Deleted Added
sdiff udiff text old ( 122866 ) new ( 123044 )
full compact
1/*-
2 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer,
10 * without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 * redistribution must be conditioned upon including a substantially
14 * similar Disclaimer requirement for further binary redistribution.
15 * 3. Neither the names of the above-listed copyright holders nor the names
16 * of any contributors may be used to endorse or promote products derived
17 * from this software without specific prior written permission.
18 *
19 * Alternatively, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") version 2 as published by the Free
21 * Software Foundation.
22 *
23 * NO WARRANTY
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34 * THE POSSIBILITY OF SUCH DAMAGES.
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 123044 2003-11-29 01:23:59Z sam $");
39
40/*
41 * Driver for the Atheros Wireless LAN controller.
42 *
43 * This software is derived from work of Atsushi Onoe; his contribution
44 * is greatly appreciated.
45 */
46
47#include "opt_inet.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/sysctl.h>
52#include <sys/mbuf.h>
53#include <sys/malloc.h>
54#include <sys/lock.h>
55#include <sys/mutex.h>
56#include <sys/kernel.h>
57#include <sys/socket.h>
58#include <sys/sockio.h>
59#include <sys/errno.h>
60#include <sys/callout.h>
61#include <sys/bus.h>
62#include <sys/endian.h>
63
64#include <machine/bus.h>
65
66#include <net/if.h>
67#include <net/if_dl.h>
68#include <net/if_media.h>
69#include <net/if_arp.h>
70#include <net/ethernet.h>
71#include <net/if_llc.h>
72
73#include <net80211/ieee80211_var.h>
74
75#include <net/bpf.h>
76
77#ifdef INET
78#include <netinet/in.h>
79#include <netinet/if_ether.h>
80#endif
81
82#define AR_DEBUG
83#include <dev/ath/if_athvar.h>
84#include <contrib/dev/ath/ah_desc.h>
85
86/* unalligned little endian access */
87#define LE_READ_2(p) \
88 ((u_int16_t) \
89 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
90#define LE_READ_4(p) \
91 ((u_int32_t) \
92 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
93 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
94
95static void ath_init(void *);
96static void ath_stop(struct ifnet *);
97static void ath_start(struct ifnet *);
98static void ath_reset(struct ath_softc *);
99static int ath_media_change(struct ifnet *);
100static void ath_watchdog(struct ifnet *);
101static int ath_ioctl(struct ifnet *, u_long, caddr_t);
102static void ath_fatal_proc(void *, int);
103static void ath_rxorn_proc(void *, int);
104static void ath_bmiss_proc(void *, int);
105static void ath_initkeytable(struct ath_softc *);
106static void ath_mode_init(struct ath_softc *);
107static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
108static void ath_beacon_proc(void *, int);
109static void ath_beacon_free(struct ath_softc *);
110static void ath_beacon_config(struct ath_softc *);
111static int ath_desc_alloc(struct ath_softc *);
112static void ath_desc_free(struct ath_softc *);
113static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
114static void ath_node_free(struct ieee80211com *, struct ieee80211_node *);
115static void ath_node_copy(struct ieee80211com *,
116 struct ieee80211_node *, const struct ieee80211_node *);
117static u_int8_t ath_node_getrssi(struct ieee80211com *,
118 struct ieee80211_node *);
119static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
120static void ath_rx_proc(void *, int);
121static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
122 struct ath_buf *, struct mbuf *);
123static void ath_tx_proc(void *, int);
124static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
125static void ath_draintxq(struct ath_softc *);
126static void ath_stoprecv(struct ath_softc *);
127static int ath_startrecv(struct ath_softc *);
128static void ath_next_scan(void *);
129static void ath_calibrate(void *);
130static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
131static void ath_newassoc(struct ieee80211com *,
132 struct ieee80211_node *, int);
133static int ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor);
134
135static int ath_rate_setup(struct ath_softc *sc, u_int mode);
136static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
137static void ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
138static void ath_rate_ctl(void *, struct ieee80211_node *);
139
140SYSCTL_DECL(_hw_ath);
141
142/* XXX validate sysctl values */
143static int ath_dwelltime = 200; /* 5 channels/second */
144SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
145 0, "channel dwell time (ms) for AP/station scanning");
146static int ath_calinterval = 30; /* calibrate every 30 secs */
147SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
148 0, "chip calibration interval (secs)");
149static int ath_outdoor = AH_TRUE; /* outdoor operation */
150SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
151 0, "enable/disable outdoor operation");
152static int ath_countrycode = CTRY_DEFAULT; /* country code */
153SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
154 0, "country code");
155static int ath_regdomain = 0; /* regulatory domain */
156SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
157 0, "regulatory domain");
158
159#ifdef AR_DEBUG
160int ath_debug = 0;
161SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
162 0, "control debugging printfs");
163#define IFF_DUMPPKTS(_ifp) \
164 (ath_debug || \
165 ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
166static void ath_printrxbuf(struct ath_buf *bf, int);
167static void ath_printtxbuf(struct ath_buf *bf, int);
168#define DPRINTF(X) if (ath_debug) printf X
169#define DPRINTF2(X) if (ath_debug > 1) printf X
170#else
171#define IFF_DUMPPKTS(_ifp) \
172 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
173#define DPRINTF(X)
174#define DPRINTF2(X)
175#endif
176
177int
178ath_attach(u_int16_t devid, struct ath_softc *sc)
179{
180 struct ieee80211com *ic = &sc->sc_ic;
181 struct ifnet *ifp = &ic->ic_if;
182 struct ath_hal *ah;
183 HAL_STATUS status;
184 int error = 0;
185
186 DPRINTF(("ath_attach: devid 0x%x\n", devid));
187
188 /* set these up early for if_printf use */
189 if_initname(ifp, device_get_name(sc->sc_dev),
190 device_get_unit(sc->sc_dev));
191
192 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
193 if (ah == NULL) {
194 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
195 status);
196 error = ENXIO;
197 goto bad;
198 }
199 if (ah->ah_abi != HAL_ABI_VERSION) {
200 if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n",
201 ah->ah_abi, HAL_ABI_VERSION);
202 error = ENXIO;
203 goto bad;
204 }
205 if_printf(ifp, "mac %d.%d phy %d.%d",
206 ah->ah_macVersion, ah->ah_macRev,
207 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
208 if (ah->ah_analog5GhzRev)
209 printf(" 5ghz radio %d.%d",
210 ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf);
211 if (ah->ah_analog2GhzRev)
212 printf(" 2ghz radio %d.%d",
213 ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf);
214 printf("\n");
215 sc->sc_ah = ah;
216 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
217
218 /*
219 * Collect the channel list using the default country
220 * code and including outdoor channels. The 802.11 layer
221 * is resposible for filtering this list based on settings
222 * like the phy mode.
223 */
224 error = ath_getchannels(sc, ath_countrycode, ath_outdoor);
225 if (error != 0)
226 goto bad;
227 /*
228 * Copy these back; they are set as a side effect
229 * of constructing the channel list.
230 */
231 ath_regdomain = ath_hal_getregdomain(ah);
232 ath_countrycode = ath_hal_getcountrycode(ah);
233
234 /*
235 * Setup rate tables for all potential media types.
236 */
237 ath_rate_setup(sc, IEEE80211_MODE_11A);
238 ath_rate_setup(sc, IEEE80211_MODE_11B);
239 ath_rate_setup(sc, IEEE80211_MODE_11G);
240 ath_rate_setup(sc, IEEE80211_MODE_TURBO);
241
242 error = ath_desc_alloc(sc);
243 if (error != 0) {
244 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
245 goto bad;
246 }
247 callout_init(&sc->sc_scan_ch, CALLOUT_MPSAFE);
248 callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
249
250 ATH_TXBUF_LOCK_INIT(sc);
251 ATH_TXQ_LOCK_INIT(sc);
252
253 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
254 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
255 TASK_INIT(&sc->sc_swbatask, 0, ath_beacon_proc, sc);
256 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
257 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
258 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
259
260 /*
261 * For now just pre-allocate one data queue and one
262 * beacon queue. Note that the HAL handles resetting
263 * them at the needed time. Eventually we'll want to
264 * allocate more tx queues for splitting management
265 * frames and for QOS support.
266 */
267 sc->sc_txhalq = ath_hal_setuptxqueue(ah,
268 HAL_TX_QUEUE_DATA,
269 AH_TRUE /* enable interrupts */
270 );
271 if (sc->sc_txhalq == (u_int) -1) {
272 if_printf(ifp, "unable to setup a data xmit queue!\n");
273 goto bad;
274 }
275 sc->sc_bhalq = ath_hal_setuptxqueue(ah,
276 HAL_TX_QUEUE_BEACON,
277 AH_TRUE /* enable interrupts */
278 );
279 if (sc->sc_bhalq == (u_int) -1) {
280 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
281 goto bad;
282 }
283
284 ifp->if_softc = sc;
285 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
286 ifp->if_start = ath_start;
287 ifp->if_watchdog = ath_watchdog;
288 ifp->if_ioctl = ath_ioctl;
289 ifp->if_init = ath_init;
290 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
291
292 ic->ic_softc = sc;
293 ic->ic_newassoc = ath_newassoc;
294 /* XXX not right but it's not used anywhere important */
295 ic->ic_phytype = IEEE80211_T_OFDM;
296 ic->ic_opmode = IEEE80211_M_STA;
297 ic->ic_caps = IEEE80211_C_WEP /* wep supported */
298 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
299 | IEEE80211_C_HOSTAP /* hostap mode */
300 | IEEE80211_C_MONITOR /* monitor mode */
301 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
302 | IEEE80211_C_RCVMGT; /* recv management frames */
303
304 /* get mac address from hardware */
305 ath_hal_getmac(ah, ic->ic_myaddr);
306
307 /* call MI attach routine. */
308 ieee80211_ifattach(ifp);
309 /* override default methods */
310 ic->ic_node_alloc = ath_node_alloc;
311 ic->ic_node_free = ath_node_free;
312 ic->ic_node_copy = ath_node_copy;
313 ic->ic_node_getrssi = ath_node_getrssi;
314 sc->sc_newstate = ic->ic_newstate;
315 ic->ic_newstate = ath_newstate;
316 /* complete initialization */
317 ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
318
319 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
320 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
321 &sc->sc_drvbpf);
322 /*
323 * Initialize constant fields.
324 *
325 * NB: the channel is setup each time we transition to the
326 * RUN state to avoid filling it in for each frame.
327 */
328 sc->sc_tx_th.wt_ihdr.it_len = sizeof(sc->sc_tx_th);
329 sc->sc_tx_th.wt_ihdr.it_present = ATH_TX_RADIOTAP_PRESENT;
330
331 sc->sc_rx_th.wr_ihdr.it_len = sizeof(sc->sc_rx_th);
332 sc->sc_rx_th.wr_ihdr.it_present = ATH_RX_RADIOTAP_PRESENT;
333
334 if_printf(ifp, "802.11 address: %s\n", ether_sprintf(ic->ic_myaddr));
335
336 return 0;
337bad:
338 if (ah)
339 ath_hal_detach(ah);
340 sc->sc_invalid = 1;
341 return error;
342}
343
344int
345ath_detach(struct ath_softc *sc)
346{
347 struct ifnet *ifp = &sc->sc_ic.ic_if;
348
349 DPRINTF(("ath_detach: if_flags %x\n", ifp->if_flags));
350
351 ath_stop(ifp);
352 bpfdetach(ifp);
353 ath_desc_free(sc);
354 ath_hal_detach(sc->sc_ah);
355 ieee80211_ifdetach(ifp);
356
357 ATH_TXBUF_LOCK_DESTROY(sc);
358 ATH_TXQ_LOCK_DESTROY(sc);
359
360 return 0;
361}
362
363void
364ath_suspend(struct ath_softc *sc)
365{
366 struct ifnet *ifp = &sc->sc_ic.ic_if;
367
368 DPRINTF(("ath_suspend: if_flags %x\n", ifp->if_flags));
369
370 ath_stop(ifp);
371}
372
373void
374ath_resume(struct ath_softc *sc)
375{
376 struct ifnet *ifp = &sc->sc_ic.ic_if;
377
378 DPRINTF(("ath_resume: if_flags %x\n", ifp->if_flags));
379
380 if (ifp->if_flags & IFF_UP) {
381 ath_init(ifp);
382 if (ifp->if_flags & IFF_RUNNING)
383 ath_start(ifp);
384 }
385}
386
387void
388ath_shutdown(struct ath_softc *sc)
389{
390 struct ifnet *ifp = &sc->sc_ic.ic_if;
391
392 DPRINTF(("ath_shutdown: if_flags %x\n", ifp->if_flags));
393
394 ath_stop(ifp);
395}
396
397void
398ath_intr(void *arg)
399{
400 struct ath_softc *sc = arg;
401 struct ieee80211com *ic = &sc->sc_ic;
402 struct ifnet *ifp = &ic->ic_if;
403 struct ath_hal *ah = sc->sc_ah;
404 HAL_INT status;
405
406 if (sc->sc_invalid) {
407 /*
408 * The hardware is not ready/present, don't touch anything.
