Deleted Added
full compact
ar5416_reset.c (185380) ar5416_reset.c (185406)
1/*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $Id: ar5416_reset.c,v 1.27 2008/11/27 22:30:08 sam Exp $
18 */
19#include "opt_ah.h"
20
1/*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $Id: ar5416_reset.c,v 1.27 2008/11/27 22:30:08 sam Exp $
18 */
19#include "opt_ah.h"
20
21#ifdef AH_SUPPORT_AR5416
22
23#include "ah.h"
24#include "ah_internal.h"
25#include "ah_devid.h"
26
27#include "ah_eeprom_v14.h"
28
29#include "ar5416/ar5416.h"
30#include "ar5416/ar5416reg.h"
31#include "ar5416/ar5416phy.h"
32#ifdef AH_SUPPORT_AR9280
33#include "ar5416/ar9280.h"
34#endif
35
36/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
37#define EEP_MINOR(_ah) \
38 (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
39#define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
40#define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
41
42/* Additional Time delay to wait after activiting the Base band */
43#define BASE_ACTIVATE_DELAY 100 /* 100 usec */
44#define PLL_SETTLE_DELAY 300 /* 300 usec */
45#define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */
46
47static void ar5416InitDMA(struct ath_hal *ah);
48static void ar5416InitBB(struct ath_hal *ah, HAL_CHANNEL *chan);
49static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
50static void ar5416InitQoS(struct ath_hal *ah);
51static void ar5416InitUserSettings(struct ath_hal *ah);
52
53static HAL_BOOL ar5416SetTransmitPower(struct ath_hal *ah,
54 HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain);
55
56#if 0
57static HAL_BOOL ar5416ChannelChange(struct ath_hal *, HAL_CHANNEL *);
58#endif
59static void ar5416SetDeltaSlope(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
60static void ar5416SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan);
61#ifdef AH_SUPPORT_AR9280
62static void ar9280SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan);
63#endif
64
65static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
66static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
67static void ar5416InitPLL(struct ath_hal *ah, HAL_CHANNEL *chan);
68static HAL_BOOL ar5416SetBoardValues(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
69static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
70 struct ar5416eeprom *pEepData,
71 HAL_CHANNEL_INTERNAL *chan, int16_t *ratesArray,
72 uint16_t cfgCtl, uint16_t AntennaReduction,
73 uint16_t twiceMaxRegulatoryPower,
74 uint16_t powerLimit);
75static HAL_BOOL ar5416SetPowerCalTable(struct ath_hal *ah,
76 struct ar5416eeprom *pEepData,
77 HAL_CHANNEL_INTERNAL *chan,
78 int16_t *pTxPowerIndexOffset);
79static uint16_t ar5416GetMaxEdgePower(uint16_t freq,
80 CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz);
81static void ar5416GetTargetPowers(struct ath_hal *ah,
82 HAL_CHANNEL_INTERNAL *chan, CAL_TARGET_POWER_HT *powInfo,
83 uint16_t numChannels, CAL_TARGET_POWER_HT *pNewPower,
84 uint16_t numRates, HAL_BOOL isHt40Target);
85static void ar5416GetTargetPowersLeg(struct ath_hal *ah,
86 HAL_CHANNEL_INTERNAL *chan, CAL_TARGET_POWER_LEG *powInfo,
87 uint16_t numChannels, CAL_TARGET_POWER_LEG *pNewPower,
88 uint16_t numRates, HAL_BOOL isExtTarget);
89
90static int16_t interpolate(uint16_t target, uint16_t srcLeft,
91 uint16_t srcRight, int16_t targetLeft, int16_t targetRight);
92static void ar5416Set11nRegs(struct ath_hal *ah, HAL_CHANNEL *chan);
93static void ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
94 HAL_CHANNEL_INTERNAL *chan, CAL_DATA_PER_FREQ *pRawDataSet,
95 uint8_t * bChans, uint16_t availPiers,
96 uint16_t tPdGainOverlap, int16_t *pMinCalPower,
97 uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
98 uint16_t numXpdGains);
99static HAL_BOOL getLowerUpperIndex(uint8_t target, uint8_t *pList,
100 uint16_t listSize, uint16_t *indexL, uint16_t *indexR);
101static HAL_BOOL ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax,
102 uint8_t *pPwrList, uint8_t *pVpdList,
103 uint16_t numIntercepts, uint8_t *pRetVpdList);
104
105/*
106 * Places the device in and out of reset and then places sane
107 * values in the registers based on EEPROM config, initialization
108 * vectors (as determined by the mode), and station configuration
109 *
110 * bChannelChange is used to preserve DMA/PCU registers across
111 * a HW Reset during channel change.
112 */
113HAL_BOOL
114ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
115 HAL_CHANNEL *chan, HAL_BOOL bChannelChange, HAL_STATUS *status)
116{
117#define N(a) (sizeof (a) / sizeof (a[0]))
118#define FAIL(_code) do { ecode = _code; goto bad; } while (0)
119 struct ath_hal_5212 *ahp = AH5212(ah);
120 HAL_CHANNEL_INTERNAL *ichan;
121 uint32_t softLedCfg;
122 uint32_t saveDefAntenna, saveLedState;
123 uint32_t macStaId1;
124 uint16_t rfXpdGain[2];
125 u_int modesIndex, freqIndex;
126 HAL_STATUS ecode;
127 int i, regWrites = 0;
128 uint32_t powerVal, rssiThrReg;
129 uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
130
131 OS_MARK(ah, AH_MARK_RESET, bChannelChange);
132#define IS(_c,_f) (((_c)->channelFlags & _f) || 0)
133 if ((IS(chan, CHANNEL_2GHZ) ^ IS(chan, CHANNEL_5GHZ)) == 0) {
134 HALDEBUG(ah, HAL_DEBUG_ANY,
135 "%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n",
136 __func__, chan->channel, chan->channelFlags);
137 FAIL(HAL_EINVAL);
138 }
139 if ((IS(chan, CHANNEL_OFDM) ^ IS(chan, CHANNEL_CCK)) == 0) {
140 HALDEBUG(ah, HAL_DEBUG_ANY,
141 "%s: invalid channel %u/0x%x; not marked as OFDM or CCK\n",
142 __func__, chan->channel, chan->channelFlags);
143 FAIL(HAL_EINVAL);
144 }
145#undef IS
146
147 /* Bring out of sleep mode */
148 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
149 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
150 __func__);
151 FAIL(HAL_EIO);
152 }
153
154 /*
155 * Map public channel to private.
156 */
157 ichan = ath_hal_checkchannel(ah, chan);
158 if (ichan == AH_NULL) {
159 HALDEBUG(ah, HAL_DEBUG_ANY,
160 "%s: invalid channel %u/0x%x; no mapping\n",
161 __func__, chan->channel, chan->channelFlags);
162 FAIL(HAL_EINVAL);
163 } else {
164 HALDEBUG(ah, HAL_DEBUG_RESET,
165 "%s: Ch=%u Max=%d Min=%d\n",__func__,
166 ichan->channel, ichan->maxTxPower, ichan->minTxPower);
167 }
168 switch (opmode) {
169 case HAL_M_STA:
170 case HAL_M_IBSS:
171 case HAL_M_HOSTAP:
172 case HAL_M_MONITOR:
173 break;
174 default:
175 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
176 __func__, opmode);
177 FAIL(HAL_EINVAL);
178 break;
179 }
180 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
181
182 /* XXX Turn on fast channel change for 5416 */
183 /*
184 * Preserve the bmiss rssi threshold and count threshold
185 * across resets
186 */
187 rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
188 /* If reg is zero, first time thru set to default val */
189 if (rssiThrReg == 0)
190 rssiThrReg = INIT_RSSI_THR;
191
192 /*
193 * Preserve the antenna on a channel change
194 */
195 saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
196 if (saveDefAntenna == 0) /* XXX magic constants */
197 saveDefAntenna = 1;
198
199 /* Save hardware flag before chip reset clears the register */
200 macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
201 (AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
202
203 /* Save led state from pci config register */
204 saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
205 (AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
206 AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
207 softLedCfg = OS_REG_READ(ah, AR_GPIO_INTR_OUT);
208
209 /*
210 * Adjust gain parameters before reset if
211 * there's an outstanding gain updated.
212 */
213 (void) ar5416GetRfgain(ah);
214
215 if (!ar5416ChipReset(ah, chan)) {
216 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
217 FAIL(HAL_EIO);
218 }
219
220 /* Restore bmiss rssi & count thresholds */
221 OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
222
223 /* Setup the indices for the next set of register array writes */
224 /* XXX Ignore 11n dynamic mode on the AR5416 for the moment */
225 switch (chan->channelFlags & CHANNEL_ALL) {
226 case CHANNEL_A:
227 case CHANNEL_A_HT20:
228 modesIndex = 1;
229 freqIndex = 1;
230 break;
231 case CHANNEL_T:
232 case CHANNEL_A_HT40PLUS:
233 case CHANNEL_A_HT40MINUS:
234 modesIndex = 2;
235 freqIndex = 1;
236 break;
237 case CHANNEL_PUREG:
238 case CHANNEL_G_HT20:
239 case CHANNEL_B: /* treat as channel G , no B mode suport in owl */
240 modesIndex = 4;
241 freqIndex = 2;
242 break;
243 case CHANNEL_G_HT40PLUS:
244 case CHANNEL_G_HT40MINUS:
245 modesIndex = 3;
246 freqIndex = 2;
247 break;
248 case CHANNEL_108G:
249 modesIndex = 5;
250 freqIndex = 2;
251 break;
252 default:
253 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
254 __func__, chan->channelFlags);
255 FAIL(HAL_EINVAL);
256 }
257
258 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
259
260 /* Set correct Baseband to analog shift setting to access analog chips. */
261 OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
262
263 /*
264 * Write addac shifts
265 */
266 OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
267#if 0
268 /* NB: only required for Sowl */
269 ar5416EepromSetAddac(ah, ichan);
270#endif
271 regWrites = ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_addac, 1,
272 regWrites);
273 OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
274
275 /* XXX Merlin ini fixups */
276 /* XXX Merlin 100us delay for shift registers */
277 regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex,
278 regWrites);
279#ifdef AH_SUPPORT_AR9280
280 if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
281 regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_rxgain,
282 modesIndex, regWrites);
283 regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_txgain,
284 modesIndex, regWrites);
285 }
286#endif
287 /* XXX Merlin 100us delay for shift registers */
288 regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_common, 1, regWrites);
289 /* Setup 11n MAC/Phy mode registers */
290 ar5416Set11nRegs(ah,chan);
291 /* XXX updated regWrites? */
292 ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);
293#ifdef AH_SUPPORT_AR9280
294 if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
295 /* 5GHz channels w/ Fast Clock use different modal values */
296 regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_xmodes,
297 modesIndex, regWrites);
298 }
299#endif
300
301 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
302
303 HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
304 __func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
305 HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
306 __func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
307
308 /* Set the mute mask to the correct default */
309 if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2)
310 OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
311
312 if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
313 /* Clear reg to alllow RX_CLEAR line debug */
314 OS_REG_WRITE(ah, AR_PHY_BLUETOOTH, 0);
315 }
316 if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
317#ifdef notyet
318 /* Enable burst prefetch for the data queues */
319 OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
320 /* Enable double-buffering */
321 OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
322#endif
323 }
324
325 /* Set ADC/DAC select values */
326 OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
327
328 if (AH5416(ah)->ah_rx_chainmask == 0x5 ||
329 AH5416(ah)->ah_tx_chainmask == 0x5)
330 OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
331 /* Setup Chain Masks */
332 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
333 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
334 OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
335
336 /* Setup the transmit power values. */
337 if (!ar5416SetTransmitPower(ah, ichan, rfXpdGain)) {
338 HALDEBUG(ah, HAL_DEBUG_ANY,
339 "%s: error init'ing transmit power\n", __func__);
340 FAIL(HAL_EIO);
341 }
342
343 /* Write the analog registers */
344 if (!ahp->ah_rfHal->setRfRegs(ah, ichan, freqIndex, rfXpdGain)) {
345 HALDEBUG(ah, HAL_DEBUG_ANY,
346 "%s: ar5212SetRfRegs failed\n", __func__);
347 FAIL(HAL_EIO);
348 }
349
350 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
351 if (IS_CHAN_OFDM(chan)|| IS_CHAN_HT(chan))
352 ar5416SetDeltaSlope(ah, ichan);
353
354#ifdef AH_SUPPORT_AR9280
355 if (AR_SREV_MERLIN_10_OR_LATER(ah))
356 ar9280SpurMitigate(ah, ichan);
357 else
358#endif
359 ar5416SpurMitigate(ah, ichan);
360
361 /* Setup board specific options for EEPROM version 3 */
362 if (!ar5416SetBoardValues(ah, ichan)) {
363 HALDEBUG(ah, HAL_DEBUG_ANY,
364 "%s: error setting board options\n", __func__);
365 FAIL(HAL_EIO);
366 }
367
368 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
369
370 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
371 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
372 | macStaId1
373 | AR_STA_ID1_RTS_USE_DEF
374 | ahp->ah_staId1Defaults
375 );
376 ar5212SetOperatingMode(ah, opmode);
377
378 /* Set Venice BSSID mask according to current state */
379 OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
380 OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
381
382 /* Restore previous led state */
383 OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) | saveLedState);
384 /* Restore soft Led state to GPIO */
385 OS_REG_WRITE(ah, AR_GPIO_INTR_OUT, softLedCfg);
386
387 /* Restore previous antenna */
388 OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
389
390 /* then our BSSID */
391 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
392 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
393
394 /* Restore bmiss rssi & count thresholds */
395 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
396
397 OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
398
399 if (!ar5212SetChannel(ah, ichan))
400 FAIL(HAL_EIO);
401
402 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
403
404 /* Set 1:1 QCU to DCU mapping for all queues */
405 for (i = 0; i < AR_NUM_DCU; i++)
406 OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
407
408 ahp->ah_intrTxqs = 0;
409 for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
410 ar5212ResetTxQueue(ah, i);
411
412 ar5416InitIMR(ah, opmode);
413 ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
414 ar5416InitQoS(ah);
415 ar5416InitUserSettings(ah);
416
417 /*
418 * disable seq number generation in hw
419 */
420 OS_REG_WRITE(ah, AR_STA_ID1,
421 OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
422
423 ar5416InitDMA(ah);
424
425 /*
426 * program OBS bus to see MAC interrupts
427 */
428 OS_REG_WRITE(ah, AR_OBS, 8);
429
430#ifdef AR5416_INT_MITIGATION
431 OS_REG_WRITE(ah, AR_MIRT, 0);
432 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
433 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
434#endif
435
436 ar5416InitBB(ah, chan);
437
438 /* Setup compression registers */
439 ar5212SetCompRegs(ah); /* XXX not needed? */
440
441 /*
442 * 5416 baseband will check the per rate power table
443 * and select the lower of the two
444 */
445 ackTpcPow = 63;
446 ctsTpcPow = 63;
447 chirpTpcPow = 63;
448 powerVal = SM(ackTpcPow, AR_TPC_ACK) |
449 SM(ctsTpcPow, AR_TPC_CTS) |
450 SM(chirpTpcPow, AR_TPC_CHIRP);
451 OS_REG_WRITE(ah, AR_TPC, powerVal);
452
453 if (!ar5416InitCal(ah, chan))
454 FAIL(HAL_ESELFTEST);
455
456 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
457
458 if (bChannelChange) {
459 if (!(ichan->privFlags & CHANNEL_DFS))
460 ichan->privFlags &= ~CHANNEL_INTERFERENCE;
461 chan->channelFlags = ichan->channelFlags;
462 chan->privFlags = ichan->privFlags;
463 chan->maxRegTxPower = ichan->maxRegTxPower;
464 chan->maxTxPower = ichan->maxTxPower;
465 chan->minTxPower = ichan->minTxPower;
466 }
467
468 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
469
470 OS_MARK(ah, AH_MARK_RESET_DONE, 0);
471
472 return AH_TRUE;
473bad:
474 OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
475 if (*status)
476 *status = ecode;
477 return AH_FALSE;
478#undef FAIL
479#undef N
480}
481
482#if 0
483/*
484 * This channel change evaluates whether the selected hardware can
485 * perform a synthesizer-only channel change (no reset). If the
486 * TX is not stopped, or the RFBus cannot be granted in the given
487 * time, the function returns false as a reset is necessary
488 */
489HAL_BOOL
490ar5416ChannelChange(struct ath_hal *ah, HAL_CHANNEL *chan)
491{
492 uint32_t ulCount;
493 uint32_t data, synthDelay, qnum;
494 uint16_t rfXpdGain[4];
495 struct ath_hal_5212 *ahp = AH5212(ah);
496 HAL_CHANNEL_INTERNAL *ichan;
497
498 /*
499 * Map public channel to private.
500 */
501 ichan = ath_hal_checkchannel(ah, chan);
502
503 /* TX must be stopped or RF Bus grant will not work */
504 for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
505 if (ar5212NumTxPending(ah, qnum)) {
506 HALDEBUG(ah, HAL_DEBUG_ANY,
507 "%s: frames pending on queue %d\n", __func__, qnum);
508 return AH_FALSE;
509 }
510 }
511
512 /*
513 * Kill last Baseband Rx Frame - Request analog bus grant
514 */
515 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
516 if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
517 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
518 __func__);
519 return AH_FALSE;
520 }
521
522 ar5416Set11nRegs(ah, chan); /* NB: setup 5416-specific regs */
523
524 /* Change the synth */
525 if (!ar5212SetChannel(ah, ichan))
526 return AH_FALSE;
527
528 /* Setup the transmit power values. */
529 if (!ar5416SetTransmitPower(ah, ichan, rfXpdGain)) {
530 HALDEBUG(ah, HAL_DEBUG_ANY,
531 "%s: error init'ing transmit power\n", __func__);
532 return AH_FALSE;
533 }
534
535 /*
536 * Wait for the frequency synth to settle (synth goes on
537 * via PHY_ACTIVE_EN). Read the phy active delay register.
538 * Value is in 100ns increments.
539 */
540 data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
541 if (IS_CHAN_CCK(ichan)) {
542 synthDelay = (4 * data) / 22;
543 } else {
544 synthDelay = data / 10;
545 }
546
547 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
548
549 /* Release the RFBus Grant */
550 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
551
552 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
553 if (IS_CHAN_OFDM(ichan)|| IS_CHAN_HT(chan)) {
554 if (ahp->ah_eeprom.ee_version >= AR_EEPROM_VER5_3 &&
555 !IS_CHAN_B(chan))
556 ar5212SetSpurMitigation(ah, ichan);
557 ar5416SetDeltaSlope(ah, ichan);
558 }
559
560 /* XXX spur mitigation for Melin */
561
562 /* Copy over internal channel flags to public hal channel */
563
564 if (!(ichan->privFlags & CHANNEL_DFS))
565 ichan->privFlags &= ~CHANNEL_INTERFERENCE;
566 chan->channelFlags = ichan->channelFlags;
567 chan->privFlags = ichan->privFlags;
568 chan->maxRegTxPower = ichan->maxRegTxPower;
569 chan->maxTxPower = ichan->maxTxPower;
570 chan->minTxPower = ichan->minTxPower;
571 AH_PRIVATE(ah)->ah_curchan->ah_channel_time=0;
572 AH_PRIVATE(ah)->ah_curchan->ah_tsf_last = ar5212GetTsf64(ah);
573 ar5212TxEnable(ah,AH_TRUE);
574 return AH_TRUE;
575}
576#endif
577
578static void
579ar5416InitDMA(struct ath_hal *ah)
580{
581
582 /*
583 * set AHB_MODE not to do cacheline prefetches
584 */
585 OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
586
587 /*
588 * let mac dma reads be in 128 byte chunks
589 */
590 OS_REG_WRITE(ah, AR_TXCFG,
591 (OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
592
593 /*
594 * let mac dma writes be in 128 byte chunks
595 */
596 OS_REG_WRITE(ah, AR_RXCFG,
597 (OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
598
599 /* XXX restore TX trigger level */
600
601 /*
602 * Setup receive FIFO threshold to hold off TX activities
603 */
604 OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
605
606 /*
607 * reduce the number of usable entries in PCU TXBUF to avoid
608 * wrap around.
609 */
610 OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
611}
612
613static void
614ar5416InitBB(struct ath_hal *ah, HAL_CHANNEL *chan)
615{
616 uint32_t synthDelay;
617
618 /*
619 * Wait for the frequency synth to settle (synth goes on
620 * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
621 * Value is in 100ns increments.
622 */
623 synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
624 if (IS_CHAN_CCK(chan)) {
625 synthDelay = (4 * synthDelay) / 22;
626 } else {
627 synthDelay /= 10;
628 }
629
630 /* Turn on PLL on 5416 */
631 HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
632 __func__, IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
633 ar5416InitPLL(ah, chan);
634
635 /* Activate the PHY (includes baseband activate and synthesizer on) */
636 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
637
638 /*
639 * If the AP starts the calibration before the base band timeout
640 * completes we could get rx_clear false triggering. Add an
641 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
642 * does not happen.
643 */
644 if (IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) {
645 OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
646 } else if (IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan)) {
647 OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
648 } else {
649 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
650 }
651}
652
653static void
654ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
655{
656 struct ath_hal_5212 *ahp = AH5212(ah);
657
658 /*
659 * Setup interrupt handling. Note that ar5212ResetTxQueue
660 * manipulates the secondary IMR's as queues are enabled
661 * and disabled. This is done with RMW ops to insure the
662 * settings we make here are preserved.
663 */
664 ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
665 | AR_IMR_RXERR | AR_IMR_RXORN
666 | AR_IMR_BCNMISC;
667
668#ifdef AR5416_INT_MITIGATION
669 ahp->ah_maskReg |= AR_IMR_TXINTM | AR_IMR_RXINTM
670 | AR_IMR_TXMINTR | AR_IMR_RXMINTR;
671#else
672 ahp->ah_maskReg |= AR_IMR_TXOK | AR_IMR_RXOK;
673#endif
674 if (opmode == HAL_M_HOSTAP)
675 ahp->ah_maskReg |= AR_IMR_MIB;
676 OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
677 /* Enable bus errors that are OR'd to set the HIUERR bit */
678
679#if 0
680 OS_REG_WRITE(ah, AR_IMR_S2,
681 OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
682#endif
683}
684
685static void
686ar5416InitQoS(struct ath_hal *ah)
687{
688 /* QoS support */
689 OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */
690 OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */
691
692 /* Turn on NOACK Support for QoS packets */
693 OS_REG_WRITE(ah, AR_NOACK,
694 SM(2, AR_NOACK_2BIT_VALUE) |
695 SM(5, AR_NOACK_BIT_OFFSET) |
696 SM(0, AR_NOACK_BYTE_OFFSET));
697
698 /*
699 * initialize TXOP for all TIDs
700 */
701 OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
702 OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
703 OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
704 OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
705 OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
706}
707
708static void
709ar5416InitUserSettings(struct ath_hal *ah)
710{
711 struct ath_hal_5212 *ahp = AH5212(ah);
712
713 /* Restore user-specified settings */
714 if (ahp->ah_miscMode != 0)
715 OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
716 if (ahp->ah_sifstime != (u_int) -1)
717 ar5212SetSifsTime(ah, ahp->ah_sifstime);
718 if (ahp->ah_slottime != (u_int) -1)
719 ar5212SetSlotTime(ah, ahp->ah_slottime);
720 if (ahp->ah_acktimeout != (u_int) -1)
721 ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
722 if (ahp->ah_ctstimeout != (u_int) -1)
723 ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
724 if (AH_PRIVATE(ah)->ah_diagreg != 0)
725 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
726#if 0 /* XXX Todo */
727 if (ahp->ah_globaltxtimeout != (u_int) -1)
728 ar5416SetGlobalTxTimeout(ah, ahp->ah_globaltxtimeout);
729#endif
730}
731
732/*
733 * Places the hardware into reset and then pulls it out of reset
734 */
735HAL_BOOL
736ar5416ChipReset(struct ath_hal *ah, HAL_CHANNEL *chan)
737{
738 uint32_t rfMode = 0;
739
740 OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->channel : 0);
741 /*
742 * Warm reset is optimistic.
