Deleted Added
full compact
boot1.S (119253) boot1.S (128707)
1//
2// Copyright (c) 1998 Robert Nordier
3// All rights reserved.
4//
5// Redistribution and use in source and binary forms are freely
6// permitted provided that the above copyright notice and this
7// paragraph and the following disclaimer are duplicated in all
8// such forms.
9//
10// This software is provided "AS IS" and without any express or
11// implied warranties, including, without limitation, the implied
12// warranties of merchantability and fitness for a particular
13// purpose.
14//
1/*
2 * Copyright (c) 1998 Robert Nordier
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms are freely
6 * permitted provided that the above copyright notice and this
7 * paragraph and the following disclaimer are duplicated in all
8 * such forms.
9 *
10 * This software is provided "AS IS" and without any express or
11 * implied warranties, including, without limitation, the implied
12 * warranties of merchantability and fitness for a particular
13 * purpose.
14 *
15 * $FreeBSD: head/sys/boot/i386/boot2/boot1.S 128707 2004-04-28 09:49:22Z ru $
16 */
15
17
16// $FreeBSD: head/sys/boot/i386/boot2/boot1.S 119253 2003-08-22 01:59:28Z imp $
17
18// Memory Locations
19 .set MEM_REL,0x700 // Relocation address
20 .set MEM_ARG,0x900 // Arguments
21 .set MEM_ORG,0x7c00 // Origin
22 .set MEM_BUF,0x8cec // Load area
23 .set MEM_BTX,0x9000 // BTX start
24 .set MEM_JMP,0x9010 // BTX entry point
25 .set MEM_USR,0xa000 // Client start
26 .set BDA_BOOT,0x472 // Boot howto flag
18/* Memory Locations */
19 .set MEM_REL,0x700 # Relocation address
20 .set MEM_ARG,0x900 # Arguments
21 .set MEM_ORG,0x7c00 # Origin
22 .set MEM_BUF,0x8cec # Load area
23 .set MEM_BTX,0x9000 # BTX start
24 .set MEM_JMP,0x9010 # BTX entry point
25 .set MEM_USR,0xa000 # Client start
26 .set BDA_BOOT,0x472 # Boot howto flag
27
27
28// Partition Constants
29 .set PRT_OFF,0x1be // Partition offset
30 .set PRT_NUM,0x4 // Partitions
31 .set PRT_BSD,0xa5 // Partition type
28/* Partition Constants */
29 .set PRT_OFF,0x1be # Partition offset
30 .set PRT_NUM,0x4 # Partitions
31 .set PRT_BSD,0xa5 # Partition type
32
32
33// Flag Bits
34 .set FL_PACKET,0x80 // Packet mode
33/* Flag Bits */
34 .set FL_PACKET,0x80 # Packet mode
35
35
36// Misc. Constants
37 .set SIZ_PAG,0x1000 // Page size
38 .set SIZ_SEC,0x200 // Sector size
36/* Misc. Constants */
37 .set SIZ_PAG,0x1000 # Page size
38 .set SIZ_SEC,0x200 # Sector size
39
40 .set NSECT,0x10
41 .globl start
42 .globl xread
43 .code16
44
39
40 .set NSECT,0x10
41 .globl start
42 .globl xread
43 .code16
44
45start: jmp main // Start recognizably
45start: jmp main # Start recognizably
46
46
47// This is the start of a standard BIOS Parameter Block (BPB). Most bootable
48// FAT disks have this at the start of their MBR. While normal BIOS's will
49// work fine without this section, IBM's El Torito emulation "fixes" up the
50// BPB by writing into the memory copy of the MBR. Rather than have data
51// written into our xread routine, we'll define a BPB to work around it.
52// The data marked with (T) indicates a field required for a ThinkPad to
53// recognize the disk and (W) indicates fields written from IBM BIOS code.
54// The use of the BPB is based on what OpenBSD and NetBSD implemented in
55// their boot code but the required fields were determined by trial and error.
56//
57// Note: If additional space is needed in boot1, one solution would be to
58// move the "prompt" message data (below) to replace the OEM ID.
