Deleted Added
full compact
1/*-
2 * Copyright (c) 1994-1998 Mark Brinicombe.
3 * Copyright (c) 1994 Brini.
4 * All rights reserved.
5 *
6 * This code is derived from software written for Brini by Mark Brinicombe
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * from: FreeBSD: //depot/projects/arm/src/sys/arm/at91/kb920x_machdep.c, rev 45
36 */
37
38#include "opt_msgbuf.h"
39#include "opt_ddb.h"
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/arm/mv/mv_machdep.c 185513 2008-12-01 10:16:25Z stas $");
42__FBSDID("$FreeBSD: head/sys/arm/mv/mv_machdep.c 186909 2009-01-08 18:31:43Z raj $");
43
44#define _ARM32_BUS_DMA_PRIVATE
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/sysproto.h>
48#include <sys/signalvar.h>
49#include <sys/imgact.h>
50#include <sys/kernel.h>
51#include <sys/ktr.h>
52#include <sys/linker.h>
53#include <sys/lock.h>
54#include <sys/malloc.h>
55#include <sys/mutex.h>
56#include <sys/pcpu.h>
57#include <sys/proc.h>
58#include <sys/ptrace.h>
59#include <sys/cons.h>
60#include <sys/bio.h>
61#include <sys/bus.h>
62#include <sys/buf.h>
63#include <sys/exec.h>
64#include <sys/kdb.h>
65#include <sys/msgbuf.h>
66#include <machine/reg.h>
67#include <machine/cpu.h>
68
69#include <vm/vm.h>
70#include <vm/pmap.h>
71#include <vm/vm_object.h>
72#include <vm/vm_page.h>
73#include <vm/vm_pager.h>
74#include <vm/vm_map.h>
75#include <vm/vnode_pager.h>
76#include <machine/pte.h>
77#include <machine/pmap.h>
78#include <machine/vmparam.h>
79#include <machine/pcb.h>
80#include <machine/undefined.h>
81#include <machine/machdep.h>
82#include <machine/metadata.h>
83#include <machine/armreg.h>
84#include <machine/bus.h>
85#include <sys/reboot.h>
86#include <machine/bootinfo.h>
87
88#include <arm/mv/mvvar.h> /* XXX eventually this should be eliminated */
89
90#ifdef DEBUG
91#define debugf(fmt, args...) printf(fmt, ##args)
92#else
93#define debugf(fmt, args...)
94#endif
95
96/*
97 * This is the number of L2 page tables required for covering max
98 * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
99 * stacks etc.), uprounded to be divisible by 4.
100 */
101#define KERNEL_PT_MAX 78
102
103/* Define various stack sizes in pages */
104#define IRQ_STACK_SIZE 1
105#define ABT_STACK_SIZE 1
106#define UND_STACK_SIZE 1
107
108/* Maximum number of memory regions */
109#define MEM_REGIONS 8
110
111extern unsigned char kernbase[];
112extern unsigned char _etext[];
113extern unsigned char _edata[];
114extern unsigned char __bss_start[];
115extern unsigned char _end[];
116
117extern u_int data_abort_handler_address;
118extern u_int prefetch_abort_handler_address;
119extern u_int undefined_handler_address;
120
121extern const struct pmap_devmap *pmap_devmap_bootstrap_table;
122extern vm_offset_t pmap_bootstrap_lastaddr;
123
124struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
125
126extern int *end;
127
128struct pcpu __pcpu;
129struct pcpu *pcpup = &__pcpu;
130
131/* Physical and virtual addresses for some global pages */
132
133vm_paddr_t phys_avail[10];
134vm_paddr_t dump_avail[4];
135vm_offset_t physical_pages;
136
137struct pv_addr systempage;
138struct pv_addr msgbufpv;
139struct pv_addr irqstack;
140struct pv_addr undstack;
