Deleted Added
full compact
1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2004 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD: head/sys/dev/ath/ath_hal/ar5210/ar5210_reset.c 208643 2010-05-29 16:11:51Z rpaulo $
17 * $FreeBSD: head/sys/dev/ath/ath_hal/ar5210/ar5210_reset.c 234450 2012-04-19 03:26:21Z adrian $
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23
24#include "ar5210/ar5210.h"
25#include "ar5210/ar5210reg.h"
26#include "ar5210/ar5210phy.h"
27
28#include "ah_eeprom_v1.h"
29
30typedef struct {
31 uint32_t Offset;
32 uint32_t Value;
33} REGISTER_VAL;
34
35static const REGISTER_VAL ar5k0007_init[] = {
36#include "ar5210/ar5k_0007.ini"
37};
38
39/* Default Power Settings for channels outside of EEPROM range */
40static const uint8_t ar5k0007_pwrSettings[17] = {
41/* gain delta pc dac */
42/* 54 48 36 24 18 12 9 54 48 36 24 18 12 9 6 ob db */
43 9, 9, 0, 0, 0, 0, 0, 2, 2, 6, 6, 6, 6, 6, 6, 2, 2
44};
45
46/*
47 * The delay, in usecs, between writing AR_RC with a reset
48 * request and waiting for the chip to settle. If this is
49 * too short then the chip does not come out of sleep state.
50 * Note this value was empirically derived and may be dependent
51 * on the host machine (don't know--the problem was identified
52 * on an IBM 570e laptop; 10us delays worked on other systems).
53 */
54#define AR_RC_SETTLE_TIME 20000
55
56static HAL_BOOL ar5210SetResetReg(struct ath_hal *,
57 uint32_t resetMask, u_int delay);
58static HAL_BOOL ar5210SetChannel(struct ath_hal *, struct ieee80211_channel *);
59static void ar5210SetOperatingMode(struct ath_hal *, int opmode);
60
61/*
62 * Places the device in and out of reset and then places sane
63 * values in the registers based on EEPROM config, initialization
64 * vectors (as determined by the mode), and station configuration
65 *
66 * bChannelChange is used to preserve DMA/PCU registers across
67 * a HW Reset during channel change.
68 */
69HAL_BOOL
70ar5210Reset(struct ath_hal *ah, HAL_OPMODE opmode,
71 struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
72 HAL_STATUS *status)
73{
74#define N(a) (sizeof (a) /sizeof (a[0]))
75#define FAIL(_code) do { ecode = _code; goto bad; } while (0)
76 struct ath_hal_5210 *ahp = AH5210(ah);
77 const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
78 HAL_CHANNEL_INTERNAL *ichan;
79 HAL_STATUS ecode;
80 uint32_t ledstate;
81 int i, q;
82
83 HALDEBUG(ah, HAL_DEBUG_RESET,
84 "%s: opmode %u channel %u/0x%x %s channel\n", __func__,
85 opmode, chan->ic_freq, chan->ic_flags,
86 bChannelChange ? "change" : "same");
87
88 if (!IEEE80211_IS_CHAN_5GHZ(chan)) {
89 /* Only 11a mode */
90 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: channel not 5GHz\n", __func__);
91 FAIL(HAL_EINVAL);
92 }
93 /*
94 * Map public channel to private.
95 */
96 ichan = ath_hal_checkchannel(ah, chan);
97 if (ichan == AH_NULL) {
98 HALDEBUG(ah, HAL_DEBUG_ANY,
99 "%s: invalid channel %u/0x%x; no mapping\n",
100 __func__, chan->ic_freq, chan->ic_flags);
101 FAIL(HAL_EINVAL);
102 }
103 switch (opmode) {
104 case HAL_M_STA:
105 case HAL_M_IBSS:
106 case HAL_M_HOSTAP:
107 case HAL_M_MONITOR:
108 break;
109 default:
110 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
111 __func__, opmode);
112 FAIL(HAL_EINVAL);
113 break;
114 }
115
116 ledstate = OS_REG_READ(ah, AR_PCICFG) &
117 (AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
118
119 if (!ar5210ChipReset(ah, chan)) {
120 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n",
121 __func__);
122 FAIL(HAL_EIO);
123 }
124
125 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
126 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4));
127 ar5210SetOperatingMode(ah, opmode);
128
129 switch (opmode) {
130 case HAL_M_HOSTAP:
131 OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
132 OS_REG_WRITE(ah, AR_PCICFG,
133 AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
134 break;
135 case HAL_M_IBSS:
136 OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG | AR_BCR_BCMD);
137 OS_REG_WRITE(ah, AR_PCICFG,
138 AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
139 break;
140 case HAL_M_STA:
141 OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
142 OS_REG_WRITE(ah, AR_PCICFG,
143 AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
144 break;
145 case HAL_M_MONITOR:
146 OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
147 OS_REG_WRITE(ah, AR_PCICFG,
148 AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
149 break;
150 }
151
152 /* Restore previous led state */
153 OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
154
155 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
156 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
157
158 OS_REG_WRITE(ah, AR_TXDP0, 0);
159 OS_REG_WRITE(ah, AR_TXDP1, 0);
160 OS_REG_WRITE(ah, AR_RXDP, 0);
161
162 /*
163 * Initialize interrupt state.
