Deleted Added
full compact
cam_xpt.c (212991) cam_xpt.c (214279)
1/*-
2 * Implementation of the Common Access Method Transport (XPT) layer.
3 *
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
1/*-
2 * Implementation of the Common Access Method Transport (XPT) layer.
3 *
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/cam/cam_xpt.c 212991 2010-09-22 05:17:18Z mav $");
31__FBSDID("$FreeBSD: head/sys/cam/cam_xpt.c 214279 2010-10-24 16:31:57Z brucec $");
32
33#include <sys/param.h>
34#include <sys/bus.h>
35#include <sys/systm.h>
36#include <sys/types.h>
37#include <sys/malloc.h>
38#include <sys/kernel.h>
39#include <sys/time.h>
40#include <sys/conf.h>
41#include <sys/fcntl.h>
32
33#include <sys/param.h>
34#include <sys/bus.h>
35#include <sys/systm.h>
36#include <sys/types.h>
37#include <sys/malloc.h>
38#include <sys/kernel.h>
39#include <sys/time.h>
40#include <sys/conf.h>
41#include <sys/fcntl.h>
42#include <sys/reboot.h>
43#include <sys/interrupt.h>
44#include <sys/sbuf.h>
45#include <sys/taskqueue.h>
46
47#include <sys/lock.h>
48#include <sys/mutex.h>
49#include <sys/sysctl.h>
50#include <sys/kthread.h>
51
52#ifdef PC98
53#include <pc98/pc98/pc98_machdep.h> /* geometry translation */
54#endif
55
56#include <cam/cam.h>
57#include <cam/cam_ccb.h>
58#include <cam/cam_periph.h>
59#include <cam/cam_queue.h>
60#include <cam/cam_sim.h>
61#include <cam/cam_xpt.h>
62#include <cam/cam_xpt_sim.h>
63#include <cam/cam_xpt_periph.h>
64#include <cam/cam_xpt_internal.h>
65#include <cam/cam_debug.h>
66
67#include <cam/scsi/scsi_all.h>
68#include <cam/scsi/scsi_message.h>
69#include <cam/scsi/scsi_pass.h>
70#include <machine/stdarg.h> /* for xpt_print below */
71#include "opt_cam.h"
72
73/*
74 * This is the maximum number of high powered commands (e.g. start unit)
75 * that can be outstanding at a particular time.
76 */
77#ifndef CAM_MAX_HIGHPOWER
78#define CAM_MAX_HIGHPOWER 4
79#endif
80
81/* Datastructures internal to the xpt layer */
82MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
83
84/* Object for defering XPT actions to a taskqueue */
85struct xpt_task {
86 struct task task;
87 void *data1;
88 uintptr_t data2;
89};
90
91typedef enum {
92 XPT_FLAG_OPEN = 0x01
93} xpt_flags;
94
95struct xpt_softc {
96 xpt_flags flags;
97 u_int32_t xpt_generation;
98
99 /* number of high powered commands that can go through right now */
100 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
101 int num_highpower;
102
103 /* queue for handling async rescan requests. */
104 TAILQ_HEAD(, ccb_hdr) ccb_scanq;
105 int buses_to_config;
106 int buses_config_done;
107
108 /* Registered busses */
109 TAILQ_HEAD(,cam_eb) xpt_busses;
110 u_int bus_generation;
111
112 struct intr_config_hook *xpt_config_hook;
113
114 int boot_delay;
115 struct callout boot_callout;
116
117 struct mtx xpt_topo_lock;
118 struct mtx xpt_lock;
119};
120
121typedef enum {
122 DM_RET_COPY = 0x01,
123 DM_RET_FLAG_MASK = 0x0f,
124 DM_RET_NONE = 0x00,
125 DM_RET_STOP = 0x10,
126 DM_RET_DESCEND = 0x20,
127 DM_RET_ERROR = 0x30,
128 DM_RET_ACTION_MASK = 0xf0
129} dev_match_ret;
130
131typedef enum {
132 XPT_DEPTH_BUS,
133 XPT_DEPTH_TARGET,
134 XPT_DEPTH_DEVICE,
135 XPT_DEPTH_PERIPH
136} xpt_traverse_depth;
137
138struct xpt_traverse_config {
139 xpt_traverse_depth depth;
140 void *tr_func;
141 void *tr_arg;
142};
143
144typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
145typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
146typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
147typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
148typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
149
150/* Transport layer configuration information */
151static struct xpt_softc xsoftc;
152
153TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
154SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
155 &xsoftc.boot_delay, 0, "Bus registration wait time");
42#include <sys/interrupt.h>
43#include <sys/sbuf.h>
44#include <sys/taskqueue.h>
45
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/sysctl.h>
49#include <sys/kthread.h>
50
51#ifdef PC98
52#include <pc98/pc98/pc98_machdep.h> /* geometry translation */
53#endif
54
55#include <cam/cam.h>
56#include <cam/cam_ccb.h>
57#include <cam/cam_periph.h>
58#include <cam/cam_queue.h>
59#include <cam/cam_sim.h>
60#include <cam/cam_xpt.h>
61#include <cam/cam_xpt_sim.h>
62#include <cam/cam_xpt_periph.h>
63#include <cam/cam_xpt_internal.h>
64#include <cam/cam_debug.h>
65
66#include <cam/scsi/scsi_all.h>
67#include <cam/scsi/scsi_message.h>
68#include <cam/scsi/scsi_pass.h>
69#include <machine/stdarg.h> /* for xpt_print below */
70#include "opt_cam.h"
71
72/*
73 * This is the maximum number of high powered commands (e.g. start unit)
74 * that can be outstanding at a particular time.
75 */
76#ifndef CAM_MAX_HIGHPOWER
77#define CAM_MAX_HIGHPOWER 4
78#endif
79
80/* Datastructures internal to the xpt layer */
81MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
82
83/* Object for defering XPT actions to a taskqueue */
84struct xpt_task {
85 struct task task;
86 void *data1;
87 uintptr_t data2;
88};
89
90typedef enum {
91 XPT_FLAG_OPEN = 0x01
92} xpt_flags;
93
94struct xpt_softc {
95 xpt_flags flags;
96 u_int32_t xpt_generation;
97
98 /* number of high powered commands that can go through right now */
99 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
100 int num_highpower;
101
102 /* queue for handling async rescan requests. */
103 TAILQ_HEAD(, ccb_hdr) ccb_scanq;
104 int buses_to_config;
105 int buses_config_done;
106
107 /* Registered busses */
108 TAILQ_HEAD(,cam_eb) xpt_busses;
109 u_int bus_generation;
110
111 struct intr_config_hook *xpt_config_hook;
112
113 int boot_delay;
114 struct callout boot_callout;
115
116 struct mtx xpt_topo_lock;
117 struct mtx xpt_lock;
118};
119
120typedef enum {
121 DM_RET_COPY = 0x01,
122 DM_RET_FLAG_MASK = 0x0f,
123 DM_RET_NONE = 0x00,
124 DM_RET_STOP = 0x10,
125 DM_RET_DESCEND = 0x20,
126 DM_RET_ERROR = 0x30,
127 DM_RET_ACTION_MASK = 0xf0
128} dev_match_ret;
129
130typedef enum {
131 XPT_DEPTH_BUS,
132 XPT_DEPTH_TARGET,
133 XPT_DEPTH_DEVICE,
134 XPT_DEPTH_PERIPH
135} xpt_traverse_depth;
136
137struct xpt_traverse_config {
138 xpt_traverse_depth depth;
139 void *tr_func;
140 void *tr_arg;
141};
142
143typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
144typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
145typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
146typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
147typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
148
149/* Transport layer configuration information */
150static struct xpt_softc xsoftc;
151
152TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
153SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
154 &xsoftc.boot_delay, 0, "Bus registration wait time");
156static int xpt_power_down = 0;
157TUNABLE_INT("kern.cam.power_down", &xpt_power_down);
158SYSCTL_INT(_kern_cam, OID_AUTO, power_down, CTLFLAG_RW,
159 &xpt_power_down, 0, "Power down devices on shutdown");
160
161/* Queues for our software interrupt handler */
162typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
163typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
164static cam_simq_t cam_simq;
165static struct mtx cam_simq_lock;
166
167/* Pointers to software interrupt handlers */
168static void *cambio_ih;
169
170struct cam_periph *xpt_periph;
171
172static periph_init_t xpt_periph_init;
173
174static struct periph_driver xpt_driver =
175{
176 xpt_periph_init, "xpt",
177 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
178 CAM_PERIPH_DRV_EARLY
179};
180
181PERIPHDRIVER_DECLARE(xpt, xpt_driver);
182
183static d_open_t xptopen;
184static d_close_t xptclose;
185static d_ioctl_t xptioctl;
186
187static struct cdevsw xpt_cdevsw = {
188 .d_version = D_VERSION,
189 .d_flags = 0,
190 .d_open = xptopen,
191 .d_close = xptclose,
192 .d_ioctl = xptioctl,
193 .d_name = "xpt",
194};
195
196/* Storage for debugging datastructures */
197#ifdef CAMDEBUG
198struct cam_path *cam_dpath;
199#ifdef CAM_DEBUG_FLAGS
200u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
201#else
202u_int32_t cam_dflags = CAM_DEBUG_NONE;
203#endif
204TUNABLE_INT("kern.cam.dflags", &cam_dflags);
205SYSCTL_INT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
206 &cam_dflags, 0, "Cam Debug Flags");
207u_int32_t cam_debug_delay;
208TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
209SYSCTL_INT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
210 &cam_debug_delay, 0, "Cam Debug Flags");
211#endif
212
213/* Our boot-time initialization hook */
214static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
215
216static moduledata_t cam_moduledata = {
217 "cam",
218 cam_module_event_handler,
219 NULL
220};
221
222static int xpt_init(void *);
223
224DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
225MODULE_VERSION(cam, 1);
226
227
228static void xpt_async_bcast(struct async_list *async_head,
229 u_int32_t async_code,
230 struct cam_path *path,
231 void *async_arg);
232static path_id_t xptnextfreepathid(void);
233static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
234static union ccb *xpt_get_ccb(struct cam_ed *device);
235static void xpt_run_dev_allocq(struct cam_eb *bus);
236static void xpt_run_dev_sendq(struct cam_eb *bus);
237static timeout_t xpt_release_devq_timeout;
238static void xpt_release_simq_timeout(void *arg) __unused;
239static void xpt_release_bus(struct cam_eb *bus);
240static void xpt_release_devq_device(struct cam_ed *dev, cam_rl rl,
241 u_int count, int run_queue);
242static struct cam_et*
243 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
244static void xpt_release_target(struct cam_et *target);
245static struct cam_eb*
246 xpt_find_bus(path_id_t path_id);
247static struct cam_et*
248 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
249static struct cam_ed*
250 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
251static void xpt_config(void *arg);
252static xpt_devicefunc_t xptpassannouncefunc;
155
156/* Queues for our software interrupt handler */
157typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
158typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
159static cam_simq_t cam_simq;
160static struct mtx cam_simq_lock;
161
162/* Pointers to software interrupt handlers */
163static void *cambio_ih;
164
165struct cam_periph *xpt_periph;
166
167static periph_init_t xpt_periph_init;
168
169static struct periph_driver xpt_driver =
170{
171 xpt_periph_init, "xpt",
172 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
173 CAM_PERIPH_DRV_EARLY
174};
175
176PERIPHDRIVER_DECLARE(xpt, xpt_driver);
177
178static d_open_t xptopen;
179static d_close_t xptclose;
180static d_ioctl_t xptioctl;
181
182static struct cdevsw xpt_cdevsw = {
183 .d_version = D_VERSION,
184 .d_flags = 0,
185 .d_open = xptopen,
186 .d_close = xptclose,
187 .d_ioctl = xptioctl,
188 .d_name = "xpt",
189};
190
191/* Storage for debugging datastructures */
192#ifdef CAMDEBUG
193struct cam_path *cam_dpath;
194#ifdef CAM_DEBUG_FLAGS
195u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
196#else
197u_int32_t cam_dflags = CAM_DEBUG_NONE;
198#endif
199TUNABLE_INT("kern.cam.dflags", &cam_dflags);
200SYSCTL_INT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
201 &cam_dflags, 0, "Cam Debug Flags");
202u_int32_t cam_debug_delay;
203TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
204SYSCTL_INT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
205 &cam_debug_delay, 0, "Cam Debug Flags");
206#endif
207
208/* Our boot-time initialization hook */
209static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
210
211static moduledata_t cam_moduledata = {
212 "cam",
213 cam_module_event_handler,
214 NULL
215};
216
217static int xpt_init(void *);
218
219DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
220MODULE_VERSION(cam, 1);
221
222
223static void xpt_async_bcast(struct async_list *async_head,
224 u_int32_t async_code,
225 struct cam_path *path,
226 void *async_arg);
227static path_id_t xptnextfreepathid(void);
228static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
229static union ccb *xpt_get_ccb(struct cam_ed *device);
230static void xpt_run_dev_allocq(struct cam_eb *bus);
231static void xpt_run_dev_sendq(struct cam_eb *bus);
232static timeout_t xpt_release_devq_timeout;
233static void xpt_release_simq_timeout(void *arg) __unused;
234static void xpt_release_bus(struct cam_eb *bus);
235static void xpt_release_devq_device(struct cam_ed *dev, cam_rl rl,
236 u_int count, int run_queue);
237static struct cam_et*
238 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
239static void xpt_release_target(struct cam_et *target);
240static struct cam_eb*
241 xpt_find_bus(path_id_t path_id);
242static struct cam_et*
243 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
244static struct cam_ed*
245 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
246static void xpt_config(void *arg);
247static xpt_devicefunc_t xptpassannouncefunc;
253static void xpt_shutdown(void *arg, int howto);
254static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
255static void xptpoll(struct cam_sim *sim);
256static void camisr(void *);
257static void camisr_runqueue(void *);
258static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
259 u_int num_patterns, struct cam_eb *bus);
260static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
261 u_int num_patterns,
262 struct cam_ed *device);
263static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
264 u_int num_patterns,
265 struct cam_periph *periph);
266static xpt_busfunc_t xptedtbusfunc;
267static xpt_targetfunc_t xptedttargetfunc;
268static xpt_devicefunc_t xptedtdevicefunc;
269static xpt_periphfunc_t xptedtperiphfunc;
270static xpt_pdrvfunc_t xptplistpdrvfunc;
271static xpt_periphfunc_t xptplistperiphfunc;
272static int xptedtmatch(struct ccb_dev_match *cdm);
273static int xptperiphlistmatch(struct ccb_dev_match *cdm);
274static int xptbustraverse(struct cam_eb *start_bus,
275 xpt_busfunc_t *tr_func, void *arg);
276static int xpttargettraverse(struct cam_eb *bus,
277 struct cam_et *start_target,
278 xpt_targetfunc_t *tr_func, void *arg);
279static int xptdevicetraverse(struct cam_et *target,
280 struct cam_ed *start_device,
281 xpt_devicefunc_t *tr_func, void *arg);
282static int xptperiphtraverse(struct cam_ed *device,
283 struct cam_periph *start_periph,
284 xpt_periphfunc_t *tr_func, void *arg);
285static int xptpdrvtraverse(struct periph_driver **start_pdrv,
286 xpt_pdrvfunc_t *tr_func, void *arg);
287static int xptpdperiphtraverse(struct periph_driver **pdrv,
288 struct cam_periph *start_periph,
289 xpt_periphfunc_t *tr_func,
290 void *arg);
291static xpt_busfunc_t xptdefbusfunc;
292static xpt_targetfunc_t xptdeftargetfunc;
293static xpt_devicefunc_t xptdefdevicefunc;
294static xpt_periphfunc_t xptdefperiphfunc;
295static void xpt_finishconfig_task(void *context, int pending);
296static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
297static int xpt_for_all_devices(xpt_devicefunc_t *tr_func,
298 void *arg);
299static void xpt_dev_async_default(u_int32_t async_code,
300 struct cam_eb *bus,
301 struct cam_et *target,
302 struct cam_ed *device,
303 void *async_arg);
304static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus,
305 struct cam_et *target,
306 lun_id_t lun_id);
307static xpt_devicefunc_t xptsetasyncfunc;
308static xpt_busfunc_t xptsetasyncbusfunc;
309static cam_status xptregister(struct cam_periph *periph,
310 void *arg);
311static __inline int periph_is_queued(struct cam_periph *periph);
312static __inline int device_is_alloc_queued(struct cam_ed *device);
313static __inline int device_is_send_queued(struct cam_ed *device);
314
315static __inline int
316xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
317{
318 int retval;
319
320 if ((dev->drvq.entries > 0) &&
321 (dev->ccbq.devq_openings > 0) &&
322 (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
323 CAMQ_GET_PRIO(&dev->drvq))) == 0)) {
324 /*
325 * The priority of a device waiting for CCB resources
326 * is that of the the highest priority peripheral driver
327 * enqueued.
328 */
329 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
330 &dev->alloc_ccb_entry.pinfo,
331 CAMQ_GET_PRIO(&dev->drvq));
332 } else {
333 retval = 0;
334 }
335
336 return (retval);
337}
338
339static __inline int
340xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
341{
342 int retval;
343
344 if ((dev->ccbq.queue.entries > 0) &&
345 (dev->ccbq.dev_openings > 0) &&
346 (cam_ccbq_frozen_top(&dev->ccbq) == 0)) {
347 /*
348 * The priority of a device waiting for controller
349 * resources is that of the the highest priority CCB
350 * enqueued.
351 */
352 retval =
353 xpt_schedule_dev(&bus->sim->devq->send_queue,
354 &dev->send_ccb_entry.pinfo,
355 CAMQ_GET_PRIO(&dev->ccbq.queue));
356 } else {
357 retval = 0;
358 }
359 return (retval);
360}
361
362static __inline int
363periph_is_queued(struct cam_periph *periph)
364{
365 return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
366}
367
368static __inline int
369device_is_alloc_queued(struct cam_ed *device)
370{
371 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
372}
373
374static __inline int
375device_is_send_queued(struct cam_ed *device)
376{
377 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
378}
379
380static void
381xpt_periph_init()
382{
383 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
384}
385
386static void
387xptdone(struct cam_periph *periph, union ccb *done_ccb)
388{
389 /* Caller will release the CCB */
390 wakeup(&done_ccb->ccb_h.cbfcnp);
391}
392
393static int
394xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
395{
396
397 /*
398 * Only allow read-write access.
399 */
400 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
401 return(EPERM);
402
403 /*
404 * We don't allow nonblocking access.
405 */
406 if ((flags & O_NONBLOCK) != 0) {
407 printf("%s: can't do nonblocking access\n", devtoname(dev));
408 return(ENODEV);
409 }
410
411 /* Mark ourselves open */
412 mtx_lock(&xsoftc.xpt_lock);
413 xsoftc.flags |= XPT_FLAG_OPEN;
414 mtx_unlock(&xsoftc.xpt_lock);
415
416 return(0);
417}
418
419static int
420xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
421{
422
423 /* Mark ourselves closed */
424 mtx_lock(&xsoftc.xpt_lock);
425 xsoftc.flags &= ~XPT_FLAG_OPEN;
426 mtx_unlock(&xsoftc.xpt_lock);
427
428 return(0);
429}
430
431/*
432 * Don't automatically grab the xpt softc lock here even though this is going
433 * through the xpt device. The xpt device is really just a back door for
434 * accessing other devices and SIMs, so the right thing to do is to grab
435 * the appropriate SIM lock once the bus/SIM is located.
436 */
437static int
438xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
439{
440 int error;
441
442 error = 0;
443
444 switch(cmd) {
445 /*
446 * For the transport layer CAMIOCOMMAND ioctl, we really only want
447 * to accept CCB types that don't quite make sense to send through a
448 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
449 * in the CAM spec.
450 */
451 case CAMIOCOMMAND: {
452 union ccb *ccb;
453 union ccb *inccb;
454 struct cam_eb *bus;
455
456 inccb = (union ccb *)addr;
457
458 bus = xpt_find_bus(inccb->ccb_h.path_id);
459 if (bus == NULL)
460 return (EINVAL);
461
462 switch (inccb->ccb_h.func_code) {
463 case XPT_SCAN_BUS:
464 case XPT_RESET_BUS:
465 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
466 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
467 xpt_release_bus(bus);
468 return (EINVAL);
469 }
470 break;
471 case XPT_SCAN_TGT:
472 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
473 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
474 xpt_release_bus(bus);
475 return (EINVAL);
476 }
477 break;
478 default:
479 break;
480 }
481
482 switch(inccb->ccb_h.func_code) {
483 case XPT_SCAN_BUS:
484 case XPT_RESET_BUS:
485 case XPT_PATH_INQ:
486 case XPT_ENG_INQ:
487 case XPT_SCAN_LUN:
488 case XPT_SCAN_TGT:
489
490 ccb = xpt_alloc_ccb();
491
492 CAM_SIM_LOCK(bus->sim);
493
494 /*
495 * Create a path using the bus, target, and lun the
496 * user passed in.
497 */
498 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
499 inccb->ccb_h.path_id,
500 inccb->ccb_h.target_id,
501 inccb->ccb_h.target_lun) !=
502 CAM_REQ_CMP){
503 error = EINVAL;
504 CAM_SIM_UNLOCK(bus->sim);
505 xpt_free_ccb(ccb);
506 break;
507 }
508 /* Ensure all of our fields are correct */
509 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
510 inccb->ccb_h.pinfo.priority);
511 xpt_merge_ccb(ccb, inccb);
512 ccb->ccb_h.cbfcnp = xptdone;
513 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
514 bcopy(ccb, inccb, sizeof(union ccb));
515 xpt_free_path(ccb->ccb_h.path);
516 xpt_free_ccb(ccb);
517 CAM_SIM_UNLOCK(bus->sim);
518 break;
519
520 case XPT_DEBUG: {
521 union ccb ccb;
522
523 /*
524 * This is an immediate CCB, so it's okay to
525 * allocate it on the stack.
526 */
527
528 CAM_SIM_LOCK(bus->sim);
529
530 /*
531 * Create a path using the bus, target, and lun the
532 * user passed in.
533 */
534 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
535 inccb->ccb_h.path_id,
536 inccb->ccb_h.target_id,
537 inccb->ccb_h.target_lun) !=
538 CAM_REQ_CMP){
539 error = EINVAL;
540 CAM_SIM_UNLOCK(bus->sim);
541 break;
542 }
543 /* Ensure all of our fields are correct */
544 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
545 inccb->ccb_h.pinfo.priority);
546 xpt_merge_ccb(&ccb, inccb);
547 ccb.ccb_h.cbfcnp = xptdone;
548 xpt_action(&ccb);
549 CAM_SIM_UNLOCK(bus->sim);
550 bcopy(&ccb, inccb, sizeof(union ccb));
551 xpt_free_path(ccb.ccb_h.path);
552 break;
553
554 }
555 case XPT_DEV_MATCH: {
556 struct cam_periph_map_info mapinfo;
557 struct cam_path *old_path;
558
559 /*
560 * We can't deal with physical addresses for this
561 * type of transaction.
562 */
563 if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
564 error = EINVAL;
565 break;
566 }
567
568 /*
569 * Save this in case the caller had it set to
570 * something in particular.
571 */
572 old_path = inccb->ccb_h.path;
573
574 /*
575 * We really don't need a path for the matching
576 * code. The path is needed because of the
577 * debugging statements in xpt_action(). They
578 * assume that the CCB has a valid path.
579 */
580 inccb->ccb_h.path = xpt_periph->path;
581
582 bzero(&mapinfo, sizeof(mapinfo));
583
584 /*
585 * Map the pattern and match buffers into kernel
586 * virtual address space.
587 */
588 error = cam_periph_mapmem(inccb, &mapinfo);
589
590 if (error) {
591 inccb->ccb_h.path = old_path;
592 break;
593 }
594
595 /*
596 * This is an immediate CCB, we can send it on directly.
597 */
598 xpt_action(inccb);
599
600 /*
601 * Map the buffers back into user space.
602 */
603 cam_periph_unmapmem(inccb, &mapinfo);
604
605 inccb->ccb_h.path = old_path;
606
607 error = 0;
608 break;
609 }
610 default:
611 error = ENOTSUP;
612 break;
613 }
614 xpt_release_bus(bus);
615 break;
616 }
617 /*
618 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
619 * with the periphal driver name and unit name filled in. The other
620 * fields don't really matter as input. The passthrough driver name
621 * ("pass"), and unit number are passed back in the ccb. The current
622 * device generation number, and the index into the device peripheral
623 * driver list, and the status are also passed back. Note that
624 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
625 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
626 * (or rather should be) impossible for the device peripheral driver
627 * list to change since we look at the whole thing in one pass, and
628 * we do it with lock protection.
629 *
630 */
631 case CAMGETPASSTHRU: {
632 union ccb *ccb;
633 struct cam_periph *periph;
634 struct periph_driver **p_drv;
635 char *name;
636 u_int unit;
637 u_int cur_generation;
638 int base_periph_found;
639 int splbreaknum;
640
641 ccb = (union ccb *)addr;
642 unit = ccb->cgdl.unit_number;
643 name = ccb->cgdl.periph_name;
644 /*
645 * Every 100 devices, we want to drop our lock protection to
646 * give the software interrupt handler a chance to run.
647 * Most systems won't run into this check, but this should
648 * avoid starvation in the software interrupt handler in
649 * large systems.
650 */
651 splbreaknum = 100;
652
653 ccb = (union ccb *)addr;
654
655 base_periph_found = 0;
656
657 /*
658 * Sanity check -- make sure we don't get a null peripheral
659 * driver name.
660 */
661 if (*ccb->cgdl.periph_name == '\0') {
662 error = EINVAL;
663 break;
664 }
665
666 /* Keep the list from changing while we traverse it */
667 mtx_lock(&xsoftc.xpt_topo_lock);
668ptstartover:
669 cur_generation = xsoftc.xpt_generation;
670
671 /* first find our driver in the list of drivers */
672 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
673 if (strcmp((*p_drv)->driver_name, name) == 0)
674 break;
675
676 if (*p_drv == NULL) {
677 mtx_unlock(&xsoftc.xpt_topo_lock);
678 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
679 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
680 *ccb->cgdl.periph_name = '\0';
681 ccb->cgdl.unit_number = 0;
682 error = ENOENT;
683 break;
684 }
685
686 /*
687 * Run through every peripheral instance of this driver
688 * and check to see whether it matches the unit passed
689 * in by the user. If it does, get out of the loops and
690 * find the passthrough driver associated with that
691 * peripheral driver.
692 */
693 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
694 periph = TAILQ_NEXT(periph, unit_links)) {
695
696 if (periph->unit_number == unit) {
697 break;
698 } else if (--splbreaknum == 0) {
699 mtx_unlock(&xsoftc.xpt_topo_lock);
700 mtx_lock(&xsoftc.xpt_topo_lock);
701 splbreaknum = 100;
702 if (cur_generation != xsoftc.xpt_generation)
703 goto ptstartover;
704 }
705 }
706 /*
707 * If we found the peripheral driver that the user passed
708 * in, go through all of the peripheral drivers for that
709 * particular device and look for a passthrough driver.
710 */
711 if (periph != NULL) {
712 struct cam_ed *device;
713 int i;
714
715 base_periph_found = 1;
716 device = periph->path->device;
717 for (i = 0, periph = SLIST_FIRST(&device->periphs);
718 periph != NULL;
719 periph = SLIST_NEXT(periph, periph_links), i++) {
720 /*
721 * Check to see whether we have a
722 * passthrough device or not.
723 */
724 if (strcmp(periph->periph_name, "pass") == 0) {
725 /*
726 * Fill in the getdevlist fields.
727 */
728 strcpy(ccb->cgdl.periph_name,
729 periph->periph_name);
730 ccb->cgdl.unit_number =
731 periph->unit_number;
732 if (SLIST_NEXT(periph, periph_links))
733 ccb->cgdl.status =
734 CAM_GDEVLIST_MORE_DEVS;
735 else
736 ccb->cgdl.status =
737 CAM_GDEVLIST_LAST_DEVICE;
738 ccb->cgdl.generation =
739 device->generation;
740 ccb->cgdl.index = i;
741 /*
742 * Fill in some CCB header fields
743 * that the user may want.
744 */
745 ccb->ccb_h.path_id =
746 periph->path->bus->path_id;
747 ccb->ccb_h.target_id =
748 periph->path->target->target_id;
749 ccb->ccb_h.target_lun =
750 periph->path->device->lun_id;
751 ccb->ccb_h.status = CAM_REQ_CMP;
752 break;
753 }
754 }
755 }
756
757 /*
758 * If the periph is null here, one of two things has
759 * happened. The first possibility is that we couldn't
760 * find the unit number of the particular peripheral driver
761 * that the user is asking about. e.g. the user asks for
762 * the passthrough driver for "da11". We find the list of
763 * "da" peripherals all right, but there is no unit 11.
764 * The other possibility is that we went through the list
765 * of peripheral drivers attached to the device structure,
766 * but didn't find one with the name "pass". Either way,
767 * we return ENOENT, since we couldn't find something.
768 */
769 if (periph == NULL) {
770 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
771 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
772 *ccb->cgdl.periph_name = '\0';
773 ccb->cgdl.unit_number = 0;
774 error = ENOENT;
775 /*
776 * It is unfortunate that this is even necessary,
777 * but there are many, many clueless users out there.
778 * If this is true, the user is looking for the
779 * passthrough driver, but doesn't have one in his
780 * kernel.
781 */
782 if (base_periph_found == 1) {
783 printf("xptioctl: pass driver is not in the "
784 "kernel\n");
785 printf("xptioctl: put \"device pass\" in "
786 "your kernel config file\n");
787 }
788 }
789 mtx_unlock(&xsoftc.xpt_topo_lock);
790 break;
791 }
792 default:
793 error = ENOTTY;
794 break;
795 }
796
797 return(error);
798}
799
800static int
801cam_module_event_handler(module_t mod, int what, void *arg)
802{
803 int error;
804
805 switch (what) {
806 case MOD_LOAD:
807 if ((error = xpt_init(NULL)) != 0)
808 return (error);
809 break;
810 case MOD_UNLOAD:
811 return EBUSY;
812 default:
813 return EOPNOTSUPP;
814 }
815
816 return 0;
817}
818
819static void
820xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
821{
822
823 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
824 xpt_free_path(done_ccb->ccb_h.path);
825 xpt_free_ccb(done_ccb);
826 } else {
827 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
828 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
829 }
830 xpt_release_boot();
831}
832
833/* thread to handle bus rescans */
834static void
835xpt_scanner_thread(void *dummy)
836{
837 union ccb *ccb;
838 struct cam_sim *sim;
839
840 xpt_lock_buses();
841 for (;;) {
842 if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
843 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
844 "ccb_scanq", 0);
845 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
846 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
847 xpt_unlock_buses();
848
849 sim = ccb->ccb_h.path->bus->sim;
850 CAM_SIM_LOCK(sim);
851 xpt_action(ccb);
852 CAM_SIM_UNLOCK(sim);
853
854 xpt_lock_buses();
855 }
856 }
857}
858
859void
860xpt_rescan(union ccb *ccb)
861{
862 struct ccb_hdr *hdr;
863
864 /* Prepare request */
865 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
866 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
867 ccb->ccb_h.func_code = XPT_SCAN_BUS;
868 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
869 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
870 ccb->ccb_h.func_code = XPT_SCAN_TGT;
871 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
872 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
873 ccb->ccb_h.func_code = XPT_SCAN_LUN;
874 else {
875 xpt_print(ccb->ccb_h.path, "illegal scan path\n");
876 xpt_free_path(ccb->ccb_h.path);
877 xpt_free_ccb(ccb);
878 return;
879 }
880 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
881 ccb->ccb_h.cbfcnp = xpt_rescan_done;
882 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
883 /* Don't make duplicate entries for the same paths. */
884 xpt_lock_buses();
885 if (ccb->ccb_h.ppriv_ptr1 == NULL) {
886 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
887 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
888 wakeup(&xsoftc.ccb_scanq);
889 xpt_unlock_buses();
890 xpt_print(ccb->ccb_h.path, "rescan already queued\n");
891 xpt_free_path(ccb->ccb_h.path);
892 xpt_free_ccb(ccb);
893 return;
894 }
895 }
896 }
897 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
898 xsoftc.buses_to_config++;
899 wakeup(&xsoftc.ccb_scanq);
900 xpt_unlock_buses();
901}
902
903/* Functions accessed by the peripheral drivers */
904static int
905xpt_init(void *dummy)
906{
907 struct cam_sim *xpt_sim;
908 struct cam_path *path;
909 struct cam_devq *devq;
910 cam_status status;
911
912 TAILQ_INIT(&xsoftc.xpt_busses);
913 TAILQ_INIT(&cam_simq);
914 TAILQ_INIT(&xsoftc.ccb_scanq);
915 STAILQ_INIT(&xsoftc.highpowerq);
916 xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
917
918 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
919 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
920 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
921
922 /*
923 * The xpt layer is, itself, the equivelent of a SIM.
924 * Allow 16 ccbs in the ccb pool for it. This should
925 * give decent parallelism when we probe busses and
926 * perform other XPT functions.
927 */
928 devq = cam_simq_alloc(16);
929 xpt_sim = cam_sim_alloc(xptaction,
930 xptpoll,
931 "xpt",
932 /*softc*/NULL,
933 /*unit*/0,
934 /*mtx*/&xsoftc.xpt_lock,
935 /*max_dev_transactions*/0,
936 /*max_tagged_dev_transactions*/0,
937 devq);
938 if (xpt_sim == NULL)
939 return (ENOMEM);
940
941 mtx_lock(&xsoftc.xpt_lock);
942 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
943 mtx_unlock(&xsoftc.xpt_lock);
944 printf("xpt_init: xpt_bus_register failed with status %#x,"
945 " failing attach\n", status);
946 return (EINVAL);
947 }
948
949 /*
950 * Looking at the XPT from the SIM layer, the XPT is
951 * the equivelent of a peripheral driver. Allocate
952 * a peripheral driver entry for us.
953 */
954 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
955 CAM_TARGET_WILDCARD,
956 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
957 mtx_unlock(&xsoftc.xpt_lock);
958 printf("xpt_init: xpt_create_path failed with status %#x,"
959 " failing attach\n", status);
960 return (EINVAL);
961 }
962
963 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
964 path, NULL, 0, xpt_sim);
965 xpt_free_path(path);
966 mtx_unlock(&xsoftc.xpt_lock);
967 /* Install our software interrupt handlers */
968 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
969 /*
970 * Register a callback for when interrupts are enabled.
