Deleted Added
sdiff udiff text old ( 283291 ) new ( 294327 )
full compact
1/**************************************************************************
2
3Copyright (c) 2007-2009, Chelsio Inc.
4All rights reserved.
5
6Redistribution and use in source and binary forms, with or without
7modification, are permitted provided that the following conditions are met:
8
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
11
12 2. Neither the name of the Chelsio Corporation nor the names of its
13 contributors may be used to endorse or promote products derived from
14 this software without specific prior written permission.
15
16THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
20LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26POSSIBILITY OF SUCH DAMAGE.
27
28***************************************************************************/
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/cxgb/cxgb_sge.c 294327 2016-01-19 15:33:28Z hselasky $");
32
33#include "opt_inet6.h"
34#include "opt_inet.h"
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/kernel.h>
39#include <sys/module.h>
40#include <sys/bus.h>
41#include <sys/conf.h>
42#include <machine/bus.h>
43#include <machine/resource.h>
44#include <sys/bus_dma.h>
45#include <sys/rman.h>
46#include <sys/queue.h>
47#include <sys/sysctl.h>
48#include <sys/taskqueue.h>
49
50#include <sys/proc.h>
51#include <sys/sbuf.h>
52#include <sys/sched.h>
53#include <sys/smp.h>
54#include <sys/systm.h>
55#include <sys/syslog.h>
56#include <sys/socket.h>
57#include <sys/sglist.h>
58
59#include <net/if.h>
60#include <net/if_var.h>
61#include <net/bpf.h>
62#include <net/ethernet.h>
63#include <net/if_vlan_var.h>
64
65#include <netinet/in_systm.h>
66#include <netinet/in.h>
67#include <netinet/ip.h>
68#include <netinet/ip6.h>
69#include <netinet/tcp.h>
70
71#include <dev/pci/pcireg.h>
72#include <dev/pci/pcivar.h>
73
74#include <vm/vm.h>
75#include <vm/pmap.h>
76
77#include <cxgb_include.h>
78#include <sys/mvec.h>
79
80int txq_fills = 0;
81int multiq_tx_enable = 1;
82
83#ifdef TCP_OFFLOAD
84CTASSERT(NUM_CPL_HANDLERS >= NUM_CPL_CMDS);
85#endif
86
87extern struct sysctl_oid_list sysctl__hw_cxgb_children;
88int cxgb_txq_buf_ring_size = TX_ETH_Q_SIZE;
89SYSCTL_INT(_hw_cxgb, OID_AUTO, txq_mr_size, CTLFLAG_RDTUN, &cxgb_txq_buf_ring_size, 0,
90 "size of per-queue mbuf ring");
91
92static int cxgb_tx_coalesce_force = 0;
93SYSCTL_INT(_hw_cxgb, OID_AUTO, tx_coalesce_force, CTLFLAG_RWTUN,
94 &cxgb_tx_coalesce_force, 0,
95 "coalesce small packets into a single work request regardless of ring state");
96
97#define COALESCE_START_DEFAULT TX_ETH_Q_SIZE>>1
98#define COALESCE_START_MAX (TX_ETH_Q_SIZE-(TX_ETH_Q_SIZE>>3))
99#define COALESCE_STOP_DEFAULT TX_ETH_Q_SIZE>>2
100#define COALESCE_STOP_MIN TX_ETH_Q_SIZE>>5
101#define TX_RECLAIM_DEFAULT TX_ETH_Q_SIZE>>5
102#define TX_RECLAIM_MAX TX_ETH_Q_SIZE>>2
103#define TX_RECLAIM_MIN TX_ETH_Q_SIZE>>6
104
105
106static int cxgb_tx_coalesce_enable_start = COALESCE_START_DEFAULT;
107SYSCTL_INT(_hw_cxgb, OID_AUTO, tx_coalesce_enable_start, CTLFLAG_RWTUN,
108 &cxgb_tx_coalesce_enable_start, 0,
109 "coalesce enable threshold");
110static int cxgb_tx_coalesce_enable_stop = COALESCE_STOP_DEFAULT;
111SYSCTL_INT(_hw_cxgb, OID_AUTO, tx_coalesce_enable_stop, CTLFLAG_RWTUN,
112 &cxgb_tx_coalesce_enable_stop, 0,
113 "coalesce disable threshold");
114static int cxgb_tx_reclaim_threshold = TX_RECLAIM_DEFAULT;
115SYSCTL_INT(_hw_cxgb, OID_AUTO, tx_reclaim_threshold, CTLFLAG_RWTUN,
116 &cxgb_tx_reclaim_threshold, 0,
117 "tx cleaning minimum threshold");
118
119/*
120 * XXX don't re-enable this until TOE stops assuming
121 * we have an m_ext
122 */
123static int recycle_enable = 0;
124
125extern int cxgb_use_16k_clusters;
126extern int nmbjumbop;
127extern int nmbjumbo9;
128extern int nmbjumbo16;
129
130#define USE_GTS 0
131
132#define SGE_RX_SM_BUF_SIZE 1536
133#define SGE_RX_DROP_THRES 16
134#define SGE_RX_COPY_THRES 128
135
136/*
137 * Period of the Tx buffer reclaim timer. This timer does not need to run
138 * frequently as Tx buffers are usually reclaimed by new Tx packets.
139 */
140#define TX_RECLAIM_PERIOD (hz >> 1)
141
142/*
143 * Values for sge_txq.flags
144 */
145enum {
146 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
147 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
148};
149
150struct tx_desc {
151 uint64_t flit[TX_DESC_FLITS];
152} __packed;
153
154struct rx_desc {
155 uint32_t addr_lo;
156 uint32_t len_gen;
157 uint32_t gen2;
158 uint32_t addr_hi;
159} __packed;
160
161struct rsp_desc { /* response queue descriptor */
162 struct rss_header rss_hdr;
163 uint32_t flags;
164 uint32_t len_cq;
165 uint8_t imm_data[47];
166 uint8_t intr_gen;
167} __packed;
168
169#define RX_SW_DESC_MAP_CREATED (1 << 0)
170#define TX_SW_DESC_MAP_CREATED (1 << 1)
171#define RX_SW_DESC_INUSE (1 << 3)
172#define TX_SW_DESC_MAPPED (1 << 4)
173
174#define RSPQ_NSOP_NEOP G_RSPD_SOP_EOP(0)
175#define RSPQ_EOP G_RSPD_SOP_EOP(F_RSPD_EOP)
176#define RSPQ_SOP G_RSPD_SOP_EOP(F_RSPD_SOP)
177#define RSPQ_SOP_EOP G_RSPD_SOP_EOP(F_RSPD_SOP|F_RSPD_EOP)
178
179struct tx_sw_desc { /* SW state per Tx descriptor */
180 struct mbuf *m;
181 bus_dmamap_t map;
182 int flags;
183};
184
185struct rx_sw_desc { /* SW state per Rx descriptor */
186 caddr_t rxsd_cl;
187 struct mbuf *m;
188 bus_dmamap_t map;
189 int flags;
190};
191
192struct txq_state {
193 unsigned int compl;
194 unsigned int gen;
195 unsigned int pidx;
196};
197
198struct refill_fl_cb_arg {
199 int error;
200 bus_dma_segment_t seg;
201 int nseg;
202};
203
204
205/*
206 * Maps a number of flits to the number of Tx descriptors that can hold them.
207 * The formula is
208 *
209 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
210 *
211 * HW allows up to 4 descriptors to be combined into a WR.
212 */
213static uint8_t flit_desc_map[] = {
214 0,
215#if SGE_NUM_GENBITS == 1
216 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
217 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
218 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
219 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
220#elif SGE_NUM_GENBITS == 2
221 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
222 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
223 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
224 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
225#else
226# error "SGE_NUM_GENBITS must be 1 or 2"
227#endif
228};
229
230#define TXQ_LOCK_ASSERT(qs) mtx_assert(&(qs)->lock, MA_OWNED)
231#define TXQ_TRYLOCK(qs) mtx_trylock(&(qs)->lock)
232#define TXQ_LOCK(qs) mtx_lock(&(qs)->lock)
233#define TXQ_UNLOCK(qs) mtx_unlock(&(qs)->lock)
234#define TXQ_RING_EMPTY(qs) drbr_empty((qs)->port->ifp, (qs)->txq[TXQ_ETH].txq_mr)
235#define TXQ_RING_NEEDS_ENQUEUE(qs) \
236 drbr_needs_enqueue((qs)->port->ifp, (qs)->txq[TXQ_ETH].txq_mr)
237#define TXQ_RING_FLUSH(qs) drbr_flush((qs)->port->ifp, (qs)->txq[TXQ_ETH].txq_mr)
238#define TXQ_RING_DEQUEUE_COND(qs, func, arg) \
239 drbr_dequeue_cond((qs)->port->ifp, (qs)->txq[TXQ_ETH].txq_mr, func, arg)
240#define TXQ_RING_DEQUEUE(qs) \
241 drbr_dequeue((qs)->port->ifp, (qs)->txq[TXQ_ETH].txq_mr)
242
243int cxgb_debug = 0;
244
245static void sge_timer_cb(void *arg);
246static void sge_timer_reclaim(void *arg, int ncount);
247static void sge_txq_reclaim_handler(void *arg, int ncount);
248static void cxgb_start_locked(struct sge_qset *qs);
249
250/*
251 * XXX need to cope with bursty scheduling by looking at a wider
252 * window than we are now for determining the need for coalescing
253 *
254 */
255static __inline uint64_t
256check_pkt_coalesce(struct sge_qset *qs)
257{
258 struct adapter *sc;
259 struct sge_txq *txq;
260 uint8_t *fill;
261
262 if (__predict_false(cxgb_tx_coalesce_force))
263 return (1);
264 txq = &qs->txq[TXQ_ETH];
265 sc = qs->port->adapter;
266 fill = &sc->tunq_fill[qs->idx];
267
268 if (cxgb_tx_coalesce_enable_start > COALESCE_START_MAX)
269 cxgb_tx_coalesce_enable_start = COALESCE_START_MAX;
270 if (cxgb_tx_coalesce_enable_stop < COALESCE_STOP_MIN)
271 cxgb_tx_coalesce_enable_start = COALESCE_STOP_MIN;
272 /*
273 * if the hardware transmit queue is more than 1/8 full
274 * we mark it as coalescing - we drop back from coalescing
275 * when we go below 1/32 full and there are no packets enqueued,
276 * this provides us with some degree of hysteresis
277 */
278 if (*fill != 0 && (txq->in_use <= cxgb_tx_coalesce_enable_stop) &&
279 TXQ_RING_EMPTY(qs) && (qs->coalescing == 0))
280 *fill = 0;
281 else if (*fill == 0 && (txq->in_use >= cxgb_tx_coalesce_enable_start))
282 *fill = 1;
283
284 return (sc->tunq_coalesce);
285}
286
287#ifdef __LP64__
288static void
289set_wr_hdr(struct work_request_hdr *wrp, uint32_t wr_hi, uint32_t wr_lo)
290{
291 uint64_t wr_hilo;
292#if _BYTE_ORDER == _LITTLE_ENDIAN
293 wr_hilo = wr_hi;
294 wr_hilo |= (((uint64_t)wr_lo)<<32);
295#else
296 wr_hilo = wr_lo;
297 wr_hilo |= (((uint64_t)wr_hi)<<32);
298#endif
299 wrp->wrh_hilo = wr_hilo;
300}
301#else
302static void
303set_wr_hdr(struct work_request_hdr *wrp, uint32_t wr_hi, uint32_t wr_lo)
304{
305
306 wrp->wrh_hi = wr_hi;
307 wmb();
308 wrp->wrh_lo = wr_lo;
309}
310#endif
311
312struct coalesce_info {
313 int count;
314 int nbytes;
315};
316
317static int
318coalesce_check(struct mbuf *m, void *arg)
319{
320 struct coalesce_info *ci = arg;
321 int *count = &ci->count;
322 int *nbytes = &ci->nbytes;
323
324 if ((*nbytes == 0) || ((*nbytes + m->m_len <= 10500) &&
325 (*count < 7) && (m->m_next == NULL))) {
326 *count += 1;
327 *nbytes += m->m_len;
328 return (1);
329 }
330 return (0);
331}
332
333static struct mbuf *
334cxgb_dequeue(struct sge_qset *qs)
335{
336 struct mbuf *m, *m_head, *m_tail;
337 struct coalesce_info ci;
338
339
340 if (check_pkt_coalesce(qs) == 0)
341 return TXQ_RING_DEQUEUE(qs);
342
343 m_head = m_tail = NULL;
344 ci.count = ci.nbytes = 0;
345 do {
346 m = TXQ_RING_DEQUEUE_COND(qs, coalesce_check, &ci);
347 if (m_head == NULL) {
348 m_tail = m_head = m;
349 } else if (m != NULL) {
350 m_tail->m_nextpkt = m;
351 m_tail = m;
352 }
353 } while (m != NULL);
354 if (ci.count > 7)
355 panic("trying to coalesce %d packets in to one WR", ci.count);
356 return (m_head);
357}
358
359/**
360 * reclaim_completed_tx - reclaims completed Tx descriptors
361 * @adapter: the adapter
362 * @q: the Tx queue to reclaim completed descriptors from
363 *
364 * Reclaims Tx descriptors that the SGE has indicated it has processed,
365 * and frees the associated buffers if possible. Called with the Tx
366 * queue's lock held.
367 */
368static __inline int
369reclaim_completed_tx(struct sge_qset *qs, int reclaim_min, int queue)
370{
371 struct sge_txq *q = &qs->txq[queue];
372 int reclaim = desc_reclaimable(q);
373
374 if ((cxgb_tx_reclaim_threshold > TX_RECLAIM_MAX) ||
375 (cxgb_tx_reclaim_threshold < TX_RECLAIM_MIN))
376 cxgb_tx_reclaim_threshold = TX_RECLAIM_DEFAULT;
377
378 if (reclaim < reclaim_min)
379 return (0);
380
381 mtx_assert(&qs->lock, MA_OWNED);
382 if (reclaim > 0) {
383 t3_free_tx_desc(qs, reclaim, queue);
384 q->cleaned += reclaim;
385 q->in_use -= reclaim;
386 }
387 if (isset(&qs->txq_stopped, TXQ_ETH))
388 clrbit(&qs->txq_stopped, TXQ_ETH);
389
390 return (reclaim);
391}
392
393/**
394 * should_restart_tx - are there enough resources to restart a Tx queue?
395 * @q: the Tx queue
396 *
397 * Checks if there are enough descriptors to restart a suspended Tx queue.
398 */
399static __inline int
400should_restart_tx(const struct sge_txq *q)
401{
402 unsigned int r = q->processed - q->cleaned;
403
404 return q->in_use - r < (q->size >> 1);
405}
406
407/**
408 * t3_sge_init - initialize SGE
409 * @adap: the adapter
410 * @p: the SGE parameters
411 *
412 * Performs SGE initialization needed every time after a chip reset.
413 * We do not initialize any of the queue sets here, instead the driver
414 * top-level must request those individually. We also do not enable DMA
415 * here, that should be done after the queues have been set up.
416 */
417void
418t3_sge_init(adapter_t *adap, struct sge_params *p)
419{
420 u_int ctrl, ups;
421
422 ups = 0; /* = ffs(pci_resource_len(adap->pdev, 2) >> 12); */
423
424 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
425 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
426 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
427 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
428#if SGE_NUM_GENBITS == 1
429 ctrl |= F_EGRGENCTRL;
430#endif
431 if (adap->params.rev > 0) {
432 if (!(adap->flags & (USING_MSIX | USING_MSI)))
433 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
434 }
435 t3_write_reg(adap, A_SG_CONTROL, ctrl);
436 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
437 V_LORCQDRBTHRSH(512));
438 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
439 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
440 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
441 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
442 adap->params.rev < T3_REV_C ? 1000 : 500);
443 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
444 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
445 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
446 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
447 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
448}
449
450
451/**
452 * sgl_len - calculates the size of an SGL of the given capacity
453 * @n: the number of SGL entries
454 *
455 * Calculates the number of flits needed for a scatter/gather list that
456 * can hold the given number of entries.
457 */
458static __inline unsigned int
459sgl_len(unsigned int n)
460{
461 return ((3 * n) / 2 + (n & 1));
462}
463
464/**
465 * get_imm_packet - return the next ingress packet buffer from a response
466 * @resp: the response descriptor containing the packet data
467 *
468 * Return a packet containing the immediate data of the given response.
469 */
470static int
471get_imm_packet(adapter_t *sc, const struct rsp_desc *resp, struct mbuf *m)
472{
473
474 if (resp->rss_hdr.opcode == CPL_RX_DATA) {
475 const struct cpl_rx_data *cpl = (const void *)&resp->imm_data[0];
476 m->m_len = sizeof(*cpl) + ntohs(cpl->len);
477 } else if (resp->rss_hdr.opcode == CPL_RX_PKT) {
478 const struct cpl_rx_pkt *cpl = (const void *)&resp->imm_data[0];
479 m->m_len = sizeof(*cpl) + ntohs(cpl->len);
480 } else
481 m->m_len = IMMED_PKT_SIZE;
482 m->m_ext.ext_buf = NULL;
483 m->m_ext.ext_type = 0;
484 memcpy(mtod(m, uint8_t *), resp->imm_data, m->m_len);
485 return (0);
486}
487
488static __inline u_int
489flits_to_desc(u_int n)
490{
491 return (flit_desc_map[n]);
492}
493
494#define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
495 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
496 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
497 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
498 F_HIRCQPARITYERROR)
499#define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
500#define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
501 F_RSPQDISABLED)
502
503/**
504 * t3_sge_err_intr_handler - SGE async event interrupt handler
505 * @adapter: the adapter
506 *
507 * Interrupt handler for SGE asynchronous (non-data) events.
