Deleted Added
full compact
cam_xpt.c (227637) cam_xpt.c (228022)
1/*-
2 * Implementation of the Common Access Method Transport (XPT) layer.
3 *
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
1/*-
2 * Implementation of the Common Access Method Transport (XPT) layer.
3 *
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/cam/cam_xpt.c 227637 2011-11-17 21:07:56Z mav $");
31__FBSDID("$FreeBSD: head/sys/cam/cam_xpt.c 228022 2011-11-27 15:43:40Z marius $");
32
33#include <sys/param.h>
34#include <sys/bus.h>
35#include <sys/systm.h>
36#include <sys/types.h>
37#include <sys/malloc.h>
38#include <sys/kernel.h>
39#include <sys/time.h>
40#include <sys/conf.h>
41#include <sys/fcntl.h>
42#include <sys/interrupt.h>
43#include <sys/sbuf.h>
44#include <sys/taskqueue.h>
45
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/sysctl.h>
49#include <sys/kthread.h>
50
51#ifdef PC98
52#include <pc98/pc98/pc98_machdep.h> /* geometry translation */
53#endif
54
55#include <cam/cam.h>
56#include <cam/cam_ccb.h>
57#include <cam/cam_periph.h>
58#include <cam/cam_queue.h>
59#include <cam/cam_sim.h>
60#include <cam/cam_xpt.h>
61#include <cam/cam_xpt_sim.h>
62#include <cam/cam_xpt_periph.h>
63#include <cam/cam_xpt_internal.h>
64#include <cam/cam_debug.h>
65
66#include <cam/scsi/scsi_all.h>
67#include <cam/scsi/scsi_message.h>
68#include <cam/scsi/scsi_pass.h>
32
33#include <sys/param.h>
34#include <sys/bus.h>
35#include <sys/systm.h>
36#include <sys/types.h>
37#include <sys/malloc.h>
38#include <sys/kernel.h>
39#include <sys/time.h>
40#include <sys/conf.h>
41#include <sys/fcntl.h>
42#include <sys/interrupt.h>
43#include <sys/sbuf.h>
44#include <sys/taskqueue.h>
45
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/sysctl.h>
49#include <sys/kthread.h>
50
51#ifdef PC98
52#include <pc98/pc98/pc98_machdep.h> /* geometry translation */
53#endif
54
55#include <cam/cam.h>
56#include <cam/cam_ccb.h>
57#include <cam/cam_periph.h>
58#include <cam/cam_queue.h>
59#include <cam/cam_sim.h>
60#include <cam/cam_xpt.h>
61#include <cam/cam_xpt_sim.h>
62#include <cam/cam_xpt_periph.h>
63#include <cam/cam_xpt_internal.h>
64#include <cam/cam_debug.h>
65
66#include <cam/scsi/scsi_all.h>
67#include <cam/scsi/scsi_message.h>
68#include <cam/scsi/scsi_pass.h>
69
70#include <machine/md_var.h> /* geometry translation */
69#include <machine/stdarg.h> /* for xpt_print below */
71#include <machine/stdarg.h> /* for xpt_print below */
72
70#include "opt_cam.h"
71
72/*
73 * This is the maximum number of high powered commands (e.g. start unit)
74 * that can be outstanding at a particular time.
75 */
76#ifndef CAM_MAX_HIGHPOWER
77#define CAM_MAX_HIGHPOWER 4
78#endif
79
80/* Datastructures internal to the xpt layer */
81MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
82
83/* Object for defering XPT actions to a taskqueue */
84struct xpt_task {
85 struct task task;
86 void *data1;
87 uintptr_t data2;
88};
89
90typedef enum {
91 XPT_FLAG_OPEN = 0x01
92} xpt_flags;
93
94struct xpt_softc {
95 xpt_flags flags;
96 u_int32_t xpt_generation;
97
98 /* number of high powered commands that can go through right now */
99 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
100 int num_highpower;
101
102 /* queue for handling async rescan requests. */
103 TAILQ_HEAD(, ccb_hdr) ccb_scanq;
104 int buses_to_config;
105 int buses_config_done;
106
107 /* Registered busses */
108 TAILQ_HEAD(,cam_eb) xpt_busses;
109 u_int bus_generation;
110
111 struct intr_config_hook *xpt_config_hook;
112
113 int boot_delay;
114 struct callout boot_callout;
115
116 struct mtx xpt_topo_lock;
117 struct mtx xpt_lock;
118};
119
120typedef enum {
121 DM_RET_COPY = 0x01,
122 DM_RET_FLAG_MASK = 0x0f,
123 DM_RET_NONE = 0x00,
124 DM_RET_STOP = 0x10,
125 DM_RET_DESCEND = 0x20,
126 DM_RET_ERROR = 0x30,
127 DM_RET_ACTION_MASK = 0xf0
128} dev_match_ret;
129
130typedef enum {
131 XPT_DEPTH_BUS,
132 XPT_DEPTH_TARGET,
133 XPT_DEPTH_DEVICE,
134 XPT_DEPTH_PERIPH
135} xpt_traverse_depth;
136
137struct xpt_traverse_config {
138 xpt_traverse_depth depth;
139 void *tr_func;
140 void *tr_arg;
141};
142
143typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
144typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
145typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
146typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
147typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
148
149/* Transport layer configuration information */
150static struct xpt_softc xsoftc;
151
152TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
153SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
154 &xsoftc.boot_delay, 0, "Bus registration wait time");
155
156/* Queues for our software interrupt handler */
157typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
158typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
159static cam_simq_t cam_simq;
160static struct mtx cam_simq_lock;
161
162/* Pointers to software interrupt handlers */
163static void *cambio_ih;
164
165struct cam_periph *xpt_periph;
166
167static periph_init_t xpt_periph_init;
168
169static struct periph_driver xpt_driver =
170{
171 xpt_periph_init, "xpt",
172 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
173 CAM_PERIPH_DRV_EARLY
174};
175
176PERIPHDRIVER_DECLARE(xpt, xpt_driver);
177
178static d_open_t xptopen;
179static d_close_t xptclose;
180static d_ioctl_t xptioctl;
181
182static struct cdevsw xpt_cdevsw = {
183 .d_version = D_VERSION,
184 .d_flags = 0,
185 .d_open = xptopen,
186 .d_close = xptclose,
187 .d_ioctl = xptioctl,
188 .d_name = "xpt",
189};
190
191/* Storage for debugging datastructures */
192#ifdef CAMDEBUG
193struct cam_path *cam_dpath;
194#ifdef CAM_DEBUG_FLAGS
195u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
196#else
197u_int32_t cam_dflags = CAM_DEBUG_NONE;
198#endif
199TUNABLE_INT("kern.cam.dflags", &cam_dflags);
200SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
201 &cam_dflags, 0, "Cam Debug Flags");
202u_int32_t cam_debug_delay;
203TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
204SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
205 &cam_debug_delay, 0, "Cam Debug Flags");
206#endif
207
208/* Our boot-time initialization hook */
209static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
210
211static moduledata_t cam_moduledata = {
212 "cam",
213 cam_module_event_handler,
214 NULL
215};
216
217static int xpt_init(void *);
218
219DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
220MODULE_VERSION(cam, 1);
221
222
223static void xpt_async_bcast(struct async_list *async_head,
224 u_int32_t async_code,
225 struct cam_path *path,
226 void *async_arg);
227static path_id_t xptnextfreepathid(void);
228static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
229static union ccb *xpt_get_ccb(struct cam_ed *device);
230static void xpt_run_dev_allocq(struct cam_eb *bus);
231static void xpt_run_dev_sendq(struct cam_eb *bus);
232static timeout_t xpt_release_devq_timeout;
233static void xpt_release_simq_timeout(void *arg) __unused;
234static void xpt_release_bus(struct cam_eb *bus);
235static void xpt_release_devq_device(struct cam_ed *dev, cam_rl rl,
236 u_int count, int run_queue);
237static struct cam_et*
238 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
239static void xpt_release_target(struct cam_et *target);
240static struct cam_eb*
241 xpt_find_bus(path_id_t path_id);
242static struct cam_et*
243 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
244static struct cam_ed*
245 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
246static void xpt_config(void *arg);
247static xpt_devicefunc_t xptpassannouncefunc;
248static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
249static void xptpoll(struct cam_sim *sim);
250static void camisr(void *);
251static void camisr_runqueue(void *);
252static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
253 u_int num_patterns, struct cam_eb *bus);
254static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
255 u_int num_patterns,
256 struct cam_ed *device);
257static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
258 u_int num_patterns,
259 struct cam_periph *periph);
260static xpt_busfunc_t xptedtbusfunc;
261static xpt_targetfunc_t xptedttargetfunc;
262static xpt_devicefunc_t xptedtdevicefunc;
263static xpt_periphfunc_t xptedtperiphfunc;
264static xpt_pdrvfunc_t xptplistpdrvfunc;
265static xpt_periphfunc_t xptplistperiphfunc;
266static int xptedtmatch(struct ccb_dev_match *cdm);
267static int xptperiphlistmatch(struct ccb_dev_match *cdm);
268static int xptbustraverse(struct cam_eb *start_bus,
269 xpt_busfunc_t *tr_func, void *arg);
270static int xpttargettraverse(struct cam_eb *bus,
271 struct cam_et *start_target,
272 xpt_targetfunc_t *tr_func, void *arg);
273static int xptdevicetraverse(struct cam_et *target,
274 struct cam_ed *start_device,
275 xpt_devicefunc_t *tr_func, void *arg);
276static int xptperiphtraverse(struct cam_ed *device,
277 struct cam_periph *start_periph,
278 xpt_periphfunc_t *tr_func, void *arg);
279static int xptpdrvtraverse(struct periph_driver **start_pdrv,
280 xpt_pdrvfunc_t *tr_func, void *arg);
281static int xptpdperiphtraverse(struct periph_driver **pdrv,
282 struct cam_periph *start_periph,
283 xpt_periphfunc_t *tr_func,
284 void *arg);
285static xpt_busfunc_t xptdefbusfunc;
286static xpt_targetfunc_t xptdeftargetfunc;
287static xpt_devicefunc_t xptdefdevicefunc;
288static xpt_periphfunc_t xptdefperiphfunc;
289static void xpt_finishconfig_task(void *context, int pending);
290static void xpt_dev_async_default(u_int32_t async_code,
291 struct cam_eb *bus,
292 struct cam_et *target,
293 struct cam_ed *device,
294 void *async_arg);
295static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus,
296 struct cam_et *target,
297 lun_id_t lun_id);
298static xpt_devicefunc_t xptsetasyncfunc;
299static xpt_busfunc_t xptsetasyncbusfunc;
300static cam_status xptregister(struct cam_periph *periph,
301 void *arg);
302static __inline int periph_is_queued(struct cam_periph *periph);
303static __inline int device_is_alloc_queued(struct cam_ed *device);
304static __inline int device_is_send_queued(struct cam_ed *device);
305
306static __inline int
307xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
308{
309 int retval;
310
311 if ((dev->drvq.entries > 0) &&
312 (dev->ccbq.devq_openings > 0) &&
313 (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
314 CAMQ_GET_PRIO(&dev->drvq))) == 0)) {
315 /*
316 * The priority of a device waiting for CCB resources
317 * is that of the highest priority peripheral driver
318 * enqueued.
319 */
320 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
321 &dev->alloc_ccb_entry.pinfo,
322 CAMQ_GET_PRIO(&dev->drvq));
323 } else {
324 retval = 0;
325 }
326
327 return (retval);
328}
329
330static __inline int
331xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
332{
333 int retval;
334
335 if ((dev->ccbq.queue.entries > 0) &&
336 (dev->ccbq.dev_openings > 0) &&
337 (cam_ccbq_frozen_top(&dev->ccbq) == 0)) {
338 /*
339 * The priority of a device waiting for controller
340 * resources is that of the highest priority CCB
341 * enqueued.
342 */
343 retval =
344 xpt_schedule_dev(&bus->sim->devq->send_queue,
345 &dev->send_ccb_entry.pinfo,
346 CAMQ_GET_PRIO(&dev->ccbq.queue));
347 } else {
348 retval = 0;
349 }
350 return (retval);
351}
352
353static __inline int
354periph_is_queued(struct cam_periph *periph)
355{
356 return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
357}
358
359static __inline int
360device_is_alloc_queued(struct cam_ed *device)
361{
362 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
363}
364
365static __inline int
366device_is_send_queued(struct cam_ed *device)
367{
368 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
369}
370
371static void
372xpt_periph_init()
373{
374 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
375}
376
377static void
378xptdone(struct cam_periph *periph, union ccb *done_ccb)
379{
380 /* Caller will release the CCB */
381 wakeup(&done_ccb->ccb_h.cbfcnp);
382}
383
384static int
385xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
386{
387
388 /*
389 * Only allow read-write access.
390 */
391 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
392 return(EPERM);
393
394 /*
395 * We don't allow nonblocking access.
396 */
397 if ((flags & O_NONBLOCK) != 0) {
398 printf("%s: can't do nonblocking access\n", devtoname(dev));
399 return(ENODEV);
400 }
401
402 /* Mark ourselves open */
403 mtx_lock(&xsoftc.xpt_lock);
404 xsoftc.flags |= XPT_FLAG_OPEN;
405 mtx_unlock(&xsoftc.xpt_lock);
406
407 return(0);
408}
409
410static int
411xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
412{
413
414 /* Mark ourselves closed */
415 mtx_lock(&xsoftc.xpt_lock);
416 xsoftc.flags &= ~XPT_FLAG_OPEN;
417 mtx_unlock(&xsoftc.xpt_lock);
418
419 return(0);
420}
421
422/*
423 * Don't automatically grab the xpt softc lock here even though this is going
424 * through the xpt device. The xpt device is really just a back door for
425 * accessing other devices and SIMs, so the right thing to do is to grab
426 * the appropriate SIM lock once the bus/SIM is located.
427 */
428static int
429xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
430{
431 int error;
432
433 error = 0;
434
435 switch(cmd) {
436 /*
437 * For the transport layer CAMIOCOMMAND ioctl, we really only want
438 * to accept CCB types that don't quite make sense to send through a
439 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
440 * in the CAM spec.
441 */
442 case CAMIOCOMMAND: {
443 union ccb *ccb;
444 union ccb *inccb;
445 struct cam_eb *bus;
446
447 inccb = (union ccb *)addr;
448
449 bus = xpt_find_bus(inccb->ccb_h.path_id);
450 if (bus == NULL)
451 return (EINVAL);
452
453 switch (inccb->ccb_h.func_code) {
454 case XPT_SCAN_BUS:
455 case XPT_RESET_BUS:
456 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
457 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
458 xpt_release_bus(bus);
459 return (EINVAL);
460 }
461 break;
462 case XPT_SCAN_TGT:
463 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
464 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
465 xpt_release_bus(bus);
466 return (EINVAL);
467 }
468 break;
469 default:
470 break;
471 }
472
473 switch(inccb->ccb_h.func_code) {
474 case XPT_SCAN_BUS:
475 case XPT_RESET_BUS:
476 case XPT_PATH_INQ:
477 case XPT_ENG_INQ:
478 case XPT_SCAN_LUN:
479 case XPT_SCAN_TGT:
480
481 ccb = xpt_alloc_ccb();
482
483 CAM_SIM_LOCK(bus->sim);
484
485 /*
486 * Create a path using the bus, target, and lun the
487 * user passed in.
488 */
489 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
490 inccb->ccb_h.path_id,
491 inccb->ccb_h.target_id,
492 inccb->ccb_h.target_lun) !=
493 CAM_REQ_CMP){
494 error = EINVAL;
495 CAM_SIM_UNLOCK(bus->sim);
496 xpt_free_ccb(ccb);
497 break;
498 }
499 /* Ensure all of our fields are correct */
500 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
501 inccb->ccb_h.pinfo.priority);
502 xpt_merge_ccb(ccb, inccb);
503 ccb->ccb_h.cbfcnp = xptdone;
504 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
505 bcopy(ccb, inccb, sizeof(union ccb));
506 xpt_free_path(ccb->ccb_h.path);
507 xpt_free_ccb(ccb);
508 CAM_SIM_UNLOCK(bus->sim);
509 break;
510
511 case XPT_DEBUG: {
512 union ccb ccb;
513
514 /*
515 * This is an immediate CCB, so it's okay to
516 * allocate it on the stack.
517 */
518
519 CAM_SIM_LOCK(bus->sim);
520
521 /*
522 * Create a path using the bus, target, and lun the
523 * user passed in.
524 */
525 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
526 inccb->ccb_h.path_id,
527 inccb->ccb_h.target_id,
528 inccb->ccb_h.target_lun) !=
529 CAM_REQ_CMP){
530 error = EINVAL;
531 CAM_SIM_UNLOCK(bus->sim);
532 break;
533 }
534 /* Ensure all of our fields are correct */
535 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
536 inccb->ccb_h.pinfo.priority);
537 xpt_merge_ccb(&ccb, inccb);
538 ccb.ccb_h.cbfcnp = xptdone;
539 xpt_action(&ccb);
540 CAM_SIM_UNLOCK(bus->sim);
541 bcopy(&ccb, inccb, sizeof(union ccb));
542 xpt_free_path(ccb.ccb_h.path);
543 break;
544
545 }
546 case XPT_DEV_MATCH: {
547 struct cam_periph_map_info mapinfo;
548 struct cam_path *old_path;
549
550 /*
551 * We can't deal with physical addresses for this
552 * type of transaction.
553 */
554 if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
555 error = EINVAL;
556 break;
557 }
558
559 /*
560 * Save this in case the caller had it set to
561 * something in particular.
562 */
563 old_path = inccb->ccb_h.path;
564
565 /*
566 * We really don't need a path for the matching
567 * code. The path is needed because of the
568 * debugging statements in xpt_action(). They
569 * assume that the CCB has a valid path.
570 */
571 inccb->ccb_h.path = xpt_periph->path;
572
573 bzero(&mapinfo, sizeof(mapinfo));
574
575 /*
576 * Map the pattern and match buffers into kernel
577 * virtual address space.
578 */
579 error = cam_periph_mapmem(inccb, &mapinfo);
580
581 if (error) {
582 inccb->ccb_h.path = old_path;
583 break;
584 }
585
586 /*
587 * This is an immediate CCB, we can send it on directly.
588 */
589 xpt_action(inccb);
590
591 /*
592 * Map the buffers back into user space.
593 */
594 cam_periph_unmapmem(inccb, &mapinfo);
595
596 inccb->ccb_h.path = old_path;
597
598 error = 0;
599 break;
600 }
601 default:
602 error = ENOTSUP;
603 break;
604 }
605 xpt_release_bus(bus);
606 break;
607 }
608 /*
609 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
610 * with the periphal driver name and unit name filled in. The other
611 * fields don't really matter as input. The passthrough driver name
612 * ("pass"), and unit number are passed back in the ccb. The current
613 * device generation number, and the index into the device peripheral
614 * driver list, and the status are also passed back. Note that
615 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
616 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
617 * (or rather should be) impossible for the device peripheral driver
618 * list to change since we look at the whole thing in one pass, and
619 * we do it with lock protection.
620 *
621 */
622 case CAMGETPASSTHRU: {
623 union ccb *ccb;
624 struct cam_periph *periph;
625 struct periph_driver **p_drv;
626 char *name;
627 u_int unit;
628 u_int cur_generation;
629 int base_periph_found;
630 int splbreaknum;
631
632 ccb = (union ccb *)addr;
633 unit = ccb->cgdl.unit_number;
634 name = ccb->cgdl.periph_name;
635 /*
636 * Every 100 devices, we want to drop our lock protection to
637 * give the software interrupt handler a chance to run.
638 * Most systems won't run into this check, but this should
639 * avoid starvation in the software interrupt handler in
640 * large systems.
641 */
642 splbreaknum = 100;
643
644 ccb = (union ccb *)addr;
645
646 base_periph_found = 0;
647
648 /*
649 * Sanity check -- make sure we don't get a null peripheral
650 * driver name.
651 */
652 if (*ccb->cgdl.periph_name == '\0') {
653 error = EINVAL;
654 break;
655 }
656
657 /* Keep the list from changing while we traverse it */
658 mtx_lock(&xsoftc.xpt_topo_lock);
659ptstartover:
660 cur_generation = xsoftc.xpt_generation;
661
662 /* first find our driver in the list of drivers */
663 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
664 if (strcmp((*p_drv)->driver_name, name) == 0)
665 break;
666
667 if (*p_drv == NULL) {
668 mtx_unlock(&xsoftc.xpt_topo_lock);
669 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
670 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
671 *ccb->cgdl.periph_name = '\0';
672 ccb->cgdl.unit_number = 0;
673 error = ENOENT;
674 break;
675 }
676
677 /*
678 * Run through every peripheral instance of this driver
679 * and check to see whether it matches the unit passed
680 * in by the user. If it does, get out of the loops and
681 * find the passthrough driver associated with that
682 * peripheral driver.
683 */
684 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
685 periph = TAILQ_NEXT(periph, unit_links)) {
686
687 if (periph->unit_number == unit) {
688 break;
689 } else if (--splbreaknum == 0) {
690 mtx_unlock(&xsoftc.xpt_topo_lock);
691 mtx_lock(&xsoftc.xpt_topo_lock);
692 splbreaknum = 100;
693 if (cur_generation != xsoftc.xpt_generation)
694 goto ptstartover;
695 }
696 }
697 /*
698 * If we found the peripheral driver that the user passed
699 * in, go through all of the peripheral drivers for that
700 * particular device and look for a passthrough driver.
701 */
702 if (periph != NULL) {
703 struct cam_ed *device;
704 int i;
705
706 base_periph_found = 1;
707 device = periph->path->device;
708 for (i = 0, periph = SLIST_FIRST(&device->periphs);
709 periph != NULL;
710 periph = SLIST_NEXT(periph, periph_links), i++) {
711 /*
712 * Check to see whether we have a
713 * passthrough device or not.
714 */
715 if (strcmp(periph->periph_name, "pass") == 0) {
716 /*
717 * Fill in the getdevlist fields.
718 */
719 strcpy(ccb->cgdl.periph_name,
720 periph->periph_name);
721 ccb->cgdl.unit_number =
722 periph->unit_number;
723 if (SLIST_NEXT(periph, periph_links))
724 ccb->cgdl.status =
725 CAM_GDEVLIST_MORE_DEVS;
726 else
727 ccb->cgdl.status =
728 CAM_GDEVLIST_LAST_DEVICE;
729 ccb->cgdl.generation =
730 device->generation;
731 ccb->cgdl.index = i;
732 /*
733 * Fill in some CCB header fields
734 * that the user may want.
735 */
736 ccb->ccb_h.path_id =
737 periph->path->bus->path_id;
738 ccb->ccb_h.target_id =
739 periph->path->target->target_id;
740 ccb->ccb_h.target_lun =
741 periph->path->device->lun_id;
742 ccb->ccb_h.status = CAM_REQ_CMP;
743 break;
744 }
745 }
746 }
747
748 /*
749 * If the periph is null here, one of two things has
750 * happened. The first possibility is that we couldn't
751 * find the unit number of the particular peripheral driver
752 * that the user is asking about. e.g. the user asks for
753 * the passthrough driver for "da11". We find the list of
754 * "da" peripherals all right, but there is no unit 11.
755 * The other possibility is that we went through the list
756 * of peripheral drivers attached to the device structure,
757 * but didn't find one with the name "pass". Either way,
758 * we return ENOENT, since we couldn't find something.
759 */
760 if (periph == NULL) {
761 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
762 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
763 *ccb->cgdl.periph_name = '\0';
764 ccb->cgdl.unit_number = 0;
765 error = ENOENT;
766 /*
767 * It is unfortunate that this is even necessary,
768 * but there are many, many clueless users out there.
769 * If this is true, the user is looking for the
770 * passthrough driver, but doesn't have one in his
771 * kernel.
772 */
773 if (base_periph_found == 1) {
774 printf("xptioctl: pass driver is not in the "
775 "kernel\n");
776 printf("xptioctl: put \"device pass\" in "
777 "your kernel config file\n");
778 }
779 }
780 mtx_unlock(&xsoftc.xpt_topo_lock);
781 break;
782 }
783 default:
784 error = ENOTTY;
785 break;
786 }
787
788 return(error);
789}
790
791static int
792cam_module_event_handler(module_t mod, int what, void *arg)
793{
794 int error;
795
796 switch (what) {
797 case MOD_LOAD:
798 if ((error = xpt_init(NULL)) != 0)
799 return (error);
800 break;
801 case MOD_UNLOAD:
802 return EBUSY;
803 default:
804 return EOPNOTSUPP;
805 }
806
807 return 0;
808}
809
810static void
811xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
812{
813
814 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
815 xpt_free_path(done_ccb->ccb_h.path);
816 xpt_free_ccb(done_ccb);
817 } else {
818 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
819 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
820 }
821 xpt_release_boot();
822}
823
824/* thread to handle bus rescans */
825static void
826xpt_scanner_thread(void *dummy)
827{
828 union ccb *ccb;
829 struct cam_sim *sim;
830
831 xpt_lock_buses();
832 for (;;) {
833 if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
834 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
835 "ccb_scanq", 0);
836 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
837 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
838 xpt_unlock_buses();
839
840 sim = ccb->ccb_h.path->bus->sim;
841 CAM_SIM_LOCK(sim);
842 xpt_action(ccb);
843 CAM_SIM_UNLOCK(sim);
844
845 xpt_lock_buses();
846 }
847 }
848}
849
850void
851xpt_rescan(union ccb *ccb)
852{
853 struct ccb_hdr *hdr;
854
855 /* Prepare request */
856 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
857 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
858 ccb->ccb_h.func_code = XPT_SCAN_BUS;
859 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
860 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
861 ccb->ccb_h.func_code = XPT_SCAN_TGT;
862 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
863 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
864 ccb->ccb_h.func_code = XPT_SCAN_LUN;
865 else {
866 xpt_print(ccb->ccb_h.path, "illegal scan path\n");
867 xpt_free_path(ccb->ccb_h.path);
868 xpt_free_ccb(ccb);
869 return;
870 }
871 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
872 ccb->ccb_h.cbfcnp = xpt_rescan_done;
873 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
874 /* Don't make duplicate entries for the same paths. */
875 xpt_lock_buses();
876 if (ccb->ccb_h.ppriv_ptr1 == NULL) {
877 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
878 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
879 wakeup(&xsoftc.ccb_scanq);
880 xpt_unlock_buses();
881 xpt_print(ccb->ccb_h.path, "rescan already queued\n");
882 xpt_free_path(ccb->ccb_h.path);
883 xpt_free_ccb(ccb);
884 return;
885 }
886 }
887 }
888 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
889 xsoftc.buses_to_config++;
890 wakeup(&xsoftc.ccb_scanq);
891 xpt_unlock_buses();
892}
893
894/* Functions accessed by the peripheral drivers */
895static int
896xpt_init(void *dummy)
897{
898 struct cam_sim *xpt_sim;
899 struct cam_path *path;
900 struct cam_devq *devq;
901 cam_status status;
902
903 TAILQ_INIT(&xsoftc.xpt_busses);
904 TAILQ_INIT(&cam_simq);
905 TAILQ_INIT(&xsoftc.ccb_scanq);
906 STAILQ_INIT(&xsoftc.highpowerq);
907 xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
908
909 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
910 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
911 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
912
913 /*
914 * The xpt layer is, itself, the equivelent of a SIM.
915 * Allow 16 ccbs in the ccb pool for it. This should
916 * give decent parallelism when we probe busses and
917 * perform other XPT functions.
918 */
919 devq = cam_simq_alloc(16);
920 xpt_sim = cam_sim_alloc(xptaction,
921 xptpoll,
922 "xpt",
923 /*softc*/NULL,
924 /*unit*/0,
925 /*mtx*/&xsoftc.xpt_lock,
926 /*max_dev_transactions*/0,
927 /*max_tagged_dev_transactions*/0,
928 devq);
929 if (xpt_sim == NULL)
930 return (ENOMEM);
931
932 mtx_lock(&xsoftc.xpt_lock);
933 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
934 mtx_unlock(&xsoftc.xpt_lock);
935 printf("xpt_init: xpt_bus_register failed with status %#x,"
936 " failing attach\n", status);
937 return (EINVAL);
938 }
939
940 /*
941 * Looking at the XPT from the SIM layer, the XPT is
942 * the equivelent of a peripheral driver. Allocate
943 * a peripheral driver entry for us.
944 */
945 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
946 CAM_TARGET_WILDCARD,
947 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
948 mtx_unlock(&xsoftc.xpt_lock);
949 printf("xpt_init: xpt_create_path failed with status %#x,"
950 " failing attach\n", status);
951 return (EINVAL);
952 }
953
954 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
955 path, NULL, 0, xpt_sim);
956 xpt_free_path(path);
957 mtx_unlock(&xsoftc.xpt_lock);
958 /* Install our software interrupt handlers */
959 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
960 /*
961 * Register a callback for when interrupts are enabled.
962 */
963 xsoftc.xpt_config_hook =
964 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
965 M_CAMXPT, M_NOWAIT | M_ZERO);
966 if (xsoftc.xpt_config_hook == NULL) {
967 printf("xpt_init: Cannot malloc config hook "
968 "- failing attach\n");
969 return (ENOMEM);
970 }
971 xsoftc.xpt_config_hook->ich_func = xpt_config;
972 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
973 free (xsoftc.xpt_config_hook, M_CAMXPT);
974 printf("xpt_init: config_intrhook_establish failed "
975 "- failing attach\n");
976 }
977
978 return (0);
979}
980
981static cam_status
982xptregister(struct cam_periph *periph, void *arg)
983{
984 struct cam_sim *xpt_sim;
985
986 if (periph == NULL) {
987 printf("xptregister: periph was NULL!!\n");
988 return(CAM_REQ_CMP_ERR);
989 }
990
991 xpt_sim = (struct cam_sim *)arg;
992 xpt_sim->softc = periph;
993 xpt_periph = periph;
994 periph->softc = NULL;
995
996 return(CAM_REQ_CMP);
997}
998
999int32_t
1000xpt_add_periph(struct cam_periph *periph)
1001{
1002 struct cam_ed *device;
1003 int32_t status;
1004 struct periph_list *periph_head;
1005
1006 mtx_assert(periph->sim->mtx, MA_OWNED);
1007
1008 device = periph->path->device;
1009
1010 periph_head = &device->periphs;
1011
1012 status = CAM_REQ_CMP;
1013
1014 if (device != NULL) {
1015 /*
1016 * Make room for this peripheral
1017 * so it will fit in the queue
1018 * when it's scheduled to run
1019 */
1020 status = camq_resize(&device->drvq,
1021 device->drvq.array_size + 1);
1022
1023 device->generation++;
1024
1025 SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1026 }
1027
1028 mtx_lock(&xsoftc.xpt_topo_lock);
1029 xsoftc.xpt_generation++;
1030 mtx_unlock(&xsoftc.xpt_topo_lock);
1031
1032 return (status);
1033}
1034
1035void
1036xpt_remove_periph(struct cam_periph *periph)
1037{
1038 struct cam_ed *device;
1039
1040 mtx_assert(periph->sim->mtx, MA_OWNED);
1041
1042 device = periph->path->device;
1043
1044 if (device != NULL) {
1045 struct periph_list *periph_head;
1046
1047 periph_head = &device->periphs;
1048
1049 /* Release the slot for this peripheral */
1050 camq_resize(&device->drvq, device->drvq.array_size - 1);
1051
1052 device->generation++;
1053
1054 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1055 }
1056
1057 mtx_lock(&xsoftc.xpt_topo_lock);
1058 xsoftc.xpt_generation++;
1059 mtx_unlock(&xsoftc.xpt_topo_lock);
1060}
1061
1062
1063void
1064xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1065{
1066 struct cam_path *path = periph->path;
1067
1068 mtx_assert(periph->sim->mtx, MA_OWNED);
1069
1070 printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1071 periph->periph_name, periph->unit_number,
1072 path->bus->sim->sim_name,
1073 path->bus->sim->unit_number,
1074 path->bus->sim->bus_id,
1075 path->bus->path_id,
1076 path->target->target_id,
1077 path->device->lun_id);
1078 printf("%s%d: ", periph->periph_name, periph->unit_number);
1079 if (path->device->protocol == PROTO_SCSI)
1080 scsi_print_inquiry(&path->device->inq_data);
1081 else if (path->device->protocol == PROTO_ATA ||
1082 path->device->protocol == PROTO_SATAPM)
1083 ata_print_ident(&path->device->ident_data);
1084 else
1085 printf("Unknown protocol device\n");
1086 if (bootverbose && path->device->serial_num_len > 0) {
1087 /* Don't wrap the screen - print only the first 60 chars */
1088 printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1089 periph->unit_number, path->device->serial_num);
1090 }
1091 /* Announce transport details. */
1092 (*(path->bus->xport->announce))(periph);
1093 /* Announce command queueing. */
1094 if (path->device->inq_flags & SID_CmdQue
1095 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1096 printf("%s%d: Command Queueing enabled\n",
1097 periph->periph_name, periph->unit_number);
1098 }
1099 /* Announce caller's details if they've passed in. */
1100 if (announce_string != NULL)
1101 printf("%s%d: %s\n", periph->periph_name,
1102 periph->unit_number, announce_string);
1103}
1104
1105int
1106xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1107{
1108 int ret = -1;
1109 struct ccb_dev_advinfo cdai;
1110
1111 memset(&cdai, 0, sizeof(cdai));
1112 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1113 cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1114 cdai.bufsiz = len;
1115
1116 if (!strcmp(attr, "GEOM::ident"))
1117 cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1118 else if (!strcmp(attr, "GEOM::physpath"))
1119 cdai.buftype = CDAI_TYPE_PHYS_PATH;
1120 else
1121 goto out;
1122
1123 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1124 if (cdai.buf == NULL) {
1125 ret = ENOMEM;
1126 goto out;
1127 }
1128 xpt_action((union ccb *)&cdai); /* can only be synchronous */
1129 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1130 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1131 if (cdai.provsiz == 0)
1132 goto out;
1133 ret = 0;
1134 if (strlcpy(buf, cdai.buf, len) >= len)
1135 ret = EFAULT;
1136
1137out:
1138 if (cdai.buf != NULL)
1139 free(cdai.buf, M_CAMXPT);
1140 return ret;
1141}
1142
1143static dev_match_ret
1144xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1145 struct cam_eb *bus)
1146{
1147 dev_match_ret retval;
1148 int i;
1149
1150 retval = DM_RET_NONE;
1151
1152 /*
1153 * If we aren't given something to match against, that's an error.
1154 */
1155 if (bus == NULL)
1156 return(DM_RET_ERROR);
1157
1158 /*
1159 * If there are no match entries, then this bus matches no
1160 * matter what.
1161 */
1162 if ((patterns == NULL) || (num_patterns == 0))
1163 return(DM_RET_DESCEND | DM_RET_COPY);
1164
1165 for (i = 0; i < num_patterns; i++) {
1166 struct bus_match_pattern *cur_pattern;
1167
1168 /*
1169 * If the pattern in question isn't for a bus node, we
1170 * aren't interested. However, we do indicate to the
1171 * calling routine that we should continue descending the
1172 * tree, since the user wants to match against lower-level
1173 * EDT elements.
1174 */
1175 if (patterns[i].type != DEV_MATCH_BUS) {
1176 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1177 retval |= DM_RET_DESCEND;
1178 continue;
1179 }
1180
1181 cur_pattern = &patterns[i].pattern.bus_pattern;
1182
1183 /*
1184 * If they want to match any bus node, we give them any
1185 * device node.
1186 */
1187 if (cur_pattern->flags == BUS_MATCH_ANY) {
1188 /* set the copy flag */
1189 retval |= DM_RET_COPY;
1190
1191 /*
1192 * If we've already decided on an action, go ahead
1193 * and return.
1194 */
1195 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1196 return(retval);
1197 }
1198
1199 /*
1200 * Not sure why someone would do this...
1201 */
1202 if (cur_pattern->flags == BUS_MATCH_NONE)
1203 continue;
1204
1205 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1206 && (cur_pattern->path_id != bus->path_id))
1207 continue;
1208
1209 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1210 && (cur_pattern->bus_id != bus->sim->bus_id))
1211 continue;
1212
1213 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1214 && (cur_pattern->unit_number != bus->sim->unit_number))
1215 continue;
1216
1217 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1218 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1219 DEV_IDLEN) != 0))
1220 continue;
1221
1222 /*
1223 * If we get to this point, the user definitely wants
1224 * information on this bus. So tell the caller to copy the
1225 * data out.