971 */
972 xsoftc.xpt_config_hook =
973 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
974 M_CAMXPT, M_NOWAIT | M_ZERO);
975 if (xsoftc.xpt_config_hook == NULL) {
976 printf("xpt_init: Cannot malloc config hook "
977 "- failing attach\n");
978 return (ENOMEM);
979 }
980 xsoftc.xpt_config_hook->ich_func = xpt_config;
981 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
982 free (xsoftc.xpt_config_hook, M_CAMXPT);
983 printf("xpt_init: config_intrhook_establish failed "
984 "- failing attach\n");
985 }
986
987 return (0);
988}
989
990static cam_status
991xptregister(struct cam_periph *periph, void *arg)
992{
993 struct cam_sim *xpt_sim;
994
995 if (periph == NULL) {
996 printf("xptregister: periph was NULL!!\n");
997 return(CAM_REQ_CMP_ERR);
998 }
999
1000 xpt_sim = (struct cam_sim *)arg;
1001 xpt_sim->softc = periph;
1002 xpt_periph = periph;
1003 periph->softc = NULL;
1004
1005 return(CAM_REQ_CMP);
1006}
1007
1008int32_t
1009xpt_add_periph(struct cam_periph *periph)
1010{
1011 struct cam_ed *device;
1012 int32_t status;
1013 struct periph_list *periph_head;
1014
1015 mtx_assert(periph->sim->mtx, MA_OWNED);
1016
1017 device = periph->path->device;
1018
1019 periph_head = &device->periphs;
1020
1021 status = CAM_REQ_CMP;
1022
1023 if (device != NULL) {
1024 /*
1025 * Make room for this peripheral
1026 * so it will fit in the queue
1027 * when it's scheduled to run
1028 */
1029 status = camq_resize(&device->drvq,
1030 device->drvq.array_size + 1);
1031
1032 device->generation++;
1033
1034 SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1035 }
1036
1037 mtx_lock(&xsoftc.xpt_topo_lock);
1038 xsoftc.xpt_generation++;
1039 mtx_unlock(&xsoftc.xpt_topo_lock);
1040
1041 return (status);
1042}
1043
1044void
1045xpt_remove_periph(struct cam_periph *periph)
1046{
1047 struct cam_ed *device;
1048
1049 mtx_assert(periph->sim->mtx, MA_OWNED);
1050
1051 device = periph->path->device;
1052
1053 if (device != NULL) {
1054 struct periph_list *periph_head;
1055
1056 periph_head = &device->periphs;
1057
1058 /* Release the slot for this peripheral */
1059 camq_resize(&device->drvq, device->drvq.array_size - 1);
1060
1061 device->generation++;
1062
1063 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1064 }
1065
1066 mtx_lock(&xsoftc.xpt_topo_lock);
1067 xsoftc.xpt_generation++;
1068 mtx_unlock(&xsoftc.xpt_topo_lock);
1069}
1070
1071
1072void
1073xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1074{
1075 struct cam_path *path = periph->path;
1076
1077 mtx_assert(periph->sim->mtx, MA_OWNED);
1078
1079 printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1080 periph->periph_name, periph->unit_number,
1081 path->bus->sim->sim_name,
1082 path->bus->sim->unit_number,
1083 path->bus->sim->bus_id,
1084 path->bus->path_id,
1085 path->target->target_id,
1086 path->device->lun_id);
1087 printf("%s%d: ", periph->periph_name, periph->unit_number);
1088 if (path->device->protocol == PROTO_SCSI)
1089 scsi_print_inquiry(&path->device->inq_data);
1090 else if (path->device->protocol == PROTO_ATA ||
1091 path->device->protocol == PROTO_SATAPM)
1092 ata_print_ident(&path->device->ident_data);
1093 else
1094 printf("Unknown protocol device\n");
1095 if (bootverbose && path->device->serial_num_len > 0) {
1096 /* Don't wrap the screen - print only the first 60 chars */
1097 printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1098 periph->unit_number, path->device->serial_num);
1099 }
1100 /* Announce transport details. */
1101 (*(path->bus->xport->announce))(periph);
1102 /* Announce command queueing. */
1103 if (path->device->inq_flags & SID_CmdQue
1104 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1105 printf("%s%d: Command Queueing enabled\n",
1106 periph->periph_name, periph->unit_number);
1107 }
1108 /* Announce caller's details if they've passed in. */
1109 if (announce_string != NULL)
1110 printf("%s%d: %s\n", periph->periph_name,
1111 periph->unit_number, announce_string);
1112}
1113
1114static dev_match_ret
1115xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1116 struct cam_eb *bus)
1117{
1118 dev_match_ret retval;
1119 int i;
1120
1121 retval = DM_RET_NONE;
1122
1123 /*
1124 * If we aren't given something to match against, that's an error.
1125 */
1126 if (bus == NULL)
1127 return(DM_RET_ERROR);
1128
1129 /*
1130 * If there are no match entries, then this bus matches no
1131 * matter what.
1132 */
1133 if ((patterns == NULL) || (num_patterns == 0))
1134 return(DM_RET_DESCEND | DM_RET_COPY);
1135
1136 for (i = 0; i < num_patterns; i++) {
1137 struct bus_match_pattern *cur_pattern;
1138
1139 /*
1140 * If the pattern in question isn't for a bus node, we
1141 * aren't interested. However, we do indicate to the
1142 * calling routine that we should continue descending the
1143 * tree, since the user wants to match against lower-level
1144 * EDT elements.
1145 */
1146 if (patterns[i].type != DEV_MATCH_BUS) {
1147 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1148 retval |= DM_RET_DESCEND;
1149 continue;
1150 }
1151
1152 cur_pattern = &patterns[i].pattern.bus_pattern;
1153
1154 /*
1155 * If they want to match any bus node, we give them any
1156 * device node.
1157 */
1158 if (cur_pattern->flags == BUS_MATCH_ANY) {
1159 /* set the copy flag */
1160 retval |= DM_RET_COPY;
1161
1162 /*
1163 * If we've already decided on an action, go ahead
1164 * and return.
1165 */
1166 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1167 return(retval);
1168 }
1169
1170 /*
1171 * Not sure why someone would do this...
1172 */
1173 if (cur_pattern->flags == BUS_MATCH_NONE)
1174 continue;
1175
1176 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1177 && (cur_pattern->path_id != bus->path_id))
1178 continue;
1179
1180 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1181 && (cur_pattern->bus_id != bus->sim->bus_id))
1182 continue;
1183
1184 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1185 && (cur_pattern->unit_number != bus->sim->unit_number))
1186 continue;
1187
1188 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1189 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1190 DEV_IDLEN) != 0))
1191 continue;
1192
1193 /*
1194 * If we get to this point, the user definitely wants
1195 * information on this bus. So tell the caller to copy the
1196 * data out.
1197 */
1198 retval |= DM_RET_COPY;
1199
1200 /*
1201 * If the return action has been set to descend, then we
1202 * know that we've already seen a non-bus matching
1203 * expression, therefore we need to further descend the tree.
1204 * This won't change by continuing around the loop, so we
1205 * go ahead and return. If we haven't seen a non-bus
1206 * matching expression, we keep going around the loop until
1207 * we exhaust the matching expressions. We'll set the stop
1208 * flag once we fall out of the loop.
1209 */
1210 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1211 return(retval);
1212 }
1213
1214 /*
1215 * If the return action hasn't been set to descend yet, that means
1216 * we haven't seen anything other than bus matching patterns. So
1217 * tell the caller to stop descending the tree -- the user doesn't
1218 * want to match against lower level tree elements.
1219 */
1220 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1221 retval |= DM_RET_STOP;
1222
1223 return(retval);
1224}
1225
1226static dev_match_ret
1227xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1228 struct cam_ed *device)
1229{
1230 dev_match_ret retval;
1231 int i;
1232
1233 retval = DM_RET_NONE;
1234
1235 /*
1236 * If we aren't given something to match against, that's an error.
1237 */
1238 if (device == NULL)
1239 return(DM_RET_ERROR);
1240
1241 /*
1242 * If there are no match entries, then this device matches no
1243 * matter what.
1244 */
1245 if ((patterns == NULL) || (num_patterns == 0))
1246 return(DM_RET_DESCEND | DM_RET_COPY);
1247
1248 for (i = 0; i < num_patterns; i++) {
1249 struct device_match_pattern *cur_pattern;
1250
1251 /*
1252 * If the pattern in question isn't for a device node, we
1253 * aren't interested.
1254 */
1255 if (patterns[i].type != DEV_MATCH_DEVICE) {
1256 if ((patterns[i].type == DEV_MATCH_PERIPH)
1257 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1258 retval |= DM_RET_DESCEND;
1259 continue;
1260 }
1261
1262 cur_pattern = &patterns[i].pattern.device_pattern;
1263
1264 /*
1265 * If they want to match any device node, we give them any
1266 * device node.
1267 */
1268 if (cur_pattern->flags == DEV_MATCH_ANY) {
1269 /* set the copy flag */
1270 retval |= DM_RET_COPY;
1271
1272
1273 /*
1274 * If we've already decided on an action, go ahead
1275 * and return.
1276 */
1277 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1278 return(retval);
1279 }
1280
1281 /*
1282 * Not sure why someone would do this...
1283 */
1284 if (cur_pattern->flags == DEV_MATCH_NONE)
1285 continue;
1286
1287 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1288 && (cur_pattern->path_id != device->target->bus->path_id))
1289 continue;
1290
1291 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1292 && (cur_pattern->target_id != device->target->target_id))
1293 continue;
1294
1295 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1296 && (cur_pattern->target_lun != device->lun_id))
1297 continue;
1298
1299 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1300 && (cam_quirkmatch((caddr_t)&device->inq_data,
1301 (caddr_t)&cur_pattern->inq_pat,
1302 1, sizeof(cur_pattern->inq_pat),
1303 scsi_static_inquiry_match) == NULL))
1304 continue;
1305
1306 /*
1307 * If we get to this point, the user definitely wants
1308 * information on this device. So tell the caller to copy
1309 * the data out.
1310 */
1311 retval |= DM_RET_COPY;
1312
1313 /*
1314 * If the return action has been set to descend, then we
1315 * know that we've already seen a peripheral matching
1316 * expression, therefore we need to further descend the tree.
1317 * This won't change by continuing around the loop, so we
1318 * go ahead and return. If we haven't seen a peripheral
1319 * matching expression, we keep going around the loop until
1320 * we exhaust the matching expressions. We'll set the stop
1321 * flag once we fall out of the loop.
1322 */
1323 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1324 return(retval);
1325 }
1326
1327 /*
1328 * If the return action hasn't been set to descend yet, that means
1329 * we haven't seen any peripheral matching patterns. So tell the
1330 * caller to stop descending the tree -- the user doesn't want to
1331 * match against lower level tree elements.
1332 */
1333 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1334 retval |= DM_RET_STOP;
1335
1336 return(retval);
1337}
1338
1339/*
1340 * Match a single peripheral against any number of match patterns.
1341 */
1342static dev_match_ret
1343xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1344 struct cam_periph *periph)
1345{
1346 dev_match_ret retval;
1347 int i;
1348
1349 /*
1350 * If we aren't given something to match against, that's an error.
1351 */
1352 if (periph == NULL)
1353 return(DM_RET_ERROR);
1354
1355 /*
1356 * If there are no match entries, then this peripheral matches no
1357 * matter what.
1358 */
1359 if ((patterns == NULL) || (num_patterns == 0))
1360 return(DM_RET_STOP | DM_RET_COPY);
1361
1362 /*
1363 * There aren't any nodes below a peripheral node, so there's no
1364 * reason to descend the tree any further.
1365 */
1366 retval = DM_RET_STOP;
1367
1368 for (i = 0; i < num_patterns; i++) {
1369 struct periph_match_pattern *cur_pattern;
1370
1371 /*
1372 * If the pattern in question isn't for a peripheral, we
1373 * aren't interested.
1374 */
1375 if (patterns[i].type != DEV_MATCH_PERIPH)
1376 continue;
1377
1378 cur_pattern = &patterns[i].pattern.periph_pattern;
1379
1380 /*
1381 * If they want to match on anything, then we will do so.
1382 */
1383 if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1384 /* set the copy flag */
1385 retval |= DM_RET_COPY;
1386
1387 /*
1388 * We've already set the return action to stop,
1389 * since there are no nodes below peripherals in
1390 * the tree.
1391 */
1392 return(retval);
1393 }
1394
1395 /*
1396 * Not sure why someone would do this...
1397 */
1398 if (cur_pattern->flags == PERIPH_MATCH_NONE)
1399 continue;
1400
1401 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1402 && (cur_pattern->path_id != periph->path->bus->path_id))
1403 continue;
1404
1405 /*
1406 * For the target and lun id's, we have to make sure the
1407 * target and lun pointers aren't NULL. The xpt peripheral
1408 * has a wildcard target and device.
1409 */
1410 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1411 && ((periph->path->target == NULL)
1412 ||(cur_pattern->target_id != periph->path->target->target_id)))
1413 continue;
1414
1415 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1416 && ((periph->path->device == NULL)
1417 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1418 continue;
1419
1420 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1421 && (cur_pattern->unit_number != periph->unit_number))
1422 continue;
1423
1424 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1425 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1426 DEV_IDLEN) != 0))
1427 continue;
1428
1429 /*
1430 * If we get to this point, the user definitely wants
1431 * information on this peripheral. So tell the caller to
1432 * copy the data out.
1433 */
1434 retval |= DM_RET_COPY;
1435
1436 /*
1437 * The return action has already been set to stop, since
1438 * peripherals don't have any nodes below them in the EDT.
1439 */
1440 return(retval);
1441 }
1442
1443 /*
1444 * If we get to this point, the peripheral that was passed in
1445 * doesn't match any of the patterns.
1446 */
1447 return(retval);
1448}
1449
1450static int
1451xptedtbusfunc(struct cam_eb *bus, void *arg)
1452{
1453 struct ccb_dev_match *cdm;
1454 dev_match_ret retval;
1455
1456 cdm = (struct ccb_dev_match *)arg;
1457
1458 /*
1459 * If our position is for something deeper in the tree, that means
1460 * that we've already seen this node. So, we keep going down.
1461 */
1462 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1463 && (cdm->pos.cookie.bus == bus)
1464 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1465 && (cdm->pos.cookie.target != NULL))
1466 retval = DM_RET_DESCEND;
1467 else
1468 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1469
1470 /*
1471 * If we got an error, bail out of the search.
1472 */
1473 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1474 cdm->status = CAM_DEV_MATCH_ERROR;
1475 return(0);
1476 }
1477
1478 /*
1479 * If the copy flag is set, copy this bus out.
1480 */
1481 if (retval & DM_RET_COPY) {
1482 int spaceleft, j;
1483
1484 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1485 sizeof(struct dev_match_result));
1486
1487 /*
1488 * If we don't have enough space to put in another
1489 * match result, save our position and tell the
1490 * user there are more devices to check.
1491 */
1492 if (spaceleft < sizeof(struct dev_match_result)) {
1493 bzero(&cdm->pos, sizeof(cdm->pos));
1494 cdm->pos.position_type =
1495 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1496
1497 cdm->pos.cookie.bus = bus;
1498 cdm->pos.generations[CAM_BUS_GENERATION]=
1499 xsoftc.bus_generation;
1500 cdm->status = CAM_DEV_MATCH_MORE;
1501 return(0);
1502 }
1503 j = cdm->num_matches;
1504 cdm->num_matches++;
1505 cdm->matches[j].type = DEV_MATCH_BUS;
1506 cdm->matches[j].result.bus_result.path_id = bus->path_id;
1507 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1508 cdm->matches[j].result.bus_result.unit_number =
1509 bus->sim->unit_number;
1510 strncpy(cdm->matches[j].result.bus_result.dev_name,
1511 bus->sim->sim_name, DEV_IDLEN);
1512 }
1513
1514 /*
1515 * If the user is only interested in busses, there's no
1516 * reason to descend to the next level in the tree.
1517 */
1518 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1519 return(1);
1520
1521 /*
1522 * If there is a target generation recorded, check it to
1523 * make sure the target list hasn't changed.
1524 */
1525 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1526 && (bus == cdm->pos.cookie.bus)
1527 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1528 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1529 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1530 bus->generation)) {
1531 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1532 return(0);
1533 }
1534
1535 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1536 && (cdm->pos.cookie.bus == bus)
1537 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1538 && (cdm->pos.cookie.target != NULL))
1539 return(xpttargettraverse(bus,
1540 (struct cam_et *)cdm->pos.cookie.target,
1541 xptedttargetfunc, arg));
1542 else
1543 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1544}
1545
1546static int
1547xptedttargetfunc(struct cam_et *target, void *arg)
1548{
1549 struct ccb_dev_match *cdm;
1550
1551 cdm = (struct ccb_dev_match *)arg;
1552
1553 /*
1554 * If there is a device list generation recorded, check it to
1555 * make sure the device list hasn't changed.
1556 */
1557 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1558 && (cdm->pos.cookie.bus == target->bus)
1559 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1560 && (cdm->pos.cookie.target == target)
1561 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1562 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1563 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1564 target->generation)) {
1565 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1566 return(0);
1567 }
1568
1569 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1570 && (cdm->pos.cookie.bus == target->bus)
1571 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1572 && (cdm->pos.cookie.target == target)
1573 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1574 && (cdm->pos.cookie.device != NULL))
1575 return(xptdevicetraverse(target,
1576 (struct cam_ed *)cdm->pos.cookie.device,
1577 xptedtdevicefunc, arg));
1578 else
1579 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1580}
1581
1582static int
1583xptedtdevicefunc(struct cam_ed *device, void *arg)
1584{
1585
1586 struct ccb_dev_match *cdm;
1587 dev_match_ret retval;
1588
1589 cdm = (struct ccb_dev_match *)arg;
1590
1591 /*
1592 * If our position is for something deeper in the tree, that means
1593 * that we've already seen this node. So, we keep going down.
1594 */
1595 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1596 && (cdm->pos.cookie.device == device)
1597 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1598 && (cdm->pos.cookie.periph != NULL))
1599 retval = DM_RET_DESCEND;
1600 else
1601 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1602 device);
1603
1604 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1605 cdm->status = CAM_DEV_MATCH_ERROR;
1606 return(0);
1607 }
1608
1609 /*
1610 * If the copy flag is set, copy this device out.
1611 */
1612 if (retval & DM_RET_COPY) {
1613 int spaceleft, j;
1614
1615 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1616 sizeof(struct dev_match_result));
1617
1618 /*
1619 * If we don't have enough space to put in another
1620 * match result, save our position and tell the
1621 * user there are more devices to check.
1622 */
1623 if (spaceleft < sizeof(struct dev_match_result)) {
1624 bzero(&cdm->pos, sizeof(cdm->pos));
1625 cdm->pos.position_type =
1626 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1627 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1628
1629 cdm->pos.cookie.bus = device->target->bus;
1630 cdm->pos.generations[CAM_BUS_GENERATION]=
1631 xsoftc.bus_generation;
1632 cdm->pos.cookie.target = device->target;
1633 cdm->pos.generations[CAM_TARGET_GENERATION] =
1634 device->target->bus->generation;
1635 cdm->pos.cookie.device = device;
1636 cdm->pos.generations[CAM_DEV_GENERATION] =
1637 device->target->generation;
1638 cdm->status = CAM_DEV_MATCH_MORE;
1639 return(0);
1640 }
1641 j = cdm->num_matches;
1642 cdm->num_matches++;
1643 cdm->matches[j].type = DEV_MATCH_DEVICE;
1644 cdm->matches[j].result.device_result.path_id =
1645 device->target->bus->path_id;
1646 cdm->matches[j].result.device_result.target_id =
1647 device->target->target_id;
1648 cdm->matches[j].result.device_result.target_lun =
1649 device->lun_id;
1650 cdm->matches[j].result.device_result.protocol =
1651 device->protocol;
1652 bcopy(&device->inq_data,
1653 &cdm->matches[j].result.device_result.inq_data,
1654 sizeof(struct scsi_inquiry_data));
1655 bcopy(&device->ident_data,
1656 &cdm->matches[j].result.device_result.ident_data,
1657 sizeof(struct ata_params));
1658
1659 /* Let the user know whether this device is unconfigured */
1660 if (device->flags & CAM_DEV_UNCONFIGURED)
1661 cdm->matches[j].result.device_result.flags =
1662 DEV_RESULT_UNCONFIGURED;
1663 else
1664 cdm->matches[j].result.device_result.flags =
1665 DEV_RESULT_NOFLAG;
1666 }
1667
1668 /*
1669 * If the user isn't interested in peripherals, don't descend
1670 * the tree any further.
1671 */
1672 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1673 return(1);
1674
1675 /*
1676 * If there is a peripheral list generation recorded, make sure
1677 * it hasn't changed.
1678 */
1679 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1680 && (device->target->bus == cdm->pos.cookie.bus)
1681 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1682 && (device->target == cdm->pos.cookie.target)
1683 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1684 && (device == cdm->pos.cookie.device)
1685 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1686 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1687 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1688 device->generation)){
1689 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1690 return(0);
1691 }
1692
1693 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1694 && (cdm->pos.cookie.bus == device->target->bus)
1695 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1696 && (cdm->pos.cookie.target == device->target)
1697 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1698 && (cdm->pos.cookie.device == device)
1699 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1700 && (cdm->pos.cookie.periph != NULL))
1701 return(xptperiphtraverse(device,
1702 (struct cam_periph *)cdm->pos.cookie.periph,
1703 xptedtperiphfunc, arg));
1704 else
1705 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1706}
1707
1708static int
1709xptedtperiphfunc(struct cam_periph *periph, void *arg)
1710{
1711 struct ccb_dev_match *cdm;
1712 dev_match_ret retval;
1713
1714 cdm = (struct ccb_dev_match *)arg;
1715
1716 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1717
1718 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1719 cdm->status = CAM_DEV_MATCH_ERROR;
1720 return(0);
1721 }
1722
1723 /*
1724 * If the copy flag is set, copy this peripheral out.
1725 */
1726 if (retval & DM_RET_COPY) {
1727 int spaceleft, j;
1728
1729 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1730 sizeof(struct dev_match_result));
1731
1732 /*
1733 * If we don't have enough space to put in another
1734 * match result, save our position and tell the
1735 * user there are more devices to check.
1736 */
1737 if (spaceleft < sizeof(struct dev_match_result)) {
1738 bzero(&cdm->pos, sizeof(cdm->pos));
1739 cdm->pos.position_type =
1740 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1741 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1742 CAM_DEV_POS_PERIPH;
1743
1744 cdm->pos.cookie.bus = periph->path->bus;
1745 cdm->pos.generations[CAM_BUS_GENERATION]=
1746 xsoftc.bus_generation;
1747 cdm->pos.cookie.target = periph->path->target;
1748 cdm->pos.generations[CAM_TARGET_GENERATION] =
1749 periph->path->bus->generation;
1750 cdm->pos.cookie.device = periph->path->device;
1751 cdm->pos.generations[CAM_DEV_GENERATION] =
1752 periph->path->target->generation;
1753 cdm->pos.cookie.periph = periph;
1754 cdm->pos.generations[CAM_PERIPH_GENERATION] =
1755 periph->path->device->generation;
1756 cdm->status = CAM_DEV_MATCH_MORE;
1757 return(0);
1758 }
1759
1760 j = cdm->num_matches;
1761 cdm->num_matches++;
1762 cdm->matches[j].type = DEV_MATCH_PERIPH;
1763 cdm->matches[j].result.periph_result.path_id =
1764 periph->path->bus->path_id;
1765 cdm->matches[j].result.periph_result.target_id =
1766 periph->path->target->target_id;
1767 cdm->matches[j].result.periph_result.target_lun =
1768 periph->path->device->lun_id;
1769 cdm->matches[j].result.periph_result.unit_number =
1770 periph->unit_number;
1771 strncpy(cdm->matches[j].result.periph_result.periph_name,
1772 periph->periph_name, DEV_IDLEN);
1773 }
1774
1775 return(1);
1776}
1777
1778static int
1779xptedtmatch(struct ccb_dev_match *cdm)
1780{
1781 int ret;
1782
1783 cdm->num_matches = 0;
1784
1785 /*
1786 * Check the bus list generation. If it has changed, the user
1787 * needs to reset everything and start over.
1788 */
1789 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1790 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1791 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1792 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1793 return(0);
1794 }
1795
1796 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1797 && (cdm->pos.cookie.bus != NULL))
1798 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1799 xptedtbusfunc, cdm);
1800 else
1801 ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1802
1803 /*
1804 * If we get back 0, that means that we had to stop before fully
1805 * traversing the EDT. It also means that one of the subroutines
1806 * has set the status field to the proper value. If we get back 1,
1807 * we've fully traversed the EDT and copied out any matching entries.
1808 */
1809 if (ret == 1)
1810 cdm->status = CAM_DEV_MATCH_LAST;
1811
1812 return(ret);
1813}
1814
1815static int
1816xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1817{
1818 struct ccb_dev_match *cdm;
1819
1820 cdm = (struct ccb_dev_match *)arg;
1821
1822 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1823 && (cdm->pos.cookie.pdrv == pdrv)
1824 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1825 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1826 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1827 (*pdrv)->generation)) {
1828 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1829 return(0);
1830 }
1831
1832 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1833 && (cdm->pos.cookie.pdrv == pdrv)
1834 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1835 && (cdm->pos.cookie.periph != NULL))
1836 return(xptpdperiphtraverse(pdrv,
1837 (struct cam_periph *)cdm->pos.cookie.periph,
1838 xptplistperiphfunc, arg));
1839 else
1840 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1841}
1842
1843static int
1844xptplistperiphfunc(struct cam_periph *periph, void *arg)
1845{
1846 struct ccb_dev_match *cdm;
1847 dev_match_ret retval;
1848
1849 cdm = (struct ccb_dev_match *)arg;
1850
1851 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1852
1853 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1854 cdm->status = CAM_DEV_MATCH_ERROR;
1855 return(0);
1856 }
1857
1858 /*
1859 * If the copy flag is set, copy this peripheral out.
1860 */
1861 if (retval & DM_RET_COPY) {
1862 int spaceleft, j;
1863
1864 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1865 sizeof(struct dev_match_result));
1866
1867 /*
1868 * If we don't have enough space to put in another
1869 * match result, save our position and tell the
1870 * user there are more devices to check.
1871 */
1872 if (spaceleft < sizeof(struct dev_match_result)) {
1873 struct periph_driver **pdrv;
1874
1875 pdrv = NULL;
1876 bzero(&cdm->pos, sizeof(cdm->pos));
1877 cdm->pos.position_type =
1878 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1879 CAM_DEV_POS_PERIPH;
1880
1881 /*
1882 * This may look a bit non-sensical, but it is
1883 * actually quite logical. There are very few
1884 * peripheral drivers, and bloating every peripheral
1885 * structure with a pointer back to its parent
1886 * peripheral driver linker set entry would cost
1887 * more in the long run than doing this quick lookup.
1888 */
1889 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1890 if (strcmp((*pdrv)->driver_name,
1891 periph->periph_name) == 0)
1892 break;
1893 }
1894
1895 if (*pdrv == NULL) {
1896 cdm->status = CAM_DEV_MATCH_ERROR;
1897 return(0);
1898 }
1899
1900 cdm->pos.cookie.pdrv = pdrv;
1901 /*
1902 * The periph generation slot does double duty, as
1903 * does the periph pointer slot. They are used for
1904 * both edt and pdrv lookups and positioning.
1905 */
1906 cdm->pos.cookie.periph = periph;
1907 cdm->pos.generations[CAM_PERIPH_GENERATION] =
1908 (*pdrv)->generation;
1909 cdm->status = CAM_DEV_MATCH_MORE;
1910 return(0);
1911 }
1912
1913 j = cdm->num_matches;
1914 cdm->num_matches++;
1915 cdm->matches[j].type = DEV_MATCH_PERIPH;
1916 cdm->matches[j].result.periph_result.path_id =
1917 periph->path->bus->path_id;
1918
1919 /*
1920 * The transport layer peripheral doesn't have a target or
1921 * lun.
1922 */
1923 if (periph->path->target)
1924 cdm->matches[j].result.periph_result.target_id =
1925 periph->path->target->target_id;
1926 else
1927 cdm->matches[j].result.periph_result.target_id = -1;
1928
1929 if (periph->path->device)
1930 cdm->matches[j].result.periph_result.target_lun =
1931 periph->path->device->lun_id;
1932 else
1933 cdm->matches[j].result.periph_result.target_lun = -1;
1934
1935 cdm->matches[j].result.periph_result.unit_number =
1936 periph->unit_number;
1937 strncpy(cdm->matches[j].result.periph_result.periph_name,
1938 periph->periph_name, DEV_IDLEN);
1939 }
1940
1941 return(1);
1942}
1943
1944static int
1945xptperiphlistmatch(struct ccb_dev_match *cdm)
1946{
1947 int ret;
1948
1949 cdm->num_matches = 0;
1950
1951 /*
1952 * At this point in the edt traversal function, we check the bus
1953 * list generation to make sure that no busses have been added or
1954 * removed since the user last sent a XPT_DEV_MATCH ccb through.
1955 * For the peripheral driver list traversal function, however, we
1956 * don't have to worry about new peripheral driver types coming or
1957 * going; they're in a linker set, and therefore can't change
1958 * without a recompile.
1959 */
1960
1961 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1962 && (cdm->pos.cookie.pdrv != NULL))
1963 ret = xptpdrvtraverse(
1964 (struct periph_driver **)cdm->pos.cookie.pdrv,
1965 xptplistpdrvfunc, cdm);
1966 else
1967 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
1968
1969 /*
1970 * If we get back 0, that means that we had to stop before fully
1971 * traversing the peripheral driver tree. It also means that one of
1972 * the subroutines has set the status field to the proper value. If
1973 * we get back 1, we've fully traversed the EDT and copied out any
1974 * matching entries.
1975 */
1976 if (ret == 1)
1977 cdm->status = CAM_DEV_MATCH_LAST;
1978
1979 return(ret);
1980}
1981
1982static int
1983xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
1984{
1985 struct cam_eb *bus, *next_bus;
1986 int retval;
1987
1988 retval = 1;
1989
1990 mtx_lock(&xsoftc.xpt_topo_lock);
1991 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
1992 bus != NULL;
1993 bus = next_bus) {
1994 next_bus = TAILQ_NEXT(bus, links);
1995
1996 mtx_unlock(&xsoftc.xpt_topo_lock);
1997 CAM_SIM_LOCK(bus->sim);
1998 retval = tr_func(bus, arg);
1999 CAM_SIM_UNLOCK(bus->sim);
2000 if (retval == 0)
2001 return(retval);
2002 mtx_lock(&xsoftc.xpt_topo_lock);
2003 }
2004 mtx_unlock(&xsoftc.xpt_topo_lock);
2005
2006 return(retval);
2007}
2008
2009int
2010xpt_sim_opened(struct cam_sim *sim)
2011{
2012 struct cam_eb *bus;
2013 struct cam_et *target;
2014 struct cam_ed *device;
2015 struct cam_periph *periph;
2016
2017 KASSERT(sim->refcount >= 1, ("sim->refcount >= 1"));
2018 mtx_assert(sim->mtx, MA_OWNED);
2019
2020 mtx_lock(&xsoftc.xpt_topo_lock);
2021 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
2022 if (bus->sim != sim)
2023 continue;
2024
2025 TAILQ_FOREACH(target, &bus->et_entries, links) {
2026 TAILQ_FOREACH(device, &target->ed_entries, links) {
2027 SLIST_FOREACH(periph, &device->periphs,
2028 periph_links) {
2029 if (periph->refcount > 0) {
2030 mtx_unlock(&xsoftc.xpt_topo_lock);
2031 return (1);
2032 }
2033 }
2034 }
2035 }
2036 }
2037
2038 mtx_unlock(&xsoftc.xpt_topo_lock);
2039 return (0);
2040}
2041
2042static int
2043xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2044 xpt_targetfunc_t *tr_func, void *arg)
2045{
2046 struct cam_et *target, *next_target;
2047 int retval;
2048
2049 retval = 1;
2050 for (target = (start_target ? start_target :
2051 TAILQ_FIRST(&bus->et_entries));
2052 target != NULL; target = next_target) {
2053
2054 next_target = TAILQ_NEXT(target, links);
2055
2056 retval = tr_func(target, arg);
2057
2058 if (retval == 0)
2059 return(retval);
2060 }
2061
2062 return(retval);
2063}
2064
2065static int
2066xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2067 xpt_devicefunc_t *tr_func, void *arg)
2068{
2069 struct cam_ed *device, *next_device;
2070 int retval;
2071
2072 retval = 1;
2073 for (device = (start_device ? start_device :
2074 TAILQ_FIRST(&target->ed_entries));
2075 device != NULL;
2076 device = next_device) {
2077
2078 next_device = TAILQ_NEXT(device, links);
2079
2080 retval = tr_func(device, arg);
2081
2082 if (retval == 0)
2083 return(retval);
2084 }
2085
2086 return(retval);
2087}
2088
2089static int
2090xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2091 xpt_periphfunc_t *tr_func, void *arg)
2092{
2093 struct cam_periph *periph, *next_periph;
2094 int retval;
2095
2096 retval = 1;
2097
2098 for (periph = (start_periph ? start_periph :
2099 SLIST_FIRST(&device->periphs));
2100 periph != NULL;
2101 periph = next_periph) {
2102
2103 next_periph = SLIST_NEXT(periph, periph_links);
2104
2105 retval = tr_func(periph, arg);
2106 if (retval == 0)
2107 return(retval);
2108 }
2109
2110 return(retval);
2111}
2112
2113static int
2114xptpdrvtraverse(struct periph_driver **start_pdrv,
2115 xpt_pdrvfunc_t *tr_func, void *arg)
2116{
2117 struct periph_driver **pdrv;
2118 int retval;
2119
2120 retval = 1;
2121
2122 /*
2123 * We don't traverse the peripheral driver list like we do the
2124 * other lists, because it is a linker set, and therefore cannot be
2125 * changed during runtime. If the peripheral driver list is ever
2126 * re-done to be something other than a linker set (i.e. it can
2127 * change while the system is running), the list traversal should
2128 * be modified to work like the other traversal functions.
2129 */
2130 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2131 *pdrv != NULL; pdrv++) {
2132 retval = tr_func(pdrv, arg);
2133
2134 if (retval == 0)
2135 return(retval);
2136 }
2137
2138 return(retval);
2139}
2140
2141static int
2142xptpdperiphtraverse(struct periph_driver **pdrv,
2143 struct cam_periph *start_periph,
2144 xpt_periphfunc_t *tr_func, void *arg)
2145{
2146 struct cam_periph *periph, *next_periph;
2147 int retval;
2148
2149 retval = 1;
2150
2151 xpt_lock_buses();
2152 for (periph = (start_periph ? start_periph :
2153 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2154 periph = next_periph) {
2155
2156 next_periph = TAILQ_NEXT(periph, unit_links);
2157
2158 retval = tr_func(periph, arg);
2159 if (retval == 0) {
2160 xpt_unlock_buses();
2161 return(retval);
2162 }
2163 }
2164 xpt_unlock_buses();
2165 return(retval);
2166}
2167
2168static int
2169xptdefbusfunc(struct cam_eb *bus, void *arg)
2170{
2171 struct xpt_traverse_config *tr_config;
2172
2173 tr_config = (struct xpt_traverse_config *)arg;
2174
2175 if (tr_config->depth == XPT_DEPTH_BUS) {
2176 xpt_busfunc_t *tr_func;
2177
2178 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2179
2180 return(tr_func(bus, tr_config->tr_arg));
2181 } else
2182 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2183}
2184
2185static int
2186xptdeftargetfunc(struct cam_et *target, void *arg)
2187{
2188 struct xpt_traverse_config *tr_config;
2189
2190 tr_config = (struct xpt_traverse_config *)arg;
2191
2192 if (tr_config->depth == XPT_DEPTH_TARGET) {
2193 xpt_targetfunc_t *tr_func;
2194
2195 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2196
2197 return(tr_func(target, tr_config->tr_arg));
2198 } else
2199 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2200}
2201
2202static int
2203xptdefdevicefunc(struct cam_ed *device, void *arg)
2204{
2205 struct xpt_traverse_config *tr_config;
2206
2207 tr_config = (struct xpt_traverse_config *)arg;
2208
2209 if (tr_config->depth == XPT_DEPTH_DEVICE) {
2210 xpt_devicefunc_t *tr_func;
2211
2212 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2213
2214 return(tr_func(device, tr_config->tr_arg));
2215 } else
2216 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2217}
2218
2219static int
2220xptdefperiphfunc(struct cam_periph *periph, void *arg)
2221{
2222 struct xpt_traverse_config *tr_config;
2223 xpt_periphfunc_t *tr_func;
2224
2225 tr_config = (struct xpt_traverse_config *)arg;
2226
2227 tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2228
2229 /*
2230 * Unlike the other default functions, we don't check for depth
2231 * here. The peripheral driver level is the last level in the EDT,
2232 * so if we're here, we should execute the function in question.
2233 */
2234 return(tr_func(periph, tr_config->tr_arg));
2235}
2236
2237/*
2238 * Execute the given function for every bus in the EDT.