508 */
509void
510t3_sge_err_intr_handler(adapter_t *adapter)
511{
512 unsigned int v, status;
513
514 status = t3_read_reg(adapter, A_SG_INT_CAUSE);
515 if (status & SGE_PARERR)
516 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
517 status & SGE_PARERR);
518 if (status & SGE_FRAMINGERR)
519 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
520 status & SGE_FRAMINGERR);
521 if (status & F_RSPQCREDITOVERFOW)
522 CH_ALERT(adapter, "SGE response queue credit overflow\n");
523
524 if (status & F_RSPQDISABLED) {
525 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
526
527 CH_ALERT(adapter,
528 "packet delivered to disabled response queue (0x%x)\n",
529 (v >> S_RSPQ0DISABLED) & 0xff);
530 }
531
532 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
533 if (status & SGE_FATALERR)
534 t3_fatal_err(adapter);
535}
536
537void
538t3_sge_prep(adapter_t *adap, struct sge_params *p)
539{
540 int i, nqsets, fl_q_size, jumbo_q_size, use_16k, jumbo_buf_size;
541
542 nqsets = min(SGE_QSETS / adap->params.nports, mp_ncpus);
543 nqsets *= adap->params.nports;
544
545 fl_q_size = min(nmbclusters/(3*nqsets), FL_Q_SIZE);
546
547 while (!powerof2(fl_q_size))
548 fl_q_size--;
549
550 use_16k = cxgb_use_16k_clusters != -1 ? cxgb_use_16k_clusters :
551 is_offload(adap);
552
553#if __FreeBSD_version >= 700111
554 if (use_16k) {
555 jumbo_q_size = min(nmbjumbo16/(3*nqsets), JUMBO_Q_SIZE);
556 jumbo_buf_size = MJUM16BYTES;
557 } else {
558 jumbo_q_size = min(nmbjumbo9/(3*nqsets), JUMBO_Q_SIZE);
559 jumbo_buf_size = MJUM9BYTES;
560 }
561#else
562 jumbo_q_size = min(nmbjumbop/(3*nqsets), JUMBO_Q_SIZE);
563 jumbo_buf_size = MJUMPAGESIZE;
564#endif
565 while (!powerof2(jumbo_q_size))
566 jumbo_q_size--;
567
568 if (fl_q_size < (FL_Q_SIZE / 4) || jumbo_q_size < (JUMBO_Q_SIZE / 2))
569 device_printf(adap->dev,
570 "Insufficient clusters and/or jumbo buffers.\n");
571
572 p->max_pkt_size = jumbo_buf_size - sizeof(struct cpl_rx_data);
573
574 for (i = 0; i < SGE_QSETS; ++i) {
575 struct qset_params *q = p->qset + i;
576
577 if (adap->params.nports > 2) {
578 q->coalesce_usecs = 50;
579 } else {
580#ifdef INVARIANTS
581 q->coalesce_usecs = 10;
582#else
583 q->coalesce_usecs = 5;
584#endif
585 }
586 q->polling = 0;
587 q->rspq_size = RSPQ_Q_SIZE;
588 q->fl_size = fl_q_size;
589 q->jumbo_size = jumbo_q_size;
590 q->jumbo_buf_size = jumbo_buf_size;
591 q->txq_size[TXQ_ETH] = TX_ETH_Q_SIZE;
592 q->txq_size[TXQ_OFLD] = is_offload(adap) ? TX_OFLD_Q_SIZE : 16;
593 q->txq_size[TXQ_CTRL] = TX_CTRL_Q_SIZE;
594 q->cong_thres = 0;
595 }
596}
597
598int
599t3_sge_alloc(adapter_t *sc)
600{
601
602 /* The parent tag. */
603 if (bus_dma_tag_create( bus_get_dma_tag(sc->dev),/* PCI parent */
604 1, 0, /* algnmnt, boundary */
605 BUS_SPACE_MAXADDR, /* lowaddr */
606 BUS_SPACE_MAXADDR, /* highaddr */
607 NULL, NULL, /* filter, filterarg */
608 BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
609 BUS_SPACE_UNRESTRICTED, /* nsegments */
610 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
611 0, /* flags */
612 NULL, NULL, /* lock, lockarg */
613 &sc->parent_dmat)) {
614 device_printf(sc->dev, "Cannot allocate parent DMA tag\n");
615 return (ENOMEM);
616 }
617
618 /*
619 * DMA tag for normal sized RX frames
620 */
621 if (bus_dma_tag_create(sc->parent_dmat, MCLBYTES, 0, BUS_SPACE_MAXADDR,
622 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
623 MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->rx_dmat)) {
624 device_printf(sc->dev, "Cannot allocate RX DMA tag\n");
625 return (ENOMEM);
626 }
627
628 /*
629 * DMA tag for jumbo sized RX frames.
630 */
631 if (bus_dma_tag_create(sc->parent_dmat, MJUM16BYTES, 0, BUS_SPACE_MAXADDR,
632 BUS_SPACE_MAXADDR, NULL, NULL, MJUM16BYTES, 1, MJUM16BYTES,
633 BUS_DMA_ALLOCNOW, NULL, NULL, &sc->rx_jumbo_dmat)) {
634 device_printf(sc->dev, "Cannot allocate RX jumbo DMA tag\n");
635 return (ENOMEM);
636 }
637
638 /*
639 * DMA tag for TX frames.
640 */
641 if (bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR,
642 BUS_SPACE_MAXADDR, NULL, NULL, TX_MAX_SIZE, TX_MAX_SEGS,
643 TX_MAX_SIZE, BUS_DMA_ALLOCNOW,
644 NULL, NULL, &sc->tx_dmat)) {
645 device_printf(sc->dev, "Cannot allocate TX DMA tag\n");
646 return (ENOMEM);
647 }
648
649 return (0);
650}
651
652int
653t3_sge_free(struct adapter * sc)
654{
655
656 if (sc->tx_dmat != NULL)
657 bus_dma_tag_destroy(sc->tx_dmat);
658
659 if (sc->rx_jumbo_dmat != NULL)
660 bus_dma_tag_destroy(sc->rx_jumbo_dmat);
661
662 if (sc->rx_dmat != NULL)
663 bus_dma_tag_destroy(sc->rx_dmat);
664
665 if (sc->parent_dmat != NULL)
666 bus_dma_tag_destroy(sc->parent_dmat);
667
668 return (0);
669}
670
671void
672t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
673{
674
675 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);
676 qs->rspq.polling = 0 /* p->polling */;
677}
678
679#if !defined(__i386__) && !defined(__amd64__)
680static void
681refill_fl_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
682{
683 struct refill_fl_cb_arg *cb_arg = arg;
684
685 cb_arg->error = error;
686 cb_arg->seg = segs[0];
687 cb_arg->nseg = nseg;
688
689}
690#endif
691/**
692 * refill_fl - refill an SGE free-buffer list
693 * @sc: the controller softc
694 * @q: the free-list to refill
695 * @n: the number of new buffers to allocate
696 *
697 * (Re)populate an SGE free-buffer list with up to @n new packet buffers.
698 * The caller must assure that @n does not exceed the queue's capacity.
699 */
700static void
701refill_fl(adapter_t *sc, struct sge_fl *q, int n)
702{
703 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
704 struct rx_desc *d = &q->desc[q->pidx];
705 struct refill_fl_cb_arg cb_arg;
706 struct mbuf *m;
707 caddr_t cl;
708 int err;
709
710 cb_arg.error = 0;
711 while (n--) {
712 /*
713 * We allocate an uninitialized mbuf + cluster, mbuf is
714 * initialized after rx.
715 */
716 if (q->zone == zone_pack) {
717 if ((m = m_getcl(M_NOWAIT, MT_NOINIT, M_PKTHDR)) == NULL)
718 break;
719 cl = m->m_ext.ext_buf;
720 } else {
721 if ((cl = m_cljget(NULL, M_NOWAIT, q->buf_size)) == NULL)
722 break;
723 if ((m = m_gethdr(M_NOWAIT, MT_NOINIT)) == NULL) {
724 uma_zfree(q->zone, cl);
725 break;
726 }
727 }
728 if ((sd->flags & RX_SW_DESC_MAP_CREATED) == 0) {
729 if ((err = bus_dmamap_create(q->entry_tag, 0, &sd->map))) {
730 log(LOG_WARNING, "bus_dmamap_create failed %d\n", err);
731 uma_zfree(q->zone, cl);
732 goto done;
733 }
734 sd->flags |= RX_SW_DESC_MAP_CREATED;
735 }
736#if !defined(__i386__) && !defined(__amd64__)
737 err = bus_dmamap_load(q->entry_tag, sd->map,
738 cl, q->buf_size, refill_fl_cb, &cb_arg, 0);
739
740 if (err != 0 || cb_arg.error) {
741 if (q->zone == zone_pack)
742 uma_zfree(q->zone, cl);
743 m_free(m);
744 goto done;
745 }
746#else
747 cb_arg.seg.ds_addr = pmap_kextract((vm_offset_t)cl);
748#endif
749 sd->flags |= RX_SW_DESC_INUSE;
750 sd->rxsd_cl = cl;
751 sd->m = m;
752 d->addr_lo = htobe32(cb_arg.seg.ds_addr & 0xffffffff);
753 d->addr_hi = htobe32(((uint64_t)cb_arg.seg.ds_addr >>32) & 0xffffffff);
754 d->len_gen = htobe32(V_FLD_GEN1(q->gen));
755 d->gen2 = htobe32(V_FLD_GEN2(q->gen));
756
757 d++;
758 sd++;
759
760 if (++q->pidx == q->size) {
761 q->pidx = 0;
762 q->gen ^= 1;
763 sd = q->sdesc;
764 d = q->desc;
765 }
766 q->credits++;
767 q->db_pending++;
768 }
769
770done:
771 if (q->db_pending >= 32) {
772 q->db_pending = 0;
773 t3_write_reg(sc, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
774 }
775}
776
777
778/**
779 * free_rx_bufs - free the Rx buffers on an SGE free list
780 * @sc: the controle softc
781 * @q: the SGE free list to clean up
782 *
783 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
784 * this queue should be stopped before calling this function.
785 */
786static void
787free_rx_bufs(adapter_t *sc, struct sge_fl *q)
788{
789 u_int cidx = q->cidx;
790
791 while (q->credits--) {
792 struct rx_sw_desc *d = &q->sdesc[cidx];
793
794 if (d->flags & RX_SW_DESC_INUSE) {
795 bus_dmamap_unload(q->entry_tag, d->map);
796 bus_dmamap_destroy(q->entry_tag, d->map);
797 if (q->zone == zone_pack) {
798 m_init(d->m, zone_pack, MCLBYTES,
799 M_NOWAIT, MT_DATA, M_EXT);
800 uma_zfree(zone_pack, d->m);
801 } else {
802 m_init(d->m, zone_mbuf, MLEN,
803 M_NOWAIT, MT_DATA, 0);
804 uma_zfree(zone_mbuf, d->m);
805 uma_zfree(q->zone, d->rxsd_cl);
806 }
807 }
808
809 d->rxsd_cl = NULL;
810 d->m = NULL;
811 if (++cidx == q->size)
812 cidx = 0;
813 }
814}
815
816static __inline void
817__refill_fl(adapter_t *adap, struct sge_fl *fl)
818{
819 refill_fl(adap, fl, min(16U, fl->size - fl->credits));
820}
821
822static __inline void
823__refill_fl_lt(adapter_t *adap, struct sge_fl *fl, int max)
824{
825 uint32_t reclaimable = fl->size - fl->credits;
826
827 if (reclaimable > 0)
828 refill_fl(adap, fl, min(max, reclaimable));
829}
830
831/**
832 * recycle_rx_buf - recycle a receive buffer
833 * @adapter: the adapter
834 * @q: the SGE free list
835 * @idx: index of buffer to recycle
836 *
837 * Recycles the specified buffer on the given free list by adding it at
838 * the next available slot on the list.
839 */
840static void
841recycle_rx_buf(adapter_t *adap, struct sge_fl *q, unsigned int idx)
842{
843 struct rx_desc *from = &q->desc[idx];
844 struct rx_desc *to = &q->desc[q->pidx];
845
846 q->sdesc[q->pidx] = q->sdesc[idx];
847 to->addr_lo = from->addr_lo; // already big endian
848 to->addr_hi = from->addr_hi; // likewise
849 wmb(); /* necessary ? */
850 to->len_gen = htobe32(V_FLD_GEN1(q->gen));
851 to->gen2 = htobe32(V_FLD_GEN2(q->gen));
852 q->credits++;
853
854 if (++q->pidx == q->size) {
855 q->pidx = 0;
856 q->gen ^= 1;
857 }
858 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
859}
860
861static void
862alloc_ring_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
863{
864 uint32_t *addr;
865
866 addr = arg;
867 *addr = segs[0].ds_addr;
868}
869
870static int
871alloc_ring(adapter_t *sc, size_t nelem, size_t elem_size, size_t sw_size,
872 bus_addr_t *phys, void *desc, void *sdesc, bus_dma_tag_t *tag,
873 bus_dmamap_t *map, bus_dma_tag_t parent_entry_tag, bus_dma_tag_t *entry_tag)
874{
875 size_t len = nelem * elem_size;
876 void *s = NULL;
877 void *p = NULL;
878 int err;
879
880 if ((err = bus_dma_tag_create(sc->parent_dmat, PAGE_SIZE, 0,
881 BUS_SPACE_MAXADDR_32BIT,
882 BUS_SPACE_MAXADDR, NULL, NULL, len, 1,
883 len, 0, NULL, NULL, tag)) != 0) {
884 device_printf(sc->dev, "Cannot allocate descriptor tag\n");
885 return (ENOMEM);
886 }
887
888 if ((err = bus_dmamem_alloc(*tag, (void **)&p, BUS_DMA_NOWAIT,
889 map)) != 0) {
890 device_printf(sc->dev, "Cannot allocate descriptor memory\n");
891 return (ENOMEM);
892 }
893
894 bus_dmamap_load(*tag, *map, p, len, alloc_ring_cb, phys, 0);
895 bzero(p, len);
896 *(void **)desc = p;
897
898 if (sw_size) {
899 len = nelem * sw_size;
900 s = malloc(len, M_DEVBUF, M_WAITOK|M_ZERO);
901 *(void **)sdesc = s;
902 }
903 if (parent_entry_tag == NULL)
904 return (0);
905
906 if ((err = bus_dma_tag_create(parent_entry_tag, 1, 0,
907 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
908 NULL, NULL, TX_MAX_SIZE, TX_MAX_SEGS,
909 TX_MAX_SIZE, BUS_DMA_ALLOCNOW,
910 NULL, NULL, entry_tag)) != 0) {
911 device_printf(sc->dev, "Cannot allocate descriptor entry tag\n");
912 return (ENOMEM);
913 }
914 return (0);
915}
916
917static void
918sge_slow_intr_handler(void *arg, int ncount)
919{
920 adapter_t *sc = arg;
921
922 t3_slow_intr_handler(sc);
923 t3_write_reg(sc, A_PL_INT_ENABLE0, sc->slow_intr_mask);
924 (void) t3_read_reg(sc, A_PL_INT_ENABLE0);
925}
926
927/**
928 * sge_timer_cb - perform periodic maintenance of an SGE qset
929 * @data: the SGE queue set to maintain
930 *
931 * Runs periodically from a timer to perform maintenance of an SGE queue
932 * set. It performs two tasks:
933 *
934 * a) Cleans up any completed Tx descriptors that may still be pending.
935 * Normal descriptor cleanup happens when new packets are added to a Tx
936 * queue so this timer is relatively infrequent and does any cleanup only
937 * if the Tx queue has not seen any new packets in a while. We make a
938 * best effort attempt to reclaim descriptors, in that we don't wait
939 * around if we cannot get a queue's lock (which most likely is because
940 * someone else is queueing new packets and so will also handle the clean
941 * up). Since control queues use immediate data exclusively we don't
942 * bother cleaning them up here.
943 *
944 * b) Replenishes Rx queues that have run out due to memory shortage.
945 * Normally new Rx buffers are added when existing ones are consumed but
946 * when out of memory a queue can become empty. We try to add only a few
947 * buffers here, the queue will be replenished fully as these new buffers
948 * are used up if memory shortage has subsided.
949 *
950 * c) Return coalesced response queue credits in case a response queue is
951 * starved.
952 *
953 * d) Ring doorbells for T304 tunnel queues since we have seen doorbell
954 * fifo overflows and the FW doesn't implement any recovery scheme yet.
955 */
956static void
957sge_timer_cb(void *arg)
958{
959 adapter_t *sc = arg;
960 if ((sc->flags & USING_MSIX) == 0) {
961
962 struct port_info *pi;
963 struct sge_qset *qs;
964 struct sge_txq *txq;
965 int i, j;
966 int reclaim_ofl, refill_rx;
967
968 if (sc->open_device_map == 0)
969 return;
970
971 for (i = 0; i < sc->params.nports; i++) {
972 pi = &sc->port[i];
973 for (j = 0; j < pi->nqsets; j++) {
974 qs = &sc->sge.qs[pi->first_qset + j];
975 txq = &qs->txq[0];
976 reclaim_ofl = txq[TXQ_OFLD].processed - txq[TXQ_OFLD].cleaned;
977 refill_rx = ((qs->fl[0].credits < qs->fl[0].size) ||
978 (qs->fl[1].credits < qs->fl[1].size));
979 if (reclaim_ofl || refill_rx) {
980 taskqueue_enqueue(sc->tq, &pi->timer_reclaim_task);
981 break;
982 }
983 }
984 }
985 }
986
987 if (sc->params.nports > 2) {
988 int i;
989
990 for_each_port(sc, i) {
991 struct port_info *pi = &sc->port[i];
992
993 t3_write_reg(sc, A_SG_KDOORBELL,
994 F_SELEGRCNTX |
995 (FW_TUNNEL_SGEEC_START + pi->first_qset));
996 }
997 }
998 if (((sc->flags & USING_MSIX) == 0 || sc->params.nports > 2) &&
999 sc->open_device_map != 0)
1000 callout_reset(&sc->sge_timer_ch, TX_RECLAIM_PERIOD, sge_timer_cb, sc);
1001}
1002
1003/*
1004 * This is meant to be a catch-all function to keep sge state private
1005 * to sge.c
1006 *
1007 */
1008int
1009t3_sge_init_adapter(adapter_t *sc)
1010{
1011 callout_init(&sc->sge_timer_ch, 1);
1012 callout_reset(&sc->sge_timer_ch, TX_RECLAIM_PERIOD, sge_timer_cb, sc);
1013 TASK_INIT(&sc->slow_intr_task, 0, sge_slow_intr_handler, sc);
1014 return (0);
1015}
1016
1017int
1018t3_sge_reset_adapter(adapter_t *sc)
1019{
1020 callout_reset(&sc->sge_timer_ch, TX_RECLAIM_PERIOD, sge_timer_cb, sc);
1021 return (0);
1022}
1023
1024int
1025t3_sge_init_port(struct port_info *pi)
1026{
1027 TASK_INIT(&pi->timer_reclaim_task, 0, sge_timer_reclaim, pi);
1028 return (0);
1029}
1030
1031/**
1032 * refill_rspq - replenish an SGE response queue
1033 * @adapter: the adapter
1034 * @q: the response queue to replenish
1035 * @credits: how many new responses to make available
1036 *
1037 * Replenishes a response queue by making the supplied number of responses
1038 * available to HW.