1226 */
1227 retval |= DM_RET_COPY;
1228
1229 /*
1230 * If the return action has been set to descend, then we
1231 * know that we've already seen a non-bus matching
1232 * expression, therefore we need to further descend the tree.
1233 * This won't change by continuing around the loop, so we
1234 * go ahead and return. If we haven't seen a non-bus
1235 * matching expression, we keep going around the loop until
1236 * we exhaust the matching expressions. We'll set the stop
1237 * flag once we fall out of the loop.
1238 */
1239 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1240 return(retval);
1241 }
1242
1243 /*
1244 * If the return action hasn't been set to descend yet, that means
1245 * we haven't seen anything other than bus matching patterns. So
1246 * tell the caller to stop descending the tree -- the user doesn't
1247 * want to match against lower level tree elements.
1248 */
1249 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1250 retval |= DM_RET_STOP;
1251
1252 return(retval);
1253}
1254
1255static dev_match_ret
1256xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1257 struct cam_ed *device)
1258{
1259 dev_match_ret retval;
1260 int i;
1261
1262 retval = DM_RET_NONE;
1263
1264 /*
1265 * If we aren't given something to match against, that's an error.
1266 */
1267 if (device == NULL)
1268 return(DM_RET_ERROR);
1269
1270 /*
1271 * If there are no match entries, then this device matches no
1272 * matter what.
1273 */
1274 if ((patterns == NULL) || (num_patterns == 0))
1275 return(DM_RET_DESCEND | DM_RET_COPY);
1276
1277 for (i = 0; i < num_patterns; i++) {
1278 struct device_match_pattern *cur_pattern;
1279 struct scsi_vpd_device_id *device_id_page;
1280
1281 /*
1282 * If the pattern in question isn't for a device node, we
1283 * aren't interested.
1284 */
1285 if (patterns[i].type != DEV_MATCH_DEVICE) {
1286 if ((patterns[i].type == DEV_MATCH_PERIPH)
1287 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1288 retval |= DM_RET_DESCEND;
1289 continue;
1290 }
1291
1292 cur_pattern = &patterns[i].pattern.device_pattern;
1293
1294 /* Error out if mutually exclusive options are specified. */
1295 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1296 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1297 return(DM_RET_ERROR);
1298
1299 /*
1300 * If they want to match any device node, we give them any
1301 * device node.
1302 */
1303 if (cur_pattern->flags == DEV_MATCH_ANY)
1304 goto copy_dev_node;
1305
1306 /*
1307 * Not sure why someone would do this...
1308 */
1309 if (cur_pattern->flags == DEV_MATCH_NONE)
1310 continue;
1311
1312 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1313 && (cur_pattern->path_id != device->target->bus->path_id))
1314 continue;
1315
1316 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1317 && (cur_pattern->target_id != device->target->target_id))
1318 continue;
1319
1320 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1321 && (cur_pattern->target_lun != device->lun_id))
1322 continue;
1323
1324 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1325 && (cam_quirkmatch((caddr_t)&device->inq_data,
1326 (caddr_t)&cur_pattern->data.inq_pat,
1327 1, sizeof(cur_pattern->data.inq_pat),
1328 scsi_static_inquiry_match) == NULL))
1329 continue;
1330
1331 device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1332 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1333 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1334 || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1335 device->device_id_len
1336 - SVPD_DEVICE_ID_HDR_LEN,
1337 cur_pattern->data.devid_pat.id,
1338 cur_pattern->data.devid_pat.id_len) != 0))
1339 continue;
1340
1341copy_dev_node:
1342 /*
1343 * If we get to this point, the user definitely wants
1344 * information on this device. So tell the caller to copy
1345 * the data out.
1346 */
1347 retval |= DM_RET_COPY;
1348
1349 /*
1350 * If the return action has been set to descend, then we
1351 * know that we've already seen a peripheral matching
1352 * expression, therefore we need to further descend the tree.
1353 * This won't change by continuing around the loop, so we
1354 * go ahead and return. If we haven't seen a peripheral
1355 * matching expression, we keep going around the loop until
1356 * we exhaust the matching expressions. We'll set the stop
1357 * flag once we fall out of the loop.
1358 */
1359 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1360 return(retval);
1361 }
1362
1363 /*
1364 * If the return action hasn't been set to descend yet, that means
1365 * we haven't seen any peripheral matching patterns. So tell the
1366 * caller to stop descending the tree -- the user doesn't want to
1367 * match against lower level tree elements.
1368 */
1369 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1370 retval |= DM_RET_STOP;
1371
1372 return(retval);
1373}
1374
1375/*
1376 * Match a single peripheral against any number of match patterns.
1377 */
1378static dev_match_ret
1379xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1380 struct cam_periph *periph)
1381{
1382 dev_match_ret retval;
1383 int i;
1384
1385 /*
1386 * If we aren't given something to match against, that's an error.
1387 */
1388 if (periph == NULL)
1389 return(DM_RET_ERROR);
1390
1391 /*
1392 * If there are no match entries, then this peripheral matches no
1393 * matter what.
1394 */
1395 if ((patterns == NULL) || (num_patterns == 0))
1396 return(DM_RET_STOP | DM_RET_COPY);
1397
1398 /*
1399 * There aren't any nodes below a peripheral node, so there's no
1400 * reason to descend the tree any further.
1401 */
1402 retval = DM_RET_STOP;
1403
1404 for (i = 0; i < num_patterns; i++) {
1405 struct periph_match_pattern *cur_pattern;
1406
1407 /*
1408 * If the pattern in question isn't for a peripheral, we
1409 * aren't interested.
1410 */
1411 if (patterns[i].type != DEV_MATCH_PERIPH)
1412 continue;
1413
1414 cur_pattern = &patterns[i].pattern.periph_pattern;
1415
1416 /*
1417 * If they want to match on anything, then we will do so.
1418 */
1419 if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1420 /* set the copy flag */
1421 retval |= DM_RET_COPY;
1422
1423 /*
1424 * We've already set the return action to stop,
1425 * since there are no nodes below peripherals in
1426 * the tree.
1427 */
1428 return(retval);
1429 }
1430
1431 /*
1432 * Not sure why someone would do this...
1433 */
1434 if (cur_pattern->flags == PERIPH_MATCH_NONE)
1435 continue;
1436
1437 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1438 && (cur_pattern->path_id != periph->path->bus->path_id))
1439 continue;
1440
1441 /*
1442 * For the target and lun id's, we have to make sure the
1443 * target and lun pointers aren't NULL. The xpt peripheral
1444 * has a wildcard target and device.
1445 */
1446 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1447 && ((periph->path->target == NULL)
1448 ||(cur_pattern->target_id != periph->path->target->target_id)))
1449 continue;
1450
1451 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1452 && ((periph->path->device == NULL)
1453 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1454 continue;
1455
1456 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1457 && (cur_pattern->unit_number != periph->unit_number))
1458 continue;
1459
1460 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1461 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1462 DEV_IDLEN) != 0))
1463 continue;
1464
1465 /*
1466 * If we get to this point, the user definitely wants
1467 * information on this peripheral. So tell the caller to
1468 * copy the data out.
1469 */
1470 retval |= DM_RET_COPY;
1471
1472 /*
1473 * The return action has already been set to stop, since
1474 * peripherals don't have any nodes below them in the EDT.
1475 */
1476 return(retval);
1477 }
1478
1479 /*
1480 * If we get to this point, the peripheral that was passed in
1481 * doesn't match any of the patterns.
1482 */
1483 return(retval);
1484}
1485
1486static int
1487xptedtbusfunc(struct cam_eb *bus, void *arg)
1488{
1489 struct ccb_dev_match *cdm;
1490 dev_match_ret retval;
1491
1492 cdm = (struct ccb_dev_match *)arg;
1493
1494 /*
1495 * If our position is for something deeper in the tree, that means
1496 * that we've already seen this node. So, we keep going down.
1497 */
1498 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1499 && (cdm->pos.cookie.bus == bus)
1500 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1501 && (cdm->pos.cookie.target != NULL))
1502 retval = DM_RET_DESCEND;
1503 else
1504 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1505
1506 /*
1507 * If we got an error, bail out of the search.
1508 */
1509 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1510 cdm->status = CAM_DEV_MATCH_ERROR;
1511 return(0);
1512 }
1513
1514 /*
1515 * If the copy flag is set, copy this bus out.
1516 */
1517 if (retval & DM_RET_COPY) {
1518 int spaceleft, j;
1519
1520 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1521 sizeof(struct dev_match_result));
1522
1523 /*
1524 * If we don't have enough space to put in another
1525 * match result, save our position and tell the
1526 * user there are more devices to check.
1527 */
1528 if (spaceleft < sizeof(struct dev_match_result)) {
1529 bzero(&cdm->pos, sizeof(cdm->pos));
1530 cdm->pos.position_type =
1531 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1532
1533 cdm->pos.cookie.bus = bus;
1534 cdm->pos.generations[CAM_BUS_GENERATION]=
1535 xsoftc.bus_generation;
1536 cdm->status = CAM_DEV_MATCH_MORE;
1537 return(0);
1538 }
1539 j = cdm->num_matches;
1540 cdm->num_matches++;
1541 cdm->matches[j].type = DEV_MATCH_BUS;
1542 cdm->matches[j].result.bus_result.path_id = bus->path_id;
1543 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1544 cdm->matches[j].result.bus_result.unit_number =
1545 bus->sim->unit_number;
1546 strncpy(cdm->matches[j].result.bus_result.dev_name,
1547 bus->sim->sim_name, DEV_IDLEN);
1548 }
1549
1550 /*
1551 * If the user is only interested in busses, there's no
1552 * reason to descend to the next level in the tree.
1553 */
1554 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1555 return(1);
1556
1557 /*
1558 * If there is a target generation recorded, check it to
1559 * make sure the target list hasn't changed.
1560 */
1561 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1562 && (bus == cdm->pos.cookie.bus)
1563 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1564 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1565 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1566 bus->generation)) {
1567 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1568 return(0);
1569 }
1570
1571 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1572 && (cdm->pos.cookie.bus == bus)
1573 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1574 && (cdm->pos.cookie.target != NULL))
1575 return(xpttargettraverse(bus,
1576 (struct cam_et *)cdm->pos.cookie.target,
1577 xptedttargetfunc, arg));
1578 else
1579 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1580}
1581
1582static int
1583xptedttargetfunc(struct cam_et *target, void *arg)
1584{
1585 struct ccb_dev_match *cdm;
1586
1587 cdm = (struct ccb_dev_match *)arg;
1588
1589 /*
1590 * If there is a device list generation recorded, check it to
1591 * make sure the device list hasn't changed.
1592 */
1593 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1594 && (cdm->pos.cookie.bus == target->bus)
1595 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1596 && (cdm->pos.cookie.target == target)
1597 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1598 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1599 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1600 target->generation)) {
1601 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1602 return(0);
1603 }
1604
1605 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1606 && (cdm->pos.cookie.bus == target->bus)
1607 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1608 && (cdm->pos.cookie.target == target)
1609 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1610 && (cdm->pos.cookie.device != NULL))
1611 return(xptdevicetraverse(target,
1612 (struct cam_ed *)cdm->pos.cookie.device,
1613 xptedtdevicefunc, arg));
1614 else
1615 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1616}
1617
1618static int
1619xptedtdevicefunc(struct cam_ed *device, void *arg)
1620{
1621
1622 struct ccb_dev_match *cdm;
1623 dev_match_ret retval;
1624
1625 cdm = (struct ccb_dev_match *)arg;
1626
1627 /*
1628 * If our position is for something deeper in the tree, that means
1629 * that we've already seen this node. So, we keep going down.
1630 */
1631 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1632 && (cdm->pos.cookie.device == device)
1633 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1634 && (cdm->pos.cookie.periph != NULL))
1635 retval = DM_RET_DESCEND;
1636 else
1637 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1638 device);
1639
1640 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1641 cdm->status = CAM_DEV_MATCH_ERROR;
1642 return(0);
1643 }
1644
1645 /*
1646 * If the copy flag is set, copy this device out.
1647 */
1648 if (retval & DM_RET_COPY) {
1649 int spaceleft, j;
1650
1651 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1652 sizeof(struct dev_match_result));
1653
1654 /*
1655 * If we don't have enough space to put in another
1656 * match result, save our position and tell the
1657 * user there are more devices to check.
1658 */
1659 if (spaceleft < sizeof(struct dev_match_result)) {
1660 bzero(&cdm->pos, sizeof(cdm->pos));
1661 cdm->pos.position_type =
1662 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1663 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1664
1665 cdm->pos.cookie.bus = device->target->bus;
1666 cdm->pos.generations[CAM_BUS_GENERATION]=
1667 xsoftc.bus_generation;
1668 cdm->pos.cookie.target = device->target;
1669 cdm->pos.generations[CAM_TARGET_GENERATION] =
1670 device->target->bus->generation;
1671 cdm->pos.cookie.device = device;
1672 cdm->pos.generations[CAM_DEV_GENERATION] =
1673 device->target->generation;
1674 cdm->status = CAM_DEV_MATCH_MORE;
1675 return(0);
1676 }
1677 j = cdm->num_matches;
1678 cdm->num_matches++;
1679 cdm->matches[j].type = DEV_MATCH_DEVICE;
1680 cdm->matches[j].result.device_result.path_id =
1681 device->target->bus->path_id;
1682 cdm->matches[j].result.device_result.target_id =
1683 device->target->target_id;
1684 cdm->matches[j].result.device_result.target_lun =
1685 device->lun_id;
1686 cdm->matches[j].result.device_result.protocol =
1687 device->protocol;
1688 bcopy(&device->inq_data,
1689 &cdm->matches[j].result.device_result.inq_data,
1690 sizeof(struct scsi_inquiry_data));
1691 bcopy(&device->ident_data,
1692 &cdm->matches[j].result.device_result.ident_data,
1693 sizeof(struct ata_params));
1694
1695 /* Let the user know whether this device is unconfigured */
1696 if (device->flags & CAM_DEV_UNCONFIGURED)
1697 cdm->matches[j].result.device_result.flags =
1698 DEV_RESULT_UNCONFIGURED;
1699 else
1700 cdm->matches[j].result.device_result.flags =
1701 DEV_RESULT_NOFLAG;
1702 }
1703
1704 /*
1705 * If the user isn't interested in peripherals, don't descend
1706 * the tree any further.
1707 */
1708 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1709 return(1);
1710
1711 /*
1712 * If there is a peripheral list generation recorded, make sure
1713 * it hasn't changed.
1714 */
1715 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1716 && (device->target->bus == cdm->pos.cookie.bus)
1717 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1718 && (device->target == cdm->pos.cookie.target)
1719 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1720 && (device == cdm->pos.cookie.device)
1721 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1722 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1723 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1724 device->generation)){
1725 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1726 return(0);
1727 }
1728
1729 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1730 && (cdm->pos.cookie.bus == device->target->bus)
1731 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1732 && (cdm->pos.cookie.target == device->target)
1733 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1734 && (cdm->pos.cookie.device == device)
1735 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1736 && (cdm->pos.cookie.periph != NULL))
1737 return(xptperiphtraverse(device,
1738 (struct cam_periph *)cdm->pos.cookie.periph,
1739 xptedtperiphfunc, arg));
1740 else
1741 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1742}
1743
1744static int
1745xptedtperiphfunc(struct cam_periph *periph, void *arg)
1746{
1747 struct ccb_dev_match *cdm;
1748 dev_match_ret retval;
1749
1750 cdm = (struct ccb_dev_match *)arg;
1751
1752 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1753
1754 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1755 cdm->status = CAM_DEV_MATCH_ERROR;
1756 return(0);
1757 }
1758
1759 /*
1760 * If the copy flag is set, copy this peripheral out.
1761 */
1762 if (retval & DM_RET_COPY) {
1763 int spaceleft, j;
1764
1765 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1766 sizeof(struct dev_match_result));
1767
1768 /*
1769 * If we don't have enough space to put in another
1770 * match result, save our position and tell the
1771 * user there are more devices to check.
1772 */
1773 if (spaceleft < sizeof(struct dev_match_result)) {
1774 bzero(&cdm->pos, sizeof(cdm->pos));
1775 cdm->pos.position_type =
1776 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1777 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1778 CAM_DEV_POS_PERIPH;
1779
1780 cdm->pos.cookie.bus = periph->path->bus;
1781 cdm->pos.generations[CAM_BUS_GENERATION]=
1782 xsoftc.bus_generation;
1783 cdm->pos.cookie.target = periph->path->target;
1784 cdm->pos.generations[CAM_TARGET_GENERATION] =
1785 periph->path->bus->generation;
1786 cdm->pos.cookie.device = periph->path->device;
1787 cdm->pos.generations[CAM_DEV_GENERATION] =
1788 periph->path->target->generation;
1789 cdm->pos.cookie.periph = periph;
1790 cdm->pos.generations[CAM_PERIPH_GENERATION] =
1791 periph->path->device->generation;
1792 cdm->status = CAM_DEV_MATCH_MORE;
1793 return(0);
1794 }
1795
1796 j = cdm->num_matches;
1797 cdm->num_matches++;
1798 cdm->matches[j].type = DEV_MATCH_PERIPH;
1799 cdm->matches[j].result.periph_result.path_id =
1800 periph->path->bus->path_id;
1801 cdm->matches[j].result.periph_result.target_id =
1802 periph->path->target->target_id;
1803 cdm->matches[j].result.periph_result.target_lun =
1804 periph->path->device->lun_id;
1805 cdm->matches[j].result.periph_result.unit_number =
1806 periph->unit_number;
1807 strncpy(cdm->matches[j].result.periph_result.periph_name,
1808 periph->periph_name, DEV_IDLEN);
1809 }
1810
1811 return(1);
1812}
1813
1814static int
1815xptedtmatch(struct ccb_dev_match *cdm)
1816{
1817 int ret;
1818
1819 cdm->num_matches = 0;
1820
1821 /*
1822 * Check the bus list generation. If it has changed, the user
1823 * needs to reset everything and start over.
1824 */
1825 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1826 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1827 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1828 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1829 return(0);
1830 }
1831
1832 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1833 && (cdm->pos.cookie.bus != NULL))
1834 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1835 xptedtbusfunc, cdm);
1836 else
1837 ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1838
1839 /*
1840 * If we get back 0, that means that we had to stop before fully
1841 * traversing the EDT. It also means that one of the subroutines
1842 * has set the status field to the proper value. If we get back 1,
1843 * we've fully traversed the EDT and copied out any matching entries.
1844 */
1845 if (ret == 1)
1846 cdm->status = CAM_DEV_MATCH_LAST;
1847
1848 return(ret);
1849}
1850
1851static int
1852xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1853{
1854 struct ccb_dev_match *cdm;
1855
1856 cdm = (struct ccb_dev_match *)arg;
1857
1858 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1859 && (cdm->pos.cookie.pdrv == pdrv)
1860 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1861 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1862 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1863 (*pdrv)->generation)) {
1864 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1865 return(0);
1866 }
1867
1868 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1869 && (cdm->pos.cookie.pdrv == pdrv)
1870 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1871 && (cdm->pos.cookie.periph != NULL))
1872 return(xptpdperiphtraverse(pdrv,
1873 (struct cam_periph *)cdm->pos.cookie.periph,
1874 xptplistperiphfunc, arg));
1875 else
1876 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1877}
1878
1879static int
1880xptplistperiphfunc(struct cam_periph *periph, void *arg)
1881{
1882 struct ccb_dev_match *cdm;
1883 dev_match_ret retval;
1884
1885 cdm = (struct ccb_dev_match *)arg;
1886
1887 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1888
1889 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1890 cdm->status = CAM_DEV_MATCH_ERROR;
1891 return(0);
1892 }
1893
1894 /*
1895 * If the copy flag is set, copy this peripheral out.
1896 */
1897 if (retval & DM_RET_COPY) {
1898 int spaceleft, j;
1899
1900 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1901 sizeof(struct dev_match_result));
1902
1903 /*
1904 * If we don't have enough space to put in another
1905 * match result, save our position and tell the
1906 * user there are more devices to check.
1907 */
1908 if (spaceleft < sizeof(struct dev_match_result)) {
1909 struct periph_driver **pdrv;
1910
1911 pdrv = NULL;
1912 bzero(&cdm->pos, sizeof(cdm->pos));
1913 cdm->pos.position_type =
1914 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1915 CAM_DEV_POS_PERIPH;
1916
1917 /*
1918 * This may look a bit non-sensical, but it is
1919 * actually quite logical. There are very few
1920 * peripheral drivers, and bloating every peripheral
1921 * structure with a pointer back to its parent
1922 * peripheral driver linker set entry would cost
1923 * more in the long run than doing this quick lookup.
1924 */
1925 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1926 if (strcmp((*pdrv)->driver_name,
1927 periph->periph_name) == 0)
1928 break;
1929 }
1930
1931 if (*pdrv == NULL) {
1932 cdm->status = CAM_DEV_MATCH_ERROR;
1933 return(0);
1934 }
1935
1936 cdm->pos.cookie.pdrv = pdrv;
1937 /*
1938 * The periph generation slot does double duty, as
1939 * does the periph pointer slot. They are used for
1940 * both edt and pdrv lookups and positioning.
1941 */
1942 cdm->pos.cookie.periph = periph;
1943 cdm->pos.generations[CAM_PERIPH_GENERATION] =
1944 (*pdrv)->generation;
1945 cdm->status = CAM_DEV_MATCH_MORE;
1946 return(0);
1947 }
1948
1949 j = cdm->num_matches;
1950 cdm->num_matches++;
1951 cdm->matches[j].type = DEV_MATCH_PERIPH;
1952 cdm->matches[j].result.periph_result.path_id =
1953 periph->path->bus->path_id;
1954
1955 /*
1956 * The transport layer peripheral doesn't have a target or
1957 * lun.
1958 */
1959 if (periph->path->target)
1960 cdm->matches[j].result.periph_result.target_id =
1961 periph->path->target->target_id;
1962 else
1963 cdm->matches[j].result.periph_result.target_id = -1;
1964
1965 if (periph->path->device)
1966 cdm->matches[j].result.periph_result.target_lun =
1967 periph->path->device->lun_id;
1968 else
1969 cdm->matches[j].result.periph_result.target_lun = -1;
1970
1971 cdm->matches[j].result.periph_result.unit_number =
1972 periph->unit_number;
1973 strncpy(cdm->matches[j].result.periph_result.periph_name,
1974 periph->periph_name, DEV_IDLEN);
1975 }
1976
1977 return(1);
1978}
1979
1980static int
1981xptperiphlistmatch(struct ccb_dev_match *cdm)
1982{
1983 int ret;
1984
1985 cdm->num_matches = 0;
1986
1987 /*
1988 * At this point in the edt traversal function, we check the bus
1989 * list generation to make sure that no busses have been added or
1990 * removed since the user last sent a XPT_DEV_MATCH ccb through.
1991 * For the peripheral driver list traversal function, however, we
1992 * don't have to worry about new peripheral driver types coming or
1993 * going; they're in a linker set, and therefore can't change
1994 * without a recompile.
1995 */
1996
1997 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1998 && (cdm->pos.cookie.pdrv != NULL))
1999 ret = xptpdrvtraverse(
2000 (struct periph_driver **)cdm->pos.cookie.pdrv,
2001 xptplistpdrvfunc, cdm);
2002 else
2003 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2004
2005 /*
2006 * If we get back 0, that means that we had to stop before fully
2007 * traversing the peripheral driver tree. It also means that one of
2008 * the subroutines has set the status field to the proper value. If
2009 * we get back 1, we've fully traversed the EDT and copied out any
2010 * matching entries.
2011 */
2012 if (ret == 1)
2013 cdm->status = CAM_DEV_MATCH_LAST;
2014
2015 return(ret);
2016}
2017
2018static int
2019xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2020{
2021 struct cam_eb *bus, *next_bus;
2022 int retval;
2023
2024 retval = 1;
2025
2026 mtx_lock(&xsoftc.xpt_topo_lock);
2027 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2028 bus != NULL;
2029 bus = next_bus) {
2030 next_bus = TAILQ_NEXT(bus, links);
2031
2032 mtx_unlock(&xsoftc.xpt_topo_lock);
2033 CAM_SIM_LOCK(bus->sim);
2034 retval = tr_func(bus, arg);
2035 CAM_SIM_UNLOCK(bus->sim);
2036 if (retval == 0)
2037 return(retval);
2038 mtx_lock(&xsoftc.xpt_topo_lock);
2039 }
2040 mtx_unlock(&xsoftc.xpt_topo_lock);
2041
2042 return(retval);
2043}
2044
2045int
2046xpt_sim_opened(struct cam_sim *sim)
2047{
2048 struct cam_eb *bus;
2049 struct cam_et *target;
2050 struct cam_ed *device;
2051 struct cam_periph *periph;
2052
2053 KASSERT(sim->refcount >= 1, ("sim->refcount >= 1"));
2054 mtx_assert(sim->mtx, MA_OWNED);
2055
2056 mtx_lock(&xsoftc.xpt_topo_lock);
2057 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
2058 if (bus->sim != sim)
2059 continue;
2060
2061 TAILQ_FOREACH(target, &bus->et_entries, links) {
2062 TAILQ_FOREACH(device, &target->ed_entries, links) {
2063 SLIST_FOREACH(periph, &device->periphs,
2064 periph_links) {
2065 if (periph->refcount > 0) {
2066 mtx_unlock(&xsoftc.xpt_topo_lock);
2067 return (1);
2068 }
2069 }
2070 }
2071 }
2072 }
2073
2074 mtx_unlock(&xsoftc.xpt_topo_lock);
2075 return (0);
2076}
2077
2078static int
2079xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2080 xpt_targetfunc_t *tr_func, void *arg)
2081{
2082 struct cam_et *target, *next_target;
2083 int retval;
2084
2085 retval = 1;
2086 for (target = (start_target ? start_target :
2087 TAILQ_FIRST(&bus->et_entries));
2088 target != NULL; target = next_target) {
2089
2090 next_target = TAILQ_NEXT(target, links);
2091
2092 retval = tr_func(target, arg);
2093
2094 if (retval == 0)
2095 return(retval);
2096 }
2097
2098 return(retval);
2099}
2100
2101static int
2102xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2103 xpt_devicefunc_t *tr_func, void *arg)
2104{
2105 struct cam_ed *device, *next_device;
2106 int retval;
2107
2108 retval = 1;
2109 for (device = (start_device ? start_device :
2110 TAILQ_FIRST(&target->ed_entries));
2111 device != NULL;
2112 device = next_device) {
2113
2114 next_device = TAILQ_NEXT(device, links);
2115
2116 retval = tr_func(device, arg);
2117
2118 if (retval == 0)
2119 return(retval);
2120 }
2121
2122 return(retval);
2123}
2124
2125static int
2126xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2127 xpt_periphfunc_t *tr_func, void *arg)
2128{
2129 struct cam_periph *periph, *next_periph;
2130 int retval;
2131
2132 retval = 1;
2133
2134 for (periph = (start_periph ? start_periph :
2135 SLIST_FIRST(&device->periphs));
2136 periph != NULL;
2137 periph = next_periph) {
2138
2139 next_periph = SLIST_NEXT(periph, periph_links);
2140
2141 retval = tr_func(periph, arg);
2142 if (retval == 0)
2143 return(retval);
2144 }
2145
2146 return(retval);
2147}
2148
2149static int
2150xptpdrvtraverse(struct periph_driver **start_pdrv,
2151 xpt_pdrvfunc_t *tr_func, void *arg)
2152{
2153 struct periph_driver **pdrv;
2154 int retval;
2155
2156 retval = 1;
2157
2158 /*
2159 * We don't traverse the peripheral driver list like we do the
2160 * other lists, because it is a linker set, and therefore cannot be
2161 * changed during runtime. If the peripheral driver list is ever
2162 * re-done to be something other than a linker set (i.e. it can
2163 * change while the system is running), the list traversal should
2164 * be modified to work like the other traversal functions.
2165 */
2166 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2167 *pdrv != NULL; pdrv++) {
2168 retval = tr_func(pdrv, arg);
2169
2170 if (retval == 0)
2171 return(retval);
2172 }
2173
2174 return(retval);
2175}
2176
2177static int
2178xptpdperiphtraverse(struct periph_driver **pdrv,
2179 struct cam_periph *start_periph,
2180 xpt_periphfunc_t *tr_func, void *arg)
2181{
2182 struct cam_periph *periph, *next_periph;
2183 int retval;
2184
2185 retval = 1;
2186
2187 xpt_lock_buses();
2188 for (periph = (start_periph ? start_periph :
2189 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2190 periph = next_periph) {
2191
2192 next_periph = TAILQ_NEXT(periph, unit_links);
2193
2194 retval = tr_func(periph, arg);
2195 if (retval == 0) {
2196 xpt_unlock_buses();
2197 return(retval);
2198 }
2199 }
2200 xpt_unlock_buses();
2201 return(retval);
2202}
2203
2204static int
2205xptdefbusfunc(struct cam_eb *bus, void *arg)
2206{
2207 struct xpt_traverse_config *tr_config;
2208
2209 tr_config = (struct xpt_traverse_config *)arg;
2210
2211 if (tr_config->depth == XPT_DEPTH_BUS) {
2212 xpt_busfunc_t *tr_func;
2213
2214 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2215
2216 return(tr_func(bus, tr_config->tr_arg));
2217 } else
2218 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2219}
2220
2221static int
2222xptdeftargetfunc(struct cam_et *target, void *arg)
2223{
2224 struct xpt_traverse_config *tr_config;
2225
2226 tr_config = (struct xpt_traverse_config *)arg;
2227
2228 if (tr_config->depth == XPT_DEPTH_TARGET) {
2229 xpt_targetfunc_t *tr_func;
2230
2231 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2232
2233 return(tr_func(target, tr_config->tr_arg));
2234 } else
2235 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2236}
2237
2238static int
2239xptdefdevicefunc(struct cam_ed *device, void *arg)
2240{
2241 struct xpt_traverse_config *tr_config;
2242
2243 tr_config = (struct xpt_traverse_config *)arg;
2244
2245 if (tr_config->depth == XPT_DEPTH_DEVICE) {
2246 xpt_devicefunc_t *tr_func;
2247
2248 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2249
2250 return(tr_func(device, tr_config->tr_arg));
2251 } else
2252 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2253}
2254
2255static int
2256xptdefperiphfunc(struct cam_periph *periph, void *arg)
2257{
2258 struct xpt_traverse_config *tr_config;
2259 xpt_periphfunc_t *tr_func;
2260
2261 tr_config = (struct xpt_traverse_config *)arg;
2262
2263 tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2264
2265 /*
2266 * Unlike the other default functions, we don't check for depth
2267 * here. The peripheral driver level is the last level in the EDT,
2268 * so if we're here, we should execute the function in question.
2269 */
2270 return(tr_func(periph, tr_config->tr_arg));
2271}
2272
2273/*
2274 * Execute the given function for every bus in the EDT.
2275 */
2276static int
2277xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2278{
2279 struct xpt_traverse_config tr_config;
2280
2281 tr_config.depth = XPT_DEPTH_BUS;
2282 tr_config.tr_func = tr_func;
2283 tr_config.tr_arg = arg;
2284
2285 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2286}
2287
2288/*
2289 * Execute the given function for every device in the EDT.
2290 */
2291static int
2292xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2293{
2294 struct xpt_traverse_config tr_config;
2295
2296 tr_config.depth = XPT_DEPTH_DEVICE;
2297 tr_config.tr_func = tr_func;
2298 tr_config.tr_arg = arg;
2299
2300 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2301}
2302
2303static int
2304xptsetasyncfunc(struct cam_ed *device, void *arg)
2305{
2306 struct cam_path path;
2307 struct ccb_getdev cgd;
2308 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2309
2310 /*
2311 * Don't report unconfigured devices (Wildcard devs,
2312 * devices only for target mode, device instances
2313 * that have been invalidated but are waiting for
2314 * their last reference count to be released).
2315 */
2316 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2317 return (1);
2318
2319 xpt_compile_path(&path,
2320 NULL,
2321 device->target->bus->path_id,
2322 device->target->target_id,
2323 device->lun_id);
2324 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2325 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2326 xpt_action((union ccb *)&cgd);
2327 csa->callback(csa->callback_arg,
2328 AC_FOUND_DEVICE,
2329 &path, &cgd);
2330 xpt_release_path(&path);
2331
2332 return(1);
2333}
2334
2335static int
2336xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2337{
2338 struct cam_path path;
2339 struct ccb_pathinq cpi;
2340 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2341
2342 xpt_compile_path(&path, /*periph*/NULL,
2343 bus->sim->path_id,
2344 CAM_TARGET_WILDCARD,
2345 CAM_LUN_WILDCARD);
2346 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2347 cpi.ccb_h.func_code = XPT_PATH_INQ;
2348 xpt_action((union ccb *)&cpi);
2349 csa->callback(csa->callback_arg,
2350 AC_PATH_REGISTERED,
2351 &path, &cpi);
2352 xpt_release_path(&path);
2353
2354 return(1);
2355}
2356
2357void
2358xpt_action(union ccb *start_ccb)
2359{
2360
2361 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2362
2363 start_ccb->ccb_h.status = CAM_REQ_INPROG;
2364 /* Compatibility for RL-unaware code. */
2365 if (CAM_PRIORITY_TO_RL(start_ccb->ccb_h.pinfo.priority) == 0)
2366 start_ccb->ccb_h.pinfo.priority += CAM_PRIORITY_NORMAL - 1;
2367 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2368}
2369
2370void
2371xpt_action_default(union ccb *start_ccb)
2372{
2373#ifdef CAMDEBUG
2374 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2375#endif
2376 struct cam_path *path;
2377
2378 path = start_ccb->ccb_h.path;
2379 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2380
2381 switch (start_ccb->ccb_h.func_code) {
2382 case XPT_SCSI_IO:
2383 {
2384 struct cam_ed *device;
2385
2386 /*
2387 * For the sake of compatibility with SCSI-1
2388 * devices that may not understand the identify
2389 * message, we include lun information in the
2390 * second byte of all commands. SCSI-1 specifies
2391 * that luns are a 3 bit value and reserves only 3
2392 * bits for lun information in the CDB. Later
2393 * revisions of the SCSI spec allow for more than 8
2394 * luns, but have deprecated lun information in the
2395 * CDB. So, if the lun won't fit, we must omit.
2396 *
2397 * Also be aware that during initial probing for devices,
2398 * the inquiry information is unknown but initialized to 0.
2399 * This means that this code will be exercised while probing
2400 * devices with an ANSI revision greater than 2.
2401 */
2402 device = path->device;
2403 if (device->protocol_version <= SCSI_REV_2
2404 && start_ccb->ccb_h.target_lun < 8
2405 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2406
2407 start_ccb->csio.cdb_io.cdb_bytes[1] |=
2408 start_ccb->ccb_h.target_lun << 5;
2409 }
2410 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2411 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2412 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2413 &path->device->inq_data),
2414 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2415 cdb_str, sizeof(cdb_str))));
2416 }
2417 /* FALLTHROUGH */
2418 case XPT_TARGET_IO:
2419 case XPT_CONT_TARGET_IO:
2420 start_ccb->csio.sense_resid = 0;
2421 start_ccb->csio.resid = 0;
2422 /* FALLTHROUGH */
2423 case XPT_ATA_IO:
2424 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) {
2425 start_ccb->ataio.resid = 0;
2426 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. ACB: %s\n",
2427 ata_op_string(&start_ccb->ataio.cmd),
2428 ata_cmd_string(&start_ccb->ataio.cmd,
2429 cdb_str, sizeof(cdb_str))));
2430 }
2431 /* FALLTHROUGH */
2432 case XPT_RESET_DEV:
2433 case XPT_ENG_EXEC:
2434 case XPT_SMP_IO:
2435 {
2436 int frozen;
2437
2438 frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2439 path->device->sim->devq->alloc_openings += frozen;
2440 if (frozen > 0)
2441 xpt_run_dev_allocq(path->bus);
2442 if (xpt_schedule_dev_sendq(path->bus, path->device))
2443 xpt_run_dev_sendq(path->bus);
2444 break;
2445 }
2446 case XPT_CALC_GEOMETRY:
2447 {
2448 struct cam_sim *sim;
2449
2450 /* Filter out garbage */
2451 if (start_ccb->ccg.block_size == 0
2452 || start_ccb->ccg.volume_size == 0) {
2453 start_ccb->ccg.cylinders = 0;
2454 start_ccb->ccg.heads = 0;
2455 start_ccb->ccg.secs_per_track = 0;
2456 start_ccb->ccb_h.status = CAM_REQ_CMP;
2457 break;
2458 }
73#include "opt_cam.h"
74
75/*
76 * This is the maximum number of high powered commands (e.g. start unit)
77 * that can be outstanding at a particular time.
