Deleted Added
full compact
imx_sdhci.c (297127) imx_sdhci.c (300050)
1/*-
2 * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 */
27#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 */
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/arm/freescale/imx/imx_sdhci.c 297127 2016-03-21 00:52:24Z ian $");
28__FBSDID("$FreeBSD: head/sys/arm/freescale/imx/imx_sdhci.c 300050 2016-05-17 12:52:31Z eadler $");
29
30/*
31 * SDHCI driver glue for Freescale i.MX SoC family.
32 *
33 * This supports both eSDHC (earlier SoCs) and uSDHC (more recent SoCs).
34 */
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/types.h>
39#include <sys/bus.h>
40#include <sys/callout.h>
41#include <sys/kernel.h>
42#include <sys/lock.h>
43#include <sys/malloc.h>
44#include <sys/module.h>
45#include <sys/mutex.h>
46#include <sys/resource.h>
47#include <sys/rman.h>
48#include <sys/sysctl.h>
49#include <sys/taskqueue.h>
50#include <sys/time.h>
51
52#include <machine/bus.h>
53#include <machine/resource.h>
54#include <machine/intr.h>
55
56#include <arm/freescale/imx/imx_ccmvar.h>
57
58#include <dev/ofw/ofw_bus.h>
59#include <dev/ofw/ofw_bus_subr.h>
60
61#include <dev/mmc/bridge.h>
62#include <dev/mmc/mmcreg.h>
63#include <dev/mmc/mmcbrvar.h>
64
65#include <dev/sdhci/sdhci.h>
66#include "sdhci_if.h"
67
68struct imx_sdhci_softc {
69 device_t dev;
70 struct resource * mem_res;
71 struct resource * irq_res;
72 void * intr_cookie;
73 struct sdhci_slot slot;
74 struct callout r1bfix_callout;
75 sbintime_t r1bfix_timeout_at;
76 uint32_t baseclk_hz;
77 uint32_t sdclockreg_freq_bits;
78 uint32_t cmd_and_mode;
79 uint32_t r1bfix_intmask;
80 uint8_t r1bfix_type;
81 uint8_t hwtype;
82 boolean_t force_card_present;
83};
84
85#define R1BFIX_NONE 0 /* No fix needed at next interrupt. */
86#define R1BFIX_NODATA 1 /* Synthesize DATA_END for R1B w/o data. */
87#define R1BFIX_AC12 2 /* Wait for busy after auto command 12. */
88
89#define HWTYPE_NONE 0 /* Hardware not recognized/supported. */
90#define HWTYPE_ESDHC 1 /* imx5x and earlier. */
91#define HWTYPE_USDHC 2 /* imx6. */
92
93#define SDHC_WTMK_LVL 0x44 /* Watermark Level register. */
94#define USDHC_MIX_CONTROL 0x48 /* Mix(ed) Control register. */
95#define SDHC_VEND_SPEC 0xC0 /* Vendor-specific register. */
96#define SDHC_VEND_FRC_SDCLK_ON (1 << 8)
97#define SDHC_VEND_IPGEN (1 << 11)
98#define SDHC_VEND_HCKEN (1 << 12)
99#define SDHC_VEND_PEREN (1 << 13)
100
101#define SDHC_PRES_STATE 0x24
102#define SDHC_PRES_CIHB (1 << 0)
103#define SDHC_PRES_CDIHB (1 << 1)
104#define SDHC_PRES_DLA (1 << 2)
105#define SDHC_PRES_SDSTB (1 << 3)
106#define SDHC_PRES_IPGOFF (1 << 4)
107#define SDHC_PRES_HCKOFF (1 << 5)
108#define SDHC_PRES_PEROFF (1 << 6)
109#define SDHC_PRES_SDOFF (1 << 7)
110#define SDHC_PRES_WTA (1 << 8)
111#define SDHC_PRES_RTA (1 << 9)
112#define SDHC_PRES_BWEN (1 << 10)
113#define SDHC_PRES_BREN (1 << 11)
114#define SDHC_PRES_RTR (1 << 12)
115#define SDHC_PRES_CINST (1 << 16)
116#define SDHC_PRES_CDPL (1 << 18)
117#define SDHC_PRES_WPSPL (1 << 19)
118#define SDHC_PRES_CLSL (1 << 23)
119#define SDHC_PRES_DLSL_SHIFT 24
120#define SDHC_PRES_DLSL_MASK (0xffU << SDHC_PRES_DLSL_SHIFT)
121
122#define SDHC_PROT_CTRL 0x28
123#define SDHC_PROT_LED (1 << 0)
124#define SDHC_PROT_WIDTH_1BIT (0 << 1)
125#define SDHC_PROT_WIDTH_4BIT (1 << 1)
126#define SDHC_PROT_WIDTH_8BIT (2 << 1)
127#define SDHC_PROT_WIDTH_MASK (3 << 1)
128#define SDHC_PROT_D3CD (1 << 3)
129#define SDHC_PROT_EMODE_BIG (0 << 4)
130#define SDHC_PROT_EMODE_HALF (1 << 4)
131#define SDHC_PROT_EMODE_LITTLE (2 << 4)
132#define SDHC_PROT_EMODE_MASK (3 << 4)
133#define SDHC_PROT_SDMA (0 << 8)
134#define SDHC_PROT_ADMA1 (1 << 8)
135#define SDHC_PROT_ADMA2 (2 << 8)
136#define SDHC_PROT_ADMA264 (3 << 8)
137#define SDHC_PROT_DMA_MASK (3 << 8)
138#define SDHC_PROT_CDTL (1 << 6)
139#define SDHC_PROT_CDSS (1 << 7)
140
141#define SDHC_INT_STATUS 0x30
142
143#define SDHC_CLK_IPGEN (1 << 0)
144#define SDHC_CLK_HCKEN (1 << 1)
145#define SDHC_CLK_PEREN (1 << 2)
146#define SDHC_CLK_DIVISOR_MASK 0x000000f0
147#define SDHC_CLK_DIVISOR_SHIFT 4
148#define SDHC_CLK_PRESCALE_MASK 0x0000ff00
149#define SDHC_CLK_PRESCALE_SHIFT 8
150
151static struct ofw_compat_data compat_data[] = {
152 {"fsl,imx6q-usdhc", HWTYPE_USDHC},
153 {"fsl,imx6sl-usdhc", HWTYPE_USDHC},
154 {"fsl,imx53-esdhc", HWTYPE_ESDHC},
155 {"fsl,imx51-esdhc", HWTYPE_ESDHC},
156 {NULL, HWTYPE_NONE},
157};
158
159static void imx_sdhc_set_clock(struct imx_sdhci_softc *sc, int enable);
160static void imx_sdhci_r1bfix_func(void *arg);
161
162static inline uint32_t
163RD4(struct imx_sdhci_softc *sc, bus_size_t off)
164{
165
166 return (bus_read_4(sc->mem_res, off));
167}
168
169static inline void
170WR4(struct imx_sdhci_softc *sc, bus_size_t off, uint32_t val)
171{
172
173 bus_write_4(sc->mem_res, off, val);
174}
175
176static uint8_t
177imx_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off)
178{
179 struct imx_sdhci_softc *sc = device_get_softc(dev);
180 uint32_t val32, wrk32;
181
182 /*
183 * Most of the things in the standard host control register are in the
184 * hardware's wider protocol control register, but some of the bits are
185 * moved around.