409 * Note this can happen early on if the IRQ is shared.
410 */
411 DPRINTF(("ath_intr: invalid; ignored\n"));
412 return;
413 }
414 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
415 DPRINTF(("ath_intr: if_flags 0x%x\n", ifp->if_flags));
416 ath_hal_getisr(ah, &status); /* clear ISR */
417 ath_hal_intrset(ah, 0); /* disable further intr's */
418 return;
419 }
420 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
421 DPRINTF2(("ath_intr: status 0x%x\n", status));
422#ifdef AR_DEBUG
423 if (ath_debug &&
424 (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
425 if_printf(ifp, "ath_intr: status 0x%x\n", status);
426 ath_hal_dumpstate(ah);
427 }
428#endif /* AR_DEBUG */
429 status &= sc->sc_imask; /* discard unasked for bits */
430 if (status & HAL_INT_FATAL) {
431 sc->sc_stats.ast_hardware++;
432 ath_hal_intrset(ah, 0); /* disable intr's until reset */
433 taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
434 } else if (status & HAL_INT_RXORN) {
435 sc->sc_stats.ast_rxorn++;
436 ath_hal_intrset(ah, 0); /* disable intr's until reset */
437 taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
438 } else {
439 if (status & HAL_INT_RXEOL) {
440 /*
441 * NB: the hardware should re-read the link when
442 * RXE bit is written, but it doesn't work at
443 * least on older hardware revs.
444 */
445 sc->sc_stats.ast_rxeol++;
446 sc->sc_rxlink = NULL;
447 }
448 if (status & HAL_INT_TXURN) {
449 sc->sc_stats.ast_txurn++;
450 /* bump tx trigger level */
451 ath_hal_updatetxtriglevel(ah, AH_TRUE);
452 }
453 if (status & HAL_INT_RX)
454 taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
455 if (status & HAL_INT_TX)
456 taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
457 if (status & HAL_INT_SWBA)
458 taskqueue_enqueue(taskqueue_swi, &sc->sc_swbatask);
459 if (status & HAL_INT_BMISS) {
460 sc->sc_stats.ast_bmiss++;
461 taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
462 }
463 }
464}
465
466static void
467ath_fatal_proc(void *arg, int pending)
468{
469 struct ath_softc *sc = arg;
470
471 device_printf(sc->sc_dev, "hardware error; resetting\n");
472 ath_reset(sc);
473}
474
475static void
476ath_rxorn_proc(void *arg, int pending)
477{
478 struct ath_softc *sc = arg;
479
480 device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
481 ath_reset(sc);
482}
483
484static void
485ath_bmiss_proc(void *arg, int pending)
486{
487 struct ath_softc *sc = arg;
488 struct ieee80211com *ic = &sc->sc_ic;
489
490 DPRINTF(("ath_bmiss_proc: pending %u\n", pending));
491 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
492 ("unexpect operating mode %u", ic->ic_opmode));
493 if (ic->ic_state == IEEE80211_S_RUN) {
494 /*
495 * Rather than go directly to scan state, try to
496 * reassociate first. If that fails then the state
497 * machine will drop us into scanning after timing
498 * out waiting for a probe response.
499 */
500 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
501 }
502}
503
504static u_int
505ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
506{
507 static const u_int modeflags[] = {
508 0, /* IEEE80211_MODE_AUTO */
509 CHANNEL_A, /* IEEE80211_MODE_11A */
510 CHANNEL_B, /* IEEE80211_MODE_11B */
511 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
512 CHANNEL_T /* IEEE80211_MODE_TURBO */
513 };
514 return modeflags[ieee80211_chan2mode(ic, chan)];
515}
516
517static void
518ath_init(void *arg)
519{
520 struct ath_softc *sc = (struct ath_softc *) arg;
521 struct ieee80211com *ic = &sc->sc_ic;
522 struct ifnet *ifp = &ic->ic_if;
523 struct ieee80211_node *ni;
524 enum ieee80211_phymode mode;
525 struct ath_hal *ah = sc->sc_ah;
526 HAL_STATUS status;
527 HAL_CHANNEL hchan;
528
529 DPRINTF(("ath_init: if_flags 0x%x\n", ifp->if_flags));
530
531 ATH_LOCK(sc);
532 /*
533 * Stop anything previously setup. This is safe
534 * whether this is the first time through or not.
535 */
536 ath_stop(ifp);
537
538 /*
539 * The basic interface to setting the hardware in a good
540 * state is ``reset''. On return the hardware is known to
541 * be powered up and with interrupts disabled. This must
542 * be followed by initialization of the appropriate bits
543 * and then setup of the interrupt mask.
544 */
545 hchan.channel = ic->ic_ibss_chan->ic_freq;
546 hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
547 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
548 if_printf(ifp, "unable to reset hardware; hal status %u\n",
549 status);
550 goto done;
551 }
552
553 /*
554 * Setup the hardware after reset: the key cache
555 * is filled as needed and the receive engine is
556 * set going. Frame transmit is handled entirely
557 * in the frame output path; there's nothing to do
558 * here except setup the interrupt mask.
559 */
560 if (ic->ic_flags & IEEE80211_F_WEPON)
561 ath_initkeytable(sc);
562 if (ath_startrecv(sc) != 0) {
563 if_printf(ifp, "unable to start recv logic\n");
564 goto done;
565 }
566
567 /*
568 * Enable interrupts.
569 */
570 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
571 | HAL_INT_RXEOL | HAL_INT_RXORN
572 | HAL_INT_FATAL | HAL_INT_GLOBAL;
573 ath_hal_intrset(ah, sc->sc_imask);
574
575 ifp->if_flags |= IFF_RUNNING;
576 ic->ic_state = IEEE80211_S_INIT;
577
578 /*
579 * The hardware should be ready to go now so it's safe
580 * to kick the 802.11 state machine as it's likely to
581 * immediately call back to us to send mgmt frames.
582 */
583 ni = ic->ic_bss;
584 ni->ni_chan = ic->ic_ibss_chan;
585 mode = ieee80211_chan2mode(ic, ni->ni_chan);
586 if (mode != sc->sc_curmode)
587 ath_setcurmode(sc, mode);
588 if (ic->ic_opmode != IEEE80211_M_MONITOR)
589 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
590 else
591 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
592done:
593 ATH_UNLOCK(sc);
594}
595
596static void
597ath_stop(struct ifnet *ifp)
598{
599 struct ieee80211com *ic = (struct ieee80211com *) ifp;
600 struct ath_softc *sc = ifp->if_softc;
601 struct ath_hal *ah = sc->sc_ah;
602
603 DPRINTF(("ath_stop: invalid %u if_flags 0x%x\n",
604 sc->sc_invalid, ifp->if_flags));
605
606 ATH_LOCK(sc);
607 if (ifp->if_flags & IFF_RUNNING) {
608 /*
609 * Shutdown the hardware and driver:
610 * disable interrupts
611 * turn off timers
612 * clear transmit machinery
613 * clear receive machinery
614 * drain and release tx queues
615 * reclaim beacon resources
616 * reset 802.11 state machine
617 * power down hardware
618 *
619 * Note that some of this work is not possible if the
620 * hardware is gone (invalid).
621 */
622 ifp->if_flags &= ~IFF_RUNNING;
623 ifp->if_timer = 0;
624 if (!sc->sc_invalid)
625 ath_hal_intrset(ah, 0);
626 ath_draintxq(sc);
627 if (!sc->sc_invalid)
628 ath_stoprecv(sc);
629 else
630 sc->sc_rxlink = NULL;
631 IF_DRAIN(&ifp->if_snd);
632 ath_beacon_free(sc);
633 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
634 if (!sc->sc_invalid)
635 ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
636 }
637 ATH_UNLOCK(sc);
638}
639
640/*
641 * Reset the hardware w/o losing operational state. This is
642 * basically a more efficient way of doing ath_stop, ath_init,
643 * followed by state transitions to the current 802.11
644 * operational state. Used to recover from errors rx overrun
645 * and to reset the hardware when rf gain settings must be reset.
646 */
647static void
648ath_reset(struct ath_softc *sc)
649{
650 struct ieee80211com *ic = &sc->sc_ic;
651 struct ifnet *ifp = &ic->ic_if;
652 struct ath_hal *ah = sc->sc_ah;
653 struct ieee80211_channel *c;
654 HAL_STATUS status;
655 HAL_CHANNEL hchan;
656
657 /*
658 * Convert to a HAL channel description with the flags
659 * constrained to reflect the current operating mode.
660 */
661 c = ic->ic_ibss_chan;
662 hchan.channel = c->ic_freq;
663 hchan.channelFlags = ath_chan2flags(ic, c);
664
665 ath_hal_intrset(ah, 0); /* disable interrupts */
666 ath_draintxq(sc); /* stop xmit side */
667 ath_stoprecv(sc); /* stop recv side */
668 /* NB: indicate channel change so we do a full reset */
669 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
670 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
671 __func__, status);
672 ath_hal_intrset(ah, sc->sc_imask);
673 if (ath_startrecv(sc) != 0) /* restart recv */
674 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
675 ath_start(ifp); /* restart xmit */
676 if (ic->ic_state == IEEE80211_S_RUN)
677 ath_beacon_config(sc); /* restart beacons */
678}
679
680static void
681ath_start(struct ifnet *ifp)
682{
683 struct ath_softc *sc = ifp->if_softc;
684 struct ath_hal *ah = sc->sc_ah;
685 struct ieee80211com *ic = &sc->sc_ic;
686 struct ieee80211_node *ni;
687 struct ath_buf *bf;
688 struct mbuf *m;
689 struct ieee80211_frame *wh;
690
691 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
692 return;
693 for (;;) {
694 /*
695 * Grab a TX buffer and associated resources.
696 */
697 ATH_TXBUF_LOCK(sc);
698 bf = TAILQ_FIRST(&sc->sc_txbuf);
699 if (bf != NULL)
700 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
701 ATH_TXBUF_UNLOCK(sc);
702 if (bf == NULL) {
703 DPRINTF(("ath_start: out of xmit buffers\n"));
704 sc->sc_stats.ast_tx_qstop++;
705 ifp->if_flags |= IFF_OACTIVE;
706 break;
707 }
708 /*
709 * Poll the management queue for frames; they
710 * have priority over normal data frames.
711 */
712 IF_DEQUEUE(&ic->ic_mgtq, m);
713 if (m == NULL) {
714 /*
715 * No data frames go out unless we're associated.
716 */
717 if (ic->ic_state != IEEE80211_S_RUN) {
718 DPRINTF(("ath_start: ignore data packet, "
719 "state %u\n", ic->ic_state));
720 sc->sc_stats.ast_tx_discard++;
721 ATH_TXBUF_LOCK(sc);
722 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
723 ATH_TXBUF_UNLOCK(sc);
724 break;
725 }
726 IF_DEQUEUE(&ifp->if_snd, m);
727 if (m == NULL) {
728 ATH_TXBUF_LOCK(sc);
729 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
730 ATH_TXBUF_UNLOCK(sc);
731 break;
732 }
733 ifp->if_opackets++;
734 BPF_MTAP(ifp, m);
735 /*
736 * Encapsulate the packet in prep for transmission.