164 */
165 (void) OS_REG_READ(ah, AR_ISR); /* cleared on read */
166 OS_REG_WRITE(ah, AR_IMR, 0);
167 OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
168 ahp->ah_maskReg = 0;
169
170 (void) OS_REG_READ(ah, AR_BSR); /* cleared on read */
171 OS_REG_WRITE(ah, AR_TXCFG, AR_DMASIZE_128B);
172 OS_REG_WRITE(ah, AR_RXCFG, AR_DMASIZE_128B);
173
174 OS_REG_WRITE(ah, AR_TOPS, 8); /* timeout prescale */
175 OS_REG_WRITE(ah, AR_RXNOFRM, 8); /* RX no frame timeout */
176 OS_REG_WRITE(ah, AR_RPGTO, 0); /* RX frame gap timeout */
177 OS_REG_WRITE(ah, AR_TXNOFRM, 0); /* TX no frame timeout */
178
179 OS_REG_WRITE(ah, AR_SFR, 0);
180 OS_REG_WRITE(ah, AR_MIBC, 0); /* unfreeze ctrs + clr state */
181 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
182 OS_REG_WRITE(ah, AR_CFP_DUR, 0);
183
184 ar5210SetRxFilter(ah, 0); /* nothing for now */
185 OS_REG_WRITE(ah, AR_MCAST_FIL0, 0); /* multicast filter */
186 OS_REG_WRITE(ah, AR_MCAST_FIL1, 0); /* XXX was 2 */
187
188 OS_REG_WRITE(ah, AR_TX_MASK0, 0);
189 OS_REG_WRITE(ah, AR_TX_MASK1, 0);
190 OS_REG_WRITE(ah, AR_CLR_TMASK, 1);
191 OS_REG_WRITE(ah, AR_TRIG_LEV, 1); /* minimum */
192
193 OS_REG_WRITE(ah, AR_DIAG_SW, 0);
194
195 OS_REG_WRITE(ah, AR_CFP_PERIOD, 0);
196 OS_REG_WRITE(ah, AR_TIMER0, 0); /* next beacon time */
197 OS_REG_WRITE(ah, AR_TSF_L32, 0); /* local clock */
198 OS_REG_WRITE(ah, AR_TIMER1, ~0); /* next DMA beacon alert */
199 OS_REG_WRITE(ah, AR_TIMER2, ~0); /* next SW beacon alert */
200 OS_REG_WRITE(ah, AR_TIMER3, 1); /* next ATIM window */
201
202 /* Write the INI values for PHYreg initialization */
203 for (i = 0; i < N(ar5k0007_init); i++) {
204 uint32_t reg = ar5k0007_init[i].Offset;
205 /* On channel change, don't reset the PCU registers */
206 if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
207 OS_REG_WRITE(ah, reg, ar5k0007_init[i].Value);
208 }
209
210 /* Setup the transmit power values for cards since 0x0[0-2]05 */
211 if (!ar5210SetTransmitPower(ah, chan)) {
212 HALDEBUG(ah, HAL_DEBUG_ANY,
213 "%s: error init'ing transmit power\n", __func__);
214 FAIL(HAL_EIO);
215 }
216
217 OS_REG_WRITE(ah, AR_PHY(10),
218 (OS_REG_READ(ah, AR_PHY(10)) & 0xFFFF00FF) |
219 (ee->ee_xlnaOn << 8));
220 OS_REG_WRITE(ah, AR_PHY(13),
221 (ee->ee_xpaOff << 24) | (ee->ee_xpaOff << 16) |
222 (ee->ee_xpaOn << 8) | ee->ee_xpaOn);
223 OS_REG_WRITE(ah, AR_PHY(17),
224 (OS_REG_READ(ah, AR_PHY(17)) & 0xFFFFC07F) |
225 ((ee->ee_antenna >> 1) & 0x3F80));
226 OS_REG_WRITE(ah, AR_PHY(18),
227 (OS_REG_READ(ah, AR_PHY(18)) & 0xFFFC0FFF) |
228 ((ee->ee_antenna << 10) & 0x3F000));
229 OS_REG_WRITE(ah, AR_PHY(25),
230 (OS_REG_READ(ah, AR_PHY(25)) & 0xFFF80FFF) |
231 ((ee->ee_thresh62 << 12) & 0x7F000));
232 OS_REG_WRITE(ah, AR_PHY(68),
233 (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) |
234 (ee->ee_antenna & 0x3));
235
236 if (!ar5210SetChannel(ah, chan)) {
237 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
238 __func__);
239 FAIL(HAL_EIO);
240 }
241 if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
242 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
243
244 /* Activate the PHY */
245 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ENABLE);
246
247 OS_DELAY(1000); /* Wait a bit (1 msec) */
248
249 /* calibrate the HW and poll the bit going to 0 for completion */
250 OS_REG_WRITE(ah, AR_PHY_AGCCTL,
251 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
252 (void) ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0);
253
254 /* Perform noise floor calibration and set status */
255 if (!ar5210CalNoiseFloor(ah, ichan)) {
256 chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
257 HALDEBUG(ah, HAL_DEBUG_ANY,
258 "%s: noise floor calibration failed\n", __func__);
259 FAIL(HAL_EIO);
260 }
261
262 for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
263 ar5210ResetTxQueue(ah, q);
264
265 if (AH_PRIVATE(ah)->ah_rfkillEnabled)
266 ar5210EnableRfKill(ah);
267
268 /*
269 * Writing to AR_BEACON will start timers. Hence it should be
270 * the last register to be written. Do not reset tsf, do not
271 * enable beacons at this point, but preserve other values
272 * like beaconInterval.