743 */
744 if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
745 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
746 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
747 return AH_FALSE;
748 } else {
749 if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
750 return AH_FALSE;
751 }
752
753 /* Bring out of sleep mode (AGAIN) */
754 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
755 return AH_FALSE;
756
757 ar5416InitPLL(ah, chan);
758
759 /*
760 * Perform warm reset before the mode/PLL/turbo registers
761 * are changed in order to deactivate the radio. Mode changes
762 * with an active radio can result in corrupted shifts to the
763 * radio device.
764 */
765 if (chan != AH_NULL) {
766 /* treat channel B as channel G , no B mode suport in owl */
767 rfMode |= (IS_CHAN_G(chan) || IS_CHAN_B(chan)) ?
768 AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
769 if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
770 /* phy mode bits for 5GHz channels require Fast Clock */
771 rfMode |= AR_PHY_MODE_DYNAMIC
772 | AR_PHY_MODE_DYN_CCK_DISABLE;
773 } else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
774 rfMode |= (IS_CHAN_5GHZ(chan)) ?
775 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
776 }
777 OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
778 }
779 return AH_TRUE;
780}
781
782/*
783 * Delta slope coefficient computation.
784 * Required for OFDM operation.
785 */
786static void
787ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
788 uint32_t *coef_mantissa, uint32_t *coef_exponent)
789{
790#define COEF_SCALE_S 24
791 uint32_t coef_exp, coef_man;
792 /*
793 * ALGO -> coef_exp = 14-floor(log2(coef));
794 * floor(log2(x)) is the highest set bit position
795 */
796 for (coef_exp = 31; coef_exp > 0; coef_exp--)
797 if ((coef_scaled >> coef_exp) & 0x1)
798 break;
799 /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
800 HALASSERT(coef_exp);
801 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
802
803 /*
804 * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
805 * The coefficient is already shifted up for scaling
806 */
807 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
808
809 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
810 *coef_exponent = coef_exp - 16;
811
812#undef COEF_SCALE_S
813}
814
815void
816ar5416SetDeltaSlope(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
817{
818#define INIT_CLOCKMHZSCALED 0x64000000
819 uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
820 uint32_t clockMhzScaled = INIT_CLOCKMHZSCALED;
821
822 CHAN_CENTERS centers;
823
824 if (IS_CHAN_TURBO(chan))
825 clockMhzScaled *= 2;
826 /* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
827 /* scale for selected channel bandwidth */
828 if (IS_CHAN_HALF_RATE(chan)) {
829 clockMhzScaled = clockMhzScaled >> 1;
830 } else if (IS_CHAN_QUARTER_RATE(chan)) {
831 clockMhzScaled = clockMhzScaled >> 2;
832 }
833
834 /*
835 * ALGO -> coef = 1e8/fcarrier*fclock/40;
836 * scaled coef to provide precision for this floating calculation
837 */
838 ar5416GetChannelCenters(ah, chan, &centers);
839 coef_scaled = clockMhzScaled / centers.synth_center;
840
841 ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
842
843 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
844 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
845 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
846 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
847
848 /*
849 * For Short GI,
850 * scaled coeff is 9/10 that of normal coeff
851 */
852 coef_scaled = (9 * coef_scaled)/10;
853
854 ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
855
856 /* for short gi */
857 OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
858 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
859 OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
860 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
861#undef INIT_CLOCKMHZSCALED
862}
863
864/*
865 * Convert to baseband spur frequency given input channel frequency
866 * and compute register settings below.
867 */
868#define SPUR_RSSI_THRESH 40
869
870static void
871ar5416SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
872{
873 static const int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
874 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 };
875 static const int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
876 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 };
877 static const int inc[4] = { 0, 100, 0, 0 };
878
879 int bb_spur = AR_NO_SPUR;
880 int bin, cur_bin;
881 int spur_freq_sd;
882 int spur_delta_phase;
883 int denominator;
884 int upper, lower, cur_vit_mask;
885 int tmp, new;
886 int i;
887
888 int8_t mask_m[123];
889 int8_t mask_p[123];
890 int8_t mask_amt;
891 int tmp_mask;
892 int cur_bb_spur;
893 HAL_BOOL is2GHz = IS_CHAN_2GHZ(chan);
894
895 OS_MEMZERO(mask_m, sizeof(mask_m));
896 OS_MEMZERO(mask_p, sizeof(mask_p));
897
898 /*
899 * Need to verify range +/- 9.5 for static ht20, otherwise spur
900 * is out-of-band and can be ignored.
901 */
902 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
903 cur_bb_spur = ath_hal_getSpurChan(ah, i, is2GHz);
904 if (AR_NO_SPUR == cur_bb_spur)
905 break;
906 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
907 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
908 bb_spur = cur_bb_spur;
909 break;
910 }
911 }
912 if (AR_NO_SPUR == bb_spur)
913 return;
914
915 bin = bb_spur * 32;
916
917 tmp = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0));
918 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
919 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
920 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
921 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
922
923 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0), new);
924
925 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
926 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
927 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
928 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
929 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
930 OS_REG_WRITE(ah, AR_PHY_SPUR_REG, new);
931 /*
932 * Should offset bb_spur by +/- 10 MHz for dynamic 2040 MHz
933 * config, no offset for HT20.
934 * spur_delta_phase = bb_spur/40 * 2**21 for static ht20,
935 * /80 for dyn2040.
936 */
937 spur_delta_phase = ((bb_spur * 524288) / 100) &
938 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
939 /*
940 * in 11A mode the denominator of spur_freq_sd should be 40 and
941 * it should be 44 in 11G
942 */
943 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
944 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
945
946 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
947 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
948 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
949 OS_REG_WRITE(ah, AR_PHY_TIMING11, new);
950
951
952 /*
953 * ============================================
954 * pilot mask 1 [31:0] = +6..-26, no 0 bin
955 * pilot mask 2 [19:0] = +26..+7
956 *
957 * channel mask 1 [31:0] = +6..-26, no 0 bin
958 * channel mask 2 [19:0] = +26..+7
959 */
960 //cur_bin = -26;
961 cur_bin = -6000;
962 upper = bin + 100;
963 lower = bin - 100;
964
965 for (i = 0; i < 4; i++) {
966 int pilot_mask = 0;
967 int chan_mask = 0;
968 int bp = 0;
969 for (bp = 0; bp < 30; bp++) {
970 if ((cur_bin > lower) && (cur_bin < upper)) {
971 pilot_mask = pilot_mask | 0x1 << bp;
972 chan_mask = chan_mask | 0x1 << bp;
973 }
974 cur_bin += 100;
975 }
976 cur_bin += inc[i];
977 OS_REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
978 OS_REG_WRITE(ah, chan_mask_reg[i], chan_mask);
979 }
980
981 /* =================================================
982 * viterbi mask 1 based on channel magnitude
983 * four levels 0-3
984 * - mask (-27 to 27) (reg 64,0x9900 to 67,0x990c)
985 * [1 2 2 1] for -9.6 or [1 2 1] for +16
986 * - enable_mask_ppm, all bins move with freq
987 *
988 * - mask_select, 8 bits for rates (reg 67,0x990c)
989 * - mask_rate_cntl, 8 bits for rates (reg 67,0x990c)
990 * choose which mask to use mask or mask2
991 */
992
993 /*
994 * viterbi mask 2 2nd set for per data rate puncturing
995 * four levels 0-3
996 * - mask_select, 8 bits for rates (reg 67)
997 * - mask (-27 to 27) (reg 98,0x9988 to 101,0x9994)
998 * [1 2 2 1] for -9.6 or [1 2 1] for +16
999 */
1000 cur_vit_mask = 6100;
1001 upper = bin + 120;
1002 lower = bin - 120;
1003
1004 for (i = 0; i < 123; i++) {
1005 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1006 if ((abs(cur_vit_mask - bin)) < 75) {
1007 mask_amt = 1;
1008 } else {
1009 mask_amt = 0;
1010 }
1011 if (cur_vit_mask < 0) {
1012 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
1013 } else {
1014 mask_p[cur_vit_mask / 100] = mask_amt;
1015 }
1016 }
1017 cur_vit_mask -= 100;
1018 }
1019
1020 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
1021 | (mask_m[48] << 26) | (mask_m[49] << 24)
1022 | (mask_m[50] << 22) | (mask_m[51] << 20)
1023 | (mask_m[52] << 18) | (mask_m[53] << 16)
1024 | (mask_m[54] << 14) | (mask_m[55] << 12)
1025 | (mask_m[56] << 10) | (mask_m[57] << 8)
1026 | (mask_m[58] << 6) | (mask_m[59] << 4)
1027 | (mask_m[60] << 2) | (mask_m[61] << 0);
1028 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
1029 OS_REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
1030
1031 tmp_mask = (mask_m[31] << 28)
1032 | (mask_m[32] << 26) | (mask_m[33] << 24)
1033 | (mask_m[34] << 22) | (mask_m[35] << 20)
1034 | (mask_m[36] << 18) | (mask_m[37] << 16)
1035 | (mask_m[48] << 14) | (mask_m[39] << 12)
1036 | (mask_m[40] << 10) | (mask_m[41] << 8)
1037 | (mask_m[42] << 6) | (mask_m[43] << 4)
1038 | (mask_m[44] << 2) | (mask_m[45] << 0);
1039 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
1040 OS_REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
1041
1042 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
1043 | (mask_m[18] << 26) | (mask_m[18] << 24)
1044 | (mask_m[20] << 22) | (mask_m[20] << 20)
1045 | (mask_m[22] << 18) | (mask_m[22] << 16)
1046 | (mask_m[24] << 14) | (mask_m[24] << 12)
1047 | (mask_m[25] << 10) | (mask_m[26] << 8)
1048 | (mask_m[27] << 6) | (mask_m[28] << 4)
1049 | (mask_m[29] << 2) | (mask_m[30] << 0);
1050 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
1051 OS_REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
1052
1053 tmp_mask = (mask_m[ 0] << 30) | (mask_m[ 1] << 28)
1054 | (mask_m[ 2] << 26) | (mask_m[ 3] << 24)
1055 | (mask_m[ 4] << 22) | (mask_m[ 5] << 20)
1056 | (mask_m[ 6] << 18) | (mask_m[ 7] << 16)
1057 | (mask_m[ 8] << 14) | (mask_m[ 9] << 12)
1058 | (mask_m[10] << 10) | (mask_m[11] << 8)
1059 | (mask_m[12] << 6) | (mask_m[13] << 4)
1060 | (mask_m[14] << 2) | (mask_m[15] << 0);
1061 OS_REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
1062 OS_REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
1063
1064 tmp_mask = (mask_p[15] << 28)
1065 | (mask_p[14] << 26) | (mask_p[13] << 24)
1066 | (mask_p[12] << 22) | (mask_p[11] << 20)
1067 | (mask_p[10] << 18) | (mask_p[ 9] << 16)
1068 | (mask_p[ 8] << 14) | (mask_p[ 7] << 12)
1069 | (mask_p[ 6] << 10) | (mask_p[ 5] << 8)
1070 | (mask_p[ 4] << 6) | (mask_p[ 3] << 4)
1071 | (mask_p[ 2] << 2) | (mask_p[ 1] << 0);
1072 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
1073 OS_REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
1074
1075 tmp_mask = (mask_p[30] << 28)
1076 | (mask_p[29] << 26) | (mask_p[28] << 24)
1077 | (mask_p[27] << 22) | (mask_p[26] << 20)
1078 | (mask_p[25] << 18) | (mask_p[24] << 16)
1079 | (mask_p[23] << 14) | (mask_p[22] << 12)
1080 | (mask_p[21] << 10) | (mask_p[20] << 8)
1081 | (mask_p[19] << 6) | (mask_p[18] << 4)
1082 | (mask_p[17] << 2) | (mask_p[16] << 0);
1083 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
1084 OS_REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
1085
1086 tmp_mask = (mask_p[45] << 28)
1087 | (mask_p[44] << 26) | (mask_p[43] << 24)
1088 | (mask_p[42] << 22) | (mask_p[41] << 20)
1089 | (mask_p[40] << 18) | (mask_p[39] << 16)
1090 | (mask_p[38] << 14) | (mask_p[37] << 12)
1091 | (mask_p[36] << 10) | (mask_p[35] << 8)
1092 | (mask_p[34] << 6) | (mask_p[33] << 4)
1093 | (mask_p[32] << 2) | (mask_p[31] << 0);
1094 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
1095 OS_REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
1096
1097 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
1098 | (mask_p[59] << 26) | (mask_p[58] << 24)
1099 | (mask_p[57] << 22) | (mask_p[56] << 20)
1100 | (mask_p[55] << 18) | (mask_p[54] << 16)
1101 | (mask_p[53] << 14) | (mask_p[52] << 12)
1102 | (mask_p[51] << 10) | (mask_p[50] << 8)
1103 | (mask_p[49] << 6) | (mask_p[48] << 4)
1104 | (mask_p[47] << 2) | (mask_p[46] << 0);
1105 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
1106 OS_REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
1107}
1108
1109#ifdef AH_SUPPORT_AR9280
1110#define AR_BASE_FREQ_2GHZ 2300
1111#define AR_BASE_FREQ_5GHZ 4900
1112#define AR_SPUR_FEEQ_BOUND_HT40 19
1113#define AR_SPUR_FEEQ_BOUND_HT20 10
1114
1115static void
1116ar9280SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
1117{
1118 static const int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1119 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 };
1120 static const int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1121 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 };
1122 static int inc[4] = { 0, 100, 0, 0 };
1123
1124 int bb_spur = AR_NO_SPUR;
1125 int freq;
1126 int bin, cur_bin;
1127 int bb_spur_off, spur_subchannel_sd;
1128 int spur_freq_sd;
1129 int spur_delta_phase;
1130 int denominator;
1131 int upper, lower, cur_vit_mask;
1132 int tmp, newVal;
1133 int i;
1134 CHAN_CENTERS centers;
1135
1136 int8_t mask_m[123];
1137 int8_t mask_p[123];
1138 int8_t mask_amt;
1139 int tmp_mask;
1140 int cur_bb_spur;
1141 HAL_BOOL is2GHz = IS_CHAN_2GHZ(ichan);
1142
1143 OS_MEMZERO(&mask_m, sizeof(int8_t) * 123);
1144 OS_MEMZERO(&mask_p, sizeof(int8_t) * 123);
1145
1146 ar5416GetChannelCenters(ah, ichan, &centers);
1147 freq = centers.synth_center;
1148
1149 /*
1150 * Need to verify range +/- 9.38 for static ht20 and +/- 18.75 for ht40,
1151 * otherwise spur is out-of-band and can be ignored.
1152 */
1153 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
1154 cur_bb_spur = ath_hal_getSpurChan(ah, i, is2GHz);
1155 /* Get actual spur freq in MHz from EEPROM read value */
1156 if (is2GHz) {
1157 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1158 } else {
1159 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1160 }
1161
1162 if (AR_NO_SPUR == cur_bb_spur)
1163 break;
1164 cur_bb_spur = cur_bb_spur - freq;
1165
1166 if (IS_CHAN_HT40(ichan)) {
1167 if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1168 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1169 bb_spur = cur_bb_spur;
1170 break;
1171 }
1172 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1173 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1174 bb_spur = cur_bb_spur;
1175 break;
1176 }
1177 }
1178
1179 if (AR_NO_SPUR == bb_spur) {
1180#if 1
1181 /*
1182 * MRC CCK can interfere with beacon detection and cause deaf/mute.
1183 * Disable MRC CCK for now.
1184 */
1185 OS_REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1186#else
1187 /* Enable MRC CCK if no spur is found in this channel. */
1188 OS_REG_SET_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1189#endif
1190 return;
1191 } else {
1192 /*
1193 * For Merlin, spur can break CCK MRC algorithm. Disable CCK MRC if spur
1194 * is found in this channel.
1195 */
1196 OS_REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1197 }
1198
1199 bin = bb_spur * 320;
1200
1201 tmp = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0));
1202
1203 newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1204 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1205 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1206 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1207 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0), newVal);
1208
1209 newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1210 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1211 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1212 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1213 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1214 OS_REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1215
1216 /* Pick control or extn channel to cancel the spur */
1217 if (IS_CHAN_HT40(ichan)) {
1218 if (bb_spur < 0) {
1219 spur_subchannel_sd = 1;
1220 bb_spur_off = bb_spur + 10;
1221 } else {
1222 spur_subchannel_sd = 0;
1223 bb_spur_off = bb_spur - 10;
1224 }
1225 } else {
1226 spur_subchannel_sd = 0;
1227 bb_spur_off = bb_spur;
1228 }
1229
1230 /*
1231 * spur_delta_phase = bb_spur/40 * 2**21 for static ht20,
1232 * /80 for dyn2040.
1233 */
1234 if (IS_CHAN_HT40(ichan))
1235 spur_delta_phase = ((bb_spur * 262144) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1236 else
1237 spur_delta_phase = ((bb_spur * 524288) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1238
1239 /*
1240 * in 11A mode the denominator of spur_freq_sd should be 40 and
1241 * it should be 44 in 11G
1242 */
1243 denominator = IS_CHAN_2GHZ(ichan) ? 44 : 40;
1244 spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1245
1246 newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1247 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1248 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1249 OS_REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1250
1251 /* Choose to cancel between control and extension channels */
1252 newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1253 OS_REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1254
1255 /*
1256 * ============================================
1257 * Set Pilot and Channel Masks
1258 *
1259 * pilot mask 1 [31:0] = +6..-26, no 0 bin
1260 * pilot mask 2 [19:0] = +26..+7
1261 *
1262 * channel mask 1 [31:0] = +6..-26, no 0 bin
1263 * channel mask 2 [19:0] = +26..+7
1264 */
1265 cur_bin = -6000;
1266 upper = bin + 100;
1267 lower = bin - 100;
1268
1269 for (i = 0; i < 4; i++) {
1270 int pilot_mask = 0;
1271 int chan_mask = 0;
1272 int bp = 0;
1273 for (bp = 0; bp < 30; bp++) {
1274 if ((cur_bin > lower) && (cur_bin < upper)) {
1275 pilot_mask = pilot_mask | 0x1 << bp;
1276 chan_mask = chan_mask | 0x1 << bp;
1277 }
1278 cur_bin += 100;
1279 }
1280 cur_bin += inc[i];
1281 OS_REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
1282 OS_REG_WRITE(ah, chan_mask_reg[i], chan_mask);
1283 }
1284
1285 /* =================================================
1286 * viterbi mask 1 based on channel magnitude
1287 * four levels 0-3
1288 * - mask (-27 to 27) (reg 64,0x9900 to 67,0x990c)
1289 * [1 2 2 1] for -9.6 or [1 2 1] for +16
1290 * - enable_mask_ppm, all bins move with freq
1291 *
1292 * - mask_select, 8 bits for rates (reg 67,0x990c)
1293 * - mask_rate_cntl, 8 bits for rates (reg 67,0x990c)
1294 * choose which mask to use mask or mask2
1295 */
1296
1297 /*
1298 * viterbi mask 2 2nd set for per data rate puncturing
1299 * four levels 0-3
1300 * - mask_select, 8 bits for rates (reg 67)
1301 * - mask (-27 to 27) (reg 98,0x9988 to 101,0x9994)
1302 * [1 2 2 1] for -9.6 or [1 2 1] for +16
1303 */
1304 cur_vit_mask = 6100;
1305 upper = bin + 120;
1306 lower = bin - 120;
1307
1308 for (i = 0; i < 123; i++) {
1309 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1310 if ((abs(cur_vit_mask - bin)) < 75) {
1311 mask_amt = 1;
1312 } else {
1313 mask_amt = 0;
1314 }
1315 if (cur_vit_mask < 0) {
1316 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
1317 } else {
1318 mask_p[cur_vit_mask / 100] = mask_amt;
1319 }
1320 }
1321 cur_vit_mask -= 100;
1322 }
1323
1324 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
1325 | (mask_m[48] << 26) | (mask_m[49] << 24)
1326 | (mask_m[50] << 22) | (mask_m[51] << 20)
1327 | (mask_m[52] << 18) | (mask_m[53] << 16)
1328 | (mask_m[54] << 14) | (mask_m[55] << 12)
1329 | (mask_m[56] << 10) | (mask_m[57] << 8)
1330 | (mask_m[58] << 6) | (mask_m[59] << 4)
1331 | (mask_m[60] << 2) | (mask_m[61] << 0);
1332 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
1333 OS_REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
1334
1335 tmp_mask = (mask_m[31] << 28)
1336 | (mask_m[32] << 26) | (mask_m[33] << 24)
1337 | (mask_m[34] << 22) | (mask_m[35] << 20)
1338 | (mask_m[36] << 18) | (mask_m[37] << 16)
1339 | (mask_m[48] << 14) | (mask_m[39] << 12)
1340 | (mask_m[40] << 10) | (mask_m[41] << 8)
1341 | (mask_m[42] << 6) | (mask_m[43] << 4)
1342 | (mask_m[44] << 2) | (mask_m[45] << 0);
1343 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
1344 OS_REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
1345
1346 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
1347 | (mask_m[18] << 26) | (mask_m[18] << 24)
1348 | (mask_m[20] << 22) | (mask_m[20] << 20)
1349 | (mask_m[22] << 18) | (mask_m[22] << 16)
1350 | (mask_m[24] << 14) | (mask_m[24] << 12)
1351 | (mask_m[25] << 10) | (mask_m[26] << 8)
1352 | (mask_m[27] << 6) | (mask_m[28] << 4)
1353 | (mask_m[29] << 2) | (mask_m[30] << 0);
1354 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
1355 OS_REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
1356
1357 tmp_mask = (mask_m[ 0] << 30) | (mask_m[ 1] << 28)
1358 | (mask_m[ 2] << 26) | (mask_m[ 3] << 24)
1359 | (mask_m[ 4] << 22) | (mask_m[ 5] << 20)
1360 | (mask_m[ 6] << 18) | (mask_m[ 7] << 16)
1361 | (mask_m[ 8] << 14) | (mask_m[ 9] << 12)
1362 | (mask_m[10] << 10) | (mask_m[11] << 8)
1363 | (mask_m[12] << 6) | (mask_m[13] << 4)
1364 | (mask_m[14] << 2) | (mask_m[15] << 0);
1365 OS_REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
1366 OS_REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
1367
1368 tmp_mask = (mask_p[15] << 28)
1369 | (mask_p[14] << 26) | (mask_p[13] << 24)
1370 | (mask_p[12] << 22) | (mask_p[11] << 20)
1371 | (mask_p[10] << 18) | (mask_p[ 9] << 16)
1372 | (mask_p[ 8] << 14) | (mask_p[ 7] << 12)
1373 | (mask_p[ 6] << 10) | (mask_p[ 5] << 8)
1374 | (mask_p[ 4] << 6) | (mask_p[ 3] << 4)
1375 | (mask_p[ 2] << 2) | (mask_p[ 1] << 0);
1376 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
1377 OS_REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
1378
1379 tmp_mask = (mask_p[30] << 28)
1380 | (mask_p[29] << 26) | (mask_p[28] << 24)
1381 | (mask_p[27] << 22) | (mask_p[26] << 20)
1382 | (mask_p[25] << 18) | (mask_p[24] << 16)
1383 | (mask_p[23] << 14) | (mask_p[22] << 12)
1384 | (mask_p[21] << 10) | (mask_p[20] << 8)
1385 | (mask_p[19] << 6) | (mask_p[18] << 4)
1386 | (mask_p[17] << 2) | (mask_p[16] << 0);
1387 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
1388 OS_REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
1389
1390 tmp_mask = (mask_p[45] << 28)
1391 | (mask_p[44] << 26) | (mask_p[43] << 24)
1392 | (mask_p[42] << 22) | (mask_p[41] << 20)
1393 | (mask_p[40] << 18) | (mask_p[39] << 16)
1394 | (mask_p[38] << 14) | (mask_p[37] << 12)
1395 | (mask_p[36] << 10) | (mask_p[35] << 8)
1396 | (mask_p[34] << 6) | (mask_p[33] << 4)
1397 | (mask_p[32] << 2) | (mask_p[31] << 0);
1398 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
1399 OS_REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
1400
1401 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
1402 | (mask_p[59] << 26) | (mask_p[58] << 24)
1403 | (mask_p[57] << 22) | (mask_p[56] << 20)
1404 | (mask_p[55] << 18) | (mask_p[54] << 16)
1405 | (mask_p[53] << 14) | (mask_p[52] << 12)
1406 | (mask_p[51] << 10) | (mask_p[50] << 8)
1407 | (mask_p[49] << 6) | (mask_p[48] << 4)
1408 | (mask_p[47] << 2) | (mask_p[46] << 0);
1409 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
1410 OS_REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
1411}
1412#endif /* AH_SUPPORT_AR9280 */
1413
1414/*
1415 * Set a limit on the overall output power. Used for dynamic
1416 * transmit power control and the like.