78 */
79#ifndef CAM_MAX_HIGHPOWER
80#define CAM_MAX_HIGHPOWER 4
81#endif
82
83/* Datastructures internal to the xpt layer */
84MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
85
86/* Object for defering XPT actions to a taskqueue */
87struct xpt_task {
88 struct task task;
89 void *data1;
90 uintptr_t data2;
91};
92
93typedef enum {
94 XPT_FLAG_OPEN = 0x01
95} xpt_flags;
96
97struct xpt_softc {
98 xpt_flags flags;
99 u_int32_t xpt_generation;
100
101 /* number of high powered commands that can go through right now */
102 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
103 int num_highpower;
104
105 /* queue for handling async rescan requests. */
106 TAILQ_HEAD(, ccb_hdr) ccb_scanq;
107 int buses_to_config;
108 int buses_config_done;
109
110 /* Registered busses */
111 TAILQ_HEAD(,cam_eb) xpt_busses;
112 u_int bus_generation;
113
114 struct intr_config_hook *xpt_config_hook;
115
116 int boot_delay;
117 struct callout boot_callout;
118
119 struct mtx xpt_topo_lock;
120 struct mtx xpt_lock;
121};
122
123typedef enum {
124 DM_RET_COPY = 0x01,
125 DM_RET_FLAG_MASK = 0x0f,
126 DM_RET_NONE = 0x00,
127 DM_RET_STOP = 0x10,
128 DM_RET_DESCEND = 0x20,
129 DM_RET_ERROR = 0x30,
130 DM_RET_ACTION_MASK = 0xf0
131} dev_match_ret;
132
133typedef enum {
134 XPT_DEPTH_BUS,
135 XPT_DEPTH_TARGET,
136 XPT_DEPTH_DEVICE,
137 XPT_DEPTH_PERIPH
138} xpt_traverse_depth;
139
140struct xpt_traverse_config {
141 xpt_traverse_depth depth;
142 void *tr_func;
143 void *tr_arg;
144};
145
146typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
147typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
148typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
149typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
150typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
151
152/* Transport layer configuration information */
153static struct xpt_softc xsoftc;
154
155TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
156SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
157 &xsoftc.boot_delay, 0, "Bus registration wait time");
158
159/* Queues for our software interrupt handler */
160typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
161typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
162static cam_simq_t cam_simq;
163static struct mtx cam_simq_lock;
164
165/* Pointers to software interrupt handlers */
166static void *cambio_ih;
167
168struct cam_periph *xpt_periph;
169
170static periph_init_t xpt_periph_init;
171
172static struct periph_driver xpt_driver =
173{
174 xpt_periph_init, "xpt",
175 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
176 CAM_PERIPH_DRV_EARLY
177};
178
179PERIPHDRIVER_DECLARE(xpt, xpt_driver);
180
181static d_open_t xptopen;
182static d_close_t xptclose;
183static d_ioctl_t xptioctl;
184
185static struct cdevsw xpt_cdevsw = {
186 .d_version = D_VERSION,
187 .d_flags = 0,
188 .d_open = xptopen,
189 .d_close = xptclose,
190 .d_ioctl = xptioctl,
191 .d_name = "xpt",
192};
193
194/* Storage for debugging datastructures */
195#ifdef CAMDEBUG
196struct cam_path *cam_dpath;
197#ifdef CAM_DEBUG_FLAGS
198u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
199#else
200u_int32_t cam_dflags = CAM_DEBUG_NONE;
201#endif
202TUNABLE_INT("kern.cam.dflags", &cam_dflags);
203SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
204 &cam_dflags, 0, "Cam Debug Flags");
205u_int32_t cam_debug_delay;
206TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
207SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
208 &cam_debug_delay, 0, "Cam Debug Flags");
209#endif
210
211/* Our boot-time initialization hook */
212static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
213
214static moduledata_t cam_moduledata = {
215 "cam",
216 cam_module_event_handler,
217 NULL
218};
219
220static int xpt_init(void *);
221
222DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
223MODULE_VERSION(cam, 1);
224
225
226static void xpt_async_bcast(struct async_list *async_head,
227 u_int32_t async_code,
228 struct cam_path *path,
229 void *async_arg);
230static path_id_t xptnextfreepathid(void);
231static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
232static union ccb *xpt_get_ccb(struct cam_ed *device);
233static void xpt_run_dev_allocq(struct cam_eb *bus);
234static void xpt_run_dev_sendq(struct cam_eb *bus);
235static timeout_t xpt_release_devq_timeout;
236static void xpt_release_simq_timeout(void *arg) __unused;
237static void xpt_release_bus(struct cam_eb *bus);
238static void xpt_release_devq_device(struct cam_ed *dev, cam_rl rl,
239 u_int count, int run_queue);
240static struct cam_et*
241 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
242static void xpt_release_target(struct cam_et *target);
243static struct cam_eb*
244 xpt_find_bus(path_id_t path_id);
245static struct cam_et*
246 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
247static struct cam_ed*
248 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
249static void xpt_config(void *arg);
250static xpt_devicefunc_t xptpassannouncefunc;
251static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
252static void xptpoll(struct cam_sim *sim);
253static void camisr(void *);
254static void camisr_runqueue(void *);
255static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
256 u_int num_patterns, struct cam_eb *bus);
257static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
258 u_int num_patterns,
259 struct cam_ed *device);
260static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
261 u_int num_patterns,
262 struct cam_periph *periph);
263static xpt_busfunc_t xptedtbusfunc;
264static xpt_targetfunc_t xptedttargetfunc;
265static xpt_devicefunc_t xptedtdevicefunc;
266static xpt_periphfunc_t xptedtperiphfunc;
267static xpt_pdrvfunc_t xptplistpdrvfunc;
268static xpt_periphfunc_t xptplistperiphfunc;
269static int xptedtmatch(struct ccb_dev_match *cdm);
270static int xptperiphlistmatch(struct ccb_dev_match *cdm);
271static int xptbustraverse(struct cam_eb *start_bus,
272 xpt_busfunc_t *tr_func, void *arg);
273static int xpttargettraverse(struct cam_eb *bus,
274 struct cam_et *start_target,
275 xpt_targetfunc_t *tr_func, void *arg);
276static int xptdevicetraverse(struct cam_et *target,
277 struct cam_ed *start_device,
278 xpt_devicefunc_t *tr_func, void *arg);
279static int xptperiphtraverse(struct cam_ed *device,
280 struct cam_periph *start_periph,
281 xpt_periphfunc_t *tr_func, void *arg);
282static int xptpdrvtraverse(struct periph_driver **start_pdrv,
283 xpt_pdrvfunc_t *tr_func, void *arg);
284static int xptpdperiphtraverse(struct periph_driver **pdrv,
285 struct cam_periph *start_periph,
286 xpt_periphfunc_t *tr_func,
287 void *arg);
288static xpt_busfunc_t xptdefbusfunc;
289static xpt_targetfunc_t xptdeftargetfunc;
290static xpt_devicefunc_t xptdefdevicefunc;
291static xpt_periphfunc_t xptdefperiphfunc;
292static void xpt_finishconfig_task(void *context, int pending);
293static void xpt_dev_async_default(u_int32_t async_code,
294 struct cam_eb *bus,
295 struct cam_et *target,
296 struct cam_ed *device,
297 void *async_arg);
298static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus,
299 struct cam_et *target,
300 lun_id_t lun_id);
301static xpt_devicefunc_t xptsetasyncfunc;
302static xpt_busfunc_t xptsetasyncbusfunc;
303static cam_status xptregister(struct cam_periph *periph,
304 void *arg);
305static __inline int periph_is_queued(struct cam_periph *periph);
306static __inline int device_is_alloc_queued(struct cam_ed *device);
307static __inline int device_is_send_queued(struct cam_ed *device);
308
309static __inline int
310xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
311{
312 int retval;
313
314 if ((dev->drvq.entries > 0) &&
315 (dev->ccbq.devq_openings > 0) &&
316 (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
317 CAMQ_GET_PRIO(&dev->drvq))) == 0)) {
318 /*
319 * The priority of a device waiting for CCB resources
320 * is that of the highest priority peripheral driver
321 * enqueued.
322 */
323 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
324 &dev->alloc_ccb_entry.pinfo,
325 CAMQ_GET_PRIO(&dev->drvq));
326 } else {
327 retval = 0;
328 }
329
330 return (retval);
331}
332
333static __inline int
334xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
335{
336 int retval;
337
338 if ((dev->ccbq.queue.entries > 0) &&
339 (dev->ccbq.dev_openings > 0) &&
340 (cam_ccbq_frozen_top(&dev->ccbq) == 0)) {
341 /*
342 * The priority of a device waiting for controller
343 * resources is that of the highest priority CCB
344 * enqueued.
345 */
346 retval =
347 xpt_schedule_dev(&bus->sim->devq->send_queue,
348 &dev->send_ccb_entry.pinfo,
349 CAMQ_GET_PRIO(&dev->ccbq.queue));
350 } else {
351 retval = 0;
352 }
353 return (retval);
354}
355
356static __inline int
357periph_is_queued(struct cam_periph *periph)
358{
359 return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
360}
361
362static __inline int
363device_is_alloc_queued(struct cam_ed *device)
364{
365 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
366}
367
368static __inline int
369device_is_send_queued(struct cam_ed *device)
370{
371 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
372}
373
374static void
375xpt_periph_init()
376{
377 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
378}
379
380static void
381xptdone(struct cam_periph *periph, union ccb *done_ccb)
382{
383 /* Caller will release the CCB */
384 wakeup(&done_ccb->ccb_h.cbfcnp);
385}
386
387static int
388xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
389{
390
391 /*
392 * Only allow read-write access.
393 */
394 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
395 return(EPERM);
396
397 /*
398 * We don't allow nonblocking access.
399 */
400 if ((flags & O_NONBLOCK) != 0) {
401 printf("%s: can't do nonblocking access\n", devtoname(dev));
402 return(ENODEV);
403 }
404
405 /* Mark ourselves open */
406 mtx_lock(&xsoftc.xpt_lock);
407 xsoftc.flags |= XPT_FLAG_OPEN;
408 mtx_unlock(&xsoftc.xpt_lock);
409
410 return(0);
411}
412
413static int
414xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
415{
416
417 /* Mark ourselves closed */
418 mtx_lock(&xsoftc.xpt_lock);
419 xsoftc.flags &= ~XPT_FLAG_OPEN;
420 mtx_unlock(&xsoftc.xpt_lock);
421
422 return(0);
423}
424
425/*
426 * Don't automatically grab the xpt softc lock here even though this is going
427 * through the xpt device. The xpt device is really just a back door for
428 * accessing other devices and SIMs, so the right thing to do is to grab
429 * the appropriate SIM lock once the bus/SIM is located.
430 */
431static int
432xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
433{
434 int error;
435
436 error = 0;
437
438 switch(cmd) {
439 /*
440 * For the transport layer CAMIOCOMMAND ioctl, we really only want
441 * to accept CCB types that don't quite make sense to send through a
442 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
443 * in the CAM spec.
444 */
445 case CAMIOCOMMAND: {
446 union ccb *ccb;
447 union ccb *inccb;
448 struct cam_eb *bus;
449
450 inccb = (union ccb *)addr;
451
452 bus = xpt_find_bus(inccb->ccb_h.path_id);
453 if (bus == NULL)
454 return (EINVAL);
455
456 switch (inccb->ccb_h.func_code) {
457 case XPT_SCAN_BUS:
458 case XPT_RESET_BUS:
459 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
460 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
461 xpt_release_bus(bus);
462 return (EINVAL);
463 }
464 break;
465 case XPT_SCAN_TGT:
466 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
467 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
468 xpt_release_bus(bus);
469 return (EINVAL);
470 }
471 break;
472 default:
473 break;
474 }
475
476 switch(inccb->ccb_h.func_code) {
477 case XPT_SCAN_BUS:
478 case XPT_RESET_BUS:
479 case XPT_PATH_INQ:
480 case XPT_ENG_INQ:
481 case XPT_SCAN_LUN:
482 case XPT_SCAN_TGT:
483
484 ccb = xpt_alloc_ccb();
485
486 CAM_SIM_LOCK(bus->sim);
487
488 /*
489 * Create a path using the bus, target, and lun the
490 * user passed in.
491 */
492 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
493 inccb->ccb_h.path_id,
494 inccb->ccb_h.target_id,
495 inccb->ccb_h.target_lun) !=
496 CAM_REQ_CMP){
497 error = EINVAL;
498 CAM_SIM_UNLOCK(bus->sim);
499 xpt_free_ccb(ccb);
500 break;
501 }
502 /* Ensure all of our fields are correct */
503 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
504 inccb->ccb_h.pinfo.priority);
505 xpt_merge_ccb(ccb, inccb);
506 ccb->ccb_h.cbfcnp = xptdone;
507 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
508 bcopy(ccb, inccb, sizeof(union ccb));
509 xpt_free_path(ccb->ccb_h.path);
510 xpt_free_ccb(ccb);
511 CAM_SIM_UNLOCK(bus->sim);
512 break;
513
514 case XPT_DEBUG: {
515 union ccb ccb;
516
517 /*
518 * This is an immediate CCB, so it's okay to
519 * allocate it on the stack.
520 */
521
522 CAM_SIM_LOCK(bus->sim);
523
524 /*
525 * Create a path using the bus, target, and lun the
526 * user passed in.
527 */
528 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
529 inccb->ccb_h.path_id,
530 inccb->ccb_h.target_id,
531 inccb->ccb_h.target_lun) !=
532 CAM_REQ_CMP){
533 error = EINVAL;
534 CAM_SIM_UNLOCK(bus->sim);
535 break;
536 }
537 /* Ensure all of our fields are correct */
538 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
539 inccb->ccb_h.pinfo.priority);
540 xpt_merge_ccb(&ccb, inccb);
541 ccb.ccb_h.cbfcnp = xptdone;
542 xpt_action(&ccb);
543 CAM_SIM_UNLOCK(bus->sim);
544 bcopy(&ccb, inccb, sizeof(union ccb));
545 xpt_free_path(ccb.ccb_h.path);
546 break;
547
548 }
549 case XPT_DEV_MATCH: {
550 struct cam_periph_map_info mapinfo;
551 struct cam_path *old_path;
552
553 /*
554 * We can't deal with physical addresses for this
555 * type of transaction.
556 */
557 if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
558 error = EINVAL;
559 break;
560 }
561
562 /*
563 * Save this in case the caller had it set to
564 * something in particular.
565 */
566 old_path = inccb->ccb_h.path;
567
568 /*
569 * We really don't need a path for the matching
570 * code. The path is needed because of the
571 * debugging statements in xpt_action(). They
572 * assume that the CCB has a valid path.
573 */
574 inccb->ccb_h.path = xpt_periph->path;
575
576 bzero(&mapinfo, sizeof(mapinfo));
577
578 /*
579 * Map the pattern and match buffers into kernel
580 * virtual address space.
581 */
582 error = cam_periph_mapmem(inccb, &mapinfo);
583
584 if (error) {
585 inccb->ccb_h.path = old_path;
586 break;
587 }
588
589 /*
590 * This is an immediate CCB, we can send it on directly.
591 */
592 xpt_action(inccb);
593
594 /*
595 * Map the buffers back into user space.
596 */
597 cam_periph_unmapmem(inccb, &mapinfo);
598
599 inccb->ccb_h.path = old_path;
600
601 error = 0;
602 break;
603 }
604 default:
605 error = ENOTSUP;
606 break;
607 }
608 xpt_release_bus(bus);
609 break;
610 }
611 /*
612 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
613 * with the periphal driver name and unit name filled in. The other
614 * fields don't really matter as input. The passthrough driver name
615 * ("pass"), and unit number are passed back in the ccb. The current
616 * device generation number, and the index into the device peripheral
617 * driver list, and the status are also passed back. Note that
618 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
619 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
620 * (or rather should be) impossible for the device peripheral driver
621 * list to change since we look at the whole thing in one pass, and
622 * we do it with lock protection.
623 *
624 */
625 case CAMGETPASSTHRU: {
626 union ccb *ccb;
627 struct cam_periph *periph;
628 struct periph_driver **p_drv;
629 char *name;
630 u_int unit;
631 u_int cur_generation;
632 int base_periph_found;
633 int splbreaknum;
634
635 ccb = (union ccb *)addr;
636 unit = ccb->cgdl.unit_number;
637 name = ccb->cgdl.periph_name;
638 /*
639 * Every 100 devices, we want to drop our lock protection to
640 * give the software interrupt handler a chance to run.
641 * Most systems won't run into this check, but this should
642 * avoid starvation in the software interrupt handler in
643 * large systems.
644 */
645 splbreaknum = 100;
646
647 ccb = (union ccb *)addr;
648
649 base_periph_found = 0;
650
651 /*
652 * Sanity check -- make sure we don't get a null peripheral
653 * driver name.
654 */
655 if (*ccb->cgdl.periph_name == '\0') {
656 error = EINVAL;
657 break;
658 }
659
660 /* Keep the list from changing while we traverse it */
661 mtx_lock(&xsoftc.xpt_topo_lock);
662ptstartover:
663 cur_generation = xsoftc.xpt_generation;
664
665 /* first find our driver in the list of drivers */
666 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
667 if (strcmp((*p_drv)->driver_name, name) == 0)
668 break;
669
670 if (*p_drv == NULL) {
671 mtx_unlock(&xsoftc.xpt_topo_lock);
672 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
673 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
674 *ccb->cgdl.periph_name = '\0';
675 ccb->cgdl.unit_number = 0;
676 error = ENOENT;
677 break;
678 }
679
680 /*
681 * Run through every peripheral instance of this driver
682 * and check to see whether it matches the unit passed
683 * in by the user. If it does, get out of the loops and
684 * find the passthrough driver associated with that
685 * peripheral driver.
686 */
687 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
688 periph = TAILQ_NEXT(periph, unit_links)) {
689
690 if (periph->unit_number == unit) {
691 break;
692 } else if (--splbreaknum == 0) {
693 mtx_unlock(&xsoftc.xpt_topo_lock);
694 mtx_lock(&xsoftc.xpt_topo_lock);
695 splbreaknum = 100;
696 if (cur_generation != xsoftc.xpt_generation)
697 goto ptstartover;
698 }
699 }
700 /*
701 * If we found the peripheral driver that the user passed
702 * in, go through all of the peripheral drivers for that
703 * particular device and look for a passthrough driver.
704 */
705 if (periph != NULL) {
706 struct cam_ed *device;
707 int i;
708
709 base_periph_found = 1;
710 device = periph->path->device;
711 for (i = 0, periph = SLIST_FIRST(&device->periphs);
712 periph != NULL;
713 periph = SLIST_NEXT(periph, periph_links), i++) {
714 /*
715 * Check to see whether we have a
716 * passthrough device or not.
717 */
718 if (strcmp(periph->periph_name, "pass") == 0) {
719 /*
720 * Fill in the getdevlist fields.
721 */
722 strcpy(ccb->cgdl.periph_name,
723 periph->periph_name);
724 ccb->cgdl.unit_number =
725 periph->unit_number;
726 if (SLIST_NEXT(periph, periph_links))
727 ccb->cgdl.status =
728 CAM_GDEVLIST_MORE_DEVS;
729 else
730 ccb->cgdl.status =
731 CAM_GDEVLIST_LAST_DEVICE;
732 ccb->cgdl.generation =
733 device->generation;
734 ccb->cgdl.index = i;
735 /*
736 * Fill in some CCB header fields
737 * that the user may want.
738 */
739 ccb->ccb_h.path_id =
740 periph->path->bus->path_id;
741 ccb->ccb_h.target_id =
742 periph->path->target->target_id;
743 ccb->ccb_h.target_lun =
744 periph->path->device->lun_id;
745 ccb->ccb_h.status = CAM_REQ_CMP;
746 break;
747 }
748 }
749 }
750
751 /*
752 * If the periph is null here, one of two things has
753 * happened. The first possibility is that we couldn't
754 * find the unit number of the particular peripheral driver
755 * that the user is asking about. e.g. the user asks for
756 * the passthrough driver for "da11". We find the list of
757 * "da" peripherals all right, but there is no unit 11.
758 * The other possibility is that we went through the list
759 * of peripheral drivers attached to the device structure,
760 * but didn't find one with the name "pass". Either way,
761 * we return ENOENT, since we couldn't find something.
762 */
763 if (periph == NULL) {
764 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
765 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
766 *ccb->cgdl.periph_name = '\0';
767 ccb->cgdl.unit_number = 0;
768 error = ENOENT;
769 /*
770 * It is unfortunate that this is even necessary,
771 * but there are many, many clueless users out there.
772 * If this is true, the user is looking for the
773 * passthrough driver, but doesn't have one in his
774 * kernel.
775 */
776 if (base_periph_found == 1) {
777 printf("xptioctl: pass driver is not in the "
778 "kernel\n");
779 printf("xptioctl: put \"device pass\" in "
780 "your kernel config file\n");
781 }
782 }
783 mtx_unlock(&xsoftc.xpt_topo_lock);
784 break;
785 }
786 default:
787 error = ENOTTY;
788 break;
789 }
790
791 return(error);
792}
793
794static int
795cam_module_event_handler(module_t mod, int what, void *arg)
796{
797 int error;
798
799 switch (what) {
800 case MOD_LOAD:
801 if ((error = xpt_init(NULL)) != 0)
802 return (error);
803 break;
804 case MOD_UNLOAD:
805 return EBUSY;
806 default:
807 return EOPNOTSUPP;
808 }
809
810 return 0;
811}
812
813static void
814xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
815{
816
817 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
818 xpt_free_path(done_ccb->ccb_h.path);
819 xpt_free_ccb(done_ccb);
820 } else {
821 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
822 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
823 }
824 xpt_release_boot();
825}
826
827/* thread to handle bus rescans */
828static void
829xpt_scanner_thread(void *dummy)
830{
831 union ccb *ccb;
832 struct cam_sim *sim;
833
834 xpt_lock_buses();
835 for (;;) {
836 if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
837 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
838 "ccb_scanq", 0);
839 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
840 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
841 xpt_unlock_buses();
842
843 sim = ccb->ccb_h.path->bus->sim;
844 CAM_SIM_LOCK(sim);
845 xpt_action(ccb);
846 CAM_SIM_UNLOCK(sim);
847
848 xpt_lock_buses();
849 }
850 }
851}
852
853void
854xpt_rescan(union ccb *ccb)
855{
856 struct ccb_hdr *hdr;
857
858 /* Prepare request */
859 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
860 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
861 ccb->ccb_h.func_code = XPT_SCAN_BUS;
862 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
863 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
864 ccb->ccb_h.func_code = XPT_SCAN_TGT;
865 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
866 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
867 ccb->ccb_h.func_code = XPT_SCAN_LUN;
868 else {
869 xpt_print(ccb->ccb_h.path, "illegal scan path\n");
870 xpt_free_path(ccb->ccb_h.path);
871 xpt_free_ccb(ccb);
872 return;
873 }
874 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
875 ccb->ccb_h.cbfcnp = xpt_rescan_done;
876 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
877 /* Don't make duplicate entries for the same paths. */
878 xpt_lock_buses();
879 if (ccb->ccb_h.ppriv_ptr1 == NULL) {
880 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
881 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
882 wakeup(&xsoftc.ccb_scanq);
883 xpt_unlock_buses();
884 xpt_print(ccb->ccb_h.path, "rescan already queued\n");
885 xpt_free_path(ccb->ccb_h.path);
886 xpt_free_ccb(ccb);
887 return;
888 }
889 }
890 }
891 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
892 xsoftc.buses_to_config++;
893 wakeup(&xsoftc.ccb_scanq);
894 xpt_unlock_buses();
895}
896
897/* Functions accessed by the peripheral drivers */
898static int
899xpt_init(void *dummy)
900{
901 struct cam_sim *xpt_sim;
902 struct cam_path *path;
903 struct cam_devq *devq;
904 cam_status status;
905
906 TAILQ_INIT(&xsoftc.xpt_busses);
907 TAILQ_INIT(&cam_simq);
908 TAILQ_INIT(&xsoftc.ccb_scanq);
909 STAILQ_INIT(&xsoftc.highpowerq);
910 xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
911
912 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
913 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
914 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
915
916 /*
917 * The xpt layer is, itself, the equivelent of a SIM.
918 * Allow 16 ccbs in the ccb pool for it. This should
919 * give decent parallelism when we probe busses and
920 * perform other XPT functions.
921 */
922 devq = cam_simq_alloc(16);
923 xpt_sim = cam_sim_alloc(xptaction,
924 xptpoll,
925 "xpt",
926 /*softc*/NULL,
927 /*unit*/0,
928 /*mtx*/&xsoftc.xpt_lock,
929 /*max_dev_transactions*/0,
930 /*max_tagged_dev_transactions*/0,
931 devq);
932 if (xpt_sim == NULL)
933 return (ENOMEM);
934
935 mtx_lock(&xsoftc.xpt_lock);
936 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
937 mtx_unlock(&xsoftc.xpt_lock);
938 printf("xpt_init: xpt_bus_register failed with status %#x,"
939 " failing attach\n", status);
940 return (EINVAL);
941 }
942
943 /*
944 * Looking at the XPT from the SIM layer, the XPT is
945 * the equivelent of a peripheral driver. Allocate
946 * a peripheral driver entry for us.
947 */
948 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
949 CAM_TARGET_WILDCARD,
950 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
951 mtx_unlock(&xsoftc.xpt_lock);
952 printf("xpt_init: xpt_create_path failed with status %#x,"
953 " failing attach\n", status);
954 return (EINVAL);
955 }
956
957 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
958 path, NULL, 0, xpt_sim);
959 xpt_free_path(path);
960 mtx_unlock(&xsoftc.xpt_lock);
961 /* Install our software interrupt handlers */
962 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
963 /*
964 * Register a callback for when interrupts are enabled.
965 */
966 xsoftc.xpt_config_hook =
967 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
968 M_CAMXPT, M_NOWAIT | M_ZERO);
969 if (xsoftc.xpt_config_hook == NULL) {
970 printf("xpt_init: Cannot malloc config hook "
971 "- failing attach\n");
972 return (ENOMEM);
973 }
974 xsoftc.xpt_config_hook->ich_func = xpt_config;
975 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
976 free (xsoftc.xpt_config_hook, M_CAMXPT);
977 printf("xpt_init: config_intrhook_establish failed "
978 "- failing attach\n");
979 }
980
981 return (0);
982}
983
984static cam_status
985xptregister(struct cam_periph *periph, void *arg)
986{
987 struct cam_sim *xpt_sim;
988
989 if (periph == NULL) {
990 printf("xptregister: periph was NULL!!\n");
991 return(CAM_REQ_CMP_ERR);
992 }
993
994 xpt_sim = (struct cam_sim *)arg;
995 xpt_sim->softc = periph;
996 xpt_periph = periph;
997 periph->softc = NULL;
998
999 return(CAM_REQ_CMP);
1000}
1001
1002int32_t
1003xpt_add_periph(struct cam_periph *periph)
1004{
1005 struct cam_ed *device;
1006 int32_t status;
1007 struct periph_list *periph_head;
1008
1009 mtx_assert(periph->sim->mtx, MA_OWNED);
1010
1011 device = periph->path->device;
1012
1013 periph_head = &device->periphs;
1014
1015 status = CAM_REQ_CMP;
1016
1017 if (device != NULL) {
1018 /*
1019 * Make room for this peripheral
1020 * so it will fit in the queue
1021 * when it's scheduled to run
1022 */
1023 status = camq_resize(&device->drvq,
1024 device->drvq.array_size + 1);
1025
1026 device->generation++;
1027
1028 SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1029 }
1030
1031 mtx_lock(&xsoftc.xpt_topo_lock);
1032 xsoftc.xpt_generation++;
1033 mtx_unlock(&xsoftc.xpt_topo_lock);
1034
1035 return (status);
1036}
1037
1038void
1039xpt_remove_periph(struct cam_periph *periph)
1040{
1041 struct cam_ed *device;
1042
1043 mtx_assert(periph->sim->mtx, MA_OWNED);
1044
1045 device = periph->path->device;
1046
1047 if (device != NULL) {
1048 struct periph_list *periph_head;
1049
1050 periph_head = &device->periphs;
1051
1052 /* Release the slot for this peripheral */
1053 camq_resize(&device->drvq, device->drvq.array_size - 1);
1054
1055 device->generation++;
1056
1057 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1058 }
1059
1060 mtx_lock(&xsoftc.xpt_topo_lock);
1061 xsoftc.xpt_generation++;
1062 mtx_unlock(&xsoftc.xpt_topo_lock);
1063}
1064
1065
1066void
1067xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1068{
1069 struct cam_path *path = periph->path;
1070
1071 mtx_assert(periph->sim->mtx, MA_OWNED);
1072
1073 printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1074 periph->periph_name, periph->unit_number,
1075 path->bus->sim->sim_name,
1076 path->bus->sim->unit_number,
1077 path->bus->sim->bus_id,
1078 path->bus->path_id,
1079 path->target->target_id,
1080 path->device->lun_id);
1081 printf("%s%d: ", periph->periph_name, periph->unit_number);
1082 if (path->device->protocol == PROTO_SCSI)
1083 scsi_print_inquiry(&path->device->inq_data);
1084 else if (path->device->protocol == PROTO_ATA ||
1085 path->device->protocol == PROTO_SATAPM)
1086 ata_print_ident(&path->device->ident_data);
1087 else
1088 printf("Unknown protocol device\n");
1089 if (bootverbose && path->device->serial_num_len > 0) {
1090 /* Don't wrap the screen - print only the first 60 chars */
1091 printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1092 periph->unit_number, path->device->serial_num);
1093 }
1094 /* Announce transport details. */
1095 (*(path->bus->xport->announce))(periph);
1096 /* Announce command queueing. */
1097 if (path->device->inq_flags & SID_CmdQue
1098 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1099 printf("%s%d: Command Queueing enabled\n",
1100 periph->periph_name, periph->unit_number);
1101 }
1102 /* Announce caller's details if they've passed in. */
1103 if (announce_string != NULL)
1104 printf("%s%d: %s\n", periph->periph_name,
1105 periph->unit_number, announce_string);
1106}
1107
1108int
1109xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1110{
1111 int ret = -1;
1112 struct ccb_dev_advinfo cdai;
1113
1114 memset(&cdai, 0, sizeof(cdai));
1115 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1116 cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1117 cdai.bufsiz = len;
1118
1119 if (!strcmp(attr, "GEOM::ident"))
1120 cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1121 else if (!strcmp(attr, "GEOM::physpath"))
1122 cdai.buftype = CDAI_TYPE_PHYS_PATH;
1123 else
1124 goto out;
1125
1126 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1127 if (cdai.buf == NULL) {
1128 ret = ENOMEM;
1129 goto out;
1130 }
1131 xpt_action((union ccb *)&cdai); /* can only be synchronous */
1132 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1133 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1134 if (cdai.provsiz == 0)
1135 goto out;
1136 ret = 0;
1137 if (strlcpy(buf, cdai.buf, len) >= len)
1138 ret = EFAULT;
1139
1140out:
1141 if (cdai.buf != NULL)
1142 free(cdai.buf, M_CAMXPT);
1143 return ret;
1144}
1145
1146static dev_match_ret
1147xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1148 struct cam_eb *bus)
1149{
1150 dev_match_ret retval;
1151 int i;
1152
1153 retval = DM_RET_NONE;
1154
1155 /*
1156 * If we aren't given something to match against, that's an error.
1157 */
1158 if (bus == NULL)
1159 return(DM_RET_ERROR);
1160
1161 /*
1162 * If there are no match entries, then this bus matches no
1163 * matter what.
1164 */
1165 if ((patterns == NULL) || (num_patterns == 0))
1166 return(DM_RET_DESCEND | DM_RET_COPY);
1167
1168 for (i = 0; i < num_patterns; i++) {
1169 struct bus_match_pattern *cur_pattern;
1170
1171 /*
1172 * If the pattern in question isn't for a bus node, we
1173 * aren't interested. However, we do indicate to the
1174 * calling routine that we should continue descending the
1175 * tree, since the user wants to match against lower-level
1176 * EDT elements.
1177 */
1178 if (patterns[i].type != DEV_MATCH_BUS) {
1179 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1180 retval |= DM_RET_DESCEND;
1181 continue;
1182 }
1183
1184 cur_pattern = &patterns[i].pattern.bus_pattern;
1185
1186 /*
1187 * If they want to match any bus node, we give them any
1188 * device node.
1189 */
1190 if (cur_pattern->flags == BUS_MATCH_ANY) {
1191 /* set the copy flag */
1192 retval |= DM_RET_COPY;
1193
1194 /*
1195 * If we've already decided on an action, go ahead
1196 * and return.
1197 */
1198 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1199 return(retval);
1200 }
1201
1202 /*
1203 * Not sure why someone would do this...
1204 */
1205 if (cur_pattern->flags == BUS_MATCH_NONE)
1206 continue;
1207
1208 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1209 && (cur_pattern->path_id != bus->path_id))
1210 continue;
1211
1212 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1213 && (cur_pattern->bus_id != bus->sim->bus_id))
1214 continue;
1215
1216 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1217 && (cur_pattern->unit_number != bus->sim->unit_number))
1218 continue;
1219
1220 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1221 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1222 DEV_IDLEN) != 0))
1223 continue;
1224
1225 /*
1226 * If we get to this point, the user definitely wants
1227 * information on this bus. So tell the caller to copy the
1228 * data out.
1229 */
1230 retval |= DM_RET_COPY;
1231
1232 /*
1233 * If the return action has been set to descend, then we
1234 * know that we've already seen a non-bus matching
1235 * expression, therefore we need to further descend the tree.
1236 * This won't change by continuing around the loop, so we
1237 * go ahead and return. If we haven't seen a non-bus
1238 * matching expression, we keep going around the loop until
1239 * we exhaust the matching expressions. We'll set the stop
1240 * flag once we fall out of the loop.
1241 */
1242 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1243 return(retval);
1244 }
1245
1246 /*
1247 * If the return action hasn't been set to descend yet, that means
1248 * we haven't seen anything other than bus matching patterns. So
1249 * tell the caller to stop descending the tree -- the user doesn't
1250 * want to match against lower level tree elements.
1251 */
1252 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1253 retval |= DM_RET_STOP;
1254
1255 return(retval);
1256}
1257
1258static dev_match_ret
1259xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1260 struct cam_ed *device)
1261{
1262 dev_match_ret retval;
1263 int i;
1264
1265 retval = DM_RET_NONE;
1266
1267 /*
1268 * If we aren't given something to match against, that's an error.
1269 */
1270 if (device == NULL)
1271 return(DM_RET_ERROR);
1272
1273 /*
1274 * If there are no match entries, then this device matches no
1275 * matter what.
1276 */
1277 if ((patterns == NULL) || (num_patterns == 0))
1278 return(DM_RET_DESCEND | DM_RET_COPY);
1279
1280 for (i = 0; i < num_patterns; i++) {
1281 struct device_match_pattern *cur_pattern;
1282 struct scsi_vpd_device_id *device_id_page;
1283
1284 /*
1285 * If the pattern in question isn't for a device node, we
1286 * aren't interested.
1287 */
1288 if (patterns[i].type != DEV_MATCH_DEVICE) {
1289 if ((patterns[i].type == DEV_MATCH_PERIPH)
1290 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1291 retval |= DM_RET_DESCEND;
1292 continue;
1293 }
1294
1295 cur_pattern = &patterns[i].pattern.device_pattern;
1296
1297 /* Error out if mutually exclusive options are specified. */
1298 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1299 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1300 return(DM_RET_ERROR);
1301
1302 /*
1303 * If they want to match any device node, we give them any
1304 * device node.
1305 */
1306 if (cur_pattern->flags == DEV_MATCH_ANY)
1307 goto copy_dev_node;
1308
1309 /*
1310 * Not sure why someone would do this...