273 */
274 OS_REG_WRITE(ah, AR_BEACON,
275 (OS_REG_READ(ah, AR_BEACON) &
276 ~(AR_BEACON_EN | AR_BEACON_RESET_TSF)));
277
278 /* Restore user-specified slot time and timeouts */
279 if (ahp->ah_sifstime != (u_int) -1)
280 ar5210SetSifsTime(ah, ahp->ah_sifstime);
281 if (ahp->ah_slottime != (u_int) -1)
282 ar5210SetSlotTime(ah, ahp->ah_slottime);
283 if (ahp->ah_acktimeout != (u_int) -1)
284 ar5210SetAckTimeout(ah, ahp->ah_acktimeout);
285 if (ahp->ah_ctstimeout != (u_int) -1)
286 ar5210SetCTSTimeout(ah, ahp->ah_ctstimeout);
287 if (AH_PRIVATE(ah)->ah_diagreg != 0)
288 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
289
290 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
291
292 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
293
294 return AH_TRUE;
295bad:
296 if (status != AH_NULL)
297 *status = ecode;
298 return AH_FALSE;
299#undef FAIL
300#undef N
301}
302
303static void
304ar5210SetOperatingMode(struct ath_hal *ah, int opmode)
305{
306 struct ath_hal_5210 *ahp = AH5210(ah);
307 uint32_t val;
308
309 val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
310 switch (opmode) {
311 case HAL_M_HOSTAP:
312 OS_REG_WRITE(ah, AR_STA_ID1, val
313 | AR_STA_ID1_AP
314 | AR_STA_ID1_NO_PSPOLL
315 | AR_STA_ID1_DESC_ANTENNA
316 | ahp->ah_staId1Defaults);
317 break;
318 case HAL_M_IBSS:
319 OS_REG_WRITE(ah, AR_STA_ID1, val
320 | AR_STA_ID1_ADHOC
321 | AR_STA_ID1_NO_PSPOLL
322 | AR_STA_ID1_DESC_ANTENNA
323 | ahp->ah_staId1Defaults);
324 break;
325 case HAL_M_STA:
326 OS_REG_WRITE(ah, AR_STA_ID1, val
327 | AR_STA_ID1_NO_PSPOLL
328 | AR_STA_ID1_PWR_SV
329 | ahp->ah_staId1Defaults);
330 break;
331 case HAL_M_MONITOR:
332 OS_REG_WRITE(ah, AR_STA_ID1, val
333 | AR_STA_ID1_NO_PSPOLL
334 | ahp->ah_staId1Defaults);
335 break;
336 }
337}
338
339void
340ar5210SetPCUConfig(struct ath_hal *ah)
341{
342 ar5210SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
343}
344
345/*
346 * Places the PHY and Radio chips into reset. A full reset
347 * must be called to leave this state. The PCI/MAC/PCU are
348 * not placed into reset as we must receive interrupt to
349 * re-enable the hardware.
350 */
351HAL_BOOL
352ar5210PhyDisable(struct ath_hal *ah)
353{
354 return ar5210SetResetReg(ah, AR_RC_RPHY, 10);
355}
356
357/*
358 * Places all of hardware into reset
359 */
360HAL_BOOL
361ar5210Disable(struct ath_hal *ah)
362{
363#define AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
364 if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
365 return AH_FALSE;
366
367 /*
368 * Reset the HW - PCI must be reset after the rest of the
369 * device has been reset
370 */
371 if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
372 return AH_FALSE;
373 OS_DELAY(1000);
374 (void) ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME);
375 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
376
377 return AH_TRUE;
378#undef AR_RC_HW
379}
380
381/*
382 * Places the hardware into reset and then pulls it out of reset
383 */
384HAL_BOOL
385ar5210ChipReset(struct ath_hal *ah, struct ieee80211_channel *chan)
386{
387#define AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
388
389 HALDEBUG(ah, HAL_DEBUG_RESET, "%s turbo %s\n", __func__,
390 chan && IEEE80211_IS_CHAN_TURBO(chan) ?