1417 *
1418 * NB: limit is in units of 0.5 dbM.
1419 */
1420HAL_BOOL
1421ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1422{
1423 uint16_t dummyXpdGains[2];
1424
1425 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1426 return ar5416SetTransmitPower(ah, AH_PRIVATE(ah)->ah_curchan,
1427 dummyXpdGains);
1428}
1429
1430HAL_BOOL
1431ar5416GetChipPowerLimits(struct ath_hal *ah, HAL_CHANNEL *chans, uint32_t nchans)
1432{
1433 struct ath_hal_5212 *ahp = AH5212(ah);
1434 int16_t minPower, maxPower;
1435 HAL_CHANNEL *chan;
1436 int i;
1437
1438 /*
1439 * Get Pier table max and min powers.
1440 */
1441 for (i = 0; i < nchans; i++) {
1442 chan = &chans[i];
1443 if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
1444 /* NB: rf code returns 1/4 dBm units, convert */
1445 chan->maxTxPower = maxPower / 2;
1446 chan->minTxPower = minPower / 2;
1447 } else {
1448 HALDEBUG(ah, HAL_DEBUG_ANY,
1449 "%s: no min/max power for %u/0x%x\n",
1450 __func__, chan->channel, chan->channelFlags);
1451 chan->maxTxPower = AR5416_MAX_RATE_POWER;
1452 chan->minTxPower = 0;
1453 }
1454 }
1455#ifdef AH_DEBUG
1456 for (i=0; i<nchans; i++) {
1457 HALDEBUG(ah, HAL_DEBUG_RESET,
1458 "Chan %d: MaxPow = %d MinPow = %d\n",
1459 chans[i].channel,chans[i].maxTxPower, chans[i].minTxPower);
1460 }
1461#endif
1462 return AH_TRUE;
1463}
1464
1465/* XXX gag, this is sick */
1466typedef enum Ar5416_Rates {
1467 rate6mb, rate9mb, rate12mb, rate18mb,
1468 rate24mb, rate36mb, rate48mb, rate54mb,
1469 rate1l, rate2l, rate2s, rate5_5l,
1470 rate5_5s, rate11l, rate11s, rateXr,
1471 rateHt20_0, rateHt20_1, rateHt20_2, rateHt20_3,
1472 rateHt20_4, rateHt20_5, rateHt20_6, rateHt20_7,
1473 rateHt40_0, rateHt40_1, rateHt40_2, rateHt40_3,
1474 rateHt40_4, rateHt40_5, rateHt40_6, rateHt40_7,
1475 rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm,
1476 Ar5416RateSize
1477} AR5416_RATES;
1478
1479/**************************************************************
1480 * ar5416SetTransmitPower
1481 *
1482 * Set the transmit power in the baseband for the given
1483 * operating channel and mode.
1484 */
1485static HAL_BOOL
1486ar5416SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain)
1487{
1488#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
1489#define N(a) (sizeof (a) / sizeof (a[0]))
1490
1491 MODAL_EEP_HEADER *pModal;
1492 struct ath_hal_5212 *ahp = AH5212(ah);
1493 int16_t ratesArray[Ar5416RateSize];
1494 int16_t txPowerIndexOffset = 0;
1495 uint8_t ht40PowerIncForPdadc = 2;
1496 int i;
1497
1498 uint16_t cfgCtl;
1499 uint16_t powerLimit;
1500 uint16_t twiceAntennaReduction;
1501 uint16_t twiceMaxRegulatoryPower;
1502 int16_t maxPower;
1503 HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1504 struct ar5416eeprom *pEepData = &ee->ee_base;
1505
1506 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1507
1508 /* Setup info for the actual eeprom */
1509 ath_hal_memzero(ratesArray, sizeof(ratesArray));
1510 cfgCtl = ath_hal_getctl(ah, (HAL_CHANNEL *)chan);
1511 powerLimit = chan->maxRegTxPower * 2;
1512 twiceAntennaReduction = chan->antennaMax;
1513 twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
1514 pModal = &pEepData->modalHeader[IS_CHAN_2GHZ(chan)];
1515 HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
1516 __func__,chan->channel, cfgCtl );
1517
1518 if (IS_EEP_MINOR_V2(ah)) {
1519 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1520 }
1521
1522 if (!ar5416SetPowerPerRateTable(ah, pEepData, chan,
1523 &ratesArray[0],cfgCtl,
1524 twiceAntennaReduction,
1525 twiceMaxRegulatoryPower, powerLimit)) {
1526 HALDEBUG(ah, HAL_DEBUG_ANY,
1527 "%s: unable to set tx power per rate table\n", __func__);
1528 return AH_FALSE;
1529 }
1530
1531 if (!ar5416SetPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) {
1532 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
1533 __func__);
1534 return AH_FALSE;
1535 }
1536
1537 maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
1538
1539 if (IS_CHAN_2GHZ(chan)) {
1540 maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
1541 }
1542
1543 if (IS_CHAN_HT40(chan)) {
1544 maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
1545 }
1546
1547 ahp->ah_tx6PowerInHalfDbm = maxPower;
1548 AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
1549 ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
1550
1551 /*
1552 * txPowerIndexOffset is set by the SetPowerTable() call -
1553 * adjust the rate table (0 offset if rates EEPROM not loaded)
1554 */
1555 for (i = 0; i < N(ratesArray); i++) {
1556 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1557 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1558 ratesArray[i] = AR5416_MAX_RATE_POWER;
1559 }
1560
1561#ifdef AH_EEPROM_DUMP
1562 ar5416PrintPowerPerRate(ah, ratesArray);
1563#endif
1564
1565 /* Write the OFDM power per rate set */
1566 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1567 POW_SM(ratesArray[rate18mb], 24)
1568 | POW_SM(ratesArray[rate12mb], 16)
1569 | POW_SM(ratesArray[rate9mb], 8)
1570 | POW_SM(ratesArray[rate6mb], 0)
1571 );
1572 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1573 POW_SM(ratesArray[rate54mb], 24)
1574 | POW_SM(ratesArray[rate48mb], 16)
1575 | POW_SM(ratesArray[rate36mb], 8)
1576 | POW_SM(ratesArray[rate24mb], 0)
1577 );
1578
1579 if (IS_CHAN_2GHZ(chan)) {
1580 /* Write the CCK power per rate set */
1581 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1582 POW_SM(ratesArray[rate2s], 24)
1583 | POW_SM(ratesArray[rate2l], 16)
1584 | POW_SM(ratesArray[rateXr], 8) /* XR target power */
1585 | POW_SM(ratesArray[rate1l], 0)
1586 );
1587 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1588 POW_SM(ratesArray[rate11s], 24)
1589 | POW_SM(ratesArray[rate11l], 16)
1590 | POW_SM(ratesArray[rate5_5s], 8)
1591 | POW_SM(ratesArray[rate5_5l], 0)
1592 );
1593 HALDEBUG(ah, HAL_DEBUG_RESET,
1594 "%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
1595 __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
1596 OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
1597 }
1598
1599 /* Write the HT20 power per rate set */
1600 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1601 POW_SM(ratesArray[rateHt20_3], 24)
1602 | POW_SM(ratesArray[rateHt20_2], 16)
1603 | POW_SM(ratesArray[rateHt20_1], 8)
1604 | POW_SM(ratesArray[rateHt20_0], 0)
1605 );
1606 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1607 POW_SM(ratesArray[rateHt20_7], 24)
1608 | POW_SM(ratesArray[rateHt20_6], 16)
1609 | POW_SM(ratesArray[rateHt20_5], 8)
1610 | POW_SM(ratesArray[rateHt20_4], 0)
1611 );
1612
1613 if (IS_CHAN_HT40(chan)) {
1614 /* Write the HT40 power per rate set */
1615 /* Correct PAR difference between HT40 and HT20/LEGACY */
1616 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1617 POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24)
1618 | POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16)
1619 | POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8)
1620 | POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)
1621 );
1622 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1623 POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24)
1624 | POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16)
1625 | POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8)
1626 | POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)
1627 );
1628 /* Write the Dup/Ext 40 power per rate set */
1629 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1630 POW_SM(ratesArray[rateExtOfdm], 24)
1631 | POW_SM(ratesArray[rateExtCck], 16)
1632 | POW_SM(ratesArray[rateDupOfdm], 8)
1633 | POW_SM(ratesArray[rateDupCck], 0)
1634 );
1635 }
1636
1637 /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
1638 OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1639 POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1640 | POW_SM(pModal->pwrDecreaseFor2Chain, 0)
1641 );
1642 return AH_TRUE;
1643#undef POW_SM
1644#undef N
1645}
1646
1647/*
1648 * Exported call to check for a recent gain reading and return
1649 * the current state of the thermal calibration gain engine.
1650 */
1651HAL_RFGAIN
1652ar5416GetRfgain(struct ath_hal *ah)
1653{
1654 return HAL_RFGAIN_INACTIVE;
1655}
1656
1657/*
1658 * Places all of hardware into reset
1659 */
1660HAL_BOOL
1661ar5416Disable(struct ath_hal *ah)
1662{
1663 if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1664 return AH_FALSE;
1665 return ar5416SetResetReg(ah, HAL_RESET_COLD);
1666}
1667
1668/*
1669 * Places the PHY and Radio chips into reset. A full reset
1670 * must be called to leave this state. The PCI/MAC/PCU are
1671 * not placed into reset as we must receive interrupt to
1672 * re-enable the hardware.
1673 */
1674HAL_BOOL
1675ar5416PhyDisable(struct ath_hal *ah)
1676{
1677 return ar5416SetResetReg(ah, HAL_RESET_WARM);
1678}
1679
1680/*
1681 * Write the given reset bit mask into the reset register
1682 */
1683HAL_BOOL
1684ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
1685{
1686 /*
1687 * Set force wake
1688 */
1689 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1690 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1691
1692 switch (type) {
1693 case HAL_RESET_POWER_ON:
1694 return ar5416SetResetPowerOn(ah);
1695 break;
1696 case HAL_RESET_WARM:
1697 case HAL_RESET_COLD:
1698 return ar5416SetReset(ah, type);
1699 break;
1700 default:
1701 return AH_FALSE;
1702 }
1703}
1704
1705static HAL_BOOL
1706ar5416SetResetPowerOn(struct ath_hal *ah)
1707{
1708 /* Power On Reset (Hard Reset) */
1709
1710 /*
1711 * Set force wake
1712 *
1713 * If the MAC was running, previously calling
1714 * reset will wake up the MAC but it may go back to sleep
1715 * before we can start polling.
1716 * Set force wake stops that
1717 * This must be called before initiating a hard reset.
1718 */
1719 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1720 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1721
1722 /*
1723 * RTC reset and clear
1724 */
1725 OS_REG_WRITE(ah, AR_RTC_RESET, 0);
1726 OS_DELAY(20);
1727 OS_REG_WRITE(ah, AR_RTC_RESET, 1);
1728
1729 /*
1730 * Poll till RTC is ON
1731 */
1732 if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
1733 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
1734 return AH_FALSE;
1735 }
1736
1737 return ar5416SetReset(ah, HAL_RESET_COLD);
1738}
1739
1740static HAL_BOOL
1741ar5416SetReset(struct ath_hal *ah, int type)
1742{
1743 uint32_t tmpReg;
1744
1745 /*
1746 * Force wake
1747 */
1748 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1749 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1750
1751 /*
1752 * Reset AHB
1753 */
1754 tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
1755 if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1756 OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1757 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
1758 } else {
1759 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1760 }
1761
1762 /*
1763 * Set Mac(BB,Phy) Warm Reset
1764 */
1765 switch (type) {
1766 case HAL_RESET_WARM:
1767 OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM);
1768 break;
1769 case HAL_RESET_COLD:
1770 OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM|AR_RTC_RC_MAC_COLD);
1771 break;
1772 default:
1773 HALASSERT(0);
1774 break;
1775 }
1776
1777 /*
1778 * Clear resets and force wakeup
1779 */
1780 OS_REG_WRITE(ah, AR_RTC_RC, 0);
1781 if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
1782 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
1783 return AH_FALSE;
1784 }
1785
1786 /* Clear AHB reset */
1787 OS_REG_WRITE(ah, AR_RC, 0);
1788
1789 /* Set register and descriptor swapping on
1790 * Bigendian platforms on cold reset
1791 */
1792#ifdef __BIG_ENDIAN__
1793 if (type == HAL_RESET_COLD) {
1794 uint32_t mask;
1795
1796 HALDEBUG(ah, HAL_DEBUG_RESET,
1797 "%s Applying descriptor swap\n", __func__);
1798
1799 mask = INIT_CONFIG_STATUS | AR_CFG_SWRD | AR_CFG_SWRG;
1800#ifndef AH_NEED_DESC_SWAP
1801 mask |= AR_CFG_SWTD;
1802#endif
1803 OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
1804 }
1805#endif
1806
1807 ar5416InitPLL(ah, AH_NULL);
1808
1809 return AH_TRUE;
1810}
1811
1812#ifndef IS_5GHZ_FAST_CLOCK_EN
1813#define IS_5GHZ_FAST_CLOCK_EN(ah, chan) AH_FALSE
1814#endif
1815
1816static void
1817ar5416InitPLL(struct ath_hal *ah, HAL_CHANNEL *chan)
1818{
1819 uint32_t pll;
1820
1821 if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1822 pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
1823
1824 if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
1825 pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
1826 } else if (chan && IS_CHAN_QUARTER_RATE(chan)) {
1827 pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
1828 }
1829 if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
1830 pll |= SM(0x28, AR_RTC_SOWL_PLL_DIV);
1831
1832 /*
1833 * PLL WAR for Merlin 2.0/2.1
1834 * When doing fast clock, set PLL to 0x142c
1835 * Else, set PLL to 0x2850 to prevent reset-to-reset variation
1836 */
1837 if (AR_SREV_MERLIN_20(ah)) {
1838 if (IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
1839 pll = 0x142c;
1840 } else {
1841 pll = 0x2850;
1842 }
1843 }
1844 } else {
1845 pll |= SM(0x2c, AR_RTC_SOWL_PLL_DIV);
1846 }
1847 } else if (AR_SREV_SOWL_10_OR_LATER(ah)) {
1848 pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
1849
1850 if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
1851 pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
1852 } else if (chan && IS_CHAN_QUARTER_RATE(chan)) {
1853 pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
1854 }
1855 if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
1856 pll |= SM(0x50, AR_RTC_SOWL_PLL_DIV);
1857 } else {
1858 pll |= SM(0x58, AR_RTC_SOWL_PLL_DIV);
1859 }
1860 } else {
1861 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1862
1863 if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
1864 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1865 } else if (chan != AH_NULL && IS_CHAN_QUARTER_RATE(chan)) {
1866 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1867 }
1868 if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
1869 pll |= SM(0xa, AR_RTC_PLL_DIV);
1870 } else {
1871 pll |= SM(0xb, AR_RTC_PLL_DIV);
1872 }
1873 }
1874 OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1875
1876 /* TODO:
1877 * For multi-band owl, switch between bands by reiniting the PLL.
1878 */
1879
1880 OS_DELAY(RTC_PLL_SETTLE_DELAY);
1881
1882 OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
1883}
1884
1885/*
1886 * Read EEPROM header info and program the device for correct operation
1887 * given the channel value.
1888 */
1889static HAL_BOOL
1890ar5416SetBoardValues(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
1891{
1892 const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1893 const struct ar5416eeprom *eep = &ee->ee_base;
1894 const MODAL_EEP_HEADER *pModal;
1895 int i, regChainOffset;
1896 uint8_t txRxAttenLocal; /* workaround for eeprom versions <= 14.2 */
1897
1898 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1899 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1900
1901 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44; /* workaround for eeprom versions <= 14.2 */
1902
1903 OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
1904 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1905 if (AR_SREV_MERLIN(ah)) {
1906 if (i >= 2) break;
1907 }
1908 if (AR_SREV_OWL_20_OR_LATER(ah) &&
1909 (AH5416(ah)->ah_rx_chainmask == 0x5 ||
1910 AH5416(ah)->ah_tx_chainmask == 0x5) && i != 0) {
1911 /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
1912 * only chains 0 and 2 populated
1913 */
1914 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1915 } else {
1916 regChainOffset = i * 0x1000;
1917 }
1918
1919 OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
1920 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
1921 (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
1922 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1923 SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1924 SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1925
1926 /*
1927 * Large signal upgrade.
1928 * XXX update
1929 */
1930
1931 if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
1932 OS_REG_WRITE(ah, AR_PHY_RXGAIN + regChainOffset,
1933 (OS_REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) & ~AR_PHY_RXGAIN_TXRX_ATTEN) |
1934 SM(IS_EEP_MINOR_V3(ah) ? pModal->txRxAttenCh[i] : txRxAttenLocal,
1935 AR_PHY_RXGAIN_TXRX_ATTEN));
1936
1937 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1938 (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
1939 SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
1940 }
1941 }
1942
1943 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
1944 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
1945 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
1946 OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
1947 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1948 | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1949 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1950 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1951
1952 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
1953
1954 if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1955 OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1956 pModal->thresh62);
1957 OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1958 pModal->thresh62);
1959 } else {
1960 OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
1961 pModal->thresh62);
1962 OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA_THRESH62,
1963 pModal->thresh62);
1964 }
1965
1966 /* Minor Version Specific application */
1967 if (IS_EEP_MINOR_V2(ah)) {
1968 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
1969 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
1970 }
1971
1972 if (IS_EEP_MINOR_V3(ah)) {
1973 if (IS_CHAN_HT40(chan)) {
1974 /* Overwrite switch settling with HT40 value */
1975 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
1976 }
1977
1978 if ((AR_SREV_OWL_20_OR_LATER(ah)) &&
1979 ( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5)){
1980 /* Reg Offsets are swapped for logical mapping */
1981 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1982 SM(pModal->bswMargin[2], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1983 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1984 SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1985 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1986 SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1987 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1988 SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1989 } else {
1990 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1991 SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1992 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1993 SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1994 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1995 SM(pModal->bswMargin[2],AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1996 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1997 SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1998 }
1999 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_MARGIN, pModal->bswMargin[0]);
2000 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_ATTEN, pModal->bswAtten[0]);
2001 }
2002 return AH_TRUE;
2003}
2004
2005/*
2006 * Helper functions common for AP/CB/XB
2007 */
2008
2009/*
2010 * ar5416SetPowerPerRateTable
2011 *
2012 * Sets the transmit power in the baseband for the given
2013 * operating channel and mode.
2014 */
2015static HAL_BOOL
2016ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
2017 HAL_CHANNEL_INTERNAL *chan,
2018 int16_t *ratesArray, uint16_t cfgCtl,
2019 uint16_t AntennaReduction,
2020 uint16_t twiceMaxRegulatoryPower,
2021 uint16_t powerLimit)
2022{
2023#define N(a) (sizeof(a)/sizeof(a[0]))
2024/* Local defines to distinguish between extension and control CTL's */
2025#define EXT_ADDITIVE (0x8000)
2026#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
2027#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
2028#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
2029
2030 uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
2031 int i;
2032 int16_t twiceLargestAntenna;
2033 CAL_CTL_DATA *rep;
2034 CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
2035 CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
2036 CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
2037 int16_t scaledPower, minCtlPower;
2038
2039#define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
2040#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
2041 static const uint16_t ctlModesFor11a[] = {
2042 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
2043 };
2044 static const uint16_t ctlModesFor11g[] = {
2045 CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
2046 };
2047 const uint16_t *pCtlMode;
2048 uint16_t numCtlModes, ctlMode, freq;
2049 CHAN_CENTERS centers;
2050
2051 ar5416GetChannelCenters(ah, chan, &centers);
2052
2053 /* Compute TxPower reduction due to Antenna Gain */
2054
2055 twiceLargestAntenna = AH_MAX(AH_MAX(pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[0],
2056 pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
2057 pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
2058#if 0
2059 /* Turn it back on if we need to calculate per chain antenna gain reduction */
2060 /* Use only if the expected gain > 6dbi */
2061 /* Chain 0 is always used */
2062 twiceLargestAntenna = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[0];
2063
2064 /* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
2065 if (ahp->ah_tx_chainmask & 0x2)
2066 twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
2067 pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
2068
2069 if (ahp->ah_tx_chainmask & 0x4)
2070 twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
2071 pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
2072#endif
2073 twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
2074
2075 /* XXX setup for 5212 use (really used?) */
2076 ath_hal_eepromSet(ah,
2077 IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
2078 twiceLargestAntenna);
2079
2080 /*
2081 * scaledPower is the minimum of the user input power level and
2082 * the regulatory allowed power level
2083 */
2084 scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
2085
2086 /* Reduce scaled Power by number of chains active to get to per chain tx power level */
2087 /* TODO: better value than these? */
2088 switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
2089 case 1:
2090 break;
2091 case 2:
2092 scaledPower -= pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
2093 break;
2094 case 3:
2095 scaledPower -= pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
2096 break;
2097 default:
2098 return AH_FALSE; /* Unsupported number of chains */
2099 }
2100
2101 scaledPower = AH_MAX(0, scaledPower);
2102
2103 /* Get target powers from EEPROM - our baseline for TX Power */
2104 if (IS_CHAN_2GHZ(chan)) {
2105 /* Setup for CTL modes */
2106 numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
2107 pCtlMode = ctlModesFor11g;
2108
2109 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
2110 AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
2111 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
2112 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
2113 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
2114 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
2115
2116 if (IS_CHAN_HT40(chan)) {
2117 numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
2118
2119 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
2120 AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
2121 /* Get target powers for extension channels */
2122 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
2123 AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
2124 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
2125 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
2126 }
2127 } else {
2128 /* Setup for CTL modes */
2129 numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
2130 pCtlMode = ctlModesFor11a;
2131
2132 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
2133 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
2134 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT20,
2135 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
2136
2137 if (IS_CHAN_HT40(chan)) {
2138 numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
2139
2140 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT40,
2141 AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
2142 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
2143 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
2144 }
2145 }
2146
2147 /*
2148 * For MIMO, need to apply regulatory caps individually across dynamically
2149 * running modes: CCK, OFDM, HT20, HT40
2150 *
2151 * The outer loop walks through each possible applicable runtime mode.