1311 */
1312 if (cur_pattern->flags == DEV_MATCH_NONE)
1313 continue;
1314
1315 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1316 && (cur_pattern->path_id != device->target->bus->path_id))
1317 continue;
1318
1319 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1320 && (cur_pattern->target_id != device->target->target_id))
1321 continue;
1322
1323 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1324 && (cur_pattern->target_lun != device->lun_id))
1325 continue;
1326
1327 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1328 && (cam_quirkmatch((caddr_t)&device->inq_data,
1329 (caddr_t)&cur_pattern->data.inq_pat,
1330 1, sizeof(cur_pattern->data.inq_pat),
1331 scsi_static_inquiry_match) == NULL))
1332 continue;
1333
1334 device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1335 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1336 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1337 || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1338 device->device_id_len
1339 - SVPD_DEVICE_ID_HDR_LEN,
1340 cur_pattern->data.devid_pat.id,
1341 cur_pattern->data.devid_pat.id_len) != 0))
1342 continue;
1343
1344copy_dev_node:
1345 /*
1346 * If we get to this point, the user definitely wants
1347 * information on this device. So tell the caller to copy
1348 * the data out.
1349 */
1350 retval |= DM_RET_COPY;
1351
1352 /*
1353 * If the return action has been set to descend, then we
1354 * know that we've already seen a peripheral matching
1355 * expression, therefore we need to further descend the tree.
1356 * This won't change by continuing around the loop, so we
1357 * go ahead and return. If we haven't seen a peripheral
1358 * matching expression, we keep going around the loop until
1359 * we exhaust the matching expressions. We'll set the stop
1360 * flag once we fall out of the loop.
1361 */
1362 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1363 return(retval);
1364 }
1365
1366 /*
1367 * If the return action hasn't been set to descend yet, that means
1368 * we haven't seen any peripheral matching patterns. So tell the
1369 * caller to stop descending the tree -- the user doesn't want to
1370 * match against lower level tree elements.
1371 */
1372 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1373 retval |= DM_RET_STOP;
1374
1375 return(retval);
1376}
1377
1378/*
1379 * Match a single peripheral against any number of match patterns.
1380 */
1381static dev_match_ret
1382xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1383 struct cam_periph *periph)
1384{
1385 dev_match_ret retval;
1386 int i;
1387
1388 /*
1389 * If we aren't given something to match against, that's an error.
1390 */
1391 if (periph == NULL)
1392 return(DM_RET_ERROR);
1393
1394 /*
1395 * If there are no match entries, then this peripheral matches no
1396 * matter what.
1397 */
1398 if ((patterns == NULL) || (num_patterns == 0))
1399 return(DM_RET_STOP | DM_RET_COPY);
1400
1401 /*
1402 * There aren't any nodes below a peripheral node, so there's no
1403 * reason to descend the tree any further.
1404 */
1405 retval = DM_RET_STOP;
1406
1407 for (i = 0; i < num_patterns; i++) {
1408 struct periph_match_pattern *cur_pattern;
1409
1410 /*
1411 * If the pattern in question isn't for a peripheral, we
1412 * aren't interested.
1413 */
1414 if (patterns[i].type != DEV_MATCH_PERIPH)
1415 continue;
1416
1417 cur_pattern = &patterns[i].pattern.periph_pattern;
1418
1419 /*
1420 * If they want to match on anything, then we will do so.
1421 */
1422 if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1423 /* set the copy flag */
1424 retval |= DM_RET_COPY;
1425
1426 /*
1427 * We've already set the return action to stop,
1428 * since there are no nodes below peripherals in
1429 * the tree.
1430 */
1431 return(retval);
1432 }
1433
1434 /*
1435 * Not sure why someone would do this...
1436 */
1437 if (cur_pattern->flags == PERIPH_MATCH_NONE)
1438 continue;
1439
1440 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1441 && (cur_pattern->path_id != periph->path->bus->path_id))
1442 continue;
1443
1444 /*
1445 * For the target and lun id's, we have to make sure the
1446 * target and lun pointers aren't NULL. The xpt peripheral
1447 * has a wildcard target and device.
1448 */
1449 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1450 && ((periph->path->target == NULL)
1451 ||(cur_pattern->target_id != periph->path->target->target_id)))
1452 continue;
1453
1454 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1455 && ((periph->path->device == NULL)
1456 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1457 continue;
1458
1459 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1460 && (cur_pattern->unit_number != periph->unit_number))
1461 continue;
1462
1463 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1464 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1465 DEV_IDLEN) != 0))
1466 continue;
1467
1468 /*
1469 * If we get to this point, the user definitely wants
1470 * information on this peripheral. So tell the caller to
1471 * copy the data out.
1472 */
1473 retval |= DM_RET_COPY;
1474
1475 /*
1476 * The return action has already been set to stop, since
1477 * peripherals don't have any nodes below them in the EDT.
1478 */
1479 return(retval);
1480 }
1481
1482 /*
1483 * If we get to this point, the peripheral that was passed in
1484 * doesn't match any of the patterns.
1485 */
1486 return(retval);
1487}
1488
1489static int
1490xptedtbusfunc(struct cam_eb *bus, void *arg)
1491{
1492 struct ccb_dev_match *cdm;
1493 dev_match_ret retval;
1494
1495 cdm = (struct ccb_dev_match *)arg;
1496
1497 /*
1498 * If our position is for something deeper in the tree, that means
1499 * that we've already seen this node. So, we keep going down.
1500 */
1501 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1502 && (cdm->pos.cookie.bus == bus)
1503 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1504 && (cdm->pos.cookie.target != NULL))
1505 retval = DM_RET_DESCEND;
1506 else
1507 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1508
1509 /*
1510 * If we got an error, bail out of the search.
1511 */
1512 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1513 cdm->status = CAM_DEV_MATCH_ERROR;
1514 return(0);
1515 }
1516
1517 /*
1518 * If the copy flag is set, copy this bus out.
1519 */
1520 if (retval & DM_RET_COPY) {
1521 int spaceleft, j;
1522
1523 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1524 sizeof(struct dev_match_result));
1525
1526 /*
1527 * If we don't have enough space to put in another
1528 * match result, save our position and tell the
1529 * user there are more devices to check.
1530 */
1531 if (spaceleft < sizeof(struct dev_match_result)) {
1532 bzero(&cdm->pos, sizeof(cdm->pos));
1533 cdm->pos.position_type =
1534 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1535
1536 cdm->pos.cookie.bus = bus;
1537 cdm->pos.generations[CAM_BUS_GENERATION]=
1538 xsoftc.bus_generation;
1539 cdm->status = CAM_DEV_MATCH_MORE;
1540 return(0);
1541 }
1542 j = cdm->num_matches;
1543 cdm->num_matches++;
1544 cdm->matches[j].type = DEV_MATCH_BUS;
1545 cdm->matches[j].result.bus_result.path_id = bus->path_id;
1546 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1547 cdm->matches[j].result.bus_result.unit_number =
1548 bus->sim->unit_number;
1549 strncpy(cdm->matches[j].result.bus_result.dev_name,
1550 bus->sim->sim_name, DEV_IDLEN);
1551 }
1552
1553 /*
1554 * If the user is only interested in busses, there's no
1555 * reason to descend to the next level in the tree.
1556 */
1557 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1558 return(1);
1559
1560 /*
1561 * If there is a target generation recorded, check it to
1562 * make sure the target list hasn't changed.
1563 */
1564 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1565 && (bus == cdm->pos.cookie.bus)
1566 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1567 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1568 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1569 bus->generation)) {
1570 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1571 return(0);
1572 }
1573
1574 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1575 && (cdm->pos.cookie.bus == bus)
1576 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1577 && (cdm->pos.cookie.target != NULL))
1578 return(xpttargettraverse(bus,
1579 (struct cam_et *)cdm->pos.cookie.target,
1580 xptedttargetfunc, arg));
1581 else
1582 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1583}
1584
1585static int
1586xptedttargetfunc(struct cam_et *target, void *arg)
1587{
1588 struct ccb_dev_match *cdm;
1589
1590 cdm = (struct ccb_dev_match *)arg;
1591
1592 /*
1593 * If there is a device list generation recorded, check it to
1594 * make sure the device list hasn't changed.
1595 */
1596 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1597 && (cdm->pos.cookie.bus == target->bus)
1598 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1599 && (cdm->pos.cookie.target == target)
1600 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1601 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1602 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1603 target->generation)) {
1604 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1605 return(0);
1606 }
1607
1608 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1609 && (cdm->pos.cookie.bus == target->bus)
1610 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1611 && (cdm->pos.cookie.target == target)
1612 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1613 && (cdm->pos.cookie.device != NULL))
1614 return(xptdevicetraverse(target,
1615 (struct cam_ed *)cdm->pos.cookie.device,
1616 xptedtdevicefunc, arg));
1617 else
1618 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1619}
1620
1621static int
1622xptedtdevicefunc(struct cam_ed *device, void *arg)
1623{
1624
1625 struct ccb_dev_match *cdm;
1626 dev_match_ret retval;
1627
1628 cdm = (struct ccb_dev_match *)arg;
1629
1630 /*
1631 * If our position is for something deeper in the tree, that means
1632 * that we've already seen this node. So, we keep going down.
1633 */
1634 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1635 && (cdm->pos.cookie.device == device)
1636 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1637 && (cdm->pos.cookie.periph != NULL))
1638 retval = DM_RET_DESCEND;
1639 else
1640 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1641 device);
1642
1643 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1644 cdm->status = CAM_DEV_MATCH_ERROR;
1645 return(0);
1646 }
1647
1648 /*
1649 * If the copy flag is set, copy this device out.
1650 */
1651 if (retval & DM_RET_COPY) {
1652 int spaceleft, j;
1653
1654 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1655 sizeof(struct dev_match_result));
1656
1657 /*
1658 * If we don't have enough space to put in another
1659 * match result, save our position and tell the
1660 * user there are more devices to check.
1661 */
1662 if (spaceleft < sizeof(struct dev_match_result)) {
1663 bzero(&cdm->pos, sizeof(cdm->pos));
1664 cdm->pos.position_type =
1665 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1666 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1667
1668 cdm->pos.cookie.bus = device->target->bus;
1669 cdm->pos.generations[CAM_BUS_GENERATION]=
1670 xsoftc.bus_generation;
1671 cdm->pos.cookie.target = device->target;
1672 cdm->pos.generations[CAM_TARGET_GENERATION] =
1673 device->target->bus->generation;
1674 cdm->pos.cookie.device = device;
1675 cdm->pos.generations[CAM_DEV_GENERATION] =
1676 device->target->generation;
1677 cdm->status = CAM_DEV_MATCH_MORE;
1678 return(0);
1679 }
1680 j = cdm->num_matches;
1681 cdm->num_matches++;
1682 cdm->matches[j].type = DEV_MATCH_DEVICE;
1683 cdm->matches[j].result.device_result.path_id =
1684 device->target->bus->path_id;
1685 cdm->matches[j].result.device_result.target_id =
1686 device->target->target_id;
1687 cdm->matches[j].result.device_result.target_lun =
1688 device->lun_id;
1689 cdm->matches[j].result.device_result.protocol =
1690 device->protocol;
1691 bcopy(&device->inq_data,
1692 &cdm->matches[j].result.device_result.inq_data,
1693 sizeof(struct scsi_inquiry_data));
1694 bcopy(&device->ident_data,
1695 &cdm->matches[j].result.device_result.ident_data,
1696 sizeof(struct ata_params));
1697
1698 /* Let the user know whether this device is unconfigured */
1699 if (device->flags & CAM_DEV_UNCONFIGURED)
1700 cdm->matches[j].result.device_result.flags =
1701 DEV_RESULT_UNCONFIGURED;
1702 else
1703 cdm->matches[j].result.device_result.flags =
1704 DEV_RESULT_NOFLAG;
1705 }
1706
1707 /*
1708 * If the user isn't interested in peripherals, don't descend
1709 * the tree any further.
1710 */
1711 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1712 return(1);
1713
1714 /*
1715 * If there is a peripheral list generation recorded, make sure
1716 * it hasn't changed.
1717 */
1718 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1719 && (device->target->bus == cdm->pos.cookie.bus)
1720 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1721 && (device->target == cdm->pos.cookie.target)
1722 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1723 && (device == cdm->pos.cookie.device)
1724 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1725 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1726 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1727 device->generation)){
1728 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1729 return(0);
1730 }
1731
1732 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1733 && (cdm->pos.cookie.bus == device->target->bus)
1734 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1735 && (cdm->pos.cookie.target == device->target)
1736 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1737 && (cdm->pos.cookie.device == device)
1738 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1739 && (cdm->pos.cookie.periph != NULL))
1740 return(xptperiphtraverse(device,
1741 (struct cam_periph *)cdm->pos.cookie.periph,
1742 xptedtperiphfunc, arg));
1743 else
1744 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1745}
1746
1747static int
1748xptedtperiphfunc(struct cam_periph *periph, void *arg)
1749{
1750 struct ccb_dev_match *cdm;
1751 dev_match_ret retval;
1752
1753 cdm = (struct ccb_dev_match *)arg;
1754
1755 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1756
1757 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1758 cdm->status = CAM_DEV_MATCH_ERROR;
1759 return(0);
1760 }
1761
1762 /*
1763 * If the copy flag is set, copy this peripheral out.
1764 */
1765 if (retval & DM_RET_COPY) {
1766 int spaceleft, j;
1767
1768 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1769 sizeof(struct dev_match_result));
1770
1771 /*
1772 * If we don't have enough space to put in another
1773 * match result, save our position and tell the
1774 * user there are more devices to check.
1775 */
1776 if (spaceleft < sizeof(struct dev_match_result)) {
1777 bzero(&cdm->pos, sizeof(cdm->pos));
1778 cdm->pos.position_type =
1779 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1780 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1781 CAM_DEV_POS_PERIPH;
1782
1783 cdm->pos.cookie.bus = periph->path->bus;
1784 cdm->pos.generations[CAM_BUS_GENERATION]=
1785 xsoftc.bus_generation;
1786 cdm->pos.cookie.target = periph->path->target;
1787 cdm->pos.generations[CAM_TARGET_GENERATION] =
1788 periph->path->bus->generation;
1789 cdm->pos.cookie.device = periph->path->device;
1790 cdm->pos.generations[CAM_DEV_GENERATION] =
1791 periph->path->target->generation;
1792 cdm->pos.cookie.periph = periph;
1793 cdm->pos.generations[CAM_PERIPH_GENERATION] =
1794 periph->path->device->generation;
1795 cdm->status = CAM_DEV_MATCH_MORE;
1796 return(0);
1797 }
1798
1799 j = cdm->num_matches;
1800 cdm->num_matches++;
1801 cdm->matches[j].type = DEV_MATCH_PERIPH;
1802 cdm->matches[j].result.periph_result.path_id =
1803 periph->path->bus->path_id;
1804 cdm->matches[j].result.periph_result.target_id =
1805 periph->path->target->target_id;
1806 cdm->matches[j].result.periph_result.target_lun =
1807 periph->path->device->lun_id;
1808 cdm->matches[j].result.periph_result.unit_number =
1809 periph->unit_number;
1810 strncpy(cdm->matches[j].result.periph_result.periph_name,
1811 periph->periph_name, DEV_IDLEN);
1812 }
1813
1814 return(1);
1815}
1816
1817static int
1818xptedtmatch(struct ccb_dev_match *cdm)
1819{
1820 int ret;
1821
1822 cdm->num_matches = 0;
1823
1824 /*
1825 * Check the bus list generation. If it has changed, the user
1826 * needs to reset everything and start over.
1827 */
1828 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1829 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1830 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1831 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1832 return(0);
1833 }
1834
1835 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1836 && (cdm->pos.cookie.bus != NULL))
1837 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1838 xptedtbusfunc, cdm);
1839 else
1840 ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1841
1842 /*
1843 * If we get back 0, that means that we had to stop before fully
1844 * traversing the EDT. It also means that one of the subroutines
1845 * has set the status field to the proper value. If we get back 1,
1846 * we've fully traversed the EDT and copied out any matching entries.
1847 */
1848 if (ret == 1)
1849 cdm->status = CAM_DEV_MATCH_LAST;
1850
1851 return(ret);
1852}
1853
1854static int
1855xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1856{
1857 struct ccb_dev_match *cdm;
1858
1859 cdm = (struct ccb_dev_match *)arg;
1860
1861 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1862 && (cdm->pos.cookie.pdrv == pdrv)
1863 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1864 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1865 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1866 (*pdrv)->generation)) {
1867 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1868 return(0);
1869 }
1870
1871 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1872 && (cdm->pos.cookie.pdrv == pdrv)
1873 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1874 && (cdm->pos.cookie.periph != NULL))
1875 return(xptpdperiphtraverse(pdrv,
1876 (struct cam_periph *)cdm->pos.cookie.periph,
1877 xptplistperiphfunc, arg));
1878 else
1879 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1880}
1881
1882static int
1883xptplistperiphfunc(struct cam_periph *periph, void *arg)
1884{
1885 struct ccb_dev_match *cdm;
1886 dev_match_ret retval;
1887
1888 cdm = (struct ccb_dev_match *)arg;
1889
1890 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1891
1892 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1893 cdm->status = CAM_DEV_MATCH_ERROR;
1894 return(0);
1895 }
1896
1897 /*
1898 * If the copy flag is set, copy this peripheral out.
1899 */
1900 if (retval & DM_RET_COPY) {
1901 int spaceleft, j;
1902
1903 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1904 sizeof(struct dev_match_result));
1905
1906 /*
1907 * If we don't have enough space to put in another
1908 * match result, save our position and tell the
1909 * user there are more devices to check.
1910 */
1911 if (spaceleft < sizeof(struct dev_match_result)) {
1912 struct periph_driver **pdrv;
1913
1914 pdrv = NULL;
1915 bzero(&cdm->pos, sizeof(cdm->pos));
1916 cdm->pos.position_type =
1917 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1918 CAM_DEV_POS_PERIPH;
1919
1920 /*
1921 * This may look a bit non-sensical, but it is
1922 * actually quite logical. There are very few
1923 * peripheral drivers, and bloating every peripheral
1924 * structure with a pointer back to its parent
1925 * peripheral driver linker set entry would cost
1926 * more in the long run than doing this quick lookup.
1927 */
1928 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1929 if (strcmp((*pdrv)->driver_name,
1930 periph->periph_name) == 0)
1931 break;
1932 }
1933
1934 if (*pdrv == NULL) {
1935 cdm->status = CAM_DEV_MATCH_ERROR;
1936 return(0);
1937 }
1938
1939 cdm->pos.cookie.pdrv = pdrv;
1940 /*
1941 * The periph generation slot does double duty, as
1942 * does the periph pointer slot. They are used for
1943 * both edt and pdrv lookups and positioning.
1944 */
1945 cdm->pos.cookie.periph = periph;
1946 cdm->pos.generations[CAM_PERIPH_GENERATION] =
1947 (*pdrv)->generation;
1948 cdm->status = CAM_DEV_MATCH_MORE;
1949 return(0);
1950 }
1951
1952 j = cdm->num_matches;
1953 cdm->num_matches++;
1954 cdm->matches[j].type = DEV_MATCH_PERIPH;
1955 cdm->matches[j].result.periph_result.path_id =
1956 periph->path->bus->path_id;
1957
1958 /*
1959 * The transport layer peripheral doesn't have a target or
1960 * lun.
1961 */
1962 if (periph->path->target)
1963 cdm->matches[j].result.periph_result.target_id =
1964 periph->path->target->target_id;
1965 else
1966 cdm->matches[j].result.periph_result.target_id = -1;
1967
1968 if (periph->path->device)
1969 cdm->matches[j].result.periph_result.target_lun =
1970 periph->path->device->lun_id;
1971 else
1972 cdm->matches[j].result.periph_result.target_lun = -1;
1973
1974 cdm->matches[j].result.periph_result.unit_number =
1975 periph->unit_number;
1976 strncpy(cdm->matches[j].result.periph_result.periph_name,
1977 periph->periph_name, DEV_IDLEN);
1978 }
1979
1980 return(1);
1981}
1982
1983static int
1984xptperiphlistmatch(struct ccb_dev_match *cdm)
1985{
1986 int ret;
1987
1988 cdm->num_matches = 0;
1989
1990 /*
1991 * At this point in the edt traversal function, we check the bus
1992 * list generation to make sure that no busses have been added or
1993 * removed since the user last sent a XPT_DEV_MATCH ccb through.
1994 * For the peripheral driver list traversal function, however, we
1995 * don't have to worry about new peripheral driver types coming or
1996 * going; they're in a linker set, and therefore can't change
1997 * without a recompile.
1998 */
1999
2000 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2001 && (cdm->pos.cookie.pdrv != NULL))
2002 ret = xptpdrvtraverse(
2003 (struct periph_driver **)cdm->pos.cookie.pdrv,
2004 xptplistpdrvfunc, cdm);
2005 else
2006 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2007
2008 /*
2009 * If we get back 0, that means that we had to stop before fully
2010 * traversing the peripheral driver tree. It also means that one of
2011 * the subroutines has set the status field to the proper value. If
2012 * we get back 1, we've fully traversed the EDT and copied out any
2013 * matching entries.
2014 */
2015 if (ret == 1)
2016 cdm->status = CAM_DEV_MATCH_LAST;
2017
2018 return(ret);
2019}
2020
2021static int
2022xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2023{
2024 struct cam_eb *bus, *next_bus;
2025 int retval;
2026
2027 retval = 1;
2028
2029 mtx_lock(&xsoftc.xpt_topo_lock);
2030 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2031 bus != NULL;
2032 bus = next_bus) {
2033 next_bus = TAILQ_NEXT(bus, links);
2034
2035 mtx_unlock(&xsoftc.xpt_topo_lock);
2036 CAM_SIM_LOCK(bus->sim);
2037 retval = tr_func(bus, arg);
2038 CAM_SIM_UNLOCK(bus->sim);
2039 if (retval == 0)
2040 return(retval);
2041 mtx_lock(&xsoftc.xpt_topo_lock);
2042 }
2043 mtx_unlock(&xsoftc.xpt_topo_lock);
2044
2045 return(retval);
2046}
2047
2048int
2049xpt_sim_opened(struct cam_sim *sim)
2050{
2051 struct cam_eb *bus;
2052 struct cam_et *target;
2053 struct cam_ed *device;
2054 struct cam_periph *periph;
2055
2056 KASSERT(sim->refcount >= 1, ("sim->refcount >= 1"));
2057 mtx_assert(sim->mtx, MA_OWNED);
2058
2059 mtx_lock(&xsoftc.xpt_topo_lock);
2060 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
2061 if (bus->sim != sim)
2062 continue;
2063
2064 TAILQ_FOREACH(target, &bus->et_entries, links) {
2065 TAILQ_FOREACH(device, &target->ed_entries, links) {
2066 SLIST_FOREACH(periph, &device->periphs,
2067 periph_links) {
2068 if (periph->refcount > 0) {
2069 mtx_unlock(&xsoftc.xpt_topo_lock);
2070 return (1);
2071 }
2072 }
2073 }
2074 }
2075 }
2076
2077 mtx_unlock(&xsoftc.xpt_topo_lock);
2078 return (0);
2079}
2080
2081static int
2082xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2083 xpt_targetfunc_t *tr_func, void *arg)
2084{
2085 struct cam_et *target, *next_target;
2086 int retval;
2087
2088 retval = 1;
2089 for (target = (start_target ? start_target :
2090 TAILQ_FIRST(&bus->et_entries));
2091 target != NULL; target = next_target) {
2092
2093 next_target = TAILQ_NEXT(target, links);
2094
2095 retval = tr_func(target, arg);
2096
2097 if (retval == 0)
2098 return(retval);
2099 }
2100
2101 return(retval);
2102}
2103
2104static int
2105xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2106 xpt_devicefunc_t *tr_func, void *arg)
2107{
2108 struct cam_ed *device, *next_device;
2109 int retval;
2110
2111 retval = 1;
2112 for (device = (start_device ? start_device :
2113 TAILQ_FIRST(&target->ed_entries));
2114 device != NULL;
2115 device = next_device) {
2116
2117 next_device = TAILQ_NEXT(device, links);
2118
2119 retval = tr_func(device, arg);
2120
2121 if (retval == 0)
2122 return(retval);
2123 }
2124
2125 return(retval);
2126}
2127
2128static int
2129xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2130 xpt_periphfunc_t *tr_func, void *arg)
2131{
2132 struct cam_periph *periph, *next_periph;
2133 int retval;
2134
2135 retval = 1;
2136
2137 for (periph = (start_periph ? start_periph :
2138 SLIST_FIRST(&device->periphs));
2139 periph != NULL;
2140 periph = next_periph) {
2141
2142 next_periph = SLIST_NEXT(periph, periph_links);
2143
2144 retval = tr_func(periph, arg);
2145 if (retval == 0)
2146 return(retval);
2147 }
2148
2149 return(retval);
2150}
2151
2152static int
2153xptpdrvtraverse(struct periph_driver **start_pdrv,
2154 xpt_pdrvfunc_t *tr_func, void *arg)
2155{
2156 struct periph_driver **pdrv;
2157 int retval;
2158
2159 retval = 1;
2160
2161 /*
2162 * We don't traverse the peripheral driver list like we do the
2163 * other lists, because it is a linker set, and therefore cannot be
2164 * changed during runtime. If the peripheral driver list is ever
2165 * re-done to be something other than a linker set (i.e. it can
2166 * change while the system is running), the list traversal should
2167 * be modified to work like the other traversal functions.
2168 */
2169 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2170 *pdrv != NULL; pdrv++) {
2171 retval = tr_func(pdrv, arg);
2172
2173 if (retval == 0)
2174 return(retval);
2175 }
2176
2177 return(retval);
2178}
2179
2180static int
2181xptpdperiphtraverse(struct periph_driver **pdrv,
2182 struct cam_periph *start_periph,
2183 xpt_periphfunc_t *tr_func, void *arg)
2184{
2185 struct cam_periph *periph, *next_periph;
2186 int retval;
2187
2188 retval = 1;
2189
2190 xpt_lock_buses();
2191 for (periph = (start_periph ? start_periph :
2192 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2193 periph = next_periph) {
2194
2195 next_periph = TAILQ_NEXT(periph, unit_links);
2196
2197 retval = tr_func(periph, arg);
2198 if (retval == 0) {
2199 xpt_unlock_buses();
2200 return(retval);
2201 }
2202 }
2203 xpt_unlock_buses();
2204 return(retval);
2205}
2206
2207static int
2208xptdefbusfunc(struct cam_eb *bus, void *arg)
2209{
2210 struct xpt_traverse_config *tr_config;
2211
2212 tr_config = (struct xpt_traverse_config *)arg;
2213
2214 if (tr_config->depth == XPT_DEPTH_BUS) {
2215 xpt_busfunc_t *tr_func;
2216
2217 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2218
2219 return(tr_func(bus, tr_config->tr_arg));
2220 } else
2221 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2222}
2223
2224static int
2225xptdeftargetfunc(struct cam_et *target, void *arg)
2226{
2227 struct xpt_traverse_config *tr_config;
2228
2229 tr_config = (struct xpt_traverse_config *)arg;
2230
2231 if (tr_config->depth == XPT_DEPTH_TARGET) {
2232 xpt_targetfunc_t *tr_func;
2233
2234 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2235
2236 return(tr_func(target, tr_config->tr_arg));
2237 } else
2238 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2239}
2240
2241static int
2242xptdefdevicefunc(struct cam_ed *device, void *arg)
2243{
2244 struct xpt_traverse_config *tr_config;
2245
2246 tr_config = (struct xpt_traverse_config *)arg;
2247
2248 if (tr_config->depth == XPT_DEPTH_DEVICE) {
2249 xpt_devicefunc_t *tr_func;
2250
2251 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2252
2253 return(tr_func(device, tr_config->tr_arg));
2254 } else
2255 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2256}
2257
2258static int
2259xptdefperiphfunc(struct cam_periph *periph, void *arg)
2260{
2261 struct xpt_traverse_config *tr_config;
2262 xpt_periphfunc_t *tr_func;
2263
2264 tr_config = (struct xpt_traverse_config *)arg;
2265
2266 tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2267
2268 /*
2269 * Unlike the other default functions, we don't check for depth
2270 * here. The peripheral driver level is the last level in the EDT,
2271 * so if we're here, we should execute the function in question.
2272 */
2273 return(tr_func(periph, tr_config->tr_arg));
2274}
2275
2276/*
2277 * Execute the given function for every bus in the EDT.
2278 */
2279static int
2280xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2281{
2282 struct xpt_traverse_config tr_config;
2283
2284 tr_config.depth = XPT_DEPTH_BUS;
2285 tr_config.tr_func = tr_func;
2286 tr_config.tr_arg = arg;
2287
2288 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2289}
2290
2291/*
2292 * Execute the given function for every device in the EDT.
2293 */
2294static int
2295xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2296{
2297 struct xpt_traverse_config tr_config;
2298
2299 tr_config.depth = XPT_DEPTH_DEVICE;
2300 tr_config.tr_func = tr_func;
2301 tr_config.tr_arg = arg;
2302
2303 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2304}
2305
2306static int
2307xptsetasyncfunc(struct cam_ed *device, void *arg)
2308{
2309 struct cam_path path;
2310 struct ccb_getdev cgd;
2311 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2312
2313 /*
2314 * Don't report unconfigured devices (Wildcard devs,
2315 * devices only for target mode, device instances
2316 * that have been invalidated but are waiting for
2317 * their last reference count to be released).
2318 */
2319 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2320 return (1);
2321
2322 xpt_compile_path(&path,
2323 NULL,
2324 device->target->bus->path_id,
2325 device->target->target_id,
2326 device->lun_id);
2327 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2328 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2329 xpt_action((union ccb *)&cgd);
2330 csa->callback(csa->callback_arg,
2331 AC_FOUND_DEVICE,
2332 &path, &cgd);
2333 xpt_release_path(&path);
2334
2335 return(1);
2336}
2337
2338static int
2339xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2340{
2341 struct cam_path path;
2342 struct ccb_pathinq cpi;
2343 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2344
2345 xpt_compile_path(&path, /*periph*/NULL,
2346 bus->sim->path_id,
2347 CAM_TARGET_WILDCARD,
2348 CAM_LUN_WILDCARD);
2349 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2350 cpi.ccb_h.func_code = XPT_PATH_INQ;
2351 xpt_action((union ccb *)&cpi);
2352 csa->callback(csa->callback_arg,
2353 AC_PATH_REGISTERED,
2354 &path, &cpi);
2355 xpt_release_path(&path);
2356
2357 return(1);
2358}
2359
2360void
2361xpt_action(union ccb *start_ccb)
2362{
2363
2364 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2365
2366 start_ccb->ccb_h.status = CAM_REQ_INPROG;
2367 /* Compatibility for RL-unaware code. */
2368 if (CAM_PRIORITY_TO_RL(start_ccb->ccb_h.pinfo.priority) == 0)
2369 start_ccb->ccb_h.pinfo.priority += CAM_PRIORITY_NORMAL - 1;
2370 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2371}
2372
2373void
2374xpt_action_default(union ccb *start_ccb)
2375{
2376#ifdef CAMDEBUG
2377 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2378#endif
2379 struct cam_path *path;
2380
2381 path = start_ccb->ccb_h.path;
2382 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2383
2384 switch (start_ccb->ccb_h.func_code) {
2385 case XPT_SCSI_IO:
2386 {
2387 struct cam_ed *device;
2388
2389 /*
2390 * For the sake of compatibility with SCSI-1
2391 * devices that may not understand the identify
2392 * message, we include lun information in the
2393 * second byte of all commands. SCSI-1 specifies
2394 * that luns are a 3 bit value and reserves only 3
2395 * bits for lun information in the CDB. Later
2396 * revisions of the SCSI spec allow for more than 8
2397 * luns, but have deprecated lun information in the
2398 * CDB. So, if the lun won't fit, we must omit.
2399 *
2400 * Also be aware that during initial probing for devices,
2401 * the inquiry information is unknown but initialized to 0.
2402 * This means that this code will be exercised while probing
2403 * devices with an ANSI revision greater than 2.
2404 */
2405 device = path->device;
2406 if (device->protocol_version <= SCSI_REV_2
2407 && start_ccb->ccb_h.target_lun < 8
2408 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2409
2410 start_ccb->csio.cdb_io.cdb_bytes[1] |=
2411 start_ccb->ccb_h.target_lun << 5;
2412 }
2413 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2414 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2415 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2416 &path->device->inq_data),
2417 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2418 cdb_str, sizeof(cdb_str))));
2419 }
2420 /* FALLTHROUGH */
2421 case XPT_TARGET_IO:
2422 case XPT_CONT_TARGET_IO:
2423 start_ccb->csio.sense_resid = 0;
2424 start_ccb->csio.resid = 0;
2425 /* FALLTHROUGH */
2426 case XPT_ATA_IO:
2427 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) {
2428 start_ccb->ataio.resid = 0;
2429 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. ACB: %s\n",
2430 ata_op_string(&start_ccb->ataio.cmd),
2431 ata_cmd_string(&start_ccb->ataio.cmd,
2432 cdb_str, sizeof(cdb_str))));
2433 }
2434 /* FALLTHROUGH */
2435 case XPT_RESET_DEV:
2436 case XPT_ENG_EXEC:
2437 case XPT_SMP_IO:
2438 {
2439 int frozen;
2440
2441 frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2442 path->device->sim->devq->alloc_openings += frozen;
2443 if (frozen > 0)
2444 xpt_run_dev_allocq(path->bus);
2445 if (xpt_schedule_dev_sendq(path->bus, path->device))
2446 xpt_run_dev_sendq(path->bus);
2447 break;
2448 }
2449 case XPT_CALC_GEOMETRY:
2450 {
2451 struct cam_sim *sim;
2452
2453 /* Filter out garbage */
2454 if (start_ccb->ccg.block_size == 0
2455 || start_ccb->ccg.volume_size == 0) {
2456 start_ccb->ccg.cylinders = 0;
2457 start_ccb->ccg.heads = 0;
2458 start_ccb->ccg.secs_per_track = 0;
2459 start_ccb->ccb_h.status = CAM_REQ_CMP;
2460 break;
2461 }
2459#ifdef PC98
2462#if defined(PC98) || defined(__sparc64__)
2460 /*
2461 * In a PC-98 system, geometry translation depens on
2462 * the "real" device geometry obtained from mode page 4.
2463 * SCSI geometry translation is performed in the
2464 * initialization routine of the SCSI BIOS and the result
2465 * stored in host memory. If the translation is available
2466 * in host memory, use it. If not, rely on the default
2467 * translation the device driver performs.
2463 /*
2464 * In a PC-98 system, geometry translation depens on
2465 * the "real" device geometry obtained from mode page 4.
2466 * SCSI geometry translation is performed in the
2467 * initialization routine of the SCSI BIOS and the result
2468 * stored in host memory. If the translation is available
2469 * in host memory, use it. If not, rely on the default
2470 * translation the device driver performs.
2471 * For sparc64, we may need adjust the geometry of large
2472 * disks in order to fit the limitations of the 16-bit
2473 * fields of the VTOC8 disk label.
2468 */
2469 if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2470 start_ccb->ccb_h.status = CAM_REQ_CMP;
2471 break;
2472 }
2473#endif
2474 sim = path->bus->sim;
2475 (*(sim->sim_action))(sim, start_ccb);
2476 break;
2477 }
2478 case XPT_ABORT:
2479 {
2480 union ccb* abort_ccb;
2481
2482 abort_ccb = start_ccb->cab.abort_ccb;
2483 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2484
2485 if (abort_ccb->ccb_h.pinfo.index >= 0) {
2486 struct cam_ccbq *ccbq;
2487 struct cam_ed *device;
2488
2489 device = abort_ccb->ccb_h.path->device;
2490 ccbq = &device->ccbq;
2491 device->sim->devq->alloc_openings -=
2492 cam_ccbq_remove_ccb(ccbq, abort_ccb);
2493 abort_ccb->ccb_h.status =
2494 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2495 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2496 xpt_done(abort_ccb);
2497 start_ccb->ccb_h.status = CAM_REQ_CMP;
2498 break;
2499 }
2500 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2501 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2502 /*
2503 * We've caught this ccb en route to
2504 * the SIM. Flag it for abort and the
2505 * SIM will do so just before starting
2506 * real work on the CCB.
2507 */
2508 abort_ccb->ccb_h.status =
2509 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2510 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2511 start_ccb->ccb_h.status = CAM_REQ_CMP;
2512 break;
2513 }
2514 }
2515 if (XPT_FC_IS_QUEUED(abort_ccb)
2516 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2517 /*
2518 * It's already completed but waiting
2519 * for our SWI to get to it.
2520 */
2521 start_ccb->ccb_h.status = CAM_UA_ABORT;
2522 break;
2523 }
2524 /*
2525 * If we weren't able to take care of the abort request
2526 * in the XPT, pass the request down to the SIM for processing.
