Deleted Added
full compact
e1000_api.c (267935) e1000_api.c (286833)
1/******************************************************************************
2
1/******************************************************************************
2
3 Copyright (c) 2001-2014, Intel Corporation
3 Copyright (c) 2001-2015, Intel Corporation
4 All rights reserved.
5
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
8
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
11
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
15
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
19
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
4 All rights reserved.
5
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
8
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
11
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
15
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
19
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD: head/sys/dev/e1000/e1000_api.c 267935 2014-06-26 21:33:32Z jfv $*/
33/*$FreeBSD: head/sys/dev/e1000/e1000_api.c 286833 2015-08-16 20:13:58Z sbruno $*/
34
35#include "e1000_api.h"
36
37/**
38 * e1000_init_mac_params - Initialize MAC function pointers
39 * @hw: pointer to the HW structure
40 *
41 * This function initializes the function pointers for the MAC
42 * set of functions. Called by drivers or by e1000_setup_init_funcs.
43 **/
44s32 e1000_init_mac_params(struct e1000_hw *hw)
45{
46 s32 ret_val = E1000_SUCCESS;
47
48 if (hw->mac.ops.init_params) {
49 ret_val = hw->mac.ops.init_params(hw);
50 if (ret_val) {
51 DEBUGOUT("MAC Initialization Error\n");
52 goto out;
53 }
54 } else {
55 DEBUGOUT("mac.init_mac_params was NULL\n");
56 ret_val = -E1000_ERR_CONFIG;
57 }
58
59out:
60 return ret_val;
61}
62
63/**
64 * e1000_init_nvm_params - Initialize NVM function pointers
65 * @hw: pointer to the HW structure
66 *
67 * This function initializes the function pointers for the NVM
68 * set of functions. Called by drivers or by e1000_setup_init_funcs.
69 **/
70s32 e1000_init_nvm_params(struct e1000_hw *hw)
71{
72 s32 ret_val = E1000_SUCCESS;
73
74 if (hw->nvm.ops.init_params) {
75 ret_val = hw->nvm.ops.init_params(hw);
76 if (ret_val) {
77 DEBUGOUT("NVM Initialization Error\n");
78 goto out;
79 }
80 } else {
81 DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 ret_val = -E1000_ERR_CONFIG;
83 }
84
85out:
86 return ret_val;
87}
88
89/**
90 * e1000_init_phy_params - Initialize PHY function pointers
91 * @hw: pointer to the HW structure
92 *
93 * This function initializes the function pointers for the PHY
94 * set of functions. Called by drivers or by e1000_setup_init_funcs.
95 **/
96s32 e1000_init_phy_params(struct e1000_hw *hw)
97{
98 s32 ret_val = E1000_SUCCESS;
99
100 if (hw->phy.ops.init_params) {
101 ret_val = hw->phy.ops.init_params(hw);
102 if (ret_val) {
103 DEBUGOUT("PHY Initialization Error\n");
104 goto out;
105 }
106 } else {
107 DEBUGOUT("phy.init_phy_params was NULL\n");
108 ret_val = -E1000_ERR_CONFIG;
109 }
110
111out:
112 return ret_val;
113}
114
115/**
116 * e1000_init_mbx_params - Initialize mailbox function pointers
117 * @hw: pointer to the HW structure
118 *
119 * This function initializes the function pointers for the PHY
120 * set of functions. Called by drivers or by e1000_setup_init_funcs.
121 **/
122s32 e1000_init_mbx_params(struct e1000_hw *hw)
123{
124 s32 ret_val = E1000_SUCCESS;
125
126 if (hw->mbx.ops.init_params) {
127 ret_val = hw->mbx.ops.init_params(hw);
128 if (ret_val) {
129 DEBUGOUT("Mailbox Initialization Error\n");
130 goto out;
131 }
132 } else {
133 DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 ret_val = -E1000_ERR_CONFIG;
135 }
136
137out:
138 return ret_val;
139}
140
141/**
142 * e1000_set_mac_type - Sets MAC type
143 * @hw: pointer to the HW structure
144 *
145 * This function sets the mac type of the adapter based on the
146 * device ID stored in the hw structure.
147 * MUST BE FIRST FUNCTION CALLED (explicitly or through
148 * e1000_setup_init_funcs()).
149 **/
150s32 e1000_set_mac_type(struct e1000_hw *hw)
151{
152 struct e1000_mac_info *mac = &hw->mac;
153 s32 ret_val = E1000_SUCCESS;
154
155 DEBUGFUNC("e1000_set_mac_type");
156
157 switch (hw->device_id) {
158 case E1000_DEV_ID_82542:
159 mac->type = e1000_82542;
160 break;
161 case E1000_DEV_ID_82543GC_FIBER:
162 case E1000_DEV_ID_82543GC_COPPER:
163 mac->type = e1000_82543;
164 break;
165 case E1000_DEV_ID_82544EI_COPPER:
166 case E1000_DEV_ID_82544EI_FIBER:
167 case E1000_DEV_ID_82544GC_COPPER:
168 case E1000_DEV_ID_82544GC_LOM:
169 mac->type = e1000_82544;
170 break;
171 case E1000_DEV_ID_82540EM:
172 case E1000_DEV_ID_82540EM_LOM:
173 case E1000_DEV_ID_82540EP:
174 case E1000_DEV_ID_82540EP_LOM:
175 case E1000_DEV_ID_82540EP_LP:
176 mac->type = e1000_82540;
177 break;
178 case E1000_DEV_ID_82545EM_COPPER:
179 case E1000_DEV_ID_82545EM_FIBER:
180 mac->type = e1000_82545;
181 break;
182 case E1000_DEV_ID_82545GM_COPPER:
183 case E1000_DEV_ID_82545GM_FIBER:
184 case E1000_DEV_ID_82545GM_SERDES:
185 mac->type = e1000_82545_rev_3;
186 break;
187 case E1000_DEV_ID_82546EB_COPPER:
188 case E1000_DEV_ID_82546EB_FIBER:
189 case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 mac->type = e1000_82546;
191 break;
192 case E1000_DEV_ID_82546GB_COPPER:
193 case E1000_DEV_ID_82546GB_FIBER:
194 case E1000_DEV_ID_82546GB_SERDES:
195 case E1000_DEV_ID_82546GB_PCIE:
196 case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 mac->type = e1000_82546_rev_3;
199 break;
200 case E1000_DEV_ID_82541EI:
201 case E1000_DEV_ID_82541EI_MOBILE:
202 case E1000_DEV_ID_82541ER_LOM:
203 mac->type = e1000_82541;
204 break;
205 case E1000_DEV_ID_82541ER:
206 case E1000_DEV_ID_82541GI:
207 case E1000_DEV_ID_82541GI_LF:
208 case E1000_DEV_ID_82541GI_MOBILE:
209 mac->type = e1000_82541_rev_2;
210 break;
211 case E1000_DEV_ID_82547EI:
212 case E1000_DEV_ID_82547EI_MOBILE:
213 mac->type = e1000_82547;
214 break;
215 case E1000_DEV_ID_82547GI:
216 mac->type = e1000_82547_rev_2;
217 break;
218 case E1000_DEV_ID_82571EB_COPPER:
219 case E1000_DEV_ID_82571EB_FIBER:
220 case E1000_DEV_ID_82571EB_SERDES:
221 case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 mac->type = e1000_82571;
228 break;
229 case E1000_DEV_ID_82572EI:
230 case E1000_DEV_ID_82572EI_COPPER:
231 case E1000_DEV_ID_82572EI_FIBER:
232 case E1000_DEV_ID_82572EI_SERDES:
233 mac->type = e1000_82572;
234 break;
235 case E1000_DEV_ID_82573E:
236 case E1000_DEV_ID_82573E_IAMT:
237 case E1000_DEV_ID_82573L:
238 mac->type = e1000_82573;
239 break;
240 case E1000_DEV_ID_82574L:
241 case E1000_DEV_ID_82574LA:
242 mac->type = e1000_82574;
243 break;
244 case E1000_DEV_ID_82583V:
245 mac->type = e1000_82583;
246 break;
247 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 mac->type = e1000_80003es2lan;
252 break;
253 case E1000_DEV_ID_ICH8_IFE:
254 case E1000_DEV_ID_ICH8_IFE_GT:
255 case E1000_DEV_ID_ICH8_IFE_G:
256 case E1000_DEV_ID_ICH8_IGP_M:
257 case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 case E1000_DEV_ID_ICH8_IGP_AMT:
259 case E1000_DEV_ID_ICH8_IGP_C:
260 case E1000_DEV_ID_ICH8_82567V_3:
261 mac->type = e1000_ich8lan;
262 break;
263 case E1000_DEV_ID_ICH9_IFE:
264 case E1000_DEV_ID_ICH9_IFE_GT:
265 case E1000_DEV_ID_ICH9_IFE_G:
266 case E1000_DEV_ID_ICH9_IGP_M:
267 case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 case E1000_DEV_ID_ICH9_IGP_M_V:
269 case E1000_DEV_ID_ICH9_IGP_AMT:
270 case E1000_DEV_ID_ICH9_BM:
271 case E1000_DEV_ID_ICH9_IGP_C:
272 case E1000_DEV_ID_ICH10_R_BM_LM:
273 case E1000_DEV_ID_ICH10_R_BM_LF:
274 case E1000_DEV_ID_ICH10_R_BM_V:
275 mac->type = e1000_ich9lan;
276 break;
277 case E1000_DEV_ID_ICH10_D_BM_LM:
278 case E1000_DEV_ID_ICH10_D_BM_LF:
279 case E1000_DEV_ID_ICH10_D_BM_V:
280 mac->type = e1000_ich10lan;
281 break;
282 case E1000_DEV_ID_PCH_D_HV_DM:
283 case E1000_DEV_ID_PCH_D_HV_DC:
284 case E1000_DEV_ID_PCH_M_HV_LM:
285 case E1000_DEV_ID_PCH_M_HV_LC:
286 mac->type = e1000_pchlan;
287 break;
288 case E1000_DEV_ID_PCH2_LV_LM:
289 case E1000_DEV_ID_PCH2_LV_V:
290 mac->type = e1000_pch2lan;
291 break;
292 case E1000_DEV_ID_PCH_LPT_I217_LM:
293 case E1000_DEV_ID_PCH_LPT_I217_V:
294 case E1000_DEV_ID_PCH_LPTLP_I218_LM:
295 case E1000_DEV_ID_PCH_LPTLP_I218_V:
296 case E1000_DEV_ID_PCH_I218_LM2:
297 case E1000_DEV_ID_PCH_I218_V2:
298 case E1000_DEV_ID_PCH_I218_LM3:
299 case E1000_DEV_ID_PCH_I218_V3:
300 mac->type = e1000_pch_lpt;
301 break;
302 case E1000_DEV_ID_82575EB_COPPER:
303 case E1000_DEV_ID_82575EB_FIBER_SERDES:
304 case E1000_DEV_ID_82575GB_QUAD_COPPER:
305 mac->type = e1000_82575;
306 break;
307 case E1000_DEV_ID_82576:
308 case E1000_DEV_ID_82576_FIBER:
309 case E1000_DEV_ID_82576_SERDES:
310 case E1000_DEV_ID_82576_QUAD_COPPER:
311 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
312 case E1000_DEV_ID_82576_NS:
313 case E1000_DEV_ID_82576_NS_SERDES:
314 case E1000_DEV_ID_82576_SERDES_QUAD:
315 mac->type = e1000_82576;
316 break;
317 case E1000_DEV_ID_82580_COPPER:
318 case E1000_DEV_ID_82580_FIBER:
319 case E1000_DEV_ID_82580_SERDES:
320 case E1000_DEV_ID_82580_SGMII:
321 case E1000_DEV_ID_82580_COPPER_DUAL:
322 case E1000_DEV_ID_82580_QUAD_FIBER:
323 case E1000_DEV_ID_DH89XXCC_SGMII:
324 case E1000_DEV_ID_DH89XXCC_SERDES:
325 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
326 case E1000_DEV_ID_DH89XXCC_SFP:
327 mac->type = e1000_82580;
328 break;
329 case E1000_DEV_ID_I350_COPPER:
330 case E1000_DEV_ID_I350_FIBER:
331 case E1000_DEV_ID_I350_SERDES:
332 case E1000_DEV_ID_I350_SGMII:
333 case E1000_DEV_ID_I350_DA4:
334 mac->type = e1000_i350;
335 break;
336 case E1000_DEV_ID_I210_COPPER_FLASHLESS:
337 case E1000_DEV_ID_I210_SERDES_FLASHLESS:
338 case E1000_DEV_ID_I210_COPPER:
339 case E1000_DEV_ID_I210_COPPER_OEM1:
340 case E1000_DEV_ID_I210_COPPER_IT:
341 case E1000_DEV_ID_I210_FIBER:
342 case E1000_DEV_ID_I210_SERDES:
343 case E1000_DEV_ID_I210_SGMII:
344 mac->type = e1000_i210;
345 break;
346 case E1000_DEV_ID_I211_COPPER:
347 mac->type = e1000_i211;
348 break;
349 case E1000_DEV_ID_82576_VF:
350 case E1000_DEV_ID_82576_VF_HV:
351 mac->type = e1000_vfadapt;
352 break;
353 case E1000_DEV_ID_I350_VF:
354 case E1000_DEV_ID_I350_VF_HV:
355 mac->type = e1000_vfadapt_i350;
356 break;
357
358 case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
359 case E1000_DEV_ID_I354_SGMII:
360 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
361 mac->type = e1000_i354;
362 break;
363 default:
364 /* Should never have loaded on this device */
365 ret_val = -E1000_ERR_MAC_INIT;
366 break;
367 }
368
369 return ret_val;
370}
371
372/**
373 * e1000_setup_init_funcs - Initializes function pointers
374 * @hw: pointer to the HW structure
375 * @init_device: TRUE will initialize the rest of the function pointers
376 * getting the device ready for use. FALSE will only set
377 * MAC type and the function pointers for the other init
378 * functions. Passing FALSE will not generate any hardware
379 * reads or writes.