737 */
738 m = ieee80211_encap(ifp, m, &ni);
739 if (m == NULL) {
740 DPRINTF(("ath_start: encapsulation failure\n"));
741 sc->sc_stats.ast_tx_encap++;
742 goto bad;
743 }
744 wh = mtod(m, struct ieee80211_frame *);
745 if (ic->ic_flags & IEEE80211_F_WEPON)
746 wh->i_fc[1] |= IEEE80211_FC1_WEP;
747 } else {
748 /*
749 * Hack! The referenced node pointer is in the
750 * rcvif field of the packet header. This is
751 * placed there by ieee80211_mgmt_output because
752 * we need to hold the reference with the frame
753 * and there's no other way (other than packet
754 * tags which we consider too expensive to use)
755 * to pass it along.
756 */
757 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
758 m->m_pkthdr.rcvif = NULL;
759
760 wh = mtod(m, struct ieee80211_frame *);
761 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
762 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
763 /* fill time stamp */
764 u_int64_t tsf;
765 u_int32_t *tstamp;
766
767 tsf = ath_hal_gettsf64(ah);
768 /* XXX: adjust 100us delay to xmit */
769 tsf += 100;
770 tstamp = (u_int32_t *)&wh[1];
771 tstamp[0] = htole32(tsf & 0xffffffff);
772 tstamp[1] = htole32(tsf >> 32);
773 }
774 sc->sc_stats.ast_tx_mgmt++;
775 }
776 if (ic->ic_rawbpf)
777 bpf_mtap(ic->ic_rawbpf, m);
778
779 if (sc->sc_drvbpf) {
780 struct mbuf *mb;
781
782 MGETHDR(mb, M_DONTWAIT, m->m_type);
783 if (mb != NULL) {
784 sc->sc_tx_th.wt_rate =
785 ni->ni_rates.rs_rates[ni->ni_txrate];
786
787 mb->m_next = m;
788 mb->m_data = (caddr_t)&sc->sc_tx_th;
789 mb->m_len = sizeof(sc->sc_tx_th);
790 mb->m_pkthdr.len += mb->m_len;
791 bpf_mtap(sc->sc_drvbpf, mb);
792 m_free(mb);
793 }
794 }
795
796 if (ath_tx_start(sc, ni, bf, m)) {
797 bad:
798 ATH_TXBUF_LOCK(sc);
799 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
800 ATH_TXBUF_UNLOCK(sc);
801 ifp->if_oerrors++;
802 if (ni && ni != ic->ic_bss)
803 ieee80211_free_node(ic, ni);
804 continue;
805 }
806
807 sc->sc_tx_timer = 5;
808 ifp->if_timer = 1;
809 }
810}
811
812static int
813ath_media_change(struct ifnet *ifp)
814{
815 int error;
816
817 error = ieee80211_media_change(ifp);
818 if (error == ENETRESET) {
819 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
820 (IFF_RUNNING|IFF_UP))
821 ath_init(ifp); /* XXX lose error */
822 error = 0;
823 }
824 return error;
825}
826
827static void
828ath_watchdog(struct ifnet *ifp)
829{
830 struct ath_softc *sc = ifp->if_softc;
831 struct ieee80211com *ic = &sc->sc_ic;
832
833 ifp->if_timer = 0;
834 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
835 return;
836 if (sc->sc_tx_timer) {
837 if (--sc->sc_tx_timer == 0) {
838 if_printf(ifp, "device timeout\n");
839#ifdef AR_DEBUG
840 if (ath_debug)
841 ath_hal_dumpstate(sc->sc_ah);
842#endif /* AR_DEBUG */
843 ath_init(ifp); /* XXX ath_reset??? */
844 ifp->if_oerrors++;
845 sc->sc_stats.ast_watchdog++;
846 return;
847 }
848 ifp->if_timer = 1;
849 }
850 if (ic->ic_fixed_rate == -1) {
851 /*
852 * Run the rate control algorithm if we're not
853 * locked at a fixed rate.
854 */
855 if (ic->ic_opmode == IEEE80211_M_STA)
856 ath_rate_ctl(sc, ic->ic_bss);
857 else
858 ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
859 }
860 ieee80211_watchdog(ifp);
861}
862
863static int
864ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
865{
866 struct ath_softc *sc = ifp->if_softc;
867 struct ifreq *ifr = (struct ifreq *)data;
868 int error = 0;
869
870 ATH_LOCK(sc);
871 switch (cmd) {
872 case SIOCSIFFLAGS:
873 if (ifp->if_flags & IFF_UP) {
874 if (ifp->if_flags & IFF_RUNNING) {
875 /*
876 * To avoid rescanning another access point,
877 * do not call ath_init() here. Instead,
878 * only reflect promisc mode settings.
879 */
880 ath_mode_init(sc);
881 } else {
882 /*
883 * Beware of being called during detach to
884 * reset promiscuous mode. In that case we
885 * will still be marked UP but not RUNNING.
886 * However trying to re-init the interface
887 * is the wrong thing to do as we've already
888 * torn down much of our state. There's
889 * probably a better way to deal with this.
890 */
891 if (!sc->sc_invalid)
892 ath_init(ifp); /* XXX lose error */
893 }
894 } else
895 ath_stop(ifp);
896 break;
897 case SIOCADDMULTI:
898 case SIOCDELMULTI:
899 /*
900 * The upper layer has already installed/removed
901 * the multicast address(es), just recalculate the
902 * multicast filter for the card.
903 */
904 if (ifp->if_flags & IFF_RUNNING)
905 ath_mode_init(sc);
906 break;
907 case SIOCGATHSTATS:
908 error = copyout(&sc->sc_stats,
909 ifr->ifr_data, sizeof (sc->sc_stats));
910 break;
911 case SIOCGATHDIAG: {
912 struct ath_diag *ad = (struct ath_diag *)data;
913 struct ath_hal *ah = sc->sc_ah;
914 void *data;
915 u_int size;
916
917 if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) {
918 if (size < ad->ad_size)
919 ad->ad_size = size;
920 if (data)
921 error = copyout(data, ad->ad_data, ad->ad_size);
922 } else
923 error = EINVAL;
924 break;
925 }
926 default:
927 error = ieee80211_ioctl(ifp, cmd, data);
928 if (error == ENETRESET) {
929 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
930 (IFF_RUNNING|IFF_UP))
931 ath_init(ifp); /* XXX lose error */
932 error = 0;
933 }
934 break;
935 }
936 ATH_UNLOCK(sc);
937 return error;
938}
939
940/*
941 * Fill the hardware key cache with key entries.
942 */
943static void
944ath_initkeytable(struct ath_softc *sc)
945{
946 struct ieee80211com *ic = &sc->sc_ic;
947 struct ath_hal *ah = sc->sc_ah;
948 int i;
949
950 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
951 struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
952 if (k->wk_len == 0)
953 ath_hal_keyreset(ah, i);
954 else
955 /* XXX return value */
956 /* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
957 ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
958 }
959}
960
961/*
962 * Calculate the receive filter according to the
963 * operating mode and state:
964 *
965 * o always accept unicast, broadcast, and multicast traffic
966 * o maintain current state of phy error reception
967 * o probe request frames are accepted only when operating in
968 * hostap, adhoc, or monitor modes
969 * o enable promiscuous mode according to the interface state
970 * o accept beacons:
971 * - when operating in adhoc mode so the 802.11 layer creates
972 * node table entries for peers,
973 * - when operating in station mode for collecting rssi data when
974 * the station is otherwise quiet, or
975 * - when scanning
976 */
977static u_int32_t
978ath_calcrxfilter(struct ath_softc *sc)
979{
980 struct ieee80211com *ic = &sc->sc_ic;
981 struct ath_hal *ah = sc->sc_ah;
982 struct ifnet *ifp = &ic->ic_if;
983 u_int32_t rfilt;
984
985 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
986 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
987 if (ic->ic_opmode != IEEE80211_M_STA)
988 rfilt |= HAL_RX_FILTER_PROBEREQ;
989 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
990 (ifp->if_flags & IFF_PROMISC))
991 rfilt |= HAL_RX_FILTER_PROM;
992 if (ic->ic_opmode == IEEE80211_M_STA ||
993 ic->ic_opmode == IEEE80211_M_IBSS ||
994 ic->ic_state == IEEE80211_S_SCAN)
995 rfilt |= HAL_RX_FILTER_BEACON;
996 return rfilt;
997}
998
999static void
1000ath_mode_init(struct ath_softc *sc)
1001{
1002 struct ieee80211com *ic = &sc->sc_ic;
1003 struct ath_hal *ah = sc->sc_ah;
1004 struct ifnet *ifp = &ic->ic_if;
1005 u_int32_t rfilt, mfilt[2], val;
1006 u_int8_t pos;
1007 struct ifmultiaddr *ifma;
1008
1009 /* configure rx filter */
1010 rfilt = ath_calcrxfilter(sc);
1011 ath_hal_setrxfilter(ah, rfilt);
1012
1013 /* configure operational mode */
1014 ath_hal_setopmode(ah, ic->ic_opmode);
1015
1016 /* calculate and install multicast filter */
1017 if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1018 mfilt[0] = mfilt[1] = 0;
1019 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1020 caddr_t dl;
1021
1022 /* calculate XOR of eight 6bit values */
1023 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1024 val = LE_READ_4(dl + 0);
1025 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1026 val = LE_READ_4(dl + 3);
1027 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1028 pos &= 0x3f;
1029 mfilt[pos / 32] |= (1 << (pos % 32));
1030 }
1031 } else {
1032 mfilt[0] = mfilt[1] = ~0;
1033 }
1034 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1035 DPRINTF(("ath_mode_init: RX filter 0x%x, MC filter %08x:%08x\n",
1036 rfilt, mfilt[0], mfilt[1]));
1037}
1038
1039static void
1040ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1041{
1042 struct ath_buf *bf = arg;
1043
1044 KASSERT(nseg <= ATH_MAX_SCATTER,
1045 ("ath_mbuf_load_cb: too many DMA segments %u", nseg));
1046 bf->bf_mapsize = mapsize;
1047 bf->bf_nseg = nseg;
1048 bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1049}
1050
1051static int
1052ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1053{
1054 struct ieee80211com *ic = &sc->sc_ic;
1055 struct ifnet *ifp = &ic->ic_if;
1056 struct ath_hal *ah = sc->sc_ah;
1057 struct ieee80211_frame *wh;
1058 struct ath_buf *bf;
1059 struct ath_desc *ds;
1060 struct mbuf *m;
1061 int error, pktlen;
1062 u_int8_t *frm, rate;
1063 u_int16_t capinfo;
1064 struct ieee80211_rateset *rs;
1065 const HAL_RATE_TABLE *rt;
1066
1067 bf = sc->sc_bcbuf;
1068 if (bf->bf_m != NULL) {
1069 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1070 m_freem(bf->bf_m);
1071 bf->bf_m = NULL;
1072 bf->bf_node = NULL;
1073 }
1074 /*
1075 * NB: the beacon data buffer must be 32-bit aligned;
1076 * we assume the mbuf routines will return us something
1077 * with this alignment (perhaps should assert).