2239 */
2240static int
2241xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2242{
2243 struct xpt_traverse_config tr_config;
2244
2245 tr_config.depth = XPT_DEPTH_BUS;
2246 tr_config.tr_func = tr_func;
2247 tr_config.tr_arg = arg;
2248
2249 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2250}
2251
2252/*
2253 * Execute the given function for every device in the EDT.
2254 */
2255static int
2256xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2257{
2258 struct xpt_traverse_config tr_config;
2259
2260 tr_config.depth = XPT_DEPTH_DEVICE;
2261 tr_config.tr_func = tr_func;
2262 tr_config.tr_arg = arg;
2263
2264 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2265}
2266
2267static int
2268xptsetasyncfunc(struct cam_ed *device, void *arg)
2269{
2270 struct cam_path path;
2271 struct ccb_getdev cgd;
2272 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2273
2274 /*
2275 * Don't report unconfigured devices (Wildcard devs,
2276 * devices only for target mode, device instances
2277 * that have been invalidated but are waiting for
2278 * their last reference count to be released).
2279 */
2280 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2281 return (1);
2282
2283 xpt_compile_path(&path,
2284 NULL,
2285 device->target->bus->path_id,
2286 device->target->target_id,
2287 device->lun_id);
2288 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2289 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2290 xpt_action((union ccb *)&cgd);
2291 csa->callback(csa->callback_arg,
2292 AC_FOUND_DEVICE,
2293 &path, &cgd);
2294 xpt_release_path(&path);
2295
2296 return(1);
2297}
2298
2299static int
2300xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2301{
2302 struct cam_path path;
2303 struct ccb_pathinq cpi;
2304 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2305
2306 xpt_compile_path(&path, /*periph*/NULL,
2307 bus->sim->path_id,
2308 CAM_TARGET_WILDCARD,
2309 CAM_LUN_WILDCARD);
2310 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2311 cpi.ccb_h.func_code = XPT_PATH_INQ;
2312 xpt_action((union ccb *)&cpi);
2313 csa->callback(csa->callback_arg,
2314 AC_PATH_REGISTERED,
2315 &path, &cpi);
2316 xpt_release_path(&path);
2317
2318 return(1);
2319}
2320
2321void
2322xpt_action(union ccb *start_ccb)
2323{
2324
2325 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2326
2327 start_ccb->ccb_h.status = CAM_REQ_INPROG;
2328 /* Compatibility for RL-unaware code. */
2329 if (CAM_PRIORITY_TO_RL(start_ccb->ccb_h.pinfo.priority) == 0)
2330 start_ccb->ccb_h.pinfo.priority += CAM_PRIORITY_NORMAL - 1;
2331 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2332}
2333
2334void
2335xpt_action_default(union ccb *start_ccb)
2336{
2337
2338 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2339
2340 switch (start_ccb->ccb_h.func_code) {
2341 case XPT_SCSI_IO:
2342 {
2343 struct cam_ed *device;
2344#ifdef CAMDEBUG
2345 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2346 struct cam_path *path;
2347
2348 path = start_ccb->ccb_h.path;
2349#endif
2350
2351 /*
2352 * For the sake of compatibility with SCSI-1
2353 * devices that may not understand the identify
2354 * message, we include lun information in the
2355 * second byte of all commands. SCSI-1 specifies
2356 * that luns are a 3 bit value and reserves only 3
2357 * bits for lun information in the CDB. Later
2358 * revisions of the SCSI spec allow for more than 8
2359 * luns, but have deprecated lun information in the
2360 * CDB. So, if the lun won't fit, we must omit.
2361 *
2362 * Also be aware that during initial probing for devices,
2363 * the inquiry information is unknown but initialized to 0.
2364 * This means that this code will be exercised while probing
2365 * devices with an ANSI revision greater than 2.
2366 */
2367 device = start_ccb->ccb_h.path->device;
2368 if (device->protocol_version <= SCSI_REV_2
2369 && start_ccb->ccb_h.target_lun < 8
2370 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2371
2372 start_ccb->csio.cdb_io.cdb_bytes[1] |=
2373 start_ccb->ccb_h.target_lun << 5;
2374 }
2375 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2376 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2377 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2378 &path->device->inq_data),
2379 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2380 cdb_str, sizeof(cdb_str))));
2381 }
2382 /* FALLTHROUGH */
2383 case XPT_TARGET_IO:
2384 case XPT_CONT_TARGET_IO:
2385 start_ccb->csio.sense_resid = 0;
2386 start_ccb->csio.resid = 0;
2387 /* FALLTHROUGH */
2388 case XPT_ATA_IO:
2389 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) {
2390 start_ccb->ataio.resid = 0;
2391 }
2392 /* FALLTHROUGH */
2393 case XPT_RESET_DEV:
2394 case XPT_ENG_EXEC:
2395 {
2396 struct cam_path *path = start_ccb->ccb_h.path;
2397 int frozen;
2398
2399 frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2400 path->device->sim->devq->alloc_openings += frozen;
2401 if (frozen > 0)
2402 xpt_run_dev_allocq(path->bus);
2403 if (xpt_schedule_dev_sendq(path->bus, path->device))
2404 xpt_run_dev_sendq(path->bus);
2405 break;
2406 }
2407 case XPT_CALC_GEOMETRY:
2408 {
2409 struct cam_sim *sim;
2410
2411 /* Filter out garbage */
2412 if (start_ccb->ccg.block_size == 0
2413 || start_ccb->ccg.volume_size == 0) {
2414 start_ccb->ccg.cylinders = 0;
2415 start_ccb->ccg.heads = 0;
2416 start_ccb->ccg.secs_per_track = 0;
2417 start_ccb->ccb_h.status = CAM_REQ_CMP;
2418 break;
2419 }
2420#ifdef PC98
2421 /*
2422 * In a PC-98 system, geometry translation depens on
2423 * the "real" device geometry obtained from mode page 4.
2424 * SCSI geometry translation is performed in the
2425 * initialization routine of the SCSI BIOS and the result
2426 * stored in host memory. If the translation is available
2427 * in host memory, use it. If not, rely on the default
2428 * translation the device driver performs.
2429 */
2430 if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2431 start_ccb->ccb_h.status = CAM_REQ_CMP;
2432 break;
2433 }
2434#endif
2435 sim = start_ccb->ccb_h.path->bus->sim;
2436 (*(sim->sim_action))(sim, start_ccb);
2437 break;
2438 }
2439 case XPT_ABORT:
2440 {
2441 union ccb* abort_ccb;
2442
2443 abort_ccb = start_ccb->cab.abort_ccb;
2444 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2445
2446 if (abort_ccb->ccb_h.pinfo.index >= 0) {
2447 struct cam_ccbq *ccbq;
2448 struct cam_ed *device;
2449
2450 device = abort_ccb->ccb_h.path->device;
2451 ccbq = &device->ccbq;
2452 device->sim->devq->alloc_openings -=
2453 cam_ccbq_remove_ccb(ccbq, abort_ccb);
2454 abort_ccb->ccb_h.status =
2455 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2456 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2457 xpt_done(abort_ccb);
2458 start_ccb->ccb_h.status = CAM_REQ_CMP;
2459 break;
2460 }
2461 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2462 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2463 /*
2464 * We've caught this ccb en route to
2465 * the SIM. Flag it for abort and the
2466 * SIM will do so just before starting
2467 * real work on the CCB.
2468 */
2469 abort_ccb->ccb_h.status =
2470 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2471 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2472 start_ccb->ccb_h.status = CAM_REQ_CMP;
2473 break;
2474 }
2475 }
2476 if (XPT_FC_IS_QUEUED(abort_ccb)
2477 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2478 /*
2479 * It's already completed but waiting
2480 * for our SWI to get to it.
2481 */
2482 start_ccb->ccb_h.status = CAM_UA_ABORT;
2483 break;
2484 }
2485 /*
2486 * If we weren't able to take care of the abort request
2487 * in the XPT, pass the request down to the SIM for processing.
2488 */
2489 }
2490 /* FALLTHROUGH */
2491 case XPT_ACCEPT_TARGET_IO:
2492 case XPT_EN_LUN:
2493 case XPT_IMMED_NOTIFY:
2494 case XPT_NOTIFY_ACK:
2495 case XPT_RESET_BUS:
2496 case XPT_IMMEDIATE_NOTIFY:
2497 case XPT_NOTIFY_ACKNOWLEDGE:
2498 case XPT_GET_SIM_KNOB:
2499 case XPT_SET_SIM_KNOB:
2500 {
2501 struct cam_sim *sim;
2502
2503 sim = start_ccb->ccb_h.path->bus->sim;
2504 (*(sim->sim_action))(sim, start_ccb);
2505 break;
2506 }
2507 case XPT_PATH_INQ:
2508 {
2509 struct cam_sim *sim;
2510
2511 sim = start_ccb->ccb_h.path->bus->sim;
2512 (*(sim->sim_action))(sim, start_ccb);
2513 break;
2514 }
2515 case XPT_PATH_STATS:
2516 start_ccb->cpis.last_reset =
2517 start_ccb->ccb_h.path->bus->last_reset;
2518 start_ccb->ccb_h.status = CAM_REQ_CMP;
2519 break;
2520 case XPT_GDEV_TYPE:
2521 {
2522 struct cam_ed *dev;
2523
2524 dev = start_ccb->ccb_h.path->device;
2525 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2526 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2527 } else {
2528 struct ccb_getdev *cgd;
2529 struct cam_eb *bus;
2530 struct cam_et *tar;
2531
2532 cgd = &start_ccb->cgd;
2533 bus = cgd->ccb_h.path->bus;
2534 tar = cgd->ccb_h.path->target;
2535 cgd->protocol = dev->protocol;
2536 cgd->inq_data = dev->inq_data;
2537 cgd->ident_data = dev->ident_data;
2538 cgd->inq_flags = dev->inq_flags;
2539 cgd->ccb_h.status = CAM_REQ_CMP;
2540 cgd->serial_num_len = dev->serial_num_len;
2541 if ((dev->serial_num_len > 0)
2542 && (dev->serial_num != NULL))
2543 bcopy(dev->serial_num, cgd->serial_num,
2544 dev->serial_num_len);
2545 }
2546 break;
2547 }
2548 case XPT_GDEV_STATS:
2549 {
2550 struct cam_ed *dev;
2551
2552 dev = start_ccb->ccb_h.path->device;
2553 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2554 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2555 } else {
2556 struct ccb_getdevstats *cgds;
2557 struct cam_eb *bus;
2558 struct cam_et *tar;
2559
2560 cgds = &start_ccb->cgds;
2561 bus = cgds->ccb_h.path->bus;
2562 tar = cgds->ccb_h.path->target;
2563 cgds->dev_openings = dev->ccbq.dev_openings;
2564 cgds->dev_active = dev->ccbq.dev_active;
2565 cgds->devq_openings = dev->ccbq.devq_openings;
2566 cgds->devq_queued = dev->ccbq.queue.entries;
2567 cgds->held = dev->ccbq.held;
2568 cgds->last_reset = tar->last_reset;
2569 cgds->maxtags = dev->maxtags;
2570 cgds->mintags = dev->mintags;
2571 if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2572 cgds->last_reset = bus->last_reset;
2573 cgds->ccb_h.status = CAM_REQ_CMP;
2574 }
2575 break;
2576 }
2577 case XPT_GDEVLIST:
2578 {
2579 struct cam_periph *nperiph;
2580 struct periph_list *periph_head;
2581 struct ccb_getdevlist *cgdl;
2582 u_int i;
2583 struct cam_ed *device;
2584 int found;
2585
2586
2587 found = 0;
2588
2589 /*
2590 * Don't want anyone mucking with our data.
2591 */
2592 device = start_ccb->ccb_h.path->device;
2593 periph_head = &device->periphs;
2594 cgdl = &start_ccb->cgdl;
2595
2596 /*
2597 * Check and see if the list has changed since the user
2598 * last requested a list member. If so, tell them that the
2599 * list has changed, and therefore they need to start over
2600 * from the beginning.
2601 */
2602 if ((cgdl->index != 0) &&
2603 (cgdl->generation != device->generation)) {
2604 cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2605 break;
2606 }
2607
2608 /*
2609 * Traverse the list of peripherals and attempt to find
2610 * the requested peripheral.
2611 */
2612 for (nperiph = SLIST_FIRST(periph_head), i = 0;
2613 (nperiph != NULL) && (i <= cgdl->index);
2614 nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2615 if (i == cgdl->index) {
2616 strncpy(cgdl->periph_name,
2617 nperiph->periph_name,
2618 DEV_IDLEN);
2619 cgdl->unit_number = nperiph->unit_number;
2620 found = 1;
2621 }
2622 }
2623 if (found == 0) {
2624 cgdl->status = CAM_GDEVLIST_ERROR;
2625 break;
2626 }
2627
2628 if (nperiph == NULL)
2629 cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2630 else
2631 cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2632
2633 cgdl->index++;
2634 cgdl->generation = device->generation;
2635
2636 cgdl->ccb_h.status = CAM_REQ_CMP;
2637 break;
2638 }
2639 case XPT_DEV_MATCH:
2640 {
2641 dev_pos_type position_type;
2642 struct ccb_dev_match *cdm;
2643
2644 cdm = &start_ccb->cdm;
2645
2646 /*
2647 * There are two ways of getting at information in the EDT.
2648 * The first way is via the primary EDT tree. It starts
2649 * with a list of busses, then a list of targets on a bus,
2650 * then devices/luns on a target, and then peripherals on a
2651 * device/lun. The "other" way is by the peripheral driver
2652 * lists. The peripheral driver lists are organized by
2653 * peripheral driver. (obviously) So it makes sense to
2654 * use the peripheral driver list if the user is looking
2655 * for something like "da1", or all "da" devices. If the
2656 * user is looking for something on a particular bus/target
2657 * or lun, it's generally better to go through the EDT tree.
2658 */
2659
2660 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2661 position_type = cdm->pos.position_type;
2662 else {
2663 u_int i;
2664
2665 position_type = CAM_DEV_POS_NONE;
2666
2667 for (i = 0; i < cdm->num_patterns; i++) {
2668 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2669 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2670 position_type = CAM_DEV_POS_EDT;
2671 break;
2672 }
2673 }
2674
2675 if (cdm->num_patterns == 0)
2676 position_type = CAM_DEV_POS_EDT;
2677 else if (position_type == CAM_DEV_POS_NONE)
2678 position_type = CAM_DEV_POS_PDRV;
2679 }
2680
2681 switch(position_type & CAM_DEV_POS_TYPEMASK) {
2682 case CAM_DEV_POS_EDT:
2683 xptedtmatch(cdm);
2684 break;
2685 case CAM_DEV_POS_PDRV:
2686 xptperiphlistmatch(cdm);
2687 break;
2688 default:
2689 cdm->status = CAM_DEV_MATCH_ERROR;
2690 break;
2691 }
2692
2693 if (cdm->status == CAM_DEV_MATCH_ERROR)
2694 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2695 else
2696 start_ccb->ccb_h.status = CAM_REQ_CMP;
2697
2698 break;
2699 }
2700 case XPT_SASYNC_CB:
2701 {
2702 struct ccb_setasync *csa;
2703 struct async_node *cur_entry;
2704 struct async_list *async_head;
2705 u_int32_t added;
2706
2707 csa = &start_ccb->csa;
2708 added = csa->event_enable;
2709 async_head = &csa->ccb_h.path->device->asyncs;
2710
2711 /*
2712 * If there is already an entry for us, simply
2713 * update it.
2714 */
2715 cur_entry = SLIST_FIRST(async_head);
2716 while (cur_entry != NULL) {
2717 if ((cur_entry->callback_arg == csa->callback_arg)
2718 && (cur_entry->callback == csa->callback))
2719 break;
2720 cur_entry = SLIST_NEXT(cur_entry, links);
2721 }
2722
2723 if (cur_entry != NULL) {
2724 /*
2725 * If the request has no flags set,
2726 * remove the entry.
2727 */
2728 added &= ~cur_entry->event_enable;
2729 if (csa->event_enable == 0) {
2730 SLIST_REMOVE(async_head, cur_entry,
2731 async_node, links);
2732 xpt_release_device(csa->ccb_h.path->device);
2733 free(cur_entry, M_CAMXPT);
2734 } else {
2735 cur_entry->event_enable = csa->event_enable;
2736 }
2737 csa->event_enable = added;
2738 } else {
2739 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2740 M_NOWAIT);
2741 if (cur_entry == NULL) {
2742 csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2743 break;
2744 }
2745 cur_entry->event_enable = csa->event_enable;
2746 cur_entry->callback_arg = csa->callback_arg;
2747 cur_entry->callback = csa->callback;
2748 SLIST_INSERT_HEAD(async_head, cur_entry, links);
2749 xpt_acquire_device(csa->ccb_h.path->device);
2750 }
2751 start_ccb->ccb_h.status = CAM_REQ_CMP;
2752 break;
2753 }
2754 case XPT_REL_SIMQ:
2755 {
2756 struct ccb_relsim *crs;
2757 struct cam_ed *dev;
2758
2759 crs = &start_ccb->crs;
2760 dev = crs->ccb_h.path->device;
2761 if (dev == NULL) {
2762
2763 crs->ccb_h.status = CAM_DEV_NOT_THERE;
2764 break;
2765 }
2766
2767 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2768
2769 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
2770 /* Don't ever go below one opening */
2771 if (crs->openings > 0) {
2772 xpt_dev_ccbq_resize(crs->ccb_h.path,
2773 crs->openings);
2774
2775 if (bootverbose) {
2776 xpt_print(crs->ccb_h.path,
2777 "tagged openings now %d\n",
2778 crs->openings);
2779 }
2780 }
2781 }
2782 }
2783
2784 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2785
2786 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2787
2788 /*
2789 * Just extend the old timeout and decrement
2790 * the freeze count so that a single timeout
2791 * is sufficient for releasing the queue.
2792 */
2793 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2794 callout_stop(&dev->callout);
2795 } else {
2796
2797 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2798 }
2799
2800 callout_reset(&dev->callout,
2801 (crs->release_timeout * hz) / 1000,
2802 xpt_release_devq_timeout, dev);
2803
2804 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2805
2806 }
2807
2808 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2809
2810 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2811 /*
2812 * Decrement the freeze count so that a single
2813 * completion is still sufficient to unfreeze
2814 * the queue.
2815 */
2816 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2817 } else {
2818
2819 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2820 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2821 }
2822 }
2823
2824 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2825
2826 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2827 || (dev->ccbq.dev_active == 0)) {
2828
2829 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2830 } else {
2831
2832 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2833 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2834 }
2835 }
2836
2837 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
2838 xpt_release_devq_rl(crs->ccb_h.path, /*runlevel*/
2839 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2840 crs->release_timeout : 0,
2841 /*count*/1, /*run_queue*/TRUE);
2842 }
2843 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0];
2844 start_ccb->ccb_h.status = CAM_REQ_CMP;
2845 break;
2846 }
2847 case XPT_DEBUG: {
2848#ifdef CAMDEBUG
2849#ifdef CAM_DEBUG_DELAY
2850 cam_debug_delay = CAM_DEBUG_DELAY;
2851#endif
2852 cam_dflags = start_ccb->cdbg.flags;
2853 if (cam_dpath != NULL) {
2854 xpt_free_path(cam_dpath);
2855 cam_dpath = NULL;
2856 }
2857
2858 if (cam_dflags != CAM_DEBUG_NONE) {
2859 if (xpt_create_path(&cam_dpath, xpt_periph,
2860 start_ccb->ccb_h.path_id,
2861 start_ccb->ccb_h.target_id,
2862 start_ccb->ccb_h.target_lun) !=
2863 CAM_REQ_CMP) {
2864 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2865 cam_dflags = CAM_DEBUG_NONE;
2866 } else {
2867 start_ccb->ccb_h.status = CAM_REQ_CMP;
2868 xpt_print(cam_dpath, "debugging flags now %x\n",
2869 cam_dflags);
2870 }
2871 } else {
2872 cam_dpath = NULL;
2873 start_ccb->ccb_h.status = CAM_REQ_CMP;
2874 }
2875#else /* !CAMDEBUG */
2876 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2877#endif /* CAMDEBUG */
2878 break;
2879 }
2880 case XPT_FREEZE_QUEUE:
2881 {
2882 struct ccb_relsim *crs = &start_ccb->crs;
2883
2884 xpt_freeze_devq_rl(crs->ccb_h.path, /*runlevel*/
2885 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2886 crs->release_timeout : 0, /*count*/1);
2887 start_ccb->ccb_h.status = CAM_REQ_CMP;
2888 break;
2889 }
2890 case XPT_NOOP:
2891 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2892 xpt_freeze_devq(start_ccb->ccb_h.path, 1);
2893 start_ccb->ccb_h.status = CAM_REQ_CMP;
2894 break;
2895 default:
2896 case XPT_SDEV_TYPE:
2897 case XPT_TERM_IO:
2898 case XPT_ENG_INQ:
2899 /* XXX Implement */
2900 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2901 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2902 xpt_done(start_ccb);
2903 }
2904 break;
2905 }
2906}
2907
2908void
2909xpt_polled_action(union ccb *start_ccb)
2910{
2911 u_int32_t timeout;
2912 struct cam_sim *sim;
2913 struct cam_devq *devq;
2914 struct cam_ed *dev;
2915
2916
2917 timeout = start_ccb->ccb_h.timeout * 10;
2918 sim = start_ccb->ccb_h.path->bus->sim;
2919 devq = sim->devq;
2920 dev = start_ccb->ccb_h.path->device;
2921
2922 mtx_assert(sim->mtx, MA_OWNED);
2923
2924 /*
2925 * Steal an opening so that no other queued requests
2926 * can get it before us while we simulate interrupts.
2927 */
2928 dev->ccbq.devq_openings--;
2929 dev->ccbq.dev_openings--;
2930
2931 while(((devq != NULL && devq->send_openings <= 0) ||
2932 dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
2933 DELAY(100);
2934 (*(sim->sim_poll))(sim);
2935 camisr_runqueue(&sim->sim_doneq);
2936 }
2937
2938 dev->ccbq.devq_openings++;
2939 dev->ccbq.dev_openings++;
2940
2941 if (timeout != 0) {
2942 xpt_action(start_ccb);
2943 while(--timeout > 0) {
2944 (*(sim->sim_poll))(sim);
2945 camisr_runqueue(&sim->sim_doneq);
2946 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
2947 != CAM_REQ_INPROG)
2948 break;
2949 DELAY(100);
2950 }
2951 if (timeout == 0) {
2952 /*
2953 * XXX Is it worth adding a sim_timeout entry
2954 * point so we can attempt recovery? If
2955 * this is only used for dumps, I don't think
2956 * it is.
2957 */
2958 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
2959 }
2960 } else {
2961 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2962 }
2963}
2964
2965/*
2966 * Schedule a peripheral driver to receive a ccb when it's
2967 * target device has space for more transactions.
2968 */
2969void
2970xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
2971{
2972 struct cam_ed *device;
2973 int runq = 0;
2974
2975 mtx_assert(perph->sim->mtx, MA_OWNED);
2976
2977 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
2978 device = perph->path->device;
2979 if (periph_is_queued(perph)) {
2980 /* Simply reorder based on new priority */
2981 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
2982 (" change priority to %d\n", new_priority));
2983 if (new_priority < perph->pinfo.priority) {
2984 camq_change_priority(&device->drvq,
2985 perph->pinfo.index,
2986 new_priority);
2987 runq = xpt_schedule_dev_allocq(perph->path->bus, device);
2988 }
2989 } else {
2990 /* New entry on the queue */
2991 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
2992 (" added periph to queue\n"));
2993 perph->pinfo.priority = new_priority;
2994 perph->pinfo.generation = ++device->drvq.generation;
2995 camq_insert(&device->drvq, &perph->pinfo);
2996 runq = xpt_schedule_dev_allocq(perph->path->bus, device);
2997 }
2998 if (runq != 0) {
2999 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3000 (" calling xpt_run_devq\n"));
3001 xpt_run_dev_allocq(perph->path->bus);
3002 }
3003}
3004
3005
3006/*
3007 * Schedule a device to run on a given queue.
3008 * If the device was inserted as a new entry on the queue,
3009 * return 1 meaning the device queue should be run. If we
3010 * were already queued, implying someone else has already
3011 * started the queue, return 0 so the caller doesn't attempt
3012 * to run the queue.
3013 */
3014int
3015xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3016 u_int32_t new_priority)
3017{
3018 int retval;
3019 u_int32_t old_priority;
3020
3021 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3022
3023 old_priority = pinfo->priority;
3024
3025 /*
3026 * Are we already queued?
3027 */
3028 if (pinfo->index != CAM_UNQUEUED_INDEX) {
3029 /* Simply reorder based on new priority */
3030 if (new_priority < old_priority) {
3031 camq_change_priority(queue, pinfo->index,
3032 new_priority);
3033 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3034 ("changed priority to %d\n",
3035 new_priority));
3036 retval = 1;
3037 } else
3038 retval = 0;
3039 } else {
3040 /* New entry on the queue */
3041 if (new_priority < old_priority)
3042 pinfo->priority = new_priority;
3043
3044 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3045 ("Inserting onto queue\n"));
3046 pinfo->generation = ++queue->generation;
3047 camq_insert(queue, pinfo);
3048 retval = 1;
3049 }
3050 return (retval);
3051}
3052
3053static void
3054xpt_run_dev_allocq(struct cam_eb *bus)
3055{
3056 struct cam_devq *devq;
3057
3058 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3059 devq = bus->sim->devq;
3060
3061 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3062 (" qfrozen_cnt == 0x%x, entries == %d, "
3063 "openings == %d, active == %d\n",
3064 devq->alloc_queue.qfrozen_cnt[0],
3065 devq->alloc_queue.entries,
3066 devq->alloc_openings,
3067 devq->alloc_active));
3068
3069 devq->alloc_queue.qfrozen_cnt[0]++;
3070 while ((devq->alloc_queue.entries > 0)
3071 && (devq->alloc_openings > 0)
3072 && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) {
3073 struct cam_ed_qinfo *qinfo;
3074 struct cam_ed *device;
3075 union ccb *work_ccb;
3076 struct cam_periph *drv;
3077 struct camq *drvq;
3078
3079 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3080 CAMQ_HEAD);
3081 device = qinfo->device;
3082 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3083 ("running device %p\n", device));
3084
3085 drvq = &device->drvq;
3086
3087#ifdef CAMDEBUG
3088 if (drvq->entries <= 0) {
3089 panic("xpt_run_dev_allocq: "
3090 "Device on queue without any work to do");
3091 }
3092#endif
3093 if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3094 devq->alloc_openings--;
3095 devq->alloc_active++;
3096 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3097 xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3098 drv->pinfo.priority);
3099 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3100 ("calling periph start\n"));
3101 drv->periph_start(drv, work_ccb);
3102 } else {
3103 /*
3104 * Malloc failure in alloc_ccb
3105 */
3106 /*
3107 * XXX add us to a list to be run from free_ccb
3108 * if we don't have any ccbs active on this
3109 * device queue otherwise we may never get run
3110 * again.
3111 */
3112 break;
3113 }
3114
3115 /* We may have more work. Attempt to reschedule. */
3116 xpt_schedule_dev_allocq(bus, device);
3117 }
3118 devq->alloc_queue.qfrozen_cnt[0]--;
3119}
3120
3121static void
3122xpt_run_dev_sendq(struct cam_eb *bus)
3123{
3124 struct cam_devq *devq;
3125
3126 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3127
3128 devq = bus->sim->devq;
3129
3130 devq->send_queue.qfrozen_cnt[0]++;
3131 while ((devq->send_queue.entries > 0)
3132 && (devq->send_openings > 0)
3133 && (devq->send_queue.qfrozen_cnt[0] <= 1)) {
3134 struct cam_ed_qinfo *qinfo;
3135 struct cam_ed *device;
3136 union ccb *work_ccb;
3137 struct cam_sim *sim;
3138
3139 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3140 CAMQ_HEAD);
3141 device = qinfo->device;
3142 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3143 ("running device %p\n", device));
3144
3145 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3146 if (work_ccb == NULL) {
3147 printf("device on run queue with no ccbs???\n");
3148 continue;
3149 }
3150
3151 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3152
3153 mtx_lock(&xsoftc.xpt_lock);
3154 if (xsoftc.num_highpower <= 0) {
3155 /*
3156 * We got a high power command, but we
3157 * don't have any available slots. Freeze
3158 * the device queue until we have a slot
3159 * available.
3160 */
3161 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3162 STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3163 &work_ccb->ccb_h,
3164 xpt_links.stqe);
3165
3166 mtx_unlock(&xsoftc.xpt_lock);
3167 continue;
3168 } else {
3169 /*
3170 * Consume a high power slot while
3171 * this ccb runs.
3172 */
3173 xsoftc.num_highpower--;
3174 }
3175 mtx_unlock(&xsoftc.xpt_lock);
3176 }
3177 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3178 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3179
3180 devq->send_openings--;
3181 devq->send_active++;
3182
3183 xpt_schedule_dev_sendq(bus, device);
3184
3185 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3186 /*
3187 * The client wants to freeze the queue
3188 * after this CCB is sent.
3189 */
3190 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3191 }
3192
3193 /* In Target mode, the peripheral driver knows best... */
3194 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3195 if ((device->inq_flags & SID_CmdQue) != 0
3196 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3197 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3198 else
3199 /*
3200 * Clear this in case of a retried CCB that
3201 * failed due to a rejected tag.
3202 */
3203 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3204 }
3205
3206 /*
3207 * Device queues can be shared among multiple sim instances
3208 * that reside on different busses. Use the SIM in the queue
3209 * CCB's path, rather than the one in the bus that was passed
3210 * into this function.
3211 */
3212 sim = work_ccb->ccb_h.path->bus->sim;
3213 (*(sim->sim_action))(sim, work_ccb);
3214 }
3215 devq->send_queue.qfrozen_cnt[0]--;
3216}
3217
3218/*
3219 * This function merges stuff from the slave ccb into the master ccb, while
3220 * keeping important fields in the master ccb constant.
3221 */
3222void
3223xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3224{
3225
3226 /*
3227 * Pull fields that are valid for peripheral drivers to set
3228 * into the master CCB along with the CCB "payload".
3229 */
3230 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3231 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3232 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3233 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3234 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3235 sizeof(union ccb) - sizeof(struct ccb_hdr));
3236}
3237
3238void
3239xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3240{
3241
3242 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3243 ccb_h->pinfo.priority = priority;
3244 ccb_h->path = path;
3245 ccb_h->path_id = path->bus->path_id;
3246 if (path->target)
3247 ccb_h->target_id = path->target->target_id;
3248 else
3249 ccb_h->target_id = CAM_TARGET_WILDCARD;
3250 if (path->device) {
3251 ccb_h->target_lun = path->device->lun_id;
3252 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3253 } else {
3254 ccb_h->target_lun = CAM_TARGET_WILDCARD;
3255 }
3256 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3257 ccb_h->flags = 0;
3258}
3259
3260/* Path manipulation functions */
3261cam_status
3262xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3263 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3264{
3265 struct cam_path *path;
3266 cam_status status;
3267
3268 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3269
3270 if (path == NULL) {
3271 status = CAM_RESRC_UNAVAIL;
3272 return(status);
3273 }
3274 status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3275 if (status != CAM_REQ_CMP) {
3276 free(path, M_CAMXPT);
3277 path = NULL;
3278 }
3279 *new_path_ptr = path;
3280 return (status);
3281}
3282
3283cam_status
3284xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3285 struct cam_periph *periph, path_id_t path_id,
3286 target_id_t target_id, lun_id_t lun_id)
3287{
3288 struct cam_path *path;
3289 struct cam_eb *bus = NULL;
3290 cam_status status;
3291 int need_unlock = 0;
3292
3293 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3294
3295 if (path_id != CAM_BUS_WILDCARD) {
3296 bus = xpt_find_bus(path_id);
3297 if (bus != NULL) {
3298 need_unlock = 1;
3299 CAM_SIM_LOCK(bus->sim);
3300 }
3301 }
3302 status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3303 if (need_unlock)
3304 CAM_SIM_UNLOCK(bus->sim);
3305 if (status != CAM_REQ_CMP) {
3306 free(path, M_CAMXPT);
3307 path = NULL;
3308 }
3309 *new_path_ptr = path;
3310 return (status);
3311}
3312
3313cam_status
3314xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3315 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3316{
3317 struct cam_eb *bus;
3318 struct cam_et *target;
3319 struct cam_ed *device;
3320 cam_status status;
3321
3322 status = CAM_REQ_CMP; /* Completed without error */
3323 target = NULL; /* Wildcarded */
3324 device = NULL; /* Wildcarded */
3325
3326 /*
3327 * We will potentially modify the EDT, so block interrupts
3328 * that may attempt to create cam paths.
3329 */
3330 bus = xpt_find_bus(path_id);
3331 if (bus == NULL) {
3332 status = CAM_PATH_INVALID;
3333 } else {
3334 target = xpt_find_target(bus, target_id);
3335 if (target == NULL) {
3336 /* Create one */
3337 struct cam_et *new_target;
3338
3339 new_target = xpt_alloc_target(bus, target_id);
3340 if (new_target == NULL) {
3341 status = CAM_RESRC_UNAVAIL;
3342 } else {
3343 target = new_target;
3344 }
3345 }
3346 if (target != NULL) {
3347 device = xpt_find_device(target, lun_id);
3348 if (device == NULL) {
3349 /* Create one */
3350 struct cam_ed *new_device;
3351
3352 new_device =
3353 (*(bus->xport->alloc_device))(bus,
3354 target,
3355 lun_id);
3356 if (new_device == NULL) {
3357 status = CAM_RESRC_UNAVAIL;
3358 } else {
3359 device = new_device;
3360 }
3361 }
3362 }
3363 }
3364
3365 /*
3366 * Only touch the user's data if we are successful.
3367 */
3368 if (status == CAM_REQ_CMP) {
3369 new_path->periph = perph;
3370 new_path->bus = bus;
3371 new_path->target = target;
3372 new_path->device = device;
3373 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3374 } else {
3375 if (device != NULL)
3376 xpt_release_device(device);
3377 if (target != NULL)
3378 xpt_release_target(target);
3379 if (bus != NULL)
3380 xpt_release_bus(bus);
3381 }
3382 return (status);
3383}
3384
3385void
3386xpt_release_path(struct cam_path *path)
3387{
3388 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3389 if (path->device != NULL) {
3390 xpt_release_device(path->device);
3391 path->device = NULL;
3392 }
3393 if (path->target != NULL) {
3394 xpt_release_target(path->target);
3395 path->target = NULL;
3396 }
3397 if (path->bus != NULL) {
3398 xpt_release_bus(path->bus);
3399 path->bus = NULL;
3400 }
3401}
3402
3403void
3404xpt_free_path(struct cam_path *path)
3405{
3406
3407 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3408 xpt_release_path(path);
3409 free(path, M_CAMXPT);
3410}
3411
3412
3413/*
3414 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3415 * in path1, 2 for match with wildcards in path2.
3416 */
3417int
3418xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3419{
3420 int retval = 0;
3421
3422 if (path1->bus != path2->bus) {
3423 if (path1->bus->path_id == CAM_BUS_WILDCARD)
3424 retval = 1;
3425 else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3426 retval = 2;
3427 else
3428 return (-1);
3429 }
3430 if (path1->target != path2->target) {
3431 if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3432 if (retval == 0)
3433 retval = 1;
3434 } else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3435 retval = 2;
3436 else
3437 return (-1);
3438 }
3439 if (path1->device != path2->device) {
3440 if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3441 if (retval == 0)
3442 retval = 1;
3443 } else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3444 retval = 2;
3445 else
3446 return (-1);
3447 }
3448 return (retval);
3449}
3450
3451void
3452xpt_print_path(struct cam_path *path)
3453{
3454
3455 if (path == NULL)
3456 printf("(nopath): ");
3457 else {
3458 if (path->periph != NULL)
3459 printf("(%s%d:", path->periph->periph_name,
3460 path->periph->unit_number);
3461 else
3462 printf("(noperiph:");
3463
3464 if (path->bus != NULL)
3465 printf("%s%d:%d:", path->bus->sim->sim_name,
3466 path->bus->sim->unit_number,
3467 path->bus->sim->bus_id);
3468 else
3469 printf("nobus:");
3470
3471 if (path->target != NULL)
3472 printf("%d:", path->target->target_id);
3473 else
3474 printf("X:");
3475
3476 if (path->device != NULL)
3477 printf("%d): ", path->device->lun_id);
3478 else
3479 printf("X): ");
3480 }
3481}
3482
3483void
3484xpt_print(struct cam_path *path, const char *fmt, ...)