141struct pv_addr abtstack;
142struct pv_addr kernelstack;
143
144static struct trapframe proc0_tf;
145
146struct mem_region {
147 vm_offset_t mr_start;
148 vm_size_t mr_size;
149};
150
151static struct mem_region availmem_regions[MEM_REGIONS];
152static int availmem_regions_sz;
153
154struct bootinfo *bootinfo;
155
156static void print_kenv(void);
157static void print_kernel_section_addr(void);
158static void print_bootinfo(void);
159
160static void physmap_init(int);
161
162static char *
163kenv_next(char *cp)
164{
165
166 if (cp != NULL) {
167 while (*cp != 0)
168 cp++;
169 cp++;
170 if (*cp == 0)
171 cp = NULL;
172 }
173 return (cp);
174}
175
176static void
177print_kenv(void)
178{
179 int len;
180 char *cp;
181
182 debugf("loader passed (static) kenv:\n");
183 if (kern_envp == NULL) {
184 debugf(" no env, null ptr\n");
185 return;
186 }
187 debugf(" kern_envp = 0x%08x\n", (uint32_t)kern_envp);
188
189 len = 0;
190 for (cp = kern_envp; cp != NULL; cp = kenv_next(cp))
191 debugf(" %x %s\n", (uint32_t)cp, cp);
192}
193
194static void
195print_bootinfo(void)
196{
197 struct bi_mem_region *mr;
198 struct bi_eth_addr *eth;
199 int i, j;
200
201 debugf("bootinfo:\n");
202 if (bootinfo == NULL) {
203 debugf(" no bootinfo, null ptr\n");
204 return;
205 }
206
207 debugf(" version = 0x%08x\n", bootinfo->bi_version);
208 debugf(" ccsrbar = 0x%08x\n", bootinfo->bi_bar_base);
209 debugf(" cpu_clk = 0x%08x\n", bootinfo->bi_cpu_clk);
210 debugf(" bus_clk = 0x%08x\n", bootinfo->bi_bus_clk);
211
212 debugf(" mem regions:\n");
213 mr = (struct bi_mem_region *)bootinfo->bi_data;
214 for (i = 0; i < bootinfo->bi_mem_reg_no; i++, mr++)
215 debugf(" #%d, base = 0x%08x, size = 0x%08x\n", i,
216 mr->mem_base, mr->mem_size);
217
218 debugf(" eth addresses:\n");
219 eth = (struct bi_eth_addr *)mr;
220 for (i = 0; i < bootinfo->bi_eth_addr_no; i++, eth++) {
221 debugf(" #%d, addr = ", i);
222 for (j = 0; j < 6; j++)
223 debugf("%02x ", eth->mac_addr[j]);
224 debugf("\n");
225 }
226}
227
228static void
229print_kernel_section_addr(void)
230{
231
232 debugf("kernel image addresses:\n");
233 debugf(" kernbase = 0x%08x\n", (uint32_t)kernbase);
234 debugf(" _etext (sdata) = 0x%08x\n", (uint32_t)_etext);
235 debugf(" _edata = 0x%08x\n", (uint32_t)_edata);
236 debugf(" __bss_start = 0x%08x\n", (uint32_t)__bss_start);
237 debugf(" _end = 0x%08x\n", (uint32_t)_end);
238}
239
240struct bi_mem_region *
241bootinfo_mr(void)
242{
243
244 return ((struct bi_mem_region *)bootinfo->bi_data);
245}
246
247static void
248physmap_init(int hardcoded)
249{
250 int i, j, cnt;
251 vm_offset_t phys_kernelend, kernload;
252 uint32_t s, e, sz;
253 struct mem_region *mp, *mp1;
254
255 phys_kernelend = KERNPHYSADDR + (virtual_avail - KERNVIRTADDR);
256 kernload = KERNPHYSADDR;
257
258 /*
259 * Use hardcoded physical addresses if we don't use memory regions
260 * from metadata.
261 */
262 if (hardcoded) {
263 phys_avail[0] = 0;
264 phys_avail[1] = kernload;
265
266 phys_avail[2] = phys_kernelend;
267 phys_avail[3] = PHYSMEM_SIZE;
268
269 phys_avail[4] = 0;
270 phys_avail[5] = 0;
271 return;
272 }
273
274 /*
275 * Remove kernel physical address range from avail
276 * regions list. Page align all regions.