2152 * The inner loop walks through each ctlIndex entry in EEPROM.
2153 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
2154 *
2155 */
2156 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
2157
2158 HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
2159 (pCtlMode[ctlMode] == CTL_2GHT40);
2160 if (isHt40CtlMode) {
2161 freq = centers.ctl_center;
2162 } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
2163 freq = centers.ext_center;
2164 } else {
2165 freq = centers.ctl_center;
2166 }
2167
2168 /* walk through each CTL index stored in EEPROM */
2169 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
2170 uint16_t twiceMinEdgePower;
2171
2172 /* compare test group from regulatory channel list with test mode from pCtlMode list */
2173 if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
2174 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
2175 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
2176 rep = &(pEepData->ctlData[i]);
2177 twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
2178 rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
2179 IS_CHAN_2GHZ(chan));
2180 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2181 /* Find the minimum of all CTL edge powers that apply to this channel */
2182 twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
2183 } else {
2184 /* specific */
2185 twiceMaxEdgePower = twiceMinEdgePower;
2186 break;
2187 }
2188 }
2189 }
2190 minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
2191 /* Apply ctl mode to correct target power set */
2192 switch(pCtlMode[ctlMode]) {
2193 case CTL_11B:
2194 for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
2195 targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
2196 }
2197 break;
2198 case CTL_11A:
2199 case CTL_11G:
2200 for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
2201 targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
2202 }
2203 break;
2204 case CTL_5GHT20:
2205 case CTL_2GHT20:
2206 for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
2207 targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
2208 }
2209 break;
2210 case CTL_11B_EXT:
2211 targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
2212 break;
2213 case CTL_11A_EXT:
2214 case CTL_11G_EXT:
2215 targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
2216 break;
2217 case CTL_5GHT40:
2218 case CTL_2GHT40:
2219 for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
2220 targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
2221 }
2222 break;
2223 default:
2224 return AH_FALSE;
2225 break;
2226 }
2227 } /* end ctl mode checking */
2228
2229 /* Set rates Array from collected data */
2230 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
2231 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
2232 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
2233 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
2234 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
2235
2236 for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
2237 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
2238 }
2239
2240 if (IS_CHAN_2GHZ(chan)) {
2241 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
2242 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
2243 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
2244 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
2245 }
2246 if (IS_CHAN_HT40(chan)) {
2247 for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
2248 ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
2249 }
2250 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
2251 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
2252 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
2253 if (IS_CHAN_2GHZ(chan)) {
2254 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
2255 }
2256 }
2257 return AH_TRUE;
2258#undef EXT_ADDITIVE
2259#undef CTL_11A_EXT
2260#undef CTL_11G_EXT
2261#undef CTL_11B_EXT
2262#undef SUB_NUM_CTL_MODES_AT_5G_40
2263#undef SUB_NUM_CTL_MODES_AT_2G_40
2264#undef N
2265}
2266
2267/**************************************************************************
2268 * fbin2freq
2269 *
2270 * Get channel value from binary representation held in eeprom
2271 * RETURNS: the frequency in MHz
2272 */
2273static uint16_t
2274fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
2275{
2276 /*
2277 * Reserved value 0xFF provides an empty definition both as
2278 * an fbin and as a frequency - do not convert
2279 */
2280 if (fbin == AR5416_BCHAN_UNUSED) {
2281 return fbin;
2282 }
2283
2284 return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2285}
2286
2287/*
2288 * ar5416GetMaxEdgePower
2289 *
2290 * Find the maximum conformance test limit for the given channel and CTL info
2291 */
2292static uint16_t
2293ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
2294{
2295 uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
2296 int i;
2297
2298 /* Get the edge power */
2299 for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
2300 /*
2301 * If there's an exact channel match or an inband flag set
2302 * on the lower channel use the given rdEdgePower
2303 */
2304 if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
2305 twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
2306 break;
2307 } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
2308 if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
2309 twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
2310 }
2311 /* Leave loop - no more affecting edges possible in this monotonic increasing list */
2312 break;
2313 }
2314 }
2315 HALASSERT(twiceMaxEdgePower > 0);
2316 return twiceMaxEdgePower;
2317}
2318
2319/**************************************************************
2320 * ar5416GetTargetPowers
2321 *
2322 * Return the rates of target power for the given target power table
2323 * channel, and number of channels
2324 */
2325static void
2326ar5416GetTargetPowers(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
2327 CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
2328 CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
2329 HAL_BOOL isHt40Target)
2330{
2331 uint16_t clo, chi;
2332 int i;
2333 int matchIndex = -1, lowIndex = -1;
2334 uint16_t freq;
2335 CHAN_CENTERS centers;
2336
2337 ar5416GetChannelCenters(ah, chan, &centers);
2338 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
2339
2340 /* Copy the target powers into the temp channel list */
2341 if (freq <= fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
2342 matchIndex = 0;
2343 } else {
2344 for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2345 if (freq == fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) {
2346 matchIndex = i;
2347 break;
2348 } else if ((freq < fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) &&
2349 (freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan))))
2350 {
2351 lowIndex = i - 1;
2352 break;
2353 }
2354 }
2355 if ((matchIndex == -1) && (lowIndex == -1)) {
2356 HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan)));
2357 matchIndex = i - 1;
2358 }
2359 }
2360
2361 if (matchIndex != -1) {
2362 OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2363 } else {
2364 HALASSERT(lowIndex != -1);
2365 /*
2366 * Get the lower and upper channels, target powers,
2367 * and interpolate between them.
2368 */
2369 clo = fbin2freq(powInfo[lowIndex].bChannel, IS_CHAN_2GHZ(chan));
2370 chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IS_CHAN_2GHZ(chan));
2371
2372 for (i = 0; i < numRates; i++) {
2373 pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
2374 powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2375 }
2376 }
2377}
2378/**************************************************************
2379 * ar5416GetTargetPowersLeg
2380 *
2381 * Return the four rates of target power for the given target power table
2382 * channel, and number of channels
2383 */
2384static void
2385ar5416GetTargetPowersLeg(struct ath_hal *ah,
2386 HAL_CHANNEL_INTERNAL *chan,
2387 CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
2388 CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
2389 HAL_BOOL isExtTarget)
2390{
2391 uint16_t clo, chi;
2392 int i;
2393 int matchIndex = -1, lowIndex = -1;
2394 uint16_t freq;
2395 CHAN_CENTERS centers;
2396
2397 ar5416GetChannelCenters(ah, chan, &centers);
2398 freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
2399
2400 /* Copy the target powers into the temp channel list */
2401 if (freq <= fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
2402 matchIndex = 0;
2403 } else {
2404 for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2405 if (freq == fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) {
2406 matchIndex = i;
2407 break;
2408 } else if ((freq < fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) &&
2409 (freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan))))
2410 {
2411 lowIndex = i - 1;
2412 break;
2413 }
2414 }
2415 if ((matchIndex == -1) && (lowIndex == -1)) {
2416 HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan)));
2417 matchIndex = i - 1;
2418 }
2419 }
2420
2421 if (matchIndex != -1) {
2422 OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2423 } else {
2424 HALASSERT(lowIndex != -1);
2425 /*
2426 * Get the lower and upper channels, target powers,
2427 * and interpolate between them.
2428 */
2429 clo = fbin2freq(powInfo[lowIndex].bChannel, IS_CHAN_2GHZ(chan));
2430 chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IS_CHAN_2GHZ(chan));
2431
2432 for (i = 0; i < numRates; i++) {
2433 pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
2434 powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2435 }
2436 }
2437}
2438
2439/**************************************************************
2440 * ar5416SetPowerCalTable
2441 *
2442 * Pull the PDADC piers from cal data and interpolate them across the given
2443 * points as well as from the nearest pier(s) to get a power detector
2444 * linear voltage to power level table.
2445 */
2446static HAL_BOOL
2447ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, HAL_CHANNEL_INTERNAL *chan, int16_t *pTxPowerIndexOffset)
2448{
2449 CAL_DATA_PER_FREQ *pRawDataset;
2450 uint8_t *pCalBChans = AH_NULL;
2451 uint16_t pdGainOverlap_t2;
2452 static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES];
2453 uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
2454 uint16_t numPiers, i, j;
2455 int16_t tMinCalPower;
2456 uint16_t numXpdGain, xpdMask;
2457 uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
2458 uint32_t reg32, regOffset, regChainOffset;
2459
2460 ath_hal_memzero(xpdGainValues, sizeof(xpdGainValues));
2461
2462 xpdMask = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].xpdGain;
2463
2464 if (IS_EEP_MINOR_V2(ah)) {
2465 pdGainOverlap_t2 = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pdGainOverlap;
2466 } else {
2467 pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
2468 }
2469
2470 if (IS_CHAN_2GHZ(chan)) {
2471 pCalBChans = pEepData->calFreqPier2G;
2472 numPiers = AR5416_NUM_2G_CAL_PIERS;
2473 } else {
2474 pCalBChans = pEepData->calFreqPier5G;
2475 numPiers = AR5416_NUM_5G_CAL_PIERS;
2476 }
2477
2478 numXpdGain = 0;
2479 /* Calculate the value of xpdgains from the xpdGain Mask */
2480 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
2481 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
2482 if (numXpdGain >= AR5416_NUM_PD_GAINS) {
2483 HALASSERT(0);
2484 break;
2485 }
2486 xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
2487 numXpdGain++;
2488 }
2489 }
2490
2491 /* Write the detector gain biases and their number */
2492 OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
2493 ~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
2494 SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
2495 SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | SM(xpdGainValues[2], AR_PHY_TPCRG1_PD_GAIN_3));
2496
2497 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
2498
2499 if (AR_SREV_OWL_20_OR_LATER(ah) &&
2500 ( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
2501 /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
2502 * only chains 0 and 2 populated
2503 */
2504 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
2505 } else {
2506 regChainOffset = i * 0x1000;
2507 }
2508
2509 if (pEepData->baseEepHeader.txMask & (1 << i)) {
2510 if (IS_CHAN_2GHZ(chan)) {
2511 pRawDataset = pEepData->calPierData2G[i];
2512 } else {
2513 pRawDataset = pEepData->calPierData5G[i];
2514 }
2515
2516 ar5416GetGainBoundariesAndPdadcs(ah, chan, pRawDataset,
2517 pCalBChans, numPiers,
2518 pdGainOverlap_t2,
2519 &tMinCalPower, gainBoundaries,
2520 pdadcValues, numXpdGain);
2521
2522 if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
2523 /*
2524 * Note the pdadc table may not start at 0 dBm power, could be
2525 * negative or greater than 0. Need to offset the power
2526 * values by the amount of minPower for griffin
2527 */
2528
2529 OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
2530 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
2531 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
2532 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
2533 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
2534 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
2535 }
2536
2537 /* Write the power values into the baseband power table */
2538 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
2539
2540 for (j = 0; j < 32; j++) {
2541 reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0) |
2542 ((pdadcValues[4*j + 1] & 0xFF) << 8) |
2543 ((pdadcValues[4*j + 2] & 0xFF) << 16) |
2544 ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
2545 OS_REG_WRITE(ah, regOffset, reg32);
2546
2547#ifdef PDADC_DUMP
2548 ath_hal_printf(ah, "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
2549 i,
2550 4*j, pdadcValues[4*j],
2551 4*j+1, pdadcValues[4*j + 1],
2552 4*j+2, pdadcValues[4*j + 2],
2553 4*j+3, pdadcValues[4*j + 3]);
2554#endif
2555 regOffset += 4;
2556 }
2557 }
2558 }
2559 *pTxPowerIndexOffset = 0;
2560
2561 return AH_TRUE;
2562}
2563
2564/**************************************************************
2565 * ar5416GetGainBoundariesAndPdadcs
2566 *
2567 * Uses the data points read from EEPROM to reconstruct the pdadc power table
2568 * Called by ar5416SetPowerCalTable only.
2569 */
2570static void
2571ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
2572 HAL_CHANNEL_INTERNAL *chan, CAL_DATA_PER_FREQ *pRawDataSet,
2573 uint8_t * bChans, uint16_t availPiers,
2574 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
2575 uint8_t * pPDADCValues, uint16_t numXpdGains)
2576{
2577
2578 int i, j, k;
2579 int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */
2580 uint16_t idxL, idxR, numPiers; /* Pier indexes */
2581
2582 /* filled out Vpd table for all pdGains (chanL) */
2583 static uint8_t vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2584
2585 /* filled out Vpd table for all pdGains (chanR) */
2586 static uint8_t vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2587
2588 /* filled out Vpd table for all pdGains (interpolated) */
2589 static uint8_t vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2590
2591 uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR;
2592 uint8_t minPwrT4[AR5416_NUM_PD_GAINS];
2593 uint8_t maxPwrT4[AR5416_NUM_PD_GAINS];
2594 int16_t vpdStep;
2595 int16_t tmpVal;
2596 uint16_t sizeCurrVpdTable, maxIndex, tgtIndex;
2597 HAL_BOOL match;
2598 int16_t minDelta = 0;
2599 CHAN_CENTERS centers;
2600
2601 ar5416GetChannelCenters(ah, chan, &centers);
2602
2603 /* Trim numPiers for the number of populated channel Piers */
2604 for (numPiers = 0; numPiers < availPiers; numPiers++) {
2605 if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
2606 break;
2607 }
2608 }
2609
2610 /* Find pier indexes around the current channel */
2611 match = getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
2612 bChans, numPiers, &idxL, &idxR);
2613
2614 if (match) {
2615 /* Directly fill both vpd tables from the matching index */
2616 for (i = 0; i < numXpdGains; i++) {
2617 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
2618 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
2619 ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
2620 pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
2621 }
2622 } else {
2623 for (i = 0; i < numXpdGains; i++) {
2624 pVpdL = pRawDataSet[idxL].vpdPdg[i];
2625 pPwrL = pRawDataSet[idxL].pwrPdg[i];
2626 pVpdR = pRawDataSet[idxR].vpdPdg[i];
2627 pPwrR = pRawDataSet[idxR].pwrPdg[i];
2628
2629 /* Start Vpd interpolation from the max of the minimum powers */
2630 minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
2631
2632 /* End Vpd interpolation from the min of the max powers */
2633 maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
2634 HALASSERT(maxPwrT4[i] > minPwrT4[i]);
2635
2636 /* Fill pier Vpds */
2637 ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
2638 ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
2639
2640 /* Interpolate the final vpd */
2641 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
2642 vpdTableI[i][j] = (uint8_t)(interpolate((uint16_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
2643 bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
2644 }
2645 }
2646 }
2647 *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
2648
2649 k = 0; /* index for the final table */
2650 for (i = 0; i < numXpdGains; i++) {
2651 if (i == (numXpdGains - 1)) {
2652 pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
2653 } else {
2654 pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
2655 }
2656
2657 pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
2658
2659 /* NB: only applies to owl 1.0 */
2660 if ((i == 0) && !AR_SREV_OWL_20_OR_LATER(ah) ) {
2661 /*
2662 * fix the gain delta, but get a delta that can be applied to min to
2663 * keep the upper power values accurate, don't think max needs to
2664 * be adjusted because should not be at that area of the table?
2665 */
2666 minDelta = pPdGainBoundaries[0] - 23;
2667 pPdGainBoundaries[0] = 23;
2668 }
2669 else {
2670 minDelta = 0;
2671 }
2672
2673 /* Find starting index for this pdGain */
2674 if (i == 0) {
2675 ss = 0; /* for the first pdGain, start from index 0 */
2676 } else {
2677 /* need overlap entries extrapolated below. */
2678 ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
2679 }
2680 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
2681 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2682 /*
2683 *-ve ss indicates need to extrapolate data below for this pdGain
2684 */
2685 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2686 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
2687 pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
2688 ss++;
2689 }
2690
2691 sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
2692 tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
2693 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
2694
2695 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2696 pPDADCValues[k++] = vpdTableI[i][ss++];
2697 }
2698
2699 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
2700 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2701 /*
2702 * for last gain, pdGainBoundary == Pmax_t2, so will
2703 * have to extrapolate
2704 */
2705 if (tgtIndex > maxIndex) { /* need to extrapolate above */
2706 while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2707 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
2708 (ss - maxIndex +1) * vpdStep));
2709 pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
2710 ss++;
2711 }
2712 } /* extrapolated above */
2713 } /* for all pdGainUsed */
2714
2715 /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
2716 while (i < AR5416_PD_GAINS_IN_MASK) {
2717 pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
2718 i++;
2719 }
2720
2721 while (k < AR5416_NUM_PDADC_VALUES) {
2722 pPDADCValues[k] = pPDADCValues[k-1];
2723 k++;
2724 }
2725 return;
2726}
2727
2728/**************************************************************
2729 * getLowerUppderIndex
2730 *
2731 * Return indices surrounding the value in sorted integer lists.
2732 * Requirement: the input list must be monotonically increasing
2733 * and populated up to the list size
2734 * Returns: match is set if an index in the array matches exactly
2735 * or a the target is before or after the range of the array.
2736 */
2737HAL_BOOL
2738getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
2739 uint16_t *indexL, uint16_t *indexR)
2740{
2741 uint16_t i;
2742
2743 /*
2744 * Check first and last elements for beyond ordered array cases.
2745 */
2746 if (target <= pList[0]) {
2747 *indexL = *indexR = 0;
2748 return AH_TRUE;
2749 }
2750 if (target >= pList[listSize-1]) {
2751 *indexL = *indexR = (uint16_t)(listSize - 1);
2752 return AH_TRUE;
2753 }
2754
2755 /* look for value being near or between 2 values in list */
2756 for (i = 0; i < listSize - 1; i++) {
2757 /*
2758 * If value is close to the current value of the list
2759 * then target is not between values, it is one of the values
2760 */
2761 if (pList[i] == target) {
2762 *indexL = *indexR = i;
2763 return AH_TRUE;
2764 }
2765 /*
2766 * Look for value being between current value and next value
2767 * if so return these 2 values
2768 */
2769 if (target < pList[i + 1]) {
2770 *indexL = i;
2771 *indexR = (uint16_t)(i + 1);
2772 return AH_FALSE;
2773 }
2774 }
2775 HALASSERT(0);
2776 return AH_FALSE;
2777}
2778
2779/**************************************************************
2780 * ar5416FillVpdTable
2781 *
2782 * Fill the Vpdlist for indices Pmax-Pmin
2783 * Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
2784 */
2785static HAL_BOOL
2786ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
2787 uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
2788{
2789 uint16_t i, k;
2790 uint8_t currPwr = pwrMin;
2791 uint16_t idxL, idxR;
2792
2793 HALASSERT(pwrMax > pwrMin);
2794 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
2795 getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
2796 &(idxL), &(idxR));
2797 if (idxR < 1)
2798 idxR = 1; /* extrapolate below */
2799 if (idxL == numIntercepts - 1)
2800 idxL = (uint16_t)(numIntercepts - 2); /* extrapolate above */
2801 if (pPwrList[idxL] == pPwrList[idxR])
2802 k = pVpdList[idxL];
2803 else
2804 k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
2805 (pPwrList[idxR] - pPwrList[idxL]) );
2806 HALASSERT(k < 256);
2807 pRetVpdList[i] = (uint8_t)k;
2808 currPwr += 2; /* half dB steps */
2809 }
2810
2811 return AH_TRUE;
2812}
2813
2814/**************************************************************************
2815 * interpolate
2816 *
2817 * Returns signed interpolated or the scaled up interpolated value
2818 */
2819static int16_t
2820interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
2821 int16_t targetLeft, int16_t targetRight)
2822{
2823 int16_t rv;
2824
2825 if (srcRight == srcLeft) {
2826 rv = targetLeft;
2827 } else {
2828 rv = (int16_t)( ((target - srcLeft) * targetRight +
2829 (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
2830 }
2831 return rv;
2832}
2833
2834static void
2835ar5416Set11nRegs(struct ath_hal *ah, HAL_CHANNEL *chan)
2836{
2837 uint32_t phymode;
2838 HAL_HT_MACMODE macmode; /* MAC - 20/40 mode */
2839
2840 if (!IS_CHAN_HT(chan))
2841 return;
2842
2843 /* Enable 11n HT, 20 MHz */
2844 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
2845 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
2846
2847 /* Configure baseband for dynamic 20/40 operation */
2848 if (IS_CHAN_HT40(chan)) {
2849 phymode |= AR_PHY_FC_DYN2040_EN | AR_PHY_FC_SHORT_GI_40;
2850
2851 /* Configure control (primary) channel at +-10MHz */
2852 if ((chan->channelFlags & CHANNEL_HT40PLUS))
2853 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
2854#if 0
2855 /* Configure 20/25 spacing */
2856 if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
2857 phymode |= AR_PHY_FC_DYN2040_EXT_CH;
2858#endif
2859 macmode = HAL_HT_MACMODE_2040;
2860 } else
2861 macmode = HAL_HT_MACMODE_20;
2862 OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
2863
2864 /* Configure MAC for 20/40 operation */
2865 ar5416Set11nMac2040(ah, macmode);
2866
2867 /* global transmit timeout (25 TUs default)*/
2868 /* XXX - put this elsewhere??? */
2869 OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
2870
2871 /* carrier sense timeout */
2872 OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
2873 OS_REG_WRITE(ah, AR_CST, 1 << AR_CST_TIMEOUT_LIMIT_S);
2874}
2875
2876void
2877ar5416GetChannelCenters(struct ath_hal *ah,
2878 HAL_CHANNEL_INTERNAL *chan, CHAN_CENTERS *centers)
2879{
2880 centers->ctl_center = chan->channel;
2881 centers->synth_center = chan->channel;
2882 /*
2883 * In 20/40 phy mode, the center frequency is
2884 * "between" the control and extension channels.