391 "enabled" : "disabled");
392
393 if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
394 return AH_FALSE;
395
396 /* Place chip in turbo before reset to cleanly reset clocks */
397 OS_REG_WRITE(ah, AR_PHY_FRCTL,
398 chan && IEEE80211_IS_CHAN_TURBO(chan) ? AR_PHY_TURBO_MODE : 0);
399
400 /*
401 * Reset the HW.
402 * PCI must be reset after the rest of the device has been reset.
403 */
404 if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
405 return AH_FALSE;
406 OS_DELAY(1000);
407 if (!ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME))
408 return AH_FALSE;
409 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
410
411 /*
412 * Bring out of sleep mode (AGAIN)
413 *
414 * WARNING WARNING WARNING
415 *
416 * There is a problem with the chip where it doesn't always indicate
417 * that it's awake, so initializePowerUp() will fail.
418 */
419 if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
420 return AH_FALSE;
421
422 /* Clear warm reset reg */
423 return ar5210SetResetReg(ah, 0, 10);
424#undef AR_RC_HW
425}
426
427enum {
428 FIRPWR_M = 0x03fc0000,
429 FIRPWR_S = 18,
430 KCOARSEHIGH_M = 0x003f8000,
431 KCOARSEHIGH_S = 15,
432 KCOARSELOW_M = 0x00007f80,
433 KCOARSELOW_S = 7,
434 ADCSAT_ICOUNT_M = 0x0001f800,
435 ADCSAT_ICOUNT_S = 11,
436 ADCSAT_THRESH_M = 0x000007e0,
437 ADCSAT_THRESH_S = 5
438};
439
440/*
441 * Recalibrate the lower PHY chips to account for temperature/environment
442 * changes.
443 */
444HAL_BOOL
445ar5210PerCalibrationN(struct ath_hal *ah,
446 struct ieee80211_channel *chan, u_int chainMask,
447 HAL_BOOL longCal, HAL_BOOL *isCalDone)
448{
449 uint32_t regBeacon;
450 uint32_t reg9858, reg985c, reg9868;
451 HAL_CHANNEL_INTERNAL *ichan;
452
453 ichan = ath_hal_checkchannel(ah, chan);
454 if (ichan == AH_NULL)
455 return AH_FALSE;
456 /* Disable tx and rx */
457 OS_REG_WRITE(ah, AR_DIAG_SW,
458 OS_REG_READ(ah, AR_DIAG_SW) | (AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
459
460 /* Disable Beacon Enable */
461 regBeacon = OS_REG_READ(ah, AR_BEACON);
462 OS_REG_WRITE(ah, AR_BEACON, regBeacon & ~AR_BEACON_EN);
463
464 /* Delay 4ms to ensure that all tx and rx activity has ceased */
465 OS_DELAY(4000);
466
467 /* Disable AGC to radio traffic */
468 OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
469 /* Wait for the AGC traffic to cease. */
470 OS_DELAY(10);
471
472 /* Change Channel to relock synth */
473 if (!ar5210SetChannel(ah, chan))
474 return AH_FALSE;
475
476 /* wait for the synthesizer lock to stabilize */
477 OS_DELAY(1000);
478
479 /* Re-enable AGC to radio traffic */
480 OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
481
482 /*
483 * Configure the AGC so that it is highly unlikely (if not
484 * impossible) for it to send any gain changes to the analog
485 * chip. We store off the current values so that they can
486 * be rewritten below. Setting the following values:
487 * firpwr = -1
488 * Kcoursehigh = -1
489 * Kcourselow = -127
490 * ADCsat_icount = 2
491 * ADCsat_thresh = 12
492 */
493 reg9858 = OS_REG_READ(ah, 0x9858);
494 reg985c = OS_REG_READ(ah, 0x985c);
495 reg9868 = OS_REG_READ(ah, 0x9868);
496
497 OS_REG_WRITE(ah, 0x9858, (reg9858 & ~FIRPWR_M) |
498 ((-1 << FIRPWR_S) & FIRPWR_M));
499 OS_REG_WRITE(ah, 0x985c,
500 (reg985c & ~(KCOARSEHIGH_M | KCOARSELOW_M)) |
501 ((-1 << KCOARSEHIGH_S) & KCOARSEHIGH_M) |
502 ((-127 << KCOARSELOW_S) & KCOARSELOW_M));
503 OS_REG_WRITE(ah, 0x9868,
504 (reg9868 & ~(ADCSAT_ICOUNT_M | ADCSAT_THRESH_M)) |
505 ((2 << ADCSAT_ICOUNT_S) & ADCSAT_ICOUNT_M) |
506 ((12 << ADCSAT_THRESH_S) & ADCSAT_THRESH_M));
507
508 /* Wait for AGC changes to be enacted */
509 OS_DELAY(20);
510
511 /*
512 * We disable RF mix/gain stages for the PGA to avoid a
513 * race condition that will occur with receiving a frame
514 * and performing the AGC calibration. This will be
515 * re-enabled at the end of offset cal. We turn off AGC
516 * writes during this write as it will go over the analog bus.