380 *
381 * This function must be called by a driver in order to use the rest
382 * of the 'shared' code files. Called by drivers only.
383 **/
384s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
385{
386 s32 ret_val;
387
388 /* Can't do much good without knowing the MAC type. */
389 ret_val = e1000_set_mac_type(hw);
390 if (ret_val) {
391 DEBUGOUT("ERROR: MAC type could not be set properly.\n");
392 goto out;
393 }
394
395 if (!hw->hw_addr) {
396 DEBUGOUT("ERROR: Registers not mapped\n");
397 ret_val = -E1000_ERR_CONFIG;
398 goto out;
399 }
400
401 /*
402 * Init function pointers to generic implementations. We do this first
403 * allowing a driver module to override it afterward.
404 */
405 e1000_init_mac_ops_generic(hw);
406 e1000_init_phy_ops_generic(hw);
407 e1000_init_nvm_ops_generic(hw);
408 e1000_init_mbx_ops_generic(hw);
409
410 /*
411 * Set up the init function pointers. These are functions within the
412 * adapter family file that sets up function pointers for the rest of
413 * the functions in that family.
414 */
415 switch (hw->mac.type) {
416 case e1000_82542:
417 e1000_init_function_pointers_82542(hw);
418 break;
419 case e1000_82543:
420 case e1000_82544:
421 e1000_init_function_pointers_82543(hw);
422 break;
423 case e1000_82540:
424 case e1000_82545:
425 case e1000_82545_rev_3:
426 case e1000_82546:
427 case e1000_82546_rev_3:
428 e1000_init_function_pointers_82540(hw);
429 break;
430 case e1000_82541:
431 case e1000_82541_rev_2:
432 case e1000_82547:
433 case e1000_82547_rev_2:
434 e1000_init_function_pointers_82541(hw);
435 break;
436 case e1000_82571:
437 case e1000_82572:
438 case e1000_82573:
439 case e1000_82574:
440 case e1000_82583:
441 e1000_init_function_pointers_82571(hw);
442 break;
443 case e1000_80003es2lan:
444 e1000_init_function_pointers_80003es2lan(hw);
445 break;
446 case e1000_ich8lan:
447 case e1000_ich9lan:
448 case e1000_ich10lan:
449 case e1000_pchlan:
450 case e1000_pch2lan:
451 case e1000_pch_lpt:
452 e1000_init_function_pointers_ich8lan(hw);
453 break;
454 case e1000_82575:
455 case e1000_82576:
456 case e1000_82580:
457 case e1000_i350:
458 case e1000_i354:
459 e1000_init_function_pointers_82575(hw);
460 break;
461 case e1000_i210:
462 case e1000_i211:
463 e1000_init_function_pointers_i210(hw);
464 break;
465 case e1000_vfadapt:
466 e1000_init_function_pointers_vf(hw);
467 break;
468 case e1000_vfadapt_i350:
469 e1000_init_function_pointers_vf(hw);
470 break;
471 default:
472 DEBUGOUT("Hardware not supported\n");
473 ret_val = -E1000_ERR_CONFIG;
474 break;
475 }
476
477 /*
478 * Initialize the rest of the function pointers. These require some
479 * register reads/writes in some cases.
480 */
481 if (!(ret_val) && init_device) {
482 ret_val = e1000_init_mac_params(hw);
483 if (ret_val)
484 goto out;
485
486 ret_val = e1000_init_nvm_params(hw);
487 if (ret_val)
488 goto out;
489
490 ret_val = e1000_init_phy_params(hw);
491 if (ret_val)
492 goto out;
493
494 ret_val = e1000_init_mbx_params(hw);
495 if (ret_val)
496 goto out;
497 }
498
499out:
500 return ret_val;
501}
502
503/**
504 * e1000_get_bus_info - Obtain bus information for adapter
505 * @hw: pointer to the HW structure
506 *
507 * This will obtain information about the HW bus for which the
508 * adapter is attached and stores it in the hw structure. This is a
509 * function pointer entry point called by drivers.
510 **/
511s32 e1000_get_bus_info(struct e1000_hw *hw)
512{
513 if (hw->mac.ops.get_bus_info)
514 return hw->mac.ops.get_bus_info(hw);
515
516 return E1000_SUCCESS;
517}
518
519/**
520 * e1000_clear_vfta - Clear VLAN filter table
521 * @hw: pointer to the HW structure
522 *
523 * This clears the VLAN filter table on the adapter. This is a function
524 * pointer entry point called by drivers.
525 **/
526void e1000_clear_vfta(struct e1000_hw *hw)
527{
528 if (hw->mac.ops.clear_vfta)
529 hw->mac.ops.clear_vfta(hw);
530}
531
532/**
533 * e1000_write_vfta - Write value to VLAN filter table
534 * @hw: pointer to the HW structure
535 * @offset: the 32-bit offset in which to write the value to.
536 * @value: the 32-bit value to write at location offset.
537 *
538 * This writes a 32-bit value to a 32-bit offset in the VLAN filter
539 * table. This is a function pointer entry point called by drivers.
540 **/
541void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
542{
543 if (hw->mac.ops.write_vfta)
544 hw->mac.ops.write_vfta(hw, offset, value);
545}
546
547/**
548 * e1000_update_mc_addr_list - Update Multicast addresses
549 * @hw: pointer to the HW structure
550 * @mc_addr_list: array of multicast addresses to program
551 * @mc_addr_count: number of multicast addresses to program
552 *
553 * Updates the Multicast Table Array.
554 * The caller must have a packed mc_addr_list of multicast addresses.
555 **/
556void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
557 u32 mc_addr_count)
558{
559 if (hw->mac.ops.update_mc_addr_list)
560 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
561 mc_addr_count);
562}
563
564/**
565 * e1000_force_mac_fc - Force MAC flow control
566 * @hw: pointer to the HW structure
567 *
568 * Force the MAC's flow control settings. Currently no func pointer exists
569 * and all implementations are handled in the generic version of this
570 * function.
571 **/
572s32 e1000_force_mac_fc(struct e1000_hw *hw)
573{
574 return e1000_force_mac_fc_generic(hw);
575}
576
577/**
578 * e1000_check_for_link - Check/Store link connection
579 * @hw: pointer to the HW structure
580 *
581 * This checks the link condition of the adapter and stores the
582 * results in the hw->mac structure. This is a function pointer entry
583 * point called by drivers.
584 **/
585s32 e1000_check_for_link(struct e1000_hw *hw)
586{
587 if (hw->mac.ops.check_for_link)
588 return hw->mac.ops.check_for_link(hw);
589
590 return -E1000_ERR_CONFIG;
591}
592
593/**
594 * e1000_check_mng_mode - Check management mode
595 * @hw: pointer to the HW structure
596 *
597 * This checks if the adapter has manageability enabled.
598 * This is a function pointer entry point called by drivers.
599 **/
600bool e1000_check_mng_mode(struct e1000_hw *hw)
601{
602 if (hw->mac.ops.check_mng_mode)
603 return hw->mac.ops.check_mng_mode(hw);
604
605 return FALSE;
606}
607
608/**
609 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface
610 * @hw: pointer to the HW structure
611 * @buffer: pointer to the host interface
612 * @length: size of the buffer
613 *
614 * Writes the DHCP information to the host interface.
615 **/
616s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
617{
618 return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
619}
620
621/**
622 * e1000_reset_hw - Reset hardware
623 * @hw: pointer to the HW structure
624 *
625 * This resets the hardware into a known state. This is a function pointer
626 * entry point called by drivers.
627 **/
628s32 e1000_reset_hw(struct e1000_hw *hw)
629{
630 if (hw->mac.ops.reset_hw)
631 return hw->mac.ops.reset_hw(hw);
632
633 return -E1000_ERR_CONFIG;
634}
635
636/**
637 * e1000_init_hw - Initialize hardware
638 * @hw: pointer to the HW structure
639 *
640 * This inits the hardware readying it for operation. This is a function
641 * pointer entry point called by drivers.
