Deleted Added
full compact
cam_xpt.c (217368) cam_xpt.c (218909)
1/*-
2 * Implementation of the Common Access Method Transport (XPT) layer.
3 *
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
1/*-
2 * Implementation of the Common Access Method Transport (XPT) layer.
3 *
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/cam/cam_xpt.c 217368 2011-01-13 18:20:27Z mdf $");
31__FBSDID("$FreeBSD: head/sys/cam/cam_xpt.c 218909 2011-02-21 09:01:34Z brucec $");
32
33#include <sys/param.h>
34#include <sys/bus.h>
35#include <sys/systm.h>
36#include <sys/types.h>
37#include <sys/malloc.h>
38#include <sys/kernel.h>
39#include <sys/time.h>
40#include <sys/conf.h>
41#include <sys/fcntl.h>
42#include <sys/interrupt.h>
43#include <sys/sbuf.h>
44#include <sys/taskqueue.h>
45
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/sysctl.h>
49#include <sys/kthread.h>
50
51#ifdef PC98
52#include <pc98/pc98/pc98_machdep.h> /* geometry translation */
53#endif
54
55#include <cam/cam.h>
56#include <cam/cam_ccb.h>
57#include <cam/cam_periph.h>
58#include <cam/cam_queue.h>
59#include <cam/cam_sim.h>
60#include <cam/cam_xpt.h>
61#include <cam/cam_xpt_sim.h>
62#include <cam/cam_xpt_periph.h>
63#include <cam/cam_xpt_internal.h>
64#include <cam/cam_debug.h>
65
66#include <cam/scsi/scsi_all.h>
67#include <cam/scsi/scsi_message.h>
68#include <cam/scsi/scsi_pass.h>
69#include <machine/stdarg.h> /* for xpt_print below */
70#include "opt_cam.h"
71
72/*
73 * This is the maximum number of high powered commands (e.g. start unit)
74 * that can be outstanding at a particular time.
75 */
76#ifndef CAM_MAX_HIGHPOWER
77#define CAM_MAX_HIGHPOWER 4
78#endif
79
80/* Datastructures internal to the xpt layer */
81MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
82
83/* Object for defering XPT actions to a taskqueue */
84struct xpt_task {
85 struct task task;
86 void *data1;
87 uintptr_t data2;
88};
89
90typedef enum {
91 XPT_FLAG_OPEN = 0x01
92} xpt_flags;
93
94struct xpt_softc {
95 xpt_flags flags;
96 u_int32_t xpt_generation;
97
98 /* number of high powered commands that can go through right now */
99 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
100 int num_highpower;
101
102 /* queue for handling async rescan requests. */
103 TAILQ_HEAD(, ccb_hdr) ccb_scanq;
104 int buses_to_config;
105 int buses_config_done;
106
107 /* Registered busses */
108 TAILQ_HEAD(,cam_eb) xpt_busses;
109 u_int bus_generation;
110
111 struct intr_config_hook *xpt_config_hook;
112
113 int boot_delay;
114 struct callout boot_callout;
115
116 struct mtx xpt_topo_lock;
117 struct mtx xpt_lock;
118};
119
120typedef enum {
121 DM_RET_COPY = 0x01,
122 DM_RET_FLAG_MASK = 0x0f,
123 DM_RET_NONE = 0x00,
124 DM_RET_STOP = 0x10,
125 DM_RET_DESCEND = 0x20,
126 DM_RET_ERROR = 0x30,
127 DM_RET_ACTION_MASK = 0xf0
128} dev_match_ret;
129
130typedef enum {
131 XPT_DEPTH_BUS,
132 XPT_DEPTH_TARGET,
133 XPT_DEPTH_DEVICE,
134 XPT_DEPTH_PERIPH
135} xpt_traverse_depth;
136
137struct xpt_traverse_config {
138 xpt_traverse_depth depth;
139 void *tr_func;
140 void *tr_arg;
141};
142
143typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
144typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
145typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
146typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
147typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
148
149/* Transport layer configuration information */
150static struct xpt_softc xsoftc;
151
152TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
153SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
154 &xsoftc.boot_delay, 0, "Bus registration wait time");
155
156/* Queues for our software interrupt handler */
157typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
158typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
159static cam_simq_t cam_simq;
160static struct mtx cam_simq_lock;
161
162/* Pointers to software interrupt handlers */
163static void *cambio_ih;
164
165struct cam_periph *xpt_periph;
166
167static periph_init_t xpt_periph_init;
168
169static struct periph_driver xpt_driver =
170{
171 xpt_periph_init, "xpt",
172 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
173 CAM_PERIPH_DRV_EARLY
174};
175
176PERIPHDRIVER_DECLARE(xpt, xpt_driver);
177
178static d_open_t xptopen;
179static d_close_t xptclose;
180static d_ioctl_t xptioctl;
181
182static struct cdevsw xpt_cdevsw = {
183 .d_version = D_VERSION,
184 .d_flags = 0,
185 .d_open = xptopen,
186 .d_close = xptclose,
187 .d_ioctl = xptioctl,
188 .d_name = "xpt",
189};
190
191/* Storage for debugging datastructures */
192#ifdef CAMDEBUG
193struct cam_path *cam_dpath;
194#ifdef CAM_DEBUG_FLAGS
195u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
196#else
197u_int32_t cam_dflags = CAM_DEBUG_NONE;
198#endif
199TUNABLE_INT("kern.cam.dflags", &cam_dflags);
200SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
201 &cam_dflags, 0, "Cam Debug Flags");
202u_int32_t cam_debug_delay;
203TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
204SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
205 &cam_debug_delay, 0, "Cam Debug Flags");
206#endif
207
208/* Our boot-time initialization hook */
209static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
210
211static moduledata_t cam_moduledata = {
212 "cam",
213 cam_module_event_handler,
214 NULL
215};
216
217static int xpt_init(void *);
218
219DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
220MODULE_VERSION(cam, 1);
221
222
223static void xpt_async_bcast(struct async_list *async_head,
224 u_int32_t async_code,
225 struct cam_path *path,
226 void *async_arg);
227static path_id_t xptnextfreepathid(void);
228static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
229static union ccb *xpt_get_ccb(struct cam_ed *device);
230static void xpt_run_dev_allocq(struct cam_eb *bus);
231static void xpt_run_dev_sendq(struct cam_eb *bus);
232static timeout_t xpt_release_devq_timeout;
233static void xpt_release_simq_timeout(void *arg) __unused;
234static void xpt_release_bus(struct cam_eb *bus);
235static void xpt_release_devq_device(struct cam_ed *dev, cam_rl rl,
236 u_int count, int run_queue);
237static struct cam_et*
238 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
239static void xpt_release_target(struct cam_et *target);
240static struct cam_eb*
241 xpt_find_bus(path_id_t path_id);
242static struct cam_et*
243 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
244static struct cam_ed*
245 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
246static void xpt_config(void *arg);
247static xpt_devicefunc_t xptpassannouncefunc;
248static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
249static void xptpoll(struct cam_sim *sim);
250static void camisr(void *);
251static void camisr_runqueue(void *);
252static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
253 u_int num_patterns, struct cam_eb *bus);
254static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
255 u_int num_patterns,
256 struct cam_ed *device);
257static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
258 u_int num_patterns,
259 struct cam_periph *periph);
260static xpt_busfunc_t xptedtbusfunc;
261static xpt_targetfunc_t xptedttargetfunc;
262static xpt_devicefunc_t xptedtdevicefunc;
263static xpt_periphfunc_t xptedtperiphfunc;
264static xpt_pdrvfunc_t xptplistpdrvfunc;
265static xpt_periphfunc_t xptplistperiphfunc;
266static int xptedtmatch(struct ccb_dev_match *cdm);
267static int xptperiphlistmatch(struct ccb_dev_match *cdm);
268static int xptbustraverse(struct cam_eb *start_bus,
269 xpt_busfunc_t *tr_func, void *arg);
270static int xpttargettraverse(struct cam_eb *bus,
271 struct cam_et *start_target,
272 xpt_targetfunc_t *tr_func, void *arg);
273static int xptdevicetraverse(struct cam_et *target,
274 struct cam_ed *start_device,
275 xpt_devicefunc_t *tr_func, void *arg);
276static int xptperiphtraverse(struct cam_ed *device,
277 struct cam_periph *start_periph,
278 xpt_periphfunc_t *tr_func, void *arg);
279static int xptpdrvtraverse(struct periph_driver **start_pdrv,
280 xpt_pdrvfunc_t *tr_func, void *arg);
281static int xptpdperiphtraverse(struct periph_driver **pdrv,
282 struct cam_periph *start_periph,
283 xpt_periphfunc_t *tr_func,
284 void *arg);
285static xpt_busfunc_t xptdefbusfunc;
286static xpt_targetfunc_t xptdeftargetfunc;
287static xpt_devicefunc_t xptdefdevicefunc;
288static xpt_periphfunc_t xptdefperiphfunc;
289static void xpt_finishconfig_task(void *context, int pending);
290static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
291static int xpt_for_all_devices(xpt_devicefunc_t *tr_func,
292 void *arg);
293static void xpt_dev_async_default(u_int32_t async_code,
294 struct cam_eb *bus,
295 struct cam_et *target,
296 struct cam_ed *device,
297 void *async_arg);
298static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus,
299 struct cam_et *target,
300 lun_id_t lun_id);
301static xpt_devicefunc_t xptsetasyncfunc;
302static xpt_busfunc_t xptsetasyncbusfunc;
303static cam_status xptregister(struct cam_periph *periph,
304 void *arg);
305static __inline int periph_is_queued(struct cam_periph *periph);
306static __inline int device_is_alloc_queued(struct cam_ed *device);
307static __inline int device_is_send_queued(struct cam_ed *device);
308
309static __inline int
310xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
311{
312 int retval;
313
314 if ((dev->drvq.entries > 0) &&
315 (dev->ccbq.devq_openings > 0) &&
316 (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
317 CAMQ_GET_PRIO(&dev->drvq))) == 0)) {
318 /*
319 * The priority of a device waiting for CCB resources
32
33#include <sys/param.h>
34#include <sys/bus.h>
35#include <sys/systm.h>
36#include <sys/types.h>
37#include <sys/malloc.h>
38#include <sys/kernel.h>
39#include <sys/time.h>
40#include <sys/conf.h>
41#include <sys/fcntl.h>
42#include <sys/interrupt.h>
43#include <sys/sbuf.h>
44#include <sys/taskqueue.h>
45
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/sysctl.h>
49#include <sys/kthread.h>
50
51#ifdef PC98
52#include <pc98/pc98/pc98_machdep.h> /* geometry translation */
53#endif
54
55#include <cam/cam.h>
56#include <cam/cam_ccb.h>
57#include <cam/cam_periph.h>
58#include <cam/cam_queue.h>
59#include <cam/cam_sim.h>
60#include <cam/cam_xpt.h>
61#include <cam/cam_xpt_sim.h>
62#include <cam/cam_xpt_periph.h>
63#include <cam/cam_xpt_internal.h>
64#include <cam/cam_debug.h>
65
66#include <cam/scsi/scsi_all.h>
67#include <cam/scsi/scsi_message.h>
68#include <cam/scsi/scsi_pass.h>
69#include <machine/stdarg.h> /* for xpt_print below */
70#include "opt_cam.h"
71
72/*
73 * This is the maximum number of high powered commands (e.g. start unit)
74 * that can be outstanding at a particular time.
75 */
76#ifndef CAM_MAX_HIGHPOWER
77#define CAM_MAX_HIGHPOWER 4
78#endif
79
80/* Datastructures internal to the xpt layer */
81MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
82
83/* Object for defering XPT actions to a taskqueue */
84struct xpt_task {
85 struct task task;
86 void *data1;
87 uintptr_t data2;
88};
89
90typedef enum {
91 XPT_FLAG_OPEN = 0x01
92} xpt_flags;
93
94struct xpt_softc {
95 xpt_flags flags;
96 u_int32_t xpt_generation;
97
98 /* number of high powered commands that can go through right now */
99 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
100 int num_highpower;
101
102 /* queue for handling async rescan requests. */
103 TAILQ_HEAD(, ccb_hdr) ccb_scanq;
104 int buses_to_config;
105 int buses_config_done;
106
107 /* Registered busses */
108 TAILQ_HEAD(,cam_eb) xpt_busses;
109 u_int bus_generation;
110
111 struct intr_config_hook *xpt_config_hook;
112
113 int boot_delay;
114 struct callout boot_callout;
115
116 struct mtx xpt_topo_lock;
117 struct mtx xpt_lock;
118};
119
120typedef enum {
121 DM_RET_COPY = 0x01,
122 DM_RET_FLAG_MASK = 0x0f,
123 DM_RET_NONE = 0x00,
124 DM_RET_STOP = 0x10,
125 DM_RET_DESCEND = 0x20,
126 DM_RET_ERROR = 0x30,
127 DM_RET_ACTION_MASK = 0xf0
128} dev_match_ret;
129
130typedef enum {
131 XPT_DEPTH_BUS,
132 XPT_DEPTH_TARGET,
133 XPT_DEPTH_DEVICE,
134 XPT_DEPTH_PERIPH
135} xpt_traverse_depth;
136
137struct xpt_traverse_config {
138 xpt_traverse_depth depth;
139 void *tr_func;
140 void *tr_arg;
141};
142
143typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
144typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
145typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
146typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
147typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
148
149/* Transport layer configuration information */
150static struct xpt_softc xsoftc;
151
152TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
153SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
154 &xsoftc.boot_delay, 0, "Bus registration wait time");
155
156/* Queues for our software interrupt handler */
157typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
158typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
159static cam_simq_t cam_simq;
160static struct mtx cam_simq_lock;
161
162/* Pointers to software interrupt handlers */
163static void *cambio_ih;
164
165struct cam_periph *xpt_periph;
166
167static periph_init_t xpt_periph_init;
168
169static struct periph_driver xpt_driver =
170{
171 xpt_periph_init, "xpt",
172 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
173 CAM_PERIPH_DRV_EARLY
174};
175
176PERIPHDRIVER_DECLARE(xpt, xpt_driver);
177
178static d_open_t xptopen;
179static d_close_t xptclose;
180static d_ioctl_t xptioctl;
181
182static struct cdevsw xpt_cdevsw = {
183 .d_version = D_VERSION,
184 .d_flags = 0,
185 .d_open = xptopen,
186 .d_close = xptclose,
187 .d_ioctl = xptioctl,
188 .d_name = "xpt",
189};
190
191/* Storage for debugging datastructures */
192#ifdef CAMDEBUG
193struct cam_path *cam_dpath;
194#ifdef CAM_DEBUG_FLAGS
195u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
196#else
197u_int32_t cam_dflags = CAM_DEBUG_NONE;
198#endif
199TUNABLE_INT("kern.cam.dflags", &cam_dflags);
200SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
201 &cam_dflags, 0, "Cam Debug Flags");
202u_int32_t cam_debug_delay;
203TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
204SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
205 &cam_debug_delay, 0, "Cam Debug Flags");
206#endif
207
208/* Our boot-time initialization hook */
209static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
210
211static moduledata_t cam_moduledata = {
212 "cam",
213 cam_module_event_handler,
214 NULL
215};
216
217static int xpt_init(void *);
218
219DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
220MODULE_VERSION(cam, 1);
221
222
223static void xpt_async_bcast(struct async_list *async_head,
224 u_int32_t async_code,
225 struct cam_path *path,
226 void *async_arg);
227static path_id_t xptnextfreepathid(void);
228static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
229static union ccb *xpt_get_ccb(struct cam_ed *device);
230static void xpt_run_dev_allocq(struct cam_eb *bus);
231static void xpt_run_dev_sendq(struct cam_eb *bus);
232static timeout_t xpt_release_devq_timeout;
233static void xpt_release_simq_timeout(void *arg) __unused;
234static void xpt_release_bus(struct cam_eb *bus);
235static void xpt_release_devq_device(struct cam_ed *dev, cam_rl rl,
236 u_int count, int run_queue);
237static struct cam_et*
238 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
239static void xpt_release_target(struct cam_et *target);
240static struct cam_eb*
241 xpt_find_bus(path_id_t path_id);
242static struct cam_et*
243 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
244static struct cam_ed*
245 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
246static void xpt_config(void *arg);
247static xpt_devicefunc_t xptpassannouncefunc;
248static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
249static void xptpoll(struct cam_sim *sim);
250static void camisr(void *);
251static void camisr_runqueue(void *);
252static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
253 u_int num_patterns, struct cam_eb *bus);
254static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
255 u_int num_patterns,
256 struct cam_ed *device);
257static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
258 u_int num_patterns,
259 struct cam_periph *periph);
260static xpt_busfunc_t xptedtbusfunc;
261static xpt_targetfunc_t xptedttargetfunc;
262static xpt_devicefunc_t xptedtdevicefunc;
263static xpt_periphfunc_t xptedtperiphfunc;
264static xpt_pdrvfunc_t xptplistpdrvfunc;
265static xpt_periphfunc_t xptplistperiphfunc;
266static int xptedtmatch(struct ccb_dev_match *cdm);
267static int xptperiphlistmatch(struct ccb_dev_match *cdm);
268static int xptbustraverse(struct cam_eb *start_bus,
269 xpt_busfunc_t *tr_func, void *arg);
270static int xpttargettraverse(struct cam_eb *bus,
271 struct cam_et *start_target,
272 xpt_targetfunc_t *tr_func, void *arg);
273static int xptdevicetraverse(struct cam_et *target,
274 struct cam_ed *start_device,
275 xpt_devicefunc_t *tr_func, void *arg);
276static int xptperiphtraverse(struct cam_ed *device,
277 struct cam_periph *start_periph,
278 xpt_periphfunc_t *tr_func, void *arg);
279static int xptpdrvtraverse(struct periph_driver **start_pdrv,
280 xpt_pdrvfunc_t *tr_func, void *arg);
281static int xptpdperiphtraverse(struct periph_driver **pdrv,
282 struct cam_periph *start_periph,
283 xpt_periphfunc_t *tr_func,
284 void *arg);
285static xpt_busfunc_t xptdefbusfunc;
286static xpt_targetfunc_t xptdeftargetfunc;
287static xpt_devicefunc_t xptdefdevicefunc;
288static xpt_periphfunc_t xptdefperiphfunc;
289static void xpt_finishconfig_task(void *context, int pending);
290static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
291static int xpt_for_all_devices(xpt_devicefunc_t *tr_func,
292 void *arg);
293static void xpt_dev_async_default(u_int32_t async_code,
294 struct cam_eb *bus,
295 struct cam_et *target,
296 struct cam_ed *device,
297 void *async_arg);
298static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus,
299 struct cam_et *target,
300 lun_id_t lun_id);
301static xpt_devicefunc_t xptsetasyncfunc;
302static xpt_busfunc_t xptsetasyncbusfunc;
303static cam_status xptregister(struct cam_periph *periph,
304 void *arg);
305static __inline int periph_is_queued(struct cam_periph *periph);
306static __inline int device_is_alloc_queued(struct cam_ed *device);
307static __inline int device_is_send_queued(struct cam_ed *device);
308
309static __inline int
310xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
311{
312 int retval;
313
314 if ((dev->drvq.entries > 0) &&
315 (dev->ccbq.devq_openings > 0) &&
316 (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
317 CAMQ_GET_PRIO(&dev->drvq))) == 0)) {
318 /*
319 * The priority of a device waiting for CCB resources
320 * is that of the the highest priority peripheral driver
320 * is that of the highest priority peripheral driver
321 * enqueued.
322 */
323 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
324 &dev->alloc_ccb_entry.pinfo,
325 CAMQ_GET_PRIO(&dev->drvq));
326 } else {
327 retval = 0;
328 }
329
330 return (retval);
331}
332
333static __inline int
334xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
335{
336 int retval;
337
338 if ((dev->ccbq.queue.entries > 0) &&
339 (dev->ccbq.dev_openings > 0) &&
340 (cam_ccbq_frozen_top(&dev->ccbq) == 0)) {
341 /*
342 * The priority of a device waiting for controller
321 * enqueued.
322 */
323 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
324 &dev->alloc_ccb_entry.pinfo,
325 CAMQ_GET_PRIO(&dev->drvq));
326 } else {
327 retval = 0;
328 }
329
330 return (retval);
331}
332
333static __inline int
334xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
335{
336 int retval;
337
338 if ((dev->ccbq.queue.entries > 0) &&
339 (dev->ccbq.dev_openings > 0) &&
340 (cam_ccbq_frozen_top(&dev->ccbq) == 0)) {
341 /*
342 * The priority of a device waiting for controller
343 * resources is that of the the highest priority CCB
343 * resources is that of the highest priority CCB
344 * enqueued.
345 */
346 retval =
347 xpt_schedule_dev(&bus->sim->devq->send_queue,
348 &dev->send_ccb_entry.pinfo,
349 CAMQ_GET_PRIO(&dev->ccbq.queue));
350 } else {
351 retval = 0;
352 }
353 return (retval);
354}
355
356static __inline int
357periph_is_queued(struct cam_periph *periph)
358{
359 return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
360}
361
362static __inline int
363device_is_alloc_queued(struct cam_ed *device)
364{
365 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
366}
367
368static __inline int
369device_is_send_queued(struct cam_ed *device)
370{
371 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
372}
373
374static void
375xpt_periph_init()
376{
377 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
378}
379
380static void
381xptdone(struct cam_periph *periph, union ccb *done_ccb)
382{
383 /* Caller will release the CCB */
384 wakeup(&done_ccb->ccb_h.cbfcnp);
385}
386
387static int
388xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
389{
390
391 /*
392 * Only allow read-write access.
393 */
394 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
395 return(EPERM);
396
397 /*
398 * We don't allow nonblocking access.
399 */
400 if ((flags & O_NONBLOCK) != 0) {
401 printf("%s: can't do nonblocking access\n", devtoname(dev));
402 return(ENODEV);
403 }
404
405 /* Mark ourselves open */
406 mtx_lock(&xsoftc.xpt_lock);
407 xsoftc.flags |= XPT_FLAG_OPEN;
408 mtx_unlock(&xsoftc.xpt_lock);
409
410 return(0);
411}
412
413static int
414xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
415{
416
417 /* Mark ourselves closed */
418 mtx_lock(&xsoftc.xpt_lock);
419 xsoftc.flags &= ~XPT_FLAG_OPEN;
420 mtx_unlock(&xsoftc.xpt_lock);
421
422 return(0);
423}
424
425/*
426 * Don't automatically grab the xpt softc lock here even though this is going
427 * through the xpt device. The xpt device is really just a back door for
428 * accessing other devices and SIMs, so the right thing to do is to grab
429 * the appropriate SIM lock once the bus/SIM is located.
430 */
431static int
432xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
433{
434 int error;
435
436 error = 0;
437
438 switch(cmd) {
439 /*
440 * For the transport layer CAMIOCOMMAND ioctl, we really only want
441 * to accept CCB types that don't quite make sense to send through a
442 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
443 * in the CAM spec.
444 */
445 case CAMIOCOMMAND: {
446 union ccb *ccb;
447 union ccb *inccb;
448 struct cam_eb *bus;
449
450 inccb = (union ccb *)addr;
451
452 bus = xpt_find_bus(inccb->ccb_h.path_id);
453 if (bus == NULL)
454 return (EINVAL);
455
456 switch (inccb->ccb_h.func_code) {
457 case XPT_SCAN_BUS:
458 case XPT_RESET_BUS:
459 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
460 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
461 xpt_release_bus(bus);
462 return (EINVAL);
463 }
464 break;
465 case XPT_SCAN_TGT:
466 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
467 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
468 xpt_release_bus(bus);
469 return (EINVAL);
470 }
471 break;
472 default:
473 break;
474 }
475
476 switch(inccb->ccb_h.func_code) {
477 case XPT_SCAN_BUS:
478 case XPT_RESET_BUS:
479 case XPT_PATH_INQ:
480 case XPT_ENG_INQ:
481 case XPT_SCAN_LUN:
482 case XPT_SCAN_TGT:
483
484 ccb = xpt_alloc_ccb();
485
486 CAM_SIM_LOCK(bus->sim);
487
488 /*
489 * Create a path using the bus, target, and lun the
490 * user passed in.
491 */
492 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
493 inccb->ccb_h.path_id,
494 inccb->ccb_h.target_id,
495 inccb->ccb_h.target_lun) !=
496 CAM_REQ_CMP){
497 error = EINVAL;
498 CAM_SIM_UNLOCK(bus->sim);
499 xpt_free_ccb(ccb);
500 break;
501 }
502 /* Ensure all of our fields are correct */
503 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
504 inccb->ccb_h.pinfo.priority);
505 xpt_merge_ccb(ccb, inccb);
506 ccb->ccb_h.cbfcnp = xptdone;
507 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
508 bcopy(ccb, inccb, sizeof(union ccb));
509 xpt_free_path(ccb->ccb_h.path);
510 xpt_free_ccb(ccb);
511 CAM_SIM_UNLOCK(bus->sim);
512 break;
513
514 case XPT_DEBUG: {
515 union ccb ccb;
516
517 /*
518 * This is an immediate CCB, so it's okay to
519 * allocate it on the stack.
520 */
521
522 CAM_SIM_LOCK(bus->sim);
523
524 /*
525 * Create a path using the bus, target, and lun the
526 * user passed in.
527 */
528 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
529 inccb->ccb_h.path_id,
530 inccb->ccb_h.target_id,
531 inccb->ccb_h.target_lun) !=
532 CAM_REQ_CMP){
533 error = EINVAL;
534 CAM_SIM_UNLOCK(bus->sim);
535 break;
536 }
537 /* Ensure all of our fields are correct */
538 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
539 inccb->ccb_h.pinfo.priority);
540 xpt_merge_ccb(&ccb, inccb);
541 ccb.ccb_h.cbfcnp = xptdone;
542 xpt_action(&ccb);
543 CAM_SIM_UNLOCK(bus->sim);
544 bcopy(&ccb, inccb, sizeof(union ccb));
545 xpt_free_path(ccb.ccb_h.path);
546 break;
547
548 }
549 case XPT_DEV_MATCH: {
550 struct cam_periph_map_info mapinfo;
551 struct cam_path *old_path;
552
553 /*
554 * We can't deal with physical addresses for this
555 * type of transaction.
556 */
557 if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
558 error = EINVAL;
559 break;
560 }
561
562 /*
563 * Save this in case the caller had it set to
564 * something in particular.
565 */
566 old_path = inccb->ccb_h.path;
567
568 /*
569 * We really don't need a path for the matching
570 * code. The path is needed because of the
571 * debugging statements in xpt_action(). They
572 * assume that the CCB has a valid path.
573 */
574 inccb->ccb_h.path = xpt_periph->path;
575
576 bzero(&mapinfo, sizeof(mapinfo));
577
578 /*
579 * Map the pattern and match buffers into kernel
580 * virtual address space.
581 */
582 error = cam_periph_mapmem(inccb, &mapinfo);
583
584 if (error) {
585 inccb->ccb_h.path = old_path;
586 break;
587 }
588
589 /*
590 * This is an immediate CCB, we can send it on directly.
591 */
592 xpt_action(inccb);
593
594 /*
595 * Map the buffers back into user space.
596 */
597 cam_periph_unmapmem(inccb, &mapinfo);
598
599 inccb->ccb_h.path = old_path;
600
601 error = 0;
602 break;
603 }
604 default:
605 error = ENOTSUP;
606 break;
607 }
608 xpt_release_bus(bus);
609 break;
610 }
611 /*
612 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
613 * with the periphal driver name and unit name filled in. The other
614 * fields don't really matter as input. The passthrough driver name
615 * ("pass"), and unit number are passed back in the ccb. The current
616 * device generation number, and the index into the device peripheral
617 * driver list, and the status are also passed back. Note that
618 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
619 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
620 * (or rather should be) impossible for the device peripheral driver
621 * list to change since we look at the whole thing in one pass, and
622 * we do it with lock protection.
623 *
624 */
625 case CAMGETPASSTHRU: {
626 union ccb *ccb;
627 struct cam_periph *periph;
628 struct periph_driver **p_drv;
629 char *name;
630 u_int unit;
631 u_int cur_generation;
632 int base_periph_found;
633 int splbreaknum;
634
635 ccb = (union ccb *)addr;
636 unit = ccb->cgdl.unit_number;
637 name = ccb->cgdl.periph_name;
638 /*
639 * Every 100 devices, we want to drop our lock protection to
640 * give the software interrupt handler a chance to run.
641 * Most systems won't run into this check, but this should
642 * avoid starvation in the software interrupt handler in
643 * large systems.
644 */
645 splbreaknum = 100;
646
647 ccb = (union ccb *)addr;
648
649 base_periph_found = 0;
650
651 /*
652 * Sanity check -- make sure we don't get a null peripheral
653 * driver name.
654 */
655 if (*ccb->cgdl.periph_name == '\0') {
656 error = EINVAL;
657 break;
658 }
659
660 /* Keep the list from changing while we traverse it */
661 mtx_lock(&xsoftc.xpt_topo_lock);
662ptstartover:
663 cur_generation = xsoftc.xpt_generation;
664
665 /* first find our driver in the list of drivers */
666 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
667 if (strcmp((*p_drv)->driver_name, name) == 0)
668 break;
669
670 if (*p_drv == NULL) {
671 mtx_unlock(&xsoftc.xpt_topo_lock);
672 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
673 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
674 *ccb->cgdl.periph_name = '\0';
675 ccb->cgdl.unit_number = 0;
676 error = ENOENT;
677 break;
678 }
679
680 /*
681 * Run through every peripheral instance of this driver
682 * and check to see whether it matches the unit passed
683 * in by the user. If it does, get out of the loops and
684 * find the passthrough driver associated with that
685 * peripheral driver.
686 */
687 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
688 periph = TAILQ_NEXT(periph, unit_links)) {
689
690 if (periph->unit_number == unit) {
691 break;
692 } else if (--splbreaknum == 0) {
693 mtx_unlock(&xsoftc.xpt_topo_lock);
694 mtx_lock(&xsoftc.xpt_topo_lock);
695 splbreaknum = 100;
696 if (cur_generation != xsoftc.xpt_generation)
697 goto ptstartover;
698 }
699 }
700 /*
701 * If we found the peripheral driver that the user passed
702 * in, go through all of the peripheral drivers for that
703 * particular device and look for a passthrough driver.
704 */
705 if (periph != NULL) {
706 struct cam_ed *device;
707 int i;
708
709 base_periph_found = 1;
710 device = periph->path->device;
711 for (i = 0, periph = SLIST_FIRST(&device->periphs);
712 periph != NULL;
713 periph = SLIST_NEXT(periph, periph_links), i++) {
714 /*
715 * Check to see whether we have a
716 * passthrough device or not.
717 */
718 if (strcmp(periph->periph_name, "pass") == 0) {
719 /*
720 * Fill in the getdevlist fields.
721 */
722 strcpy(ccb->cgdl.periph_name,
723 periph->periph_name);
724 ccb->cgdl.unit_number =
725 periph->unit_number;
726 if (SLIST_NEXT(periph, periph_links))
727 ccb->cgdl.status =
728 CAM_GDEVLIST_MORE_DEVS;
729 else
730 ccb->cgdl.status =
731 CAM_GDEVLIST_LAST_DEVICE;
732 ccb->cgdl.generation =
733 device->generation;
734 ccb->cgdl.index = i;
735 /*
736 * Fill in some CCB header fields
737 * that the user may want.
738 */
739 ccb->ccb_h.path_id =
740 periph->path->bus->path_id;
741 ccb->ccb_h.target_id =
742 periph->path->target->target_id;
743 ccb->ccb_h.target_lun =
744 periph->path->device->lun_id;
745 ccb->ccb_h.status = CAM_REQ_CMP;
746 break;
747 }
748 }
749 }
750
751 /*
752 * If the periph is null here, one of two things has
753 * happened. The first possibility is that we couldn't
754 * find the unit number of the particular peripheral driver
755 * that the user is asking about. e.g. the user asks for
756 * the passthrough driver for "da11". We find the list of
757 * "da" peripherals all right, but there is no unit 11.
758 * The other possibility is that we went through the list
759 * of peripheral drivers attached to the device structure,
760 * but didn't find one with the name "pass". Either way,
761 * we return ENOENT, since we couldn't find something.
762 */
763 if (periph == NULL) {
764 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
765 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
766 *ccb->cgdl.periph_name = '\0';
767 ccb->cgdl.unit_number = 0;
768 error = ENOENT;
769 /*
770 * It is unfortunate that this is even necessary,
771 * but there are many, many clueless users out there.
772 * If this is true, the user is looking for the
773 * passthrough driver, but doesn't have one in his
774 * kernel.
775 */
776 if (base_periph_found == 1) {
777 printf("xptioctl: pass driver is not in the "
778 "kernel\n");
779 printf("xptioctl: put \"device pass\" in "
780 "your kernel config file\n");
781 }
782 }
783 mtx_unlock(&xsoftc.xpt_topo_lock);
784 break;
785 }
786 default:
787 error = ENOTTY;
788 break;
789 }
790
791 return(error);
792}
793
794static int
795cam_module_event_handler(module_t mod, int what, void *arg)
796{
797 int error;
798
799 switch (what) {
800 case MOD_LOAD:
801 if ((error = xpt_init(NULL)) != 0)
802 return (error);
803 break;
804 case MOD_UNLOAD:
805 return EBUSY;
806 default:
807 return EOPNOTSUPP;
808 }
809
810 return 0;
811}
812
813static void
814xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
815{
816
817 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
818 xpt_free_path(done_ccb->ccb_h.path);
819 xpt_free_ccb(done_ccb);
820 } else {
821 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
822 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
823 }
824 xpt_release_boot();
825}
826
827/* thread to handle bus rescans */
828static void
829xpt_scanner_thread(void *dummy)
830{
831 union ccb *ccb;
832 struct cam_sim *sim;
833
834 xpt_lock_buses();
835 for (;;) {
836 if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
837 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
838 "ccb_scanq", 0);
839 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
840 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
841 xpt_unlock_buses();
842
843 sim = ccb->ccb_h.path->bus->sim;
844 CAM_SIM_LOCK(sim);
845 xpt_action(ccb);
846 CAM_SIM_UNLOCK(sim);
847
848 xpt_lock_buses();
849 }
850 }
851}
852
853void
854xpt_rescan(union ccb *ccb)
855{
856 struct ccb_hdr *hdr;
857
858 /* Prepare request */
859 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
860 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
861 ccb->ccb_h.func_code = XPT_SCAN_BUS;
862 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
863 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
864 ccb->ccb_h.func_code = XPT_SCAN_TGT;
865 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
866 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
867 ccb->ccb_h.func_code = XPT_SCAN_LUN;
868 else {
869 xpt_print(ccb->ccb_h.path, "illegal scan path\n");
870 xpt_free_path(ccb->ccb_h.path);
871 xpt_free_ccb(ccb);
872 return;
873 }
874 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
875 ccb->ccb_h.cbfcnp = xpt_rescan_done;
876 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
877 /* Don't make duplicate entries for the same paths. */
878 xpt_lock_buses();
879 if (ccb->ccb_h.ppriv_ptr1 == NULL) {
880 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
881 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
882 wakeup(&xsoftc.ccb_scanq);
883 xpt_unlock_buses();
884 xpt_print(ccb->ccb_h.path, "rescan already queued\n");
885 xpt_free_path(ccb->ccb_h.path);
886 xpt_free_ccb(ccb);
887 return;
888 }
889 }
890 }
891 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
892 xsoftc.buses_to_config++;
893 wakeup(&xsoftc.ccb_scanq);
894 xpt_unlock_buses();
895}
896
897/* Functions accessed by the peripheral drivers */
898static int
899xpt_init(void *dummy)
900{
901 struct cam_sim *xpt_sim;
902 struct cam_path *path;
903 struct cam_devq *devq;
904 cam_status status;
905
906 TAILQ_INIT(&xsoftc.xpt_busses);
907 TAILQ_INIT(&cam_simq);
908 TAILQ_INIT(&xsoftc.ccb_scanq);
909 STAILQ_INIT(&xsoftc.highpowerq);
910 xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
911
912 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
913 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
914 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
915
916 /*
917 * The xpt layer is, itself, the equivelent of a SIM.