517 */
518 OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
519 OS_DELAY(10); /* wait for the AGC traffic to cease */
520 OS_REG_WRITE(ah, 0x98D4, 0x21);
521 OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
522
523 /* wait to make sure that additional AGC traffic has quiesced */
524 OS_DELAY(1000);
525
526 /* AGC calibration (this was added to make the NF threshold check work) */
527 OS_REG_WRITE(ah, AR_PHY_AGCCTL,
528 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
529 if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0)) {
530 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: AGC calibration timeout\n",
531 __func__);
532 }
533
534 /* Rewrite our AGC values we stored off earlier (return AGC to normal operation) */
535 OS_REG_WRITE(ah, 0x9858, reg9858);
536 OS_REG_WRITE(ah, 0x985c, reg985c);
537 OS_REG_WRITE(ah, 0x9868, reg9868);
538
539 /* Perform noise floor and set status */
540 if (!ar5210CalNoiseFloor(ah, ichan)) {
541 /*
542 * Delay 5ms before retrying the noise floor -
543 * just to make sure. We're in an error
544 * condition here
545 */
546 HALDEBUG(ah, HAL_DEBUG_NFCAL | HAL_DEBUG_PERCAL,
547 "%s: Performing 2nd Noise Cal\n", __func__);
548 OS_DELAY(5000);
549 if (!ar5210CalNoiseFloor(ah, ichan))
550 chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
551 }
552
553 /* Clear tx and rx disable bit */
554 OS_REG_WRITE(ah, AR_DIAG_SW,
555 OS_REG_READ(ah, AR_DIAG_SW) & ~(AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
556
557 /* Re-enable Beacons */
558 OS_REG_WRITE(ah, AR_BEACON, regBeacon);
559
560 *isCalDone = AH_TRUE;
561
562 return AH_TRUE;
563}
564
565HAL_BOOL
566ar5210PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
567 HAL_BOOL *isIQdone)
568{
569 return ar5210PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
570}
571
572HAL_BOOL
573ar5210ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
574{
575 return AH_TRUE;
576}
577
578/*
579 * Writes the given reset bit mask into the reset register
580 */
581static HAL_BOOL
582ar5210SetResetReg(struct ath_hal *ah, uint32_t resetMask, u_int delay)
583{
584 uint32_t mask = resetMask ? resetMask : ~0;
585 HAL_BOOL rt;
586
587 OS_REG_WRITE(ah, AR_RC, resetMask);
588 /* need to wait at least 128 clocks when reseting PCI before read */
589 OS_DELAY(delay);
590
591 resetMask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
592 mask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
593 rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
594 if ((resetMask & AR_RC_RMAC) == 0) {
595 if (isBigEndian()) {
596 /*
597 * Set CFG, little-endian for register
598 * and descriptor accesses.
597 * Set CFG, little-endian for descriptor accesses.
598 */
600 mask = INIT_CONFIG_STATUS |
601 AR_CFG_SWTD | AR_CFG_SWRD | AR_CFG_SWRG;
602 OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
599 mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD;
600 OS_REG_WRITE(ah, AR_CFG, mask);
601 } else
602 OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
603 }
604 return rt;
605}
606
607
608/*
609 * Returns: the pcdac value
610 */
611static uint8_t
612getPcdac(struct ath_hal *ah, const struct tpcMap *pRD, uint8_t dBm)
613{
614 int32_t i;
615 int useNextEntry = AH_FALSE;
616 uint32_t interp;
617
618 for (i = AR_TP_SCALING_ENTRIES - 1; i >= 0; i--) {
619 /* Check for exact entry */
620 if (dBm == AR_I2DBM(i)) {
621 if (pRD->pcdac[i] != 63)
622 return pRD->pcdac[i];
623 useNextEntry = AH_TRUE;
624 } else if (dBm + 1 == AR_I2DBM(i) && i > 0) {
625 /* Interpolate for between entry with a logish scale */
626 if (pRD->pcdac[i] != 63 && pRD->pcdac[i-1] != 63) {
627 interp = (350 * (pRD->pcdac[i] - pRD->pcdac[i-1])) + 999;
628 interp = (interp / 1000) + pRD->pcdac[i-1];
629 return interp;
630 }
631 useNextEntry = AH_TRUE;
632 } else if (useNextEntry == AH_TRUE) {
633 /* Grab the next lowest */
634 if (pRD->pcdac[i] != 63)
635 return pRD->pcdac[i];
636 }
637 }
638
639 /* Return the lowest Entry if we haven't returned */
640 for (i = 0; i < AR_TP_SCALING_ENTRIES; i++)
641 if (pRD->pcdac[i] != 63)
642 return pRD->pcdac[i];
643
644 /* No value to return from table */
645#ifdef AH_DEBUG
646 ath_hal_printf(ah, "%s: empty transmit power table?\n", __func__);
647#endif
648 return 1;
649}
650
651/*
652 * Find or interpolates the gainF value from the table ptr.