642 **/
643s32 e1000_init_hw(struct e1000_hw *hw)
644{
645 if (hw->mac.ops.init_hw)
646 return hw->mac.ops.init_hw(hw);
647
648 return -E1000_ERR_CONFIG;
649}
650
651/**
652 * e1000_setup_link - Configures link and flow control
653 * @hw: pointer to the HW structure
654 *
655 * This configures link and flow control settings for the adapter. This
656 * is a function pointer entry point called by drivers. While modules can
657 * also call this, they probably call their own version of this function.
658 **/
659s32 e1000_setup_link(struct e1000_hw *hw)
660{
661 if (hw->mac.ops.setup_link)
662 return hw->mac.ops.setup_link(hw);
663
664 return -E1000_ERR_CONFIG;
665}
666
667/**
668 * e1000_get_speed_and_duplex - Returns current speed and duplex
669 * @hw: pointer to the HW structure
670 * @speed: pointer to a 16-bit value to store the speed
671 * @duplex: pointer to a 16-bit value to store the duplex.
672 *
673 * This returns the speed and duplex of the adapter in the two 'out'
674 * variables passed in. This is a function pointer entry point called
675 * by drivers.
676 **/
677s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
678{
679 if (hw->mac.ops.get_link_up_info)
680 return hw->mac.ops.get_link_up_info(hw, speed, duplex);
681
682 return -E1000_ERR_CONFIG;
683}
684
685/**
686 * e1000_setup_led - Configures SW controllable LED
687 * @hw: pointer to the HW structure
688 *
689 * This prepares the SW controllable LED for use and saves the current state
690 * of the LED so it can be later restored. This is a function pointer entry
691 * point called by drivers.
692 **/
693s32 e1000_setup_led(struct e1000_hw *hw)
694{
695 if (hw->mac.ops.setup_led)
696 return hw->mac.ops.setup_led(hw);
697
698 return E1000_SUCCESS;
699}
700
701/**
702 * e1000_cleanup_led - Restores SW controllable LED
703 * @hw: pointer to the HW structure
704 *
705 * This restores the SW controllable LED to the value saved off by
706 * e1000_setup_led. This is a function pointer entry point called by drivers.
707 **/
708s32 e1000_cleanup_led(struct e1000_hw *hw)
709{
710 if (hw->mac.ops.cleanup_led)
711 return hw->mac.ops.cleanup_led(hw);
712
713 return E1000_SUCCESS;
714}
715
716/**
717 * e1000_blink_led - Blink SW controllable LED
718 * @hw: pointer to the HW structure
719 *
720 * This starts the adapter LED blinking. Request the LED to be setup first
721 * and cleaned up after. This is a function pointer entry point called by
722 * drivers.
723 **/
724s32 e1000_blink_led(struct e1000_hw *hw)
725{
726 if (hw->mac.ops.blink_led)
727 return hw->mac.ops.blink_led(hw);
728
729 return E1000_SUCCESS;
730}
731
732/**
733 * e1000_id_led_init - store LED configurations in SW
734 * @hw: pointer to the HW structure
735 *
736 * Initializes the LED config in SW. This is a function pointer entry point
737 * called by drivers.
738 **/
739s32 e1000_id_led_init(struct e1000_hw *hw)
740{
741 if (hw->mac.ops.id_led_init)
742 return hw->mac.ops.id_led_init(hw);
743
744 return E1000_SUCCESS;
745}
746
747/**
748 * e1000_led_on - Turn on SW controllable LED
749 * @hw: pointer to the HW structure
750 *
751 * Turns the SW defined LED on. This is a function pointer entry point
752 * called by drivers.
753 **/
754s32 e1000_led_on(struct e1000_hw *hw)
755{
756 if (hw->mac.ops.led_on)
757 return hw->mac.ops.led_on(hw);
758
759 return E1000_SUCCESS;
760}
761
762/**
763 * e1000_led_off - Turn off SW controllable LED
764 * @hw: pointer to the HW structure
765 *
766 * Turns the SW defined LED off. This is a function pointer entry point
767 * called by drivers.
768 **/
769s32 e1000_led_off(struct e1000_hw *hw)
770{
771 if (hw->mac.ops.led_off)
772 return hw->mac.ops.led_off(hw);
773
774 return E1000_SUCCESS;
775}
776
777/**
778 * e1000_reset_adaptive - Reset adaptive IFS
779 * @hw: pointer to the HW structure
780 *
781 * Resets the adaptive IFS. Currently no func pointer exists and all
782 * implementations are handled in the generic version of this function.
783 **/
784void e1000_reset_adaptive(struct e1000_hw *hw)
785{
786 e1000_reset_adaptive_generic(hw);
787}
788
789/**
790 * e1000_update_adaptive - Update adaptive IFS
791 * @hw: pointer to the HW structure
792 *
793 * Updates adapter IFS. Currently no func pointer exists and all
794 * implementations are handled in the generic version of this function.
795 **/
796void e1000_update_adaptive(struct e1000_hw *hw)
797{
798 e1000_update_adaptive_generic(hw);
799}
800
801/**
802 * e1000_disable_pcie_master - Disable PCI-Express master access
803 * @hw: pointer to the HW structure
804 *
805 * Disables PCI-Express master access and verifies there are no pending
806 * requests. Currently no func pointer exists and all implementations are
807 * handled in the generic version of this function.
808 **/
809s32 e1000_disable_pcie_master(struct e1000_hw *hw)
810{
811 return e1000_disable_pcie_master_generic(hw);
812}
813
814/**
815 * e1000_config_collision_dist - Configure collision distance
816 * @hw: pointer to the HW structure
817 *
818 * Configures the collision distance to the default value and is used
819 * during link setup.
820 **/
821void e1000_config_collision_dist(struct e1000_hw *hw)
822{
823 if (hw->mac.ops.config_collision_dist)
824 hw->mac.ops.config_collision_dist(hw);
825}
826
827/**
828 * e1000_rar_set - Sets a receive address register
829 * @hw: pointer to the HW structure
830 * @addr: address to set the RAR to
831 * @index: the RAR to set
832 *
833 * Sets a Receive Address Register (RAR) to the specified address.
834 **/
835int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
836{
837 if (hw->mac.ops.rar_set)
838 return hw->mac.ops.rar_set(hw, addr, index);
839
840 return E1000_SUCCESS;
841}
842
843/**
844 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
845 * @hw: pointer to the HW structure
846 *
847 * Ensures that the MDI/MDIX SW state is valid.
848 **/
849s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
850{
851 if (hw->mac.ops.validate_mdi_setting)
852 return hw->mac.ops.validate_mdi_setting(hw);
853
854 return E1000_SUCCESS;
855}
856
857/**
858 * e1000_hash_mc_addr - Determines address location in multicast table
859 * @hw: pointer to the HW structure
860 * @mc_addr: Multicast address to hash.
861 *
862 * This hashes an address to determine its location in the multicast
863 * table. Currently no func pointer exists and all implementations
864 * are handled in the generic version of this function.
865 **/
866u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
867{
868 return e1000_hash_mc_addr_generic(hw, mc_addr);
869}
870
871/**
872 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
873 * @hw: pointer to the HW structure
874 *
875 * Enables packet filtering on transmit packets if manageability is enabled
876 * and host interface is enabled.
877 * Currently no func pointer exists and all implementations are handled in the
878 * generic version of this function.
879 **/
880bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
881{
882 return e1000_enable_tx_pkt_filtering_generic(hw);
883}
884
885/**
886 * e1000_mng_host_if_write - Writes to the manageability host interface
887 * @hw: pointer to the HW structure
888 * @buffer: pointer to the host interface buffer
889 * @length: size of the buffer
890 * @offset: location in the buffer to write to
891 * @sum: sum of the data (not checksum)
892 *
893 * This function writes the buffer content at the offset given on the host if.
894 * It also does alignment considerations to do the writes in most efficient
895 * way. Also fills up the sum of the buffer in *buffer parameter.
896 **/
897s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
898 u16 offset, u8 *sum)
899{
900 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
901}
902
903/**
904 * e1000_mng_write_cmd_header - Writes manageability command header
905 * @hw: pointer to the HW structure
906 * @hdr: pointer to the host interface command header
907 *
908 * Writes the command header after does the checksum calculation.
909 **/
910s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
911 struct e1000_host_mng_command_header *hdr)
912{
913 return e1000_mng_write_cmd_header_generic(hw, hdr);
914}
915
916/**
917 * e1000_mng_enable_host_if - Checks host interface is enabled
918 * @hw: pointer to the HW structure
919 *
920 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
921 *
922 * This function checks whether the HOST IF is enabled for command operation
923 * and also checks whether the previous command is completed. It busy waits
924 * in case of previous command is not completed.
925 **/
926s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
927{
928 return e1000_mng_enable_host_if_generic(hw);
929}
930
931/**
932 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
933 * @hw: pointer to the HW structure
934 * @itr: u32 indicating itr value
935 *
936 * Set the OBFF timer based on the given interrupt rate.
937 **/
938s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
939{
940 if (hw->mac.ops.set_obff_timer)
941 return hw->mac.ops.set_obff_timer(hw, itr);
942
943 return E1000_SUCCESS;
944}
945
946/**
947 * e1000_check_reset_block - Verifies PHY can be reset
948 * @hw: pointer to the HW structure
949 *
950 * Checks if the PHY is in a state that can be reset or if manageability
951 * has it tied up. This is a function pointer entry point called by drivers.
952 **/
953s32 e1000_check_reset_block(struct e1000_hw *hw)
954{
955 if (hw->phy.ops.check_reset_block)
956 return hw->phy.ops.check_reset_block(hw);
957
958 return E1000_SUCCESS;
959}
960
961/**
962 * e1000_read_phy_reg - Reads PHY register
963 * @hw: pointer to the HW structure
964 * @offset: the register to read
965 * @data: the buffer to store the 16-bit read.
966 *
967 * Reads the PHY register and returns the value in data.
968 * This is a function pointer entry point called by drivers.
969 **/
970s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
971{
972 if (hw->phy.ops.read_reg)
973 return hw->phy.ops.read_reg(hw, offset, data);
974
975 return E1000_SUCCESS;
976}
977
978/**
979 * e1000_write_phy_reg - Writes PHY register
980 * @hw: pointer to the HW structure
981 * @offset: the register to write
982 * @data: the value to write.
983 *
984 * Writes the PHY register at offset with the value in data.
985 * This is a function pointer entry point called by drivers.
986 **/
987s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
988{
989 if (hw->phy.ops.write_reg)
990 return hw->phy.ops.write_reg(hw, offset, data);
991
992 return E1000_SUCCESS;
993}
994
995/**
996 * e1000_release_phy - Generic release PHY
997 * @hw: pointer to the HW structure
998 *
999 * Return if silicon family does not require a semaphore when accessing the
1000 * PHY.
