structure
1229 *
1230 * Validates the NVM checksum is correct. This is a function pointer entry
1231 * point called by drivers.
1232 **/
1233s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1234{
1235 if (hw->nvm.ops.validate)
1236 return hw->nvm.ops.validate(hw);
1237
1238 return -E1000_ERR_CONFIG;
1239}
1240
1241/**
1242 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1243 * @hw: pointer to the HW structure
1244 *
1245 * Updates the NVM checksum. Currently no func pointer exists and all
1246 * implementations are handled in the generic version of this function.
1247 **/
1248s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1249{
1250 if (hw->nvm.ops.update)
1251 return hw->nvm.ops.update(hw);
1252
1253 return -E1000_ERR_CONFIG;
1254}
1255
1256/**
1257 * e1000_reload_nvm - Reloads EEPROM
1258 * @hw: pointer to the HW structure
1259 *
1260 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1261 * extended control register.
1262 **/
1263void e1000_reload_nvm(struct e1000_hw *hw)
1264{
1265 if (hw->nvm.ops.reload)
1266 hw->nvm.ops.reload(hw);
1267}
1268
1269/**
1270 * e1000_read_nvm - Reads NVM (EEPROM)
1271 * @hw: pointer to the HW structure
1272 * @offset: the word offset to read
1273 * @words: number of 16-bit words to read
1274 * @data: pointer to the properly sized buffer for the data.
1275 *
1276 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1277 * pointer entry point called by drivers.
1278 **/
1279s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1280{
1281 if (hw->nvm.ops.read)
1282 return hw->nvm.ops.read(hw, offset, words, data);
1283
1284 return -E1000_ERR_CONFIG;
1285}
1286
1287/**
1288 * e1000_write_nvm - Writes to NVM (EEPROM)
1289 * @hw: pointer to the HW structure
1290 * @offset: the word offset to read
1291 * @words: number of 16-bit words to write
1292 * @data: pointer to the properly sized buffer for the data.
1293 *
1294 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1295 * pointer entry point called by drivers.
1296 **/
1297s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1298{
1299 if (hw->nvm.ops.write)
1300 return hw->nvm.ops.write(hw, offset, words, data);
1301
1302 return E1000_SUCCESS;
1303}
1304
1305/**
1306 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1307 * @hw: pointer to the HW structure
1308 * @reg: 32bit register offset
1309 * @offset: the register to write
1310 * @data: the value to write.
1311 *
1312 * Writes the PHY register at offset with the value in data.
1313 * This is a function pointer entry point called by drivers.
1314 **/
1315s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1316 u8 data)
1317{
1318 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1319}
1320
1321/**
1322 * e1000_power_up_phy - Restores link in case of PHY power down
1323 * @hw: pointer to the HW structure
1324 *
1325 * The phy may be powered down to save power, to turn off link when the
1326 * driver is unloaded, or wake on lan is not enabled (among others).
1327 **/
1328void e1000_power_up_phy(struct e1000_hw *hw)
1329{
1330 if (hw->phy.ops.power_up)
1331 hw->phy.ops.power_up(hw);
1332
1333 e1000_setup_link(hw);
1334}
1335
1336/**
1337 * e1000_power_down_phy - Power down PHY
1338 * @hw: pointer to the HW structure
1339 *
1340 * The phy may be powered down to save power, to turn off link when the
1341 * driver is unloaded, or wake on lan is not enabled (among others).
1342 **/
1343void e1000_power_down_phy(struct e1000_hw *hw)
1344{
1345 if (hw->phy.ops.power_down)
1346 hw->phy.ops.power_down(hw);
1347}
1348
1349/**
1350 * e1000_power_up_fiber_serdes_link - Power up serdes link
1351 * @hw: pointer to the HW structure
1352 *
1353 * Power on the optics and PCS.
1354 **/
1355void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1356{
1357 if (hw->mac.ops.power_up_serdes)
1358 hw->mac.ops.power_up_serdes(hw);
1359}
1360
1361/**
1362 * e1000_shutdown_fiber_serdes_link - Remove link during power down
1363 * @hw: pointer to the HW structure
1364 *
1365 * Shutdown the optics and PCS on driver unload.
1366 **/
1367void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1368{
1369 if (hw->mac.ops.shutdown_serdes)
1370 hw->mac.ops.shutdown_serdes(hw);
1371}
1372