2885 */
2886 if (chan->channelFlags & CHANNEL_HT40PLUS) {
2887 centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
2888 centers->ext_center =
2889 centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
2890 } else if (chan->channelFlags & CHANNEL_HT40MINUS) {
2891 centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
2892 centers->ext_center =
2893 centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
2894 } else {
2895 centers->ext_center = chan->channel;
2896 }
2897}
21#include "ah.h"
22#include "ah_internal.h"
23#include "ah_devid.h"
24
25#include "ah_eeprom_v14.h"
26
27#include "ar5416/ar5416.h"
28#include "ar5416/ar5416reg.h"
29#include "ar5416/ar5416phy.h"
30#ifdef AH_SUPPORT_AR9280
31#include "ar5416/ar9280.h"
32#endif
33
34/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
35#define EEP_MINOR(_ah) \
36 (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
37#define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
38#define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
39
40/* Additional Time delay to wait after activiting the Base band */
41#define BASE_ACTIVATE_DELAY 100 /* 100 usec */
42#define PLL_SETTLE_DELAY 300 /* 300 usec */
43#define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */
44
45static void ar5416InitDMA(struct ath_hal *ah);
46static void ar5416InitBB(struct ath_hal *ah, HAL_CHANNEL *chan);
47static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
48static void ar5416InitQoS(struct ath_hal *ah);
49static void ar5416InitUserSettings(struct ath_hal *ah);
50
51static HAL_BOOL ar5416SetTransmitPower(struct ath_hal *ah,
52 HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain);
53
54#if 0
55static HAL_BOOL ar5416ChannelChange(struct ath_hal *, HAL_CHANNEL *);
56#endif
57static void ar5416SetDeltaSlope(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
58static void ar5416SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan);
59#ifdef AH_SUPPORT_AR9280
60static void ar9280SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan);
61#endif
62
63static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
64static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
65static void ar5416InitPLL(struct ath_hal *ah, HAL_CHANNEL *chan);
66static HAL_BOOL ar5416SetBoardValues(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
67static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
68 struct ar5416eeprom *pEepData,
69 HAL_CHANNEL_INTERNAL *chan, int16_t *ratesArray,
70 uint16_t cfgCtl, uint16_t AntennaReduction,
71 uint16_t twiceMaxRegulatoryPower,
72 uint16_t powerLimit);
73static HAL_BOOL ar5416SetPowerCalTable(struct ath_hal *ah,
74 struct ar5416eeprom *pEepData,
75 HAL_CHANNEL_INTERNAL *chan,
76 int16_t *pTxPowerIndexOffset);
77static uint16_t ar5416GetMaxEdgePower(uint16_t freq,
78 CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz);
79static void ar5416GetTargetPowers(struct ath_hal *ah,
80 HAL_CHANNEL_INTERNAL *chan, CAL_TARGET_POWER_HT *powInfo,
81 uint16_t numChannels, CAL_TARGET_POWER_HT *pNewPower,
82 uint16_t numRates, HAL_BOOL isHt40Target);
83static void ar5416GetTargetPowersLeg(struct ath_hal *ah,
84 HAL_CHANNEL_INTERNAL *chan, CAL_TARGET_POWER_LEG *powInfo,
85 uint16_t numChannels, CAL_TARGET_POWER_LEG *pNewPower,
86 uint16_t numRates, HAL_BOOL isExtTarget);
87
88static int16_t interpolate(uint16_t target, uint16_t srcLeft,
89 uint16_t srcRight, int16_t targetLeft, int16_t targetRight);
90static void ar5416Set11nRegs(struct ath_hal *ah, HAL_CHANNEL *chan);
91static void ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
92 HAL_CHANNEL_INTERNAL *chan, CAL_DATA_PER_FREQ *pRawDataSet,
93 uint8_t * bChans, uint16_t availPiers,
94 uint16_t tPdGainOverlap, int16_t *pMinCalPower,
95 uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
96 uint16_t numXpdGains);
97static HAL_BOOL getLowerUpperIndex(uint8_t target, uint8_t *pList,
98 uint16_t listSize, uint16_t *indexL, uint16_t *indexR);
99static HAL_BOOL ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax,
100 uint8_t *pPwrList, uint8_t *pVpdList,
101 uint16_t numIntercepts, uint8_t *pRetVpdList);
102
103/*
104 * Places the device in and out of reset and then places sane
105 * values in the registers based on EEPROM config, initialization
106 * vectors (as determined by the mode), and station configuration
107 *
108 * bChannelChange is used to preserve DMA/PCU registers across
109 * a HW Reset during channel change.
110 */
111HAL_BOOL
112ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
113 HAL_CHANNEL *chan, HAL_BOOL bChannelChange, HAL_STATUS *status)
114{
115#define N(a) (sizeof (a) / sizeof (a[0]))
116#define FAIL(_code) do { ecode = _code; goto bad; } while (0)
117 struct ath_hal_5212 *ahp = AH5212(ah);
118 HAL_CHANNEL_INTERNAL *ichan;
119 uint32_t softLedCfg;
120 uint32_t saveDefAntenna, saveLedState;
121 uint32_t macStaId1;
122 uint16_t rfXpdGain[2];
123 u_int modesIndex, freqIndex;
124 HAL_STATUS ecode;
125 int i, regWrites = 0;
126 uint32_t powerVal, rssiThrReg;
127 uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
128
129 OS_MARK(ah, AH_MARK_RESET, bChannelChange);
130#define IS(_c,_f) (((_c)->channelFlags & _f) || 0)
131 if ((IS(chan, CHANNEL_2GHZ) ^ IS(chan, CHANNEL_5GHZ)) == 0) {
132 HALDEBUG(ah, HAL_DEBUG_ANY,
133 "%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n",
134 __func__, chan->channel, chan->channelFlags);
135 FAIL(HAL_EINVAL);
136 }
137 if ((IS(chan, CHANNEL_OFDM) ^ IS(chan, CHANNEL_CCK)) == 0) {
138 HALDEBUG(ah, HAL_DEBUG_ANY,
139 "%s: invalid channel %u/0x%x; not marked as OFDM or CCK\n",
140 __func__, chan->channel, chan->channelFlags);
141 FAIL(HAL_EINVAL);
142 }
143#undef IS
144
145 /* Bring out of sleep mode */
146 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
147 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
148 __func__);
149 FAIL(HAL_EIO);
150 }
151
152 /*
153 * Map public channel to private.
154 */
155 ichan = ath_hal_checkchannel(ah, chan);
156 if (ichan == AH_NULL) {
157 HALDEBUG(ah, HAL_DEBUG_ANY,
158 "%s: invalid channel %u/0x%x; no mapping\n",
159 __func__, chan->channel, chan->channelFlags);
160 FAIL(HAL_EINVAL);
161 } else {
162 HALDEBUG(ah, HAL_DEBUG_RESET,
163 "%s: Ch=%u Max=%d Min=%d\n",__func__,
164 ichan->channel, ichan->maxTxPower, ichan->minTxPower);
165 }
166 switch (opmode) {
167 case HAL_M_STA:
168 case HAL_M_IBSS:
169 case HAL_M_HOSTAP:
170 case HAL_M_MONITOR:
171 break;
172 default:
173 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
174 __func__, opmode);
175 FAIL(HAL_EINVAL);
176 break;
177 }
178 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
179
180 /* XXX Turn on fast channel change for 5416 */
181 /*
182 * Preserve the bmiss rssi threshold and count threshold
183 * across resets
184 */
185 rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
186 /* If reg is zero, first time thru set to default val */
187 if (rssiThrReg == 0)
188 rssiThrReg = INIT_RSSI_THR;
189
190 /*
191 * Preserve the antenna on a channel change
192 */
193 saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
194 if (saveDefAntenna == 0) /* XXX magic constants */
195 saveDefAntenna = 1;
196
197 /* Save hardware flag before chip reset clears the register */
198 macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
199 (AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
200
201 /* Save led state from pci config register */
202 saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
203 (AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
204 AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
205 softLedCfg = OS_REG_READ(ah, AR_GPIO_INTR_OUT);
206
207 /*
208 * Adjust gain parameters before reset if
209 * there's an outstanding gain updated.
210 */
211 (void) ar5416GetRfgain(ah);
212
213 if (!ar5416ChipReset(ah, chan)) {
214 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
215 FAIL(HAL_EIO);
216 }
217
218 /* Restore bmiss rssi & count thresholds */
219 OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
220
221 /* Setup the indices for the next set of register array writes */
222 /* XXX Ignore 11n dynamic mode on the AR5416 for the moment */
223 switch (chan->channelFlags & CHANNEL_ALL) {
224 case CHANNEL_A:
225 case CHANNEL_A_HT20:
226 modesIndex = 1;
227 freqIndex = 1;
228 break;
229 case CHANNEL_T:
230 case CHANNEL_A_HT40PLUS:
231 case CHANNEL_A_HT40MINUS:
232 modesIndex = 2;
233 freqIndex = 1;
234 break;
235 case CHANNEL_PUREG:
236 case CHANNEL_G_HT20:
237 case CHANNEL_B: /* treat as channel G , no B mode suport in owl */
238 modesIndex = 4;
239 freqIndex = 2;
240 break;
241 case CHANNEL_G_HT40PLUS:
242 case CHANNEL_G_HT40MINUS:
243 modesIndex = 3;
244 freqIndex = 2;
245 break;
246 case CHANNEL_108G:
247 modesIndex = 5;
248 freqIndex = 2;
249 break;
250 default:
251 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
252 __func__, chan->channelFlags);
253 FAIL(HAL_EINVAL);
254 }
255
256 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
257
258 /* Set correct Baseband to analog shift setting to access analog chips. */
259 OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
260
261 /*
262 * Write addac shifts
263 */
264 OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
265#if 0
266 /* NB: only required for Sowl */
267 ar5416EepromSetAddac(ah, ichan);
268#endif
269 regWrites = ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_addac, 1,
270 regWrites);
271 OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
272
273 /* XXX Merlin ini fixups */
274 /* XXX Merlin 100us delay for shift registers */
275 regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex,
276 regWrites);
277#ifdef AH_SUPPORT_AR9280
278 if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
279 regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_rxgain,
280 modesIndex, regWrites);
281 regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_txgain,
282 modesIndex, regWrites);
283 }
284#endif
285 /* XXX Merlin 100us delay for shift registers */
286 regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_common, 1, regWrites);
287 /* Setup 11n MAC/Phy mode registers */
288 ar5416Set11nRegs(ah,chan);
289 /* XXX updated regWrites? */
290 ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);
291#ifdef AH_SUPPORT_AR9280
292 if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
293 /* 5GHz channels w/ Fast Clock use different modal values */
294 regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_xmodes,
295 modesIndex, regWrites);
296 }
297#endif
298
299 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
300
301 HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
302 __func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
303 HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
304 __func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
305
306 /* Set the mute mask to the correct default */
307 if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2)
308 OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
309
310 if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
311 /* Clear reg to alllow RX_CLEAR line debug */
312 OS_REG_WRITE(ah, AR_PHY_BLUETOOTH, 0);
313 }
314 if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
315#ifdef notyet
316 /* Enable burst prefetch for the data queues */
317 OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
318 /* Enable double-buffering */
319 OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
320#endif
321 }
322
323 /* Set ADC/DAC select values */
324 OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
325
326 if (AH5416(ah)->ah_rx_chainmask == 0x5 ||
327 AH5416(ah)->ah_tx_chainmask == 0x5)
328 OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
329 /* Setup Chain Masks */
330 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
331 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
332 OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
333
334 /* Setup the transmit power values. */
335 if (!ar5416SetTransmitPower(ah, ichan, rfXpdGain)) {
336 HALDEBUG(ah, HAL_DEBUG_ANY,
337 "%s: error init'ing transmit power\n", __func__);
338 FAIL(HAL_EIO);
339 }
340
341 /* Write the analog registers */
342 if (!ahp->ah_rfHal->setRfRegs(ah, ichan, freqIndex, rfXpdGain)) {
343 HALDEBUG(ah, HAL_DEBUG_ANY,
344 "%s: ar5212SetRfRegs failed\n", __func__);
345 FAIL(HAL_EIO);
346 }
347
348 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
349 if (IS_CHAN_OFDM(chan)|| IS_CHAN_HT(chan))
350 ar5416SetDeltaSlope(ah, ichan);
351
352#ifdef AH_SUPPORT_AR9280
353 if (AR_SREV_MERLIN_10_OR_LATER(ah))
354 ar9280SpurMitigate(ah, ichan);
355 else
356#endif
357 ar5416SpurMitigate(ah, ichan);
358
359 /* Setup board specific options for EEPROM version 3 */
360 if (!ar5416SetBoardValues(ah, ichan)) {
361 HALDEBUG(ah, HAL_DEBUG_ANY,
362 "%s: error setting board options\n", __func__);
363 FAIL(HAL_EIO);
364 }
365
366 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
367
368 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
369 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
370 | macStaId1
371 | AR_STA_ID1_RTS_USE_DEF
372 | ahp->ah_staId1Defaults
373 );
374 ar5212SetOperatingMode(ah, opmode);
375
376 /* Set Venice BSSID mask according to current state */
377 OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
378 OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
379
380 /* Restore previous led state */
381 OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) | saveLedState);
382 /* Restore soft Led state to GPIO */
383 OS_REG_WRITE(ah, AR_GPIO_INTR_OUT, softLedCfg);
384
385 /* Restore previous antenna */
386 OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
387
388 /* then our BSSID */
389 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
390 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
391
392 /* Restore bmiss rssi & count thresholds */
393 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
394
395 OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
396
397 if (!ar5212SetChannel(ah, ichan))
398 FAIL(HAL_EIO);
399
400 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
401
402 /* Set 1:1 QCU to DCU mapping for all queues */
403 for (i = 0; i < AR_NUM_DCU; i++)
404 OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
405
406 ahp->ah_intrTxqs = 0;
407 for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
408 ar5212ResetTxQueue(ah, i);
409
410 ar5416InitIMR(ah, opmode);
411 ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
412 ar5416InitQoS(ah);
413 ar5416InitUserSettings(ah);
414
415 /*
416 * disable seq number generation in hw
417 */
418 OS_REG_WRITE(ah, AR_STA_ID1,
419 OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
420
421 ar5416InitDMA(ah);
422
423 /*
424 * program OBS bus to see MAC interrupts
425 */
426 OS_REG_WRITE(ah, AR_OBS, 8);
427
428#ifdef AR5416_INT_MITIGATION
429 OS_REG_WRITE(ah, AR_MIRT, 0);
430 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
431 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
432#endif
433
434 ar5416InitBB(ah, chan);
435
436 /* Setup compression registers */
437 ar5212SetCompRegs(ah); /* XXX not needed? */
438
439 /*
440 * 5416 baseband will check the per rate power table
441 * and select the lower of the two
442 */
443 ackTpcPow = 63;
444 ctsTpcPow = 63;
445 chirpTpcPow = 63;
446 powerVal = SM(ackTpcPow, AR_TPC_ACK) |
447 SM(ctsTpcPow, AR_TPC_CTS) |
448 SM(chirpTpcPow, AR_TPC_CHIRP);
449 OS_REG_WRITE(ah, AR_TPC, powerVal);
450
451 if (!ar5416InitCal(ah, chan))
452 FAIL(HAL_ESELFTEST);
453
454 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
455
456 if (bChannelChange) {
457 if (!(ichan->privFlags & CHANNEL_DFS))
458 ichan->privFlags &= ~CHANNEL_INTERFERENCE;
459 chan->channelFlags = ichan->channelFlags;
460 chan->privFlags = ichan->privFlags;
461 chan->maxRegTxPower = ichan->maxRegTxPower;
462 chan->maxTxPower = ichan->maxTxPower;
463 chan->minTxPower = ichan->minTxPower;
464 }
465
466 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
467
468 OS_MARK(ah, AH_MARK_RESET_DONE, 0);
469
470 return AH_TRUE;
471bad:
472 OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
473 if (*status)
474 *status = ecode;
475 return AH_FALSE;
476#undef FAIL
477#undef N
478}
479
480#if 0
481/*
482 * This channel change evaluates whether the selected hardware can
483 * perform a synthesizer-only channel change (no reset). If the
484 * TX is not stopped, or the RFBus cannot be granted in the given
485 * time, the function returns false as a reset is necessary
486 */
487HAL_BOOL
488ar5416ChannelChange(struct ath_hal *ah, HAL_CHANNEL *chan)
489{
490 uint32_t ulCount;
491 uint32_t data, synthDelay, qnum;
492 uint16_t rfXpdGain[4];
493 struct ath_hal_5212 *ahp = AH5212(ah);
494 HAL_CHANNEL_INTERNAL *ichan;
495
496 /*
497 * Map public channel to private.
498 */
499 ichan = ath_hal_checkchannel(ah, chan);
500
501 /* TX must be stopped or RF Bus grant will not work */
502 for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
503 if (ar5212NumTxPending(ah, qnum)) {
504 HALDEBUG(ah, HAL_DEBUG_ANY,
505 "%s: frames pending on queue %d\n", __func__, qnum);
506 return AH_FALSE;
507 }
508 }
509
510 /*
511 * Kill last Baseband Rx Frame - Request analog bus grant
512 */
513 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
514 if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
515 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
516 __func__);
517 return AH_FALSE;
518 }
519
520 ar5416Set11nRegs(ah, chan); /* NB: setup 5416-specific regs */
521
522 /* Change the synth */
523 if (!ar5212SetChannel(ah, ichan))
524 return AH_FALSE;
525
526 /* Setup the transmit power values. */
527 if (!ar5416SetTransmitPower(ah, ichan, rfXpdGain)) {
528 HALDEBUG(ah, HAL_DEBUG_ANY,
529 "%s: error init'ing transmit power\n", __func__);
530 return AH_FALSE;
531 }
532
533 /*
534 * Wait for the frequency synth to settle (synth goes on
535 * via PHY_ACTIVE_EN). Read the phy active delay register.
536 * Value is in 100ns increments.
537 */
538 data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
539 if (IS_CHAN_CCK(ichan)) {
540 synthDelay = (4 * data) / 22;
541 } else {
542 synthDelay = data / 10;
543 }
544
545 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
546
547 /* Release the RFBus Grant */
548 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
549
550 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
551 if (IS_CHAN_OFDM(ichan)|| IS_CHAN_HT(chan)) {
552 if (ahp->ah_eeprom.ee_version >= AR_EEPROM_VER5_3 &&
553 !IS_CHAN_B(chan))
554 ar5212SetSpurMitigation(ah, ichan);
555 ar5416SetDeltaSlope(ah, ichan);
556 }
557
558 /* XXX spur mitigation for Melin */
559
560 /* Copy over internal channel flags to public hal channel */
561
562 if (!(ichan->privFlags & CHANNEL_DFS))
563 ichan->privFlags &= ~CHANNEL_INTERFERENCE;
564 chan->channelFlags = ichan->channelFlags;
565 chan->privFlags = ichan->privFlags;
566 chan->maxRegTxPower = ichan->maxRegTxPower;
567 chan->maxTxPower = ichan->maxTxPower;
568 chan->minTxPower = ichan->minTxPower;
569 AH_PRIVATE(ah)->ah_curchan->ah_channel_time=0;
570 AH_PRIVATE(ah)->ah_curchan->ah_tsf_last = ar5212GetTsf64(ah);
571 ar5212TxEnable(ah,AH_TRUE);
572 return AH_TRUE;
573}
574#endif
575
576static void
577ar5416InitDMA(struct ath_hal *ah)
578{
579
580 /*
581 * set AHB_MODE not to do cacheline prefetches
582 */
583 OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
584
585 /*
586 * let mac dma reads be in 128 byte chunks
587 */
588 OS_REG_WRITE(ah, AR_TXCFG,
589 (OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
590
591 /*
592 * let mac dma writes be in 128 byte chunks
593 */
594 OS_REG_WRITE(ah, AR_RXCFG,
595 (OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
596
597 /* XXX restore TX trigger level */
598
599 /*
600 * Setup receive FIFO threshold to hold off TX activities
601 */
602 OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
603
604 /*
605 * reduce the number of usable entries in PCU TXBUF to avoid
606 * wrap around.
607 */
608 OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
609}
610
611static void
612ar5416InitBB(struct ath_hal *ah, HAL_CHANNEL *chan)
613{
614 uint32_t synthDelay;
615
616 /*
617 * Wait for the frequency synth to settle (synth goes on
618 * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
619 * Value is in 100ns increments.
620 */
621 synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
622 if (IS_CHAN_CCK(chan)) {
623 synthDelay = (4 * synthDelay) / 22;
624 } else {
625 synthDelay /= 10;
626 }
627
628 /* Turn on PLL on 5416 */
629 HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
630 __func__, IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
631 ar5416InitPLL(ah, chan);
632
633 /* Activate the PHY (includes baseband activate and synthesizer on) */
634 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
635
636 /*
637 * If the AP starts the calibration before the base band timeout
638 * completes we could get rx_clear false triggering. Add an
639 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
640 * does not happen.
641 */
642 if (IS_CHAN_HALF_RATE(AH_PRIVATE(ah)->ah_curchan)) {
643 OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
644 } else if (IS_CHAN_QUARTER_RATE(AH_PRIVATE(ah)->ah_curchan)) {
645 OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
646 } else {
647 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
648 }
649}
650
651static void
652ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
653{
654 struct ath_hal_5212 *ahp = AH5212(ah);
655
656 /*
657 * Setup interrupt handling. Note that ar5212ResetTxQueue
658 * manipulates the secondary IMR's as queues are enabled
659 * and disabled. This is done with RMW ops to insure the
660 * settings we make here are preserved.
661 */
662 ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
663 | AR_IMR_RXERR | AR_IMR_RXORN
664 | AR_IMR_BCNMISC;
665
666#ifdef AR5416_INT_MITIGATION
667 ahp->ah_maskReg |= AR_IMR_TXINTM | AR_IMR_RXINTM
668 | AR_IMR_TXMINTR | AR_IMR_RXMINTR;
669#else
670 ahp->ah_maskReg |= AR_IMR_TXOK | AR_IMR_RXOK;
671#endif
672 if (opmode == HAL_M_HOSTAP)
673 ahp->ah_maskReg |= AR_IMR_MIB;
674 OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
675 /* Enable bus errors that are OR'd to set the HIUERR bit */
676
677#if 0
678 OS_REG_WRITE(ah, AR_IMR_S2,
679 OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
680#endif
681}
682
683static void
684ar5416InitQoS(struct ath_hal *ah)
685{
686 /* QoS support */
687 OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */
688 OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */
689
690 /* Turn on NOACK Support for QoS packets */
691 OS_REG_WRITE(ah, AR_NOACK,
692 SM(2, AR_NOACK_2BIT_VALUE) |
693 SM(5, AR_NOACK_BIT_OFFSET) |
694 SM(0, AR_NOACK_BYTE_OFFSET));
695
696 /*
697 * initialize TXOP for all TIDs
698 */
699 OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
700 OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
701 OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
702 OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
703 OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
704}
705
706static void
707ar5416InitUserSettings(struct ath_hal *ah)
708{
709 struct ath_hal_5212 *ahp = AH5212(ah);
710
711 /* Restore user-specified settings */
712 if (ahp->ah_miscMode != 0)
713 OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
714 if (ahp->ah_sifstime != (u_int) -1)
715 ar5212SetSifsTime(ah, ahp->ah_sifstime);
716 if (ahp->ah_slottime != (u_int) -1)
717 ar5212SetSlotTime(ah, ahp->ah_slottime);
718 if (ahp->ah_acktimeout != (u_int) -1)
719 ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
720 if (ahp->ah_ctstimeout != (u_int) -1)
721 ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
722 if (AH_PRIVATE(ah)->ah_diagreg != 0)
723 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
724#if 0 /* XXX Todo */
725 if (ahp->ah_globaltxtimeout != (u_int) -1)
726 ar5416SetGlobalTxTimeout(ah, ahp->ah_globaltxtimeout);
727#endif
728}
729
730/*
731 * Places the hardware into reset and then pulls it out of reset
732 */
733HAL_BOOL
734ar5416ChipReset(struct ath_hal *ah, HAL_CHANNEL *chan)
735{
736 uint32_t rfMode = 0;
737
738 OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->channel : 0);
739 /*
740 * Warm reset is optimistic.