653 */
654static uint8_t
655getGainF(struct ath_hal *ah, const struct tpcMap *pRD,
656 uint8_t pcdac, uint8_t *dBm)
657{
658 uint32_t interp;
659 int low, high, i;
660
661 low = high = -1;
662
663 for (i = 0; i < AR_TP_SCALING_ENTRIES; i++) {
664 if(pRD->pcdac[i] == 63)
665 continue;
666 if (pcdac == pRD->pcdac[i]) {
667 *dBm = AR_I2DBM(i);
668 return pRD->gainF[i]; /* Exact Match */
669 }
670 if (pcdac > pRD->pcdac[i])
671 low = i;
672 if (pcdac < pRD->pcdac[i]) {
673 high = i;
674 if (low == -1) {
675 *dBm = AR_I2DBM(i);
676 /* PCDAC is lower than lowest setting */
677 return pRD->gainF[i];
678 }
679 break;
680 }
681 }
682 if (i >= AR_TP_SCALING_ENTRIES && low == -1) {
683 /* No settings were found */
684#ifdef AH_DEBUG
685 ath_hal_printf(ah,
686 "%s: no valid entries in the pcdac table: %d\n",
687 __func__, pcdac);
688#endif
689 return 63;
690 }
691 if (i >= AR_TP_SCALING_ENTRIES) {
692 /* PCDAC setting was above the max setting in the table */
693 *dBm = AR_I2DBM(low);
694 return pRD->gainF[low];
695 }
696 /* Only exact if table has no missing entries */
697 *dBm = (low + high) + 3;
698
699 /*
700 * Perform interpolation between low and high values to find gainF
701 * linearly scale the pcdac between low and high
702 */
703 interp = ((pcdac - pRD->pcdac[low]) * 1000) /
704 (pRD->pcdac[high] - pRD->pcdac[low]);
705 /*
706 * Multiply the scale ratio by the gainF difference
707 * (plus a rnd up factor)
708 */
709 interp = ((interp * (pRD->gainF[high] - pRD->gainF[low])) + 999) / 1000;
710
711 /* Add ratioed gain_f to low gain_f value */
712 return interp + pRD->gainF[low];
713}
714
715HAL_BOOL
716ar5210SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
717{
718 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, AR5210_MAX_RATE_POWER);
719 /* XXX flush to h/w */
720 return AH_TRUE;
721}
722
723/*
724 * Get TXPower values and set them in the radio
725 */
726static HAL_BOOL
727setupPowerSettings(struct ath_hal *ah, const struct ieee80211_channel *chan,
728 uint8_t cp[17])
729{
730 uint16_t freq = ath_hal_gethwchannel(ah, chan);
731 const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
732 uint8_t gainFRD, gainF36, gainF48, gainF54;
733 uint8_t dBmRD, dBm36, dBm48, dBm54, dontcare;
734 uint32_t rd, group;
735 const struct tpcMap *pRD;
736
737 /* Set OB/DB Values regardless of channel */
738 cp[15] = (ee->ee_biasCurrents >> 4) & 0x7;
739 cp[16] = ee->ee_biasCurrents & 0x7;
740
741 if (freq < 5170 || freq > 5320) {
742 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u\n",
743 __func__, freq);
744 return AH_FALSE;
745 }
746
747 HALASSERT(ee->ee_version >= AR_EEPROM_VER1 &&
748 ee->ee_version < AR_EEPROM_VER3);
749
750 /* Match regulatory domain */
751 for (rd = 0; rd < AR_REG_DOMAINS_MAX; rd++)
752 if (AH_PRIVATE(ah)->ah_currentRD == ee->ee_regDomain[rd])
753 break;
754 if (rd == AR_REG_DOMAINS_MAX) {
755#ifdef AH_DEBUG
756 ath_hal_printf(ah,
757 "%s: no calibrated regulatory domain matches the "
758 "current regularly domain (0x%0x)\n", __func__,
759 AH_PRIVATE(ah)->ah_currentRD);
760#endif
761 return AH_FALSE;
762 }
763 group = ((freq - 5170) / 10);
764
765 if (group > 11) {
766 /* Pull 5.29 into the 5.27 group */
767 group--;
768 }
769
770 /* Integer divide will set group from 0 to 4 */
771 group = group / 3;
772 pRD = &ee->ee_tpc[group];
773
774 /* Set PC DAC Values */
775 cp[14] = pRD->regdmn[rd];
776 cp[9] = AH_MIN(pRD->regdmn[rd], pRD->rate36);
777 cp[8] = AH_MIN(pRD->regdmn[rd], pRD->rate48);
778 cp[7] = AH_MIN(pRD->regdmn[rd], pRD->rate54);
779