3485{
3486 va_list ap;
3487 xpt_print_path(path);
3488 va_start(ap, fmt);
3489 vprintf(fmt, ap);
3490 va_end(ap);
3491}
3492
3493int
3494xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3495{
3496 struct sbuf sb;
3497
3498#ifdef INVARIANTS
3499 if (path != NULL && path->bus != NULL)
3500 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3501#endif
3502
3503 sbuf_new(&sb, str, str_len, 0);
3504
3505 if (path == NULL)
3506 sbuf_printf(&sb, "(nopath): ");
3507 else {
3508 if (path->periph != NULL)
3509 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3510 path->periph->unit_number);
3511 else
3512 sbuf_printf(&sb, "(noperiph:");
3513
3514 if (path->bus != NULL)
3515 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3516 path->bus->sim->unit_number,
3517 path->bus->sim->bus_id);
3518 else
3519 sbuf_printf(&sb, "nobus:");
3520
3521 if (path->target != NULL)
3522 sbuf_printf(&sb, "%d:", path->target->target_id);
3523 else
3524 sbuf_printf(&sb, "X:");
3525
3526 if (path->device != NULL)
3527 sbuf_printf(&sb, "%d): ", path->device->lun_id);
3528 else
3529 sbuf_printf(&sb, "X): ");
3530 }
3531 sbuf_finish(&sb);
3532
3533 return(sbuf_len(&sb));
3534}
3535
3536path_id_t
3537xpt_path_path_id(struct cam_path *path)
3538{
3539 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3540
3541 return(path->bus->path_id);
3542}
3543
3544target_id_t
3545xpt_path_target_id(struct cam_path *path)
3546{
3547 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3548
3549 if (path->target != NULL)
3550 return (path->target->target_id);
3551 else
3552 return (CAM_TARGET_WILDCARD);
3553}
3554
3555lun_id_t
3556xpt_path_lun_id(struct cam_path *path)
3557{
3558 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3559
3560 if (path->device != NULL)
3561 return (path->device->lun_id);
3562 else
3563 return (CAM_LUN_WILDCARD);
3564}
3565
3566struct cam_sim *
3567xpt_path_sim(struct cam_path *path)
3568{
3569
3570 return (path->bus->sim);
3571}
3572
3573struct cam_periph*
3574xpt_path_periph(struct cam_path *path)
3575{
3576 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3577
3578 return (path->periph);
3579}
3580
3581/*
3582 * Release a CAM control block for the caller. Remit the cost of the structure
3583 * to the device referenced by the path. If the this device had no 'credits'
3584 * and peripheral drivers have registered async callbacks for this notification
3585 * call them now.
3586 */
3587void
3588xpt_release_ccb(union ccb *free_ccb)
3589{
3590 struct cam_path *path;
3591 struct cam_ed *device;
3592 struct cam_eb *bus;
3593 struct cam_sim *sim;
3594
3595 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3596 path = free_ccb->ccb_h.path;
3597 device = path->device;
3598 bus = path->bus;
3599 sim = bus->sim;
3600
3601 mtx_assert(sim->mtx, MA_OWNED);
3602
3603 cam_ccbq_release_opening(&device->ccbq);
3604 if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) {
3605 device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
3606 cam_ccbq_resize(&device->ccbq,
3607 device->ccbq.dev_openings + device->ccbq.dev_active);
3608 }
3609 if (sim->ccb_count > sim->max_ccbs) {
3610 xpt_free_ccb(free_ccb);
3611 sim->ccb_count--;
3612 } else {
3613 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3614 xpt_links.sle);
3615 }
3616 if (sim->devq == NULL) {
3617 return;
3618 }
3619 sim->devq->alloc_openings++;
3620 sim->devq->alloc_active--;
3621 if (device_is_alloc_queued(device) == 0)
3622 xpt_schedule_dev_allocq(bus, device);
3623 xpt_run_dev_allocq(bus);
3624}
3625
3626/* Functions accessed by SIM drivers */
3627
3628static struct xpt_xport xport_default = {
3629 .alloc_device = xpt_alloc_device_default,
3630 .action = xpt_action_default,
3631 .async = xpt_dev_async_default,
3632};
3633
3634/*
3635 * A sim structure, listing the SIM entry points and instance
3636 * identification info is passed to xpt_bus_register to hook the SIM
3637 * into the CAM framework. xpt_bus_register creates a cam_eb entry
3638 * for this new bus and places it in the array of busses and assigns
3639 * it a path_id. The path_id may be influenced by "hard wiring"
3640 * information specified by the user. Once interrupt services are
3641 * available, the bus will be probed.
3642 */
3643int32_t
3644xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3645{
3646 struct cam_eb *new_bus;
3647 struct cam_eb *old_bus;
3648 struct ccb_pathinq cpi;
3649 struct cam_path *path;
3650 cam_status status;
3651
3652 mtx_assert(sim->mtx, MA_OWNED);
3653
3654 sim->bus_id = bus;
3655 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3656 M_CAMXPT, M_NOWAIT);
3657 if (new_bus == NULL) {
3658 /* Couldn't satisfy request */
3659 return (CAM_RESRC_UNAVAIL);
3660 }
3661 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3662 if (path == NULL) {
3663 free(new_bus, M_CAMXPT);
3664 return (CAM_RESRC_UNAVAIL);
3665 }
3666
3667 if (strcmp(sim->sim_name, "xpt") != 0) {
3668 sim->path_id =
3669 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3670 }
3671
3672 TAILQ_INIT(&new_bus->et_entries);
3673 new_bus->path_id = sim->path_id;
3674 cam_sim_hold(sim);
3675 new_bus->sim = sim;
3676 timevalclear(&new_bus->last_reset);
3677 new_bus->flags = 0;
3678 new_bus->refcount = 1; /* Held until a bus_deregister event */
3679 new_bus->generation = 0;
3680
3681 mtx_lock(&xsoftc.xpt_topo_lock);
3682 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3683 while (old_bus != NULL
3684 && old_bus->path_id < new_bus->path_id)
3685 old_bus = TAILQ_NEXT(old_bus, links);
3686 if (old_bus != NULL)
3687 TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3688 else
3689 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3690 xsoftc.bus_generation++;
3691 mtx_unlock(&xsoftc.xpt_topo_lock);
3692
3693 /*
3694 * Set a default transport so that a PATH_INQ can be issued to
3695 * the SIM. This will then allow for probing and attaching of
3696 * a more appropriate transport.
3697 */
3698 new_bus->xport = &xport_default;
3699
3700 status = xpt_compile_path(path, /*periph*/NULL, sim->path_id,
3701 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3702 if (status != CAM_REQ_CMP)
3703 printf("xpt_compile_path returned %d\n", status);
3704
3705 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3706 cpi.ccb_h.func_code = XPT_PATH_INQ;
3707 xpt_action((union ccb *)&cpi);
3708
3709 if (cpi.ccb_h.status == CAM_REQ_CMP) {
3710 switch (cpi.transport) {
3711 case XPORT_SPI:
3712 case XPORT_SAS:
3713 case XPORT_FC:
3714 case XPORT_USB:
3715 case XPORT_ISCSI:
3716 case XPORT_PPB:
3717 new_bus->xport = scsi_get_xport();
3718 break;
3719 case XPORT_ATA:
3720 case XPORT_SATA:
3721 new_bus->xport = ata_get_xport();
3722 break;
3723 default:
3724 new_bus->xport = &xport_default;
3725 break;
3726 }
3727 }
3728
3729 /* Notify interested parties */
3730 if (sim->path_id != CAM_XPT_PATH_ID) {
3731 union ccb *scan_ccb;
3732
3733 xpt_async(AC_PATH_REGISTERED, path, &cpi);
3734 /* Initiate bus rescan. */
3735 scan_ccb = xpt_alloc_ccb_nowait();
3736 scan_ccb->ccb_h.path = path;
3737 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3738 scan_ccb->crcn.flags = 0;
3739 xpt_rescan(scan_ccb);
3740 } else
3741 xpt_free_path(path);
3742 return (CAM_SUCCESS);
3743}
3744
3745int32_t
3746xpt_bus_deregister(path_id_t pathid)
3747{
3748 struct cam_path bus_path;
3749 cam_status status;
3750
3751 status = xpt_compile_path(&bus_path, NULL, pathid,
3752 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3753 if (status != CAM_REQ_CMP)
3754 return (status);
3755
3756 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3757 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3758
3759 /* Release the reference count held while registered. */
3760 xpt_release_bus(bus_path.bus);
3761 xpt_release_path(&bus_path);
3762
3763 return (CAM_REQ_CMP);
3764}
3765
3766static path_id_t
3767xptnextfreepathid(void)
3768{
3769 struct cam_eb *bus;
3770 path_id_t pathid;
3771 const char *strval;
3772
3773 pathid = 0;
3774 mtx_lock(&xsoftc.xpt_topo_lock);
3775 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3776retry:
3777 /* Find an unoccupied pathid */
3778 while (bus != NULL && bus->path_id <= pathid) {
3779 if (bus->path_id == pathid)
3780 pathid++;
3781 bus = TAILQ_NEXT(bus, links);
3782 }
3783 mtx_unlock(&xsoftc.xpt_topo_lock);
3784
3785 /*
3786 * Ensure that this pathid is not reserved for
3787 * a bus that may be registered in the future.
3788 */
3789 if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3790 ++pathid;
3791 /* Start the search over */
3792 mtx_lock(&xsoftc.xpt_topo_lock);
3793 goto retry;
3794 }
3795 return (pathid);
3796}
3797
3798static path_id_t
3799xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3800{
3801 path_id_t pathid;
3802 int i, dunit, val;
3803 char buf[32];
3804 const char *dname;
3805
3806 pathid = CAM_XPT_PATH_ID;
3807 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3808 i = 0;
3809 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3810 if (strcmp(dname, "scbus")) {
3811 /* Avoid a bit of foot shooting. */
3812 continue;
3813 }
3814 if (dunit < 0) /* unwired?! */
3815 continue;
3816 if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
3817 if (sim_bus == val) {
3818 pathid = dunit;
3819 break;
3820 }
3821 } else if (sim_bus == 0) {
3822 /* Unspecified matches bus 0 */
3823 pathid = dunit;
3824 break;
3825 } else {
3826 printf("Ambiguous scbus configuration for %s%d "
3827 "bus %d, cannot wire down. The kernel "
3828 "config entry for scbus%d should "
3829 "specify a controller bus.\n"
3830 "Scbus will be assigned dynamically.\n",
3831 sim_name, sim_unit, sim_bus, dunit);
3832 break;
3833 }
3834 }
3835
3836 if (pathid == CAM_XPT_PATH_ID)
3837 pathid = xptnextfreepathid();
3838 return (pathid);
3839}
3840
3841void
3842xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
3843{
3844 struct cam_eb *bus;
3845 struct cam_et *target, *next_target;
3846 struct cam_ed *device, *next_device;
3847
3848 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3849
3850 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
3851
3852 /*
3853 * Most async events come from a CAM interrupt context. In
3854 * a few cases, the error recovery code at the peripheral layer,
3855 * which may run from our SWI or a process context, may signal
3856 * deferred events with a call to xpt_async.
3857 */
3858
3859 bus = path->bus;
3860
3861 if (async_code == AC_BUS_RESET) {
3862 /* Update our notion of when the last reset occurred */
3863 microtime(&bus->last_reset);
3864 }
3865
3866 for (target = TAILQ_FIRST(&bus->et_entries);
3867 target != NULL;
3868 target = next_target) {
3869
3870 next_target = TAILQ_NEXT(target, links);
3871
3872 if (path->target != target
3873 && path->target->target_id != CAM_TARGET_WILDCARD
3874 && target->target_id != CAM_TARGET_WILDCARD)
3875 continue;
3876
3877 if (async_code == AC_SENT_BDR) {
3878 /* Update our notion of when the last reset occurred */
3879 microtime(&path->target->last_reset);
3880 }
3881
3882 for (device = TAILQ_FIRST(&target->ed_entries);
3883 device != NULL;
3884 device = next_device) {
3885
3886 next_device = TAILQ_NEXT(device, links);
3887
3888 if (path->device != device
3889 && path->device->lun_id != CAM_LUN_WILDCARD
3890 && device->lun_id != CAM_LUN_WILDCARD)
3891 continue;
3892 /*
3893 * The async callback could free the device.
3894 * If it is a broadcast async, it doesn't hold
3895 * device reference, so take our own reference.
3896 */
3897 xpt_acquire_device(device);
3898 (*(bus->xport->async))(async_code, bus,
3899 target, device,
3900 async_arg);
3901
3902 xpt_async_bcast(&device->asyncs, async_code,
3903 path, async_arg);
3904 xpt_release_device(device);
3905 }
3906 }
3907
3908 /*
3909 * If this wasn't a fully wildcarded async, tell all
3910 * clients that want all async events.
3911 */
3912 if (bus != xpt_periph->path->bus)
3913 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
3914 path, async_arg);
3915}
3916
3917static void
3918xpt_async_bcast(struct async_list *async_head,
3919 u_int32_t async_code,
3920 struct cam_path *path, void *async_arg)
3921{
3922 struct async_node *cur_entry;
3923
3924 cur_entry = SLIST_FIRST(async_head);
3925 while (cur_entry != NULL) {
3926 struct async_node *next_entry;
3927 /*
3928 * Grab the next list entry before we call the current
3929 * entry's callback. This is because the callback function
3930 * can delete its async callback entry.
3931 */
3932 next_entry = SLIST_NEXT(cur_entry, links);
3933 if ((cur_entry->event_enable & async_code) != 0)
3934 cur_entry->callback(cur_entry->callback_arg,
3935 async_code, path,
3936 async_arg);
3937 cur_entry = next_entry;
3938 }
3939}
3940
3941static void
3942xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
3943 struct cam_et *target, struct cam_ed *device,
3944 void *async_arg)
3945{
3946 printf("%s called\n", __func__);
3947}
3948
3949u_int32_t
3950xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count)
3951{
3952 struct cam_ed *dev = path->device;
3953
3954 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3955 dev->sim->devq->alloc_openings +=
3956 cam_ccbq_freeze(&dev->ccbq, rl, count);
3957 /* Remove frozen device from allocq. */
3958 if (device_is_alloc_queued(dev) &&
3959 cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
3960 CAMQ_GET_PRIO(&dev->drvq)))) {
3961 camq_remove(&dev->sim->devq->alloc_queue,
3962 dev->alloc_ccb_entry.pinfo.index);
3963 }
3964 /* Remove frozen device from sendq. */
3965 if (device_is_send_queued(dev) &&
3966 cam_ccbq_frozen_top(&dev->ccbq)) {
3967 camq_remove(&dev->sim->devq->send_queue,
3968 dev->send_ccb_entry.pinfo.index);
3969 }
3970 return (dev->ccbq.queue.qfrozen_cnt[rl]);
3971}
3972
3973u_int32_t
3974xpt_freeze_devq(struct cam_path *path, u_int count)
3975{
3976
3977 return (xpt_freeze_devq_rl(path, 0, count));
3978}
3979
3980u_int32_t
3981xpt_freeze_simq(struct cam_sim *sim, u_int count)
3982{
3983
3984 mtx_assert(sim->mtx, MA_OWNED);
3985 sim->devq->send_queue.qfrozen_cnt[0] += count;
3986 return (sim->devq->send_queue.qfrozen_cnt[0]);
3987}
3988
3989static void
3990xpt_release_devq_timeout(void *arg)
3991{
3992 struct cam_ed *device;
3993
3994 device = (struct cam_ed *)arg;
3995
3996 xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE);
3997}
3998
3999void
4000xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4001{
4002 mtx_assert(path->bus->sim->mtx, MA_OWNED);
4003
4004 xpt_release_devq_device(path->device, /*rl*/0, count, run_queue);
4005}
4006
4007void
4008xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue)
4009{
4010 mtx_assert(path->bus->sim->mtx, MA_OWNED);
4011
4012 xpt_release_devq_device(path->device, rl, count, run_queue);
4013}
4014
4015static void
4016xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue)
4017{
4018
4019 if (count > dev->ccbq.queue.qfrozen_cnt[rl]) {
4020#ifdef INVARIANTS
4021 printf("xpt_release_devq(%d): requested %u > present %u\n",
4022 rl, count, dev->ccbq.queue.qfrozen_cnt[rl]);
4023#endif
4024 count = dev->ccbq.queue.qfrozen_cnt[rl];
4025 }
4026 dev->sim->devq->alloc_openings -=
4027 cam_ccbq_release(&dev->ccbq, rl, count);
4028 if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
4029 CAMQ_GET_PRIO(&dev->drvq))) == 0) {
4030 if (xpt_schedule_dev_allocq(dev->target->bus, dev))
4031 xpt_run_dev_allocq(dev->target->bus);
4032 }
4033 if (cam_ccbq_frozen_top(&dev->ccbq) == 0) {
4034 /*
4035 * No longer need to wait for a successful
4036 * command completion.
4037 */
4038 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4039 /*
4040 * Remove any timeouts that might be scheduled
4041 * to release this queue.
4042 */
4043 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4044 callout_stop(&dev->callout);
4045 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4046 }
4047 if (run_queue == 0)
4048 return;
4049 /*
4050 * Now that we are unfrozen schedule the
4051 * device so any pending transactions are
4052 * run.
4053 */
4054 if (xpt_schedule_dev_sendq(dev->target->bus, dev))
4055 xpt_run_dev_sendq(dev->target->bus);
4056 }
4057}
4058
4059void
4060xpt_release_simq(struct cam_sim *sim, int run_queue)
4061{
4062 struct camq *sendq;
4063
4064 mtx_assert(sim->mtx, MA_OWNED);
4065 sendq = &(sim->devq->send_queue);
4066 if (sendq->qfrozen_cnt[0] <= 0) {
4067#ifdef INVARIANTS
4068 printf("xpt_release_simq: requested 1 > present %u\n",
4069 sendq->qfrozen_cnt[0]);
4070#endif
4071 } else
4072 sendq->qfrozen_cnt[0]--;
4073 if (sendq->qfrozen_cnt[0] == 0) {
4074 /*
4075 * If there is a timeout scheduled to release this
4076 * sim queue, remove it. The queue frozen count is
4077 * already at 0.
4078 */
4079 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4080 callout_stop(&sim->callout);
4081 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4082 }
4083 if (run_queue) {
4084 struct cam_eb *bus;
4085
4086 /*
4087 * Now that we are unfrozen run the send queue.
4088 */
4089 bus = xpt_find_bus(sim->path_id);
4090 xpt_run_dev_sendq(bus);
4091 xpt_release_bus(bus);
4092 }
4093 }
4094}
4095
4096/*
4097 * XXX Appears to be unused.
4098 */
4099static void
4100xpt_release_simq_timeout(void *arg)
4101{
4102 struct cam_sim *sim;
4103
4104 sim = (struct cam_sim *)arg;
4105 xpt_release_simq(sim, /* run_queue */ TRUE);
4106}
4107
4108void
4109xpt_done(union ccb *done_ccb)
4110{
4111 struct cam_sim *sim;
4112 int first;
4113
4114 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4115 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4116 /*
4117 * Queue up the request for handling by our SWI handler
4118 * any of the "non-immediate" type of ccbs.
4119 */
4120 sim = done_ccb->ccb_h.path->bus->sim;
4121 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4122 sim_links.tqe);
4123 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4124 if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4125 mtx_lock(&cam_simq_lock);
4126 first = TAILQ_EMPTY(&cam_simq);
4127 TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4128 mtx_unlock(&cam_simq_lock);
4129 sim->flags |= CAM_SIM_ON_DONEQ;
4130 if (first)
4131 swi_sched(cambio_ih, 0);
4132 }
4133 }
4134}
4135
4136union ccb *
4137xpt_alloc_ccb()
4138{
4139 union ccb *new_ccb;
4140
4141 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK);
4142 return (new_ccb);
4143}
4144
4145union ccb *
4146xpt_alloc_ccb_nowait()
4147{
4148 union ccb *new_ccb;
4149
4150 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT);
4151 return (new_ccb);
4152}
4153
4154void
4155xpt_free_ccb(union ccb *free_ccb)
4156{
4157 free(free_ccb, M_CAMXPT);
4158}
4159
4160
4161
4162/* Private XPT functions */
4163
4164/*
4165 * Get a CAM control block for the caller. Charge the structure to the device
4166 * referenced by the path. If the this device has no 'credits' then the
4167 * device already has the maximum number of outstanding operations under way
4168 * and we return NULL. If we don't have sufficient resources to allocate more
4169 * ccbs, we also return NULL.
4170 */
4171static union ccb *
4172xpt_get_ccb(struct cam_ed *device)
4173{
4174 union ccb *new_ccb;
4175 struct cam_sim *sim;
4176
4177 sim = device->sim;
4178 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4179 new_ccb = xpt_alloc_ccb_nowait();
4180 if (new_ccb == NULL) {
4181 return (NULL);
4182 }
4183 if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4184 callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4185 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4186 xpt_links.sle);
4187 sim->ccb_count++;
4188 }
4189 cam_ccbq_take_opening(&device->ccbq);
4190 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4191 return (new_ccb);
4192}
4193
4194static void
4195xpt_release_bus(struct cam_eb *bus)
4196{
4197
4198 if ((--bus->refcount == 0)
4199 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4200 mtx_lock(&xsoftc.xpt_topo_lock);
4201 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4202 xsoftc.bus_generation++;
4203 mtx_unlock(&xsoftc.xpt_topo_lock);
4204 cam_sim_release(bus->sim);
4205 free(bus, M_CAMXPT);
4206 }
4207}
4208
4209static struct cam_et *
4210xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4211{
4212 struct cam_et *target;
4213
4214 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT);
4215 if (target != NULL) {
4216 struct cam_et *cur_target;
4217
4218 TAILQ_INIT(&target->ed_entries);
4219 target->bus = bus;
4220 target->target_id = target_id;
4221 target->refcount = 1;
4222 target->generation = 0;
4223 target->luns = NULL;
4224 timevalclear(&target->last_reset);
4225 /*
4226 * Hold a reference to our parent bus so it
4227 * will not go away before we do.
4228 */
4229 bus->refcount++;
4230
4231 /* Insertion sort into our bus's target list */
4232 cur_target = TAILQ_FIRST(&bus->et_entries);
4233 while (cur_target != NULL && cur_target->target_id < target_id)
4234 cur_target = TAILQ_NEXT(cur_target, links);
4235
4236 if (cur_target != NULL) {
4237 TAILQ_INSERT_BEFORE(cur_target, target, links);
4238 } else {
4239 TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4240 }
4241 bus->generation++;
4242 }
4243 return (target);
4244}
4245
4246static void
4247xpt_release_target(struct cam_et *target)
4248{
4249
4250 if ((--target->refcount == 0)
4251 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4252 TAILQ_REMOVE(&target->bus->et_entries, target, links);
4253 target->bus->generation++;
4254 xpt_release_bus(target->bus);
4255 if (target->luns)
4256 free(target->luns, M_CAMXPT);
4257 free(target, M_CAMXPT);
4258 }
4259}
4260
4261static struct cam_ed *
4262xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4263 lun_id_t lun_id)
4264{
4265 struct cam_ed *device, *cur_device;
4266
4267 device = xpt_alloc_device(bus, target, lun_id);
4268 if (device == NULL)
4269 return (NULL);
4270
4271 device->mintags = 1;
4272 device->maxtags = 1;
4273 bus->sim->max_ccbs += device->ccbq.devq_openings;
4274 cur_device = TAILQ_FIRST(&target->ed_entries);
4275 while (cur_device != NULL && cur_device->lun_id < lun_id)
4276 cur_device = TAILQ_NEXT(cur_device, links);
4277 if (cur_device != NULL) {
4278 TAILQ_INSERT_BEFORE(cur_device, device, links);
4279 } else {
4280 TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4281 }
4282 target->generation++;
4283
4284 return (device);
4285}
4286
4287struct cam_ed *
4288xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4289{
4290 struct cam_ed *device;
4291 struct cam_devq *devq;
4292 cam_status status;
4293
4294 /* Make space for us in the device queue on our bus */
4295 devq = bus->sim->devq;
4296 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4297
4298 if (status != CAM_REQ_CMP) {
4299 device = NULL;
4300 } else {
4301 device = (struct cam_ed *)malloc(sizeof(*device),
4302 M_CAMXPT, M_NOWAIT);
4303 }
4304
4305 if (device != NULL) {
4306 cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4307 device->alloc_ccb_entry.device = device;
4308 cam_init_pinfo(&device->send_ccb_entry.pinfo);
4309 device->send_ccb_entry.device = device;
4310 device->target = target;
4311 device->lun_id = lun_id;
4312 device->sim = bus->sim;
4313 /* Initialize our queues */
4314 if (camq_init(&device->drvq, 0) != 0) {
4315 free(device, M_CAMXPT);
4316 return (NULL);
4317 }
4318 if (cam_ccbq_init(&device->ccbq,
4319 bus->sim->max_dev_openings) != 0) {
4320 camq_fini(&device->drvq);
4321 free(device, M_CAMXPT);
4322 return (NULL);
4323 }
4324 SLIST_INIT(&device->asyncs);
4325 SLIST_INIT(&device->periphs);
4326 device->generation = 0;
4327 device->owner = NULL;
4328 device->flags = CAM_DEV_UNCONFIGURED;
4329 device->tag_delay_count = 0;
4330 device->tag_saved_openings = 0;
4331 device->refcount = 1;
4332 callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4333
4334 /*
4335 * Hold a reference to our parent target so it
4336 * will not go away before we do.
4337 */
4338 target->refcount++;
4339
4340 }
4341 return (device);
4342}
4343
4344void
4345xpt_acquire_device(struct cam_ed *device)
4346{
4347
4348 device->refcount++;
4349}
4350
4351void
4352xpt_release_device(struct cam_ed *device)
4353{
4354
4355 if (--device->refcount == 0) {
4356 struct cam_devq *devq;
4357
4358 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4359 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4360 panic("Removing device while still queued for ccbs");
4361
4362 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4363 callout_stop(&device->callout);
4364
4365 TAILQ_REMOVE(&device->target->ed_entries, device,links);
4366 device->target->generation++;
4367 device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4368 /* Release our slot in the devq */
4369 devq = device->target->bus->sim->devq;
4370 cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4371 camq_fini(&device->drvq);
4372 cam_ccbq_fini(&device->ccbq);
4373 xpt_release_target(device->target);
4374 free(device, M_CAMXPT);
4375 }
4376}
4377
4378u_int32_t
4379xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4380{
4381 int diff;
4382 int result;
4383 struct cam_ed *dev;
4384
4385 dev = path->device;
4386
4387 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4388 result = cam_ccbq_resize(&dev->ccbq, newopenings);
4389 if (result == CAM_REQ_CMP && (diff < 0)) {
4390 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4391 }
4392 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4393 || (dev->inq_flags & SID_CmdQue) != 0)
4394 dev->tag_saved_openings = newopenings;
4395 /* Adjust the global limit */
4396 dev->sim->max_ccbs += diff;
4397 return (result);
4398}
4399
4400static struct cam_eb *
4401xpt_find_bus(path_id_t path_id)
4402{
4403 struct cam_eb *bus;
4404
4405 mtx_lock(&xsoftc.xpt_topo_lock);
4406 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4407 bus != NULL;
4408 bus = TAILQ_NEXT(bus, links)) {
4409 if (bus->path_id == path_id) {
4410 bus->refcount++;
4411 break;
4412 }
4413 }
4414 mtx_unlock(&xsoftc.xpt_topo_lock);
4415 return (bus);
4416}
4417
4418static struct cam_et *
4419xpt_find_target(struct cam_eb *bus, target_id_t target_id)
4420{
4421 struct cam_et *target;
4422
4423 for (target = TAILQ_FIRST(&bus->et_entries);
4424 target != NULL;
4425 target = TAILQ_NEXT(target, links)) {
4426 if (target->target_id == target_id) {
4427 target->refcount++;
4428 break;
4429 }
4430 }
4431 return (target);
4432}
4433
4434static struct cam_ed *
4435xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4436{
4437 struct cam_ed *device;
4438
4439 for (device = TAILQ_FIRST(&target->ed_entries);
4440 device != NULL;
4441 device = TAILQ_NEXT(device, links)) {
4442 if (device->lun_id == lun_id) {
4443 device->refcount++;
4444 break;
4445 }
4446 }
4447 return (device);
4448}
4449
4450void
4451xpt_start_tags(struct cam_path *path)
4452{
4453 struct ccb_relsim crs;
4454 struct cam_ed *device;
4455 struct cam_sim *sim;
4456 int newopenings;
4457
4458 device = path->device;
4459 sim = path->bus->sim;
4460 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4461 xpt_freeze_devq(path, /*count*/1);
4462 device->inq_flags |= SID_CmdQue;
4463 if (device->tag_saved_openings != 0)
4464 newopenings = device->tag_saved_openings;
4465 else
4466 newopenings = min(device->maxtags,
4467 sim->max_tagged_dev_openings);
4468 xpt_dev_ccbq_resize(path, newopenings);
4469 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4470 crs.ccb_h.func_code = XPT_REL_SIMQ;
4471 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4472 crs.openings
4473 = crs.release_timeout
4474 = crs.qfrozen_cnt
4475 = 0;
4476 xpt_action((union ccb *)&crs);
4477}
4478
4479void
4480xpt_stop_tags(struct cam_path *path)
4481{
4482 struct ccb_relsim crs;
4483 struct cam_ed *device;
4484 struct cam_sim *sim;
4485
4486 device = path->device;
4487 sim = path->bus->sim;
4488 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4489 device->tag_delay_count = 0;
4490 xpt_freeze_devq(path, /*count*/1);
4491 device->inq_flags &= ~SID_CmdQue;
4492 xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4493 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4494 crs.ccb_h.func_code = XPT_REL_SIMQ;
4495 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4496 crs.openings
4497 = crs.release_timeout
4498 = crs.qfrozen_cnt
4499 = 0;
4500 xpt_action((union ccb *)&crs);
4501}
4502
4503static void
4504xpt_boot_delay(void *arg)
4505{
4506
4507 xpt_release_boot();
4508}
4509
4510static void
4511xpt_config(void *arg)
4512{
4513 /*
4514 * Now that interrupts are enabled, go find our devices
4515 */
4516
4517#ifdef CAMDEBUG
4518 /* Setup debugging flags and path */
4519#ifdef CAM_DEBUG_BUS
4520 if (cam_dflags != CAM_DEBUG_NONE) {
4521 /*
4522 * Locking is specifically omitted here. No SIMs have
4523 * registered yet, so xpt_create_path will only be searching
4524 * empty lists of targets and devices.
4525 */
4526 if (xpt_create_path(&cam_dpath, xpt_periph,
4527 CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4528 CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4529 printf("xpt_config: xpt_create_path() failed for debug"
4530 " target %d:%d:%d, debugging disabled\n",
4531 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4532 cam_dflags = CAM_DEBUG_NONE;
4533 }
4534 } else
4535 cam_dpath = NULL;
4536#else /* !CAM_DEBUG_BUS */
4537 cam_dpath = NULL;
4538#endif /* CAM_DEBUG_BUS */
4539#endif /* CAMDEBUG */
4540
248static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
249static void xptpoll(struct cam_sim *sim);
250static void camisr(void *);
251static void camisr_runqueue(void *);
252static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
253 u_int num_patterns, struct cam_eb *bus);
254static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
255 u_int num_patterns,
256 struct cam_ed *device);
257static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
258 u_int num_patterns,
259 struct cam_periph *periph);
260static xpt_busfunc_t xptedtbusfunc;
261static xpt_targetfunc_t xptedttargetfunc;
262static xpt_devicefunc_t xptedtdevicefunc;
263static xpt_periphfunc_t xptedtperiphfunc;
264static xpt_pdrvfunc_t xptplistpdrvfunc;
265static xpt_periphfunc_t xptplistperiphfunc;
266static int xptedtmatch(struct ccb_dev_match *cdm);
267static int xptperiphlistmatch(struct ccb_dev_match *cdm);
268static int xptbustraverse(struct cam_eb *start_bus,
269 xpt_busfunc_t *tr_func, void *arg);
270static int xpttargettraverse(struct cam_eb *bus,
271 struct cam_et *start_target,
272 xpt_targetfunc_t *tr_func, void *arg);
273static int xptdevicetraverse(struct cam_et *target,
274 struct cam_ed *start_device,
275 xpt_devicefunc_t *tr_func, void *arg);
276static int xptperiphtraverse(struct cam_ed *device,
277 struct cam_periph *start_periph,
278 xpt_periphfunc_t *tr_func, void *arg);
279static int xptpdrvtraverse(struct periph_driver **start_pdrv,
280 xpt_pdrvfunc_t *tr_func, void *arg);
281static int xptpdperiphtraverse(struct periph_driver **pdrv,
282 struct cam_periph *start_periph,
283 xpt_periphfunc_t *tr_func,
284 void *arg);
285static xpt_busfunc_t xptdefbusfunc;
286static xpt_targetfunc_t xptdeftargetfunc;
287static xpt_devicefunc_t xptdefdevicefunc;
288static xpt_periphfunc_t xptdefperiphfunc;
289static void xpt_finishconfig_task(void *context, int pending);
290static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
291static int xpt_for_all_devices(xpt_devicefunc_t *tr_func,
292 void *arg);
293static void xpt_dev_async_default(u_int32_t async_code,
294 struct cam_eb *bus,
295 struct cam_et *target,
296 struct cam_ed *device,
297 void *async_arg);
298static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus,
299 struct cam_et *target,
300 lun_id_t lun_id);
301static xpt_devicefunc_t xptsetasyncfunc;
302static xpt_busfunc_t xptsetasyncbusfunc;
303static cam_status xptregister(struct cam_periph *periph,
304 void *arg);
305static __inline int periph_is_queued(struct cam_periph *periph);
306static __inline int device_is_alloc_queued(struct cam_ed *device);
307static __inline int device_is_send_queued(struct cam_ed *device);
308
309static __inline int
310xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
311{
312 int retval;
313
314 if ((dev->drvq.entries > 0) &&
315 (dev->ccbq.devq_openings > 0) &&
316 (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
317 CAMQ_GET_PRIO(&dev->drvq))) == 0)) {
318 /*
319 * The priority of a device waiting for CCB resources
320 * is that of the the highest priority peripheral driver
321 * enqueued.
322 */
323 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
324 &dev->alloc_ccb_entry.pinfo,
325 CAMQ_GET_PRIO(&dev->drvq));
326 } else {
327 retval = 0;
328 }
329
330 return (retval);
331}
332
333static __inline int
334xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
335{
336 int retval;
337
338 if ((dev->ccbq.queue.entries > 0) &&
339 (dev->ccbq.dev_openings > 0) &&
340 (cam_ccbq_frozen_top(&dev->ccbq) == 0)) {
341 /*
342 * The priority of a device waiting for controller
343 * resources is that of the the highest priority CCB
344 * enqueued.