277 * Non-page aligned memory isn't very interesting to us.
278 * Also, sort the entries for ascending addresses.
279 */
280 sz = 0;
281 cnt = availmem_regions_sz;
282 debugf("processing avail regions:\n");
283 for (mp = availmem_regions; mp->mr_size; mp++) {
284 s = mp->mr_start;
285 e = mp->mr_start + mp->mr_size;
286 debugf(" %08x-%08x -> ", s, e);
287 /* Check whether this region holds all of the kernel. */
288 if (s < kernload && e > phys_kernelend) {
289 availmem_regions[cnt].mr_start = phys_kernelend;
290 availmem_regions[cnt++].mr_size = e - phys_kernelend;
291 e = kernload;
292 }
293 /* Look whether this regions starts within the kernel. */
294 if (s >= kernload && s < phys_kernelend) {
295 if (e <= phys_kernelend)
296 goto empty;
297 s = phys_kernelend;
298 }
299 /* Now look whether this region ends within the kernel. */
300 if (e > kernload && e <= phys_kernelend) {
301 if (s >= kernload) {
302 goto empty;
303 }
304 e = kernload;
305 }
306 /* Now page align the start and size of the region. */
307 s = round_page(s);
308 e = trunc_page(e);
309 if (e < s)
310 e = s;
311 sz = e - s;
312 debugf("%08x-%08x = %x\n", s, e, sz);
313
314 /* Check whether some memory is left here. */
315 if (sz == 0) {
316 empty:
317 printf("skipping\n");
318 bcopy(mp + 1, mp,
319 (cnt - (mp - availmem_regions)) * sizeof(*mp));
320 cnt--;
321 mp--;
322 continue;
323 }
324
325 /* Do an insertion sort. */
326 for (mp1 = availmem_regions; mp1 < mp; mp1++)
327 if (s < mp1->mr_start)
328 break;
329 if (mp1 < mp) {
330 bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
331 mp1->mr_start = s;
332 mp1->mr_size = sz;
333 } else {
334 mp->mr_start = s;
335 mp->mr_size = sz;
336 }
337 }
338 availmem_regions_sz = cnt;
339
340 /* Fill in phys_avail table, based on availmem_regions */
341 debugf("fill in phys_avail:\n");
342 for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
343
344 debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
345 availmem_regions[i].mr_start,
346 availmem_regions[i].mr_start + availmem_regions[i].mr_size,
347 availmem_regions[i].mr_size);
348
349 phys_avail[j] = availmem_regions[i].mr_start;
350 phys_avail[j + 1] = availmem_regions[i].mr_start +
351 availmem_regions[i].mr_size;
352 }
353 phys_avail[j] = 0;
354 phys_avail[j + 1] = 0;
355}
356
357void *
358initarm(void *mdp, void *unused __unused)
359{
360 struct pv_addr kernel_l1pt;
361 vm_offset_t freemempos, l2_start, lastaddr;
362 uint32_t memsize, l2size;
363 struct bi_mem_region *mr;
364 void *kmdp;
365 u_int l1pagetable;
366 int i = 0, j = 0;
367
368 kmdp = NULL;
369 lastaddr = 0;
370 memsize = 0;
371
372 set_cpufuncs();
373
374 /*
375 * Mask metadata pointer: it is supposed to be on page boundary. If
376 * the first argument (mdp) doesn't point to a valid address the
377 * bootloader must have passed us something else than the metadata
378 * ptr... In this case we want to fall back to some built-in settings.