1039 */
1040static __inline void
1041refill_rspq(adapter_t *sc, const struct sge_rspq *q, u_int credits)
1042{
1043
1044 /* mbufs are allocated on demand when a rspq entry is processed. */
1045 t3_write_reg(sc, A_SG_RSPQ_CREDIT_RETURN,
1046 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
1047}
1048
1049static void
1050sge_txq_reclaim_handler(void *arg, int ncount)
1051{
1052 struct sge_qset *qs = arg;
1053 int i;
1054
1055 for (i = 0; i < 3; i++)
1056 reclaim_completed_tx(qs, 16, i);
1057}
1058
1059static void
1060sge_timer_reclaim(void *arg, int ncount)
1061{
1062 struct port_info *pi = arg;
1063 int i, nqsets = pi->nqsets;
1064 adapter_t *sc = pi->adapter;
1065 struct sge_qset *qs;
1066 struct mtx *lock;
1067
1068 KASSERT((sc->flags & USING_MSIX) == 0,
1069 ("can't call timer reclaim for msi-x"));
1070
1071 for (i = 0; i < nqsets; i++) {
1072 qs = &sc->sge.qs[pi->first_qset + i];
1073
1074 reclaim_completed_tx(qs, 16, TXQ_OFLD);
1075 lock = (sc->flags & USING_MSIX) ? &qs->rspq.lock :
1076 &sc->sge.qs[0].rspq.lock;
1077
1078 if (mtx_trylock(lock)) {
1079 /* XXX currently assume that we are *NOT* polling */
1080 uint32_t status = t3_read_reg(sc, A_SG_RSPQ_FL_STATUS);
1081
1082 if (qs->fl[0].credits < qs->fl[0].size - 16)
1083 __refill_fl(sc, &qs->fl[0]);
1084 if (qs->fl[1].credits < qs->fl[1].size - 16)
1085 __refill_fl(sc, &qs->fl[1]);
1086
1087 if (status & (1 << qs->rspq.cntxt_id)) {
1088 if (qs->rspq.credits) {
1089 refill_rspq(sc, &qs->rspq, 1);
1090 qs->rspq.credits--;
1091 t3_write_reg(sc, A_SG_RSPQ_FL_STATUS,
1092 1 << qs->rspq.cntxt_id);
1093 }
1094 }
1095 mtx_unlock(lock);
1096 }
1097 }
1098}
1099
1100/**
1101 * init_qset_cntxt - initialize an SGE queue set context info
1102 * @qs: the queue set
1103 * @id: the queue set id
1104 *
1105 * Initializes the TIDs and context ids for the queues of a queue set.
1106 */
1107static void
1108init_qset_cntxt(struct sge_qset *qs, u_int id)
1109{
1110
1111 qs->rspq.cntxt_id = id;
1112 qs->fl[0].cntxt_id = 2 * id;
1113 qs->fl[1].cntxt_id = 2 * id + 1;
1114 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
1115 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
1116 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
1117 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
1118 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
1119
1120 /* XXX: a sane limit is needed instead of INT_MAX */
1121 mbufq_init(&qs->txq[TXQ_ETH].sendq, INT_MAX);
1122 mbufq_init(&qs->txq[TXQ_OFLD].sendq, INT_MAX);
1123 mbufq_init(&qs->txq[TXQ_CTRL].sendq, INT_MAX);
1124}
1125
1126
1127static void
1128txq_prod(struct sge_txq *txq, unsigned int ndesc, struct txq_state *txqs)
1129{
1130 txq->in_use += ndesc;
1131 /*
1132 * XXX we don't handle stopping of queue
1133 * presumably start handles this when we bump against the end
1134 */
1135 txqs->gen = txq->gen;
1136 txq->unacked += ndesc;
1137 txqs->compl = (txq->unacked & 32) << (S_WR_COMPL - 5);
1138 txq->unacked &= 31;
1139 txqs->pidx = txq->pidx;
1140 txq->pidx += ndesc;
1141#ifdef INVARIANTS
1142 if (((txqs->pidx > txq->cidx) &&
1143 (txq->pidx < txqs->pidx) &&
1144 (txq->pidx >= txq->cidx)) ||
1145 ((txqs->pidx < txq->cidx) &&
1146 (txq->pidx >= txq-> cidx)) ||
1147 ((txqs->pidx < txq->cidx) &&
1148 (txq->cidx < txqs->pidx)))
1149 panic("txqs->pidx=%d txq->pidx=%d txq->cidx=%d",
1150 txqs->pidx, txq->pidx, txq->cidx);
1151#endif
1152 if (txq->pidx >= txq->size) {
1153 txq->pidx -= txq->size;
1154 txq->gen ^= 1;
1155 }
1156
1157}
1158
1159/**
1160 * calc_tx_descs - calculate the number of Tx descriptors for a packet
1161 * @m: the packet mbufs
1162 * @nsegs: the number of segments
1163 *
1164 * Returns the number of Tx descriptors needed for the given Ethernet
1165 * packet. Ethernet packets require addition of WR and CPL headers.
1166 */
1167static __inline unsigned int
1168calc_tx_descs(const struct mbuf *m, int nsegs)
1169{
1170 unsigned int flits;
1171
1172 if (m->m_pkthdr.len <= PIO_LEN)
1173 return 1;
1174
1175 flits = sgl_len(nsegs) + 2;
1176 if (m->m_pkthdr.csum_flags & CSUM_TSO)
1177 flits++;
1178
1179 return flits_to_desc(flits);
1180}
1181
1182/**
1183 * make_sgl - populate a scatter/gather list for a packet
1184 * @sgp: the SGL to populate
1185 * @segs: the packet dma segments
1186 * @nsegs: the number of segments
1187 *
1188 * Generates a scatter/gather list for the buffers that make up a packet
1189 * and returns the SGL size in 8-byte words. The caller must size the SGL
1190 * appropriately.
1191 */
1192static __inline void
1193make_sgl(struct sg_ent *sgp, bus_dma_segment_t *segs, int nsegs)
1194{
1195 int i, idx;
1196
1197 for (idx = 0, i = 0; i < nsegs; i++) {
1198 /*
1199 * firmware doesn't like empty segments
1200 */
1201 if (segs[i].ds_len == 0)
1202 continue;
1203 if (i && idx == 0)
1204 ++sgp;
1205
1206 sgp->len[idx] = htobe32(segs[i].ds_len);
1207 sgp->addr[idx] = htobe64(segs[i].ds_addr);
1208 idx ^= 1;
1209 }
1210
1211 if (idx) {
1212 sgp->len[idx] = 0;
1213 sgp->addr[idx] = 0;
1214 }
1215}
1216
1217/**
1218 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
1219 * @adap: the adapter
1220 * @q: the Tx queue
1221 *
1222 * Ring the doorbell if a Tx queue is asleep. There is a natural race,
1223 * where the HW is going to sleep just after we checked, however,
1224 * then the interrupt handler will detect the outstanding TX packet
1225 * and ring the doorbell for us.
1226 *
1227 * When GTS is disabled we unconditionally ring the doorbell.
1228 */
1229static __inline void
1230check_ring_tx_db(adapter_t *adap, struct sge_txq *q, int mustring)
1231{
1232#if USE_GTS
1233 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1234 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1235 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1236#ifdef T3_TRACE
1237 T3_TRACE1(adap->tb[q->cntxt_id & 7], "doorbell Tx, cntxt %d",
1238 q->cntxt_id);
1239#endif
1240 t3_write_reg(adap, A_SG_KDOORBELL,
1241 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1242 }
1243#else
1244 if (mustring || ++q->db_pending >= 32) {
1245 wmb(); /* write descriptors before telling HW */
1246 t3_write_reg(adap, A_SG_KDOORBELL,
1247 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1248 q->db_pending = 0;
1249 }
1250#endif
1251}
1252
1253static __inline void
1254wr_gen2(struct tx_desc *d, unsigned int gen)
1255{
1256#if SGE_NUM_GENBITS == 2
1257 d->flit[TX_DESC_FLITS - 1] = htobe64(gen);
1258#endif
1259}
1260
1261/**
1262 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
1263 * @ndesc: number of Tx descriptors spanned by the SGL
1264 * @txd: first Tx descriptor to be written
1265 * @txqs: txq state (generation and producer index)
1266 * @txq: the SGE Tx queue
1267 * @sgl: the SGL
1268 * @flits: number of flits to the start of the SGL in the first descriptor
1269 * @sgl_flits: the SGL size in flits
1270 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
1271 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
1272 *
1273 * Write a work request header and an associated SGL. If the SGL is
1274 * small enough to fit into one Tx descriptor it has already been written
1275 * and we just need to write the WR header. Otherwise we distribute the
1276 * SGL across the number of descriptors it spans.
1277 */
1278static void
1279write_wr_hdr_sgl(unsigned int ndesc, struct tx_desc *txd, struct txq_state *txqs,
1280 const struct sge_txq *txq, const struct sg_ent *sgl, unsigned int flits,
1281 unsigned int sgl_flits, unsigned int wr_hi, unsigned int wr_lo)
1282{
1283
1284 struct work_request_hdr *wrp = (struct work_request_hdr *)txd;
1285 struct tx_sw_desc *txsd = &txq->sdesc[txqs->pidx];
1286
1287 if (__predict_true(ndesc == 1)) {
1288 set_wr_hdr(wrp, htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1289 V_WR_SGLSFLT(flits)) | wr_hi,
1290 htonl(V_WR_LEN(flits + sgl_flits) | V_WR_GEN(txqs->gen)) |
1291 wr_lo);
1292
1293 wr_gen2(txd, txqs->gen);
1294
1295 } else {
1296 unsigned int ogen = txqs->gen;
1297 const uint64_t *fp = (const uint64_t *)sgl;
1298 struct work_request_hdr *wp = wrp;
1299
1300 wrp->wrh_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1301 V_WR_SGLSFLT(flits)) | wr_hi;
1302
1303 while (sgl_flits) {
1304 unsigned int avail = WR_FLITS - flits;
1305
1306 if (avail > sgl_flits)
1307 avail = sgl_flits;
1308 memcpy(&txd->flit[flits], fp, avail * sizeof(*fp));
1309 sgl_flits -= avail;
1310 ndesc--;
1311 if (!sgl_flits)
1312 break;
1313
1314 fp += avail;
1315 txd++;
1316 txsd++;
1317 if (++txqs->pidx == txq->size) {
1318 txqs->pidx = 0;
1319 txqs->gen ^= 1;
1320 txd = txq->desc;
1321 txsd = txq->sdesc;
1322 }
1323
1324 /*
1325 * when the head of the mbuf chain
1326 * is freed all clusters will be freed
1327 * with it
1328 */
1329 wrp = (struct work_request_hdr *)txd;
1330 wrp->wrh_hi = htonl(V_WR_DATATYPE(1) |
1331 V_WR_SGLSFLT(1)) | wr_hi;
1332 wrp->wrh_lo = htonl(V_WR_LEN(min(WR_FLITS,
1333 sgl_flits + 1)) |
1334 V_WR_GEN(txqs->gen)) | wr_lo;
1335 wr_gen2(txd, txqs->gen);
1336 flits = 1;
1337 }
1338 wrp->wrh_hi |= htonl(F_WR_EOP);
1339 wmb();
1340 wp->wrh_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1341 wr_gen2((struct tx_desc *)wp, ogen);
1342 }
1343}
1344
1345/* sizeof(*eh) + sizeof(*ip) + sizeof(*tcp) */
1346#define TCPPKTHDRSIZE (ETHER_HDR_LEN + 20 + 20)
1347
1348#define GET_VTAG(cntrl, m) \
1349do { \
1350 if ((m)->m_flags & M_VLANTAG) \
1351 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN((m)->m_pkthdr.ether_vtag); \
1352} while (0)
1353
1354static int
1355t3_encap(struct sge_qset *qs, struct mbuf **m)
1356{
1357 adapter_t *sc;
1358 struct mbuf *m0;
1359 struct sge_txq *txq;
1360 struct txq_state txqs;
1361 struct port_info *pi;
1362 unsigned int ndesc, flits, cntrl, mlen;
1363 int err, nsegs, tso_info = 0;
1364
1365 struct work_request_hdr *wrp;
1366 struct tx_sw_desc *txsd;
1367 struct sg_ent *sgp, *sgl;
1368 uint32_t wr_hi, wr_lo, sgl_flits;
1369 bus_dma_segment_t segs[TX_MAX_SEGS];
1370
1371 struct tx_desc *txd;
1372
1373 pi = qs->port;
1374 sc = pi->adapter;
1375 txq = &qs->txq[TXQ_ETH];
1376 txd = &txq->desc[txq->pidx];
1377 txsd = &txq->sdesc[txq->pidx];
1378 sgl = txq->txq_sgl;
1379
1380 prefetch(txd);
1381 m0 = *m;
1382
1383 mtx_assert(&qs->lock, MA_OWNED);
1384 cntrl = V_TXPKT_INTF(pi->txpkt_intf);
1385 KASSERT(m0->m_flags & M_PKTHDR, ("not packet header\n"));
1386
1387 if (m0->m_nextpkt == NULL && m0->m_next != NULL &&
1388 m0->m_pkthdr.csum_flags & (CSUM_TSO))
1389 tso_info = V_LSO_MSS(m0->m_pkthdr.tso_segsz);
1390
1391 if (m0->m_nextpkt != NULL) {
1392 busdma_map_sg_vec(txq->entry_tag, txsd->map, m0, segs, &nsegs);
1393 ndesc = 1;
1394 mlen = 0;
1395 } else {
1396 if ((err = busdma_map_sg_collapse(txq->entry_tag, txsd->map,
1397 &m0, segs, &nsegs))) {
1398 if (cxgb_debug)
1399 printf("failed ... err=%d\n", err);
1400 return (err);
1401 }
1402 mlen = m0->m_pkthdr.len;
1403 ndesc = calc_tx_descs(m0, nsegs);
1404 }
1405 txq_prod(txq, ndesc, &txqs);
1406
1407 KASSERT(m0->m_pkthdr.len, ("empty packet nsegs=%d", nsegs));
1408 txsd->m = m0;
1409
1410 if (m0->m_nextpkt != NULL) {
1411 struct cpl_tx_pkt_batch *cpl_batch = (struct cpl_tx_pkt_batch *)txd;
1412 int i, fidx;
1413
1414 if (nsegs > 7)
1415 panic("trying to coalesce %d packets in to one WR", nsegs);
1416 txq->txq_coalesced += nsegs;
1417 wrp = (struct work_request_hdr *)txd;
1418 flits = nsegs*2 + 1;
1419
1420 for (fidx = 1, i = 0; i < nsegs; i++, fidx += 2) {
1421 struct cpl_tx_pkt_batch_entry *cbe;
1422 uint64_t flit;
1423 uint32_t *hflit = (uint32_t *)&flit;
1424 int cflags = m0->m_pkthdr.csum_flags;
1425
1426 cntrl = V_TXPKT_INTF(pi->txpkt_intf);
1427 GET_VTAG(cntrl, m0);
1428 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1429 if (__predict_false(!(cflags & CSUM_IP)))
1430 cntrl |= F_TXPKT_IPCSUM_DIS;
1431 if (__predict_false(!(cflags & (CSUM_TCP | CSUM_UDP |
1432 CSUM_UDP_IPV6 | CSUM_TCP_IPV6))))
1433 cntrl |= F_TXPKT_L4CSUM_DIS;
1434
1435 hflit[0] = htonl(cntrl);
1436 hflit[1] = htonl(segs[i].ds_len | 0x80000000);
1437 flit |= htobe64(1 << 24);
1438 cbe = &cpl_batch->pkt_entry[i];
1439 cbe->cntrl = hflit[0];
1440 cbe->len = hflit[1];
1441 cbe->addr = htobe64(segs[i].ds_addr);
1442 }
1443
1444 wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1445 V_WR_SGLSFLT(flits)) |
1446 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | txqs.compl);
1447 wr_lo = htonl(V_WR_LEN(flits) |
1448 V_WR_GEN(txqs.gen)) | htonl(V_WR_TID(txq->token));
1449 set_wr_hdr(wrp, wr_hi, wr_lo);
1450 wmb();
1451 ETHER_BPF_MTAP(pi->ifp, m0);
1452 wr_gen2(txd, txqs.gen);
1453 check_ring_tx_db(sc, txq, 0);
1454 return (0);
1455 } else if (tso_info) {
1456 uint16_t eth_type;
1457 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)txd;
1458 struct ether_header *eh;
1459 void *l3hdr;
1460 struct tcphdr *tcp;
1461
1462 txd->flit[2] = 0;
1463 GET_VTAG(cntrl, m0);
1464 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1465 hdr->cntrl = htonl(cntrl);
1466 hdr->len = htonl(mlen | 0x80000000);
1467
1468 if (__predict_false(mlen < TCPPKTHDRSIZE)) {
1469 printf("mbuf=%p,len=%d,tso_segsz=%d,csum_flags=%b,flags=%#x",
1470 m0, mlen, m0->m_pkthdr.tso_segsz,
1471 (int)m0->m_pkthdr.csum_flags, CSUM_BITS, m0->m_flags);
1472 panic("tx tso packet too small");
1473 }
1474
1475 /* Make sure that ether, ip, tcp headers are all in m0 */
1476 if (__predict_false(m0->m_len < TCPPKTHDRSIZE)) {
1477 m0 = m_pullup(m0, TCPPKTHDRSIZE);
1478 if (__predict_false(m0 == NULL)) {
1479 /* XXX panic probably an overreaction */
1480 panic("couldn't fit header into mbuf");
1481 }
1482 }
1483
1484 eh = mtod(m0, struct ether_header *);
1485 eth_type = eh->ether_type;
1486 if (eth_type == htons(ETHERTYPE_VLAN)) {
1487 struct ether_vlan_header *evh = (void *)eh;
1488
1489 tso_info |= V_LSO_ETH_TYPE(CPL_ETH_II_VLAN);
1490 l3hdr = evh + 1;
1491 eth_type = evh->evl_proto;
1492 } else {
1493 tso_info |= V_LSO_ETH_TYPE(CPL_ETH_II);
1494 l3hdr = eh + 1;
1495 }
1496
1497 if (eth_type == htons(ETHERTYPE_IP)) {
1498 struct ip *ip = l3hdr;
1499
1500 tso_info |= V_LSO_IPHDR_WORDS(ip->ip_hl);
1501 tcp = (struct tcphdr *)(ip + 1);
1502 } else if (eth_type == htons(ETHERTYPE_IPV6)) {
1503 struct ip6_hdr *ip6 = l3hdr;
1504
1505 KASSERT(ip6->ip6_nxt == IPPROTO_TCP,
1506 ("%s: CSUM_TSO with ip6_nxt %d",
1507 __func__, ip6->ip6_nxt));
1508
1509 tso_info |= F_LSO_IPV6;
1510 tso_info |= V_LSO_IPHDR_WORDS(sizeof(*ip6) >> 2);
1511 tcp = (struct tcphdr *)(ip6 + 1);
1512 } else
1513 panic("%s: CSUM_TSO but neither ip nor ip6", __func__);
1514
1515 tso_info |= V_LSO_TCPHDR_WORDS(tcp->th_off);
1516 hdr->lso_info = htonl(tso_info);
1517
1518 if (__predict_false(mlen <= PIO_LEN)) {
1519 /*
1520 * pkt not undersized but fits in PIO_LEN
1521 * Indicates a TSO bug at the higher levels.
