Deleted Added
sdiff udiff text old ( 227651 ) new ( 227868 )
full compact
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer,
10 * without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 * redistribution must be conditioned upon including a substantially
14 * similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath_tx.c 227651 2011-11-18 05:06:30Z adrian $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42#include "opt_wlan.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/sysctl.h>
47#include <sys/mbuf.h>
48#include <sys/malloc.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/kernel.h>
52#include <sys/socket.h>
53#include <sys/sockio.h>
54#include <sys/errno.h>
55#include <sys/callout.h>
56#include <sys/bus.h>
57#include <sys/endian.h>
58#include <sys/kthread.h>
59#include <sys/taskqueue.h>
60#include <sys/priv.h>
61
62#include <machine/bus.h>
63
64#include <net/if.h>
65#include <net/if_dl.h>
66#include <net/if_media.h>
67#include <net/if_types.h>
68#include <net/if_arp.h>
69#include <net/ethernet.h>
70#include <net/if_llc.h>
71
72#include <net80211/ieee80211_var.h>
73#include <net80211/ieee80211_regdomain.h>
74#ifdef IEEE80211_SUPPORT_SUPERG
75#include <net80211/ieee80211_superg.h>
76#endif
77#ifdef IEEE80211_SUPPORT_TDMA
78#include <net80211/ieee80211_tdma.h>
79#endif
80#include <net80211/ieee80211_ht.h>
81
82#include <net/bpf.h>
83
84#ifdef INET
85#include <netinet/in.h>
86#include <netinet/if_ether.h>
87#endif
88
89#include <dev/ath/if_athvar.h>
90#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
91#include <dev/ath/ath_hal/ah_diagcodes.h>
92
93#include <dev/ath/if_ath_debug.h>
94
95#ifdef ATH_TX99_DIAG
96#include <dev/ath/ath_tx99/ath_tx99.h>
97#endif
98
99#include <dev/ath/if_ath_misc.h>
100#include <dev/ath/if_ath_tx.h>
101#include <dev/ath/if_ath_tx_ht.h>
102
103/*
104 * How many retries to perform in software
105 */
106#define SWMAX_RETRIES 10
107
108static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an,
109 int tid);
110static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an,
111 int tid);
112static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc,
113 struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0);
114static int ath_tx_action_frame_override_queue(struct ath_softc *sc,
115 struct ieee80211_node *ni, struct mbuf *m0, int *tid);
116
117/*
118 * Whether to use the 11n rate scenario functions or not
119 */
120static inline int
121ath_tx_is_11n(struct ath_softc *sc)
122{
123 return (sc->sc_ah->ah_magic == 0x20065416);
124}
125
126/*
127 * Obtain the current TID from the given frame.
128 *
129 * Non-QoS frames need to go into TID 16 (IEEE80211_NONQOS_TID.)
130 * This has implications for which AC/priority the packet is placed
131 * in.
132 */
133static int
134ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0)
135{
136 const struct ieee80211_frame *wh;
137 int pri = M_WME_GETAC(m0);
138
139 wh = mtod(m0, const struct ieee80211_frame *);
140 if (! IEEE80211_QOS_HAS_SEQ(wh))
141 return IEEE80211_NONQOS_TID;
142 else
143 return WME_AC_TO_TID(pri);
144}
145
146/*
147 * Determine what the correct AC queue for the given frame
148 * should be.
149 *
150 * This code assumes that the TIDs map consistently to
151 * the underlying hardware (or software) ath_txq.
152 * Since the sender may try to set an AC which is
153 * arbitrary, non-QoS TIDs may end up being put on
154 * completely different ACs. There's no way to put a
155 * TID into multiple ath_txq's for scheduling, so
156 * for now we override the AC/TXQ selection and set
157 * non-QOS TID frames into the BE queue.
158 *
159 * This may be completely incorrect - specifically,
160 * some management frames may end up out of order
161 * compared to the QoS traffic they're controlling.
162 * I'll look into this later.
163 */
164static int
165ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0)
166{
167 const struct ieee80211_frame *wh;
168 int pri = M_WME_GETAC(m0);
169 wh = mtod(m0, const struct ieee80211_frame *);
170 if (IEEE80211_QOS_HAS_SEQ(wh))
171 return pri;
172
173 return WME_AC_BE;
174}
175
176void
177ath_txfrag_cleanup(struct ath_softc *sc,
178 ath_bufhead *frags, struct ieee80211_node *ni)
179{
180 struct ath_buf *bf, *next;
181
182 ATH_TXBUF_LOCK_ASSERT(sc);
183
184 TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
185 /* NB: bf assumed clean */
186 TAILQ_REMOVE(frags, bf, bf_list);
187 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
188 ieee80211_node_decref(ni);
189 }
190}
191
192/*
193 * Setup xmit of a fragmented frame. Allocate a buffer
194 * for each frag and bump the node reference count to
195 * reflect the held reference to be setup by ath_tx_start.
196 */
197int
198ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
199 struct mbuf *m0, struct ieee80211_node *ni)
200{
201 struct mbuf *m;
202 struct ath_buf *bf;
203
204 ATH_TXBUF_LOCK(sc);
205 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
206 bf = _ath_getbuf_locked(sc);
207 if (bf == NULL) { /* out of buffers, cleanup */
208 ath_txfrag_cleanup(sc, frags, ni);
209 break;
210 }
211 ieee80211_node_incref(ni);
212 TAILQ_INSERT_TAIL(frags, bf, bf_list);
213 }
214 ATH_TXBUF_UNLOCK(sc);
215
216 return !TAILQ_EMPTY(frags);
217}
218
219/*
220 * Reclaim mbuf resources. For fragmented frames we
221 * need to claim each frag chained with m_nextpkt.
222 */
223void
224ath_freetx(struct mbuf *m)
225{
226 struct mbuf *next;
227
228 do {
229 next = m->m_nextpkt;
230 m->m_nextpkt = NULL;
231 m_freem(m);
232 } while ((m = next) != NULL);
233}
234
235static int
236ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
237{
238 struct mbuf *m;
239 int error;
240
241 /*
242 * Load the DMA map so any coalescing is done. This
243 * also calculates the number of descriptors we need.
244 */
245 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
246 bf->bf_segs, &bf->bf_nseg,
247 BUS_DMA_NOWAIT);
248 if (error == EFBIG) {
249 /* XXX packet requires too many descriptors */
250 bf->bf_nseg = ATH_TXDESC+1;
251 } else if (error != 0) {
252 sc->sc_stats.ast_tx_busdma++;
253 ath_freetx(m0);
254 return error;
255 }
256 /*
257 * Discard null packets and check for packets that
258 * require too many TX descriptors. We try to convert
259 * the latter to a cluster.
260 */
261 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */
262 sc->sc_stats.ast_tx_linear++;
263 m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
264 if (m == NULL) {
265 ath_freetx(m0);
266 sc->sc_stats.ast_tx_nombuf++;
267 return ENOMEM;
268 }
269 m0 = m;
270 error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
271 bf->bf_segs, &bf->bf_nseg,
272 BUS_DMA_NOWAIT);
273 if (error != 0) {
274 sc->sc_stats.ast_tx_busdma++;
275 ath_freetx(m0);
276 return error;
277 }
278 KASSERT(bf->bf_nseg <= ATH_TXDESC,
279 ("too many segments after defrag; nseg %u", bf->bf_nseg));
280 } else if (bf->bf_nseg == 0) { /* null packet, discard */
281 sc->sc_stats.ast_tx_nodata++;
282 ath_freetx(m0);
283 return EIO;
284 }
285 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
286 __func__, m0, m0->m_pkthdr.len);
287 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
288 bf->bf_m = m0;
289
290 return 0;
291}
292
293/*
294 * Chain together segments+descriptors for a non-11n frame.
295 */
296static void
297ath_tx_chaindesclist(struct ath_softc *sc, struct ath_buf *bf)
298{
299 struct ath_hal *ah = sc->sc_ah;
300 struct ath_desc *ds, *ds0;
301 int i;
302
303 /*
304 * Fillin the remainder of the descriptor info.
305 */
306 ds0 = ds = bf->bf_desc;
307 for (i = 0; i < bf->bf_nseg; i++, ds++) {
308 ds->ds_data = bf->bf_segs[i].ds_addr;
309 if (i == bf->bf_nseg - 1)
310 ds->ds_link = 0;
311 else
312 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
313 ath_hal_filltxdesc(ah, ds
314 , bf->bf_segs[i].ds_len /* segment length */
315 , i == 0 /* first segment */
316 , i == bf->bf_nseg - 1 /* last segment */
317 , ds0 /* first descriptor */
318 );
319 DPRINTF(sc, ATH_DEBUG_XMIT,
320 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
321 __func__, i, ds->ds_link, ds->ds_data,
322 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
323 bf->bf_lastds = ds;
324 }
325}
326
327/*
328 * Fill in the descriptor list for a aggregate subframe.
329 *
330 * The subframe is returned with the ds_link field in the last subframe
331 * pointing to 0.
332 */
333static void
334ath_tx_chaindesclist_subframe(struct ath_softc *sc, struct ath_buf *bf)
335{
336 struct ath_hal *ah = sc->sc_ah;
337 struct ath_desc *ds, *ds0;
338 int i;
339
340 ds0 = ds = bf->bf_desc;
341
342 /*
343 * There's no need to call ath_hal_setupfirsttxdesc here;
344 * That's only going to occur for the first frame in an aggregate.
345 */
346 for (i = 0; i < bf->bf_nseg; i++, ds++) {
347 ds->ds_data = bf->bf_segs[i].ds_addr;
348 if (i == bf->bf_nseg - 1)
349 ds->ds_link = 0;
350 else
351 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
352
353 /*
354 * This performs the setup for an aggregate frame.
355 * This includes enabling the aggregate flags if needed.
356 */
357 ath_hal_chaintxdesc(ah, ds,
358 bf->bf_state.bfs_pktlen,
359 bf->bf_state.bfs_hdrlen,
360 HAL_PKT_TYPE_AMPDU, /* forces aggregate bits to be set */
361 bf->bf_state.bfs_keyix,
362 0, /* cipher, calculated from keyix */
363 bf->bf_state.bfs_ndelim,
364 bf->bf_segs[i].ds_len, /* segment length */
365 i == 0, /* first segment */
366 i == bf->bf_nseg - 1 /* last segment */
367 );
368
369 DPRINTF(sc, ATH_DEBUG_XMIT,
370 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
371 __func__, i, ds->ds_link, ds->ds_data,
372 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
373 bf->bf_lastds = ds;
374 }
375}
376
377/*
378 * Setup segments+descriptors for an 11n aggregate.
379 * bf_first is the first buffer in the aggregate.
380 * The descriptor list must already been linked together using
381 * bf->bf_next.
382 */
383static void
384ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first)
385{
386 struct ath_buf *bf, *bf_prev = NULL;
387
388 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n",
389 __func__, bf_first->bf_state.bfs_nframes,
390 bf_first->bf_state.bfs_al);
391
392 /*
393 * Setup all descriptors of all subframes.
394 */
395 bf = bf_first;
396 while (bf != NULL) {
397 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
398 "%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n",
399 __func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen,
400 SEQNO(bf->bf_state.bfs_seqno));
401
402 /* Sub-frame setup */
403 ath_tx_chaindesclist_subframe(sc, bf);
404
405 /*
406 * Link the last descriptor of the previous frame
407 * to the beginning descriptor of this frame.
408 */
409 if (bf_prev != NULL)
410 bf_prev->bf_lastds->ds_link = bf->bf_daddr;
411
412 /* Save a copy so we can link the next descriptor in */
413 bf_prev = bf;
414 bf = bf->bf_next;
415 }
416
417 /*
418 * Setup first descriptor of first frame.
419 * chaintxdesc() overwrites the descriptor entries;
420 * setupfirsttxdesc() merges in things.
421 * Otherwise various fields aren't set correctly (eg flags).
422 */
423 ath_hal_setupfirsttxdesc(sc->sc_ah,
424 bf_first->bf_desc,
425 bf_first->bf_state.bfs_al,
426 bf_first->bf_state.bfs_flags | HAL_TXDESC_INTREQ,
427 bf_first->bf_state.bfs_txpower,
428 bf_first->bf_state.bfs_txrate0,
429 bf_first->bf_state.bfs_try0,
430 bf_first->bf_state.bfs_txantenna,
431 bf_first->bf_state.bfs_ctsrate,
432 bf_first->bf_state.bfs_ctsduration);
433
434 /*
435 * Setup the last descriptor in the list.
436 * bf_prev points to the last; bf is NULL here.
437 */
438 ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_desc, bf_first->bf_desc);
439
440 /*
441 * Set the first descriptor bf_lastds field to point to
442 * the last descriptor in the last subframe, that's where
443 * the status update will occur.
444 */
445 bf_first->bf_lastds = bf_prev->bf_lastds;
446
447 /*
448 * And bf_last in the first descriptor points to the end of
449 * the aggregate list.
450 */
451 bf_first->bf_last = bf_prev;
452
453 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__);
454}
455
456static void
457ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq,
458 struct ath_buf *bf)
459{
460 ATH_TXQ_LOCK_ASSERT(txq);
461 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
462 ("%s: busy status 0x%x", __func__, bf->bf_flags));
463 if (txq->axq_link != NULL) {
464 struct ath_buf *last = ATH_TXQ_LAST(txq, axq_q_s);
465 struct ieee80211_frame *wh;
466
467 /* mark previous frame */
468 wh = mtod(last->bf_m, struct ieee80211_frame *);
469 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
470 bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
471 BUS_DMASYNC_PREWRITE);
472
473 /* link descriptor */
474 *txq->axq_link = bf->bf_daddr;
475 }
476 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
477 txq->axq_link = &bf->bf_lastds->ds_link;
478}
479
480/*
481 * Hand-off packet to a hardware queue.
482 */
483static void
484ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
485{
486 struct ath_hal *ah = sc->sc_ah;
487
488 /*
489 * Insert the frame on the outbound list and pass it on
490 * to the hardware. Multicast frames buffered for power
491 * save stations and transmit from the CAB queue are stored
492 * on a s/w only queue and loaded on to the CAB queue in
493 * the SWBA handler since frames only go out on DTIM and
494 * to avoid possible races.
495 */
496 ATH_TXQ_LOCK_ASSERT(txq);
497 KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
498 ("%s: busy status 0x%x", __func__, bf->bf_flags));
499 KASSERT(txq->axq_qnum != ATH_TXQ_SWQ,
500 ("ath_tx_handoff_hw called for mcast queue"));
501
502#if 0
503 /*
504 * This causes a LOR. Find out where the PCU lock is being
505 * held whilst the TXQ lock is grabbed - that shouldn't
506 * be occuring.
507 */
508 ATH_PCU_LOCK(sc);
509 if (sc->sc_inreset_cnt) {
510 ATH_PCU_UNLOCK(sc);
511 DPRINTF(sc, ATH_DEBUG_RESET,
512 "%s: called with sc_in_reset != 0\n",
513 __func__);
514 DPRINTF(sc, ATH_DEBUG_XMIT,
515 "%s: queued: TXDP[%u] = %p (%p) depth %d\n",
516 __func__, txq->axq_qnum,
517 (caddr_t)bf->bf_daddr, bf->bf_desc,
518 txq->axq_depth);
519 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
520 if (bf->bf_state.bfs_aggr)
521 txq->axq_aggr_depth++;
522 /*
523 * There's no need to update axq_link; the hardware
524 * is in reset and once the reset is complete, any
525 * non-empty queues will simply have DMA restarted.
526 */
527 return;
528 }
529 ATH_PCU_UNLOCK(sc);
530#endif
531
532 /* For now, so not to generate whitespace diffs */
533 if (1) {
534#ifdef IEEE80211_SUPPORT_TDMA
535 int qbusy;
536
537 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
538 qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
539 if (txq->axq_link == NULL) {
540 /*
541 * Be careful writing the address to TXDP. If
542 * the tx q is enabled then this write will be
543 * ignored. Normally this is not an issue but
544 * when tdma is in use and the q is beacon gated
545 * this race can occur. If the q is busy then
546 * defer the work to later--either when another
547 * packet comes along or when we prepare a beacon
548 * frame at SWBA.