918 * Allow 16 ccbs in the ccb pool for it. This should
919 * give decent parallelism when we probe busses and
920 * perform other XPT functions.
921 */
922 devq = cam_simq_alloc(16);
923 xpt_sim = cam_sim_alloc(xptaction,
924 xptpoll,
925 "xpt",
926 /*softc*/NULL,
927 /*unit*/0,
928 /*mtx*/&xsoftc.xpt_lock,
929 /*max_dev_transactions*/0,
930 /*max_tagged_dev_transactions*/0,
931 devq);
932 if (xpt_sim == NULL)
933 return (ENOMEM);
934
935 mtx_lock(&xsoftc.xpt_lock);
936 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
937 mtx_unlock(&xsoftc.xpt_lock);
938 printf("xpt_init: xpt_bus_register failed with status %#x,"
939 " failing attach\n", status);
940 return (EINVAL);
941 }
942
943 /*
944 * Looking at the XPT from the SIM layer, the XPT is
945 * the equivelent of a peripheral driver. Allocate
946 * a peripheral driver entry for us.
947 */
948 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
949 CAM_TARGET_WILDCARD,
950 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
951 mtx_unlock(&xsoftc.xpt_lock);
952 printf("xpt_init: xpt_create_path failed with status %#x,"
953 " failing attach\n", status);
954 return (EINVAL);
955 }
956
957 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
958 path, NULL, 0, xpt_sim);
959 xpt_free_path(path);
960 mtx_unlock(&xsoftc.xpt_lock);
961 /* Install our software interrupt handlers */
962 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
963 /*
964 * Register a callback for when interrupts are enabled.
965 */
966 xsoftc.xpt_config_hook =
967 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
968 M_CAMXPT, M_NOWAIT | M_ZERO);
969 if (xsoftc.xpt_config_hook == NULL) {
970 printf("xpt_init: Cannot malloc config hook "
971 "- failing attach\n");
972 return (ENOMEM);
973 }
974 xsoftc.xpt_config_hook->ich_func = xpt_config;
975 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
976 free (xsoftc.xpt_config_hook, M_CAMXPT);
977 printf("xpt_init: config_intrhook_establish failed "
978 "- failing attach\n");
979 }
980
981 return (0);
982}
983
984static cam_status
985xptregister(struct cam_periph *periph, void *arg)
986{
987 struct cam_sim *xpt_sim;
988
989 if (periph == NULL) {
990 printf("xptregister: periph was NULL!!\n");
991 return(CAM_REQ_CMP_ERR);
992 }
993
994 xpt_sim = (struct cam_sim *)arg;
995 xpt_sim->softc = periph;
996 xpt_periph = periph;
997 periph->softc = NULL;
998
999 return(CAM_REQ_CMP);
1000}
1001
1002int32_t
1003xpt_add_periph(struct cam_periph *periph)
1004{
1005 struct cam_ed *device;
1006 int32_t status;
1007 struct periph_list *periph_head;
1008
1009 mtx_assert(periph->sim->mtx, MA_OWNED);
1010
1011 device = periph->path->device;
1012
1013 periph_head = &device->periphs;
1014
1015 status = CAM_REQ_CMP;
1016
1017 if (device != NULL) {
1018 /*
1019 * Make room for this peripheral
1020 * so it will fit in the queue
1021 * when it's scheduled to run
1022 */
1023 status = camq_resize(&device->drvq,
1024 device->drvq.array_size + 1);
1025
1026 device->generation++;
1027
1028 SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1029 }
1030
1031 mtx_lock(&xsoftc.xpt_topo_lock);
1032 xsoftc.xpt_generation++;
1033 mtx_unlock(&xsoftc.xpt_topo_lock);
1034
1035 return (status);
1036}
1037
1038void
1039xpt_remove_periph(struct cam_periph *periph)
1040{
1041 struct cam_ed *device;
1042
1043 mtx_assert(periph->sim->mtx, MA_OWNED);
1044
1045 device = periph->path->device;
1046
1047 if (device != NULL) {
1048 struct periph_list *periph_head;
1049
1050 periph_head = &device->periphs;
1051
1052 /* Release the slot for this peripheral */
1053 camq_resize(&device->drvq, device->drvq.array_size - 1);
1054
1055 device->generation++;
1056
1057 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1058 }
1059
1060 mtx_lock(&xsoftc.xpt_topo_lock);
1061 xsoftc.xpt_generation++;
1062 mtx_unlock(&xsoftc.xpt_topo_lock);
1063}
1064
1065
1066void
1067xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1068{
1069 struct cam_path *path = periph->path;
1070
1071 mtx_assert(periph->sim->mtx, MA_OWNED);
1072
1073 printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1074 periph->periph_name, periph->unit_number,
1075 path->bus->sim->sim_name,
1076 path->bus->sim->unit_number,
1077 path->bus->sim->bus_id,
1078 path->bus->path_id,
1079 path->target->target_id,
1080 path->device->lun_id);
1081 printf("%s%d: ", periph->periph_name, periph->unit_number);
1082 if (path->device->protocol == PROTO_SCSI)
1083 scsi_print_inquiry(&path->device->inq_data);
1084 else if (path->device->protocol == PROTO_ATA ||
1085 path->device->protocol == PROTO_SATAPM)
1086 ata_print_ident(&path->device->ident_data);
1087 else
1088 printf("Unknown protocol device\n");
1089 if (bootverbose && path->device->serial_num_len > 0) {
1090 /* Don't wrap the screen - print only the first 60 chars */
1091 printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1092 periph->unit_number, path->device->serial_num);
1093 }
1094 /* Announce transport details. */
1095 (*(path->bus->xport->announce))(periph);
1096 /* Announce command queueing. */
1097 if (path->device->inq_flags & SID_CmdQue
1098 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1099 printf("%s%d: Command Queueing enabled\n",
1100 periph->periph_name, periph->unit_number);
1101 }
1102 /* Announce caller's details if they've passed in. */
1103 if (announce_string != NULL)
1104 printf("%s%d: %s\n", periph->periph_name,
1105 periph->unit_number, announce_string);
1106}
1107
1108static dev_match_ret
1109xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1110 struct cam_eb *bus)
1111{
1112 dev_match_ret retval;
1113 int i;
1114
1115 retval = DM_RET_NONE;
1116
1117 /*
1118 * If we aren't given something to match against, that's an error.
1119 */
1120 if (bus == NULL)
1121 return(DM_RET_ERROR);
1122
1123 /*
1124 * If there are no match entries, then this bus matches no
1125 * matter what.
1126 */
1127 if ((patterns == NULL) || (num_patterns == 0))
1128 return(DM_RET_DESCEND | DM_RET_COPY);
1129
1130 for (i = 0; i < num_patterns; i++) {
1131 struct bus_match_pattern *cur_pattern;
1132
1133 /*
1134 * If the pattern in question isn't for a bus node, we
1135 * aren't interested. However, we do indicate to the
1136 * calling routine that we should continue descending the
1137 * tree, since the user wants to match against lower-level
1138 * EDT elements.
1139 */
1140 if (patterns[i].type != DEV_MATCH_BUS) {
1141 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1142 retval |= DM_RET_DESCEND;
1143 continue;
1144 }
1145
1146 cur_pattern = &patterns[i].pattern.bus_pattern;
1147
1148 /*
1149 * If they want to match any bus node, we give them any
1150 * device node.
1151 */
1152 if (cur_pattern->flags == BUS_MATCH_ANY) {
1153 /* set the copy flag */
1154 retval |= DM_RET_COPY;
1155
1156 /*
1157 * If we've already decided on an action, go ahead
1158 * and return.
1159 */
1160 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1161 return(retval);
1162 }
1163
1164 /*
1165 * Not sure why someone would do this...
1166 */
1167 if (cur_pattern->flags == BUS_MATCH_NONE)
1168 continue;
1169
1170 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1171 && (cur_pattern->path_id != bus->path_id))
1172 continue;
1173
1174 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1175 && (cur_pattern->bus_id != bus->sim->bus_id))
1176 continue;
1177
1178 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1179 && (cur_pattern->unit_number != bus->sim->unit_number))
1180 continue;
1181
1182 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1183 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1184 DEV_IDLEN) != 0))
1185 continue;
1186
1187 /*
1188 * If we get to this point, the user definitely wants
1189 * information on this bus. So tell the caller to copy the
1190 * data out.
1191 */
1192 retval |= DM_RET_COPY;
1193
1194 /*
1195 * If the return action has been set to descend, then we
1196 * know that we've already seen a non-bus matching
1197 * expression, therefore we need to further descend the tree.
1198 * This won't change by continuing around the loop, so we
1199 * go ahead and return. If we haven't seen a non-bus
1200 * matching expression, we keep going around the loop until
1201 * we exhaust the matching expressions. We'll set the stop
1202 * flag once we fall out of the loop.
1203 */
1204 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1205 return(retval);
1206 }
1207
1208 /*
1209 * If the return action hasn't been set to descend yet, that means
1210 * we haven't seen anything other than bus matching patterns. So
1211 * tell the caller to stop descending the tree -- the user doesn't
1212 * want to match against lower level tree elements.
1213 */
1214 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1215 retval |= DM_RET_STOP;
1216
1217 return(retval);
1218}
1219
1220static dev_match_ret
1221xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1222 struct cam_ed *device)
1223{
1224 dev_match_ret retval;
1225 int i;
1226
1227 retval = DM_RET_NONE;
1228
1229 /*
1230 * If we aren't given something to match against, that's an error.
1231 */
1232 if (device == NULL)
1233 return(DM_RET_ERROR);
1234
1235 /*
1236 * If there are no match entries, then this device matches no
1237 * matter what.
1238 */
1239 if ((patterns == NULL) || (num_patterns == 0))
1240 return(DM_RET_DESCEND | DM_RET_COPY);
1241
1242 for (i = 0; i < num_patterns; i++) {
1243 struct device_match_pattern *cur_pattern;
1244
1245 /*
1246 * If the pattern in question isn't for a device node, we
1247 * aren't interested.
1248 */
1249 if (patterns[i].type != DEV_MATCH_DEVICE) {
1250 if ((patterns[i].type == DEV_MATCH_PERIPH)
1251 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1252 retval |= DM_RET_DESCEND;
1253 continue;
1254 }
1255
1256 cur_pattern = &patterns[i].pattern.device_pattern;
1257
1258 /*
1259 * If they want to match any device node, we give them any
1260 * device node.
1261 */
1262 if (cur_pattern->flags == DEV_MATCH_ANY) {
1263 /* set the copy flag */
1264 retval |= DM_RET_COPY;
1265
1266
1267 /*
1268 * If we've already decided on an action, go ahead
1269 * and return.
1270 */
1271 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1272 return(retval);
1273 }
1274
1275 /*
1276 * Not sure why someone would do this...
1277 */
1278 if (cur_pattern->flags == DEV_MATCH_NONE)
1279 continue;
1280
1281 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1282 && (cur_pattern->path_id != device->target->bus->path_id))
1283 continue;
1284
1285 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1286 && (cur_pattern->target_id != device->target->target_id))
1287 continue;
1288
1289 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1290 && (cur_pattern->target_lun != device->lun_id))
1291 continue;
1292
1293 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1294 && (cam_quirkmatch((caddr_t)&device->inq_data,
1295 (caddr_t)&cur_pattern->inq_pat,
1296 1, sizeof(cur_pattern->inq_pat),
1297 scsi_static_inquiry_match) == NULL))
1298 continue;
1299
1300 /*
1301 * If we get to this point, the user definitely wants
1302 * information on this device. So tell the caller to copy
1303 * the data out.
1304 */
1305 retval |= DM_RET_COPY;
1306
1307 /*
1308 * If the return action has been set to descend, then we
1309 * know that we've already seen a peripheral matching
1310 * expression, therefore we need to further descend the tree.
1311 * This won't change by continuing around the loop, so we
1312 * go ahead and return. If we haven't seen a peripheral
1313 * matching expression, we keep going around the loop until
1314 * we exhaust the matching expressions. We'll set the stop
1315 * flag once we fall out of the loop.
1316 */
1317 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1318 return(retval);
1319 }
1320
1321 /*
1322 * If the return action hasn't been set to descend yet, that means
1323 * we haven't seen any peripheral matching patterns. So tell the
1324 * caller to stop descending the tree -- the user doesn't want to
1325 * match against lower level tree elements.
1326 */
1327 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1328 retval |= DM_RET_STOP;
1329
1330 return(retval);
1331}
1332
1333/*
1334 * Match a single peripheral against any number of match patterns.
1335 */
1336static dev_match_ret
1337xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1338 struct cam_periph *periph)
1339{
1340 dev_match_ret retval;
1341 int i;
1342
1343 /*
1344 * If we aren't given something to match against, that's an error.
1345 */
1346 if (periph == NULL)
1347 return(DM_RET_ERROR);
1348
1349 /*
1350 * If there are no match entries, then this peripheral matches no
1351 * matter what.
1352 */
1353 if ((patterns == NULL) || (num_patterns == 0))
1354 return(DM_RET_STOP | DM_RET_COPY);
1355
1356 /*
1357 * There aren't any nodes below a peripheral node, so there's no
1358 * reason to descend the tree any further.
1359 */
1360 retval = DM_RET_STOP;
1361
1362 for (i = 0; i < num_patterns; i++) {
1363 struct periph_match_pattern *cur_pattern;
1364
1365 /*
1366 * If the pattern in question isn't for a peripheral, we
1367 * aren't interested.
1368 */
1369 if (patterns[i].type != DEV_MATCH_PERIPH)
1370 continue;
1371
1372 cur_pattern = &patterns[i].pattern.periph_pattern;
1373
1374 /*
1375 * If they want to match on anything, then we will do so.
1376 */
1377 if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1378 /* set the copy flag */
1379 retval |= DM_RET_COPY;
1380
1381 /*
1382 * We've already set the return action to stop,
1383 * since there are no nodes below peripherals in
1384 * the tree.
1385 */
1386 return(retval);
1387 }
1388
1389 /*
1390 * Not sure why someone would do this...
1391 */
1392 if (cur_pattern->flags == PERIPH_MATCH_NONE)
1393 continue;
1394
1395 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1396 && (cur_pattern->path_id != periph->path->bus->path_id))
1397 continue;
1398
1399 /*
1400 * For the target and lun id's, we have to make sure the
1401 * target and lun pointers aren't NULL. The xpt peripheral
1402 * has a wildcard target and device.
1403 */
1404 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1405 && ((periph->path->target == NULL)
1406 ||(cur_pattern->target_id != periph->path->target->target_id)))
1407 continue;
1408
1409 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1410 && ((periph->path->device == NULL)
1411 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1412 continue;
1413
1414 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1415 && (cur_pattern->unit_number != periph->unit_number))
1416 continue;
1417
1418 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1419 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1420 DEV_IDLEN) != 0))
1421 continue;
1422
1423 /*
1424 * If we get to this point, the user definitely wants
1425 * information on this peripheral. So tell the caller to
1426 * copy the data out.
1427 */
1428 retval |= DM_RET_COPY;
1429
1430 /*
1431 * The return action has already been set to stop, since
1432 * peripherals don't have any nodes below them in the EDT.
1433 */
1434 return(retval);
1435 }
1436
1437 /*
1438 * If we get to this point, the peripheral that was passed in
1439 * doesn't match any of the patterns.
1440 */
1441 return(retval);
1442}
1443
1444static int
1445xptedtbusfunc(struct cam_eb *bus, void *arg)
1446{
1447 struct ccb_dev_match *cdm;
1448 dev_match_ret retval;
1449
1450 cdm = (struct ccb_dev_match *)arg;
1451
1452 /*
1453 * If our position is for something deeper in the tree, that means
1454 * that we've already seen this node. So, we keep going down.
1455 */
1456 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1457 && (cdm->pos.cookie.bus == bus)
1458 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1459 && (cdm->pos.cookie.target != NULL))
1460 retval = DM_RET_DESCEND;
1461 else
1462 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1463
1464 /*
1465 * If we got an error, bail out of the search.
1466 */
1467 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1468 cdm->status = CAM_DEV_MATCH_ERROR;
1469 return(0);
1470 }
1471
1472 /*
1473 * If the copy flag is set, copy this bus out.
1474 */
1475 if (retval & DM_RET_COPY) {
1476 int spaceleft, j;
1477
1478 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1479 sizeof(struct dev_match_result));
1480
1481 /*
1482 * If we don't have enough space to put in another
1483 * match result, save our position and tell the
1484 * user there are more devices to check.
1485 */
1486 if (spaceleft < sizeof(struct dev_match_result)) {
1487 bzero(&cdm->pos, sizeof(cdm->pos));
1488 cdm->pos.position_type =
1489 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1490
1491 cdm->pos.cookie.bus = bus;
1492 cdm->pos.generations[CAM_BUS_GENERATION]=
1493 xsoftc.bus_generation;
1494 cdm->status = CAM_DEV_MATCH_MORE;
1495 return(0);
1496 }
1497 j = cdm->num_matches;
1498 cdm->num_matches++;
1499 cdm->matches[j].type = DEV_MATCH_BUS;
1500 cdm->matches[j].result.bus_result.path_id = bus->path_id;
1501 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1502 cdm->matches[j].result.bus_result.unit_number =
1503 bus->sim->unit_number;
1504 strncpy(cdm->matches[j].result.bus_result.dev_name,
1505 bus->sim->sim_name, DEV_IDLEN);
1506 }
1507
1508 /*
1509 * If the user is only interested in busses, there's no
1510 * reason to descend to the next level in the tree.
1511 */
1512 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1513 return(1);
1514
1515 /*
1516 * If there is a target generation recorded, check it to
1517 * make sure the target list hasn't changed.
1518 */
1519 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1520 && (bus == cdm->pos.cookie.bus)
1521 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1522 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1523 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1524 bus->generation)) {
1525 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1526 return(0);
1527 }
1528
1529 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1530 && (cdm->pos.cookie.bus == bus)
1531 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1532 && (cdm->pos.cookie.target != NULL))
1533 return(xpttargettraverse(bus,
1534 (struct cam_et *)cdm->pos.cookie.target,
1535 xptedttargetfunc, arg));
1536 else
1537 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1538}
1539
1540static int
1541xptedttargetfunc(struct cam_et *target, void *arg)
1542{
1543 struct ccb_dev_match *cdm;
1544
1545 cdm = (struct ccb_dev_match *)arg;
1546
1547 /*
1548 * If there is a device list generation recorded, check it to
1549 * make sure the device list hasn't changed.
1550 */
1551 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1552 && (cdm->pos.cookie.bus == target->bus)
1553 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1554 && (cdm->pos.cookie.target == target)
1555 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1556 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1557 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1558 target->generation)) {
1559 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1560 return(0);
1561 }
1562
1563 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1564 && (cdm->pos.cookie.bus == target->bus)
1565 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1566 && (cdm->pos.cookie.target == target)
1567 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1568 && (cdm->pos.cookie.device != NULL))
1569 return(xptdevicetraverse(target,
1570 (struct cam_ed *)cdm->pos.cookie.device,
1571 xptedtdevicefunc, arg));
1572 else
1573 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1574}
1575
1576static int
1577xptedtdevicefunc(struct cam_ed *device, void *arg)
1578{
1579
1580 struct ccb_dev_match *cdm;
1581 dev_match_ret retval;
1582
1583 cdm = (struct ccb_dev_match *)arg;
1584
1585 /*
1586 * If our position is for something deeper in the tree, that means
1587 * that we've already seen this node. So, we keep going down.
1588 */
1589 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1590 && (cdm->pos.cookie.device == device)
1591 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1592 && (cdm->pos.cookie.periph != NULL))
1593 retval = DM_RET_DESCEND;
1594 else
1595 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1596 device);
1597
1598 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1599 cdm->status = CAM_DEV_MATCH_ERROR;
1600 return(0);
1601 }
1602
1603 /*
1604 * If the copy flag is set, copy this device out.
1605 */
1606 if (retval & DM_RET_COPY) {
1607 int spaceleft, j;
1608
1609 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1610 sizeof(struct dev_match_result));
1611
1612 /*
1613 * If we don't have enough space to put in another
1614 * match result, save our position and tell the
1615 * user there are more devices to check.
1616 */
1617 if (spaceleft < sizeof(struct dev_match_result)) {
1618 bzero(&cdm->pos, sizeof(cdm->pos));
1619 cdm->pos.position_type =
1620 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1621 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1622
1623 cdm->pos.cookie.bus = device->target->bus;
1624 cdm->pos.generations[CAM_BUS_GENERATION]=
1625 xsoftc.bus_generation;
1626 cdm->pos.cookie.target = device->target;
1627 cdm->pos.generations[CAM_TARGET_GENERATION] =
1628 device->target->bus->generation;
1629 cdm->pos.cookie.device = device;
1630 cdm->pos.generations[CAM_DEV_GENERATION] =
1631 device->target->generation;
1632 cdm->status = CAM_DEV_MATCH_MORE;
1633 return(0);
1634 }
1635 j = cdm->num_matches;
1636 cdm->num_matches++;
1637 cdm->matches[j].type = DEV_MATCH_DEVICE;
1638 cdm->matches[j].result.device_result.path_id =
1639 device->target->bus->path_id;
1640 cdm->matches[j].result.device_result.target_id =
1641 device->target->target_id;
1642 cdm->matches[j].result.device_result.target_lun =
1643 device->lun_id;
1644 cdm->matches[j].result.device_result.protocol =
1645 device->protocol;
1646 bcopy(&device->inq_data,
1647 &cdm->matches[j].result.device_result.inq_data,
1648 sizeof(struct scsi_inquiry_data));
1649 bcopy(&device->ident_data,
1650 &cdm->matches[j].result.device_result.ident_data,
1651 sizeof(struct ata_params));
1652
1653 /* Let the user know whether this device is unconfigured */
1654 if (device->flags & CAM_DEV_UNCONFIGURED)
1655 cdm->matches[j].result.device_result.flags =
1656 DEV_RESULT_UNCONFIGURED;
1657 else
1658 cdm->matches[j].result.device_result.flags =
1659 DEV_RESULT_NOFLAG;
1660 }
1661
1662 /*
1663 * If the user isn't interested in peripherals, don't descend
1664 * the tree any further.
1665 */
1666 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1667 return(1);
1668
1669 /*
1670 * If there is a peripheral list generation recorded, make sure
1671 * it hasn't changed.
1672 */
1673 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1674 && (device->target->bus == cdm->pos.cookie.bus)
1675 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1676 && (device->target == cdm->pos.cookie.target)
1677 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1678 && (device == cdm->pos.cookie.device)
1679 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1680 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1681 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1682 device->generation)){
1683 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1684 return(0);
1685 }
1686
1687 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1688 && (cdm->pos.cookie.bus == device->target->bus)
1689 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1690 && (cdm->pos.cookie.target == device->target)
1691 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1692 && (cdm->pos.cookie.device == device)
1693 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1694 && (cdm->pos.cookie.periph != NULL))
1695 return(xptperiphtraverse(device,
1696 (struct cam_periph *)cdm->pos.cookie.periph,
1697 xptedtperiphfunc, arg));
1698 else
1699 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1700}
1701
1702static int
1703xptedtperiphfunc(struct cam_periph *periph, void *arg)
1704{
1705 struct ccb_dev_match *cdm;
1706 dev_match_ret retval;
1707
1708 cdm = (struct ccb_dev_match *)arg;
1709
1710 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1711
1712 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1713 cdm->status = CAM_DEV_MATCH_ERROR;
1714 return(0);
1715 }
1716
1717 /*
1718 * If the copy flag is set, copy this peripheral out.
1719 */
1720 if (retval & DM_RET_COPY) {
1721 int spaceleft, j;
1722
1723 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1724 sizeof(struct dev_match_result));
1725
1726 /*
1727 * If we don't have enough space to put in another
1728 * match result, save our position and tell the
1729 * user there are more devices to check.
1730 */
1731 if (spaceleft < sizeof(struct dev_match_result)) {
1732 bzero(&cdm->pos, sizeof(cdm->pos));
1733 cdm->pos.position_type =
1734 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1735 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1736 CAM_DEV_POS_PERIPH;
1737
1738 cdm->pos.cookie.bus = periph->path->bus;
1739 cdm->pos.generations[CAM_BUS_GENERATION]=
1740 xsoftc.bus_generation;
1741 cdm->pos.cookie.target = periph->path->target;
1742 cdm->pos.generations[CAM_TARGET_GENERATION] =
1743 periph->path->bus->generation;
1744 cdm->pos.cookie.device = periph->path->device;
1745 cdm->pos.generations[CAM_DEV_GENERATION] =
1746 periph->path->target->generation;
1747 cdm->pos.cookie.periph = periph;
1748 cdm->pos.generations[CAM_PERIPH_GENERATION] =
1749 periph->path->device->generation;
1750 cdm->status = CAM_DEV_MATCH_MORE;
1751 return(0);
1752 }
1753
1754 j = cdm->num_matches;
1755 cdm->num_matches++;
1756 cdm->matches[j].type = DEV_MATCH_PERIPH;
1757 cdm->matches[j].result.periph_result.path_id =
1758 periph->path->bus->path_id;
1759 cdm->matches[j].result.periph_result.target_id =
1760 periph->path->target->target_id;
1761 cdm->matches[j].result.periph_result.target_lun =
1762 periph->path->device->lun_id;
1763 cdm->matches[j].result.periph_result.unit_number =
1764 periph->unit_number;
1765 strncpy(cdm->matches[j].result.periph_result.periph_name,
1766 periph->periph_name, DEV_IDLEN);
1767 }
1768
1769 return(1);
1770}
1771
1772static int
1773xptedtmatch(struct ccb_dev_match *cdm)
1774{
1775 int ret;
1776
1777 cdm->num_matches = 0;
1778
1779 /*
1780 * Check the bus list generation. If it has changed, the user
1781 * needs to reset everything and start over.
1782 */
1783 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1784 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1785 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1786 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1787 return(0);
1788 }
1789
1790 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1791 && (cdm->pos.cookie.bus != NULL))
1792 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1793 xptedtbusfunc, cdm);
1794 else
1795 ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1796
1797 /*
1798 * If we get back 0, that means that we had to stop before fully
1799 * traversing the EDT. It also means that one of the subroutines
1800 * has set the status field to the proper value. If we get back 1,
1801 * we've fully traversed the EDT and copied out any matching entries.
1802 */
1803 if (ret == 1)
1804 cdm->status = CAM_DEV_MATCH_LAST;
1805
1806 return(ret);
1807}
1808
1809static int
1810xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1811{
1812 struct ccb_dev_match *cdm;
1813
1814 cdm = (struct ccb_dev_match *)arg;
1815
1816 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1817 && (cdm->pos.cookie.pdrv == pdrv)
1818 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1819 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1820 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1821 (*pdrv)->generation)) {
1822 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1823 return(0);
1824 }
1825
1826 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1827 && (cdm->pos.cookie.pdrv == pdrv)
1828 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1829 && (cdm->pos.cookie.periph != NULL))
1830 return(xptpdperiphtraverse(pdrv,
1831 (struct cam_periph *)cdm->pos.cookie.periph,
1832 xptplistperiphfunc, arg));
1833 else
1834 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1835}
1836
1837static int
1838xptplistperiphfunc(struct cam_periph *periph, void *arg)
1839{
1840 struct ccb_dev_match *cdm;
1841 dev_match_ret retval;
1842
1843 cdm = (struct ccb_dev_match *)arg;
1844
1845 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1846
1847 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1848 cdm->status = CAM_DEV_MATCH_ERROR;
1849 return(0);
1850 }
1851
1852 /*
1853 * If the copy flag is set, copy this peripheral out.
1854 */
1855 if (retval & DM_RET_COPY) {
1856 int spaceleft, j;
1857
1858 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1859 sizeof(struct dev_match_result));
1860
1861 /*
1862 * If we don't have enough space to put in another
1863 * match result, save our position and tell the
1864 * user there are more devices to check.
1865 */
1866 if (spaceleft < sizeof(struct dev_match_result)) {
1867 struct periph_driver **pdrv;
1868
1869 pdrv = NULL;
1870 bzero(&cdm->pos, sizeof(cdm->pos));
1871 cdm->pos.position_type =
1872 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1873 CAM_DEV_POS_PERIPH;
1874
1875 /*
1876 * This may look a bit non-sensical, but it is
1877 * actually quite logical. There are very few
1878 * peripheral drivers, and bloating every peripheral
1879 * structure with a pointer back to its parent
1880 * peripheral driver linker set entry would cost
1881 * more in the long run than doing this quick lookup.
1882 */
1883 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1884 if (strcmp((*pdrv)->driver_name,
1885 periph->periph_name) == 0)
1886 break;
1887 }
1888
1889 if (*pdrv == NULL) {
1890 cdm->status = CAM_DEV_MATCH_ERROR;
1891 return(0);
1892 }
1893
1894 cdm->pos.cookie.pdrv = pdrv;
1895 /*
1896 * The periph generation slot does double duty, as
1897 * does the periph pointer slot. They are used for
1898 * both edt and pdrv lookups and positioning.
1899 */
1900 cdm->pos.cookie.periph = periph;
1901 cdm->pos.generations[CAM_PERIPH_GENERATION] =
1902 (*pdrv)->generation;
1903 cdm->status = CAM_DEV_MATCH_MORE;
1904 return(0);
1905 }
1906
1907 j = cdm->num_matches;
1908 cdm->num_matches++;
1909 cdm->matches[j].type = DEV_MATCH_PERIPH;
1910 cdm->matches[j].result.periph_result.path_id =
1911 periph->path->bus->path_id;
1912
1913 /*
1914 * The transport layer peripheral doesn't have a target or
1915 * lun.
1916 */
1917 if (periph->path->target)
1918 cdm->matches[j].result.periph_result.target_id =
1919 periph->path->target->target_id;
1920 else
1921 cdm->matches[j].result.periph_result.target_id = -1;
1922
1923 if (periph->path->device)
1924 cdm->matches[j].result.periph_result.target_lun =
1925 periph->path->device->lun_id;
1926 else
1927 cdm->matches[j].result.periph_result.target_lun = -1;
1928
1929 cdm->matches[j].result.periph_result.unit_number =
1930 periph->unit_number;
1931 strncpy(cdm->matches[j].result.periph_result.periph_name,
1932 periph->periph_name, DEV_IDLEN);
1933 }
1934
1935 return(1);
1936}
1937
1938static int
1939xptperiphlistmatch(struct ccb_dev_match *cdm)
1940{
1941 int ret;
1942
1943 cdm->num_matches = 0;
1944
1945 /*
1946 * At this point in the edt traversal function, we check the bus
1947 * list generation to make sure that no busses have been added or
1948 * removed since the user last sent a XPT_DEV_MATCH ccb through.
1949 * For the peripheral driver list traversal function, however, we
1950 * don't have to worry about new peripheral driver types coming or
1951 * going; they're in a linker set, and therefore can't change
1952 * without a recompile.
1953 */
1954
1955 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1956 && (cdm->pos.cookie.pdrv != NULL))
1957 ret = xptpdrvtraverse(
1958 (struct periph_driver **)cdm->pos.cookie.pdrv,
1959 xptplistpdrvfunc, cdm);
1960 else
1961 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
1962
1963 /*
1964 * If we get back 0, that means that we had to stop before fully
1965 * traversing the peripheral driver tree. It also means that one of
1966 * the subroutines has set the status field to the proper value. If
1967 * we get back 1, we've fully traversed the EDT and copied out any
1968 * matching entries.
1969 */
1970 if (ret == 1)
1971 cdm->status = CAM_DEV_MATCH_LAST;
1972
1973 return(ret);
1974}
1975
1976static int
1977xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
1978{
1979 struct cam_eb *bus, *next_bus;
1980 int retval;
1981
1982 retval = 1;
1983
1984 mtx_lock(&xsoftc.xpt_topo_lock);
1985 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
1986 bus != NULL;
1987 bus = next_bus) {
1988 next_bus = TAILQ_NEXT(bus, links);
1989
1990 mtx_unlock(&xsoftc.xpt_topo_lock);
1991 CAM_SIM_LOCK(bus->sim);
1992 retval = tr_func(bus, arg);
1993 CAM_SIM_UNLOCK(bus->sim);
1994 if (retval == 0)
1995 return(retval);
1996 mtx_lock(&xsoftc.xpt_topo_lock);
1997 }
1998 mtx_unlock(&xsoftc.xpt_topo_lock);
1999
2000 return(retval);
2001}
2002
2003int
2004xpt_sim_opened(struct cam_sim *sim)
2005{
2006 struct cam_eb *bus;
2007 struct cam_et *target;
2008 struct cam_ed *device;
2009 struct cam_periph *periph;
2010
2011 KASSERT(sim->refcount >= 1, ("sim->refcount >= 1"));
2012 mtx_assert(sim->mtx, MA_OWNED);
2013
2014 mtx_lock(&xsoftc.xpt_topo_lock);
2015 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
2016 if (bus->sim != sim)
2017 continue;
2018
2019 TAILQ_FOREACH(target, &bus->et_entries, links) {
2020 TAILQ_FOREACH(device, &target->ed_entries, links) {
2021 SLIST_FOREACH(periph, &device->periphs,
2022 periph_links) {
2023 if (periph->refcount > 0) {
2024 mtx_unlock(&xsoftc.xpt_topo_lock);
2025 return (1);
2026 }
2027 }
2028 }
2029 }
2030 }
2031
2032 mtx_unlock(&xsoftc.xpt_topo_lock);
2033 return (0);
2034}
2035
2036static int
2037xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2038 xpt_targetfunc_t *tr_func, void *arg)
2039{
2040 struct cam_et *target, *next_target;
2041 int retval;
2042
2043 retval = 1;
2044 for (target = (start_target ? start_target :
2045 TAILQ_FIRST(&bus->et_entries));
2046 target != NULL; target = next_target) {
2047
2048 next_target = TAILQ_NEXT(target, links);
2049
2050 retval = tr_func(target, arg);
2051
2052 if (retval == 0)
2053 return(retval);
2054 }
2055
2056 return(retval);
2057}
2058
2059static int
2060xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2061 xpt_devicefunc_t *tr_func, void *arg)
2062{
2063 struct cam_ed *device, *next_device;
2064 int retval;
2065
2066 retval = 1;
2067 for (device = (start_device ? start_device :
2068 TAILQ_FIRST(&target->ed_entries));
2069 device != NULL;
2070 device = next_device) {
2071
2072 next_device = TAILQ_NEXT(device, links);
2073
2074 retval = tr_func(device, arg);
2075
2076 if (retval == 0)
2077 return(retval);
2078 }
2079
2080 return(retval);
2081}
2082
2083static int
2084xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2085 xpt_periphfunc_t *tr_func, void *arg)
2086{
2087 struct cam_periph *periph, *next_periph;
2088 int retval;
2089
2090 retval = 1;
2091
2092 for (periph = (start_periph ? start_periph :
2093 SLIST_FIRST(&device->periphs));
2094 periph != NULL;
2095 periph = next_periph) {
2096
2097 next_periph = SLIST_NEXT(periph, periph_links);
2098
2099 retval = tr_func(periph, arg);
2100 if (retval == 0)
2101 return(retval);
2102 }
2103
2104 return(retval);
2105}
2106
2107static int
2108xptpdrvtraverse(struct periph_driver **start_pdrv,
2109 xpt_pdrvfunc_t *tr_func, void *arg)
2110{
2111 struct periph_driver **pdrv;
2112 int retval;
2113
2114 retval = 1;
2115
2116 /*
2117 * We don't traverse the peripheral driver list like we do the
2118 * other lists, because it is a linker set, and therefore cannot be
2119 * changed during runtime. If the peripheral driver list is ever
2120 * re-done to be something other than a linker set (i.e. it can
2121 * change while the system is running), the list traversal should
2122 * be modified to work like the other traversal functions.