2527 */
2528 }
2529 /* FALLTHROUGH */
2530 case XPT_ACCEPT_TARGET_IO:
2531 case XPT_EN_LUN:
2532 case XPT_IMMED_NOTIFY:
2533 case XPT_NOTIFY_ACK:
2534 case XPT_RESET_BUS:
2535 case XPT_IMMEDIATE_NOTIFY:
2536 case XPT_NOTIFY_ACKNOWLEDGE:
2537 case XPT_GET_SIM_KNOB:
2538 case XPT_SET_SIM_KNOB:
2539 {
2540 struct cam_sim *sim;
2541
2542 sim = path->bus->sim;
2543 (*(sim->sim_action))(sim, start_ccb);
2544 break;
2545 }
2546 case XPT_PATH_INQ:
2547 {
2548 struct cam_sim *sim;
2549
2550 sim = path->bus->sim;
2551 (*(sim->sim_action))(sim, start_ccb);
2552 break;
2553 }
2554 case XPT_PATH_STATS:
2555 start_ccb->cpis.last_reset = path->bus->last_reset;
2556 start_ccb->ccb_h.status = CAM_REQ_CMP;
2557 break;
2558 case XPT_GDEV_TYPE:
2559 {
2560 struct cam_ed *dev;
2561
2562 dev = path->device;
2563 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2564 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2565 } else {
2566 struct ccb_getdev *cgd;
2567
2568 cgd = &start_ccb->cgd;
2569 cgd->protocol = dev->protocol;
2570 cgd->inq_data = dev->inq_data;
2571 cgd->ident_data = dev->ident_data;
2572 cgd->inq_flags = dev->inq_flags;
2573 cgd->ccb_h.status = CAM_REQ_CMP;
2574 cgd->serial_num_len = dev->serial_num_len;
2575 if ((dev->serial_num_len > 0)
2576 && (dev->serial_num != NULL))
2577 bcopy(dev->serial_num, cgd->serial_num,
2578 dev->serial_num_len);
2579 }
2580 break;
2581 }
2582 case XPT_GDEV_STATS:
2583 {
2584 struct cam_ed *dev;
2585
2586 dev = path->device;
2587 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2588 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2589 } else {
2590 struct ccb_getdevstats *cgds;
2591 struct cam_eb *bus;
2592 struct cam_et *tar;
2593
2594 cgds = &start_ccb->cgds;
2595 bus = path->bus;
2596 tar = path->target;
2597 cgds->dev_openings = dev->ccbq.dev_openings;
2598 cgds->dev_active = dev->ccbq.dev_active;
2599 cgds->devq_openings = dev->ccbq.devq_openings;
2600 cgds->devq_queued = dev->ccbq.queue.entries;
2601 cgds->held = dev->ccbq.held;
2602 cgds->last_reset = tar->last_reset;
2603 cgds->maxtags = dev->maxtags;
2604 cgds->mintags = dev->mintags;
2605 if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2606 cgds->last_reset = bus->last_reset;
2607 cgds->ccb_h.status = CAM_REQ_CMP;
2608 }
2609 break;
2610 }
2611 case XPT_GDEVLIST:
2612 {
2613 struct cam_periph *nperiph;
2614 struct periph_list *periph_head;
2615 struct ccb_getdevlist *cgdl;
2616 u_int i;
2617 struct cam_ed *device;
2618 int found;
2619
2620
2621 found = 0;
2622
2623 /*
2624 * Don't want anyone mucking with our data.
2625 */
2626 device = path->device;
2627 periph_head = &device->periphs;
2628 cgdl = &start_ccb->cgdl;
2629
2630 /*
2631 * Check and see if the list has changed since the user
2632 * last requested a list member. If so, tell them that the
2633 * list has changed, and therefore they need to start over
2634 * from the beginning.
2635 */
2636 if ((cgdl->index != 0) &&
2637 (cgdl->generation != device->generation)) {
2638 cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2639 break;
2640 }
2641
2642 /*
2643 * Traverse the list of peripherals and attempt to find
2644 * the requested peripheral.
2645 */
2646 for (nperiph = SLIST_FIRST(periph_head), i = 0;
2647 (nperiph != NULL) && (i <= cgdl->index);
2648 nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2649 if (i == cgdl->index) {
2650 strncpy(cgdl->periph_name,
2651 nperiph->periph_name,
2652 DEV_IDLEN);
2653 cgdl->unit_number = nperiph->unit_number;
2654 found = 1;
2655 }
2656 }
2657 if (found == 0) {
2658 cgdl->status = CAM_GDEVLIST_ERROR;
2659 break;
2660 }
2661
2662 if (nperiph == NULL)
2663 cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2664 else
2665 cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2666
2667 cgdl->index++;
2668 cgdl->generation = device->generation;
2669
2670 cgdl->ccb_h.status = CAM_REQ_CMP;
2671 break;
2672 }
2673 case XPT_DEV_MATCH:
2674 {
2675 dev_pos_type position_type;
2676 struct ccb_dev_match *cdm;
2677
2678 cdm = &start_ccb->cdm;
2679
2680 /*
2681 * There are two ways of getting at information in the EDT.
2682 * The first way is via the primary EDT tree. It starts
2683 * with a list of busses, then a list of targets on a bus,
2684 * then devices/luns on a target, and then peripherals on a
2685 * device/lun. The "other" way is by the peripheral driver
2686 * lists. The peripheral driver lists are organized by
2687 * peripheral driver. (obviously) So it makes sense to
2688 * use the peripheral driver list if the user is looking
2689 * for something like "da1", or all "da" devices. If the
2690 * user is looking for something on a particular bus/target
2691 * or lun, it's generally better to go through the EDT tree.
2692 */
2693
2694 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2695 position_type = cdm->pos.position_type;
2696 else {
2697 u_int i;
2698
2699 position_type = CAM_DEV_POS_NONE;
2700
2701 for (i = 0; i < cdm->num_patterns; i++) {
2702 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2703 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2704 position_type = CAM_DEV_POS_EDT;
2705 break;
2706 }
2707 }
2708
2709 if (cdm->num_patterns == 0)
2710 position_type = CAM_DEV_POS_EDT;
2711 else if (position_type == CAM_DEV_POS_NONE)
2712 position_type = CAM_DEV_POS_PDRV;
2713 }
2714
2715 switch(position_type & CAM_DEV_POS_TYPEMASK) {
2716 case CAM_DEV_POS_EDT:
2717 xptedtmatch(cdm);
2718 break;
2719 case CAM_DEV_POS_PDRV:
2720 xptperiphlistmatch(cdm);
2721 break;
2722 default:
2723 cdm->status = CAM_DEV_MATCH_ERROR;
2724 break;
2725 }
2726
2727 if (cdm->status == CAM_DEV_MATCH_ERROR)
2728 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2729 else
2730 start_ccb->ccb_h.status = CAM_REQ_CMP;
2731
2732 break;
2733 }
2734 case XPT_SASYNC_CB:
2735 {
2736 struct ccb_setasync *csa;
2737 struct async_node *cur_entry;
2738 struct async_list *async_head;
2739 u_int32_t added;
2740
2741 csa = &start_ccb->csa;
2742 added = csa->event_enable;
2743 async_head = &path->device->asyncs;
2744
2745 /*
2746 * If there is already an entry for us, simply
2747 * update it.
2748 */
2749 cur_entry = SLIST_FIRST(async_head);
2750 while (cur_entry != NULL) {
2751 if ((cur_entry->callback_arg == csa->callback_arg)
2752 && (cur_entry->callback == csa->callback))
2753 break;
2754 cur_entry = SLIST_NEXT(cur_entry, links);
2755 }
2756
2757 if (cur_entry != NULL) {
2758 /*
2759 * If the request has no flags set,
2760 * remove the entry.
2761 */
2762 added &= ~cur_entry->event_enable;
2763 if (csa->event_enable == 0) {
2764 SLIST_REMOVE(async_head, cur_entry,
2765 async_node, links);
2766 xpt_release_device(path->device);
2767 free(cur_entry, M_CAMXPT);
2768 } else {
2769 cur_entry->event_enable = csa->event_enable;
2770 }
2771 csa->event_enable = added;
2772 } else {
2773 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2774 M_NOWAIT);
2775 if (cur_entry == NULL) {
2776 csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2777 break;
2778 }
2779 cur_entry->event_enable = csa->event_enable;
2780 cur_entry->callback_arg = csa->callback_arg;
2781 cur_entry->callback = csa->callback;
2782 SLIST_INSERT_HEAD(async_head, cur_entry, links);
2783 xpt_acquire_device(path->device);
2784 }
2785 start_ccb->ccb_h.status = CAM_REQ_CMP;
2786 break;
2787 }
2788 case XPT_REL_SIMQ:
2789 {
2790 struct ccb_relsim *crs;
2791 struct cam_ed *dev;
2792
2793 crs = &start_ccb->crs;
2794 dev = path->device;
2795 if (dev == NULL) {
2796
2797 crs->ccb_h.status = CAM_DEV_NOT_THERE;
2798 break;
2799 }
2800
2801 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2802
2803 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
2804 /* Don't ever go below one opening */
2805 if (crs->openings > 0) {
2806 xpt_dev_ccbq_resize(path,
2807 crs->openings);
2808
2809 if (bootverbose) {
2810 xpt_print(path,
2811 "tagged openings now %d\n",
2812 crs->openings);
2813 }
2814 }
2815 }
2816 }
2817
2818 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2819
2820 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2821
2822 /*
2823 * Just extend the old timeout and decrement
2824 * the freeze count so that a single timeout
2825 * is sufficient for releasing the queue.
2826 */
2827 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2828 callout_stop(&dev->callout);
2829 } else {
2830
2831 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2832 }
2833
2834 callout_reset(&dev->callout,
2835 (crs->release_timeout * hz) / 1000,
2836 xpt_release_devq_timeout, dev);
2837
2838 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2839
2840 }
2841
2842 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2843
2844 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2845 /*
2846 * Decrement the freeze count so that a single
2847 * completion is still sufficient to unfreeze
2848 * the queue.
2849 */
2850 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2851 } else {
2852
2853 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2854 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2855 }
2856 }
2857
2858 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2859
2860 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2861 || (dev->ccbq.dev_active == 0)) {
2862
2863 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2864 } else {
2865
2866 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2867 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2868 }
2869 }
2870
2871 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
2872 xpt_release_devq_rl(path, /*runlevel*/
2873 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2874 crs->release_timeout : 0,
2875 /*count*/1, /*run_queue*/TRUE);
2876 }
2877 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0];
2878 start_ccb->ccb_h.status = CAM_REQ_CMP;
2879 break;
2880 }
2881 case XPT_DEBUG: {
2882#ifdef CAMDEBUG
2883#ifdef CAM_DEBUG_DELAY
2884 cam_debug_delay = CAM_DEBUG_DELAY;
2885#endif
2886 cam_dflags = start_ccb->cdbg.flags;
2887 if (cam_dpath != NULL) {
2888 xpt_free_path(cam_dpath);
2889 cam_dpath = NULL;
2890 }
2891
2892 if (cam_dflags != CAM_DEBUG_NONE) {
2893 if (xpt_create_path(&cam_dpath, xpt_periph,
2894 start_ccb->ccb_h.path_id,
2895 start_ccb->ccb_h.target_id,
2896 start_ccb->ccb_h.target_lun) !=
2897 CAM_REQ_CMP) {
2898 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2899 cam_dflags = CAM_DEBUG_NONE;
2900 } else {
2901 start_ccb->ccb_h.status = CAM_REQ_CMP;
2902 xpt_print(cam_dpath, "debugging flags now %x\n",
2903 cam_dflags);
2904 }
2905 } else {
2906 cam_dpath = NULL;
2907 start_ccb->ccb_h.status = CAM_REQ_CMP;
2908 }
2909#else /* !CAMDEBUG */
2910 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2911#endif /* CAMDEBUG */
2912 break;
2913 }
2914 case XPT_FREEZE_QUEUE:
2915 {
2916 struct ccb_relsim *crs = &start_ccb->crs;
2917
2918 xpt_freeze_devq_rl(path, /*runlevel*/
2919 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2920 crs->release_timeout : 0, /*count*/1);
2921 start_ccb->ccb_h.status = CAM_REQ_CMP;
2922 break;
2923 }
2924 case XPT_NOOP:
2925 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2926 xpt_freeze_devq(path, 1);
2927 start_ccb->ccb_h.status = CAM_REQ_CMP;
2928 break;
2929 default:
2930 case XPT_SDEV_TYPE:
2931 case XPT_TERM_IO:
2932 case XPT_ENG_INQ:
2933 /* XXX Implement */
2934 printf("%s: CCB type %#x not supported\n", __func__,
2935 start_ccb->ccb_h.func_code);
2936 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2937 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2938 xpt_done(start_ccb);
2939 }
2940 break;
2941 }
2942}
2943
2944void
2945xpt_polled_action(union ccb *start_ccb)
2946{
2947 u_int32_t timeout;
2948 struct cam_sim *sim;
2949 struct cam_devq *devq;
2950 struct cam_ed *dev;
2951
2952
2953 timeout = start_ccb->ccb_h.timeout * 10;
2954 sim = start_ccb->ccb_h.path->bus->sim;
2955 devq = sim->devq;
2956 dev = start_ccb->ccb_h.path->device;
2957
2958 mtx_assert(sim->mtx, MA_OWNED);
2959
2960 /* Don't use ISR for this SIM while polling. */
2961 sim->flags |= CAM_SIM_POLLED;
2962
2963 /*
2964 * Steal an opening so that no other queued requests
2965 * can get it before us while we simulate interrupts.
2966 */
2967 dev->ccbq.devq_openings--;
2968 dev->ccbq.dev_openings--;
2969
2970 while(((devq != NULL && devq->send_openings <= 0) ||
2971 dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
2972 DELAY(100);
2973 (*(sim->sim_poll))(sim);
2974 camisr_runqueue(&sim->sim_doneq);
2975 }
2976
2977 dev->ccbq.devq_openings++;
2978 dev->ccbq.dev_openings++;
2979
2980 if (timeout != 0) {
2981 xpt_action(start_ccb);
2982 while(--timeout > 0) {
2983 (*(sim->sim_poll))(sim);
2984 camisr_runqueue(&sim->sim_doneq);
2985 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
2986 != CAM_REQ_INPROG)
2987 break;
2988 DELAY(100);
2989 }
2990 if (timeout == 0) {
2991 /*
2992 * XXX Is it worth adding a sim_timeout entry
2993 * point so we can attempt recovery? If
2994 * this is only used for dumps, I don't think
2995 * it is.
2996 */
2997 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
2998 }
2999 } else {
3000 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3001 }
3002
3003 /* We will use CAM ISR for this SIM again. */
3004 sim->flags &= ~CAM_SIM_POLLED;
3005}
3006
3007/*
3008 * Schedule a peripheral driver to receive a ccb when it's
3009 * target device has space for more transactions.
3010 */
3011void
3012xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3013{
3014 struct cam_ed *device;
3015 int runq = 0;
3016
3017 mtx_assert(perph->sim->mtx, MA_OWNED);
3018
3019 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3020 device = perph->path->device;
3021 if (periph_is_queued(perph)) {
3022 /* Simply reorder based on new priority */
3023 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3024 (" change priority to %d\n", new_priority));
3025 if (new_priority < perph->pinfo.priority) {
3026 camq_change_priority(&device->drvq,
3027 perph->pinfo.index,
3028 new_priority);
3029 runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3030 }
3031 } else {
3032 /* New entry on the queue */
3033 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3034 (" added periph to queue\n"));
3035 perph->pinfo.priority = new_priority;
3036 perph->pinfo.generation = ++device->drvq.generation;
3037 camq_insert(&device->drvq, &perph->pinfo);
3038 runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3039 }
3040 if (runq != 0) {
3041 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3042 (" calling xpt_run_devq\n"));
3043 xpt_run_dev_allocq(perph->path->bus);
3044 }
3045}
3046
3047
3048/*
3049 * Schedule a device to run on a given queue.
3050 * If the device was inserted as a new entry on the queue,
3051 * return 1 meaning the device queue should be run. If we
3052 * were already queued, implying someone else has already
3053 * started the queue, return 0 so the caller doesn't attempt
3054 * to run the queue.
3055 */
3056int
3057xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3058 u_int32_t new_priority)
3059{
3060 int retval;
3061 u_int32_t old_priority;
3062
3063 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3064
3065 old_priority = pinfo->priority;
3066
3067 /*
3068 * Are we already queued?
3069 */
3070 if (pinfo->index != CAM_UNQUEUED_INDEX) {
3071 /* Simply reorder based on new priority */
3072 if (new_priority < old_priority) {
3073 camq_change_priority(queue, pinfo->index,
3074 new_priority);
3075 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3076 ("changed priority to %d\n",
3077 new_priority));
3078 retval = 1;
3079 } else
3080 retval = 0;
3081 } else {
3082 /* New entry on the queue */
3083 if (new_priority < old_priority)
3084 pinfo->priority = new_priority;
3085
3086 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3087 ("Inserting onto queue\n"));
3088 pinfo->generation = ++queue->generation;
3089 camq_insert(queue, pinfo);
3090 retval = 1;
3091 }
3092 return (retval);
3093}
3094
3095static void
3096xpt_run_dev_allocq(struct cam_eb *bus)
3097{
3098 struct cam_devq *devq;
3099
3100 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3101 devq = bus->sim->devq;
3102
3103 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3104 (" qfrozen_cnt == 0x%x, entries == %d, "
3105 "openings == %d, active == %d\n",
3106 devq->alloc_queue.qfrozen_cnt[0],
3107 devq->alloc_queue.entries,
3108 devq->alloc_openings,
3109 devq->alloc_active));
3110
3111 devq->alloc_queue.qfrozen_cnt[0]++;
3112 while ((devq->alloc_queue.entries > 0)
3113 && (devq->alloc_openings > 0)
3114 && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) {
3115 struct cam_ed_qinfo *qinfo;
3116 struct cam_ed *device;
3117 union ccb *work_ccb;
3118 struct cam_periph *drv;
3119 struct camq *drvq;
3120
3121 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3122 CAMQ_HEAD);
3123 device = qinfo->device;
3124 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3125 ("running device %p\n", device));
3126
3127 drvq = &device->drvq;
3128
3129#ifdef CAMDEBUG
3130 if (drvq->entries <= 0) {
3131 panic("xpt_run_dev_allocq: "
3132 "Device on queue without any work to do");
3133 }
3134#endif
3135 if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3136 devq->alloc_openings--;
3137 devq->alloc_active++;
3138 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3139 xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3140 drv->pinfo.priority);
3141 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3142 ("calling periph start\n"));
3143 drv->periph_start(drv, work_ccb);
3144 } else {
3145 /*
3146 * Malloc failure in alloc_ccb
3147 */
3148 /*
3149 * XXX add us to a list to be run from free_ccb
3150 * if we don't have any ccbs active on this
3151 * device queue otherwise we may never get run
3152 * again.
3153 */
3154 break;
3155 }
3156
3157 /* We may have more work. Attempt to reschedule. */
3158 xpt_schedule_dev_allocq(bus, device);
3159 }
3160 devq->alloc_queue.qfrozen_cnt[0]--;
3161}
3162
3163static void
3164xpt_run_dev_sendq(struct cam_eb *bus)
3165{
3166 struct cam_devq *devq;
3167
3168 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3169
3170 devq = bus->sim->devq;
3171
3172 devq->send_queue.qfrozen_cnt[0]++;
3173 while ((devq->send_queue.entries > 0)
3174 && (devq->send_openings > 0)
3175 && (devq->send_queue.qfrozen_cnt[0] <= 1)) {
3176 struct cam_ed_qinfo *qinfo;
3177 struct cam_ed *device;
3178 union ccb *work_ccb;
3179 struct cam_sim *sim;
3180
3181 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3182 CAMQ_HEAD);
3183 device = qinfo->device;
3184 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3185 ("running device %p\n", device));
3186
3187 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3188 if (work_ccb == NULL) {
3189 printf("device on run queue with no ccbs???\n");
3190 continue;
3191 }
3192
3193 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3194
3195 mtx_lock(&xsoftc.xpt_lock);
3196 if (xsoftc.num_highpower <= 0) {
3197 /*
3198 * We got a high power command, but we
3199 * don't have any available slots. Freeze
3200 * the device queue until we have a slot
3201 * available.
3202 */
3203 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3204 STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3205 &work_ccb->ccb_h,
3206 xpt_links.stqe);
3207
3208 mtx_unlock(&xsoftc.xpt_lock);
3209 continue;
3210 } else {
3211 /*
3212 * Consume a high power slot while
3213 * this ccb runs.
3214 */
3215 xsoftc.num_highpower--;
3216 }
3217 mtx_unlock(&xsoftc.xpt_lock);
3218 }
3219 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3220 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3221
3222 devq->send_openings--;
3223 devq->send_active++;
3224
3225 xpt_schedule_dev_sendq(bus, device);
3226
3227 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3228 /*
3229 * The client wants to freeze the queue
3230 * after this CCB is sent.
3231 */
3232 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3233 }
3234
3235 /* In Target mode, the peripheral driver knows best... */
3236 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3237 if ((device->inq_flags & SID_CmdQue) != 0
3238 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3239 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3240 else
3241 /*
3242 * Clear this in case of a retried CCB that
3243 * failed due to a rejected tag.
3244 */
3245 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3246 }
3247
3248 /*
3249 * Device queues can be shared among multiple sim instances
3250 * that reside on different busses. Use the SIM in the queue
3251 * CCB's path, rather than the one in the bus that was passed
3252 * into this function.
3253 */
3254 sim = work_ccb->ccb_h.path->bus->sim;
3255 (*(sim->sim_action))(sim, work_ccb);
3256 }
3257 devq->send_queue.qfrozen_cnt[0]--;
3258}
3259
3260/*
3261 * This function merges stuff from the slave ccb into the master ccb, while
3262 * keeping important fields in the master ccb constant.
3263 */
3264void
3265xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3266{
3267
3268 /*
3269 * Pull fields that are valid for peripheral drivers to set
3270 * into the master CCB along with the CCB "payload".
3271 */
3272 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3273 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3274 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3275 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3276 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3277 sizeof(union ccb) - sizeof(struct ccb_hdr));
3278}
3279
3280void
3281xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3282{
3283
3284 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3285 ccb_h->pinfo.priority = priority;
3286 ccb_h->path = path;
3287 ccb_h->path_id = path->bus->path_id;
3288 if (path->target)
3289 ccb_h->target_id = path->target->target_id;
3290 else
3291 ccb_h->target_id = CAM_TARGET_WILDCARD;
3292 if (path->device) {
3293 ccb_h->target_lun = path->device->lun_id;
3294 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3295 } else {
3296 ccb_h->target_lun = CAM_TARGET_WILDCARD;
3297 }
3298 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3299 ccb_h->flags = 0;
3300}
3301
3302/* Path manipulation functions */
3303cam_status
3304xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3305 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3306{
3307 struct cam_path *path;
3308 cam_status status;
3309
3310 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3311
3312 if (path == NULL) {
3313 status = CAM_RESRC_UNAVAIL;
3314 return(status);
3315 }
3316 status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3317 if (status != CAM_REQ_CMP) {
3318 free(path, M_CAMXPT);
3319 path = NULL;
3320 }
3321 *new_path_ptr = path;
3322 return (status);
3323}
3324
3325cam_status
3326xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3327 struct cam_periph *periph, path_id_t path_id,
3328 target_id_t target_id, lun_id_t lun_id)
3329{
3330 struct cam_path *path;
3331 struct cam_eb *bus = NULL;
3332 cam_status status;
3333 int need_unlock = 0;
3334
3335 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3336
3337 if (path_id != CAM_BUS_WILDCARD) {
3338 bus = xpt_find_bus(path_id);
3339 if (bus != NULL) {
3340 need_unlock = 1;
3341 CAM_SIM_LOCK(bus->sim);
3342 }
3343 }
3344 status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3345 if (need_unlock) {
3346 CAM_SIM_UNLOCK(bus->sim);
3347 xpt_release_bus(bus);
3348 }
3349 if (status != CAM_REQ_CMP) {
3350 free(path, M_CAMXPT);
3351 path = NULL;
3352 }
3353 *new_path_ptr = path;
3354 return (status);
3355}
3356
3357cam_status
3358xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3359 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3360{
3361 struct cam_eb *bus;
3362 struct cam_et *target;
3363 struct cam_ed *device;
3364 cam_status status;
3365
3366 status = CAM_REQ_CMP; /* Completed without error */
3367 target = NULL; /* Wildcarded */
3368 device = NULL; /* Wildcarded */
3369
3370 /*
3371 * We will potentially modify the EDT, so block interrupts
3372 * that may attempt to create cam paths.
3373 */
3374 bus = xpt_find_bus(path_id);
3375 if (bus == NULL) {
3376 status = CAM_PATH_INVALID;
3377 } else {
3378 target = xpt_find_target(bus, target_id);
3379 if (target == NULL) {
3380 /* Create one */
3381 struct cam_et *new_target;
3382
3383 new_target = xpt_alloc_target(bus, target_id);
3384 if (new_target == NULL) {
3385 status = CAM_RESRC_UNAVAIL;
3386 } else {
3387 target = new_target;
3388 }
3389 }
3390 if (target != NULL) {
3391 device = xpt_find_device(target, lun_id);
3392 if (device == NULL) {
3393 /* Create one */
3394 struct cam_ed *new_device;
3395
3396 new_device =
3397 (*(bus->xport->alloc_device))(bus,
3398 target,
3399 lun_id);
3400 if (new_device == NULL) {
3401 status = CAM_RESRC_UNAVAIL;
3402 } else {
3403 device = new_device;
3404 }
3405 }
3406 }
3407 }
3408
3409 /*
3410 * Only touch the user's data if we are successful.
3411 */
3412 if (status == CAM_REQ_CMP) {
3413 new_path->periph = perph;
3414 new_path->bus = bus;
3415 new_path->target = target;
3416 new_path->device = device;
3417 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3418 } else {
3419 if (device != NULL)
3420 xpt_release_device(device);
3421 if (target != NULL)
3422 xpt_release_target(target);
3423 if (bus != NULL)
3424 xpt_release_bus(bus);
3425 }
3426 return (status);
3427}
3428
3429void
3430xpt_release_path(struct cam_path *path)
3431{
3432 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3433 if (path->device != NULL) {
3434 xpt_release_device(path->device);
3435 path->device = NULL;
3436 }
3437 if (path->target != NULL) {
3438 xpt_release_target(path->target);
3439 path->target = NULL;
3440 }
3441 if (path->bus != NULL) {
3442 xpt_release_bus(path->bus);
3443 path->bus = NULL;
3444 }
3445}
3446
3447void
3448xpt_free_path(struct cam_path *path)
3449{
3450
3451 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3452 xpt_release_path(path);
3453 free(path, M_CAMXPT);
3454}
3455
3456void
3457xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3458 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3459{
3460
3461 mtx_lock(&xsoftc.xpt_topo_lock);
3462 if (bus_ref) {
3463 if (path->bus)
3464 *bus_ref = path->bus->refcount;
3465 else
3466 *bus_ref = 0;
3467 }
3468 mtx_unlock(&xsoftc.xpt_topo_lock);
3469 if (periph_ref) {
3470 if (path->periph)
3471 *periph_ref = path->periph->refcount;
3472 else
3473 *periph_ref = 0;
3474 }
3475 if (target_ref) {
3476 if (path->target)
3477 *target_ref = path->target->refcount;
3478 else
3479 *target_ref = 0;
3480 }
3481 if (device_ref) {
3482 if (path->device)
3483 *device_ref = path->device->refcount;
3484 else
3485 *device_ref = 0;
3486 }
3487}
3488
3489/*
3490 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3491 * in path1, 2 for match with wildcards in path2.
3492 */
3493int
3494xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3495{
3496 int retval = 0;
3497
3498 if (path1->bus != path2->bus) {
3499 if (path1->bus->path_id == CAM_BUS_WILDCARD)
3500 retval = 1;
3501 else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3502 retval = 2;
3503 else
3504 return (-1);
3505 }
3506 if (path1->target != path2->target) {
3507 if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3508 if (retval == 0)
3509 retval = 1;
3510 } else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3511 retval = 2;
3512 else
3513 return (-1);
3514 }
3515 if (path1->device != path2->device) {
3516 if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3517 if (retval == 0)
3518 retval = 1;
3519 } else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3520 retval = 2;
3521 else
3522 return (-1);
3523 }
3524 return (retval);
3525}
3526
3527void
3528xpt_print_path(struct cam_path *path)
3529{
3530
3531 if (path == NULL)
3532 printf("(nopath): ");
3533 else {
3534 if (path->periph != NULL)
3535 printf("(%s%d:", path->periph->periph_name,
3536 path->periph->unit_number);
3537 else
3538 printf("(noperiph:");
3539
3540 if (path->bus != NULL)
3541 printf("%s%d:%d:", path->bus->sim->sim_name,
3542 path->bus->sim->unit_number,
3543 path->bus->sim->bus_id);
3544 else
3545 printf("nobus:");
3546
3547 if (path->target != NULL)
3548 printf("%d:", path->target->target_id);
3549 else
3550 printf("X:");
3551
3552 if (path->device != NULL)
3553 printf("%d): ", path->device->lun_id);
3554 else
3555 printf("X): ");
3556 }
3557}
3558
3559void
3560xpt_print(struct cam_path *path, const char *fmt, ...)
3561{
3562 va_list ap;
3563 xpt_print_path(path);
3564 va_start(ap, fmt);
3565 vprintf(fmt, ap);
3566 va_end(ap);
3567}
3568
3569int
3570xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3571{
3572 struct sbuf sb;
3573
3574#ifdef INVARIANTS
3575 if (path != NULL && path->bus != NULL)
3576 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3577#endif
3578
3579 sbuf_new(&sb, str, str_len, 0);
3580
3581 if (path == NULL)
3582 sbuf_printf(&sb, "(nopath): ");
3583 else {
3584 if (path->periph != NULL)
3585 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3586 path->periph->unit_number);
3587 else
3588 sbuf_printf(&sb, "(noperiph:");
3589
3590 if (path->bus != NULL)
3591 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3592 path->bus->sim->unit_number,
3593 path->bus->sim->bus_id);
3594 else
3595 sbuf_printf(&sb, "nobus:");
3596
3597 if (path->target != NULL)
3598 sbuf_printf(&sb, "%d:", path->target->target_id);
3599 else
3600 sbuf_printf(&sb, "X:");
3601
3602 if (path->device != NULL)
3603 sbuf_printf(&sb, "%d): ", path->device->lun_id);
3604 else
3605 sbuf_printf(&sb, "X): ");
3606 }
3607 sbuf_finish(&sb);
3608
3609 return(sbuf_len(&sb));
3610}
3611
3612path_id_t
3613xpt_path_path_id(struct cam_path *path)
3614{
3615 return(path->bus->path_id);
3616}
3617
3618target_id_t
3619xpt_path_target_id(struct cam_path *path)
3620{
3621 if (path->target != NULL)
3622 return (path->target->target_id);
3623 else
3624 return (CAM_TARGET_WILDCARD);
3625}
3626
3627lun_id_t
3628xpt_path_lun_id(struct cam_path *path)
3629{
3630 if (path->device != NULL)
3631 return (path->device->lun_id);
3632 else
3633 return (CAM_LUN_WILDCARD);
3634}
3635
3636struct cam_sim *
3637xpt_path_sim(struct cam_path *path)
3638{
3639
3640 return (path->bus->sim);
3641}
3642
3643struct cam_periph*
3644xpt_path_periph(struct cam_path *path)
3645{
3646 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3647
3648 return (path->periph);
3649}
3650
3651int
3652xpt_path_legacy_ata_id(struct cam_path *path)
3653{
3654 struct cam_eb *bus;
3655 int bus_id;
3656
3657 if ((strcmp(path->bus->sim->sim_name, "ata") != 0) &&
3658 strcmp(path->bus->sim->sim_name, "ahcich") != 0 &&
3659 strcmp(path->bus->sim->sim_name, "mvsch") != 0 &&
3660 strcmp(path->bus->sim->sim_name, "siisch") != 0)
3661 return (-1);
3662
3663 if (strcmp(path->bus->sim->sim_name, "ata") == 0 &&
3664 path->bus->sim->unit_number < 2) {
3665 bus_id = path->bus->sim->unit_number;
3666 } else {
3667 bus_id = 2;
3668 xpt_lock_buses();
3669 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
3670 if (bus == path->bus)
3671 break;
3672 if ((strcmp(bus->sim->sim_name, "ata") == 0 &&
3673 bus->sim->unit_number >= 2) ||
3674 strcmp(bus->sim->sim_name, "ahcich") == 0 ||
3675 strcmp(bus->sim->sim_name, "mvsch") == 0 ||
3676 strcmp(bus->sim->sim_name, "siisch") == 0)
3677 bus_id++;
3678 }
3679 xpt_unlock_buses();
3680 }
3681 if (path->target != NULL) {
3682 if (path->target->target_id < 2)
3683 return (bus_id * 2 + path->target->target_id);
3684 else
3685 return (-1);
3686 } else
3687 return (bus_id * 2);
3688}
3689
3690/*
3691 * Release a CAM control block for the caller. Remit the cost of the structure
3692 * to the device referenced by the path. If the this device had no 'credits'
3693 * and peripheral drivers have registered async callbacks for this notification
3694 * call them now.
3695 */
3696void
3697xpt_release_ccb(union ccb *free_ccb)
3698{
3699 struct cam_path *path;
3700 struct cam_ed *device;
3701 struct cam_eb *bus;
3702 struct cam_sim *sim;
3703
3704 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3705 path = free_ccb->ccb_h.path;
3706 device = path->device;
3707 bus = path->bus;
3708 sim = bus->sim;
3709
3710 mtx_assert(sim->mtx, MA_OWNED);
3711
3712 cam_ccbq_release_opening(&device->ccbq);
3713 if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) {
3714 device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
3715 cam_ccbq_resize(&device->ccbq,
3716 device->ccbq.dev_openings + device->ccbq.dev_active);
3717 }
3718 if (sim->ccb_count > sim->max_ccbs) {
3719 xpt_free_ccb(free_ccb);
3720 sim->ccb_count--;
3721 } else {
3722 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3723 xpt_links.sle);
3724 }
3725 if (sim->devq == NULL) {
3726 return;
3727 }
3728 sim->devq->alloc_openings++;
3729 sim->devq->alloc_active--;
3730 if (device_is_alloc_queued(device) == 0)
3731 xpt_schedule_dev_allocq(bus, device);
3732 xpt_run_dev_allocq(bus);
3733}
3734
3735/* Functions accessed by SIM drivers */
3736
3737static struct xpt_xport xport_default = {
3738 .alloc_device = xpt_alloc_device_default,
3739 .action = xpt_action_default,
3740 .async = xpt_dev_async_default,
3741};
3742
3743/*
3744 * A sim structure, listing the SIM entry points and instance
3745 * identification info is passed to xpt_bus_register to hook the SIM
3746 * into the CAM framework. xpt_bus_register creates a cam_eb entry
3747 * for this new bus and places it in the array of busses and assigns
3748 * it a path_id. The path_id may be influenced by "hard wiring"
3749 * information specified by the user. Once interrupt services are
3750 * available, the bus will be probed.
3751 */
3752int32_t
3753xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3754{
3755 struct cam_eb *new_bus;
3756 struct cam_eb *old_bus;
3757 struct ccb_pathinq cpi;
3758 struct cam_path *path;
3759 cam_status status;
3760
3761 mtx_assert(sim->mtx, MA_OWNED);
3762
3763 sim->bus_id = bus;
3764 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3765 M_CAMXPT, M_NOWAIT);
3766 if (new_bus == NULL) {
3767 /* Couldn't satisfy request */
3768 return (CAM_RESRC_UNAVAIL);
3769 }
3770 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3771 if (path == NULL) {
3772 free(new_bus, M_CAMXPT);
3773 return (CAM_RESRC_UNAVAIL);
3774 }
3775
3776 if (strcmp(sim->sim_name, "xpt") != 0) {
3777 sim->path_id =
3778 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3779 }
3780
3781 TAILQ_INIT(&new_bus->et_entries);
3782 new_bus->path_id = sim->path_id;
3783 cam_sim_hold(sim);
3784 new_bus->sim = sim;
3785 timevalclear(&new_bus->last_reset);
3786 new_bus->flags = 0;
3787 new_bus->refcount = 1; /* Held until a bus_deregister event */
3788 new_bus->generation = 0;
3789
3790 mtx_lock(&xsoftc.xpt_topo_lock);
3791 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3792 while (old_bus != NULL
3793 && old_bus->path_id < new_bus->path_id)
3794 old_bus = TAILQ_NEXT(old_bus, links);
3795 if (old_bus != NULL)
3796 TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3797 else
3798 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3799 xsoftc.bus_generation++;
3800 mtx_unlock(&xsoftc.xpt_topo_lock);
3801
3802 /*
3803 * Set a default transport so that a PATH_INQ can be issued to
3804 * the SIM. This will then allow for probing and attaching of
3805 * a more appropriate transport.