549 */
550 if (!qbusy) {
551 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
552 txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
553 DPRINTF(sc, ATH_DEBUG_XMIT,
554 "%s: TXDP[%u] = %p (%p) depth %d\n",
555 __func__, txq->axq_qnum,
556 (caddr_t)bf->bf_daddr, bf->bf_desc,
557 txq->axq_depth);
558 } else {
559 txq->axq_flags |= ATH_TXQ_PUTPENDING;
560 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
561 "%s: Q%u busy, defer enable\n", __func__,
562 txq->axq_qnum);
563 }
564 } else {
565 *txq->axq_link = bf->bf_daddr;
566 DPRINTF(sc, ATH_DEBUG_XMIT,
567 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
568 txq->axq_qnum, txq->axq_link,
569 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
570 if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) {
571 /*
572 * The q was busy when we previously tried
573 * to write the address of the first buffer
574 * in the chain. Since it's not busy now
575 * handle this chore. We are certain the
576 * buffer at the front is the right one since
577 * axq_link is NULL only when the buffer list
578 * is/was empty.
579 */
580 ath_hal_puttxbuf(ah, txq->axq_qnum,
581 TAILQ_FIRST(&txq->axq_q)->bf_daddr);
582 txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
583 DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
584 "%s: Q%u restarted\n", __func__,
585 txq->axq_qnum);
586 }
587 }
588#else
589 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
590 if (txq->axq_link == NULL) {
591 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
592 DPRINTF(sc, ATH_DEBUG_XMIT,
593 "%s: TXDP[%u] = %p (%p) depth %d\n",
594 __func__, txq->axq_qnum,
595 (caddr_t)bf->bf_daddr, bf->bf_desc,
596 txq->axq_depth);
597 } else {
598 *txq->axq_link = bf->bf_daddr;
599 DPRINTF(sc, ATH_DEBUG_XMIT,
600 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
601 txq->axq_qnum, txq->axq_link,
602 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
603 }
604#endif /* IEEE80211_SUPPORT_TDMA */
605 if (bf->bf_state.bfs_aggr)
606 txq->axq_aggr_depth++;
607 txq->axq_link = &bf->bf_lastds->ds_link;
608 ath_hal_txstart(ah, txq->axq_qnum);
609 }
610}
611
612/*
613 * Restart TX DMA for the given TXQ.
614 *
615 * This must be called whether the queue is empty or not.
616 */
617void
618ath_txq_restart_dma(struct ath_softc *sc, struct ath_txq *txq)
619{
620 struct ath_hal *ah = sc->sc_ah;
621 struct ath_buf *bf;
622
623 ATH_TXQ_LOCK_ASSERT(txq);
624
625 /* This is always going to be cleared, empty or not */
626 txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
627
628 bf = TAILQ_FIRST(&txq->axq_q);
629 if (bf == NULL)
630 return;
631
632 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
633 txq->axq_link = &bf->bf_lastds->ds_link;
634 ath_hal_txstart(ah, txq->axq_qnum);
635}
636
637/*
638 * Hand off a packet to the hardware (or mcast queue.)
639 *
640 * The relevant hardware txq should be locked.
641 */
642static void
643ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
644{
645 ATH_TXQ_LOCK_ASSERT(txq);
646
647 if (txq->axq_qnum == ATH_TXQ_SWQ)
648 ath_tx_handoff_mcast(sc, txq, bf);
649 else
650 ath_tx_handoff_hw(sc, txq, bf);
651}
652
653static int
654ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni,
655 struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen, int *keyix)
656{
657 if (iswep) {
658 const struct ieee80211_cipher *cip;
659 struct ieee80211_key *k;
660
661 /*
662 * Construct the 802.11 header+trailer for an encrypted
663 * frame. The only reason this can fail is because of an
664 * unknown or unsupported cipher/key type.
665 */
666 k = ieee80211_crypto_encap(ni, m0);
667 if (k == NULL) {
668 /*
669 * This can happen when the key is yanked after the
670 * frame was queued. Just discard the frame; the
671 * 802.11 layer counts failures and provides
672 * debugging/diagnostics.
673 */
674 return 0;
675 }
676 /*
677 * Adjust the packet + header lengths for the crypto
678 * additions and calculate the h/w key index. When
679 * a s/w mic is done the frame will have had any mic
680 * added to it prior to entry so m0->m_pkthdr.len will
681 * account for it. Otherwise we need to add it to the
682 * packet length.
683 */
684 cip = k->wk_cipher;
685 (*hdrlen) += cip->ic_header;
686 (*pktlen) += cip->ic_header + cip->ic_trailer;
687 /* NB: frags always have any TKIP MIC done in s/w */
688 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
689 (*pktlen) += cip->ic_miclen;
690 (*keyix) = k->wk_keyix;
691 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
692 /*
693 * Use station key cache slot, if assigned.
694 */
695 (*keyix) = ni->ni_ucastkey.wk_keyix;
696 if ((*keyix) == IEEE80211_KEYIX_NONE)
697 (*keyix) = HAL_TXKEYIX_INVALID;
698 } else
699 (*keyix) = HAL_TXKEYIX_INVALID;
700
701 return 1;
702}
703
704static uint8_t
705ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt,
706 int cix, int shortPreamble)
707{
708 uint8_t ctsrate;
709
710 /*
711 * CTS transmit rate is derived from the transmit rate
712 * by looking in the h/w rate table. We must also factor
713 * in whether or not a short preamble is to be used.
714 */
715 /* NB: cix is set above where RTS/CTS is enabled */
716 KASSERT(cix != 0xff, ("cix not setup"));
717 ctsrate = rt->info[cix].rateCode;
718
719 /* XXX this should only matter for legacy rates */
720 if (shortPreamble)
721 ctsrate |= rt->info[cix].shortPreamble;
722
723 return ctsrate;
724}
725
726/*
727 * Calculate the RTS/CTS duration for legacy frames.
728 */
729static int
730ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix,
731 int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt,
732 int flags)
733{
734 int ctsduration = 0;
735
736 /* This mustn't be called for HT modes */
737 if (rt->info[cix].phy == IEEE80211_T_HT) {
738 printf("%s: HT rate where it shouldn't be (0x%x)\n",
739 __func__, rt->info[cix].rateCode);
740 return -1;
741 }
742
743 /*
744 * Compute the transmit duration based on the frame
745 * size and the size of an ACK frame. We call into the
746 * HAL to do the computation since it depends on the
747 * characteristics of the actual PHY being used.
748 *
749 * NB: CTS is assumed the same size as an ACK so we can
750 * use the precalculated ACK durations.
751 */
752 if (shortPreamble) {
753 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
754 ctsduration += rt->info[cix].spAckDuration;
755 ctsduration += ath_hal_computetxtime(ah,
756 rt, pktlen, rix, AH_TRUE);
757 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
758 ctsduration += rt->info[rix].spAckDuration;
759 } else {
760 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
761 ctsduration += rt->info[cix].lpAckDuration;
762 ctsduration += ath_hal_computetxtime(ah,
763 rt, pktlen, rix, AH_FALSE);
764 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
765 ctsduration += rt->info[rix].lpAckDuration;
766 }
767
768 return ctsduration;
769}
770
771/*
772 * Update the given ath_buf with updated rts/cts setup and duration
773 * values.
774 *
775 * To support rate lookups for each software retry, the rts/cts rate
776 * and cts duration must be re-calculated.
777 *
778 * This function assumes the RTS/CTS flags have been set as needed;
779 * mrr has been disabled; and the rate control lookup has been done.
780 *
781 * XXX TODO: MRR need only be disabled for the pre-11n NICs.
782 * XXX The 11n NICs support per-rate RTS/CTS configuration.
783 */
784static void
785ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf)
786{
787 uint16_t ctsduration = 0;
788 uint8_t ctsrate = 0;
789 uint8_t rix = bf->bf_state.bfs_rc[0].rix;
790 uint8_t cix = 0;
791 const HAL_RATE_TABLE *rt = sc->sc_currates;
792
793 /*
794 * No RTS/CTS enabled? Don't bother.
795 */
796 if ((bf->bf_state.bfs_flags &
797 (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) {
798 /* XXX is this really needed? */
799 bf->bf_state.bfs_ctsrate = 0;
800 bf->bf_state.bfs_ctsduration = 0;
801 return;
802 }
803
804 /*
805 * If protection is enabled, use the protection rix control
806 * rate. Otherwise use the rate0 control rate.
807 */
808 if (bf->bf_state.bfs_doprot)
809 rix = sc->sc_protrix;
810 else
811 rix = bf->bf_state.bfs_rc[0].rix;
812
813 /*
814 * If the raw path has hard-coded ctsrate0 to something,
815 * use it.
816 */
817 if (bf->bf_state.bfs_ctsrate0 != 0)
818 cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0);
819 else
820 /* Control rate from above */
821 cix = rt->info[rix].controlRate;
822
823 /* Calculate the rtscts rate for the given cix */
824 ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix,
825 bf->bf_state.bfs_shpream);
826
827 /* The 11n chipsets do ctsduration calculations for you */
828 if (! ath_tx_is_11n(sc))
829 ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix,
830 bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen,
831 rt, bf->bf_state.bfs_flags);
832
833 /* Squirrel away in ath_buf */
834 bf->bf_state.bfs_ctsrate = ctsrate;
835 bf->bf_state.bfs_ctsduration = ctsduration;
836
837 /*
838 * Must disable multi-rate retry when using RTS/CTS.
839 * XXX TODO: only for pre-11n NICs.
840 */
841 bf->bf_state.bfs_ismrr = 0;
842 bf->bf_state.bfs_try0 =
843 bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY; /* XXX ew */
844}
845
846/*
847 * Setup the descriptor chain for a normal or fast-frame
848 * frame.
849 */
850static void
851ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf)
852{
853 struct ath_desc *ds = bf->bf_desc;
854 struct ath_hal *ah = sc->sc_ah;
855
856 ath_hal_setuptxdesc(ah, ds
857 , bf->bf_state.bfs_pktlen /* packet length */
858 , bf->bf_state.bfs_hdrlen /* header length */
859 , bf->bf_state.bfs_atype /* Atheros packet type */
860 , bf->bf_state.bfs_txpower /* txpower */
861 , bf->bf_state.bfs_txrate0
862 , bf->bf_state.bfs_try0 /* series 0 rate/tries */
863 , bf->bf_state.bfs_keyix /* key cache index */
864 , bf->bf_state.bfs_txantenna /* antenna mode */
865 , bf->bf_state.bfs_flags /* flags */
866 , bf->bf_state.bfs_ctsrate /* rts/cts rate */
867 , bf->bf_state.bfs_ctsduration /* rts/cts duration */
868 );
869
870 /*
871 * This will be overriden when the descriptor chain is written.
872 */
873 bf->bf_lastds = ds;
874 bf->bf_last = bf;
875
876 /* XXX TODO: Setup descriptor chain */
877}
878
879/*
880 * Do a rate lookup.
881 *
882 * This performs a rate lookup for the given ath_buf only if it's required.
883 * Non-data frames and raw frames don't require it.
884 *
885 * This populates the primary and MRR entries; MRR values are
886 * then disabled later on if something requires it (eg RTS/CTS on
887 * pre-11n chipsets.
888 *
889 * This needs to be done before the RTS/CTS fields are calculated
890 * as they may depend upon the rate chosen.
891 */
892static void
893ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf)
894{
895 uint8_t rate, rix;
896 int try0;
897
898 if (! bf->bf_state.bfs_doratelookup)
899 return;
900
901 /* Get rid of any previous state */
902 bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
903
904 ATH_NODE_LOCK(ATH_NODE(bf->bf_node));
905 ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream,
906 bf->bf_state.bfs_pktlen, &rix, &try0, &rate);
907
908 /* In case MRR is disabled, make sure rc[0] is setup correctly */
909 bf->bf_state.bfs_rc[0].rix = rix;
910 bf->bf_state.bfs_rc[0].ratecode = rate;
911 bf->bf_state.bfs_rc[0].tries = try0;
912
913 if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY)
914 ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix,
915 bf->bf_state.bfs_rc);
916 ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node));
917
918 sc->sc_txrix = rix; /* for LED blinking */
919 sc->sc_lastdatarix = rix; /* for fast frames */
920 bf->bf_state.bfs_try0 = try0;
921 bf->bf_state.bfs_txrate0 = rate;
922}
923
924/*
925 * Set the rate control fields in the given descriptor based on
926 * the bf_state fields and node state.
927 *
928 * The bfs fields should already be set with the relevant rate
929 * control information, including whether MRR is to be enabled.
930 *
931 * Since the FreeBSD HAL currently sets up the first TX rate
932 * in ath_hal_setuptxdesc(), this will setup the MRR
933 * conditionally for the pre-11n chips, and call ath_buf_set_rate
934 * unconditionally for 11n chips. These require the 11n rate
935 * scenario to be set if MCS rates are enabled, so it's easier
936 * to just always call it. The caller can then only set rates 2, 3
937 * and 4 if multi-rate retry is needed.
938 */
939static void
940ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
941 struct ath_buf *bf)
942{
943 struct ath_rc_series *rc = bf->bf_state.bfs_rc;
944
945 /* If mrr is disabled, blank tries 1, 2, 3 */
946 if (! bf->bf_state.bfs_ismrr)
947 rc[1].tries = rc[2].tries = rc[3].tries = 0;
948
949 /*
950 * Always call - that way a retried descriptor will
951 * have the MRR fields overwritten.
952 *
953 * XXX TODO: see if this is really needed - setting up
954 * the first descriptor should set the MRR fields to 0
955 * for us anyway.
956 */
957 if (ath_tx_is_11n(sc)) {
958 ath_buf_set_rate(sc, ni, bf);
959 } else {
960 ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc
961 , rc[1].ratecode, rc[1].tries
962 , rc[2].ratecode, rc[2].tries
963 , rc[3].ratecode, rc[3].tries
964 );
965 }
966}
967
968/*
969 * Transmit the given frame to the hardware.
970 *
971 * The frame must already be setup; rate control must already have
972 * been done.
973 *
974 * XXX since the TXQ lock is being held here (and I dislike holding
975 * it for this long when not doing software aggregation), later on
976 * break this function into "setup_normal" and "xmit_normal". The
977 * lock only needs to be held for the ath_tx_handoff call.
978 */
979static void
980ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq,
981 struct ath_buf *bf)
982{
983
984 ATH_TXQ_LOCK_ASSERT(txq);
985
986 /* Setup the descriptor before handoff */
987 ath_tx_do_ratelookup(sc, bf);
988 ath_tx_rate_fill_rcflags(sc, bf);
989 ath_tx_set_rtscts(sc, bf);
990 ath_tx_setds(sc, bf);
991 ath_tx_set_ratectrl(sc, bf->bf_node, bf);
992 ath_tx_chaindesclist(sc, bf);
993
994 /* Hand off to hardware */
995 ath_tx_handoff(sc, txq, bf);
996}
997
998
999
1000static int
1001ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni,
1002 struct ath_buf *bf, struct mbuf *m0)
1003{
1004 struct ieee80211vap *vap = ni->ni_vap;
1005 struct ath_vap *avp = ATH_VAP(vap);
1006 struct ath_hal *ah = sc->sc_ah;
1007 struct ifnet *ifp = sc->sc_ifp;
1008 struct ieee80211com *ic = ifp->if_l2com;
1009 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1010 int error, iswep, ismcast, isfrag, ismrr;
1011 int keyix, hdrlen, pktlen, try0 = 0;
1012 u_int8_t rix = 0, txrate = 0;
1013 struct ath_desc *ds;
1014 struct ath_txq *txq;
1015 struct ieee80211_frame *wh;
1016 u_int subtype, flags;
1017 HAL_PKT_TYPE atype;
1018 const HAL_RATE_TABLE *rt;
1019 HAL_BOOL shortPreamble;
1020 struct ath_node *an;
1021 u_int pri;
1022
1023 wh = mtod(m0, struct ieee80211_frame *);
1024 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
1025 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1026 isfrag = m0->m_flags & M_FRAG;
1027 hdrlen = ieee80211_anyhdrsize(wh);
1028 /*
1029 * Packet length must not include any
1030 * pad bytes; deduct them here.
1031 */
1032 pktlen = m0->m_pkthdr.len - (hdrlen & 3);
1033
1034 /* Handle encryption twiddling if needed */
1035 if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen,
1036 &pktlen, &keyix)) {
1037 ath_freetx(m0);
1038 return EIO;
1039 }
1040
1041 /* packet header may have moved, reset our local pointer */
1042 wh = mtod(m0, struct ieee80211_frame *);
1043
1044 pktlen += IEEE80211_CRC_LEN;
1045
1046 /*
1047 * Load the DMA map so any coalescing is done. This
1048 * also calculates the number of descriptors we need.