2123 */
2124 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2125 *pdrv != NULL; pdrv++) {
2126 retval = tr_func(pdrv, arg);
2127
2128 if (retval == 0)
2129 return(retval);
2130 }
2131
2132 return(retval);
2133}
2134
2135static int
2136xptpdperiphtraverse(struct periph_driver **pdrv,
2137 struct cam_periph *start_periph,
2138 xpt_periphfunc_t *tr_func, void *arg)
2139{
2140 struct cam_periph *periph, *next_periph;
2141 int retval;
2142
2143 retval = 1;
2144
2145 xpt_lock_buses();
2146 for (periph = (start_periph ? start_periph :
2147 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2148 periph = next_periph) {
2149
2150 next_periph = TAILQ_NEXT(periph, unit_links);
2151
2152 retval = tr_func(periph, arg);
2153 if (retval == 0) {
2154 xpt_unlock_buses();
2155 return(retval);
2156 }
2157 }
2158 xpt_unlock_buses();
2159 return(retval);
2160}
2161
2162static int
2163xptdefbusfunc(struct cam_eb *bus, void *arg)
2164{
2165 struct xpt_traverse_config *tr_config;
2166
2167 tr_config = (struct xpt_traverse_config *)arg;
2168
2169 if (tr_config->depth == XPT_DEPTH_BUS) {
2170 xpt_busfunc_t *tr_func;
2171
2172 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2173
2174 return(tr_func(bus, tr_config->tr_arg));
2175 } else
2176 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2177}
2178
2179static int
2180xptdeftargetfunc(struct cam_et *target, void *arg)
2181{
2182 struct xpt_traverse_config *tr_config;
2183
2184 tr_config = (struct xpt_traverse_config *)arg;
2185
2186 if (tr_config->depth == XPT_DEPTH_TARGET) {
2187 xpt_targetfunc_t *tr_func;
2188
2189 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2190
2191 return(tr_func(target, tr_config->tr_arg));
2192 } else
2193 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2194}
2195
2196static int
2197xptdefdevicefunc(struct cam_ed *device, void *arg)
2198{
2199 struct xpt_traverse_config *tr_config;
2200
2201 tr_config = (struct xpt_traverse_config *)arg;
2202
2203 if (tr_config->depth == XPT_DEPTH_DEVICE) {
2204 xpt_devicefunc_t *tr_func;
2205
2206 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2207
2208 return(tr_func(device, tr_config->tr_arg));
2209 } else
2210 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2211}
2212
2213static int
2214xptdefperiphfunc(struct cam_periph *periph, void *arg)
2215{
2216 struct xpt_traverse_config *tr_config;
2217 xpt_periphfunc_t *tr_func;
2218
2219 tr_config = (struct xpt_traverse_config *)arg;
2220
2221 tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2222
2223 /*
2224 * Unlike the other default functions, we don't check for depth
2225 * here. The peripheral driver level is the last level in the EDT,
2226 * so if we're here, we should execute the function in question.
2227 */
2228 return(tr_func(periph, tr_config->tr_arg));
2229}
2230
2231/*
2232 * Execute the given function for every bus in the EDT.
2233 */
2234static int
2235xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2236{
2237 struct xpt_traverse_config tr_config;
2238
2239 tr_config.depth = XPT_DEPTH_BUS;
2240 tr_config.tr_func = tr_func;
2241 tr_config.tr_arg = arg;
2242
2243 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2244}
2245
2246/*
2247 * Execute the given function for every device in the EDT.
2248 */
2249static int
2250xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2251{
2252 struct xpt_traverse_config tr_config;
2253
2254 tr_config.depth = XPT_DEPTH_DEVICE;
2255 tr_config.tr_func = tr_func;
2256 tr_config.tr_arg = arg;
2257
2258 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2259}
2260
2261static int
2262xptsetasyncfunc(struct cam_ed *device, void *arg)
2263{
2264 struct cam_path path;
2265 struct ccb_getdev cgd;
2266 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2267
2268 /*
2269 * Don't report unconfigured devices (Wildcard devs,
2270 * devices only for target mode, device instances
2271 * that have been invalidated but are waiting for
2272 * their last reference count to be released).
2273 */
2274 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2275 return (1);
2276
2277 xpt_compile_path(&path,
2278 NULL,
2279 device->target->bus->path_id,
2280 device->target->target_id,
2281 device->lun_id);
2282 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2283 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2284 xpt_action((union ccb *)&cgd);
2285 csa->callback(csa->callback_arg,
2286 AC_FOUND_DEVICE,
2287 &path, &cgd);
2288 xpt_release_path(&path);
2289
2290 return(1);
2291}
2292
2293static int
2294xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2295{
2296 struct cam_path path;
2297 struct ccb_pathinq cpi;
2298 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2299
2300 xpt_compile_path(&path, /*periph*/NULL,
2301 bus->sim->path_id,
2302 CAM_TARGET_WILDCARD,
2303 CAM_LUN_WILDCARD);
2304 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2305 cpi.ccb_h.func_code = XPT_PATH_INQ;
2306 xpt_action((union ccb *)&cpi);
2307 csa->callback(csa->callback_arg,
2308 AC_PATH_REGISTERED,
2309 &path, &cpi);
2310 xpt_release_path(&path);
2311
2312 return(1);
2313}
2314
2315void
2316xpt_action(union ccb *start_ccb)
2317{
2318
2319 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2320
2321 start_ccb->ccb_h.status = CAM_REQ_INPROG;
2322 /* Compatibility for RL-unaware code. */
2323 if (CAM_PRIORITY_TO_RL(start_ccb->ccb_h.pinfo.priority) == 0)
2324 start_ccb->ccb_h.pinfo.priority += CAM_PRIORITY_NORMAL - 1;
2325 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2326}
2327
2328void
2329xpt_action_default(union ccb *start_ccb)
2330{
2331
2332 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2333
2334 switch (start_ccb->ccb_h.func_code) {
2335 case XPT_SCSI_IO:
2336 {
2337 struct cam_ed *device;
2338#ifdef CAMDEBUG
2339 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2340 struct cam_path *path;
2341
2342 path = start_ccb->ccb_h.path;
2343#endif
2344
2345 /*
2346 * For the sake of compatibility with SCSI-1
2347 * devices that may not understand the identify
2348 * message, we include lun information in the
2349 * second byte of all commands. SCSI-1 specifies
2350 * that luns are a 3 bit value and reserves only 3
2351 * bits for lun information in the CDB. Later
2352 * revisions of the SCSI spec allow for more than 8
2353 * luns, but have deprecated lun information in the
2354 * CDB. So, if the lun won't fit, we must omit.
2355 *
2356 * Also be aware that during initial probing for devices,
2357 * the inquiry information is unknown but initialized to 0.
2358 * This means that this code will be exercised while probing
2359 * devices with an ANSI revision greater than 2.
2360 */
2361 device = start_ccb->ccb_h.path->device;
2362 if (device->protocol_version <= SCSI_REV_2
2363 && start_ccb->ccb_h.target_lun < 8
2364 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2365
2366 start_ccb->csio.cdb_io.cdb_bytes[1] |=
2367 start_ccb->ccb_h.target_lun << 5;
2368 }
2369 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2370 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2371 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2372 &path->device->inq_data),
2373 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2374 cdb_str, sizeof(cdb_str))));
2375 }
2376 /* FALLTHROUGH */
2377 case XPT_TARGET_IO:
2378 case XPT_CONT_TARGET_IO:
2379 start_ccb->csio.sense_resid = 0;
2380 start_ccb->csio.resid = 0;
2381 /* FALLTHROUGH */
2382 case XPT_ATA_IO:
2383 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) {
2384 start_ccb->ataio.resid = 0;
2385 }
2386 /* FALLTHROUGH */
2387 case XPT_RESET_DEV:
2388 case XPT_ENG_EXEC:
2389 case XPT_SMP_IO:
2390 {
2391 struct cam_path *path = start_ccb->ccb_h.path;
2392 int frozen;
2393
2394 frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2395 path->device->sim->devq->alloc_openings += frozen;
2396 if (frozen > 0)
2397 xpt_run_dev_allocq(path->bus);
2398 if (xpt_schedule_dev_sendq(path->bus, path->device))
2399 xpt_run_dev_sendq(path->bus);
2400 break;
2401 }
2402 case XPT_CALC_GEOMETRY:
2403 {
2404 struct cam_sim *sim;
2405
2406 /* Filter out garbage */
2407 if (start_ccb->ccg.block_size == 0
2408 || start_ccb->ccg.volume_size == 0) {
2409 start_ccb->ccg.cylinders = 0;
2410 start_ccb->ccg.heads = 0;
2411 start_ccb->ccg.secs_per_track = 0;
2412 start_ccb->ccb_h.status = CAM_REQ_CMP;
2413 break;
2414 }
2415#ifdef PC98
2416 /*
2417 * In a PC-98 system, geometry translation depens on
2418 * the "real" device geometry obtained from mode page 4.
2419 * SCSI geometry translation is performed in the
2420 * initialization routine of the SCSI BIOS and the result
2421 * stored in host memory. If the translation is available
2422 * in host memory, use it. If not, rely on the default
2423 * translation the device driver performs.
2424 */
2425 if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2426 start_ccb->ccb_h.status = CAM_REQ_CMP;
2427 break;
2428 }
2429#endif
2430 sim = start_ccb->ccb_h.path->bus->sim;
2431 (*(sim->sim_action))(sim, start_ccb);
2432 break;
2433 }
2434 case XPT_ABORT:
2435 {
2436 union ccb* abort_ccb;
2437
2438 abort_ccb = start_ccb->cab.abort_ccb;
2439 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2440
2441 if (abort_ccb->ccb_h.pinfo.index >= 0) {
2442 struct cam_ccbq *ccbq;
2443 struct cam_ed *device;
2444
2445 device = abort_ccb->ccb_h.path->device;
2446 ccbq = &device->ccbq;
2447 device->sim->devq->alloc_openings -=
2448 cam_ccbq_remove_ccb(ccbq, abort_ccb);
2449 abort_ccb->ccb_h.status =
2450 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2451 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2452 xpt_done(abort_ccb);
2453 start_ccb->ccb_h.status = CAM_REQ_CMP;
2454 break;
2455 }
2456 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2457 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2458 /*
2459 * We've caught this ccb en route to
2460 * the SIM. Flag it for abort and the
2461 * SIM will do so just before starting
2462 * real work on the CCB.
2463 */
2464 abort_ccb->ccb_h.status =
2465 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2466 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2467 start_ccb->ccb_h.status = CAM_REQ_CMP;
2468 break;
2469 }
2470 }
2471 if (XPT_FC_IS_QUEUED(abort_ccb)
2472 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2473 /*
2474 * It's already completed but waiting
2475 * for our SWI to get to it.
2476 */
2477 start_ccb->ccb_h.status = CAM_UA_ABORT;
2478 break;
2479 }
2480 /*
2481 * If we weren't able to take care of the abort request
2482 * in the XPT, pass the request down to the SIM for processing.
2483 */
2484 }
2485 /* FALLTHROUGH */
2486 case XPT_ACCEPT_TARGET_IO:
2487 case XPT_EN_LUN:
2488 case XPT_IMMED_NOTIFY:
2489 case XPT_NOTIFY_ACK:
2490 case XPT_RESET_BUS:
2491 case XPT_IMMEDIATE_NOTIFY:
2492 case XPT_NOTIFY_ACKNOWLEDGE:
2493 case XPT_GET_SIM_KNOB:
2494 case XPT_SET_SIM_KNOB:
2495 {
2496 struct cam_sim *sim;
2497
2498 sim = start_ccb->ccb_h.path->bus->sim;
2499 (*(sim->sim_action))(sim, start_ccb);
2500 break;
2501 }
2502 case XPT_PATH_INQ:
2503 {
2504 struct cam_sim *sim;
2505
2506 sim = start_ccb->ccb_h.path->bus->sim;
2507 (*(sim->sim_action))(sim, start_ccb);
2508 break;
2509 }
2510 case XPT_PATH_STATS:
2511 start_ccb->cpis.last_reset =
2512 start_ccb->ccb_h.path->bus->last_reset;
2513 start_ccb->ccb_h.status = CAM_REQ_CMP;
2514 break;
2515 case XPT_GDEV_TYPE:
2516 {
2517 struct cam_ed *dev;
2518
2519 dev = start_ccb->ccb_h.path->device;
2520 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2521 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2522 } else {
2523 struct ccb_getdev *cgd;
2524 struct cam_eb *bus;
2525 struct cam_et *tar;
2526
2527 cgd = &start_ccb->cgd;
2528 bus = cgd->ccb_h.path->bus;
2529 tar = cgd->ccb_h.path->target;
2530 cgd->protocol = dev->protocol;
2531 cgd->inq_data = dev->inq_data;
2532 cgd->ident_data = dev->ident_data;
2533 cgd->inq_flags = dev->inq_flags;
2534 cgd->ccb_h.status = CAM_REQ_CMP;
2535 cgd->serial_num_len = dev->serial_num_len;
2536 if ((dev->serial_num_len > 0)
2537 && (dev->serial_num != NULL))
2538 bcopy(dev->serial_num, cgd->serial_num,
2539 dev->serial_num_len);
2540 }
2541 break;
2542 }
2543 case XPT_GDEV_STATS:
2544 {
2545 struct cam_ed *dev;
2546
2547 dev = start_ccb->ccb_h.path->device;
2548 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2549 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2550 } else {
2551 struct ccb_getdevstats *cgds;
2552 struct cam_eb *bus;
2553 struct cam_et *tar;
2554
2555 cgds = &start_ccb->cgds;
2556 bus = cgds->ccb_h.path->bus;
2557 tar = cgds->ccb_h.path->target;
2558 cgds->dev_openings = dev->ccbq.dev_openings;
2559 cgds->dev_active = dev->ccbq.dev_active;
2560 cgds->devq_openings = dev->ccbq.devq_openings;
2561 cgds->devq_queued = dev->ccbq.queue.entries;
2562 cgds->held = dev->ccbq.held;
2563 cgds->last_reset = tar->last_reset;
2564 cgds->maxtags = dev->maxtags;
2565 cgds->mintags = dev->mintags;
2566 if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2567 cgds->last_reset = bus->last_reset;
2568 cgds->ccb_h.status = CAM_REQ_CMP;
2569 }
2570 break;
2571 }
2572 case XPT_GDEVLIST:
2573 {
2574 struct cam_periph *nperiph;
2575 struct periph_list *periph_head;
2576 struct ccb_getdevlist *cgdl;
2577 u_int i;
2578 struct cam_ed *device;
2579 int found;
2580
2581
2582 found = 0;
2583
2584 /*
2585 * Don't want anyone mucking with our data.
2586 */
2587 device = start_ccb->ccb_h.path->device;
2588 periph_head = &device->periphs;
2589 cgdl = &start_ccb->cgdl;
2590
2591 /*
2592 * Check and see if the list has changed since the user
2593 * last requested a list member. If so, tell them that the
2594 * list has changed, and therefore they need to start over
2595 * from the beginning.
2596 */
2597 if ((cgdl->index != 0) &&
2598 (cgdl->generation != device->generation)) {
2599 cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2600 break;
2601 }
2602
2603 /*
2604 * Traverse the list of peripherals and attempt to find
2605 * the requested peripheral.
2606 */
2607 for (nperiph = SLIST_FIRST(periph_head), i = 0;
2608 (nperiph != NULL) && (i <= cgdl->index);
2609 nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2610 if (i == cgdl->index) {
2611 strncpy(cgdl->periph_name,
2612 nperiph->periph_name,
2613 DEV_IDLEN);
2614 cgdl->unit_number = nperiph->unit_number;
2615 found = 1;
2616 }
2617 }
2618 if (found == 0) {
2619 cgdl->status = CAM_GDEVLIST_ERROR;
2620 break;
2621 }
2622
2623 if (nperiph == NULL)
2624 cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2625 else
2626 cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2627
2628 cgdl->index++;
2629 cgdl->generation = device->generation;
2630
2631 cgdl->ccb_h.status = CAM_REQ_CMP;
2632 break;
2633 }
2634 case XPT_DEV_MATCH:
2635 {
2636 dev_pos_type position_type;
2637 struct ccb_dev_match *cdm;
2638
2639 cdm = &start_ccb->cdm;
2640
2641 /*
2642 * There are two ways of getting at information in the EDT.
2643 * The first way is via the primary EDT tree. It starts
2644 * with a list of busses, then a list of targets on a bus,
2645 * then devices/luns on a target, and then peripherals on a
2646 * device/lun. The "other" way is by the peripheral driver
2647 * lists. The peripheral driver lists are organized by
2648 * peripheral driver. (obviously) So it makes sense to
2649 * use the peripheral driver list if the user is looking
2650 * for something like "da1", or all "da" devices. If the
2651 * user is looking for something on a particular bus/target
2652 * or lun, it's generally better to go through the EDT tree.
2653 */
2654
2655 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2656 position_type = cdm->pos.position_type;
2657 else {
2658 u_int i;
2659
2660 position_type = CAM_DEV_POS_NONE;
2661
2662 for (i = 0; i < cdm->num_patterns; i++) {
2663 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2664 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2665 position_type = CAM_DEV_POS_EDT;
2666 break;
2667 }
2668 }
2669
2670 if (cdm->num_patterns == 0)
2671 position_type = CAM_DEV_POS_EDT;
2672 else if (position_type == CAM_DEV_POS_NONE)
2673 position_type = CAM_DEV_POS_PDRV;
2674 }
2675
2676 switch(position_type & CAM_DEV_POS_TYPEMASK) {
2677 case CAM_DEV_POS_EDT:
2678 xptedtmatch(cdm);
2679 break;
2680 case CAM_DEV_POS_PDRV:
2681 xptperiphlistmatch(cdm);
2682 break;
2683 default:
2684 cdm->status = CAM_DEV_MATCH_ERROR;
2685 break;
2686 }
2687
2688 if (cdm->status == CAM_DEV_MATCH_ERROR)
2689 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2690 else
2691 start_ccb->ccb_h.status = CAM_REQ_CMP;
2692
2693 break;
2694 }
2695 case XPT_SASYNC_CB:
2696 {
2697 struct ccb_setasync *csa;
2698 struct async_node *cur_entry;
2699 struct async_list *async_head;
2700 u_int32_t added;
2701
2702 csa = &start_ccb->csa;
2703 added = csa->event_enable;
2704 async_head = &csa->ccb_h.path->device->asyncs;
2705
2706 /*
2707 * If there is already an entry for us, simply
2708 * update it.
2709 */
2710 cur_entry = SLIST_FIRST(async_head);
2711 while (cur_entry != NULL) {
2712 if ((cur_entry->callback_arg == csa->callback_arg)
2713 && (cur_entry->callback == csa->callback))
2714 break;
2715 cur_entry = SLIST_NEXT(cur_entry, links);
2716 }
2717
2718 if (cur_entry != NULL) {
2719 /*
2720 * If the request has no flags set,
2721 * remove the entry.
2722 */
2723 added &= ~cur_entry->event_enable;
2724 if (csa->event_enable == 0) {
2725 SLIST_REMOVE(async_head, cur_entry,
2726 async_node, links);
2727 xpt_release_device(csa->ccb_h.path->device);
2728 free(cur_entry, M_CAMXPT);
2729 } else {
2730 cur_entry->event_enable = csa->event_enable;
2731 }
2732 csa->event_enable = added;
2733 } else {
2734 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2735 M_NOWAIT);
2736 if (cur_entry == NULL) {
2737 csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2738 break;
2739 }
2740 cur_entry->event_enable = csa->event_enable;
2741 cur_entry->callback_arg = csa->callback_arg;
2742 cur_entry->callback = csa->callback;
2743 SLIST_INSERT_HEAD(async_head, cur_entry, links);
2744 xpt_acquire_device(csa->ccb_h.path->device);
2745 }
2746 start_ccb->ccb_h.status = CAM_REQ_CMP;
2747 break;
2748 }
2749 case XPT_REL_SIMQ:
2750 {
2751 struct ccb_relsim *crs;
2752 struct cam_ed *dev;
2753
2754 crs = &start_ccb->crs;
2755 dev = crs->ccb_h.path->device;
2756 if (dev == NULL) {
2757
2758 crs->ccb_h.status = CAM_DEV_NOT_THERE;
2759 break;
2760 }
2761
2762 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2763
2764 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
2765 /* Don't ever go below one opening */
2766 if (crs->openings > 0) {
2767 xpt_dev_ccbq_resize(crs->ccb_h.path,
2768 crs->openings);
2769
2770 if (bootverbose) {
2771 xpt_print(crs->ccb_h.path,
2772 "tagged openings now %d\n",
2773 crs->openings);
2774 }
2775 }
2776 }
2777 }
2778
2779 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2780
2781 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2782
2783 /*
2784 * Just extend the old timeout and decrement
2785 * the freeze count so that a single timeout
2786 * is sufficient for releasing the queue.
2787 */
2788 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2789 callout_stop(&dev->callout);
2790 } else {
2791
2792 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2793 }
2794
2795 callout_reset(&dev->callout,
2796 (crs->release_timeout * hz) / 1000,
2797 xpt_release_devq_timeout, dev);
2798
2799 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2800
2801 }
2802
2803 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2804
2805 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2806 /*
2807 * Decrement the freeze count so that a single
2808 * completion is still sufficient to unfreeze
2809 * the queue.
2810 */
2811 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2812 } else {
2813
2814 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2815 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2816 }
2817 }
2818
2819 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2820
2821 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2822 || (dev->ccbq.dev_active == 0)) {
2823
2824 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2825 } else {
2826
2827 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2828 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2829 }
2830 }
2831
2832 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
2833 xpt_release_devq_rl(crs->ccb_h.path, /*runlevel*/
2834 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2835 crs->release_timeout : 0,
2836 /*count*/1, /*run_queue*/TRUE);
2837 }
2838 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0];
2839 start_ccb->ccb_h.status = CAM_REQ_CMP;
2840 break;
2841 }
2842 case XPT_DEBUG: {
2843#ifdef CAMDEBUG
2844#ifdef CAM_DEBUG_DELAY
2845 cam_debug_delay = CAM_DEBUG_DELAY;
2846#endif
2847 cam_dflags = start_ccb->cdbg.flags;
2848 if (cam_dpath != NULL) {
2849 xpt_free_path(cam_dpath);
2850 cam_dpath = NULL;
2851 }
2852
2853 if (cam_dflags != CAM_DEBUG_NONE) {
2854 if (xpt_create_path(&cam_dpath, xpt_periph,
2855 start_ccb->ccb_h.path_id,
2856 start_ccb->ccb_h.target_id,
2857 start_ccb->ccb_h.target_lun) !=
2858 CAM_REQ_CMP) {
2859 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2860 cam_dflags = CAM_DEBUG_NONE;
2861 } else {
2862 start_ccb->ccb_h.status = CAM_REQ_CMP;
2863 xpt_print(cam_dpath, "debugging flags now %x\n",
2864 cam_dflags);
2865 }
2866 } else {
2867 cam_dpath = NULL;
2868 start_ccb->ccb_h.status = CAM_REQ_CMP;
2869 }
2870#else /* !CAMDEBUG */
2871 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2872#endif /* CAMDEBUG */
2873 break;
2874 }
2875 case XPT_FREEZE_QUEUE:
2876 {
2877 struct ccb_relsim *crs = &start_ccb->crs;
2878
2879 xpt_freeze_devq_rl(crs->ccb_h.path, /*runlevel*/
2880 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2881 crs->release_timeout : 0, /*count*/1);
2882 start_ccb->ccb_h.status = CAM_REQ_CMP;
2883 break;
2884 }
2885 case XPT_NOOP:
2886 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2887 xpt_freeze_devq(start_ccb->ccb_h.path, 1);
2888 start_ccb->ccb_h.status = CAM_REQ_CMP;
2889 break;
2890 default:
2891 case XPT_SDEV_TYPE:
2892 case XPT_TERM_IO:
2893 case XPT_ENG_INQ:
2894 /* XXX Implement */
2895 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2896 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2897 xpt_done(start_ccb);
2898 }
2899 break;
2900 }
2901}
2902
2903void
2904xpt_polled_action(union ccb *start_ccb)
2905{
2906 u_int32_t timeout;
2907 struct cam_sim *sim;
2908 struct cam_devq *devq;
2909 struct cam_ed *dev;
2910
2911
2912 timeout = start_ccb->ccb_h.timeout * 10;
2913 sim = start_ccb->ccb_h.path->bus->sim;
2914 devq = sim->devq;
2915 dev = start_ccb->ccb_h.path->device;
2916
2917 mtx_assert(sim->mtx, MA_OWNED);
2918
2919 /*
2920 * Steal an opening so that no other queued requests
2921 * can get it before us while we simulate interrupts.
2922 */
2923 dev->ccbq.devq_openings--;
2924 dev->ccbq.dev_openings--;
2925
2926 while(((devq != NULL && devq->send_openings <= 0) ||
2927 dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
2928 DELAY(100);
2929 (*(sim->sim_poll))(sim);
2930 camisr_runqueue(&sim->sim_doneq);
2931 }
2932
2933 dev->ccbq.devq_openings++;
2934 dev->ccbq.dev_openings++;
2935
2936 if (timeout != 0) {
2937 xpt_action(start_ccb);
2938 while(--timeout > 0) {
2939 (*(sim->sim_poll))(sim);
2940 camisr_runqueue(&sim->sim_doneq);
2941 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
2942 != CAM_REQ_INPROG)
2943 break;
2944 DELAY(100);
2945 }
2946 if (timeout == 0) {
2947 /*
2948 * XXX Is it worth adding a sim_timeout entry
2949 * point so we can attempt recovery? If
2950 * this is only used for dumps, I don't think
2951 * it is.
2952 */
2953 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
2954 }
2955 } else {
2956 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2957 }
2958}
2959
2960/*
2961 * Schedule a peripheral driver to receive a ccb when it's
2962 * target device has space for more transactions.
2963 */
2964void
2965xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
2966{
2967 struct cam_ed *device;
2968 int runq = 0;
2969
2970 mtx_assert(perph->sim->mtx, MA_OWNED);
2971
2972 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
2973 device = perph->path->device;
2974 if (periph_is_queued(perph)) {
2975 /* Simply reorder based on new priority */
2976 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
2977 (" change priority to %d\n", new_priority));
2978 if (new_priority < perph->pinfo.priority) {
2979 camq_change_priority(&device->drvq,
2980 perph->pinfo.index,
2981 new_priority);
2982 runq = xpt_schedule_dev_allocq(perph->path->bus, device);
2983 }
2984 } else {
2985 /* New entry on the queue */
2986 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
2987 (" added periph to queue\n"));
2988 perph->pinfo.priority = new_priority;
2989 perph->pinfo.generation = ++device->drvq.generation;
2990 camq_insert(&device->drvq, &perph->pinfo);
2991 runq = xpt_schedule_dev_allocq(perph->path->bus, device);
2992 }
2993 if (runq != 0) {
2994 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
2995 (" calling xpt_run_devq\n"));
2996 xpt_run_dev_allocq(perph->path->bus);
2997 }
2998}
2999
3000
3001/*
3002 * Schedule a device to run on a given queue.
3003 * If the device was inserted as a new entry on the queue,
3004 * return 1 meaning the device queue should be run. If we
3005 * were already queued, implying someone else has already
3006 * started the queue, return 0 so the caller doesn't attempt
3007 * to run the queue.
3008 */
3009int
3010xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3011 u_int32_t new_priority)
3012{
3013 int retval;
3014 u_int32_t old_priority;
3015
3016 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3017
3018 old_priority = pinfo->priority;
3019
3020 /*
3021 * Are we already queued?
3022 */
3023 if (pinfo->index != CAM_UNQUEUED_INDEX) {
3024 /* Simply reorder based on new priority */
3025 if (new_priority < old_priority) {
3026 camq_change_priority(queue, pinfo->index,
3027 new_priority);
3028 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3029 ("changed priority to %d\n",
3030 new_priority));
3031 retval = 1;
3032 } else
3033 retval = 0;
3034 } else {
3035 /* New entry on the queue */
3036 if (new_priority < old_priority)
3037 pinfo->priority = new_priority;
3038
3039 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3040 ("Inserting onto queue\n"));
3041 pinfo->generation = ++queue->generation;
3042 camq_insert(queue, pinfo);
3043 retval = 1;
3044 }
3045 return (retval);
3046}
3047
3048static void
3049xpt_run_dev_allocq(struct cam_eb *bus)
3050{
3051 struct cam_devq *devq;
3052
3053 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3054 devq = bus->sim->devq;
3055
3056 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3057 (" qfrozen_cnt == 0x%x, entries == %d, "
3058 "openings == %d, active == %d\n",
3059 devq->alloc_queue.qfrozen_cnt[0],
3060 devq->alloc_queue.entries,
3061 devq->alloc_openings,
3062 devq->alloc_active));
3063
3064 devq->alloc_queue.qfrozen_cnt[0]++;
3065 while ((devq->alloc_queue.entries > 0)
3066 && (devq->alloc_openings > 0)
3067 && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) {
3068 struct cam_ed_qinfo *qinfo;
3069 struct cam_ed *device;
3070 union ccb *work_ccb;
3071 struct cam_periph *drv;
3072 struct camq *drvq;
3073
3074 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3075 CAMQ_HEAD);
3076 device = qinfo->device;
3077 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3078 ("running device %p\n", device));
3079
3080 drvq = &device->drvq;
3081
3082#ifdef CAMDEBUG
3083 if (drvq->entries <= 0) {
3084 panic("xpt_run_dev_allocq: "
3085 "Device on queue without any work to do");
3086 }
3087#endif
3088 if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3089 devq->alloc_openings--;
3090 devq->alloc_active++;
3091 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3092 xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3093 drv->pinfo.priority);
3094 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3095 ("calling periph start\n"));
3096 drv->periph_start(drv, work_ccb);
3097 } else {
3098 /*
3099 * Malloc failure in alloc_ccb
3100 */
3101 /*
3102 * XXX add us to a list to be run from free_ccb
3103 * if we don't have any ccbs active on this
3104 * device queue otherwise we may never get run
3105 * again.
3106 */
3107 break;
3108 }
3109
3110 /* We may have more work. Attempt to reschedule. */
3111 xpt_schedule_dev_allocq(bus, device);
3112 }
3113 devq->alloc_queue.qfrozen_cnt[0]--;
3114}
3115
3116static void
3117xpt_run_dev_sendq(struct cam_eb *bus)
3118{
3119 struct cam_devq *devq;
3120
3121 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3122
3123 devq = bus->sim->devq;
3124
3125 devq->send_queue.qfrozen_cnt[0]++;
3126 while ((devq->send_queue.entries > 0)
3127 && (devq->send_openings > 0)
3128 && (devq->send_queue.qfrozen_cnt[0] <= 1)) {
3129 struct cam_ed_qinfo *qinfo;
3130 struct cam_ed *device;
3131 union ccb *work_ccb;
3132 struct cam_sim *sim;
3133
3134 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3135 CAMQ_HEAD);
3136 device = qinfo->device;
3137 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3138 ("running device %p\n", device));
3139
3140 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3141 if (work_ccb == NULL) {
3142 printf("device on run queue with no ccbs???\n");
3143 continue;
3144 }
3145
3146 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3147
3148 mtx_lock(&xsoftc.xpt_lock);
3149 if (xsoftc.num_highpower <= 0) {
3150 /*
3151 * We got a high power command, but we
3152 * don't have any available slots. Freeze
3153 * the device queue until we have a slot
3154 * available.
3155 */
3156 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3157 STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3158 &work_ccb->ccb_h,
3159 xpt_links.stqe);
3160
3161 mtx_unlock(&xsoftc.xpt_lock);
3162 continue;
3163 } else {
3164 /*
3165 * Consume a high power slot while
3166 * this ccb runs.
3167 */
3168 xsoftc.num_highpower--;
3169 }
3170 mtx_unlock(&xsoftc.xpt_lock);
3171 }
3172 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3173 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3174
3175 devq->send_openings--;
3176 devq->send_active++;
3177
3178 xpt_schedule_dev_sendq(bus, device);
3179
3180 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3181 /*
3182 * The client wants to freeze the queue
3183 * after this CCB is sent.
3184 */
3185 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3186 }
3187
3188 /* In Target mode, the peripheral driver knows best... */
3189 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3190 if ((device->inq_flags & SID_CmdQue) != 0
3191 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3192 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3193 else
3194 /*
3195 * Clear this in case of a retried CCB that
3196 * failed due to a rejected tag.
3197 */
3198 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3199 }
3200
3201 /*
3202 * Device queues can be shared among multiple sim instances
3203 * that reside on different busses. Use the SIM in the queue
3204 * CCB's path, rather than the one in the bus that was passed
3205 * into this function.
3206 */
3207 sim = work_ccb->ccb_h.path->bus->sim;
3208 (*(sim->sim_action))(sim, work_ccb);
3209 }
3210 devq->send_queue.qfrozen_cnt[0]--;
3211}
3212
3213/*
3214 * This function merges stuff from the slave ccb into the master ccb, while
3215 * keeping important fields in the master ccb constant.
3216 */
3217void
3218xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3219{
3220
3221 /*
3222 * Pull fields that are valid for peripheral drivers to set
3223 * into the master CCB along with the CCB "payload".
3224 */
3225 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3226 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3227 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3228 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3229 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3230 sizeof(union ccb) - sizeof(struct ccb_hdr));
3231}
3232
3233void
3234xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3235{
3236
3237 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3238 ccb_h->pinfo.priority = priority;
3239 ccb_h->path = path;
3240 ccb_h->path_id = path->bus->path_id;
3241 if (path->target)
3242 ccb_h->target_id = path->target->target_id;
3243 else
3244 ccb_h->target_id = CAM_TARGET_WILDCARD;
3245 if (path->device) {
3246 ccb_h->target_lun = path->device->lun_id;
3247 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3248 } else {
3249 ccb_h->target_lun = CAM_TARGET_WILDCARD;
3250 }
3251 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3252 ccb_h->flags = 0;
3253}
3254
3255/* Path manipulation functions */
3256cam_status
3257xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3258 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3259{
3260 struct cam_path *path;
3261 cam_status status;
3262
3263 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3264
3265 if (path == NULL) {
3266 status = CAM_RESRC_UNAVAIL;
3267 return(status);
3268 }
3269 status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3270 if (status != CAM_REQ_CMP) {
3271 free(path, M_CAMXPT);
3272 path = NULL;
3273 }
3274 *new_path_ptr = path;
3275 return (status);
3276}
3277
3278cam_status
3279xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3280 struct cam_periph *periph, path_id_t path_id,
3281 target_id_t target_id, lun_id_t lun_id)
3282{
3283 struct cam_path *path;
3284 struct cam_eb *bus = NULL;
3285 cam_status status;
3286 int need_unlock = 0;
3287
3288 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3289
3290 if (path_id != CAM_BUS_WILDCARD) {
3291 bus = xpt_find_bus(path_id);
3292 if (bus != NULL) {
3293 need_unlock = 1;
3294 CAM_SIM_LOCK(bus->sim);
3295 }
3296 }
3297 status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3298 if (need_unlock)
3299 CAM_SIM_UNLOCK(bus->sim);
3300 if (status != CAM_REQ_CMP) {
3301 free(path, M_CAMXPT);
3302 path = NULL;
3303 }
3304 *new_path_ptr = path;
3305 return (status);
3306}
3307
3308cam_status
3309xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3310 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3311{
3312 struct cam_eb *bus;
3313 struct cam_et *target;
3314 struct cam_ed *device;
3315 cam_status status;
3316
3317 status = CAM_REQ_CMP; /* Completed without error */
3318 target = NULL; /* Wildcarded */
3319 device = NULL; /* Wildcarded */
3320
3321 /*
3322 * We will potentially modify the EDT, so block interrupts
3323 * that may attempt to create cam paths.