59
47/*
48 * This is the start of a standard BIOS Parameter Block (BPB). Most bootable
49 * FAT disks have this at the start of their MBR. While normal BIOS's will
50 * work fine without this section, IBM's El Torito emulation "fixes" up the
51 * BPB by writing into the memory copy of the MBR. Rather than have data
52 * written into our xread routine, we'll define a BPB to work around it.
53 * The data marked with (T) indicates a field required for a ThinkPad to
54 * recognize the disk and (W) indicates fields written from IBM BIOS code.
55 * The use of the BPB is based on what OpenBSD and NetBSD implemented in
56 * their boot code but the required fields were determined by trial and error.
57 *
58 * Note: If additional space is needed in boot1, one solution would be to
59 * move the "prompt" message data (below) to replace the OEM ID.
60 */
60 .org 0x03, 0x00
61 .org 0x03, 0x00
61oemid: .space 0x08, 0x00 // OEM ID
62oemid: .space 0x08, 0x00 # OEM ID
62
63 .org 0x0b, 0x00
63
64 .org 0x0b, 0x00
64bpb: .word 512 // sector size (T)
65 .byte 0 // sectors/clustor
66 .word 0 // reserved sectors
67 .byte 0 // number of FATs
68 .word 0 // root entries
69 .word 0 // small sectors
70 .byte 0 // media type (W)
71 .word 0 // sectors/fat
72 .word 18 // sectors per track (T)
73 .word 2 // number of heads (T)
74 .long 0 // hidden sectors (W)
75 .long 0 // large sectors
65bpb: .word 512 # sector size (T)
66 .byte 0 # sectors/clustor
67 .word 0 # reserved sectors
68 .byte 0 # number of FATs
69 .word 0 # root entries
70 .word 0 # small sectors
71 .byte 0 # media type (W)
72 .word 0 # sectors/fat
73 .word 18 # sectors per track (T)
74 .word 2 # number of heads (T)
75 .long 0 # hidden sectors (W)
76 .long 0 # large sectors
76
77 .org 0x24, 0x00
77
78 .org 0x24, 0x00
78ebpb: .byte 0 // BIOS physical drive number (W)
79ebpb: .byte 0 # BIOS physical drive number (W)
79
80 .org 0x25,0x90
80
81 .org 0x25,0x90
81//
82// Trampoline used by boot2 to call read to read data from the disk via
83// the BIOS. Call with:
84//
85// %cx:%ax - long - LBA to read in
86// %es:(%bx) - caddr_t - buffer to read data into
87// %dl - byte - drive to read from
88// %dh - byte - num sectors to read
89//
82/*
83 * Trampoline used by boot2 to call read to read data from the disk via
84 * the BIOS. Call with:
85 *
86 * %cx:%ax - long - LBA to read in
87 * %es:(%bx) - caddr_t - buffer to read data into
88 * %dl - byte - drive to read from
89 * %dh - byte - num sectors to read
90 */
90
91
91xread: push %ss // Address
92 pop %ds // data
93//
94// Setup an EDD disk packet and pass it to read
95//
96xread.1: // Starting
97 pushl $0x0 // absolute
98 push %cx // block
99 push %ax // number
100 push %es // Address of
101 push %bx // transfer buffer
102 xor %ax,%ax // Number of
103 movb %dh,%al // blocks to
104 push %ax // transfer
105 push $0x10 // Size of packet
106 mov %sp,%bp // Packet pointer
107 callw read // Read from disk
108 lea 0x10(%bp),%sp // Clear stack
109 lret // To far caller
110//
111// Load the rest of boot2 and BTX up, copy the parts to the right locations,
112// and start it all up.
113//
92xread: push %ss # Address
93 pop %ds # data
94/*
95 * Setup an EDD disk packet and pass it to read
96 */
97xread.1: # Starting
98 pushl $0x0 # absolute
99 push %cx # block
100 push %ax # number
101 push %es # Address of
102 push %bx # transfer buffer
103 xor %ax,%ax # Number of
104 movb %dh,%al # blocks to
105 push %ax # transfer
106 push $0x10 # Size of packet
107 mov %sp,%bp # Packet pointer
108 callw read # Read from disk
109 lea 0x10(%bp),%sp # Clear stack
110 lret # To far caller
111/*
112 * Load the rest of boot2 and BTX up, copy the parts to the right locations,
113 * and start it all up.