1001 **/
1002void e1000_release_phy(struct e1000_hw *hw)
1003{
1004 if (hw->phy.ops.release)
1005 hw->phy.ops.release(hw);
1006}
1007
1008/**
1009 * e1000_acquire_phy - Generic acquire PHY
1010 * @hw: pointer to the HW structure
1011 *
1012 * Return success if silicon family does not require a semaphore when
1013 * accessing the PHY.
1014 **/
1015s32 e1000_acquire_phy(struct e1000_hw *hw)
1016{
1017 if (hw->phy.ops.acquire)
1018 return hw->phy.ops.acquire(hw);
1019
1020 return E1000_SUCCESS;
1021}
1022
1023/**
1024 * e1000_cfg_on_link_up - Configure PHY upon link up
1025 * @hw: pointer to the HW structure
1026 **/
1027s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1028{
1029 if (hw->phy.ops.cfg_on_link_up)
1030 return hw->phy.ops.cfg_on_link_up(hw);
1031
1032 return E1000_SUCCESS;
1033}
1034
1035/**
1036 * e1000_read_kmrn_reg - Reads register using Kumeran interface
1037 * @hw: pointer to the HW structure
1038 * @offset: the register to read
1039 * @data: the location to store the 16-bit value read.
1040 *
1041 * Reads a register out of the Kumeran interface. Currently no func pointer
1042 * exists and all implementations are handled in the generic version of
1043 * this function.
1044 **/
1045s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1046{
1047 return e1000_read_kmrn_reg_generic(hw, offset, data);
1048}
1049
1050/**
1051 * e1000_write_kmrn_reg - Writes register using Kumeran interface
1052 * @hw: pointer to the HW structure
1053 * @offset: the register to write
1054 * @data: the value to write.
1055 *
1056 * Writes a register to the Kumeran interface. Currently no func pointer
1057 * exists and all implementations are handled in the generic version of
1058 * this function.
1059 **/
1060s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1061{
1062 return e1000_write_kmrn_reg_generic(hw, offset, data);
1063}
1064
1065/**
1066 * e1000_get_cable_length - Retrieves cable length estimation
1067 * @hw: pointer to the HW structure
1068 *
1069 * This function estimates the cable length and stores them in
1070 * hw->phy.min_length and hw->phy.max_length. This is a function pointer
1071 * entry point called by drivers.
1072 **/
1073s32 e1000_get_cable_length(struct e1000_hw *hw)
1074{
1075 if (hw->phy.ops.get_cable_length)
1076 return hw->phy.ops.get_cable_length(hw);
1077
1078 return E1000_SUCCESS;
1079}
1080
1081/**
1082 * e1000_get_phy_info - Retrieves PHY information from registers
1083 * @hw: pointer to the HW structure
1084 *
1085 * This function gets some information from various PHY registers and
1086 * populates hw->phy values with it. This is a function pointer entry
1087 * point called by drivers.
1088 **/
1089s32 e1000_get_phy_info(struct e1000_hw *hw)
1090{
1091 if (hw->phy.ops.get_info)
1092 return hw->phy.ops.get_info(hw);
1093
1094 return E1000_SUCCESS;
1095}
1096
1097/**
1098 * e1000_phy_hw_reset - Hard PHY reset
1099 * @hw: pointer to the HW structure
1100 *
1101 * Performs a hard PHY reset. This is a function pointer entry point called
1102 * by drivers.
1103 **/
1104s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1105{
1106 if (hw->phy.ops.reset)
1107 return hw->phy.ops.reset(hw);
1108
1109 return E1000_SUCCESS;
1110}
1111
1112/**
1113 * e1000_phy_commit - Soft PHY reset
1114 * @hw: pointer to the HW structure
1115 *
1116 * Performs a soft PHY reset on those that apply. This is a function pointer
1117 * entry point called by drivers.
1118 **/
1119s32 e1000_phy_commit(struct e1000_hw *hw)
1120{
1121 if (hw->phy.ops.commit)
1122 return hw->phy.ops.commit(hw);
1123
1124 return E1000_SUCCESS;
1125}
1126
1127/**
1128 * e1000_set_d0_lplu_state - Sets low power link up state for D0
1129 * @hw: pointer to the HW structure
1130 * @active: boolean used to enable/disable lplu
1131 *
1132 * Success returns 0, Failure returns 1
1133 *
1134 * The low power link up (lplu) state is set to the power management level D0
1135 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1136 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1137 * is used during Dx states where the power conservation is most important.
1138 * During driver activity, SmartSpeed should be enabled so performance is
1139 * maintained. This is a function pointer entry point called by drivers.
1140 **/
1141s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1142{
1143 if (hw->phy.ops.set_d0_lplu_state)
1144 return hw->phy.ops.set_d0_lplu_state(hw, active);
1145
1146 return E1000_SUCCESS;
1147}
1148
1149/**
1150 * e1000_set_d3_lplu_state - Sets low power link up state for D3
1151 * @hw: pointer to the HW structure
1152 * @active: boolean used to enable/disable lplu
1153 *
1154 * Success returns 0, Failure returns 1
1155 *
1156 * The low power link up (lplu) state is set to the power management level D3
1157 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1158 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1159 * is used during Dx states where the power conservation is most important.
1160 * During driver activity, SmartSpeed should be enabled so performance is
1161 * maintained. This is a function pointer entry point called by drivers.
1162 **/
1163s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1164{
1165 if (hw->phy.ops.set_d3_lplu_state)
1166 return hw->phy.ops.set_d3_lplu_state(hw, active);
1167
1168 return E1000_SUCCESS;
1169}
1170
1171/**
1172 * e1000_read_mac_addr - Reads MAC address
1173 * @hw: pointer to the HW structure
1174 *
1175 * Reads the MAC address out of the adapter and stores it in the HW structure.
1176 * Currently no func pointer exists and all implementations are handled in the
1177 * generic version of this function.
1178 **/
1179s32 e1000_read_mac_addr(struct e1000_hw *hw)
1180{
1181 if (hw->mac.ops.read_mac_addr)
1182 return hw->mac.ops.read_mac_addr(hw);
1183
1184 return e1000_read_mac_addr_generic(hw);
1185}
1186
1187/**
1188 * e1000_read_pba_string - Read device part number string
1189 * @hw: pointer to the HW structure
1190 * @pba_num: pointer to device part number
1191 * @pba_num_size: size of part number buffer
1192 *
1193 * Reads the product board assembly (PBA) number from the EEPROM and stores
1194 * the value in pba_num.
1195 * Currently no func pointer exists and all implementations are handled in the
1196 * generic version of this function.
1197 **/
1198s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1199{
1200 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1201}
1202
1203/**
1204 * e1000_read_pba_length - Read device part number string length
1205 * @hw: pointer to the HW structure
1206 * @pba_num_size: size of part number buffer
1207 *
1208 * Reads the product board assembly (PBA) number length from the EEPROM and
1209 * stores the value in pba_num.
1210 * Currently no func pointer exists and all implementations are handled in the
1211 * generic version of this function.
1212 **/
1213s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1214{
1215 return e1000_read_pba_length_generic(hw, pba_num_size);
1216}
1217
1218/**
1219 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1220 * @hw: pointer to the HW structure
1221 *
1222 * Validates the NVM checksum is correct. This is a function pointer entry
1223 * point called by drivers.
1224 **/
1225s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1226{
1227 if (hw->nvm.ops.validate)
1228 return hw->nvm.ops.validate(hw);
1229
1230 return -E1000_ERR_CONFIG;
1231}
1232
1233/**
1234 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1235 * @hw: pointer to the HW structure
1236 *
1237 * Updates the NVM checksum. Currently no func pointer exists and all
1238 * implementations are handled in the generic version of this function.
1239 **/
1240s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1241{
1242 if (hw->nvm.ops.update)
1243 return hw->nvm.ops.update(hw);
1244
1245 return -E1000_ERR_CONFIG;
1246}
1247
1248/**
1249 * e1000_reload_nvm - Reloads EEPROM
1250 * @hw: pointer to the HW structure
1251 *
1252 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1253 * extended control register.
1254 **/
1255void e1000_reload_nvm(struct e1000_hw *hw)
1256{
1257 if (hw->nvm.ops.reload)
1258 hw->nvm.ops.reload(hw);
1259}
1260
1261/**
1262 * e1000_read_nvm - Reads NVM (EEPROM)
1263 * @hw: pointer to the HW structure
1264 * @offset: the word offset to read
1265 * @words: number of 16-bit words to read
1266 * @data: pointer to the properly sized buffer for the data.
1267 *
1268 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1269 * pointer entry point called by drivers.
1270 **/
1271s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1272{
1273 if (hw->nvm.ops.read)
1274 return hw->nvm.ops.read(hw, offset, words, data);
1275
1276 return -E1000_ERR_CONFIG;
1277}
1278
1279/**
1280 * e1000_write_nvm - Writes to NVM (EEPROM)
1281 * @hw: pointer to the HW structure
1282 * @offset: the word offset to read
1283 * @words: number of 16-bit words to write
1284 * @data: pointer to the properly sized buffer for the data.
1285 *
1286 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1287 * pointer entry point called by drivers.
1288 **/
1289s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1290{
1291 if (hw->nvm.ops.write)
1292 return hw->nvm.ops.write(hw, offset, words, data);
1293
1294 return E1000_SUCCESS;
1295}
1296
1297/**
1298 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1299 * @hw: pointer to the HW structure
1300 * @reg: 32bit register offset
1301 * @offset: the register to write
1302 * @data: the value to write.
1303 *
1304 * Writes the PHY register at offset with the value in data.
1305 * This is a function pointer entry point called by drivers.
1306 **/
1307s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1308 u8 data)
1309{
1310 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1311}
1312
1313/**
1314 * e1000_power_up_phy - Restores link in case of PHY power down
1315 * @hw: pointer to the HW structure
1316 *
1317 * The phy may be powered down to save power, to turn off link when the
1318 * driver is unloaded, or wake on lan is not enabled (among others).
1319 **/
1320void e1000_power_up_phy(struct e1000_hw *hw)
1321{
1322 if (hw->phy.ops.power_up)
1323 hw->phy.ops.power_up(hw);
1324
1325 e1000_setup_link(hw);
1326}
1327
1328/**
1329 * e1000_power_down_phy - Power down PHY
1330 * @hw: pointer to the HW structure
1331 *
1332 * The phy may be powered down to save power, to turn off link when the
1333 * driver is unloaded, or wake on lan is not enabled (among others).
1334 **/
1335void e1000_power_down_phy(struct e1000_hw *hw)
1336{
1337 if (hw->phy.ops.power_down)
1338 hw->phy.ops.power_down(hw);
1339}
1340
1341/**
1342 * e1000_power_up_fiber_serdes_link - Power up serdes link
1343 * @hw: pointer to the HW structure
1344 *
1345 * Power on the optics and PCS.
1346 **/
1347void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1348{
1349 if (hw->mac.ops.power_up_serdes)
1350 hw->mac.ops.power_up_serdes(hw);
1351}
1352
1353/**
1354 * e1000_shutdown_fiber_serdes_link - Remove link during power down
1355 * @hw: pointer to the HW structure
1356 *
1357 * Shutdown the optics and PCS on driver unload.