3324 */
3325 bus = xpt_find_bus(path_id);
3326 if (bus == NULL) {
3327 status = CAM_PATH_INVALID;
3328 } else {
3329 target = xpt_find_target(bus, target_id);
3330 if (target == NULL) {
3331 /* Create one */
3332 struct cam_et *new_target;
3333
3334 new_target = xpt_alloc_target(bus, target_id);
3335 if (new_target == NULL) {
3336 status = CAM_RESRC_UNAVAIL;
3337 } else {
3338 target = new_target;
3339 }
3340 }
3341 if (target != NULL) {
3342 device = xpt_find_device(target, lun_id);
3343 if (device == NULL) {
3344 /* Create one */
3345 struct cam_ed *new_device;
3346
3347 new_device =
3348 (*(bus->xport->alloc_device))(bus,
3349 target,
3350 lun_id);
3351 if (new_device == NULL) {
3352 status = CAM_RESRC_UNAVAIL;
3353 } else {
3354 device = new_device;
3355 }
3356 }
3357 }
3358 }
3359
3360 /*
3361 * Only touch the user's data if we are successful.
3362 */
3363 if (status == CAM_REQ_CMP) {
3364 new_path->periph = perph;
3365 new_path->bus = bus;
3366 new_path->target = target;
3367 new_path->device = device;
3368 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3369 } else {
3370 if (device != NULL)
3371 xpt_release_device(device);
3372 if (target != NULL)
3373 xpt_release_target(target);
3374 if (bus != NULL)
3375 xpt_release_bus(bus);
3376 }
3377 return (status);
3378}
3379
3380void
3381xpt_release_path(struct cam_path *path)
3382{
3383 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3384 if (path->device != NULL) {
3385 xpt_release_device(path->device);
3386 path->device = NULL;
3387 }
3388 if (path->target != NULL) {
3389 xpt_release_target(path->target);
3390 path->target = NULL;
3391 }
3392 if (path->bus != NULL) {
3393 xpt_release_bus(path->bus);
3394 path->bus = NULL;
3395 }
3396}
3397
3398void
3399xpt_free_path(struct cam_path *path)
3400{
3401
3402 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3403 xpt_release_path(path);
3404 free(path, M_CAMXPT);
3405}
3406
3407
3408/*
3409 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3410 * in path1, 2 for match with wildcards in path2.
3411 */
3412int
3413xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3414{
3415 int retval = 0;
3416
3417 if (path1->bus != path2->bus) {
3418 if (path1->bus->path_id == CAM_BUS_WILDCARD)
3419 retval = 1;
3420 else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3421 retval = 2;
3422 else
3423 return (-1);
3424 }
3425 if (path1->target != path2->target) {
3426 if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3427 if (retval == 0)
3428 retval = 1;
3429 } else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3430 retval = 2;
3431 else
3432 return (-1);
3433 }
3434 if (path1->device != path2->device) {
3435 if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3436 if (retval == 0)
3437 retval = 1;
3438 } else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3439 retval = 2;
3440 else
3441 return (-1);
3442 }
3443 return (retval);
3444}
3445
3446void
3447xpt_print_path(struct cam_path *path)
3448{
3449
3450 if (path == NULL)
3451 printf("(nopath): ");
3452 else {
3453 if (path->periph != NULL)
3454 printf("(%s%d:", path->periph->periph_name,
3455 path->periph->unit_number);
3456 else
3457 printf("(noperiph:");
3458
3459 if (path->bus != NULL)
3460 printf("%s%d:%d:", path->bus->sim->sim_name,
3461 path->bus->sim->unit_number,
3462 path->bus->sim->bus_id);
3463 else
3464 printf("nobus:");
3465
3466 if (path->target != NULL)
3467 printf("%d:", path->target->target_id);
3468 else
3469 printf("X:");
3470
3471 if (path->device != NULL)
3472 printf("%d): ", path->device->lun_id);
3473 else
3474 printf("X): ");
3475 }
3476}
3477
3478void
3479xpt_print(struct cam_path *path, const char *fmt, ...)
3480{
3481 va_list ap;
3482 xpt_print_path(path);
3483 va_start(ap, fmt);
3484 vprintf(fmt, ap);
3485 va_end(ap);
3486}
3487
3488int
3489xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3490{
3491 struct sbuf sb;
3492
3493#ifdef INVARIANTS
3494 if (path != NULL && path->bus != NULL)
3495 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3496#endif
3497
3498 sbuf_new(&sb, str, str_len, 0);
3499
3500 if (path == NULL)
3501 sbuf_printf(&sb, "(nopath): ");
3502 else {
3503 if (path->periph != NULL)
3504 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3505 path->periph->unit_number);
3506 else
3507 sbuf_printf(&sb, "(noperiph:");
3508
3509 if (path->bus != NULL)
3510 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3511 path->bus->sim->unit_number,
3512 path->bus->sim->bus_id);
3513 else
3514 sbuf_printf(&sb, "nobus:");
3515
3516 if (path->target != NULL)
3517 sbuf_printf(&sb, "%d:", path->target->target_id);
3518 else
3519 sbuf_printf(&sb, "X:");
3520
3521 if (path->device != NULL)
3522 sbuf_printf(&sb, "%d): ", path->device->lun_id);
3523 else
3524 sbuf_printf(&sb, "X): ");
3525 }
3526 sbuf_finish(&sb);
3527
3528 return(sbuf_len(&sb));
3529}
3530
3531path_id_t
3532xpt_path_path_id(struct cam_path *path)
3533{
3534 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3535
3536 return(path->bus->path_id);
3537}
3538
3539target_id_t
3540xpt_path_target_id(struct cam_path *path)
3541{
3542 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3543
3544 if (path->target != NULL)
3545 return (path->target->target_id);
3546 else
3547 return (CAM_TARGET_WILDCARD);
3548}
3549
3550lun_id_t
3551xpt_path_lun_id(struct cam_path *path)
3552{
3553 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3554
3555 if (path->device != NULL)
3556 return (path->device->lun_id);
3557 else
3558 return (CAM_LUN_WILDCARD);
3559}
3560
3561struct cam_sim *
3562xpt_path_sim(struct cam_path *path)
3563{
3564
3565 return (path->bus->sim);
3566}
3567
3568struct cam_periph*
3569xpt_path_periph(struct cam_path *path)
3570{
3571 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3572
3573 return (path->periph);
3574}
3575
3576/*
3577 * Release a CAM control block for the caller. Remit the cost of the structure
3578 * to the device referenced by the path. If the this device had no 'credits'
3579 * and peripheral drivers have registered async callbacks for this notification
3580 * call them now.
3581 */
3582void
3583xpt_release_ccb(union ccb *free_ccb)
3584{
3585 struct cam_path *path;
3586 struct cam_ed *device;
3587 struct cam_eb *bus;
3588 struct cam_sim *sim;
3589
3590 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3591 path = free_ccb->ccb_h.path;
3592 device = path->device;
3593 bus = path->bus;
3594 sim = bus->sim;
3595
3596 mtx_assert(sim->mtx, MA_OWNED);
3597
3598 cam_ccbq_release_opening(&device->ccbq);
3599 if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) {
3600 device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
3601 cam_ccbq_resize(&device->ccbq,
3602 device->ccbq.dev_openings + device->ccbq.dev_active);
3603 }
3604 if (sim->ccb_count > sim->max_ccbs) {
3605 xpt_free_ccb(free_ccb);
3606 sim->ccb_count--;
3607 } else {
3608 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3609 xpt_links.sle);
3610 }
3611 if (sim->devq == NULL) {
3612 return;
3613 }
3614 sim->devq->alloc_openings++;
3615 sim->devq->alloc_active--;
3616 if (device_is_alloc_queued(device) == 0)
3617 xpt_schedule_dev_allocq(bus, device);
3618 xpt_run_dev_allocq(bus);
3619}
3620
3621/* Functions accessed by SIM drivers */
3622
3623static struct xpt_xport xport_default = {
3624 .alloc_device = xpt_alloc_device_default,
3625 .action = xpt_action_default,
3626 .async = xpt_dev_async_default,
3627};
3628
3629/*
3630 * A sim structure, listing the SIM entry points and instance
3631 * identification info is passed to xpt_bus_register to hook the SIM
3632 * into the CAM framework. xpt_bus_register creates a cam_eb entry
3633 * for this new bus and places it in the array of busses and assigns
3634 * it a path_id. The path_id may be influenced by "hard wiring"
3635 * information specified by the user. Once interrupt services are
3636 * available, the bus will be probed.
3637 */
3638int32_t
3639xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3640{
3641 struct cam_eb *new_bus;
3642 struct cam_eb *old_bus;
3643 struct ccb_pathinq cpi;
3644 struct cam_path *path;
3645 cam_status status;
3646
3647 mtx_assert(sim->mtx, MA_OWNED);
3648
3649 sim->bus_id = bus;
3650 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3651 M_CAMXPT, M_NOWAIT);
3652 if (new_bus == NULL) {
3653 /* Couldn't satisfy request */
3654 return (CAM_RESRC_UNAVAIL);
3655 }
3656 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3657 if (path == NULL) {
3658 free(new_bus, M_CAMXPT);
3659 return (CAM_RESRC_UNAVAIL);
3660 }
3661
3662 if (strcmp(sim->sim_name, "xpt") != 0) {
3663 sim->path_id =
3664 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3665 }
3666
3667 TAILQ_INIT(&new_bus->et_entries);
3668 new_bus->path_id = sim->path_id;
3669 cam_sim_hold(sim);
3670 new_bus->sim = sim;
3671 timevalclear(&new_bus->last_reset);
3672 new_bus->flags = 0;
3673 new_bus->refcount = 1; /* Held until a bus_deregister event */
3674 new_bus->generation = 0;
3675
3676 mtx_lock(&xsoftc.xpt_topo_lock);
3677 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3678 while (old_bus != NULL
3679 && old_bus->path_id < new_bus->path_id)
3680 old_bus = TAILQ_NEXT(old_bus, links);
3681 if (old_bus != NULL)
3682 TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3683 else
3684 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3685 xsoftc.bus_generation++;
3686 mtx_unlock(&xsoftc.xpt_topo_lock);
3687
3688 /*
3689 * Set a default transport so that a PATH_INQ can be issued to
3690 * the SIM. This will then allow for probing and attaching of
3691 * a more appropriate transport.
3692 */
3693 new_bus->xport = &xport_default;
3694
3695 status = xpt_compile_path(path, /*periph*/NULL, sim->path_id,
3696 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3697 if (status != CAM_REQ_CMP)
3698 printf("xpt_compile_path returned %d\n", status);
3699
3700 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3701 cpi.ccb_h.func_code = XPT_PATH_INQ;
3702 xpt_action((union ccb *)&cpi);
3703
3704 if (cpi.ccb_h.status == CAM_REQ_CMP) {
3705 switch (cpi.transport) {
3706 case XPORT_SPI:
3707 case XPORT_SAS:
3708 case XPORT_FC:
3709 case XPORT_USB:
3710 case XPORT_ISCSI:
3711 case XPORT_PPB:
3712 new_bus->xport = scsi_get_xport();
3713 break;
3714 case XPORT_ATA:
3715 case XPORT_SATA:
3716 new_bus->xport = ata_get_xport();
3717 break;
3718 default:
3719 new_bus->xport = &xport_default;
3720 break;
3721 }
3722 }
3723
3724 /* Notify interested parties */
3725 if (sim->path_id != CAM_XPT_PATH_ID) {
3726 union ccb *scan_ccb;
3727
3728 xpt_async(AC_PATH_REGISTERED, path, &cpi);
3729 /* Initiate bus rescan. */
3730 scan_ccb = xpt_alloc_ccb_nowait();
3731 scan_ccb->ccb_h.path = path;
3732 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3733 scan_ccb->crcn.flags = 0;
3734 xpt_rescan(scan_ccb);
3735 } else
3736 xpt_free_path(path);
3737 return (CAM_SUCCESS);
3738}
3739
3740int32_t
3741xpt_bus_deregister(path_id_t pathid)
3742{
3743 struct cam_path bus_path;
3744 cam_status status;
3745
3746 status = xpt_compile_path(&bus_path, NULL, pathid,
3747 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3748 if (status != CAM_REQ_CMP)
3749 return (status);
3750
3751 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3752 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3753
3754 /* Release the reference count held while registered. */
3755 xpt_release_bus(bus_path.bus);
3756 xpt_release_path(&bus_path);
3757
3758 return (CAM_REQ_CMP);
3759}
3760
3761static path_id_t
3762xptnextfreepathid(void)
3763{
3764 struct cam_eb *bus;
3765 path_id_t pathid;
3766 const char *strval;
3767
3768 pathid = 0;
3769 mtx_lock(&xsoftc.xpt_topo_lock);
3770 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3771retry:
3772 /* Find an unoccupied pathid */
3773 while (bus != NULL && bus->path_id <= pathid) {
3774 if (bus->path_id == pathid)
3775 pathid++;
3776 bus = TAILQ_NEXT(bus, links);
3777 }
3778 mtx_unlock(&xsoftc.xpt_topo_lock);
3779
3780 /*
3781 * Ensure that this pathid is not reserved for
3782 * a bus that may be registered in the future.
3783 */
3784 if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3785 ++pathid;
3786 /* Start the search over */
3787 mtx_lock(&xsoftc.xpt_topo_lock);
3788 goto retry;
3789 }
3790 return (pathid);
3791}
3792
3793static path_id_t
3794xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3795{
3796 path_id_t pathid;
3797 int i, dunit, val;
3798 char buf[32];
3799 const char *dname;
3800
3801 pathid = CAM_XPT_PATH_ID;
3802 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3803 i = 0;
3804 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3805 if (strcmp(dname, "scbus")) {
3806 /* Avoid a bit of foot shooting. */
3807 continue;
3808 }
3809 if (dunit < 0) /* unwired?! */
3810 continue;
3811 if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
3812 if (sim_bus == val) {
3813 pathid = dunit;
3814 break;
3815 }
3816 } else if (sim_bus == 0) {
3817 /* Unspecified matches bus 0 */
3818 pathid = dunit;
3819 break;
3820 } else {
3821 printf("Ambiguous scbus configuration for %s%d "
3822 "bus %d, cannot wire down. The kernel "
3823 "config entry for scbus%d should "
3824 "specify a controller bus.\n"
3825 "Scbus will be assigned dynamically.\n",
3826 sim_name, sim_unit, sim_bus, dunit);
3827 break;
3828 }
3829 }
3830
3831 if (pathid == CAM_XPT_PATH_ID)
3832 pathid = xptnextfreepathid();
3833 return (pathid);
3834}
3835
3836void
3837xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
3838{
3839 struct cam_eb *bus;
3840 struct cam_et *target, *next_target;
3841 struct cam_ed *device, *next_device;
3842
3843 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3844
3845 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
3846
3847 /*
3848 * Most async events come from a CAM interrupt context. In
3849 * a few cases, the error recovery code at the peripheral layer,
3850 * which may run from our SWI or a process context, may signal
3851 * deferred events with a call to xpt_async.
3852 */
3853
3854 bus = path->bus;
3855
3856 if (async_code == AC_BUS_RESET) {
3857 /* Update our notion of when the last reset occurred */
3858 microtime(&bus->last_reset);
3859 }
3860
3861 for (target = TAILQ_FIRST(&bus->et_entries);
3862 target != NULL;
3863 target = next_target) {
3864
3865 next_target = TAILQ_NEXT(target, links);
3866
3867 if (path->target != target
3868 && path->target->target_id != CAM_TARGET_WILDCARD
3869 && target->target_id != CAM_TARGET_WILDCARD)
3870 continue;
3871
3872 if (async_code == AC_SENT_BDR) {
3873 /* Update our notion of when the last reset occurred */
3874 microtime(&path->target->last_reset);
3875 }
3876
3877 for (device = TAILQ_FIRST(&target->ed_entries);
3878 device != NULL;
3879 device = next_device) {
3880
3881 next_device = TAILQ_NEXT(device, links);
3882
3883 if (path->device != device
3884 && path->device->lun_id != CAM_LUN_WILDCARD
3885 && device->lun_id != CAM_LUN_WILDCARD)
3886 continue;
3887 /*
3888 * The async callback could free the device.
3889 * If it is a broadcast async, it doesn't hold
3890 * device reference, so take our own reference.
3891 */
3892 xpt_acquire_device(device);
3893 (*(bus->xport->async))(async_code, bus,
3894 target, device,
3895 async_arg);
3896
3897 xpt_async_bcast(&device->asyncs, async_code,
3898 path, async_arg);
3899 xpt_release_device(device);
3900 }
3901 }
3902
3903 /*
3904 * If this wasn't a fully wildcarded async, tell all
3905 * clients that want all async events.
3906 */
3907 if (bus != xpt_periph->path->bus)
3908 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
3909 path, async_arg);
3910}
3911
3912static void
3913xpt_async_bcast(struct async_list *async_head,
3914 u_int32_t async_code,
3915 struct cam_path *path, void *async_arg)
3916{
3917 struct async_node *cur_entry;
3918
3919 cur_entry = SLIST_FIRST(async_head);
3920 while (cur_entry != NULL) {
3921 struct async_node *next_entry;
3922 /*
3923 * Grab the next list entry before we call the current
3924 * entry's callback. This is because the callback function
3925 * can delete its async callback entry.
3926 */
3927 next_entry = SLIST_NEXT(cur_entry, links);
3928 if ((cur_entry->event_enable & async_code) != 0)
3929 cur_entry->callback(cur_entry->callback_arg,
3930 async_code, path,
3931 async_arg);
3932 cur_entry = next_entry;
3933 }
3934}
3935
3936static void
3937xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
3938 struct cam_et *target, struct cam_ed *device,
3939 void *async_arg)
3940{
3941 printf("%s called\n", __func__);
3942}
3943
3944u_int32_t
3945xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count)
3946{
3947 struct cam_ed *dev = path->device;
3948
3949 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3950 dev->sim->devq->alloc_openings +=
3951 cam_ccbq_freeze(&dev->ccbq, rl, count);
3952 /* Remove frozen device from allocq. */
3953 if (device_is_alloc_queued(dev) &&
3954 cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
3955 CAMQ_GET_PRIO(&dev->drvq)))) {
3956 camq_remove(&dev->sim->devq->alloc_queue,
3957 dev->alloc_ccb_entry.pinfo.index);
3958 }
3959 /* Remove frozen device from sendq. */
3960 if (device_is_send_queued(dev) &&
3961 cam_ccbq_frozen_top(&dev->ccbq)) {
3962 camq_remove(&dev->sim->devq->send_queue,
3963 dev->send_ccb_entry.pinfo.index);
3964 }
3965 return (dev->ccbq.queue.qfrozen_cnt[rl]);
3966}
3967
3968u_int32_t
3969xpt_freeze_devq(struct cam_path *path, u_int count)
3970{
3971
3972 return (xpt_freeze_devq_rl(path, 0, count));
3973}
3974
3975u_int32_t
3976xpt_freeze_simq(struct cam_sim *sim, u_int count)
3977{
3978
3979 mtx_assert(sim->mtx, MA_OWNED);
3980 sim->devq->send_queue.qfrozen_cnt[0] += count;
3981 return (sim->devq->send_queue.qfrozen_cnt[0]);
3982}
3983
3984static void
3985xpt_release_devq_timeout(void *arg)
3986{
3987 struct cam_ed *device;
3988
3989 device = (struct cam_ed *)arg;
3990
3991 xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE);
3992}
3993
3994void
3995xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
3996{
3997 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3998
3999 xpt_release_devq_device(path->device, /*rl*/0, count, run_queue);
4000}
4001
4002void
4003xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue)
4004{
4005 mtx_assert(path->bus->sim->mtx, MA_OWNED);
4006
4007 xpt_release_devq_device(path->device, rl, count, run_queue);
4008}
4009
4010static void
4011xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue)
4012{
4013
4014 if (count > dev->ccbq.queue.qfrozen_cnt[rl]) {
4015#ifdef INVARIANTS
4016 printf("xpt_release_devq(%d): requested %u > present %u\n",
4017 rl, count, dev->ccbq.queue.qfrozen_cnt[rl]);
4018#endif
4019 count = dev->ccbq.queue.qfrozen_cnt[rl];
4020 }
4021 dev->sim->devq->alloc_openings -=
4022 cam_ccbq_release(&dev->ccbq, rl, count);
4023 if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
4024 CAMQ_GET_PRIO(&dev->drvq))) == 0) {
4025 if (xpt_schedule_dev_allocq(dev->target->bus, dev))
4026 xpt_run_dev_allocq(dev->target->bus);
4027 }
4028 if (cam_ccbq_frozen_top(&dev->ccbq) == 0) {
4029 /*
4030 * No longer need to wait for a successful
4031 * command completion.
4032 */
4033 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4034 /*
4035 * Remove any timeouts that might be scheduled
4036 * to release this queue.
4037 */
4038 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4039 callout_stop(&dev->callout);
4040 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4041 }
4042 if (run_queue == 0)
4043 return;
4044 /*
4045 * Now that we are unfrozen schedule the
4046 * device so any pending transactions are
4047 * run.
4048 */
4049 if (xpt_schedule_dev_sendq(dev->target->bus, dev))
4050 xpt_run_dev_sendq(dev->target->bus);
4051 }
4052}
4053
4054void
4055xpt_release_simq(struct cam_sim *sim, int run_queue)
4056{
4057 struct camq *sendq;
4058
4059 mtx_assert(sim->mtx, MA_OWNED);
4060 sendq = &(sim->devq->send_queue);
4061 if (sendq->qfrozen_cnt[0] <= 0) {
4062#ifdef INVARIANTS
4063 printf("xpt_release_simq: requested 1 > present %u\n",
4064 sendq->qfrozen_cnt[0]);
4065#endif
4066 } else
4067 sendq->qfrozen_cnt[0]--;
4068 if (sendq->qfrozen_cnt[0] == 0) {
4069 /*
4070 * If there is a timeout scheduled to release this
4071 * sim queue, remove it. The queue frozen count is
4072 * already at 0.
4073 */
4074 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4075 callout_stop(&sim->callout);
4076 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4077 }
4078 if (run_queue) {
4079 struct cam_eb *bus;
4080
4081 /*
4082 * Now that we are unfrozen run the send queue.
4083 */
4084 bus = xpt_find_bus(sim->path_id);
4085 xpt_run_dev_sendq(bus);
4086 xpt_release_bus(bus);
4087 }
4088 }
4089}
4090
4091/*
4092 * XXX Appears to be unused.
4093 */
4094static void
4095xpt_release_simq_timeout(void *arg)
4096{
4097 struct cam_sim *sim;
4098
4099 sim = (struct cam_sim *)arg;
4100 xpt_release_simq(sim, /* run_queue */ TRUE);
4101}
4102
4103void
4104xpt_done(union ccb *done_ccb)
4105{
4106 struct cam_sim *sim;
4107 int first;
4108
4109 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4110 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4111 /*
4112 * Queue up the request for handling by our SWI handler
4113 * any of the "non-immediate" type of ccbs.
4114 */
4115 sim = done_ccb->ccb_h.path->bus->sim;
4116 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4117 sim_links.tqe);
4118 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4119 if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4120 mtx_lock(&cam_simq_lock);
4121 first = TAILQ_EMPTY(&cam_simq);
4122 TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4123 mtx_unlock(&cam_simq_lock);
4124 sim->flags |= CAM_SIM_ON_DONEQ;
4125 if (first)
4126 swi_sched(cambio_ih, 0);
4127 }
4128 }
4129}
4130
4131union ccb *
4132xpt_alloc_ccb()
4133{
4134 union ccb *new_ccb;
4135
4136 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK);
4137 return (new_ccb);
4138}
4139
4140union ccb *
4141xpt_alloc_ccb_nowait()
4142{
4143 union ccb *new_ccb;
4144
4145 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT);
4146 return (new_ccb);
4147}
4148
4149void
4150xpt_free_ccb(union ccb *free_ccb)
4151{
4152 free(free_ccb, M_CAMXPT);
4153}
4154
4155
4156
4157/* Private XPT functions */
4158
4159/*
4160 * Get a CAM control block for the caller. Charge the structure to the device
4161 * referenced by the path. If the this device has no 'credits' then the
4162 * device already has the maximum number of outstanding operations under way
4163 * and we return NULL. If we don't have sufficient resources to allocate more
4164 * ccbs, we also return NULL.
4165 */
4166static union ccb *
4167xpt_get_ccb(struct cam_ed *device)
4168{
4169 union ccb *new_ccb;
4170 struct cam_sim *sim;
4171
4172 sim = device->sim;
4173 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4174 new_ccb = xpt_alloc_ccb_nowait();
4175 if (new_ccb == NULL) {
4176 return (NULL);
4177 }
4178 if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4179 callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4180 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4181 xpt_links.sle);
4182 sim->ccb_count++;
4183 }
4184 cam_ccbq_take_opening(&device->ccbq);
4185 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4186 return (new_ccb);
4187}
4188
4189static void
4190xpt_release_bus(struct cam_eb *bus)
4191{
4192
4193 if ((--bus->refcount == 0)
4194 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4195 mtx_lock(&xsoftc.xpt_topo_lock);
4196 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4197 xsoftc.bus_generation++;
4198 mtx_unlock(&xsoftc.xpt_topo_lock);
4199 cam_sim_release(bus->sim);
4200 free(bus, M_CAMXPT);
4201 }
4202}
4203
4204static struct cam_et *
4205xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4206{
4207 struct cam_et *target;
4208
4209 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT);
4210 if (target != NULL) {
4211 struct cam_et *cur_target;
4212
4213 TAILQ_INIT(&target->ed_entries);
4214 target->bus = bus;
4215 target->target_id = target_id;
4216 target->refcount = 1;
4217 target->generation = 0;
4218 target->luns = NULL;
4219 timevalclear(&target->last_reset);
4220 /*
4221 * Hold a reference to our parent bus so it
4222 * will not go away before we do.
4223 */
4224 bus->refcount++;
4225
4226 /* Insertion sort into our bus's target list */
4227 cur_target = TAILQ_FIRST(&bus->et_entries);
4228 while (cur_target != NULL && cur_target->target_id < target_id)
4229 cur_target = TAILQ_NEXT(cur_target, links);
4230
4231 if (cur_target != NULL) {
4232 TAILQ_INSERT_BEFORE(cur_target, target, links);
4233 } else {
4234 TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4235 }
4236 bus->generation++;
4237 }
4238 return (target);
4239}
4240
4241static void
4242xpt_release_target(struct cam_et *target)
4243{
4244
4245 if ((--target->refcount == 0)
4246 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4247 TAILQ_REMOVE(&target->bus->et_entries, target, links);
4248 target->bus->generation++;
4249 xpt_release_bus(target->bus);
4250 if (target->luns)
4251 free(target->luns, M_CAMXPT);
4252 free(target, M_CAMXPT);
4253 }
4254}
4255
4256static struct cam_ed *
4257xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4258 lun_id_t lun_id)
4259{
4260 struct cam_ed *device, *cur_device;
4261
4262 device = xpt_alloc_device(bus, target, lun_id);
4263 if (device == NULL)
4264 return (NULL);
4265
4266 device->mintags = 1;
4267 device->maxtags = 1;
4268 bus->sim->max_ccbs += device->ccbq.devq_openings;
4269 cur_device = TAILQ_FIRST(&target->ed_entries);
4270 while (cur_device != NULL && cur_device->lun_id < lun_id)
4271 cur_device = TAILQ_NEXT(cur_device, links);
4272 if (cur_device != NULL) {
4273 TAILQ_INSERT_BEFORE(cur_device, device, links);
4274 } else {
4275 TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4276 }
4277 target->generation++;
4278
4279 return (device);
4280}
4281
4282struct cam_ed *
4283xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4284{
4285 struct cam_ed *device;
4286 struct cam_devq *devq;
4287 cam_status status;
4288
4289 /* Make space for us in the device queue on our bus */
4290 devq = bus->sim->devq;
4291 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4292
4293 if (status != CAM_REQ_CMP) {
4294 device = NULL;
4295 } else {
4296 device = (struct cam_ed *)malloc(sizeof(*device),
4297 M_CAMXPT, M_NOWAIT);
4298 }
4299
4300 if (device != NULL) {
4301 cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4302 device->alloc_ccb_entry.device = device;
4303 cam_init_pinfo(&device->send_ccb_entry.pinfo);
4304 device->send_ccb_entry.device = device;
4305 device->target = target;
4306 device->lun_id = lun_id;
4307 device->sim = bus->sim;
4308 /* Initialize our queues */
4309 if (camq_init(&device->drvq, 0) != 0) {
4310 free(device, M_CAMXPT);
4311 return (NULL);
4312 }
4313 if (cam_ccbq_init(&device->ccbq,
4314 bus->sim->max_dev_openings) != 0) {
4315 camq_fini(&device->drvq);
4316 free(device, M_CAMXPT);
4317 return (NULL);
4318 }
4319 SLIST_INIT(&device->asyncs);
4320 SLIST_INIT(&device->periphs);
4321 device->generation = 0;
4322 device->owner = NULL;
4323 device->flags = CAM_DEV_UNCONFIGURED;
4324 device->tag_delay_count = 0;
4325 device->tag_saved_openings = 0;
4326 device->refcount = 1;
4327 callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4328
4329 /*
4330 * Hold a reference to our parent target so it
4331 * will not go away before we do.
4332 */
4333 target->refcount++;
4334
4335 }
4336 return (device);
4337}
4338
4339void
4340xpt_acquire_device(struct cam_ed *device)
4341{
4342
4343 device->refcount++;
4344}
4345
4346void
4347xpt_release_device(struct cam_ed *device)
4348{
4349
4350 if (--device->refcount == 0) {
4351 struct cam_devq *devq;
4352
4353 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4354 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4355 panic("Removing device while still queued for ccbs");
4356
4357 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4358 callout_stop(&device->callout);
4359
4360 TAILQ_REMOVE(&device->target->ed_entries, device,links);
4361 device->target->generation++;
4362 device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4363 /* Release our slot in the devq */
4364 devq = device->target->bus->sim->devq;
4365 cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4366 camq_fini(&device->drvq);
4367 cam_ccbq_fini(&device->ccbq);
4368 xpt_release_target(device->target);
4369 free(device, M_CAMXPT);
4370 }
4371}
4372
4373u_int32_t
4374xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4375{
4376 int diff;
4377 int result;
4378 struct cam_ed *dev;
4379
4380 dev = path->device;
4381
4382 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4383 result = cam_ccbq_resize(&dev->ccbq, newopenings);
4384 if (result == CAM_REQ_CMP && (diff < 0)) {
4385 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4386 }
4387 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4388 || (dev->inq_flags & SID_CmdQue) != 0)
4389 dev->tag_saved_openings = newopenings;
4390 /* Adjust the global limit */
4391 dev->sim->max_ccbs += diff;
4392 return (result);
4393}
4394
4395static struct cam_eb *
4396xpt_find_bus(path_id_t path_id)
4397{
4398 struct cam_eb *bus;
4399
4400 mtx_lock(&xsoftc.xpt_topo_lock);
4401 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4402 bus != NULL;
4403 bus = TAILQ_NEXT(bus, links)) {
4404 if (bus->path_id == path_id) {
4405 bus->refcount++;
4406 break;
4407 }
4408 }
4409 mtx_unlock(&xsoftc.xpt_topo_lock);
4410 return (bus);
4411}
4412
4413static struct cam_et *
4414xpt_find_target(struct cam_eb *bus, target_id_t target_id)
4415{
4416 struct cam_et *target;
4417
4418 for (target = TAILQ_FIRST(&bus->et_entries);
4419 target != NULL;
4420 target = TAILQ_NEXT(target, links)) {
4421 if (target->target_id == target_id) {
4422 target->refcount++;
4423 break;
4424 }
4425 }
4426 return (target);
4427}
4428
4429static struct cam_ed *
4430xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4431{
4432 struct cam_ed *device;
4433
4434 for (device = TAILQ_FIRST(&target->ed_entries);
4435 device != NULL;
4436 device = TAILQ_NEXT(device, links)) {
4437 if (device->lun_id == lun_id) {
4438 device->refcount++;
4439 break;
4440 }
4441 }
4442 return (device);
4443}
4444
4445void
4446xpt_start_tags(struct cam_path *path)
4447{
4448 struct ccb_relsim crs;
4449 struct cam_ed *device;
4450 struct cam_sim *sim;
4451 int newopenings;
4452
4453 device = path->device;
4454 sim = path->bus->sim;
4455 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4456 xpt_freeze_devq(path, /*count*/1);
4457 device->inq_flags |= SID_CmdQue;
4458 if (device->tag_saved_openings != 0)
4459 newopenings = device->tag_saved_openings;
4460 else
4461 newopenings = min(device->maxtags,
4462 sim->max_tagged_dev_openings);
4463 xpt_dev_ccbq_resize(path, newopenings);
4464 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4465 crs.ccb_h.func_code = XPT_REL_SIMQ;
4466 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4467 crs.openings
4468 = crs.release_timeout
4469 = crs.qfrozen_cnt
4470 = 0;
4471 xpt_action((union ccb *)&crs);
4472}
4473
4474void
4475xpt_stop_tags(struct cam_path *path)
4476{
4477 struct ccb_relsim crs;
4478 struct cam_ed *device;
4479 struct cam_sim *sim;
4480
4481 device = path->device;
4482 sim = path->bus->sim;
4483 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4484 device->tag_delay_count = 0;
4485 xpt_freeze_devq(path, /*count*/1);
4486 device->inq_flags &= ~SID_CmdQue;
4487 xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4488 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4489 crs.ccb_h.func_code = XPT_REL_SIMQ;
4490 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4491 crs.openings
4492 = crs.release_timeout
4493 = crs.qfrozen_cnt
4494 = 0;
4495 xpt_action((union ccb *)&crs);
4496}
4497
4498static void
4499xpt_boot_delay(void *arg)
4500{
4501
4502 xpt_release_boot();
4503}
4504
4505static void
4506xpt_config(void *arg)
4507{
4508 /*
4509 * Now that interrupts are enabled, go find our devices
4510 */
4511
4512#ifdef CAMDEBUG
4513 /* Setup debugging flags and path */
4514#ifdef CAM_DEBUG_BUS
4515 if (cam_dflags != CAM_DEBUG_NONE) {
4516 /*
4517 * Locking is specifically omitted here. No SIMs have
4518 * registered yet, so xpt_create_path will only be searching
4519 * empty lists of targets and devices.