1078 */
1079 rs = &ni->ni_rates;
1080 pktlen = sizeof (struct ieee80211_frame)
1081 + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6;
1082 if (rs->rs_nrates > IEEE80211_RATE_SIZE)
1083 pktlen += 2;
1084 if (pktlen <= MHLEN)
1085 MGETHDR(m, M_DONTWAIT, MT_DATA);
1086 else
1087 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1088 if (m == NULL) {
1089 DPRINTF(("ath_beacon_alloc: cannot get mbuf/cluster; size %u\n",
1090 pktlen));
1091 sc->sc_stats.ast_be_nombuf++;
1092 return ENOMEM;
1093 }
1094
1095 wh = mtod(m, struct ieee80211_frame *);
1096 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1097 IEEE80211_FC0_SUBTYPE_BEACON;
1098 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1099 *(u_int16_t *)wh->i_dur = 0;
1100 memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
1101 memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1102 memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
1103 *(u_int16_t *)wh->i_seq = 0;
1104
1105 /*
1106 * beacon frame format
1107 * [8] time stamp
1108 * [2] beacon interval
1109 * [2] cabability information
1110 * [tlv] ssid
1111 * [tlv] supported rates
1112 * [tlv] parameter set (IBSS)
1113 * [tlv] extended supported rates
1114 */
1115 frm = (u_int8_t *)&wh[1];
1116 memset(frm, 0, 8); /* timestamp is set by hardware */
1117 frm += 8;
1118 *(u_int16_t *)frm = htole16(ni->ni_intval);
1119 frm += 2;
1120 if (ic->ic_opmode == IEEE80211_M_IBSS)
1121 capinfo = IEEE80211_CAPINFO_IBSS;
1122 else
1123 capinfo = IEEE80211_CAPINFO_ESS;
1124 if (ic->ic_flags & IEEE80211_F_WEPON)
1125 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1126 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1127 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1128 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1129 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1130 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1131 *(u_int16_t *)frm = htole16(capinfo);
1132 frm += 2;
1133 *frm++ = IEEE80211_ELEMID_SSID;
1134 *frm++ = ni->ni_esslen;
1135 memcpy(frm, ni->ni_essid, ni->ni_esslen);
1136 frm += ni->ni_esslen;
1137 frm = ieee80211_add_rates(frm, rs);
1138 *frm++ = IEEE80211_ELEMID_DSPARMS;
1139 *frm++ = 1;
1140 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1141 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1142 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1143 *frm++ = 2;
1144 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1145 } else {
1146 /* TODO: TIM */
1147 *frm++ = IEEE80211_ELEMID_TIM;
1148 *frm++ = 4; /* length */
1149 *frm++ = 0; /* DTIM count */
1150 *frm++ = 1; /* DTIM period */
1151 *frm++ = 0; /* bitmap control */
1152 *frm++ = 0; /* Partial Virtual Bitmap (variable length) */
1153 }
1154 frm = ieee80211_add_xrates(frm, rs);
1155 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1156 KASSERT(m->m_pkthdr.len <= pktlen,
1157 ("beacon bigger than expected, len %u calculated %u",
1158 m->m_pkthdr.len, pktlen));
1159
1160 DPRINTF2(("ath_beacon_alloc: m %p len %u\n", m, m->m_len));
1161 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1162 ath_mbuf_load_cb, bf,
1163 BUS_DMA_NOWAIT);
1164 if (error != 0) {
1165 m_freem(m);
1166 return error;
1167 }
1168 KASSERT(bf->bf_nseg == 1,
1169 ("ath_beacon_alloc: multi-segment packet; nseg %u",
1170 bf->bf_nseg));
1171 bf->bf_m = m;
1172
1173 /* setup descriptors */
1174 ds = bf->bf_desc;
1175
1176 ds->ds_link = 0;
1177 ds->ds_data = bf->bf_segs[0].ds_addr;
1178 /*
1179 * Calculate rate code.
1180 * XXX everything at min xmit rate
1181 */
1182 rt = sc->sc_currates;
1183 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1184 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1185 rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1186 else
1187 rate = rt->info[0].rateCode;
1188 ath_hal_setuptxdesc(ah, ds
1189 , m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */
1190 , sizeof(struct ieee80211_frame) /* header length */
1191 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
1192 , 0x20 /* txpower XXX */
1193 , rate, 1 /* series 0 rate/tries */
1194 , HAL_TXKEYIX_INVALID /* no encryption */
1195 , 0 /* antenna mode */
1196 , HAL_TXDESC_NOACK /* no ack for beacons */
1197 , 0 /* rts/cts rate */
1198 , 0 /* rts/cts duration */
1199 );
1200 /* NB: beacon's BufLen must be a multiple of 4 bytes */
1201 /* XXX verify mbuf data area covers this roundup */
1202 ath_hal_filltxdesc(ah, ds
1203 , roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */
1204 , AH_TRUE /* first segment */
1205 , AH_TRUE /* last segment */
1206 );
1207
1208 return 0;
1209}
1210
1211static void
1212ath_beacon_proc(void *arg, int pending)
1213{
1214 struct ath_softc *sc = arg;
1215 struct ieee80211com *ic = &sc->sc_ic;
1216 struct ath_buf *bf = sc->sc_bcbuf;
1217 struct ath_hal *ah = sc->sc_ah;
1218
1219 DPRINTF2(("%s: pending %u\n", __func__, pending));
1220 if (ic->ic_opmode == IEEE80211_M_STA ||
1221 bf == NULL || bf->bf_m == NULL) {
1222 DPRINTF(("%s: ic_flags=%x bf=%p bf_m=%p\n",
1223 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1224 return;
1225 }
1226 /* TODO: update beacon to reflect PS poll state */
1227 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1228 DPRINTF(("%s: beacon queue %u did not stop?",
1229 __func__, sc->sc_bhalq));
1230 return; /* busy, XXX is this right? */
1231 }
1232 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1233
1234 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1235 ath_hal_txstart(ah, sc->sc_bhalq);
1236 DPRINTF2(("%s: TXDP%u = %p (%p)\n", __func__,
1237 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1238}
1239
1240static void
1241ath_beacon_free(struct ath_softc *sc)
1242{
1243 struct ath_buf *bf = sc->sc_bcbuf;
1244
1245 if (bf->bf_m != NULL) {
1246 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1247 m_freem(bf->bf_m);
1248 bf->bf_m = NULL;
1249 bf->bf_node = NULL;
1250 }
1251}
1252
1253/*
1254 * Configure the beacon and sleep timers.
1255 *
1256 * When operating as an AP this resets the TSF and sets
1257 * up the hardware to notify us when we need to issue beacons.
1258 *
1259 * When operating in station mode this sets up the beacon
1260 * timers according to the timestamp of the last received
1261 * beacon and the current TSF, configures PCF and DTIM
1262 * handling, programs the sleep registers so the hardware
1263 * will wakeup in time to receive beacons, and configures
1264 * the beacon miss handling so we'll receive a BMISS
1265 * interrupt when we stop seeing beacons from the AP
1266 * we've associated with.
1267 */
1268static void
1269ath_beacon_config(struct ath_softc *sc)
1270{
1271 struct ath_hal *ah = sc->sc_ah;
1272 struct ieee80211com *ic = &sc->sc_ic;
1273 struct ieee80211_node *ni = ic->ic_bss;
1274 u_int32_t nexttbtt;
1275
1276 nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1277 (LE_READ_4(ni->ni_tstamp) >> 10);
1278 DPRINTF(("%s: nexttbtt=%u\n", __func__, nexttbtt));
1279 nexttbtt += ni->ni_intval;
1280 if (ic->ic_opmode == IEEE80211_M_STA) {
1281 HAL_BEACON_STATE bs;
1282 u_int32_t bmisstime;
1283
1284 /* NB: no PCF support right now */
1285 memset(&bs, 0, sizeof(bs));
1286 bs.bs_intval = ni->ni_intval;
1287 bs.bs_nexttbtt = nexttbtt;
1288 bs.bs_dtimperiod = bs.bs_intval;
1289 bs.bs_nextdtim = nexttbtt;
1290 /*
1291 * Calculate the number of consecutive beacons to miss
1292 * before taking a BMISS interrupt. The configuration
1293 * is specified in ms, so we need to convert that to
1294 * TU's and then calculate based on the beacon interval.
1295 * Note that we clamp the result to at most 10 beacons.
1296 */
1297 bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1298 bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1299 if (bs.bs_bmissthreshold > 10)
1300 bs.bs_bmissthreshold = 10;
1301 else if (bs.bs_bmissthreshold <= 0)
1302 bs.bs_bmissthreshold = 1;
1303
1304 /*
1305 * Calculate sleep duration. The configuration is
1306 * given in ms. We insure a multiple of the beacon
1307 * period is used. Also, if the sleep duration is
1308 * greater than the DTIM period then it makes senses
1309 * to make it a multiple of that.
1310 *
1311 * XXX fixed at 100ms
1312 */
1313 bs.bs_sleepduration =
1314 roundup((100 * 1000) / 1024, bs.bs_intval);
1315 if (bs.bs_sleepduration > bs.bs_dtimperiod)
1316 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1317
1318 DPRINTF(("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1319 , __func__
1320 , bs.bs_intval
1321 , bs.bs_nexttbtt
1322 , bs.bs_dtimperiod
1323 , bs.bs_nextdtim
1324 , bs.bs_bmissthreshold
1325 , bs.bs_sleepduration
1326 ));
1327 ath_hal_intrset(ah, 0);
1328 /*
1329 * Reset our tsf so the hardware will update the
1330 * tsf register to reflect timestamps found in
1331 * received beacons.
1332 */
1333 ath_hal_resettsf(ah);
1334 ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1335 sc->sc_imask |= HAL_INT_BMISS;
1336 ath_hal_intrset(ah, sc->sc_imask);
1337 } else {
1338 DPRINTF(("%s: intval %u nexttbtt %u\n",
1339 __func__, ni->ni_intval, nexttbtt));
1340 ath_hal_intrset(ah, 0);
1341 ath_hal_beaconinit(ah, ic->ic_opmode,
1342 nexttbtt, ni->ni_intval);
1343 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1344 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
1345 ath_hal_intrset(ah, sc->sc_imask);
1346 }
1347}
1348
1349static void
1350ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1351{
1352 bus_addr_t *paddr = (bus_addr_t*) arg;
1353 *paddr = segs->ds_addr;
1354}
1355
1356static int
1357ath_desc_alloc(struct ath_softc *sc)
1358{
1359 int i, bsize, error;
1360 struct ath_desc *ds;
1361 struct ath_buf *bf;
1362
1363 /* allocate descriptors */
1364 sc->sc_desc_len = sizeof(struct ath_desc) *
1365 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1366 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1367 if (error != 0)
1368 return error;
1369
1370 error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1371 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1372 if (error != 0)
1373 goto fail0;
1374
1375 error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1376 sc->sc_desc, sc->sc_desc_len,
1377 ath_load_cb, &sc->sc_desc_paddr,
1378 BUS_DMA_NOWAIT);
1379 if (error != 0)
1380 goto fail1;
1381
1382 ds = sc->sc_desc;
1383 DPRINTF(("ath_desc_alloc: DMA map: %p (%d) -> %p (%lu)\n",
1384 ds, sc->sc_desc_len,
1385 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1386
1387 /* allocate buffers */
1388 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1389 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1390 if (bf == NULL)
1391 goto fail2;
1392 sc->sc_bufptr = bf;
1393
1394 TAILQ_INIT(&sc->sc_rxbuf);
1395 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1396 bf->bf_desc = ds;
1397 bf->bf_daddr = sc->sc_desc_paddr +
1398 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1399 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1400 &bf->bf_dmamap);
1401 if (error != 0)
1402 break;
1403 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1404 }
1405
1406 TAILQ_INIT(&sc->sc_txbuf);
1407 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1408 bf->bf_desc = ds;
1409 bf->bf_daddr = sc->sc_desc_paddr +
1410 ((caddr_t)ds - (caddr_t)sc->sc_desc);
1411 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1412 &bf->bf_dmamap);
1413 if (error != 0)
1414 break;
1415 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1416 }
1417 TAILQ_INIT(&sc->sc_txq);
1418
1419 /* beacon buffer */
1420 bf->bf_desc = ds;
1421 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1422 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1423 if (error != 0)
1424 return error;
1425 sc->sc_bcbuf = bf;
1426 return 0;
1427
1428fail2:
1429 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1430fail1:
1431 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1432fail0:
1433 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1434 sc->sc_ddmamap = NULL;
1435 return error;
1436}
1437
1438static void
1439ath_desc_free(struct ath_softc *sc)
1440{
1441 struct ath_buf *bf;
1442
1443 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1444 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1445 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1446
1447 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1448 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1449 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1450 m_freem(bf->bf_m);
1451 }
1452 TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
1453 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1454 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1455 if (bf->bf_m) {
1456 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1457 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1458 m_freem(bf->bf_m);
1459 bf->bf_m = NULL;
1460 }
1461 }
1462 if (sc->sc_bcbuf != NULL) {
1463 bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1464 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1465 sc->sc_bcbuf = NULL;
1466 }
1467
1468 TAILQ_INIT(&sc->sc_rxbuf);
1469 TAILQ_INIT(&sc->sc_txbuf);
1470 TAILQ_INIT(&sc->sc_txq);
1471 free(sc->sc_bufptr, M_DEVBUF);
1472 sc->sc_bufptr = NULL;
1473}
1474
1475static struct ieee80211_node *
1476ath_node_alloc(struct ieee80211com *ic)
1477{
1478 struct ath_node *an =
1479 malloc(sizeof(struct ath_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1480 if (an) {
1481 int i;
1482 for (i = 0; i < ATH_RHIST_SIZE; i++)
1483 an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
1484 an->an_rx_hist_next = ATH_RHIST_SIZE-1;
1485 return &an->an_node;
1486 } else
1487 return NULL;
1488}
1489
1490static void
1491ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1492{
1493 struct ath_softc *sc = ic->ic_if.if_softc;
1494 struct ath_buf *bf;
1495
1496 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1497 if (bf->bf_node == ni)
1498 bf->bf_node = NULL;
1499 }
1500 free(ni, M_DEVBUF);
1501}
1502
1503static void
1504ath_node_copy(struct ieee80211com *ic,
1505 struct ieee80211_node *dst, const struct ieee80211_node *src)
1506{
1507 *(struct ath_node *)dst = *(const struct ath_node *)src;
1508}
1509
1510
1511static u_int8_t
1512ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni)
1513{
1514 struct ath_node *an = ATH_NODE(ni);
1515 int i, now, nsamples, rssi;
1516
1517 /*
1518 * Calculate the average over the last second of sampled data.