1358 **/
1359void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1360{
1361 if (hw->mac.ops.shutdown_serdes)
1362 hw->mac.ops.shutdown_serdes(hw);
1363}
1364
34
35#include "e1000_api.h"
36
37/**
38 * e1000_init_mac_params - Initialize MAC function pointers
39 * @hw: pointer to the HW structure
40 *
41 * This function initializes the function pointers for the MAC
42 * set of functions. Called by drivers or by e1000_setup_init_funcs.
43 **/
44s32 e1000_init_mac_params(struct e1000_hw *hw)
45{
46 s32 ret_val = E1000_SUCCESS;
47
48 if (hw->mac.ops.init_params) {
49 ret_val = hw->mac.ops.init_params(hw);
50 if (ret_val) {
51 DEBUGOUT("MAC Initialization Error\n");
52 goto out;
53 }
54 } else {
55 DEBUGOUT("mac.init_mac_params was NULL\n");
56 ret_val = -E1000_ERR_CONFIG;
57 }
58
59out:
60 return ret_val;
61}
62
63/**
64 * e1000_init_nvm_params - Initialize NVM function pointers
65 * @hw: pointer to the HW structure
66 *
67 * This function initializes the function pointers for the NVM
68 * set of functions. Called by drivers or by e1000_setup_init_funcs.
69 **/
70s32 e1000_init_nvm_params(struct e1000_hw *hw)
71{
72 s32 ret_val = E1000_SUCCESS;
73
74 if (hw->nvm.ops.init_params) {
75 ret_val = hw->nvm.ops.init_params(hw);
76 if (ret_val) {
77 DEBUGOUT("NVM Initialization Error\n");
78 goto out;
79 }
80 } else {
81 DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 ret_val = -E1000_ERR_CONFIG;
83 }
84
85out:
86 return ret_val;
87}
88
89/**
90 * e1000_init_phy_params - Initialize PHY function pointers
91 * @hw: pointer to the HW structure
92 *
93 * This function initializes the function pointers for the PHY
94 * set of functions. Called by drivers or by e1000_setup_init_funcs.
95 **/
96s32 e1000_init_phy_params(struct e1000_hw *hw)
97{
98 s32 ret_val = E1000_SUCCESS;
99
100 if (hw->phy.ops.init_params) {
101 ret_val = hw->phy.ops.init_params(hw);
102 if (ret_val) {
103 DEBUGOUT("PHY Initialization Error\n");
104 goto out;
105 }
106 } else {
107 DEBUGOUT("phy.init_phy_params was NULL\n");
108 ret_val = -E1000_ERR_CONFIG;
109 }
110
111out:
112 return ret_val;
113}
114
115/**
116 * e1000_init_mbx_params - Initialize mailbox function pointers
117 * @hw: pointer to the HW structure
118 *
119 * This function initializes the function pointers for the PHY
120 * set of functions. Called by drivers or by e1000_setup_init_funcs.
121 **/
122s32 e1000_init_mbx_params(struct e1000_hw *hw)
123{
124 s32 ret_val = E1000_SUCCESS;
125
126 if (hw->mbx.ops.init_params) {
127 ret_val = hw->mbx.ops.init_params(hw);
128 if (ret_val) {
129 DEBUGOUT("Mailbox Initialization Error\n");
130 goto out;
131 }
132 } else {
133 DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 ret_val = -E1000_ERR_CONFIG;
135 }
136
137out:
138 return ret_val;
139}
140
141/**
142 * e1000_set_mac_type - Sets MAC type
143 * @hw: pointer to the HW structure
144 *
145 * This function sets the mac type of the adapter based on the
146 * device ID stored in the hw structure.
147 * MUST BE FIRST FUNCTION CALLED (explicitly or through
148 * e1000_setup_init_funcs()).
149 **/
150s32 e1000_set_mac_type(struct e1000_hw *hw)
151{
152 struct e1000_mac_info *mac = &hw->mac;
153 s32 ret_val = E1000_SUCCESS;
154
155 DEBUGFUNC("e1000_set_mac_type");
156
157 switch (hw->device_id) {
158 case E1000_DEV_ID_82542:
159 mac->type = e1000_82542;
160 break;
161 case E1000_DEV_ID_82543GC_FIBER:
162 case E1000_DEV_ID_82543GC_COPPER:
163 mac->type = e1000_82543;
164 break;
165 case E1000_DEV_ID_82544EI_COPPER:
166 case E1000_DEV_ID_82544EI_FIBER:
167 case E1000_DEV_ID_82544GC_COPPER:
168 case E1000_DEV_ID_82544GC_LOM:
169 mac->type = e1000_82544;
170 break;
171 case E1000_DEV_ID_82540EM:
172 case E1000_DEV_ID_82540EM_LOM:
173 case E1000_DEV_ID_82540EP:
174 case E1000_DEV_ID_82540EP_LOM:
175 case E1000_DEV_ID_82540EP_LP:
176 mac->type = e1000_82540;
177 break;
178 case E1000_DEV_ID_82545EM_COPPER:
179 case E1000_DEV_ID_82545EM_FIBER:
180 mac->type = e1000_82545;
181 break;
182 case E1000_DEV_ID_82545GM_COPPER:
183 case E1000_DEV_ID_82545GM_FIBER:
184 case E1000_DEV_ID_82545GM_SERDES:
185 mac->type = e1000_82545_rev_3;
186 break;
187 case E1000_DEV_ID_82546EB_COPPER:
188 case E1000_DEV_ID_82546EB_FIBER:
189 case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 mac->type = e1000_82546;
191 break;
192 case E1000_DEV_ID_82546GB_COPPER:
193 case E1000_DEV_ID_82546GB_FIBER:
194 case E1000_DEV_ID_82546GB_SERDES:
195 case E1000_DEV_ID_82546GB_PCIE:
196 case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 mac->type = e1000_82546_rev_3;
199 break;
200 case E1000_DEV_ID_82541EI:
201 case E1000_DEV_ID_82541EI_MOBILE:
202 case E1000_DEV_ID_82541ER_LOM:
203 mac->type = e1000_82541;
204 break;
205 case E1000_DEV_ID_82541ER:
206 case E1000_DEV_ID_82541GI:
207 case E1000_DEV_ID_82541GI_LF:
208 case E1000_DEV_ID_82541GI_MOBILE:
209 mac->type = e1000_82541_rev_2;
210 break;
211 case E1000_DEV_ID_82547EI:
212 case E1000_DEV_ID_82547EI_MOBILE:
213 mac->type = e1000_82547;
214 break;
215 case E1000_DEV_ID_82547GI:
216 mac->type = e1000_82547_rev_2;
217 break;
218 case E1000_DEV_ID_82571EB_COPPER:
219 case E1000_DEV_ID_82571EB_FIBER:
220 case E1000_DEV_ID_82571EB_SERDES:
221 case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 mac->type = e1000_82571;
228 break;
229 case E1000_DEV_ID_82572EI:
230 case E1000_DEV_ID_82572EI_COPPER:
231 case E1000_DEV_ID_82572EI_FIBER:
232 case E1000_DEV_ID_82572EI_SERDES:
233 mac->type = e1000_82572;
234 break;
235 case E1000_DEV_ID_82573E:
236 case E1000_DEV_ID_82573E_IAMT:
237 case E1000_DEV_ID_82573L:
238 mac->type = e1000_82573;
239 break;
240 case E1000_DEV_ID_82574L:
241 case E1000_DEV_ID_82574LA:
242 mac->type = e1000_82574;
243 break;
244 case E1000_DEV_ID_82583V:
245 mac->type = e1000_82583;
246 break;
247 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 mac->type = e1000_80003es2lan;
252 break;
253 case E1000_DEV_ID_ICH8_IFE:
254 case E1000_DEV_ID_ICH8_IFE_GT:
255 case E1000_DEV_ID_ICH8_IFE_G:
256 case E1000_DEV_ID_ICH8_IGP_M:
257 case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 case E1000_DEV_ID_ICH8_IGP_AMT:
259 case E1000_DEV_ID_ICH8_IGP_C:
260 case E1000_DEV_ID_ICH8_82567V_3:
261 mac->type = e1000_ich8lan;
262 break;
263 case E1000_DEV_ID_ICH9_IFE:
264 case E1000_DEV_ID_ICH9_IFE_GT:
265 case E1000_DEV_ID_ICH9_IFE_G:
266 case E1000_DEV_ID_ICH9_IGP_M:
267 case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 case E1000_DEV_ID_ICH9_IGP_M_V:
269 case E1000_DEV_ID_ICH9_IGP_AMT:
270 case E1000_DEV_ID_ICH9_BM:
271 case E1000_DEV_ID_ICH9_IGP_C:
272 case E1000_DEV_ID_ICH10_R_BM_LM:
273 case E1000_DEV_ID_ICH10_R_BM_LF:
274 case E1000_DEV_ID_ICH10_R_BM_V:
275 mac->type = e1000_ich9lan;
276 break;
277 case E1000_DEV_ID_ICH10_D_BM_LM:
278 case E1000_DEV_ID_ICH10_D_BM_LF:
279 case E1000_DEV_ID_ICH10_D_BM_V:
280 mac->type = e1000_ich10lan;
281 break;
282 case E1000_DEV_ID_PCH_D_HV_DM:
283 case E1000_DEV_ID_PCH_D_HV_DC:
284 case E1000_DEV_ID_PCH_M_HV_LM:
285 case E1000_DEV_ID_PCH_M_HV_LC:
286 mac->type = e1000_pchlan;
287 break;
288 case E1000_DEV_ID_PCH2_LV_LM:
289 case E1000_DEV_ID_PCH2_LV_V:
290 mac->type = e1000_pch2lan;
291 break;
292 case E1000_DEV_ID_PCH_LPT_I217_LM:
293 case E1000_DEV_ID_PCH_LPT_I217_V:
294 case E1000_DEV_ID_PCH_LPTLP_I218_LM:
295 case E1000_DEV_ID_PCH_LPTLP_I218_V:
296 case E1000_DEV_ID_PCH_I218_LM2:
297 case E1000_DEV_ID_PCH_I218_V2:
298 case E1000_DEV_ID_PCH_I218_LM3:
299 case E1000_DEV_ID_PCH_I218_V3:
300 mac->type = e1000_pch_lpt;
301 break;
302 case E1000_DEV_ID_82575EB_COPPER:
303 case E1000_DEV_ID_82575EB_FIBER_SERDES:
304 case E1000_DEV_ID_82575GB_QUAD_COPPER:
305 mac->type = e1000_82575;
306 break;
307 case E1000_DEV_ID_82576:
308 case E1000_DEV_ID_82576_FIBER:
309 case E1000_DEV_ID_82576_SERDES:
310 case E1000_DEV_ID_82576_QUAD_COPPER:
311 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
312 case E1000_DEV_ID_82576_NS:
313 case E1000_DEV_ID_82576_NS_SERDES:
314 case E1000_DEV_ID_82576_SERDES_QUAD:
315 mac->type = e1000_82576;
316 break;
317 case E1000_DEV_ID_82580_COPPER:
318 case E1000_DEV_ID_82580_FIBER:
319 case E1000_DEV_ID_82580_SERDES:
320 case E1000_DEV_ID_82580_SGMII:
321 case E1000_DEV_ID_82580_COPPER_DUAL:
322 case E1000_DEV_ID_82580_QUAD_FIBER:
323 case E1000_DEV_ID_DH89XXCC_SGMII:
324 case E1000_DEV_ID_DH89XXCC_SERDES:
325 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
326 case E1000_DEV_ID_DH89XXCC_SFP:
327 mac->type = e1000_82580;
328 break;
329 case E1000_DEV_ID_I350_COPPER:
330 case E1000_DEV_ID_I350_FIBER:
331 case E1000_DEV_ID_I350_SERDES:
332 case E1000_DEV_ID_I350_SGMII:
333 case E1000_DEV_ID_I350_DA4:
334 mac->type = e1000_i350;
335 break;
336 case E1000_DEV_ID_I210_COPPER_FLASHLESS:
337 case E1000_DEV_ID_I210_SERDES_FLASHLESS:
338 case E1000_DEV_ID_I210_COPPER:
339 case E1000_DEV_ID_I210_COPPER_OEM1:
340 case E1000_DEV_ID_I210_COPPER_IT:
341 case E1000_DEV_ID_I210_FIBER:
342 case E1000_DEV_ID_I210_SERDES:
343 case E1000_DEV_ID_I210_SGMII:
344 mac->type = e1000_i210;
345 break;
346 case E1000_DEV_ID_I211_COPPER:
347 mac->type = e1000_i211;
348 break;
349 case E1000_DEV_ID_82576_VF:
350 case E1000_DEV_ID_82576_VF_HV:
351 mac->type = e1000_vfadapt;
352 break;
353 case E1000_DEV_ID_I350_VF:
354 case E1000_DEV_ID_I350_VF_HV:
355 mac->type = e1000_vfadapt_i350;
356 break;
357
358 case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
359 case E1000_DEV_ID_I354_SGMII:
360 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
361 mac->type = e1000_i354;
362 break;
363 default:
364 /* Should never have loaded on this device */
365 ret_val = -E1000_ERR_MAC_INIT;
366 break;
367 }
368
369 return ret_val;
370}
371
372/**
373 * e1000_setup_init_funcs - Initializes function pointers
374 * @hw: pointer to the HW structure
375 * @init_device: TRUE will initialize the rest of the function pointers
376 * getting the device ready for use. FALSE will only set
377 * MAC type and the function pointers for the other init
378 * functions. Passing FALSE will not generate any hardware
379 * reads or writes.