1522 */
1523 txsd->m = NULL;
1524 m_copydata(m0, 0, mlen, (caddr_t)&txd->flit[3]);
1525 flits = (mlen + 7) / 8 + 3;
1526 wr_hi = htonl(V_WR_BCNTLFLT(mlen & 7) |
1527 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) |
1528 F_WR_SOP | F_WR_EOP | txqs.compl);
1529 wr_lo = htonl(V_WR_LEN(flits) |
1530 V_WR_GEN(txqs.gen) | V_WR_TID(txq->token));
1531 set_wr_hdr(&hdr->wr, wr_hi, wr_lo);
1532 wmb();
1533 ETHER_BPF_MTAP(pi->ifp, m0);
1534 wr_gen2(txd, txqs.gen);
1535 check_ring_tx_db(sc, txq, 0);
1536 m_freem(m0);
1537 return (0);
1538 }
1539 flits = 3;
1540 } else {
1541 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)txd;
1542
1543 GET_VTAG(cntrl, m0);
1544 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1545 if (__predict_false(!(m0->m_pkthdr.csum_flags & CSUM_IP)))
1546 cntrl |= F_TXPKT_IPCSUM_DIS;
1547 if (__predict_false(!(m0->m_pkthdr.csum_flags & (CSUM_TCP |
1548 CSUM_UDP | CSUM_UDP_IPV6 | CSUM_TCP_IPV6))))
1549 cntrl |= F_TXPKT_L4CSUM_DIS;
1550 cpl->cntrl = htonl(cntrl);
1551 cpl->len = htonl(mlen | 0x80000000);
1552
1553 if (mlen <= PIO_LEN) {
1554 txsd->m = NULL;
1555 m_copydata(m0, 0, mlen, (caddr_t)&txd->flit[2]);
1556 flits = (mlen + 7) / 8 + 2;
1557
1558 wr_hi = htonl(V_WR_BCNTLFLT(mlen & 7) |
1559 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) |
1560 F_WR_SOP | F_WR_EOP | txqs.compl);
1561 wr_lo = htonl(V_WR_LEN(flits) |
1562 V_WR_GEN(txqs.gen) | V_WR_TID(txq->token));
1563 set_wr_hdr(&cpl->wr, wr_hi, wr_lo);
1564 wmb();
1565 ETHER_BPF_MTAP(pi->ifp, m0);
1566 wr_gen2(txd, txqs.gen);
1567 check_ring_tx_db(sc, txq, 0);
1568 m_freem(m0);
1569 return (0);
1570 }
1571 flits = 2;
1572 }
1573 wrp = (struct work_request_hdr *)txd;
1574 sgp = (ndesc == 1) ? (struct sg_ent *)&txd->flit[flits] : sgl;
1575 make_sgl(sgp, segs, nsegs);
1576
1577 sgl_flits = sgl_len(nsegs);
1578
1579 ETHER_BPF_MTAP(pi->ifp, m0);
1580
1581 KASSERT(ndesc <= 4, ("ndesc too large %d", ndesc));
1582 wr_hi = htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | txqs.compl);
1583 wr_lo = htonl(V_WR_TID(txq->token));
1584 write_wr_hdr_sgl(ndesc, txd, &txqs, txq, sgl, flits,
1585 sgl_flits, wr_hi, wr_lo);
1586 check_ring_tx_db(sc, txq, 0);
1587
1588 return (0);
1589}
1590
1591void
1592cxgb_tx_watchdog(void *arg)
1593{
1594 struct sge_qset *qs = arg;
1595 struct sge_txq *txq = &qs->txq[TXQ_ETH];
1596
1597 if (qs->coalescing != 0 &&
1598 (txq->in_use <= cxgb_tx_coalesce_enable_stop) &&
1599 TXQ_RING_EMPTY(qs))
1600 qs->coalescing = 0;
1601 else if (qs->coalescing == 0 &&
1602 (txq->in_use >= cxgb_tx_coalesce_enable_start))
1603 qs->coalescing = 1;
1604 if (TXQ_TRYLOCK(qs)) {
1605 qs->qs_flags |= QS_FLUSHING;
1606 cxgb_start_locked(qs);
1607 qs->qs_flags &= ~QS_FLUSHING;
1608 TXQ_UNLOCK(qs);
1609 }
1610 if (qs->port->ifp->if_drv_flags & IFF_DRV_RUNNING)
1611 callout_reset_on(&txq->txq_watchdog, hz/4, cxgb_tx_watchdog,
1612 qs, txq->txq_watchdog.c_cpu);
1613}
1614
1615static void
1616cxgb_tx_timeout(void *arg)
1617{
1618 struct sge_qset *qs = arg;
1619 struct sge_txq *txq = &qs->txq[TXQ_ETH];
1620
1621 if (qs->coalescing == 0 && (txq->in_use >= (txq->size>>3)))
1622 qs->coalescing = 1;
1623 if (TXQ_TRYLOCK(qs)) {
1624 qs->qs_flags |= QS_TIMEOUT;
1625 cxgb_start_locked(qs);
1626 qs->qs_flags &= ~QS_TIMEOUT;
1627 TXQ_UNLOCK(qs);
1628 }
1629}
1630
1631static void
1632cxgb_start_locked(struct sge_qset *qs)
1633{
1634 struct mbuf *m_head = NULL;
1635 struct sge_txq *txq = &qs->txq[TXQ_ETH];
1636 struct port_info *pi = qs->port;
1637 struct ifnet *ifp = pi->ifp;
1638
1639 if (qs->qs_flags & (QS_FLUSHING|QS_TIMEOUT))
1640 reclaim_completed_tx(qs, 0, TXQ_ETH);
1641
1642 if (!pi->link_config.link_ok) {
1643 TXQ_RING_FLUSH(qs);
1644 return;
1645 }
1646 TXQ_LOCK_ASSERT(qs);
1647 while (!TXQ_RING_EMPTY(qs) && (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
1648 pi->link_config.link_ok) {
1649 reclaim_completed_tx(qs, cxgb_tx_reclaim_threshold, TXQ_ETH);
1650
1651 if (txq->size - txq->in_use <= TX_MAX_DESC)
1652 break;
1653
1654 if ((m_head = cxgb_dequeue(qs)) == NULL)
1655 break;
1656 /*
1657 * Encapsulation can modify our pointer, and or make it
1658 * NULL on failure. In that event, we can't requeue.
1659 */
1660 if (t3_encap(qs, &m_head) || m_head == NULL)
1661 break;
1662
1663 m_head = NULL;
1664 }
1665
1666 if (txq->db_pending)
1667 check_ring_tx_db(pi->adapter, txq, 1);
1668
1669 if (!TXQ_RING_EMPTY(qs) && callout_pending(&txq->txq_timer) == 0 &&
1670 pi->link_config.link_ok)
1671 callout_reset_on(&txq->txq_timer, 1, cxgb_tx_timeout,
1672 qs, txq->txq_timer.c_cpu);
1673 if (m_head != NULL)
1674 m_freem(m_head);
1675}
1676
1677static int
1678cxgb_transmit_locked(struct ifnet *ifp, struct sge_qset *qs, struct mbuf *m)
1679{
1680 struct port_info *pi = qs->port;
1681 struct sge_txq *txq = &qs->txq[TXQ_ETH];
1682 struct buf_ring *br = txq->txq_mr;
1683 int error, avail;
1684
1685 avail = txq->size - txq->in_use;
1686 TXQ_LOCK_ASSERT(qs);
1687
1688 /*
1689 * We can only do a direct transmit if the following are true:
1690 * - we aren't coalescing (ring < 3/4 full)
1691 * - the link is up -- checked in caller
1692 * - there are no packets enqueued already
1693 * - there is space in hardware transmit queue
1694 */
1695 if (check_pkt_coalesce(qs) == 0 &&
1696 !TXQ_RING_NEEDS_ENQUEUE(qs) && avail > TX_MAX_DESC) {
1697 if (t3_encap(qs, &m)) {
1698 if (m != NULL &&
1699 (error = drbr_enqueue(ifp, br, m)) != 0)
1700 return (error);
1701 } else {
1702 if (txq->db_pending)
1703 check_ring_tx_db(pi->adapter, txq, 1);
1704
1705 /*
1706 * We've bypassed the buf ring so we need to update
1707 * the stats directly
1708 */
1709 txq->txq_direct_packets++;
1710 txq->txq_direct_bytes += m->m_pkthdr.len;
1711 }
1712 } else if ((error = drbr_enqueue(ifp, br, m)) != 0)
1713 return (error);
1714
1715 reclaim_completed_tx(qs, cxgb_tx_reclaim_threshold, TXQ_ETH);
1716 if (!TXQ_RING_EMPTY(qs) && pi->link_config.link_ok &&
1717 (!check_pkt_coalesce(qs) || (drbr_inuse(ifp, br) >= 7)))
1718 cxgb_start_locked(qs);
1719 else if (!TXQ_RING_EMPTY(qs) && !callout_pending(&txq->txq_timer))
1720 callout_reset_on(&txq->txq_timer, 1, cxgb_tx_timeout,
1721 qs, txq->txq_timer.c_cpu);
1722 return (0);
1723}
1724
1725int
1726cxgb_transmit(struct ifnet *ifp, struct mbuf *m)
1727{
1728 struct sge_qset *qs;
1729 struct port_info *pi = ifp->if_softc;
1730 int error, qidx = pi->first_qset;
1731
1732 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0
1733 ||(!pi->link_config.link_ok)) {
1734 m_freem(m);
1735 return (0);
1736 }
1737
1738 /* check if flowid is set */
1739 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
1740 qidx = (m->m_pkthdr.flowid % pi->nqsets) + pi->first_qset;
1741
1742 qs = &pi->adapter->sge.qs[qidx];
1743
1744 if (TXQ_TRYLOCK(qs)) {
1745 /* XXX running */
1746 error = cxgb_transmit_locked(ifp, qs, m);
1747 TXQ_UNLOCK(qs);
1748 } else
1749 error = drbr_enqueue(ifp, qs->txq[TXQ_ETH].txq_mr, m);
1750 return (error);
1751}
1752
1753void
1754cxgb_qflush(struct ifnet *ifp)
1755{
1756 /*
1757 * flush any enqueued mbufs in the buf_rings
1758 * and in the transmit queues
1759 * no-op for now
1760 */
1761 return;
1762}
1763
1764/**
1765 * write_imm - write a packet into a Tx descriptor as immediate data
1766 * @d: the Tx descriptor to write
1767 * @m: the packet
1768 * @len: the length of packet data to write as immediate data
1769 * @gen: the generation bit value to write
1770 *
1771 * Writes a packet as immediate data into a Tx descriptor. The packet
1772 * contains a work request at its beginning. We must write the packet
1773 * carefully so the SGE doesn't read accidentally before it's written in
1774 * its entirety.
1775 */
1776static __inline void
1777write_imm(struct tx_desc *d, caddr_t src,
1778 unsigned int len, unsigned int gen)
1779{
1780 struct work_request_hdr *from = (struct work_request_hdr *)src;
1781 struct work_request_hdr *to = (struct work_request_hdr *)d;
1782 uint32_t wr_hi, wr_lo;
1783
1784 KASSERT(len <= WR_LEN && len >= sizeof(*from),
1785 ("%s: invalid len %d", __func__, len));
1786
1787 memcpy(&to[1], &from[1], len - sizeof(*from));
1788 wr_hi = from->wrh_hi | htonl(F_WR_SOP | F_WR_EOP |
1789 V_WR_BCNTLFLT(len & 7));
1790 wr_lo = from->wrh_lo | htonl(V_WR_GEN(gen) | V_WR_LEN((len + 7) / 8));
1791 set_wr_hdr(to, wr_hi, wr_lo);
1792 wmb();
1793 wr_gen2(d, gen);
1794}
1795
1796/**
1797 * check_desc_avail - check descriptor availability on a send queue
1798 * @adap: the adapter
1799 * @q: the TX queue
1800 * @m: the packet needing the descriptors
1801 * @ndesc: the number of Tx descriptors needed
1802 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1803 *
1804 * Checks if the requested number of Tx descriptors is available on an
1805 * SGE send queue. If the queue is already suspended or not enough
1806 * descriptors are available the packet is queued for later transmission.
1807 * Must be called with the Tx queue locked.
1808 *
1809 * Returns 0 if enough descriptors are available, 1 if there aren't
1810 * enough descriptors and the packet has been queued, and 2 if the caller
1811 * needs to retry because there weren't enough descriptors at the
1812 * beginning of the call but some freed up in the mean time.
1813 */
1814static __inline int
1815check_desc_avail(adapter_t *adap, struct sge_txq *q,
1816 struct mbuf *m, unsigned int ndesc,
1817 unsigned int qid)
1818{
1819 /*
1820 * XXX We currently only use this for checking the control queue
1821 * the control queue is only used for binding qsets which happens
1822 * at init time so we are guaranteed enough descriptors
1823 */
1824 if (__predict_false(mbufq_len(&q->sendq))) {
1825addq_exit: (void )mbufq_enqueue(&q->sendq, m);
1826 return 1;
1827 }
1828 if (__predict_false(q->size - q->in_use < ndesc)) {
1829
1830 struct sge_qset *qs = txq_to_qset(q, qid);
1831
1832 setbit(&qs->txq_stopped, qid);
1833 if (should_restart_tx(q) &&
1834 test_and_clear_bit(qid, &qs->txq_stopped))
1835 return 2;
1836
1837 q->stops++;
1838 goto addq_exit;
1839 }
1840 return 0;
1841}
1842
1843
1844/**
1845 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1846 * @q: the SGE control Tx queue
1847 *
1848 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1849 * that send only immediate data (presently just the control queues) and
1850 * thus do not have any mbufs
1851 */
1852static __inline void
1853reclaim_completed_tx_imm(struct sge_txq *q)
1854{
1855 unsigned int reclaim = q->processed - q->cleaned;
1856
1857 q->in_use -= reclaim;
1858 q->cleaned += reclaim;
1859}
1860
1861/**
1862 * ctrl_xmit - send a packet through an SGE control Tx queue
1863 * @adap: the adapter
1864 * @q: the control queue
1865 * @m: the packet
1866 *
1867 * Send a packet through an SGE control Tx queue. Packets sent through
1868 * a control queue must fit entirely as immediate data in a single Tx
1869 * descriptor and have no page fragments.
1870 */
1871static int
1872ctrl_xmit(adapter_t *adap, struct sge_qset *qs, struct mbuf *m)
1873{
1874 int ret;
1875 struct work_request_hdr *wrp = mtod(m, struct work_request_hdr *);
1876 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1877
1878 KASSERT(m->m_len <= WR_LEN, ("%s: bad tx data", __func__));
1879
1880 wrp->wrh_hi |= htonl(F_WR_SOP | F_WR_EOP);
1881 wrp->wrh_lo = htonl(V_WR_TID(q->token));
1882
1883 TXQ_LOCK(qs);
1884again: reclaim_completed_tx_imm(q);
1885
1886 ret = check_desc_avail(adap, q, m, 1, TXQ_CTRL);
1887 if (__predict_false(ret)) {
1888 if (ret == 1) {
1889 TXQ_UNLOCK(qs);
1890 return (ENOSPC);
1891 }
1892 goto again;
1893 }
1894 write_imm(&q->desc[q->pidx], m->m_data, m->m_len, q->gen);
1895
1896 q->in_use++;
1897 if (++q->pidx >= q->size) {
1898 q->pidx = 0;
1899 q->gen ^= 1;
1900 }
1901 TXQ_UNLOCK(qs);
1902 wmb();
1903 t3_write_reg(adap, A_SG_KDOORBELL,
1904 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1905
1906 m_free(m);
1907 return (0);
1908}
1909
1910
1911/**
1912 * restart_ctrlq - restart a suspended control queue
1913 * @qs: the queue set cotaining the control queue
1914 *
1915 * Resumes transmission on a suspended Tx control queue.
1916 */
1917static void
1918restart_ctrlq(void *data, int npending)
1919{
1920 struct mbuf *m;
1921 struct sge_qset *qs = (struct sge_qset *)data;
1922 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1923 adapter_t *adap = qs->port->adapter;
1924
1925 TXQ_LOCK(qs);
1926again: reclaim_completed_tx_imm(q);
1927
1928 while (q->in_use < q->size &&
1929 (m = mbufq_dequeue(&q->sendq)) != NULL) {
1930
1931 write_imm(&q->desc[q->pidx], m->m_data, m->m_len, q->gen);
1932 m_free(m);
1933
1934 if (++q->pidx >= q->size) {
1935 q->pidx = 0;
1936 q->gen ^= 1;
1937 }
1938 q->in_use++;
1939 }
1940 if (mbufq_len(&q->sendq)) {
1941 setbit(&qs->txq_stopped, TXQ_CTRL);
1942
1943 if (should_restart_tx(q) &&
1944 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1945 goto again;
1946 q->stops++;
1947 }
1948 TXQ_UNLOCK(qs);
1949 t3_write_reg(adap, A_SG_KDOORBELL,
1950 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1951}
1952
1953
1954/*
1955 * Send a management message through control queue 0
1956 */
1957int
1958t3_mgmt_tx(struct adapter *adap, struct mbuf *m)
1959{
1960 return ctrl_xmit(adap, &adap->sge.qs[0], m);
1961}
1962
1963/**
1964 * free_qset - free the resources of an SGE queue set
1965 * @sc: the controller owning the queue set
1966 * @q: the queue set
1967 *
1968 * Release the HW and SW resources associated with an SGE queue set, such
1969 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
1970 * queue set must be quiesced prior to calling this.