741 */
742 if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
743 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
744 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
745 return AH_FALSE;
746 } else {
747 if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
748 return AH_FALSE;
749 }
750
751 /* Bring out of sleep mode (AGAIN) */
752 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
753 return AH_FALSE;
754
755 ar5416InitPLL(ah, chan);
756
757 /*
758 * Perform warm reset before the mode/PLL/turbo registers
759 * are changed in order to deactivate the radio. Mode changes
760 * with an active radio can result in corrupted shifts to the
761 * radio device.
762 */
763 if (chan != AH_NULL) {
764 /* treat channel B as channel G , no B mode suport in owl */
765 rfMode |= (IS_CHAN_G(chan) || IS_CHAN_B(chan)) ?
766 AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
767 if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
768 /* phy mode bits for 5GHz channels require Fast Clock */
769 rfMode |= AR_PHY_MODE_DYNAMIC
770 | AR_PHY_MODE_DYN_CCK_DISABLE;
771 } else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
772 rfMode |= (IS_CHAN_5GHZ(chan)) ?
773 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
774 }
775 OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
776 }
777 return AH_TRUE;
778}
779
780/*
781 * Delta slope coefficient computation.
782 * Required for OFDM operation.
783 */
784static void
785ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
786 uint32_t *coef_mantissa, uint32_t *coef_exponent)
787{
788#define COEF_SCALE_S 24
789 uint32_t coef_exp, coef_man;
790 /*
791 * ALGO -> coef_exp = 14-floor(log2(coef));
792 * floor(log2(x)) is the highest set bit position
793 */
794 for (coef_exp = 31; coef_exp > 0; coef_exp--)
795 if ((coef_scaled >> coef_exp) & 0x1)
796 break;
797 /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
798 HALASSERT(coef_exp);
799 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
800
801 /*
802 * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
803 * The coefficient is already shifted up for scaling
804 */
805 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
806
807 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
808 *coef_exponent = coef_exp - 16;
809
810#undef COEF_SCALE_S
811}
812
813void
814ar5416SetDeltaSlope(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
815{
816#define INIT_CLOCKMHZSCALED 0x64000000
817 uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
818 uint32_t clockMhzScaled = INIT_CLOCKMHZSCALED;
819
820 CHAN_CENTERS centers;
821
822 if (IS_CHAN_TURBO(chan))
823 clockMhzScaled *= 2;
824 /* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
825 /* scale for selected channel bandwidth */
826 if (IS_CHAN_HALF_RATE(chan)) {
827 clockMhzScaled = clockMhzScaled >> 1;
828 } else if (IS_CHAN_QUARTER_RATE(chan)) {
829 clockMhzScaled = clockMhzScaled >> 2;
830 }
831
832 /*
833 * ALGO -> coef = 1e8/fcarrier*fclock/40;
834 * scaled coef to provide precision for this floating calculation
835 */
836 ar5416GetChannelCenters(ah, chan, &centers);
837 coef_scaled = clockMhzScaled / centers.synth_center;
838
839 ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
840
841 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
842 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
843 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
844 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
845
846 /*
847 * For Short GI,
848 * scaled coeff is 9/10 that of normal coeff
849 */
850 coef_scaled = (9 * coef_scaled)/10;
851
852 ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
853
854 /* for short gi */
855 OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
856 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
857 OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
858 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
859#undef INIT_CLOCKMHZSCALED
860}
861
862/*
863 * Convert to baseband spur frequency given input channel frequency
864 * and compute register settings below.
865 */
866#define SPUR_RSSI_THRESH 40
867
868static void
869ar5416SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
870{
871 static const int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
872 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 };
873 static const int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
874 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 };
875 static const int inc[4] = { 0, 100, 0, 0 };
876
877 int bb_spur = AR_NO_SPUR;
878 int bin, cur_bin;
879 int spur_freq_sd;
880 int spur_delta_phase;
881 int denominator;
882 int upper, lower, cur_vit_mask;
883 int tmp, new;
884 int i;
885
886 int8_t mask_m[123];
887 int8_t mask_p[123];
888 int8_t mask_amt;
889 int tmp_mask;
890 int cur_bb_spur;
891 HAL_BOOL is2GHz = IS_CHAN_2GHZ(chan);
892
893 OS_MEMZERO(mask_m, sizeof(mask_m));
894 OS_MEMZERO(mask_p, sizeof(mask_p));
895
896 /*
897 * Need to verify range +/- 9.5 for static ht20, otherwise spur
898 * is out-of-band and can be ignored.
899 */
900 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
901 cur_bb_spur = ath_hal_getSpurChan(ah, i, is2GHz);
902 if (AR_NO_SPUR == cur_bb_spur)
903 break;
904 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
905 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
906 bb_spur = cur_bb_spur;
907 break;
908 }
909 }
910 if (AR_NO_SPUR == bb_spur)
911 return;
912
913 bin = bb_spur * 32;
914
915 tmp = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0));
916 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
917 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
918 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
919 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
920
921 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0), new);
922
923 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
924 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
925 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
926 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
927 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
928 OS_REG_WRITE(ah, AR_PHY_SPUR_REG, new);
929 /*
930 * Should offset bb_spur by +/- 10 MHz for dynamic 2040 MHz
931 * config, no offset for HT20.
932 * spur_delta_phase = bb_spur/40 * 2**21 for static ht20,
933 * /80 for dyn2040.
934 */
935 spur_delta_phase = ((bb_spur * 524288) / 100) &
936 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
937 /*
938 * in 11A mode the denominator of spur_freq_sd should be 40 and
939 * it should be 44 in 11G
940 */
941 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
942 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
943
944 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
945 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
946 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
947 OS_REG_WRITE(ah, AR_PHY_TIMING11, new);
948
949
950 /*
951 * ============================================
952 * pilot mask 1 [31:0] = +6..-26, no 0 bin
953 * pilot mask 2 [19:0] = +26..+7
954 *
955 * channel mask 1 [31:0] = +6..-26, no 0 bin
956 * channel mask 2 [19:0] = +26..+7
957 */
958 //cur_bin = -26;
959 cur_bin = -6000;
960 upper = bin + 100;
961 lower = bin - 100;
962
963 for (i = 0; i < 4; i++) {
964 int pilot_mask = 0;
965 int chan_mask = 0;
966 int bp = 0;
967 for (bp = 0; bp < 30; bp++) {
968 if ((cur_bin > lower) && (cur_bin < upper)) {
969 pilot_mask = pilot_mask | 0x1 << bp;
970 chan_mask = chan_mask | 0x1 << bp;
971 }
972 cur_bin += 100;
973 }
974 cur_bin += inc[i];
975 OS_REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
976 OS_REG_WRITE(ah, chan_mask_reg[i], chan_mask);
977 }
978
979 /* =================================================
980 * viterbi mask 1 based on channel magnitude
981 * four levels 0-3
982 * - mask (-27 to 27) (reg 64,0x9900 to 67,0x990c)
983 * [1 2 2 1] for -9.6 or [1 2 1] for +16
984 * - enable_mask_ppm, all bins move with freq
985 *
986 * - mask_select, 8 bits for rates (reg 67,0x990c)
987 * - mask_rate_cntl, 8 bits for rates (reg 67,0x990c)
988 * choose which mask to use mask or mask2
989 */
990
991 /*
992 * viterbi mask 2 2nd set for per data rate puncturing
993 * four levels 0-3
994 * - mask_select, 8 bits for rates (reg 67)
995 * - mask (-27 to 27) (reg 98,0x9988 to 101,0x9994)
996 * [1 2 2 1] for -9.6 or [1 2 1] for +16
997 */
998 cur_vit_mask = 6100;
999 upper = bin + 120;
1000 lower = bin - 120;
1001
1002 for (i = 0; i < 123; i++) {
1003 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1004 if ((abs(cur_vit_mask - bin)) < 75) {
1005 mask_amt = 1;
1006 } else {
1007 mask_amt = 0;
1008 }
1009 if (cur_vit_mask < 0) {
1010 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
1011 } else {
1012 mask_p[cur_vit_mask / 100] = mask_amt;
1013 }
1014 }
1015 cur_vit_mask -= 100;
1016 }
1017
1018 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
1019 | (mask_m[48] << 26) | (mask_m[49] << 24)
1020 | (mask_m[50] << 22) | (mask_m[51] << 20)
1021 | (mask_m[52] << 18) | (mask_m[53] << 16)
1022 | (mask_m[54] << 14) | (mask_m[55] << 12)
1023 | (mask_m[56] << 10) | (mask_m[57] << 8)
1024 | (mask_m[58] << 6) | (mask_m[59] << 4)
1025 | (mask_m[60] << 2) | (mask_m[61] << 0);
1026 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
1027 OS_REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
1028
1029 tmp_mask = (mask_m[31] << 28)
1030 | (mask_m[32] << 26) | (mask_m[33] << 24)
1031 | (mask_m[34] << 22) | (mask_m[35] << 20)
1032 | (mask_m[36] << 18) | (mask_m[37] << 16)
1033 | (mask_m[48] << 14) | (mask_m[39] << 12)
1034 | (mask_m[40] << 10) | (mask_m[41] << 8)
1035 | (mask_m[42] << 6) | (mask_m[43] << 4)
1036 | (mask_m[44] << 2) | (mask_m[45] << 0);
1037 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
1038 OS_REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
1039
1040 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
1041 | (mask_m[18] << 26) | (mask_m[18] << 24)
1042 | (mask_m[20] << 22) | (mask_m[20] << 20)
1043 | (mask_m[22] << 18) | (mask_m[22] << 16)
1044 | (mask_m[24] << 14) | (mask_m[24] << 12)
1045 | (mask_m[25] << 10) | (mask_m[26] << 8)
1046 | (mask_m[27] << 6) | (mask_m[28] << 4)
1047 | (mask_m[29] << 2) | (mask_m[30] << 0);
1048 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
1049 OS_REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
1050
1051 tmp_mask = (mask_m[ 0] << 30) | (mask_m[ 1] << 28)
1052 | (mask_m[ 2] << 26) | (mask_m[ 3] << 24)
1053 | (mask_m[ 4] << 22) | (mask_m[ 5] << 20)
1054 | (mask_m[ 6] << 18) | (mask_m[ 7] << 16)
1055 | (mask_m[ 8] << 14) | (mask_m[ 9] << 12)
1056 | (mask_m[10] << 10) | (mask_m[11] << 8)
1057 | (mask_m[12] << 6) | (mask_m[13] << 4)
1058 | (mask_m[14] << 2) | (mask_m[15] << 0);
1059 OS_REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
1060 OS_REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
1061
1062 tmp_mask = (mask_p[15] << 28)
1063 | (mask_p[14] << 26) | (mask_p[13] << 24)
1064 | (mask_p[12] << 22) | (mask_p[11] << 20)
1065 | (mask_p[10] << 18) | (mask_p[ 9] << 16)
1066 | (mask_p[ 8] << 14) | (mask_p[ 7] << 12)
1067 | (mask_p[ 6] << 10) | (mask_p[ 5] << 8)
1068 | (mask_p[ 4] << 6) | (mask_p[ 3] << 4)
1069 | (mask_p[ 2] << 2) | (mask_p[ 1] << 0);
1070 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
1071 OS_REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
1072
1073 tmp_mask = (mask_p[30] << 28)
1074 | (mask_p[29] << 26) | (mask_p[28] << 24)
1075 | (mask_p[27] << 22) | (mask_p[26] << 20)
1076 | (mask_p[25] << 18) | (mask_p[24] << 16)
1077 | (mask_p[23] << 14) | (mask_p[22] << 12)
1078 | (mask_p[21] << 10) | (mask_p[20] << 8)
1079 | (mask_p[19] << 6) | (mask_p[18] << 4)
1080 | (mask_p[17] << 2) | (mask_p[16] << 0);
1081 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
1082 OS_REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
1083
1084 tmp_mask = (mask_p[45] << 28)
1085 | (mask_p[44] << 26) | (mask_p[43] << 24)
1086 | (mask_p[42] << 22) | (mask_p[41] << 20)
1087 | (mask_p[40] << 18) | (mask_p[39] << 16)
1088 | (mask_p[38] << 14) | (mask_p[37] << 12)
1089 | (mask_p[36] << 10) | (mask_p[35] << 8)
1090 | (mask_p[34] << 6) | (mask_p[33] << 4)
1091 | (mask_p[32] << 2) | (mask_p[31] << 0);
1092 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
1093 OS_REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
1094
1095 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
1096 | (mask_p[59] << 26) | (mask_p[58] << 24)
1097 | (mask_p[57] << 22) | (mask_p[56] << 20)
1098 | (mask_p[55] << 18) | (mask_p[54] << 16)
1099 | (mask_p[53] << 14) | (mask_p[52] << 12)
1100 | (mask_p[51] << 10) | (mask_p[50] << 8)
1101 | (mask_p[49] << 6) | (mask_p[48] << 4)
1102 | (mask_p[47] << 2) | (mask_p[46] << 0);
1103 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
1104 OS_REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
1105}
1106
1107#ifdef AH_SUPPORT_AR9280
1108#define AR_BASE_FREQ_2GHZ 2300
1109#define AR_BASE_FREQ_5GHZ 4900
1110#define AR_SPUR_FEEQ_BOUND_HT40 19
1111#define AR_SPUR_FEEQ_BOUND_HT20 10
1112
1113static void
1114ar9280SpurMitigate(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
1115{
1116 static const int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1117 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 };
1118 static const int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1119 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 };
1120 static int inc[4] = { 0, 100, 0, 0 };
1121
1122 int bb_spur = AR_NO_SPUR;
1123 int freq;
1124 int bin, cur_bin;
1125 int bb_spur_off, spur_subchannel_sd;
1126 int spur_freq_sd;
1127 int spur_delta_phase;
1128 int denominator;
1129 int upper, lower, cur_vit_mask;
1130 int tmp, newVal;
1131 int i;
1132 CHAN_CENTERS centers;
1133
1134 int8_t mask_m[123];
1135 int8_t mask_p[123];
1136 int8_t mask_amt;
1137 int tmp_mask;
1138 int cur_bb_spur;
1139 HAL_BOOL is2GHz = IS_CHAN_2GHZ(ichan);
1140
1141 OS_MEMZERO(&mask_m, sizeof(int8_t) * 123);
1142 OS_MEMZERO(&mask_p, sizeof(int8_t) * 123);
1143
1144 ar5416GetChannelCenters(ah, ichan, &centers);
1145 freq = centers.synth_center;
1146
1147 /*
1148 * Need to verify range +/- 9.38 for static ht20 and +/- 18.75 for ht40,
1149 * otherwise spur is out-of-band and can be ignored.
1150 */
1151 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
1152 cur_bb_spur = ath_hal_getSpurChan(ah, i, is2GHz);
1153 /* Get actual spur freq in MHz from EEPROM read value */
1154 if (is2GHz) {
1155 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1156 } else {
1157 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1158 }
1159
1160 if (AR_NO_SPUR == cur_bb_spur)
1161 break;
1162 cur_bb_spur = cur_bb_spur - freq;
1163
1164 if (IS_CHAN_HT40(ichan)) {
1165 if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1166 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1167 bb_spur = cur_bb_spur;
1168 break;
1169 }
1170 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1171 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1172 bb_spur = cur_bb_spur;
1173 break;
1174 }
1175 }
1176
1177 if (AR_NO_SPUR == bb_spur) {
1178#if 1
1179 /*
1180 * MRC CCK can interfere with beacon detection and cause deaf/mute.
1181 * Disable MRC CCK for now.
1182 */
1183 OS_REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1184#else
1185 /* Enable MRC CCK if no spur is found in this channel. */
1186 OS_REG_SET_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1187#endif
1188 return;
1189 } else {
1190 /*
1191 * For Merlin, spur can break CCK MRC algorithm. Disable CCK MRC if spur
1192 * is found in this channel.
1193 */
1194 OS_REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1195 }
1196
1197 bin = bb_spur * 320;
1198
1199 tmp = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0));
1200
1201 newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1202 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1203 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1204 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1205 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0), newVal);
1206
1207 newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1208 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1209 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1210 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1211 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1212 OS_REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1213
1214 /* Pick control or extn channel to cancel the spur */
1215 if (IS_CHAN_HT40(ichan)) {
1216 if (bb_spur < 0) {
1217 spur_subchannel_sd = 1;
1218 bb_spur_off = bb_spur + 10;
1219 } else {
1220 spur_subchannel_sd = 0;
1221 bb_spur_off = bb_spur - 10;
1222 }
1223 } else {
1224 spur_subchannel_sd = 0;
1225 bb_spur_off = bb_spur;
1226 }
1227
1228 /*
1229 * spur_delta_phase = bb_spur/40 * 2**21 for static ht20,
1230 * /80 for dyn2040.
1231 */
1232 if (IS_CHAN_HT40(ichan))
1233 spur_delta_phase = ((bb_spur * 262144) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1234 else
1235 spur_delta_phase = ((bb_spur * 524288) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1236
1237 /*
1238 * in 11A mode the denominator of spur_freq_sd should be 40 and
1239 * it should be 44 in 11G
1240 */
1241 denominator = IS_CHAN_2GHZ(ichan) ? 44 : 40;
1242 spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1243
1244 newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1245 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1246 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1247 OS_REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1248
1249 /* Choose to cancel between control and extension channels */
1250 newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1251 OS_REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1252
1253 /*
1254 * ============================================
1255 * Set Pilot and Channel Masks
1256 *
1257 * pilot mask 1 [31:0] = +6..-26, no 0 bin
1258 * pilot mask 2 [19:0] = +26..+7
1259 *
1260 * channel mask 1 [31:0] = +6..-26, no 0 bin
1261 * channel mask 2 [19:0] = +26..+7
1262 */
1263 cur_bin = -6000;
1264 upper = bin + 100;
1265 lower = bin - 100;
1266
1267 for (i = 0; i < 4; i++) {
1268 int pilot_mask = 0;
1269 int chan_mask = 0;
1270 int bp = 0;
1271 for (bp = 0; bp < 30; bp++) {
1272 if ((cur_bin > lower) && (cur_bin < upper)) {
1273 pilot_mask = pilot_mask | 0x1 << bp;
1274 chan_mask = chan_mask | 0x1 << bp;
1275 }
1276 cur_bin += 100;
1277 }
1278 cur_bin += inc[i];
1279 OS_REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
1280 OS_REG_WRITE(ah, chan_mask_reg[i], chan_mask);
1281 }
1282
1283 /* =================================================
1284 * viterbi mask 1 based on channel magnitude
1285 * four levels 0-3
1286 * - mask (-27 to 27) (reg 64,0x9900 to 67,0x990c)
1287 * [1 2 2 1] for -9.6 or [1 2 1] for +16
1288 * - enable_mask_ppm, all bins move with freq
1289 *
1290 * - mask_select, 8 bits for rates (reg 67,0x990c)
1291 * - mask_rate_cntl, 8 bits for rates (reg 67,0x990c)
1292 * choose which mask to use mask or mask2
1293 */
1294
1295 /*
1296 * viterbi mask 2 2nd set for per data rate puncturing
1297 * four levels 0-3
1298 * - mask_select, 8 bits for rates (reg 67)
1299 * - mask (-27 to 27) (reg 98,0x9988 to 101,0x9994)
1300 * [1 2 2 1] for -9.6 or [1 2 1] for +16
1301 */
1302 cur_vit_mask = 6100;
1303 upper = bin + 120;
1304 lower = bin - 120;
1305
1306 for (i = 0; i < 123; i++) {
1307 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1308 if ((abs(cur_vit_mask - bin)) < 75) {
1309 mask_amt = 1;
1310 } else {
1311 mask_amt = 0;
1312 }
1313 if (cur_vit_mask < 0) {
1314 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
1315 } else {
1316 mask_p[cur_vit_mask / 100] = mask_amt;
1317 }
1318 }
1319 cur_vit_mask -= 100;
1320 }
1321
1322 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
1323 | (mask_m[48] << 26) | (mask_m[49] << 24)
1324 | (mask_m[50] << 22) | (mask_m[51] << 20)
1325 | (mask_m[52] << 18) | (mask_m[53] << 16)
1326 | (mask_m[54] << 14) | (mask_m[55] << 12)
1327 | (mask_m[56] << 10) | (mask_m[57] << 8)
1328 | (mask_m[58] << 6) | (mask_m[59] << 4)
1329 | (mask_m[60] << 2) | (mask_m[61] << 0);
1330 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
1331 OS_REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
1332
1333 tmp_mask = (mask_m[31] << 28)
1334 | (mask_m[32] << 26) | (mask_m[33] << 24)
1335 | (mask_m[34] << 22) | (mask_m[35] << 20)
1336 | (mask_m[36] << 18) | (mask_m[37] << 16)
1337 | (mask_m[48] << 14) | (mask_m[39] << 12)
1338 | (mask_m[40] << 10) | (mask_m[41] << 8)
1339 | (mask_m[42] << 6) | (mask_m[43] << 4)
1340 | (mask_m[44] << 2) | (mask_m[45] << 0);
1341 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
1342 OS_REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
1343
1344 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
1345 | (mask_m[18] << 26) | (mask_m[18] << 24)
1346 | (mask_m[20] << 22) | (mask_m[20] << 20)
1347 | (mask_m[22] << 18) | (mask_m[22] << 16)
1348 | (mask_m[24] << 14) | (mask_m[24] << 12)
1349 | (mask_m[25] << 10) | (mask_m[26] << 8)
1350 | (mask_m[27] << 6) | (mask_m[28] << 4)
1351 | (mask_m[29] << 2) | (mask_m[30] << 0);
1352 OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
1353 OS_REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
1354
1355 tmp_mask = (mask_m[ 0] << 30) | (mask_m[ 1] << 28)
1356 | (mask_m[ 2] << 26) | (mask_m[ 3] << 24)
1357 | (mask_m[ 4] << 22) | (mask_m[ 5] << 20)
1358 | (mask_m[ 6] << 18) | (mask_m[ 7] << 16)
1359 | (mask_m[ 8] << 14) | (mask_m[ 9] << 12)
1360 | (mask_m[10] << 10) | (mask_m[11] << 8)
1361 | (mask_m[12] << 6) | (mask_m[13] << 4)
1362 | (mask_m[14] << 2) | (mask_m[15] << 0);
1363 OS_REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
1364 OS_REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
1365
1366 tmp_mask = (mask_p[15] << 28)
1367 | (mask_p[14] << 26) | (mask_p[13] << 24)
1368 | (mask_p[12] << 22) | (mask_p[11] << 20)
1369 | (mask_p[10] << 18) | (mask_p[ 9] << 16)
1370 | (mask_p[ 8] << 14) | (mask_p[ 7] << 12)
1371 | (mask_p[ 6] << 10) | (mask_p[ 5] << 8)
1372 | (mask_p[ 4] << 6) | (mask_p[ 3] << 4)
1373 | (mask_p[ 2] << 2) | (mask_p[ 1] << 0);
1374 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
1375 OS_REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
1376
1377 tmp_mask = (mask_p[30] << 28)
1378 | (mask_p[29] << 26) | (mask_p[28] << 24)
1379 | (mask_p[27] << 22) | (mask_p[26] << 20)
1380 | (mask_p[25] << 18) | (mask_p[24] << 16)
1381 | (mask_p[23] << 14) | (mask_p[22] << 12)
1382 | (mask_p[21] << 10) | (mask_p[20] << 8)
1383 | (mask_p[19] << 6) | (mask_p[18] << 4)
1384 | (mask_p[17] << 2) | (mask_p[16] << 0);
1385 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
1386 OS_REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
1387
1388 tmp_mask = (mask_p[45] << 28)
1389 | (mask_p[44] << 26) | (mask_p[43] << 24)
1390 | (mask_p[42] << 22) | (mask_p[41] << 20)
1391 | (mask_p[40] << 18) | (mask_p[39] << 16)
1392 | (mask_p[38] << 14) | (mask_p[37] << 12)
1393 | (mask_p[36] << 10) | (mask_p[35] << 8)
1394 | (mask_p[34] << 6) | (mask_p[33] << 4)
1395 | (mask_p[32] << 2) | (mask_p[31] << 0);
1396 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
1397 OS_REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
1398
1399 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
1400 | (mask_p[59] << 26) | (mask_p[58] << 24)
1401 | (mask_p[57] << 22) | (mask_p[56] << 20)
1402 | (mask_p[55] << 18) | (mask_p[54] << 16)
1403 | (mask_p[53] << 14) | (mask_p[52] << 12)
1404 | (mask_p[51] << 10) | (mask_p[50] << 8)
1405 | (mask_p[49] << 6) | (mask_p[48] << 4)
1406 | (mask_p[47] << 2) | (mask_p[46] << 0);
1407 OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
1408 OS_REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
1409}
1410#endif /* AH_SUPPORT_AR9280 */
1411
1412/*
1413 * Set a limit on the overall output power. Used for dynamic
1414 * transmit power control and the like.