1519 */
1520 now = ticks;
1521 nsamples = 0;
1522 rssi = 0;
1523 i = an->an_rx_hist_next;
1524 do {
1525 struct ath_recv_hist *rh = &an->an_rx_hist[i];
1526 if (rh->arh_ticks == ATH_RHIST_NOTIME)
1527 goto done;
1528 if (now - rh->arh_ticks > hz)
1529 goto done;
1530 rssi += rh->arh_rssi;
1531 nsamples++;
1532 if (i == 0)
1533 i = ATH_RHIST_SIZE-1;
1534 else
1535 i--;
1536 } while (i != an->an_rx_hist_next);
1537done:
1538 /*
1539 * Return either the average or the last known
1540 * value if there is no recent data.
1541 */
1542 return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
1543}
1544
1545static int
1546ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
1547{
1548 struct ath_hal *ah = sc->sc_ah;
1549 int error;
1550 struct mbuf *m;
1551 struct ath_desc *ds;
1552
1553 m = bf->bf_m;
1554 if (m == NULL) {
1555 /*
1556 * NB: by assigning a page to the rx dma buffer we
1557 * implicitly satisfy the Atheros requirement that
1558 * this buffer be cache-line-aligned and sized to be
1559 * multiple of the cache line size. Not doing this
1560 * causes weird stuff to happen (for the 5210 at least).
1561 */
1562 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1563 if (m == NULL) {
1564 DPRINTF(("ath_rxbuf_init: no mbuf/cluster\n"));
1565 sc->sc_stats.ast_rx_nombuf++;
1566 return ENOMEM;
1567 }
1568 bf->bf_m = m;
1569 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1570
1571 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1572 ath_mbuf_load_cb, bf,
1573 BUS_DMA_NOWAIT);
1574 if (error != 0) {
1575 DPRINTF(("ath_rxbuf_init: bus_dmamap_load_mbuf failed;"
1576 " error %d\n", error));
1577 sc->sc_stats.ast_rx_busdma++;
1578 return error;
1579 }
1580 KASSERT(bf->bf_nseg == 1,
1581 ("ath_rxbuf_init: multi-segment packet; nseg %u",
1582 bf->bf_nseg));
1583 }
1584 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
1585
1586 /*
1587 * Setup descriptors. For receive we always terminate
1588 * the descriptor list with a self-linked entry so we'll
1589 * not get overrun under high load (as can happen with a
1590 * 5212 when ANI processing enables PHY errors).
1591 *
1592 * To insure the last descriptor is self-linked we create
1593 * each descriptor as self-linked and add it to the end. As
1594 * each additional descriptor is added the previous self-linked
1595 * entry is ``fixed'' naturally. This should be safe even
1596 * if DMA is happening. When processing RX interrupts we
1597 * never remove/process the last, self-linked, entry on the
1598 * descriptor list. This insures the hardware always has
1599 * someplace to write a new frame.
1600 */
1601 ds = bf->bf_desc;
1602 ds->ds_link = bf->bf_daddr; /* link to self */
1603 ds->ds_data = bf->bf_segs[0].ds_addr;
1604 ath_hal_setuprxdesc(ah, ds
1605 , m->m_len /* buffer size */
1606 , 0
1607 );
1608
1609 if (sc->sc_rxlink != NULL)
1610 *sc->sc_rxlink = bf->bf_daddr;
1611 sc->sc_rxlink = &ds->ds_link;
1612 return 0;
1613}
1614
1615static void
1616ath_rx_proc(void *arg, int npending)
1617{
1618#define PA2DESC(_sc, _pa) \
1619 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
1620 ((_pa) - (_sc)->sc_desc_paddr)))
1621 struct ath_softc *sc = arg;
1622 struct ath_buf *bf;
1623 struct ieee80211com *ic = &sc->sc_ic;
1624 struct ifnet *ifp = &ic->ic_if;
1625 struct ath_hal *ah = sc->sc_ah;
1626 struct ath_desc *ds;
1627 struct mbuf *m;
1628 struct ieee80211_frame *wh, whbuf;
1629 struct ieee80211_node *ni;
1630 struct ath_node *an;
1631 struct ath_recv_hist *rh;
1632 int len;
1633 u_int phyerr;
1634 HAL_STATUS status;
1635
1636 DPRINTF2(("ath_rx_proc: pending %u\n", npending));
1637 do {
1638 bf = TAILQ_FIRST(&sc->sc_rxbuf);
1639 if (bf == NULL) { /* NB: shouldn't happen */
1640 if_printf(ifp, "ath_rx_proc: no buffer!\n");
1641 break;
1642 }
1643 ds = bf->bf_desc;
1644 if (ds->ds_link == bf->bf_daddr) {
1645 /* NB: never process the self-linked entry at the end */
1646 break;
1647 }
1648 m = bf->bf_m;
1649 if (m == NULL) { /* NB: shouldn't happen */
1650 if_printf(ifp, "ath_rx_proc: no mbuf!\n");
1651 continue;
1652 }
1653 /* XXX sync descriptor memory */
1654 /*
1655 * Must provide the virtual address of the current
1656 * descriptor, the physical address, and the virtual
1657 * address of the next descriptor in the h/w chain.
1658 * This allows the HAL to look ahead to see if the
1659 * hardware is done with a descriptor by checking the
1660 * done bit in the following descriptor and the address
1661 * of the current descriptor the DMA engine is working
1662 * on. All this is necessary because of our use of
1663 * a self-linked list to avoid rx overruns.
1664 */
1665 status = ath_hal_rxprocdesc(ah, ds,
1666 bf->bf_daddr, PA2DESC(sc, ds->ds_link));
1667#ifdef AR_DEBUG
1668 if (ath_debug > 1)
1669 ath_printrxbuf(bf, status == HAL_OK);
1670#endif
1671 if (status == HAL_EINPROGRESS)
1672 break;
1673 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1674 if (ds->ds_rxstat.rs_status != 0) {
1675 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
1676 sc->sc_stats.ast_rx_crcerr++;
1677 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
1678 sc->sc_stats.ast_rx_fifoerr++;
1679 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
1680 sc->sc_stats.ast_rx_badcrypt++;
1681 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
1682 sc->sc_stats.ast_rx_phyerr++;
1683 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
1684 sc->sc_stats.ast_rx_phy[phyerr]++;
1685 } else {
1686 /*
1687 * NB: don't count PHY errors as input errors;
1688 * we enable them on the 5212 to collect info
1689 * about environmental noise and, in that
1690 * setting, they don't really reflect tx/rx
1691 * errors.
1692 */
1693 ifp->if_ierrors++;
1694 }
1695 goto rx_next;
1696 }
1697
1698 len = ds->ds_rxstat.rs_datalen;
1699 if (len < IEEE80211_MIN_LEN) {
1700 DPRINTF(("ath_rx_proc: short packet %d\n", len));
1701 sc->sc_stats.ast_rx_tooshort++;
1702 goto rx_next;
1703 }
1704
1705 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
1706 BUS_DMASYNC_POSTREAD);
1707
1708 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1709 bf->bf_m = NULL;
1710 m->m_pkthdr.rcvif = ifp;
1711 m->m_pkthdr.len = m->m_len = len;
1712
1713 if (sc->sc_drvbpf) {
1714 struct mbuf *mb;
1715
1716 /* XXX pre-allocate space when setting up recv's */
1717 MGETHDR(mb, M_DONTWAIT, m->m_type);
1718 if (mb != NULL) {
1719 sc->sc_rx_th.wr_rate =
1720 sc->sc_hwmap[ds->ds_rxstat.rs_rate];
1721 sc->sc_rx_th.wr_antsignal =
1722 ds->ds_rxstat.rs_rssi;
1723 sc->sc_rx_th.wr_antenna =
1724 ds->ds_rxstat.rs_antenna;
1725 /* XXX TSF */
1726
1727 (void) m_dup_pkthdr(mb, m, M_DONTWAIT);
1728 mb->m_next = m;
1729 mb->m_data = (caddr_t)&sc->sc_rx_th;
1730 mb->m_len = sizeof(sc->sc_rx_th);
1731 mb->m_pkthdr.len += mb->m_len;
1732 bpf_mtap(sc->sc_drvbpf, mb);
1733 m_free(mb);
1734 }
1735 }
1736
1737 m_adj(m, -IEEE80211_CRC_LEN);
1738 wh = mtod(m, struct ieee80211_frame *);
1739 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1740 /*
1741 * WEP is decrypted by hardware. Clear WEP bit
1742 * and trim WEP header for ieee80211_input().
1743 */
1744 wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1745 memcpy(&whbuf, wh, sizeof(whbuf));
1746 m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
1747 wh = mtod(m, struct ieee80211_frame *);
1748 memcpy(wh, &whbuf, sizeof(whbuf));
1749 /*
1750 * Also trim WEP ICV from the tail.
1751 */
1752 m_adj(m, -IEEE80211_WEP_CRCLEN);
1753 }
1754
1755 /*
1756 * Locate the node for sender, track state, and
1757 * then pass this node (referenced) up to the 802.11
1758 * layer for its use. We are required to pass
1759 * something so we fall back to ic_bss when this frame
1760 * is from an unknown sender.
1761 */
1762 if (ic->ic_opmode != IEEE80211_M_STA) {
1763 ni = ieee80211_find_node(ic, wh->i_addr2);
1764 if (ni == NULL)
1765 ni = ieee80211_ref_node(ic->ic_bss);
1766 } else
1767 ni = ieee80211_ref_node(ic->ic_bss);
1768
1769 /*
1770 * Record driver-specific state.
1771 */
1772 an = ATH_NODE(ni);
1773 if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
1774 an->an_rx_hist_next = 0;
1775 rh = &an->an_rx_hist[an->an_rx_hist_next];
1776 rh->arh_ticks = ticks;
1777 rh->arh_rssi = ds->ds_rxstat.rs_rssi;
1778 rh->arh_antenna = ds->ds_rxstat.rs_antenna;
1779
1780 /*
1781 * Send frame up for processing.
1782 */
1783 ieee80211_input(ifp, m, ni,
1784 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
1785
1786 /*
1787 * The frame may have caused the node to be marked for
1788 * reclamation (e.g. in response to a DEAUTH message)
1789 * so use free_node here instead of unref_node.