4520 */
4521 if (xpt_create_path(&cam_dpath, xpt_periph,
4522 CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4523 CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4524 printf("xpt_config: xpt_create_path() failed for debug"
4525 " target %d:%d:%d, debugging disabled\n",
4526 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4527 cam_dflags = CAM_DEBUG_NONE;
4528 }
4529 } else
4530 cam_dpath = NULL;
4531#else /* !CAM_DEBUG_BUS */
4532 cam_dpath = NULL;
4533#endif /* CAM_DEBUG_BUS */
4534#endif /* CAMDEBUG */
4535
4536 periphdriver_init(1);
4537 xpt_hold_boot();
4538 callout_init(&xsoftc.boot_callout, 1);
4539 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4540 xpt_boot_delay, NULL);
4541 /* Fire up rescan thread. */
4542 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4543 printf("xpt_config: failed to create rescan thread.\n");
4544 }
4545}
4546
4547void
4548xpt_hold_boot(void)
4549{
4550 xpt_lock_buses();
4551 xsoftc.buses_to_config++;
4552 xpt_unlock_buses();
4553}
4554
4555void
4556xpt_release_boot(void)
4557{
4558 xpt_lock_buses();
4559 xsoftc.buses_to_config--;
4560 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4561 struct xpt_task *task;
4562
4563 xsoftc.buses_config_done = 1;
4564 xpt_unlock_buses();
4565 /* Call manually because we don't have any busses */
4566 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4567 if (task != NULL) {
4568 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4569 taskqueue_enqueue(taskqueue_thread, &task->task);
4570 }
4571 } else
4572 xpt_unlock_buses();
4573}
4574
4575/*
4576 * If the given device only has one peripheral attached to it, and if that
4577 * peripheral is the passthrough driver, announce it. This insures that the
4578 * user sees some sort of announcement for every peripheral in their system.
4579 */
4580static int
4581xptpassannouncefunc(struct cam_ed *device, void *arg)
4582{
4583 struct cam_periph *periph;
4584 int i;
4585
4586 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4587 periph = SLIST_NEXT(periph, periph_links), i++);
4588
4589 periph = SLIST_FIRST(&device->periphs);
4590 if ((i == 1)
4591 && (strncmp(periph->periph_name, "pass", 4) == 0))
4592 xpt_announce_periph(periph, NULL);
4593
4594 return(1);
4595}
4596
4597static void
4598xpt_finishconfig_task(void *context, int pending)
4599{
4600
4601 periphdriver_init(2);
4602 /*
4603 * Check for devices with no "standard" peripheral driver
4604 * attached. For any devices like that, announce the
4605 * passthrough driver so the user will see something.
4606 */
4607 xpt_for_all_devices(xptpassannouncefunc, NULL);
4608
4609 /* Release our hook so that the boot can continue. */
4610 config_intrhook_disestablish(xsoftc.xpt_config_hook);
4611 free(xsoftc.xpt_config_hook, M_CAMXPT);
4612 xsoftc.xpt_config_hook = NULL;
4613
4614 free(context, M_CAMXPT);
4615}
4616
4617cam_status
4618xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4619 struct cam_path *path)
4620{
4621 struct ccb_setasync csa;
4622 cam_status status;
4623 int xptpath = 0;
4624
4625 if (path == NULL) {
4626 mtx_lock(&xsoftc.xpt_lock);
4627 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4628 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4629 if (status != CAM_REQ_CMP) {
4630 mtx_unlock(&xsoftc.xpt_lock);
4631 return (status);
4632 }
4633 xptpath = 1;
4634 }
4635
4636 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4637 csa.ccb_h.func_code = XPT_SASYNC_CB;
4638 csa.event_enable = event;
4639 csa.callback = cbfunc;
4640 csa.callback_arg = cbarg;
4641 xpt_action((union ccb *)&csa);
4642 status = csa.ccb_h.status;
4643 if (xptpath) {
4644 xpt_free_path(path);
4645 mtx_unlock(&xsoftc.xpt_lock);
4646
4647 if ((status == CAM_REQ_CMP) &&
4648 (csa.event_enable & AC_FOUND_DEVICE)) {
4649 /*
4650 * Get this peripheral up to date with all
4651 * the currently existing devices.
4652 */
4653 xpt_for_all_devices(xptsetasyncfunc, &csa);
4654 }
4655 if ((status == CAM_REQ_CMP) &&
4656 (csa.event_enable & AC_PATH_REGISTERED)) {
4657 /*
4658 * Get this peripheral up to date with all
4659 * the currently existing busses.
4660 */
4661 xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4662 }
4663 }
4664 return (status);
4665}
4666
4667static void
4668xptaction(struct cam_sim *sim, union ccb *work_ccb)
4669{
4670 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4671
4672 switch (work_ccb->ccb_h.func_code) {
4673 /* Common cases first */
4674 case XPT_PATH_INQ: /* Path routing inquiry */
4675 {
4676 struct ccb_pathinq *cpi;
4677
4678 cpi = &work_ccb->cpi;
4679 cpi->version_num = 1; /* XXX??? */
4680 cpi->hba_inquiry = 0;
4681 cpi->target_sprt = 0;
4682 cpi->hba_misc = 0;
4683 cpi->hba_eng_cnt = 0;
4684 cpi->max_target = 0;
4685 cpi->max_lun = 0;
4686 cpi->initiator_id = 0;
4687 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4688 strncpy(cpi->hba_vid, "", HBA_IDLEN);
4689 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4690 cpi->unit_number = sim->unit_number;
4691 cpi->bus_id = sim->bus_id;
4692 cpi->base_transfer_speed = 0;
4693 cpi->protocol = PROTO_UNSPECIFIED;
4694 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4695 cpi->transport = XPORT_UNSPECIFIED;
4696 cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4697 cpi->ccb_h.status = CAM_REQ_CMP;
4698 xpt_done(work_ccb);
4699 break;
4700 }
4701 default:
4702 work_ccb->ccb_h.status = CAM_REQ_INVALID;
4703 xpt_done(work_ccb);
4704 break;
4705 }
4706}
4707
4708/*
4709 * The xpt as a "controller" has no interrupt sources, so polling
4710 * is a no-op.
4711 */
4712static void
4713xptpoll(struct cam_sim *sim)
4714{
4715}
4716
4717void
4718xpt_lock_buses(void)
4719{
4720 mtx_lock(&xsoftc.xpt_topo_lock);
4721}
4722
4723void
4724xpt_unlock_buses(void)
4725{
4726 mtx_unlock(&xsoftc.xpt_topo_lock);
4727}
4728
4729static void
4730camisr(void *dummy)
4731{
4732 cam_simq_t queue;
4733 struct cam_sim *sim;
4734
4735 mtx_lock(&cam_simq_lock);
4736 TAILQ_INIT(&queue);
4737 while (!TAILQ_EMPTY(&cam_simq)) {
4738 TAILQ_CONCAT(&queue, &cam_simq, links);
4739 mtx_unlock(&cam_simq_lock);
4740
4741 while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4742 TAILQ_REMOVE(&queue, sim, links);
4743 CAM_SIM_LOCK(sim);
4744 sim->flags &= ~CAM_SIM_ON_DONEQ;
4745 camisr_runqueue(&sim->sim_doneq);
4746 CAM_SIM_UNLOCK(sim);
4747 }
4748 mtx_lock(&cam_simq_lock);
4749 }
4750 mtx_unlock(&cam_simq_lock);
4751}
4752
4753static void
4754camisr_runqueue(void *V_queue)
4755{
4756 cam_isrq_t *queue = V_queue;
4757 struct ccb_hdr *ccb_h;
4758
4759 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
4760 int runq;
4761
4762 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
4763 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
4764
4765 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
4766 ("camisr\n"));
4767
4768 runq = FALSE;
4769
4770 if (ccb_h->flags & CAM_HIGH_POWER) {
4771 struct highpowerlist *hphead;
4772 union ccb *send_ccb;
4773
4774 mtx_lock(&xsoftc.xpt_lock);
4775 hphead = &xsoftc.highpowerq;
4776
4777 send_ccb = (union ccb *)STAILQ_FIRST(hphead);
4778
4779 /*
4780 * Increment the count since this command is done.
4781 */
4782 xsoftc.num_highpower++;
4783
4784 /*
4785 * Any high powered commands queued up?
4786 */
4787 if (send_ccb != NULL) {
4788
4789 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
4790 mtx_unlock(&xsoftc.xpt_lock);
4791
4792 xpt_release_devq(send_ccb->ccb_h.path,
4793 /*count*/1, /*runqueue*/TRUE);
4794 } else
4795 mtx_unlock(&xsoftc.xpt_lock);
4796 }
4797
4798 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
4799 struct cam_ed *dev;
4800
4801 dev = ccb_h->path->device;
4802
4803 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
4804 ccb_h->path->bus->sim->devq->send_active--;
4805 ccb_h->path->bus->sim->devq->send_openings++;
4806 runq = TRUE;
4807
4808 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
4809 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
4810 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
4811 && (dev->ccbq.dev_active == 0))) {
4812 xpt_release_devq(ccb_h->path, /*count*/1,
4813 /*run_queue*/FALSE);
4814 }
4815
4816 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4817 && (--dev->tag_delay_count == 0))
4818 xpt_start_tags(ccb_h->path);
4819 if (!device_is_send_queued(dev))
4820 xpt_schedule_dev_sendq(ccb_h->path->bus, dev);
4821 }
4822
4823 if (ccb_h->status & CAM_RELEASE_SIMQ) {
4824 xpt_release_simq(ccb_h->path->bus->sim,
4825 /*run_queue*/TRUE);
4826 ccb_h->status &= ~CAM_RELEASE_SIMQ;
4827 runq = FALSE;
4828 }
4829
4830 if ((ccb_h->flags & CAM_DEV_QFRZDIS)
4831 && (ccb_h->status & CAM_DEV_QFRZN)) {
4832 xpt_release_devq(ccb_h->path, /*count*/1,
4833 /*run_queue*/TRUE);
4834 ccb_h->status &= ~CAM_DEV_QFRZN;
4835 } else if (runq) {
4836 xpt_run_dev_sendq(ccb_h->path->bus);
4837 }
4838
4839 /* Call the peripheral driver's callback */
4840 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
4841 }
4842}
344 * enqueued.
345 */
346 retval =
347 xpt_schedule_dev(&bus->sim->devq->send_queue,
348 &dev->send_ccb_entry.pinfo,
349 CAMQ_GET_PRIO(&dev->ccbq.queue));
350 } else {
351 retval = 0;
352 }
353 return (retval);
354}
355
356static __inline int
357periph_is_queued(struct cam_periph *periph)
358{
359 return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
360}
361
362static __inline int
363device_is_alloc_queued(struct cam_ed *device)
364{
365 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
366}
367
368static __inline int
369device_is_send_queued(struct cam_ed *device)
370{
371 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
372}
373
374static void
375xpt_periph_init()
376{
377 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
378}
379
380static void
381xptdone(struct cam_periph *periph, union ccb *done_ccb)
382{
383 /* Caller will release the CCB */
384 wakeup(&done_ccb->ccb_h.cbfcnp);
385}
386
387static int
388xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
389{
390
391 /*
392 * Only allow read-write access.
393 */
394 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
395 return(EPERM);
396
397 /*
398 * We don't allow nonblocking access.
399 */
400 if ((flags & O_NONBLOCK) != 0) {
401 printf("%s: can't do nonblocking access\n", devtoname(dev));
402 return(ENODEV);
403 }
404
405 /* Mark ourselves open */
406 mtx_lock(&xsoftc.xpt_lock);
407 xsoftc.flags |= XPT_FLAG_OPEN;
408 mtx_unlock(&xsoftc.xpt_lock);
409
410 return(0);
411}
412
413static int
414xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
415{
416
417 /* Mark ourselves closed */
418 mtx_lock(&xsoftc.xpt_lock);
419 xsoftc.flags &= ~XPT_FLAG_OPEN;
420 mtx_unlock(&xsoftc.xpt_lock);
421
422 return(0);
423}
424
425/*
426 * Don't automatically grab the xpt softc lock here even though this is going
427 * through the xpt device. The xpt device is really just a back door for
428 * accessing other devices and SIMs, so the right thing to do is to grab
429 * the appropriate SIM lock once the bus/SIM is located.
430 */
431static int
432xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
433{
434 int error;
435
436 error = 0;
437
438 switch(cmd) {
439 /*
440 * For the transport layer CAMIOCOMMAND ioctl, we really only want
441 * to accept CCB types that don't quite make sense to send through a
442 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
443 * in the CAM spec.
444 */
445 case CAMIOCOMMAND: {
446 union ccb *ccb;
447 union ccb *inccb;
448 struct cam_eb *bus;
449
450 inccb = (union ccb *)addr;
451
452 bus = xpt_find_bus(inccb->ccb_h.path_id);
453 if (bus == NULL)
454 return (EINVAL);
455
456 switch (inccb->ccb_h.func_code) {
457 case XPT_SCAN_BUS:
458 case XPT_RESET_BUS:
459 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
460 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
461 xpt_release_bus(bus);
462 return (EINVAL);
463 }
464 break;
465 case XPT_SCAN_TGT:
466 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
467 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
468 xpt_release_bus(bus);
469 return (EINVAL);
470 }
471 break;
472 default:
473 break;
474 }
475
476 switch(inccb->ccb_h.func_code) {
477 case XPT_SCAN_BUS:
478 case XPT_RESET_BUS:
479 case XPT_PATH_INQ:
480 case XPT_ENG_INQ:
481 case XPT_SCAN_LUN:
482 case XPT_SCAN_TGT:
483
484 ccb = xpt_alloc_ccb();
485
486 CAM_SIM_LOCK(bus->sim);
487
488 /*
489 * Create a path using the bus, target, and lun the
490 * user passed in.
491 */
492 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
493 inccb->ccb_h.path_id,
494 inccb->ccb_h.target_id,
495 inccb->ccb_h.target_lun) !=
496 CAM_REQ_CMP){
497 error = EINVAL;
498 CAM_SIM_UNLOCK(bus->sim);
499 xpt_free_ccb(ccb);
500 break;
501 }
502 /* Ensure all of our fields are correct */
503 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
504 inccb->ccb_h.pinfo.priority);
505 xpt_merge_ccb(ccb, inccb);
506 ccb->ccb_h.cbfcnp = xptdone;
507 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
508 bcopy(ccb, inccb, sizeof(union ccb));
509 xpt_free_path(ccb->ccb_h.path);
510 xpt_free_ccb(ccb);
511 CAM_SIM_UNLOCK(bus->sim);
512 break;
513
514 case XPT_DEBUG: {
515 union ccb ccb;
516
517 /*
518 * This is an immediate CCB, so it's okay to
519 * allocate it on the stack.
520 */
521
522 CAM_SIM_LOCK(bus->sim);
523
524 /*
525 * Create a path using the bus, target, and lun the
526 * user passed in.
527 */
528 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
529 inccb->ccb_h.path_id,
530 inccb->ccb_h.target_id,
531 inccb->ccb_h.target_lun) !=
532 CAM_REQ_CMP){
533 error = EINVAL;
534 CAM_SIM_UNLOCK(bus->sim);
535 break;
536 }
537 /* Ensure all of our fields are correct */
538 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
539 inccb->ccb_h.pinfo.priority);
540 xpt_merge_ccb(&ccb, inccb);
541 ccb.ccb_h.cbfcnp = xptdone;
542 xpt_action(&ccb);
543 CAM_SIM_UNLOCK(bus->sim);
544 bcopy(&ccb, inccb, sizeof(union ccb));
545 xpt_free_path(ccb.ccb_h.path);
546 break;
547
548 }
549 case XPT_DEV_MATCH: {
550 struct cam_periph_map_info mapinfo;
551 struct cam_path *old_path;
552
553 /*
554 * We can't deal with physical addresses for this
555 * type of transaction.
556 */
557 if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
558 error = EINVAL;
559 break;
560 }
561
562 /*
563 * Save this in case the caller had it set to
564 * something in particular.
565 */
566 old_path = inccb->ccb_h.path;
567
568 /*
569 * We really don't need a path for the matching
570 * code. The path is needed because of the
571 * debugging statements in xpt_action(). They
572 * assume that the CCB has a valid path.
573 */
574 inccb->ccb_h.path = xpt_periph->path;
575
576 bzero(&mapinfo, sizeof(mapinfo));
577
578 /*
579 * Map the pattern and match buffers into kernel
580 * virtual address space.
581 */
582 error = cam_periph_mapmem(inccb, &mapinfo);
583
584 if (error) {
585 inccb->ccb_h.path = old_path;
586 break;
587 }
588
589 /*
590 * This is an immediate CCB, we can send it on directly.
591 */
592 xpt_action(inccb);
593
594 /*
595 * Map the buffers back into user space.
596 */
597 cam_periph_unmapmem(inccb, &mapinfo);
598
599 inccb->ccb_h.path = old_path;
600
601 error = 0;
602 break;
603 }
604 default:
605 error = ENOTSUP;
606 break;
607 }
608 xpt_release_bus(bus);
609 break;
610 }
611 /*
612 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
613 * with the periphal driver name and unit name filled in. The other
614 * fields don't really matter as input. The passthrough driver name
615 * ("pass"), and unit number are passed back in the ccb. The current
616 * device generation number, and the index into the device peripheral
617 * driver list, and the status are also passed back. Note that
618 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
619 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
620 * (or rather should be) impossible for the device peripheral driver
621 * list to change since we look at the whole thing in one pass, and
622 * we do it with lock protection.
623 *
624 */
625 case CAMGETPASSTHRU: {
626 union ccb *ccb;
627 struct cam_periph *periph;
628 struct periph_driver **p_drv;
629 char *name;
630 u_int unit;
631 u_int cur_generation;
632 int base_periph_found;
633 int splbreaknum;
634
635 ccb = (union ccb *)addr;
636 unit = ccb->cgdl.unit_number;
637 name = ccb->cgdl.periph_name;
638 /*
639 * Every 100 devices, we want to drop our lock protection to
640 * give the software interrupt handler a chance to run.
641 * Most systems won't run into this check, but this should
642 * avoid starvation in the software interrupt handler in
643 * large systems.
644 */
645 splbreaknum = 100;
646
647 ccb = (union ccb *)addr;
648
649 base_periph_found = 0;
650
651 /*
652 * Sanity check -- make sure we don't get a null peripheral
653 * driver name.
654 */
655 if (*ccb->cgdl.periph_name == '\0') {
656 error = EINVAL;
657 break;
658 }
659
660 /* Keep the list from changing while we traverse it */
661 mtx_lock(&xsoftc.xpt_topo_lock);
662ptstartover:
663 cur_generation = xsoftc.xpt_generation;
664
665 /* first find our driver in the list of drivers */
666 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
667 if (strcmp((*p_drv)->driver_name, name) == 0)
668 break;
669
670 if (*p_drv == NULL) {
671 mtx_unlock(&xsoftc.xpt_topo_lock);
672 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
673 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
674 *ccb->cgdl.periph_name = '\0';
675 ccb->cgdl.unit_number = 0;
676 error = ENOENT;
677 break;
678 }
679
680 /*
681 * Run through every peripheral instance of this driver
682 * and check to see whether it matches the unit passed
683 * in by the user. If it does, get out of the loops and
684 * find the passthrough driver associated with that
685 * peripheral driver.
686 */
687 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
688 periph = TAILQ_NEXT(periph, unit_links)) {
689
690 if (periph->unit_number == unit) {
691 break;
692 } else if (--splbreaknum == 0) {
693 mtx_unlock(&xsoftc.xpt_topo_lock);
694 mtx_lock(&xsoftc.xpt_topo_lock);
695 splbreaknum = 100;
696 if (cur_generation != xsoftc.xpt_generation)
697 goto ptstartover;
698 }
699 }
700 /*
701 * If we found the peripheral driver that the user passed
702 * in, go through all of the peripheral drivers for that
703 * particular device and look for a passthrough driver.
704 */
705 if (periph != NULL) {
706 struct cam_ed *device;
707 int i;
708
709 base_periph_found = 1;
710 device = periph->path->device;
711 for (i = 0, periph = SLIST_FIRST(&device->periphs);
712 periph != NULL;
713 periph = SLIST_NEXT(periph, periph_links), i++) {
714 /*
715 * Check to see whether we have a
716 * passthrough device or not.
717 */
718 if (strcmp(periph->periph_name, "pass") == 0) {
719 /*
720 * Fill in the getdevlist fields.
721 */
722 strcpy(ccb->cgdl.periph_name,
723 periph->periph_name);
724 ccb->cgdl.unit_number =
725 periph->unit_number;
726 if (SLIST_NEXT(periph, periph_links))
727 ccb->cgdl.status =
728 CAM_GDEVLIST_MORE_DEVS;
729 else
730 ccb->cgdl.status =
731 CAM_GDEVLIST_LAST_DEVICE;
732 ccb->cgdl.generation =
733 device->generation;
734 ccb->cgdl.index = i;
735 /*
736 * Fill in some CCB header fields
737 * that the user may want.
738 */
739 ccb->ccb_h.path_id =
740 periph->path->bus->path_id;
741 ccb->ccb_h.target_id =
742 periph->path->target->target_id;
743 ccb->ccb_h.target_lun =
744 periph->path->device->lun_id;
745 ccb->ccb_h.status = CAM_REQ_CMP;
746 break;
747 }
748 }
749 }
750
751 /*
752 * If the periph is null here, one of two things has
753 * happened. The first possibility is that we couldn't
754 * find the unit number of the particular peripheral driver
755 * that the user is asking about. e.g. the user asks for
756 * the passthrough driver for "da11". We find the list of
757 * "da" peripherals all right, but there is no unit 11.
758 * The other possibility is that we went through the list
759 * of peripheral drivers attached to the device structure,
760 * but didn't find one with the name "pass". Either way,
761 * we return ENOENT, since we couldn't find something.
762 */
763 if (periph == NULL) {
764 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
765 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
766 *ccb->cgdl.periph_name = '\0';
767 ccb->cgdl.unit_number = 0;
768 error = ENOENT;
769 /*
770 * It is unfortunate that this is even necessary,
771 * but there are many, many clueless users out there.
772 * If this is true, the user is looking for the
773 * passthrough driver, but doesn't have one in his
774 * kernel.
775 */
776 if (base_periph_found == 1) {
777 printf("xptioctl: pass driver is not in the "
778 "kernel\n");
779 printf("xptioctl: put \"device pass\" in "
780 "your kernel config file\n");
781 }
782 }
783 mtx_unlock(&xsoftc.xpt_topo_lock);
784 break;
785 }
786 default:
787 error = ENOTTY;
788 break;
789 }
790
791 return(error);
792}
793
794static int
795cam_module_event_handler(module_t mod, int what, void *arg)
796{
797 int error;
798
799 switch (what) {
800 case MOD_LOAD:
801 if ((error = xpt_init(NULL)) != 0)
802 return (error);
803 break;
804 case MOD_UNLOAD:
805 return EBUSY;
806 default:
807 return EOPNOTSUPP;
808 }
809
810 return 0;
811}
812
813static void
814xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
815{
816
817 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
818 xpt_free_path(done_ccb->ccb_h.path);
819 xpt_free_ccb(done_ccb);
820 } else {
821 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
822 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
823 }
824 xpt_release_boot();
825}
826
827/* thread to handle bus rescans */
828static void
829xpt_scanner_thread(void *dummy)
830{
831 union ccb *ccb;
832 struct cam_sim *sim;
833
834 xpt_lock_buses();
835 for (;;) {
836 if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
837 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
838 "ccb_scanq", 0);
839 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
840 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
841 xpt_unlock_buses();
842
843 sim = ccb->ccb_h.path->bus->sim;
844 CAM_SIM_LOCK(sim);
845 xpt_action(ccb);
846 CAM_SIM_UNLOCK(sim);
847
848 xpt_lock_buses();
849 }
850 }
851}
852
853void
854xpt_rescan(union ccb *ccb)
855{
856 struct ccb_hdr *hdr;
857
858 /* Prepare request */
859 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
860 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
861 ccb->ccb_h.func_code = XPT_SCAN_BUS;
862 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
863 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
864 ccb->ccb_h.func_code = XPT_SCAN_TGT;
865 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
866 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
867 ccb->ccb_h.func_code = XPT_SCAN_LUN;
868 else {
869 xpt_print(ccb->ccb_h.path, "illegal scan path\n");
870 xpt_free_path(ccb->ccb_h.path);
871 xpt_free_ccb(ccb);
872 return;
873 }
874 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
875 ccb->ccb_h.cbfcnp = xpt_rescan_done;
876 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
877 /* Don't make duplicate entries for the same paths. */
878 xpt_lock_buses();
879 if (ccb->ccb_h.ppriv_ptr1 == NULL) {
880 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
881 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
882 wakeup(&xsoftc.ccb_scanq);
883 xpt_unlock_buses();
884 xpt_print(ccb->ccb_h.path, "rescan already queued\n");
885 xpt_free_path(ccb->ccb_h.path);
886 xpt_free_ccb(ccb);
887 return;
888 }
889 }
890 }
891 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
892 xsoftc.buses_to_config++;
893 wakeup(&xsoftc.ccb_scanq);
894 xpt_unlock_buses();
895}
896
897/* Functions accessed by the peripheral drivers */
898static int
899xpt_init(void *dummy)
900{
901 struct cam_sim *xpt_sim;
902 struct cam_path *path;
903 struct cam_devq *devq;
904 cam_status status;
905
906 TAILQ_INIT(&xsoftc.xpt_busses);
907 TAILQ_INIT(&cam_simq);
908 TAILQ_INIT(&xsoftc.ccb_scanq);
909 STAILQ_INIT(&xsoftc.highpowerq);
910 xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
911
912 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
913 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
914 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
915
916 /*
917 * The xpt layer is, itself, the equivelent of a SIM.
918 * Allow 16 ccbs in the ccb pool for it. This should
919 * give decent parallelism when we probe busses and
920 * perform other XPT functions.
921 */
922 devq = cam_simq_alloc(16);
923 xpt_sim = cam_sim_alloc(xptaction,
924 xptpoll,
925 "xpt",
926 /*softc*/NULL,
927 /*unit*/0,
928 /*mtx*/&xsoftc.xpt_lock,
929 /*max_dev_transactions*/0,
930 /*max_tagged_dev_transactions*/0,
931 devq);
932 if (xpt_sim == NULL)
933 return (ENOMEM);
934
935 mtx_lock(&xsoftc.xpt_lock);
936 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
937 mtx_unlock(&xsoftc.xpt_lock);
938 printf("xpt_init: xpt_bus_register failed with status %#x,"
939 " failing attach\n", status);
940 return (EINVAL);
941 }
942
943 /*
944 * Looking at the XPT from the SIM layer, the XPT is
945 * the equivelent of a peripheral driver. Allocate
946 * a peripheral driver entry for us.
947 */
948 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
949 CAM_TARGET_WILDCARD,
950 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
951 mtx_unlock(&xsoftc.xpt_lock);
952 printf("xpt_init: xpt_create_path failed with status %#x,"
953 " failing attach\n", status);
954 return (EINVAL);
955 }
956
957 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
958 path, NULL, 0, xpt_sim);
959 xpt_free_path(path);
960 mtx_unlock(&xsoftc.xpt_lock);
961 /* Install our software interrupt handlers */
962 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
963 /*
964 * Register a callback for when interrupts are enabled.
965 */
966 xsoftc.xpt_config_hook =
967 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
968 M_CAMXPT, M_NOWAIT | M_ZERO);
969 if (xsoftc.xpt_config_hook == NULL) {
970 printf("xpt_init: Cannot malloc config hook "
971 "- failing attach\n");
972 return (ENOMEM);
973 }
974 xsoftc.xpt_config_hook->ich_func = xpt_config;
975 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
976 free (xsoftc.xpt_config_hook, M_CAMXPT);
977 printf("xpt_init: config_intrhook_establish failed "
978 "- failing attach\n");
979 }
980
981 return (0);
982}
983
984static cam_status
985xptregister(struct cam_periph *periph, void *arg)
986{
987 struct cam_sim *xpt_sim;
988
989 if (periph == NULL) {
990 printf("xptregister: periph was NULL!!\n");
991 return(CAM_REQ_CMP_ERR);
992 }
993
994 xpt_sim = (struct cam_sim *)arg;
995 xpt_sim->softc = periph;
996 xpt_periph = periph;
997 periph->softc = NULL;
998
999 return(CAM_REQ_CMP);
1000}
1001
1002int32_t
1003xpt_add_periph(struct cam_periph *periph)
1004{
1005 struct cam_ed *device;
1006 int32_t status;
1007 struct periph_list *periph_head;
1008
1009 mtx_assert(periph->sim->mtx, MA_OWNED);
1010
1011 device = periph->path->device;
1012
1013 periph_head = &device->periphs;
1014
1015 status = CAM_REQ_CMP;
1016
1017 if (device != NULL) {
1018 /*
1019 * Make room for this peripheral
1020 * so it will fit in the queue
1021 * when it's scheduled to run
1022 */
1023 status = camq_resize(&device->drvq,
1024 device->drvq.array_size + 1);
1025
1026 device->generation++;
1027
1028 SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1029 }
1030
1031 mtx_lock(&xsoftc.xpt_topo_lock);
1032 xsoftc.xpt_generation++;
1033 mtx_unlock(&xsoftc.xpt_topo_lock);
1034
1035 return (status);
1036}
1037
1038void
1039xpt_remove_periph(struct cam_periph *periph)
1040{
1041 struct cam_ed *device;
1042
1043 mtx_assert(periph->sim->mtx, MA_OWNED);
1044
1045 device = periph->path->device;
1046
1047 if (device != NULL) {
1048 struct periph_list *periph_head;
1049
1050 periph_head = &device->periphs;
1051
1052 /* Release the slot for this peripheral */
1053 camq_resize(&device->drvq, device->drvq.array_size - 1);
1054
1055 device->generation++;
1056
1057 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1058 }
1059
1060 mtx_lock(&xsoftc.xpt_topo_lock);
1061 xsoftc.xpt_generation++;
1062 mtx_unlock(&xsoftc.xpt_topo_lock);
1063}
1064
1065
1066void
1067xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1068{
1069 struct cam_path *path = periph->path;
1070
1071 mtx_assert(periph->sim->mtx, MA_OWNED);
1072
1073 printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1074 periph->periph_name, periph->unit_number,
1075 path->bus->sim->sim_name,
1076 path->bus->sim->unit_number,
1077 path->bus->sim->bus_id,
1078 path->bus->path_id,
1079 path->target->target_id,
1080 path->device->lun_id);
1081 printf("%s%d: ", periph->periph_name, periph->unit_number);
1082 if (path->device->protocol == PROTO_SCSI)
1083 scsi_print_inquiry(&path->device->inq_data);
1084 else if (path->device->protocol == PROTO_ATA ||
1085 path->device->protocol == PROTO_SATAPM)
1086 ata_print_ident(&path->device->ident_data);
1087 else
1088 printf("Unknown protocol device\n");
1089 if (bootverbose && path->device->serial_num_len > 0) {
1090 /* Don't wrap the screen - print only the first 60 chars */
1091 printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1092 periph->unit_number, path->device->serial_num);
1093 }
1094 /* Announce transport details. */
1095 (*(path->bus->xport->announce))(periph);
1096 /* Announce command queueing. */
1097 if (path->device->inq_flags & SID_CmdQue
1098 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1099 printf("%s%d: Command Queueing enabled\n",
1100 periph->periph_name, periph->unit_number);
1101 }
1102 /* Announce caller's details if they've passed in. */
1103 if (announce_string != NULL)
1104 printf("%s%d: %s\n", periph->periph_name,
1105 periph->unit_number, announce_string);
1106}
1107
1108static dev_match_ret
1109xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1110 struct cam_eb *bus)
1111{
1112 dev_match_ret retval;
1113 int i;
1114
1115 retval = DM_RET_NONE;
1116
1117 /*
1118 * If we aren't given something to match against, that's an error.
1119 */
1120 if (bus == NULL)
1121 return(DM_RET_ERROR);
1122
1123 /*
1124 * If there are no match entries, then this bus matches no
1125 * matter what.
1126 */
1127 if ((patterns == NULL) || (num_patterns == 0))
1128 return(DM_RET_DESCEND | DM_RET_COPY);
1129
1130 for (i = 0; i < num_patterns; i++) {
1131 struct bus_match_pattern *cur_pattern;
1132
1133 /*
1134 * If the pattern in question isn't for a bus node, we
1135 * aren't interested. However, we do indicate to the
1136 * calling routine that we should continue descending the
1137 * tree, since the user wants to match against lower-level
1138 * EDT elements.
1139 */
1140 if (patterns[i].type != DEV_MATCH_BUS) {
1141 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1142 retval |= DM_RET_DESCEND;
1143 continue;
1144 }
1145
1146 cur_pattern = &patterns[i].pattern.bus_pattern;
1147
1148 /*
1149 * If they want to match any bus node, we give them any
1150 * device node.
1151 */
1152 if (cur_pattern->flags == BUS_MATCH_ANY) {
1153 /* set the copy flag */
1154 retval |= DM_RET_COPY;
1155
1156 /*
1157 * If we've already decided on an action, go ahead
1158 * and return.
1159 */
1160 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1161 return(retval);
1162 }
1163
1164 /*
1165 * Not sure why someone would do this...
1166 */
1167 if (cur_pattern->flags == BUS_MATCH_NONE)
1168 continue;
1169
1170 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1171 && (cur_pattern->path_id != bus->path_id))
1172 continue;
1173
1174 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1175 && (cur_pattern->bus_id != bus->sim->bus_id))
1176 continue;
1177
1178 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1179 && (cur_pattern->unit_number != bus->sim->unit_number))
1180 continue;
1181
1182 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1183 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1184 DEV_IDLEN) != 0))
1185 continue;
1186
1187 /*
1188 * If we get to this point, the user definitely wants
1189 * information on this bus. So tell the caller to copy the
1190 * data out.
1191 */
1192 retval |= DM_RET_COPY;
1193
1194 /*
1195 * If the return action has been set to descend, then we
1196 * know that we've already seen a non-bus matching
1197 * expression, therefore we need to further descend the tree.
1198 * This won't change by continuing around the loop, so we
1199 * go ahead and return. If we haven't seen a non-bus
1200 * matching expression, we keep going around the loop until
1201 * we exhaust the matching expressions. We'll set the stop
1202 * flag once we fall out of the loop.
1203 */
1204 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1205 return(retval);
1206 }
1207
1208 /*
1209 * If the return action hasn't been set to descend yet, that means
1210 * we haven't seen anything other than bus matching patterns. So
1211 * tell the caller to stop descending the tree -- the user doesn't
1212 * want to match against lower level tree elements.
1213 */
1214 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1215 retval |= DM_RET_STOP;
1216
1217 return(retval);
1218}
1219
1220static dev_match_ret
1221xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1222 struct cam_ed *device)
1223{
1224 dev_match_ret retval;
1225 int i;
1226
1227 retval = DM_RET_NONE;
1228
1229 /*
1230 * If we aren't given something to match against, that's an error.
1231 */
1232 if (device == NULL)
1233 return(DM_RET_ERROR);
1234
1235 /*
1236 * If there are no match entries, then this device matches no
1237 * matter what.