345 */
346 retval =
347 xpt_schedule_dev(&bus->sim->devq->send_queue,
348 &dev->send_ccb_entry.pinfo,
349 CAMQ_GET_PRIO(&dev->ccbq.queue));
350 } else {
351 retval = 0;
352 }
353 return (retval);
354}
355
356static __inline int
357periph_is_queued(struct cam_periph *periph)
358{
359 return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
360}
361
362static __inline int
363device_is_alloc_queued(struct cam_ed *device)
364{
365 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
366}
367
368static __inline int
369device_is_send_queued(struct cam_ed *device)
370{
371 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
372}
373
374static void
375xpt_periph_init()
376{
377 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
378}
379
380static void
381xptdone(struct cam_periph *periph, union ccb *done_ccb)
382{
383 /* Caller will release the CCB */
384 wakeup(&done_ccb->ccb_h.cbfcnp);
385}
386
387static int
388xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
389{
390
391 /*
392 * Only allow read-write access.
393 */
394 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
395 return(EPERM);
396
397 /*
398 * We don't allow nonblocking access.
399 */
400 if ((flags & O_NONBLOCK) != 0) {
401 printf("%s: can't do nonblocking access\n", devtoname(dev));
402 return(ENODEV);
403 }
404
405 /* Mark ourselves open */
406 mtx_lock(&xsoftc.xpt_lock);
407 xsoftc.flags |= XPT_FLAG_OPEN;
408 mtx_unlock(&xsoftc.xpt_lock);
409
410 return(0);
411}
412
413static int
414xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
415{
416
417 /* Mark ourselves closed */
418 mtx_lock(&xsoftc.xpt_lock);
419 xsoftc.flags &= ~XPT_FLAG_OPEN;
420 mtx_unlock(&xsoftc.xpt_lock);
421
422 return(0);
423}
424
425/*
426 * Don't automatically grab the xpt softc lock here even though this is going
427 * through the xpt device. The xpt device is really just a back door for
428 * accessing other devices and SIMs, so the right thing to do is to grab
429 * the appropriate SIM lock once the bus/SIM is located.
430 */
431static int
432xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
433{
434 int error;
435
436 error = 0;
437
438 switch(cmd) {
439 /*
440 * For the transport layer CAMIOCOMMAND ioctl, we really only want
441 * to accept CCB types that don't quite make sense to send through a
442 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
443 * in the CAM spec.
444 */
445 case CAMIOCOMMAND: {
446 union ccb *ccb;
447 union ccb *inccb;
448 struct cam_eb *bus;
449
450 inccb = (union ccb *)addr;
451
452 bus = xpt_find_bus(inccb->ccb_h.path_id);
453 if (bus == NULL)
454 return (EINVAL);
455
456 switch (inccb->ccb_h.func_code) {
457 case XPT_SCAN_BUS:
458 case XPT_RESET_BUS:
459 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
460 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
461 xpt_release_bus(bus);
462 return (EINVAL);
463 }
464 break;
465 case XPT_SCAN_TGT:
466 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
467 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
468 xpt_release_bus(bus);
469 return (EINVAL);
470 }
471 break;
472 default:
473 break;
474 }
475
476 switch(inccb->ccb_h.func_code) {
477 case XPT_SCAN_BUS:
478 case XPT_RESET_BUS:
479 case XPT_PATH_INQ:
480 case XPT_ENG_INQ:
481 case XPT_SCAN_LUN:
482 case XPT_SCAN_TGT:
483
484 ccb = xpt_alloc_ccb();
485
486 CAM_SIM_LOCK(bus->sim);
487
488 /*
489 * Create a path using the bus, target, and lun the
490 * user passed in.
491 */
492 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
493 inccb->ccb_h.path_id,
494 inccb->ccb_h.target_id,
495 inccb->ccb_h.target_lun) !=
496 CAM_REQ_CMP){
497 error = EINVAL;
498 CAM_SIM_UNLOCK(bus->sim);
499 xpt_free_ccb(ccb);
500 break;
501 }
502 /* Ensure all of our fields are correct */
503 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
504 inccb->ccb_h.pinfo.priority);
505 xpt_merge_ccb(ccb, inccb);
506 ccb->ccb_h.cbfcnp = xptdone;
507 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
508 bcopy(ccb, inccb, sizeof(union ccb));
509 xpt_free_path(ccb->ccb_h.path);
510 xpt_free_ccb(ccb);
511 CAM_SIM_UNLOCK(bus->sim);
512 break;
513
514 case XPT_DEBUG: {
515 union ccb ccb;
516
517 /*
518 * This is an immediate CCB, so it's okay to
519 * allocate it on the stack.
520 */
521
522 CAM_SIM_LOCK(bus->sim);
523
524 /*
525 * Create a path using the bus, target, and lun the
526 * user passed in.
527 */
528 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
529 inccb->ccb_h.path_id,
530 inccb->ccb_h.target_id,
531 inccb->ccb_h.target_lun) !=
532 CAM_REQ_CMP){
533 error = EINVAL;
534 CAM_SIM_UNLOCK(bus->sim);
535 break;
536 }
537 /* Ensure all of our fields are correct */
538 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
539 inccb->ccb_h.pinfo.priority);
540 xpt_merge_ccb(&ccb, inccb);
541 ccb.ccb_h.cbfcnp = xptdone;
542 xpt_action(&ccb);
543 CAM_SIM_UNLOCK(bus->sim);
544 bcopy(&ccb, inccb, sizeof(union ccb));
545 xpt_free_path(ccb.ccb_h.path);
546 break;
547
548 }
549 case XPT_DEV_MATCH: {
550 struct cam_periph_map_info mapinfo;
551 struct cam_path *old_path;
552
553 /*
554 * We can't deal with physical addresses for this
555 * type of transaction.
556 */
557 if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
558 error = EINVAL;
559 break;
560 }
561
562 /*
563 * Save this in case the caller had it set to
564 * something in particular.
565 */
566 old_path = inccb->ccb_h.path;
567
568 /*
569 * We really don't need a path for the matching
570 * code. The path is needed because of the
571 * debugging statements in xpt_action(). They
572 * assume that the CCB has a valid path.
573 */
574 inccb->ccb_h.path = xpt_periph->path;
575
576 bzero(&mapinfo, sizeof(mapinfo));
577
578 /*
579 * Map the pattern and match buffers into kernel
580 * virtual address space.
581 */
582 error = cam_periph_mapmem(inccb, &mapinfo);
583
584 if (error) {
585 inccb->ccb_h.path = old_path;
586 break;
587 }
588
589 /*
590 * This is an immediate CCB, we can send it on directly.
591 */
592 xpt_action(inccb);
593
594 /*
595 * Map the buffers back into user space.
596 */
597 cam_periph_unmapmem(inccb, &mapinfo);
598
599 inccb->ccb_h.path = old_path;
600
601 error = 0;
602 break;
603 }
604 default:
605 error = ENOTSUP;
606 break;
607 }
608 xpt_release_bus(bus);
609 break;
610 }
611 /*
612 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
613 * with the periphal driver name and unit name filled in. The other
614 * fields don't really matter as input. The passthrough driver name
615 * ("pass"), and unit number are passed back in the ccb. The current
616 * device generation number, and the index into the device peripheral
617 * driver list, and the status are also passed back. Note that
618 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
619 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
620 * (or rather should be) impossible for the device peripheral driver
621 * list to change since we look at the whole thing in one pass, and
622 * we do it with lock protection.
623 *
624 */
625 case CAMGETPASSTHRU: {
626 union ccb *ccb;
627 struct cam_periph *periph;
628 struct periph_driver **p_drv;
629 char *name;
630 u_int unit;
631 u_int cur_generation;
632 int base_periph_found;
633 int splbreaknum;
634
635 ccb = (union ccb *)addr;
636 unit = ccb->cgdl.unit_number;
637 name = ccb->cgdl.periph_name;
638 /*
639 * Every 100 devices, we want to drop our lock protection to
640 * give the software interrupt handler a chance to run.
641 * Most systems won't run into this check, but this should
642 * avoid starvation in the software interrupt handler in
643 * large systems.
644 */
645 splbreaknum = 100;
646
647 ccb = (union ccb *)addr;
648
649 base_periph_found = 0;
650
651 /*
652 * Sanity check -- make sure we don't get a null peripheral
653 * driver name.
654 */
655 if (*ccb->cgdl.periph_name == '\0') {
656 error = EINVAL;
657 break;
658 }
659
660 /* Keep the list from changing while we traverse it */
661 mtx_lock(&xsoftc.xpt_topo_lock);
662ptstartover:
663 cur_generation = xsoftc.xpt_generation;
664
665 /* first find our driver in the list of drivers */
666 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
667 if (strcmp((*p_drv)->driver_name, name) == 0)
668 break;
669
670 if (*p_drv == NULL) {
671 mtx_unlock(&xsoftc.xpt_topo_lock);
672 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
673 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
674 *ccb->cgdl.periph_name = '\0';
675 ccb->cgdl.unit_number = 0;
676 error = ENOENT;
677 break;
678 }
679
680 /*
681 * Run through every peripheral instance of this driver
682 * and check to see whether it matches the unit passed
683 * in by the user. If it does, get out of the loops and
684 * find the passthrough driver associated with that
685 * peripheral driver.
686 */
687 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
688 periph = TAILQ_NEXT(periph, unit_links)) {
689
690 if (periph->unit_number == unit) {
691 break;
692 } else if (--splbreaknum == 0) {
693 mtx_unlock(&xsoftc.xpt_topo_lock);
694 mtx_lock(&xsoftc.xpt_topo_lock);
695 splbreaknum = 100;
696 if (cur_generation != xsoftc.xpt_generation)
697 goto ptstartover;
698 }
699 }
700 /*
701 * If we found the peripheral driver that the user passed
702 * in, go through all of the peripheral drivers for that
703 * particular device and look for a passthrough driver.
704 */
705 if (periph != NULL) {
706 struct cam_ed *device;
707 int i;
708
709 base_periph_found = 1;
710 device = periph->path->device;
711 for (i = 0, periph = SLIST_FIRST(&device->periphs);
712 periph != NULL;
713 periph = SLIST_NEXT(periph, periph_links), i++) {
714 /*
715 * Check to see whether we have a
716 * passthrough device or not.
717 */
718 if (strcmp(periph->periph_name, "pass") == 0) {
719 /*
720 * Fill in the getdevlist fields.
721 */
722 strcpy(ccb->cgdl.periph_name,
723 periph->periph_name);
724 ccb->cgdl.unit_number =
725 periph->unit_number;
726 if (SLIST_NEXT(periph, periph_links))
727 ccb->cgdl.status =
728 CAM_GDEVLIST_MORE_DEVS;
729 else
730 ccb->cgdl.status =
731 CAM_GDEVLIST_LAST_DEVICE;
732 ccb->cgdl.generation =
733 device->generation;
734 ccb->cgdl.index = i;
735 /*
736 * Fill in some CCB header fields
737 * that the user may want.
738 */
739 ccb->ccb_h.path_id =
740 periph->path->bus->path_id;
741 ccb->ccb_h.target_id =
742 periph->path->target->target_id;
743 ccb->ccb_h.target_lun =
744 periph->path->device->lun_id;
745 ccb->ccb_h.status = CAM_REQ_CMP;
746 break;
747 }
748 }
749 }
750
751 /*
752 * If the periph is null here, one of two things has
753 * happened. The first possibility is that we couldn't
754 * find the unit number of the particular peripheral driver
755 * that the user is asking about. e.g. the user asks for
756 * the passthrough driver for "da11". We find the list of
757 * "da" peripherals all right, but there is no unit 11.
758 * The other possibility is that we went through the list
759 * of peripheral drivers attached to the device structure,
760 * but didn't find one with the name "pass". Either way,
761 * we return ENOENT, since we couldn't find something.
762 */
763 if (periph == NULL) {
764 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
765 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
766 *ccb->cgdl.periph_name = '\0';
767 ccb->cgdl.unit_number = 0;
768 error = ENOENT;
769 /*
770 * It is unfortunate that this is even necessary,
771 * but there are many, many clueless users out there.
772 * If this is true, the user is looking for the
773 * passthrough driver, but doesn't have one in his
774 * kernel.
775 */
776 if (base_periph_found == 1) {
777 printf("xptioctl: pass driver is not in the "
778 "kernel\n");
779 printf("xptioctl: put \"device pass\" in "
780 "your kernel config file\n");
781 }
782 }
783 mtx_unlock(&xsoftc.xpt_topo_lock);
784 break;
785 }
786 default:
787 error = ENOTTY;
788 break;
789 }
790
791 return(error);
792}
793
794static int
795cam_module_event_handler(module_t mod, int what, void *arg)
796{
797 int error;
798
799 switch (what) {
800 case MOD_LOAD:
801 if ((error = xpt_init(NULL)) != 0)
802 return (error);
803 break;
804 case MOD_UNLOAD:
805 return EBUSY;
806 default:
807 return EOPNOTSUPP;
808 }
809
810 return 0;
811}
812
813static void
814xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
815{
816
817 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
818 xpt_free_path(done_ccb->ccb_h.path);
819 xpt_free_ccb(done_ccb);
820 } else {
821 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
822 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
823 }
824 xpt_release_boot();
825}
826
827/* thread to handle bus rescans */
828static void
829xpt_scanner_thread(void *dummy)
830{
831 union ccb *ccb;
832 struct cam_sim *sim;
833
834 xpt_lock_buses();
835 for (;;) {
836 if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
837 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
838 "ccb_scanq", 0);
839 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
840 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
841 xpt_unlock_buses();
842
843 sim = ccb->ccb_h.path->bus->sim;
844 CAM_SIM_LOCK(sim);
845 xpt_action(ccb);
846 CAM_SIM_UNLOCK(sim);
847
848 xpt_lock_buses();
849 }
850 }
851}
852
853void
854xpt_rescan(union ccb *ccb)
855{
856 struct ccb_hdr *hdr;
857
858 /* Prepare request */
859 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
860 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
861 ccb->ccb_h.func_code = XPT_SCAN_BUS;
862 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
863 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
864 ccb->ccb_h.func_code = XPT_SCAN_TGT;
865 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
866 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
867 ccb->ccb_h.func_code = XPT_SCAN_LUN;
868 else {
869 xpt_print(ccb->ccb_h.path, "illegal scan path\n");
870 xpt_free_path(ccb->ccb_h.path);
871 xpt_free_ccb(ccb);
872 return;
873 }
874 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
875 ccb->ccb_h.cbfcnp = xpt_rescan_done;
876 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
877 /* Don't make duplicate entries for the same paths. */
878 xpt_lock_buses();
879 if (ccb->ccb_h.ppriv_ptr1 == NULL) {
880 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
881 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
882 wakeup(&xsoftc.ccb_scanq);
883 xpt_unlock_buses();
884 xpt_print(ccb->ccb_h.path, "rescan already queued\n");
885 xpt_free_path(ccb->ccb_h.path);
886 xpt_free_ccb(ccb);
887 return;
888 }
889 }
890 }
891 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
892 xsoftc.buses_to_config++;
893 wakeup(&xsoftc.ccb_scanq);
894 xpt_unlock_buses();
895}
896
897/* Functions accessed by the peripheral drivers */
898static int
899xpt_init(void *dummy)
900{
901 struct cam_sim *xpt_sim;
902 struct cam_path *path;
903 struct cam_devq *devq;
904 cam_status status;
905
906 TAILQ_INIT(&xsoftc.xpt_busses);
907 TAILQ_INIT(&cam_simq);
908 TAILQ_INIT(&xsoftc.ccb_scanq);
909 STAILQ_INIT(&xsoftc.highpowerq);
910 xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
911
912 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
913 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
914 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
915
916 /*
917 * The xpt layer is, itself, the equivelent of a SIM.
918 * Allow 16 ccbs in the ccb pool for it. This should
919 * give decent parallelism when we probe busses and
920 * perform other XPT functions.
921 */
922 devq = cam_simq_alloc(16);
923 xpt_sim = cam_sim_alloc(xptaction,
924 xptpoll,
925 "xpt",
926 /*softc*/NULL,
927 /*unit*/0,
928 /*mtx*/&xsoftc.xpt_lock,
929 /*max_dev_transactions*/0,
930 /*max_tagged_dev_transactions*/0,
931 devq);
932 if (xpt_sim == NULL)
933 return (ENOMEM);
934
935 mtx_lock(&xsoftc.xpt_lock);
936 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
937 mtx_unlock(&xsoftc.xpt_lock);
938 printf("xpt_init: xpt_bus_register failed with status %#x,"
939 " failing attach\n", status);
940 return (EINVAL);
941 }
942
943 /*
944 * Looking at the XPT from the SIM layer, the XPT is
945 * the equivelent of a peripheral driver. Allocate
946 * a peripheral driver entry for us.
947 */
948 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
949 CAM_TARGET_WILDCARD,
950 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
951 mtx_unlock(&xsoftc.xpt_lock);
952 printf("xpt_init: xpt_create_path failed with status %#x,"
953 " failing attach\n", status);
954 return (EINVAL);
955 }
956
957 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
958 path, NULL, 0, xpt_sim);
959 xpt_free_path(path);
960 mtx_unlock(&xsoftc.xpt_lock);
961 /* Install our software interrupt handlers */
962 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
963 /*
964 * Register a callback for when interrupts are enabled.
965 */
966 xsoftc.xpt_config_hook =
967 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
968 M_CAMXPT, M_NOWAIT | M_ZERO);
969 if (xsoftc.xpt_config_hook == NULL) {
970 printf("xpt_init: Cannot malloc config hook "
971 "- failing attach\n");
972 return (ENOMEM);
973 }
974 xsoftc.xpt_config_hook->ich_func = xpt_config;
975 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
976 free (xsoftc.xpt_config_hook, M_CAMXPT);
977 printf("xpt_init: config_intrhook_establish failed "
978 "- failing attach\n");
979 }
980
981 return (0);
982}
983
984static cam_status
985xptregister(struct cam_periph *periph, void *arg)
986{
987 struct cam_sim *xpt_sim;
988
989 if (periph == NULL) {
990 printf("xptregister: periph was NULL!!\n");
991 return(CAM_REQ_CMP_ERR);
992 }
993
994 xpt_sim = (struct cam_sim *)arg;
995 xpt_sim->softc = periph;
996 xpt_periph = periph;
997 periph->softc = NULL;
998
999 return(CAM_REQ_CMP);
1000}
1001
1002int32_t
1003xpt_add_periph(struct cam_periph *periph)
1004{
1005 struct cam_ed *device;
1006 int32_t status;
1007 struct periph_list *periph_head;
1008
1009 mtx_assert(periph->sim->mtx, MA_OWNED);
1010
1011 device = periph->path->device;
1012
1013 periph_head = &device->periphs;
1014
1015 status = CAM_REQ_CMP;
1016
1017 if (device != NULL) {
1018 /*
1019 * Make room for this peripheral
1020 * so it will fit in the queue
1021 * when it's scheduled to run
1022 */
1023 status = camq_resize(&device->drvq,
1024 device->drvq.array_size + 1);
1025
1026 device->generation++;
1027
1028 SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1029 }
1030
1031 mtx_lock(&xsoftc.xpt_topo_lock);
1032 xsoftc.xpt_generation++;
1033 mtx_unlock(&xsoftc.xpt_topo_lock);
1034
1035 return (status);
1036}
1037
1038void
1039xpt_remove_periph(struct cam_periph *periph)
1040{
1041 struct cam_ed *device;
1042
1043 mtx_assert(periph->sim->mtx, MA_OWNED);
1044
1045 device = periph->path->device;
1046
1047 if (device != NULL) {
1048 struct periph_list *periph_head;
1049
1050 periph_head = &device->periphs;
1051
1052 /* Release the slot for this peripheral */
1053 camq_resize(&device->drvq, device->drvq.array_size - 1);
1054
1055 device->generation++;
1056
1057 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1058 }
1059
1060 mtx_lock(&xsoftc.xpt_topo_lock);
1061 xsoftc.xpt_generation++;
1062 mtx_unlock(&xsoftc.xpt_topo_lock);
1063}
1064
1065
1066void
1067xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1068{
1069 struct cam_path *path = periph->path;
1070
1071 mtx_assert(periph->sim->mtx, MA_OWNED);
1072
1073 printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1074 periph->periph_name, periph->unit_number,
1075 path->bus->sim->sim_name,
1076 path->bus->sim->unit_number,
1077 path->bus->sim->bus_id,
1078 path->bus->path_id,
1079 path->target->target_id,
1080 path->device->lun_id);
1081 printf("%s%d: ", periph->periph_name, periph->unit_number);
1082 if (path->device->protocol == PROTO_SCSI)
1083 scsi_print_inquiry(&path->device->inq_data);
1084 else if (path->device->protocol == PROTO_ATA ||
1085 path->device->protocol == PROTO_SATAPM)
1086 ata_print_ident(&path->device->ident_data);
1087 else
1088 printf("Unknown protocol device\n");
1089 if (bootverbose && path->device->serial_num_len > 0) {
1090 /* Don't wrap the screen - print only the first 60 chars */
1091 printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1092 periph->unit_number, path->device->serial_num);
1093 }
1094 /* Announce transport details. */
1095 (*(path->bus->xport->announce))(periph);
1096 /* Announce command queueing. */
1097 if (path->device->inq_flags & SID_CmdQue
1098 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1099 printf("%s%d: Command Queueing enabled\n",
1100 periph->periph_name, periph->unit_number);
1101 }
1102 /* Announce caller's details if they've passed in. */
1103 if (announce_string != NULL)
1104 printf("%s%d: %s\n", periph->periph_name,
1105 periph->unit_number, announce_string);
1106}
1107
1108static dev_match_ret
1109xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1110 struct cam_eb *bus)
1111{
1112 dev_match_ret retval;
1113 int i;
1114
1115 retval = DM_RET_NONE;
1116
1117 /*
1118 * If we aren't given something to match against, that's an error.
1119 */
1120 if (bus == NULL)
1121 return(DM_RET_ERROR);
1122
1123 /*
1124 * If there are no match entries, then this bus matches no
1125 * matter what.
1126 */
1127 if ((patterns == NULL) || (num_patterns == 0))
1128 return(DM_RET_DESCEND | DM_RET_COPY);
1129
1130 for (i = 0; i < num_patterns; i++) {
1131 struct bus_match_pattern *cur_pattern;
1132
1133 /*
1134 * If the pattern in question isn't for a bus node, we
1135 * aren't interested. However, we do indicate to the
1136 * calling routine that we should continue descending the
1137 * tree, since the user wants to match against lower-level
1138 * EDT elements.
1139 */
1140 if (patterns[i].type != DEV_MATCH_BUS) {
1141 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1142 retval |= DM_RET_DESCEND;
1143 continue;
1144 }
1145
1146 cur_pattern = &patterns[i].pattern.bus_pattern;
1147
1148 /*
1149 * If they want to match any bus node, we give them any
1150 * device node.
1151 */
1152 if (cur_pattern->flags == BUS_MATCH_ANY) {
1153 /* set the copy flag */
1154 retval |= DM_RET_COPY;
1155
1156 /*
1157 * If we've already decided on an action, go ahead
1158 * and return.
1159 */
1160 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1161 return(retval);
1162 }
1163
1164 /*
1165 * Not sure why someone would do this...
1166 */
1167 if (cur_pattern->flags == BUS_MATCH_NONE)
1168 continue;
1169
1170 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1171 && (cur_pattern->path_id != bus->path_id))
1172 continue;
1173
1174 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1175 && (cur_pattern->bus_id != bus->sim->bus_id))
1176 continue;
1177
1178 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1179 && (cur_pattern->unit_number != bus->sim->unit_number))
1180 continue;
1181
1182 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1183 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1184 DEV_IDLEN) != 0))
1185 continue;
1186
1187 /*
1188 * If we get to this point, the user definitely wants
1189 * information on this bus. So tell the caller to copy the
1190 * data out.
1191 */
1192 retval |= DM_RET_COPY;
1193
1194 /*
1195 * If the return action has been set to descend, then we
1196 * know that we've already seen a non-bus matching
1197 * expression, therefore we need to further descend the tree.
1198 * This won't change by continuing around the loop, so we
1199 * go ahead and return. If we haven't seen a non-bus
1200 * matching expression, we keep going around the loop until
1201 * we exhaust the matching expressions. We'll set the stop
1202 * flag once we fall out of the loop.
1203 */
1204 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1205 return(retval);
1206 }
1207
1208 /*
1209 * If the return action hasn't been set to descend yet, that means
1210 * we haven't seen anything other than bus matching patterns. So
1211 * tell the caller to stop descending the tree -- the user doesn't
1212 * want to match against lower level tree elements.
1213 */
1214 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1215 retval |= DM_RET_STOP;
1216
1217 return(retval);
1218}
1219
1220static dev_match_ret
1221xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1222 struct cam_ed *device)
1223{
1224 dev_match_ret retval;
1225 int i;
1226
1227 retval = DM_RET_NONE;
1228
1229 /*
1230 * If we aren't given something to match against, that's an error.
1231 */
1232 if (device == NULL)
1233 return(DM_RET_ERROR);
1234
1235 /*
1236 * If there are no match entries, then this device matches no
1237 * matter what.
1238 */
1239 if ((patterns == NULL) || (num_patterns == 0))
1240 return(DM_RET_DESCEND | DM_RET_COPY);
1241
1242 for (i = 0; i < num_patterns; i++) {
1243 struct device_match_pattern *cur_pattern;
1244
1245 /*
1246 * If the pattern in question isn't for a device node, we
1247 * aren't interested.
1248 */
1249 if (patterns[i].type != DEV_MATCH_DEVICE) {
1250 if ((patterns[i].type == DEV_MATCH_PERIPH)
1251 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1252 retval |= DM_RET_DESCEND;
1253 continue;
1254 }
1255
1256 cur_pattern = &patterns[i].pattern.device_pattern;
1257
1258 /*
1259 * If they want to match any device node, we give them any
1260 * device node.
1261 */
1262 if (cur_pattern->flags == DEV_MATCH_ANY) {
1263 /* set the copy flag */
1264 retval |= DM_RET_COPY;
1265
1266
1267 /*
1268 * If we've already decided on an action, go ahead
1269 * and return.
1270 */
1271 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1272 return(retval);
1273 }
1274
1275 /*
1276 * Not sure why someone would do this...
1277 */
1278 if (cur_pattern->flags == DEV_MATCH_NONE)
1279 continue;
1280
1281 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1282 && (cur_pattern->path_id != device->target->bus->path_id))
1283 continue;
1284
1285 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1286 && (cur_pattern->target_id != device->target->target_id))
1287 continue;
1288
1289 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1290 && (cur_pattern->target_lun != device->lun_id))
1291 continue;
1292
1293 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1294 && (cam_quirkmatch((caddr_t)&device->inq_data,
1295 (caddr_t)&cur_pattern->inq_pat,
1296 1, sizeof(cur_pattern->inq_pat),
1297 scsi_static_inquiry_match) == NULL))
1298 continue;
1299
1300 /*
1301 * If we get to this point, the user definitely wants
1302 * information on this device. So tell the caller to copy
1303 * the data out.
1304 */
1305 retval |= DM_RET_COPY;
1306
1307 /*
1308 * If the return action has been set to descend, then we
1309 * know that we've already seen a peripheral matching
1310 * expression, therefore we need to further descend the tree.
1311 * This won't change by continuing around the loop, so we
1312 * go ahead and return. If we haven't seen a peripheral
1313 * matching expression, we keep going around the loop until
1314 * we exhaust the matching expressions. We'll set the stop
1315 * flag once we fall out of the loop.
1316 */
1317 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1318 return(retval);
1319 }
1320
1321 /*
1322 * If the return action hasn't been set to descend yet, that means
1323 * we haven't seen any peripheral matching patterns. So tell the
1324 * caller to stop descending the tree -- the user doesn't want to
1325 * match against lower level tree elements.
1326 */
1327 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1328 retval |= DM_RET_STOP;
1329
1330 return(retval);
1331}
1332
1333/*
1334 * Match a single peripheral against any number of match patterns.
1335 */
1336static dev_match_ret
1337xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1338 struct cam_periph *periph)
1339{
1340 dev_match_ret retval;
1341 int i;
1342
1343 /*
1344 * If we aren't given something to match against, that's an error.
1345 */
1346 if (periph == NULL)
1347 return(DM_RET_ERROR);
1348
1349 /*
1350 * If there are no match entries, then this peripheral matches no
1351 * matter what.
1352 */
1353 if ((patterns == NULL) || (num_patterns == 0))
1354 return(DM_RET_STOP | DM_RET_COPY);
1355
1356 /*
1357 * There aren't any nodes below a peripheral node, so there's no
1358 * reason to descend the tree any further.
1359 */
1360 retval = DM_RET_STOP;
1361
1362 for (i = 0; i < num_patterns; i++) {
1363 struct periph_match_pattern *cur_pattern;
1364
1365 /*
1366 * If the pattern in question isn't for a peripheral, we
1367 * aren't interested.
1368 */
1369 if (patterns[i].type != DEV_MATCH_PERIPH)
1370 continue;
1371
1372 cur_pattern = &patterns[i].pattern.periph_pattern;
1373
1374 /*
1375 * If they want to match on anything, then we will do so.
1376 */
1377 if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1378 /* set the copy flag */
1379 retval |= DM_RET_COPY;
1380
1381 /*
1382 * We've already set the return action to stop,
1383 * since there are no nodes below peripherals in
1384 * the tree.
1385 */
1386 return(retval);
1387 }
1388
1389 /*
1390 * Not sure why someone would do this...
1391 */
1392 if (cur_pattern->flags == PERIPH_MATCH_NONE)
1393 continue;
1394
1395 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1396 && (cur_pattern->path_id != periph->path->bus->path_id))
1397 continue;
1398
1399 /*
1400 * For the target and lun id's, we have to make sure the
1401 * target and lun pointers aren't NULL. The xpt peripheral
1402 * has a wildcard target and device.
1403 */
1404 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1405 && ((periph->path->target == NULL)
1406 ||(cur_pattern->target_id != periph->path->target->target_id)))
1407 continue;
1408
1409 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1410 && ((periph->path->device == NULL)
1411 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1412 continue;
1413
1414 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1415 && (cur_pattern->unit_number != periph->unit_number))
1416 continue;
1417
1418 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1419 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1420 DEV_IDLEN) != 0))
1421 continue;
1422
1423 /*
1424 * If we get to this point, the user definitely wants
1425 * information on this peripheral. So tell the caller to
1426 * copy the data out.
1427 */
1428 retval |= DM_RET_COPY;
1429
1430 /*
1431 * The return action has already been set to stop, since
1432 * peripherals don't have any nodes below them in the EDT.
1433 */
1434 return(retval);
1435 }
1436
1437 /*
1438 * If we get to this point, the peripheral that was passed in
1439 * doesn't match any of the patterns.
1440 */
1441 return(retval);
1442}
1443
1444static int
1445xptedtbusfunc(struct cam_eb *bus, void *arg)
1446{
1447 struct ccb_dev_match *cdm;
1448 dev_match_ret retval;
1449
1450 cdm = (struct ccb_dev_match *)arg;
1451
1452 /*
1453 * If our position is for something deeper in the tree, that means
1454 * that we've already seen this node. So, we keep going down.
1455 */
1456 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1457 && (cdm->pos.cookie.bus == bus)
1458 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1459 && (cdm->pos.cookie.target != NULL))
1460 retval = DM_RET_DESCEND;
1461 else
1462 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1463
1464 /*
1465 * If we got an error, bail out of the search.
1466 */
1467 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1468 cdm->status = CAM_DEV_MATCH_ERROR;
1469 return(0);
1470 }
1471
1472 /*
1473 * If the copy flag is set, copy this bus out.
1474 */
1475 if (retval & DM_RET_COPY) {
1476 int spaceleft, j;
1477
1478 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1479 sizeof(struct dev_match_result));
1480
1481 /*
1482 * If we don't have enough space to put in another
1483 * match result, save our position and tell the
1484 * user there are more devices to check.
1485 */
1486 if (spaceleft < sizeof(struct dev_match_result)) {
1487 bzero(&cdm->pos, sizeof(cdm->pos));
1488 cdm->pos.position_type =
1489 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1490
1491 cdm->pos.cookie.bus = bus;
1492 cdm->pos.generations[CAM_BUS_GENERATION]=
1493 xsoftc.bus_generation;
1494 cdm->status = CAM_DEV_MATCH_MORE;
1495 return(0);
1496 }
1497 j = cdm->num_matches;
1498 cdm->num_matches++;
1499 cdm->matches[j].type = DEV_MATCH_BUS;
1500 cdm->matches[j].result.bus_result.path_id = bus->path_id;
1501 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1502 cdm->matches[j].result.bus_result.unit_number =
1503 bus->sim->unit_number;
1504 strncpy(cdm->matches[j].result.bus_result.dev_name,
1505 bus->sim->sim_name, DEV_IDLEN);
1506 }
1507
1508 /*
1509 * If the user is only interested in busses, there's no
1510 * reason to descend to the next level in the tree.
1511 */
1512 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1513 return(1);
1514
1515 /*
1516 * If there is a target generation recorded, check it to
1517 * make sure the target list hasn't changed.
1518 */
1519 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1520 && (bus == cdm->pos.cookie.bus)
1521 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1522 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1523 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1524 bus->generation)) {
1525 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1526 return(0);
1527 }
1528
1529 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1530 && (cdm->pos.cookie.bus == bus)
1531 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1532 && (cdm->pos.cookie.target != NULL))
1533 return(xpttargettraverse(bus,
1534 (struct cam_et *)cdm->pos.cookie.target,
1535 xptedttargetfunc, arg));
1536 else
1537 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1538}
1539
1540static int
1541xptedttargetfunc(struct cam_et *target, void *arg)
1542{
1543 struct ccb_dev_match *cdm;
1544
1545 cdm = (struct ccb_dev_match *)arg;
1546
1547 /*
1548 * If there is a device list generation recorded, check it to
1549 * make sure the device list hasn't changed.
1550 */
1551 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1552 && (cdm->pos.cookie.bus == target->bus)
1553 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1554 && (cdm->pos.cookie.target == target)
1555 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1556 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1557 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1558 target->generation)) {
1559 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1560 return(0);
1561 }
1562
1563 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1564 && (cdm->pos.cookie.bus == target->bus)
1565 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1566 && (cdm->pos.cookie.target == target)
1567 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1568 && (cdm->pos.cookie.device != NULL))
1569 return(xptdevicetraverse(target,
1570 (struct cam_ed *)cdm->pos.cookie.device,
1571 xptedtdevicefunc, arg));
1572 else
1573 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1574}
1575
1576static int
1577xptedtdevicefunc(struct cam_ed *device, void *arg)
1578{
1579
1580 struct ccb_dev_match *cdm;
1581 dev_match_ret retval;
1582
1583 cdm = (struct ccb_dev_match *)arg;
1584
1585 /*
1586 * If our position is for something deeper in the tree, that means
1587 * that we've already seen this node. So, we keep going down.
1588 */
1589 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1590 && (cdm->pos.cookie.device == device)
1591 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1592 && (cdm->pos.cookie.periph != NULL))
1593 retval = DM_RET_DESCEND;
1594 else
1595 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1596 device);
1597
1598 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1599 cdm->status = CAM_DEV_MATCH_ERROR;
1600 return(0);
1601 }
1602
1603 /*
1604 * If the copy flag is set, copy this device out.
1605 */
1606 if (retval & DM_RET_COPY) {
1607 int spaceleft, j;
1608
1609 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1610 sizeof(struct dev_match_result));
1611
1612 /*
1613 * If we don't have enough space to put in another
1614 * match result, save our position and tell the
1615 * user there are more devices to check.