114 */
114
115
115//
116// Setup the segment registers to flat addressing (segment 0) and setup the
117// stack to end just below the start of our code.
118//
119main: cld // String ops inc
120 xor %cx,%cx // Zero
121 mov %cx,%es // Address
122 mov %cx,%ds // data
123 mov %cx,%ss // Set up
124 mov $start,%sp // stack
125//
126// Relocate ourself to MEM_REL. Since %cx == 0, the inc %ch sets
127// %cx == 0x100.
128//
129 mov %sp,%si // Source
130 mov $MEM_REL,%di // Destination
131 incb %ch // Word count
132 rep // Copy
133 movsw // code
134//
135// If we are on a hard drive, then load the MBR and look for the first
136// FreeBSD slice. We use the fake partition entry below that points to
137// the MBR when we call nread. The first pass looks for the first active
138// FreeBSD slice. The second pass looks for the first non-active FreeBSD
139// slice if the first one fails.
140//
141 mov $part4,%si // Partition
142 cmpb $0x80,%dl // Hard drive?
143 jb main.4 // No
144 movb $0x1,%dh // Block count
145 callw nread // Read MBR
146 mov $0x1,%cx // Two passes
147main.1: mov $MEM_BUF+PRT_OFF,%si // Partition table
148 movb $0x1,%dh // Partition
149main.2: cmpb $PRT_BSD,0x4(%si) // Our partition type?
150 jne main.3 // No
151 jcxz main.5 // If second pass
152 testb $0x80,(%si) // Active?
153 jnz main.5 // Yes
154main.3: add $0x10,%si // Next entry
155 incb %dh // Partition
156 cmpb $0x1+PRT_NUM,%dh // In table?
157 jb main.2 // Yes
158 dec %cx // Do two
159 jcxz main.1 // passes
160//
161// If we get here, we didn't find any FreeBSD slices at all, so print an
162// error message and die.
163//
164 mov $msg_part,%si // Message
165 jmp error // Error
166//
167// Floppies use partition 0 of drive 0.
168//
169main.4: xor %dx,%dx // Partition:drive
170//
171// Ok, we have a slice and drive in %dx now, so use that to locate and load
172// boot2. %si references the start of the slice we are looking for, so go
173// ahead and load up the first 16 sectors (boot1 + boot2) from that. When
174// we read it in, we conveniently use 0x8cec as our transfer buffer. Thus,
175// boot1 ends up at 0x8cec, and boot2 starts at 0x8cec + 0x200 = 0x8eec.
176// The first part of boot2 is the disklabel, which is 0x114 bytes long.
177// The second part is BTX, which is thus loaded into 0x9000, which is where
178// it also runs from. The boot2.bin binary starts right after the end of
179// BTX, so we have to figure out where the start of it is and then move the
180// binary to 0xc000. Normally, BTX clients start at MEM_USR, or 0xa000, but
181// when we use btxld to create boot2, we use an entry point of 0x2000. That
182// entry point is relative to MEM_USR; thus boot2.bin starts at 0xc000.
183//
184main.5: mov %dx,MEM_ARG // Save args
185 movb $NSECT,%dh // Sector count
186 callw nread // Read disk
187 mov $MEM_BTX,%bx // BTX
188 mov 0xa(%bx),%si // Get BTX length and set
189 add %bx,%si // %si to start of boot2.bin
190 mov $MEM_USR+SIZ_PAG*2,%di // Client page 2
191 mov $MEM_BTX+(NSECT-1)*SIZ_SEC,%cx // Byte
192 sub %si,%cx // count
193 rep // Relocate
194 movsb // client
195 sub %di,%cx // Byte count
196 xorb %al,%al // Zero assumed bss from
197 rep // the end of boot2.bin
198 stosb // up to 0x10000
199 callw seta20 // Enable A20
200 jmp start+MEM_JMP-MEM_ORG // Start BTX
201//
202// Enable A20 so we can access memory above 1 meg.