1238 */
1239 if ((patterns == NULL) || (num_patterns == 0))
1240 return(DM_RET_DESCEND | DM_RET_COPY);
1241
1242 for (i = 0; i < num_patterns; i++) {
1243 struct device_match_pattern *cur_pattern;
1244
1245 /*
1246 * If the pattern in question isn't for a device node, we
1247 * aren't interested.
1248 */
1249 if (patterns[i].type != DEV_MATCH_DEVICE) {
1250 if ((patterns[i].type == DEV_MATCH_PERIPH)
1251 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1252 retval |= DM_RET_DESCEND;
1253 continue;
1254 }
1255
1256 cur_pattern = &patterns[i].pattern.device_pattern;
1257
1258 /*
1259 * If they want to match any device node, we give them any
1260 * device node.
1261 */
1262 if (cur_pattern->flags == DEV_MATCH_ANY) {
1263 /* set the copy flag */
1264 retval |= DM_RET_COPY;
1265
1266
1267 /*
1268 * If we've already decided on an action, go ahead
1269 * and return.
1270 */
1271 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1272 return(retval);
1273 }
1274
1275 /*
1276 * Not sure why someone would do this...
1277 */
1278 if (cur_pattern->flags == DEV_MATCH_NONE)
1279 continue;
1280
1281 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1282 && (cur_pattern->path_id != device->target->bus->path_id))
1283 continue;
1284
1285 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1286 && (cur_pattern->target_id != device->target->target_id))
1287 continue;
1288
1289 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1290 && (cur_pattern->target_lun != device->lun_id))
1291 continue;
1292
1293 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1294 && (cam_quirkmatch((caddr_t)&device->inq_data,
1295 (caddr_t)&cur_pattern->inq_pat,
1296 1, sizeof(cur_pattern->inq_pat),
1297 scsi_static_inquiry_match) == NULL))
1298 continue;
1299
1300 /*
1301 * If we get to this point, the user definitely wants
1302 * information on this device. So tell the caller to copy
1303 * the data out.
1304 */
1305 retval |= DM_RET_COPY;
1306
1307 /*
1308 * If the return action has been set to descend, then we
1309 * know that we've already seen a peripheral matching
1310 * expression, therefore we need to further descend the tree.
1311 * This won't change by continuing around the loop, so we
1312 * go ahead and return. If we haven't seen a peripheral
1313 * matching expression, we keep going around the loop until
1314 * we exhaust the matching expressions. We'll set the stop
1315 * flag once we fall out of the loop.
1316 */
1317 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1318 return(retval);
1319 }
1320
1321 /*
1322 * If the return action hasn't been set to descend yet, that means
1323 * we haven't seen any peripheral matching patterns. So tell the
1324 * caller to stop descending the tree -- the user doesn't want to
1325 * match against lower level tree elements.
1326 */
1327 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1328 retval |= DM_RET_STOP;
1329
1330 return(retval);
1331}
1332
1333/*
1334 * Match a single peripheral against any number of match patterns.
1335 */
1336static dev_match_ret
1337xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1338 struct cam_periph *periph)
1339{
1340 dev_match_ret retval;
1341 int i;
1342
1343 /*
1344 * If we aren't given something to match against, that's an error.
1345 */
1346 if (periph == NULL)
1347 return(DM_RET_ERROR);
1348
1349 /*
1350 * If there are no match entries, then this peripheral matches no
1351 * matter what.
1352 */
1353 if ((patterns == NULL) || (num_patterns == 0))
1354 return(DM_RET_STOP | DM_RET_COPY);
1355
1356 /*
1357 * There aren't any nodes below a peripheral node, so there's no
1358 * reason to descend the tree any further.
1359 */
1360 retval = DM_RET_STOP;
1361
1362 for (i = 0; i < num_patterns; i++) {
1363 struct periph_match_pattern *cur_pattern;
1364
1365 /*
1366 * If the pattern in question isn't for a peripheral, we
1367 * aren't interested.
1368 */
1369 if (patterns[i].type != DEV_MATCH_PERIPH)
1370 continue;
1371
1372 cur_pattern = &patterns[i].pattern.periph_pattern;
1373
1374 /*
1375 * If they want to match on anything, then we will do so.
1376 */
1377 if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1378 /* set the copy flag */
1379 retval |= DM_RET_COPY;
1380
1381 /*
1382 * We've already set the return action to stop,
1383 * since there are no nodes below peripherals in
1384 * the tree.
1385 */
1386 return(retval);
1387 }
1388
1389 /*
1390 * Not sure why someone would do this...
1391 */
1392 if (cur_pattern->flags == PERIPH_MATCH_NONE)
1393 continue;
1394
1395 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1396 && (cur_pattern->path_id != periph->path->bus->path_id))
1397 continue;
1398
1399 /*
1400 * For the target and lun id's, we have to make sure the
1401 * target and lun pointers aren't NULL. The xpt peripheral
1402 * has a wildcard target and device.
1403 */
1404 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1405 && ((periph->path->target == NULL)
1406 ||(cur_pattern->target_id != periph->path->target->target_id)))
1407 continue;
1408
1409 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1410 && ((periph->path->device == NULL)
1411 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1412 continue;
1413
1414 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1415 && (cur_pattern->unit_number != periph->unit_number))
1416 continue;
1417
1418 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1419 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1420 DEV_IDLEN) != 0))
1421 continue;
1422
1423 /*
1424 * If we get to this point, the user definitely wants
1425 * information on this peripheral. So tell the caller to
1426 * copy the data out.
1427 */
1428 retval |= DM_RET_COPY;
1429
1430 /*
1431 * The return action has already been set to stop, since
1432 * peripherals don't have any nodes below them in the EDT.
1433 */
1434 return(retval);
1435 }
1436
1437 /*
1438 * If we get to this point, the peripheral that was passed in
1439 * doesn't match any of the patterns.
1440 */
1441 return(retval);
1442}
1443
1444static int
1445xptedtbusfunc(struct cam_eb *bus, void *arg)
1446{
1447 struct ccb_dev_match *cdm;
1448 dev_match_ret retval;
1449
1450 cdm = (struct ccb_dev_match *)arg;
1451
1452 /*
1453 * If our position is for something deeper in the tree, that means
1454 * that we've already seen this node. So, we keep going down.
1455 */
1456 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1457 && (cdm->pos.cookie.bus == bus)
1458 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1459 && (cdm->pos.cookie.target != NULL))
1460 retval = DM_RET_DESCEND;
1461 else
1462 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1463
1464 /*
1465 * If we got an error, bail out of the search.
1466 */
1467 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1468 cdm->status = CAM_DEV_MATCH_ERROR;
1469 return(0);
1470 }
1471
1472 /*
1473 * If the copy flag is set, copy this bus out.
1474 */
1475 if (retval & DM_RET_COPY) {
1476 int spaceleft, j;
1477
1478 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1479 sizeof(struct dev_match_result));
1480
1481 /*
1482 * If we don't have enough space to put in another
1483 * match result, save our position and tell the
1484 * user there are more devices to check.
1485 */
1486 if (spaceleft < sizeof(struct dev_match_result)) {
1487 bzero(&cdm->pos, sizeof(cdm->pos));
1488 cdm->pos.position_type =
1489 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1490
1491 cdm->pos.cookie.bus = bus;
1492 cdm->pos.generations[CAM_BUS_GENERATION]=
1493 xsoftc.bus_generation;
1494 cdm->status = CAM_DEV_MATCH_MORE;
1495 return(0);
1496 }
1497 j = cdm->num_matches;
1498 cdm->num_matches++;
1499 cdm->matches[j].type = DEV_MATCH_BUS;
1500 cdm->matches[j].result.bus_result.path_id = bus->path_id;
1501 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1502 cdm->matches[j].result.bus_result.unit_number =
1503 bus->sim->unit_number;
1504 strncpy(cdm->matches[j].result.bus_result.dev_name,
1505 bus->sim->sim_name, DEV_IDLEN);
1506 }
1507
1508 /*
1509 * If the user is only interested in busses, there's no
1510 * reason to descend to the next level in the tree.
1511 */
1512 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1513 return(1);
1514
1515 /*
1516 * If there is a target generation recorded, check it to
1517 * make sure the target list hasn't changed.
1518 */
1519 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1520 && (bus == cdm->pos.cookie.bus)
1521 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1522 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1523 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1524 bus->generation)) {
1525 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1526 return(0);
1527 }
1528
1529 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1530 && (cdm->pos.cookie.bus == bus)
1531 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1532 && (cdm->pos.cookie.target != NULL))
1533 return(xpttargettraverse(bus,
1534 (struct cam_et *)cdm->pos.cookie.target,
1535 xptedttargetfunc, arg));
1536 else
1537 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1538}
1539
1540static int
1541xptedttargetfunc(struct cam_et *target, void *arg)
1542{
1543 struct ccb_dev_match *cdm;
1544
1545 cdm = (struct ccb_dev_match *)arg;
1546
1547 /*
1548 * If there is a device list generation recorded, check it to
1549 * make sure the device list hasn't changed.
1550 */
1551 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1552 && (cdm->pos.cookie.bus == target->bus)
1553 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1554 && (cdm->pos.cookie.target == target)
1555 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1556 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1557 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1558 target->generation)) {
1559 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1560 return(0);
1561 }
1562
1563 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1564 && (cdm->pos.cookie.bus == target->bus)
1565 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1566 && (cdm->pos.cookie.target == target)
1567 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1568 && (cdm->pos.cookie.device != NULL))
1569 return(xptdevicetraverse(target,
1570 (struct cam_ed *)cdm->pos.cookie.device,
1571 xptedtdevicefunc, arg));
1572 else
1573 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1574}
1575
1576static int
1577xptedtdevicefunc(struct cam_ed *device, void *arg)
1578{
1579
1580 struct ccb_dev_match *cdm;
1581 dev_match_ret retval;
1582
1583 cdm = (struct ccb_dev_match *)arg;
1584
1585 /*
1586 * If our position is for something deeper in the tree, that means
1587 * that we've already seen this node. So, we keep going down.
1588 */
1589 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1590 && (cdm->pos.cookie.device == device)
1591 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1592 && (cdm->pos.cookie.periph != NULL))
1593 retval = DM_RET_DESCEND;
1594 else
1595 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1596 device);
1597
1598 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1599 cdm->status = CAM_DEV_MATCH_ERROR;
1600 return(0);
1601 }
1602
1603 /*
1604 * If the copy flag is set, copy this device out.
1605 */
1606 if (retval & DM_RET_COPY) {
1607 int spaceleft, j;
1608
1609 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1610 sizeof(struct dev_match_result));
1611
1612 /*
1613 * If we don't have enough space to put in another
1614 * match result, save our position and tell the
1615 * user there are more devices to check.
1616 */
1617 if (spaceleft < sizeof(struct dev_match_result)) {
1618 bzero(&cdm->pos, sizeof(cdm->pos));
1619 cdm->pos.position_type =
1620 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1621 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1622
1623 cdm->pos.cookie.bus = device->target->bus;
1624 cdm->pos.generations[CAM_BUS_GENERATION]=
1625 xsoftc.bus_generation;
1626 cdm->pos.cookie.target = device->target;
1627 cdm->pos.generations[CAM_TARGET_GENERATION] =
1628 device->target->bus->generation;
1629 cdm->pos.cookie.device = device;
1630 cdm->pos.generations[CAM_DEV_GENERATION] =
1631 device->target->generation;
1632 cdm->status = CAM_DEV_MATCH_MORE;
1633 return(0);
1634 }
1635 j = cdm->num_matches;
1636 cdm->num_matches++;
1637 cdm->matches[j].type = DEV_MATCH_DEVICE;
1638 cdm->matches[j].result.device_result.path_id =
1639 device->target->bus->path_id;
1640 cdm->matches[j].result.device_result.target_id =
1641 device->target->target_id;
1642 cdm->matches[j].result.device_result.target_lun =
1643 device->lun_id;
1644 cdm->matches[j].result.device_result.protocol =
1645 device->protocol;
1646 bcopy(&device->inq_data,
1647 &cdm->matches[j].result.device_result.inq_data,
1648 sizeof(struct scsi_inquiry_data));
1649 bcopy(&device->ident_data,
1650 &cdm->matches[j].result.device_result.ident_data,
1651 sizeof(struct ata_params));
1652
1653 /* Let the user know whether this device is unconfigured */
1654 if (device->flags & CAM_DEV_UNCONFIGURED)
1655 cdm->matches[j].result.device_result.flags =
1656 DEV_RESULT_UNCONFIGURED;
1657 else
1658 cdm->matches[j].result.device_result.flags =
1659 DEV_RESULT_NOFLAG;
1660 }
1661
1662 /*
1663 * If the user isn't interested in peripherals, don't descend
1664 * the tree any further.
1665 */
1666 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1667 return(1);
1668
1669 /*
1670 * If there is a peripheral list generation recorded, make sure
1671 * it hasn't changed.
1672 */
1673 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1674 && (device->target->bus == cdm->pos.cookie.bus)
1675 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1676 && (device->target == cdm->pos.cookie.target)
1677 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1678 && (device == cdm->pos.cookie.device)
1679 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1680 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1681 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1682 device->generation)){
1683 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1684 return(0);
1685 }
1686
1687 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1688 && (cdm->pos.cookie.bus == device->target->bus)
1689 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1690 && (cdm->pos.cookie.target == device->target)
1691 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1692 && (cdm->pos.cookie.device == device)
1693 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1694 && (cdm->pos.cookie.periph != NULL))
1695 return(xptperiphtraverse(device,
1696 (struct cam_periph *)cdm->pos.cookie.periph,
1697 xptedtperiphfunc, arg));
1698 else
1699 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1700}
1701
1702static int
1703xptedtperiphfunc(struct cam_periph *periph, void *arg)
1704{
1705 struct ccb_dev_match *cdm;
1706 dev_match_ret retval;
1707
1708 cdm = (struct ccb_dev_match *)arg;
1709
1710 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1711
1712 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1713 cdm->status = CAM_DEV_MATCH_ERROR;
1714 return(0);
1715 }
1716
1717 /*
1718 * If the copy flag is set, copy this peripheral out.
1719 */
1720 if (retval & DM_RET_COPY) {
1721 int spaceleft, j;
1722
1723 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1724 sizeof(struct dev_match_result));
1725
1726 /*
1727 * If we don't have enough space to put in another
1728 * match result, save our position and tell the
1729 * user there are more devices to check.
1730 */
1731 if (spaceleft < sizeof(struct dev_match_result)) {
1732 bzero(&cdm->pos, sizeof(cdm->pos));
1733 cdm->pos.position_type =
1734 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1735 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1736 CAM_DEV_POS_PERIPH;
1737
1738 cdm->pos.cookie.bus = periph->path->bus;
1739 cdm->pos.generations[CAM_BUS_GENERATION]=
1740 xsoftc.bus_generation;
1741 cdm->pos.cookie.target = periph->path->target;
1742 cdm->pos.generations[CAM_TARGET_GENERATION] =
1743 periph->path->bus->generation;
1744 cdm->pos.cookie.device = periph->path->device;
1745 cdm->pos.generations[CAM_DEV_GENERATION] =
1746 periph->path->target->generation;
1747 cdm->pos.cookie.periph = periph;
1748 cdm->pos.generations[CAM_PERIPH_GENERATION] =
1749 periph->path->device->generation;
1750 cdm->status = CAM_DEV_MATCH_MORE;
1751 return(0);
1752 }
1753
1754 j = cdm->num_matches;
1755 cdm->num_matches++;
1756 cdm->matches[j].type = DEV_MATCH_PERIPH;
1757 cdm->matches[j].result.periph_result.path_id =
1758 periph->path->bus->path_id;
1759 cdm->matches[j].result.periph_result.target_id =
1760 periph->path->target->target_id;
1761 cdm->matches[j].result.periph_result.target_lun =
1762 periph->path->device->lun_id;
1763 cdm->matches[j].result.periph_result.unit_number =
1764 periph->unit_number;
1765 strncpy(cdm->matches[j].result.periph_result.periph_name,
1766 periph->periph_name, DEV_IDLEN);
1767 }
1768
1769 return(1);
1770}
1771
1772static int
1773xptedtmatch(struct ccb_dev_match *cdm)
1774{
1775 int ret;
1776
1777 cdm->num_matches = 0;
1778
1779 /*
1780 * Check the bus list generation. If it has changed, the user
1781 * needs to reset everything and start over.
1782 */
1783 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1784 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1785 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1786 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1787 return(0);
1788 }
1789
1790 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1791 && (cdm->pos.cookie.bus != NULL))
1792 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1793 xptedtbusfunc, cdm);
1794 else
1795 ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1796
1797 /*
1798 * If we get back 0, that means that we had to stop before fully
1799 * traversing the EDT. It also means that one of the subroutines
1800 * has set the status field to the proper value. If we get back 1,
1801 * we've fully traversed the EDT and copied out any matching entries.
1802 */
1803 if (ret == 1)
1804 cdm->status = CAM_DEV_MATCH_LAST;
1805
1806 return(ret);
1807}
1808
1809static int
1810xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1811{
1812 struct ccb_dev_match *cdm;
1813
1814 cdm = (struct ccb_dev_match *)arg;
1815
1816 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1817 && (cdm->pos.cookie.pdrv == pdrv)
1818 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1819 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1820 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1821 (*pdrv)->generation)) {
1822 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1823 return(0);
1824 }
1825
1826 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1827 && (cdm->pos.cookie.pdrv == pdrv)
1828 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1829 && (cdm->pos.cookie.periph != NULL))
1830 return(xptpdperiphtraverse(pdrv,
1831 (struct cam_periph *)cdm->pos.cookie.periph,
1832 xptplistperiphfunc, arg));
1833 else
1834 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1835}
1836
1837static int
1838xptplistperiphfunc(struct cam_periph *periph, void *arg)
1839{
1840 struct ccb_dev_match *cdm;
1841 dev_match_ret retval;
1842
1843 cdm = (struct ccb_dev_match *)arg;
1844
1845 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1846
1847 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1848 cdm->status = CAM_DEV_MATCH_ERROR;
1849 return(0);
1850 }
1851
1852 /*
1853 * If the copy flag is set, copy this peripheral out.
1854 */
1855 if (retval & DM_RET_COPY) {
1856 int spaceleft, j;
1857
1858 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1859 sizeof(struct dev_match_result));
1860
1861 /*
1862 * If we don't have enough space to put in another
1863 * match result, save our position and tell the
1864 * user there are more devices to check.
1865 */
1866 if (spaceleft < sizeof(struct dev_match_result)) {
1867 struct periph_driver **pdrv;
1868
1869 pdrv = NULL;
1870 bzero(&cdm->pos, sizeof(cdm->pos));
1871 cdm->pos.position_type =
1872 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1873 CAM_DEV_POS_PERIPH;
1874
1875 /*
1876 * This may look a bit non-sensical, but it is
1877 * actually quite logical. There are very few
1878 * peripheral drivers, and bloating every peripheral
1879 * structure with a pointer back to its parent
1880 * peripheral driver linker set entry would cost
1881 * more in the long run than doing this quick lookup.
1882 */
1883 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1884 if (strcmp((*pdrv)->driver_name,
1885 periph->periph_name) == 0)
1886 break;
1887 }
1888
1889 if (*pdrv == NULL) {
1890 cdm->status = CAM_DEV_MATCH_ERROR;
1891 return(0);
1892 }
1893
1894 cdm->pos.cookie.pdrv = pdrv;
1895 /*
1896 * The periph generation slot does double duty, as
1897 * does the periph pointer slot. They are used for
1898 * both edt and pdrv lookups and positioning.
1899 */
1900 cdm->pos.cookie.periph = periph;
1901 cdm->pos.generations[CAM_PERIPH_GENERATION] =
1902 (*pdrv)->generation;
1903 cdm->status = CAM_DEV_MATCH_MORE;
1904 return(0);
1905 }
1906
1907 j = cdm->num_matches;
1908 cdm->num_matches++;
1909 cdm->matches[j].type = DEV_MATCH_PERIPH;
1910 cdm->matches[j].result.periph_result.path_id =
1911 periph->path->bus->path_id;
1912
1913 /*
1914 * The transport layer peripheral doesn't have a target or
1915 * lun.
1916 */
1917 if (periph->path->target)
1918 cdm->matches[j].result.periph_result.target_id =
1919 periph->path->target->target_id;
1920 else
1921 cdm->matches[j].result.periph_result.target_id = -1;
1922
1923 if (periph->path->device)
1924 cdm->matches[j].result.periph_result.target_lun =
1925 periph->path->device->lun_id;
1926 else
1927 cdm->matches[j].result.periph_result.target_lun = -1;
1928
1929 cdm->matches[j].result.periph_result.unit_number =
1930 periph->unit_number;
1931 strncpy(cdm->matches[j].result.periph_result.periph_name,
1932 periph->periph_name, DEV_IDLEN);
1933 }
1934
1935 return(1);
1936}
1937
1938static int
1939xptperiphlistmatch(struct ccb_dev_match *cdm)
1940{
1941 int ret;
1942
1943 cdm->num_matches = 0;
1944
1945 /*
1946 * At this point in the edt traversal function, we check the bus
1947 * list generation to make sure that no busses have been added or
1948 * removed since the user last sent a XPT_DEV_MATCH ccb through.
1949 * For the peripheral driver list traversal function, however, we
1950 * don't have to worry about new peripheral driver types coming or
1951 * going; they're in a linker set, and therefore can't change
1952 * without a recompile.
1953 */
1954
1955 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1956 && (cdm->pos.cookie.pdrv != NULL))
1957 ret = xptpdrvtraverse(
1958 (struct periph_driver **)cdm->pos.cookie.pdrv,
1959 xptplistpdrvfunc, cdm);
1960 else
1961 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
1962
1963 /*
1964 * If we get back 0, that means that we had to stop before fully
1965 * traversing the peripheral driver tree. It also means that one of
1966 * the subroutines has set the status field to the proper value. If
1967 * we get back 1, we've fully traversed the EDT and copied out any
1968 * matching entries.
1969 */
1970 if (ret == 1)
1971 cdm->status = CAM_DEV_MATCH_LAST;
1972
1973 return(ret);
1974}
1975
1976static int
1977xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
1978{
1979 struct cam_eb *bus, *next_bus;
1980 int retval;
1981
1982 retval = 1;
1983
1984 mtx_lock(&xsoftc.xpt_topo_lock);
1985 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
1986 bus != NULL;
1987 bus = next_bus) {
1988 next_bus = TAILQ_NEXT(bus, links);
1989
1990 mtx_unlock(&xsoftc.xpt_topo_lock);
1991 CAM_SIM_LOCK(bus->sim);
1992 retval = tr_func(bus, arg);
1993 CAM_SIM_UNLOCK(bus->sim);
1994 if (retval == 0)
1995 return(retval);
1996 mtx_lock(&xsoftc.xpt_topo_lock);
1997 }
1998 mtx_unlock(&xsoftc.xpt_topo_lock);
1999
2000 return(retval);
2001}
2002
2003int
2004xpt_sim_opened(struct cam_sim *sim)
2005{
2006 struct cam_eb *bus;
2007 struct cam_et *target;
2008 struct cam_ed *device;
2009 struct cam_periph *periph;
2010
2011 KASSERT(sim->refcount >= 1, ("sim->refcount >= 1"));
2012 mtx_assert(sim->mtx, MA_OWNED);
2013
2014 mtx_lock(&xsoftc.xpt_topo_lock);
2015 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
2016 if (bus->sim != sim)
2017 continue;
2018
2019 TAILQ_FOREACH(target, &bus->et_entries, links) {
2020 TAILQ_FOREACH(device, &target->ed_entries, links) {
2021 SLIST_FOREACH(periph, &device->periphs,
2022 periph_links) {
2023 if (periph->refcount > 0) {
2024 mtx_unlock(&xsoftc.xpt_topo_lock);
2025 return (1);
2026 }
2027 }
2028 }
2029 }
2030 }
2031
2032 mtx_unlock(&xsoftc.xpt_topo_lock);
2033 return (0);
2034}
2035
2036static int
2037xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2038 xpt_targetfunc_t *tr_func, void *arg)
2039{
2040 struct cam_et *target, *next_target;
2041 int retval;
2042
2043 retval = 1;
2044 for (target = (start_target ? start_target :
2045 TAILQ_FIRST(&bus->et_entries));
2046 target != NULL; target = next_target) {
2047
2048 next_target = TAILQ_NEXT(target, links);
2049
2050 retval = tr_func(target, arg);
2051
2052 if (retval == 0)
2053 return(retval);
2054 }
2055
2056 return(retval);
2057}
2058
2059static int
2060xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2061 xpt_devicefunc_t *tr_func, void *arg)
2062{
2063 struct cam_ed *device, *next_device;
2064 int retval;
2065
2066 retval = 1;
2067 for (device = (start_device ? start_device :
2068 TAILQ_FIRST(&target->ed_entries));
2069 device != NULL;
2070 device = next_device) {
2071
2072 next_device = TAILQ_NEXT(device, links);
2073
2074 retval = tr_func(device, arg);
2075
2076 if (retval == 0)
2077 return(retval);
2078 }
2079
2080 return(retval);
2081}
2082
2083static int
2084xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2085 xpt_periphfunc_t *tr_func, void *arg)
2086{
2087 struct cam_periph *periph, *next_periph;
2088 int retval;
2089
2090 retval = 1;
2091
2092 for (periph = (start_periph ? start_periph :
2093 SLIST_FIRST(&device->periphs));
2094 periph != NULL;
2095 periph = next_periph) {
2096
2097 next_periph = SLIST_NEXT(periph, periph_links);
2098
2099 retval = tr_func(periph, arg);
2100 if (retval == 0)
2101 return(retval);
2102 }
2103
2104 return(retval);
2105}
2106
2107static int
2108xptpdrvtraverse(struct periph_driver **start_pdrv,
2109 xpt_pdrvfunc_t *tr_func, void *arg)
2110{
2111 struct periph_driver **pdrv;
2112 int retval;
2113
2114 retval = 1;
2115
2116 /*
2117 * We don't traverse the peripheral driver list like we do the
2118 * other lists, because it is a linker set, and therefore cannot be
2119 * changed during runtime. If the peripheral driver list is ever
2120 * re-done to be something other than a linker set (i.e. it can
2121 * change while the system is running), the list traversal should
2122 * be modified to work like the other traversal functions.
2123 */
2124 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2125 *pdrv != NULL; pdrv++) {
2126 retval = tr_func(pdrv, arg);
2127
2128 if (retval == 0)
2129 return(retval);
2130 }
2131
2132 return(retval);
2133}
2134
2135static int
2136xptpdperiphtraverse(struct periph_driver **pdrv,
2137 struct cam_periph *start_periph,
2138 xpt_periphfunc_t *tr_func, void *arg)
2139{
2140 struct cam_periph *periph, *next_periph;
2141 int retval;
2142
2143 retval = 1;
2144
2145 xpt_lock_buses();
2146 for (periph = (start_periph ? start_periph :
2147 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2148 periph = next_periph) {
2149
2150 next_periph = TAILQ_NEXT(periph, unit_links);
2151
2152 retval = tr_func(periph, arg);
2153 if (retval == 0) {
2154 xpt_unlock_buses();
2155 return(retval);
2156 }
2157 }
2158 xpt_unlock_buses();
2159 return(retval);
2160}
2161
2162static int
2163xptdefbusfunc(struct cam_eb *bus, void *arg)
2164{
2165 struct xpt_traverse_config *tr_config;
2166
2167 tr_config = (struct xpt_traverse_config *)arg;
2168
2169 if (tr_config->depth == XPT_DEPTH_BUS) {
2170 xpt_busfunc_t *tr_func;
2171
2172 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2173
2174 return(tr_func(bus, tr_config->tr_arg));
2175 } else
2176 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2177}
2178
2179static int
2180xptdeftargetfunc(struct cam_et *target, void *arg)
2181{
2182 struct xpt_traverse_config *tr_config;
2183
2184 tr_config = (struct xpt_traverse_config *)arg;
2185
2186 if (tr_config->depth == XPT_DEPTH_TARGET) {
2187 xpt_targetfunc_t *tr_func;
2188
2189 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2190
2191 return(tr_func(target, tr_config->tr_arg));
2192 } else
2193 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2194}
2195
2196static int
2197xptdefdevicefunc(struct cam_ed *device, void *arg)
2198{
2199 struct xpt_traverse_config *tr_config;
2200
2201 tr_config = (struct xpt_traverse_config *)arg;
2202
2203 if (tr_config->depth == XPT_DEPTH_DEVICE) {
2204 xpt_devicefunc_t *tr_func;
2205
2206 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2207
2208 return(tr_func(device, tr_config->tr_arg));
2209 } else
2210 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2211}
2212
2213static int
2214xptdefperiphfunc(struct cam_periph *periph, void *arg)
2215{
2216 struct xpt_traverse_config *tr_config;
2217 xpt_periphfunc_t *tr_func;
2218
2219 tr_config = (struct xpt_traverse_config *)arg;
2220
2221 tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2222
2223 /*
2224 * Unlike the other default functions, we don't check for depth
2225 * here. The peripheral driver level is the last level in the EDT,
2226 * so if we're here, we should execute the function in question.
2227 */
2228 return(tr_func(periph, tr_config->tr_arg));
2229}
2230
2231/*
2232 * Execute the given function for every bus in the EDT.
2233 */
2234static int
2235xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2236{
2237 struct xpt_traverse_config tr_config;
2238
2239 tr_config.depth = XPT_DEPTH_BUS;
2240 tr_config.tr_func = tr_func;
2241 tr_config.tr_arg = arg;
2242
2243 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2244}
2245
2246/*
2247 * Execute the given function for every device in the EDT.
2248 */
2249static int
2250xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2251{
2252 struct xpt_traverse_config tr_config;
2253
2254 tr_config.depth = XPT_DEPTH_DEVICE;
2255 tr_config.tr_func = tr_func;
2256 tr_config.tr_arg = arg;
2257
2258 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2259}
2260
2261static int
2262xptsetasyncfunc(struct cam_ed *device, void *arg)
2263{
2264 struct cam_path path;
2265 struct ccb_getdev cgd;
2266 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2267
2268 /*
2269 * Don't report unconfigured devices (Wildcard devs,
2270 * devices only for target mode, device instances
2271 * that have been invalidated but are waiting for
2272 * their last reference count to be released).
2273 */
2274 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2275 return (1);
2276
2277 xpt_compile_path(&path,
2278 NULL,
2279 device->target->bus->path_id,
2280 device->target->target_id,
2281 device->lun_id);
2282 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2283 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2284 xpt_action((union ccb *)&cgd);
2285 csa->callback(csa->callback_arg,
2286 AC_FOUND_DEVICE,
2287 &path, &cgd);
2288 xpt_release_path(&path);
2289
2290 return(1);
2291}
2292
2293static int
2294xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2295{
2296 struct cam_path path;
2297 struct ccb_pathinq cpi;
2298 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2299
2300 xpt_compile_path(&path, /*periph*/NULL,
2301 bus->sim->path_id,
2302 CAM_TARGET_WILDCARD,
2303 CAM_LUN_WILDCARD);
2304 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2305 cpi.ccb_h.func_code = XPT_PATH_INQ;
2306 xpt_action((union ccb *)&cpi);
2307 csa->callback(csa->callback_arg,
2308 AC_PATH_REGISTERED,
2309 &path, &cpi);
2310 xpt_release_path(&path);
2311
2312 return(1);
2313}
2314
2315void
2316xpt_action(union ccb *start_ccb)
2317{
2318
2319 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2320
2321 start_ccb->ccb_h.status = CAM_REQ_INPROG;
2322 /* Compatibility for RL-unaware code. */
2323 if (CAM_PRIORITY_TO_RL(start_ccb->ccb_h.pinfo.priority) == 0)
2324 start_ccb->ccb_h.pinfo.priority += CAM_PRIORITY_NORMAL - 1;
2325 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2326}
2327
2328void
2329xpt_action_default(union ccb *start_ccb)
2330{
2331
2332 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2333
2334 switch (start_ccb->ccb_h.func_code) {
2335 case XPT_SCSI_IO:
2336 {
2337 struct cam_ed *device;
2338#ifdef CAMDEBUG
2339 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2340 struct cam_path *path;
2341
2342 path = start_ccb->ccb_h.path;
2343#endif
2344
2345 /*
2346 * For the sake of compatibility with SCSI-1
2347 * devices that may not understand the identify
2348 * message, we include lun information in the
2349 * second byte of all commands. SCSI-1 specifies
2350 * that luns are a 3 bit value and reserves only 3
2351 * bits for lun information in the CDB. Later
2352 * revisions of the SCSI spec allow for more than 8
2353 * luns, but have deprecated lun information in the
2354 * CDB. So, if the lun won't fit, we must omit.
2355 *
2356 * Also be aware that during initial probing for devices,
2357 * the inquiry information is unknown but initialized to 0.
2358 * This means that this code will be exercised while probing
2359 * devices with an ANSI revision greater than 2.
2360 */
2361 device = start_ccb->ccb_h.path->device;
2362 if (device->protocol_version <= SCSI_REV_2
2363 && start_ccb->ccb_h.target_lun < 8
2364 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2365
2366 start_ccb->csio.cdb_io.cdb_bytes[1] |=
2367 start_ccb->ccb_h.target_lun << 5;
2368 }
2369 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2370 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2371 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2372 &path->device->inq_data),
2373 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2374 cdb_str, sizeof(cdb_str))));
2375 }
2376 /* FALLTHROUGH */
2377 case XPT_TARGET_IO:
2378 case XPT_CONT_TARGET_IO:
2379 start_ccb->csio.sense_resid = 0;
2380 start_ccb->csio.resid = 0;
2381 /* FALLTHROUGH */
2382 case XPT_ATA_IO:
2383 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) {
2384 start_ccb->ataio.resid = 0;
2385 }
2386 /* FALLTHROUGH */
2387 case XPT_RESET_DEV:
2388 case XPT_ENG_EXEC:
2389 case XPT_SMP_IO:
2390 {
2391 struct cam_path *path = start_ccb->ccb_h.path;
2392 int frozen;
2393
2394 frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2395 path->device->sim->devq->alloc_openings += frozen;
2396 if (frozen > 0)
2397 xpt_run_dev_allocq(path->bus);
2398 if (xpt_schedule_dev_sendq(path->bus, path->device))
2399 xpt_run_dev_sendq(path->bus);
2400 break;
2401 }
2402 case XPT_CALC_GEOMETRY:
2403 {
2404 struct cam_sim *sim;
2405
2406 /* Filter out garbage */
2407 if (start_ccb->ccg.block_size == 0
2408 || start_ccb->ccg.volume_size == 0) {
2409 start_ccb->ccg.cylinders = 0;
2410 start_ccb->ccg.heads = 0;
2411 start_ccb->ccg.secs_per_track = 0;
2412 start_ccb->ccb_h.status = CAM_REQ_CMP;
2413 break;
2414 }
2415#ifdef PC98
2416 /*
2417 * In a PC-98 system, geometry translation depens on
2418 * the "real" device geometry obtained from mode page 4.
2419 * SCSI geometry translation is performed in the
2420 * initialization routine of the SCSI BIOS and the result
2421 * stored in host memory. If the translation is available
2422 * in host memory, use it. If not, rely on the default
2423 * translation the device driver performs.