1971 */
1972static void
1973t3_free_qset(adapter_t *sc, struct sge_qset *q)
1974{
1975 int i;
1976
1977 reclaim_completed_tx(q, 0, TXQ_ETH);
1978 if (q->txq[TXQ_ETH].txq_mr != NULL)
1979 buf_ring_free(q->txq[TXQ_ETH].txq_mr, M_DEVBUF);
1980 if (q->txq[TXQ_ETH].txq_ifq != NULL) {
1981 ifq_delete(q->txq[TXQ_ETH].txq_ifq);
1982 free(q->txq[TXQ_ETH].txq_ifq, M_DEVBUF);
1983 }
1984
1985 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
1986 if (q->fl[i].desc) {
1987 mtx_lock_spin(&sc->sge.reg_lock);
1988 t3_sge_disable_fl(sc, q->fl[i].cntxt_id);
1989 mtx_unlock_spin(&sc->sge.reg_lock);
1990 bus_dmamap_unload(q->fl[i].desc_tag, q->fl[i].desc_map);
1991 bus_dmamem_free(q->fl[i].desc_tag, q->fl[i].desc,
1992 q->fl[i].desc_map);
1993 bus_dma_tag_destroy(q->fl[i].desc_tag);
1994 bus_dma_tag_destroy(q->fl[i].entry_tag);
1995 }
1996 if (q->fl[i].sdesc) {
1997 free_rx_bufs(sc, &q->fl[i]);
1998 free(q->fl[i].sdesc, M_DEVBUF);
1999 }
2000 }
2001
2002 mtx_unlock(&q->lock);
2003 MTX_DESTROY(&q->lock);
2004 for (i = 0; i < SGE_TXQ_PER_SET; i++) {
2005 if (q->txq[i].desc) {
2006 mtx_lock_spin(&sc->sge.reg_lock);
2007 t3_sge_enable_ecntxt(sc, q->txq[i].cntxt_id, 0);
2008 mtx_unlock_spin(&sc->sge.reg_lock);
2009 bus_dmamap_unload(q->txq[i].desc_tag,
2010 q->txq[i].desc_map);
2011 bus_dmamem_free(q->txq[i].desc_tag, q->txq[i].desc,
2012 q->txq[i].desc_map);
2013 bus_dma_tag_destroy(q->txq[i].desc_tag);
2014 bus_dma_tag_destroy(q->txq[i].entry_tag);
2015 }
2016 if (q->txq[i].sdesc) {
2017 free(q->txq[i].sdesc, M_DEVBUF);
2018 }
2019 }
2020
2021 if (q->rspq.desc) {
2022 mtx_lock_spin(&sc->sge.reg_lock);
2023 t3_sge_disable_rspcntxt(sc, q->rspq.cntxt_id);
2024 mtx_unlock_spin(&sc->sge.reg_lock);
2025
2026 bus_dmamap_unload(q->rspq.desc_tag, q->rspq.desc_map);
2027 bus_dmamem_free(q->rspq.desc_tag, q->rspq.desc,
2028 q->rspq.desc_map);
2029 bus_dma_tag_destroy(q->rspq.desc_tag);
2030 MTX_DESTROY(&q->rspq.lock);
2031 }
2032
2033#if defined(INET6) || defined(INET)
2034 tcp_lro_free(&q->lro.ctrl);
2035#endif
2036
2037 bzero(q, sizeof(*q));
2038}
2039
2040/**
2041 * t3_free_sge_resources - free SGE resources
2042 * @sc: the adapter softc
2043 *
2044 * Frees resources used by the SGE queue sets.
2045 */
2046void
2047t3_free_sge_resources(adapter_t *sc, int nqsets)
2048{
2049 int i;
2050
2051 for (i = 0; i < nqsets; ++i) {
2052 TXQ_LOCK(&sc->sge.qs[i]);
2053 t3_free_qset(sc, &sc->sge.qs[i]);
2054 }
2055}
2056
2057/**
2058 * t3_sge_start - enable SGE
2059 * @sc: the controller softc
2060 *
2061 * Enables the SGE for DMAs. This is the last step in starting packet
2062 * transfers.
2063 */
2064void
2065t3_sge_start(adapter_t *sc)
2066{
2067 t3_set_reg_field(sc, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
2068}
2069
2070/**
2071 * t3_sge_stop - disable SGE operation
2072 * @sc: the adapter
2073 *
2074 * Disables the DMA engine. This can be called in emeregencies (e.g.,
2075 * from error interrupts) or from normal process context. In the latter
2076 * case it also disables any pending queue restart tasklets. Note that
2077 * if it is called in interrupt context it cannot disable the restart
2078 * tasklets as it cannot wait, however the tasklets will have no effect
2079 * since the doorbells are disabled and the driver will call this again
2080 * later from process context, at which time the tasklets will be stopped
2081 * if they are still running.
2082 */
2083void
2084t3_sge_stop(adapter_t *sc)
2085{
2086 int i, nqsets;
2087
2088 t3_set_reg_field(sc, A_SG_CONTROL, F_GLOBALENABLE, 0);
2089
2090 if (sc->tq == NULL)
2091 return;
2092
2093 for (nqsets = i = 0; i < (sc)->params.nports; i++)
2094 nqsets += sc->port[i].nqsets;
2095#ifdef notyet
2096 /*
2097 *
2098 * XXX
2099 */
2100 for (i = 0; i < nqsets; ++i) {
2101 struct sge_qset *qs = &sc->sge.qs[i];
2102
2103 taskqueue_drain(sc->tq, &qs->txq[TXQ_OFLD].qresume_task);
2104 taskqueue_drain(sc->tq, &qs->txq[TXQ_CTRL].qresume_task);
2105 }
2106#endif
2107}
2108
2109/**
2110 * t3_free_tx_desc - reclaims Tx descriptors and their buffers
2111 * @adapter: the adapter
2112 * @q: the Tx queue to reclaim descriptors from
2113 * @reclaimable: the number of descriptors to reclaim
2114 * @m_vec_size: maximum number of buffers to reclaim
2115 * @desc_reclaimed: returns the number of descriptors reclaimed
2116 *
2117 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
2118 * Tx buffers. Called with the Tx queue lock held.
2119 *
2120 * Returns number of buffers of reclaimed
2121 */
2122void
2123t3_free_tx_desc(struct sge_qset *qs, int reclaimable, int queue)
2124{
2125 struct tx_sw_desc *txsd;
2126 unsigned int cidx, mask;
2127 struct sge_txq *q = &qs->txq[queue];
2128
2129#ifdef T3_TRACE
2130 T3_TRACE2(sc->tb[q->cntxt_id & 7],
2131 "reclaiming %u Tx descriptors at cidx %u", reclaimable, cidx);
2132#endif
2133 cidx = q->cidx;
2134 mask = q->size - 1;
2135 txsd = &q->sdesc[cidx];
2136
2137 mtx_assert(&qs->lock, MA_OWNED);
2138 while (reclaimable--) {
2139 prefetch(q->sdesc[(cidx + 1) & mask].m);
2140 prefetch(q->sdesc[(cidx + 2) & mask].m);
2141
2142 if (txsd->m != NULL) {
2143 if (txsd->flags & TX_SW_DESC_MAPPED) {
2144 bus_dmamap_unload(q->entry_tag, txsd->map);
2145 txsd->flags &= ~TX_SW_DESC_MAPPED;
2146 }
2147 m_freem_list(txsd->m);
2148 txsd->m = NULL;
2149 } else
2150 q->txq_skipped++;
2151
2152 ++txsd;
2153 if (++cidx == q->size) {
2154 cidx = 0;
2155 txsd = q->sdesc;
2156 }
2157 }
2158 q->cidx = cidx;
2159
2160}
2161
2162/**
2163 * is_new_response - check if a response is newly written
2164 * @r: the response descriptor
2165 * @q: the response queue
2166 *
2167 * Returns true if a response descriptor contains a yet unprocessed
2168 * response.
2169 */
2170static __inline int
2171is_new_response(const struct rsp_desc *r,
2172 const struct sge_rspq *q)
2173{
2174 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2175}
2176
2177#define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2178#define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2179 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2180 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2181 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2182
2183/* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2184#define NOMEM_INTR_DELAY 2500
2185
2186#ifdef TCP_OFFLOAD
2187/**
2188 * write_ofld_wr - write an offload work request
2189 * @adap: the adapter
2190 * @m: the packet to send
2191 * @q: the Tx queue
2192 * @pidx: index of the first Tx descriptor to write
2193 * @gen: the generation value to use
2194 * @ndesc: number of descriptors the packet will occupy
2195 *
2196 * Write an offload work request to send the supplied packet. The packet
2197 * data already carry the work request with most fields populated.
2198 */
2199static void
2200write_ofld_wr(adapter_t *adap, struct mbuf *m, struct sge_txq *q,
2201 unsigned int pidx, unsigned int gen, unsigned int ndesc)
2202{
2203 unsigned int sgl_flits, flits;
2204 int i, idx, nsegs, wrlen;
2205 struct work_request_hdr *from;
2206 struct sg_ent *sgp, t3sgl[TX_MAX_SEGS / 2 + 1];
2207 struct tx_desc *d = &q->desc[pidx];
2208 struct txq_state txqs;
2209 struct sglist_seg *segs;
2210 struct ofld_hdr *oh = mtod(m, struct ofld_hdr *);
2211 struct sglist *sgl;
2212
2213 from = (void *)(oh + 1); /* Start of WR within mbuf */
2214 wrlen = m->m_len - sizeof(*oh);
2215
2216 if (!(oh->flags & F_HDR_SGL)) {
2217 write_imm(d, (caddr_t)from, wrlen, gen);
2218
2219 /*
2220 * mbuf with "real" immediate tx data will be enqueue_wr'd by
2221 * t3_push_frames and freed in wr_ack. Others, like those sent
2222 * down by close_conn, t3_send_reset, etc. should be freed here.
2223 */
2224 if (!(oh->flags & F_HDR_DF))
2225 m_free(m);
2226 return;
2227 }
2228
2229 memcpy(&d->flit[1], &from[1], wrlen - sizeof(*from));
2230
2231 sgl = oh->sgl;
2232 flits = wrlen / 8;
2233 sgp = (ndesc == 1) ? (struct sg_ent *)&d->flit[flits] : t3sgl;
2234
2235 nsegs = sgl->sg_nseg;
2236 segs = sgl->sg_segs;
2237 for (idx = 0, i = 0; i < nsegs; i++) {
2238 KASSERT(segs[i].ss_len, ("%s: 0 len in sgl", __func__));
2239 if (i && idx == 0)
2240 ++sgp;
2241 sgp->len[idx] = htobe32(segs[i].ss_len);
2242 sgp->addr[idx] = htobe64(segs[i].ss_paddr);
2243 idx ^= 1;
2244 }
2245 if (idx) {
2246 sgp->len[idx] = 0;
2247 sgp->addr[idx] = 0;
2248 }
2249
2250 sgl_flits = sgl_len(nsegs);
2251 txqs.gen = gen;
2252 txqs.pidx = pidx;
2253 txqs.compl = 0;
2254
2255 write_wr_hdr_sgl(ndesc, d, &txqs, q, t3sgl, flits, sgl_flits,
2256 from->wrh_hi, from->wrh_lo);
2257}
2258
2259/**
2260 * ofld_xmit - send a packet through an offload queue
2261 * @adap: the adapter
2262 * @q: the Tx offload queue
2263 * @m: the packet
2264 *
2265 * Send an offload packet through an SGE offload queue.
2266 */
2267static int
2268ofld_xmit(adapter_t *adap, struct sge_qset *qs, struct mbuf *m)
2269{
2270 int ret;
2271 unsigned int ndesc;
2272 unsigned int pidx, gen;
2273 struct sge_txq *q = &qs->txq[TXQ_OFLD];
2274 struct ofld_hdr *oh = mtod(m, struct ofld_hdr *);
2275
2276 ndesc = G_HDR_NDESC(oh->flags);
2277
2278 TXQ_LOCK(qs);
2279again: reclaim_completed_tx(qs, 16, TXQ_OFLD);
2280 ret = check_desc_avail(adap, q, m, ndesc, TXQ_OFLD);
2281 if (__predict_false(ret)) {
2282 if (ret == 1) {
2283 TXQ_UNLOCK(qs);
2284 return (EINTR);
2285 }
2286 goto again;
2287 }
2288
2289 gen = q->gen;
2290 q->in_use += ndesc;
2291 pidx = q->pidx;
2292 q->pidx += ndesc;
2293 if (q->pidx >= q->size) {
2294 q->pidx -= q->size;
2295 q->gen ^= 1;
2296 }
2297
2298 write_ofld_wr(adap, m, q, pidx, gen, ndesc);
2299 check_ring_tx_db(adap, q, 1);
2300 TXQ_UNLOCK(qs);
2301
2302 return (0);
2303}
2304
2305/**
2306 * restart_offloadq - restart a suspended offload queue
2307 * @qs: the queue set cotaining the offload queue
2308 *
2309 * Resumes transmission on a suspended Tx offload queue.
2310 */
2311static void
2312restart_offloadq(void *data, int npending)
2313{
2314 struct mbuf *m;
2315 struct sge_qset *qs = data;
2316 struct sge_txq *q = &qs->txq[TXQ_OFLD];
2317 adapter_t *adap = qs->port->adapter;
2318 int cleaned;
2319
2320 TXQ_LOCK(qs);
2321again: cleaned = reclaim_completed_tx(qs, 16, TXQ_OFLD);
2322
2323 while ((m = mbufq_first(&q->sendq)) != NULL) {
2324 unsigned int gen, pidx;
2325 struct ofld_hdr *oh = mtod(m, struct ofld_hdr *);
2326 unsigned int ndesc = G_HDR_NDESC(oh->flags);
2327
2328 if (__predict_false(q->size - q->in_use < ndesc)) {
2329 setbit(&qs->txq_stopped, TXQ_OFLD);
2330 if (should_restart_tx(q) &&
2331 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
2332 goto again;
2333 q->stops++;
2334 break;
2335 }
2336
2337 gen = q->gen;
2338 q->in_use += ndesc;
2339 pidx = q->pidx;
2340 q->pidx += ndesc;
2341 if (q->pidx >= q->size) {
2342 q->pidx -= q->size;
2343 q->gen ^= 1;
2344 }
2345
2346 (void)mbufq_dequeue(&q->sendq);
2347 TXQ_UNLOCK(qs);
2348 write_ofld_wr(adap, m, q, pidx, gen, ndesc);
2349 TXQ_LOCK(qs);
2350 }
2351#if USE_GTS
2352 set_bit(TXQ_RUNNING, &q->flags);
2353 set_bit(TXQ_LAST_PKT_DB, &q->flags);
2354#endif
2355 TXQ_UNLOCK(qs);
2356 wmb();
2357 t3_write_reg(adap, A_SG_KDOORBELL,
2358 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
2359}
2360
2361/**
2362 * t3_offload_tx - send an offload packet
2363 * @m: the packet
2364 *
2365 * Sends an offload packet. We use the packet priority to select the
2366 * appropriate Tx queue as follows: bit 0 indicates whether the packet
2367 * should be sent as regular or control, bits 1-3 select the queue set.
2368 */
2369int
2370t3_offload_tx(struct adapter *sc, struct mbuf *m)
2371{
2372 struct ofld_hdr *oh = mtod(m, struct ofld_hdr *);
2373 struct sge_qset *qs = &sc->sge.qs[G_HDR_QSET(oh->flags)];
2374
2375 if (oh->flags & F_HDR_CTRL) {
2376 m_adj(m, sizeof (*oh)); /* trim ofld_hdr off */
2377 return (ctrl_xmit(sc, qs, m));
2378 } else
2379 return (ofld_xmit(sc, qs, m));
2380}
2381#endif
2382
2383static void
2384restart_tx(struct sge_qset *qs)
2385{
2386 struct adapter *sc = qs->port->adapter;
2387
2388 if (isset(&qs->txq_stopped, TXQ_OFLD) &&
2389 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
2390 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
2391 qs->txq[TXQ_OFLD].restarts++;
2392 taskqueue_enqueue(sc->tq, &qs->txq[TXQ_OFLD].qresume_task);
2393 }
2394
2395 if (isset(&qs->txq_stopped, TXQ_CTRL) &&
2396 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
2397 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
2398 qs->txq[TXQ_CTRL].restarts++;
2399 taskqueue_enqueue(sc->tq, &qs->txq[TXQ_CTRL].qresume_task);
2400 }
2401}
2402
2403/**
2404 * t3_sge_alloc_qset - initialize an SGE queue set
2405 * @sc: the controller softc
2406 * @id: the queue set id
2407 * @nports: how many Ethernet ports will be using this queue set
2408 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2409 * @p: configuration parameters for this queue set
2410 * @ntxq: number of Tx queues for the queue set
2411 * @pi: port info for queue set
2412 *
2413 * Allocate resources and initialize an SGE queue set. A queue set
2414 * comprises a response queue, two Rx free-buffer queues, and up to 3
2415 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2416 * queue, offload queue, and control queue.