1616 */
1617 if (spaceleft < sizeof(struct dev_match_result)) {
1618 bzero(&cdm->pos, sizeof(cdm->pos));
1619 cdm->pos.position_type =
1620 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1621 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1622
1623 cdm->pos.cookie.bus = device->target->bus;
1624 cdm->pos.generations[CAM_BUS_GENERATION]=
1625 xsoftc.bus_generation;
1626 cdm->pos.cookie.target = device->target;
1627 cdm->pos.generations[CAM_TARGET_GENERATION] =
1628 device->target->bus->generation;
1629 cdm->pos.cookie.device = device;
1630 cdm->pos.generations[CAM_DEV_GENERATION] =
1631 device->target->generation;
1632 cdm->status = CAM_DEV_MATCH_MORE;
1633 return(0);
1634 }
1635 j = cdm->num_matches;
1636 cdm->num_matches++;
1637 cdm->matches[j].type = DEV_MATCH_DEVICE;
1638 cdm->matches[j].result.device_result.path_id =
1639 device->target->bus->path_id;
1640 cdm->matches[j].result.device_result.target_id =
1641 device->target->target_id;
1642 cdm->matches[j].result.device_result.target_lun =
1643 device->lun_id;
1644 cdm->matches[j].result.device_result.protocol =
1645 device->protocol;
1646 bcopy(&device->inq_data,
1647 &cdm->matches[j].result.device_result.inq_data,
1648 sizeof(struct scsi_inquiry_data));
1649 bcopy(&device->ident_data,
1650 &cdm->matches[j].result.device_result.ident_data,
1651 sizeof(struct ata_params));
1652
1653 /* Let the user know whether this device is unconfigured */
1654 if (device->flags & CAM_DEV_UNCONFIGURED)
1655 cdm->matches[j].result.device_result.flags =
1656 DEV_RESULT_UNCONFIGURED;
1657 else
1658 cdm->matches[j].result.device_result.flags =
1659 DEV_RESULT_NOFLAG;
1660 }
1661
1662 /*
1663 * If the user isn't interested in peripherals, don't descend
1664 * the tree any further.
1665 */
1666 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1667 return(1);
1668
1669 /*
1670 * If there is a peripheral list generation recorded, make sure
1671 * it hasn't changed.
1672 */
1673 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1674 && (device->target->bus == cdm->pos.cookie.bus)
1675 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1676 && (device->target == cdm->pos.cookie.target)
1677 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1678 && (device == cdm->pos.cookie.device)
1679 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1680 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1681 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1682 device->generation)){
1683 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1684 return(0);
1685 }
1686
1687 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1688 && (cdm->pos.cookie.bus == device->target->bus)
1689 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1690 && (cdm->pos.cookie.target == device->target)
1691 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1692 && (cdm->pos.cookie.device == device)
1693 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1694 && (cdm->pos.cookie.periph != NULL))
1695 return(xptperiphtraverse(device,
1696 (struct cam_periph *)cdm->pos.cookie.periph,
1697 xptedtperiphfunc, arg));
1698 else
1699 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1700}
1701
1702static int
1703xptedtperiphfunc(struct cam_periph *periph, void *arg)
1704{
1705 struct ccb_dev_match *cdm;
1706 dev_match_ret retval;
1707
1708 cdm = (struct ccb_dev_match *)arg;
1709
1710 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1711
1712 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1713 cdm->status = CAM_DEV_MATCH_ERROR;
1714 return(0);
1715 }
1716
1717 /*
1718 * If the copy flag is set, copy this peripheral out.
1719 */
1720 if (retval & DM_RET_COPY) {
1721 int spaceleft, j;
1722
1723 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1724 sizeof(struct dev_match_result));
1725
1726 /*
1727 * If we don't have enough space to put in another
1728 * match result, save our position and tell the
1729 * user there are more devices to check.
1730 */
1731 if (spaceleft < sizeof(struct dev_match_result)) {
1732 bzero(&cdm->pos, sizeof(cdm->pos));
1733 cdm->pos.position_type =
1734 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1735 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1736 CAM_DEV_POS_PERIPH;
1737
1738 cdm->pos.cookie.bus = periph->path->bus;
1739 cdm->pos.generations[CAM_BUS_GENERATION]=
1740 xsoftc.bus_generation;
1741 cdm->pos.cookie.target = periph->path->target;
1742 cdm->pos.generations[CAM_TARGET_GENERATION] =
1743 periph->path->bus->generation;
1744 cdm->pos.cookie.device = periph->path->device;
1745 cdm->pos.generations[CAM_DEV_GENERATION] =
1746 periph->path->target->generation;
1747 cdm->pos.cookie.periph = periph;
1748 cdm->pos.generations[CAM_PERIPH_GENERATION] =
1749 periph->path->device->generation;
1750 cdm->status = CAM_DEV_MATCH_MORE;
1751 return(0);
1752 }
1753
1754 j = cdm->num_matches;
1755 cdm->num_matches++;
1756 cdm->matches[j].type = DEV_MATCH_PERIPH;
1757 cdm->matches[j].result.periph_result.path_id =
1758 periph->path->bus->path_id;
1759 cdm->matches[j].result.periph_result.target_id =
1760 periph->path->target->target_id;
1761 cdm->matches[j].result.periph_result.target_lun =
1762 periph->path->device->lun_id;
1763 cdm->matches[j].result.periph_result.unit_number =
1764 periph->unit_number;
1765 strncpy(cdm->matches[j].result.periph_result.periph_name,
1766 periph->periph_name, DEV_IDLEN);
1767 }
1768
1769 return(1);
1770}
1771
1772static int
1773xptedtmatch(struct ccb_dev_match *cdm)
1774{
1775 int ret;
1776
1777 cdm->num_matches = 0;
1778
1779 /*
1780 * Check the bus list generation. If it has changed, the user
1781 * needs to reset everything and start over.
1782 */
1783 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1784 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1785 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1786 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1787 return(0);
1788 }
1789
1790 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1791 && (cdm->pos.cookie.bus != NULL))
1792 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1793 xptedtbusfunc, cdm);
1794 else
1795 ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1796
1797 /*
1798 * If we get back 0, that means that we had to stop before fully
1799 * traversing the EDT. It also means that one of the subroutines
1800 * has set the status field to the proper value. If we get back 1,
1801 * we've fully traversed the EDT and copied out any matching entries.
1802 */
1803 if (ret == 1)
1804 cdm->status = CAM_DEV_MATCH_LAST;
1805
1806 return(ret);
1807}
1808
1809static int
1810xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1811{
1812 struct ccb_dev_match *cdm;
1813
1814 cdm = (struct ccb_dev_match *)arg;
1815
1816 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1817 && (cdm->pos.cookie.pdrv == pdrv)
1818 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1819 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1820 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1821 (*pdrv)->generation)) {
1822 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1823 return(0);
1824 }
1825
1826 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1827 && (cdm->pos.cookie.pdrv == pdrv)
1828 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1829 && (cdm->pos.cookie.periph != NULL))
1830 return(xptpdperiphtraverse(pdrv,
1831 (struct cam_periph *)cdm->pos.cookie.periph,
1832 xptplistperiphfunc, arg));
1833 else
1834 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1835}
1836
1837static int
1838xptplistperiphfunc(struct cam_periph *periph, void *arg)
1839{
1840 struct ccb_dev_match *cdm;
1841 dev_match_ret retval;
1842
1843 cdm = (struct ccb_dev_match *)arg;
1844
1845 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1846
1847 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1848 cdm->status = CAM_DEV_MATCH_ERROR;
1849 return(0);
1850 }
1851
1852 /*
1853 * If the copy flag is set, copy this peripheral out.
1854 */
1855 if (retval & DM_RET_COPY) {
1856 int spaceleft, j;
1857
1858 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1859 sizeof(struct dev_match_result));
1860
1861 /*
1862 * If we don't have enough space to put in another
1863 * match result, save our position and tell the
1864 * user there are more devices to check.
1865 */
1866 if (spaceleft < sizeof(struct dev_match_result)) {
1867 struct periph_driver **pdrv;
1868
1869 pdrv = NULL;
1870 bzero(&cdm->pos, sizeof(cdm->pos));
1871 cdm->pos.position_type =
1872 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1873 CAM_DEV_POS_PERIPH;
1874
1875 /*
1876 * This may look a bit non-sensical, but it is
1877 * actually quite logical. There are very few
1878 * peripheral drivers, and bloating every peripheral
1879 * structure with a pointer back to its parent
1880 * peripheral driver linker set entry would cost
1881 * more in the long run than doing this quick lookup.
1882 */
1883 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1884 if (strcmp((*pdrv)->driver_name,
1885 periph->periph_name) == 0)
1886 break;
1887 }
1888
1889 if (*pdrv == NULL) {
1890 cdm->status = CAM_DEV_MATCH_ERROR;
1891 return(0);
1892 }
1893
1894 cdm->pos.cookie.pdrv = pdrv;
1895 /*
1896 * The periph generation slot does double duty, as
1897 * does the periph pointer slot. They are used for
1898 * both edt and pdrv lookups and positioning.
1899 */
1900 cdm->pos.cookie.periph = periph;
1901 cdm->pos.generations[CAM_PERIPH_GENERATION] =
1902 (*pdrv)->generation;
1903 cdm->status = CAM_DEV_MATCH_MORE;
1904 return(0);
1905 }
1906
1907 j = cdm->num_matches;
1908 cdm->num_matches++;
1909 cdm->matches[j].type = DEV_MATCH_PERIPH;
1910 cdm->matches[j].result.periph_result.path_id =
1911 periph->path->bus->path_id;
1912
1913 /*
1914 * The transport layer peripheral doesn't have a target or
1915 * lun.
1916 */
1917 if (periph->path->target)
1918 cdm->matches[j].result.periph_result.target_id =
1919 periph->path->target->target_id;
1920 else
1921 cdm->matches[j].result.periph_result.target_id = -1;
1922
1923 if (periph->path->device)
1924 cdm->matches[j].result.periph_result.target_lun =
1925 periph->path->device->lun_id;
1926 else
1927 cdm->matches[j].result.periph_result.target_lun = -1;
1928
1929 cdm->matches[j].result.periph_result.unit_number =
1930 periph->unit_number;
1931 strncpy(cdm->matches[j].result.periph_result.periph_name,
1932 periph->periph_name, DEV_IDLEN);
1933 }
1934
1935 return(1);
1936}
1937
1938static int
1939xptperiphlistmatch(struct ccb_dev_match *cdm)
1940{
1941 int ret;
1942
1943 cdm->num_matches = 0;
1944
1945 /*
1946 * At this point in the edt traversal function, we check the bus
1947 * list generation to make sure that no busses have been added or
1948 * removed since the user last sent a XPT_DEV_MATCH ccb through.
1949 * For the peripheral driver list traversal function, however, we
1950 * don't have to worry about new peripheral driver types coming or
1951 * going; they're in a linker set, and therefore can't change
1952 * without a recompile.
1953 */
1954
1955 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1956 && (cdm->pos.cookie.pdrv != NULL))
1957 ret = xptpdrvtraverse(
1958 (struct periph_driver **)cdm->pos.cookie.pdrv,
1959 xptplistpdrvfunc, cdm);
1960 else
1961 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
1962
1963 /*
1964 * If we get back 0, that means that we had to stop before fully
1965 * traversing the peripheral driver tree. It also means that one of
1966 * the subroutines has set the status field to the proper value. If
1967 * we get back 1, we've fully traversed the EDT and copied out any
1968 * matching entries.
1969 */
1970 if (ret == 1)
1971 cdm->status = CAM_DEV_MATCH_LAST;
1972
1973 return(ret);
1974}
1975
1976static int
1977xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
1978{
1979 struct cam_eb *bus, *next_bus;
1980 int retval;
1981
1982 retval = 1;
1983
1984 mtx_lock(&xsoftc.xpt_topo_lock);
1985 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
1986 bus != NULL;
1987 bus = next_bus) {
1988 next_bus = TAILQ_NEXT(bus, links);
1989
1990 mtx_unlock(&xsoftc.xpt_topo_lock);
1991 CAM_SIM_LOCK(bus->sim);
1992 retval = tr_func(bus, arg);
1993 CAM_SIM_UNLOCK(bus->sim);
1994 if (retval == 0)
1995 return(retval);
1996 mtx_lock(&xsoftc.xpt_topo_lock);
1997 }
1998 mtx_unlock(&xsoftc.xpt_topo_lock);
1999
2000 return(retval);
2001}
2002
2003int
2004xpt_sim_opened(struct cam_sim *sim)
2005{
2006 struct cam_eb *bus;
2007 struct cam_et *target;
2008 struct cam_ed *device;
2009 struct cam_periph *periph;
2010
2011 KASSERT(sim->refcount >= 1, ("sim->refcount >= 1"));
2012 mtx_assert(sim->mtx, MA_OWNED);
2013
2014 mtx_lock(&xsoftc.xpt_topo_lock);
2015 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
2016 if (bus->sim != sim)
2017 continue;
2018
2019 TAILQ_FOREACH(target, &bus->et_entries, links) {
2020 TAILQ_FOREACH(device, &target->ed_entries, links) {
2021 SLIST_FOREACH(periph, &device->periphs,
2022 periph_links) {
2023 if (periph->refcount > 0) {
2024 mtx_unlock(&xsoftc.xpt_topo_lock);
2025 return (1);
2026 }
2027 }
2028 }
2029 }
2030 }
2031
2032 mtx_unlock(&xsoftc.xpt_topo_lock);
2033 return (0);
2034}
2035
2036static int
2037xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2038 xpt_targetfunc_t *tr_func, void *arg)
2039{
2040 struct cam_et *target, *next_target;
2041 int retval;
2042
2043 retval = 1;
2044 for (target = (start_target ? start_target :
2045 TAILQ_FIRST(&bus->et_entries));
2046 target != NULL; target = next_target) {
2047
2048 next_target = TAILQ_NEXT(target, links);
2049
2050 retval = tr_func(target, arg);
2051
2052 if (retval == 0)
2053 return(retval);
2054 }
2055
2056 return(retval);
2057}
2058
2059static int
2060xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2061 xpt_devicefunc_t *tr_func, void *arg)
2062{
2063 struct cam_ed *device, *next_device;
2064 int retval;
2065
2066 retval = 1;
2067 for (device = (start_device ? start_device :
2068 TAILQ_FIRST(&target->ed_entries));
2069 device != NULL;
2070 device = next_device) {
2071
2072 next_device = TAILQ_NEXT(device, links);
2073
2074 retval = tr_func(device, arg);
2075
2076 if (retval == 0)
2077 return(retval);
2078 }
2079
2080 return(retval);
2081}
2082
2083static int
2084xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2085 xpt_periphfunc_t *tr_func, void *arg)
2086{
2087 struct cam_periph *periph, *next_periph;
2088 int retval;
2089
2090 retval = 1;
2091
2092 for (periph = (start_periph ? start_periph :
2093 SLIST_FIRST(&device->periphs));
2094 periph != NULL;
2095 periph = next_periph) {
2096
2097 next_periph = SLIST_NEXT(periph, periph_links);
2098
2099 retval = tr_func(periph, arg);
2100 if (retval == 0)
2101 return(retval);
2102 }
2103
2104 return(retval);
2105}
2106
2107static int
2108xptpdrvtraverse(struct periph_driver **start_pdrv,
2109 xpt_pdrvfunc_t *tr_func, void *arg)
2110{
2111 struct periph_driver **pdrv;
2112 int retval;
2113
2114 retval = 1;
2115
2116 /*
2117 * We don't traverse the peripheral driver list like we do the
2118 * other lists, because it is a linker set, and therefore cannot be
2119 * changed during runtime. If the peripheral driver list is ever
2120 * re-done to be something other than a linker set (i.e. it can
2121 * change while the system is running), the list traversal should
2122 * be modified to work like the other traversal functions.
2123 */
2124 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2125 *pdrv != NULL; pdrv++) {
2126 retval = tr_func(pdrv, arg);
2127
2128 if (retval == 0)
2129 return(retval);
2130 }
2131
2132 return(retval);
2133}
2134
2135static int
2136xptpdperiphtraverse(struct periph_driver **pdrv,
2137 struct cam_periph *start_periph,
2138 xpt_periphfunc_t *tr_func, void *arg)
2139{
2140 struct cam_periph *periph, *next_periph;
2141 int retval;
2142
2143 retval = 1;
2144
2145 xpt_lock_buses();
2146 for (periph = (start_periph ? start_periph :
2147 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2148 periph = next_periph) {
2149
2150 next_periph = TAILQ_NEXT(periph, unit_links);
2151
2152 retval = tr_func(periph, arg);
2153 if (retval == 0) {
2154 xpt_unlock_buses();
2155 return(retval);
2156 }
2157 }
2158 xpt_unlock_buses();
2159 return(retval);
2160}
2161
2162static int
2163xptdefbusfunc(struct cam_eb *bus, void *arg)
2164{
2165 struct xpt_traverse_config *tr_config;
2166
2167 tr_config = (struct xpt_traverse_config *)arg;
2168
2169 if (tr_config->depth == XPT_DEPTH_BUS) {
2170 xpt_busfunc_t *tr_func;
2171
2172 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2173
2174 return(tr_func(bus, tr_config->tr_arg));
2175 } else
2176 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2177}
2178
2179static int
2180xptdeftargetfunc(struct cam_et *target, void *arg)
2181{
2182 struct xpt_traverse_config *tr_config;
2183
2184 tr_config = (struct xpt_traverse_config *)arg;
2185
2186 if (tr_config->depth == XPT_DEPTH_TARGET) {
2187 xpt_targetfunc_t *tr_func;
2188
2189 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2190
2191 return(tr_func(target, tr_config->tr_arg));
2192 } else
2193 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2194}
2195
2196static int
2197xptdefdevicefunc(struct cam_ed *device, void *arg)
2198{
2199 struct xpt_traverse_config *tr_config;
2200
2201 tr_config = (struct xpt_traverse_config *)arg;
2202
2203 if (tr_config->depth == XPT_DEPTH_DEVICE) {
2204 xpt_devicefunc_t *tr_func;
2205
2206 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2207
2208 return(tr_func(device, tr_config->tr_arg));
2209 } else
2210 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2211}
2212
2213static int
2214xptdefperiphfunc(struct cam_periph *periph, void *arg)
2215{
2216 struct xpt_traverse_config *tr_config;
2217 xpt_periphfunc_t *tr_func;
2218
2219 tr_config = (struct xpt_traverse_config *)arg;
2220
2221 tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2222
2223 /*
2224 * Unlike the other default functions, we don't check for depth
2225 * here. The peripheral driver level is the last level in the EDT,
2226 * so if we're here, we should execute the function in question.
2227 */
2228 return(tr_func(periph, tr_config->tr_arg));
2229}
2230
2231/*
2232 * Execute the given function for every bus in the EDT.
2233 */
2234static int
2235xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2236{
2237 struct xpt_traverse_config tr_config;
2238
2239 tr_config.depth = XPT_DEPTH_BUS;
2240 tr_config.tr_func = tr_func;
2241 tr_config.tr_arg = arg;
2242
2243 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2244}
2245
2246/*
2247 * Execute the given function for every device in the EDT.
2248 */
2249static int
2250xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2251{
2252 struct xpt_traverse_config tr_config;
2253
2254 tr_config.depth = XPT_DEPTH_DEVICE;
2255 tr_config.tr_func = tr_func;
2256 tr_config.tr_arg = arg;
2257
2258 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2259}
2260
2261static int
2262xptsetasyncfunc(struct cam_ed *device, void *arg)
2263{
2264 struct cam_path path;
2265 struct ccb_getdev cgd;
2266 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2267
2268 /*
2269 * Don't report unconfigured devices (Wildcard devs,
2270 * devices only for target mode, device instances
2271 * that have been invalidated but are waiting for
2272 * their last reference count to be released).
2273 */
2274 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2275 return (1);
2276
2277 xpt_compile_path(&path,
2278 NULL,
2279 device->target->bus->path_id,
2280 device->target->target_id,
2281 device->lun_id);
2282 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2283 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2284 xpt_action((union ccb *)&cgd);
2285 csa->callback(csa->callback_arg,
2286 AC_FOUND_DEVICE,
2287 &path, &cgd);
2288 xpt_release_path(&path);
2289
2290 return(1);
2291}
2292
2293static int
2294xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2295{
2296 struct cam_path path;
2297 struct ccb_pathinq cpi;
2298 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2299
2300 xpt_compile_path(&path, /*periph*/NULL,
2301 bus->sim->path_id,
2302 CAM_TARGET_WILDCARD,
2303 CAM_LUN_WILDCARD);
2304 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2305 cpi.ccb_h.func_code = XPT_PATH_INQ;
2306 xpt_action((union ccb *)&cpi);
2307 csa->callback(csa->callback_arg,
2308 AC_PATH_REGISTERED,
2309 &path, &cpi);
2310 xpt_release_path(&path);
2311
2312 return(1);
2313}
2314
2315void
2316xpt_action(union ccb *start_ccb)
2317{
2318
2319 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2320
2321 start_ccb->ccb_h.status = CAM_REQ_INPROG;
2322 /* Compatibility for RL-unaware code. */
2323 if (CAM_PRIORITY_TO_RL(start_ccb->ccb_h.pinfo.priority) == 0)
2324 start_ccb->ccb_h.pinfo.priority += CAM_PRIORITY_NORMAL - 1;
2325 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2326}
2327
2328void
2329xpt_action_default(union ccb *start_ccb)
2330{
2331
2332 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2333
2334 switch (start_ccb->ccb_h.func_code) {
2335 case XPT_SCSI_IO:
2336 {
2337 struct cam_ed *device;
2338#ifdef CAMDEBUG
2339 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2340 struct cam_path *path;
2341
2342 path = start_ccb->ccb_h.path;
2343#endif
2344
2345 /*
2346 * For the sake of compatibility with SCSI-1
2347 * devices that may not understand the identify
2348 * message, we include lun information in the
2349 * second byte of all commands. SCSI-1 specifies
2350 * that luns are a 3 bit value and reserves only 3
2351 * bits for lun information in the CDB. Later
2352 * revisions of the SCSI spec allow for more than 8
2353 * luns, but have deprecated lun information in the
2354 * CDB. So, if the lun won't fit, we must omit.
2355 *
2356 * Also be aware that during initial probing for devices,
2357 * the inquiry information is unknown but initialized to 0.
2358 * This means that this code will be exercised while probing
2359 * devices with an ANSI revision greater than 2.
2360 */
2361 device = start_ccb->ccb_h.path->device;
2362 if (device->protocol_version <= SCSI_REV_2
2363 && start_ccb->ccb_h.target_lun < 8
2364 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2365
2366 start_ccb->csio.cdb_io.cdb_bytes[1] |=
2367 start_ccb->ccb_h.target_lun << 5;
2368 }
2369 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2370 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2371 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2372 &path->device->inq_data),
2373 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2374 cdb_str, sizeof(cdb_str))));
2375 }
2376 /* FALLTHROUGH */
2377 case XPT_TARGET_IO:
2378 case XPT_CONT_TARGET_IO:
2379 start_ccb->csio.sense_resid = 0;
2380 start_ccb->csio.resid = 0;
2381 /* FALLTHROUGH */
2382 case XPT_ATA_IO:
2383 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) {
2384 start_ccb->ataio.resid = 0;
2385 }
2386 /* FALLTHROUGH */
2387 case XPT_RESET_DEV:
2388 case XPT_ENG_EXEC:
2389 {
2390 struct cam_path *path = start_ccb->ccb_h.path;
2391 int frozen;
2392
2393 frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2394 path->device->sim->devq->alloc_openings += frozen;
2395 if (frozen > 0)
2396 xpt_run_dev_allocq(path->bus);
2397 if (xpt_schedule_dev_sendq(path->bus, path->device))
2398 xpt_run_dev_sendq(path->bus);
2399 break;
2400 }
2401 case XPT_CALC_GEOMETRY:
2402 {
2403 struct cam_sim *sim;
2404
2405 /* Filter out garbage */
2406 if (start_ccb->ccg.block_size == 0
2407 || start_ccb->ccg.volume_size == 0) {
2408 start_ccb->ccg.cylinders = 0;
2409 start_ccb->ccg.heads = 0;
2410 start_ccb->ccg.secs_per_track = 0;
2411 start_ccb->ccb_h.status = CAM_REQ_CMP;
2412 break;
2413 }
2414#ifdef PC98
2415 /*
2416 * In a PC-98 system, geometry translation depens on
2417 * the "real" device geometry obtained from mode page 4.
2418 * SCSI geometry translation is performed in the
2419 * initialization routine of the SCSI BIOS and the result
2420 * stored in host memory. If the translation is available
2421 * in host memory, use it. If not, rely on the default
2422 * translation the device driver performs.
2423 */
2424 if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2425 start_ccb->ccb_h.status = CAM_REQ_CMP;
2426 break;
2427 }
2428#endif
2429 sim = start_ccb->ccb_h.path->bus->sim;
2430 (*(sim->sim_action))(sim, start_ccb);
2431 break;
2432 }
2433 case XPT_ABORT:
2434 {
2435 union ccb* abort_ccb;
2436
2437 abort_ccb = start_ccb->cab.abort_ccb;
2438 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2439
2440 if (abort_ccb->ccb_h.pinfo.index >= 0) {
2441 struct cam_ccbq *ccbq;
2442 struct cam_ed *device;
2443
2444 device = abort_ccb->ccb_h.path->device;
2445 ccbq = &device->ccbq;
2446 device->sim->devq->alloc_openings -=
2447 cam_ccbq_remove_ccb(ccbq, abort_ccb);
2448 abort_ccb->ccb_h.status =
2449 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2450 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2451 xpt_done(abort_ccb);
2452 start_ccb->ccb_h.status = CAM_REQ_CMP;
2453 break;
2454 }
2455 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2456 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2457 /*
2458 * We've caught this ccb en route to
2459 * the SIM. Flag it for abort and the
2460 * SIM will do so just before starting
2461 * real work on the CCB.
2462 */
2463 abort_ccb->ccb_h.status =
2464 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2465 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2466 start_ccb->ccb_h.status = CAM_REQ_CMP;
2467 break;
2468 }
2469 }
2470 if (XPT_FC_IS_QUEUED(abort_ccb)
2471 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2472 /*
2473 * It's already completed but waiting
2474 * for our SWI to get to it.
2475 */
2476 start_ccb->ccb_h.status = CAM_UA_ABORT;
2477 break;
2478 }
2479 /*
2480 * If we weren't able to take care of the abort request
2481 * in the XPT, pass the request down to the SIM for processing.
2482 */
2483 }
2484 /* FALLTHROUGH */
2485 case XPT_ACCEPT_TARGET_IO:
2486 case XPT_EN_LUN:
2487 case XPT_IMMED_NOTIFY:
2488 case XPT_NOTIFY_ACK:
2489 case XPT_RESET_BUS:
2490 case XPT_IMMEDIATE_NOTIFY:
2491 case XPT_NOTIFY_ACKNOWLEDGE:
2492 case XPT_GET_SIM_KNOB:
2493 case XPT_SET_SIM_KNOB:
2494 {
2495 struct cam_sim *sim;
2496
2497 sim = start_ccb->ccb_h.path->bus->sim;
2498 (*(sim->sim_action))(sim, start_ccb);
2499 break;
2500 }
2501 case XPT_PATH_INQ:
2502 {
2503 struct cam_sim *sim;
2504
2505 sim = start_ccb->ccb_h.path->bus->sim;
2506 (*(sim->sim_action))(sim, start_ccb);
2507 break;
2508 }
2509 case XPT_PATH_STATS:
2510 start_ccb->cpis.last_reset =
2511 start_ccb->ccb_h.path->bus->last_reset;
2512 start_ccb->ccb_h.status = CAM_REQ_CMP;
2513 break;
2514 case XPT_GDEV_TYPE:
2515 {
2516 struct cam_ed *dev;
2517
2518 dev = start_ccb->ccb_h.path->device;
2519 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2520 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2521 } else {
2522 struct ccb_getdev *cgd;
2523 struct cam_eb *bus;
2524 struct cam_et *tar;
2525
2526 cgd = &start_ccb->cgd;
2527 bus = cgd->ccb_h.path->bus;
2528 tar = cgd->ccb_h.path->target;
2529 cgd->protocol = dev->protocol;
2530 cgd->inq_data = dev->inq_data;
2531 cgd->ident_data = dev->ident_data;
2532 cgd->inq_flags = dev->inq_flags;
2533 cgd->ccb_h.status = CAM_REQ_CMP;
2534 cgd->serial_num_len = dev->serial_num_len;
2535 if ((dev->serial_num_len > 0)
2536 && (dev->serial_num != NULL))
2537 bcopy(dev->serial_num, cgd->serial_num,
2538 dev->serial_num_len);
2539 }
2540 break;
2541 }
2542 case XPT_GDEV_STATS:
2543 {
2544 struct cam_ed *dev;
2545
2546 dev = start_ccb->ccb_h.path->device;
2547 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2548 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2549 } else {
2550 struct ccb_getdevstats *cgds;
2551 struct cam_eb *bus;
2552 struct cam_et *tar;
2553
2554 cgds = &start_ccb->cgds;
2555 bus = cgds->ccb_h.path->bus;
2556 tar = cgds->ccb_h.path->target;
2557 cgds->dev_openings = dev->ccbq.dev_openings;
2558 cgds->dev_active = dev->ccbq.dev_active;
2559 cgds->devq_openings = dev->ccbq.devq_openings;
2560 cgds->devq_queued = dev->ccbq.queue.entries;
2561 cgds->held = dev->ccbq.held;
2562 cgds->last_reset = tar->last_reset;
2563 cgds->maxtags = dev->maxtags;
2564 cgds->mintags = dev->mintags;
2565 if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2566 cgds->last_reset = bus->last_reset;
2567 cgds->ccb_h.status = CAM_REQ_CMP;
2568 }
2569 break;
2570 }
2571 case XPT_GDEVLIST:
2572 {
2573 struct cam_periph *nperiph;
2574 struct periph_list *periph_head;
2575 struct ccb_getdevlist *cgdl;
2576 u_int i;
2577 struct cam_ed *device;
2578 int found;
2579
2580
2581 found = 0;
2582
2583 /*
2584 * Don't want anyone mucking with our data.
2585 */
2586 device = start_ccb->ccb_h.path->device;
2587 periph_head = &device->periphs;
2588 cgdl = &start_ccb->cgdl;
2589
2590 /*
2591 * Check and see if the list has changed since the user
2592 * last requested a list member. If so, tell them that the
2593 * list has changed, and therefore they need to start over
2594 * from the beginning.
2595 */
2596 if ((cgdl->index != 0) &&
2597 (cgdl->generation != device->generation)) {
2598 cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2599 break;
2600 }
2601
2602 /*
2603 * Traverse the list of peripherals and attempt to find
2604 * the requested peripheral.
2605 */
2606 for (nperiph = SLIST_FIRST(periph_head), i = 0;
2607 (nperiph != NULL) && (i <= cgdl->index);
2608 nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2609 if (i == cgdl->index) {
2610 strncpy(cgdl->periph_name,
2611 nperiph->periph_name,
2612 DEV_IDLEN);
2613 cgdl->unit_number = nperiph->unit_number;
2614 found = 1;
2615 }
2616 }
2617 if (found == 0) {
2618 cgdl->status = CAM_GDEVLIST_ERROR;
2619 break;
2620 }
2621
2622 if (nperiph == NULL)
2623 cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2624 else
2625 cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2626
2627 cgdl->index++;
2628 cgdl->generation = device->generation;
2629
2630 cgdl->ccb_h.status = CAM_REQ_CMP;
2631 break;
2632 }
2633 case XPT_DEV_MATCH:
2634 {
2635 dev_pos_type position_type;
2636 struct ccb_dev_match *cdm;
2637
2638 cdm = &start_ccb->cdm;
2639
2640 /*
2641 * There are two ways of getting at information in the EDT.
2642 * The first way is via the primary EDT tree. It starts
2643 * with a list of busses, then a list of targets on a bus,
2644 * then devices/luns on a target, and then peripherals on a
2645 * device/lun. The "other" way is by the peripheral driver
2646 * lists. The peripheral driver lists are organized by
2647 * peripheral driver. (obviously) So it makes sense to
2648 * use the peripheral driver list if the user is looking
2649 * for something like "da1", or all "da" devices. If the
2650 * user is looking for something on a particular bus/target
2651 * or lun, it's generally better to go through the EDT tree.
2652 */
2653
2654 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2655 position_type = cdm->pos.position_type;
2656 else {
2657 u_int i;
2658
2659 position_type = CAM_DEV_POS_NONE;
2660
2661 for (i = 0; i < cdm->num_patterns; i++) {
2662 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2663 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2664 position_type = CAM_DEV_POS_EDT;
2665 break;
2666 }
2667 }
2668
2669 if (cdm->num_patterns == 0)
2670 position_type = CAM_DEV_POS_EDT;
2671 else if (position_type == CAM_DEV_POS_NONE)
2672 position_type = CAM_DEV_POS_PDRV;
2673 }
2674
2675 switch(position_type & CAM_DEV_POS_TYPEMASK) {
2676 case CAM_DEV_POS_EDT:
2677 xptedtmatch(cdm);
2678 break;
2679 case CAM_DEV_POS_PDRV:
2680 xptperiphlistmatch(cdm);
2681 break;
2682 default:
2683 cdm->status = CAM_DEV_MATCH_ERROR;
2684 break;
2685 }
2686
2687 if (cdm->status == CAM_DEV_MATCH_ERROR)
2688 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2689 else
2690 start_ccb->ccb_h.status = CAM_REQ_CMP;
2691
2692 break;
2693 }
2694 case XPT_SASYNC_CB:
2695 {
2696 struct ccb_setasync *csa;
2697 struct async_node *cur_entry;
2698 struct async_list *async_head;
2699 u_int32_t added;
2700
2701 csa = &start_ccb->csa;
2702 added = csa->event_enable;
2703 async_head = &csa->ccb_h.path->device->asyncs;
2704
2705 /*
2706 * If there is already an entry for us, simply
2707 * update it.
2708 */
2709 cur_entry = SLIST_FIRST(async_head);
2710 while (cur_entry != NULL) {
2711 if ((cur_entry->callback_arg == csa->callback_arg)
2712 && (cur_entry->callback == csa->callback))
2713 break;
2714 cur_entry = SLIST_NEXT(cur_entry, links);
2715 }
2716
2717 if (cur_entry != NULL) {
2718 /*
2719 * If the request has no flags set,
2720 * remove the entry.
2721 */
2722 added &= ~cur_entry->event_enable;
2723 if (csa->event_enable == 0) {
2724 SLIST_REMOVE(async_head, cur_entry,
2725 async_node, links);
2726 xpt_release_device(csa->ccb_h.path->device);
2727 free(cur_entry, M_CAMXPT);
2728 } else {
2729 cur_entry->event_enable = csa->event_enable;
2730 }
2731 csa->event_enable = added;
2732 } else {
2733 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2734 M_NOWAIT);
2735 if (cur_entry == NULL) {
2736 csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2737 break;
2738 }
2739 cur_entry->event_enable = csa->event_enable;
2740 cur_entry->callback_arg = csa->callback_arg;
2741 cur_entry->callback = csa->callback;
2742 SLIST_INSERT_HEAD(async_head, cur_entry, links);
2743 xpt_acquire_device(csa->ccb_h.path->device);
2744 }
2745 start_ccb->ccb_h.status = CAM_REQ_CMP;
2746 break;
2747 }
2748 case XPT_REL_SIMQ:
2749 {
2750 struct ccb_relsim *crs;
2751 struct cam_ed *dev;
2752
2753 crs = &start_ccb->crs;
2754 dev = crs->ccb_h.path->device;
2755 if (dev == NULL) {
2756
2757 crs->ccb_h.status = CAM_DEV_NOT_THERE;
2758 break;
2759 }
2760
2761 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2762
2763 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
2764 /* Don't ever go below one opening */
2765 if (crs->openings > 0) {
2766 xpt_dev_ccbq_resize(crs->ccb_h.path,
2767 crs->openings);
2768
2769 if (bootverbose) {
2770 xpt_print(crs->ccb_h.path,
2771 "tagged openings now %d\n",
2772 crs->openings);
2773 }
2774 }
2775 }
2776 }
2777
2778 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2779
2780 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2781
2782 /*
2783 * Just extend the old timeout and decrement
2784 * the freeze count so that a single timeout
2785 * is sufficient for releasing the queue.