203//
204seta20: cli // Disable interrupts
205seta20.1: inb $0x64,%al // Get status
206 testb $0x2,%al // Busy?
207 jnz seta20.1 // Yes
208 movb $0xd1,%al // Command: Write
209 outb %al,$0x64 // output port
210seta20.2: inb $0x64,%al // Get status
211 testb $0x2,%al // Busy?
212 jnz seta20.2 // Yes
213 movb $0xdf,%al // Enable
214 outb %al,$0x60 // A20
215 sti // Enable interrupts
216 retw // To caller
217//
218// Trampoline used to call read from within boot1.
219//
220nread: mov $MEM_BUF,%bx // Transfer buffer
221 mov 0x8(%si),%ax // Get
222 mov 0xa(%si),%cx // LBA
223 push %cs // Read from
224 callw xread.1 // disk
225 jnc return // If success, return
226 mov $msg_read,%si // Otherwise, set the error
227 // message and fall through to
228 // the error routine
229//
230// Print out the error message pointed to by %ds:(%si) followed
231// by a prompt, wait for a keypress, and then reboot the machine.
232//
233error: callw putstr // Display message
234 mov $prompt,%si // Display
235 callw putstr // prompt
236 xorb %ah,%ah // BIOS: Get
237 int $0x16 // keypress
238 movw $0x1234, BDA_BOOT // Do a warm boot
239 ljmp $0xffff,$0x0 // reboot the machine
240//
241// Display a null-terminated string using the BIOS output.
242//
243putstr.0: mov $0x7,%bx // Page:attribute
244 movb $0xe,%ah // BIOS: Display
245 int $0x10 // character
246putstr: lodsb // Get char
247 testb %al,%al // End of string?
248 jne putstr.0 // No
116/*
117 * Setup the segment registers to flat addressing (segment 0) and setup the
118 * stack to end just below the start of our code.
119 */
120main: cld # String ops inc
121 xor %cx,%cx # Zero
122 mov %cx,%es # Address
123 mov %cx,%ds # data
124 mov %cx,%ss # Set up
125 mov $start,%sp # stack
126/*
127 * Relocate ourself to MEM_REL. Since %cx == 0, the inc %ch sets
128 * %cx == 0x100.
129 */
130 mov %sp,%si # Source
131 mov $MEM_REL,%di # Destination
132 incb %ch # Word count
133 rep # Copy
134 movsw # code
135/*
136 * If we are on a hard drive, then load the MBR and look for the first
137 * FreeBSD slice. We use the fake partition entry below that points to
138 * the MBR when we call nread. The first pass looks for the first active
139 * FreeBSD slice. The second pass looks for the first non-active FreeBSD
140 * slice if the first one fails.
141 */
142 mov $part4,%si # Partition
143 cmpb $0x80,%dl # Hard drive?
144 jb main.4 # No
145 movb $0x1,%dh # Block count
146 callw nread # Read MBR
147 mov $0x1,%cx # Two passes
148main.1: mov $MEM_BUF+PRT_OFF,%si # Partition table
149 movb $0x1,%dh # Partition
150main.2: cmpb $PRT_BSD,0x4(%si) # Our partition type?
151 jne main.3 # No
152 jcxz main.5 # If second pass
153 testb $0x80,(%si) # Active?
154 jnz main.5 # Yes
155main.3: add $0x10,%si # Next entry
156 incb %dh # Partition
157 cmpb $0x1+PRT_NUM,%dh # In table?
158 jb main.2 # Yes
159 dec %cx # Do two
160 jcxz main.1 # passes
161/*
162 * If we get here, we didn't find any FreeBSD slices at all, so print an
163 * error message and die.
164 */
165 mov $msg_part,%si # Message
166 jmp error # Error
167/*
168 * Floppies use partition 0 of drive 0.
169 */
170main.4: xor %dx,%dx # Partition:drive
171/*
172 * Ok, we have a slice and drive in %dx now, so use that to locate and load
173 * boot2. %si references the start of the slice we are looking for, so go
174 * ahead and load up the first 16 sectors (boot1 + boot2) from that. When
175 * we read it in, we conveniently use 0x8cec as our transfer buffer. Thus,
176 * boot1 ends up at 0x8cec, and boot2 starts at 0x8cec + 0x200 = 0x8eec.