380 *
381 * This function must be called by a driver in order to use the rest
382 * of the 'shared' code files. Called by drivers only.
383 **/
384s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
385{
386 s32 ret_val;
387
388 /* Can't do much good without knowing the MAC type. */
389 ret_val = e1000_set_mac_type(hw);
390 if (ret_val) {
391 DEBUGOUT("ERROR: MAC type could not be set properly.\n");
392 goto out;
393 }
394
395 if (!hw->hw_addr) {
396 DEBUGOUT("ERROR: Registers not mapped\n");
397 ret_val = -E1000_ERR_CONFIG;
398 goto out;
399 }
400
401 /*
402 * Init function pointers to generic implementations. We do this first
403 * allowing a driver module to override it afterward.
404 */
405 e1000_init_mac_ops_generic(hw);
406 e1000_init_phy_ops_generic(hw);
407 e1000_init_nvm_ops_generic(hw);
408 e1000_init_mbx_ops_generic(hw);
409
410 /*
411 * Set up the init function pointers. These are functions within the
412 * adapter family file that sets up function pointers for the rest of
413 * the functions in that family.
414 */
415 switch (hw->mac.type) {
416 case e1000_82542:
417 e1000_init_function_pointers_82542(hw);
418 break;
419 case e1000_82543:
420 case e1000_82544:
421 e1000_init_function_pointers_82543(hw);
422 break;
423 case e1000_82540:
424 case e1000_82545:
425 case e1000_82545_rev_3:
426 case e1000_82546:
427 case e1000_82546_rev_3:
428 e1000_init_function_pointers_82540(hw);
429 break;
430 case e1000_82541:
431 case e1000_82541_rev_2:
432 case e1000_82547:
433 case e1000_82547_rev_2:
434 e1000_init_function_pointers_82541(hw);
435 break;
436 case e1000_82571:
437 case e1000_82572:
438 case e1000_82573:
439 case e1000_82574:
440 case e1000_82583:
441 e1000_init_function_pointers_82571(hw);
442 break;
443 case e1000_80003es2lan:
444 e1000_init_function_pointers_80003es2lan(hw);
445 break;
446 case e1000_ich8lan:
447 case e1000_ich9lan:
448 case e1000_ich10lan:
449 case e1000_pchlan:
450 case e1000_pch2lan:
451 case e1000_pch_lpt:
452 e1000_init_function_pointers_ich8lan(hw);
453 break;
454 case e1000_82575:
455 case e1000_82576:
456 case e1000_82580:
457 case e1000_i350:
458 case e1000_i354:
459 e1000_init_function_pointers_82575(hw);
460 break;
461 case e1000_i210:
462 case e1000_i211:
463 e1000_init_function_pointers_i210(hw);
464 break;
465 case e1000_vfadapt:
466 e1000_init_function_pointers_vf(hw);
467 break;
468 case e1000_vfadapt_i350:
469 e1000_init_function_pointers_vf(hw);
470 break;
471 default:
472 DEBUGOUT("Hardware not supported\n");
473 ret_val = -E1000_ERR_CONFIG;
474 break;
475 }
476
477 /*
478 * Initialize the rest of the function pointers. These require some
479 * register reads/writes in some cases.
480 */
481 if (!(ret_val) && init_device) {
482 ret_val = e1000_init_mac_params(hw);
483 if (ret_val)
484 goto out;
485
486 ret_val = e1000_init_nvm_params(hw);
487 if (ret_val)
488 goto out;
489
490 ret_val = e1000_init_phy_params(hw);
491 if (ret_val)
492 goto out;
493
494 ret_val = e1000_init_mbx_params(hw);
495 if (ret_val)
496 goto out;
497 }
498
499out:
500 return ret_val;
501}
502
503/**
504 * e1000_get_bus_info - Obtain bus information for adapter
505 * @hw: pointer to the HW structure
506 *
507 * This will obtain information about the HW bus for which the
508 * adapter is attached and stores it in the hw structure. This is a
509 * function pointer entry point called by drivers.
510 **/
511s32 e1000_get_bus_info(struct e1000_hw *hw)
512{
513 if (hw->mac.ops.get_bus_info)
514 return hw->mac.ops.get_bus_info(hw);
515
516 return E1000_SUCCESS;
517}
518
519/**
520 * e1000_clear_vfta - Clear VLAN filter table
521 * @hw: pointer to the HW structure
522 *
523 * This clears the VLAN filter table on the adapter. This is a function
524 * pointer entry point called by drivers.
525 **/
526void e1000_clear_vfta(struct e1000_hw *hw)
527{
528 if (hw->mac.ops.clear_vfta)
529 hw->mac.ops.clear_vfta(hw);
530}
531
532/**
533 * e1000_write_vfta - Write value to VLAN filter table
534 * @hw: pointer to the HW structure
535 * @offset: the 32-bit offset in which to write the value to.
536 * @value: the 32-bit value to write at location offset.
537 *
538 * This writes a 32-bit value to a 32-bit offset in the VLAN filter
539 * table. This is a function pointer entry point called by drivers.
540 **/
541void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
542{
543 if (hw->mac.ops.write_vfta)
544 hw->mac.ops.write_vfta(hw, offset, value);
545}
546
547/**
548 * e1000_update_mc_addr_list - Update Multicast addresses
549 * @hw: pointer to the HW structure
550 * @mc_addr_list: array of multicast addresses to program
551 * @mc_addr_count: number of multicast addresses to program
552 *
553 * Updates the Multicast Table Array.
554 * The caller must have a packed mc_addr_list of multicast addresses.
555 **/
556void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
557 u32 mc_addr_count)
558{
559 if (hw->mac.ops.update_mc_addr_list)
560 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
561 mc_addr_count);
562}
563
564/**
565 * e1000_force_mac_fc - Force MAC flow control
566 * @hw: pointer to the HW structure
567 *
568 * Force the MAC's flow control settings. Currently no func pointer exists
569 * and all implementations are handled in the generic version of this
570 * function.
571 **/
572s32 e1000_force_mac_fc(struct e1000_hw *hw)
573{
574 return e1000_force_mac_fc_generic(hw);
575}
576
577/**
578 * e1000_check_for_link - Check/Store link connection
579 * @hw: pointer to the HW structure
580 *
581 * This checks the link condition of the adapter and stores the
582 * results in the hw->mac structure. This is a function pointer entry
583 * point called by drivers.
584 **/
585s32 e1000_check_for_link(struct e1000_hw *hw)
586{
587 if (hw->mac.ops.check_for_link)
588 return hw->mac.ops.check_for_link(hw);
589
590 return -E1000_ERR_CONFIG;
591}
592
593/**
594 * e1000_check_mng_mode - Check management mode
595 * @hw: pointer to the HW structure
596 *
597 * This checks if the adapter has manageability enabled.
598 * This is a function pointer entry point called by drivers.
599 **/
600bool e1000_check_mng_mode(struct e1000_hw *hw)
601{
602 if (hw->mac.ops.check_mng_mode)
603 return hw->mac.ops.check_mng_mode(hw);
604
605 return FALSE;
606}
607
608/**
609 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface
610 * @hw: pointer to the HW structure
611 * @buffer: pointer to the host interface
612 * @length: size of the buffer
613 *
614 * Writes the DHCP information to the host interface.
615 **/
616s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
617{
618 return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
619}
620
621/**
622 * e1000_reset_hw - Reset hardware
623 * @hw: pointer to the HW structure
624 *
625 * This resets the hardware into a known state. This is a function pointer
626 * entry point called by drivers.
627 **/
628s32 e1000_reset_hw(struct e1000_hw *hw)
629{
630 if (hw->mac.ops.reset_hw)
631 return hw->mac.ops.reset_hw(hw);
632
633 return -E1000_ERR_CONFIG;
634}
635
636/**
637 * e1000_init_hw - Initialize hardware
638 * @hw: pointer to the HW structure
639 *
640 * This inits the hardware readying it for operation. This is a function
641 * pointer entry point called by drivers.