186 */
187 if (off == SDHCI_HOST_CONTROL) {
188 wrk32 = RD4(sc, SDHC_PROT_CTRL);
189 val32 = wrk32 & (SDHCI_CTRL_LED | SDHCI_CTRL_CARD_DET |
190 SDHCI_CTRL_FORCE_CARD);
191 switch (wrk32 & SDHC_PROT_WIDTH_MASK) {
192 case SDHC_PROT_WIDTH_1BIT:
193 /* Value is already 0. */
194 break;
195 case SDHC_PROT_WIDTH_4BIT:
196 val32 |= SDHCI_CTRL_4BITBUS;
197 break;
198 case SDHC_PROT_WIDTH_8BIT:
199 val32 |= SDHCI_CTRL_8BITBUS;
200 break;
201 }
202 switch (wrk32 & SDHC_PROT_DMA_MASK) {
203 case SDHC_PROT_SDMA:
204 /* Value is already 0. */
205 break;
206 case SDHC_PROT_ADMA1:
207 /* This value is deprecated, should never appear. */
208 break;
209 case SDHC_PROT_ADMA2:
210 val32 |= SDHCI_CTRL_ADMA2;
211 break;
212 case SDHC_PROT_ADMA264:
213 val32 |= SDHCI_CTRL_ADMA264;
214 break;
215 }
216 return val32;
217 }
218
219 /*
220 * XXX can't find the bus power on/off knob. For now we have to say the
221 * power is always on and always set to the same voltage.
222 */
223 if (off == SDHCI_POWER_CONTROL) {
224 return (SDHCI_POWER_ON | SDHCI_POWER_300);
225 }
226
227
228 return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xff);
229}
230
231static uint16_t
232imx_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off)
233{
234 struct imx_sdhci_softc *sc = device_get_softc(dev);
235 uint32_t val32, wrk32;
236
237 if (sc->hwtype == HWTYPE_USDHC) {
238 /*
239 * The USDHC hardware has nothing in the version register, but
240 * it's v3 compatible with all our translation code.
241 */
242 if (off == SDHCI_HOST_VERSION) {
243 return (SDHCI_SPEC_300 << SDHCI_SPEC_VER_SHIFT);
244 }
245 /*
246 * The USDHC hardware moved the transfer mode bits to the mixed
247 * control register, fetch them from there.
248 */
249 if (off == SDHCI_TRANSFER_MODE)
250 return (RD4(sc, USDHC_MIX_CONTROL) & 0x37);
251
252 } else if (sc->hwtype == HWTYPE_ESDHC) {
253
254 /*
255 * The ESDHC hardware has the typical 32-bit combined "command
256 * and mode" register that we have to cache so that command
257 * isn't written until after mode. On a read, just retrieve the
258 * cached values last written.
259 */
260 if (off == SDHCI_TRANSFER_MODE) {
261 return (sc->cmd_and_mode >> 16);
262 } else if (off == SDHCI_COMMAND_FLAGS) {
263 return (sc->cmd_and_mode & 0x0000ffff);
264 }
265 }
266
267 /*
268 * This hardware only manages one slot. Synthesize a slot interrupt
269 * status register... if there are any enabled interrupts active they
270 * must be coming from our one and only slot.
271 */
272 if (off == SDHCI_SLOT_INT_STATUS) {
273 val32 = RD4(sc, SDHCI_INT_STATUS);
274 val32 &= RD4(sc, SDHCI_SIGNAL_ENABLE);
275 return (val32 ? 1 : 0);
276 }
277
278 /*
279 * The clock enable bit is in the vendor register and the clock-stable
280 * bit is in the present state register. Transcribe them as if they
281 * were in the clock control register where they should be.
282 * XXX Is it important that we distinguish between "internal" and "card"
283 * clocks? Probably not; transcribe the card clock status to both bits.
284 */
285 if (off == SDHCI_CLOCK_CONTROL) {
286 val32 = 0;
287 wrk32 = RD4(sc, SDHC_VEND_SPEC);
288 if (wrk32 & SDHC_VEND_FRC_SDCLK_ON)
289 val32 |= SDHCI_CLOCK_INT_EN | SDHCI_CLOCK_CARD_EN;
290 wrk32 = RD4(sc, SDHC_PRES_STATE);
291 if (wrk32 & SDHC_PRES_SDSTB)
292 val32 |= SDHCI_CLOCK_INT_STABLE;
293 val32 |= sc->sdclockreg_freq_bits;
294 return (val32);
295 }
296
297 return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xffff);
298}
299
300static uint32_t
301imx_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off)
302{
303 struct imx_sdhci_softc *sc = device_get_softc(dev);
304 uint32_t val32, wrk32;
305
306 val32 = RD4(sc, off);
307
308 /*
309 * The hardware leaves the base clock frequency out of the capabilities
310 * register; fill it in. The timeout clock is the same as the active
311 * output sdclock; we indicate that with a quirk setting so don't
312 * populate the timeout frequency bits.
313 *
314 * XXX Turn off (for now) features the hardware can do but this driver
315 * doesn't yet handle (1.8v, suspend/resume, etc).
316 */
317 if (off == SDHCI_CAPABILITIES) {
318 val32 &= ~SDHCI_CAN_VDD_180;
319 val32 &= ~SDHCI_CAN_DO_SUSPEND;
320 val32 |= SDHCI_CAN_DO_8BITBUS;
321 val32 |= (sc->baseclk_hz / 1000000) << SDHCI_CLOCK_BASE_SHIFT;
322 return (val32);
323 }
324
325 /*
326 * The hardware moves bits around in the present state register to make
327 * room for all 8 data line state bits. To translate, mask out all the
328 * bits which are not in the same position in both registers (this also
329 * masks out some freescale-specific bits in locations defined as
330 * reserved by sdhci), then shift the data line and retune request bits
331 * down to their standard locations.