3806 */
3807 new_bus->xport = &xport_default;
3808
3809 status = xpt_compile_path(path, /*periph*/NULL, sim->path_id,
3810 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3811 if (status != CAM_REQ_CMP)
3812 printf("xpt_compile_path returned %d\n", status);
3813
3814 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3815 cpi.ccb_h.func_code = XPT_PATH_INQ;
3816 xpt_action((union ccb *)&cpi);
3817
3818 if (cpi.ccb_h.status == CAM_REQ_CMP) {
3819 switch (cpi.transport) {
3820 case XPORT_SPI:
3821 case XPORT_SAS:
3822 case XPORT_FC:
3823 case XPORT_USB:
3824 case XPORT_ISCSI:
3825 case XPORT_PPB:
3826 new_bus->xport = scsi_get_xport();
3827 break;
3828 case XPORT_ATA:
3829 case XPORT_SATA:
3830 new_bus->xport = ata_get_xport();
3831 break;
3832 default:
3833 new_bus->xport = &xport_default;
3834 break;
3835 }
3836 }
3837
3838 /* Notify interested parties */
3839 if (sim->path_id != CAM_XPT_PATH_ID) {
3840 union ccb *scan_ccb;
3841
3842 xpt_async(AC_PATH_REGISTERED, path, &cpi);
3843 /* Initiate bus rescan. */
3844 scan_ccb = xpt_alloc_ccb_nowait();
3845 scan_ccb->ccb_h.path = path;
3846 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3847 scan_ccb->crcn.flags = 0;
3848 xpt_rescan(scan_ccb);
3849 } else
3850 xpt_free_path(path);
3851 return (CAM_SUCCESS);
3852}
3853
3854int32_t
3855xpt_bus_deregister(path_id_t pathid)
3856{
3857 struct cam_path bus_path;
3858 cam_status status;
3859
3860 status = xpt_compile_path(&bus_path, NULL, pathid,
3861 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3862 if (status != CAM_REQ_CMP)
3863 return (status);
3864
3865 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3866 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3867
3868 /* Release the reference count held while registered. */
3869 xpt_release_bus(bus_path.bus);
3870 xpt_release_path(&bus_path);
3871
3872 return (CAM_REQ_CMP);
3873}
3874
3875static path_id_t
3876xptnextfreepathid(void)
3877{
3878 struct cam_eb *bus;
3879 path_id_t pathid;
3880 const char *strval;
3881
3882 pathid = 0;
3883 mtx_lock(&xsoftc.xpt_topo_lock);
3884 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3885retry:
3886 /* Find an unoccupied pathid */
3887 while (bus != NULL && bus->path_id <= pathid) {
3888 if (bus->path_id == pathid)
3889 pathid++;
3890 bus = TAILQ_NEXT(bus, links);
3891 }
3892 mtx_unlock(&xsoftc.xpt_topo_lock);
3893
3894 /*
3895 * Ensure that this pathid is not reserved for
3896 * a bus that may be registered in the future.
3897 */
3898 if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3899 ++pathid;
3900 /* Start the search over */
3901 mtx_lock(&xsoftc.xpt_topo_lock);
3902 goto retry;
3903 }
3904 return (pathid);
3905}
3906
3907static path_id_t
3908xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3909{
3910 path_id_t pathid;
3911 int i, dunit, val;
3912 char buf[32];
3913 const char *dname;
3914
3915 pathid = CAM_XPT_PATH_ID;
3916 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3917 i = 0;
3918 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3919 if (strcmp(dname, "scbus")) {
3920 /* Avoid a bit of foot shooting. */
3921 continue;
3922 }
3923 if (dunit < 0) /* unwired?! */
3924 continue;
3925 if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
3926 if (sim_bus == val) {
3927 pathid = dunit;
3928 break;
3929 }
3930 } else if (sim_bus == 0) {
3931 /* Unspecified matches bus 0 */
3932 pathid = dunit;
3933 break;
3934 } else {
3935 printf("Ambiguous scbus configuration for %s%d "
3936 "bus %d, cannot wire down. The kernel "
3937 "config entry for scbus%d should "
3938 "specify a controller bus.\n"
3939 "Scbus will be assigned dynamically.\n",
3940 sim_name, sim_unit, sim_bus, dunit);
3941 break;
3942 }
3943 }
3944
3945 if (pathid == CAM_XPT_PATH_ID)
3946 pathid = xptnextfreepathid();
3947 return (pathid);
3948}
3949
3950void
3951xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
3952{
3953 struct cam_eb *bus;
3954 struct cam_et *target, *next_target;
3955 struct cam_ed *device, *next_device;
3956
3957 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3958
3959 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
3960
3961 /*
3962 * Most async events come from a CAM interrupt context. In
3963 * a few cases, the error recovery code at the peripheral layer,
3964 * which may run from our SWI or a process context, may signal
3965 * deferred events with a call to xpt_async.
3966 */
3967
3968 bus = path->bus;
3969
3970 if (async_code == AC_BUS_RESET) {
3971 /* Update our notion of when the last reset occurred */
3972 microtime(&bus->last_reset);
3973 }
3974
3975 for (target = TAILQ_FIRST(&bus->et_entries);
3976 target != NULL;
3977 target = next_target) {
3978
3979 next_target = TAILQ_NEXT(target, links);
3980
3981 if (path->target != target
3982 && path->target->target_id != CAM_TARGET_WILDCARD
3983 && target->target_id != CAM_TARGET_WILDCARD)
3984 continue;
3985
3986 if (async_code == AC_SENT_BDR) {
3987 /* Update our notion of when the last reset occurred */
3988 microtime(&path->target->last_reset);
3989 }
3990
3991 for (device = TAILQ_FIRST(&target->ed_entries);
3992 device != NULL;
3993 device = next_device) {
3994
3995 next_device = TAILQ_NEXT(device, links);
3996
3997 if (path->device != device
3998 && path->device->lun_id != CAM_LUN_WILDCARD
3999 && device->lun_id != CAM_LUN_WILDCARD)
4000 continue;
4001 /*
4002 * The async callback could free the device.
4003 * If it is a broadcast async, it doesn't hold
4004 * device reference, so take our own reference.
4005 */
4006 xpt_acquire_device(device);
4007 (*(bus->xport->async))(async_code, bus,
4008 target, device,
4009 async_arg);
4010
4011 xpt_async_bcast(&device->asyncs, async_code,
4012 path, async_arg);
4013 xpt_release_device(device);
4014 }
4015 }
4016
4017 /*
4018 * If this wasn't a fully wildcarded async, tell all
4019 * clients that want all async events.
4020 */
4021 if (bus != xpt_periph->path->bus)
4022 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4023 path, async_arg);
4024}
4025
4026static void
4027xpt_async_bcast(struct async_list *async_head,
4028 u_int32_t async_code,
4029 struct cam_path *path, void *async_arg)
4030{
4031 struct async_node *cur_entry;
4032
4033 cur_entry = SLIST_FIRST(async_head);
4034 while (cur_entry != NULL) {
4035 struct async_node *next_entry;
4036 /*
4037 * Grab the next list entry before we call the current
4038 * entry's callback. This is because the callback function
4039 * can delete its async callback entry.
4040 */
4041 next_entry = SLIST_NEXT(cur_entry, links);
4042 if ((cur_entry->event_enable & async_code) != 0)
4043 cur_entry->callback(cur_entry->callback_arg,
4044 async_code, path,
4045 async_arg);
4046 cur_entry = next_entry;
4047 }
4048}
4049
4050static void
4051xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4052 struct cam_et *target, struct cam_ed *device,
4053 void *async_arg)
4054{
4055 printf("%s called\n", __func__);
4056}
4057
4058u_int32_t
4059xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count)
4060{
4061 struct cam_ed *dev = path->device;
4062
4063 mtx_assert(path->bus->sim->mtx, MA_OWNED);
4064 dev->sim->devq->alloc_openings +=
4065 cam_ccbq_freeze(&dev->ccbq, rl, count);
4066 /* Remove frozen device from allocq. */
4067 if (device_is_alloc_queued(dev) &&
4068 cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
4069 CAMQ_GET_PRIO(&dev->drvq)))) {
4070 camq_remove(&dev->sim->devq->alloc_queue,
4071 dev->alloc_ccb_entry.pinfo.index);
4072 }
4073 /* Remove frozen device from sendq. */
4074 if (device_is_send_queued(dev) &&
4075 cam_ccbq_frozen_top(&dev->ccbq)) {
4076 camq_remove(&dev->sim->devq->send_queue,
4077 dev->send_ccb_entry.pinfo.index);
4078 }
4079 return (dev->ccbq.queue.qfrozen_cnt[rl]);
4080}
4081
4082u_int32_t
4083xpt_freeze_devq(struct cam_path *path, u_int count)
4084{
4085
4086 return (xpt_freeze_devq_rl(path, 0, count));
4087}
4088
4089u_int32_t
4090xpt_freeze_simq(struct cam_sim *sim, u_int count)
4091{
4092
4093 mtx_assert(sim->mtx, MA_OWNED);
4094 sim->devq->send_queue.qfrozen_cnt[0] += count;
4095 return (sim->devq->send_queue.qfrozen_cnt[0]);
4096}
4097
4098static void
4099xpt_release_devq_timeout(void *arg)
4100{
4101 struct cam_ed *device;
4102
4103 device = (struct cam_ed *)arg;
4104
4105 xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE);
4106}
4107
4108void
4109xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4110{
4111 mtx_assert(path->bus->sim->mtx, MA_OWNED);
4112
4113 xpt_release_devq_device(path->device, /*rl*/0, count, run_queue);
4114}
4115
4116void
4117xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue)
4118{
4119 mtx_assert(path->bus->sim->mtx, MA_OWNED);
4120
4121 xpt_release_devq_device(path->device, rl, count, run_queue);
4122}
4123
4124static void
4125xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue)
4126{
4127
4128 if (count > dev->ccbq.queue.qfrozen_cnt[rl]) {
4129#ifdef INVARIANTS
4130 printf("xpt_release_devq(%d): requested %u > present %u\n",
4131 rl, count, dev->ccbq.queue.qfrozen_cnt[rl]);
4132#endif
4133 count = dev->ccbq.queue.qfrozen_cnt[rl];
4134 }
4135 dev->sim->devq->alloc_openings -=
4136 cam_ccbq_release(&dev->ccbq, rl, count);
4137 if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
4138 CAMQ_GET_PRIO(&dev->drvq))) == 0) {
4139 if (xpt_schedule_dev_allocq(dev->target->bus, dev))
4140 xpt_run_dev_allocq(dev->target->bus);
4141 }
4142 if (cam_ccbq_frozen_top(&dev->ccbq) == 0) {
4143 /*
4144 * No longer need to wait for a successful
4145 * command completion.
4146 */
4147 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4148 /*
4149 * Remove any timeouts that might be scheduled
4150 * to release this queue.
4151 */
4152 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4153 callout_stop(&dev->callout);
4154 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4155 }
4156 if (run_queue == 0)
4157 return;
4158 /*
4159 * Now that we are unfrozen schedule the
4160 * device so any pending transactions are
4161 * run.
4162 */
4163 if (xpt_schedule_dev_sendq(dev->target->bus, dev))
4164 xpt_run_dev_sendq(dev->target->bus);
4165 }
4166}
4167
4168void
4169xpt_release_simq(struct cam_sim *sim, int run_queue)
4170{
4171 struct camq *sendq;
4172
4173 mtx_assert(sim->mtx, MA_OWNED);
4174 sendq = &(sim->devq->send_queue);
4175 if (sendq->qfrozen_cnt[0] <= 0) {
4176#ifdef INVARIANTS
4177 printf("xpt_release_simq: requested 1 > present %u\n",
4178 sendq->qfrozen_cnt[0]);
4179#endif
4180 } else
4181 sendq->qfrozen_cnt[0]--;
4182 if (sendq->qfrozen_cnt[0] == 0) {
4183 /*
4184 * If there is a timeout scheduled to release this
4185 * sim queue, remove it. The queue frozen count is
4186 * already at 0.
4187 */
4188 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4189 callout_stop(&sim->callout);
4190 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4191 }
4192 if (run_queue) {
4193 struct cam_eb *bus;
4194
4195 /*
4196 * Now that we are unfrozen run the send queue.
4197 */
4198 bus = xpt_find_bus(sim->path_id);
4199 xpt_run_dev_sendq(bus);
4200 xpt_release_bus(bus);
4201 }
4202 }
4203}
4204
4205/*
4206 * XXX Appears to be unused.
4207 */
4208static void
4209xpt_release_simq_timeout(void *arg)
4210{
4211 struct cam_sim *sim;
4212
4213 sim = (struct cam_sim *)arg;
4214 xpt_release_simq(sim, /* run_queue */ TRUE);
4215}
4216
4217void
4218xpt_done(union ccb *done_ccb)
4219{
4220 struct cam_sim *sim;
4221 int first;
4222
4223 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4224 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4225 /*
4226 * Queue up the request for handling by our SWI handler
4227 * any of the "non-immediate" type of ccbs.
4228 */
4229 sim = done_ccb->ccb_h.path->bus->sim;
4230 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4231 sim_links.tqe);
4232 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4233 if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED)) == 0) {
4234 mtx_lock(&cam_simq_lock);
4235 first = TAILQ_EMPTY(&cam_simq);
4236 TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4237 mtx_unlock(&cam_simq_lock);
4238 sim->flags |= CAM_SIM_ON_DONEQ;
4239 if (first)
4240 swi_sched(cambio_ih, 0);
4241 }
4242 }
4243}
4244
4245union ccb *
4246xpt_alloc_ccb()
4247{
4248 union ccb *new_ccb;
4249
4250 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK);
4251 return (new_ccb);
4252}
4253
4254union ccb *
4255xpt_alloc_ccb_nowait()
4256{
4257 union ccb *new_ccb;
4258
4259 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT);
4260 return (new_ccb);
4261}
4262
4263void
4264xpt_free_ccb(union ccb *free_ccb)
4265{
4266 free(free_ccb, M_CAMXPT);
4267}
4268
4269
4270
4271/* Private XPT functions */
4272
4273/*
4274 * Get a CAM control block for the caller. Charge the structure to the device
4275 * referenced by the path. If the this device has no 'credits' then the
4276 * device already has the maximum number of outstanding operations under way
4277 * and we return NULL. If we don't have sufficient resources to allocate more
4278 * ccbs, we also return NULL.
4279 */
4280static union ccb *
4281xpt_get_ccb(struct cam_ed *device)
4282{
4283 union ccb *new_ccb;
4284 struct cam_sim *sim;
4285
4286 sim = device->sim;
4287 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4288 new_ccb = xpt_alloc_ccb_nowait();
4289 if (new_ccb == NULL) {
4290 return (NULL);
4291 }
4292 if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4293 callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4294 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4295 xpt_links.sle);
4296 sim->ccb_count++;
4297 }
4298 cam_ccbq_take_opening(&device->ccbq);
4299 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4300 return (new_ccb);
4301}
4302
4303static void
4304xpt_release_bus(struct cam_eb *bus)
4305{
4306
4307 mtx_lock(&xsoftc.xpt_topo_lock);
4308 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4309 if ((--bus->refcount == 0)
4310 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4311 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4312 xsoftc.bus_generation++;
4313 mtx_unlock(&xsoftc.xpt_topo_lock);
4314 cam_sim_release(bus->sim);
4315 free(bus, M_CAMXPT);
4316 } else
4317 mtx_unlock(&xsoftc.xpt_topo_lock);
4318}
4319
4320static struct cam_et *
4321xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4322{
4323 struct cam_et *target;
4324
4325 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4326 M_NOWAIT|M_ZERO);
4327 if (target != NULL) {
4328 struct cam_et *cur_target;
4329
4330 TAILQ_INIT(&target->ed_entries);
4331 target->bus = bus;
4332 target->target_id = target_id;
4333 target->refcount = 1;
4334 target->generation = 0;
4335 target->luns = NULL;
4336 timevalclear(&target->last_reset);
4337 /*
4338 * Hold a reference to our parent bus so it
4339 * will not go away before we do.
4340 */
4341 mtx_lock(&xsoftc.xpt_topo_lock);
4342 bus->refcount++;
4343 mtx_unlock(&xsoftc.xpt_topo_lock);
4344
4345 /* Insertion sort into our bus's target list */
4346 cur_target = TAILQ_FIRST(&bus->et_entries);
4347 while (cur_target != NULL && cur_target->target_id < target_id)
4348 cur_target = TAILQ_NEXT(cur_target, links);
4349
4350 if (cur_target != NULL) {
4351 TAILQ_INSERT_BEFORE(cur_target, target, links);
4352 } else {
4353 TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4354 }
4355 bus->generation++;
4356 }
4357 return (target);
4358}
4359
4360static void
4361xpt_release_target(struct cam_et *target)
4362{
4363
4364 if (target->refcount == 1) {
4365 if (TAILQ_FIRST(&target->ed_entries) == NULL) {
4366 TAILQ_REMOVE(&target->bus->et_entries, target, links);
4367 target->bus->generation++;
4368 xpt_release_bus(target->bus);
4369 if (target->luns)
4370 free(target->luns, M_CAMXPT);
4371 free(target, M_CAMXPT);
4372 }
4373 } else
4374 target->refcount--;
4375}
4376
4377static struct cam_ed *
4378xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4379 lun_id_t lun_id)
4380{
4381 struct cam_ed *device, *cur_device;
4382
4383 device = xpt_alloc_device(bus, target, lun_id);
4384 if (device == NULL)
4385 return (NULL);
4386
4387 device->mintags = 1;
4388 device->maxtags = 1;
4389 bus->sim->max_ccbs += device->ccbq.devq_openings;
4390 cur_device = TAILQ_FIRST(&target->ed_entries);
4391 while (cur_device != NULL && cur_device->lun_id < lun_id)
4392 cur_device = TAILQ_NEXT(cur_device, links);
4393 if (cur_device != NULL) {
4394 TAILQ_INSERT_BEFORE(cur_device, device, links);
4395 } else {
4396 TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4397 }
4398 target->generation++;
4399
4400 return (device);
4401}
4402
4403struct cam_ed *
4404xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4405{
4406 struct cam_ed *device;
4407 struct cam_devq *devq;
4408 cam_status status;
4409
4410 /* Make space for us in the device queue on our bus */
4411 devq = bus->sim->devq;
4412 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4413
4414 if (status != CAM_REQ_CMP) {
4415 device = NULL;
4416 } else {
4417 device = (struct cam_ed *)malloc(sizeof(*device),
4418 M_CAMXPT, M_NOWAIT|M_ZERO);
4419 }
4420
4421 if (device != NULL) {
4422 cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4423 device->alloc_ccb_entry.device = device;
4424 cam_init_pinfo(&device->send_ccb_entry.pinfo);
4425 device->send_ccb_entry.device = device;
4426 device->target = target;
4427 device->lun_id = lun_id;
4428 device->sim = bus->sim;
4429 /* Initialize our queues */
4430 if (camq_init(&device->drvq, 0) != 0) {
4431 free(device, M_CAMXPT);
4432 return (NULL);
4433 }
4434 if (cam_ccbq_init(&device->ccbq,
4435 bus->sim->max_dev_openings) != 0) {
4436 camq_fini(&device->drvq);
4437 free(device, M_CAMXPT);
4438 return (NULL);
4439 }
4440 SLIST_INIT(&device->asyncs);
4441 SLIST_INIT(&device->periphs);
4442 device->generation = 0;
4443 device->owner = NULL;
4444 device->flags = CAM_DEV_UNCONFIGURED;
4445 device->tag_delay_count = 0;
4446 device->tag_saved_openings = 0;
4447 device->refcount = 1;
4448 callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4449
4450 /*
4451 * Hold a reference to our parent target so it
4452 * will not go away before we do.
4453 */
4454 target->refcount++;
4455
4456 }
4457 return (device);
4458}
4459
4460void
4461xpt_acquire_device(struct cam_ed *device)
4462{
4463
4464 device->refcount++;
4465}
4466
4467void
4468xpt_release_device(struct cam_ed *device)
4469{
4470
4471 if (device->refcount == 1) {
4472 struct cam_devq *devq;
4473
4474 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4475 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4476 panic("Removing device while still queued for ccbs");
4477
4478 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4479 callout_stop(&device->callout);
4480
4481 TAILQ_REMOVE(&device->target->ed_entries, device,links);
4482 device->target->generation++;
4483 device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4484 /* Release our slot in the devq */
4485 devq = device->target->bus->sim->devq;
4486 cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4487 camq_fini(&device->drvq);
4488 cam_ccbq_fini(&device->ccbq);
4489 xpt_release_target(device->target);
4490 free(device, M_CAMXPT);
4491 } else
4492 device->refcount--;
4493}
4494
4495u_int32_t
4496xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4497{
4498 int diff;
4499 int result;
4500 struct cam_ed *dev;
4501
4502 dev = path->device;
4503
4504 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4505 result = cam_ccbq_resize(&dev->ccbq, newopenings);
4506 if (result == CAM_REQ_CMP && (diff < 0)) {
4507 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4508 }
4509 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4510 || (dev->inq_flags & SID_CmdQue) != 0)
4511 dev->tag_saved_openings = newopenings;
4512 /* Adjust the global limit */
4513 dev->sim->max_ccbs += diff;
4514 return (result);
4515}
4516
4517static struct cam_eb *
4518xpt_find_bus(path_id_t path_id)
4519{
4520 struct cam_eb *bus;
4521
4522 mtx_lock(&xsoftc.xpt_topo_lock);
4523 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4524 bus != NULL;
4525 bus = TAILQ_NEXT(bus, links)) {
4526 if (bus->path_id == path_id) {
4527 bus->refcount++;
4528 break;
4529 }
4530 }
4531 mtx_unlock(&xsoftc.xpt_topo_lock);
4532 return (bus);
4533}
4534
4535static struct cam_et *
4536xpt_find_target(struct cam_eb *bus, target_id_t target_id)
4537{
4538 struct cam_et *target;
4539
4540 for (target = TAILQ_FIRST(&bus->et_entries);
4541 target != NULL;
4542 target = TAILQ_NEXT(target, links)) {
4543 if (target->target_id == target_id) {
4544 target->refcount++;
4545 break;
4546 }
4547 }
4548 return (target);
4549}
4550
4551static struct cam_ed *
4552xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4553{
4554 struct cam_ed *device;
4555
4556 for (device = TAILQ_FIRST(&target->ed_entries);
4557 device != NULL;
4558 device = TAILQ_NEXT(device, links)) {
4559 if (device->lun_id == lun_id) {
4560 device->refcount++;
4561 break;
4562 }
4563 }
4564 return (device);
4565}
4566
4567void
4568xpt_start_tags(struct cam_path *path)
4569{
4570 struct ccb_relsim crs;
4571 struct cam_ed *device;
4572 struct cam_sim *sim;
4573 int newopenings;
4574
4575 device = path->device;
4576 sim = path->bus->sim;
4577 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4578 xpt_freeze_devq(path, /*count*/1);
4579 device->inq_flags |= SID_CmdQue;
4580 if (device->tag_saved_openings != 0)
4581 newopenings = device->tag_saved_openings;
4582 else
4583 newopenings = min(device->maxtags,
4584 sim->max_tagged_dev_openings);
4585 xpt_dev_ccbq_resize(path, newopenings);
4586 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4587 crs.ccb_h.func_code = XPT_REL_SIMQ;
4588 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4589 crs.openings
4590 = crs.release_timeout
4591 = crs.qfrozen_cnt
4592 = 0;
4593 xpt_action((union ccb *)&crs);
4594}
4595
4596void
4597xpt_stop_tags(struct cam_path *path)
4598{
4599 struct ccb_relsim crs;
4600 struct cam_ed *device;
4601 struct cam_sim *sim;
4602
4603 device = path->device;
4604 sim = path->bus->sim;
4605 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4606 device->tag_delay_count = 0;
4607 xpt_freeze_devq(path, /*count*/1);
4608 device->inq_flags &= ~SID_CmdQue;
4609 xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4610 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4611 crs.ccb_h.func_code = XPT_REL_SIMQ;
4612 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4613 crs.openings
4614 = crs.release_timeout
4615 = crs.qfrozen_cnt
4616 = 0;
4617 xpt_action((union ccb *)&crs);
4618}
4619
4620static void
4621xpt_boot_delay(void *arg)
4622{
4623
4624 xpt_release_boot();
4625}
4626
4627static void
4628xpt_config(void *arg)
4629{
4630 /*
4631 * Now that interrupts are enabled, go find our devices
4632 */
4633
4634#ifdef CAMDEBUG
4635 /* Setup debugging flags and path */
4636#ifdef CAM_DEBUG_BUS
4637 if (cam_dflags != CAM_DEBUG_NONE) {
4638 /*
4639 * Locking is specifically omitted here. No SIMs have
4640 * registered yet, so xpt_create_path will only be searching
4641 * empty lists of targets and devices.
4642 */
4643 if (xpt_create_path(&cam_dpath, xpt_periph,
4644 CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4645 CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4646 printf("xpt_config: xpt_create_path() failed for debug"
4647 " target %d:%d:%d, debugging disabled\n",
4648 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4649 cam_dflags = CAM_DEBUG_NONE;
4650 }
4651 } else
4652 cam_dpath = NULL;
4653#else /* !CAM_DEBUG_BUS */
4654 cam_dpath = NULL;
4655#endif /* CAM_DEBUG_BUS */
4656#endif /* CAMDEBUG */
4657
4658 periphdriver_init(1);
4659 xpt_hold_boot();
4660 callout_init(&xsoftc.boot_callout, 1);
4661 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4662 xpt_boot_delay, NULL);
4663 /* Fire up rescan thread. */
4664 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4665 printf("xpt_config: failed to create rescan thread.\n");
4666 }
4667}
4668
4669void
4670xpt_hold_boot(void)
4671{
4672 xpt_lock_buses();
4673 xsoftc.buses_to_config++;
4674 xpt_unlock_buses();
4675}
4676
4677void
4678xpt_release_boot(void)
4679{
4680 xpt_lock_buses();
4681 xsoftc.buses_to_config--;
4682 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4683 struct xpt_task *task;
4684
4685 xsoftc.buses_config_done = 1;
4686 xpt_unlock_buses();
4687 /* Call manually because we don't have any busses */
4688 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4689 if (task != NULL) {
4690 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4691 taskqueue_enqueue(taskqueue_thread, &task->task);
4692 }
4693 } else
4694 xpt_unlock_buses();
4695}
4696
4697/*
4698 * If the given device only has one peripheral attached to it, and if that
4699 * peripheral is the passthrough driver, announce it. This insures that the
4700 * user sees some sort of announcement for every peripheral in their system.
4701 */
4702static int
4703xptpassannouncefunc(struct cam_ed *device, void *arg)
4704{
4705 struct cam_periph *periph;
4706 int i;
4707
4708 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4709 periph = SLIST_NEXT(periph, periph_links), i++);
4710
4711 periph = SLIST_FIRST(&device->periphs);
4712 if ((i == 1)
4713 && (strncmp(periph->periph_name, "pass", 4) == 0))
4714 xpt_announce_periph(periph, NULL);
4715
4716 return(1);
4717}
4718
4719static void
4720xpt_finishconfig_task(void *context, int pending)
4721{
4722
4723 periphdriver_init(2);
4724 /*
4725 * Check for devices with no "standard" peripheral driver
4726 * attached. For any devices like that, announce the
4727 * passthrough driver so the user will see something.
4728 */
4729 xpt_for_all_devices(xptpassannouncefunc, NULL);
4730
4731 /* Release our hook so that the boot can continue. */
4732 config_intrhook_disestablish(xsoftc.xpt_config_hook);
4733 free(xsoftc.xpt_config_hook, M_CAMXPT);
4734 xsoftc.xpt_config_hook = NULL;
4735
4736 free(context, M_CAMXPT);
4737}
4738
4739cam_status
4740xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4741 struct cam_path *path)
4742{
4743 struct ccb_setasync csa;
4744 cam_status status;
4745 int xptpath = 0;
4746
4747 if (path == NULL) {
4748 mtx_lock(&xsoftc.xpt_lock);
4749 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4750 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4751 if (status != CAM_REQ_CMP) {
4752 mtx_unlock(&xsoftc.xpt_lock);
4753 return (status);
4754 }
4755 xptpath = 1;
4756 }
4757
4758 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4759 csa.ccb_h.func_code = XPT_SASYNC_CB;
4760 csa.event_enable = event;
4761 csa.callback = cbfunc;
4762 csa.callback_arg = cbarg;
4763 xpt_action((union ccb *)&csa);
4764 status = csa.ccb_h.status;
4765
4766 if (xptpath) {
4767 xpt_free_path(path);
4768 mtx_unlock(&xsoftc.xpt_lock);
4769 }
4770
4771 if ((status == CAM_REQ_CMP) &&
4772 (csa.event_enable & AC_FOUND_DEVICE)) {
4773 /*
4774 * Get this peripheral up to date with all
4775 * the currently existing devices.
4776 */
4777 xpt_for_all_devices(xptsetasyncfunc, &csa);
4778 }
4779 if ((status == CAM_REQ_CMP) &&
4780 (csa.event_enable & AC_PATH_REGISTERED)) {
4781 /*
4782 * Get this peripheral up to date with all
4783 * the currently existing busses.
4784 */
4785 xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4786 }
4787
4788 return (status);
4789}
4790
4791static void
4792xptaction(struct cam_sim *sim, union ccb *work_ccb)
4793{
4794 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4795
4796 switch (work_ccb->ccb_h.func_code) {
4797 /* Common cases first */
4798 case XPT_PATH_INQ: /* Path routing inquiry */
4799 {
4800 struct ccb_pathinq *cpi;
4801
4802 cpi = &work_ccb->cpi;
4803 cpi->version_num = 1; /* XXX??? */
4804 cpi->hba_inquiry = 0;
4805 cpi->target_sprt = 0;
4806 cpi->hba_misc = 0;
4807 cpi->hba_eng_cnt = 0;
4808 cpi->max_target = 0;
4809 cpi->max_lun = 0;
4810 cpi->initiator_id = 0;
4811 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4812 strncpy(cpi->hba_vid, "", HBA_IDLEN);
4813 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4814 cpi->unit_number = sim->unit_number;
4815 cpi->bus_id = sim->bus_id;
4816 cpi->base_transfer_speed = 0;
4817 cpi->protocol = PROTO_UNSPECIFIED;
4818 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4819 cpi->transport = XPORT_UNSPECIFIED;
4820 cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4821 cpi->ccb_h.status = CAM_REQ_CMP;
4822 xpt_done(work_ccb);
4823 break;
4824 }
4825 default:
4826 work_ccb->ccb_h.status = CAM_REQ_INVALID;
4827 xpt_done(work_ccb);
4828 break;
4829 }
4830}
4831
4832/*
4833 * The xpt as a "controller" has no interrupt sources, so polling
4834 * is a no-op.
4835 */
4836static void
4837xptpoll(struct cam_sim *sim)
4838{
4839}
4840
4841void
4842xpt_lock_buses(void)
4843{
4844 mtx_lock(&xsoftc.xpt_topo_lock);
4845}
4846
4847void
4848xpt_unlock_buses(void)
4849{
4850 mtx_unlock(&xsoftc.xpt_topo_lock);
4851}
4852
4853static void
4854camisr(void *dummy)
4855{
4856 cam_simq_t queue;
4857 struct cam_sim *sim;
4858
4859 mtx_lock(&cam_simq_lock);
4860 TAILQ_INIT(&queue);
4861 while (!TAILQ_EMPTY(&cam_simq)) {
4862 TAILQ_CONCAT(&queue, &cam_simq, links);
4863 mtx_unlock(&cam_simq_lock);
4864
4865 while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4866 TAILQ_REMOVE(&queue, sim, links);
4867 CAM_SIM_LOCK(sim);
4868 sim->flags &= ~CAM_SIM_ON_DONEQ;
4869 camisr_runqueue(&sim->sim_doneq);
4870 CAM_SIM_UNLOCK(sim);
4871 }
4872 mtx_lock(&cam_simq_lock);
4873 }
4874 mtx_unlock(&cam_simq_lock);
4875}
4876
4877static void
4878camisr_runqueue(void *V_queue)
4879{
4880 cam_isrq_t *queue = V_queue;
4881 struct ccb_hdr *ccb_h;
4882
4883 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
4884 int runq;
4885
4886 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
4887 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
4888
4889 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
4890 ("camisr\n"));
4891
4892 runq = FALSE;
4893
4894 if (ccb_h->flags & CAM_HIGH_POWER) {
4895 struct highpowerlist *hphead;
4896 union ccb *send_ccb;
4897
4898 mtx_lock(&xsoftc.xpt_lock);
4899 hphead = &xsoftc.highpowerq;
4900
4901 send_ccb = (union ccb *)STAILQ_FIRST(hphead);
4902
4903 /*
4904 * Increment the count since this command is done.
4905 */
4906 xsoftc.num_highpower++;
4907
4908 /*
4909 * Any high powered commands queued up?
4910 */
4911 if (send_ccb != NULL) {
4912
4913 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
4914 mtx_unlock(&xsoftc.xpt_lock);
4915
4916 xpt_release_devq(send_ccb->ccb_h.path,
4917 /*count*/1, /*runqueue*/TRUE);
4918 } else
4919 mtx_unlock(&xsoftc.xpt_lock);
4920 }
4921
4922 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
4923 struct cam_ed *dev;
4924
4925 dev = ccb_h->path->device;
4926
4927 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
4928 ccb_h->path->bus->sim->devq->send_active--;
4929 ccb_h->path->bus->sim->devq->send_openings++;
4930 runq = TRUE;
4931
4932 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
4933 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
4934 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
4935 && (dev->ccbq.dev_active == 0))) {
4936 xpt_release_devq(ccb_h->path, /*count*/1,
4937 /*run_queue*/FALSE);
4938 }
4939
4940 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4941 && (--dev->tag_delay_count == 0))
4942 xpt_start_tags(ccb_h->path);
4943 if (!device_is_send_queued(dev)) {
4944 (void)xpt_schedule_dev_sendq(ccb_h->path->bus,
4945 dev);
4946 }
4947 }
4948
4949 if (ccb_h->status & CAM_RELEASE_SIMQ) {
4950 xpt_release_simq(ccb_h->path->bus->sim,
4951 /*run_queue*/TRUE);
4952 ccb_h->status &= ~CAM_RELEASE_SIMQ;
4953 runq = FALSE;
4954 }
4955
4956 if ((ccb_h->flags & CAM_DEV_QFRZDIS)
4957 && (ccb_h->status & CAM_DEV_QFRZN)) {
4958 xpt_release_devq(ccb_h->path, /*count*/1,
4959 /*run_queue*/TRUE);
4960 ccb_h->status &= ~CAM_DEV_QFRZN;
4961 } else if (runq) {
4962 xpt_run_dev_sendq(ccb_h->path->bus);
4963 }
4964
4965 /* Call the peripheral driver's callback */
4966 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
4967 }
4968}
2474 */
2475 if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2476 start_ccb->ccb_h.status = CAM_REQ_CMP;
2477 break;
2478 }
2479#endif
2480 sim = path->bus->sim;
2481 (*(sim->sim_action))(sim, start_ccb);
2482 break;
2483 }
2484 case XPT_ABORT:
2485 {
2486 union ccb* abort_ccb;
2487
2488 abort_ccb = start_ccb->cab.abort_ccb;
2489 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2490
2491 if (abort_ccb->ccb_h.pinfo.index >= 0) {
2492 struct cam_ccbq *ccbq;
2493 struct cam_ed *device;
2494
2495 device = abort_ccb->ccb_h.path->device;
2496 ccbq = &device->ccbq;
2497 device->sim->devq->alloc_openings -=
2498 cam_ccbq_remove_ccb(ccbq, abort_ccb);
2499 abort_ccb->ccb_h.status =
2500 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2501 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2502 xpt_done(abort_ccb);
2503 start_ccb->ccb_h.status = CAM_REQ_CMP;
2504 break;
2505 }
2506 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2507 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2508 /*
2509 * We've caught this ccb en route to
2510 * the SIM. Flag it for abort and the
2511 * SIM will do so just before starting
2512 * real work on the CCB.