1049 */
1050 error = ath_tx_dmasetup(sc, bf, m0);
1051 if (error != 0)
1052 return error;
1053 bf->bf_node = ni; /* NB: held reference */
1054 m0 = bf->bf_m; /* NB: may have changed */
1055 wh = mtod(m0, struct ieee80211_frame *);
1056
1057 /* setup descriptors */
1058 ds = bf->bf_desc;
1059 rt = sc->sc_currates;
1060 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1061
1062 /*
1063 * NB: the 802.11 layer marks whether or not we should
1064 * use short preamble based on the current mode and
1065 * negotiated parameters.
1066 */
1067 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1068 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
1069 shortPreamble = AH_TRUE;
1070 sc->sc_stats.ast_tx_shortpre++;
1071 } else {
1072 shortPreamble = AH_FALSE;
1073 }
1074
1075 an = ATH_NODE(ni);
1076 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
1077 ismrr = 0; /* default no multi-rate retry*/
1078 pri = M_WME_GETAC(m0); /* honor classification */
1079 /* XXX use txparams instead of fixed values */
1080 /*
1081 * Calculate Atheros packet type from IEEE80211 packet header,
1082 * setup for rate calculations, and select h/w transmit queue.
1083 */
1084 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1085 case IEEE80211_FC0_TYPE_MGT:
1086 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1087 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
1088 atype = HAL_PKT_TYPE_BEACON;
1089 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1090 atype = HAL_PKT_TYPE_PROBE_RESP;
1091 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
1092 atype = HAL_PKT_TYPE_ATIM;
1093 else
1094 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
1095 rix = an->an_mgmtrix;
1096 txrate = rt->info[rix].rateCode;
1097 if (shortPreamble)
1098 txrate |= rt->info[rix].shortPreamble;
1099 try0 = ATH_TXMGTTRY;
1100 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
1101 break;
1102 case IEEE80211_FC0_TYPE_CTL:
1103 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
1104 rix = an->an_mgmtrix;
1105 txrate = rt->info[rix].rateCode;
1106 if (shortPreamble)
1107 txrate |= rt->info[rix].shortPreamble;
1108 try0 = ATH_TXMGTTRY;
1109 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
1110 break;
1111 case IEEE80211_FC0_TYPE_DATA:
1112 atype = HAL_PKT_TYPE_NORMAL; /* default */
1113 /*
1114 * Data frames: multicast frames go out at a fixed rate,
1115 * EAPOL frames use the mgmt frame rate; otherwise consult
1116 * the rate control module for the rate to use.
1117 */
1118 if (ismcast) {
1119 rix = an->an_mcastrix;
1120 txrate = rt->info[rix].rateCode;
1121 if (shortPreamble)
1122 txrate |= rt->info[rix].shortPreamble;
1123 try0 = 1;
1124 } else if (m0->m_flags & M_EAPOL) {
1125 /* XXX? maybe always use long preamble? */
1126 rix = an->an_mgmtrix;
1127 txrate = rt->info[rix].rateCode;
1128 if (shortPreamble)
1129 txrate |= rt->info[rix].shortPreamble;
1130 try0 = ATH_TXMAXTRY; /* XXX?too many? */
1131 } else {
1132 /*
1133 * Do rate lookup on each TX, rather than using
1134 * the hard-coded TX information decided here.
1135 */
1136 ismrr = 1;
1137 bf->bf_state.bfs_doratelookup = 1;
1138 }
1139 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
1140 flags |= HAL_TXDESC_NOACK;
1141 break;
1142 default:
1143 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
1144 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
1145 /* XXX statistic */
1146 ath_freetx(m0);
1147 return EIO;
1148 }
1149 txq = sc->sc_ac2q[pri];
1150
1151 /*
1152 * When servicing one or more stations in power-save mode
1153 * (or) if there is some mcast data waiting on the mcast
1154 * queue (to prevent out of order delivery) multicast
1155 * frames must be buffered until after the beacon.
1156 */
1157 if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
1158 txq = &avp->av_mcastq;
1159
1160 /*
1161 * Calculate miscellaneous flags.
1162 */
1163 if (ismcast) {
1164 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
1165 } else if (pktlen > vap->iv_rtsthreshold &&
1166 (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
1167 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
1168 sc->sc_stats.ast_tx_rts++;
1169 }
1170 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
1171 sc->sc_stats.ast_tx_noack++;
1172#ifdef IEEE80211_SUPPORT_TDMA
1173 if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
1174 DPRINTF(sc, ATH_DEBUG_TDMA,
1175 "%s: discard frame, ACK required w/ TDMA\n", __func__);
1176 sc->sc_stats.ast_tdma_ack++;
1177 ath_freetx(m0);
1178 return EIO;
1179 }
1180#endif
1181
1182 /*
1183 * If 802.11g protection is enabled, determine whether
1184 * to use RTS/CTS or just CTS. Note that this is only
1185 * done for OFDM unicast frames.
1186 */
1187 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1188 rt->info[rix].phy == IEEE80211_T_OFDM &&
1189 (flags & HAL_TXDESC_NOACK) == 0) {
1190 bf->bf_state.bfs_doprot = 1;
1191 /* XXX fragments must use CCK rates w/ protection */
1192 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
1193 flags |= HAL_TXDESC_RTSENA;
1194 } else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
1195 flags |= HAL_TXDESC_CTSENA;
1196 }
1197 /*
1198 * For frags it would be desirable to use the
1199 * highest CCK rate for RTS/CTS. But stations
1200 * farther away may detect it at a lower CCK rate
1201 * so use the configured protection rate instead
1202 * (for now).
1203 */
1204 sc->sc_stats.ast_tx_protect++;
1205 }
1206
1207#if 0
1208 /*
1209 * If 11n protection is enabled and it's a HT frame,
1210 * enable RTS.
1211 *
1212 * XXX ic_htprotmode or ic_curhtprotmode?
1213 * XXX should it_htprotmode only matter if ic_curhtprotmode
1214 * XXX indicates it's not a HT pure environment?
1215 */
1216 if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) &&
1217 rt->info[rix].phy == IEEE80211_T_HT &&
1218 (flags & HAL_TXDESC_NOACK) == 0) {
1219 cix = rt->info[sc->sc_protrix].controlRate;
1220 flags |= HAL_TXDESC_RTSENA;
1221 sc->sc_stats.ast_tx_htprotect++;
1222 }
1223#endif
1224
1225 /*
1226 * Calculate duration. This logically belongs in the 802.11
1227 * layer but it lacks sufficient information to calculate it.
1228 */
1229 if ((flags & HAL_TXDESC_NOACK) == 0 &&
1230 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
1231 u_int16_t dur;
1232 if (shortPreamble)
1233 dur = rt->info[rix].spAckDuration;
1234 else
1235 dur = rt->info[rix].lpAckDuration;
1236 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
1237 dur += dur; /* additional SIFS+ACK */
1238 KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
1239 /*
1240 * Include the size of next fragment so NAV is
1241 * updated properly. The last fragment uses only
1242 * the ACK duration
1243 */
1244 dur += ath_hal_computetxtime(ah, rt,
1245 m0->m_nextpkt->m_pkthdr.len,
1246 rix, shortPreamble);
1247 }
1248 if (isfrag) {
1249 /*
1250 * Force hardware to use computed duration for next
1251 * fragment by disabling multi-rate retry which updates
1252 * duration based on the multi-rate duration table.
1253 */
1254 ismrr = 0;
1255 try0 = ATH_TXMGTTRY; /* XXX? */
1256 }
1257 *(u_int16_t *)wh->i_dur = htole16(dur);
1258 }
1259
1260 /*
1261 * Determine if a tx interrupt should be generated for
1262 * this descriptor. We take a tx interrupt to reap
1263 * descriptors when the h/w hits an EOL condition or
1264 * when the descriptor is specifically marked to generate
1265 * an interrupt. We periodically mark descriptors in this
1266 * way to insure timely replenishing of the supply needed
1267 * for sending frames. Defering interrupts reduces system
1268 * load and potentially allows more concurrent work to be
1269 * done but if done to aggressively can cause senders to
1270 * backup.
1271 *
1272 * NB: use >= to deal with sc_txintrperiod changing
1273 * dynamically through sysctl.
1274 */
1275 if (flags & HAL_TXDESC_INTREQ) {
1276 txq->axq_intrcnt = 0;
1277 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
1278 flags |= HAL_TXDESC_INTREQ;
1279 txq->axq_intrcnt = 0;
1280 }
1281
1282 /* This point forward is actual TX bits */
1283
1284 /*
1285 * At this point we are committed to sending the frame
1286 * and we don't need to look at m_nextpkt; clear it in
1287 * case this frame is part of frag chain.
1288 */
1289 m0->m_nextpkt = NULL;
1290
1291 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
1292 ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
1293 sc->sc_hwmap[rix].ieeerate, -1);
1294
1295 if (ieee80211_radiotap_active_vap(vap)) {
1296 u_int64_t tsf = ath_hal_gettsf64(ah);
1297
1298 sc->sc_tx_th.wt_tsf = htole64(tsf);
1299 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
1300 if (iswep)
1301 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1302 if (isfrag)
1303 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
1304 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
1305 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
1306 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
1307
1308 ieee80211_radiotap_tx(vap, m0);
1309 }
1310
1311 /* Blank the legacy rate array */
1312 bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1313
1314 /*
1315 * ath_buf_set_rate needs at least one rate/try to setup
1316 * the rate scenario.
1317 */
1318 bf->bf_state.bfs_rc[0].rix = rix;
1319 bf->bf_state.bfs_rc[0].tries = try0;
1320 bf->bf_state.bfs_rc[0].ratecode = txrate;
1321
1322 /* Store the decided rate index values away */
1323 bf->bf_state.bfs_pktlen = pktlen;
1324 bf->bf_state.bfs_hdrlen = hdrlen;
1325 bf->bf_state.bfs_atype = atype;
1326 bf->bf_state.bfs_txpower = ni->ni_txpower;
1327 bf->bf_state.bfs_txrate0 = txrate;
1328 bf->bf_state.bfs_try0 = try0;
1329 bf->bf_state.bfs_keyix = keyix;
1330 bf->bf_state.bfs_txantenna = sc->sc_txantenna;
1331 bf->bf_state.bfs_flags = flags;
1332 bf->bf_txflags = flags;
1333 bf->bf_state.bfs_shpream = shortPreamble;
1334
1335 /* XXX this should be done in ath_tx_setrate() */
1336 bf->bf_state.bfs_ctsrate0 = 0; /* ie, no hard-coded ctsrate */
1337 bf->bf_state.bfs_ctsrate = 0; /* calculated later */
1338 bf->bf_state.bfs_ctsduration = 0;
1339 bf->bf_state.bfs_ismrr = ismrr;
1340
1341 return 0;
1342}
1343
1344/*
1345 * Direct-dispatch the current frame to the hardware.
1346 *
1347 * This can be called by the net80211 code.
1348 *
1349 * XXX what about locking? Or, push the seqno assign into the
1350 * XXX aggregate scheduler so its serialised?
1351 */
1352int
1353ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni,
1354 struct ath_buf *bf, struct mbuf *m0)
1355{
1356 struct ieee80211vap *vap = ni->ni_vap;
1357 struct ath_vap *avp = ATH_VAP(vap);
1358 int r;
1359 u_int pri;
1360 int tid;
1361 struct ath_txq *txq;
1362 int ismcast;
1363 const struct ieee80211_frame *wh;
1364 int is_ampdu, is_ampdu_tx, is_ampdu_pending;
1365 ieee80211_seq seqno;
1366 uint8_t type, subtype;
1367
1368 /*
1369 * Determine the target hardware queue.
1370 *
1371 * For multicast frames, the txq gets overridden to be the
1372 * software TXQ and it's done via direct-dispatch.
1373 *
1374 * For any other frame, we do a TID/QoS lookup inside the frame
1375 * to see what the TID should be. If it's a non-QoS frame, the
1376 * AC and TID are overridden. The TID/TXQ code assumes the
1377 * TID is on a predictable hardware TXQ, so we don't support
1378 * having a node TID queued to multiple hardware TXQs.
1379 * This may change in the future but would require some locking
1380 * fudgery.
1381 */
1382 pri = ath_tx_getac(sc, m0);
1383 tid = ath_tx_gettid(sc, m0);
1384
1385 txq = sc->sc_ac2q[pri];
1386 wh = mtod(m0, struct ieee80211_frame *);
1387 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1388 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1389 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1390
1391 /* A-MPDU TX */
1392 is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid);
1393 is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid);
1394 is_ampdu = is_ampdu_tx | is_ampdu_pending;
1395
1396 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n",
1397 __func__, tid, pri, is_ampdu);
1398
1399 /* Multicast frames go onto the software multicast queue */
1400 if (ismcast)
1401 txq = &avp->av_mcastq;
1402
1403 if ((! is_ampdu) && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
1404 txq = &avp->av_mcastq;
1405
1406 /* Do the generic frame setup */
1407 /* XXX should just bzero the bf_state? */
1408 bf->bf_state.bfs_dobaw = 0;
1409
1410 /* A-MPDU TX? Manually set sequence number */
1411 /* Don't do it whilst pending; the net80211 layer still assigns them */
1412 /* XXX do we need locking here? */
1413 if (is_ampdu_tx) {
1414 ATH_TXQ_LOCK(txq);
1415 /*
1416 * Always call; this function will
1417 * handle making sure that null data frames
1418 * don't get a sequence number from the current
1419 * TID and thus mess with the BAW.
1420 */
1421 seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0);
1422 if (IEEE80211_QOS_HAS_SEQ(wh) &&
1423 subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL) {
1424 bf->bf_state.bfs_dobaw = 1;
1425 }
1426 ATH_TXQ_UNLOCK(txq);
1427 }
1428
1429 /*
1430 * If needed, the sequence number has been assigned.
1431 * Squirrel it away somewhere easy to get to.
1432 */
1433 bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT;
1434
1435 /* Is ampdu pending? fetch the seqno and print it out */
1436 if (is_ampdu_pending)
1437 DPRINTF(sc, ATH_DEBUG_SW_TX,
1438 "%s: tid %d: ampdu pending, seqno %d\n",
1439 __func__, tid, M_SEQNO_GET(m0));
1440
1441 /* This also sets up the DMA map */
1442 r = ath_tx_normal_setup(sc, ni, bf, m0);
1443
1444 if (r != 0)
1445 return r;
1446
1447 /* At this point m0 could have changed! */
1448 m0 = bf->bf_m;
1449
1450#if 1
1451 /*
1452 * If it's a multicast frame, do a direct-dispatch to the
1453 * destination hardware queue. Don't bother software
1454 * queuing it.
1455 */
1456 /*
1457 * If it's a BAR frame, do a direct dispatch to the
1458 * destination hardware queue. Don't bother software
1459 * queuing it, as the TID will now be paused.
1460 * Sending a BAR frame can occur from the net80211 txa timer
1461 * (ie, retries) or from the ath txtask (completion call.)
1462 * It queues directly to hardware because the TID is paused
1463 * at this point (and won't be unpaused until the BAR has
1464 * either been TXed successfully or max retries has been
1465 * reached.)
1466 */
1467 if (txq == &avp->av_mcastq) {
1468 ATH_TXQ_LOCK(txq);
1469 ath_tx_xmit_normal(sc, txq, bf);
1470 ATH_TXQ_UNLOCK(txq);
1471 } else if (type == IEEE80211_FC0_TYPE_CTL &&
1472 subtype == IEEE80211_FC0_SUBTYPE_BAR) {
1473 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
1474 "%s: BAR: TX'ing direct\n", __func__);
1475 ATH_TXQ_LOCK(txq);
1476 ath_tx_xmit_normal(sc, txq, bf);
1477 ATH_TXQ_UNLOCK(txq);
1478 } else {
1479 /* add to software queue */
1480 ath_tx_swq(sc, ni, txq, bf);
1481 }
1482#else
1483 /*
1484 * For now, since there's no software queue,
1485 * direct-dispatch to the hardware.