780 /* Find Corresponding gainF values for RD, 36, 48, 54 */
781 gainFRD = getGainF(ah, pRD, pRD->regdmn[rd], &dBmRD);
782 gainF36 = getGainF(ah, pRD, cp[9], &dBm36);
783 gainF48 = getGainF(ah, pRD, cp[8], &dBm48);
784 gainF54 = getGainF(ah, pRD, cp[7], &dBm54);
785
786 /* Power Scale if requested */
787 if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) {
788 static const uint16_t tpcScaleReductionTable[5] =
789 { 0, 3, 6, 9, AR5210_MAX_RATE_POWER };
790 uint16_t tpScale;
791
792 tpScale = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
793 if (dBmRD < tpScale+3)
794 dBmRD = 3; /* min */
795 else
796 dBmRD -= tpScale;
797 cp[14] = getPcdac(ah, pRD, dBmRD);
798 gainFRD = getGainF(ah, pRD, cp[14], &dontcare);
799 dBm36 = AH_MIN(dBm36, dBmRD);
800 cp[9] = getPcdac(ah, pRD, dBm36);
801 gainF36 = getGainF(ah, pRD, cp[9], &dontcare);
802 dBm48 = AH_MIN(dBm48, dBmRD);
803 cp[8] = getPcdac(ah, pRD, dBm48);
804 gainF48 = getGainF(ah, pRD, cp[8], &dontcare);
805 dBm54 = AH_MIN(dBm54, dBmRD);
806 cp[7] = getPcdac(ah, pRD, dBm54);
807 gainF54 = getGainF(ah, pRD, cp[7], &dontcare);
808 }
809 /* Record current dBm at rate 6 */
810 AH_PRIVATE(ah)->ah_maxPowerLevel = 2*dBmRD;
811
812 cp[13] = cp[12] = cp[11] = cp[10] = cp[14];
813
814 /* Set GainF Values */
815 cp[0] = gainFRD - gainF54;
816 cp[1] = gainFRD - gainF48;
817 cp[2] = gainFRD - gainF36;
818 /* 9, 12, 18, 24 have no gain_delta from 6 */
819 cp[3] = cp[4] = cp[5] = cp[6] = 0;
820 return AH_TRUE;
821}
822
823/*
824 * Places the device in and out of reset and then places sane
825 * values in the registers based on EEPROM config, initialization
826 * vectors (as determined by the mode), and station configuration
827 */
828HAL_BOOL
829ar5210SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan)
830{
831#define N(a) (sizeof (a) / sizeof (a[0]))
832 static const uint32_t pwr_regs_start[17] = {
833 0x00000000, 0x00000000, 0x00000000,
834 0x00000000, 0x00000000, 0xf0000000,
835 0xcc000000, 0x00000000, 0x00000000,
836 0x00000000, 0x0a000000, 0x000000e2,
837 0x0a000020, 0x01000002, 0x01000018,
838 0x40000000, 0x00000418
839 };
840 uint16_t i;
841 uint8_t cp[sizeof(ar5k0007_pwrSettings)];
842 uint32_t pwr_regs[17];
843
844 OS_MEMCPY(pwr_regs, pwr_regs_start, sizeof(pwr_regs));
845 OS_MEMCPY(cp, ar5k0007_pwrSettings, sizeof(cp));
846
847 /* Check the EEPROM tx power calibration settings */
848 if (!setupPowerSettings(ah, chan, cp)) {
849#ifdef AH_DEBUG
850 ath_hal_printf(ah, "%s: unable to setup power settings\n",
851 __func__);
852#endif
853 return AH_FALSE;
854 }
855 if (cp[15] < 1 || cp[15] > 5) {
856#ifdef AH_DEBUG
857 ath_hal_printf(ah, "%s: OB out of range (%u)\n",
858 __func__, cp[15]);
859#endif
860 return AH_FALSE;
861 }
862 if (cp[16] < 1 || cp[16] > 5) {
863#ifdef AH_DEBUG
864 ath_hal_printf(ah, "%s: DB out of range (%u)\n",
865 __func__, cp[16]);
866#endif
867 return AH_FALSE;
868 }
869
870 /* reverse bits of the transmit power array */
871 for (i = 0; i < 7; i++)
872 cp[i] = ath_hal_reverseBits(cp[i], 5);
873 for (i = 7; i < 15; i++)
874 cp[i] = ath_hal_reverseBits(cp[i], 6);
875
876 /* merge transmit power values into the register - quite gross */
877 pwr_regs[0] |= ((cp[1] << 5) & 0xE0) | (cp[0] & 0x1F);
878 pwr_regs[1] |= ((cp[3] << 7) & 0x80) | ((cp[2] << 2) & 0x7C) |
879 ((cp[1] >> 3) & 0x03);
880 pwr_regs[2] |= ((cp[4] << 4) & 0xF0) | ((cp[3] >> 1) & 0x0F);
881 pwr_regs[3] |= ((cp[6] << 6) & 0xC0) | ((cp[5] << 1) & 0x3E) |
882 ((cp[4] >> 4) & 0x01);
883 pwr_regs[4] |= ((cp[7] << 3) & 0xF8) | ((cp[6] >> 2) & 0x07);