332 */
333 if (off == SDHCI_PRESENT_STATE) {
334 wrk32 = val32;
335 val32 &= 0x000F0F07;
336 val32 |= (wrk32 >> 4) & SDHCI_STATE_DAT_MASK;
337 val32 |= (wrk32 >> 9) & SDHCI_RETUNE_REQUEST;
338 if (sc->force_card_present)
339 val32 |= SDHCI_CARD_PRESENT;
340 return (val32);
341 }
342
343 /*
344 * imx_sdhci_intr() can synthesize a DATA_END interrupt following a
345 * command with an R1B response, mix it into the hardware status.
346 */
347 if (off == SDHCI_INT_STATUS) {
348 return (val32 | sc->r1bfix_intmask);
349 }
350
351 return val32;
352}
353
354static void
355imx_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
356 uint32_t *data, bus_size_t count)
357{
358 struct imx_sdhci_softc *sc = device_get_softc(dev);
359
360 bus_read_multi_4(sc->mem_res, off, data, count);
361}
362
363static void
364imx_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint8_t val)
365{
366 struct imx_sdhci_softc *sc = device_get_softc(dev);
367 uint32_t val32;
368
369 /*
370 * Most of the things in the standard host control register are in the
371 * hardware's wider protocol control register, but some of the bits are
372 * moved around.
373 */
374 if (off == SDHCI_HOST_CONTROL) {
375 val32 = RD4(sc, SDHC_PROT_CTRL);
376 val32 &= ~(SDHC_PROT_LED | SDHC_PROT_DMA_MASK |
377 SDHC_PROT_WIDTH_MASK | SDHC_PROT_CDTL | SDHC_PROT_CDSS);
378 val32 |= (val & SDHCI_CTRL_LED);
379 if (val & SDHCI_CTRL_8BITBUS)
380 val32 |= SDHC_PROT_WIDTH_8BIT;
381 else
382 val32 |= (val & SDHCI_CTRL_4BITBUS);
383 val32 |= (val & (SDHCI_CTRL_SDMA | SDHCI_CTRL_ADMA2)) << 4;
384 val32 |= (val & (SDHCI_CTRL_CARD_DET | SDHCI_CTRL_FORCE_CARD));
385 WR4(sc, SDHC_PROT_CTRL, val32);
386 return;
387 }
388
389 /* XXX I can't find the bus power on/off knob; do nothing. */
390 if (off == SDHCI_POWER_CONTROL) {
391 return;
392 }
393
394 val32 = RD4(sc, off & ~3);
395 val32 &= ~(0xff << (off & 3) * 8);
396 val32 |= (val << (off & 3) * 8);
397
398 WR4(sc, off & ~3, val32);
399}
400
401static void
402imx_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint16_t val)
403{
404 struct imx_sdhci_softc *sc = device_get_softc(dev);
405 uint32_t val32;
406
407 /* The USDHC hardware moved the transfer mode bits to mixed control. */
408 if (sc->hwtype == HWTYPE_USDHC) {
409 if (off == SDHCI_TRANSFER_MODE) {
410 val32 = RD4(sc, USDHC_MIX_CONTROL);
411 val32 &= ~0x3f;
412 val32 |= val & 0x37;
413 // XXX acmd23 not supported here (or by sdhci driver)
414 WR4(sc, USDHC_MIX_CONTROL, val32);
415 return;
416 }
417 }
418
419 /*
420 * The clock control stuff is complex enough to have its own routine
421 * that can both change speeds and en/disable the clock output. Also,
422 * save the register bits in SDHCI format so that we can play them back
423 * in the read2 routine without complex decoding.
424 */
425 if (off == SDHCI_CLOCK_CONTROL) {
426 sc->sdclockreg_freq_bits = val & 0xffc0;
427 if (val & SDHCI_CLOCK_CARD_EN) {
428 imx_sdhc_set_clock(sc, true);
429 } else {
430 imx_sdhc_set_clock(sc, false);
431 }
432 return;
433 }
434
435 /*
436 * Figure out whether we need to check the DAT0 line for busy status at
437 * interrupt time. The controller should be doing this, but for some
438 * reason it doesn't. There are two cases:
439 * - R1B response with no data transfer should generate a DATA_END (aka
440 * TRANSFER_COMPLETE) interrupt after waiting for busy, but if
441 * there's no data transfer there's no DATA_END interrupt. This is
442 * documented; they seem to think it's a feature.
443 * - R1B response after Auto-CMD12 appears to not work, even though
444 * there's a control bit for it (bit 3) in the vendor register.
445 * When we're starting a command that needs a manual DAT0 line check at
446 * interrupt time, we leave ourselves a note in r1bfix_type so that we
447 * can do the extra work in imx_sdhci_intr().
448 */
449 if (off == SDHCI_COMMAND_FLAGS) {
450 if (val & SDHCI_CMD_DATA) {
451 const uint32_t MBAUTOCMD = SDHCI_TRNS_ACMD12 | SDHCI_TRNS_MULTI;
452 val32 = RD4(sc, USDHC_MIX_CONTROL);
453 if ((val32 & MBAUTOCMD) == MBAUTOCMD)
454 sc->r1bfix_type = R1BFIX_AC12;
455 } else {
456 if ((val & SDHCI_CMD_RESP_MASK) == SDHCI_CMD_RESP_SHORT_BUSY) {
457 WR4(sc, SDHCI_INT_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
458 WR4(sc, SDHCI_SIGNAL_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
459 sc->r1bfix_type = R1BFIX_NODATA;
460 }
461 }
462 }
463
464 val32 = RD4(sc, off & ~3);
465 val32 &= ~(0xffff << (off & 3) * 8);
466 val32 |= ((val & 0xffff) << (off & 3) * 8);
467 WR4(sc, off & ~3, val32);
468}
469
470static void
471imx_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t val)
472{
473 struct imx_sdhci_softc *sc = device_get_softc(dev);
474
475 /* Clear synthesized interrupts, then pass the value to the hardware. */
476 if (off == SDHCI_INT_STATUS) {
477 sc->r1bfix_intmask &= ~val;
478 }
479