177 * The first part of boot2 is the disklabel, which is 0x114 bytes long.
178 * The second part is BTX, which is thus loaded into 0x9000, which is where
179 * it also runs from. The boot2.bin binary starts right after the end of
180 * BTX, so we have to figure out where the start of it is and then move the
181 * binary to 0xc000. Normally, BTX clients start at MEM_USR, or 0xa000, but
182 * when we use btxld to create boot2, we use an entry point of 0x2000. That
183 * entry point is relative to MEM_USR; thus boot2.bin starts at 0xc000.
184 */
185main.5: mov %dx,MEM_ARG # Save args
186 movb $NSECT,%dh # Sector count
187 callw nread # Read disk
188 mov $MEM_BTX,%bx # BTX
189 mov 0xa(%bx),%si # Get BTX length and set
190 add %bx,%si # %si to start of boot2.bin
191 mov $MEM_USR+SIZ_PAG*2,%di # Client page 2
192 mov $MEM_BTX+(NSECT-1)*SIZ_SEC,%cx # Byte
193 sub %si,%cx # count
194 rep # Relocate
195 movsb # client
196 sub %di,%cx # Byte count
197 xorb %al,%al # Zero assumed bss from
198 rep # the end of boot2.bin
199 stosb # up to 0x10000
200 callw seta20 # Enable A20
201 jmp start+MEM_JMP-MEM_ORG # Start BTX
202/*
203 * Enable A20 so we can access memory above 1 meg.
204 */
205seta20: cli # Disable interrupts
206seta20.1: inb $0x64,%al # Get status
207 testb $0x2,%al # Busy?
208 jnz seta20.1 # Yes
209 movb $0xd1,%al # Command: Write
210 outb %al,$0x64 # output port
211seta20.2: inb $0x64,%al # Get status
212 testb $0x2,%al # Busy?
213 jnz seta20.2 # Yes
214 movb $0xdf,%al # Enable
215 outb %al,$0x60 # A20
216 sti # Enable interrupts
217 retw # To caller
218/*
219 * Trampoline used to call read from within boot1.
220 */
221nread: mov $MEM_BUF,%bx # Transfer buffer
222 mov 0x8(%si),%ax # Get
223 mov 0xa(%si),%cx # LBA
224 push %cs # Read from
225 callw xread.1 # disk
226 jnc return # If success, return
227 mov $msg_read,%si # Otherwise, set the error
228 # message and fall through to
229 # the error routine
230/*
231 * Print out the error message pointed to by %ds:(%si) followed
232 * by a prompt, wait for a keypress, and then reboot the machine.
233 */
234error: callw putstr # Display message
235 mov $prompt,%si # Display
236 callw putstr # prompt
237 xorb %ah,%ah # BIOS: Get
238 int $0x16 # keypress
239 movw $0x1234, BDA_BOOT # Do a warm boot
240 ljmp $0xffff,$0x0 # reboot the machine
241/*
242 * Display a null-terminated string using the BIOS output.
243 */
244putstr.0: mov $0x7,%bx # Page:attribute
245 movb $0xe,%ah # BIOS: Display
246 int $0x10 # character
247putstr: lodsb # Get char
248 testb %al,%al # End of string?
249 jne putstr.0 # No
249
250
250//
251// Overused return code. ereturn is used to return an error from the
252// read function. Since we assume putstr succeeds, we (ab)use the
253// same code when we return from putstr.
254//
255ereturn: movb $0x1,%ah // Invalid
256 stc // argument
257return: retw // To caller
258//
259// Reads sectors from the disk. If EDD is enabled, then check if it is
260// installed and use it if it is. If it is not installed or not enabled, then
261// fall back to using CHS. Since we use a LBA, if we are using CHS, we have to
262// fetch the drive parameters from the BIOS and divide it out ourselves.