2424 */
2425 if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2426 start_ccb->ccb_h.status = CAM_REQ_CMP;
2427 break;
2428 }
2429#endif
2430 sim = start_ccb->ccb_h.path->bus->sim;
2431 (*(sim->sim_action))(sim, start_ccb);
2432 break;
2433 }
2434 case XPT_ABORT:
2435 {
2436 union ccb* abort_ccb;
2437
2438 abort_ccb = start_ccb->cab.abort_ccb;
2439 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2440
2441 if (abort_ccb->ccb_h.pinfo.index >= 0) {
2442 struct cam_ccbq *ccbq;
2443 struct cam_ed *device;
2444
2445 device = abort_ccb->ccb_h.path->device;
2446 ccbq = &device->ccbq;
2447 device->sim->devq->alloc_openings -=
2448 cam_ccbq_remove_ccb(ccbq, abort_ccb);
2449 abort_ccb->ccb_h.status =
2450 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2451 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2452 xpt_done(abort_ccb);
2453 start_ccb->ccb_h.status = CAM_REQ_CMP;
2454 break;
2455 }
2456 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2457 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2458 /*
2459 * We've caught this ccb en route to
2460 * the SIM. Flag it for abort and the
2461 * SIM will do so just before starting
2462 * real work on the CCB.
2463 */
2464 abort_ccb->ccb_h.status =
2465 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2466 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2467 start_ccb->ccb_h.status = CAM_REQ_CMP;
2468 break;
2469 }
2470 }
2471 if (XPT_FC_IS_QUEUED(abort_ccb)
2472 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2473 /*
2474 * It's already completed but waiting
2475 * for our SWI to get to it.
2476 */
2477 start_ccb->ccb_h.status = CAM_UA_ABORT;
2478 break;
2479 }
2480 /*
2481 * If we weren't able to take care of the abort request
2482 * in the XPT, pass the request down to the SIM for processing.
2483 */
2484 }
2485 /* FALLTHROUGH */
2486 case XPT_ACCEPT_TARGET_IO:
2487 case XPT_EN_LUN:
2488 case XPT_IMMED_NOTIFY:
2489 case XPT_NOTIFY_ACK:
2490 case XPT_RESET_BUS:
2491 case XPT_IMMEDIATE_NOTIFY:
2492 case XPT_NOTIFY_ACKNOWLEDGE:
2493 case XPT_GET_SIM_KNOB:
2494 case XPT_SET_SIM_KNOB:
2495 {
2496 struct cam_sim *sim;
2497
2498 sim = start_ccb->ccb_h.path->bus->sim;
2499 (*(sim->sim_action))(sim, start_ccb);
2500 break;
2501 }
2502 case XPT_PATH_INQ:
2503 {
2504 struct cam_sim *sim;
2505
2506 sim = start_ccb->ccb_h.path->bus->sim;
2507 (*(sim->sim_action))(sim, start_ccb);
2508 break;
2509 }
2510 case XPT_PATH_STATS:
2511 start_ccb->cpis.last_reset =
2512 start_ccb->ccb_h.path->bus->last_reset;
2513 start_ccb->ccb_h.status = CAM_REQ_CMP;
2514 break;
2515 case XPT_GDEV_TYPE:
2516 {
2517 struct cam_ed *dev;
2518
2519 dev = start_ccb->ccb_h.path->device;
2520 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2521 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2522 } else {
2523 struct ccb_getdev *cgd;
2524 struct cam_eb *bus;
2525 struct cam_et *tar;
2526
2527 cgd = &start_ccb->cgd;
2528 bus = cgd->ccb_h.path->bus;
2529 tar = cgd->ccb_h.path->target;
2530 cgd->protocol = dev->protocol;
2531 cgd->inq_data = dev->inq_data;
2532 cgd->ident_data = dev->ident_data;
2533 cgd->inq_flags = dev->inq_flags;
2534 cgd->ccb_h.status = CAM_REQ_CMP;
2535 cgd->serial_num_len = dev->serial_num_len;
2536 if ((dev->serial_num_len > 0)
2537 && (dev->serial_num != NULL))
2538 bcopy(dev->serial_num, cgd->serial_num,
2539 dev->serial_num_len);
2540 }
2541 break;
2542 }
2543 case XPT_GDEV_STATS:
2544 {
2545 struct cam_ed *dev;
2546
2547 dev = start_ccb->ccb_h.path->device;
2548 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2549 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2550 } else {
2551 struct ccb_getdevstats *cgds;
2552 struct cam_eb *bus;
2553 struct cam_et *tar;
2554
2555 cgds = &start_ccb->cgds;
2556 bus = cgds->ccb_h.path->bus;
2557 tar = cgds->ccb_h.path->target;
2558 cgds->dev_openings = dev->ccbq.dev_openings;
2559 cgds->dev_active = dev->ccbq.dev_active;
2560 cgds->devq_openings = dev->ccbq.devq_openings;
2561 cgds->devq_queued = dev->ccbq.queue.entries;
2562 cgds->held = dev->ccbq.held;
2563 cgds->last_reset = tar->last_reset;
2564 cgds->maxtags = dev->maxtags;
2565 cgds->mintags = dev->mintags;
2566 if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2567 cgds->last_reset = bus->last_reset;
2568 cgds->ccb_h.status = CAM_REQ_CMP;
2569 }
2570 break;
2571 }
2572 case XPT_GDEVLIST:
2573 {
2574 struct cam_periph *nperiph;
2575 struct periph_list *periph_head;
2576 struct ccb_getdevlist *cgdl;
2577 u_int i;
2578 struct cam_ed *device;
2579 int found;
2580
2581
2582 found = 0;
2583
2584 /*
2585 * Don't want anyone mucking with our data.
2586 */
2587 device = start_ccb->ccb_h.path->device;
2588 periph_head = &device->periphs;
2589 cgdl = &start_ccb->cgdl;
2590
2591 /*
2592 * Check and see if the list has changed since the user
2593 * last requested a list member. If so, tell them that the
2594 * list has changed, and therefore they need to start over
2595 * from the beginning.
2596 */
2597 if ((cgdl->index != 0) &&
2598 (cgdl->generation != device->generation)) {
2599 cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2600 break;
2601 }
2602
2603 /*
2604 * Traverse the list of peripherals and attempt to find
2605 * the requested peripheral.
2606 */
2607 for (nperiph = SLIST_FIRST(periph_head), i = 0;
2608 (nperiph != NULL) && (i <= cgdl->index);
2609 nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2610 if (i == cgdl->index) {
2611 strncpy(cgdl->periph_name,
2612 nperiph->periph_name,
2613 DEV_IDLEN);
2614 cgdl->unit_number = nperiph->unit_number;
2615 found = 1;
2616 }
2617 }
2618 if (found == 0) {
2619 cgdl->status = CAM_GDEVLIST_ERROR;
2620 break;
2621 }
2622
2623 if (nperiph == NULL)
2624 cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2625 else
2626 cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2627
2628 cgdl->index++;
2629 cgdl->generation = device->generation;
2630
2631 cgdl->ccb_h.status = CAM_REQ_CMP;
2632 break;
2633 }
2634 case XPT_DEV_MATCH:
2635 {
2636 dev_pos_type position_type;
2637 struct ccb_dev_match *cdm;
2638
2639 cdm = &start_ccb->cdm;
2640
2641 /*
2642 * There are two ways of getting at information in the EDT.
2643 * The first way is via the primary EDT tree. It starts
2644 * with a list of busses, then a list of targets on a bus,
2645 * then devices/luns on a target, and then peripherals on a
2646 * device/lun. The "other" way is by the peripheral driver
2647 * lists. The peripheral driver lists are organized by
2648 * peripheral driver. (obviously) So it makes sense to
2649 * use the peripheral driver list if the user is looking
2650 * for something like "da1", or all "da" devices. If the
2651 * user is looking for something on a particular bus/target
2652 * or lun, it's generally better to go through the EDT tree.
2653 */
2654
2655 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2656 position_type = cdm->pos.position_type;
2657 else {
2658 u_int i;
2659
2660 position_type = CAM_DEV_POS_NONE;
2661
2662 for (i = 0; i < cdm->num_patterns; i++) {
2663 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2664 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2665 position_type = CAM_DEV_POS_EDT;
2666 break;
2667 }
2668 }
2669
2670 if (cdm->num_patterns == 0)
2671 position_type = CAM_DEV_POS_EDT;
2672 else if (position_type == CAM_DEV_POS_NONE)
2673 position_type = CAM_DEV_POS_PDRV;
2674 }
2675
2676 switch(position_type & CAM_DEV_POS_TYPEMASK) {
2677 case CAM_DEV_POS_EDT:
2678 xptedtmatch(cdm);
2679 break;
2680 case CAM_DEV_POS_PDRV:
2681 xptperiphlistmatch(cdm);
2682 break;
2683 default:
2684 cdm->status = CAM_DEV_MATCH_ERROR;
2685 break;
2686 }
2687
2688 if (cdm->status == CAM_DEV_MATCH_ERROR)
2689 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2690 else
2691 start_ccb->ccb_h.status = CAM_REQ_CMP;
2692
2693 break;
2694 }
2695 case XPT_SASYNC_CB:
2696 {
2697 struct ccb_setasync *csa;
2698 struct async_node *cur_entry;
2699 struct async_list *async_head;
2700 u_int32_t added;
2701
2702 csa = &start_ccb->csa;
2703 added = csa->event_enable;
2704 async_head = &csa->ccb_h.path->device->asyncs;
2705
2706 /*
2707 * If there is already an entry for us, simply
2708 * update it.
2709 */
2710 cur_entry = SLIST_FIRST(async_head);
2711 while (cur_entry != NULL) {
2712 if ((cur_entry->callback_arg == csa->callback_arg)
2713 && (cur_entry->callback == csa->callback))
2714 break;
2715 cur_entry = SLIST_NEXT(cur_entry, links);
2716 }
2717
2718 if (cur_entry != NULL) {
2719 /*
2720 * If the request has no flags set,
2721 * remove the entry.
2722 */
2723 added &= ~cur_entry->event_enable;
2724 if (csa->event_enable == 0) {
2725 SLIST_REMOVE(async_head, cur_entry,
2726 async_node, links);
2727 xpt_release_device(csa->ccb_h.path->device);
2728 free(cur_entry, M_CAMXPT);
2729 } else {
2730 cur_entry->event_enable = csa->event_enable;
2731 }
2732 csa->event_enable = added;
2733 } else {
2734 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2735 M_NOWAIT);
2736 if (cur_entry == NULL) {
2737 csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2738 break;
2739 }
2740 cur_entry->event_enable = csa->event_enable;
2741 cur_entry->callback_arg = csa->callback_arg;
2742 cur_entry->callback = csa->callback;
2743 SLIST_INSERT_HEAD(async_head, cur_entry, links);
2744 xpt_acquire_device(csa->ccb_h.path->device);
2745 }
2746 start_ccb->ccb_h.status = CAM_REQ_CMP;
2747 break;
2748 }
2749 case XPT_REL_SIMQ:
2750 {
2751 struct ccb_relsim *crs;
2752 struct cam_ed *dev;
2753
2754 crs = &start_ccb->crs;
2755 dev = crs->ccb_h.path->device;
2756 if (dev == NULL) {
2757
2758 crs->ccb_h.status = CAM_DEV_NOT_THERE;
2759 break;
2760 }
2761
2762 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2763
2764 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
2765 /* Don't ever go below one opening */
2766 if (crs->openings > 0) {
2767 xpt_dev_ccbq_resize(crs->ccb_h.path,
2768 crs->openings);
2769
2770 if (bootverbose) {
2771 xpt_print(crs->ccb_h.path,
2772 "tagged openings now %d\n",
2773 crs->openings);
2774 }
2775 }
2776 }
2777 }
2778
2779 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2780
2781 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2782
2783 /*
2784 * Just extend the old timeout and decrement
2785 * the freeze count so that a single timeout
2786 * is sufficient for releasing the queue.
2787 */
2788 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2789 callout_stop(&dev->callout);
2790 } else {
2791
2792 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2793 }
2794
2795 callout_reset(&dev->callout,
2796 (crs->release_timeout * hz) / 1000,
2797 xpt_release_devq_timeout, dev);
2798
2799 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2800
2801 }
2802
2803 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2804
2805 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2806 /*
2807 * Decrement the freeze count so that a single
2808 * completion is still sufficient to unfreeze
2809 * the queue.
2810 */
2811 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2812 } else {
2813
2814 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2815 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2816 }
2817 }
2818
2819 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2820
2821 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2822 || (dev->ccbq.dev_active == 0)) {
2823
2824 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2825 } else {
2826
2827 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2828 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2829 }
2830 }
2831
2832 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
2833 xpt_release_devq_rl(crs->ccb_h.path, /*runlevel*/
2834 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2835 crs->release_timeout : 0,
2836 /*count*/1, /*run_queue*/TRUE);
2837 }
2838 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0];
2839 start_ccb->ccb_h.status = CAM_REQ_CMP;
2840 break;
2841 }
2842 case XPT_DEBUG: {
2843#ifdef CAMDEBUG
2844#ifdef CAM_DEBUG_DELAY
2845 cam_debug_delay = CAM_DEBUG_DELAY;
2846#endif
2847 cam_dflags = start_ccb->cdbg.flags;
2848 if (cam_dpath != NULL) {
2849 xpt_free_path(cam_dpath);
2850 cam_dpath = NULL;
2851 }
2852
2853 if (cam_dflags != CAM_DEBUG_NONE) {
2854 if (xpt_create_path(&cam_dpath, xpt_periph,
2855 start_ccb->ccb_h.path_id,
2856 start_ccb->ccb_h.target_id,
2857 start_ccb->ccb_h.target_lun) !=
2858 CAM_REQ_CMP) {
2859 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2860 cam_dflags = CAM_DEBUG_NONE;
2861 } else {
2862 start_ccb->ccb_h.status = CAM_REQ_CMP;
2863 xpt_print(cam_dpath, "debugging flags now %x\n",
2864 cam_dflags);
2865 }
2866 } else {
2867 cam_dpath = NULL;
2868 start_ccb->ccb_h.status = CAM_REQ_CMP;
2869 }
2870#else /* !CAMDEBUG */
2871 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2872#endif /* CAMDEBUG */
2873 break;
2874 }
2875 case XPT_FREEZE_QUEUE:
2876 {
2877 struct ccb_relsim *crs = &start_ccb->crs;
2878
2879 xpt_freeze_devq_rl(crs->ccb_h.path, /*runlevel*/
2880 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2881 crs->release_timeout : 0, /*count*/1);
2882 start_ccb->ccb_h.status = CAM_REQ_CMP;
2883 break;
2884 }
2885 case XPT_NOOP:
2886 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2887 xpt_freeze_devq(start_ccb->ccb_h.path, 1);
2888 start_ccb->ccb_h.status = CAM_REQ_CMP;
2889 break;
2890 default:
2891 case XPT_SDEV_TYPE:
2892 case XPT_TERM_IO:
2893 case XPT_ENG_INQ:
2894 /* XXX Implement */
2895 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2896 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2897 xpt_done(start_ccb);
2898 }
2899 break;
2900 }
2901}
2902
2903void
2904xpt_polled_action(union ccb *start_ccb)
2905{
2906 u_int32_t timeout;
2907 struct cam_sim *sim;
2908 struct cam_devq *devq;
2909 struct cam_ed *dev;
2910
2911
2912 timeout = start_ccb->ccb_h.timeout * 10;
2913 sim = start_ccb->ccb_h.path->bus->sim;
2914 devq = sim->devq;
2915 dev = start_ccb->ccb_h.path->device;
2916
2917 mtx_assert(sim->mtx, MA_OWNED);
2918
2919 /*
2920 * Steal an opening so that no other queued requests
2921 * can get it before us while we simulate interrupts.
2922 */
2923 dev->ccbq.devq_openings--;
2924 dev->ccbq.dev_openings--;
2925
2926 while(((devq != NULL && devq->send_openings <= 0) ||
2927 dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
2928 DELAY(100);
2929 (*(sim->sim_poll))(sim);
2930 camisr_runqueue(&sim->sim_doneq);
2931 }
2932
2933 dev->ccbq.devq_openings++;
2934 dev->ccbq.dev_openings++;
2935
2936 if (timeout != 0) {
2937 xpt_action(start_ccb);
2938 while(--timeout > 0) {
2939 (*(sim->sim_poll))(sim);
2940 camisr_runqueue(&sim->sim_doneq);
2941 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
2942 != CAM_REQ_INPROG)
2943 break;
2944 DELAY(100);
2945 }
2946 if (timeout == 0) {
2947 /*
2948 * XXX Is it worth adding a sim_timeout entry
2949 * point so we can attempt recovery? If
2950 * this is only used for dumps, I don't think
2951 * it is.
2952 */
2953 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
2954 }
2955 } else {
2956 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2957 }
2958}
2959
2960/*
2961 * Schedule a peripheral driver to receive a ccb when it's
2962 * target device has space for more transactions.
2963 */
2964void
2965xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
2966{
2967 struct cam_ed *device;
2968 int runq = 0;
2969
2970 mtx_assert(perph->sim->mtx, MA_OWNED);
2971
2972 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
2973 device = perph->path->device;
2974 if (periph_is_queued(perph)) {
2975 /* Simply reorder based on new priority */
2976 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
2977 (" change priority to %d\n", new_priority));
2978 if (new_priority < perph->pinfo.priority) {
2979 camq_change_priority(&device->drvq,
2980 perph->pinfo.index,
2981 new_priority);
2982 runq = xpt_schedule_dev_allocq(perph->path->bus, device);
2983 }
2984 } else {
2985 /* New entry on the queue */
2986 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
2987 (" added periph to queue\n"));
2988 perph->pinfo.priority = new_priority;
2989 perph->pinfo.generation = ++device->drvq.generation;
2990 camq_insert(&device->drvq, &perph->pinfo);
2991 runq = xpt_schedule_dev_allocq(perph->path->bus, device);
2992 }
2993 if (runq != 0) {
2994 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
2995 (" calling xpt_run_devq\n"));
2996 xpt_run_dev_allocq(perph->path->bus);
2997 }
2998}
2999
3000
3001/*
3002 * Schedule a device to run on a given queue.
3003 * If the device was inserted as a new entry on the queue,
3004 * return 1 meaning the device queue should be run. If we
3005 * were already queued, implying someone else has already
3006 * started the queue, return 0 so the caller doesn't attempt
3007 * to run the queue.
3008 */
3009int
3010xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3011 u_int32_t new_priority)
3012{
3013 int retval;
3014 u_int32_t old_priority;
3015
3016 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3017
3018 old_priority = pinfo->priority;
3019
3020 /*
3021 * Are we already queued?
3022 */
3023 if (pinfo->index != CAM_UNQUEUED_INDEX) {
3024 /* Simply reorder based on new priority */
3025 if (new_priority < old_priority) {
3026 camq_change_priority(queue, pinfo->index,
3027 new_priority);
3028 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3029 ("changed priority to %d\n",
3030 new_priority));
3031 retval = 1;
3032 } else
3033 retval = 0;
3034 } else {
3035 /* New entry on the queue */
3036 if (new_priority < old_priority)
3037 pinfo->priority = new_priority;
3038
3039 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3040 ("Inserting onto queue\n"));
3041 pinfo->generation = ++queue->generation;
3042 camq_insert(queue, pinfo);
3043 retval = 1;
3044 }
3045 return (retval);
3046}
3047
3048static void
3049xpt_run_dev_allocq(struct cam_eb *bus)
3050{
3051 struct cam_devq *devq;
3052
3053 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3054 devq = bus->sim->devq;
3055
3056 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3057 (" qfrozen_cnt == 0x%x, entries == %d, "
3058 "openings == %d, active == %d\n",
3059 devq->alloc_queue.qfrozen_cnt[0],
3060 devq->alloc_queue.entries,
3061 devq->alloc_openings,
3062 devq->alloc_active));
3063
3064 devq->alloc_queue.qfrozen_cnt[0]++;
3065 while ((devq->alloc_queue.entries > 0)
3066 && (devq->alloc_openings > 0)
3067 && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) {
3068 struct cam_ed_qinfo *qinfo;
3069 struct cam_ed *device;
3070 union ccb *work_ccb;
3071 struct cam_periph *drv;
3072 struct camq *drvq;
3073
3074 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3075 CAMQ_HEAD);
3076 device = qinfo->device;
3077 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3078 ("running device %p\n", device));
3079
3080 drvq = &device->drvq;
3081
3082#ifdef CAMDEBUG
3083 if (drvq->entries <= 0) {
3084 panic("xpt_run_dev_allocq: "
3085 "Device on queue without any work to do");
3086 }
3087#endif
3088 if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3089 devq->alloc_openings--;
3090 devq->alloc_active++;
3091 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3092 xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3093 drv->pinfo.priority);
3094 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3095 ("calling periph start\n"));
3096 drv->periph_start(drv, work_ccb);
3097 } else {
3098 /*
3099 * Malloc failure in alloc_ccb
3100 */
3101 /*
3102 * XXX add us to a list to be run from free_ccb
3103 * if we don't have any ccbs active on this
3104 * device queue otherwise we may never get run
3105 * again.
3106 */
3107 break;
3108 }
3109
3110 /* We may have more work. Attempt to reschedule. */
3111 xpt_schedule_dev_allocq(bus, device);
3112 }
3113 devq->alloc_queue.qfrozen_cnt[0]--;
3114}
3115
3116static void
3117xpt_run_dev_sendq(struct cam_eb *bus)
3118{
3119 struct cam_devq *devq;
3120
3121 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3122
3123 devq = bus->sim->devq;
3124
3125 devq->send_queue.qfrozen_cnt[0]++;
3126 while ((devq->send_queue.entries > 0)
3127 && (devq->send_openings > 0)
3128 && (devq->send_queue.qfrozen_cnt[0] <= 1)) {
3129 struct cam_ed_qinfo *qinfo;
3130 struct cam_ed *device;
3131 union ccb *work_ccb;
3132 struct cam_sim *sim;
3133
3134 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3135 CAMQ_HEAD);
3136 device = qinfo->device;
3137 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3138 ("running device %p\n", device));
3139
3140 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3141 if (work_ccb == NULL) {
3142 printf("device on run queue with no ccbs???\n");
3143 continue;
3144 }
3145
3146 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3147
3148 mtx_lock(&xsoftc.xpt_lock);
3149 if (xsoftc.num_highpower <= 0) {
3150 /*
3151 * We got a high power command, but we
3152 * don't have any available slots. Freeze
3153 * the device queue until we have a slot
3154 * available.
3155 */
3156 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3157 STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3158 &work_ccb->ccb_h,
3159 xpt_links.stqe);
3160
3161 mtx_unlock(&xsoftc.xpt_lock);
3162 continue;
3163 } else {
3164 /*
3165 * Consume a high power slot while
3166 * this ccb runs.
3167 */
3168 xsoftc.num_highpower--;
3169 }
3170 mtx_unlock(&xsoftc.xpt_lock);
3171 }
3172 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3173 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3174
3175 devq->send_openings--;
3176 devq->send_active++;
3177
3178 xpt_schedule_dev_sendq(bus, device);
3179
3180 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3181 /*
3182 * The client wants to freeze the queue
3183 * after this CCB is sent.
3184 */
3185 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3186 }
3187
3188 /* In Target mode, the peripheral driver knows best... */
3189 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3190 if ((device->inq_flags & SID_CmdQue) != 0
3191 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3192 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3193 else
3194 /*
3195 * Clear this in case of a retried CCB that
3196 * failed due to a rejected tag.
3197 */
3198 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3199 }
3200
3201 /*
3202 * Device queues can be shared among multiple sim instances
3203 * that reside on different busses. Use the SIM in the queue
3204 * CCB's path, rather than the one in the bus that was passed
3205 * into this function.
3206 */
3207 sim = work_ccb->ccb_h.path->bus->sim;
3208 (*(sim->sim_action))(sim, work_ccb);
3209 }
3210 devq->send_queue.qfrozen_cnt[0]--;
3211}
3212
3213/*
3214 * This function merges stuff from the slave ccb into the master ccb, while
3215 * keeping important fields in the master ccb constant.
3216 */
3217void
3218xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3219{
3220
3221 /*
3222 * Pull fields that are valid for peripheral drivers to set
3223 * into the master CCB along with the CCB "payload".
3224 */
3225 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3226 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3227 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3228 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3229 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3230 sizeof(union ccb) - sizeof(struct ccb_hdr));
3231}
3232
3233void
3234xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3235{
3236
3237 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3238 ccb_h->pinfo.priority = priority;
3239 ccb_h->path = path;
3240 ccb_h->path_id = path->bus->path_id;
3241 if (path->target)
3242 ccb_h->target_id = path->target->target_id;
3243 else
3244 ccb_h->target_id = CAM_TARGET_WILDCARD;
3245 if (path->device) {
3246 ccb_h->target_lun = path->device->lun_id;
3247 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3248 } else {
3249 ccb_h->target_lun = CAM_TARGET_WILDCARD;
3250 }
3251 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3252 ccb_h->flags = 0;
3253}
3254
3255/* Path manipulation functions */
3256cam_status
3257xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3258 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3259{
3260 struct cam_path *path;
3261 cam_status status;
3262
3263 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3264
3265 if (path == NULL) {
3266 status = CAM_RESRC_UNAVAIL;
3267 return(status);
3268 }
3269 status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3270 if (status != CAM_REQ_CMP) {
3271 free(path, M_CAMXPT);
3272 path = NULL;
3273 }
3274 *new_path_ptr = path;
3275 return (status);
3276}
3277
3278cam_status
3279xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3280 struct cam_periph *periph, path_id_t path_id,
3281 target_id_t target_id, lun_id_t lun_id)
3282{
3283 struct cam_path *path;
3284 struct cam_eb *bus = NULL;
3285 cam_status status;
3286 int need_unlock = 0;
3287
3288 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3289
3290 if (path_id != CAM_BUS_WILDCARD) {
3291 bus = xpt_find_bus(path_id);
3292 if (bus != NULL) {
3293 need_unlock = 1;
3294 CAM_SIM_LOCK(bus->sim);
3295 }
3296 }
3297 status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3298 if (need_unlock)
3299 CAM_SIM_UNLOCK(bus->sim);
3300 if (status != CAM_REQ_CMP) {
3301 free(path, M_CAMXPT);
3302 path = NULL;
3303 }
3304 *new_path_ptr = path;
3305 return (status);
3306}
3307
3308cam_status
3309xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3310 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3311{
3312 struct cam_eb *bus;
3313 struct cam_et *target;
3314 struct cam_ed *device;
3315 cam_status status;
3316
3317 status = CAM_REQ_CMP; /* Completed without error */
3318 target = NULL; /* Wildcarded */
3319 device = NULL; /* Wildcarded */
3320
3321 /*
3322 * We will potentially modify the EDT, so block interrupts
3323 * that may attempt to create cam paths.
3324 */
3325 bus = xpt_find_bus(path_id);
3326 if (bus == NULL) {
3327 status = CAM_PATH_INVALID;
3328 } else {
3329 target = xpt_find_target(bus, target_id);
3330 if (target == NULL) {
3331 /* Create one */
3332 struct cam_et *new_target;
3333
3334 new_target = xpt_alloc_target(bus, target_id);
3335 if (new_target == NULL) {
3336 status = CAM_RESRC_UNAVAIL;
3337 } else {
3338 target = new_target;
3339 }
3340 }
3341 if (target != NULL) {
3342 device = xpt_find_device(target, lun_id);
3343 if (device == NULL) {
3344 /* Create one */
3345 struct cam_ed *new_device;
3346
3347 new_device =
3348 (*(bus->xport->alloc_device))(bus,
3349 target,
3350 lun_id);
3351 if (new_device == NULL) {
3352 status = CAM_RESRC_UNAVAIL;
3353 } else {
3354 device = new_device;
3355 }
3356 }
3357 }
3358 }
3359
3360 /*
3361 * Only touch the user's data if we are successful.
3362 */
3363 if (status == CAM_REQ_CMP) {
3364 new_path->periph = perph;
3365 new_path->bus = bus;
3366 new_path->target = target;
3367 new_path->device = device;
3368 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3369 } else {
3370 if (device != NULL)
3371 xpt_release_device(device);
3372 if (target != NULL)
3373 xpt_release_target(target);
3374 if (bus != NULL)
3375 xpt_release_bus(bus);
3376 }
3377 return (status);
3378}
3379
3380void
3381xpt_release_path(struct cam_path *path)
3382{
3383 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3384 if (path->device != NULL) {
3385 xpt_release_device(path->device);
3386 path->device = NULL;
3387 }
3388 if (path->target != NULL) {
3389 xpt_release_target(path->target);
3390 path->target = NULL;
3391 }
3392 if (path->bus != NULL) {
3393 xpt_release_bus(path->bus);
3394 path->bus = NULL;
3395 }
3396}
3397
3398void
3399xpt_free_path(struct cam_path *path)
3400{
3401
3402 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3403 xpt_release_path(path);
3404 free(path, M_CAMXPT);
3405}
3406
3407
3408/*
3409 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3410 * in path1, 2 for match with wildcards in path2.
3411 */
3412int
3413xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3414{
3415 int retval = 0;
3416
3417 if (path1->bus != path2->bus) {
3418 if (path1->bus->path_id == CAM_BUS_WILDCARD)
3419 retval = 1;
3420 else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3421 retval = 2;
3422 else
3423 return (-1);
3424 }
3425 if (path1->target != path2->target) {
3426 if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3427 if (retval == 0)
3428 retval = 1;
3429 } else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3430 retval = 2;
3431 else
3432 return (-1);
3433 }
3434 if (path1->device != path2->device) {
3435 if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3436 if (retval == 0)
3437 retval = 1;
3438 } else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3439 retval = 2;
3440 else
3441 return (-1);
3442 }
3443 return (retval);
3444}
3445
3446void
3447xpt_print_path(struct cam_path *path)
3448{
3449
3450 if (path == NULL)
3451 printf("(nopath): ");
3452 else {
3453 if (path->periph != NULL)
3454 printf("(%s%d:", path->periph->periph_name,
3455 path->periph->unit_number);
3456 else
3457 printf("(noperiph:");
3458
3459 if (path->bus != NULL)
3460 printf("%s%d:%d:", path->bus->sim->sim_name,
3461 path->bus->sim->unit_number,
3462 path->bus->sim->bus_id);
3463 else
3464 printf("nobus:");
3465
3466 if (path->target != NULL)
3467 printf("%d:", path->target->target_id);
3468 else
3469 printf("X:");
3470
3471 if (path->device != NULL)
3472 printf("%d): ", path->device->lun_id);
3473 else
3474 printf("X): ");
3475 }
3476}
3477
3478void
3479xpt_print(struct cam_path *path, const char *fmt, ...)
3480{
3481 va_list ap;
3482 xpt_print_path(path);
3483 va_start(ap, fmt);
3484 vprintf(fmt, ap);
3485 va_end(ap);
3486}
3487
3488int
3489xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3490{
3491 struct sbuf sb;
3492
3493#ifdef INVARIANTS
3494 if (path != NULL && path->bus != NULL)
3495 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3496#endif
3497
3498 sbuf_new(&sb, str, str_len, 0);
3499
3500 if (path == NULL)
3501 sbuf_printf(&sb, "(nopath): ");
3502 else {
3503 if (path->periph != NULL)
3504 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3505 path->periph->unit_number);
3506 else
3507 sbuf_printf(&sb, "(noperiph:");
3508
3509 if (path->bus != NULL)
3510 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3511 path->bus->sim->unit_number,
3512 path->bus->sim->bus_id);
3513 else
3514 sbuf_printf(&sb, "nobus:");
3515
3516 if (path->target != NULL)
3517 sbuf_printf(&sb, "%d:", path->target->target_id);
3518 else
3519 sbuf_printf(&sb, "X:");
3520
3521 if (path->device != NULL)
3522 sbuf_printf(&sb, "%d): ", path->device->lun_id);
3523 else
3524 sbuf_printf(&sb, "X): ");
3525 }
3526 sbuf_finish(&sb);
3527
3528 return(sbuf_len(&sb));
3529}
3530
3531path_id_t
3532xpt_path_path_id(struct cam_path *path)
3533{
3534 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3535
3536 return(path->bus->path_id);
3537}
3538
3539target_id_t
3540xpt_path_target_id(struct cam_path *path)
3541{
3542 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3543
3544 if (path->target != NULL)
3545 return (path->target->target_id);
3546 else
3547 return (CAM_TARGET_WILDCARD);
3548}
3549
3550lun_id_t
3551xpt_path_lun_id(struct cam_path *path)
3552{
3553 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3554
3555 if (path->device != NULL)
3556 return (path->device->lun_id);
3557 else
3558 return (CAM_LUN_WILDCARD);
3559}
3560
3561struct cam_sim *
3562xpt_path_sim(struct cam_path *path)
3563{
3564
3565 return (path->bus->sim);
3566}
3567
3568struct cam_periph*
3569xpt_path_periph(struct cam_path *path)
3570{
3571 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3572
3573 return (path->periph);
3574}
3575
3576/*
3577 * Release a CAM control block for the caller. Remit the cost of the structure
3578 * to the device referenced by the path. If the this device had no 'credits'
3579 * and peripheral drivers have registered async callbacks for this notification
3580 * call them now.
3581 */
3582void
3583xpt_release_ccb(union ccb *free_ccb)
3584{
3585 struct cam_path *path;
3586 struct cam_ed *device;
3587 struct cam_eb *bus;
3588 struct cam_sim *sim;
3589
3590 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3591 path = free_ccb->ccb_h.path;
3592 device = path->device;
3593 bus = path->bus;
3594 sim = bus->sim;
3595
3596 mtx_assert(sim->mtx, MA_OWNED);
3597
3598 cam_ccbq_release_opening(&device->ccbq);
3599 if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) {
3600 device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
3601 cam_ccbq_resize(&device->ccbq,
3602 device->ccbq.dev_openings + device->ccbq.dev_active);
3603 }
3604 if (sim->ccb_count > sim->max_ccbs) {
3605 xpt_free_ccb(free_ccb);
3606 sim->ccb_count--;
3607 } else {
3608 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3609 xpt_links.sle);
3610 }
3611 if (sim->devq == NULL) {
3612 return;
3613 }
3614 sim->devq->alloc_openings++;
3615 sim->devq->alloc_active--;
3616 if (device_is_alloc_queued(device) == 0)
3617 xpt_schedule_dev_allocq(bus, device);
3618 xpt_run_dev_allocq(bus);
3619}
3620
3621/* Functions accessed by SIM drivers */
3622
3623static struct xpt_xport xport_default = {
3624 .alloc_device = xpt_alloc_device_default,
3625 .action = xpt_action_default,
3626 .async = xpt_dev_async_default,
3627};
3628
3629/*
3630 * A sim structure, listing the SIM entry points and instance
3631 * identification info is passed to xpt_bus_register to hook the SIM
3632 * into the CAM framework. xpt_bus_register creates a cam_eb entry
3633 * for this new bus and places it in the array of busses and assigns
3634 * it a path_id. The path_id may be influenced by "hard wiring"
3635 * information specified by the user. Once interrupt services are
3636 * available, the bus will be probed.