480 WR4(sc, off, val);
481}
482
483static void
484imx_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
485 uint32_t *data, bus_size_t count)
486{
487 struct imx_sdhci_softc *sc = device_get_softc(dev);
488
489 bus_write_multi_4(sc->mem_res, off, data, count);
490}
491
492static void
493imx_sdhc_set_clock(struct imx_sdhci_softc *sc, int enable)
494{
495 uint32_t divisor, enable_bits, enable_reg, freq, prescale, val32;
496
497 if (sc->hwtype == HWTYPE_ESDHC) {
498 divisor = (sc->sdclockreg_freq_bits >> SDHCI_DIVIDER_SHIFT) &
499 SDHCI_DIVIDER_MASK;
500 enable_reg = SDHCI_CLOCK_CONTROL;
501 enable_bits = SDHC_CLK_IPGEN | SDHC_CLK_HCKEN |
502 SDHC_CLK_PEREN;
503 } else {
504 divisor = (sc->sdclockreg_freq_bits >> SDHCI_DIVIDER_SHIFT) &
505 SDHCI_DIVIDER_MASK;
506 divisor |= ((sc->sdclockreg_freq_bits >>
507 SDHCI_DIVIDER_HI_SHIFT) &
508 SDHCI_DIVIDER_HI_MASK) << SDHCI_DIVIDER_MASK_LEN;
509 enable_reg = SDHCI_CLOCK_CONTROL;
510 enable_bits = SDHC_VEND_IPGEN | SDHC_VEND_HCKEN |
511 SDHC_VEND_PEREN;
512 }
513
514 WR4(sc, SDHC_VEND_SPEC,
515 RD4(sc, SDHC_VEND_SPEC) & ~SDHC_VEND_FRC_SDCLK_ON);
516 WR4(sc, enable_reg, RD4(sc, enable_reg) & ~enable_bits);
517
518 if (!enable)
519 return;
520
521 if (divisor == 0)
522 freq = sc->baseclk_hz;
523 else
524 freq = sc->baseclk_hz / (2 * divisor);
525
526 for (prescale = 2; freq < sc->baseclk_hz / (prescale * 16);)
527 prescale <<= 1;
528
529 for (divisor = 1; freq < sc->baseclk_hz / (prescale * divisor);)
530 ++divisor;
531
532#ifdef DEBUG
533 device_printf(sc->dev,
534 "desired SD freq: %d, actual: %d; base %d prescale %d divisor %d\n",
535 freq, sc->baseclk_hz / (prescale * divisor), sc->baseclk_hz,
536 prescale, divisor);
537#endif
538
539 prescale >>= 1;
540 divisor -= 1;
541
542 val32 = RD4(sc, SDHCI_CLOCK_CONTROL);
543 val32 &= ~SDHC_CLK_DIVISOR_MASK;
544 val32 |= divisor << SDHC_CLK_DIVISOR_SHIFT;
545 val32 &= ~SDHC_CLK_PRESCALE_MASK;
546 val32 |= prescale << SDHC_CLK_PRESCALE_SHIFT;
547 WR4(sc, SDHCI_CLOCK_CONTROL, val32);
548
549 WR4(sc, enable_reg, RD4(sc, enable_reg) | enable_bits);
550 WR4(sc, SDHC_VEND_SPEC,
551 RD4(sc, SDHC_VEND_SPEC) | SDHC_VEND_FRC_SDCLK_ON);
552}
553
554static boolean_t
555imx_sdhci_r1bfix_is_wait_done(struct imx_sdhci_softc *sc)
556{
557 uint32_t inhibit;
558
559 mtx_assert(&sc->slot.mtx, MA_OWNED);
560
561 /*
562 * Check the DAT0 line status using both the DLA (data line active) and
563 * CDIHB (data inhibit) bits in the present state register. In theory
564 * just DLA should do the trick, but in practice it takes both. If the
565 * DAT0 line is still being held and we're not yet beyond the timeout
566 * point, just schedule another callout to check again later.
567 */
568 inhibit = RD4(sc, SDHC_PRES_STATE) & (SDHC_PRES_DLA | SDHC_PRES_CDIHB);
569
570 if (inhibit && getsbinuptime() < sc->r1bfix_timeout_at) {
571 callout_reset_sbt(&sc->r1bfix_callout, SBT_1MS, 0,
572 imx_sdhci_r1bfix_func, sc, 0);
573 return (false);
574 }
575
576 /*
577 * If we reach this point with the inhibit bits still set, we've got a
578 * timeout, synthesize a DATA_TIMEOUT interrupt. Otherwise the DAT0
579 * line has been released, and we synthesize a DATA_END, and if the type
580 * of fix needed was on a command-without-data we also now add in the
581 * original INT_RESPONSE that we suppressed earlier.
582 */
583 if (inhibit)
584 sc->r1bfix_intmask |= SDHCI_INT_DATA_TIMEOUT;
585 else {
586 sc->r1bfix_intmask |= SDHCI_INT_DATA_END;
587 if (sc->r1bfix_type == R1BFIX_NODATA)
588 sc->r1bfix_intmask |= SDHCI_INT_RESPONSE;
589 }
590
591 sc->r1bfix_type = R1BFIX_NONE;
592 return (true);
593}
594
595static void
596imx_sdhci_r1bfix_func(void * arg)
597{
598 struct imx_sdhci_softc *sc = arg;
599 boolean_t r1bwait_done;
600
601 mtx_lock(&sc->slot.mtx);
602 r1bwait_done = imx_sdhci_r1bfix_is_wait_done(sc);
603 mtx_unlock(&sc->slot.mtx);
604 if (r1bwait_done)
605 sdhci_generic_intr(&sc->slot);
606}
607
608static void
609imx_sdhci_intr(void *arg)
610{
611 struct imx_sdhci_softc *sc = arg;
612 uint32_t intmask;
613
614 mtx_lock(&sc->slot.mtx);
615
616 /*
617 * Manually check the DAT0 line for R1B response types that the
618 * controller fails to handle properly. The controller asserts the done
619 * interrupt while the card is still asserting busy with the DAT0 line.
620 *
621 * We check DAT0 immediately because most of the time, especially on a
622 * read, the card will actually be done by time we get here. If it's
623 * not, then the wait_done routine will schedule a callout to re-check
624 * periodically until it is done. In that case we clear the interrupt
625 * out of the hardware now so that we can present it later when the DAT0
626 * line is released.
627 *
29
30/*
31 * SDHCI driver glue for Freescale i.MX SoC family.
32 *
33 * This supports both eSDHC (earlier SoCs) and uSDHC (more recent SoCs).