1486 */
1487 ATH_TXQ_LOCK(txq);
1488 ath_tx_xmit_normal(sc, txq, bf);
1489 ATH_TXQ_UNLOCK(txq);
1490#endif
1491
1492 return 0;
1493}
1494
1495static int
1496ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
1497 struct ath_buf *bf, struct mbuf *m0,
1498 const struct ieee80211_bpf_params *params)
1499{
1500 struct ifnet *ifp = sc->sc_ifp;
1501 struct ieee80211com *ic = ifp->if_l2com;
1502 struct ath_hal *ah = sc->sc_ah;
1503 struct ieee80211vap *vap = ni->ni_vap;
1504 int error, ismcast, ismrr;
1505 int keyix, hdrlen, pktlen, try0, txantenna;
1506 u_int8_t rix, txrate;
1507 struct ieee80211_frame *wh;
1508 u_int flags;
1509 HAL_PKT_TYPE atype;
1510 const HAL_RATE_TABLE *rt;
1511 struct ath_desc *ds;
1512 u_int pri;
1513 int o_tid = -1;
1514 int do_override;
1515
1516 wh = mtod(m0, struct ieee80211_frame *);
1517 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1518 hdrlen = ieee80211_anyhdrsize(wh);
1519 /*
1520 * Packet length must not include any
1521 * pad bytes; deduct them here.
1522 */
1523 /* XXX honor IEEE80211_BPF_DATAPAD */
1524 pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
1525
1526
1527 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n",
1528 __func__, ismcast);
1529
1530 /* Handle encryption twiddling if needed */
1531 if (! ath_tx_tag_crypto(sc, ni,
1532 m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0,
1533 &hdrlen, &pktlen, &keyix)) {
1534 ath_freetx(m0);
1535 return EIO;
1536 }
1537 /* packet header may have moved, reset our local pointer */
1538 wh = mtod(m0, struct ieee80211_frame *);
1539
1540 /* Do the generic frame setup */
1541 /* XXX should just bzero the bf_state? */
1542 bf->bf_state.bfs_dobaw = 0;
1543
1544 error = ath_tx_dmasetup(sc, bf, m0);
1545 if (error != 0)
1546 return error;
1547 m0 = bf->bf_m; /* NB: may have changed */
1548 wh = mtod(m0, struct ieee80211_frame *);
1549 bf->bf_node = ni; /* NB: held reference */
1550
1551 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
1552 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
1553 if (params->ibp_flags & IEEE80211_BPF_RTS)
1554 flags |= HAL_TXDESC_RTSENA;
1555 else if (params->ibp_flags & IEEE80211_BPF_CTS) {
1556 /* XXX assume 11g/11n protection? */
1557 bf->bf_state.bfs_doprot = 1;
1558 flags |= HAL_TXDESC_CTSENA;
1559 }
1560 /* XXX leave ismcast to injector? */
1561 if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
1562 flags |= HAL_TXDESC_NOACK;
1563
1564 rt = sc->sc_currates;
1565 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1566 rix = ath_tx_findrix(sc, params->ibp_rate0);
1567 txrate = rt->info[rix].rateCode;
1568 if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
1569 txrate |= rt->info[rix].shortPreamble;
1570 sc->sc_txrix = rix;
1571 try0 = params->ibp_try0;
1572 ismrr = (params->ibp_try1 != 0);
1573 txantenna = params->ibp_pri >> 2;
1574 if (txantenna == 0) /* XXX? */
1575 txantenna = sc->sc_txantenna;
1576
1577 /*
1578 * Since ctsrate is fixed, store it away for later
1579 * use when the descriptor fields are being set.
1580 */
1581 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA))
1582 bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate;
1583
1584 pri = params->ibp_pri & 3;
1585 /* Override pri if the frame isn't a QoS one */
1586 if (! IEEE80211_QOS_HAS_SEQ(wh))
1587 pri = ath_tx_getac(sc, m0);
1588
1589 /*
1590 * NB: we mark all packets as type PSPOLL so the h/w won't
1591 * set the sequence number, duration, etc.
1592 */
1593 atype = HAL_PKT_TYPE_PSPOLL;
1594
1595 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
1596 ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
1597 sc->sc_hwmap[rix].ieeerate, -1);
1598
1599 if (ieee80211_radiotap_active_vap(vap)) {
1600 u_int64_t tsf = ath_hal_gettsf64(ah);
1601
1602 sc->sc_tx_th.wt_tsf = htole64(tsf);
1603 sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
1604 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1605 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1606 if (m0->m_flags & M_FRAG)
1607 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
1608 sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
1609 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
1610 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
1611
1612 ieee80211_radiotap_tx(vap, m0);
1613 }
1614
1615 /*
1616 * Formulate first tx descriptor with tx controls.
1617 */
1618 ds = bf->bf_desc;
1619 /* XXX check return value? */
1620
1621 /* Store the decided rate index values away */
1622 bf->bf_state.bfs_pktlen = pktlen;
1623 bf->bf_state.bfs_hdrlen = hdrlen;
1624 bf->bf_state.bfs_atype = atype;
1625 bf->bf_state.bfs_txpower = params->ibp_power;
1626 bf->bf_state.bfs_txrate0 = txrate;
1627 bf->bf_state.bfs_try0 = try0;
1628 bf->bf_state.bfs_keyix = keyix;
1629 bf->bf_state.bfs_txantenna = txantenna;
1630 bf->bf_state.bfs_flags = flags;
1631 bf->bf_txflags = flags;
1632 bf->bf_state.bfs_shpream =
1633 !! (params->ibp_flags & IEEE80211_BPF_SHORTPRE);
1634
1635 /* XXX this should be done in ath_tx_setrate() */
1636 bf->bf_state.bfs_ctsrate = 0;
1637 bf->bf_state.bfs_ctsduration = 0;
1638 bf->bf_state.bfs_ismrr = ismrr;
1639
1640 /* Blank the legacy rate array */
1641 bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1642
1643 bf->bf_state.bfs_rc[0].rix =
1644 ath_tx_findrix(sc, params->ibp_rate0);
1645 bf->bf_state.bfs_rc[0].tries = try0;
1646 bf->bf_state.bfs_rc[0].ratecode = txrate;
1647
1648 if (ismrr) {
1649 int rix;
1650
1651 rix = ath_tx_findrix(sc, params->ibp_rate1);
1652 bf->bf_state.bfs_rc[1].rix = rix;
1653 bf->bf_state.bfs_rc[1].tries = params->ibp_try1;
1654
1655 rix = ath_tx_findrix(sc, params->ibp_rate2);
1656 bf->bf_state.bfs_rc[2].rix = rix;
1657 bf->bf_state.bfs_rc[2].tries = params->ibp_try2;
1658
1659 rix = ath_tx_findrix(sc, params->ibp_rate3);
1660 bf->bf_state.bfs_rc[3].rix = rix;
1661 bf->bf_state.bfs_rc[3].tries = params->ibp_try3;
1662 }
1663 /*
1664 * All the required rate control decisions have been made;
1665 * fill in the rc flags.
1666 */
1667 ath_tx_rate_fill_rcflags(sc, bf);
1668
1669 /* NB: no buffered multicast in power save support */
1670
1671 /* XXX If it's an ADDBA, override the correct queue */
1672 do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid);
1673
1674 /* Map ADDBA to the correct priority */
1675 if (do_override) {
1676#if 0
1677 device_printf(sc->sc_dev,
1678 "%s: overriding tid %d pri %d -> %d\n",
1679 __func__, o_tid, pri, TID_TO_WME_AC(o_tid));
1680#endif
1681 pri = TID_TO_WME_AC(o_tid);
1682 }
1683
1684 /*
1685 * If we're overiding the ADDBA destination, dump directly
1686 * into the hardware queue, right after any pending
1687 * frames to that node are.
1688 */
1689 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n",
1690 __func__, do_override);
1691
1692 if (do_override) {
1693 ATH_TXQ_LOCK(sc->sc_ac2q[pri]);
1694 ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
1695 ATH_TXQ_UNLOCK(sc->sc_ac2q[pri]);
1696 } else {
1697 /* Queue to software queue */
1698 ath_tx_swq(sc, ni, sc->sc_ac2q[pri], bf);
1699 }
1700
1701 return 0;
1702}
1703
1704/*
1705 * Send a raw frame.
1706 *
1707 * This can be called by net80211.
1708 */
1709int
1710ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1711 const struct ieee80211_bpf_params *params)
1712{
1713 struct ieee80211com *ic = ni->ni_ic;
1714 struct ifnet *ifp = ic->ic_ifp;
1715 struct ath_softc *sc = ifp->if_softc;
1716 struct ath_buf *bf;
1717 int error;
1718
1719 ATH_PCU_LOCK(sc);
1720 if (sc->sc_inreset_cnt > 0) {
1721 device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; bailing\n",
1722 __func__);
1723 error = EIO;
1724 ATH_PCU_UNLOCK(sc);
1725 goto bad0;
1726 }
1727 sc->sc_txstart_cnt++;
1728 ATH_PCU_UNLOCK(sc);
1729
1730 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
1731 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
1732 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ?
1733 "!running" : "invalid");
1734 m_freem(m);
1735 error = ENETDOWN;
1736 goto bad;
1737 }
1738 /*
1739 * Grab a TX buffer and associated resources.
1740 */
1741 bf = ath_getbuf(sc);
1742 if (bf == NULL) {
1743 sc->sc_stats.ast_tx_nobuf++;
1744 m_freem(m);
1745 error = ENOBUFS;
1746 goto bad;
1747 }
1748
1749 if (params == NULL) {
1750 /*
1751 * Legacy path; interpret frame contents to decide
1752 * precisely how to send the frame.
1753 */
1754 if (ath_tx_start(sc, ni, bf, m)) {
1755 error = EIO; /* XXX */
1756 goto bad2;
1757 }
1758 } else {
1759 /*
1760 * Caller supplied explicit parameters to use in
1761 * sending the frame.
1762 */
1763 if (ath_tx_raw_start(sc, ni, bf, m, params)) {
1764 error = EIO; /* XXX */
1765 goto bad2;
1766 }
1767 }
1768 sc->sc_wd_timer = 5;
1769 ifp->if_opackets++;
1770 sc->sc_stats.ast_tx_raw++;
1771
1772 ATH_PCU_LOCK(sc);
1773 sc->sc_txstart_cnt--;
1774 ATH_PCU_UNLOCK(sc);
1775
1776 return 0;
1777bad2:
1778 ATH_TXBUF_LOCK(sc);
1779 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1780 ATH_TXBUF_UNLOCK(sc);
1781bad:
1782 ATH_PCU_LOCK(sc);
1783 sc->sc_txstart_cnt--;
1784 ATH_PCU_UNLOCK(sc);
1785bad0:
1786 ifp->if_oerrors++;
1787 sc->sc_stats.ast_tx_raw_fail++;
1788 ieee80211_free_node(ni);
1789
1790 return error;
1791}
1792
1793/* Some helper functions */
1794
1795/*
1796 * ADDBA (and potentially others) need to be placed in the same
1797 * hardware queue as the TID/node it's relating to. This is so
1798 * it goes out after any pending non-aggregate frames to the
1799 * same node/TID.
1800 *
1801 * If this isn't done, the ADDBA can go out before the frames
1802 * queued in hardware. Even though these frames have a sequence
1803 * number -earlier- than the ADDBA can be transmitted (but
1804 * no frames whose sequence numbers are after the ADDBA should
1805 * be!) they'll arrive after the ADDBA - and the receiving end
1806 * will simply drop them as being out of the BAW.
1807 *
1808 * The frames can't be appended to the TID software queue - it'll
1809 * never be sent out. So these frames have to be directly
1810 * dispatched to the hardware, rather than queued in software.
1811 * So if this function returns true, the TXQ has to be
1812 * overridden and it has to be directly dispatched.
1813 *
1814 * It's a dirty hack, but someone's gotta do it.
1815 */
1816
1817/*
1818 * XXX doesn't belong here!
1819 */
1820static int
1821ieee80211_is_action(struct ieee80211_frame *wh)
1822{
1823 /* Type: Management frame? */
1824 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
1825 IEEE80211_FC0_TYPE_MGT)
1826 return 0;
1827
1828 /* Subtype: Action frame? */
1829 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) !=
1830 IEEE80211_FC0_SUBTYPE_ACTION)
1831 return 0;
1832
1833 return 1;
1834}
1835
1836#define MS(_v, _f) (((_v) & _f) >> _f##_S)
1837/*
1838 * Return an alternate TID for ADDBA request frames.
1839 *
1840 * Yes, this likely should be done in the net80211 layer.
1841 */
1842static int
1843ath_tx_action_frame_override_queue(struct ath_softc *sc,
1844 struct ieee80211_node *ni,
1845 struct mbuf *m0, int *tid)
1846{
1847 struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *);
1848 struct ieee80211_action_ba_addbarequest *ia;
1849 uint8_t *frm;
1850 uint16_t baparamset;
1851
1852 /* Not action frame? Bail */
1853 if (! ieee80211_is_action(wh))
1854 return 0;
1855
1856 /* XXX Not needed for frames we send? */
1857#if 0
1858 /* Correct length? */
1859 if (! ieee80211_parse_action(ni, m))
1860 return 0;
1861#endif
1862
1863 /* Extract out action frame */
1864 frm = (u_int8_t *)&wh[1];
1865 ia = (struct ieee80211_action_ba_addbarequest *) frm;
1866
1867 /* Not ADDBA? Bail */
1868 if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA)
1869 return 0;
1870 if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST)
1871 return 0;
1872
1873 /* Extract TID, return it */
1874 baparamset = le16toh(ia->rq_baparamset);
1875 *tid = (int) MS(baparamset, IEEE80211_BAPS_TID);
1876
1877 return 1;
1878}
1879#undef MS
1880
1881/* Per-node software queue operations */
1882
1883/*
1884 * Add the current packet to the given BAW.
1885 * It is assumed that the current packet
1886 *
1887 * + fits inside the BAW;
1888 * + already has had a sequence number allocated.
1889 *
1890 * Since the BAW status may be modified by both the ath task and
1891 * the net80211/ifnet contexts, the TID must be locked.
1892 */
1893void
1894ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an,
1895 struct ath_tid *tid, struct ath_buf *bf)
1896{
1897 int index, cindex;
1898 struct ieee80211_tx_ampdu *tap;
1899
1900 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
1901
1902 if (bf->bf_state.bfs_isretried)
1903 return;
1904
1905 tap = ath_tx_get_tx_tid(an, tid->tid);
1906
1907 if (bf->bf_state.bfs_addedbaw)
1908 device_printf(sc->sc_dev,
1909 "%s: re-added? tid=%d, seqno %d; window %d:%d; baw head=%d tail=%d\n",
1910 __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
1911 tap->txa_start, tap->txa_wnd, tid->baw_head, tid->baw_tail);
1912
1913 /*
1914 * ni->ni_txseqs[] is the currently allocated seqno.
1915 * the txa state contains the current baw start.
1916 */
1917 index = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno));
1918 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
1919 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
1920 "%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d baw head=%d tail=%d\n",
1921 __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
1922 tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head, tid->baw_tail);
1923
1924
1925#if 0
1926 assert(tid->tx_buf[cindex] == NULL);
1927#endif
1928 if (tid->tx_buf[cindex] != NULL) {
1929 device_printf(sc->sc_dev,
1930 "%s: ba packet dup (index=%d, cindex=%d, "
1931 "head=%d, tail=%d)\n",
1932 __func__, index, cindex, tid->baw_head, tid->baw_tail);
1933 device_printf(sc->sc_dev,
1934 "%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n",
1935 __func__,
1936 tid->tx_buf[cindex],
1937 SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno),
1938 bf,
1939 SEQNO(bf->bf_state.bfs_seqno)
1940 );
1941 }
1942 tid->tx_buf[cindex] = bf;
1943
1944 if (index >= ((tid->baw_tail - tid->baw_head) & (ATH_TID_MAX_BUFS - 1))) {
1945 tid->baw_tail = cindex;
1946 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
1947 }
1948}
1949
1950/*
1951 * Flip the BAW buffer entry over from the existing one to the new one.
1952 *
1953 * When software retransmitting a (sub-)frame, it is entirely possible that
1954 * the frame ath_buf is marked as BUSY and can't be immediately reused.
1955 * In that instance the buffer is cloned and the new buffer is used for
1956 * retransmit. We thus need to update the ath_buf slot in the BAW buf
1957 * tracking array to maintain consistency.
1958 */
1959static void
1960ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an,
1961 struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf)
1962{
1963 int index, cindex;
1964 struct ieee80211_tx_ampdu *tap;
1965 int seqno = SEQNO(old_bf->bf_state.bfs_seqno);
1966
1967 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
1968
1969 tap = ath_tx_get_tx_tid(an, tid->tid);
1970 index = ATH_BA_INDEX(tap->txa_start, seqno);
1971 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
1972
1973 /*
1974 * Just warn for now; if it happens then we should find out
1975 * about it. It's highly likely the aggregation session will
1976 * soon hang.