642 **/
643s32 e1000_init_hw(struct e1000_hw *hw)
644{
645 if (hw->mac.ops.init_hw)
646 return hw->mac.ops.init_hw(hw);
647
648 return -E1000_ERR_CONFIG;
649}
650
651/**
652 * e1000_setup_link - Configures link and flow control
653 * @hw: pointer to the HW structure
654 *
655 * This configures link and flow control settings for the adapter. This
656 * is a function pointer entry point called by drivers. While modules can
657 * also call this, they probably call their own version of this function.
658 **/
659s32 e1000_setup_link(struct e1000_hw *hw)
660{
661 if (hw->mac.ops.setup_link)
662 return hw->mac.ops.setup_link(hw);
663
664 return -E1000_ERR_CONFIG;
665}
666
667/**
668 * e1000_get_speed_and_duplex - Returns current speed and duplex
669 * @hw: pointer to the HW structure
670 * @speed: pointer to a 16-bit value to store the speed
671 * @duplex: pointer to a 16-bit value to store the duplex.
672 *
673 * This returns the speed and duplex of the adapter in the two 'out'
674 * variables passed in. This is a function pointer entry point called
675 * by drivers.
676 **/
677s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
678{
679 if (hw->mac.ops.get_link_up_info)
680 return hw->mac.ops.get_link_up_info(hw, speed, duplex);
681
682 return -E1000_ERR_CONFIG;
683}
684
685/**
686 * e1000_setup_led - Configures SW controllable LED
687 * @hw: pointer to the HW structure
688 *
689 * This prepares the SW controllable LED for use and saves the current state
690 * of the LED so it can be later restored. This is a function pointer entry
691 * point called by drivers.
692 **/
693s32 e1000_setup_led(struct e1000_hw *hw)
694{
695 if (hw->mac.ops.setup_led)
696 return hw->mac.ops.setup_led(hw);
697
698 return E1000_SUCCESS;
699}
700
701/**
702 * e1000_cleanup_led - Restores SW controllable LED
703 * @hw: pointer to the HW structure
704 *
705 * This restores the SW controllable LED to the value saved off by
706 * e1000_setup_led. This is a function pointer entry point called by drivers.
707 **/
708s32 e1000_cleanup_led(struct e1000_hw *hw)
709{
710 if (hw->mac.ops.cleanup_led)
711 return hw->mac.ops.cleanup_led(hw);
712
713 return E1000_SUCCESS;
714}
715
716/**
717 * e1000_blink_led - Blink SW controllable LED
718 * @hw: pointer to the HW structure
719 *
720 * This starts the adapter LED blinking. Request the LED to be setup first
721 * and cleaned up after. This is a function pointer entry point called by
722 * drivers.
723 **/
724s32 e1000_blink_led(struct e1000_hw *hw)
725{
726 if (hw->mac.ops.blink_led)
727 return hw->mac.ops.blink_led(hw);
728
729 return E1000_SUCCESS;
730}
731
732/**
733 * e1000_id_led_init - store LED configurations in SW
734 * @hw: pointer to the HW structure
735 *
736 * Initializes the LED config in SW. This is a function pointer entry point
737 * called by drivers.
738 **/
739s32 e1000_id_led_init(struct e1000_hw *hw)
740{
741 if (hw->mac.ops.id_led_init)
742 return hw->mac.ops.id_led_init(hw);
743
744 return E1000_SUCCESS;
745}
746
747/**
748 * e1000_led_on - Turn on SW controllable LED
749 * @hw: pointer to the HW structure
750 *
751 * Turns the SW defined LED on. This is a function pointer entry point
752 * called by drivers.
753 **/
754s32 e1000_led_on(struct e1000_hw *hw)
755{
756 if (hw->mac.ops.led_on)
757 return hw->mac.ops.led_on(hw);
758
759 return E1000_SUCCESS;
760}
761
762/**
763 * e1000_led_off - Turn off SW controllable LED
764 * @hw: pointer to the HW structure
765 *
766 * Turns the SW defined LED off. This is a function pointer entry point
767 * called by drivers.
768 **/
769s32 e1000_led_off(struct e1000_hw *hw)
770{
771 if (hw->mac.ops.led_off)
772 return hw->mac.ops.led_off(hw);
773
774 return E1000_SUCCESS;
775}
776
777/**
778 * e1000_reset_adaptive - Reset adaptive IFS
779 * @hw: pointer to the HW structure
780 *
781 * Resets the adaptive IFS. Currently no func pointer exists and all
782 * implementations are handled in the generic version of this function.
783 **/
784void e1000_reset_adaptive(struct e1000_hw *hw)
785{
786 e1000_reset_adaptive_generic(hw);
787}
788
789/**
790 * e1000_update_adaptive - Update adaptive IFS
791 * @hw: pointer to the HW structure
792 *
793 * Updates adapter IFS. Currently no func pointer exists and all
794 * implementations are handled in the generic version of this function.
795 **/
796void e1000_update_adaptive(struct e1000_hw *hw)
797{
798 e1000_update_adaptive_generic(hw);
799}
800
801/**
802 * e1000_disable_pcie_master - Disable PCI-Express master access
803 * @hw: pointer to the HW structure
804 *
805 * Disables PCI-Express master access and verifies there are no pending
806 * requests. Currently no func pointer exists and all implementations are
807 * handled in the generic version of this function.
808 **/
809s32 e1000_disable_pcie_master(struct e1000_hw *hw)
810{
811 return e1000_disable_pcie_master_generic(hw);
812}
813
814/**
815 * e1000_config_collision_dist - Configure collision distance
816 * @hw: pointer to the HW structure
817 *
818 * Configures the collision distance to the default value and is used
819 * during link setup.
820 **/
821void e1000_config_collision_dist(struct e1000_hw *hw)
822{
823 if (hw->mac.ops.config_collision_dist)
824 hw->mac.ops.config_collision_dist(hw);
825}
826
827/**
828 * e1000_rar_set - Sets a receive address register
829 * @hw: pointer to the HW structure
830 * @addr: address to set the RAR to
831 * @index: the RAR to set
832 *
833 * Sets a Receive Address Register (RAR) to the specified address.
834 **/
835int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
836{
837 if (hw->mac.ops.rar_set)
838 return hw->mac.ops.rar_set(hw, addr, index);
839
840 return E1000_SUCCESS;
841}
842
843/**
844 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
845 * @hw: pointer to the HW structure
846 *
847 * Ensures that the MDI/MDIX SW state is valid.
848 **/
849s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
850{
851 if (hw->mac.ops.validate_mdi_setting)
852 return hw->mac.ops.validate_mdi_setting(hw);
853
854 return E1000_SUCCESS;
855}
856
857/**
858 * e1000_hash_mc_addr - Determines address location in multicast table
859 * @hw: pointer to the HW structure
860 * @mc_addr: Multicast address to hash.
861 *
862 * This hashes an address to determine its location in the multicast
863 * table. Currently no func pointer exists and all implementations
864 * are handled in the generic version of this function.
865 **/
866u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
867{
868 return e1000_hash_mc_addr_generic(hw, mc_addr);
869}
870
871/**
872 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
873 * @hw: pointer to the HW structure
874 *
875 * Enables packet filtering on transmit packets if manageability is enabled
876 * and host interface is enabled.
877 * Currently no func pointer exists and all implementations are handled in the
878 * generic version of this function.
879 **/
880bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
881{
882 return e1000_enable_tx_pkt_filtering_generic(hw);
883}
884
885/**
886 * e1000_mng_host_if_write - Writes to the manageability host interface
887 * @hw: pointer to the HW structure
888 * @buffer: pointer to the host interface buffer
889 * @length: size of the buffer
890 * @offset: location in the buffer to write to
891 * @sum: sum of the data (not checksum)
892 *
893 * This function writes the buffer content at the offset given on the host if.
894 * It also does alignment considerations to do the writes in most efficient
895 * way. Also fills up the sum of the buffer in *buffer parameter.
896 **/
897s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
898 u16 offset, u8 *sum)
899{
900 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
901}
902
903/**
904 * e1000_mng_write_cmd_header - Writes manageability command header
905 * @hw: pointer to the HW structure
906 * @hdr: pointer to the host interface command header
907 *
908 * Writes the command header after does the checksum calculation.
909 **/
910s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
911 struct e1000_host_mng_command_header *hdr)
912{
913 return e1000_mng_write_cmd_header_generic(hw, hdr);
914}
915
916/**
917 * e1000_mng_enable_host_if - Checks host interface is enabled
918 * @hw: pointer to the HW structure
919 *
920 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
921 *
922 * This function checks whether the HOST IF is enabled for command operation
923 * and also checks whether the previous command is completed. It busy waits
924 * in case of previous command is not completed.
925 **/
926s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
927{
928 return e1000_mng_enable_host_if_generic(hw);
929}
930
931/**
932 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
933 * @hw: pointer to the HW structure
934 * @itr: u32 indicating itr value
935 *
936 * Set the OBFF timer based on the given interrupt rate.
937 **/
938s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
939{
940 if (hw->mac.ops.set_obff_timer)
941 return hw->mac.ops.set_obff_timer(hw, itr);
942
943 return E1000_SUCCESS;
944}
945
946/**
947 * e1000_check_reset_block - Verifies PHY can be reset
948 * @hw: pointer to the HW structure
949 *
950 * Checks if the PHY is in a state that can be reset or if manageability
951 * has it tied up. This is a function pointer entry point called by drivers.
952 **/
953s32 e1000_check_reset_block(struct e1000_hw *hw)
954{
955 if (hw->phy.ops.check_reset_block)
956 return hw->phy.ops.check_reset_block(hw);
957
958 return E1000_SUCCESS;
959}
960
961/**
962 * e1000_read_phy_reg - Reads PHY register
963 * @hw: pointer to the HW structure
964 * @offset: the register to read
965 * @data: the buffer to store the 16-bit read.
966 *
967 * Reads the PHY register and returns the value in data.
968 * This is a function pointer entry point called by drivers.
969 **/
970s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
971{
972 if (hw->phy.ops.read_reg)
973 return hw->phy.ops.read_reg(hw, offset, data);
974
975 return E1000_SUCCESS;
976}
977
978/**
979 * e1000_write_phy_reg - Writes PHY register
980 * @hw: pointer to the HW structure
981 * @offset: the register to write
982 * @data: the value to write.
983 *
984 * Writes the PHY register at offset with the value in data.
985 * This is a function pointer entry point called by drivers.
986 **/
987s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
988{
989 if (hw->phy.ops.write_reg)
990 return hw->phy.ops.write_reg(hw, offset, data);
991
992 return E1000_SUCCESS;
993}
994
995/**
996 * e1000_release_phy - Generic release PHY
997 * @hw: pointer to the HW structure
998 *
999 * Return if silicon family does not require a semaphore when accessing the
1000 * PHY.
1001 **/
1002void e1000_release_phy(struct e1000_hw *hw)
1003{
1004 if (hw->phy.ops.release)
1005 hw->phy.ops.release(hw);
1006}
1007
1008/**
1009 * e1000_acquire_phy - Generic acquire PHY
1010 * @hw: pointer to the HW structure
1011 *
1012 * Return success if silicon family does not require a semaphore when
1013 * accessing the PHY.