34 */
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/types.h>
39#include <sys/bus.h>
40#include <sys/callout.h>
41#include <sys/kernel.h>
42#include <sys/lock.h>
43#include <sys/malloc.h>
44#include <sys/module.h>
45#include <sys/mutex.h>
46#include <sys/resource.h>
47#include <sys/rman.h>
48#include <sys/sysctl.h>
49#include <sys/taskqueue.h>
50#include <sys/time.h>
51
52#include <machine/bus.h>
53#include <machine/resource.h>
54#include <machine/intr.h>
55
56#include <arm/freescale/imx/imx_ccmvar.h>
57
58#include <dev/ofw/ofw_bus.h>
59#include <dev/ofw/ofw_bus_subr.h>
60
61#include <dev/mmc/bridge.h>
62#include <dev/mmc/mmcreg.h>
63#include <dev/mmc/mmcbrvar.h>
64
65#include <dev/sdhci/sdhci.h>
66#include "sdhci_if.h"
67
68struct imx_sdhci_softc {
69 device_t dev;
70 struct resource * mem_res;
71 struct resource * irq_res;
72 void * intr_cookie;
73 struct sdhci_slot slot;
74 struct callout r1bfix_callout;
75 sbintime_t r1bfix_timeout_at;
76 uint32_t baseclk_hz;
77 uint32_t sdclockreg_freq_bits;
78 uint32_t cmd_and_mode;
79 uint32_t r1bfix_intmask;
80 uint8_t r1bfix_type;
81 uint8_t hwtype;
82 boolean_t force_card_present;
83};
84
85#define R1BFIX_NONE 0 /* No fix needed at next interrupt. */
86#define R1BFIX_NODATA 1 /* Synthesize DATA_END for R1B w/o data. */
87#define R1BFIX_AC12 2 /* Wait for busy after auto command 12. */
88
89#define HWTYPE_NONE 0 /* Hardware not recognized/supported. */
90#define HWTYPE_ESDHC 1 /* imx5x and earlier. */
91#define HWTYPE_USDHC 2 /* imx6. */
92
93#define SDHC_WTMK_LVL 0x44 /* Watermark Level register. */
94#define USDHC_MIX_CONTROL 0x48 /* Mix(ed) Control register. */
95#define SDHC_VEND_SPEC 0xC0 /* Vendor-specific register. */
96#define SDHC_VEND_FRC_SDCLK_ON (1 << 8)
97#define SDHC_VEND_IPGEN (1 << 11)
98#define SDHC_VEND_HCKEN (1 << 12)
99#define SDHC_VEND_PEREN (1 << 13)
100
101#define SDHC_PRES_STATE 0x24
102#define SDHC_PRES_CIHB (1 << 0)
103#define SDHC_PRES_CDIHB (1 << 1)
104#define SDHC_PRES_DLA (1 << 2)
105#define SDHC_PRES_SDSTB (1 << 3)
106#define SDHC_PRES_IPGOFF (1 << 4)
107#define SDHC_PRES_HCKOFF (1 << 5)
108#define SDHC_PRES_PEROFF (1 << 6)
109#define SDHC_PRES_SDOFF (1 << 7)
110#define SDHC_PRES_WTA (1 << 8)
111#define SDHC_PRES_RTA (1 << 9)
112#define SDHC_PRES_BWEN (1 << 10)
113#define SDHC_PRES_BREN (1 << 11)
114#define SDHC_PRES_RTR (1 << 12)
115#define SDHC_PRES_CINST (1 << 16)
116#define SDHC_PRES_CDPL (1 << 18)
117#define SDHC_PRES_WPSPL (1 << 19)
118#define SDHC_PRES_CLSL (1 << 23)
119#define SDHC_PRES_DLSL_SHIFT 24
120#define SDHC_PRES_DLSL_MASK (0xffU << SDHC_PRES_DLSL_SHIFT)
121
122#define SDHC_PROT_CTRL 0x28
123#define SDHC_PROT_LED (1 << 0)
124#define SDHC_PROT_WIDTH_1BIT (0 << 1)
125#define SDHC_PROT_WIDTH_4BIT (1 << 1)
126#define SDHC_PROT_WIDTH_8BIT (2 << 1)
127#define SDHC_PROT_WIDTH_MASK (3 << 1)
128#define SDHC_PROT_D3CD (1 << 3)
129#define SDHC_PROT_EMODE_BIG (0 << 4)
130#define SDHC_PROT_EMODE_HALF (1 << 4)
131#define SDHC_PROT_EMODE_LITTLE (2 << 4)
132#define SDHC_PROT_EMODE_MASK (3 << 4)
133#define SDHC_PROT_SDMA (0 << 8)
134#define SDHC_PROT_ADMA1 (1 << 8)
135#define SDHC_PROT_ADMA2 (2 << 8)
136#define SDHC_PROT_ADMA264 (3 << 8)
137#define SDHC_PROT_DMA_MASK (3 << 8)
138#define SDHC_PROT_CDTL (1 << 6)
139#define SDHC_PROT_CDSS (1 << 7)
140
141#define SDHC_INT_STATUS 0x30
142
143#define SDHC_CLK_IPGEN (1 << 0)
144#define SDHC_CLK_HCKEN (1 << 1)
145#define SDHC_CLK_PEREN (1 << 2)
146#define SDHC_CLK_DIVISOR_MASK 0x000000f0
147#define SDHC_CLK_DIVISOR_SHIFT 4
148#define SDHC_CLK_PRESCALE_MASK 0x0000ff00
149#define SDHC_CLK_PRESCALE_SHIFT 8
150
151static struct ofw_compat_data compat_data[] = {
152 {"fsl,imx6q-usdhc", HWTYPE_USDHC},
153 {"fsl,imx6sl-usdhc", HWTYPE_USDHC},
154 {"fsl,imx53-esdhc", HWTYPE_ESDHC},
155 {"fsl,imx51-esdhc", HWTYPE_ESDHC},
156 {NULL, HWTYPE_NONE},
157};
158
159static void imx_sdhc_set_clock(struct imx_sdhci_softc *sc, int enable);
160static void imx_sdhci_r1bfix_func(void *arg);
161
162static inline uint32_t
163RD4(struct imx_sdhci_softc *sc, bus_size_t off)
164{
165
166 return (bus_read_4(sc->mem_res, off));
167}
168
169static inline void
170WR4(struct imx_sdhci_softc *sc, bus_size_t off, uint32_t val)
171{
172
173 bus_write_4(sc->mem_res, off, val);
174}
175
176static uint8_t
177imx_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off)
178{
179 struct imx_sdhci_softc *sc = device_get_softc(dev);
180 uint32_t val32, wrk32;
181
182 /*
183 * Most of the things in the standard host control register are in the
184 * hardware's wider protocol control register, but some of the bits are
185 * moved around.