2417 */
2418int
2419t3_sge_alloc_qset(adapter_t *sc, u_int id, int nports, int irq_vec_idx,
2420 const struct qset_params *p, int ntxq, struct port_info *pi)
2421{
2422 struct sge_qset *q = &sc->sge.qs[id];
2423 int i, ret = 0;
2424
2425 MTX_INIT(&q->lock, q->namebuf, NULL, MTX_DEF);
2426 q->port = pi;
2427 q->adap = sc;
2428
2429 if ((q->txq[TXQ_ETH].txq_mr = buf_ring_alloc(cxgb_txq_buf_ring_size,
2430 M_DEVBUF, M_WAITOK, &q->lock)) == NULL) {
2431 device_printf(sc->dev, "failed to allocate mbuf ring\n");
2432 goto err;
2433 }
2434 if ((q->txq[TXQ_ETH].txq_ifq = malloc(sizeof(struct ifaltq), M_DEVBUF,
2435 M_NOWAIT | M_ZERO)) == NULL) {
2436 device_printf(sc->dev, "failed to allocate ifq\n");
2437 goto err;
2438 }
2439 ifq_init(q->txq[TXQ_ETH].txq_ifq, pi->ifp);
2440 callout_init(&q->txq[TXQ_ETH].txq_timer, 1);
2441 callout_init(&q->txq[TXQ_ETH].txq_watchdog, 1);
2442 q->txq[TXQ_ETH].txq_timer.c_cpu = id % mp_ncpus;
2443 q->txq[TXQ_ETH].txq_watchdog.c_cpu = id % mp_ncpus;
2444
2445 init_qset_cntxt(q, id);
2446 q->idx = id;
2447 if ((ret = alloc_ring(sc, p->fl_size, sizeof(struct rx_desc),
2448 sizeof(struct rx_sw_desc), &q->fl[0].phys_addr,
2449 &q->fl[0].desc, &q->fl[0].sdesc,
2450 &q->fl[0].desc_tag, &q->fl[0].desc_map,
2451 sc->rx_dmat, &q->fl[0].entry_tag)) != 0) {
2452 printf("error %d from alloc ring fl0\n", ret);
2453 goto err;
2454 }
2455
2456 if ((ret = alloc_ring(sc, p->jumbo_size, sizeof(struct rx_desc),
2457 sizeof(struct rx_sw_desc), &q->fl[1].phys_addr,
2458 &q->fl[1].desc, &q->fl[1].sdesc,
2459 &q->fl[1].desc_tag, &q->fl[1].desc_map,
2460 sc->rx_jumbo_dmat, &q->fl[1].entry_tag)) != 0) {
2461 printf("error %d from alloc ring fl1\n", ret);
2462 goto err;
2463 }
2464
2465 if ((ret = alloc_ring(sc, p->rspq_size, sizeof(struct rsp_desc), 0,
2466 &q->rspq.phys_addr, &q->rspq.desc, NULL,
2467 &q->rspq.desc_tag, &q->rspq.desc_map,
2468 NULL, NULL)) != 0) {
2469 printf("error %d from alloc ring rspq\n", ret);
2470 goto err;
2471 }
2472
2473 snprintf(q->rspq.lockbuf, RSPQ_NAME_LEN, "t3 rspq lock %d:%d",
2474 device_get_unit(sc->dev), irq_vec_idx);
2475 MTX_INIT(&q->rspq.lock, q->rspq.lockbuf, NULL, MTX_DEF);
2476
2477 for (i = 0; i < ntxq; ++i) {
2478 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
2479
2480 if ((ret = alloc_ring(sc, p->txq_size[i],
2481 sizeof(struct tx_desc), sz,
2482 &q->txq[i].phys_addr, &q->txq[i].desc,
2483 &q->txq[i].sdesc, &q->txq[i].desc_tag,
2484 &q->txq[i].desc_map,
2485 sc->tx_dmat, &q->txq[i].entry_tag)) != 0) {
2486 printf("error %d from alloc ring tx %i\n", ret, i);
2487 goto err;
2488 }
2489 mbufq_init(&q->txq[i].sendq, INT_MAX);
2490 q->txq[i].gen = 1;
2491 q->txq[i].size = p->txq_size[i];
2492 }
2493
2494#ifdef TCP_OFFLOAD
2495 TASK_INIT(&q->txq[TXQ_OFLD].qresume_task, 0, restart_offloadq, q);
2496#endif
2497 TASK_INIT(&q->txq[TXQ_CTRL].qresume_task, 0, restart_ctrlq, q);
2498 TASK_INIT(&q->txq[TXQ_ETH].qreclaim_task, 0, sge_txq_reclaim_handler, q);
2499 TASK_INIT(&q->txq[TXQ_OFLD].qreclaim_task, 0, sge_txq_reclaim_handler, q);
2500
2501 q->fl[0].gen = q->fl[1].gen = 1;
2502 q->fl[0].size = p->fl_size;
2503 q->fl[1].size = p->jumbo_size;
2504
2505 q->rspq.gen = 1;
2506 q->rspq.cidx = 0;
2507 q->rspq.size = p->rspq_size;
2508
2509 q->txq[TXQ_ETH].stop_thres = nports *
2510 flits_to_desc(sgl_len(TX_MAX_SEGS + 1) + 3);
2511
2512 q->fl[0].buf_size = MCLBYTES;
2513 q->fl[0].zone = zone_pack;
2514 q->fl[0].type = EXT_PACKET;
2515
2516 if (p->jumbo_buf_size == MJUM16BYTES) {
2517 q->fl[1].zone = zone_jumbo16;
2518 q->fl[1].type = EXT_JUMBO16;
2519 } else if (p->jumbo_buf_size == MJUM9BYTES) {
2520 q->fl[1].zone = zone_jumbo9;
2521 q->fl[1].type = EXT_JUMBO9;
2522 } else if (p->jumbo_buf_size == MJUMPAGESIZE) {
2523 q->fl[1].zone = zone_jumbop;
2524 q->fl[1].type = EXT_JUMBOP;
2525 } else {
2526 KASSERT(0, ("can't deal with jumbo_buf_size %d.", p->jumbo_buf_size));
2527 ret = EDOOFUS;
2528 goto err;
2529 }
2530 q->fl[1].buf_size = p->jumbo_buf_size;
2531
2532 /* Allocate and setup the lro_ctrl structure */
2533 q->lro.enabled = !!(pi->ifp->if_capenable & IFCAP_LRO);
2534#if defined(INET6) || defined(INET)
2535 ret = tcp_lro_init(&q->lro.ctrl);
2536 if (ret) {
2537 printf("error %d from tcp_lro_init\n", ret);
2538 goto err;
2539 }
2540#endif
2541 q->lro.ctrl.ifp = pi->ifp;
2542
2543 mtx_lock_spin(&sc->sge.reg_lock);
2544 ret = -t3_sge_init_rspcntxt(sc, q->rspq.cntxt_id, irq_vec_idx,
2545 q->rspq.phys_addr, q->rspq.size,
2546 q->fl[0].buf_size, 1, 0);
2547 if (ret) {
2548 printf("error %d from t3_sge_init_rspcntxt\n", ret);
2549 goto err_unlock;
2550 }
2551
2552 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
2553 ret = -t3_sge_init_flcntxt(sc, q->fl[i].cntxt_id, 0,
2554 q->fl[i].phys_addr, q->fl[i].size,
2555 q->fl[i].buf_size, p->cong_thres, 1,
2556 0);
2557 if (ret) {
2558 printf("error %d from t3_sge_init_flcntxt for index i=%d\n", ret, i);
2559 goto err_unlock;
2560 }
2561 }
2562
2563 ret = -t3_sge_init_ecntxt(sc, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
2564 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
2565 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
2566 1, 0);
2567 if (ret) {
2568 printf("error %d from t3_sge_init_ecntxt\n", ret);
2569 goto err_unlock;
2570 }
2571
2572 if (ntxq > 1) {
2573 ret = -t3_sge_init_ecntxt(sc, q->txq[TXQ_OFLD].cntxt_id,
2574 USE_GTS, SGE_CNTXT_OFLD, id,
2575 q->txq[TXQ_OFLD].phys_addr,
2576 q->txq[TXQ_OFLD].size, 0, 1, 0);
2577 if (ret) {
2578 printf("error %d from t3_sge_init_ecntxt\n", ret);
2579 goto err_unlock;
2580 }
2581 }
2582
2583 if (ntxq > 2) {
2584 ret = -t3_sge_init_ecntxt(sc, q->txq[TXQ_CTRL].cntxt_id, 0,
2585 SGE_CNTXT_CTRL, id,
2586 q->txq[TXQ_CTRL].phys_addr,
2587 q->txq[TXQ_CTRL].size,
2588 q->txq[TXQ_CTRL].token, 1, 0);
2589 if (ret) {
2590 printf("error %d from t3_sge_init_ecntxt\n", ret);
2591 goto err_unlock;
2592 }
2593 }
2594
2595 mtx_unlock_spin(&sc->sge.reg_lock);
2596 t3_update_qset_coalesce(q, p);
2597
2598 refill_fl(sc, &q->fl[0], q->fl[0].size);
2599 refill_fl(sc, &q->fl[1], q->fl[1].size);
2600 refill_rspq(sc, &q->rspq, q->rspq.size - 1);
2601
2602 t3_write_reg(sc, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
2603 V_NEWTIMER(q->rspq.holdoff_tmr));
2604
2605 return (0);
2606
2607err_unlock:
2608 mtx_unlock_spin(&sc->sge.reg_lock);
2609err:
2610 TXQ_LOCK(q);
2611 t3_free_qset(sc, q);
2612
2613 return (ret);
2614}
2615
2616/*
2617 * Remove CPL_RX_PKT headers from the mbuf and reduce it to a regular mbuf with
2618 * ethernet data. Hardware assistance with various checksums and any vlan tag
2619 * will also be taken into account here.
2620 */
2621void
2622t3_rx_eth(struct adapter *adap, struct mbuf *m, int ethpad)
2623{
2624 struct cpl_rx_pkt *cpl = (struct cpl_rx_pkt *)(mtod(m, uint8_t *) + ethpad);
2625 struct port_info *pi = &adap->port[adap->rxpkt_map[cpl->iff]];
2626 struct ifnet *ifp = pi->ifp;
2627
2628 if (cpl->vlan_valid) {
2629 m->m_pkthdr.ether_vtag = ntohs(cpl->vlan);
2630 m->m_flags |= M_VLANTAG;
2631 }
2632
2633 m->m_pkthdr.rcvif = ifp;
2634 /*
2635 * adjust after conversion to mbuf chain
2636 */
2637 m->m_pkthdr.len -= (sizeof(*cpl) + ethpad);
2638 m->m_len -= (sizeof(*cpl) + ethpad);
2639 m->m_data += (sizeof(*cpl) + ethpad);
2640
2641 if (!cpl->fragment && cpl->csum_valid && cpl->csum == 0xffff) {
2642 struct ether_header *eh = mtod(m, void *);
2643 uint16_t eh_type;
2644
2645 if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2646 struct ether_vlan_header *evh = mtod(m, void *);
2647
2648 eh_type = evh->evl_proto;
2649 } else
2650 eh_type = eh->ether_type;
2651
2652 if (ifp->if_capenable & IFCAP_RXCSUM &&
2653 eh_type == htons(ETHERTYPE_IP)) {
2654 m->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
2655 CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
2656 m->m_pkthdr.csum_data = 0xffff;
2657 } else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
2658 eh_type == htons(ETHERTYPE_IPV6)) {
2659 m->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
2660 CSUM_PSEUDO_HDR);
2661 m->m_pkthdr.csum_data = 0xffff;
2662 }
2663 }
2664}
2665
2666/**
2667 * get_packet - return the next ingress packet buffer from a free list
2668 * @adap: the adapter that received the packet
2669 * @drop_thres: # of remaining buffers before we start dropping packets
2670 * @qs: the qset that the SGE free list holding the packet belongs to
2671 * @mh: the mbuf header, contains a pointer to the head and tail of the mbuf chain
2672 * @r: response descriptor
2673 *
2674 * Get the next packet from a free list and complete setup of the
2675 * sk_buff. If the packet is small we make a copy and recycle the
2676 * original buffer, otherwise we use the original buffer itself. If a
2677 * positive drop threshold is supplied packets are dropped and their
2678 * buffers recycled if (a) the number of remaining buffers is under the
2679 * threshold and the packet is too big to copy, or (b) the packet should
2680 * be copied but there is no memory for the copy.
2681 */
2682static int
2683get_packet(adapter_t *adap, unsigned int drop_thres, struct sge_qset *qs,
2684 struct t3_mbuf_hdr *mh, struct rsp_desc *r)
2685{
2686
2687 unsigned int len_cq = ntohl(r->len_cq);
2688 struct sge_fl *fl = (len_cq & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2689 int mask, cidx = fl->cidx;
2690 struct rx_sw_desc *sd = &fl->sdesc[cidx];
2691 uint32_t len = G_RSPD_LEN(len_cq);
2692 uint32_t flags = M_EXT;
2693 uint8_t sopeop = G_RSPD_SOP_EOP(ntohl(r->flags));
2694 caddr_t cl;
2695 struct mbuf *m;
2696 int ret = 0;
2697
2698 mask = fl->size - 1;
2699 prefetch(fl->sdesc[(cidx + 1) & mask].m);
2700 prefetch(fl->sdesc[(cidx + 2) & mask].m);
2701 prefetch(fl->sdesc[(cidx + 1) & mask].rxsd_cl);
2702 prefetch(fl->sdesc[(cidx + 2) & mask].rxsd_cl);
2703
2704 fl->credits--;
2705 bus_dmamap_sync(fl->entry_tag, sd->map, BUS_DMASYNC_POSTREAD);
2706
2707 if (recycle_enable && len <= SGE_RX_COPY_THRES &&
2708 sopeop == RSPQ_SOP_EOP) {
2709 if ((m = m_gethdr(M_NOWAIT, MT_DATA)) == NULL)
2710 goto skip_recycle;
2711 cl = mtod(m, void *);
2712 memcpy(cl, sd->rxsd_cl, len);
2713 recycle_rx_buf(adap, fl, fl->cidx);
2714 m->m_pkthdr.len = m->m_len = len;
2715 m->m_flags = 0;
2716 mh->mh_head = mh->mh_tail = m;
2717 ret = 1;
2718 goto done;
2719 } else {
2720 skip_recycle:
2721 bus_dmamap_unload(fl->entry_tag, sd->map);
2722 cl = sd->rxsd_cl;
2723 m = sd->m;
2724
2725 if ((sopeop == RSPQ_SOP_EOP) ||
2726 (sopeop == RSPQ_SOP))
2727 flags |= M_PKTHDR;
2728 m_init(m, fl->zone, fl->buf_size, M_NOWAIT, MT_DATA, flags);
2729 if (fl->zone == zone_pack) {
2730 /*
2731 * restore clobbered data pointer
2732 */
2733 m->m_data = m->m_ext.ext_buf;
2734 } else {
2735 m_cljset(m, cl, fl->type);
2736 }
2737 m->m_len = len;
2738 }
2739 switch(sopeop) {
2740 case RSPQ_SOP_EOP:
2741 ret = 1;
2742 /* FALLTHROUGH */
2743 case RSPQ_SOP:
2744 mh->mh_head = mh->mh_tail = m;
2745 m->m_pkthdr.len = len;
2746 break;
2747 case RSPQ_EOP:
2748 ret = 1;
2749 /* FALLTHROUGH */
2750 case RSPQ_NSOP_NEOP:
2751 if (mh->mh_tail == NULL) {
2752 log(LOG_ERR, "discarding intermediate descriptor entry\n");
2753 m_freem(m);
2754 break;
2755 }
2756 mh->mh_tail->m_next = m;
2757 mh->mh_tail = m;
2758 mh->mh_head->m_pkthdr.len += len;
2759 break;
2760 }
2761 if (cxgb_debug)
2762 printf("len=%d pktlen=%d\n", m->m_len, m->m_pkthdr.len);
2763done:
2764 if (++fl->cidx == fl->size)
2765 fl->cidx = 0;
2766
2767 return (ret);
2768}
2769
2770/**
2771 * handle_rsp_cntrl_info - handles control information in a response
2772 * @qs: the queue set corresponding to the response
2773 * @flags: the response control flags
2774 *
2775 * Handles the control information of an SGE response, such as GTS
2776 * indications and completion credits for the queue set's Tx queues.
2777 * HW coalesces credits, we don't do any extra SW coalescing.
2778 */
2779static __inline void
2780handle_rsp_cntrl_info(struct sge_qset *qs, uint32_t flags)
2781{
2782 unsigned int credits;
2783
2784#if USE_GTS
2785 if (flags & F_RSPD_TXQ0_GTS)
2786 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2787#endif
2788 credits = G_RSPD_TXQ0_CR(flags);
2789 if (credits)
2790 qs->txq[TXQ_ETH].processed += credits;
2791
2792 credits = G_RSPD_TXQ2_CR(flags);
2793 if (credits)
2794 qs->txq[TXQ_CTRL].processed += credits;
2795
2796# if USE_GTS
2797 if (flags & F_RSPD_TXQ1_GTS)
2798 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2799# endif
2800 credits = G_RSPD_TXQ1_CR(flags);
2801 if (credits)
2802 qs->txq[TXQ_OFLD].processed += credits;
2803
2804}
2805
2806static void
2807check_ring_db(adapter_t *adap, struct sge_qset *qs,
2808 unsigned int sleeping)
2809{
2810 ;
2811}
2812
2813/**
2814 * process_responses - process responses from an SGE response queue
2815 * @adap: the adapter
2816 * @qs: the queue set to which the response queue belongs
2817 * @budget: how many responses can be processed in this round
2818 *
2819 * Process responses from an SGE response queue up to the supplied budget.
2820 * Responses include received packets as well as credits and other events
2821 * for the queues that belong to the response queue's queue set.
2822 * A negative budget is effectively unlimited.
2823 *
2824 * Additionally choose the interrupt holdoff time for the next interrupt
2825 * on this queue. If the system is under memory shortage use a fairly
2826 * long delay to help recovery.
2827 */
2828static int
2829process_responses(adapter_t *adap, struct sge_qset *qs, int budget)
2830{
2831 struct sge_rspq *rspq = &qs->rspq;
2832 struct rsp_desc *r = &rspq->desc[rspq->cidx];
2833 int budget_left = budget;
2834 unsigned int sleeping = 0;
2835#if defined(INET6) || defined(INET)
2836 int lro_enabled = qs->lro.enabled;
2837 int skip_lro;
2838 struct lro_ctrl *lro_ctrl = &qs->lro.ctrl;
2839#endif
2840 struct t3_mbuf_hdr *mh = &rspq->rspq_mh;
2841#ifdef DEBUG
2842 static int last_holdoff = 0;
2843 if (cxgb_debug && rspq->holdoff_tmr != last_holdoff) {
2844 printf("next_holdoff=%d\n", rspq->holdoff_tmr);
2845 last_holdoff = rspq->holdoff_tmr;
2846 }
2847#endif
2848 rspq->next_holdoff = rspq->holdoff_tmr;
2849
2850 while (__predict_true(budget_left && is_new_response(r, rspq))) {
2851 int eth, eop = 0, ethpad = 0;
2852 uint32_t flags = ntohl(r->flags);
2853 uint32_t rss_hash = be32toh(r->rss_hdr.rss_hash_val);
2854 uint8_t opcode = r->rss_hdr.opcode;
2855
2856 eth = (opcode == CPL_RX_PKT);
2857
2858 if (__predict_false(flags & F_RSPD_ASYNC_NOTIF)) {
2859 struct mbuf *m;
2860
2861 if (cxgb_debug)
2862 printf("async notification\n");
2863
2864 if (mh->mh_head == NULL) {
2865 mh->mh_head = m_gethdr(M_NOWAIT, MT_DATA);
2866 m = mh->mh_head;
2867 } else {
2868 m = m_gethdr(M_NOWAIT, MT_DATA);
2869 }
2870 if (m == NULL)
2871 goto no_mem;
2872
2873 memcpy(mtod(m, char *), r, AN_PKT_SIZE);
2874 m->m_len = m->m_pkthdr.len = AN_PKT_SIZE;
2875 *mtod(m, char *) = CPL_ASYNC_NOTIF;
2876 opcode = CPL_ASYNC_NOTIF;
2877 eop = 1;
2878 rspq->async_notif++;
2879 goto skip;
2880 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2881 struct mbuf *m = m_gethdr(M_NOWAIT, MT_DATA);
2882
2883 if (m == NULL) {
2884 no_mem:
2885 rspq->next_holdoff = NOMEM_INTR_DELAY;
2886 budget_left--;
2887 break;
2888 }
2889 if (mh->mh_head == NULL)
2890 mh->mh_head = m;
2891 else
2892 mh->mh_tail->m_next = m;
2893 mh->mh_tail = m;
2894
2895 get_imm_packet(adap, r, m);
2896 mh->mh_head->m_pkthdr.len += m->m_len;
2897 eop = 1;
2898 rspq->imm_data++;
2899 } else if (r->len_cq) {
2900 int drop_thresh = eth ? SGE_RX_DROP_THRES : 0;
2901
2902 eop = get_packet(adap, drop_thresh, qs, mh, r);
2903 if (eop) {
2904 if (r->rss_hdr.hash_type && !adap->timestamp) {
2905 M_HASHTYPE_SET(mh->mh_head, M_HASHTYPE_OPAQUE);
2906 mh->mh_head->m_pkthdr.flowid = rss_hash;
2907 }
2908 }
2909
2910 ethpad = 2;
2911 } else {
2912 rspq->pure_rsps++;
2913 }
2914 skip:
2915 if (flags & RSPD_CTRL_MASK) {
2916 sleeping |= flags & RSPD_GTS_MASK;
2917 handle_rsp_cntrl_info(qs, flags);
2918 }
2919
2920 if (!eth && eop) {
2921 rspq->offload_pkts++;
2922#ifdef TCP_OFFLOAD
2923 adap->cpl_handler[opcode](qs, r, mh->mh_head);
2924#else
2925 m_freem(mh->mh_head);
2926#endif
2927 mh->mh_head = NULL;
2928 } else if (eth && eop) {
2929 struct mbuf *m = mh->mh_head;
2930
2931 t3_rx_eth(adap, m, ethpad);
2932
2933 /*
2934 * The T304 sends incoming packets on any qset. If LRO
2935 * is also enabled, we could end up sending packet up
2936 * lro_ctrl->ifp's input. That is incorrect.