2786 */
2787 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2788 callout_stop(&dev->callout);
2789 } else {
2790
2791 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2792 }
2793
2794 callout_reset(&dev->callout,
2795 (crs->release_timeout * hz) / 1000,
2796 xpt_release_devq_timeout, dev);
2797
2798 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2799
2800 }
2801
2802 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2803
2804 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2805 /*
2806 * Decrement the freeze count so that a single
2807 * completion is still sufficient to unfreeze
2808 * the queue.
2809 */
2810 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2811 } else {
2812
2813 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2814 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2815 }
2816 }
2817
2818 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2819
2820 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2821 || (dev->ccbq.dev_active == 0)) {
2822
2823 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2824 } else {
2825
2826 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2827 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2828 }
2829 }
2830
2831 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
2832 xpt_release_devq_rl(crs->ccb_h.path, /*runlevel*/
2833 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2834 crs->release_timeout : 0,
2835 /*count*/1, /*run_queue*/TRUE);
2836 }
2837 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0];
2838 start_ccb->ccb_h.status = CAM_REQ_CMP;
2839 break;
2840 }
2841 case XPT_DEBUG: {
2842#ifdef CAMDEBUG
2843#ifdef CAM_DEBUG_DELAY
2844 cam_debug_delay = CAM_DEBUG_DELAY;
2845#endif
2846 cam_dflags = start_ccb->cdbg.flags;
2847 if (cam_dpath != NULL) {
2848 xpt_free_path(cam_dpath);
2849 cam_dpath = NULL;
2850 }
2851
2852 if (cam_dflags != CAM_DEBUG_NONE) {
2853 if (xpt_create_path(&cam_dpath, xpt_periph,
2854 start_ccb->ccb_h.path_id,
2855 start_ccb->ccb_h.target_id,
2856 start_ccb->ccb_h.target_lun) !=
2857 CAM_REQ_CMP) {
2858 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2859 cam_dflags = CAM_DEBUG_NONE;
2860 } else {
2861 start_ccb->ccb_h.status = CAM_REQ_CMP;
2862 xpt_print(cam_dpath, "debugging flags now %x\n",
2863 cam_dflags);
2864 }
2865 } else {
2866 cam_dpath = NULL;
2867 start_ccb->ccb_h.status = CAM_REQ_CMP;
2868 }
2869#else /* !CAMDEBUG */
2870 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2871#endif /* CAMDEBUG */
2872 break;
2873 }
2874 case XPT_FREEZE_QUEUE:
2875 {
2876 struct ccb_relsim *crs = &start_ccb->crs;
2877
2878 xpt_freeze_devq_rl(crs->ccb_h.path, /*runlevel*/
2879 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2880 crs->release_timeout : 0, /*count*/1);
2881 start_ccb->ccb_h.status = CAM_REQ_CMP;
2882 break;
2883 }
2884 case XPT_NOOP:
2885 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2886 xpt_freeze_devq(start_ccb->ccb_h.path, 1);
2887 start_ccb->ccb_h.status = CAM_REQ_CMP;
2888 break;
2889 default:
2890 case XPT_SDEV_TYPE:
2891 case XPT_TERM_IO:
2892 case XPT_ENG_INQ:
2893 /* XXX Implement */
2894 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2895 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2896 xpt_done(start_ccb);
2897 }
2898 break;
2899 }
2900}
2901
2902void
2903xpt_polled_action(union ccb *start_ccb)
2904{
2905 u_int32_t timeout;
2906 struct cam_sim *sim;
2907 struct cam_devq *devq;
2908 struct cam_ed *dev;
2909
2910
2911 timeout = start_ccb->ccb_h.timeout * 10;
2912 sim = start_ccb->ccb_h.path->bus->sim;
2913 devq = sim->devq;
2914 dev = start_ccb->ccb_h.path->device;
2915
2916 mtx_assert(sim->mtx, MA_OWNED);
2917
2918 /*
2919 * Steal an opening so that no other queued requests
2920 * can get it before us while we simulate interrupts.
2921 */
2922 dev->ccbq.devq_openings--;
2923 dev->ccbq.dev_openings--;
2924
2925 while(((devq != NULL && devq->send_openings <= 0) ||
2926 dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
2927 DELAY(100);
2928 (*(sim->sim_poll))(sim);
2929 camisr_runqueue(&sim->sim_doneq);
2930 }
2931
2932 dev->ccbq.devq_openings++;
2933 dev->ccbq.dev_openings++;
2934
2935 if (timeout != 0) {
2936 xpt_action(start_ccb);
2937 while(--timeout > 0) {
2938 (*(sim->sim_poll))(sim);
2939 camisr_runqueue(&sim->sim_doneq);
2940 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
2941 != CAM_REQ_INPROG)
2942 break;
2943 DELAY(100);
2944 }
2945 if (timeout == 0) {
2946 /*
2947 * XXX Is it worth adding a sim_timeout entry
2948 * point so we can attempt recovery? If
2949 * this is only used for dumps, I don't think
2950 * it is.
2951 */
2952 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
2953 }
2954 } else {
2955 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2956 }
2957}
2958
2959/*
2960 * Schedule a peripheral driver to receive a ccb when it's
2961 * target device has space for more transactions.
2962 */
2963void
2964xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
2965{
2966 struct cam_ed *device;
2967 int runq = 0;
2968
2969 mtx_assert(perph->sim->mtx, MA_OWNED);
2970
2971 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
2972 device = perph->path->device;
2973 if (periph_is_queued(perph)) {
2974 /* Simply reorder based on new priority */
2975 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
2976 (" change priority to %d\n", new_priority));
2977 if (new_priority < perph->pinfo.priority) {
2978 camq_change_priority(&device->drvq,
2979 perph->pinfo.index,
2980 new_priority);
2981 runq = xpt_schedule_dev_allocq(perph->path->bus, device);
2982 }
2983 } else {
2984 /* New entry on the queue */
2985 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
2986 (" added periph to queue\n"));
2987 perph->pinfo.priority = new_priority;
2988 perph->pinfo.generation = ++device->drvq.generation;
2989 camq_insert(&device->drvq, &perph->pinfo);
2990 runq = xpt_schedule_dev_allocq(perph->path->bus, device);
2991 }
2992 if (runq != 0) {
2993 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
2994 (" calling xpt_run_devq\n"));
2995 xpt_run_dev_allocq(perph->path->bus);
2996 }
2997}
2998
2999
3000/*
3001 * Schedule a device to run on a given queue.
3002 * If the device was inserted as a new entry on the queue,
3003 * return 1 meaning the device queue should be run. If we
3004 * were already queued, implying someone else has already
3005 * started the queue, return 0 so the caller doesn't attempt
3006 * to run the queue.
3007 */
3008int
3009xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3010 u_int32_t new_priority)
3011{
3012 int retval;
3013 u_int32_t old_priority;
3014
3015 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3016
3017 old_priority = pinfo->priority;
3018
3019 /*
3020 * Are we already queued?
3021 */
3022 if (pinfo->index != CAM_UNQUEUED_INDEX) {
3023 /* Simply reorder based on new priority */
3024 if (new_priority < old_priority) {
3025 camq_change_priority(queue, pinfo->index,
3026 new_priority);
3027 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3028 ("changed priority to %d\n",
3029 new_priority));
3030 retval = 1;
3031 } else
3032 retval = 0;
3033 } else {
3034 /* New entry on the queue */
3035 if (new_priority < old_priority)
3036 pinfo->priority = new_priority;
3037
3038 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3039 ("Inserting onto queue\n"));
3040 pinfo->generation = ++queue->generation;
3041 camq_insert(queue, pinfo);
3042 retval = 1;
3043 }
3044 return (retval);
3045}
3046
3047static void
3048xpt_run_dev_allocq(struct cam_eb *bus)
3049{
3050 struct cam_devq *devq;
3051
3052 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3053 devq = bus->sim->devq;
3054
3055 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3056 (" qfrozen_cnt == 0x%x, entries == %d, "
3057 "openings == %d, active == %d\n",
3058 devq->alloc_queue.qfrozen_cnt[0],
3059 devq->alloc_queue.entries,
3060 devq->alloc_openings,
3061 devq->alloc_active));
3062
3063 devq->alloc_queue.qfrozen_cnt[0]++;
3064 while ((devq->alloc_queue.entries > 0)
3065 && (devq->alloc_openings > 0)
3066 && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) {
3067 struct cam_ed_qinfo *qinfo;
3068 struct cam_ed *device;
3069 union ccb *work_ccb;
3070 struct cam_periph *drv;
3071 struct camq *drvq;
3072
3073 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3074 CAMQ_HEAD);
3075 device = qinfo->device;
3076 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3077 ("running device %p\n", device));
3078
3079 drvq = &device->drvq;
3080
3081#ifdef CAMDEBUG
3082 if (drvq->entries <= 0) {
3083 panic("xpt_run_dev_allocq: "
3084 "Device on queue without any work to do");
3085 }
3086#endif
3087 if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3088 devq->alloc_openings--;
3089 devq->alloc_active++;
3090 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3091 xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3092 drv->pinfo.priority);
3093 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3094 ("calling periph start\n"));
3095 drv->periph_start(drv, work_ccb);
3096 } else {
3097 /*
3098 * Malloc failure in alloc_ccb
3099 */
3100 /*
3101 * XXX add us to a list to be run from free_ccb
3102 * if we don't have any ccbs active on this
3103 * device queue otherwise we may never get run
3104 * again.
3105 */
3106 break;
3107 }
3108
3109 /* We may have more work. Attempt to reschedule. */
3110 xpt_schedule_dev_allocq(bus, device);
3111 }
3112 devq->alloc_queue.qfrozen_cnt[0]--;
3113}
3114
3115static void
3116xpt_run_dev_sendq(struct cam_eb *bus)
3117{
3118 struct cam_devq *devq;
3119
3120 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3121
3122 devq = bus->sim->devq;
3123
3124 devq->send_queue.qfrozen_cnt[0]++;
3125 while ((devq->send_queue.entries > 0)
3126 && (devq->send_openings > 0)
3127 && (devq->send_queue.qfrozen_cnt[0] <= 1)) {
3128 struct cam_ed_qinfo *qinfo;
3129 struct cam_ed *device;
3130 union ccb *work_ccb;
3131 struct cam_sim *sim;
3132
3133 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3134 CAMQ_HEAD);
3135 device = qinfo->device;
3136 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3137 ("running device %p\n", device));
3138
3139 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3140 if (work_ccb == NULL) {
3141 printf("device on run queue with no ccbs???\n");
3142 continue;
3143 }
3144
3145 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3146
3147 mtx_lock(&xsoftc.xpt_lock);
3148 if (xsoftc.num_highpower <= 0) {
3149 /*
3150 * We got a high power command, but we
3151 * don't have any available slots. Freeze
3152 * the device queue until we have a slot
3153 * available.
3154 */
3155 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3156 STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3157 &work_ccb->ccb_h,
3158 xpt_links.stqe);
3159
3160 mtx_unlock(&xsoftc.xpt_lock);
3161 continue;
3162 } else {
3163 /*
3164 * Consume a high power slot while
3165 * this ccb runs.
3166 */
3167 xsoftc.num_highpower--;
3168 }
3169 mtx_unlock(&xsoftc.xpt_lock);
3170 }
3171 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3172 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3173
3174 devq->send_openings--;
3175 devq->send_active++;
3176
3177 xpt_schedule_dev_sendq(bus, device);
3178
3179 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3180 /*
3181 * The client wants to freeze the queue
3182 * after this CCB is sent.
3183 */
3184 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3185 }
3186
3187 /* In Target mode, the peripheral driver knows best... */
3188 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3189 if ((device->inq_flags & SID_CmdQue) != 0
3190 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3191 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3192 else
3193 /*
3194 * Clear this in case of a retried CCB that
3195 * failed due to a rejected tag.
3196 */
3197 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3198 }
3199
3200 /*
3201 * Device queues can be shared among multiple sim instances
3202 * that reside on different busses. Use the SIM in the queue
3203 * CCB's path, rather than the one in the bus that was passed
3204 * into this function.
3205 */
3206 sim = work_ccb->ccb_h.path->bus->sim;
3207 (*(sim->sim_action))(sim, work_ccb);
3208 }
3209 devq->send_queue.qfrozen_cnt[0]--;
3210}
3211
3212/*
3213 * This function merges stuff from the slave ccb into the master ccb, while
3214 * keeping important fields in the master ccb constant.
3215 */
3216void
3217xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3218{
3219
3220 /*
3221 * Pull fields that are valid for peripheral drivers to set
3222 * into the master CCB along with the CCB "payload".
3223 */
3224 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3225 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3226 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3227 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3228 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3229 sizeof(union ccb) - sizeof(struct ccb_hdr));
3230}
3231
3232void
3233xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3234{
3235
3236 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3237 ccb_h->pinfo.priority = priority;
3238 ccb_h->path = path;
3239 ccb_h->path_id = path->bus->path_id;
3240 if (path->target)
3241 ccb_h->target_id = path->target->target_id;
3242 else
3243 ccb_h->target_id = CAM_TARGET_WILDCARD;
3244 if (path->device) {
3245 ccb_h->target_lun = path->device->lun_id;
3246 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3247 } else {
3248 ccb_h->target_lun = CAM_TARGET_WILDCARD;
3249 }
3250 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3251 ccb_h->flags = 0;
3252}
3253
3254/* Path manipulation functions */
3255cam_status
3256xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3257 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3258{
3259 struct cam_path *path;
3260 cam_status status;
3261
3262 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3263
3264 if (path == NULL) {
3265 status = CAM_RESRC_UNAVAIL;
3266 return(status);
3267 }
3268 status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3269 if (status != CAM_REQ_CMP) {
3270 free(path, M_CAMXPT);
3271 path = NULL;
3272 }
3273 *new_path_ptr = path;
3274 return (status);
3275}
3276
3277cam_status
3278xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3279 struct cam_periph *periph, path_id_t path_id,
3280 target_id_t target_id, lun_id_t lun_id)
3281{
3282 struct cam_path *path;
3283 struct cam_eb *bus = NULL;
3284 cam_status status;
3285 int need_unlock = 0;
3286
3287 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3288
3289 if (path_id != CAM_BUS_WILDCARD) {
3290 bus = xpt_find_bus(path_id);
3291 if (bus != NULL) {
3292 need_unlock = 1;
3293 CAM_SIM_LOCK(bus->sim);
3294 }
3295 }
3296 status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3297 if (need_unlock)
3298 CAM_SIM_UNLOCK(bus->sim);
3299 if (status != CAM_REQ_CMP) {
3300 free(path, M_CAMXPT);
3301 path = NULL;
3302 }
3303 *new_path_ptr = path;
3304 return (status);
3305}
3306
3307cam_status
3308xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3309 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3310{
3311 struct cam_eb *bus;
3312 struct cam_et *target;
3313 struct cam_ed *device;
3314 cam_status status;
3315
3316 status = CAM_REQ_CMP; /* Completed without error */
3317 target = NULL; /* Wildcarded */
3318 device = NULL; /* Wildcarded */
3319
3320 /*
3321 * We will potentially modify the EDT, so block interrupts
3322 * that may attempt to create cam paths.
3323 */
3324 bus = xpt_find_bus(path_id);
3325 if (bus == NULL) {
3326 status = CAM_PATH_INVALID;
3327 } else {
3328 target = xpt_find_target(bus, target_id);
3329 if (target == NULL) {
3330 /* Create one */
3331 struct cam_et *new_target;
3332
3333 new_target = xpt_alloc_target(bus, target_id);
3334 if (new_target == NULL) {
3335 status = CAM_RESRC_UNAVAIL;
3336 } else {
3337 target = new_target;
3338 }
3339 }
3340 if (target != NULL) {
3341 device = xpt_find_device(target, lun_id);
3342 if (device == NULL) {
3343 /* Create one */
3344 struct cam_ed *new_device;
3345
3346 new_device =
3347 (*(bus->xport->alloc_device))(bus,
3348 target,
3349 lun_id);
3350 if (new_device == NULL) {
3351 status = CAM_RESRC_UNAVAIL;
3352 } else {
3353 device = new_device;
3354 }
3355 }
3356 }
3357 }
3358
3359 /*
3360 * Only touch the user's data if we are successful.
3361 */
3362 if (status == CAM_REQ_CMP) {
3363 new_path->periph = perph;
3364 new_path->bus = bus;
3365 new_path->target = target;
3366 new_path->device = device;
3367 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3368 } else {
3369 if (device != NULL)
3370 xpt_release_device(device);
3371 if (target != NULL)
3372 xpt_release_target(target);
3373 if (bus != NULL)
3374 xpt_release_bus(bus);
3375 }
3376 return (status);
3377}
3378
3379void
3380xpt_release_path(struct cam_path *path)
3381{
3382 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3383 if (path->device != NULL) {
3384 xpt_release_device(path->device);
3385 path->device = NULL;
3386 }
3387 if (path->target != NULL) {
3388 xpt_release_target(path->target);
3389 path->target = NULL;
3390 }
3391 if (path->bus != NULL) {
3392 xpt_release_bus(path->bus);
3393 path->bus = NULL;
3394 }
3395}
3396
3397void
3398xpt_free_path(struct cam_path *path)
3399{
3400
3401 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3402 xpt_release_path(path);
3403 free(path, M_CAMXPT);
3404}
3405
3406
3407/*
3408 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3409 * in path1, 2 for match with wildcards in path2.
3410 */
3411int
3412xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3413{
3414 int retval = 0;
3415
3416 if (path1->bus != path2->bus) {
3417 if (path1->bus->path_id == CAM_BUS_WILDCARD)
3418 retval = 1;
3419 else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3420 retval = 2;
3421 else
3422 return (-1);
3423 }
3424 if (path1->target != path2->target) {
3425 if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3426 if (retval == 0)
3427 retval = 1;
3428 } else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3429 retval = 2;
3430 else
3431 return (-1);
3432 }
3433 if (path1->device != path2->device) {
3434 if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3435 if (retval == 0)
3436 retval = 1;
3437 } else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3438 retval = 2;
3439 else
3440 return (-1);
3441 }
3442 return (retval);
3443}
3444
3445void
3446xpt_print_path(struct cam_path *path)
3447{
3448
3449 if (path == NULL)
3450 printf("(nopath): ");
3451 else {
3452 if (path->periph != NULL)
3453 printf("(%s%d:", path->periph->periph_name,
3454 path->periph->unit_number);
3455 else
3456 printf("(noperiph:");
3457
3458 if (path->bus != NULL)
3459 printf("%s%d:%d:", path->bus->sim->sim_name,
3460 path->bus->sim->unit_number,
3461 path->bus->sim->bus_id);
3462 else
3463 printf("nobus:");
3464
3465 if (path->target != NULL)
3466 printf("%d:", path->target->target_id);
3467 else
3468 printf("X:");
3469
3470 if (path->device != NULL)
3471 printf("%d): ", path->device->lun_id);
3472 else
3473 printf("X): ");
3474 }
3475}
3476
3477void
3478xpt_print(struct cam_path *path, const char *fmt, ...)
3479{
3480 va_list ap;
3481 xpt_print_path(path);
3482 va_start(ap, fmt);
3483 vprintf(fmt, ap);
3484 va_end(ap);
3485}
3486
3487int
3488xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3489{
3490 struct sbuf sb;
3491
3492#ifdef INVARIANTS
3493 if (path != NULL && path->bus != NULL)
3494 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3495#endif
3496
3497 sbuf_new(&sb, str, str_len, 0);
3498
3499 if (path == NULL)
3500 sbuf_printf(&sb, "(nopath): ");
3501 else {
3502 if (path->periph != NULL)
3503 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3504 path->periph->unit_number);
3505 else
3506 sbuf_printf(&sb, "(noperiph:");
3507
3508 if (path->bus != NULL)
3509 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3510 path->bus->sim->unit_number,
3511 path->bus->sim->bus_id);
3512 else
3513 sbuf_printf(&sb, "nobus:");
3514
3515 if (path->target != NULL)
3516 sbuf_printf(&sb, "%d:", path->target->target_id);
3517 else
3518 sbuf_printf(&sb, "X:");
3519
3520 if (path->device != NULL)
3521 sbuf_printf(&sb, "%d): ", path->device->lun_id);
3522 else
3523 sbuf_printf(&sb, "X): ");
3524 }
3525 sbuf_finish(&sb);
3526
3527 return(sbuf_len(&sb));
3528}
3529
3530path_id_t
3531xpt_path_path_id(struct cam_path *path)
3532{
3533 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3534
3535 return(path->bus->path_id);
3536}
3537
3538target_id_t
3539xpt_path_target_id(struct cam_path *path)
3540{
3541 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3542
3543 if (path->target != NULL)
3544 return (path->target->target_id);
3545 else
3546 return (CAM_TARGET_WILDCARD);
3547}
3548
3549lun_id_t
3550xpt_path_lun_id(struct cam_path *path)
3551{
3552 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3553
3554 if (path->device != NULL)
3555 return (path->device->lun_id);
3556 else
3557 return (CAM_LUN_WILDCARD);
3558}
3559
3560struct cam_sim *
3561xpt_path_sim(struct cam_path *path)
3562{
3563
3564 return (path->bus->sim);
3565}
3566
3567struct cam_periph*
3568xpt_path_periph(struct cam_path *path)
3569{
3570 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3571
3572 return (path->periph);
3573}
3574
3575/*
3576 * Release a CAM control block for the caller. Remit the cost of the structure
3577 * to the device referenced by the path. If the this device had no 'credits'
3578 * and peripheral drivers have registered async callbacks for this notification
3579 * call them now.
3580 */
3581void
3582xpt_release_ccb(union ccb *free_ccb)
3583{
3584 struct cam_path *path;
3585 struct cam_ed *device;
3586 struct cam_eb *bus;
3587 struct cam_sim *sim;
3588
3589 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3590 path = free_ccb->ccb_h.path;
3591 device = path->device;
3592 bus = path->bus;
3593 sim = bus->sim;
3594
3595 mtx_assert(sim->mtx, MA_OWNED);
3596
3597 cam_ccbq_release_opening(&device->ccbq);
3598 if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) {
3599 device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
3600 cam_ccbq_resize(&device->ccbq,
3601 device->ccbq.dev_openings + device->ccbq.dev_active);
3602 }
3603 if (sim->ccb_count > sim->max_ccbs) {
3604 xpt_free_ccb(free_ccb);
3605 sim->ccb_count--;
3606 } else {
3607 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3608 xpt_links.sle);
3609 }
3610 if (sim->devq == NULL) {
3611 return;
3612 }
3613 sim->devq->alloc_openings++;
3614 sim->devq->alloc_active--;
3615 if (device_is_alloc_queued(device) == 0)
3616 xpt_schedule_dev_allocq(bus, device);
3617 xpt_run_dev_allocq(bus);
3618}
3619
3620/* Functions accessed by SIM drivers */
3621
3622static struct xpt_xport xport_default = {
3623 .alloc_device = xpt_alloc_device_default,
3624 .action = xpt_action_default,
3625 .async = xpt_dev_async_default,
3626};
3627
3628/*
3629 * A sim structure, listing the SIM entry points and instance
3630 * identification info is passed to xpt_bus_register to hook the SIM
3631 * into the CAM framework. xpt_bus_register creates a cam_eb entry
3632 * for this new bus and places it in the array of busses and assigns
3633 * it a path_id. The path_id may be influenced by "hard wiring"
3634 * information specified by the user. Once interrupt services are
3635 * available, the bus will be probed.
3636 */
3637int32_t
3638xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3639{
3640 struct cam_eb *new_bus;
3641 struct cam_eb *old_bus;
3642 struct ccb_pathinq cpi;
3643 struct cam_path *path;
3644 cam_status status;
3645
3646 mtx_assert(sim->mtx, MA_OWNED);
3647
3648 sim->bus_id = bus;
3649 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3650 M_CAMXPT, M_NOWAIT);
3651 if (new_bus == NULL) {
3652 /* Couldn't satisfy request */
3653 return (CAM_RESRC_UNAVAIL);
3654 }
3655 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3656 if (path == NULL) {
3657 free(new_bus, M_CAMXPT);
3658 return (CAM_RESRC_UNAVAIL);
3659 }
3660
3661 if (strcmp(sim->sim_name, "xpt") != 0) {
3662 sim->path_id =
3663 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3664 }
3665
3666 TAILQ_INIT(&new_bus->et_entries);
3667 new_bus->path_id = sim->path_id;
3668 cam_sim_hold(sim);
3669 new_bus->sim = sim;
3670 timevalclear(&new_bus->last_reset);
3671 new_bus->flags = 0;
3672 new_bus->refcount = 1; /* Held until a bus_deregister event */
3673 new_bus->generation = 0;
3674
3675 mtx_lock(&xsoftc.xpt_topo_lock);
3676 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3677 while (old_bus != NULL
3678 && old_bus->path_id < new_bus->path_id)
3679 old_bus = TAILQ_NEXT(old_bus, links);
3680 if (old_bus != NULL)
3681 TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3682 else
3683 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3684 xsoftc.bus_generation++;
3685 mtx_unlock(&xsoftc.xpt_topo_lock);
3686
3687 /*
3688 * Set a default transport so that a PATH_INQ can be issued to
3689 * the SIM. This will then allow for probing and attaching of
3690 * a more appropriate transport.
3691 */
3692 new_bus->xport = &xport_default;
3693
3694 status = xpt_compile_path(path, /*periph*/NULL, sim->path_id,
3695 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3696 if (status != CAM_REQ_CMP)
3697 printf("xpt_compile_path returned %d\n", status);
3698
3699 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3700 cpi.ccb_h.func_code = XPT_PATH_INQ;
3701 xpt_action((union ccb *)&cpi);
3702
3703 if (cpi.ccb_h.status == CAM_REQ_CMP) {
3704 switch (cpi.transport) {
3705 case XPORT_SPI:
3706 case XPORT_SAS:
3707 case XPORT_FC:
3708 case XPORT_USB:
3709 case XPORT_ISCSI:
3710 case XPORT_PPB:
3711 new_bus->xport = scsi_get_xport();
3712 break;
3713 case XPORT_ATA:
3714 case XPORT_SATA:
3715 new_bus->xport = ata_get_xport();
3716 break;
3717 default:
3718 new_bus->xport = &xport_default;
3719 break;
3720 }
3721 }
3722
3723 /* Notify interested parties */
3724 if (sim->path_id != CAM_XPT_PATH_ID) {
3725 union ccb *scan_ccb;
3726
3727 xpt_async(AC_PATH_REGISTERED, path, &cpi);
3728 /* Initiate bus rescan. */
3729 scan_ccb = xpt_alloc_ccb_nowait();
3730 scan_ccb->ccb_h.path = path;
3731 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3732 scan_ccb->crcn.flags = 0;
3733 xpt_rescan(scan_ccb);
3734 } else
3735 xpt_free_path(path);
3736 return (CAM_SUCCESS);
3737}
3738
3739int32_t
3740xpt_bus_deregister(path_id_t pathid)
3741{
3742 struct cam_path bus_path;
3743 cam_status status;
3744
3745 status = xpt_compile_path(&bus_path, NULL, pathid,
3746 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3747 if (status != CAM_REQ_CMP)
3748 return (status);
3749
3750 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3751 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3752
3753 /* Release the reference count held while registered. */
3754 xpt_release_bus(bus_path.bus);
3755 xpt_release_path(&bus_path);
3756
3757 return (CAM_REQ_CMP);
3758}
3759
3760static path_id_t
3761xptnextfreepathid(void)
3762{
3763 struct cam_eb *bus;
3764 path_id_t pathid;
3765 const char *strval;
3766
3767 pathid = 0;
3768 mtx_lock(&xsoftc.xpt_topo_lock);
3769 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3770retry:
3771 /* Find an unoccupied pathid */
3772 while (bus != NULL && bus->path_id <= pathid) {
3773 if (bus->path_id == pathid)
3774 pathid++;
3775 bus = TAILQ_NEXT(bus, links);
3776 }
3777 mtx_unlock(&xsoftc.xpt_topo_lock);
3778
3779 /*
3780 * Ensure that this pathid is not reserved for
3781 * a bus that may be registered in the future.
3782 */
3783 if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3784 ++pathid;
3785 /* Start the search over */
3786 mtx_lock(&xsoftc.xpt_topo_lock);
3787 goto retry;
3788 }
3789 return (pathid);
3790}
3791
3792static path_id_t
3793xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3794{
3795 path_id_t pathid;
3796 int i, dunit, val;
3797 char buf[32];
3798 const char *dname;
3799
3800 pathid = CAM_XPT_PATH_ID;
3801 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3802 i = 0;
3803 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3804 if (strcmp(dname, "scbus")) {
3805 /* Avoid a bit of foot shooting. */
3806 continue;
3807 }
3808 if (dunit < 0) /* unwired?! */
3809 continue;
3810 if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
3811 if (sim_bus == val) {
3812 pathid = dunit;
3813 break;
3814 }
3815 } else if (sim_bus == 0) {
3816 /* Unspecified matches bus 0 */
3817 pathid = dunit;
3818 break;
3819 } else {
3820 printf("Ambiguous scbus configuration for %s%d "
3821 "bus %d, cannot wire down. The kernel "
3822 "config entry for scbus%d should "
3823 "specify a controller bus.\n"
3824 "Scbus will be assigned dynamically.\n",
3825 sim_name, sim_unit, sim_bus, dunit);
3826 break;
3827 }
3828 }
3829
3830 if (pathid == CAM_XPT_PATH_ID)
3831 pathid = xptnextfreepathid();
3832 return (pathid);
3833}
3834
3835void
3836xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
3837{
3838 struct cam_eb *bus;
3839 struct cam_et *target, *next_target;
3840 struct cam_ed *device, *next_device;
3841
3842 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3843
3844 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
3845
3846 /*
3847 * Most async events come from a CAM interrupt context. In
3848 * a few cases, the error recovery code at the peripheral layer,
3849 * which may run from our SWI or a process context, may signal
3850 * deferred events with a call to xpt_async.
3851 */
3852
3853 bus = path->bus;
3854
3855 if (async_code == AC_BUS_RESET) {
3856 /* Update our notion of when the last reset occurred */
3857 microtime(&bus->last_reset);
3858 }
3859
3860 for (target = TAILQ_FIRST(&bus->et_entries);
3861 target != NULL;
3862 target = next_target) {
3863
3864 next_target = TAILQ_NEXT(target, links);
3865
3866 if (path->target != target
3867 && path->target->target_id != CAM_TARGET_WILDCARD
3868 && target->target_id != CAM_TARGET_WILDCARD)
3869 continue;
3870
3871 if (async_code == AC_SENT_BDR) {
3872 /* Update our notion of when the last reset occurred */
3873 microtime(&path->target->last_reset);
3874 }
3875
3876 for (device = TAILQ_FIRST(&target->ed_entries);
3877 device != NULL;
3878 device = next_device) {
3879
3880 next_device = TAILQ_NEXT(device, links);
3881
3882 if (path->device != device
3883 && path->device->lun_id != CAM_LUN_WILDCARD
3884 && device->lun_id != CAM_LUN_WILDCARD)
3885 continue;
3886 /*
3887 * The async callback could free the device.
3888 * If it is a broadcast async, it doesn't hold
3889 * device reference, so take our own reference.
3890 */
3891 xpt_acquire_device(device);
3892 (*(bus->xport->async))(async_code, bus,
3893 target, device,
3894 async_arg);
3895
3896 xpt_async_bcast(&device->asyncs, async_code,
3897 path, async_arg);
3898 xpt_release_device(device);
3899 }
3900 }
3901
3902 /*
3903 * If this wasn't a fully wildcarded async, tell all
3904 * clients that want all async events.
3905 */
3906 if (bus != xpt_periph->path->bus)
3907 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
3908 path, async_arg);
3909}
3910
3911static void
3912xpt_async_bcast(struct async_list *async_head,
3913 u_int32_t async_code,
3914 struct cam_path *path, void *async_arg)
3915{
3916 struct async_node *cur_entry;
3917
3918 cur_entry = SLIST_FIRST(async_head);
3919 while (cur_entry != NULL) {
3920 struct async_node *next_entry;
3921 /*
3922 * Grab the next list entry before we call the current
3923 * entry's callback. This is because the callback function
3924 * can delete its async callback entry.
3925 */
3926 next_entry = SLIST_NEXT(cur_entry, links);
3927 if ((cur_entry->event_enable & async_code) != 0)
3928 cur_entry->callback(cur_entry->callback_arg,
3929 async_code, path,
3930 async_arg);
3931 cur_entry = next_entry;
3932 }
3933}
3934
3935static void
3936xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
3937 struct cam_et *target, struct cam_ed *device,
3938 void *async_arg)
3939{
3940 printf("%s called\n", __func__);
3941}
3942
3943u_int32_t
3944xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count)
3945{
3946 struct cam_ed *dev = path->device;
3947
3948 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3949 dev->sim->devq->alloc_openings +=
3950 cam_ccbq_freeze(&dev->ccbq, rl, count);
3951 /* Remove frozen device from allocq. */
3952 if (device_is_alloc_queued(dev) &&
3953 cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
3954 CAMQ_GET_PRIO(&dev->drvq)))) {
3955 camq_remove(&dev->sim->devq->alloc_queue,
3956 dev->alloc_ccb_entry.pinfo.index);
3957 }
3958 /* Remove frozen device from sendq. */
3959 if (device_is_send_queued(dev) &&
3960 cam_ccbq_frozen_top(&dev->ccbq)) {
3961 camq_remove(&dev->sim->devq->send_queue,
3962 dev->send_ccb_entry.pinfo.index);
3963 }
3964 return (dev->ccbq.queue.qfrozen_cnt[rl]);
3965}
3966
3967u_int32_t
3968xpt_freeze_devq(struct cam_path *path, u_int count)
3969{
3970
3971 return (xpt_freeze_devq_rl(path, 0, count));
3972}
3973
3974u_int32_t
3975xpt_freeze_simq(struct cam_sim *sim, u_int count)
3976{
3977
3978 mtx_assert(sim->mtx, MA_OWNED);
3979 sim->devq->send_queue.qfrozen_cnt[0] += count;
3980 return (sim->devq->send_queue.qfrozen_cnt[0]);
3981}
3982
3983static void
3984xpt_release_devq_timeout(void *arg)
3985{
3986 struct cam_ed *device;
3987
3988 device = (struct cam_ed *)arg;
3989
3990 xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE);
3991}
3992
3993void
3994xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
3995{
3996 mtx_assert(path->bus->sim->mtx, MA_OWNED);
3997
3998 xpt_release_devq_device(path->device, /*rl*/0, count, run_queue);
3999}
4000
4001void
4002xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue)
4003{
4004 mtx_assert(path->bus->sim->mtx, MA_OWNED);
4005
4006 xpt_release_devq_device(path->device, rl, count, run_queue);
4007}
4008
4009static void
4010xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue)
4011{
4012
4013 if (count > dev->ccbq.queue.qfrozen_cnt[rl]) {
4014#ifdef INVARIANTS
4015 printf("xpt_release_devq(%d): requested %u > present %u\n",
4016 rl, count, dev->ccbq.queue.qfrozen_cnt[rl]);
4017#endif
4018 count = dev->ccbq.queue.qfrozen_cnt[rl];
4019 }
4020 dev->sim->devq->alloc_openings -=
4021 cam_ccbq_release(&dev->ccbq, rl, count);
4022 if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
4023 CAMQ_GET_PRIO(&dev->drvq))) == 0) {
4024 if (xpt_schedule_dev_allocq(dev->target->bus, dev))
4025 xpt_run_dev_allocq(dev->target->bus);
4026 }
4027 if (cam_ccbq_frozen_top(&dev->ccbq) == 0) {
4028 /*
4029 * No longer need to wait for a successful
4030 * command completion.
4031 */
4032 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4033 /*
4034 * Remove any timeouts that might be scheduled
4035 * to release this queue.
4036 */
4037 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4038 callout_stop(&dev->callout);
4039 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4040 }
4041 if (run_queue == 0)
4042 return;
4043 /*
4044 * Now that we are unfrozen schedule the
4045 * device so any pending transactions are
4046 * run.