186 */
187 if (off == SDHCI_HOST_CONTROL) {
188 wrk32 = RD4(sc, SDHC_PROT_CTRL);
189 val32 = wrk32 & (SDHCI_CTRL_LED | SDHCI_CTRL_CARD_DET |
190 SDHCI_CTRL_FORCE_CARD);
191 switch (wrk32 & SDHC_PROT_WIDTH_MASK) {
192 case SDHC_PROT_WIDTH_1BIT:
193 /* Value is already 0. */
194 break;
195 case SDHC_PROT_WIDTH_4BIT:
196 val32 |= SDHCI_CTRL_4BITBUS;
197 break;
198 case SDHC_PROT_WIDTH_8BIT:
199 val32 |= SDHCI_CTRL_8BITBUS;
200 break;
201 }
202 switch (wrk32 & SDHC_PROT_DMA_MASK) {
203 case SDHC_PROT_SDMA:
204 /* Value is already 0. */
205 break;
206 case SDHC_PROT_ADMA1:
207 /* This value is deprecated, should never appear. */
208 break;
209 case SDHC_PROT_ADMA2:
210 val32 |= SDHCI_CTRL_ADMA2;
211 break;
212 case SDHC_PROT_ADMA264:
213 val32 |= SDHCI_CTRL_ADMA264;
214 break;
215 }
216 return val32;
217 }
218
219 /*
220 * XXX can't find the bus power on/off knob. For now we have to say the
221 * power is always on and always set to the same voltage.
222 */
223 if (off == SDHCI_POWER_CONTROL) {
224 return (SDHCI_POWER_ON | SDHCI_POWER_300);
225 }
226
227
228 return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xff);
229}
230
231static uint16_t
232imx_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off)
233{
234 struct imx_sdhci_softc *sc = device_get_softc(dev);
235 uint32_t val32, wrk32;
236
237 if (sc->hwtype == HWTYPE_USDHC) {
238 /*
239 * The USDHC hardware has nothing in the version register, but
240 * it's v3 compatible with all our translation code.
241 */
242 if (off == SDHCI_HOST_VERSION) {
243 return (SDHCI_SPEC_300 << SDHCI_SPEC_VER_SHIFT);
244 }
245 /*
246 * The USDHC hardware moved the transfer mode bits to the mixed
247 * control register, fetch them from there.
248 */
249 if (off == SDHCI_TRANSFER_MODE)
250 return (RD4(sc, USDHC_MIX_CONTROL) & 0x37);
251
252 } else if (sc->hwtype == HWTYPE_ESDHC) {
253
254 /*
255 * The ESDHC hardware has the typical 32-bit combined "command
256 * and mode" register that we have to cache so that command
257 * isn't written until after mode. On a read, just retrieve the
258 * cached values last written.
259 */
260 if (off == SDHCI_TRANSFER_MODE) {
261 return (sc->cmd_and_mode >> 16);
262 } else if (off == SDHCI_COMMAND_FLAGS) {
263 return (sc->cmd_and_mode & 0x0000ffff);
264 }
265 }
266
267 /*
268 * This hardware only manages one slot. Synthesize a slot interrupt
269 * status register... if there are any enabled interrupts active they
270 * must be coming from our one and only slot.
271 */
272 if (off == SDHCI_SLOT_INT_STATUS) {
273 val32 = RD4(sc, SDHCI_INT_STATUS);
274 val32 &= RD4(sc, SDHCI_SIGNAL_ENABLE);
275 return (val32 ? 1 : 0);
276 }
277
278 /*
279 * The clock enable bit is in the vendor register and the clock-stable
280 * bit is in the present state register. Transcribe them as if they
281 * were in the clock control register where they should be.
282 * XXX Is it important that we distinguish between "internal" and "card"
283 * clocks? Probably not; transcribe the card clock status to both bits.
284 */
285 if (off == SDHCI_CLOCK_CONTROL) {
286 val32 = 0;
287 wrk32 = RD4(sc, SDHC_VEND_SPEC);
288 if (wrk32 & SDHC_VEND_FRC_SDCLK_ON)
289 val32 |= SDHCI_CLOCK_INT_EN | SDHCI_CLOCK_CARD_EN;
290 wrk32 = RD4(sc, SDHC_PRES_STATE);
291 if (wrk32 & SDHC_PRES_SDSTB)
292 val32 |= SDHCI_CLOCK_INT_STABLE;
293 val32 |= sc->sdclockreg_freq_bits;
294 return (val32);
295 }
296
297 return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xffff);
298}
299
300static uint32_t
301imx_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off)
302{
303 struct imx_sdhci_softc *sc = device_get_softc(dev);
304 uint32_t val32, wrk32;
305
306 val32 = RD4(sc, off);
307
308 /*
309 * The hardware leaves the base clock frequency out of the capabilities
310 * register; fill it in. The timeout clock is the same as the active
311 * output sdclock; we indicate that with a quirk setting so don't
312 * populate the timeout frequency bits.
313 *
314 * XXX Turn off (for now) features the hardware can do but this driver
315 * doesn't yet handle (1.8v, suspend/resume, etc).
316 */
317 if (off == SDHCI_CAPABILITIES) {
318 val32 &= ~SDHCI_CAN_VDD_180;
319 val32 &= ~SDHCI_CAN_DO_SUSPEND;
320 val32 |= SDHCI_CAN_DO_8BITBUS;
321 val32 |= (sc->baseclk_hz / 1000000) << SDHCI_CLOCK_BASE_SHIFT;
322 return (val32);
323 }
324
325 /*
326 * The hardware moves bits around in the present state register to make
327 * room for all 8 data line state bits. To translate, mask out all the
328 * bits which are not in the same position in both registers (this also
329 * masks out some freescale-specific bits in locations defined as
330 * reserved by sdhci), then shift the data line and retune request bits
331 * down to their standard locations.
332 */
333 if (off == SDHCI_PRESENT_STATE) {
334 wrk32 = val32;
335 val32 &= 0x000F0F07;
336 val32 |= (wrk32 >> 4) & SDHCI_STATE_DAT_MASK;
337 val32 |= (wrk32 >> 9) & SDHCI_RETUNE_REQUEST;
338 if (sc->force_card_present)
339 val32 |= SDHCI_CARD_PRESENT;
340 return (val32);
341 }
342
343 /*
344 * imx_sdhci_intr() can synthesize a DATA_END interrupt following a
345 * command with an R1B response, mix it into the hardware status.
346 */
347 if (off == SDHCI_INT_STATUS) {
348 return (val32 | sc->r1bfix_intmask);
349 }
350
351 return val32;
352}
353
354static void
355imx_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
356 uint32_t *data, bus_size_t count)
357{
358 struct imx_sdhci_softc *sc = device_get_softc(dev);
359
360 bus_read_multi_4(sc->mem_res, off, data, count);
361}
362
363static void
364imx_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint8_t val)
365{
366 struct imx_sdhci_softc *sc = device_get_softc(dev);
367 uint32_t val32;
368
369 /*
370 * Most of the things in the standard host control register are in the
371 * hardware's wider protocol control register, but some of the bits are
372 * moved around.