2937 *
2938 * The mbuf's rcvif was derived from the cpl header and
2939 * is accurate. Skip LRO and just use that.
2940 */
2941#if defined(INET6) || defined(INET)
2942 skip_lro = __predict_false(qs->port->ifp != m->m_pkthdr.rcvif);
2943
2944 if (lro_enabled && lro_ctrl->lro_cnt && !skip_lro
2945 && (tcp_lro_rx(lro_ctrl, m, 0) == 0)
2946 ) {
2947 /* successfully queue'd for LRO */
2948 } else
2949#endif
2950 {
2951 /*
2952 * LRO not enabled, packet unsuitable for LRO,
2953 * or unable to queue. Pass it up right now in
2954 * either case.
2955 */
2956 struct ifnet *ifp = m->m_pkthdr.rcvif;
2957 (*ifp->if_input)(ifp, m);
2958 }
2959 mh->mh_head = NULL;
2960
2961 }
2962
2963 r++;
2964 if (__predict_false(++rspq->cidx == rspq->size)) {
2965 rspq->cidx = 0;
2966 rspq->gen ^= 1;
2967 r = rspq->desc;
2968 }
2969
2970 if (++rspq->credits >= 64) {
2971 refill_rspq(adap, rspq, rspq->credits);
2972 rspq->credits = 0;
2973 }
2974 __refill_fl_lt(adap, &qs->fl[0], 32);
2975 __refill_fl_lt(adap, &qs->fl[1], 32);
2976 --budget_left;
2977 }
2978
2979#if defined(INET6) || defined(INET)
2980 /* Flush LRO */
2981 while (!SLIST_EMPTY(&lro_ctrl->lro_active)) {
2982 struct lro_entry *queued = SLIST_FIRST(&lro_ctrl->lro_active);
2983 SLIST_REMOVE_HEAD(&lro_ctrl->lro_active, next);
2984 tcp_lro_flush(lro_ctrl, queued);
2985 }
2986#endif
2987
2988 if (sleeping)
2989 check_ring_db(adap, qs, sleeping);
2990
2991 mb(); /* commit Tx queue processed updates */
2992 if (__predict_false(qs->txq_stopped > 1))
2993 restart_tx(qs);
2994
2995 __refill_fl_lt(adap, &qs->fl[0], 512);
2996 __refill_fl_lt(adap, &qs->fl[1], 512);
2997 budget -= budget_left;
2998 return (budget);
2999}
3000
3001/*
3002 * A helper function that processes responses and issues GTS.
3003 */
3004static __inline int
3005process_responses_gts(adapter_t *adap, struct sge_rspq *rq)
3006{
3007 int work;
3008 static int last_holdoff = 0;
3009
3010 work = process_responses(adap, rspq_to_qset(rq), -1);
3011
3012 if (cxgb_debug && (rq->next_holdoff != last_holdoff)) {
3013 printf("next_holdoff=%d\n", rq->next_holdoff);
3014 last_holdoff = rq->next_holdoff;
3015 }
3016 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
3017 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
3018
3019 return (work);
3020}
3021
3022
3023/*
3024 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
3025 * Handles data events from SGE response queues as well as error and other
3026 * async events as they all use the same interrupt pin. We use one SGE
3027 * response queue per port in this mode and protect all response queues with
3028 * queue 0's lock.
3029 */
3030void
3031t3b_intr(void *data)
3032{
3033 uint32_t i, map;
3034 adapter_t *adap = data;
3035 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
3036
3037 t3_write_reg(adap, A_PL_CLI, 0);
3038 map = t3_read_reg(adap, A_SG_DATA_INTR);
3039
3040 if (!map)
3041 return;
3042
3043 if (__predict_false(map & F_ERRINTR)) {
3044 t3_write_reg(adap, A_PL_INT_ENABLE0, 0);
3045 (void) t3_read_reg(adap, A_PL_INT_ENABLE0);
3046 taskqueue_enqueue(adap->tq, &adap->slow_intr_task);
3047 }
3048
3049 mtx_lock(&q0->lock);
3050 for_each_port(adap, i)
3051 if (map & (1 << i))
3052 process_responses_gts(adap, &adap->sge.qs[i].rspq);
3053 mtx_unlock(&q0->lock);
3054}
3055
3056/*
3057 * The MSI interrupt handler. This needs to handle data events from SGE
3058 * response queues as well as error and other async events as they all use
3059 * the same MSI vector. We use one SGE response queue per port in this mode
3060 * and protect all response queues with queue 0's lock.
3061 */
3062void
3063t3_intr_msi(void *data)
3064{
3065 adapter_t *adap = data;
3066 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
3067 int i, new_packets = 0;
3068
3069 mtx_lock(&q0->lock);
3070
3071 for_each_port(adap, i)
3072 if (process_responses_gts(adap, &adap->sge.qs[i].rspq))
3073 new_packets = 1;
3074 mtx_unlock(&q0->lock);
3075 if (new_packets == 0) {
3076 t3_write_reg(adap, A_PL_INT_ENABLE0, 0);
3077 (void) t3_read_reg(adap, A_PL_INT_ENABLE0);
3078 taskqueue_enqueue(adap->tq, &adap->slow_intr_task);
3079 }
3080}
3081
3082void
3083t3_intr_msix(void *data)
3084{
3085 struct sge_qset *qs = data;
3086 adapter_t *adap = qs->port->adapter;
3087 struct sge_rspq *rspq = &qs->rspq;
3088
3089 if (process_responses_gts(adap, rspq) == 0)
3090 rspq->unhandled_irqs++;
3091}
3092
3093#define QDUMP_SBUF_SIZE 32 * 400
3094static int
3095t3_dump_rspq(SYSCTL_HANDLER_ARGS)
3096{
3097 struct sge_rspq *rspq;
3098 struct sge_qset *qs;
3099 int i, err, dump_end, idx;
3100 struct sbuf *sb;
3101 struct rsp_desc *rspd;
3102 uint32_t data[4];
3103
3104 rspq = arg1;
3105 qs = rspq_to_qset(rspq);
3106 if (rspq->rspq_dump_count == 0)
3107 return (0);
3108 if (rspq->rspq_dump_count > RSPQ_Q_SIZE) {
3109 log(LOG_WARNING,
3110 "dump count is too large %d\n", rspq->rspq_dump_count);
3111 rspq->rspq_dump_count = 0;
3112 return (EINVAL);
3113 }
3114 if (rspq->rspq_dump_start > (RSPQ_Q_SIZE-1)) {
3115 log(LOG_WARNING,
3116 "dump start of %d is greater than queue size\n",
3117 rspq->rspq_dump_start);
3118 rspq->rspq_dump_start = 0;
3119 return (EINVAL);
3120 }
3121 err = t3_sge_read_rspq(qs->port->adapter, rspq->cntxt_id, data);
3122 if (err)
3123 return (err);
3124 err = sysctl_wire_old_buffer(req, 0);
3125 if (err)
3126 return (err);
3127 sb = sbuf_new_for_sysctl(NULL, NULL, QDUMP_SBUF_SIZE, req);
3128
3129 sbuf_printf(sb, " \n index=%u size=%u MSI-X/RspQ=%u intr enable=%u intr armed=%u\n",
3130 (data[0] & 0xffff), data[0] >> 16, ((data[2] >> 20) & 0x3f),
3131 ((data[2] >> 26) & 1), ((data[2] >> 27) & 1));
3132 sbuf_printf(sb, " generation=%u CQ mode=%u FL threshold=%u\n",
3133 ((data[2] >> 28) & 1), ((data[2] >> 31) & 1), data[3]);
3134
3135 sbuf_printf(sb, " start=%d -> end=%d\n", rspq->rspq_dump_start,
3136 (rspq->rspq_dump_start + rspq->rspq_dump_count) & (RSPQ_Q_SIZE-1));
3137
3138 dump_end = rspq->rspq_dump_start + rspq->rspq_dump_count;
3139 for (i = rspq->rspq_dump_start; i < dump_end; i++) {
3140 idx = i & (RSPQ_Q_SIZE-1);
3141
3142 rspd = &rspq->desc[idx];
3143 sbuf_printf(sb, "\tidx=%04d opcode=%02x cpu_idx=%x hash_type=%x cq_idx=%x\n",
3144 idx, rspd->rss_hdr.opcode, rspd->rss_hdr.cpu_idx,
3145 rspd->rss_hdr.hash_type, be16toh(rspd->rss_hdr.cq_idx));
3146 sbuf_printf(sb, "\trss_hash_val=%x flags=%08x len_cq=%x intr_gen=%x\n",
3147 rspd->rss_hdr.rss_hash_val, be32toh(rspd->flags),
3148 be32toh(rspd->len_cq), rspd->intr_gen);
3149 }
3150
3151 err = sbuf_finish(sb);
3152 sbuf_delete(sb);
3153 return (err);
3154}
3155
3156static int
3157t3_dump_txq_eth(SYSCTL_HANDLER_ARGS)
3158{
3159 struct sge_txq *txq;
3160 struct sge_qset *qs;
3161 int i, j, err, dump_end;
3162 struct sbuf *sb;
3163 struct tx_desc *txd;
3164 uint32_t *WR, wr_hi, wr_lo, gen;
3165 uint32_t data[4];
3166
3167 txq = arg1;
3168 qs = txq_to_qset(txq, TXQ_ETH);
3169 if (txq->txq_dump_count == 0) {
3170 return (0);
3171 }
3172 if (txq->txq_dump_count > TX_ETH_Q_SIZE) {
3173 log(LOG_WARNING,
3174 "dump count is too large %d\n", txq->txq_dump_count);
3175 txq->txq_dump_count = 1;
3176 return (EINVAL);
3177 }
3178 if (txq->txq_dump_start > (TX_ETH_Q_SIZE-1)) {
3179 log(LOG_WARNING,
3180 "dump start of %d is greater than queue size\n",
3181 txq->txq_dump_start);
3182 txq->txq_dump_start = 0;
3183 return (EINVAL);
3184 }
3185 err = t3_sge_read_ecntxt(qs->port->adapter, qs->rspq.cntxt_id, data);
3186 if (err)
3187 return (err);
3188 err = sysctl_wire_old_buffer(req, 0);
3189 if (err)
3190 return (err);
3191 sb = sbuf_new_for_sysctl(NULL, NULL, QDUMP_SBUF_SIZE, req);
3192
3193 sbuf_printf(sb, " \n credits=%u GTS=%u index=%u size=%u rspq#=%u cmdq#=%u\n",
3194 (data[0] & 0x7fff), ((data[0] >> 15) & 1), (data[0] >> 16),
3195 (data[1] & 0xffff), ((data[3] >> 4) & 7), ((data[3] >> 7) & 1));
3196 sbuf_printf(sb, " TUN=%u TOE=%u generation%u uP token=%u valid=%u\n",
3197 ((data[3] >> 8) & 1), ((data[3] >> 9) & 1), ((data[3] >> 10) & 1),
3198 ((data[3] >> 11) & 0xfffff), ((data[3] >> 31) & 1));
3199 sbuf_printf(sb, " qid=%d start=%d -> end=%d\n", qs->idx,
3200 txq->txq_dump_start,
3201 (txq->txq_dump_start + txq->txq_dump_count) & (TX_ETH_Q_SIZE-1));
3202
3203 dump_end = txq->txq_dump_start + txq->txq_dump_count;
3204 for (i = txq->txq_dump_start; i < dump_end; i++) {
3205 txd = &txq->desc[i & (TX_ETH_Q_SIZE-1)];
3206 WR = (uint32_t *)txd->flit;
3207 wr_hi = ntohl(WR[0]);
3208 wr_lo = ntohl(WR[1]);
3209 gen = G_WR_GEN(wr_lo);
3210
3211 sbuf_printf(sb," wr_hi %08x wr_lo %08x gen %d\n",
3212 wr_hi, wr_lo, gen);
3213 for (j = 2; j < 30; j += 4)
3214 sbuf_printf(sb, "\t%08x %08x %08x %08x \n",
3215 WR[j], WR[j + 1], WR[j + 2], WR[j + 3]);
3216
3217 }
3218 err = sbuf_finish(sb);
3219 sbuf_delete(sb);
3220 return (err);
3221}
3222
3223static int
3224t3_dump_txq_ctrl(SYSCTL_HANDLER_ARGS)
3225{
3226 struct sge_txq *txq;
3227 struct sge_qset *qs;
3228 int i, j, err, dump_end;
3229 struct sbuf *sb;
3230 struct tx_desc *txd;
3231 uint32_t *WR, wr_hi, wr_lo, gen;
3232
3233 txq = arg1;
3234 qs = txq_to_qset(txq, TXQ_CTRL);
3235 if (txq->txq_dump_count == 0) {
3236 return (0);
3237 }
3238 if (txq->txq_dump_count > 256) {
3239 log(LOG_WARNING,
3240 "dump count is too large %d\n", txq->txq_dump_count);
3241 txq->txq_dump_count = 1;
3242 return (EINVAL);
3243 }
3244 if (txq->txq_dump_start > 255) {
3245 log(LOG_WARNING,
3246 "dump start of %d is greater than queue size\n",
3247 txq->txq_dump_start);
3248 txq->txq_dump_start = 0;
3249 return (EINVAL);
3250 }
3251
3252 err = sysctl_wire_old_buffer(req, 0);
3253 if (err != 0)
3254 return (err);
3255 sb = sbuf_new_for_sysctl(NULL, NULL, QDUMP_SBUF_SIZE, req);
3256 sbuf_printf(sb, " qid=%d start=%d -> end=%d\n", qs->idx,
3257 txq->txq_dump_start,
3258 (txq->txq_dump_start + txq->txq_dump_count) & 255);
3259
3260 dump_end = txq->txq_dump_start + txq->txq_dump_count;
3261 for (i = txq->txq_dump_start; i < dump_end; i++) {
3262 txd = &txq->desc[i & (255)];
3263 WR = (uint32_t *)txd->flit;
3264 wr_hi = ntohl(WR[0]);
3265 wr_lo = ntohl(WR[1]);
3266 gen = G_WR_GEN(wr_lo);
3267
3268 sbuf_printf(sb," wr_hi %08x wr_lo %08x gen %d\n",
3269 wr_hi, wr_lo, gen);
3270 for (j = 2; j < 30; j += 4)
3271 sbuf_printf(sb, "\t%08x %08x %08x %08x \n",
3272 WR[j], WR[j + 1], WR[j + 2], WR[j + 3]);
3273
3274 }
3275 err = sbuf_finish(sb);
3276 sbuf_delete(sb);
3277 return (err);
3278}
3279
3280static int
3281t3_set_coalesce_usecs(SYSCTL_HANDLER_ARGS)
3282{
3283 adapter_t *sc = arg1;
3284 struct qset_params *qsp = &sc->params.sge.qset[0];
3285 int coalesce_usecs;
3286 struct sge_qset *qs;
3287 int i, j, err, nqsets = 0;
3288 struct mtx *lock;
3289
3290 if ((sc->flags & FULL_INIT_DONE) == 0)
3291 return (ENXIO);
3292
3293 coalesce_usecs = qsp->coalesce_usecs;
3294 err = sysctl_handle_int(oidp, &coalesce_usecs, arg2, req);
3295
3296 if (err != 0) {
3297 return (err);
3298 }
3299 if (coalesce_usecs == qsp->coalesce_usecs)
3300 return (0);
3301
3302 for (i = 0; i < sc->params.nports; i++)
3303 for (j = 0; j < sc->port[i].nqsets; j++)
3304 nqsets++;
3305
3306 coalesce_usecs = max(1, coalesce_usecs);
3307
3308 for (i = 0; i < nqsets; i++) {
3309 qs = &sc->sge.qs[i];
3310 qsp = &sc->params.sge.qset[i];
3311 qsp->coalesce_usecs = coalesce_usecs;
3312
3313 lock = (sc->flags & USING_MSIX) ? &qs->rspq.lock :
3314 &sc->sge.qs[0].rspq.lock;
3315
3316 mtx_lock(lock);
3317 t3_update_qset_coalesce(qs, qsp);
3318 t3_write_reg(sc, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
3319 V_NEWTIMER(qs->rspq.holdoff_tmr));
3320 mtx_unlock(lock);
3321 }
3322
3323 return (0);
3324}
3325
3326static int
3327t3_pkt_timestamp(SYSCTL_HANDLER_ARGS)
3328{
3329 adapter_t *sc = arg1;
3330 int rc, timestamp;
3331
3332 if ((sc->flags & FULL_INIT_DONE) == 0)
3333 return (ENXIO);
3334
3335 timestamp = sc->timestamp;
3336 rc = sysctl_handle_int(oidp, &timestamp, arg2, req);
3337
3338 if (rc != 0)
3339 return (rc);
3340
3341 if (timestamp != sc->timestamp) {
3342 t3_set_reg_field(sc, A_TP_PC_CONFIG2, F_ENABLERXPKTTMSTPRSS,
3343 timestamp ? F_ENABLERXPKTTMSTPRSS : 0);
3344 sc->timestamp = timestamp;
3345 }
3346
3347 return (0);
3348}
3349
3350void
3351t3_add_attach_sysctls(adapter_t *sc)
3352{
3353 struct sysctl_ctx_list *ctx;
3354 struct sysctl_oid_list *children;
3355
3356 ctx = device_get_sysctl_ctx(sc->dev);
3357 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3358
3359 /* random information */
3360 SYSCTL_ADD_STRING(ctx, children, OID_AUTO,
3361 "firmware_version",
3362 CTLFLAG_RD, sc->fw_version,
3363 0, "firmware version");
3364 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
3365 "hw_revision",
3366 CTLFLAG_RD, &sc->params.rev,
3367 0, "chip model");
3368 SYSCTL_ADD_STRING(ctx, children, OID_AUTO,
3369 "port_types",
3370 CTLFLAG_RD, sc->port_types,
3371 0, "type of ports");
3372 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
3373 "enable_debug",
3374 CTLFLAG_RW, &cxgb_debug,
3375 0, "enable verbose debugging output");
3376 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tunq_coalesce",
3377 CTLFLAG_RD, &sc->tunq_coalesce,
3378 "#tunneled packets freed");
3379 SYSCTL_ADD_INT(ctx, children, OID_AUTO,
3380 "txq_overrun",
3381 CTLFLAG_RD, &txq_fills,