2513 */
2514 abort_ccb->ccb_h.status =
2515 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2516 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2517 start_ccb->ccb_h.status = CAM_REQ_CMP;
2518 break;
2519 }
2520 }
2521 if (XPT_FC_IS_QUEUED(abort_ccb)
2522 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2523 /*
2524 * It's already completed but waiting
2525 * for our SWI to get to it.
2526 */
2527 start_ccb->ccb_h.status = CAM_UA_ABORT;
2528 break;
2529 }
2530 /*
2531 * If we weren't able to take care of the abort request
2532 * in the XPT, pass the request down to the SIM for processing.
2533 */
2534 }
2535 /* FALLTHROUGH */
2536 case XPT_ACCEPT_TARGET_IO:
2537 case XPT_EN_LUN:
2538 case XPT_IMMED_NOTIFY:
2539 case XPT_NOTIFY_ACK:
2540 case XPT_RESET_BUS:
2541 case XPT_IMMEDIATE_NOTIFY:
2542 case XPT_NOTIFY_ACKNOWLEDGE:
2543 case XPT_GET_SIM_KNOB:
2544 case XPT_SET_SIM_KNOB:
2545 {
2546 struct cam_sim *sim;
2547
2548 sim = path->bus->sim;
2549 (*(sim->sim_action))(sim, start_ccb);
2550 break;
2551 }
2552 case XPT_PATH_INQ:
2553 {
2554 struct cam_sim *sim;
2555
2556 sim = path->bus->sim;
2557 (*(sim->sim_action))(sim, start_ccb);
2558 break;
2559 }
2560 case XPT_PATH_STATS:
2561 start_ccb->cpis.last_reset = path->bus->last_reset;
2562 start_ccb->ccb_h.status = CAM_REQ_CMP;
2563 break;
2564 case XPT_GDEV_TYPE:
2565 {
2566 struct cam_ed *dev;
2567
2568 dev = path->device;
2569 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2570 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2571 } else {
2572 struct ccb_getdev *cgd;
2573
2574 cgd = &start_ccb->cgd;
2575 cgd->protocol = dev->protocol;
2576 cgd->inq_data = dev->inq_data;
2577 cgd->ident_data = dev->ident_data;
2578 cgd->inq_flags = dev->inq_flags;
2579 cgd->ccb_h.status = CAM_REQ_CMP;
2580 cgd->serial_num_len = dev->serial_num_len;
2581 if ((dev->serial_num_len > 0)
2582 && (dev->serial_num != NULL))
2583 bcopy(dev->serial_num, cgd->serial_num,
2584 dev->serial_num_len);
2585 }
2586 break;
2587 }
2588 case XPT_GDEV_STATS:
2589 {
2590 struct cam_ed *dev;
2591
2592 dev = path->device;
2593 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2594 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2595 } else {
2596 struct ccb_getdevstats *cgds;
2597 struct cam_eb *bus;
2598 struct cam_et *tar;
2599
2600 cgds = &start_ccb->cgds;
2601 bus = path->bus;
2602 tar = path->target;
2603 cgds->dev_openings = dev->ccbq.dev_openings;
2604 cgds->dev_active = dev->ccbq.dev_active;
2605 cgds->devq_openings = dev->ccbq.devq_openings;
2606 cgds->devq_queued = dev->ccbq.queue.entries;
2607 cgds->held = dev->ccbq.held;
2608 cgds->last_reset = tar->last_reset;
2609 cgds->maxtags = dev->maxtags;
2610 cgds->mintags = dev->mintags;
2611 if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2612 cgds->last_reset = bus->last_reset;
2613 cgds->ccb_h.status = CAM_REQ_CMP;
2614 }
2615 break;
2616 }
2617 case XPT_GDEVLIST:
2618 {
2619 struct cam_periph *nperiph;
2620 struct periph_list *periph_head;
2621 struct ccb_getdevlist *cgdl;
2622 u_int i;
2623 struct cam_ed *device;
2624 int found;
2625
2626
2627 found = 0;
2628
2629 /*
2630 * Don't want anyone mucking with our data.
2631 */
2632 device = path->device;
2633 periph_head = &device->periphs;
2634 cgdl = &start_ccb->cgdl;
2635
2636 /*
2637 * Check and see if the list has changed since the user
2638 * last requested a list member. If so, tell them that the
2639 * list has changed, and therefore they need to start over
2640 * from the beginning.
2641 */
2642 if ((cgdl->index != 0) &&
2643 (cgdl->generation != device->generation)) {
2644 cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2645 break;
2646 }
2647
2648 /*
2649 * Traverse the list of peripherals and attempt to find
2650 * the requested peripheral.
2651 */
2652 for (nperiph = SLIST_FIRST(periph_head), i = 0;
2653 (nperiph != NULL) && (i <= cgdl->index);
2654 nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2655 if (i == cgdl->index) {
2656 strncpy(cgdl->periph_name,
2657 nperiph->periph_name,
2658 DEV_IDLEN);
2659 cgdl->unit_number = nperiph->unit_number;
2660 found = 1;
2661 }
2662 }
2663 if (found == 0) {
2664 cgdl->status = CAM_GDEVLIST_ERROR;
2665 break;
2666 }
2667
2668 if (nperiph == NULL)
2669 cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2670 else
2671 cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2672
2673 cgdl->index++;
2674 cgdl->generation = device->generation;
2675
2676 cgdl->ccb_h.status = CAM_REQ_CMP;
2677 break;
2678 }
2679 case XPT_DEV_MATCH:
2680 {
2681 dev_pos_type position_type;
2682 struct ccb_dev_match *cdm;
2683
2684 cdm = &start_ccb->cdm;
2685
2686 /*
2687 * There are two ways of getting at information in the EDT.
2688 * The first way is via the primary EDT tree. It starts
2689 * with a list of busses, then a list of targets on a bus,
2690 * then devices/luns on a target, and then peripherals on a
2691 * device/lun. The "other" way is by the peripheral driver
2692 * lists. The peripheral driver lists are organized by
2693 * peripheral driver. (obviously) So it makes sense to
2694 * use the peripheral driver list if the user is looking
2695 * for something like "da1", or all "da" devices. If the
2696 * user is looking for something on a particular bus/target
2697 * or lun, it's generally better to go through the EDT tree.
2698 */
2699
2700 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2701 position_type = cdm->pos.position_type;
2702 else {
2703 u_int i;
2704
2705 position_type = CAM_DEV_POS_NONE;
2706
2707 for (i = 0; i < cdm->num_patterns; i++) {
2708 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2709 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2710 position_type = CAM_DEV_POS_EDT;
2711 break;
2712 }
2713 }
2714
2715 if (cdm->num_patterns == 0)
2716 position_type = CAM_DEV_POS_EDT;
2717 else if (position_type == CAM_DEV_POS_NONE)
2718 position_type = CAM_DEV_POS_PDRV;
2719 }
2720
2721 switch(position_type & CAM_DEV_POS_TYPEMASK) {
2722 case CAM_DEV_POS_EDT:
2723 xptedtmatch(cdm);
2724 break;
2725 case CAM_DEV_POS_PDRV:
2726 xptperiphlistmatch(cdm);
2727 break;
2728 default:
2729 cdm->status = CAM_DEV_MATCH_ERROR;
2730 break;
2731 }
2732
2733 if (cdm->status == CAM_DEV_MATCH_ERROR)
2734 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2735 else
2736 start_ccb->ccb_h.status = CAM_REQ_CMP;
2737
2738 break;
2739 }
2740 case XPT_SASYNC_CB:
2741 {
2742 struct ccb_setasync *csa;
2743 struct async_node *cur_entry;
2744 struct async_list *async_head;
2745 u_int32_t added;
2746
2747 csa = &start_ccb->csa;
2748 added = csa->event_enable;
2749 async_head = &path->device->asyncs;
2750
2751 /*
2752 * If there is already an entry for us, simply
2753 * update it.
2754 */
2755 cur_entry = SLIST_FIRST(async_head);
2756 while (cur_entry != NULL) {
2757 if ((cur_entry->callback_arg == csa->callback_arg)
2758 && (cur_entry->callback == csa->callback))
2759 break;
2760 cur_entry = SLIST_NEXT(cur_entry, links);
2761 }
2762
2763 if (cur_entry != NULL) {
2764 /*
2765 * If the request has no flags set,
2766 * remove the entry.
2767 */
2768 added &= ~cur_entry->event_enable;
2769 if (csa->event_enable == 0) {
2770 SLIST_REMOVE(async_head, cur_entry,
2771 async_node, links);
2772 xpt_release_device(path->device);
2773 free(cur_entry, M_CAMXPT);
2774 } else {
2775 cur_entry->event_enable = csa->event_enable;
2776 }
2777 csa->event_enable = added;
2778 } else {
2779 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2780 M_NOWAIT);
2781 if (cur_entry == NULL) {
2782 csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2783 break;
2784 }
2785 cur_entry->event_enable = csa->event_enable;
2786 cur_entry->callback_arg = csa->callback_arg;
2787 cur_entry->callback = csa->callback;
2788 SLIST_INSERT_HEAD(async_head, cur_entry, links);
2789 xpt_acquire_device(path->device);
2790 }
2791 start_ccb->ccb_h.status = CAM_REQ_CMP;
2792 break;
2793 }
2794 case XPT_REL_SIMQ:
2795 {
2796 struct ccb_relsim *crs;
2797 struct cam_ed *dev;
2798
2799 crs = &start_ccb->crs;
2800 dev = path->device;
2801 if (dev == NULL) {
2802
2803 crs->ccb_h.status = CAM_DEV_NOT_THERE;
2804 break;
2805 }
2806
2807 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2808
2809 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
2810 /* Don't ever go below one opening */
2811 if (crs->openings > 0) {
2812 xpt_dev_ccbq_resize(path,
2813 crs->openings);
2814
2815 if (bootverbose) {
2816 xpt_print(path,
2817 "tagged openings now %d\n",
2818 crs->openings);
2819 }
2820 }
2821 }
2822 }
2823
2824 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2825
2826 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2827
2828 /*
2829 * Just extend the old timeout and decrement
2830 * the freeze count so that a single timeout
2831 * is sufficient for releasing the queue.
2832 */
2833 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2834 callout_stop(&dev->callout);
2835 } else {
2836
2837 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2838 }
2839
2840 callout_reset(&dev->callout,
2841 (crs->release_timeout * hz) / 1000,
2842 xpt_release_devq_timeout, dev);
2843
2844 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2845
2846 }
2847
2848 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2849
2850 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2851 /*
2852 * Decrement the freeze count so that a single
2853 * completion is still sufficient to unfreeze
2854 * the queue.
2855 */
2856 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2857 } else {
2858
2859 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2860 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2861 }
2862 }
2863
2864 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2865
2866 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2867 || (dev->ccbq.dev_active == 0)) {
2868
2869 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2870 } else {
2871
2872 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2873 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2874 }
2875 }
2876
2877 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
2878 xpt_release_devq_rl(path, /*runlevel*/
2879 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2880 crs->release_timeout : 0,
2881 /*count*/1, /*run_queue*/TRUE);
2882 }
2883 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0];
2884 start_ccb->ccb_h.status = CAM_REQ_CMP;
2885 break;
2886 }
2887 case XPT_DEBUG: {
2888#ifdef CAMDEBUG
2889#ifdef CAM_DEBUG_DELAY
2890 cam_debug_delay = CAM_DEBUG_DELAY;
2891#endif
2892 cam_dflags = start_ccb->cdbg.flags;
2893 if (cam_dpath != NULL) {
2894 xpt_free_path(cam_dpath);
2895 cam_dpath = NULL;
2896 }
2897
2898 if (cam_dflags != CAM_DEBUG_NONE) {
2899 if (xpt_create_path(&cam_dpath, xpt_periph,
2900 start_ccb->ccb_h.path_id,
2901 start_ccb->ccb_h.target_id,
2902 start_ccb->ccb_h.target_lun) !=
2903 CAM_REQ_CMP) {
2904 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2905 cam_dflags = CAM_DEBUG_NONE;
2906 } else {
2907 start_ccb->ccb_h.status = CAM_REQ_CMP;
2908 xpt_print(cam_dpath, "debugging flags now %x\n",
2909 cam_dflags);
2910 }
2911 } else {
2912 cam_dpath = NULL;
2913 start_ccb->ccb_h.status = CAM_REQ_CMP;
2914 }
2915#else /* !CAMDEBUG */
2916 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2917#endif /* CAMDEBUG */
2918 break;
2919 }
2920 case XPT_FREEZE_QUEUE:
2921 {
2922 struct ccb_relsim *crs = &start_ccb->crs;
2923
2924 xpt_freeze_devq_rl(path, /*runlevel*/
2925 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2926 crs->release_timeout : 0, /*count*/1);
2927 start_ccb->ccb_h.status = CAM_REQ_CMP;
2928 break;
2929 }
2930 case XPT_NOOP:
2931 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2932 xpt_freeze_devq(path, 1);
2933 start_ccb->ccb_h.status = CAM_REQ_CMP;
2934 break;
2935 default:
2936 case XPT_SDEV_TYPE:
2937 case XPT_TERM_IO:
2938 case XPT_ENG_INQ:
2939 /* XXX Implement */
2940 printf("%s: CCB type %#x not supported\n", __func__,
2941 start_ccb->ccb_h.func_code);
2942 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2943 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2944 xpt_done(start_ccb);
2945 }
2946 break;
2947 }
2948}
2949
2950void
2951xpt_polled_action(union ccb *start_ccb)
2952{
2953 u_int32_t timeout;
2954 struct cam_sim *sim;
2955 struct cam_devq *devq;
2956 struct cam_ed *dev;
2957
2958
2959 timeout = start_ccb->ccb_h.timeout * 10;
2960 sim = start_ccb->ccb_h.path->bus->sim;
2961 devq = sim->devq;
2962 dev = start_ccb->ccb_h.path->device;
2963
2964 mtx_assert(sim->mtx, MA_OWNED);
2965
2966 /* Don't use ISR for this SIM while polling. */
2967 sim->flags |= CAM_SIM_POLLED;
2968
2969 /*
2970 * Steal an opening so that no other queued requests
2971 * can get it before us while we simulate interrupts.
2972 */
2973 dev->ccbq.devq_openings--;
2974 dev->ccbq.dev_openings--;
2975
2976 while(((devq != NULL && devq->send_openings <= 0) ||
2977 dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
2978 DELAY(100);
2979 (*(sim->sim_poll))(sim);
2980 camisr_runqueue(&sim->sim_doneq);
2981 }
2982
2983 dev->ccbq.devq_openings++;
2984 dev->ccbq.dev_openings++;
2985
2986 if (timeout != 0) {
2987 xpt_action(start_ccb);
2988 while(--timeout > 0) {
2989 (*(sim->sim_poll))(sim);
2990 camisr_runqueue(&sim->sim_doneq);
2991 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
2992 != CAM_REQ_INPROG)
2993 break;
2994 DELAY(100);
2995 }
2996 if (timeout == 0) {
2997 /*
2998 * XXX Is it worth adding a sim_timeout entry
2999 * point so we can attempt recovery? If
3000 * this is only used for dumps, I don't think
3001 * it is.
3002 */
3003 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3004 }
3005 } else {
3006 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3007 }
3008
3009 /* We will use CAM ISR for this SIM again. */
3010 sim->flags &= ~CAM_SIM_POLLED;
3011}
3012
3013/*
3014 * Schedule a peripheral driver to receive a ccb when it's
3015 * target device has space for more transactions.
3016 */
3017void
3018xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3019{
3020 struct cam_ed *device;
3021 int runq = 0;
3022
3023 mtx_assert(perph->sim->mtx, MA_OWNED);
3024
3025 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3026 device = perph->path->device;
3027 if (periph_is_queued(perph)) {
3028 /* Simply reorder based on new priority */
3029 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3030 (" change priority to %d\n", new_priority));
3031 if (new_priority < perph->pinfo.priority) {
3032 camq_change_priority(&device->drvq,
3033 perph->pinfo.index,
3034 new_priority);
3035 runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3036 }
3037 } else {
3038 /* New entry on the queue */
3039 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3040 (" added periph to queue\n"));
3041 perph->pinfo.priority = new_priority;
3042 perph->pinfo.generation = ++device->drvq.generation;
3043 camq_insert(&device->drvq, &perph->pinfo);
3044 runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3045 }
3046 if (runq != 0) {
3047 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3048 (" calling xpt_run_devq\n"));
3049 xpt_run_dev_allocq(perph->path->bus);
3050 }
3051}
3052
3053
3054/*
3055 * Schedule a device to run on a given queue.
3056 * If the device was inserted as a new entry on the queue,
3057 * return 1 meaning the device queue should be run. If we
3058 * were already queued, implying someone else has already
3059 * started the queue, return 0 so the caller doesn't attempt
3060 * to run the queue.
3061 */
3062int
3063xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3064 u_int32_t new_priority)
3065{
3066 int retval;
3067 u_int32_t old_priority;
3068
3069 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3070
3071 old_priority = pinfo->priority;
3072
3073 /*
3074 * Are we already queued?
3075 */
3076 if (pinfo->index != CAM_UNQUEUED_INDEX) {
3077 /* Simply reorder based on new priority */
3078 if (new_priority < old_priority) {
3079 camq_change_priority(queue, pinfo->index,
3080 new_priority);
3081 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3082 ("changed priority to %d\n",
3083 new_priority));
3084 retval = 1;
3085 } else
3086 retval = 0;
3087 } else {
3088 /* New entry on the queue */
3089 if (new_priority < old_priority)
3090 pinfo->priority = new_priority;
3091
3092 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3093 ("Inserting onto queue\n"));
3094 pinfo->generation = ++queue->generation;
3095 camq_insert(queue, pinfo);
3096 retval = 1;
3097 }
3098 return (retval);
3099}
3100
3101static void
3102xpt_run_dev_allocq(struct cam_eb *bus)
3103{
3104 struct cam_devq *devq;
3105
3106 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3107 devq = bus->sim->devq;
3108
3109 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3110 (" qfrozen_cnt == 0x%x, entries == %d, "
3111 "openings == %d, active == %d\n",
3112 devq->alloc_queue.qfrozen_cnt[0],
3113 devq->alloc_queue.entries,
3114 devq->alloc_openings,
3115 devq->alloc_active));
3116
3117 devq->alloc_queue.qfrozen_cnt[0]++;
3118 while ((devq->alloc_queue.entries > 0)
3119 && (devq->alloc_openings > 0)
3120 && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) {
3121 struct cam_ed_qinfo *qinfo;
3122 struct cam_ed *device;
3123 union ccb *work_ccb;
3124 struct cam_periph *drv;
3125 struct camq *drvq;
3126
3127 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3128 CAMQ_HEAD);
3129 device = qinfo->device;
3130 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3131 ("running device %p\n", device));
3132
3133 drvq = &device->drvq;
3134
3135#ifdef CAMDEBUG
3136 if (drvq->entries <= 0) {
3137 panic("xpt_run_dev_allocq: "
3138 "Device on queue without any work to do");
3139 }
3140#endif
3141 if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3142 devq->alloc_openings--;
3143 devq->alloc_active++;
3144 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3145 xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3146 drv->pinfo.priority);
3147 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3148 ("calling periph start\n"));
3149 drv->periph_start(drv, work_ccb);
3150 } else {
3151 /*
3152 * Malloc failure in alloc_ccb
3153 */
3154 /*
3155 * XXX add us to a list to be run from free_ccb
3156 * if we don't have any ccbs active on this
3157 * device queue otherwise we may never get run
3158 * again.
3159 */
3160 break;
3161 }
3162
3163 /* We may have more work. Attempt to reschedule. */
3164 xpt_schedule_dev_allocq(bus, device);
3165 }
3166 devq->alloc_queue.qfrozen_cnt[0]--;
3167}
3168
3169static void
3170xpt_run_dev_sendq(struct cam_eb *bus)
3171{
3172 struct cam_devq *devq;
3173
3174 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3175
3176 devq = bus->sim->devq;
3177
3178 devq->send_queue.qfrozen_cnt[0]++;
3179 while ((devq->send_queue.entries > 0)
3180 && (devq->send_openings > 0)
3181 && (devq->send_queue.qfrozen_cnt[0] <= 1)) {
3182 struct cam_ed_qinfo *qinfo;
3183 struct cam_ed *device;
3184 union ccb *work_ccb;
3185 struct cam_sim *sim;
3186
3187 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3188 CAMQ_HEAD);
3189 device = qinfo->device;
3190 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3191 ("running device %p\n", device));
3192
3193 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3194 if (work_ccb == NULL) {
3195 printf("device on run queue with no ccbs???\n");
3196 continue;
3197 }
3198
3199 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3200
3201 mtx_lock(&xsoftc.xpt_lock);
3202 if (xsoftc.num_highpower <= 0) {
3203 /*
3204 * We got a high power command, but we
3205 * don't have any available slots. Freeze
3206 * the device queue until we have a slot
3207 * available.
3208 */
3209 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3210 STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3211 &work_ccb->ccb_h,
3212 xpt_links.stqe);
3213
3214 mtx_unlock(&xsoftc.xpt_lock);
3215 continue;
3216 } else {
3217 /*
3218 * Consume a high power slot while
3219 * this ccb runs.
3220 */
3221 xsoftc.num_highpower--;
3222 }
3223 mtx_unlock(&xsoftc.xpt_lock);
3224 }
3225 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3226 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3227
3228 devq->send_openings--;
3229 devq->send_active++;
3230
3231 xpt_schedule_dev_sendq(bus, device);
3232
3233 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3234 /*
3235 * The client wants to freeze the queue
3236 * after this CCB is sent.
3237 */
3238 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3239 }
3240
3241 /* In Target mode, the peripheral driver knows best... */
3242 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3243 if ((device->inq_flags & SID_CmdQue) != 0
3244 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3245 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3246 else
3247 /*
3248 * Clear this in case of a retried CCB that
3249 * failed due to a rejected tag.
3250 */
3251 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3252 }
3253
3254 /*
3255 * Device queues can be shared among multiple sim instances
3256 * that reside on different busses. Use the SIM in the queue
3257 * CCB's path, rather than the one in the bus that was passed
3258 * into this function.
3259 */
3260 sim = work_ccb->ccb_h.path->bus->sim;
3261 (*(sim->sim_action))(sim, work_ccb);
3262 }
3263 devq->send_queue.qfrozen_cnt[0]--;
3264}
3265
3266/*
3267 * This function merges stuff from the slave ccb into the master ccb, while
3268 * keeping important fields in the master ccb constant.
3269 */
3270void
3271xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3272{
3273
3274 /*
3275 * Pull fields that are valid for peripheral drivers to set
3276 * into the master CCB along with the CCB "payload".
3277 */
3278 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3279 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3280 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3281 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3282 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3283 sizeof(union ccb) - sizeof(struct ccb_hdr));
3284}
3285
3286void
3287xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3288{
3289
3290 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3291 ccb_h->pinfo.priority = priority;
3292 ccb_h->path = path;
3293 ccb_h->path_id = path->bus->path_id;
3294 if (path->target)
3295 ccb_h->target_id = path->target->target_id;
3296 else
3297 ccb_h->target_id = CAM_TARGET_WILDCARD;
3298 if (path->device) {
3299 ccb_h->target_lun = path->device->lun_id;
3300 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3301 } else {
3302 ccb_h->target_lun = CAM_TARGET_WILDCARD;
3303 }
3304 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3305 ccb_h->flags = 0;
3306}
3307
3308/* Path manipulation functions */
3309cam_status
3310xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3311 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3312{
3313 struct cam_path *path;
3314 cam_status status;
3315
3316 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3317
3318 if (path == NULL) {
3319 status = CAM_RESRC_UNAVAIL;
3320 return(status);
3321 }
3322 status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3323 if (status != CAM_REQ_CMP) {
3324 free(path, M_CAMXPT);
3325 path = NULL;
3326 }
3327 *new_path_ptr = path;
3328 return (status);
3329}
3330
3331cam_status
3332xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3333 struct cam_periph *periph, path_id_t path_id,
3334 target_id_t target_id, lun_id_t lun_id)
3335{
3336 struct cam_path *path;
3337 struct cam_eb *bus = NULL;
3338 cam_status status;
3339 int need_unlock = 0;
3340
3341 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3342
3343 if (path_id != CAM_BUS_WILDCARD) {
3344 bus = xpt_find_bus(path_id);
3345 if (bus != NULL) {
3346 need_unlock = 1;
3347 CAM_SIM_LOCK(bus->sim);
3348 }
3349 }
3350 status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3351 if (need_unlock) {
3352 CAM_SIM_UNLOCK(bus->sim);
3353 xpt_release_bus(bus);
3354 }
3355 if (status != CAM_REQ_CMP) {
3356 free(path, M_CAMXPT);
3357 path = NULL;
3358 }
3359 *new_path_ptr = path;
3360 return (status);
3361}
3362
3363cam_status
3364xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3365 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3366{
3367 struct cam_eb *bus;
3368 struct cam_et *target;
3369 struct cam_ed *device;
3370 cam_status status;
3371
3372 status = CAM_REQ_CMP; /* Completed without error */
3373 target = NULL; /* Wildcarded */
3374 device = NULL; /* Wildcarded */
3375
3376 /*
3377 * We will potentially modify the EDT, so block interrupts
3378 * that may attempt to create cam paths.
3379 */
3380 bus = xpt_find_bus(path_id);
3381 if (bus == NULL) {
3382 status = CAM_PATH_INVALID;
3383 } else {
3384 target = xpt_find_target(bus, target_id);
3385 if (target == NULL) {
3386 /* Create one */
3387 struct cam_et *new_target;
3388
3389 new_target = xpt_alloc_target(bus, target_id);
3390 if (new_target == NULL) {
3391 status = CAM_RESRC_UNAVAIL;
3392 } else {
3393 target = new_target;
3394 }
3395 }
3396 if (target != NULL) {
3397 device = xpt_find_device(target, lun_id);
3398 if (device == NULL) {
3399 /* Create one */
3400 struct cam_ed *new_device;
3401
3402 new_device =
3403 (*(bus->xport->alloc_device))(bus,
3404 target,
3405 lun_id);
3406 if (new_device == NULL) {
3407 status = CAM_RESRC_UNAVAIL;
3408 } else {
3409 device = new_device;
3410 }
3411 }
3412 }
3413 }
3414
3415 /*
3416 * Only touch the user's data if we are successful.
3417 */
3418 if (status == CAM_REQ_CMP) {
3419 new_path->periph = perph;
3420 new_path->bus = bus;
3421 new_path->target = target;
3422 new_path->device = device;
3423 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3424 } else {
3425 if (device != NULL)
3426 xpt_release_device(device);
3427 if (target != NULL)
3428 xpt_release_target(target);
3429 if (bus != NULL)
3430 xpt_release_bus(bus);
3431 }
3432 return (status);
3433}
3434
3435void
3436xpt_release_path(struct cam_path *path)
3437{
3438 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3439 if (path->device != NULL) {
3440 xpt_release_device(path->device);
3441 path->device = NULL;
3442 }
3443 if (path->target != NULL) {
3444 xpt_release_target(path->target);
3445 path->target = NULL;
3446 }
3447 if (path->bus != NULL) {
3448 xpt_release_bus(path->bus);
3449 path->bus = NULL;
3450 }
3451}
3452
3453void
3454xpt_free_path(struct cam_path *path)
3455{
3456
3457 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3458 xpt_release_path(path);
3459 free(path, M_CAMXPT);
3460}
3461
3462void
3463xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3464 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3465{
3466
3467 mtx_lock(&xsoftc.xpt_topo_lock);
3468 if (bus_ref) {
3469 if (path->bus)
3470 *bus_ref = path->bus->refcount;
3471 else
3472 *bus_ref = 0;
3473 }
3474 mtx_unlock(&xsoftc.xpt_topo_lock);
3475 if (periph_ref) {
3476 if (path->periph)
3477 *periph_ref = path->periph->refcount;
3478 else
3479 *periph_ref = 0;
3480 }
3481 if (target_ref) {
3482 if (path->target)
3483 *target_ref = path->target->refcount;
3484 else
3485 *target_ref = 0;
3486 }
3487 if (device_ref) {
3488 if (path->device)
3489 *device_ref = path->device->refcount;
3490 else
3491 *device_ref = 0;
3492 }
3493}
3494
3495/*
3496 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3497 * in path1, 2 for match with wildcards in path2.
3498 */
3499int
3500xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3501{
3502 int retval = 0;
3503
3504 if (path1->bus != path2->bus) {
3505 if (path1->bus->path_id == CAM_BUS_WILDCARD)
3506 retval = 1;
3507 else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3508 retval = 2;
3509 else
3510 return (-1);
3511 }
3512 if (path1->target != path2->target) {
3513 if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3514 if (retval == 0)
3515 retval = 1;
3516 } else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3517 retval = 2;
3518 else
3519 return (-1);
3520 }
3521 if (path1->device != path2->device) {
3522 if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3523 if (retval == 0)
3524 retval = 1;
3525 } else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3526 retval = 2;
3527 else
3528 return (-1);
3529 }
3530 return (retval);
3531}
3532
3533void
3534xpt_print_path(struct cam_path *path)
3535{
3536
3537 if (path == NULL)
3538 printf("(nopath): ");
3539 else {
3540 if (path->periph != NULL)
3541 printf("(%s%d:", path->periph->periph_name,
3542 path->periph->unit_number);
3543 else
3544 printf("(noperiph:");
3545
3546 if (path->bus != NULL)
3547 printf("%s%d:%d:", path->bus->sim->sim_name,
3548 path->bus->sim->unit_number,
3549 path->bus->sim->bus_id);
3550 else
3551 printf("nobus:");
3552
3553 if (path->target != NULL)
3554 printf("%d:", path->target->target_id);
3555 else
3556 printf("X:");
3557
3558 if (path->device != NULL)
3559 printf("%d): ", path->device->lun_id);
3560 else
3561 printf("X): ");
3562 }
3563}
3564
3565void
3566xpt_print(struct cam_path *path, const char *fmt, ...)
3567{
3568 va_list ap;
3569 xpt_print_path(path);
3570 va_start(ap, fmt);
3571 vprintf(fmt, ap);
3572 va_end(ap);
3573}
3574
3575int
3576xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3577{
3578 struct sbuf sb;
3579
3580#ifdef INVARIANTS
3581 if (path != NULL && path->bus != NULL)
3582 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3583#endif
3584
3585 sbuf_new(&sb, str, str_len, 0);
3586
3587 if (path == NULL)
3588 sbuf_printf(&sb, "(nopath): ");
3589 else {
3590 if (path->periph != NULL)
3591 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3592 path->periph->unit_number);
3593 else
3594 sbuf_printf(&sb, "(noperiph:");
3595
3596 if (path->bus != NULL)
3597 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3598 path->bus->sim->unit_number,
3599 path->bus->sim->bus_id);
3600 else
3601 sbuf_printf(&sb, "nobus:");
3602
3603 if (path->target != NULL)
3604 sbuf_printf(&sb, "%d:", path->target->target_id);
3605 else
3606 sbuf_printf(&sb, "X:");
3607
3608 if (path->device != NULL)
3609 sbuf_printf(&sb, "%d): ", path->device->lun_id);
3610 else
3611 sbuf_printf(&sb, "X): ");
3612 }
3613 sbuf_finish(&sb);
3614
3615 return(sbuf_len(&sb));
3616}
3617
3618path_id_t
3619xpt_path_path_id(struct cam_path *path)
3620{
3621 return(path->bus->path_id);
3622}
3623
3624target_id_t
3625xpt_path_target_id(struct cam_path *path)
3626{
3627 if (path->target != NULL)
3628 return (path->target->target_id);
3629 else
3630 return (CAM_TARGET_WILDCARD);
3631}
3632
3633lun_id_t
3634xpt_path_lun_id(struct cam_path *path)
3635{
3636 if (path->device != NULL)
3637 return (path->device->lun_id);
3638 else
3639 return (CAM_LUN_WILDCARD);
3640}
3641
3642struct cam_sim *
3643xpt_path_sim(struct cam_path *path)
3644{
3645
3646 return (path->bus->sim);
3647}
3648
3649struct cam_periph*
3650xpt_path_periph(struct cam_path *path)
3651{
3652 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3653
3654 return (path->periph);
3655}
3656
3657int
3658xpt_path_legacy_ata_id(struct cam_path *path)
3659{
3660 struct cam_eb *bus;
3661 int bus_id;
3662
3663 if ((strcmp(path->bus->sim->sim_name, "ata") != 0) &&
3664 strcmp(path->bus->sim->sim_name, "ahcich") != 0 &&
3665 strcmp(path->bus->sim->sim_name, "mvsch") != 0 &&
3666 strcmp(path->bus->sim->sim_name, "siisch") != 0)
3667 return (-1);
3668
3669 if (strcmp(path->bus->sim->sim_name, "ata") == 0 &&
3670 path->bus->sim->unit_number < 2) {
3671 bus_id = path->bus->sim->unit_number;
3672 } else {
3673 bus_id = 2;
3674 xpt_lock_buses();
3675 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
3676 if (bus == path->bus)
3677 break;
3678 if ((strcmp(bus->sim->sim_name, "ata") == 0 &&
3679 bus->sim->unit_number >= 2) ||
3680 strcmp(bus->sim->sim_name, "ahcich") == 0 ||
3681 strcmp(bus->sim->sim_name, "mvsch") == 0 ||
3682 strcmp(bus->sim->sim_name, "siisch") == 0)
3683 bus_id++;
3684 }
3685 xpt_unlock_buses();
3686 }
3687 if (path->target != NULL) {
3688 if (path->target->target_id < 2)
3689 return (bus_id * 2 + path->target->target_id);
3690 else
3691 return (-1);
3692 } else
3693 return (bus_id * 2);
3694}
3695
3696/*
3697 * Release a CAM control block for the caller. Remit the cost of the structure
3698 * to the device referenced by the path. If the this device had no 'credits'
3699 * and peripheral drivers have registered async callbacks for this notification
3700 * call them now.
3701 */
3702void
3703xpt_release_ccb(union ccb *free_ccb)
3704{
3705 struct cam_path *path;
3706 struct cam_ed *device;
3707 struct cam_eb *bus;
3708 struct cam_sim *sim;
3709
3710 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3711 path = free_ccb->ccb_h.path;
3712 device = path->device;
3713 bus = path->bus;
3714 sim = bus->sim;
3715
3716 mtx_assert(sim->mtx, MA_OWNED);
3717
3718 cam_ccbq_release_opening(&device->ccbq);
3719 if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) {
3720 device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
3721 cam_ccbq_resize(&device->ccbq,
3722 device->ccbq.dev_openings + device->ccbq.dev_active);
3723 }
3724 if (sim->ccb_count > sim->max_ccbs) {
3725 xpt_free_ccb(free_ccb);
3726 sim->ccb_count--;
3727 } else {
3728 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3729 xpt_links.sle);
3730 }
3731 if (sim->devq == NULL) {
3732 return;
3733 }
3734 sim->devq->alloc_openings++;
3735 sim->devq->alloc_active--;
3736 if (device_is_alloc_queued(device) == 0)
3737 xpt_schedule_dev_allocq(bus, device);
3738 xpt_run_dev_allocq(bus);
3739}
3740
3741/* Functions accessed by SIM drivers */
3742
3743static struct xpt_xport xport_default = {
3744 .alloc_device = xpt_alloc_device_default,
3745 .action = xpt_action_default,
3746 .async = xpt_dev_async_default,
3747};
3748
3749/*
3750 * A sim structure, listing the SIM entry points and instance
3751 * identification info is passed to xpt_bus_register to hook the SIM
3752 * into the CAM framework. xpt_bus_register creates a cam_eb entry
3753 * for this new bus and places it in the array of busses and assigns
3754 * it a path_id. The path_id may be influenced by "hard wiring"
3755 * information specified by the user. Once interrupt services are
3756 * available, the bus will be probed.