1977 */
1978 if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) {
1979 device_printf(sc->sc_dev, "%s: retransmitted buffer"
1980 " has mismatching seqno's, BA session may hang.\n",
1981 __func__);
1982 device_printf(sc->sc_dev, "%s: old seqno=%d, new_seqno=%d\n",
1983 __func__,
1984 old_bf->bf_state.bfs_seqno,
1985 new_bf->bf_state.bfs_seqno);
1986 }
1987
1988 if (tid->tx_buf[cindex] != old_bf) {
1989 device_printf(sc->sc_dev, "%s: ath_buf pointer incorrect; "
1990 " has m BA session may hang.\n",
1991 __func__);
1992 device_printf(sc->sc_dev, "%s: old bf=%p, new bf=%p\n",
1993 __func__,
1994 old_bf, new_bf);
1995 }
1996
1997 tid->tx_buf[cindex] = new_bf;
1998}
1999
2000/*
2001 * seq_start - left edge of BAW
2002 * seq_next - current/next sequence number to allocate
2003 *
2004 * Since the BAW status may be modified by both the ath task and
2005 * the net80211/ifnet contexts, the TID must be locked.
2006 */
2007static void
2008ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an,
2009 struct ath_tid *tid, const struct ath_buf *bf)
2010{
2011 int index, cindex;
2012 struct ieee80211_tx_ampdu *tap;
2013 int seqno = SEQNO(bf->bf_state.bfs_seqno);
2014
2015 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2016
2017 tap = ath_tx_get_tx_tid(an, tid->tid);
2018 index = ATH_BA_INDEX(tap->txa_start, seqno);
2019 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2020
2021 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2022 "%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, baw head=%d, tail=%d\n",
2023 __func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index,
2024 cindex, tid->baw_head, tid->baw_tail);
2025
2026 /*
2027 * If this occurs then we have a big problem - something else
2028 * has slid tap->txa_start along without updating the BAW
2029 * tracking start/end pointers. Thus the TX BAW state is now
2030 * completely busted.
2031 *
2032 * But for now, since I haven't yet fixed TDMA and buffer cloning,
2033 * it's quite possible that a cloned buffer is making its way
2034 * here and causing it to fire off. Disable TDMA for now.
2035 */
2036 if (tid->tx_buf[cindex] != bf) {
2037 device_printf(sc->sc_dev,
2038 "%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n",
2039 __func__,
2040 bf, SEQNO(bf->bf_state.bfs_seqno),
2041 tid->tx_buf[cindex],
2042 SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno));
2043 }
2044
2045 tid->tx_buf[cindex] = NULL;
2046
2047 while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
2048 INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
2049 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
2050 }
2051 DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: baw is now %d:%d, baw head=%d\n",
2052 __func__, tap->txa_start, tap->txa_wnd, tid->baw_head);
2053}
2054
2055/*
2056 * Mark the current node/TID as ready to TX.
2057 *
2058 * This is done to make it easy for the software scheduler to
2059 * find which nodes have data to send.
2060 *
2061 * The TXQ lock must be held.
2062 */
2063static void
2064ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid)
2065{
2066 struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2067
2068 ATH_TXQ_LOCK_ASSERT(txq);
2069
2070 if (tid->paused)
2071 return; /* paused, can't schedule yet */
2072
2073 if (tid->sched)
2074 return; /* already scheduled */
2075
2076 tid->sched = 1;
2077
2078 TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem);
2079}
2080
2081/*
2082 * Mark the current node as no longer needing to be polled for
2083 * TX packets.
2084 *
2085 * The TXQ lock must be held.
2086 */
2087static void
2088ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid)
2089{
2090 struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2091
2092 ATH_TXQ_LOCK_ASSERT(txq);
2093
2094 if (tid->sched == 0)
2095 return;
2096
2097 tid->sched = 0;
2098 TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem);
2099}
2100
2101/*
2102 * Assign a sequence number manually to the given frame.
2103 *
2104 * This should only be called for A-MPDU TX frames.
2105 */
2106static ieee80211_seq
2107ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni,
2108 struct ath_buf *bf, struct mbuf *m0)
2109{
2110 struct ieee80211_frame *wh;
2111 int tid, pri;
2112 ieee80211_seq seqno;
2113 uint8_t subtype;
2114
2115 /* TID lookup */
2116 wh = mtod(m0, struct ieee80211_frame *);
2117 pri = M_WME_GETAC(m0); /* honor classification */
2118 tid = WME_AC_TO_TID(pri);
2119 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pri=%d, tid=%d, qos has seq=%d\n",
2120 __func__, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
2121
2122 /* XXX Is it a control frame? Ignore */
2123
2124 /* Does the packet require a sequence number? */
2125 if (! IEEE80211_QOS_HAS_SEQ(wh))
2126 return -1;
2127
2128 /*
2129 * Is it a QOS NULL Data frame? Give it a sequence number from
2130 * the default TID (IEEE80211_NONQOS_TID.)
2131 *
2132 * The RX path of everything I've looked at doesn't include the NULL
2133 * data frame sequence number in the aggregation state updates, so
2134 * assigning it a sequence number there will cause a BAW hole on the
2135 * RX side.
2136 */
2137 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2138 if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) {
2139 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID];
2140 INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE);
2141 } else {
2142 /* Manually assign sequence number */
2143 seqno = ni->ni_txseqs[tid];
2144 INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE);
2145 }
2146 *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
2147 M_SEQNO_SET(m0, seqno);
2148
2149 /* Return so caller can do something with it if needed */
2150 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: -> seqno=%d\n", __func__, seqno);
2151 return seqno;
2152}
2153
2154/*
2155 * Attempt to direct dispatch an aggregate frame to hardware.
2156 * If the frame is out of BAW, queue.
2157 * Otherwise, schedule it as a single frame.
2158 */
2159static void
2160ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an, struct ath_buf *bf)
2161{
2162 struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid];
2163 struct ath_txq *txq = bf->bf_state.bfs_txq;
2164 struct ieee80211_tx_ampdu *tap;
2165
2166 ATH_TXQ_LOCK_ASSERT(txq);
2167
2168 tap = ath_tx_get_tx_tid(an, tid->tid);
2169
2170 /* paused? queue */
2171 if (tid->paused) {
2172 ATH_TXQ_INSERT_TAIL(tid, bf, bf_list);
2173 return;
2174 }
2175
2176 /* outside baw? queue */
2177 if (bf->bf_state.bfs_dobaw &&
2178 (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
2179 SEQNO(bf->bf_state.bfs_seqno)))) {
2180 ATH_TXQ_INSERT_TAIL(tid, bf, bf_list);
2181 ath_tx_tid_sched(sc, tid);
2182 return;
2183 }
2184
2185 /* Direct dispatch to hardware */
2186 ath_tx_do_ratelookup(sc, bf);
2187 ath_tx_rate_fill_rcflags(sc, bf);
2188 ath_tx_set_rtscts(sc, bf);
2189 ath_tx_setds(sc, bf);
2190 ath_tx_set_ratectrl(sc, bf->bf_node, bf);
2191 ath_tx_chaindesclist(sc, bf);
2192
2193 /* Statistics */
2194 sc->sc_aggr_stats.aggr_low_hwq_single_pkt++;
2195
2196 /* Track per-TID hardware queue depth correctly */
2197 tid->hwq_depth++;
2198
2199 /* Add to BAW */
2200 if (bf->bf_state.bfs_dobaw) {
2201 ath_tx_addto_baw(sc, an, tid, bf);
2202 bf->bf_state.bfs_addedbaw = 1;
2203 }
2204
2205 /* Set completion handler, multi-frame aggregate or not */
2206 bf->bf_comp = ath_tx_aggr_comp;
2207
2208 /* Hand off to hardware */
2209 ath_tx_handoff(sc, txq, bf);
2210}
2211
2212/*
2213 * Attempt to send the packet.
2214 * If the queue isn't busy, direct-dispatch.
2215 * If the queue is busy enough, queue the given packet on the
2216 * relevant software queue.
2217 */
2218void
2219ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_txq *txq,
2220 struct ath_buf *bf)
2221{
2222 struct ath_node *an = ATH_NODE(ni);
2223 struct ieee80211_frame *wh;
2224 struct ath_tid *atid;
2225 int pri, tid;
2226 struct mbuf *m0 = bf->bf_m;
2227
2228 /* Fetch the TID - non-QoS frames get assigned to TID 16 */
2229 wh = mtod(m0, struct ieee80211_frame *);
2230 pri = ath_tx_getac(sc, m0);
2231 tid = ath_tx_gettid(sc, m0);
2232 atid = &an->an_tid[tid];
2233
2234 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n",
2235 __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
2236
2237 /* Set local packet state, used to queue packets to hardware */
2238 bf->bf_state.bfs_tid = tid;
2239 bf->bf_state.bfs_txq = txq;
2240 bf->bf_state.bfs_pri = pri;
2241
2242 /*
2243 * If the hardware queue isn't busy, queue it directly.
2244 * If the hardware queue is busy, queue it.
2245 * If the TID is paused or the traffic it outside BAW, software
2246 * queue it.
2247 */
2248 ATH_TXQ_LOCK(txq);
2249 if (atid->paused) {
2250 /* TID is paused, queue */
2251 ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2252 } else if (ath_tx_ampdu_pending(sc, an, tid)) {
2253 /* AMPDU pending; queue */
2254 ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2255 /* XXX sched? */
2256 } else if (ath_tx_ampdu_running(sc, an, tid)) {
2257 /* AMPDU running, attempt direct dispatch if possible */
2258 if (txq->axq_depth < sc->sc_hwq_limit)
2259 ath_tx_xmit_aggr(sc, an, bf);
2260 else {
2261 ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2262 ath_tx_tid_sched(sc, atid);
2263 }
2264 } else if (txq->axq_depth < sc->sc_hwq_limit) {
2265 /* AMPDU not running, attempt direct dispatch */
2266 ath_tx_xmit_normal(sc, txq, bf);
2267 } else {
2268 /* Busy; queue */
2269 ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2270 ath_tx_tid_sched(sc, atid);
2271 }
2272 ATH_TXQ_UNLOCK(txq);
2273}
2274
2275/*
2276 * Do the basic frame setup stuff that's required before the frame
2277 * is added to a software queue.
2278 *
2279 * All frames get mostly the same treatment and it's done once.
2280 * Retransmits fiddle with things like the rate control setup,
2281 * setting the retransmit bit in the packet; doing relevant DMA/bus
2282 * syncing and relinking it (back) into the hardware TX queue.
2283 *
2284 * Note that this may cause the mbuf to be reallocated, so
2285 * m0 may not be valid.
2286 */
2287
2288
2289/*
2290 * Configure the per-TID node state.
2291 *
2292 * This likely belongs in if_ath_node.c but I can't think of anywhere
2293 * else to put it just yet.
2294 *
2295 * This sets up the SLISTs and the mutex as appropriate.
2296 */
2297void
2298ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an)
2299{
2300 int i, j;
2301 struct ath_tid *atid;
2302
2303 for (i = 0; i < IEEE80211_TID_SIZE; i++) {
2304 atid = &an->an_tid[i];
2305 TAILQ_INIT(&atid->axq_q);
2306 atid->tid = i;
2307 atid->an = an;
2308 for (j = 0; j < ATH_TID_MAX_BUFS; j++)
2309 atid->tx_buf[j] = NULL;
2310 atid->baw_head = atid->baw_tail = 0;
2311 atid->paused = 0;
2312 atid->sched = 0;
2313 atid->hwq_depth = 0;
2314 atid->cleanup_inprogress = 0;
2315 if (i == IEEE80211_NONQOS_TID)
2316 atid->ac = WME_AC_BE;
2317 else
2318 atid->ac = TID_TO_WME_AC(i);
2319 }
2320}
2321
2322/*
2323 * Pause the current TID. This stops packets from being transmitted
2324 * on it.
2325 *
2326 * Since this is also called from upper layers as well as the driver,
2327 * it will get the TID lock.
2328 */
2329static void
2330ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid)
2331{
2332 ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
2333 tid->paused++;
2334 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: paused = %d\n",
2335 __func__, tid->paused);
2336 ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
2337}
2338
2339/*
2340 * Unpause the current TID, and schedule it if needed.
2341 */
2342static void
2343ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid)
2344{
2345 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2346
2347 tid->paused--;
2348
2349 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: unpaused = %d\n",
2350 __func__, tid->paused);
2351
2352 if (tid->paused || tid->axq_depth == 0) {
2353 return;
2354 }
2355
2356 ath_tx_tid_sched(sc, tid);
2357 /* Punt some frames to the hardware if needed */
2358 ath_txq_sched(sc, sc->sc_ac2q[tid->ac]);
2359}
2360
2361/*
2362 * Free any packets currently pending in the software TX queue.
2363 *
2364 * This will be called when a node is being deleted.
2365 *
2366 * It can also be called on an active node during an interface
2367 * reset or state transition.
2368 *
2369 * (From Linux/reference):
2370 *
2371 * TODO: For frame(s) that are in the retry state, we will reuse the
2372 * sequence number(s) without setting the retry bit. The
2373 * alternative is to give up on these and BAR the receiver's window
2374 * forward.
2375 */
2376static void
2377ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid,
2378 ath_bufhead *bf_cq)
2379{
2380 struct ath_buf *bf;
2381 struct ieee80211_tx_ampdu *tap;
2382 struct ieee80211_node *ni = &an->an_node;
2383 int t = 0;
2384 struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2385
2386 tap = ath_tx_get_tx_tid(an, tid->tid);
2387
2388 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2389
2390 /* Walk the queue, free frames */
2391 for (;;) {
2392 bf = TAILQ_FIRST(&tid->axq_q);
2393 if (bf == NULL) {
2394 break;
2395 }
2396
2397 if (t == 0) {
2398 device_printf(sc->sc_dev,
2399 "%s: node %p: tid %d: txq_depth=%d, "
2400 "txq_aggr_depth=%d, sched=%d, paused=%d, "
2401 "hwq_depth=%d, incomp=%d, baw_head=%d, baw_tail=%d "
2402 "txa_start=%d, ni_txseqs=%d\n",
2403 __func__, ni, tid->tid, txq->axq_depth,
2404 txq->axq_aggr_depth, tid->sched, tid->paused,
2405 tid->hwq_depth, tid->incomp, tid->baw_head,
2406 tid->baw_tail, tap == NULL ? -1 : tap->txa_start,
2407 ni->ni_txseqs[tid->tid]);
2408 t = 1;
2409 }
2410
2411
2412 /*
2413 * If the current TID is running AMPDU, update
2414 * the BAW.
2415 */
2416 if (ath_tx_ampdu_running(sc, an, tid->tid) &&
2417 bf->bf_state.bfs_dobaw) {
2418 /*
2419 * Only remove the frame from the BAW if it's
2420 * been transmitted at least once; this means
2421 * the frame was in the BAW to begin with.
2422 */
2423 if (bf->bf_state.bfs_retries > 0) {
2424 ath_tx_update_baw(sc, an, tid, bf);
2425 bf->bf_state.bfs_dobaw = 0;
2426 }
2427 /*
2428 * This has become a non-fatal error now
2429 */
2430 if (! bf->bf_state.bfs_addedbaw)
2431 device_printf(sc->sc_dev,
2432 "%s: wasn't added: seqno %d\n",
2433 __func__, SEQNO(bf->bf_state.bfs_seqno));
2434 }
2435 ATH_TXQ_REMOVE(tid, bf, bf_list);
2436 TAILQ_INSERT_TAIL(bf_cq, bf, bf_list);
2437 }
2438
2439 /*
2440 * Now that it's completed, grab the TID lock and update
2441 * the sequence number and BAW window.
2442 * Because sequence numbers have been assigned to frames
2443 * that haven't been sent yet, it's entirely possible
2444 * we'll be called with some pending frames that have not
2445 * been transmitted.
2446 *
2447 * The cleaner solution is to do the sequence number allocation
2448 * when the packet is first transmitted - and thus the "retries"
2449 * check above would be enough to update the BAW/seqno.
2450 */
2451
2452 /* But don't do it for non-QoS TIDs */
2453 if (tap) {
2454#if 0
2455 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
2456 "%s: node %p: TID %d: sliding BAW left edge to %d\n",
2457 __func__, an, tid->tid, tap->txa_start);
2458#endif
2459 ni->ni_txseqs[tid->tid] = tap->txa_start;
2460 tid->baw_tail = tid->baw_head;
2461 }
2462}
2463
2464/*
2465 * Flush all software queued packets for the given node.
2466 *
2467 * This occurs when a completion handler frees the last buffer
2468 * for a node, and the node is thus freed. This causes the node
2469 * to be cleaned up, which ends up calling ath_tx_node_flush.