379 */
380 mdp = (void *)((uint32_t)mdp & ~PAGE_MASK);
381
382 /* Parse metadata and fetch parameters */
383 if (mdp != NULL) {
384 preload_metadata = mdp;
385 kmdp = preload_search_by_type("elf kernel");
386 if (kmdp != NULL) {
387 bootinfo = (struct bootinfo *)preload_search_info(kmdp,
388 MODINFO_METADATA|MODINFOMD_BOOTINFO);
389
390 boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
391 kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
392 lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
393 }
394
395 /* Initialize memory regions table */
396 mr = bootinfo_mr();
397 for (i = 0; i < bootinfo->bi_mem_reg_no; i++, mr++) {
398 if (i == MEM_REGIONS)
399 break;
400 availmem_regions[i].mr_start = mr->mem_base;
401 availmem_regions[i].mr_size = mr->mem_size;
402 memsize += mr->mem_size;
403 }
404 availmem_regions_sz = i;
405 } else {
406 /* Fall back to hardcoded boothowto flags and metadata. */
407 boothowto = RB_VERBOSE | RB_SINGLE;
408 lastaddr = fake_preload_metadata();
409
410 /*
411 * Assume a single memory region of size specified in board
412 * configuration file.
413 */
414 memsize = PHYSMEM_SIZE;
415 }
416
417 /*
418 * If memsize is invalid, we can neither proceed nor panic (too
419 * early for console output).
420 */
421 if (memsize == 0)
422 while (1);
423
424 /* Platform-specific initialisation */
425 if (platform_pmap_init() != 0)
426 return (NULL);
427
428 pcpu_init(pcpup, 0, sizeof(struct pcpu));
429 PCPU_SET(curthread, &thread0);
430
431 /* Calculate number of L2 tables needed for mapping vm_page_array */
432 l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
433 l2size = (l2size >> L1_S_SHIFT) + 1;
434
435 /*
436 * Add one table for end of kernel map, one for stacks, msgbuf and
437 * L1 and L2 tables map and one for vectors map.
438 */
439 l2size += 3;
440
441 /* Make it divisible by 4 */
442 l2size = (l2size + 3) & ~3;
443
444#define KERNEL_TEXT_BASE (KERNBASE)
445 freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
446
447 /* Define a macro to simplify memory allocation */
448#define valloc_pages(var, np) \
449 alloc_pages((var).pv_va, (np)); \
450 (var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR);
451
452#define alloc_pages(var, np) \
453 (var) = freemempos; \
454 freemempos += (np * PAGE_SIZE); \
455 memset((char *)(var), 0, ((np) * PAGE_SIZE));
456
457 while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
458 freemempos += PAGE_SIZE;
459 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
460
461 for (i = 0; i < l2size; ++i) {
462 if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
463 valloc_pages(kernel_pt_table[i],
464 L2_TABLE_SIZE / PAGE_SIZE);
465 j = i;
466 } else {
467 kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
468 L2_TABLE_SIZE_REAL * (i - j);
469 kernel_pt_table[i].pv_pa =
470 kernel_pt_table[i].pv_va - KERNVIRTADDR +
471 KERNPHYSADDR;
472
473 }
474 }
475 /*
476 * Allocate a page for the system page mapped to 0x00000000
477 * or 0xffff0000. This page will just contain the system vectors
478 * and can be shared by all processes.
479 */
480 valloc_pages(systempage, 1);
481
482 /* Allocate stacks for all modes */
483 valloc_pages(irqstack, IRQ_STACK_SIZE);
484 valloc_pages(abtstack, ABT_STACK_SIZE);
485 valloc_pages(undstack, UND_STACK_SIZE);
486 valloc_pages(kernelstack, KSTACK_PAGES);
487 valloc_pages(msgbufpv, round_page(MSGBUF_SIZE) / PAGE_SIZE);
488
489 /*
490 * Now we start construction of the L1 page table
491 * We start by mapping the L2 page tables into the L1.
492 * This means that we can replace L1 mappings later on if necessary
493 */
494 l1pagetable = kernel_l1pt.pv_va;
495
496 /*
497 * Try to map as much as possible of kernel text and data using
498 * 1MB section mapping and for the rest of initial kernel address
499 * space use L2 coarse tables.