3757 */
3758int32_t
3759xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3760{
3761 struct cam_eb *new_bus;
3762 struct cam_eb *old_bus;
3763 struct ccb_pathinq cpi;
3764 struct cam_path *path;
3765 cam_status status;
3766
3767 mtx_assert(sim->mtx, MA_OWNED);
3768
3769 sim->bus_id = bus;
3770 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3771 M_CAMXPT, M_NOWAIT);
3772 if (new_bus == NULL) {
3773 /* Couldn't satisfy request */
3774 return (CAM_RESRC_UNAVAIL);
3775 }
3776 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3777 if (path == NULL) {
3778 free(new_bus, M_CAMXPT);
3779 return (CAM_RESRC_UNAVAIL);
3780 }
3781
3782 if (strcmp(sim->sim_name, "xpt") != 0) {
3783 sim->path_id =
3784 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3785 }
3786
3787 TAILQ_INIT(&new_bus->et_entries);
3788 new_bus->path_id = sim->path_id;
3789 cam_sim_hold(sim);
3790 new_bus->sim = sim;
3791 timevalclear(&new_bus->last_reset);
3792 new_bus->flags = 0;
3793 new_bus->refcount = 1; /* Held until a bus_deregister event */
3794 new_bus->generation = 0;
3795
3796 mtx_lock(&xsoftc.xpt_topo_lock);
3797 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3798 while (old_bus != NULL
3799 && old_bus->path_id < new_bus->path_id)
3800 old_bus = TAILQ_NEXT(old_bus, links);
3801 if (old_bus != NULL)
3802 TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3803 else
3804 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3805 xsoftc.bus_generation++;
3806 mtx_unlock(&xsoftc.xpt_topo_lock);
3807
3808 /*
3809 * Set a default transport so that a PATH_INQ can be issued to
3810 * the SIM. This will then allow for probing and attaching of
3811 * a more appropriate transport.
3812 */
3813 new_bus->xport = &xport_default;
3814
3815 status = xpt_compile_path(path, /*periph*/NULL, sim->path_id,
3816 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3817 if (status != CAM_REQ_CMP)
3818 printf("xpt_compile_path returned %d\n", status);
3819
3820 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3821 cpi.ccb_h.func_code = XPT_PATH_INQ;
3822 xpt_action((union ccb *)&cpi);
3823
3824 if (cpi.ccb_h.status == CAM_REQ_CMP) {
3825 switch (cpi.transport) {
3826 case XPORT_SPI:
3827 case XPORT_SAS:
3828 case XPORT_FC:
3829 case XPORT_USB:
3830 case XPORT_ISCSI:
3831 case XPORT_PPB:
3832 new_bus->xport = scsi_get_xport();
3833 break;
3834 case XPORT_ATA:
3835 case XPORT_SATA:
3836 new_bus->xport = ata_get_xport();
3837 break;
3838 default:
3839 new_bus->xport = &xport_default;
3840 break;
3841 }
3842 }
3843
3844 /* Notify interested parties */
3845 if (sim->path_id != CAM_XPT_PATH_ID) {
3846 union ccb *scan_ccb;
3847
3848 xpt_async(AC_PATH_REGISTERED, path, &cpi);
3849 /* Initiate bus rescan. */
3850 scan_ccb = xpt_alloc_ccb_nowait();
3851 scan_ccb->ccb_h.path = path;
3852 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3853 scan_ccb->crcn.flags = 0;
3854 xpt_rescan(scan_ccb);
3855 } else
3856 xpt_free_path(path);
3857 return (CAM_SUCCESS);
3858}
3859
3860int32_t
3861xpt_bus_deregister(path_id_t pathid)
3862{
3863 struct cam_path bus_path;
3864 cam_status status;
3865
3866 status = xpt_compile_path(&bus_path, NULL, pathid,
3867 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3868 if (status != CAM_REQ_CMP)
3869 return (status);
3870
3871 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3872 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3873
3874 /* Release the reference count held while registered. */
3875 xpt_release_bus(bus_path.bus);
3876 xpt_release_path(&bus_path);
3877
3878 return (CAM_REQ_CMP);
3879}
3880
3881static path_id_t
3882xptnextfreepathid(void)
3883{
3884 struct cam_eb *bus;
3885 path_id_t pathid;
3886 const char *strval;
3887
3888 pathid = 0;
3889 mtx_lock(&xsoftc.xpt_topo_lock);
3890 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3891retry:
3892 /* Find an unoccupied pathid */
3893 while (bus != NULL && bus->path_id <= pathid) {
3894 if (bus->path_id == pathid)
3895 pathid++;
3896 bus = TAILQ_NEXT(bus, links);
3897 }
3898 mtx_unlock(&xsoftc.xpt_topo_lock);
3899
3900 /*
3901 * Ensure that this pathid is not reserved for
3902 * a bus that may be registered in the future.
3903 */
3904 if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3905 ++pathid;
3906 /* Start the search over */
3907 mtx_lock(&xsoftc.xpt_topo_lock);
3908 goto retry;
3909 }
3910 return (pathid);
3911}
3912
3913static path_id_t
3914xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3915{
3916 path_id_t pathid;
3917 int i, dunit, val;
3918 char buf[32];
3919 const char *dname;
3920
3921 pathid = CAM_XPT_PATH_ID;
3922 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3923 i = 0;
3924 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3925 if (strcmp(dname, "scbus")) {
3926 /* Avoid a bit of foot shooting. */
3927 continue;
3928 }
3929 if (dunit < 0) /* unwired?! */
3930 continue;
3931 if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
3932 if (sim_bus == val) {
3933 pathid = dunit;
3934 break;
3935 }
3936 } else if (sim_bus == 0) {
3937 /* Unspecified matches bus 0 */
3938 pathid = dunit;
3939 break;
3940 } else {
3941 printf("Ambiguous scbus configuration for %s%d "
3942 "bus %d, cannot wire down. The kernel "
3943 "config entry for scbus%d should "
3944 "specify a controller bus.\n"
3945 "Scbus will be assigned dynamically.\n",
3946 sim_name, sim_unit, sim_bus, dunit);
3947 break;
3948 }
3949 }
3950
3951 if (pathid == CAM_XPT_PATH_ID)
3952 pathid = xptnextfreepathid();
3953 return (pathid);
3954}
3955
3956void
3957xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
3958{
3959 struct cam_eb *bus;
3960 struct cam_et *target, *next_target;
3961 struct cam_ed *device, *next_device;
3962
3963 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3964
3965 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
3966
3967 /*
3968 * Most async events come from a CAM interrupt context. In
3969 * a few cases, the error recovery code at the peripheral layer,
3970 * which may run from our SWI or a process context, may signal
3971 * deferred events with a call to xpt_async.
3972 */
3973
3974 bus = path->bus;
3975
3976 if (async_code == AC_BUS_RESET) {
3977 /* Update our notion of when the last reset occurred */
3978 microtime(&bus->last_reset);
3979 }
3980
3981 for (target = TAILQ_FIRST(&bus->et_entries);
3982 target != NULL;
3983 target = next_target) {
3984
3985 next_target = TAILQ_NEXT(target, links);
3986
3987 if (path->target != target
3988 && path->target->target_id != CAM_TARGET_WILDCARD
3989 && target->target_id != CAM_TARGET_WILDCARD)
3990 continue;
3991
3992 if (async_code == AC_SENT_BDR) {
3993 /* Update our notion of when the last reset occurred */
3994 microtime(&path->target->last_reset);
3995 }
3996
3997 for (device = TAILQ_FIRST(&target->ed_entries);
3998 device != NULL;
3999 device = next_device) {
4000
4001 next_device = TAILQ_NEXT(device, links);
4002
4003 if (path->device != device
4004 && path->device->lun_id != CAM_LUN_WILDCARD
4005 && device->lun_id != CAM_LUN_WILDCARD)
4006 continue;
4007 /*
4008 * The async callback could free the device.
4009 * If it is a broadcast async, it doesn't hold
4010 * device reference, so take our own reference.
4011 */
4012 xpt_acquire_device(device);
4013 (*(bus->xport->async))(async_code, bus,
4014 target, device,
4015 async_arg);
4016
4017 xpt_async_bcast(&device->asyncs, async_code,
4018 path, async_arg);
4019 xpt_release_device(device);
4020 }
4021 }
4022
4023 /*
4024 * If this wasn't a fully wildcarded async, tell all
4025 * clients that want all async events.
4026 */
4027 if (bus != xpt_periph->path->bus)
4028 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4029 path, async_arg);
4030}
4031
4032static void
4033xpt_async_bcast(struct async_list *async_head,
4034 u_int32_t async_code,
4035 struct cam_path *path, void *async_arg)
4036{
4037 struct async_node *cur_entry;
4038
4039 cur_entry = SLIST_FIRST(async_head);
4040 while (cur_entry != NULL) {
4041 struct async_node *next_entry;
4042 /*
4043 * Grab the next list entry before we call the current
4044 * entry's callback. This is because the callback function
4045 * can delete its async callback entry.
4046 */
4047 next_entry = SLIST_NEXT(cur_entry, links);
4048 if ((cur_entry->event_enable & async_code) != 0)
4049 cur_entry->callback(cur_entry->callback_arg,
4050 async_code, path,
4051 async_arg);
4052 cur_entry = next_entry;
4053 }
4054}
4055
4056static void
4057xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4058 struct cam_et *target, struct cam_ed *device,
4059 void *async_arg)
4060{
4061 printf("%s called\n", __func__);
4062}
4063
4064u_int32_t
4065xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count)
4066{
4067 struct cam_ed *dev = path->device;
4068
4069 mtx_assert(path->bus->sim->mtx, MA_OWNED);
4070 dev->sim->devq->alloc_openings +=
4071 cam_ccbq_freeze(&dev->ccbq, rl, count);
4072 /* Remove frozen device from allocq. */
4073 if (device_is_alloc_queued(dev) &&
4074 cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
4075 CAMQ_GET_PRIO(&dev->drvq)))) {
4076 camq_remove(&dev->sim->devq->alloc_queue,
4077 dev->alloc_ccb_entry.pinfo.index);
4078 }
4079 /* Remove frozen device from sendq. */
4080 if (device_is_send_queued(dev) &&
4081 cam_ccbq_frozen_top(&dev->ccbq)) {
4082 camq_remove(&dev->sim->devq->send_queue,
4083 dev->send_ccb_entry.pinfo.index);
4084 }
4085 return (dev->ccbq.queue.qfrozen_cnt[rl]);
4086}
4087
4088u_int32_t
4089xpt_freeze_devq(struct cam_path *path, u_int count)
4090{
4091
4092 return (xpt_freeze_devq_rl(path, 0, count));
4093}
4094
4095u_int32_t
4096xpt_freeze_simq(struct cam_sim *sim, u_int count)
4097{
4098
4099 mtx_assert(sim->mtx, MA_OWNED);
4100 sim->devq->send_queue.qfrozen_cnt[0] += count;
4101 return (sim->devq->send_queue.qfrozen_cnt[0]);
4102}
4103
4104static void
4105xpt_release_devq_timeout(void *arg)
4106{
4107 struct cam_ed *device;
4108
4109 device = (struct cam_ed *)arg;
4110
4111 xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE);
4112}
4113
4114void
4115xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4116{
4117 mtx_assert(path->bus->sim->mtx, MA_OWNED);
4118
4119 xpt_release_devq_device(path->device, /*rl*/0, count, run_queue);
4120}
4121
4122void
4123xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue)
4124{
4125 mtx_assert(path->bus->sim->mtx, MA_OWNED);
4126
4127 xpt_release_devq_device(path->device, rl, count, run_queue);
4128}
4129
4130static void
4131xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue)
4132{
4133
4134 if (count > dev->ccbq.queue.qfrozen_cnt[rl]) {
4135#ifdef INVARIANTS
4136 printf("xpt_release_devq(%d): requested %u > present %u\n",
4137 rl, count, dev->ccbq.queue.qfrozen_cnt[rl]);
4138#endif
4139 count = dev->ccbq.queue.qfrozen_cnt[rl];
4140 }
4141 dev->sim->devq->alloc_openings -=
4142 cam_ccbq_release(&dev->ccbq, rl, count);
4143 if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
4144 CAMQ_GET_PRIO(&dev->drvq))) == 0) {
4145 if (xpt_schedule_dev_allocq(dev->target->bus, dev))
4146 xpt_run_dev_allocq(dev->target->bus);
4147 }
4148 if (cam_ccbq_frozen_top(&dev->ccbq) == 0) {
4149 /*
4150 * No longer need to wait for a successful
4151 * command completion.
4152 */
4153 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4154 /*
4155 * Remove any timeouts that might be scheduled
4156 * to release this queue.
4157 */
4158 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4159 callout_stop(&dev->callout);
4160 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4161 }
4162 if (run_queue == 0)
4163 return;
4164 /*
4165 * Now that we are unfrozen schedule the
4166 * device so any pending transactions are
4167 * run.
4168 */
4169 if (xpt_schedule_dev_sendq(dev->target->bus, dev))
4170 xpt_run_dev_sendq(dev->target->bus);
4171 }
4172}
4173
4174void
4175xpt_release_simq(struct cam_sim *sim, int run_queue)
4176{
4177 struct camq *sendq;
4178
4179 mtx_assert(sim->mtx, MA_OWNED);
4180 sendq = &(sim->devq->send_queue);
4181 if (sendq->qfrozen_cnt[0] <= 0) {
4182#ifdef INVARIANTS
4183 printf("xpt_release_simq: requested 1 > present %u\n",
4184 sendq->qfrozen_cnt[0]);
4185#endif
4186 } else
4187 sendq->qfrozen_cnt[0]--;
4188 if (sendq->qfrozen_cnt[0] == 0) {
4189 /*
4190 * If there is a timeout scheduled to release this
4191 * sim queue, remove it. The queue frozen count is
4192 * already at 0.
4193 */
4194 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4195 callout_stop(&sim->callout);
4196 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4197 }
4198 if (run_queue) {
4199 struct cam_eb *bus;
4200
4201 /*
4202 * Now that we are unfrozen run the send queue.
4203 */
4204 bus = xpt_find_bus(sim->path_id);
4205 xpt_run_dev_sendq(bus);
4206 xpt_release_bus(bus);
4207 }
4208 }
4209}
4210
4211/*
4212 * XXX Appears to be unused.
4213 */
4214static void
4215xpt_release_simq_timeout(void *arg)
4216{
4217 struct cam_sim *sim;
4218
4219 sim = (struct cam_sim *)arg;
4220 xpt_release_simq(sim, /* run_queue */ TRUE);
4221}
4222
4223void
4224xpt_done(union ccb *done_ccb)
4225{
4226 struct cam_sim *sim;
4227 int first;
4228
4229 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4230 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4231 /*
4232 * Queue up the request for handling by our SWI handler
4233 * any of the "non-immediate" type of ccbs.
4234 */
4235 sim = done_ccb->ccb_h.path->bus->sim;
4236 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4237 sim_links.tqe);
4238 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4239 if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED)) == 0) {
4240 mtx_lock(&cam_simq_lock);
4241 first = TAILQ_EMPTY(&cam_simq);
4242 TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4243 mtx_unlock(&cam_simq_lock);
4244 sim->flags |= CAM_SIM_ON_DONEQ;
4245 if (first)
4246 swi_sched(cambio_ih, 0);
4247 }
4248 }
4249}
4250
4251union ccb *
4252xpt_alloc_ccb()
4253{
4254 union ccb *new_ccb;
4255
4256 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK);
4257 return (new_ccb);
4258}
4259
4260union ccb *
4261xpt_alloc_ccb_nowait()
4262{
4263 union ccb *new_ccb;
4264
4265 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT);
4266 return (new_ccb);
4267}
4268
4269void
4270xpt_free_ccb(union ccb *free_ccb)
4271{
4272 free(free_ccb, M_CAMXPT);
4273}
4274
4275
4276
4277/* Private XPT functions */
4278
4279/*
4280 * Get a CAM control block for the caller. Charge the structure to the device
4281 * referenced by the path. If the this device has no 'credits' then the
4282 * device already has the maximum number of outstanding operations under way
4283 * and we return NULL. If we don't have sufficient resources to allocate more
4284 * ccbs, we also return NULL.
4285 */
4286static union ccb *
4287xpt_get_ccb(struct cam_ed *device)
4288{
4289 union ccb *new_ccb;
4290 struct cam_sim *sim;
4291
4292 sim = device->sim;
4293 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4294 new_ccb = xpt_alloc_ccb_nowait();
4295 if (new_ccb == NULL) {
4296 return (NULL);
4297 }
4298 if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4299 callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4300 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4301 xpt_links.sle);
4302 sim->ccb_count++;
4303 }
4304 cam_ccbq_take_opening(&device->ccbq);
4305 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4306 return (new_ccb);
4307}
4308
4309static void
4310xpt_release_bus(struct cam_eb *bus)
4311{
4312
4313 mtx_lock(&xsoftc.xpt_topo_lock);
4314 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4315 if ((--bus->refcount == 0)
4316 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4317 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4318 xsoftc.bus_generation++;
4319 mtx_unlock(&xsoftc.xpt_topo_lock);
4320 cam_sim_release(bus->sim);
4321 free(bus, M_CAMXPT);
4322 } else
4323 mtx_unlock(&xsoftc.xpt_topo_lock);
4324}
4325
4326static struct cam_et *
4327xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4328{
4329 struct cam_et *target;
4330
4331 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4332 M_NOWAIT|M_ZERO);
4333 if (target != NULL) {
4334 struct cam_et *cur_target;
4335
4336 TAILQ_INIT(&target->ed_entries);
4337 target->bus = bus;
4338 target->target_id = target_id;
4339 target->refcount = 1;
4340 target->generation = 0;
4341 target->luns = NULL;
4342 timevalclear(&target->last_reset);
4343 /*
4344 * Hold a reference to our parent bus so it
4345 * will not go away before we do.
4346 */
4347 mtx_lock(&xsoftc.xpt_topo_lock);
4348 bus->refcount++;
4349 mtx_unlock(&xsoftc.xpt_topo_lock);
4350
4351 /* Insertion sort into our bus's target list */
4352 cur_target = TAILQ_FIRST(&bus->et_entries);
4353 while (cur_target != NULL && cur_target->target_id < target_id)
4354 cur_target = TAILQ_NEXT(cur_target, links);
4355
4356 if (cur_target != NULL) {
4357 TAILQ_INSERT_BEFORE(cur_target, target, links);
4358 } else {
4359 TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4360 }
4361 bus->generation++;
4362 }
4363 return (target);
4364}
4365
4366static void
4367xpt_release_target(struct cam_et *target)
4368{
4369
4370 if (target->refcount == 1) {
4371 if (TAILQ_FIRST(&target->ed_entries) == NULL) {
4372 TAILQ_REMOVE(&target->bus->et_entries, target, links);
4373 target->bus->generation++;
4374 xpt_release_bus(target->bus);
4375 if (target->luns)
4376 free(target->luns, M_CAMXPT);
4377 free(target, M_CAMXPT);
4378 }
4379 } else
4380 target->refcount--;
4381}
4382
4383static struct cam_ed *
4384xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4385 lun_id_t lun_id)
4386{
4387 struct cam_ed *device, *cur_device;
4388
4389 device = xpt_alloc_device(bus, target, lun_id);
4390 if (device == NULL)
4391 return (NULL);
4392
4393 device->mintags = 1;
4394 device->maxtags = 1;
4395 bus->sim->max_ccbs += device->ccbq.devq_openings;
4396 cur_device = TAILQ_FIRST(&target->ed_entries);
4397 while (cur_device != NULL && cur_device->lun_id < lun_id)
4398 cur_device = TAILQ_NEXT(cur_device, links);
4399 if (cur_device != NULL) {
4400 TAILQ_INSERT_BEFORE(cur_device, device, links);
4401 } else {
4402 TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4403 }
4404 target->generation++;
4405
4406 return (device);
4407}
4408
4409struct cam_ed *
4410xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4411{
4412 struct cam_ed *device;
4413 struct cam_devq *devq;
4414 cam_status status;
4415
4416 /* Make space for us in the device queue on our bus */
4417 devq = bus->sim->devq;
4418 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4419
4420 if (status != CAM_REQ_CMP) {
4421 device = NULL;
4422 } else {
4423 device = (struct cam_ed *)malloc(sizeof(*device),
4424 M_CAMXPT, M_NOWAIT|M_ZERO);
4425 }
4426
4427 if (device != NULL) {
4428 cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4429 device->alloc_ccb_entry.device = device;
4430 cam_init_pinfo(&device->send_ccb_entry.pinfo);
4431 device->send_ccb_entry.device = device;
4432 device->target = target;
4433 device->lun_id = lun_id;
4434 device->sim = bus->sim;
4435 /* Initialize our queues */
4436 if (camq_init(&device->drvq, 0) != 0) {
4437 free(device, M_CAMXPT);
4438 return (NULL);
4439 }
4440 if (cam_ccbq_init(&device->ccbq,
4441 bus->sim->max_dev_openings) != 0) {
4442 camq_fini(&device->drvq);
4443 free(device, M_CAMXPT);
4444 return (NULL);
4445 }
4446 SLIST_INIT(&device->asyncs);
4447 SLIST_INIT(&device->periphs);
4448 device->generation = 0;
4449 device->owner = NULL;
4450 device->flags = CAM_DEV_UNCONFIGURED;
4451 device->tag_delay_count = 0;
4452 device->tag_saved_openings = 0;
4453 device->refcount = 1;
4454 callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4455
4456 /*
4457 * Hold a reference to our parent target so it
4458 * will not go away before we do.
4459 */
4460 target->refcount++;
4461
4462 }
4463 return (device);
4464}
4465
4466void
4467xpt_acquire_device(struct cam_ed *device)
4468{
4469
4470 device->refcount++;
4471}
4472
4473void
4474xpt_release_device(struct cam_ed *device)
4475{
4476
4477 if (device->refcount == 1) {
4478 struct cam_devq *devq;
4479
4480 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4481 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4482 panic("Removing device while still queued for ccbs");
4483
4484 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4485 callout_stop(&device->callout);
4486
4487 TAILQ_REMOVE(&device->target->ed_entries, device,links);
4488 device->target->generation++;
4489 device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4490 /* Release our slot in the devq */
4491 devq = device->target->bus->sim->devq;
4492 cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4493 camq_fini(&device->drvq);
4494 cam_ccbq_fini(&device->ccbq);
4495 xpt_release_target(device->target);
4496 free(device, M_CAMXPT);
4497 } else
4498 device->refcount--;
4499}
4500
4501u_int32_t
4502xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4503{
4504 int diff;
4505 int result;
4506 struct cam_ed *dev;
4507
4508 dev = path->device;
4509
4510 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4511 result = cam_ccbq_resize(&dev->ccbq, newopenings);
4512 if (result == CAM_REQ_CMP && (diff < 0)) {
4513 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4514 }
4515 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4516 || (dev->inq_flags & SID_CmdQue) != 0)
4517 dev->tag_saved_openings = newopenings;
4518 /* Adjust the global limit */
4519 dev->sim->max_ccbs += diff;
4520 return (result);
4521}
4522
4523static struct cam_eb *
4524xpt_find_bus(path_id_t path_id)
4525{
4526 struct cam_eb *bus;
4527
4528 mtx_lock(&xsoftc.xpt_topo_lock);
4529 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4530 bus != NULL;
4531 bus = TAILQ_NEXT(bus, links)) {
4532 if (bus->path_id == path_id) {
4533 bus->refcount++;
4534 break;
4535 }
4536 }
4537 mtx_unlock(&xsoftc.xpt_topo_lock);
4538 return (bus);
4539}
4540
4541static struct cam_et *
4542xpt_find_target(struct cam_eb *bus, target_id_t target_id)
4543{
4544 struct cam_et *target;
4545
4546 for (target = TAILQ_FIRST(&bus->et_entries);
4547 target != NULL;
4548 target = TAILQ_NEXT(target, links)) {
4549 if (target->target_id == target_id) {
4550 target->refcount++;
4551 break;
4552 }
4553 }
4554 return (target);
4555}
4556
4557static struct cam_ed *
4558xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4559{
4560 struct cam_ed *device;
4561
4562 for (device = TAILQ_FIRST(&target->ed_entries);
4563 device != NULL;
4564 device = TAILQ_NEXT(device, links)) {
4565 if (device->lun_id == lun_id) {
4566 device->refcount++;
4567 break;
4568 }
4569 }
4570 return (device);
4571}
4572
4573void
4574xpt_start_tags(struct cam_path *path)
4575{
4576 struct ccb_relsim crs;
4577 struct cam_ed *device;
4578 struct cam_sim *sim;
4579 int newopenings;
4580
4581 device = path->device;
4582 sim = path->bus->sim;
4583 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4584 xpt_freeze_devq(path, /*count*/1);
4585 device->inq_flags |= SID_CmdQue;
4586 if (device->tag_saved_openings != 0)
4587 newopenings = device->tag_saved_openings;
4588 else
4589 newopenings = min(device->maxtags,
4590 sim->max_tagged_dev_openings);
4591 xpt_dev_ccbq_resize(path, newopenings);
4592 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4593 crs.ccb_h.func_code = XPT_REL_SIMQ;
4594 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4595 crs.openings
4596 = crs.release_timeout
4597 = crs.qfrozen_cnt
4598 = 0;
4599 xpt_action((union ccb *)&crs);
4600}
4601
4602void
4603xpt_stop_tags(struct cam_path *path)
4604{
4605 struct ccb_relsim crs;
4606 struct cam_ed *device;
4607 struct cam_sim *sim;
4608
4609 device = path->device;
4610 sim = path->bus->sim;
4611 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4612 device->tag_delay_count = 0;
4613 xpt_freeze_devq(path, /*count*/1);
4614 device->inq_flags &= ~SID_CmdQue;
4615 xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4616 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4617 crs.ccb_h.func_code = XPT_REL_SIMQ;
4618 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4619 crs.openings
4620 = crs.release_timeout
4621 = crs.qfrozen_cnt
4622 = 0;
4623 xpt_action((union ccb *)&crs);
4624}
4625
4626static void
4627xpt_boot_delay(void *arg)
4628{
4629
4630 xpt_release_boot();
4631}
4632
4633static void
4634xpt_config(void *arg)
4635{
4636 /*
4637 * Now that interrupts are enabled, go find our devices
4638 */
4639
4640#ifdef CAMDEBUG
4641 /* Setup debugging flags and path */
4642#ifdef CAM_DEBUG_BUS
4643 if (cam_dflags != CAM_DEBUG_NONE) {
4644 /*
4645 * Locking is specifically omitted here. No SIMs have
4646 * registered yet, so xpt_create_path will only be searching
4647 * empty lists of targets and devices.
4648 */
4649 if (xpt_create_path(&cam_dpath, xpt_periph,
4650 CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4651 CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4652 printf("xpt_config: xpt_create_path() failed for debug"
4653 " target %d:%d:%d, debugging disabled\n",
4654 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4655 cam_dflags = CAM_DEBUG_NONE;
4656 }
4657 } else
4658 cam_dpath = NULL;
4659#else /* !CAM_DEBUG_BUS */
4660 cam_dpath = NULL;
4661#endif /* CAM_DEBUG_BUS */
4662#endif /* CAMDEBUG */
4663
4664 periphdriver_init(1);
4665 xpt_hold_boot();
4666 callout_init(&xsoftc.boot_callout, 1);
4667 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4668 xpt_boot_delay, NULL);
4669 /* Fire up rescan thread. */
4670 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4671 printf("xpt_config: failed to create rescan thread.\n");
4672 }
4673}
4674
4675void
4676xpt_hold_boot(void)
4677{
4678 xpt_lock_buses();
4679 xsoftc.buses_to_config++;
4680 xpt_unlock_buses();
4681}
4682
4683void
4684xpt_release_boot(void)
4685{
4686 xpt_lock_buses();
4687 xsoftc.buses_to_config--;
4688 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4689 struct xpt_task *task;
4690
4691 xsoftc.buses_config_done = 1;
4692 xpt_unlock_buses();
4693 /* Call manually because we don't have any busses */
4694 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4695 if (task != NULL) {
4696 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4697 taskqueue_enqueue(taskqueue_thread, &task->task);
4698 }
4699 } else
4700 xpt_unlock_buses();
4701}
4702
4703/*
4704 * If the given device only has one peripheral attached to it, and if that
4705 * peripheral is the passthrough driver, announce it. This insures that the
4706 * user sees some sort of announcement for every peripheral in their system.
4707 */
4708static int
4709xptpassannouncefunc(struct cam_ed *device, void *arg)
4710{
4711 struct cam_periph *periph;
4712 int i;
4713
4714 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4715 periph = SLIST_NEXT(periph, periph_links), i++);
4716
4717 periph = SLIST_FIRST(&device->periphs);
4718 if ((i == 1)
4719 && (strncmp(periph->periph_name, "pass", 4) == 0))
4720 xpt_announce_periph(periph, NULL);
4721
4722 return(1);
4723}
4724
4725static void
4726xpt_finishconfig_task(void *context, int pending)
4727{
4728
4729 periphdriver_init(2);
4730 /*
4731 * Check for devices with no "standard" peripheral driver
4732 * attached. For any devices like that, announce the
4733 * passthrough driver so the user will see something.
4734 */
4735 xpt_for_all_devices(xptpassannouncefunc, NULL);
4736
4737 /* Release our hook so that the boot can continue. */
4738 config_intrhook_disestablish(xsoftc.xpt_config_hook);
4739 free(xsoftc.xpt_config_hook, M_CAMXPT);
4740 xsoftc.xpt_config_hook = NULL;
4741
4742 free(context, M_CAMXPT);
4743}
4744
4745cam_status
4746xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4747 struct cam_path *path)
4748{
4749 struct ccb_setasync csa;
4750 cam_status status;
4751 int xptpath = 0;
4752
4753 if (path == NULL) {
4754 mtx_lock(&xsoftc.xpt_lock);
4755 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4756 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4757 if (status != CAM_REQ_CMP) {
4758 mtx_unlock(&xsoftc.xpt_lock);
4759 return (status);
4760 }
4761 xptpath = 1;
4762 }
4763
4764 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4765 csa.ccb_h.func_code = XPT_SASYNC_CB;
4766 csa.event_enable = event;
4767 csa.callback = cbfunc;
4768 csa.callback_arg = cbarg;
4769 xpt_action((union ccb *)&csa);
4770 status = csa.ccb_h.status;
4771
4772 if (xptpath) {
4773 xpt_free_path(path);
4774 mtx_unlock(&xsoftc.xpt_lock);
4775 }
4776
4777 if ((status == CAM_REQ_CMP) &&
4778 (csa.event_enable & AC_FOUND_DEVICE)) {
4779 /*
4780 * Get this peripheral up to date with all
4781 * the currently existing devices.
4782 */
4783 xpt_for_all_devices(xptsetasyncfunc, &csa);
4784 }
4785 if ((status == CAM_REQ_CMP) &&
4786 (csa.event_enable & AC_PATH_REGISTERED)) {
4787 /*
4788 * Get this peripheral up to date with all
4789 * the currently existing busses.
4790 */
4791 xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4792 }
4793
4794 return (status);
4795}
4796
4797static void
4798xptaction(struct cam_sim *sim, union ccb *work_ccb)
4799{
4800 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4801
4802 switch (work_ccb->ccb_h.func_code) {
4803 /* Common cases first */
4804 case XPT_PATH_INQ: /* Path routing inquiry */
4805 {
4806 struct ccb_pathinq *cpi;
4807
4808 cpi = &work_ccb->cpi;
4809 cpi->version_num = 1; /* XXX??? */
4810 cpi->hba_inquiry = 0;
4811 cpi->target_sprt = 0;
4812 cpi->hba_misc = 0;
4813 cpi->hba_eng_cnt = 0;
4814 cpi->max_target = 0;
4815 cpi->max_lun = 0;
4816 cpi->initiator_id = 0;
4817 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4818 strncpy(cpi->hba_vid, "", HBA_IDLEN);
4819 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4820 cpi->unit_number = sim->unit_number;
4821 cpi->bus_id = sim->bus_id;
4822 cpi->base_transfer_speed = 0;
4823 cpi->protocol = PROTO_UNSPECIFIED;
4824 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4825 cpi->transport = XPORT_UNSPECIFIED;
4826 cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4827 cpi->ccb_h.status = CAM_REQ_CMP;
4828 xpt_done(work_ccb);
4829 break;
4830 }
4831 default:
4832 work_ccb->ccb_h.status = CAM_REQ_INVALID;
4833 xpt_done(work_ccb);
4834 break;
4835 }
4836}
4837
4838/*
4839 * The xpt as a "controller" has no interrupt sources, so polling
4840 * is a no-op.
4841 */
4842static void
4843xptpoll(struct cam_sim *sim)
4844{
4845}
4846
4847void
4848xpt_lock_buses(void)
4849{
4850 mtx_lock(&xsoftc.xpt_topo_lock);
4851}
4852
4853void
4854xpt_unlock_buses(void)
4855{
4856 mtx_unlock(&xsoftc.xpt_topo_lock);
4857}
4858
4859static void
4860camisr(void *dummy)
4861{
4862 cam_simq_t queue;
4863 struct cam_sim *sim;
4864
4865 mtx_lock(&cam_simq_lock);
4866 TAILQ_INIT(&queue);
4867 while (!TAILQ_EMPTY(&cam_simq)) {
4868 TAILQ_CONCAT(&queue, &cam_simq, links);
4869 mtx_unlock(&cam_simq_lock);
4870
4871 while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4872 TAILQ_REMOVE(&queue, sim, links);
4873 CAM_SIM_LOCK(sim);
4874 sim->flags &= ~CAM_SIM_ON_DONEQ;
4875 camisr_runqueue(&sim->sim_doneq);
4876 CAM_SIM_UNLOCK(sim);
4877 }
4878 mtx_lock(&cam_simq_lock);
4879 }
4880 mtx_unlock(&cam_simq_lock);
4881}
4882
4883static void
4884camisr_runqueue(void *V_queue)
4885{
4886 cam_isrq_t *queue = V_queue;
4887 struct ccb_hdr *ccb_h;
4888
4889 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
4890 int runq;
4891
4892 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
4893 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
4894
4895 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
4896 ("camisr\n"));
4897
4898 runq = FALSE;
4899
4900 if (ccb_h->flags & CAM_HIGH_POWER) {
4901 struct highpowerlist *hphead;
4902 union ccb *send_ccb;
4903
4904 mtx_lock(&xsoftc.xpt_lock);
4905 hphead = &xsoftc.highpowerq;
4906
4907 send_ccb = (union ccb *)STAILQ_FIRST(hphead);
4908
4909 /*
4910 * Increment the count since this command is done.
4911 */
4912 xsoftc.num_highpower++;
4913
4914 /*
4915 * Any high powered commands queued up?
4916 */
4917 if (send_ccb != NULL) {
4918
4919 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
4920 mtx_unlock(&xsoftc.xpt_lock);
4921
4922 xpt_release_devq(send_ccb->ccb_h.path,
4923 /*count*/1, /*runqueue*/TRUE);
4924 } else
4925 mtx_unlock(&xsoftc.xpt_lock);
4926 }
4927
4928 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
4929 struct cam_ed *dev;
4930
4931 dev = ccb_h->path->device;
4932
4933 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
4934 ccb_h->path->bus->sim->devq->send_active--;
4935 ccb_h->path->bus->sim->devq->send_openings++;
4936 runq = TRUE;
4937
4938 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
4939 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
4940 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
4941 && (dev->ccbq.dev_active == 0))) {
4942 xpt_release_devq(ccb_h->path, /*count*/1,
4943 /*run_queue*/FALSE);
4944 }
4945
4946 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4947 && (--dev->tag_delay_count == 0))
4948 xpt_start_tags(ccb_h->path);
4949 if (!device_is_send_queued(dev)) {
4950 (void)xpt_schedule_dev_sendq(ccb_h->path->bus,
4951 dev);
4952 }
4953 }
4954
4955 if (ccb_h->status & CAM_RELEASE_SIMQ) {
4956 xpt_release_simq(ccb_h->path->bus->sim,
4957 /*run_queue*/TRUE);
4958 ccb_h->status &= ~CAM_RELEASE_SIMQ;
4959 runq = FALSE;
4960 }
4961
4962 if ((ccb_h->flags & CAM_DEV_QFRZDIS)
4963 && (ccb_h->status & CAM_DEV_QFRZN)) {
4964 xpt_release_devq(ccb_h->path, /*count*/1,
4965 /*run_queue*/TRUE);
4966 ccb_h->status &= ~CAM_DEV_QFRZN;
4967 } else if (runq) {
4968 xpt_run_dev_sendq(ccb_h->path->bus);
4969 }
4970
4971 /* Call the peripheral driver's callback */
4972 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
4973 }
4974}