2470 */
2471void
2472ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an)
2473{
2474 int tid;
2475 ath_bufhead bf_cq;
2476 struct ath_buf *bf;
2477
2478 TAILQ_INIT(&bf_cq);
2479
2480 for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
2481 struct ath_tid *atid = &an->an_tid[tid];
2482 struct ath_txq *txq = sc->sc_ac2q[atid->ac];
2483
2484 /* Remove this tid from the list of active tids */
2485 ATH_TXQ_LOCK(txq);
2486 ath_tx_tid_unsched(sc, atid);
2487
2488 /* Free packets */
2489 ath_tx_tid_drain(sc, an, atid, &bf_cq);
2490 ATH_TXQ_UNLOCK(txq);
2491 }
2492
2493 /* Handle completed frames */
2494 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
2495 TAILQ_REMOVE(&bf_cq, bf, bf_list);
2496 ath_tx_default_comp(sc, bf, 0);
2497 }
2498}
2499
2500/*
2501 * Drain all the software TXQs currently with traffic queued.
2502 */
2503void
2504ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq)
2505{
2506 struct ath_tid *tid;
2507 ath_bufhead bf_cq;
2508 struct ath_buf *bf;
2509
2510 TAILQ_INIT(&bf_cq);
2511 ATH_TXQ_LOCK(txq);
2512
2513 /*
2514 * Iterate over all active tids for the given txq,
2515 * flushing and unsched'ing them
2516 */
2517 while (! TAILQ_EMPTY(&txq->axq_tidq)) {
2518 tid = TAILQ_FIRST(&txq->axq_tidq);
2519 ath_tx_tid_drain(sc, tid->an, tid, &bf_cq);
2520 ath_tx_tid_unsched(sc, tid);
2521 }
2522
2523 ATH_TXQ_UNLOCK(txq);
2524
2525 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
2526 TAILQ_REMOVE(&bf_cq, bf, bf_list);
2527 ath_tx_default_comp(sc, bf, 0);
2528 }
2529}
2530
2531/*
2532 * Handle completion of non-aggregate session frames.
2533 */
2534void
2535ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
2536{
2537 struct ieee80211_node *ni = bf->bf_node;
2538 struct ath_node *an = ATH_NODE(ni);
2539 int tid = bf->bf_state.bfs_tid;
2540 struct ath_tid *atid = &an->an_tid[tid];
2541 struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
2542
2543 /* The TID state is protected behind the TXQ lock */
2544 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
2545
2546 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n",
2547 __func__, bf, fail, atid->hwq_depth - 1);
2548
2549 atid->hwq_depth--;
2550 if (atid->hwq_depth < 0)
2551 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
2552 __func__, atid->hwq_depth);
2553 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
2554
2555 /*
2556 * punt to rate control if we're not being cleaned up
2557 * during a hw queue drain and the frame wanted an ACK.
2558 */
2559 if (fail == 0 && ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0))
2560 ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
2561 ts, bf->bf_state.bfs_pktlen,
2562 1, (ts->ts_status == 0) ? 0 : 1);
2563
2564 ath_tx_default_comp(sc, bf, fail);
2565}
2566
2567/*
2568 * Handle cleanup of aggregate session packets that aren't
2569 * an A-MPDU.
2570 *
2571 * There's no need to update the BAW here - the session is being
2572 * torn down.
2573 */
2574static void
2575ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf)
2576{
2577 struct ieee80211_node *ni = bf->bf_node;
2578 struct ath_node *an = ATH_NODE(ni);
2579 int tid = bf->bf_state.bfs_tid;
2580 struct ath_tid *atid = &an->an_tid[tid];
2581
2582 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n",
2583 __func__, tid, atid->incomp);
2584
2585 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
2586 atid->incomp--;
2587 if (atid->incomp == 0) {
2588 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
2589 "%s: TID %d: cleaned up! resume!\n",
2590 __func__, tid);
2591 atid->cleanup_inprogress = 0;
2592 ath_tx_tid_resume(sc, atid);
2593 }
2594 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
2595
2596 ath_tx_default_comp(sc, bf, 0);
2597}
2598
2599/*
2600 * Performs transmit side cleanup when TID changes from aggregated to
2601 * unaggregated.
2602 *
2603 * - Discard all retry frames from the s/w queue.
2604 * - Fix the tx completion function for all buffers in s/w queue.
2605 * - Count the number of unacked frames, and let transmit completion
2606 * handle it later.
2607 *
2608 * The caller is responsible for pausing the TID.
2609 */
2610static void
2611ath_tx_cleanup(struct ath_softc *sc, struct ath_node *an, int tid)
2612{
2613 struct ath_tid *atid = &an->an_tid[tid];
2614 struct ieee80211_tx_ampdu *tap;
2615 struct ath_buf *bf, *bf_next;
2616 ath_bufhead bf_cq;
2617
2618 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
2619 "%s: TID %d: called\n", __func__, tid);
2620
2621 TAILQ_INIT(&bf_cq);
2622 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
2623
2624 /*
2625 * Update the frames in the software TX queue:
2626 *
2627 * + Discard retry frames in the queue
2628 * + Fix the completion function to be non-aggregate
2629 */
2630 bf = TAILQ_FIRST(&atid->axq_q);
2631 while (bf) {
2632 if (bf->bf_state.bfs_isretried) {
2633 bf_next = TAILQ_NEXT(bf, bf_list);
2634 TAILQ_REMOVE(&atid->axq_q, bf, bf_list);
2635 atid->axq_depth--;
2636 if (bf->bf_state.bfs_dobaw) {
2637 ath_tx_update_baw(sc, an, atid, bf);
2638 if (! bf->bf_state.bfs_addedbaw)
2639 device_printf(sc->sc_dev,
2640 "%s: wasn't added: seqno %d\n",
2641 __func__, SEQNO(bf->bf_state.bfs_seqno));
2642 }
2643 bf->bf_state.bfs_dobaw = 0;
2644 /*
2645 * Call the default completion handler with "fail" just
2646 * so upper levels are suitably notified about this.
2647 */
2648 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
2649 bf = bf_next;
2650 continue;
2651 }
2652 /* Give these the default completion handler */
2653 bf->bf_comp = ath_tx_normal_comp;
2654 bf = TAILQ_NEXT(bf, bf_list);
2655 }
2656
2657 /* The caller is required to pause the TID */
2658#if 0
2659 /* Pause the TID */
2660 ath_tx_tid_pause(sc, atid);
2661#endif
2662
2663 /*
2664 * Calculate what hardware-queued frames exist based
2665 * on the current BAW size. Ie, what frames have been
2666 * added to the TX hardware queue for this TID but
2667 * not yet ACKed.
2668 */
2669 tap = ath_tx_get_tx_tid(an, tid);
2670 /* Need the lock - fiddling with BAW */
2671 while (atid->baw_head != atid->baw_tail) {
2672 if (atid->tx_buf[atid->baw_head]) {
2673 atid->incomp++;
2674 atid->cleanup_inprogress = 1;
2675 atid->tx_buf[atid->baw_head] = NULL;
2676 }
2677 INCR(atid->baw_head, ATH_TID_MAX_BUFS);
2678 INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
2679 }
2680
2681 /*
2682 * If cleanup is required, defer TID scheduling
2683 * until all the HW queued packets have been
2684 * sent.
2685 */
2686 if (! atid->cleanup_inprogress)
2687 ath_tx_tid_resume(sc, atid);
2688
2689 if (atid->cleanup_inprogress)
2690 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
2691 "%s: TID %d: cleanup needed: %d packets\n",
2692 __func__, tid, atid->incomp);
2693 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
2694
2695 /* Handle completing frames and fail them */
2696 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
2697 TAILQ_REMOVE(&bf_cq, bf, bf_list);
2698 ath_tx_default_comp(sc, bf, 1);
2699 }
2700}
2701
2702static void
2703ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
2704{
2705 struct ieee80211_frame *wh;
2706
2707 wh = mtod(bf->bf_m, struct ieee80211_frame *);
2708 /* Only update/resync if needed */
2709 if (bf->bf_state.bfs_isretried == 0) {
2710 wh->i_fc[1] |= IEEE80211_FC1_RETRY;
2711 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2712 BUS_DMASYNC_PREWRITE);
2713 }
2714 sc->sc_stats.ast_tx_swretries++;
2715 bf->bf_state.bfs_isretried = 1;
2716 bf->bf_state.bfs_retries ++;
2717}
2718
2719static struct ath_buf *
2720ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an,
2721 struct ath_tid *tid, struct ath_buf *bf)
2722{
2723 struct ath_buf *nbf;
2724 int error;
2725
2726 nbf = ath_buf_clone(sc, bf);
2727
2728#if 0
2729 device_printf(sc->sc_dev, "%s: ATH_BUF_BUSY; cloning\n",
2730 __func__);
2731#endif
2732
2733 if (nbf == NULL) {
2734 /* Failed to clone */
2735 device_printf(sc->sc_dev,
2736 "%s: failed to clone a busy buffer\n",
2737 __func__);
2738 return NULL;
2739 }
2740
2741 /* Setup the dma for the new buffer */
2742 error = ath_tx_dmasetup(sc, nbf, nbf->bf_m);
2743 if (error != 0) {
2744 device_printf(sc->sc_dev,
2745 "%s: failed to setup dma for clone\n",
2746 __func__);
2747 /*
2748 * Put this at the head of the list, not tail;
2749 * that way it doesn't interfere with the
2750 * busy buffer logic (which uses the tail of
2751 * the list.)
2752 */
2753 ATH_TXBUF_LOCK(sc);
2754 TAILQ_INSERT_HEAD(&sc->sc_txbuf, nbf, bf_list);
2755 ATH_TXBUF_UNLOCK(sc);
2756 return NULL;
2757 }
2758
2759 /* Update BAW if required, before we free the original buf */
2760 if (bf->bf_state.bfs_dobaw)
2761 ath_tx_switch_baw_buf(sc, an, tid, bf, nbf);
2762
2763 /* Free current buffer; return the older buffer */
2764 bf->bf_m = NULL;
2765 bf->bf_node = NULL;
2766 ath_freebuf(sc, bf);
2767 return nbf;
2768}
2769
2770/*
2771 * Handle retrying an unaggregate frame in an aggregate
2772 * session.
2773 *
2774 * If too many retries occur, pause the TID, wait for
2775 * any further retransmits (as there's no reason why
2776 * non-aggregate frames in an aggregate session are
2777 * transmitted in-order; they just have to be in-BAW)
2778 * and then queue a BAR.
2779 */
2780static void
2781ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf)
2782{
2783 struct ieee80211_node *ni = bf->bf_node;
2784 struct ath_node *an = ATH_NODE(ni);
2785 int tid = bf->bf_state.bfs_tid;
2786 struct ath_tid *atid = &an->an_tid[tid];
2787 struct ieee80211_tx_ampdu *tap;
2788 int txseq;
2789
2790 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
2791
2792 tap = ath_tx_get_tx_tid(an, tid);
2793
2794 /*
2795 * If the buffer is marked as busy, we can't directly
2796 * reuse it. Instead, try to clone the buffer.
2797 * If the clone is successful, recycle the old buffer.
2798 * If the clone is unsuccessful, set bfs_retries to max
2799 * to force the next bit of code to free the buffer
2800 * for us.
2801 */
2802 if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
2803 (bf->bf_flags & ATH_BUF_BUSY)) {
2804 struct ath_buf *nbf;
2805 nbf = ath_tx_retry_clone(sc, an, atid, bf);
2806 if (nbf)
2807 /* bf has been freed at this point */
2808 bf = nbf;
2809 else
2810 bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
2811 }
2812
2813 if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
2814 DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
2815 "%s: exceeded retries; seqno %d\n",
2816 __func__, SEQNO(bf->bf_state.bfs_seqno));
2817 sc->sc_stats.ast_tx_swretrymax++;
2818
2819 /* Update BAW anyway */
2820 if (bf->bf_state.bfs_dobaw) {
2821 ath_tx_update_baw(sc, an, atid, bf);
2822 if (! bf->bf_state.bfs_addedbaw)
2823 device_printf(sc->sc_dev,
2824 "%s: wasn't added: seqno %d\n",
2825 __func__, SEQNO(bf->bf_state.bfs_seqno));
2826 }
2827 bf->bf_state.bfs_dobaw = 0;
2828
2829 /* Send BAR frame */
2830 /*
2831 * This'll end up going into net80211 and back out
2832 * again, via ic->ic_raw_xmit().
2833 */
2834 txseq = tap->txa_start;
2835 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
2836
2837 device_printf(sc->sc_dev,
2838 "%s: TID %d: send BAR; seq %d\n", __func__, tid, txseq);
2839
2840 /* XXX TODO: send BAR */
2841
2842 /* Free buffer, bf is free after this call */
2843 ath_tx_default_comp(sc, bf, 0);
2844 return;
2845 }
2846
2847 /*
2848 * This increments the retry counter as well as
2849 * sets the retry flag in the ath_buf and packet
2850 * body.
2851 */
2852 ath_tx_set_retry(sc, bf);
2853
2854 /*
2855 * Insert this at the head of the queue, so it's
2856 * retried before any current/subsequent frames.
2857 */
2858 ATH_TXQ_INSERT_HEAD(atid, bf, bf_list);
2859 ath_tx_tid_sched(sc, atid);
2860
2861 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
2862}
2863
2864/*
2865 * Common code for aggregate excessive retry/subframe retry.
2866 * If retrying, queues buffers to bf_q. If not, frees the
2867 * buffers.
2868 *
2869 * XXX should unify this with ath_tx_aggr_retry_unaggr()
2870 */
2871static int
2872ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf,
2873 ath_bufhead *bf_q)
2874{
2875 struct ieee80211_node *ni = bf->bf_node;
2876 struct ath_node *an = ATH_NODE(ni);
2877 int tid = bf->bf_state.bfs_tid;
2878 struct ath_tid *atid = &an->an_tid[tid];
2879
2880 ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[atid->ac]);
2881
2882 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
2883 ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0);
2884 /* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */
2885
2886 /*
2887 * If the buffer is marked as busy, we can't directly
2888 * reuse it. Instead, try to clone the buffer.
2889 * If the clone is successful, recycle the old buffer.
2890 * If the clone is unsuccessful, set bfs_retries to max
2891 * to force the next bit of code to free the buffer
2892 * for us.
2893 */
2894 if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
2895 (bf->bf_flags & ATH_BUF_BUSY)) {
2896 struct ath_buf *nbf;
2897 nbf = ath_tx_retry_clone(sc, an, atid, bf);
2898 if (nbf)
2899 /* bf has been freed at this point */
2900 bf = nbf;
2901 else
2902 bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
2903 }
2904
2905 if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
2906 sc->sc_stats.ast_tx_swretrymax++;
2907 DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
2908 "%s: max retries: seqno %d\n",
2909 __func__, SEQNO(bf->bf_state.bfs_seqno));
2910 ath_tx_update_baw(sc, an, atid, bf);
2911 if (! bf->bf_state.bfs_addedbaw)
2912 device_printf(sc->sc_dev,
2913 "%s: wasn't added: seqno %d\n",
2914 __func__, SEQNO(bf->bf_state.bfs_seqno));
2915 bf->bf_state.bfs_dobaw = 0;
2916 return 1;
2917 }
2918
2919 ath_tx_set_retry(sc, bf);
2920 bf->bf_next = NULL; /* Just to make sure */
2921
2922 TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
2923 return 0;
2924}
2925
2926/*
2927 * error pkt completion for an aggregate destination
2928 */
2929static void
2930ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first,
2931 struct ath_tid *tid)
2932{
2933 struct ieee80211_node *ni = bf_first->bf_node;
2934 struct ath_node *an = ATH_NODE(ni);
2935 struct ath_buf *bf_next, *bf;
2936 ath_bufhead bf_q;
2937 int drops = 0;
2938 struct ieee80211_tx_ampdu *tap;
2939 ath_bufhead bf_cq;
2940
2941 TAILQ_INIT(&bf_q);
2942 TAILQ_INIT(&bf_cq);
2943 sc->sc_stats.ast_tx_aggrfail++;
2944
2945 /*
2946 * Update rate control - all frames have failed.
2947 *
2948 * XXX use the length in the first frame in the series;
2949 * XXX just so things are consistent for now.