1790 */
1791 if (ni == ic->ic_bss)
1792 ieee80211_unref_node(&ni);
1793 else
1794 ieee80211_free_node(ic, ni);
1795 rx_next:
1796 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1797 } while (ath_rxbuf_init(sc, bf) == 0);
1798
1799 ath_hal_rxmonitor(ah); /* rx signal state monitoring */
1800 ath_hal_rxena(ah); /* in case of RXEOL */
1801#undef PA2DESC
1802}
1803
1804/*
1805 * XXX Size of an ACK control frame in bytes.
1806 */
1807#define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4)
1808
1809static int
1810ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
1811 struct mbuf *m0)
1812{
1813 struct ieee80211com *ic = &sc->sc_ic;
1814 struct ath_hal *ah = sc->sc_ah;
1815 struct ifnet *ifp = &sc->sc_ic.ic_if;
1816 int i, error, iswep, hdrlen, pktlen;
1817 u_int8_t rix, cix, txrate, ctsrate;
1818 struct ath_desc *ds;
1819 struct mbuf *m;
1820 struct ieee80211_frame *wh;
1821 u_int32_t iv;
1822 u_int8_t *ivp;
1823 u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
1824 IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
1825 u_int subtype, flags, ctsduration, antenna;
1826 HAL_PKT_TYPE atype;
1827 const HAL_RATE_TABLE *rt;
1828 HAL_BOOL shortPreamble;
1829 struct ath_node *an;
1830
1831 wh = mtod(m0, struct ieee80211_frame *);
1832 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
1833 hdrlen = sizeof(struct ieee80211_frame);
1834 pktlen = m0->m_pkthdr.len;
1835
1836 if (iswep) {
1837 memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
1838 m_adj(m0, hdrlen);
1839 M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
1840 if (m0 == NULL) {
1841 sc->sc_stats.ast_tx_nombuf++;
1842 return ENOMEM;
1843 }
1844 ivp = hdrbuf + hdrlen;
1845 wh = mtod(m0, struct ieee80211_frame *);
1846 /*
1847 * XXX
1848 * IV must not duplicate during the lifetime of the key.
1849 * But no mechanism to renew keys is defined in IEEE 802.11
1850 * WEP. And IV may be duplicated between other stations
1851 * because of the session key itself is shared.
1852 * So we use pseudo random IV for now, though it is not the
1853 * right way.
1854 */
1855 iv = ic->ic_iv;
1856 /*
1857 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
1858 * (B, 255, N) with 3 <= B < 8
1859 */
1860 if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
1861 iv += 0x000100;
1862 ic->ic_iv = iv + 1;
1863 for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
1864 ivp[i] = iv;
1865 iv >>= 8;
1866 }
1867 ivp[i] = sc->sc_ic.ic_wep_txkey << 6; /* Key ID and pad */
1868 memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
1869 /*
1870 * The ICV length must be included into hdrlen and pktlen.
1871 */
1872 hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
1873 pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
1874 }
1875 pktlen += IEEE80211_CRC_LEN;
1876
1877 /*
1878 * Load the DMA map so any coalescing is done. This
1879 * also calculates the number of descriptors we need.
1880 */
1881 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
1882 ath_mbuf_load_cb, bf,
1883 BUS_DMA_NOWAIT);
1884 if (error == EFBIG) {
1885 /* XXX packet requires too many descriptors */
1886 bf->bf_nseg = ATH_TXDESC+1;
1887 } else if (error != 0) {
1888 sc->sc_stats.ast_tx_busdma++;
1889 m_freem(m0);
1890 return error;
1891 }
1892 /*
1893 * Discard null packets and check for packets that
1894 * require too many TX descriptors. We try to convert
1895 * the latter to a cluster.
1896 */
1897 if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */
1898 sc->sc_stats.ast_tx_linear++;
1899 MGETHDR(m, M_DONTWAIT, MT_DATA);
1900 if (m == NULL) {
1901 sc->sc_stats.ast_tx_nombuf++;
1902 m_freem(m0);
1903 return ENOMEM;
1904 }
1905 M_MOVE_PKTHDR(m, m0);
1906 MCLGET(m, M_DONTWAIT);
1907 if ((m->m_flags & M_EXT) == 0) {
1908 sc->sc_stats.ast_tx_nomcl++;
1909 m_freem(m0);
1910 m_free(m);
1911 return ENOMEM;
1912 }
1913 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1914 m_freem(m0);
1915 m->m_len = m->m_pkthdr.len;
1916 m0 = m;
1917 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
1918 ath_mbuf_load_cb, bf,
1919 BUS_DMA_NOWAIT);
1920 if (error != 0) {
1921 sc->sc_stats.ast_tx_busdma++;
1922 m_freem(m0);
1923 return error;
1924 }
1925 KASSERT(bf->bf_nseg == 1,
1926 ("ath_tx_start: packet not one segment; nseg %u",
1927 bf->bf_nseg));
1928 } else if (bf->bf_nseg == 0) { /* null packet, discard */
1929 sc->sc_stats.ast_tx_nodata++;
1930 m_freem(m0);
1931 return EIO;
1932 }
1933 DPRINTF2(("ath_tx_start: m %p len %u\n", m0, pktlen));
1934 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1935 bf->bf_m = m0;
1936 bf->bf_node = ni; /* NB: held reference */
1937
1938 /* setup descriptors */
1939 ds = bf->bf_desc;
1940 rt = sc->sc_currates;
1941 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1942
1943 /*
1944 * Calculate Atheros packet type from IEEE80211 packet header
1945 * and setup for rate calculations.
1946 */
1947 atype = HAL_PKT_TYPE_NORMAL; /* default */
1948 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1949 case IEEE80211_FC0_TYPE_MGT:
1950 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1951 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
1952 atype = HAL_PKT_TYPE_BEACON;
1953 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1954 atype = HAL_PKT_TYPE_PROBE_RESP;
1955 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
1956 atype = HAL_PKT_TYPE_ATIM;
1957 rix = 0; /* XXX lowest rate */
1958 break;
1959 case IEEE80211_FC0_TYPE_CTL:
1960 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1961 if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
1962 atype = HAL_PKT_TYPE_PSPOLL;
1963 rix = 0; /* XXX lowest rate */
1964 break;
1965 default:
1966 rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
1967 IEEE80211_RATE_VAL];
1968 if (rix == 0xff) {
1969 if_printf(ifp, "bogus xmit rate 0x%x\n",
1970 ni->ni_rates.rs_rates[ni->ni_txrate]);
1971 sc->sc_stats.ast_tx_badrate++;
1972 m_freem(m0);
1973 return EIO;
1974 }
1975 break;
1976 }
1977 /*
1978 * NB: the 802.11 layer marks whether or not we should
1979 * use short preamble based on the current mode and
1980 * negotiated parameters.
1981 */
1982 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1983 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
1984 txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
1985 shortPreamble = AH_TRUE;
1986 sc->sc_stats.ast_tx_shortpre++;
1987 } else {
1988 txrate = rt->info[rix].rateCode;
1989 shortPreamble = AH_FALSE;
1990 }
1991
1992 /*
1993 * Calculate miscellaneous flags.
1994 */
1995 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */
1996 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1997 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
1998 sc->sc_stats.ast_tx_noack++;
1999 } else if (pktlen > ic->ic_rtsthreshold) {
2000 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
2001 sc->sc_stats.ast_tx_rts++;
2002 }
2003
2004 /*
2005 * Calculate duration. This logically belongs in the 802.11
2006 * layer but it lacks sufficient information to calculate it.
2007 */
2008 if ((flags & HAL_TXDESC_NOACK) == 0 &&
2009 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2010 u_int16_t dur;
2011 /*
2012 * XXX not right with fragmentation.
2013 */
2014 dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
2015 rix, shortPreamble);
2016 *((u_int16_t*) wh->i_dur) = htole16(dur);
2017 }
2018
2019 /*
2020 * Calculate RTS/CTS rate and duration if needed.
2021 */
2022 ctsduration = 0;
2023 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2024 /*
2025 * CTS transmit rate is derived from the transmit rate
2026 * by looking in the h/w rate table. We must also factor
2027 * in whether or not a short preamble is to be used.
2028 */
2029 cix = rt->info[rix].controlRate;
2030 ctsrate = rt->info[cix].rateCode;
2031 if (shortPreamble)
2032 ctsrate |= rt->info[cix].shortPreamble;
2033 /*
2034 * Compute the transmit duration based on the size
2035 * of an ACK frame. We call into the HAL to do the
2036 * computation since it depends on the characteristics
2037 * of the actual PHY being used.
2038 */
2039 if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */
2040 ctsduration += ath_hal_computetxtime(ah,
2041 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2042 }
2043 /* SIFS + data */
2044 ctsduration += ath_hal_computetxtime(ah,
2045 rt, pktlen, rix, shortPreamble);
2046 if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */
2047 ctsduration += ath_hal_computetxtime(ah,
2048 rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2049 }
2050 } else
2051 ctsrate = 0;
2052
2053 /*
2054 * For now use the antenna on which the last good
2055 * frame was received on. We assume this field is
2056 * initialized to 0 which gives us ``auto'' or the
2057 * ``default'' antenna.
2058 */
2059 an = (struct ath_node *) ni;
2060 if (an->an_tx_antenna)
2061 antenna = an->an_tx_antenna;
2062 else
2063 antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
2064
2065 /*
2066 * Formulate first tx descriptor with tx controls.
2067 */
2068 /* XXX check return value? */
2069 ath_hal_setuptxdesc(ah, ds
2070 , pktlen /* packet length */
2071 , hdrlen /* header length */
2072 , atype /* Atheros packet type */
2073 , 60 /* txpower XXX */
2074 , txrate, 1+10 /* series 0 rate/tries */
2075 , iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2076 , antenna /* antenna mode */
2077 , flags /* flags */
2078 , ctsrate /* rts/cts rate */
2079 , ctsduration /* rts/cts duration */
2080 );
2081#ifdef notyet
2082 ath_hal_setupxtxdesc(ah, ds
2083 , AH_FALSE /* short preamble */
2084 , 0, 0 /* series 1 rate/tries */
2085 , 0, 0 /* series 2 rate/tries */
2086 , 0, 0 /* series 3 rate/tries */
2087 );
2088#endif
2089 /*
2090 * Fillin the remainder of the descriptor info.
2091 */
2092 for (i = 0; i < bf->bf_nseg; i++, ds++) {
2093 ds->ds_data = bf->bf_segs[i].ds_addr;
2094 if (i == bf->bf_nseg - 1)
2095 ds->ds_link = 0;
2096 else
2097 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2098 ath_hal_filltxdesc(ah, ds
2099 , bf->bf_segs[i].ds_len /* segment length */
2100 , i == 0 /* first segment */
2101 , i == bf->bf_nseg - 1 /* last segment */
2102 );
2103 DPRINTF2(("ath_tx_start: %d: %08x %08x %08x %08x %08x %08x\n",
2104 i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1,
2105 ds->ds_hw[0], ds->ds_hw[1]));
2106 }
2107
2108 /*
2109 * Insert the frame on the outbound list and
2110 * pass it on to the hardware.