1415 *
1416 * NB: limit is in units of 0.5 dbM.
1417 */
1418HAL_BOOL
1419ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1420{
1421 uint16_t dummyXpdGains[2];
1422
1423 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1424 return ar5416SetTransmitPower(ah, AH_PRIVATE(ah)->ah_curchan,
1425 dummyXpdGains);
1426}
1427
1428HAL_BOOL
1429ar5416GetChipPowerLimits(struct ath_hal *ah, HAL_CHANNEL *chans, uint32_t nchans)
1430{
1431 struct ath_hal_5212 *ahp = AH5212(ah);
1432 int16_t minPower, maxPower;
1433 HAL_CHANNEL *chan;
1434 int i;
1435
1436 /*
1437 * Get Pier table max and min powers.
1438 */
1439 for (i = 0; i < nchans; i++) {
1440 chan = &chans[i];
1441 if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
1442 /* NB: rf code returns 1/4 dBm units, convert */
1443 chan->maxTxPower = maxPower / 2;
1444 chan->minTxPower = minPower / 2;
1445 } else {
1446 HALDEBUG(ah, HAL_DEBUG_ANY,
1447 "%s: no min/max power for %u/0x%x\n",
1448 __func__, chan->channel, chan->channelFlags);
1449 chan->maxTxPower = AR5416_MAX_RATE_POWER;
1450 chan->minTxPower = 0;
1451 }
1452 }
1453#ifdef AH_DEBUG
1454 for (i=0; i<nchans; i++) {
1455 HALDEBUG(ah, HAL_DEBUG_RESET,
1456 "Chan %d: MaxPow = %d MinPow = %d\n",
1457 chans[i].channel,chans[i].maxTxPower, chans[i].minTxPower);
1458 }
1459#endif
1460 return AH_TRUE;
1461}
1462
1463/* XXX gag, this is sick */
1464typedef enum Ar5416_Rates {
1465 rate6mb, rate9mb, rate12mb, rate18mb,
1466 rate24mb, rate36mb, rate48mb, rate54mb,
1467 rate1l, rate2l, rate2s, rate5_5l,
1468 rate5_5s, rate11l, rate11s, rateXr,
1469 rateHt20_0, rateHt20_1, rateHt20_2, rateHt20_3,
1470 rateHt20_4, rateHt20_5, rateHt20_6, rateHt20_7,
1471 rateHt40_0, rateHt40_1, rateHt40_2, rateHt40_3,
1472 rateHt40_4, rateHt40_5, rateHt40_6, rateHt40_7,
1473 rateDupCck, rateDupOfdm, rateExtCck, rateExtOfdm,
1474 Ar5416RateSize
1475} AR5416_RATES;
1476
1477/**************************************************************
1478 * ar5416SetTransmitPower
1479 *
1480 * Set the transmit power in the baseband for the given
1481 * operating channel and mode.
1482 */
1483static HAL_BOOL
1484ar5416SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t *rfXpdGain)
1485{
1486#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
1487#define N(a) (sizeof (a) / sizeof (a[0]))
1488
1489 MODAL_EEP_HEADER *pModal;
1490 struct ath_hal_5212 *ahp = AH5212(ah);
1491 int16_t ratesArray[Ar5416RateSize];
1492 int16_t txPowerIndexOffset = 0;
1493 uint8_t ht40PowerIncForPdadc = 2;
1494 int i;
1495
1496 uint16_t cfgCtl;
1497 uint16_t powerLimit;
1498 uint16_t twiceAntennaReduction;
1499 uint16_t twiceMaxRegulatoryPower;
1500 int16_t maxPower;
1501 HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1502 struct ar5416eeprom *pEepData = &ee->ee_base;
1503
1504 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1505
1506 /* Setup info for the actual eeprom */
1507 ath_hal_memzero(ratesArray, sizeof(ratesArray));
1508 cfgCtl = ath_hal_getctl(ah, (HAL_CHANNEL *)chan);
1509 powerLimit = chan->maxRegTxPower * 2;
1510 twiceAntennaReduction = chan->antennaMax;
1511 twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
1512 pModal = &pEepData->modalHeader[IS_CHAN_2GHZ(chan)];
1513 HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
1514 __func__,chan->channel, cfgCtl );
1515
1516 if (IS_EEP_MINOR_V2(ah)) {
1517 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1518 }
1519
1520 if (!ar5416SetPowerPerRateTable(ah, pEepData, chan,
1521 &ratesArray[0],cfgCtl,
1522 twiceAntennaReduction,
1523 twiceMaxRegulatoryPower, powerLimit)) {
1524 HALDEBUG(ah, HAL_DEBUG_ANY,
1525 "%s: unable to set tx power per rate table\n", __func__);
1526 return AH_FALSE;
1527 }
1528
1529 if (!ar5416SetPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) {
1530 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
1531 __func__);
1532 return AH_FALSE;
1533 }
1534
1535 maxPower = AH_MAX(ratesArray[rate6mb], ratesArray[rateHt20_0]);
1536
1537 if (IS_CHAN_2GHZ(chan)) {
1538 maxPower = AH_MAX(maxPower, ratesArray[rate1l]);
1539 }
1540
1541 if (IS_CHAN_HT40(chan)) {
1542 maxPower = AH_MAX(maxPower, ratesArray[rateHt40_0]);
1543 }
1544
1545 ahp->ah_tx6PowerInHalfDbm = maxPower;
1546 AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
1547 ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
1548
1549 /*
1550 * txPowerIndexOffset is set by the SetPowerTable() call -
1551 * adjust the rate table (0 offset if rates EEPROM not loaded)
1552 */
1553 for (i = 0; i < N(ratesArray); i++) {
1554 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1555 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1556 ratesArray[i] = AR5416_MAX_RATE_POWER;
1557 }
1558
1559#ifdef AH_EEPROM_DUMP
1560 ar5416PrintPowerPerRate(ah, ratesArray);
1561#endif
1562
1563 /* Write the OFDM power per rate set */
1564 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1565 POW_SM(ratesArray[rate18mb], 24)
1566 | POW_SM(ratesArray[rate12mb], 16)
1567 | POW_SM(ratesArray[rate9mb], 8)
1568 | POW_SM(ratesArray[rate6mb], 0)
1569 );
1570 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1571 POW_SM(ratesArray[rate54mb], 24)
1572 | POW_SM(ratesArray[rate48mb], 16)
1573 | POW_SM(ratesArray[rate36mb], 8)
1574 | POW_SM(ratesArray[rate24mb], 0)
1575 );
1576
1577 if (IS_CHAN_2GHZ(chan)) {
1578 /* Write the CCK power per rate set */
1579 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1580 POW_SM(ratesArray[rate2s], 24)
1581 | POW_SM(ratesArray[rate2l], 16)
1582 | POW_SM(ratesArray[rateXr], 8) /* XR target power */
1583 | POW_SM(ratesArray[rate1l], 0)
1584 );
1585 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1586 POW_SM(ratesArray[rate11s], 24)
1587 | POW_SM(ratesArray[rate11l], 16)
1588 | POW_SM(ratesArray[rate5_5s], 8)
1589 | POW_SM(ratesArray[rate5_5l], 0)
1590 );
1591 HALDEBUG(ah, HAL_DEBUG_RESET,
1592 "%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
1593 __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
1594 OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
1595 }
1596
1597 /* Write the HT20 power per rate set */
1598 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1599 POW_SM(ratesArray[rateHt20_3], 24)
1600 | POW_SM(ratesArray[rateHt20_2], 16)
1601 | POW_SM(ratesArray[rateHt20_1], 8)
1602 | POW_SM(ratesArray[rateHt20_0], 0)
1603 );
1604 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1605 POW_SM(ratesArray[rateHt20_7], 24)
1606 | POW_SM(ratesArray[rateHt20_6], 16)
1607 | POW_SM(ratesArray[rateHt20_5], 8)
1608 | POW_SM(ratesArray[rateHt20_4], 0)
1609 );
1610
1611 if (IS_CHAN_HT40(chan)) {
1612 /* Write the HT40 power per rate set */
1613 /* Correct PAR difference between HT40 and HT20/LEGACY */
1614 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1615 POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24)
1616 | POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16)
1617 | POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8)
1618 | POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)
1619 );
1620 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1621 POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24)
1622 | POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16)
1623 | POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8)
1624 | POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)
1625 );
1626 /* Write the Dup/Ext 40 power per rate set */
1627 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1628 POW_SM(ratesArray[rateExtOfdm], 24)
1629 | POW_SM(ratesArray[rateExtCck], 16)
1630 | POW_SM(ratesArray[rateDupOfdm], 8)
1631 | POW_SM(ratesArray[rateDupCck], 0)
1632 );
1633 }
1634
1635 /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
1636 OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1637 POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1638 | POW_SM(pModal->pwrDecreaseFor2Chain, 0)
1639 );
1640 return AH_TRUE;
1641#undef POW_SM
1642#undef N
1643}
1644
1645/*
1646 * Exported call to check for a recent gain reading and return
1647 * the current state of the thermal calibration gain engine.
1648 */
1649HAL_RFGAIN
1650ar5416GetRfgain(struct ath_hal *ah)
1651{
1652 return HAL_RFGAIN_INACTIVE;
1653}
1654
1655/*
1656 * Places all of hardware into reset
1657 */
1658HAL_BOOL
1659ar5416Disable(struct ath_hal *ah)
1660{
1661 if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1662 return AH_FALSE;
1663 return ar5416SetResetReg(ah, HAL_RESET_COLD);
1664}
1665
1666/*
1667 * Places the PHY and Radio chips into reset. A full reset
1668 * must be called to leave this state. The PCI/MAC/PCU are
1669 * not placed into reset as we must receive interrupt to
1670 * re-enable the hardware.
1671 */
1672HAL_BOOL
1673ar5416PhyDisable(struct ath_hal *ah)
1674{
1675 return ar5416SetResetReg(ah, HAL_RESET_WARM);
1676}
1677
1678/*
1679 * Write the given reset bit mask into the reset register
1680 */
1681HAL_BOOL
1682ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
1683{
1684 /*
1685 * Set force wake
1686 */
1687 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1688 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1689
1690 switch (type) {
1691 case HAL_RESET_POWER_ON:
1692 return ar5416SetResetPowerOn(ah);
1693 break;
1694 case HAL_RESET_WARM:
1695 case HAL_RESET_COLD:
1696 return ar5416SetReset(ah, type);
1697 break;
1698 default:
1699 return AH_FALSE;
1700 }
1701}
1702
1703static HAL_BOOL
1704ar5416SetResetPowerOn(struct ath_hal *ah)
1705{
1706 /* Power On Reset (Hard Reset) */
1707
1708 /*
1709 * Set force wake
1710 *
1711 * If the MAC was running, previously calling
1712 * reset will wake up the MAC but it may go back to sleep
1713 * before we can start polling.
1714 * Set force wake stops that
1715 * This must be called before initiating a hard reset.
1716 */
1717 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1718 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1719
1720 /*
1721 * RTC reset and clear
1722 */
1723 OS_REG_WRITE(ah, AR_RTC_RESET, 0);
1724 OS_DELAY(20);
1725 OS_REG_WRITE(ah, AR_RTC_RESET, 1);
1726
1727 /*
1728 * Poll till RTC is ON
1729 */
1730 if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
1731 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
1732 return AH_FALSE;
1733 }
1734
1735 return ar5416SetReset(ah, HAL_RESET_COLD);
1736}
1737
1738static HAL_BOOL
1739ar5416SetReset(struct ath_hal *ah, int type)
1740{
1741 uint32_t tmpReg;
1742
1743 /*
1744 * Force wake
1745 */
1746 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1747 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1748
1749 /*
1750 * Reset AHB
1751 */
1752 tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
1753 if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1754 OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1755 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
1756 } else {
1757 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1758 }
1759
1760 /*
1761 * Set Mac(BB,Phy) Warm Reset
1762 */
1763 switch (type) {
1764 case HAL_RESET_WARM:
1765 OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM);
1766 break;
1767 case HAL_RESET_COLD:
1768 OS_REG_WRITE(ah, AR_RTC_RC, AR_RTC_RC_MAC_WARM|AR_RTC_RC_MAC_COLD);
1769 break;
1770 default:
1771 HALASSERT(0);
1772 break;
1773 }
1774
1775 /*
1776 * Clear resets and force wakeup
1777 */
1778 OS_REG_WRITE(ah, AR_RTC_RC, 0);
1779 if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
1780 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
1781 return AH_FALSE;
1782 }
1783
1784 /* Clear AHB reset */
1785 OS_REG_WRITE(ah, AR_RC, 0);
1786
1787 /* Set register and descriptor swapping on
1788 * Bigendian platforms on cold reset
1789 */
1790#ifdef __BIG_ENDIAN__
1791 if (type == HAL_RESET_COLD) {
1792 uint32_t mask;
1793
1794 HALDEBUG(ah, HAL_DEBUG_RESET,
1795 "%s Applying descriptor swap\n", __func__);
1796
1797 mask = INIT_CONFIG_STATUS | AR_CFG_SWRD | AR_CFG_SWRG;
1798#ifndef AH_NEED_DESC_SWAP
1799 mask |= AR_CFG_SWTD;
1800#endif
1801 OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
1802 }
1803#endif
1804
1805 ar5416InitPLL(ah, AH_NULL);
1806
1807 return AH_TRUE;
1808}
1809
1810#ifndef IS_5GHZ_FAST_CLOCK_EN
1811#define IS_5GHZ_FAST_CLOCK_EN(ah, chan) AH_FALSE
1812#endif
1813
1814static void
1815ar5416InitPLL(struct ath_hal *ah, HAL_CHANNEL *chan)
1816{
1817 uint32_t pll;
1818
1819 if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1820 pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
1821
1822 if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
1823 pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
1824 } else if (chan && IS_CHAN_QUARTER_RATE(chan)) {
1825 pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
1826 }
1827 if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
1828 pll |= SM(0x28, AR_RTC_SOWL_PLL_DIV);
1829
1830 /*
1831 * PLL WAR for Merlin 2.0/2.1
1832 * When doing fast clock, set PLL to 0x142c
1833 * Else, set PLL to 0x2850 to prevent reset-to-reset variation
1834 */
1835 if (AR_SREV_MERLIN_20(ah)) {
1836 if (IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
1837 pll = 0x142c;
1838 } else {
1839 pll = 0x2850;
1840 }
1841 }
1842 } else {
1843 pll |= SM(0x2c, AR_RTC_SOWL_PLL_DIV);
1844 }
1845 } else if (AR_SREV_SOWL_10_OR_LATER(ah)) {
1846 pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
1847
1848 if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
1849 pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
1850 } else if (chan && IS_CHAN_QUARTER_RATE(chan)) {
1851 pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
1852 }
1853 if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
1854 pll |= SM(0x50, AR_RTC_SOWL_PLL_DIV);
1855 } else {
1856 pll |= SM(0x58, AR_RTC_SOWL_PLL_DIV);
1857 }
1858 } else {
1859 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1860
1861 if (chan != AH_NULL && IS_CHAN_HALF_RATE(chan)) {
1862 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1863 } else if (chan != AH_NULL && IS_CHAN_QUARTER_RATE(chan)) {
1864 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1865 }
1866 if (chan != AH_NULL && IS_CHAN_5GHZ(chan)) {
1867 pll |= SM(0xa, AR_RTC_PLL_DIV);
1868 } else {
1869 pll |= SM(0xb, AR_RTC_PLL_DIV);
1870 }
1871 }
1872 OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1873
1874 /* TODO:
1875 * For multi-band owl, switch between bands by reiniting the PLL.
1876 */
1877
1878 OS_DELAY(RTC_PLL_SETTLE_DELAY);
1879
1880 OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
1881}
1882
1883/*
1884 * Read EEPROM header info and program the device for correct operation
1885 * given the channel value.
1886 */
1887static HAL_BOOL
1888ar5416SetBoardValues(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
1889{
1890 const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1891 const struct ar5416eeprom *eep = &ee->ee_base;
1892 const MODAL_EEP_HEADER *pModal;
1893 int i, regChainOffset;
1894 uint8_t txRxAttenLocal; /* workaround for eeprom versions <= 14.2 */
1895
1896 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1897 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1898
1899 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44; /* workaround for eeprom versions <= 14.2 */
1900
1901 OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
1902 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1903 if (AR_SREV_MERLIN(ah)) {
1904 if (i >= 2) break;
1905 }
1906 if (AR_SREV_OWL_20_OR_LATER(ah) &&
1907 (AH5416(ah)->ah_rx_chainmask == 0x5 ||
1908 AH5416(ah)->ah_tx_chainmask == 0x5) && i != 0) {
1909 /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
1910 * only chains 0 and 2 populated
1911 */
1912 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1913 } else {
1914 regChainOffset = i * 0x1000;
1915 }
1916
1917 OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
1918 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
1919 (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
1920 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1921 SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1922 SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1923
1924 /*
1925 * Large signal upgrade.
1926 * XXX update
1927 */
1928
1929 if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
1930 OS_REG_WRITE(ah, AR_PHY_RXGAIN + regChainOffset,
1931 (OS_REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) & ~AR_PHY_RXGAIN_TXRX_ATTEN) |
1932 SM(IS_EEP_MINOR_V3(ah) ? pModal->txRxAttenCh[i] : txRxAttenLocal,
1933 AR_PHY_RXGAIN_TXRX_ATTEN));
1934
1935 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1936 (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) & ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
1937 SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
1938 }
1939 }
1940
1941 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
1942 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
1943 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
1944 OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
1945 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1946 | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1947 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1948 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1949
1950 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
1951
1952 if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1953 OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1954 pModal->thresh62);
1955 OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1956 pModal->thresh62);
1957 } else {
1958 OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
1959 pModal->thresh62);
1960 OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA_THRESH62,
1961 pModal->thresh62);
1962 }
1963
1964 /* Minor Version Specific application */
1965 if (IS_EEP_MINOR_V2(ah)) {
1966 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
1967 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
1968 }
1969
1970 if (IS_EEP_MINOR_V3(ah)) {
1971 if (IS_CHAN_HT40(chan)) {
1972 /* Overwrite switch settling with HT40 value */
1973 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
1974 }
1975
1976 if ((AR_SREV_OWL_20_OR_LATER(ah)) &&
1977 ( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5)){
1978 /* Reg Offsets are swapped for logical mapping */
1979 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1980 SM(pModal->bswMargin[2], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1981 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1982 SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1983 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1984 SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1985 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1986 SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1987 } else {
1988 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1989 SM(pModal->bswMargin[1], AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1990 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x1000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x1000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1991 SM(pModal->bswAtten[1], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1992 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_MARGIN) |
1993 SM(pModal->bswMargin[2],AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1994 OS_REG_WRITE(ah, AR_PHY_GAIN_2GHZ + 0x2000, (OS_REG_READ(ah, AR_PHY_GAIN_2GHZ + 0x2000) & ~AR_PHY_GAIN_2GHZ_BSW_ATTEN) |
1995 SM(pModal->bswAtten[2], AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1996 }
1997 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_MARGIN, pModal->bswMargin[0]);
1998 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ, AR_PHY_GAIN_2GHZ_BSW_ATTEN, pModal->bswAtten[0]);
1999 }
2000 return AH_TRUE;
2001}
2002
2003/*
2004 * Helper functions common for AP/CB/XB
2005 */
2006
2007/*
2008 * ar5416SetPowerPerRateTable
2009 *
2010 * Sets the transmit power in the baseband for the given
2011 * operating channel and mode.
2012 */
2013static HAL_BOOL
2014ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
2015 HAL_CHANNEL_INTERNAL *chan,
2016 int16_t *ratesArray, uint16_t cfgCtl,
2017 uint16_t AntennaReduction,
2018 uint16_t twiceMaxRegulatoryPower,
2019 uint16_t powerLimit)
2020{
2021#define N(a) (sizeof(a)/sizeof(a[0]))
2022/* Local defines to distinguish between extension and control CTL's */
2023#define EXT_ADDITIVE (0x8000)
2024#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
2025#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
2026#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
2027
2028 uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
2029 int i;
2030 int16_t twiceLargestAntenna;
2031 CAL_CTL_DATA *rep;
2032 CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
2033 CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
2034 CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
2035 int16_t scaledPower, minCtlPower;
2036
2037#define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
2038#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
2039 static const uint16_t ctlModesFor11a[] = {
2040 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
2041 };
2042 static const uint16_t ctlModesFor11g[] = {
2043 CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
2044 };
2045 const uint16_t *pCtlMode;
2046 uint16_t numCtlModes, ctlMode, freq;
2047 CHAN_CENTERS centers;
2048
2049 ar5416GetChannelCenters(ah, chan, &centers);
2050
2051 /* Compute TxPower reduction due to Antenna Gain */
2052
2053 twiceLargestAntenna = AH_MAX(AH_MAX(pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[0],
2054 pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
2055 pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
2056#if 0
2057 /* Turn it back on if we need to calculate per chain antenna gain reduction */
2058 /* Use only if the expected gain > 6dbi */
2059 /* Chain 0 is always used */
2060 twiceLargestAntenna = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[0];
2061
2062 /* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
2063 if (ahp->ah_tx_chainmask & 0x2)
2064 twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
2065 pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
2066
2067 if (ahp->ah_tx_chainmask & 0x4)
2068 twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
2069 pEepData->modalHeader[IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
2070#endif
2071 twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
2072
2073 /* XXX setup for 5212 use (really used?) */
2074 ath_hal_eepromSet(ah,
2075 IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
2076 twiceLargestAntenna);
2077
2078 /*
2079 * scaledPower is the minimum of the user input power level and
2080 * the regulatory allowed power level
2081 */
2082 scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
2083
2084 /* Reduce scaled Power by number of chains active to get to per chain tx power level */
2085 /* TODO: better value than these? */
2086 switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
2087 case 1:
2088 break;
2089 case 2:
2090 scaledPower -= pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
2091 break;
2092 case 3:
2093 scaledPower -= pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
2094 break;
2095 default:
2096 return AH_FALSE; /* Unsupported number of chains */
2097 }
2098
2099 scaledPower = AH_MAX(0, scaledPower);
2100
2101 /* Get target powers from EEPROM - our baseline for TX Power */
2102 if (IS_CHAN_2GHZ(chan)) {
2103 /* Setup for CTL modes */
2104 numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
2105 pCtlMode = ctlModesFor11g;
2106
2107 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
2108 AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
2109 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
2110 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
2111 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
2112 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
2113
2114 if (IS_CHAN_HT40(chan)) {
2115 numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
2116
2117 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
2118 AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
2119 /* Get target powers for extension channels */
2120 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
2121 AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
2122 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
2123 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
2124 }
2125 } else {
2126 /* Setup for CTL modes */
2127 numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
2128 pCtlMode = ctlModesFor11a;
2129
2130 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
2131 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
2132 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT20,
2133 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
2134
2135 if (IS_CHAN_HT40(chan)) {
2136 numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
2137
2138 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT40,
2139 AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
2140 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
2141 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
2142 }
2143 }
2144
2145 /*
2146 * For MIMO, need to apply regulatory caps individually across dynamically
2147 * running modes: CCK, OFDM, HT20, HT40
2148 *
2149 * The outer loop walks through each possible applicable runtime mode.