2950 */
2951 ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc,
2952 &bf_first->bf_status.ds_txstat,
2953 bf_first->bf_state.bfs_pktlen,
2954 bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes);
2955
2956 ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
2957 tap = ath_tx_get_tx_tid(an, tid->tid);
2958
2959 /* Retry all subframes */
2960 bf = bf_first;
2961 while (bf) {
2962 bf_next = bf->bf_next;
2963 bf->bf_next = NULL; /* Remove it from the aggr list */
2964 if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
2965 drops++;
2966 bf->bf_next = NULL;
2967 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
2968 }
2969 bf = bf_next;
2970 }
2971
2972 /* Prepend all frames to the beginning of the queue */
2973 while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
2974 TAILQ_REMOVE(&bf_q, bf, bf_list);
2975 ATH_TXQ_INSERT_HEAD(tid, bf, bf_list);
2976 }
2977
2978 ath_tx_tid_sched(sc, tid);
2979
2980 /*
2981 * send bar if we dropped any frames
2982 *
2983 * Keep the txq lock held for now, as we need to ensure
2984 * that ni_txseqs[] is consistent (as it's being updated
2985 * in the ifnet TX context or raw TX context.)
2986 */
2987 if (drops) {
2988 int txseq = tap->txa_start;
2989 ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
2990 device_printf(sc->sc_dev,
2991 "%s: TID %d: send BAR; seq %d\n",
2992 __func__, tid->tid, txseq);
2993
2994 /* XXX TODO: send BAR */
2995 } else {
2996 ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
2997 }
2998
2999 /* Complete frames which errored out */
3000 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
3001 TAILQ_REMOVE(&bf_cq, bf, bf_list);
3002 ath_tx_default_comp(sc, bf, 0);
3003 }
3004}
3005
3006/*
3007 * Handle clean-up of packets from an aggregate list.
3008 *
3009 * There's no need to update the BAW here - the session is being
3010 * torn down.
3011 */
3012static void
3013ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first)
3014{
3015 struct ath_buf *bf, *bf_next;
3016 struct ieee80211_node *ni = bf_first->bf_node;
3017 struct ath_node *an = ATH_NODE(ni);
3018 int tid = bf_first->bf_state.bfs_tid;
3019 struct ath_tid *atid = &an->an_tid[tid];
3020
3021 bf = bf_first;
3022
3023 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3024
3025 /* update incomp */
3026 while (bf) {
3027 atid->incomp--;
3028 bf = bf->bf_next;
3029 }
3030
3031 if (atid->incomp == 0) {
3032 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3033 "%s: TID %d: cleaned up! resume!\n",
3034 __func__, tid);
3035 atid->cleanup_inprogress = 0;
3036 ath_tx_tid_resume(sc, atid);
3037 }
3038 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3039
3040 /* Handle frame completion */
3041 while (bf) {
3042 bf_next = bf->bf_next;
3043 ath_tx_default_comp(sc, bf, 1);
3044 bf = bf_next;
3045 }
3046}
3047
3048/*
3049 * Handle completion of an set of aggregate frames.
3050 *
3051 * XXX for now, simply complete each sub-frame.
3052 *
3053 * Note: the completion handler is the last descriptor in the aggregate,
3054 * not the last descriptor in the first frame.
3055 */
3056static void
3057ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first, int fail)
3058{
3059 //struct ath_desc *ds = bf->bf_lastds;
3060 struct ieee80211_node *ni = bf_first->bf_node;
3061 struct ath_node *an = ATH_NODE(ni);
3062 int tid = bf_first->bf_state.bfs_tid;
3063 struct ath_tid *atid = &an->an_tid[tid];
3064 struct ath_tx_status ts;
3065 struct ieee80211_tx_ampdu *tap;
3066 ath_bufhead bf_q;
3067 ath_bufhead bf_cq;
3068 int seq_st, tx_ok;
3069 int hasba, isaggr;
3070 uint32_t ba[2];
3071 struct ath_buf *bf, *bf_next;
3072 int ba_index;
3073 int drops = 0;
3074 int nframes = 0, nbad = 0, nf;
3075 int pktlen;
3076 /* XXX there's too much on the stack? */
3077 struct ath_rc_series rc[4];
3078 int txseq;
3079
3080 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n",
3081 __func__, atid->hwq_depth);
3082
3083 /* The TID state is kept behind the TXQ lock */
3084 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3085
3086 atid->hwq_depth--;
3087 if (atid->hwq_depth < 0)
3088 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
3089 __func__, atid->hwq_depth);
3090
3091 /*
3092 * Punt cleanup to the relevant function, not our problem now
3093 */
3094 if (atid->cleanup_inprogress) {
3095 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3096 ath_tx_comp_cleanup_aggr(sc, bf_first);
3097 return;
3098 }
3099
3100 /*
3101 * Take a copy; this may be needed -after- bf_first
3102 * has been completed and freed.
3103 */
3104 ts = bf_first->bf_status.ds_txstat;
3105 /*
3106 * XXX for now, use the first frame in the aggregate for
3107 * XXX rate control completion; it's at least consistent.
3108 */
3109 pktlen = bf_first->bf_state.bfs_pktlen;
3110
3111 /*
3112 * handle errors first
3113 */
3114 if (ts.ts_status & HAL_TXERR_XRETRY) {
3115 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3116 ath_tx_comp_aggr_error(sc, bf_first, atid);
3117 return;
3118 }
3119
3120 TAILQ_INIT(&bf_q);
3121 TAILQ_INIT(&bf_cq);
3122 tap = ath_tx_get_tx_tid(an, tid);
3123
3124 /*
3125 * extract starting sequence and block-ack bitmap
3126 */
3127 /* XXX endian-ness of seq_st, ba? */
3128 seq_st = ts.ts_seqnum;
3129 hasba = !! (ts.ts_flags & HAL_TX_BA);
3130 tx_ok = (ts.ts_status == 0);
3131 isaggr = bf_first->bf_state.bfs_aggr;
3132 ba[0] = ts.ts_ba_low;
3133 ba[1] = ts.ts_ba_high;
3134
3135 /*
3136 * Copy the TX completion status and the rate control
3137 * series from the first descriptor, as it may be freed
3138 * before the rate control code can get its grubby fingers
3139 * into things.
3140 */
3141 memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc));
3142
3143 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3144 "%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n",
3145 __func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags,
3146 isaggr, seq_st, hasba, ba[0], ba[1]);
3147
3148 /* Occasionally, the MAC sends a tx status for the wrong TID. */
3149 if (tid != ts.ts_tid) {
3150 device_printf(sc->sc_dev, "%s: tid %d != hw tid %d\n",
3151 __func__, tid, ts.ts_tid);
3152 tx_ok = 0;
3153 }
3154
3155 /* AR5416 BA bug; this requires an interface reset */
3156 if (isaggr && tx_ok && (! hasba)) {
3157 device_printf(sc->sc_dev,
3158 "%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, seq_st=%d\n",
3159 __func__, hasba, tx_ok, isaggr, seq_st);
3160 /* XXX TODO: schedule an interface reset */
3161 }
3162
3163 /*
3164 * Walk the list of frames, figure out which ones were correctly
3165 * sent and which weren't.
3166 */
3167 bf = bf_first;
3168 nf = bf_first->bf_state.bfs_nframes;
3169
3170 /* bf_first is going to be invalid once this list is walked */
3171 bf_first = NULL;
3172
3173 /*
3174 * Walk the list of completed frames and determine
3175 * which need to be completed and which need to be
3176 * retransmitted.
3177 *
3178 * For completed frames, the completion functions need
3179 * to be called at the end of this function as the last
3180 * node reference may free the node.
3181 *
3182 * Finally, since the TXQ lock can't be held during the
3183 * completion callback (to avoid lock recursion),
3184 * the completion calls have to be done outside of the
3185 * lock.
3186 */
3187 while (bf) {
3188 nframes++;
3189 ba_index = ATH_BA_INDEX(seq_st, SEQNO(bf->bf_state.bfs_seqno));
3190 bf_next = bf->bf_next;
3191 bf->bf_next = NULL; /* Remove it from the aggr list */
3192
3193 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3194 "%s: checking bf=%p seqno=%d; ack=%d\n",
3195 __func__, bf, SEQNO(bf->bf_state.bfs_seqno),
3196 ATH_BA_ISSET(ba, ba_index));
3197
3198 if (tx_ok && ATH_BA_ISSET(ba, ba_index)) {
3199 ath_tx_update_baw(sc, an, atid, bf);
3200 bf->bf_state.bfs_dobaw = 0;
3201 if (! bf->bf_state.bfs_addedbaw)
3202 device_printf(sc->sc_dev,
3203 "%s: wasn't added: seqno %d\n",
3204 __func__, SEQNO(bf->bf_state.bfs_seqno));
3205 bf->bf_next = NULL;
3206 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
3207 } else {
3208 if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
3209 drops++;
3210 bf->bf_next = NULL;
3211 TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
3212 }
3213 nbad++;
3214 }
3215 bf = bf_next;
3216 }
3217
3218 /*
3219 * Now that the BAW updates have been done, unlock
3220 *
3221 * txseq is grabbed before the lock is released so we
3222 * have a consistent view of what -was- in the BAW.
3223 * Anything after this point will not yet have been
3224 * TXed.
3225 */
3226 txseq = tap->txa_start;
3227 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3228
3229 if (nframes != nf)
3230 device_printf(sc->sc_dev,
3231 "%s: num frames seen=%d; bf nframes=%d\n",
3232 __func__, nframes, nf);
3233
3234 /*
3235 * Now we know how many frames were bad, call the rate
3236 * control code.
3237 */
3238 if (fail == 0)
3239 ath_tx_update_ratectrl(sc, ni, rc, &ts, pktlen, nframes, nbad);
3240
3241 /*
3242 * send bar if we dropped any frames
3243 */
3244 if (drops) {
3245 device_printf(sc->sc_dev,
3246 "%s: TID %d: send BAR; seq %d\n", __func__, tid, txseq);
3247 /* XXX TODO: send BAR */
3248 }
3249
3250 /* Prepend all frames to the beginning of the queue */
3251 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3252 while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
3253 TAILQ_REMOVE(&bf_q, bf, bf_list);
3254 ATH_TXQ_INSERT_HEAD(atid, bf, bf_list);
3255 }
3256 ath_tx_tid_sched(sc, atid);
3257 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3258
3259 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3260 "%s: txa_start now %d\n", __func__, tap->txa_start);
3261
3262 /* Do deferred completion */
3263 while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
3264 TAILQ_REMOVE(&bf_cq, bf, bf_list);
3265 ath_tx_default_comp(sc, bf, 0);
3266 }
3267}
3268
3269/*
3270 * Handle completion of unaggregated frames in an ADDBA
3271 * session.
3272 *
3273 * Fail is set to 1 if the entry is being freed via a call to
3274 * ath_tx_draintxq().
3275 */
3276static void
3277ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail)
3278{
3279 struct ieee80211_node *ni = bf->bf_node;
3280 struct ath_node *an = ATH_NODE(ni);
3281 int tid = bf->bf_state.bfs_tid;
3282 struct ath_tid *atid = &an->an_tid[tid];
3283 struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3284
3285 /*
3286 * Update rate control status here, before we possibly
3287 * punt to retry or cleanup.
3288 *
3289 * Do it outside of the TXQ lock.
3290 */
3291 if (fail == 0 && ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0))
3292 ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
3293 &bf->bf_status.ds_txstat,
3294 bf->bf_state.bfs_pktlen,
3295 1, (ts->ts_status == 0) ? 0 : 1);
3296
3297 /*
3298 * This is called early so atid->hwq_depth can be tracked.
3299 * This unfortunately means that it's released and regrabbed
3300 * during retry and cleanup. That's rather inefficient.
3301 */
3302 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3303
3304 if (tid == IEEE80211_NONQOS_TID)
3305 device_printf(sc->sc_dev, "%s: TID=16!\n", __func__);
3306
3307 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: tid=%d, hwq_depth=%d\n",
3308 __func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth);
3309
3310 atid->hwq_depth--;
3311 if (atid->hwq_depth < 0)
3312 device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
3313 __func__, atid->hwq_depth);
3314
3315 /*
3316 * If a cleanup is in progress, punt to comp_cleanup;
3317 * rather than handling it here. It's thus their
3318 * responsibility to clean up, call the completion
3319 * function in net80211, etc.
3320 */
3321 if (atid->cleanup_inprogress) {
3322 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3323 ath_tx_comp_cleanup_unaggr(sc, bf);
3324 return;
3325 }
3326
3327 /*
3328 * Don't bother with the retry check if all frames
3329 * are being failed (eg during queue deletion.)
3330 */
3331 if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) {
3332 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3333 ath_tx_aggr_retry_unaggr(sc, bf);
3334 return;
3335 }
3336
3337 /* Success? Complete */
3338 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n",
3339 __func__, tid, SEQNO(bf->bf_state.bfs_seqno));
3340 if (bf->bf_state.bfs_dobaw) {
3341 ath_tx_update_baw(sc, an, atid, bf);
3342 bf->bf_state.bfs_dobaw = 0;
3343 if (! bf->bf_state.bfs_addedbaw)
3344 device_printf(sc->sc_dev,
3345 "%s: wasn't added: seqno %d\n",
3346 __func__, SEQNO(bf->bf_state.bfs_seqno));
3347 }
3348
3349 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3350
3351 ath_tx_default_comp(sc, bf, fail);
3352 /* bf is freed at this point */
3353}
3354
3355void
3356ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3357{
3358 if (bf->bf_state.bfs_aggr)
3359 ath_tx_aggr_comp_aggr(sc, bf, fail);
3360 else
3361 ath_tx_aggr_comp_unaggr(sc, bf, fail);
3362}
3363
3364/*
3365 * Schedule some packets from the given node/TID to the hardware.
3366 *
3367 * This is the aggregate version.
3368 */
3369void
3370ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an,
3371 struct ath_tid *tid)
3372{
3373 struct ath_buf *bf;
3374 struct ath_txq *txq = sc->sc_ac2q[tid->ac];
3375 struct ieee80211_tx_ampdu *tap;
3376 struct ieee80211_node *ni = &an->an_node;
3377 ATH_AGGR_STATUS status;
3378 ath_bufhead bf_q;
3379
3380 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid);
3381 ATH_TXQ_LOCK_ASSERT(txq);
3382
3383 tap = ath_tx_get_tx_tid(an, tid->tid);
3384
3385 if (tid->tid == IEEE80211_NONQOS_TID)
3386 device_printf(sc->sc_dev, "%s: called for TID=NONQOS_TID?\n",
3387 __func__);
3388
3389 for (;;) {
3390 status = ATH_AGGR_DONE;
3391
3392 /*
3393 * If the upper layer has paused the TID, don't
3394 * queue any further packets.
3395 *
3396 * This can also occur from the completion task because
3397 * of packet loss; but as its serialised with this code,
3398 * it won't "appear" half way through queuing packets.
3399 */
3400 if (tid->paused)
3401 break;
3402
3403 bf = TAILQ_FIRST(&tid->axq_q);
3404 if (bf == NULL) {
3405 break;
3406 }
3407
3408 /*
3409 * If the packet doesn't fall within the BAW (eg a NULL
3410 * data frame), schedule it directly; continue.
3411 */
3412 if (! bf->bf_state.bfs_dobaw) {
3413 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: non-baw packet\n",
3414 __func__);
3415 ATH_TXQ_REMOVE(tid, bf, bf_list);
3416 bf->bf_state.bfs_aggr = 0;
3417 ath_tx_do_ratelookup(sc, bf);
3418 ath_tx_rate_fill_rcflags(sc, bf);
3419 ath_tx_set_rtscts(sc, bf);
3420 ath_tx_setds(sc, bf);
3421 ath_tx_chaindesclist(sc, bf);
3422 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
3423 ath_tx_set_ratectrl(sc, ni, bf);
3424
3425 sc->sc_aggr_stats.aggr_nonbaw_pkt++;
3426
3427 /* Queue the packet; continue */
3428 goto queuepkt;
3429 }
3430
3431 TAILQ_INIT(&bf_q);
3432
3433 /*
3434 * Do a rate control lookup on the first frame in the
3435 * list. The rate control code needs that to occur
3436 * before it can determine whether to TX.
3437 * It's inaccurate because the rate control code doesn't
3438 * really "do" aggregate lookups, so it only considers
3439 * the size of the first frame.
3440 */
3441 ath_tx_do_ratelookup(sc, bf);
3442 bf->bf_state.bfs_rc[3].rix = 0;
3443 bf->bf_state.bfs_rc[3].tries = 0;
3444 ath_tx_rate_fill_rcflags(sc, bf);
3445
3446 status = ath_tx_form_aggr(sc, an, tid, &bf_q);
3447
3448 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3449 "%s: ath_tx_form_aggr() status=%d\n", __func__, status);
3450
3451 /*
3452 * No frames to be picked up - out of BAW
3453 */
3454 if (TAILQ_EMPTY(&bf_q))
3455 break;
3456
3457 /*
3458 * This assumes that the descriptor list in the ath_bufhead
3459 * are already linked together via bf_next pointers.