2111 */
2112 ATH_TXQ_LOCK(sc);
2113 TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2114 if (sc->sc_txlink == NULL) {
2115 ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
2116 DPRINTF2(("ath_tx_start: TXDP0 = %p (%p)\n",
2117 (caddr_t)bf->bf_daddr, bf->bf_desc));
2118 } else {
2119 *sc->sc_txlink = bf->bf_daddr;
2120 DPRINTF2(("ath_tx_start: link(%p)=%p (%p)\n",
2121 sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2122 }
2123 sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2124 ATH_TXQ_UNLOCK(sc);
2125
2126 ath_hal_txstart(ah, sc->sc_txhalq);
2127 return 0;
2128}
2129
2130static void
2131ath_tx_proc(void *arg, int npending)
2132{
2133 struct ath_softc *sc = arg;
2134 struct ath_hal *ah = sc->sc_ah;
2135 struct ath_buf *bf;
2136 struct ieee80211com *ic = &sc->sc_ic;
2137 struct ifnet *ifp = &ic->ic_if;
2138 struct ath_desc *ds;
2139 struct ieee80211_node *ni;
2140 struct ath_node *an;
2141 int sr, lr;
2142 HAL_STATUS status;
2143
2144 DPRINTF2(("ath_tx_proc: pending %u tx queue %p, link %p\n",
2145 npending, (caddr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
2146 sc->sc_txlink));
2147 for (;;) {
2148 ATH_TXQ_LOCK(sc);
2149 bf = TAILQ_FIRST(&sc->sc_txq);
2150 if (bf == NULL) {
2151 sc->sc_txlink = NULL;
2152 ATH_TXQ_UNLOCK(sc);
2153 break;
2154 }
2155 /* only the last descriptor is needed */
2156 ds = &bf->bf_desc[bf->bf_nseg - 1];
2157 status = ath_hal_txprocdesc(ah, ds);
2158#ifdef AR_DEBUG
2159 if (ath_debug > 1)
2160 ath_printtxbuf(bf, status == HAL_OK);
2161#endif
2162 if (status == HAL_EINPROGRESS) {
2163 ATH_TXQ_UNLOCK(sc);
2164 break;
2165 }
2166 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2167 ATH_TXQ_UNLOCK(sc);
2168
2169 ni = bf->bf_node;
2170 if (ni != NULL) {
2171 an = (struct ath_node *) ni;
2172 if (ds->ds_txstat.ts_status == 0) {
2173 an->an_tx_ok++;
2174 an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2175 } else {
2176 an->an_tx_err++;
2177 ifp->if_oerrors++;
2178 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2179 sc->sc_stats.ast_tx_xretries++;
2180 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2181 sc->sc_stats.ast_tx_fifoerr++;
2182 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2183 sc->sc_stats.ast_tx_filtered++;
2184 an->an_tx_antenna = 0; /* invalidate */
2185 }
2186 sr = ds->ds_txstat.ts_shortretry;
2187 lr = ds->ds_txstat.ts_longretry;
2188 sc->sc_stats.ast_tx_shortretry += sr;
2189 sc->sc_stats.ast_tx_longretry += lr;
2190 if (sr + lr)
2191 an->an_tx_retr++;
2192 /*
2193 * Reclaim reference to node.
2194 *
2195 * NB: the node may be reclaimed here if, for example
2196 * this is a DEAUTH message that was sent and the
2197 * node was timed out due to inactivity.
2198 */
2199 if (ni != ic->ic_bss)
2200 ieee80211_free_node(ic, ni);
2201 }
2202 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2203 BUS_DMASYNC_POSTWRITE);
2204 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2205 m_freem(bf->bf_m);
2206 bf->bf_m = NULL;
2207 bf->bf_node = NULL;
2208
2209 ATH_TXBUF_LOCK(sc);
2210 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2211 ATH_TXBUF_UNLOCK(sc);
2212 }
2213 ifp->if_flags &= ~IFF_OACTIVE;
2214 sc->sc_tx_timer = 0;
2215
2216 ath_start(ifp);
2217}
2218
2219/*
2220 * Drain the transmit queue and reclaim resources.
2221 */
2222static void
2223ath_draintxq(struct ath_softc *sc)
2224{
2225 struct ath_hal *ah = sc->sc_ah;
2226 struct ifnet *ifp = &sc->sc_ic.ic_if;
2227 struct ath_buf *bf;
2228
2229 /* XXX return value */
2230 if (!sc->sc_invalid) {
2231 /* don't touch the hardware if marked invalid */
2232 (void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
2233 DPRINTF(("ath_draintxq: tx queue %p, link %p\n",
2234 (caddr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
2235 sc->sc_txlink));
2236 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
2237 DPRINTF(("ath_draintxq: beacon queue %p\n",
2238 (caddr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
2239 }
2240 for (;;) {
2241 ATH_TXQ_LOCK(sc);
2242 bf = TAILQ_FIRST(&sc->sc_txq);
2243 if (bf == NULL) {
2244 sc->sc_txlink = NULL;
2245 ATH_TXQ_UNLOCK(sc);
2246 break;
2247 }
2248 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2249 ATH_TXQ_UNLOCK(sc);
2250#ifdef AR_DEBUG
2251 if (ath_debug)
2252 ath_printtxbuf(bf,
2253 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2254#endif /* AR_DEBUG */
2255 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2256 m_freem(bf->bf_m);
2257 bf->bf_m = NULL;
2258 bf->bf_node = NULL;
2259 ATH_TXBUF_LOCK(sc);
2260 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2261 ATH_TXBUF_UNLOCK(sc);
2262 }
2263 ifp->if_flags &= ~IFF_OACTIVE;
2264 sc->sc_tx_timer = 0;
2265}
2266
2267/*
2268 * Disable the receive h/w in preparation for a reset.
2269 */
2270static void
2271ath_stoprecv(struct ath_softc *sc)
2272{
2273#define PA2DESC(_sc, _pa) \
2274 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2275 ((_pa) - (_sc)->sc_desc_paddr)))
2276 struct ath_hal *ah = sc->sc_ah;
2277
2278 ath_hal_stoppcurecv(ah); /* disable PCU */
2279 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
2280 ath_hal_stopdmarecv(ah); /* disable DMA engine */
2281 DELAY(3000); /* long enough for 1 frame */
2282#ifdef AR_DEBUG
2283 if (ath_debug) {
2284 struct ath_buf *bf;
2285
2286 DPRINTF(("ath_stoprecv: rx queue %p, link %p\n",
2287 (caddr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink));
2288 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2289 struct ath_desc *ds = bf->bf_desc;
2290 if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
2291 PA2DESC(sc, ds->ds_link)) == HAL_OK)
2292 ath_printrxbuf(bf, 1);
2293 }
2294 }
2295#endif
2296 sc->sc_rxlink = NULL; /* just in case */
2297#undef PA2DESC
2298}
2299
2300/*
2301 * Enable the receive h/w following a reset.
2302 */
2303static int
2304ath_startrecv(struct ath_softc *sc)
2305{
2306 struct ath_hal *ah = sc->sc_ah;
2307 struct ath_buf *bf;
2308
2309 sc->sc_rxlink = NULL;
2310 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2311 int error = ath_rxbuf_init(sc, bf);
2312 if (error != 0) {
2313 DPRINTF(("ath_startrecv: ath_rxbuf_init failed %d\n",
2314 error));
2315 return error;
2316 }
2317 }
2318
2319 bf = TAILQ_FIRST(&sc->sc_rxbuf);
2320 ath_hal_putrxbuf(ah, bf->bf_daddr);
2321 ath_hal_rxena(ah); /* enable recv descriptors */
2322 ath_mode_init(sc); /* set filters, etc. */
2323 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
2324 return 0;
2325}
2326
2327/*
2328 * Set/change channels. If the channel is really being changed,
2329 * it's done by resetting the chip. To accomplish this we must
2330 * first cleanup any pending DMA, then restart stuff after a la
2331 * ath_init.
2332 */
2333static int
2334ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
2335{
2336 struct ath_hal *ah = sc->sc_ah;
2337 struct ieee80211com *ic = &sc->sc_ic;
2338
2339 DPRINTF(("ath_chan_set: %u (%u MHz) -> %u (%u MHz)\n",
2340 ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
2341 ic->ic_ibss_chan->ic_freq,
2342 ieee80211_chan2ieee(ic, chan), chan->ic_freq));
2343 if (chan != ic->ic_ibss_chan) {
2344 HAL_STATUS status;
2345 HAL_CHANNEL hchan;
2346 enum ieee80211_phymode mode;
2347
2348 /*
2349 * To switch channels clear any pending DMA operations;
2350 * wait long enough for the RX fifo to drain, reset the
2351 * hardware at the new frequency, and then re-enable
2352 * the relevant bits of the h/w.
2353 */
2354 ath_hal_intrset(ah, 0); /* disable interrupts */
2355 ath_draintxq(sc); /* clear pending tx frames */
2356 ath_stoprecv(sc); /* turn off frame recv */
2357 /*
2358 * Convert to a HAL channel description with
2359 * the flags constrained to reflect the current
2360 * operating mode.
2361 */
2362 hchan.channel = chan->ic_freq;
2363 hchan.channelFlags = ath_chan2flags(ic, chan);
2364 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
2365 if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
2366 "channel %u (%u Mhz)\n",
2367 ieee80211_chan2ieee(ic, chan), chan->ic_freq);
2368 return EIO;
2369 }
2370 /*
2371 * Re-enable rx framework.
2372 */
2373 if (ath_startrecv(sc) != 0) {
2374 if_printf(&ic->ic_if,
2375 "ath_chan_set: unable to restart recv logic\n");
2376 return EIO;
2377 }
2378
2379 /*
2380 * Update BPF state.
2381 */
2382 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
2383 htole16(chan->ic_freq);
2384 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
2385 htole16(chan->ic_flags);
2386
2387 /*
2388 * Change channels and update the h/w rate map
2389 * if we're switching; e.g. 11a to 11b/g.
2390 */
2391 ic->ic_ibss_chan = chan;
2392 mode = ieee80211_chan2mode(ic, chan);
2393 if (mode != sc->sc_curmode)
2394 ath_setcurmode(sc, mode);
2395
2396 /*
2397 * Re-enable interrupts.
2398 */
2399 ath_hal_intrset(ah, sc->sc_imask);
2400 }
2401 return 0;
2402}
2403
2404static void
2405ath_next_scan(void *arg)
2406{
2407 struct ath_softc *sc = arg;
2408 struct ieee80211com *ic = &sc->sc_ic;
2409 struct ifnet *ifp = &ic->ic_if;
2410
2411 if (ic->ic_state == IEEE80211_S_SCAN)
2412 ieee80211_next_scan(ifp);
2413}
2414
2415/*
2416 * Periodically recalibrate the PHY to account
2417 * for temperature/environment changes.
2418 */
2419static void
2420ath_calibrate(void *arg)
2421{
2422 struct ath_softc *sc = arg;
2423 struct ath_hal *ah = sc->sc_ah;
2424 struct ieee80211com *ic = &sc->sc_ic;
2425 struct ieee80211_channel *c;
2426 HAL_CHANNEL hchan;
2427
2428 sc->sc_stats.ast_per_cal++;
2429
2430 /*
2431 * Convert to a HAL channel description with the flags
2432 * constrained to reflect the current operating mode.
2433 */
2434 c = ic->ic_ibss_chan;
2435 hchan.channel = c->ic_freq;
2436 hchan.channelFlags = ath_chan2flags(ic, c);
2437
2438 DPRINTF(("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
2439
2440 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
2441 /*
2442 * Rfgain is out of bounds, reset the chip
2443 * to load new gain values.