2150 * The inner loop walks through each ctlIndex entry in EEPROM.
2151 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
2152 *
2153 */
2154 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
2155
2156 HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
2157 (pCtlMode[ctlMode] == CTL_2GHT40);
2158 if (isHt40CtlMode) {
2159 freq = centers.ctl_center;
2160 } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
2161 freq = centers.ext_center;
2162 } else {
2163 freq = centers.ctl_center;
2164 }
2165
2166 /* walk through each CTL index stored in EEPROM */
2167 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
2168 uint16_t twiceMinEdgePower;
2169
2170 /* compare test group from regulatory channel list with test mode from pCtlMode list */
2171 if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
2172 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
2173 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
2174 rep = &(pEepData->ctlData[i]);
2175 twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
2176 rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
2177 IS_CHAN_2GHZ(chan));
2178 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2179 /* Find the minimum of all CTL edge powers that apply to this channel */
2180 twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
2181 } else {
2182 /* specific */
2183 twiceMaxEdgePower = twiceMinEdgePower;
2184 break;
2185 }
2186 }
2187 }
2188 minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
2189 /* Apply ctl mode to correct target power set */
2190 switch(pCtlMode[ctlMode]) {
2191 case CTL_11B:
2192 for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
2193 targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
2194 }
2195 break;
2196 case CTL_11A:
2197 case CTL_11G:
2198 for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
2199 targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
2200 }
2201 break;
2202 case CTL_5GHT20:
2203 case CTL_2GHT20:
2204 for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
2205 targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
2206 }
2207 break;
2208 case CTL_11B_EXT:
2209 targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
2210 break;
2211 case CTL_11A_EXT:
2212 case CTL_11G_EXT:
2213 targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
2214 break;
2215 case CTL_5GHT40:
2216 case CTL_2GHT40:
2217 for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
2218 targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
2219 }
2220 break;
2221 default:
2222 return AH_FALSE;
2223 break;
2224 }
2225 } /* end ctl mode checking */
2226
2227 /* Set rates Array from collected data */
2228 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
2229 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
2230 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
2231 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
2232 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
2233
2234 for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
2235 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
2236 }
2237
2238 if (IS_CHAN_2GHZ(chan)) {
2239 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
2240 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
2241 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
2242 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
2243 }
2244 if (IS_CHAN_HT40(chan)) {
2245 for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
2246 ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
2247 }
2248 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
2249 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
2250 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
2251 if (IS_CHAN_2GHZ(chan)) {
2252 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
2253 }
2254 }
2255 return AH_TRUE;
2256#undef EXT_ADDITIVE
2257#undef CTL_11A_EXT
2258#undef CTL_11G_EXT
2259#undef CTL_11B_EXT
2260#undef SUB_NUM_CTL_MODES_AT_5G_40
2261#undef SUB_NUM_CTL_MODES_AT_2G_40
2262#undef N
2263}
2264
2265/**************************************************************************
2266 * fbin2freq
2267 *
2268 * Get channel value from binary representation held in eeprom
2269 * RETURNS: the frequency in MHz
2270 */
2271static uint16_t
2272fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
2273{
2274 /*
2275 * Reserved value 0xFF provides an empty definition both as
2276 * an fbin and as a frequency - do not convert
2277 */
2278 if (fbin == AR5416_BCHAN_UNUSED) {
2279 return fbin;
2280 }
2281
2282 return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2283}
2284
2285/*
2286 * ar5416GetMaxEdgePower
2287 *
2288 * Find the maximum conformance test limit for the given channel and CTL info
2289 */
2290static uint16_t
2291ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
2292{
2293 uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
2294 int i;
2295
2296 /* Get the edge power */
2297 for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
2298 /*
2299 * If there's an exact channel match or an inband flag set
2300 * on the lower channel use the given rdEdgePower
2301 */
2302 if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
2303 twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
2304 break;
2305 } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
2306 if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
2307 twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
2308 }
2309 /* Leave loop - no more affecting edges possible in this monotonic increasing list */
2310 break;
2311 }
2312 }
2313 HALASSERT(twiceMaxEdgePower > 0);
2314 return twiceMaxEdgePower;
2315}
2316
2317/**************************************************************
2318 * ar5416GetTargetPowers
2319 *
2320 * Return the rates of target power for the given target power table
2321 * channel, and number of channels
2322 */
2323static void
2324ar5416GetTargetPowers(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan,
2325 CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
2326 CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
2327 HAL_BOOL isHt40Target)
2328{
2329 uint16_t clo, chi;
2330 int i;
2331 int matchIndex = -1, lowIndex = -1;
2332 uint16_t freq;
2333 CHAN_CENTERS centers;
2334
2335 ar5416GetChannelCenters(ah, chan, &centers);
2336 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
2337
2338 /* Copy the target powers into the temp channel list */
2339 if (freq <= fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
2340 matchIndex = 0;
2341 } else {
2342 for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2343 if (freq == fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) {
2344 matchIndex = i;
2345 break;
2346 } else if ((freq < fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) &&
2347 (freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan))))
2348 {
2349 lowIndex = i - 1;
2350 break;
2351 }
2352 }
2353 if ((matchIndex == -1) && (lowIndex == -1)) {
2354 HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan)));
2355 matchIndex = i - 1;
2356 }
2357 }
2358
2359 if (matchIndex != -1) {
2360 OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2361 } else {
2362 HALASSERT(lowIndex != -1);
2363 /*
2364 * Get the lower and upper channels, target powers,
2365 * and interpolate between them.
2366 */
2367 clo = fbin2freq(powInfo[lowIndex].bChannel, IS_CHAN_2GHZ(chan));
2368 chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IS_CHAN_2GHZ(chan));
2369
2370 for (i = 0; i < numRates; i++) {
2371 pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
2372 powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2373 }
2374 }
2375}
2376/**************************************************************
2377 * ar5416GetTargetPowersLeg
2378 *
2379 * Return the four rates of target power for the given target power table
2380 * channel, and number of channels
2381 */
2382static void
2383ar5416GetTargetPowersLeg(struct ath_hal *ah,
2384 HAL_CHANNEL_INTERNAL *chan,
2385 CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
2386 CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
2387 HAL_BOOL isExtTarget)
2388{
2389 uint16_t clo, chi;
2390 int i;
2391 int matchIndex = -1, lowIndex = -1;
2392 uint16_t freq;
2393 CHAN_CENTERS centers;
2394
2395 ar5416GetChannelCenters(ah, chan, &centers);
2396 freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
2397
2398 /* Copy the target powers into the temp channel list */
2399 if (freq <= fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
2400 matchIndex = 0;
2401 } else {
2402 for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2403 if (freq == fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) {
2404 matchIndex = i;
2405 break;
2406 } else if ((freq < fbin2freq(powInfo[i].bChannel, IS_CHAN_2GHZ(chan))) &&
2407 (freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan))))
2408 {
2409 lowIndex = i - 1;
2410 break;
2411 }
2412 }
2413 if ((matchIndex == -1) && (lowIndex == -1)) {
2414 HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IS_CHAN_2GHZ(chan)));
2415 matchIndex = i - 1;
2416 }
2417 }
2418
2419 if (matchIndex != -1) {
2420 OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2421 } else {
2422 HALASSERT(lowIndex != -1);
2423 /*
2424 * Get the lower and upper channels, target powers,
2425 * and interpolate between them.
2426 */
2427 clo = fbin2freq(powInfo[lowIndex].bChannel, IS_CHAN_2GHZ(chan));
2428 chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IS_CHAN_2GHZ(chan));
2429
2430 for (i = 0; i < numRates; i++) {
2431 pNewPower->tPow2x[i] = (uint8_t)interpolate(freq, clo, chi,
2432 powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2433 }
2434 }
2435}
2436
2437/**************************************************************
2438 * ar5416SetPowerCalTable
2439 *
2440 * Pull the PDADC piers from cal data and interpolate them across the given
2441 * points as well as from the nearest pier(s) to get a power detector
2442 * linear voltage to power level table.
2443 */
2444static HAL_BOOL
2445ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, HAL_CHANNEL_INTERNAL *chan, int16_t *pTxPowerIndexOffset)
2446{
2447 CAL_DATA_PER_FREQ *pRawDataset;
2448 uint8_t *pCalBChans = AH_NULL;
2449 uint16_t pdGainOverlap_t2;
2450 static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES];
2451 uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
2452 uint16_t numPiers, i, j;
2453 int16_t tMinCalPower;
2454 uint16_t numXpdGain, xpdMask;
2455 uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
2456 uint32_t reg32, regOffset, regChainOffset;
2457
2458 ath_hal_memzero(xpdGainValues, sizeof(xpdGainValues));
2459
2460 xpdMask = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].xpdGain;
2461
2462 if (IS_EEP_MINOR_V2(ah)) {
2463 pdGainOverlap_t2 = pEepData->modalHeader[IS_CHAN_2GHZ(chan)].pdGainOverlap;
2464 } else {
2465 pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
2466 }
2467
2468 if (IS_CHAN_2GHZ(chan)) {
2469 pCalBChans = pEepData->calFreqPier2G;
2470 numPiers = AR5416_NUM_2G_CAL_PIERS;
2471 } else {
2472 pCalBChans = pEepData->calFreqPier5G;
2473 numPiers = AR5416_NUM_5G_CAL_PIERS;
2474 }
2475
2476 numXpdGain = 0;
2477 /* Calculate the value of xpdgains from the xpdGain Mask */
2478 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
2479 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
2480 if (numXpdGain >= AR5416_NUM_PD_GAINS) {
2481 HALASSERT(0);
2482 break;
2483 }
2484 xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
2485 numXpdGain++;
2486 }
2487 }
2488
2489 /* Write the detector gain biases and their number */
2490 OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
2491 ~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
2492 SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
2493 SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | SM(xpdGainValues[2], AR_PHY_TPCRG1_PD_GAIN_3));
2494
2495 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
2496
2497 if (AR_SREV_OWL_20_OR_LATER(ah) &&
2498 ( AH5416(ah)->ah_rx_chainmask == 0x5 || AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
2499 /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
2500 * only chains 0 and 2 populated
2501 */
2502 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
2503 } else {
2504 regChainOffset = i * 0x1000;
2505 }
2506
2507 if (pEepData->baseEepHeader.txMask & (1 << i)) {
2508 if (IS_CHAN_2GHZ(chan)) {
2509 pRawDataset = pEepData->calPierData2G[i];
2510 } else {
2511 pRawDataset = pEepData->calPierData5G[i];
2512 }
2513
2514 ar5416GetGainBoundariesAndPdadcs(ah, chan, pRawDataset,
2515 pCalBChans, numPiers,
2516 pdGainOverlap_t2,
2517 &tMinCalPower, gainBoundaries,
2518 pdadcValues, numXpdGain);
2519
2520 if ((i == 0) || AR_SREV_OWL_20_OR_LATER(ah)) {
2521 /*
2522 * Note the pdadc table may not start at 0 dBm power, could be
2523 * negative or greater than 0. Need to offset the power
2524 * values by the amount of minPower for griffin
2525 */
2526
2527 OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
2528 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
2529 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
2530 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
2531 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
2532 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
2533 }
2534
2535 /* Write the power values into the baseband power table */
2536 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
2537
2538 for (j = 0; j < 32; j++) {
2539 reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0) |
2540 ((pdadcValues[4*j + 1] & 0xFF) << 8) |
2541 ((pdadcValues[4*j + 2] & 0xFF) << 16) |
2542 ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
2543 OS_REG_WRITE(ah, regOffset, reg32);
2544
2545#ifdef PDADC_DUMP
2546 ath_hal_printf(ah, "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
2547 i,
2548 4*j, pdadcValues[4*j],
2549 4*j+1, pdadcValues[4*j + 1],
2550 4*j+2, pdadcValues[4*j + 2],
2551 4*j+3, pdadcValues[4*j + 3]);
2552#endif
2553 regOffset += 4;
2554 }
2555 }
2556 }
2557 *pTxPowerIndexOffset = 0;
2558
2559 return AH_TRUE;
2560}
2561
2562/**************************************************************
2563 * ar5416GetGainBoundariesAndPdadcs
2564 *
2565 * Uses the data points read from EEPROM to reconstruct the pdadc power table
2566 * Called by ar5416SetPowerCalTable only.
2567 */
2568static void
2569ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
2570 HAL_CHANNEL_INTERNAL *chan, CAL_DATA_PER_FREQ *pRawDataSet,
2571 uint8_t * bChans, uint16_t availPiers,
2572 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
2573 uint8_t * pPDADCValues, uint16_t numXpdGains)
2574{
2575
2576 int i, j, k;
2577 int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */
2578 uint16_t idxL, idxR, numPiers; /* Pier indexes */
2579
2580 /* filled out Vpd table for all pdGains (chanL) */
2581 static uint8_t vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2582
2583 /* filled out Vpd table for all pdGains (chanR) */
2584 static uint8_t vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2585
2586 /* filled out Vpd table for all pdGains (interpolated) */
2587 static uint8_t vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2588
2589 uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR;
2590 uint8_t minPwrT4[AR5416_NUM_PD_GAINS];
2591 uint8_t maxPwrT4[AR5416_NUM_PD_GAINS];
2592 int16_t vpdStep;
2593 int16_t tmpVal;
2594 uint16_t sizeCurrVpdTable, maxIndex, tgtIndex;
2595 HAL_BOOL match;
2596 int16_t minDelta = 0;
2597 CHAN_CENTERS centers;
2598
2599 ar5416GetChannelCenters(ah, chan, &centers);
2600
2601 /* Trim numPiers for the number of populated channel Piers */
2602 for (numPiers = 0; numPiers < availPiers; numPiers++) {
2603 if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
2604 break;
2605 }
2606 }
2607
2608 /* Find pier indexes around the current channel */
2609 match = getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
2610 bChans, numPiers, &idxL, &idxR);
2611
2612 if (match) {
2613 /* Directly fill both vpd tables from the matching index */
2614 for (i = 0; i < numXpdGains; i++) {
2615 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
2616 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
2617 ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
2618 pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
2619 }
2620 } else {
2621 for (i = 0; i < numXpdGains; i++) {
2622 pVpdL = pRawDataSet[idxL].vpdPdg[i];
2623 pPwrL = pRawDataSet[idxL].pwrPdg[i];
2624 pVpdR = pRawDataSet[idxR].vpdPdg[i];
2625 pPwrR = pRawDataSet[idxR].pwrPdg[i];
2626
2627 /* Start Vpd interpolation from the max of the minimum powers */
2628 minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
2629
2630 /* End Vpd interpolation from the min of the max powers */
2631 maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
2632 HALASSERT(maxPwrT4[i] > minPwrT4[i]);
2633
2634 /* Fill pier Vpds */
2635 ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
2636 ar5416FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
2637
2638 /* Interpolate the final vpd */
2639 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
2640 vpdTableI[i][j] = (uint8_t)(interpolate((uint16_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
2641 bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
2642 }
2643 }
2644 }
2645 *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
2646
2647 k = 0; /* index for the final table */
2648 for (i = 0; i < numXpdGains; i++) {
2649 if (i == (numXpdGains - 1)) {
2650 pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
2651 } else {
2652 pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
2653 }
2654
2655 pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
2656
2657 /* NB: only applies to owl 1.0 */
2658 if ((i == 0) && !AR_SREV_OWL_20_OR_LATER(ah) ) {
2659 /*
2660 * fix the gain delta, but get a delta that can be applied to min to
2661 * keep the upper power values accurate, don't think max needs to
2662 * be adjusted because should not be at that area of the table?
2663 */
2664 minDelta = pPdGainBoundaries[0] - 23;
2665 pPdGainBoundaries[0] = 23;
2666 }
2667 else {
2668 minDelta = 0;
2669 }
2670
2671 /* Find starting index for this pdGain */
2672 if (i == 0) {
2673 ss = 0; /* for the first pdGain, start from index 0 */
2674 } else {
2675 /* need overlap entries extrapolated below. */
2676 ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
2677 }
2678 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
2679 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2680 /*
2681 *-ve ss indicates need to extrapolate data below for this pdGain
2682 */
2683 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2684 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
2685 pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
2686 ss++;
2687 }
2688
2689 sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
2690 tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
2691 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
2692
2693 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2694 pPDADCValues[k++] = vpdTableI[i][ss++];
2695 }
2696
2697 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
2698 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2699 /*
2700 * for last gain, pdGainBoundary == Pmax_t2, so will
2701 * have to extrapolate
2702 */
2703 if (tgtIndex > maxIndex) { /* need to extrapolate above */
2704 while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2705 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
2706 (ss - maxIndex +1) * vpdStep));
2707 pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
2708 ss++;
2709 }
2710 } /* extrapolated above */
2711 } /* for all pdGainUsed */
2712
2713 /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
2714 while (i < AR5416_PD_GAINS_IN_MASK) {
2715 pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
2716 i++;
2717 }
2718
2719 while (k < AR5416_NUM_PDADC_VALUES) {
2720 pPDADCValues[k] = pPDADCValues[k-1];
2721 k++;
2722 }
2723 return;
2724}
2725
2726/**************************************************************
2727 * getLowerUppderIndex
2728 *
2729 * Return indices surrounding the value in sorted integer lists.
2730 * Requirement: the input list must be monotonically increasing
2731 * and populated up to the list size
2732 * Returns: match is set if an index in the array matches exactly
2733 * or a the target is before or after the range of the array.
2734 */
2735HAL_BOOL
2736getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
2737 uint16_t *indexL, uint16_t *indexR)
2738{
2739 uint16_t i;
2740
2741 /*
2742 * Check first and last elements for beyond ordered array cases.
2743 */
2744 if (target <= pList[0]) {
2745 *indexL = *indexR = 0;
2746 return AH_TRUE;
2747 }
2748 if (target >= pList[listSize-1]) {
2749 *indexL = *indexR = (uint16_t)(listSize - 1);
2750 return AH_TRUE;
2751 }
2752
2753 /* look for value being near or between 2 values in list */
2754 for (i = 0; i < listSize - 1; i++) {
2755 /*
2756 * If value is close to the current value of the list
2757 * then target is not between values, it is one of the values
2758 */
2759 if (pList[i] == target) {
2760 *indexL = *indexR = i;
2761 return AH_TRUE;
2762 }
2763 /*
2764 * Look for value being between current value and next value
2765 * if so return these 2 values
2766 */
2767 if (target < pList[i + 1]) {
2768 *indexL = i;
2769 *indexR = (uint16_t)(i + 1);
2770 return AH_FALSE;
2771 }
2772 }
2773 HALASSERT(0);
2774 return AH_FALSE;
2775}
2776
2777/**************************************************************
2778 * ar5416FillVpdTable
2779 *
2780 * Fill the Vpdlist for indices Pmax-Pmin
2781 * Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
2782 */
2783static HAL_BOOL
2784ar5416FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
2785 uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
2786{
2787 uint16_t i, k;
2788 uint8_t currPwr = pwrMin;
2789 uint16_t idxL, idxR;
2790
2791 HALASSERT(pwrMax > pwrMin);
2792 for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
2793 getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
2794 &(idxL), &(idxR));
2795 if (idxR < 1)
2796 idxR = 1; /* extrapolate below */
2797 if (idxL == numIntercepts - 1)
2798 idxL = (uint16_t)(numIntercepts - 2); /* extrapolate above */
2799 if (pPwrList[idxL] == pPwrList[idxR])
2800 k = pVpdList[idxL];
2801 else
2802 k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
2803 (pPwrList[idxR] - pPwrList[idxL]) );
2804 HALASSERT(k < 256);
2805 pRetVpdList[i] = (uint8_t)k;
2806 currPwr += 2; /* half dB steps */
2807 }
2808
2809 return AH_TRUE;
2810}
2811
2812/**************************************************************************
2813 * interpolate
2814 *
2815 * Returns signed interpolated or the scaled up interpolated value
2816 */
2817static int16_t
2818interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
2819 int16_t targetLeft, int16_t targetRight)
2820{
2821 int16_t rv;
2822
2823 if (srcRight == srcLeft) {
2824 rv = targetLeft;
2825 } else {
2826 rv = (int16_t)( ((target - srcLeft) * targetRight +
2827 (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
2828 }
2829 return rv;
2830}
2831
2832static void
2833ar5416Set11nRegs(struct ath_hal *ah, HAL_CHANNEL *chan)
2834{
2835 uint32_t phymode;
2836 HAL_HT_MACMODE macmode; /* MAC - 20/40 mode */
2837
2838 if (!IS_CHAN_HT(chan))
2839 return;
2840
2841 /* Enable 11n HT, 20 MHz */
2842 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
2843 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
2844
2845 /* Configure baseband for dynamic 20/40 operation */
2846 if (IS_CHAN_HT40(chan)) {
2847 phymode |= AR_PHY_FC_DYN2040_EN | AR_PHY_FC_SHORT_GI_40;
2848
2849 /* Configure control (primary) channel at +-10MHz */
2850 if ((chan->channelFlags & CHANNEL_HT40PLUS))
2851 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
2852#if 0
2853 /* Configure 20/25 spacing */
2854 if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
2855 phymode |= AR_PHY_FC_DYN2040_EXT_CH;
2856#endif
2857 macmode = HAL_HT_MACMODE_2040;
2858 } else
2859 macmode = HAL_HT_MACMODE_20;
2860 OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
2861
2862 /* Configure MAC for 20/40 operation */
2863 ar5416Set11nMac2040(ah, macmode);
2864
2865 /* global transmit timeout (25 TUs default)*/
2866 /* XXX - put this elsewhere??? */
2867 OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
2868
2869 /* carrier sense timeout */
2870 OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
2871 OS_REG_WRITE(ah, AR_CST, 1 << AR_CST_TIMEOUT_LIMIT_S);
2872}
2873
2874void
2875ar5416GetChannelCenters(struct ath_hal *ah,
2876 HAL_CHANNEL_INTERNAL *chan, CHAN_CENTERS *centers)
2877{
2878 centers->ctl_center = chan->channel;
2879 centers->synth_center = chan->channel;
2880 /*
2881 * In 20/40 phy mode, the center frequency is
2882 * "between" the control and extension channels.
2883 */
2884 if (chan->channelFlags & CHANNEL_HT40PLUS) {
2885 centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
2886 centers->ext_center =
2887 centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
2888 } else if (chan->channelFlags & CHANNEL_HT40MINUS) {
2889 centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
2890 centers->ext_center =
2891 centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
2892 } else {
2893 centers->ext_center = chan->channel;
2894 }
2895}
2898#endif /* AH_SUPPORT_AR5416 */