373 */
374 if (off == SDHCI_HOST_CONTROL) {
375 val32 = RD4(sc, SDHC_PROT_CTRL);
376 val32 &= ~(SDHC_PROT_LED | SDHC_PROT_DMA_MASK |
377 SDHC_PROT_WIDTH_MASK | SDHC_PROT_CDTL | SDHC_PROT_CDSS);
378 val32 |= (val & SDHCI_CTRL_LED);
379 if (val & SDHCI_CTRL_8BITBUS)
380 val32 |= SDHC_PROT_WIDTH_8BIT;
381 else
382 val32 |= (val & SDHCI_CTRL_4BITBUS);
383 val32 |= (val & (SDHCI_CTRL_SDMA | SDHCI_CTRL_ADMA2)) << 4;
384 val32 |= (val & (SDHCI_CTRL_CARD_DET | SDHCI_CTRL_FORCE_CARD));
385 WR4(sc, SDHC_PROT_CTRL, val32);
386 return;
387 }
388
389 /* XXX I can't find the bus power on/off knob; do nothing. */
390 if (off == SDHCI_POWER_CONTROL) {
391 return;
392 }
393
394 val32 = RD4(sc, off & ~3);
395 val32 &= ~(0xff << (off & 3) * 8);
396 val32 |= (val << (off & 3) * 8);
397
398 WR4(sc, off & ~3, val32);
399}
400
401static void
402imx_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint16_t val)
403{
404 struct imx_sdhci_softc *sc = device_get_softc(dev);
405 uint32_t val32;
406
407 /* The USDHC hardware moved the transfer mode bits to mixed control. */
408 if (sc->hwtype == HWTYPE_USDHC) {
409 if (off == SDHCI_TRANSFER_MODE) {
410 val32 = RD4(sc, USDHC_MIX_CONTROL);
411 val32 &= ~0x3f;
412 val32 |= val & 0x37;
413 // XXX acmd23 not supported here (or by sdhci driver)
414 WR4(sc, USDHC_MIX_CONTROL, val32);
415 return;
416 }
417 }
418
419 /*
420 * The clock control stuff is complex enough to have its own routine
421 * that can both change speeds and en/disable the clock output. Also,
422 * save the register bits in SDHCI format so that we can play them back
423 * in the read2 routine without complex decoding.
424 */
425 if (off == SDHCI_CLOCK_CONTROL) {
426 sc->sdclockreg_freq_bits = val & 0xffc0;
427 if (val & SDHCI_CLOCK_CARD_EN) {
428 imx_sdhc_set_clock(sc, true);
429 } else {
430 imx_sdhc_set_clock(sc, false);
431 }
432 return;
433 }
434
435 /*
436 * Figure out whether we need to check the DAT0 line for busy status at
437 * interrupt time. The controller should be doing this, but for some
438 * reason it doesn't. There are two cases:
439 * - R1B response with no data transfer should generate a DATA_END (aka
440 * TRANSFER_COMPLETE) interrupt after waiting for busy, but if
441 * there's no data transfer there's no DATA_END interrupt. This is
442 * documented; they seem to think it's a feature.
443 * - R1B response after Auto-CMD12 appears to not work, even though
444 * there's a control bit for it (bit 3) in the vendor register.
445 * When we're starting a command that needs a manual DAT0 line check at
446 * interrupt time, we leave ourselves a note in r1bfix_type so that we
447 * can do the extra work in imx_sdhci_intr().
448 */
449 if (off == SDHCI_COMMAND_FLAGS) {
450 if (val & SDHCI_CMD_DATA) {
451 const uint32_t MBAUTOCMD = SDHCI_TRNS_ACMD12 | SDHCI_TRNS_MULTI;
452 val32 = RD4(sc, USDHC_MIX_CONTROL);
453 if ((val32 & MBAUTOCMD) == MBAUTOCMD)
454 sc->r1bfix_type = R1BFIX_AC12;
455 } else {
456 if ((val & SDHCI_CMD_RESP_MASK) == SDHCI_CMD_RESP_SHORT_BUSY) {
457 WR4(sc, SDHCI_INT_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
458 WR4(sc, SDHCI_SIGNAL_ENABLE, slot->intmask | SDHCI_INT_RESPONSE);
459 sc->r1bfix_type = R1BFIX_NODATA;
460 }
461 }
462 }
463
464 val32 = RD4(sc, off & ~3);
465 val32 &= ~(0xffff << (off & 3) * 8);
466 val32 |= ((val & 0xffff) << (off & 3) * 8);
467 WR4(sc, off & ~3, val32);
468}
469
470static void
471imx_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t val)
472{
473 struct imx_sdhci_softc *sc = device_get_softc(dev);
474
475 /* Clear synthesized interrupts, then pass the value to the hardware. */
476 if (off == SDHCI_INT_STATUS) {
477 sc->r1bfix_intmask &= ~val;
478 }
479
480 WR4(sc, off, val);
481}
482
483static void
484imx_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
485 uint32_t *data, bus_size_t count)
486{
487 struct imx_sdhci_softc *sc = device_get_softc(dev);
488
489 bus_write_multi_4(sc->mem_res, off, data, count);
490}
491
492static void
493imx_sdhc_set_clock(struct imx_sdhci_softc *sc, int enable)
494{
495 uint32_t divisor, enable_bits, enable_reg, freq, prescale, val32;
496
497 if (sc->hwtype == HWTYPE_ESDHC) {
498 divisor = (sc->sdclockreg_freq_bits >> SDHCI_DIVIDER_SHIFT) &
499 SDHCI_DIVIDER_MASK;
500 enable_reg = SDHCI_CLOCK_CONTROL;
501 enable_bits = SDHC_CLK_IPGEN | SDHC_CLK_HCKEN |
502 SDHC_CLK_PEREN;
503 } else {
504 divisor = (sc->sdclockreg_freq_bits >> SDHCI_DIVIDER_SHIFT) &
505 SDHCI_DIVIDER_MASK;
506 divisor |= ((sc->sdclockreg_freq_bits >>
507 SDHCI_DIVIDER_HI_SHIFT) &
508 SDHCI_DIVIDER_HI_MASK) << SDHCI_DIVIDER_MASK_LEN;
509 enable_reg = SDHCI_CLOCK_CONTROL;
510 enable_bits = SDHC_VEND_IPGEN | SDHC_VEND_HCKEN |
511 SDHC_VEND_PEREN;
512 }
513
514 WR4(sc, SDHC_VEND_SPEC,
515 RD4(sc, SDHC_VEND_SPEC) & ~SDHC_VEND_FRC_SDCLK_ON);
516 WR4(sc, enable_reg, RD4(sc, enable_reg) & ~enable_bits);
517
518 if (!enable)
519 return;
520
521 if (divisor == 0)
522 freq = sc->baseclk_hz;
523 else
524 freq = sc->baseclk_hz / (2 * divisor);
525