884 pwr_regs[5] |= ((cp[9] << 7) & 0x80) | ((cp[8] << 1) & 0x7E) |
885 ((cp[7] >> 5) & 0x01);
886 pwr_regs[6] |= ((cp[10] << 5) & 0xE0) | ((cp[9] >> 1) & 0x1F);
887 pwr_regs[7] |= ((cp[11] << 3) & 0xF8) | ((cp[10] >> 3) & 0x07);
888 pwr_regs[8] |= ((cp[12] << 1) & 0x7E) | ((cp[11] >> 5) & 0x01);
889 pwr_regs[9] |= ((cp[13] << 5) & 0xE0);
890 pwr_regs[10] |= ((cp[14] << 3) & 0xF8) | ((cp[13] >> 3) & 0x07);
891 pwr_regs[11] |= ((cp[14] >> 5) & 0x01);
892
893 /* Set OB */
894 pwr_regs[8] |= (ath_hal_reverseBits(cp[15], 3) << 7) & 0x80;
895 pwr_regs[9] |= (ath_hal_reverseBits(cp[15], 3) >> 1) & 0x03;
896
897 /* Set DB */
898 pwr_regs[9] |= (ath_hal_reverseBits(cp[16], 3) << 2) & 0x1C;
899
900 /* Write the registers */
901 for (i = 0; i < N(pwr_regs)-1; i++)
902 OS_REG_WRITE(ah, 0x0000989c, pwr_regs[i]);
903 /* last write is a flush */
904 OS_REG_WRITE(ah, 0x000098d4, pwr_regs[i]);
905
906 return AH_TRUE;
907#undef N
908}
909
910/*
911 * Takes the MHz channel value and sets the Channel value
912 *
913 * ASSUMES: Writes enabled to analog bus before AGC is active
914 * or by disabling the AGC.
915 */
916static HAL_BOOL
917ar5210SetChannel(struct ath_hal *ah, struct ieee80211_channel *chan)
918{
919 uint16_t freq = ath_hal_gethwchannel(ah, chan);
920 uint32_t data;
921
922 /* Set the Channel */
923 data = ath_hal_reverseBits((freq - 5120)/10, 5);
924 data = (data << 1) | 0x41;
925 OS_REG_WRITE(ah, AR_PHY(0x27), data);
926 OS_REG_WRITE(ah, AR_PHY(0x30), 0);
927 AH_PRIVATE(ah)->ah_curchan = chan;
928 return AH_TRUE;
929}
930
931int16_t
932ar5210GetNoiseFloor(struct ath_hal *ah)
933{
934 int16_t nf;
935
936 nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
937 if (nf & 0x100)
938 nf = 0 - ((nf ^ 0x1ff) + 1);
939 return nf;
940}
941
942#define NORMAL_NF_THRESH (-72)
943/*
944 * Peform the noisefloor calibration and check for
945 * any constant channel interference
946 *
947 * Returns: TRUE for a successful noise floor calibration; else FALSE
948 */
949HAL_BOOL
950ar5210CalNoiseFloor(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
951{
952 int32_t nf, nfLoops;
953
954 /* Calibrate the noise floor */
955 OS_REG_WRITE(ah, AR_PHY_AGCCTL,
956 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_NF);
957
958 /* Do not read noise floor until it has done the first update */
959 if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_NF, 0)) {
960#ifdef ATH_HAL_DEBUG
961 ath_hal_printf(ah, " -PHY NF Reg state: 0x%x\n",
962 OS_REG_READ(ah, AR_PHY_AGCCTL));
963 ath_hal_printf(ah, " -MAC Reset Reg state: 0x%x\n",
964 OS_REG_READ(ah, AR_RC));
965 ath_hal_printf(ah, " -PHY Active Reg state: 0x%x\n",
966 OS_REG_READ(ah, AR_PHY_ACTIVE));
967#endif /* ATH_HAL_DEBUG */
968 return AH_FALSE;
969 }
970
971 nf = 0;
972 /* Keep checking until the floor is below the threshold or the nf is done */
973 for (nfLoops = 0; ((nfLoops < 21) && (nf > NORMAL_NF_THRESH)); nfLoops++) {
974 OS_DELAY(1000); /* Sleep for 1 ms */
975 nf = ar5210GetNoiseFloor(ah);
976 }
977
978 if (nf > NORMAL_NF_THRESH) {
979 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Bad noise cal %d\n",
980 __func__, nf);
981 ichan->rawNoiseFloor = 0;
982 return AH_FALSE;
983 }
984 ichan->rawNoiseFloor = nf;
985 return AH_TRUE;
986}
987
988/*
989 * Adjust NF based on statistical values for 5GHz frequencies.
990 */
991int16_t
992ar5210GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
993{
994 return 0;
995}
996
997HAL_RFGAIN
998ar5210GetRfgain(struct ath_hal *ah)
999{
1000 return HAL_RFGAIN_INACTIVE;
1001}