1014 **/
1015s32 e1000_acquire_phy(struct e1000_hw *hw)
1016{
1017 if (hw->phy.ops.acquire)
1018 return hw->phy.ops.acquire(hw);
1019
1020 return E1000_SUCCESS;
1021}
1022
1023/**
1024 * e1000_cfg_on_link_up - Configure PHY upon link up
1025 * @hw: pointer to the HW structure
1026 **/
1027s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1028{
1029 if (hw->phy.ops.cfg_on_link_up)
1030 return hw->phy.ops.cfg_on_link_up(hw);
1031
1032 return E1000_SUCCESS;
1033}
1034
1035/**
1036 * e1000_read_kmrn_reg - Reads register using Kumeran interface
1037 * @hw: pointer to the HW structure
1038 * @offset: the register to read
1039 * @data: the location to store the 16-bit value read.
1040 *
1041 * Reads a register out of the Kumeran interface. Currently no func pointer
1042 * exists and all implementations are handled in the generic version of
1043 * this function.
1044 **/
1045s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1046{
1047 return e1000_read_kmrn_reg_generic(hw, offset, data);
1048}
1049
1050/**
1051 * e1000_write_kmrn_reg - Writes register using Kumeran interface
1052 * @hw: pointer to the HW structure
1053 * @offset: the register to write
1054 * @data: the value to write.
1055 *
1056 * Writes a register to the Kumeran interface. Currently no func pointer
1057 * exists and all implementations are handled in the generic version of
1058 * this function.
1059 **/
1060s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1061{
1062 return e1000_write_kmrn_reg_generic(hw, offset, data);
1063}
1064
1065/**
1066 * e1000_get_cable_length - Retrieves cable length estimation
1067 * @hw: pointer to the HW structure
1068 *
1069 * This function estimates the cable length and stores them in
1070 * hw->phy.min_length and hw->phy.max_length. This is a function pointer
1071 * entry point called by drivers.
1072 **/
1073s32 e1000_get_cable_length(struct e1000_hw *hw)
1074{
1075 if (hw->phy.ops.get_cable_length)
1076 return hw->phy.ops.get_cable_length(hw);
1077
1078 return E1000_SUCCESS;
1079}
1080
1081/**
1082 * e1000_get_phy_info - Retrieves PHY information from registers
1083 * @hw: pointer to the HW structure
1084 *
1085 * This function gets some information from various PHY registers and
1086 * populates hw->phy values with it. This is a function pointer entry
1087 * point called by drivers.
1088 **/
1089s32 e1000_get_phy_info(struct e1000_hw *hw)
1090{
1091 if (hw->phy.ops.get_info)
1092 return hw->phy.ops.get_info(hw);
1093
1094 return E1000_SUCCESS;
1095}
1096
1097/**
1098 * e1000_phy_hw_reset - Hard PHY reset
1099 * @hw: pointer to the HW structure
1100 *
1101 * Performs a hard PHY reset. This is a function pointer entry point called
1102 * by drivers.
1103 **/
1104s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1105{
1106 if (hw->phy.ops.reset)
1107 return hw->phy.ops.reset(hw);
1108
1109 return E1000_SUCCESS;
1110}
1111
1112/**
1113 * e1000_phy_commit - Soft PHY reset
1114 * @hw: pointer to the HW structure
1115 *
1116 * Performs a soft PHY reset on those that apply. This is a function pointer
1117 * entry point called by drivers.
1118 **/
1119s32 e1000_phy_commit(struct e1000_hw *hw)
1120{
1121 if (hw->phy.ops.commit)
1122 return hw->phy.ops.commit(hw);
1123
1124 return E1000_SUCCESS;
1125}
1126
1127/**
1128 * e1000_set_d0_lplu_state - Sets low power link up state for D0
1129 * @hw: pointer to the HW structure
1130 * @active: boolean used to enable/disable lplu
1131 *
1132 * Success returns 0, Failure returns 1
1133 *
1134 * The low power link up (lplu) state is set to the power management level D0
1135 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1136 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1137 * is used during Dx states where the power conservation is most important.
1138 * During driver activity, SmartSpeed should be enabled so performance is
1139 * maintained. This is a function pointer entry point called by drivers.
1140 **/
1141s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1142{
1143 if (hw->phy.ops.set_d0_lplu_state)
1144 return hw->phy.ops.set_d0_lplu_state(hw, active);
1145
1146 return E1000_SUCCESS;
1147}
1148
1149/**
1150 * e1000_set_d3_lplu_state - Sets low power link up state for D3
1151 * @hw: pointer to the HW structure
1152 * @active: boolean used to enable/disable lplu
1153 *
1154 * Success returns 0, Failure returns 1
1155 *
1156 * The low power link up (lplu) state is set to the power management level D3
1157 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1158 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1159 * is used during Dx states where the power conservation is most important.
1160 * During driver activity, SmartSpeed should be enabled so performance is
1161 * maintained. This is a function pointer entry point called by drivers.
1162 **/
1163s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1164{
1165 if (hw->phy.ops.set_d3_lplu_state)
1166 return hw->phy.ops.set_d3_lplu_state(hw, active);
1167
1168 return E1000_SUCCESS;
1169}
1170
1171/**
1172 * e1000_read_mac_addr - Reads MAC address
1173 * @hw: pointer to the HW structure
1174 *
1175 * Reads the MAC address out of the adapter and stores it in the HW structure.
1176 * Currently no func pointer exists and all implementations are handled in the
1177 * generic version of this function.
1178 **/
1179s32 e1000_read_mac_addr(struct e1000_hw *hw)
1180{
1181 if (hw->mac.ops.read_mac_addr)
1182 return hw->mac.ops.read_mac_addr(hw);
1183
1184 return e1000_read_mac_addr_generic(hw);
1185}
1186
1187/**
1188 * e1000_read_pba_string - Read device part number string
1189 * @hw: pointer to the HW structure
1190 * @pba_num: pointer to device part number
1191 * @pba_num_size: size of part number buffer
1192 *
1193 * Reads the product board assembly (PBA) number from the EEPROM and stores
1194 * the value in pba_num.
1195 * Currently no func pointer exists and all implementations are handled in the
1196 * generic version of this function.
1197 **/
1198s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1199{
1200 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1201}
1202
1203/**
1204 * e1000_read_pba_length - Read device part number string length
1205 * @hw: pointer to the HW structure
1206 * @pba_num_size: size of part number buffer
1207 *
1208 * Reads the product board assembly (PBA) number length from the EEPROM and
1209 * stores the value in pba_num.
1210 * Currently no func pointer exists and all implementations are handled in the
1211 * generic version of this function.
1212 **/
1213s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1214{
1215 return e1000_read_pba_length_generic(hw, pba_num_size);
1216}
1217
1218/**
1219 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1220 * @hw: pointer to the HW structure
1221 *
1222 * Validates the NVM checksum is correct. This is a function pointer entry
1223 * point called by drivers.
1224 **/
1225s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1226{
1227 if (hw->nvm.ops.validate)
1228 return hw->nvm.ops.validate(hw);
1229
1230 return -E1000_ERR_CONFIG;
1231}
1232
1233/**
1234 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1235 * @hw: pointer to the HW structure
1236 *
1237 * Updates the NVM checksum. Currently no func pointer exists and all
1238 * implementations are handled in the generic version of this function.
1239 **/
1240s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1241{
1242 if (hw->nvm.ops.update)
1243 return hw->nvm.ops.update(hw);
1244
1245 return -E1000_ERR_CONFIG;
1246}
1247
1248/**
1249 * e1000_reload_nvm - Reloads EEPROM
1250 * @hw: pointer to the HW structure
1251 *
1252 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1253 * extended control register.
1254 **/
1255void e1000_reload_nvm(struct e1000_hw *hw)
1256{
1257 if (hw->nvm.ops.reload)
1258 hw->nvm.ops.reload(hw);
1259}
1260
1261/**
1262 * e1000_read_nvm - Reads NVM (EEPROM)
1263 * @hw: pointer to the HW structure
1264 * @offset: the word offset to read
1265 * @words: number of 16-bit words to read
1266 * @data: pointer to the properly sized buffer for the data.
1267 *
1268 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1269 * pointer entry point called by drivers.
1270 **/
1271s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1272{
1273 if (hw->nvm.ops.read)
1274 return hw->nvm.ops.read(hw, offset, words, data);
1275
1276 return -E1000_ERR_CONFIG;
1277}
1278
1279/**
1280 * e1000_write_nvm - Writes to NVM (EEPROM)
1281 * @hw: pointer to the HW structure
1282 * @offset: the word offset to read
1283 * @words: number of 16-bit words to write
1284 * @data: pointer to the properly sized buffer for the data.
1285 *
1286 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1287 * pointer entry point called by drivers.
1288 **/
1289s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1290{
1291 if (hw->nvm.ops.write)
1292 return hw->nvm.ops.write(hw, offset, words, data);
1293
1294 return E1000_SUCCESS;
1295}
1296
1297/**
1298 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1299 * @hw: pointer to the HW structure
1300 * @reg: 32bit register offset
1301 * @offset: the register to write
1302 * @data: the value to write.
1303 *
1304 * Writes the PHY register at offset with the value in data.
1305 * This is a function pointer entry point called by drivers.
1306 **/
1307s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1308 u8 data)
1309{
1310 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1311}
1312
1313/**
1314 * e1000_power_up_phy - Restores link in case of PHY power down
1315 * @hw: pointer to the HW structure
1316 *
1317 * The phy may be powered down to save power, to turn off link when the
1318 * driver is unloaded, or wake on lan is not enabled (among others).
1319 **/
1320void e1000_power_up_phy(struct e1000_hw *hw)
1321{
1322 if (hw->phy.ops.power_up)
1323 hw->phy.ops.power_up(hw);
1324
1325 e1000_setup_link(hw);
1326}
1327
1328/**
1329 * e1000_power_down_phy - Power down PHY
1330 * @hw: pointer to the HW structure
1331 *
1332 * The phy may be powered down to save power, to turn off link when the
1333 * driver is unloaded, or wake on lan is not enabled (among others).
1334 **/
1335void e1000_power_down_phy(struct e1000_hw *hw)
1336{
1337 if (hw->phy.ops.power_down)
1338 hw->phy.ops.power_down(hw);
1339}
1340
1341/**
1342 * e1000_power_up_fiber_serdes_link - Power up serdes link
1343 * @hw: pointer to the HW structure
1344 *
1345 * Power on the optics and PCS.
1346 **/
1347void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1348{
1349 if (hw->mac.ops.power_up_serdes)
1350 hw->mac.ops.power_up_serdes(hw);
1351}
1352
1353/**
1354 * e1000_shutdown_fiber_serdes_link - Remove link during power down
1355 * @hw: pointer to the HW structure
1356 *
1357 * Shutdown the optics and PCS on driver unload.
1358 **/
1359void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1360{
1361 if (hw->mac.ops.shutdown_serdes)
1362 hw->mac.ops.shutdown_serdes(hw);
1363}
1364