3637 */
3638int32_t
3639xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3640{
3641 struct cam_eb *new_bus;
3642 struct cam_eb *old_bus;
3643 struct ccb_pathinq cpi;
3644 struct cam_path *path;
3645 cam_status status;
3646
3647 mtx_assert(sim->mtx, MA_OWNED);
3648
3649 sim->bus_id = bus;
3650 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3651 M_CAMXPT, M_NOWAIT);
3652 if (new_bus == NULL) {
3653 /* Couldn't satisfy request */
3654 return (CAM_RESRC_UNAVAIL);
3655 }
3656 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3657 if (path == NULL) {
3658 free(new_bus, M_CAMXPT);
3659 return (CAM_RESRC_UNAVAIL);
3660 }
3661
3662 if (strcmp(sim->sim_name, "xpt") != 0) {
3663 sim->path_id =
3664 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3665 }
3666
3667 TAILQ_INIT(&new_bus->et_entries);
3668 new_bus->path_id = sim->path_id;
3669 cam_sim_hold(sim);
3670 new_bus->sim = sim;
3671 timevalclear(&new_bus->last_reset);
3672 new_bus->flags = 0;
3673 new_bus->refcount = 1; /* Held until a bus_deregister event */
3674 new_bus->generation = 0;
3675
3676 mtx_lock(&xsoftc.xpt_topo_lock);
3677 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3678 while (old_bus != NULL
3679 && old_bus->path_id < new_bus->path_id)
3680 old_bus = TAILQ_NEXT(old_bus, links);
3681 if (old_bus != NULL)
3682 TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3683 else
3684 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3685 xsoftc.bus_generation++;
3686 mtx_unlock(&xsoftc.xpt_topo_lock);
3687
3688 /*
3689 * Set a default transport so that a PATH_INQ can be issued to
3690 * the SIM. This will then allow for probing and attaching of
3691 * a more appropriate transport.
3692 */
3693 new_bus->xport = &xport_default;
3694
3695 status = xpt_compile_path(path, /*periph*/NULL, sim->path_id,
3696 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3697 if (status != CAM_REQ_CMP)
3698 printf("xpt_compile_path returned %d\n", status);
3699
3700 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3701 cpi.ccb_h.func_code = XPT_PATH_INQ;
3702 xpt_action((union ccb *)&cpi);
3703
3704 if (cpi.ccb_h.status == CAM_REQ_CMP) {
3705 switch (cpi.transport) {
3706 case XPORT_SPI:
3707 case XPORT_SAS:
3708 case XPORT_FC:
3709 case XPORT_USB:
3710 case XPORT_ISCSI:
3711 case XPORT_PPB:
3712 new_bus->xport = scsi_get_xport();
3713 break;
3714 case XPORT_ATA:
3715 case XPORT_SATA:
3716 new_bus->xport = ata_get_xport();
3717 break;
3718 default:
3719 new_bus->xport = &xport_default;
3720 break;
3721 }
3722 }
3723
3724 /* Notify interested parties */
3725 if (sim->path_id != CAM_XPT_PATH_ID) {
3726 union ccb *scan_ccb;
3727
3728 xpt_async(AC_PATH_REGISTERED, path, &cpi);
3729 /* Initiate bus rescan. */
3730 scan_ccb = xpt_alloc_ccb_nowait();
3731 scan_ccb->ccb_h.path = path;
3732 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3733 scan_ccb->crcn.flags = 0;
3734 xpt_rescan(scan_ccb);
3735 } else
3736 xpt_free_path(path);
3737 return (CAM_SUCCESS);
3738}
3739
3740int32_t
3741xpt_bus_deregister(path_id_t pathid)
3742{
3743 struct cam_path bus_path;
3744 cam_status status;
3745
3746 status = xpt_compile_path(&bus_path, NULL, pathid,
3747 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3748 if (status != CAM_REQ_CMP)
3749 return (status);
3750
3751 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3752 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3753
3754 /* Release the reference count held while registered. */
3755 xpt_release_bus(bus_path.bus);
3756 xpt_release_path(&bus_path);
3757
3758 return (CAM_REQ_CMP);
3759}
3760
3761static path_id_t
3762xptnextfreepathid(void)
3763{
3764 struct cam_eb *bus;
3765 path_id_t pathid;
3766 const char *strval;
3767
3768 pathid = 0;
3769 mtx_lock(&xsoftc.xpt_topo_lock);
3770 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3771retry:
3772 /* Find an unoccupied pathid */
3773 while (bus != NULL && bus->path_id <= pathid) {
3774 if (bus->path_id == pathid)
3775 pathid++;
3776 bus = TAILQ_NEXT(bus, links);
3777 }
3778 mtx_unlock(&xsoftc.xpt_topo_lock);
3779
3780 /*
3781 * Ensure that this pathid is not reserved for
3782 * a bus that may be registered in the future.
3783 */
3784 if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3785 ++pathid;
3786 /* Start the search over */
3787 mtx_lock(&xsoftc.xpt_topo_lock);
3788 goto retry;
3789 }
3790 return (pathid);
3791}
3792
3793static path_id_t
3794xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3795{
3796 path_id_t pathid;
3797 int i, dunit, val;
3798 char buf[32];
3799 const char *dname;
3800
3801 pathid = CAM_XPT_PATH_ID;
3802 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3803 i = 0;
3804 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3805 if (strcmp(dname, "scbus")) {
3806 /* Avoid a bit of foot shooting. */
3807 continue;
3808 }
3809 if (dunit < 0) /* unwired?! */
3810 continue;
3811 if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
3812 if (sim_bus == val) {
3813 pathid = dunit;
3814 break;
3815 }
3816 } else if (sim_bus == 0) {
3817 /* Unspecified matches bus 0 */
3818 pathid = dunit;
3819 break;
3820 } else {
3821 printf("Ambiguous scbus configuration for %s%d "
3822 "bus %d, cannot wire down. The kernel "
3823 "config entry for scbus%d should "
3824 "specify a controller bus.\n"
3825 "Scbus will be assigned dynamically.\n",
3826 sim_name, sim_unit, sim_bus, dunit);
3827 break;
3828 }
3829 }
3830
3831 if (pathid == CAM_XPT_PATH_ID)
3832 pathid = xptnextfreepathid();
3833 return (pathid);
3834}
3835
3836void
3837xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
3838{
3839 struct cam_eb *bus;
3840 struct cam_et *target, *next_target;
3841 struct cam_ed *device, *next_device;
3842
3843 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3844
3845 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
3846
3847 /*
3848 * Most async events come from a CAM interrupt context. In
3849 * a few cases, the error recovery code at the peripheral layer,
3850 * which may run from our SWI or a process context, may signal
3851 * deferred events with a call to xpt_async.
3852 */
3853
3854 bus = path->bus;
3855
3856 if (async_code == AC_BUS_RESET) {
3857 /* Update our notion of when the last reset occurred */
3858 microtime(&bus->last_reset);
3859 }
3860
3861 for (target = TAILQ_FIRST(&bus->et_entries);
3862 target != NULL;
3863 target = next_target) {
3864
3865 next_target = TAILQ_NEXT(target, links);
3866
3867 if (path->target != target
3868 && path->target->target_id != CAM_TARGET_WILDCARD
3869 && target->target_id != CAM_TARGET_WILDCARD)
3870 continue;
3871
3872 if (async_code == AC_SENT_BDR) {
3873 /* Update our notion of when the last reset occurred */
3874 microtime(&path->target->last_reset);
3875 }
3876
3877 for (device = TAILQ_FIRST(&target->ed_entries);
3878 device != NULL;
3879 device = next_device) {
3880
3881 next_device = TAILQ_NEXT(device, links);
3882
3883 if (path->device != device
3884 && path->device->lun_id != CAM_LUN_WILDCARD
3885 && device->lun_id != CAM_LUN_WILDCARD)
3886 continue;
3887 /*
3888 * The async callback could free the device.
3889 * If it is a broadcast async, it doesn't hold
3890 * device reference, so take our own reference.
3891 */
3892 xpt_acquire_device(device);
3893 (*(bus->xport->async))(async_code, bus,
3894 target, device,
3895 async_arg);
3896
3897 xpt_async_bcast(&device->asyncs, async_code,
3898 path, async_arg);
3899 xpt_release_device(device);
3900 }
3901 }
3902
3903 /*
3904 * If this wasn't a fully wildcarded async, tell all
3905 * clients that want all async events.
3906 */
3907 if (bus != xpt_periph->path->bus)
3908 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
3909 path, async_arg);
3910}
3911
3912static void
3913xpt_async_bcast(struct async_list *async_head,
3914 u_int32_t async_code,
3915 struct cam_path *path, void *async_arg)
3916{
3917 struct async_node *cur_entry;
3918
3919 cur_entry = SLIST_FIRST(async_head);
3920 while (cur_entry != NULL) {
3921 struct async_node *next_entry;
3922 /*
3923 * Grab the next list entry before we call the current
3924 * entry's callback. This is because the callback function
3925 * can delete its async callback entry.
3926 */
3927 next_entry = SLIST_NEXT(cur_entry, links);
3928 if ((cur_entry->event_enable & async_code) != 0)
3929 cur_entry->callback(cur_entry->callback_arg,
3930 async_code, path,
3931 async_arg);
3932 cur_entry = next_entry;
3933 }
3934}
3935
3936static void
3937xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
3938 struct cam_et *target, struct cam_ed *device,
3939 void *async_arg)
3940{
3941 printf("%s called\n", __func__);
3942}
3943
3944u_int32_t
3945xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count)
3946{
3947 struct cam_ed *dev = path->device;
3948
3949 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3950 dev->sim->devq->alloc_openings +=
3951 cam_ccbq_freeze(&dev->ccbq, rl, count);
3952 /* Remove frozen device from allocq. */
3953 if (device_is_alloc_queued(dev) &&
3954 cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
3955 CAMQ_GET_PRIO(&dev->drvq)))) {
3956 camq_remove(&dev->sim->devq->alloc_queue,
3957 dev->alloc_ccb_entry.pinfo.index);
3958 }
3959 /* Remove frozen device from sendq. */
3960 if (device_is_send_queued(dev) &&
3961 cam_ccbq_frozen_top(&dev->ccbq)) {
3962 camq_remove(&dev->sim->devq->send_queue,
3963 dev->send_ccb_entry.pinfo.index);
3964 }
3965 return (dev->ccbq.queue.qfrozen_cnt[rl]);
3966}
3967
3968u_int32_t
3969xpt_freeze_devq(struct cam_path *path, u_int count)
3970{
3971
3972 return (xpt_freeze_devq_rl(path, 0, count));
3973}
3974
3975u_int32_t
3976xpt_freeze_simq(struct cam_sim *sim, u_int count)
3977{
3978
3979 mtx_assert(sim->mtx, MA_OWNED);
3980 sim->devq->send_queue.qfrozen_cnt[0] += count;
3981 return (sim->devq->send_queue.qfrozen_cnt[0]);
3982}
3983
3984static void
3985xpt_release_devq_timeout(void *arg)
3986{
3987 struct cam_ed *device;
3988
3989 device = (struct cam_ed *)arg;
3990
3991 xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE);
3992}
3993
3994void
3995xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
3996{
3997 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3998
3999 xpt_release_devq_device(path->device, /*rl*/0, count, run_queue);
4000}
4001
4002void
4003xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue)
4004{
4005 mtx_assert(path->bus->sim->mtx, MA_OWNED);
4006
4007 xpt_release_devq_device(path->device, rl, count, run_queue);
4008}
4009
4010static void
4011xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue)
4012{
4013
4014 if (count > dev->ccbq.queue.qfrozen_cnt[rl]) {
4015#ifdef INVARIANTS
4016 printf("xpt_release_devq(%d): requested %u > present %u\n",
4017 rl, count, dev->ccbq.queue.qfrozen_cnt[rl]);
4018#endif
4019 count = dev->ccbq.queue.qfrozen_cnt[rl];
4020 }
4021 dev->sim->devq->alloc_openings -=
4022 cam_ccbq_release(&dev->ccbq, rl, count);
4023 if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
4024 CAMQ_GET_PRIO(&dev->drvq))) == 0) {
4025 if (xpt_schedule_dev_allocq(dev->target->bus, dev))
4026 xpt_run_dev_allocq(dev->target->bus);
4027 }
4028 if (cam_ccbq_frozen_top(&dev->ccbq) == 0) {
4029 /*
4030 * No longer need to wait for a successful
4031 * command completion.
4032 */
4033 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4034 /*
4035 * Remove any timeouts that might be scheduled
4036 * to release this queue.
4037 */
4038 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4039 callout_stop(&dev->callout);
4040 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4041 }
4042 if (run_queue == 0)
4043 return;
4044 /*
4045 * Now that we are unfrozen schedule the
4046 * device so any pending transactions are
4047 * run.
4048 */
4049 if (xpt_schedule_dev_sendq(dev->target->bus, dev))
4050 xpt_run_dev_sendq(dev->target->bus);
4051 }
4052}
4053
4054void
4055xpt_release_simq(struct cam_sim *sim, int run_queue)
4056{
4057 struct camq *sendq;
4058
4059 mtx_assert(sim->mtx, MA_OWNED);
4060 sendq = &(sim->devq->send_queue);
4061 if (sendq->qfrozen_cnt[0] <= 0) {
4062#ifdef INVARIANTS
4063 printf("xpt_release_simq: requested 1 > present %u\n",
4064 sendq->qfrozen_cnt[0]);
4065#endif
4066 } else
4067 sendq->qfrozen_cnt[0]--;
4068 if (sendq->qfrozen_cnt[0] == 0) {
4069 /*
4070 * If there is a timeout scheduled to release this
4071 * sim queue, remove it. The queue frozen count is
4072 * already at 0.
4073 */
4074 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4075 callout_stop(&sim->callout);
4076 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4077 }
4078 if (run_queue) {
4079 struct cam_eb *bus;
4080
4081 /*
4082 * Now that we are unfrozen run the send queue.
4083 */
4084 bus = xpt_find_bus(sim->path_id);
4085 xpt_run_dev_sendq(bus);
4086 xpt_release_bus(bus);
4087 }
4088 }
4089}
4090
4091/*
4092 * XXX Appears to be unused.
4093 */
4094static void
4095xpt_release_simq_timeout(void *arg)
4096{
4097 struct cam_sim *sim;
4098
4099 sim = (struct cam_sim *)arg;
4100 xpt_release_simq(sim, /* run_queue */ TRUE);
4101}
4102
4103void
4104xpt_done(union ccb *done_ccb)
4105{
4106 struct cam_sim *sim;
4107 int first;
4108
4109 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4110 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4111 /*
4112 * Queue up the request for handling by our SWI handler
4113 * any of the "non-immediate" type of ccbs.
4114 */
4115 sim = done_ccb->ccb_h.path->bus->sim;
4116 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4117 sim_links.tqe);
4118 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4119 if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4120 mtx_lock(&cam_simq_lock);
4121 first = TAILQ_EMPTY(&cam_simq);
4122 TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4123 mtx_unlock(&cam_simq_lock);
4124 sim->flags |= CAM_SIM_ON_DONEQ;
4125 if (first)
4126 swi_sched(cambio_ih, 0);
4127 }
4128 }
4129}
4130
4131union ccb *
4132xpt_alloc_ccb()
4133{
4134 union ccb *new_ccb;
4135
4136 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK);
4137 return (new_ccb);
4138}
4139
4140union ccb *
4141xpt_alloc_ccb_nowait()
4142{
4143 union ccb *new_ccb;
4144
4145 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT);
4146 return (new_ccb);
4147}
4148
4149void
4150xpt_free_ccb(union ccb *free_ccb)
4151{
4152 free(free_ccb, M_CAMXPT);
4153}
4154
4155
4156
4157/* Private XPT functions */
4158
4159/*
4160 * Get a CAM control block for the caller. Charge the structure to the device
4161 * referenced by the path. If the this device has no 'credits' then the
4162 * device already has the maximum number of outstanding operations under way
4163 * and we return NULL. If we don't have sufficient resources to allocate more
4164 * ccbs, we also return NULL.
4165 */
4166static union ccb *
4167xpt_get_ccb(struct cam_ed *device)
4168{
4169 union ccb *new_ccb;
4170 struct cam_sim *sim;
4171
4172 sim = device->sim;
4173 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4174 new_ccb = xpt_alloc_ccb_nowait();
4175 if (new_ccb == NULL) {
4176 return (NULL);
4177 }
4178 if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4179 callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4180 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4181 xpt_links.sle);
4182 sim->ccb_count++;
4183 }
4184 cam_ccbq_take_opening(&device->ccbq);
4185 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4186 return (new_ccb);
4187}
4188
4189static void
4190xpt_release_bus(struct cam_eb *bus)
4191{
4192
4193 if ((--bus->refcount == 0)
4194 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4195 mtx_lock(&xsoftc.xpt_topo_lock);
4196 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4197 xsoftc.bus_generation++;
4198 mtx_unlock(&xsoftc.xpt_topo_lock);
4199 cam_sim_release(bus->sim);
4200 free(bus, M_CAMXPT);
4201 }
4202}
4203
4204static struct cam_et *
4205xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4206{
4207 struct cam_et *target;
4208
4209 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT);
4210 if (target != NULL) {
4211 struct cam_et *cur_target;
4212
4213 TAILQ_INIT(&target->ed_entries);
4214 target->bus = bus;
4215 target->target_id = target_id;
4216 target->refcount = 1;
4217 target->generation = 0;
4218 target->luns = NULL;
4219 timevalclear(&target->last_reset);
4220 /*
4221 * Hold a reference to our parent bus so it
4222 * will not go away before we do.
4223 */
4224 bus->refcount++;
4225
4226 /* Insertion sort into our bus's target list */
4227 cur_target = TAILQ_FIRST(&bus->et_entries);
4228 while (cur_target != NULL && cur_target->target_id < target_id)
4229 cur_target = TAILQ_NEXT(cur_target, links);
4230
4231 if (cur_target != NULL) {
4232 TAILQ_INSERT_BEFORE(cur_target, target, links);
4233 } else {
4234 TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4235 }
4236 bus->generation++;
4237 }
4238 return (target);
4239}
4240
4241static void
4242xpt_release_target(struct cam_et *target)
4243{
4244
4245 if ((--target->refcount == 0)
4246 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4247 TAILQ_REMOVE(&target->bus->et_entries, target, links);
4248 target->bus->generation++;
4249 xpt_release_bus(target->bus);
4250 if (target->luns)
4251 free(target->luns, M_CAMXPT);
4252 free(target, M_CAMXPT);
4253 }
4254}
4255
4256static struct cam_ed *
4257xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4258 lun_id_t lun_id)
4259{
4260 struct cam_ed *device, *cur_device;
4261
4262 device = xpt_alloc_device(bus, target, lun_id);
4263 if (device == NULL)
4264 return (NULL);
4265
4266 device->mintags = 1;
4267 device->maxtags = 1;
4268 bus->sim->max_ccbs += device->ccbq.devq_openings;
4269 cur_device = TAILQ_FIRST(&target->ed_entries);
4270 while (cur_device != NULL && cur_device->lun_id < lun_id)
4271 cur_device = TAILQ_NEXT(cur_device, links);
4272 if (cur_device != NULL) {
4273 TAILQ_INSERT_BEFORE(cur_device, device, links);
4274 } else {
4275 TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4276 }
4277 target->generation++;
4278
4279 return (device);
4280}
4281
4282struct cam_ed *
4283xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4284{
4285 struct cam_ed *device;
4286 struct cam_devq *devq;
4287 cam_status status;
4288
4289 /* Make space for us in the device queue on our bus */
4290 devq = bus->sim->devq;
4291 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4292
4293 if (status != CAM_REQ_CMP) {
4294 device = NULL;
4295 } else {
4296 device = (struct cam_ed *)malloc(sizeof(*device),
4297 M_CAMXPT, M_NOWAIT);
4298 }
4299
4300 if (device != NULL) {
4301 cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4302 device->alloc_ccb_entry.device = device;
4303 cam_init_pinfo(&device->send_ccb_entry.pinfo);
4304 device->send_ccb_entry.device = device;
4305 device->target = target;
4306 device->lun_id = lun_id;
4307 device->sim = bus->sim;
4308 /* Initialize our queues */
4309 if (camq_init(&device->drvq, 0) != 0) {
4310 free(device, M_CAMXPT);
4311 return (NULL);
4312 }
4313 if (cam_ccbq_init(&device->ccbq,
4314 bus->sim->max_dev_openings) != 0) {
4315 camq_fini(&device->drvq);
4316 free(device, M_CAMXPT);
4317 return (NULL);
4318 }
4319 SLIST_INIT(&device->asyncs);
4320 SLIST_INIT(&device->periphs);
4321 device->generation = 0;
4322 device->owner = NULL;
4323 device->flags = CAM_DEV_UNCONFIGURED;
4324 device->tag_delay_count = 0;
4325 device->tag_saved_openings = 0;
4326 device->refcount = 1;
4327 callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4328
4329 /*
4330 * Hold a reference to our parent target so it
4331 * will not go away before we do.
4332 */
4333 target->refcount++;
4334
4335 }
4336 return (device);
4337}
4338
4339void
4340xpt_acquire_device(struct cam_ed *device)
4341{
4342
4343 device->refcount++;
4344}
4345
4346void
4347xpt_release_device(struct cam_ed *device)
4348{
4349
4350 if (--device->refcount == 0) {
4351 struct cam_devq *devq;
4352
4353 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4354 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4355 panic("Removing device while still queued for ccbs");
4356
4357 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4358 callout_stop(&device->callout);
4359
4360 TAILQ_REMOVE(&device->target->ed_entries, device,links);
4361 device->target->generation++;
4362 device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4363 /* Release our slot in the devq */
4364 devq = device->target->bus->sim->devq;
4365 cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4366 camq_fini(&device->drvq);
4367 cam_ccbq_fini(&device->ccbq);
4368 xpt_release_target(device->target);
4369 free(device, M_CAMXPT);
4370 }
4371}
4372
4373u_int32_t
4374xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4375{
4376 int diff;
4377 int result;
4378 struct cam_ed *dev;
4379
4380 dev = path->device;
4381
4382 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4383 result = cam_ccbq_resize(&dev->ccbq, newopenings);
4384 if (result == CAM_REQ_CMP && (diff < 0)) {
4385 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4386 }
4387 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4388 || (dev->inq_flags & SID_CmdQue) != 0)
4389 dev->tag_saved_openings = newopenings;
4390 /* Adjust the global limit */
4391 dev->sim->max_ccbs += diff;
4392 return (result);
4393}
4394
4395static struct cam_eb *
4396xpt_find_bus(path_id_t path_id)
4397{
4398 struct cam_eb *bus;
4399
4400 mtx_lock(&xsoftc.xpt_topo_lock);
4401 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4402 bus != NULL;
4403 bus = TAILQ_NEXT(bus, links)) {
4404 if (bus->path_id == path_id) {
4405 bus->refcount++;
4406 break;
4407 }
4408 }
4409 mtx_unlock(&xsoftc.xpt_topo_lock);
4410 return (bus);
4411}
4412
4413static struct cam_et *
4414xpt_find_target(struct cam_eb *bus, target_id_t target_id)
4415{
4416 struct cam_et *target;
4417
4418 for (target = TAILQ_FIRST(&bus->et_entries);
4419 target != NULL;
4420 target = TAILQ_NEXT(target, links)) {
4421 if (target->target_id == target_id) {
4422 target->refcount++;
4423 break;
4424 }
4425 }
4426 return (target);
4427}
4428
4429static struct cam_ed *
4430xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4431{
4432 struct cam_ed *device;
4433
4434 for (device = TAILQ_FIRST(&target->ed_entries);
4435 device != NULL;
4436 device = TAILQ_NEXT(device, links)) {
4437 if (device->lun_id == lun_id) {
4438 device->refcount++;
4439 break;
4440 }
4441 }
4442 return (device);
4443}
4444
4445void
4446xpt_start_tags(struct cam_path *path)
4447{
4448 struct ccb_relsim crs;
4449 struct cam_ed *device;
4450 struct cam_sim *sim;
4451 int newopenings;
4452
4453 device = path->device;
4454 sim = path->bus->sim;
4455 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4456 xpt_freeze_devq(path, /*count*/1);
4457 device->inq_flags |= SID_CmdQue;
4458 if (device->tag_saved_openings != 0)
4459 newopenings = device->tag_saved_openings;
4460 else
4461 newopenings = min(device->maxtags,
4462 sim->max_tagged_dev_openings);
4463 xpt_dev_ccbq_resize(path, newopenings);
4464 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4465 crs.ccb_h.func_code = XPT_REL_SIMQ;
4466 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4467 crs.openings
4468 = crs.release_timeout
4469 = crs.qfrozen_cnt
4470 = 0;
4471 xpt_action((union ccb *)&crs);
4472}
4473
4474void
4475xpt_stop_tags(struct cam_path *path)
4476{
4477 struct ccb_relsim crs;
4478 struct cam_ed *device;
4479 struct cam_sim *sim;
4480
4481 device = path->device;
4482 sim = path->bus->sim;
4483 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4484 device->tag_delay_count = 0;
4485 xpt_freeze_devq(path, /*count*/1);
4486 device->inq_flags &= ~SID_CmdQue;
4487 xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4488 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4489 crs.ccb_h.func_code = XPT_REL_SIMQ;
4490 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4491 crs.openings
4492 = crs.release_timeout
4493 = crs.qfrozen_cnt
4494 = 0;
4495 xpt_action((union ccb *)&crs);
4496}
4497
4498static void
4499xpt_boot_delay(void *arg)
4500{
4501
4502 xpt_release_boot();
4503}
4504
4505static void
4506xpt_config(void *arg)
4507{
4508 /*
4509 * Now that interrupts are enabled, go find our devices
4510 */
4511
4512#ifdef CAMDEBUG
4513 /* Setup debugging flags and path */
4514#ifdef CAM_DEBUG_BUS
4515 if (cam_dflags != CAM_DEBUG_NONE) {
4516 /*
4517 * Locking is specifically omitted here. No SIMs have
4518 * registered yet, so xpt_create_path will only be searching
4519 * empty lists of targets and devices.
4520 */
4521 if (xpt_create_path(&cam_dpath, xpt_periph,
4522 CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4523 CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4524 printf("xpt_config: xpt_create_path() failed for debug"
4525 " target %d:%d:%d, debugging disabled\n",
4526 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4527 cam_dflags = CAM_DEBUG_NONE;
4528 }
4529 } else
4530 cam_dpath = NULL;
4531#else /* !CAM_DEBUG_BUS */
4532 cam_dpath = NULL;
4533#endif /* CAM_DEBUG_BUS */
4534#endif /* CAMDEBUG */
4535
4536 periphdriver_init(1);
4537 xpt_hold_boot();
4538 callout_init(&xsoftc.boot_callout, 1);
4539 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4540 xpt_boot_delay, NULL);
4541 /* Fire up rescan thread. */
4542 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4543 printf("xpt_config: failed to create rescan thread.\n");
4544 }
4545}
4546
4547void
4548xpt_hold_boot(void)
4549{
4550 xpt_lock_buses();
4551 xsoftc.buses_to_config++;
4552 xpt_unlock_buses();
4553}
4554
4555void
4556xpt_release_boot(void)
4557{
4558 xpt_lock_buses();
4559 xsoftc.buses_to_config--;
4560 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4561 struct xpt_task *task;
4562
4563 xsoftc.buses_config_done = 1;
4564 xpt_unlock_buses();
4565 /* Call manually because we don't have any busses */
4566 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4567 if (task != NULL) {
4568 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4569 taskqueue_enqueue(taskqueue_thread, &task->task);
4570 }
4571 } else
4572 xpt_unlock_buses();
4573}
4574
4575/*
4576 * If the given device only has one peripheral attached to it, and if that
4577 * peripheral is the passthrough driver, announce it. This insures that the
4578 * user sees some sort of announcement for every peripheral in their system.
4579 */
4580static int
4581xptpassannouncefunc(struct cam_ed *device, void *arg)
4582{
4583 struct cam_periph *periph;
4584 int i;
4585
4586 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4587 periph = SLIST_NEXT(periph, periph_links), i++);
4588
4589 periph = SLIST_FIRST(&device->periphs);
4590 if ((i == 1)
4591 && (strncmp(periph->periph_name, "pass", 4) == 0))
4592 xpt_announce_periph(periph, NULL);
4593
4594 return(1);
4595}
4596
4597static void
4598xpt_finishconfig_task(void *context, int pending)
4599{
4600
4601 periphdriver_init(2);
4602 /*
4603 * Check for devices with no "standard" peripheral driver
4604 * attached. For any devices like that, announce the
4605 * passthrough driver so the user will see something.
4606 */
4607 xpt_for_all_devices(xptpassannouncefunc, NULL);
4608
4609 /* Release our hook so that the boot can continue. */
4610 config_intrhook_disestablish(xsoftc.xpt_config_hook);
4611 free(xsoftc.xpt_config_hook, M_CAMXPT);
4612 xsoftc.xpt_config_hook = NULL;
4613
4614 free(context, M_CAMXPT);
4615}
4616
4617cam_status
4618xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4619 struct cam_path *path)
4620{
4621 struct ccb_setasync csa;
4622 cam_status status;
4623 int xptpath = 0;
4624
4625 if (path == NULL) {
4626 mtx_lock(&xsoftc.xpt_lock);
4627 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4628 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4629 if (status != CAM_REQ_CMP) {
4630 mtx_unlock(&xsoftc.xpt_lock);
4631 return (status);
4632 }
4633 xptpath = 1;
4634 }
4635
4636 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4637 csa.ccb_h.func_code = XPT_SASYNC_CB;
4638 csa.event_enable = event;
4639 csa.callback = cbfunc;
4640 csa.callback_arg = cbarg;
4641 xpt_action((union ccb *)&csa);
4642 status = csa.ccb_h.status;
4643 if (xptpath) {
4644 xpt_free_path(path);
4645 mtx_unlock(&xsoftc.xpt_lock);
4646
4647 if ((status == CAM_REQ_CMP) &&
4648 (csa.event_enable & AC_FOUND_DEVICE)) {
4649 /*
4650 * Get this peripheral up to date with all
4651 * the currently existing devices.
4652 */
4653 xpt_for_all_devices(xptsetasyncfunc, &csa);
4654 }
4655 if ((status == CAM_REQ_CMP) &&
4656 (csa.event_enable & AC_PATH_REGISTERED)) {
4657 /*
4658 * Get this peripheral up to date with all
4659 * the currently existing busses.
4660 */
4661 xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4662 }
4663 }
4664 return (status);
4665}
4666
4667static void
4668xptaction(struct cam_sim *sim, union ccb *work_ccb)
4669{
4670 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4671
4672 switch (work_ccb->ccb_h.func_code) {
4673 /* Common cases first */
4674 case XPT_PATH_INQ: /* Path routing inquiry */
4675 {
4676 struct ccb_pathinq *cpi;
4677
4678 cpi = &work_ccb->cpi;
4679 cpi->version_num = 1; /* XXX??? */
4680 cpi->hba_inquiry = 0;
4681 cpi->target_sprt = 0;
4682 cpi->hba_misc = 0;
4683 cpi->hba_eng_cnt = 0;
4684 cpi->max_target = 0;
4685 cpi->max_lun = 0;
4686 cpi->initiator_id = 0;
4687 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4688 strncpy(cpi->hba_vid, "", HBA_IDLEN);
4689 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4690 cpi->unit_number = sim->unit_number;
4691 cpi->bus_id = sim->bus_id;
4692 cpi->base_transfer_speed = 0;
4693 cpi->protocol = PROTO_UNSPECIFIED;
4694 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4695 cpi->transport = XPORT_UNSPECIFIED;
4696 cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4697 cpi->ccb_h.status = CAM_REQ_CMP;
4698 xpt_done(work_ccb);
4699 break;
4700 }
4701 default:
4702 work_ccb->ccb_h.status = CAM_REQ_INVALID;
4703 xpt_done(work_ccb);
4704 break;
4705 }
4706}
4707
4708/*
4709 * The xpt as a "controller" has no interrupt sources, so polling
4710 * is a no-op.
4711 */
4712static void
4713xptpoll(struct cam_sim *sim)
4714{
4715}
4716
4717void
4718xpt_lock_buses(void)
4719{
4720 mtx_lock(&xsoftc.xpt_topo_lock);
4721}
4722
4723void
4724xpt_unlock_buses(void)
4725{
4726 mtx_unlock(&xsoftc.xpt_topo_lock);
4727}
4728
4729static void
4730camisr(void *dummy)
4731{
4732 cam_simq_t queue;
4733 struct cam_sim *sim;
4734
4735 mtx_lock(&cam_simq_lock);
4736 TAILQ_INIT(&queue);
4737 while (!TAILQ_EMPTY(&cam_simq)) {
4738 TAILQ_CONCAT(&queue, &cam_simq, links);
4739 mtx_unlock(&cam_simq_lock);
4740
4741 while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4742 TAILQ_REMOVE(&queue, sim, links);
4743 CAM_SIM_LOCK(sim);
4744 sim->flags &= ~CAM_SIM_ON_DONEQ;
4745 camisr_runqueue(&sim->sim_doneq);
4746 CAM_SIM_UNLOCK(sim);
4747 }
4748 mtx_lock(&cam_simq_lock);
4749 }
4750 mtx_unlock(&cam_simq_lock);
4751}
4752
4753static void
4754camisr_runqueue(void *V_queue)
4755{
4756 cam_isrq_t *queue = V_queue;
4757 struct ccb_hdr *ccb_h;
4758
4759 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
4760 int runq;
4761
4762 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
4763 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
4764
4765 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
4766 ("camisr\n"));
4767
4768 runq = FALSE;
4769
4770 if (ccb_h->flags & CAM_HIGH_POWER) {
4771 struct highpowerlist *hphead;
4772 union ccb *send_ccb;
4773
4774 mtx_lock(&xsoftc.xpt_lock);
4775 hphead = &xsoftc.highpowerq;
4776
4777 send_ccb = (union ccb *)STAILQ_FIRST(hphead);
4778
4779 /*
4780 * Increment the count since this command is done.
4781 */
4782 xsoftc.num_highpower++;
4783
4784 /*
4785 * Any high powered commands queued up?
4786 */
4787 if (send_ccb != NULL) {
4788
4789 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
4790 mtx_unlock(&xsoftc.xpt_lock);
4791
4792 xpt_release_devq(send_ccb->ccb_h.path,
4793 /*count*/1, /*runqueue*/TRUE);
4794 } else
4795 mtx_unlock(&xsoftc.xpt_lock);
4796 }
4797
4798 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
4799 struct cam_ed *dev;
4800
4801 dev = ccb_h->path->device;
4802
4803 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
4804 ccb_h->path->bus->sim->devq->send_active--;
4805 ccb_h->path->bus->sim->devq->send_openings++;
4806 runq = TRUE;
4807
4808 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
4809 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
4810 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
4811 && (dev->ccbq.dev_active == 0))) {
4812 xpt_release_devq(ccb_h->path, /*count*/1,
4813 /*run_queue*/FALSE);
4814 }
4815
4816 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4817 && (--dev->tag_delay_count == 0))
4818 xpt_start_tags(ccb_h->path);
4819 if (!device_is_send_queued(dev))
4820 xpt_schedule_dev_sendq(ccb_h->path->bus, dev);
4821 }
4822
4823 if (ccb_h->status & CAM_RELEASE_SIMQ) {
4824 xpt_release_simq(ccb_h->path->bus->sim,
4825 /*run_queue*/TRUE);
4826 ccb_h->status &= ~CAM_RELEASE_SIMQ;
4827 runq = FALSE;
4828 }
4829
4830 if ((ccb_h->flags & CAM_DEV_QFRZDIS)
4831 && (ccb_h->status & CAM_DEV_QFRZN)) {
4832 xpt_release_devq(ccb_h->path, /*count*/1,
4833 /*run_queue*/TRUE);
4834 ccb_h->status &= ~CAM_DEV_QFRZN;
4835 } else if (runq) {
4836 xpt_run_dev_sendq(ccb_h->path->bus);
4837 }
4838
4839 /* Call the peripheral driver's callback */
4840 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
4841 }
4842}