263// Call with:
264//
265// %dl - byte - drive number
266// stack - 10 bytes - EDD Packet
267//
268read: push %dx // Save
269 movb $0x8,%ah // BIOS: Get drive
270 int $0x13 // parameters
271 movb %dh,%ch // Max head number
272 pop %dx // Restore
273 jc return // If error
274 andb $0x3f,%cl // Sectors per track
275 jz ereturn // If zero
276 cli // Disable interrupts
277 mov 0x8(%bp),%eax // Get LBA
278 push %dx // Save
279 movzbl %cl,%ebx // Divide by
280 xor %edx,%edx // sectors
281 div %ebx // per track
282 movb %ch,%bl // Max head number
283 movb %dl,%ch // Sector number
284 inc %bx // Divide by
285 xorb %dl,%dl // number
286 div %ebx // of heads
287 movb %dl,%bh // Head number
288 pop %dx // Restore
289 cmpl $0x3ff,%eax // Cylinder number supportable?
290 sti // Enable interrupts
291 ja read.7 // No, try EDD
292 xchgb %al,%ah // Set up cylinder
293 rorb $0x2,%al // number
294 orb %ch,%al // Merge
295 inc %ax // sector
296 xchg %ax,%cx // number
297 movb %bh,%dh // Head number
298 subb %ah,%al // Sectors this track
299 mov 0x2(%bp),%ah // Blocks to read
300 cmpb %ah,%al // To read
301 jb read.2 // this
251/*
252 * Overused return code. ereturn is used to return an error from the
253 * read function. Since we assume putstr succeeds, we (ab)use the
254 * same code when we return from putstr.
255 */
256ereturn: movb $0x1,%ah # Invalid
257 stc # argument
258return: retw # To caller
259/*
260 * Reads sectors from the disk. If EDD is enabled, then check if it is
261 * installed and use it if it is. If it is not installed or not enabled, then
262 * fall back to using CHS. Since we use a LBA, if we are using CHS, we have to
263 * fetch the drive parameters from the BIOS and divide it out ourselves.
264 * Call with:
265 *
266 * %dl - byte - drive number
267 * stack - 10 bytes - EDD Packet
268 */
269read: push %dx # Save
270 movb $0x8,%ah # BIOS: Get drive
271 int $0x13 # parameters
272 movb %dh,%ch # Max head number
273 pop %dx # Restore
274 jc return # If error
275 andb $0x3f,%cl # Sectors per track
276 jz ereturn # If zero
277 cli # Disable interrupts
278 mov 0x8(%bp),%eax # Get LBA
279 push %dx # Save
280 movzbl %cl,%ebx # Divide by
281 xor %edx,%edx # sectors
282 div %ebx # per track
283 movb %ch,%bl # Max head number
284 movb %dl,%ch # Sector number
285 inc %bx # Divide by
286 xorb %dl,%dl # number
287 div %ebx # of heads
288 movb %dl,%bh # Head number
289 pop %dx # Restore
290 cmpl $0x3ff,%eax # Cylinder number supportable?
291 sti # Enable interrupts
292 ja read.7 # No, try EDD
293 xchgb %al,%ah # Set up cylinder
294 rorb $0x2,%al # number
295 orb %ch,%al # Merge
296 inc %ax # sector
297 xchg %ax,%cx # number
298 movb %bh,%dh # Head number
299 subb %ah,%al # Sectors this track
300 mov 0x2(%bp),%ah # Blocks to read
301 cmpb %ah,%al # To read
302 jb read.2 # this
302#ifdef TRACK_AT_A_TIME
303#ifdef TRACK_AT_A_TIME
303 movb %ah,%al // track
304 movb %ah,%al # track
304#else
305#else
305 movb $1,%al // one sector
306 movb $1,%al # one sector
306#endif
307#endif
307read.2: mov $0x5,%di // Try count
308read.3: les 0x4(%bp),%bx // Transfer buffer
309 push %ax // Save
310 movb $0x2,%ah // BIOS: Read
311 int $0x13 // from disk
312 pop %bx // Restore
313 jnc read.4 // If success
314 dec %di // Retry?