3460 */
3461 bf = TAILQ_FIRST(&bf_q);
3462
3463 /*
3464 * If it's the only frame send as non-aggregate
3465 * assume that ath_tx_form_aggr() has checked
3466 * whether it's in the BAW and added it appropriately.
3467 */
3468 if (bf->bf_state.bfs_nframes == 1) {
3469 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3470 "%s: single-frame aggregate\n", __func__);
3471 bf->bf_state.bfs_aggr = 0;
3472 ath_tx_set_rtscts(sc, bf);
3473 ath_tx_setds(sc, bf);
3474 ath_tx_chaindesclist(sc, bf);
3475 ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
3476 ath_tx_set_ratectrl(sc, ni, bf);
3477 if (status == ATH_AGGR_BAW_CLOSED)
3478 sc->sc_aggr_stats.aggr_baw_closed_single_pkt++;
3479 else
3480 sc->sc_aggr_stats.aggr_single_pkt++;
3481 } else {
3482 DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3483 "%s: multi-frame aggregate: %d frames, length %d\n",
3484 __func__, bf->bf_state.bfs_nframes,
3485 bf->bf_state.bfs_al);
3486 bf->bf_state.bfs_aggr = 1;
3487 sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++;
3488 sc->sc_aggr_stats.aggr_aggr_pkt++;
3489
3490 /*
3491 * Update the rate and rtscts information based on the
3492 * rate decision made by the rate control code;
3493 * the first frame in the aggregate needs it.
3494 */
3495 ath_tx_set_rtscts(sc, bf);
3496
3497 /*
3498 * Setup the relevant descriptor fields
3499 * for aggregation. The first descriptor
3500 * already points to the rest in the chain.
3501 */
3502 ath_tx_setds_11n(sc, bf);
3503
3504 /*
3505 * setup first desc with rate and aggr info
3506 */
3507 ath_tx_set_ratectrl(sc, ni, bf);
3508 }
3509 queuepkt:
3510 //txq = bf->bf_state.bfs_txq;
3511
3512 /* Set completion handler, multi-frame aggregate or not */
3513 bf->bf_comp = ath_tx_aggr_comp;
3514
3515 if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID)
3516 device_printf(sc->sc_dev, "%s: TID=16?\n", __func__);
3517
3518 /* Punt to txq */
3519 ath_tx_handoff(sc, txq, bf);
3520
3521 /* Track outstanding buffer count to hardware */
3522 /* aggregates are "one" buffer */
3523 tid->hwq_depth++;
3524
3525 /*
3526 * Break out if ath_tx_form_aggr() indicated
3527 * there can't be any further progress (eg BAW is full.)
3528 * Checking for an empty txq is done above.
3529 *
3530 * XXX locking on txq here?
3531 */
3532 if (txq->axq_aggr_depth >= sc->sc_hwq_limit ||
3533 status == ATH_AGGR_BAW_CLOSED)
3534 break;
3535 }
3536}
3537
3538/*
3539 * Schedule some packets from the given node/TID to the hardware.
3540 */
3541void
3542ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an,
3543 struct ath_tid *tid)
3544{
3545 struct ath_buf *bf;
3546 struct ath_txq *txq = sc->sc_ac2q[tid->ac];
3547 struct ieee80211_node *ni = &an->an_node;
3548
3549 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n",
3550 __func__, an, tid->tid);
3551
3552 ATH_TXQ_LOCK_ASSERT(txq);
3553
3554 /* Check - is AMPDU pending or running? then print out something */
3555 if (ath_tx_ampdu_pending(sc, an, tid->tid))
3556 device_printf(sc->sc_dev, "%s: tid=%d, ampdu pending?\n",
3557 __func__, tid->tid);
3558 if (ath_tx_ampdu_running(sc, an, tid->tid))
3559 device_printf(sc->sc_dev, "%s: tid=%d, ampdu running?\n",
3560 __func__, tid->tid);
3561
3562 for (;;) {
3563
3564 /*
3565 * If the upper layers have paused the TID, don't
3566 * queue any further packets.
3567 */
3568 if (tid->paused)
3569 break;
3570
3571 bf = TAILQ_FIRST(&tid->axq_q);
3572 if (bf == NULL) {
3573 break;
3574 }
3575
3576 ATH_TXQ_REMOVE(tid, bf, bf_list);
3577
3578 KASSERT(txq == bf->bf_state.bfs_txq, ("txqs not equal!\n"));
3579
3580 /* Sanity check! */
3581 if (tid->tid != bf->bf_state.bfs_tid) {
3582 device_printf(sc->sc_dev, "%s: bfs_tid %d !="
3583 " tid %d\n",
3584 __func__, bf->bf_state.bfs_tid, tid->tid);
3585 }
3586 /* Normal completion handler */
3587 bf->bf_comp = ath_tx_normal_comp;
3588
3589 /* Program descriptors + rate control */
3590 ath_tx_do_ratelookup(sc, bf);
3591 ath_tx_rate_fill_rcflags(sc, bf);
3592 ath_tx_set_rtscts(sc, bf);
3593 ath_tx_setds(sc, bf);
3594 ath_tx_chaindesclist(sc, bf);
3595 ath_tx_set_ratectrl(sc, ni, bf);
3596
3597 /* Track outstanding buffer count to hardware */
3598 /* aggregates are "one" buffer */
3599 tid->hwq_depth++;
3600
3601 /* Punt to hardware or software txq */
3602 ath_tx_handoff(sc, txq, bf);
3603 }
3604}
3605
3606/*
3607 * Schedule some packets to the given hardware queue.
3608 *
3609 * This function walks the list of TIDs (ie, ath_node TIDs
3610 * with queued traffic) and attempts to schedule traffic
3611 * from them.
3612 *
3613 * TID scheduling is implemented as a FIFO, with TIDs being
3614 * added to the end of the queue after some frames have been
3615 * scheduled.
3616 */
3617void
3618ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq)
3619{
3620 struct ath_tid *tid, *next, *last;
3621
3622 ATH_TXQ_LOCK_ASSERT(txq);
3623
3624 /*
3625 * Don't schedule if the hardware queue is busy.
3626 * This (hopefully) gives some more time to aggregate
3627 * some packets in the aggregation queue.
3628 */
3629 if (txq->axq_aggr_depth >= sc->sc_hwq_limit) {
3630 sc->sc_aggr_stats.aggr_sched_nopkt++;
3631 return;
3632 }
3633
3634 last = TAILQ_LAST(&txq->axq_tidq, axq_t_s);
3635
3636 TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) {
3637 /*
3638 * Suspend paused queues here; they'll be resumed
3639 * once the addba completes or times out.
3640 */
3641 DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n",
3642 __func__, tid->tid, tid->paused);
3643 ath_tx_tid_unsched(sc, tid);
3644 if (tid->paused) {
3645 continue;
3646 }
3647 if (ath_tx_ampdu_running(sc, tid->an, tid->tid))
3648 ath_tx_tid_hw_queue_aggr(sc, tid->an, tid);
3649 else
3650 ath_tx_tid_hw_queue_norm(sc, tid->an, tid);
3651
3652 /* Not empty? Re-schedule */
3653 if (tid->axq_depth != 0)
3654 ath_tx_tid_sched(sc, tid);
3655
3656 /* Give the software queue time to aggregate more packets */
3657 if (txq->axq_aggr_depth >= sc->sc_hwq_limit) {
3658 break;
3659 }
3660
3661 /*
3662 * If this was the last entry on the original list, stop.
3663 * Otherwise nodes that have been rescheduled onto the end
3664 * of the TID FIFO list will just keep being rescheduled.
3665 */
3666 if (tid == last)
3667 break;
3668 }
3669}
3670
3671/*
3672 * TX addba handling
3673 */
3674
3675/*
3676 * Return net80211 TID struct pointer, or NULL for none
3677 */
3678struct ieee80211_tx_ampdu *
3679ath_tx_get_tx_tid(struct ath_node *an, int tid)
3680{
3681 struct ieee80211_node *ni = &an->an_node;
3682 struct ieee80211_tx_ampdu *tap;
3683 int ac;
3684
3685 if (tid == IEEE80211_NONQOS_TID)
3686 return NULL;
3687
3688 ac = TID_TO_WME_AC(tid);
3689
3690 tap = &ni->ni_tx_ampdu[ac];
3691 return tap;
3692}
3693
3694/*
3695 * Is AMPDU-TX running?
3696 */
3697static int
3698ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid)
3699{
3700 struct ieee80211_tx_ampdu *tap;
3701
3702 if (tid == IEEE80211_NONQOS_TID)
3703 return 0;
3704
3705 tap = ath_tx_get_tx_tid(an, tid);
3706 if (tap == NULL)
3707 return 0; /* Not valid; default to not running */
3708
3709 return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING);
3710}
3711
3712/*
3713 * Is AMPDU-TX negotiation pending?
3714 */
3715static int
3716ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid)
3717{
3718 struct ieee80211_tx_ampdu *tap;
3719
3720 if (tid == IEEE80211_NONQOS_TID)
3721 return 0;
3722
3723 tap = ath_tx_get_tx_tid(an, tid);
3724 if (tap == NULL)
3725 return 0; /* Not valid; default to not pending */
3726
3727 return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND);
3728}
3729
3730/*
3731 * Is AMPDU-TX pending for the given TID?
3732 */
3733
3734
3735/*
3736 * Method to handle sending an ADDBA request.
3737 *
3738 * We tap this so the relevant flags can be set to pause the TID
3739 * whilst waiting for the response.
3740 *
3741 * XXX there's no timeout handler we can override?
3742 */
3743int
3744ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3745 int dialogtoken, int baparamset, int batimeout)
3746{
3747 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3748 int tid = WME_AC_TO_TID(tap->txa_ac);
3749 struct ath_node *an = ATH_NODE(ni);
3750 struct ath_tid *atid = &an->an_tid[tid];
3751
3752 /*
3753 * XXX danger Will Robinson!
3754 *
3755 * Although the taskqueue may be running and scheduling some more
3756 * packets, these should all be _before_ the addba sequence number.
3757 * However, net80211 will keep self-assigning sequence numbers
3758 * until addba has been negotiated.
3759 *
3760 * In the past, these packets would be "paused" (which still works
3761 * fine, as they're being scheduled to the driver in the same
3762 * serialised method which is calling the addba request routine)
3763 * and when the aggregation session begins, they'll be dequeued
3764 * as aggregate packets and added to the BAW. However, now there's
3765 * a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these
3766 * packets. Thus they never get included in the BAW tracking and
3767 * this can cause the initial burst of packets after the addba
3768 * negotiation to "hang", as they quickly fall outside the BAW.
3769 *
3770 * The "eventual" solution should be to tag these packets with
3771 * dobaw. Although net80211 has given us a sequence number,
3772 * it'll be "after" the left edge of the BAW and thus it'll
3773 * fall within it.
3774 */
3775 ath_tx_tid_pause(sc, atid);
3776
3777 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3778 "%s: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n",
3779 __func__, dialogtoken, baparamset, batimeout);
3780 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3781 "%s: txa_start=%d, ni_txseqs=%d\n",
3782 __func__, tap->txa_start, ni->ni_txseqs[tid]);
3783
3784 return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
3785 batimeout);
3786}
3787
3788/*
3789 * Handle an ADDBA response.
3790 *
3791 * We unpause the queue so TX'ing can resume.
3792 *
3793 * Any packets TX'ed from this point should be "aggregate" (whether
3794 * aggregate or not) so the BAW is updated.
3795 *
3796 * Note! net80211 keeps self-assigning sequence numbers until
3797 * ampdu is negotiated. This means the initially-negotiated BAW left
3798 * edge won't match the ni->ni_txseq.
3799 *
3800 * So, being very dirty, the BAW left edge is "slid" here to match
3801 * ni->ni_txseq.
3802 *
3803 * What likely SHOULD happen is that all packets subsequent to the
3804 * addba request should be tagged as aggregate and queued as non-aggregate
3805 * frames; thus updating the BAW. For now though, I'll just slide the
3806 * window.
3807 */
3808int
3809ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3810 int status, int code, int batimeout)
3811{
3812 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3813 int tid = WME_AC_TO_TID(tap->txa_ac);
3814 struct ath_node *an = ATH_NODE(ni);
3815 struct ath_tid *atid = &an->an_tid[tid];
3816 int r;
3817
3818 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3819 "%s: called; status=%d, code=%d, batimeout=%d\n", __func__,
3820 status, code, batimeout);
3821
3822 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3823 "%s: txa_start=%d, ni_txseqs=%d\n",
3824 __func__, tap->txa_start, ni->ni_txseqs[tid]);
3825
3826 /*
3827 * Call this first, so the interface flags get updated
3828 * before the TID is unpaused. Otherwise a race condition
3829 * exists where the unpaused TID still doesn't yet have
3830 * IEEE80211_AGGR_RUNNING set.
3831 */
3832 r = sc->sc_addba_response(ni, tap, status, code, batimeout);
3833
3834 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3835 /*
3836 * XXX dirty!
3837 * Slide the BAW left edge to wherever net80211 left it for us.
3838 * Read above for more information.
3839 */
3840 tap->txa_start = ni->ni_txseqs[tid];
3841 ath_tx_tid_resume(sc, atid);
3842 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3843 return r;
3844}
3845
3846
3847/*
3848 * Stop ADDBA on a queue.
3849 */
3850void
3851ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
3852{
3853 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3854 int tid = WME_AC_TO_TID(tap->txa_ac);
3855 struct ath_node *an = ATH_NODE(ni);
3856 struct ath_tid *atid = &an->an_tid[tid];
3857
3858 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: called\n", __func__);
3859
3860 /* Pause TID traffic early, so there aren't any races */
3861 ath_tx_tid_pause(sc, atid);
3862
3863 /* There's no need to hold the TXQ lock here */
3864 sc->sc_addba_stop(ni, tap);
3865
3866 /*
3867 * ath_tx_cleanup will resume the TID if possible, otherwise
3868 * it'll set the cleanup flag, and it'll be unpaused once
3869 * things have been cleaned up.
3870 */
3871 ath_tx_cleanup(sc, an, tid);
3872}
3873
3874/*
3875 * Note: net80211 bar_timeout() doesn't call this function on BAR failure;
3876 * it simply tears down the aggregation session. Ew.
3877 *
3878 * It however will call ieee80211_ampdu_stop() which will call
3879 * ic->ic_addba_stop().
3880 *
3881 * XXX This uses a hard-coded max BAR count value; the whole
3882 * XXX BAR TX success or failure should be better handled!
3883 */
3884void
3885ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
3886 int status)
3887{
3888 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3889 int tid = WME_AC_TO_TID(tap->txa_ac);
3890 struct ath_node *an = ATH_NODE(ni);
3891 struct ath_tid *atid = &an->an_tid[tid];
3892 int attempts = tap->txa_attempts;
3893
3894 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3895 "%s: called; status=%d\n", __func__, status);
3896
3897 /* Note: This may update the BAW details */
3898 sc->sc_bar_response(ni, tap, status);
3899
3900 /* Unpause the TID */
3901 /*
3902 * XXX if this is attempt=50, the TID will be downgraded
3903 * XXX to a non-aggregate session. So we must unpause the
3904 * XXX TID here or it'll never be done.
3905 */
3906 if (status == 0 || attempts == 50) {
3907 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3908 ath_tx_tid_resume(sc, atid);
3909 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3910 }
3911}
3912
3913/*
3914 * This is called whenever the pending ADDBA request times out.
3915 * Unpause and reschedule the TID.
3916 */
3917void
3918ath_addba_response_timeout(struct ieee80211_node *ni,
3919 struct ieee80211_tx_ampdu *tap)
3920{
3921 struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
3922 int tid = WME_AC_TO_TID(tap->txa_ac);
3923 struct ath_node *an = ATH_NODE(ni);
3924 struct ath_tid *atid = &an->an_tid[tid];
3925
3926 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3927 "%s: called; resuming\n", __func__);
3928
3929 /* Note: This updates the aggregate state to (again) pending */
3930 sc->sc_addba_response_timeout(ni, tap);
3931
3932 /* Unpause the TID; which reschedules it */
3933 ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3934 ath_tx_tid_resume(sc, atid);
3935 ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3936}