4047 */
4048 if (xpt_schedule_dev_sendq(dev->target->bus, dev))
4049 xpt_run_dev_sendq(dev->target->bus);
4050 }
4051}
4052
4053void
4054xpt_release_simq(struct cam_sim *sim, int run_queue)
4055{
4056 struct camq *sendq;
4057
4058 mtx_assert(sim->mtx, MA_OWNED);
4059 sendq = &(sim->devq->send_queue);
4060 if (sendq->qfrozen_cnt[0] <= 0) {
4061#ifdef INVARIANTS
4062 printf("xpt_release_simq: requested 1 > present %u\n",
4063 sendq->qfrozen_cnt[0]);
4064#endif
4065 } else
4066 sendq->qfrozen_cnt[0]--;
4067 if (sendq->qfrozen_cnt[0] == 0) {
4068 /*
4069 * If there is a timeout scheduled to release this
4070 * sim queue, remove it. The queue frozen count is
4071 * already at 0.
4072 */
4073 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4074 callout_stop(&sim->callout);
4075 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4076 }
4077 if (run_queue) {
4078 struct cam_eb *bus;
4079
4080 /*
4081 * Now that we are unfrozen run the send queue.
4082 */
4083 bus = xpt_find_bus(sim->path_id);
4084 xpt_run_dev_sendq(bus);
4085 xpt_release_bus(bus);
4086 }
4087 }
4088}
4089
4090/*
4091 * XXX Appears to be unused.
4092 */
4093static void
4094xpt_release_simq_timeout(void *arg)
4095{
4096 struct cam_sim *sim;
4097
4098 sim = (struct cam_sim *)arg;
4099 xpt_release_simq(sim, /* run_queue */ TRUE);
4100}
4101
4102void
4103xpt_done(union ccb *done_ccb)
4104{
4105 struct cam_sim *sim;
4106 int first;
4107
4108 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4109 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4110 /*
4111 * Queue up the request for handling by our SWI handler
4112 * any of the "non-immediate" type of ccbs.
4113 */
4114 sim = done_ccb->ccb_h.path->bus->sim;
4115 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4116 sim_links.tqe);
4117 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4118 if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4119 mtx_lock(&cam_simq_lock);
4120 first = TAILQ_EMPTY(&cam_simq);
4121 TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4122 mtx_unlock(&cam_simq_lock);
4123 sim->flags |= CAM_SIM_ON_DONEQ;
4124 if (first)
4125 swi_sched(cambio_ih, 0);
4126 }
4127 }
4128}
4129
4130union ccb *
4131xpt_alloc_ccb()
4132{
4133 union ccb *new_ccb;
4134
4135 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK);
4136 return (new_ccb);
4137}
4138
4139union ccb *
4140xpt_alloc_ccb_nowait()
4141{
4142 union ccb *new_ccb;
4143
4144 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT);
4145 return (new_ccb);
4146}
4147
4148void
4149xpt_free_ccb(union ccb *free_ccb)
4150{
4151 free(free_ccb, M_CAMXPT);
4152}
4153
4154
4155
4156/* Private XPT functions */
4157
4158/*
4159 * Get a CAM control block for the caller. Charge the structure to the device
4160 * referenced by the path. If the this device has no 'credits' then the
4161 * device already has the maximum number of outstanding operations under way
4162 * and we return NULL. If we don't have sufficient resources to allocate more
4163 * ccbs, we also return NULL.
4164 */
4165static union ccb *
4166xpt_get_ccb(struct cam_ed *device)
4167{
4168 union ccb *new_ccb;
4169 struct cam_sim *sim;
4170
4171 sim = device->sim;
4172 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4173 new_ccb = xpt_alloc_ccb_nowait();
4174 if (new_ccb == NULL) {
4175 return (NULL);
4176 }
4177 if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4178 callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4179 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4180 xpt_links.sle);
4181 sim->ccb_count++;
4182 }
4183 cam_ccbq_take_opening(&device->ccbq);
4184 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4185 return (new_ccb);
4186}
4187
4188static void
4189xpt_release_bus(struct cam_eb *bus)
4190{
4191
4192 if ((--bus->refcount == 0)
4193 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4194 mtx_lock(&xsoftc.xpt_topo_lock);
4195 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4196 xsoftc.bus_generation++;
4197 mtx_unlock(&xsoftc.xpt_topo_lock);
4198 cam_sim_release(bus->sim);
4199 free(bus, M_CAMXPT);
4200 }
4201}
4202
4203static struct cam_et *
4204xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4205{
4206 struct cam_et *target;
4207
4208 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT);
4209 if (target != NULL) {
4210 struct cam_et *cur_target;
4211
4212 TAILQ_INIT(&target->ed_entries);
4213 target->bus = bus;
4214 target->target_id = target_id;
4215 target->refcount = 1;
4216 target->generation = 0;
4217 target->luns = NULL;
4218 timevalclear(&target->last_reset);
4219 /*
4220 * Hold a reference to our parent bus so it
4221 * will not go away before we do.
4222 */
4223 bus->refcount++;
4224
4225 /* Insertion sort into our bus's target list */
4226 cur_target = TAILQ_FIRST(&bus->et_entries);
4227 while (cur_target != NULL && cur_target->target_id < target_id)
4228 cur_target = TAILQ_NEXT(cur_target, links);
4229
4230 if (cur_target != NULL) {
4231 TAILQ_INSERT_BEFORE(cur_target, target, links);
4232 } else {
4233 TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4234 }
4235 bus->generation++;
4236 }
4237 return (target);
4238}
4239
4240static void
4241xpt_release_target(struct cam_et *target)
4242{
4243
4244 if ((--target->refcount == 0)
4245 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4246 TAILQ_REMOVE(&target->bus->et_entries, target, links);
4247 target->bus->generation++;
4248 xpt_release_bus(target->bus);
4249 if (target->luns)
4250 free(target->luns, M_CAMXPT);
4251 free(target, M_CAMXPT);
4252 }
4253}
4254
4255static struct cam_ed *
4256xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4257 lun_id_t lun_id)
4258{
4259 struct cam_ed *device, *cur_device;
4260
4261 device = xpt_alloc_device(bus, target, lun_id);
4262 if (device == NULL)
4263 return (NULL);
4264
4265 device->mintags = 1;
4266 device->maxtags = 1;
4267 bus->sim->max_ccbs += device->ccbq.devq_openings;
4268 cur_device = TAILQ_FIRST(&target->ed_entries);
4269 while (cur_device != NULL && cur_device->lun_id < lun_id)
4270 cur_device = TAILQ_NEXT(cur_device, links);
4271 if (cur_device != NULL) {
4272 TAILQ_INSERT_BEFORE(cur_device, device, links);
4273 } else {
4274 TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4275 }
4276 target->generation++;
4277
4278 return (device);
4279}
4280
4281struct cam_ed *
4282xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4283{
4284 struct cam_ed *device;
4285 struct cam_devq *devq;
4286 cam_status status;
4287
4288 /* Make space for us in the device queue on our bus */
4289 devq = bus->sim->devq;
4290 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4291
4292 if (status != CAM_REQ_CMP) {
4293 device = NULL;
4294 } else {
4295 device = (struct cam_ed *)malloc(sizeof(*device),
4296 M_CAMXPT, M_NOWAIT);
4297 }
4298
4299 if (device != NULL) {
4300 cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4301 device->alloc_ccb_entry.device = device;
4302 cam_init_pinfo(&device->send_ccb_entry.pinfo);
4303 device->send_ccb_entry.device = device;
4304 device->target = target;
4305 device->lun_id = lun_id;
4306 device->sim = bus->sim;
4307 /* Initialize our queues */
4308 if (camq_init(&device->drvq, 0) != 0) {
4309 free(device, M_CAMXPT);
4310 return (NULL);
4311 }
4312 if (cam_ccbq_init(&device->ccbq,
4313 bus->sim->max_dev_openings) != 0) {
4314 camq_fini(&device->drvq);
4315 free(device, M_CAMXPT);
4316 return (NULL);
4317 }
4318 SLIST_INIT(&device->asyncs);
4319 SLIST_INIT(&device->periphs);
4320 device->generation = 0;
4321 device->owner = NULL;
4322 device->flags = CAM_DEV_UNCONFIGURED;
4323 device->tag_delay_count = 0;
4324 device->tag_saved_openings = 0;
4325 device->refcount = 1;
4326 callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4327
4328 /*
4329 * Hold a reference to our parent target so it
4330 * will not go away before we do.
4331 */
4332 target->refcount++;
4333
4334 }
4335 return (device);
4336}
4337
4338void
4339xpt_acquire_device(struct cam_ed *device)
4340{
4341
4342 device->refcount++;
4343}
4344
4345void
4346xpt_release_device(struct cam_ed *device)
4347{
4348
4349 if (--device->refcount == 0) {
4350 struct cam_devq *devq;
4351
4352 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4353 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4354 panic("Removing device while still queued for ccbs");
4355
4356 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4357 callout_stop(&device->callout);
4358
4359 TAILQ_REMOVE(&device->target->ed_entries, device,links);
4360 device->target->generation++;
4361 device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4362 /* Release our slot in the devq */
4363 devq = device->target->bus->sim->devq;
4364 cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4365 camq_fini(&device->drvq);
4366 cam_ccbq_fini(&device->ccbq);
4367 xpt_release_target(device->target);
4368 free(device, M_CAMXPT);
4369 }
4370}
4371
4372u_int32_t
4373xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4374{
4375 int diff;
4376 int result;
4377 struct cam_ed *dev;
4378
4379 dev = path->device;
4380
4381 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4382 result = cam_ccbq_resize(&dev->ccbq, newopenings);
4383 if (result == CAM_REQ_CMP && (diff < 0)) {
4384 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4385 }
4386 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4387 || (dev->inq_flags & SID_CmdQue) != 0)
4388 dev->tag_saved_openings = newopenings;
4389 /* Adjust the global limit */
4390 dev->sim->max_ccbs += diff;
4391 return (result);
4392}
4393
4394static struct cam_eb *
4395xpt_find_bus(path_id_t path_id)
4396{
4397 struct cam_eb *bus;
4398
4399 mtx_lock(&xsoftc.xpt_topo_lock);
4400 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4401 bus != NULL;
4402 bus = TAILQ_NEXT(bus, links)) {
4403 if (bus->path_id == path_id) {
4404 bus->refcount++;
4405 break;
4406 }
4407 }
4408 mtx_unlock(&xsoftc.xpt_topo_lock);
4409 return (bus);
4410}
4411
4412static struct cam_et *
4413xpt_find_target(struct cam_eb *bus, target_id_t target_id)
4414{
4415 struct cam_et *target;
4416
4417 for (target = TAILQ_FIRST(&bus->et_entries);
4418 target != NULL;
4419 target = TAILQ_NEXT(target, links)) {
4420 if (target->target_id == target_id) {
4421 target->refcount++;
4422 break;
4423 }
4424 }
4425 return (target);
4426}
4427
4428static struct cam_ed *
4429xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4430{
4431 struct cam_ed *device;
4432
4433 for (device = TAILQ_FIRST(&target->ed_entries);
4434 device != NULL;
4435 device = TAILQ_NEXT(device, links)) {
4436 if (device->lun_id == lun_id) {
4437 device->refcount++;
4438 break;
4439 }
4440 }
4441 return (device);
4442}
4443
4444void
4445xpt_start_tags(struct cam_path *path)
4446{
4447 struct ccb_relsim crs;
4448 struct cam_ed *device;
4449 struct cam_sim *sim;
4450 int newopenings;
4451
4452 device = path->device;
4453 sim = path->bus->sim;
4454 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4455 xpt_freeze_devq(path, /*count*/1);
4456 device->inq_flags |= SID_CmdQue;
4457 if (device->tag_saved_openings != 0)
4458 newopenings = device->tag_saved_openings;
4459 else
4460 newopenings = min(device->maxtags,
4461 sim->max_tagged_dev_openings);
4462 xpt_dev_ccbq_resize(path, newopenings);
4463 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4464 crs.ccb_h.func_code = XPT_REL_SIMQ;
4465 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4466 crs.openings
4467 = crs.release_timeout
4468 = crs.qfrozen_cnt
4469 = 0;
4470 xpt_action((union ccb *)&crs);
4471}
4472
4473void
4474xpt_stop_tags(struct cam_path *path)
4475{
4476 struct ccb_relsim crs;
4477 struct cam_ed *device;
4478 struct cam_sim *sim;
4479
4480 device = path->device;
4481 sim = path->bus->sim;
4482 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4483 device->tag_delay_count = 0;
4484 xpt_freeze_devq(path, /*count*/1);
4485 device->inq_flags &= ~SID_CmdQue;
4486 xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4487 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4488 crs.ccb_h.func_code = XPT_REL_SIMQ;
4489 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4490 crs.openings
4491 = crs.release_timeout
4492 = crs.qfrozen_cnt
4493 = 0;
4494 xpt_action((union ccb *)&crs);
4495}
4496
4497static void
4498xpt_boot_delay(void *arg)
4499{
4500
4501 xpt_release_boot();
4502}
4503
4504static void
4505xpt_config(void *arg)
4506{
4507 /*
4508 * Now that interrupts are enabled, go find our devices
4509 */
4510
4511#ifdef CAMDEBUG
4512 /* Setup debugging flags and path */
4513#ifdef CAM_DEBUG_BUS
4514 if (cam_dflags != CAM_DEBUG_NONE) {
4515 /*
4516 * Locking is specifically omitted here. No SIMs have
4517 * registered yet, so xpt_create_path will only be searching
4518 * empty lists of targets and devices.
4519 */
4520 if (xpt_create_path(&cam_dpath, xpt_periph,
4521 CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4522 CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4523 printf("xpt_config: xpt_create_path() failed for debug"
4524 " target %d:%d:%d, debugging disabled\n",
4525 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4526 cam_dflags = CAM_DEBUG_NONE;
4527 }
4528 } else
4529 cam_dpath = NULL;
4530#else /* !CAM_DEBUG_BUS */
4531 cam_dpath = NULL;
4532#endif /* CAM_DEBUG_BUS */
4533#endif /* CAMDEBUG */
4534
4541 /* Register our shutdown event handler */
4542 if ((EVENTHANDLER_REGISTER(shutdown_final, xpt_shutdown,
4543 NULL, SHUTDOWN_PRI_FIRST)) == NULL) {
4544 printf("xpt_config: failed to register shutdown event.\n");
4545 }
4546
4547 periphdriver_init(1);
4548 xpt_hold_boot();
4549 callout_init(&xsoftc.boot_callout, 1);
4550 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4551 xpt_boot_delay, NULL);
4552 /* Fire up rescan thread. */
4553 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4554 printf("xpt_config: failed to create rescan thread.\n");
4555 }
4556}
4557
4558void
4559xpt_hold_boot(void)
4560{
4561 xpt_lock_buses();
4562 xsoftc.buses_to_config++;
4563 xpt_unlock_buses();
4564}
4565
4566void
4567xpt_release_boot(void)
4568{
4569 xpt_lock_buses();
4570 xsoftc.buses_to_config--;
4571 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4572 struct xpt_task *task;
4573
4574 xsoftc.buses_config_done = 1;
4575 xpt_unlock_buses();
4576 /* Call manually because we don't have any busses */
4577 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4578 if (task != NULL) {
4579 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4580 taskqueue_enqueue(taskqueue_thread, &task->task);
4581 }
4582 } else
4583 xpt_unlock_buses();
4584}
4585
4586/*
4587 * If the given device only has one peripheral attached to it, and if that
4588 * peripheral is the passthrough driver, announce it. This insures that the
4589 * user sees some sort of announcement for every peripheral in their system.
4590 */
4591static int
4592xptpassannouncefunc(struct cam_ed *device, void *arg)
4593{
4594 struct cam_periph *periph;
4595 int i;
4596
4597 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4598 periph = SLIST_NEXT(periph, periph_links), i++);
4599
4600 periph = SLIST_FIRST(&device->periphs);
4601 if ((i == 1)
4602 && (strncmp(periph->periph_name, "pass", 4) == 0))
4603 xpt_announce_periph(periph, NULL);
4604
4605 return(1);
4606}
4607
4608static void
4609xpt_finishconfig_task(void *context, int pending)
4610{
4611
4612 periphdriver_init(2);
4613 /*
4614 * Check for devices with no "standard" peripheral driver
4615 * attached. For any devices like that, announce the
4616 * passthrough driver so the user will see something.
4617 */
4618 xpt_for_all_devices(xptpassannouncefunc, NULL);
4619
4620 /* Release our hook so that the boot can continue. */
4621 config_intrhook_disestablish(xsoftc.xpt_config_hook);
4622 free(xsoftc.xpt_config_hook, M_CAMXPT);
4623 xsoftc.xpt_config_hook = NULL;
4624
4625 free(context, M_CAMXPT);
4626}
4627
4535 periphdriver_init(1);
4536 xpt_hold_boot();
4537 callout_init(&xsoftc.boot_callout, 1);
4538 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4539 xpt_boot_delay, NULL);
4540 /* Fire up rescan thread. */
4541 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4542 printf("xpt_config: failed to create rescan thread.\n");
4543 }
4544}
4545
4546void
4547xpt_hold_boot(void)
4548{
4549 xpt_lock_buses();
4550 xsoftc.buses_to_config++;
4551 xpt_unlock_buses();
4552}
4553
4554void
4555xpt_release_boot(void)
4556{
4557 xpt_lock_buses();
4558 xsoftc.buses_to_config--;
4559 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4560 struct xpt_task *task;
4561
4562 xsoftc.buses_config_done = 1;
4563 xpt_unlock_buses();
4564 /* Call manually because we don't have any busses */
4565 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4566 if (task != NULL) {
4567 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4568 taskqueue_enqueue(taskqueue_thread, &task->task);
4569 }
4570 } else
4571 xpt_unlock_buses();
4572}
4573
4574/*
4575 * If the given device only has one peripheral attached to it, and if that
4576 * peripheral is the passthrough driver, announce it. This insures that the
4577 * user sees some sort of announcement for every peripheral in their system.
4578 */
4579static int
4580xptpassannouncefunc(struct cam_ed *device, void *arg)
4581{
4582 struct cam_periph *periph;
4583 int i;
4584
4585 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4586 periph = SLIST_NEXT(periph, periph_links), i++);
4587
4588 periph = SLIST_FIRST(&device->periphs);
4589 if ((i == 1)
4590 && (strncmp(periph->periph_name, "pass", 4) == 0))
4591 xpt_announce_periph(periph, NULL);
4592
4593 return(1);
4594}
4595
4596static void
4597xpt_finishconfig_task(void *context, int pending)
4598{
4599
4600 periphdriver_init(2);
4601 /*
4602 * Check for devices with no "standard" peripheral driver
4603 * attached. For any devices like that, announce the
4604 * passthrough driver so the user will see something.
4605 */
4606 xpt_for_all_devices(xptpassannouncefunc, NULL);
4607
4608 /* Release our hook so that the boot can continue. */
4609 config_intrhook_disestablish(xsoftc.xpt_config_hook);
4610 free(xsoftc.xpt_config_hook, M_CAMXPT);
4611 xsoftc.xpt_config_hook = NULL;
4612
4613 free(context, M_CAMXPT);
4614}
4615
4628/*
4629 * Power down all devices when we are going to power down the system.
4630 */
4631static void
4632xpt_shutdown_dev_done(struct cam_periph *periph, union ccb *done_ccb)
4633{
4634
4635 /* No-op. We're polling. */
4636 return;
4637}
4638
4639static int
4640xpt_shutdown_dev(struct cam_ed *device, void *arg)
4641{
4642 union ccb ccb;
4643 struct cam_path path;
4644
4645 if (device->flags & CAM_DEV_UNCONFIGURED)
4646 return (1);
4647
4648 if (device->protocol == PROTO_ATA) {
4649 /* Only power down device if it supports power management. */
4650 if ((device->ident_data.support.command1 &
4651 ATA_SUPPORT_POWERMGT) == 0)
4652 return (1);
4653 } else if (device->protocol != PROTO_SCSI)
4654 return (1);
4655
4656 xpt_compile_path(&path,
4657 NULL,
4658 device->target->bus->path_id,
4659 device->target->target_id,
4660 device->lun_id);
4661 xpt_setup_ccb(&ccb.ccb_h, &path, CAM_PRIORITY_NORMAL);
4662 if (device->protocol == PROTO_ATA) {
4663 cam_fill_ataio(&ccb.ataio,
4664 1,
4665 xpt_shutdown_dev_done,
4666 CAM_DIR_NONE,
4667 0,
4668 NULL,
4669 0,
4670 30*1000);
4671 ata_28bit_cmd(&ccb.ataio, ATA_SLEEP, 0, 0, 0);
4672 } else {
4673 scsi_start_stop(&ccb.csio,
4674 /*retries*/1,
4675 xpt_shutdown_dev_done,
4676 MSG_SIMPLE_Q_TAG,
4677 /*start*/FALSE,
4678 /*load/eject*/FALSE,
4679 /*immediate*/TRUE,
4680 SSD_FULL_SIZE,
4681 /*timeout*/50*1000);
4682 }
4683 xpt_polled_action(&ccb);
4684
4685 if ((ccb.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
4686 xpt_print(&path, "Device power down failed\n");
4687 if ((ccb.ccb_h.status & CAM_DEV_QFRZN) != 0)
4688 cam_release_devq(ccb.ccb_h.path,
4689 /*relsim_flags*/0,
4690 /*reduction*/0,
4691 /*timeout*/0,
4692 /*getcount_only*/0);
4693 xpt_release_path(&path);
4694 return (1);
4695}
4696
4697static void
4698xpt_shutdown(void * arg, int howto)
4699{
4700
4701 if (!xpt_power_down)
4702 return;
4703 if ((howto & RB_POWEROFF) == 0)
4704 return;
4705
4706 xpt_for_all_devices(xpt_shutdown_dev, NULL);
4707}
4708
4709cam_status
4710xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4711 struct cam_path *path)
4712{
4713 struct ccb_setasync csa;
4714 cam_status status;
4715 int xptpath = 0;
4716
4717 if (path == NULL) {
4718 mtx_lock(&xsoftc.xpt_lock);
4719 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4720 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4721 if (status != CAM_REQ_CMP) {
4722 mtx_unlock(&xsoftc.xpt_lock);
4723 return (status);
4724 }
4725 xptpath = 1;
4726 }
4727
4728 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4729 csa.ccb_h.func_code = XPT_SASYNC_CB;
4730 csa.event_enable = event;
4731 csa.callback = cbfunc;
4732 csa.callback_arg = cbarg;
4733 xpt_action((union ccb *)&csa);
4734 status = csa.ccb_h.status;
4735 if (xptpath) {
4736 xpt_free_path(path);
4737 mtx_unlock(&xsoftc.xpt_lock);
4738
4739 if ((status == CAM_REQ_CMP) &&
4740 (csa.event_enable & AC_FOUND_DEVICE)) {
4741 /*
4742 * Get this peripheral up to date with all
4743 * the currently existing devices.
4744 */
4745 xpt_for_all_devices(xptsetasyncfunc, &csa);
4746 }
4747 if ((status == CAM_REQ_CMP) &&
4748 (csa.event_enable & AC_PATH_REGISTERED)) {
4749 /*
4750 * Get this peripheral up to date with all
4751 * the currently existing busses.
4752 */
4753 xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4754 }
4755 }
4756 return (status);
4757}
4758
4759static void
4760xptaction(struct cam_sim *sim, union ccb *work_ccb)
4761{
4762 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4763
4764 switch (work_ccb->ccb_h.func_code) {
4765 /* Common cases first */
4766 case XPT_PATH_INQ: /* Path routing inquiry */
4767 {
4768 struct ccb_pathinq *cpi;
4769
4770 cpi = &work_ccb->cpi;
4771 cpi->version_num = 1; /* XXX??? */
4772 cpi->hba_inquiry = 0;
4773 cpi->target_sprt = 0;
4774 cpi->hba_misc = 0;
4775 cpi->hba_eng_cnt = 0;
4776 cpi->max_target = 0;
4777 cpi->max_lun = 0;
4778 cpi->initiator_id = 0;
4779 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4780 strncpy(cpi->hba_vid, "", HBA_IDLEN);
4781 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4782 cpi->unit_number = sim->unit_number;
4783 cpi->bus_id = sim->bus_id;
4784 cpi->base_transfer_speed = 0;
4785 cpi->protocol = PROTO_UNSPECIFIED;
4786 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4787 cpi->transport = XPORT_UNSPECIFIED;
4788 cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4789 cpi->ccb_h.status = CAM_REQ_CMP;
4790 xpt_done(work_ccb);
4791 break;
4792 }
4793 default:
4794 work_ccb->ccb_h.status = CAM_REQ_INVALID;
4795 xpt_done(work_ccb);
4796 break;
4797 }
4798}
4799
4800/*
4801 * The xpt as a "controller" has no interrupt sources, so polling
4802 * is a no-op.
4803 */
4804static void
4805xptpoll(struct cam_sim *sim)
4806{
4807}
4808
4809void
4810xpt_lock_buses(void)
4811{
4812 mtx_lock(&xsoftc.xpt_topo_lock);
4813}
4814
4815void
4816xpt_unlock_buses(void)
4817{
4818 mtx_unlock(&xsoftc.xpt_topo_lock);
4819}
4820
4821static void
4822camisr(void *dummy)
4823{
4824 cam_simq_t queue;
4825 struct cam_sim *sim;
4826
4827 mtx_lock(&cam_simq_lock);
4828 TAILQ_INIT(&queue);
4829 while (!TAILQ_EMPTY(&cam_simq)) {
4830 TAILQ_CONCAT(&queue, &cam_simq, links);
4831 mtx_unlock(&cam_simq_lock);
4832
4833 while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4834 TAILQ_REMOVE(&queue, sim, links);
4835 CAM_SIM_LOCK(sim);
4836 sim->flags &= ~CAM_SIM_ON_DONEQ;
4837 camisr_runqueue(&sim->sim_doneq);
4838 CAM_SIM_UNLOCK(sim);
4839 }
4840 mtx_lock(&cam_simq_lock);
4841 }
4842 mtx_unlock(&cam_simq_lock);
4843}
4844
4845static void
4846camisr_runqueue(void *V_queue)
4847{
4848 cam_isrq_t *queue = V_queue;
4849 struct ccb_hdr *ccb_h;
4850
4851 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
4852 int runq;
4853
4854 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
4855 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
4856
4857 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
4858 ("camisr\n"));
4859
4860 runq = FALSE;
4861
4862 if (ccb_h->flags & CAM_HIGH_POWER) {
4863 struct highpowerlist *hphead;
4864 union ccb *send_ccb;
4865
4866 mtx_lock(&xsoftc.xpt_lock);
4867 hphead = &xsoftc.highpowerq;
4868
4869 send_ccb = (union ccb *)STAILQ_FIRST(hphead);
4870
4871 /*
4872 * Increment the count since this command is done.
4873 */
4874 xsoftc.num_highpower++;
4875
4876 /*
4877 * Any high powered commands queued up?
4878 */
4879 if (send_ccb != NULL) {
4880
4881 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
4882 mtx_unlock(&xsoftc.xpt_lock);
4883
4884 xpt_release_devq(send_ccb->ccb_h.path,
4885 /*count*/1, /*runqueue*/TRUE);
4886 } else
4887 mtx_unlock(&xsoftc.xpt_lock);
4888 }
4889
4890 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
4891 struct cam_ed *dev;
4892
4893 dev = ccb_h->path->device;
4894
4895 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
4896 ccb_h->path->bus->sim->devq->send_active--;
4897 ccb_h->path->bus->sim->devq->send_openings++;
4898 runq = TRUE;
4899
4900 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
4901 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
4902 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
4903 && (dev->ccbq.dev_active == 0))) {
4904 xpt_release_devq(ccb_h->path, /*count*/1,
4905 /*run_queue*/FALSE);
4906 }
4907
4908 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4909 && (--dev->tag_delay_count == 0))
4910 xpt_start_tags(ccb_h->path);
4911 if (!device_is_send_queued(dev))
4912 xpt_schedule_dev_sendq(ccb_h->path->bus, dev);
4913 }
4914
4915 if (ccb_h->status & CAM_RELEASE_SIMQ) {
4916 xpt_release_simq(ccb_h->path->bus->sim,
4917 /*run_queue*/TRUE);
4918 ccb_h->status &= ~CAM_RELEASE_SIMQ;
4919 runq = FALSE;
4920 }
4921
4922 if ((ccb_h->flags & CAM_DEV_QFRZDIS)
4923 && (ccb_h->status & CAM_DEV_QFRZN)) {
4924 xpt_release_devq(ccb_h->path, /*count*/1,
4925 /*run_queue*/TRUE);
4926 ccb_h->status &= ~CAM_DEV_QFRZN;
4927 } else if (runq) {
4928 xpt_run_dev_sendq(ccb_h->path->bus);
4929 }
4930
4931 /* Call the peripheral driver's callback */
4932 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
4933 }
4934}
4616cam_status
4617xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4618 struct cam_path *path)
4619{
4620 struct ccb_setasync csa;
4621 cam_status status;
4622 int xptpath = 0;
4623
4624 if (path == NULL) {
4625 mtx_lock(&xsoftc.xpt_lock);
4626 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4627 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4628 if (status != CAM_REQ_CMP) {
4629 mtx_unlock(&xsoftc.xpt_lock);
4630 return (status);
4631 }
4632 xptpath = 1;
4633 }
4634
4635 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4636 csa.ccb_h.func_code = XPT_SASYNC_CB;
4637 csa.event_enable = event;
4638 csa.callback = cbfunc;
4639 csa.callback_arg = cbarg;
4640 xpt_action((union ccb *)&csa);
4641 status = csa.ccb_h.status;
4642 if (xptpath) {
4643 xpt_free_path(path);
4644 mtx_unlock(&xsoftc.xpt_lock);
4645
4646 if ((status == CAM_REQ_CMP) &&
4647 (csa.event_enable & AC_FOUND_DEVICE)) {
4648 /*
4649 * Get this peripheral up to date with all
4650 * the currently existing devices.
4651 */
4652 xpt_for_all_devices(xptsetasyncfunc, &csa);
4653 }
4654 if ((status == CAM_REQ_CMP) &&
4655 (csa.event_enable & AC_PATH_REGISTERED)) {
4656 /*
4657 * Get this peripheral up to date with all
4658 * the currently existing busses.
4659 */
4660 xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4661 }
4662 }
4663 return (status);
4664}
4665
4666static void
4667xptaction(struct cam_sim *sim, union ccb *work_ccb)
4668{
4669 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4670
4671 switch (work_ccb->ccb_h.func_code) {
4672 /* Common cases first */
4673 case XPT_PATH_INQ: /* Path routing inquiry */
4674 {
4675 struct ccb_pathinq *cpi;
4676
4677 cpi = &work_ccb->cpi;
4678 cpi->version_num = 1; /* XXX??? */
4679 cpi->hba_inquiry = 0;
4680 cpi->target_sprt = 0;
4681 cpi->hba_misc = 0;
4682 cpi->hba_eng_cnt = 0;
4683 cpi->max_target = 0;
4684 cpi->max_lun = 0;
4685 cpi->initiator_id = 0;
4686 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4687 strncpy(cpi->hba_vid, "", HBA_IDLEN);
4688 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4689 cpi->unit_number = sim->unit_number;
4690 cpi->bus_id = sim->bus_id;
4691 cpi->base_transfer_speed = 0;
4692 cpi->protocol = PROTO_UNSPECIFIED;
4693 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4694 cpi->transport = XPORT_UNSPECIFIED;
4695 cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4696 cpi->ccb_h.status = CAM_REQ_CMP;
4697 xpt_done(work_ccb);
4698 break;
4699 }
4700 default:
4701 work_ccb->ccb_h.status = CAM_REQ_INVALID;
4702 xpt_done(work_ccb);
4703 break;
4704 }
4705}
4706
4707/*
4708 * The xpt as a "controller" has no interrupt sources, so polling
4709 * is a no-op.
4710 */
4711static void
4712xptpoll(struct cam_sim *sim)
4713{
4714}
4715
4716void
4717xpt_lock_buses(void)
4718{
4719 mtx_lock(&xsoftc.xpt_topo_lock);
4720}
4721
4722void
4723xpt_unlock_buses(void)
4724{
4725 mtx_unlock(&xsoftc.xpt_topo_lock);
4726}
4727
4728static void
4729camisr(void *dummy)
4730{
4731 cam_simq_t queue;
4732 struct cam_sim *sim;
4733
4734 mtx_lock(&cam_simq_lock);
4735 TAILQ_INIT(&queue);
4736 while (!TAILQ_EMPTY(&cam_simq)) {
4737 TAILQ_CONCAT(&queue, &cam_simq, links);
4738 mtx_unlock(&cam_simq_lock);
4739
4740 while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4741 TAILQ_REMOVE(&queue, sim, links);
4742 CAM_SIM_LOCK(sim);
4743 sim->flags &= ~CAM_SIM_ON_DONEQ;
4744 camisr_runqueue(&sim->sim_doneq);
4745 CAM_SIM_UNLOCK(sim);
4746 }
4747 mtx_lock(&cam_simq_lock);
4748 }
4749 mtx_unlock(&cam_simq_lock);
4750}
4751
4752static void
4753camisr_runqueue(void *V_queue)
4754{
4755 cam_isrq_t *queue = V_queue;
4756 struct ccb_hdr *ccb_h;
4757
4758 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
4759 int runq;
4760
4761 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
4762 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
4763
4764 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
4765 ("camisr\n"));
4766
4767 runq = FALSE;
4768
4769 if (ccb_h->flags & CAM_HIGH_POWER) {
4770 struct highpowerlist *hphead;
4771 union ccb *send_ccb;
4772
4773 mtx_lock(&xsoftc.xpt_lock);
4774 hphead = &xsoftc.highpowerq;
4775
4776 send_ccb = (union ccb *)STAILQ_FIRST(hphead);
4777
4778 /*
4779 * Increment the count since this command is done.
4780 */
4781 xsoftc.num_highpower++;
4782
4783 /*
4784 * Any high powered commands queued up?
4785 */
4786 if (send_ccb != NULL) {
4787
4788 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
4789 mtx_unlock(&xsoftc.xpt_lock);
4790
4791 xpt_release_devq(send_ccb->ccb_h.path,
4792 /*count*/1, /*runqueue*/TRUE);
4793 } else
4794 mtx_unlock(&xsoftc.xpt_lock);
4795 }
4796
4797 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
4798 struct cam_ed *dev;
4799
4800 dev = ccb_h->path->device;
4801
4802 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
4803 ccb_h->path->bus->sim->devq->send_active--;
4804 ccb_h->path->bus->sim->devq->send_openings++;
4805 runq = TRUE;
4806
4807 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
4808 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
4809 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
4810 && (dev->ccbq.dev_active == 0))) {
4811 xpt_release_devq(ccb_h->path, /*count*/1,
4812 /*run_queue*/FALSE);
4813 }
4814
4815 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4816 && (--dev->tag_delay_count == 0))
4817 xpt_start_tags(ccb_h->path);
4818 if (!device_is_send_queued(dev))
4819 xpt_schedule_dev_sendq(ccb_h->path->bus, dev);
4820 }
4821
4822 if (ccb_h->status & CAM_RELEASE_SIMQ) {
4823 xpt_release_simq(ccb_h->path->bus->sim,
4824 /*run_queue*/TRUE);
4825 ccb_h->status &= ~CAM_RELEASE_SIMQ;
4826 runq = FALSE;
4827 }
4828
4829 if ((ccb_h->flags & CAM_DEV_QFRZDIS)
4830 && (ccb_h->status & CAM_DEV_QFRZN)) {
4831 xpt_release_devq(ccb_h->path, /*count*/1,
4832 /*run_queue*/TRUE);
4833 ccb_h->status &= ~CAM_DEV_QFRZN;
4834 } else if (runq) {
4835 xpt_run_dev_sendq(ccb_h->path->bus);
4836 }
4837
4838 /* Call the peripheral driver's callback */
4839 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
4840 }
4841}