500 *
501 * Link L2 tables for mapping remainder of kernel (modulo 1MB)
502 * and kernel structures
503 */
504 l2_start = lastaddr & ~(L1_S_OFFSET);
505 for (i = 0 ; i < l2size - 1; i++)
506 pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
507 &kernel_pt_table[i]);
508
509 pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
510
511 /* Map kernel code and data */
512 pmap_map_chunk(l1pagetable, KERNVIRTADDR, KERNPHYSADDR,
513 (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
514 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
515
516
517 /* Map L1 directory and allocated L2 page tables */
518 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
519 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
520
521 pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
522 kernel_pt_table[0].pv_pa,
523 L2_TABLE_SIZE_REAL * l2size,
524 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
525
526 /* Map allocated stacks and msgbuf */
527 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
528 freemempos - irqstack.pv_va,
529 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
530
531 /* Link and map the vector page */
532 pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
533 &kernel_pt_table[l2size - 1]);
534 pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
535 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
536
537 pmap_devmap_bootstrap(l1pagetable, pmap_devmap_bootstrap_table);
538 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) |
539 DOMAIN_CLIENT);
540 setttb(kernel_l1pt.pv_pa);
541 cpu_tlb_flushID();
542 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
543 cninit();
544 physmem = memsize / PAGE_SIZE;
545
546 debugf("initarm: console initialized\n");
547 debugf(" arg1 mdp = 0x%08x\n", (uint32_t)mdp);
548 debugf(" boothowto = 0x%08x\n", boothowto);
549 print_bootinfo();
550 print_kernel_section_addr();
551 print_kenv();
552
553 /*
554 * Re-initialise MPP
555 */
556 platform_mpp_init();
557
558 /*
559 * Re-initialise decode windows
560 */
561 if (soc_decode_win() != 0)
562 printf("WARNING: could not re-initialise decode windows! "
563 "Running with existing settings...\n");
564 /*
565 * Pages were allocated during the secondary bootstrap for the
566 * stacks for different CPU modes.
567 * We must now set the r13 registers in the different CPU modes to
568 * point to these stacks.
569 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
570 * of the stack memory.
571 */
572 cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
573 set_stackptr(PSR_IRQ32_MODE,
574 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
575 set_stackptr(PSR_ABT32_MODE,
576 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
577 set_stackptr(PSR_UND32_MODE,
578 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
579
580 /*
581 * We must now clean the cache again....
582 * Cleaning may be done by reading new data to displace any
583 * dirty data in the cache. This will have happened in setttb()
584 * but since we are boot strapping the addresses used for the read
585 * may have just been remapped and thus the cache could be out
586 * of sync. A re-clean after the switch will cure this.
587 * After booting there are no gross relocations of the kernel thus
588 * this problem will not occur after initarm().
589 */
590 cpu_idcache_wbinv_all();
591
592 /* Set stack for exception handlers */
593 data_abort_handler_address = (u_int)data_abort_handler;
594 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
595 undefined_handler_address = (u_int)undefinedinstruction_bounce;
596 undefined_init();
597
598 proc_linkup0(&proc0, &thread0);
599 thread0.td_kstack = kernelstack.pv_va;
600 thread0.td_kstack_pages = KSTACK_PAGES;
601 thread0.td_pcb = (struct pcb *)
602 (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
603 thread0.td_pcb->pcb_flags = 0;
604 thread0.td_frame = &proc0_tf;
605 pcpup->pc_curpcb = thread0.td_pcb;
606
607 arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
608
609 dump_avail[0] = 0;
610 dump_avail[1] = memsize;
611 dump_avail[2] = 0;
612 dump_avail[3] = 0;
613
614 pmap_bootstrap(freemempos, pmap_bootstrap_lastaddr, &kernel_l1pt);
615 msgbufp = (void *)msgbufpv.pv_va;
616 msgbufinit(msgbufp, MSGBUF_SIZE);
617 mutex_init();
618
619 /*
620 * Prepare map of physical memory regions available to vm subsystem.
621 * If metadata pointer doesn't point to a valid address, use hardcoded
622 * values.
623 */
624 physmap_init((mdp != NULL) ? 0 : 1);
625
626 /* Do basic tuning, hz etc */
627 init_param1();
628 init_param2(physmem);
629 kdb_init();
630 return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
631 sizeof(struct pcb)));
632}
633
634struct arm32_dma_range *
635bus_dma_get_range(void)
636{
637
638 return (NULL);
639}
640
641int
642bus_dma_get_range_nb(void)
643{
644
645 return (0);
646}