3382 0, "#times txq overrun");
3383 SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
3384 "core_clock",
3385 CTLFLAG_RD, &sc->params.vpd.cclk,
3386 0, "core clock frequency (in KHz)");
3387}
3388
3389
3390static const char *rspq_name = "rspq";
3391static const char *txq_names[] =
3392{
3393 "txq_eth",
3394 "txq_ofld",
3395 "txq_ctrl"
3396};
3397
3398static int
3399sysctl_handle_macstat(SYSCTL_HANDLER_ARGS)
3400{
3401 struct port_info *p = arg1;
3402 uint64_t *parg;
3403
3404 if (!p)
3405 return (EINVAL);
3406
3407 cxgb_refresh_stats(p);
3408 parg = (uint64_t *) ((uint8_t *)&p->mac.stats + arg2);
3409
3410 return (sysctl_handle_64(oidp, parg, 0, req));
3411}
3412
3413void
3414t3_add_configured_sysctls(adapter_t *sc)
3415{
3416 struct sysctl_ctx_list *ctx;
3417 struct sysctl_oid_list *children;
3418 int i, j;
3419
3420 ctx = device_get_sysctl_ctx(sc->dev);
3421 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
3422
3423 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
3424 "intr_coal",
3425 CTLTYPE_INT|CTLFLAG_RW, sc,
3426 0, t3_set_coalesce_usecs,
3427 "I", "interrupt coalescing timer (us)");
3428
3429 SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
3430 "pkt_timestamp",
3431 CTLTYPE_INT | CTLFLAG_RW, sc,
3432 0, t3_pkt_timestamp,
3433 "I", "provide packet timestamp instead of connection hash");
3434
3435 for (i = 0; i < sc->params.nports; i++) {
3436 struct port_info *pi = &sc->port[i];
3437 struct sysctl_oid *poid;
3438 struct sysctl_oid_list *poidlist;
3439 struct mac_stats *mstats = &pi->mac.stats;
3440
3441 snprintf(pi->namebuf, PORT_NAME_LEN, "port%d", i);
3442 poid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO,
3443 pi->namebuf, CTLFLAG_RD, NULL, "port statistics");
3444 poidlist = SYSCTL_CHILDREN(poid);
3445 SYSCTL_ADD_UINT(ctx, poidlist, OID_AUTO,
3446 "nqsets", CTLFLAG_RD, &pi->nqsets,
3447 0, "#queue sets");
3448
3449 for (j = 0; j < pi->nqsets; j++) {
3450 struct sge_qset *qs = &sc->sge.qs[pi->first_qset + j];
3451 struct sysctl_oid *qspoid, *rspqpoid, *txqpoid,
3452 *ctrlqpoid, *lropoid;
3453 struct sysctl_oid_list *qspoidlist, *rspqpoidlist,
3454 *txqpoidlist, *ctrlqpoidlist,
3455 *lropoidlist;
3456 struct sge_txq *txq = &qs->txq[TXQ_ETH];
3457
3458 snprintf(qs->namebuf, QS_NAME_LEN, "qs%d", j);
3459
3460 qspoid = SYSCTL_ADD_NODE(ctx, poidlist, OID_AUTO,
3461 qs->namebuf, CTLFLAG_RD, NULL, "qset statistics");
3462 qspoidlist = SYSCTL_CHILDREN(qspoid);
3463
3464 SYSCTL_ADD_UINT(ctx, qspoidlist, OID_AUTO, "fl0_empty",
3465 CTLFLAG_RD, &qs->fl[0].empty, 0,
3466 "freelist #0 empty");
3467 SYSCTL_ADD_UINT(ctx, qspoidlist, OID_AUTO, "fl1_empty",
3468 CTLFLAG_RD, &qs->fl[1].empty, 0,
3469 "freelist #1 empty");
3470
3471 rspqpoid = SYSCTL_ADD_NODE(ctx, qspoidlist, OID_AUTO,
3472 rspq_name, CTLFLAG_RD, NULL, "rspq statistics");
3473 rspqpoidlist = SYSCTL_CHILDREN(rspqpoid);
3474
3475 txqpoid = SYSCTL_ADD_NODE(ctx, qspoidlist, OID_AUTO,
3476 txq_names[0], CTLFLAG_RD, NULL, "txq statistics");
3477 txqpoidlist = SYSCTL_CHILDREN(txqpoid);
3478
3479 ctrlqpoid = SYSCTL_ADD_NODE(ctx, qspoidlist, OID_AUTO,
3480 txq_names[2], CTLFLAG_RD, NULL, "ctrlq statistics");
3481 ctrlqpoidlist = SYSCTL_CHILDREN(ctrlqpoid);
3482
3483 lropoid = SYSCTL_ADD_NODE(ctx, qspoidlist, OID_AUTO,
3484 "lro_stats", CTLFLAG_RD, NULL, "LRO statistics");
3485 lropoidlist = SYSCTL_CHILDREN(lropoid);
3486
3487 SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "size",
3488 CTLFLAG_RD, &qs->rspq.size,
3489 0, "#entries in response queue");
3490 SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "cidx",
3491 CTLFLAG_RD, &qs->rspq.cidx,
3492 0, "consumer index");
3493 SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "credits",
3494 CTLFLAG_RD, &qs->rspq.credits,
3495 0, "#credits");
3496 SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "starved",
3497 CTLFLAG_RD, &qs->rspq.starved,
3498 0, "#times starved");
3499 SYSCTL_ADD_UAUTO(ctx, rspqpoidlist, OID_AUTO, "phys_addr",
3500 CTLFLAG_RD, &qs->rspq.phys_addr,
3501 "physical_address_of the queue");
3502 SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "dump_start",
3503 CTLFLAG_RW, &qs->rspq.rspq_dump_start,
3504 0, "start rspq dump entry");
3505 SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "dump_count",
3506 CTLFLAG_RW, &qs->rspq.rspq_dump_count,
3507 0, "#rspq entries to dump");
3508 SYSCTL_ADD_PROC(ctx, rspqpoidlist, OID_AUTO, "qdump",
3509 CTLTYPE_STRING | CTLFLAG_RD, &qs->rspq,
3510 0, t3_dump_rspq, "A", "dump of the response queue");
3511
3512 SYSCTL_ADD_UQUAD(ctx, txqpoidlist, OID_AUTO, "dropped",
3513 CTLFLAG_RD, &qs->txq[TXQ_ETH].txq_mr->br_drops,
3514 "#tunneled packets dropped");
3515 SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "sendqlen",
3516 CTLFLAG_RD, &qs->txq[TXQ_ETH].sendq.mq_len,
3517 0, "#tunneled packets waiting to be sent");
3518#if 0
3519 SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "queue_pidx",
3520 CTLFLAG_RD, (uint32_t *)(uintptr_t)&qs->txq[TXQ_ETH].txq_mr.br_prod,
3521 0, "#tunneled packets queue producer index");
3522 SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "queue_cidx",
3523 CTLFLAG_RD, (uint32_t *)(uintptr_t)&qs->txq[TXQ_ETH].txq_mr.br_cons,
3524 0, "#tunneled packets queue consumer index");
3525#endif
3526 SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "processed",
3527 CTLFLAG_RD, &qs->txq[TXQ_ETH].processed,
3528 0, "#tunneled packets processed by the card");
3529 SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "cleaned",
3530 CTLFLAG_RD, &txq->cleaned,
3531 0, "#tunneled packets cleaned");
3532 SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "in_use",
3533 CTLFLAG_RD, &txq->in_use,
3534 0, "#tunneled packet slots in use");
3535 SYSCTL_ADD_UQUAD(ctx, txqpoidlist, OID_AUTO, "frees",
3536 CTLFLAG_RD, &txq->txq_frees,
3537 "#tunneled packets freed");
3538 SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "skipped",
3539 CTLFLAG_RD, &txq->txq_skipped,
3540 0, "#tunneled packet descriptors skipped");
3541 SYSCTL_ADD_UQUAD(ctx, txqpoidlist, OID_AUTO, "coalesced",
3542 CTLFLAG_RD, &txq->txq_coalesced,
3543 "#tunneled packets coalesced");
3544 SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "enqueued",
3545 CTLFLAG_RD, &txq->txq_enqueued,
3546 0, "#tunneled packets enqueued to hardware");
3547 SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "stopped_flags",
3548 CTLFLAG_RD, &qs->txq_stopped,
3549 0, "tx queues stopped");
3550 SYSCTL_ADD_UAUTO(ctx, txqpoidlist, OID_AUTO, "phys_addr",
3551 CTLFLAG_RD, &txq->phys_addr,
3552 "physical_address_of the queue");
3553 SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "qgen",
3554 CTLFLAG_RW, &qs->txq[TXQ_ETH].gen,
3555 0, "txq generation");
3556 SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "hw_cidx",
3557 CTLFLAG_RD, &txq->cidx,
3558 0, "hardware queue cidx");
3559 SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "hw_pidx",
3560 CTLFLAG_RD, &txq->pidx,
3561 0, "hardware queue pidx");
3562 SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "dump_start",
3563 CTLFLAG_RW, &qs->txq[TXQ_ETH].txq_dump_start,
3564 0, "txq start idx for dump");
3565 SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "dump_count",
3566 CTLFLAG_RW, &qs->txq[TXQ_ETH].txq_dump_count,
3567 0, "txq #entries to dump");
3568 SYSCTL_ADD_PROC(ctx, txqpoidlist, OID_AUTO, "qdump",
3569 CTLTYPE_STRING | CTLFLAG_RD, &qs->txq[TXQ_ETH],
3570 0, t3_dump_txq_eth, "A", "dump of the transmit queue");
3571
3572 SYSCTL_ADD_UINT(ctx, ctrlqpoidlist, OID_AUTO, "dump_start",
3573 CTLFLAG_RW, &qs->txq[TXQ_CTRL].txq_dump_start,
3574 0, "ctrlq start idx for dump");
3575 SYSCTL_ADD_UINT(ctx, ctrlqpoidlist, OID_AUTO, "dump_count",
3576 CTLFLAG_RW, &qs->txq[TXQ_CTRL].txq_dump_count,
3577 0, "ctrl #entries to dump");
3578 SYSCTL_ADD_PROC(ctx, ctrlqpoidlist, OID_AUTO, "qdump",
3579 CTLTYPE_STRING | CTLFLAG_RD, &qs->txq[TXQ_CTRL],
3580 0, t3_dump_txq_ctrl, "A", "dump of the transmit queue");
3581
3582 SYSCTL_ADD_U64(ctx, lropoidlist, OID_AUTO, "lro_queued",
3583 CTLFLAG_RD, &qs->lro.ctrl.lro_queued, 0, NULL);
3584 SYSCTL_ADD_U64(ctx, lropoidlist, OID_AUTO, "lro_flushed",
3585 CTLFLAG_RD, &qs->lro.ctrl.lro_flushed, 0, NULL);
3586 SYSCTL_ADD_U64(ctx, lropoidlist, OID_AUTO, "lro_bad_csum",
3587 CTLFLAG_RD, &qs->lro.ctrl.lro_bad_csum, 0, NULL);
3588 SYSCTL_ADD_INT(ctx, lropoidlist, OID_AUTO, "lro_cnt",
3589 CTLFLAG_RD, &qs->lro.ctrl.lro_cnt, 0, NULL);
3590 }
3591
3592 /* Now add a node for mac stats. */
3593 poid = SYSCTL_ADD_NODE(ctx, poidlist, OID_AUTO, "mac_stats",
3594 CTLFLAG_RD, NULL, "MAC statistics");
3595 poidlist = SYSCTL_CHILDREN(poid);
3596
3597 /*
3598 * We (ab)use the length argument (arg2) to pass on the offset
3599 * of the data that we are interested in. This is only required
3600 * for the quad counters that are updated from the hardware (we
3601 * make sure that we return the latest value).
3602 * sysctl_handle_macstat first updates *all* the counters from
3603 * the hardware, and then returns the latest value of the
3604 * requested counter. Best would be to update only the
3605 * requested counter from hardware, but t3_mac_update_stats()
3606 * hides all the register details and we don't want to dive into
3607 * all that here.
3608 */
3609#define CXGB_SYSCTL_ADD_QUAD(a) SYSCTL_ADD_OID(ctx, poidlist, OID_AUTO, #a, \
3610 (CTLTYPE_U64 | CTLFLAG_RD), pi, offsetof(struct mac_stats, a), \
3611 sysctl_handle_macstat, "QU", 0)
3612 CXGB_SYSCTL_ADD_QUAD(tx_octets);
3613 CXGB_SYSCTL_ADD_QUAD(tx_octets_bad);
3614 CXGB_SYSCTL_ADD_QUAD(tx_frames);
3615 CXGB_SYSCTL_ADD_QUAD(tx_mcast_frames);
3616 CXGB_SYSCTL_ADD_QUAD(tx_bcast_frames);
3617 CXGB_SYSCTL_ADD_QUAD(tx_pause);
3618 CXGB_SYSCTL_ADD_QUAD(tx_deferred);
3619 CXGB_SYSCTL_ADD_QUAD(tx_late_collisions);
3620 CXGB_SYSCTL_ADD_QUAD(tx_total_collisions);
3621 CXGB_SYSCTL_ADD_QUAD(tx_excess_collisions);
3622 CXGB_SYSCTL_ADD_QUAD(tx_underrun);
3623 CXGB_SYSCTL_ADD_QUAD(tx_len_errs);
3624 CXGB_SYSCTL_ADD_QUAD(tx_mac_internal_errs);
3625 CXGB_SYSCTL_ADD_QUAD(tx_excess_deferral);
3626 CXGB_SYSCTL_ADD_QUAD(tx_fcs_errs);
3627 CXGB_SYSCTL_ADD_QUAD(tx_frames_64);
3628 CXGB_SYSCTL_ADD_QUAD(tx_frames_65_127);
3629 CXGB_SYSCTL_ADD_QUAD(tx_frames_128_255);
3630 CXGB_SYSCTL_ADD_QUAD(tx_frames_256_511);
3631 CXGB_SYSCTL_ADD_QUAD(tx_frames_512_1023);
3632 CXGB_SYSCTL_ADD_QUAD(tx_frames_1024_1518);
3633 CXGB_SYSCTL_ADD_QUAD(tx_frames_1519_max);
3634 CXGB_SYSCTL_ADD_QUAD(rx_octets);
3635 CXGB_SYSCTL_ADD_QUAD(rx_octets_bad);
3636 CXGB_SYSCTL_ADD_QUAD(rx_frames);
3637 CXGB_SYSCTL_ADD_QUAD(rx_mcast_frames);
3638 CXGB_SYSCTL_ADD_QUAD(rx_bcast_frames);
3639 CXGB_SYSCTL_ADD_QUAD(rx_pause);
3640 CXGB_SYSCTL_ADD_QUAD(rx_fcs_errs);
3641 CXGB_SYSCTL_ADD_QUAD(rx_align_errs);
3642 CXGB_SYSCTL_ADD_QUAD(rx_symbol_errs);
3643 CXGB_SYSCTL_ADD_QUAD(rx_data_errs);
3644 CXGB_SYSCTL_ADD_QUAD(rx_sequence_errs);
3645 CXGB_SYSCTL_ADD_QUAD(rx_runt);
3646 CXGB_SYSCTL_ADD_QUAD(rx_jabber);
3647 CXGB_SYSCTL_ADD_QUAD(rx_short);
3648 CXGB_SYSCTL_ADD_QUAD(rx_too_long);
3649 CXGB_SYSCTL_ADD_QUAD(rx_mac_internal_errs);
3650 CXGB_SYSCTL_ADD_QUAD(rx_cong_drops);
3651 CXGB_SYSCTL_ADD_QUAD(rx_frames_64);
3652 CXGB_SYSCTL_ADD_QUAD(rx_frames_65_127);
3653 CXGB_SYSCTL_ADD_QUAD(rx_frames_128_255);
3654 CXGB_SYSCTL_ADD_QUAD(rx_frames_256_511);
3655 CXGB_SYSCTL_ADD_QUAD(rx_frames_512_1023);
3656 CXGB_SYSCTL_ADD_QUAD(rx_frames_1024_1518);
3657 CXGB_SYSCTL_ADD_QUAD(rx_frames_1519_max);
3658#undef CXGB_SYSCTL_ADD_QUAD
3659
3660#define CXGB_SYSCTL_ADD_ULONG(a) SYSCTL_ADD_ULONG(ctx, poidlist, OID_AUTO, #a, \
3661 CTLFLAG_RD, &mstats->a, 0)
3662 CXGB_SYSCTL_ADD_ULONG(tx_fifo_parity_err);
3663 CXGB_SYSCTL_ADD_ULONG(rx_fifo_parity_err);
3664 CXGB_SYSCTL_ADD_ULONG(tx_fifo_urun);
3665 CXGB_SYSCTL_ADD_ULONG(rx_fifo_ovfl);
3666 CXGB_SYSCTL_ADD_ULONG(serdes_signal_loss);
3667 CXGB_SYSCTL_ADD_ULONG(xaui_pcs_ctc_err);
3668 CXGB_SYSCTL_ADD_ULONG(xaui_pcs_align_change);
3669 CXGB_SYSCTL_ADD_ULONG(num_toggled);
3670 CXGB_SYSCTL_ADD_ULONG(num_resets);
3671 CXGB_SYSCTL_ADD_ULONG(link_faults);
3672#undef CXGB_SYSCTL_ADD_ULONG
3673 }
3674}
3675
3676/**
3677 * t3_get_desc - dump an SGE descriptor for debugging purposes
3678 * @qs: the queue set
3679 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
3680 * @idx: the descriptor index in the queue
3681 * @data: where to dump the descriptor contents
3682 *
3683 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
3684 * size of the descriptor.
3685 */
3686int
3687t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
3688 unsigned char *data)
3689{
3690 if (qnum >= 6)
3691 return (EINVAL);
3692
3693 if (qnum < 3) {
3694 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
3695 return -EINVAL;
3696 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
3697 return sizeof(struct tx_desc);
3698 }
3699
3700 if (qnum == 3) {
3701 if (!qs->rspq.desc || idx >= qs->rspq.size)
3702 return (EINVAL);
3703 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
3704 return sizeof(struct rsp_desc);
3705 }
3706
3707 qnum -= 4;
3708 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
3709 return (EINVAL);
3710 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
3711 return sizeof(struct rx_desc);
3712}