2444 */
2445 sc->sc_stats.ast_per_rfgain++;
2446 ath_reset(sc);
2447 }
2448 if (!ath_hal_calibrate(ah, &hchan)) {
2449 DPRINTF(("%s: calibration of channel %u failed\n",
2450 __func__, c->ic_freq));
2451 sc->sc_stats.ast_per_calfail++;
2452 }
2453 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
2454}
2455
2456static int
2457ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2458{
2459 struct ifnet *ifp = &ic->ic_if;
2460 struct ath_softc *sc = ifp->if_softc;
2461 struct ath_hal *ah = sc->sc_ah;
2462 struct ieee80211_node *ni;
2463 int i, error;
2464 const u_int8_t *bssid;
2465 u_int32_t rfilt;
2466 static const HAL_LED_STATE leds[] = {
2467 HAL_LED_INIT, /* IEEE80211_S_INIT */
2468 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
2469 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
2470 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
2471 HAL_LED_RUN, /* IEEE80211_S_RUN */
2472 };
2473
2474 DPRINTF(("%s: %s -> %s\n", __func__,
2475 ieee80211_state_name[ic->ic_state],
2476 ieee80211_state_name[nstate]));
2477
2478 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
2479
2480 if (nstate == IEEE80211_S_INIT) {
2481 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2482 ath_hal_intrset(ah, sc->sc_imask);
2483 callout_stop(&sc->sc_scan_ch);
2484 callout_stop(&sc->sc_cal_ch);
2485 return (*sc->sc_newstate)(ic, nstate, arg);
2486 }
2487 ni = ic->ic_bss;
2488 error = ath_chan_set(sc, ni->ni_chan);
2489 if (error != 0)
2490 goto bad;
2491 rfilt = ath_calcrxfilter(sc);
2492 if (nstate == IEEE80211_S_SCAN) {
2493 callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
2494 ath_next_scan, sc);
2495 bssid = ifp->if_broadcastaddr;
2496 } else {
2497 callout_stop(&sc->sc_scan_ch);
2498 bssid = ni->ni_bssid;
2499 }
2500 ath_hal_setrxfilter(ah, rfilt);
2501 DPRINTF(("%s: RX filter 0x%x bssid %s\n",
2502 __func__, rfilt, ether_sprintf(bssid)));
2503
2504 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
2505 ath_hal_setassocid(ah, bssid, ni->ni_associd);
2506 else
2507 ath_hal_setassocid(ah, bssid, 0);
2508 if (ic->ic_flags & IEEE80211_F_WEPON) {
2509 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2510 if (ath_hal_keyisvalid(ah, i))
2511 ath_hal_keysetmac(ah, i, bssid);
2512 }
2513
2514 if (nstate == IEEE80211_S_RUN) {
2515 DPRINTF(("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
2516 "capinfo=0x%04x chan=%d\n"
2517 , __func__
2518 , ic->ic_flags
2519 , ni->ni_intval
2520 , ether_sprintf(ni->ni_bssid)
2521 , ni->ni_capinfo
2522 , ieee80211_chan2ieee(ic, ni->ni_chan)));
2523
2524 /*
2525 * Allocate and setup the beacon frame for AP or adhoc mode.
2526 */
2527 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2528 ic->ic_opmode == IEEE80211_M_IBSS) {
2529 error = ath_beacon_alloc(sc, ni);
2530 if (error != 0)
2531 goto bad;
2532 }
2533
2534 /*
2535 * Configure the beacon and sleep timers.
2536 */
2537 ath_beacon_config(sc);
2538
2539 /* start periodic recalibration timer */
2540 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
2541 ath_calibrate, sc);
2542 } else {
2543 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2544 ath_hal_intrset(ah, sc->sc_imask);
2545 callout_stop(&sc->sc_cal_ch); /* no calibration */
2546 }
2547 /*
2548 * Reset the rate control state.
2549 */
2550 ath_rate_ctl_reset(sc, nstate);
2551 /*
2552 * Invoke the parent method to complete the work.
2553 */
2554 return (*sc->sc_newstate)(ic, nstate, arg);
2555bad:
2556 callout_stop(&sc->sc_scan_ch);
2557 callout_stop(&sc->sc_cal_ch);
2558 /* NB: do not invoke the parent */
2559 return error;
2560}
2561
2562/*
2563 * Setup driver-specific state for a newly associated node.
2564 * Note that we're called also on a re-associate, the isnew
2565 * param tells us if this is the first time or not.
2566 */
2567static void
2568ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
2569{
2570 if (isnew) {
2571 struct ath_node *an = (struct ath_node *) ni;
2572
2573 an->an_tx_ok = an->an_tx_err =
2574 an->an_tx_retr = an->an_tx_upper = 0;
2575 /* start with highest negotiated rate */
2576 /*
2577 * XXX should do otherwise but only when
2578 * the rate control algorithm is better.
2579 */
2580 KASSERT(ni->ni_rates.rs_nrates > 0,
2581 ("new association w/ no rates!"));
2582 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
2583 }
2584}
2585
2586static int
2587ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor)
2588{
2589 struct ieee80211com *ic = &sc->sc_ic;
2590 struct ifnet *ifp = &ic->ic_if;
2591 struct ath_hal *ah = sc->sc_ah;
2592 HAL_CHANNEL *chans;
2593 int i, ix, nchan;
2594
2595 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
2596 M_TEMP, M_NOWAIT);
2597 if (chans == NULL) {
2598 if_printf(ifp, "unable to allocate channel table\n");
2599 return ENOMEM;
2600 }
2601 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
2602 cc, HAL_MODE_ALL, outdoor)) {
2603 if_printf(ifp, "unable to collect channel list from hal\n");
2604 free(chans, M_TEMP);
2605 return EINVAL;
2606 }
2607
2608 /*
2609 * Convert HAL channels to ieee80211 ones and insert
2610 * them in the table according to their channel number.
2611 */
2612 for (i = 0; i < nchan; i++) {
2613 HAL_CHANNEL *c = &chans[i];
2614 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
2615 if (ix > IEEE80211_CHAN_MAX) {
2616 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
2617 ix, c->channel, c->channelFlags);
2618 continue;
2619 }
2620 /* NB: flags are known to be compatible */
2621 if (ic->ic_channels[ix].ic_freq == 0) {
2622 ic->ic_channels[ix].ic_freq = c->channel;
2623 ic->ic_channels[ix].ic_flags = c->channelFlags;
2624 } else {
2625 /* channels overlap; e.g. 11g and 11b */
2626 ic->ic_channels[ix].ic_flags |= c->channelFlags;
2627 }
2628 }
2629 free(chans, M_TEMP);
2630 return 0;
2631}
2632
2633static int
2634ath_rate_setup(struct ath_softc *sc, u_int mode)
2635{
2636 struct ath_hal *ah = sc->sc_ah;
2637 struct ieee80211com *ic = &sc->sc_ic;
2638 const HAL_RATE_TABLE *rt;
2639 struct ieee80211_rateset *rs;
2640 int i, maxrates;
2641
2642 switch (mode) {
2643 case IEEE80211_MODE_11A:
2644 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
2645 break;
2646 case IEEE80211_MODE_11B:
2647 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
2648 break;
2649 case IEEE80211_MODE_11G:
2650 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
2651 break;
2652 case IEEE80211_MODE_TURBO:
2653 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
2654 break;
2655 default:
2656 DPRINTF(("%s: invalid mode %u\n", __func__, mode));
2657 return 0;
2658 }
2659 rt = sc->sc_rates[mode];
2660 if (rt == NULL)
2661 return 0;
2662 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
2663 DPRINTF(("%s: rate table too small (%u > %u)\n",
2664 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
2665 maxrates = IEEE80211_RATE_MAXSIZE;
2666 } else
2667 maxrates = rt->rateCount;
2668 rs = &ic->ic_sup_rates[mode];
2669 for (i = 0; i < maxrates; i++)
2670 rs->rs_rates[i] = rt->info[i].dot11Rate;
2671 rs->rs_nrates = maxrates;
2672 return 1;
2673}
2674
2675static void
2676ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
2677{
2678 const HAL_RATE_TABLE *rt;
2679 int i;
2680
2681 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
2682 rt = sc->sc_rates[mode];
2683 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
2684 for (i = 0; i < rt->rateCount; i++)
2685 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
2686 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
2687 for (i = 0; i < 32; i++)
2688 sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
2689 sc->sc_currates = rt;
2690 sc->sc_curmode = mode;
2691}
2692
2693/*
2694 * Reset the rate control state for each 802.11 state transition.
2695 */
2696static void
2697ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
2698{
2699 struct ieee80211com *ic = &sc->sc_ic;
2700 struct ieee80211_node *ni;
2701 struct ath_node *an;
2702
2703 if (ic->ic_opmode != IEEE80211_M_STA) {
2704 /*
2705 * When operating as a station the node table holds
2706 * the AP's that were discovered during scanning.
2707 * For any other operating mode we want to reset the
2708 * tx rate state of each node.
2709 */
2710 TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
2711 ni->ni_txrate = 0; /* use lowest rate */
2712 an = (struct ath_node *) ni;
2713 an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
2714 an->an_tx_upper = 0;
2715 }
2716 }
2717 /*
2718 * Reset local xmit state; this is really only meaningful
2719 * when operating in station or adhoc mode.
2720 */
2721 ni = ic->ic_bss;
2722 an = (struct ath_node *) ni;
2723 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
2724 if (state == IEEE80211_S_RUN) {
2725 /* start with highest negotiated rate */
2726 KASSERT(ni->ni_rates.rs_nrates > 0,
2727 ("transition to RUN state w/ no rates!"));
2728 ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
2729 } else {
2730 /* use lowest rate */
2731 ni->ni_txrate = 0;
2732 }
2733}
2734
2735/*
2736 * Examine and potentially adjust the transmit rate.
2737 */
2738static void
2739ath_rate_ctl(void *arg, struct ieee80211_node *ni)
2740{
2741 struct ath_softc *sc = arg;
2742 struct ath_node *an = (struct ath_node *) ni;
2743 struct ieee80211_rateset *rs = &ni->ni_rates;
2744 int mod = 0, orate, enough;
2745
2746 /*
2747 * Rate control
2748 * XXX: very primitive version.
2749 */
2750 sc->sc_stats.ast_rate_calls++;
2751
2752 enough = (an->an_tx_ok + an->an_tx_err >= 10);
2753
2754 /* no packet reached -> down */
2755 if (an->an_tx_err > 0 && an->an_tx_ok == 0)
2756 mod = -1;
2757
2758 /* all packets needs retry in average -> down */
2759 if (enough && an->an_tx_ok < an->an_tx_retr)
2760 mod = -1;
2761
2762 /* no error and less than 10% of packets needs retry -> up */
2763 if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
2764 mod = 1;
2765
2766 orate = ni->ni_txrate;
2767 switch (mod) {
2768 case 0:
2769 if (enough && an->an_tx_upper > 0)
2770 an->an_tx_upper--;
2771 break;
2772 case -1:
2773 if (ni->ni_txrate > 0) {
2774 ni->ni_txrate--;
2775 sc->sc_stats.ast_rate_drop++;
2776 }
2777 an->an_tx_upper = 0;
2778 break;
2779 case 1:
2780 if (++an->an_tx_upper < 2)
2781 break;
2782 an->an_tx_upper = 0;
2783 if (ni->ni_txrate + 1 < rs->rs_nrates) {
2784 ni->ni_txrate++;
2785 sc->sc_stats.ast_rate_raise++;
2786 }
2787 break;
2788 }
2789
2790 if (ni->ni_txrate != orate) {
2791 DPRINTF(("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
2792 __func__,
2793 (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
2794 (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
2795 an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
2796 }
2797 if (ni->ni_txrate != orate || enough)
2798 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
2799}
2800
2801#ifdef AR_DEBUG
2802static int
2803sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
2804{
2805 char dmode[64];
2806 int error;
2807
2808 strncpy(dmode, "", sizeof(dmode) - 1);
2809 dmode[sizeof(dmode) - 1] = '\0';
2810 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2811
2812 if (error == 0 && req->newptr != NULL) {
2813 struct ifnet *ifp;
2814 struct ath_softc *sc;
2815
2816 ifp = ifunit("ath0"); /* XXX */
2817 if (!ifp)
2818 return EINVAL;
2819 sc = ifp->if_softc;
2820 if (strcmp(dmode, "hal") == 0)
2821 ath_hal_dumpstate(sc->sc_ah);
2822 else
2823 return EINVAL;
2824 }
2825 return error;
2826}
2827SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2828 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
2829
2830static void
2831ath_printrxbuf(struct ath_buf *bf, int done)
2832{
2833 struct ath_desc *ds;
2834 int i;
2835
2836 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
2837 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
2838 i, ds, (struct ath_desc *)bf->bf_daddr + i,
2839 ds->ds_link, ds->ds_data,
2840 ds->ds_ctl0, ds->ds_ctl1,
2841 ds->ds_hw[0], ds->ds_hw[1],
2842 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
2843 }
2844}
2845
2846static void
2847ath_printtxbuf(struct ath_buf *bf, int done)
2848{
2849 struct ath_desc *ds;
2850 int i;
2851
2852 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
2853 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
2854 i, ds, (struct ath_desc *)bf->bf_daddr + i,
2855 ds->ds_link, ds->ds_data,
2856 ds->ds_ctl0, ds->ds_ctl1,
2857 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
2858 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
2859 }
2860}
2861#endif /* AR_DEBUG */