315 jz read.6 // No
316 xorb %ah,%ah // BIOS: Reset
317 int $0x13 // disk system
318 xchg %bx,%ax // Block count
319 jmp read.3 // Continue
320read.4: movzbw %bl,%ax // Sectors read
321 add %ax,0x8(%bp) // Adjust
322 jnc read.5 // LBA,
323 incw 0xa(%bp) // transfer
324read.5: shlb %bl // buffer
325 add %bl,0x5(%bp) // pointer,
326 sub %al,0x2(%bp) // block count
327 ja read // If not done
328read.6: retw // To caller
329read.7: testb $FL_PACKET,%cs:MEM_REL+flags-start // LBA support enabled?
330 jz ereturn // No, so return an error
331 mov $0x55aa,%bx // Magic
332 push %dx // Save
333 movb $0x41,%ah // BIOS: Check
334 int $0x13 // extensions present
335 pop %dx // Restore
336 jc return // If error, return an error
337 cmp $0xaa55,%bx // Magic?
338 jne ereturn // No, so return an error
339 testb $0x1,%cl // Packet interface?
340 jz ereturn // No, so return an error
341 mov %bp,%si // Disk packet
342 movb $0x42,%ah // BIOS: Extended
343 int $0x13 // read
344 retw // To caller
308read.2: mov $0x5,%di # Try count
309read.3: les 0x4(%bp),%bx # Transfer buffer
310 push %ax # Save
311 movb $0x2,%ah # BIOS: Read
312 int $0x13 # from disk
313 pop %bx # Restore
314 jnc read.4 # If success
315 dec %di # Retry?
316 jz read.6 # No
317 xorb %ah,%ah # BIOS: Reset
318 int $0x13 # disk system
319 xchg %bx,%ax # Block count
320 jmp read.3 # Continue
321read.4: movzbw %bl,%ax # Sectors read
322 add %ax,0x8(%bp) # Adjust
323 jnc read.5 # LBA,
324 incw 0xa(%bp) # transfer
325read.5: shlb %bl # buffer
326 add %bl,0x5(%bp) # pointer,
327 sub %al,0x2(%bp) # block count
328 ja read # If not done
329read.6: retw # To caller
330read.7: testb $FL_PACKET,%cs:MEM_REL+flags-start # LBA support enabled?
331 jz ereturn # No, so return an error
332 mov $0x55aa,%bx # Magic
333 push %dx # Save
334 movb $0x41,%ah # BIOS: Check
335 int $0x13 # extensions present
336 pop %dx # Restore
337 jc return # If error, return an error
338 cmp $0xaa55,%bx # Magic?
339 jne ereturn # No, so return an error
340 testb $0x1,%cl # Packet interface?
341 jz ereturn # No, so return an error
342 mov %bp,%si # Disk packet
343 movb $0x42,%ah # BIOS: Extended
344 int $0x13 # read
345 retw # To caller
345
346
346// Messages
347/* Messages */
347
348msg_read: .asciz "Read"
349msg_part: .asciz "Boot"
350
351prompt: .asciz " error\r\n"
352
348
349msg_read: .asciz "Read"
350msg_part: .asciz "Boot"
351
352prompt: .asciz " error\r\n"
353
353flags: .byte FLAGS // Flags
354flags: .byte FLAGS # Flags
354
355 .org PRT_OFF,0x90
356
355
356 .org PRT_OFF,0x90
357
357// Partition table
358/* Partition table */
358
359 .fill 0x30,0x1,0x0
360part4: .byte 0x80, 0x00, 0x01, 0x00
361 .byte 0xa5, 0xfe, 0xff, 0xff
362 .byte 0x00, 0x00, 0x00, 0x00
359
360 .fill 0x30,0x1,0x0
361part4: .byte 0x80, 0x00, 0x01, 0x00
362 .byte 0xa5, 0xfe, 0xff, 0xff
363 .byte 0x00, 0x00, 0x00, 0x00
363 .byte 0x50, 0xc3, 0x00, 0x00 // 50000 sectors long, bleh
364 .byte 0x50, 0xc3, 0x00, 0x00 # 50000 sectors long, bleh
364
365
365 .word 0xaa55 // Magic number
366 .word 0xaa55 # Magic number