526 for (prescale = 2; freq < sc->baseclk_hz / (prescale * 16);)
527 prescale <<= 1;
528
529 for (divisor = 1; freq < sc->baseclk_hz / (prescale * divisor);)
530 ++divisor;
531
532#ifdef DEBUG
533 device_printf(sc->dev,
534 "desired SD freq: %d, actual: %d; base %d prescale %d divisor %d\n",
535 freq, sc->baseclk_hz / (prescale * divisor), sc->baseclk_hz,
536 prescale, divisor);
537#endif
538
539 prescale >>= 1;
540 divisor -= 1;
541
542 val32 = RD4(sc, SDHCI_CLOCK_CONTROL);
543 val32 &= ~SDHC_CLK_DIVISOR_MASK;
544 val32 |= divisor << SDHC_CLK_DIVISOR_SHIFT;
545 val32 &= ~SDHC_CLK_PRESCALE_MASK;
546 val32 |= prescale << SDHC_CLK_PRESCALE_SHIFT;
547 WR4(sc, SDHCI_CLOCK_CONTROL, val32);
548
549 WR4(sc, enable_reg, RD4(sc, enable_reg) | enable_bits);
550 WR4(sc, SDHC_VEND_SPEC,
551 RD4(sc, SDHC_VEND_SPEC) | SDHC_VEND_FRC_SDCLK_ON);
552}
553
554static boolean_t
555imx_sdhci_r1bfix_is_wait_done(struct imx_sdhci_softc *sc)
556{
557 uint32_t inhibit;
558
559 mtx_assert(&sc->slot.mtx, MA_OWNED);
560
561 /*
562 * Check the DAT0 line status using both the DLA (data line active) and
563 * CDIHB (data inhibit) bits in the present state register. In theory
564 * just DLA should do the trick, but in practice it takes both. If the
565 * DAT0 line is still being held and we're not yet beyond the timeout
566 * point, just schedule another callout to check again later.
567 */
568 inhibit = RD4(sc, SDHC_PRES_STATE) & (SDHC_PRES_DLA | SDHC_PRES_CDIHB);
569
570 if (inhibit && getsbinuptime() < sc->r1bfix_timeout_at) {
571 callout_reset_sbt(&sc->r1bfix_callout, SBT_1MS, 0,
572 imx_sdhci_r1bfix_func, sc, 0);
573 return (false);
574 }
575
576 /*
577 * If we reach this point with the inhibit bits still set, we've got a
578 * timeout, synthesize a DATA_TIMEOUT interrupt. Otherwise the DAT0
579 * line has been released, and we synthesize a DATA_END, and if the type
580 * of fix needed was on a command-without-data we also now add in the
581 * original INT_RESPONSE that we suppressed earlier.
582 */
583 if (inhibit)
584 sc->r1bfix_intmask |= SDHCI_INT_DATA_TIMEOUT;
585 else {
586 sc->r1bfix_intmask |= SDHCI_INT_DATA_END;
587 if (sc->r1bfix_type == R1BFIX_NODATA)
588 sc->r1bfix_intmask |= SDHCI_INT_RESPONSE;
589 }
590
591 sc->r1bfix_type = R1BFIX_NONE;
592 return (true);
593}
594
595static void
596imx_sdhci_r1bfix_func(void * arg)
597{
598 struct imx_sdhci_softc *sc = arg;
599 boolean_t r1bwait_done;
600
601 mtx_lock(&sc->slot.mtx);
602 r1bwait_done = imx_sdhci_r1bfix_is_wait_done(sc);
603 mtx_unlock(&sc->slot.mtx);
604 if (r1bwait_done)
605 sdhci_generic_intr(&sc->slot);
606}
607
608static void
609imx_sdhci_intr(void *arg)
610{
611 struct imx_sdhci_softc *sc = arg;
612 uint32_t intmask;
613
614 mtx_lock(&sc->slot.mtx);
615
616 /*
617 * Manually check the DAT0 line for R1B response types that the
618 * controller fails to handle properly. The controller asserts the done
619 * interrupt while the card is still asserting busy with the DAT0 line.
620 *
621 * We check DAT0 immediately because most of the time, especially on a
622 * read, the card will actually be done by time we get here. If it's
623 * not, then the wait_done routine will schedule a callout to re-check
624 * periodically until it is done. In that case we clear the interrupt
625 * out of the hardware now so that we can present it later when the DAT0
626 * line is released.
627 *
628 * If we need to wait for the the DAT0 line to be released, we set up a
628 * If we need to wait for the DAT0 line to be released, we set up a
629 * timeout point 250ms in the future. This number comes from the SD
630 * spec, which allows a command to take that long. In the real world,
631 * cards tend to take 10-20ms for a long-running command such as a write
632 * or erase that spans two pages.
633 */
634 switch (sc->r1bfix_type) {
635 case R1BFIX_NODATA:
636 intmask = RD4(sc, SDHC_INT_STATUS) & SDHCI_INT_RESPONSE;
637 break;
638 case R1BFIX_AC12:
639 intmask = RD4(sc, SDHC_INT_STATUS) & SDHCI_INT_DATA_END;
640 break;
641 default:
642 intmask = 0;
643 break;
644 }
645 if (intmask) {
646 sc->r1bfix_timeout_at = getsbinuptime() + 250 * SBT_1MS;
647 if (!imx_sdhci_r1bfix_is_wait_done(sc)) {
648 WR4(sc, SDHC_INT_STATUS, intmask);
649 bus_barrier(sc->mem_res, SDHC_INT_STATUS, 4,
650 BUS_SPACE_BARRIER_WRITE);
651 }
652 }
653
654 mtx_unlock(&sc->slot.mtx);
655 sdhci_generic_intr(&sc->slot);
656}
657
658static int
659imx_sdhci_get_ro(device_t bus, device_t child)
660{
661
662 return (false);
663}
664
665static int
666imx_sdhci_detach(device_t dev)
667{
668
669 return (EBUSY);
670}
671
672static int
673imx_sdhci_attach(device_t dev)
674{
675 struct imx_sdhci_softc *sc = device_get_softc(dev);
676 int rid, err;
677 phandle_t node;
678
679 sc->dev = dev;
680
681 sc->hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
682 if (sc->hwtype == HWTYPE_NONE)
683 panic("Impossible: not compatible in imx_sdhci_attach()");
684
685 rid = 0;
686 sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
687 RF_ACTIVE);
688 if (!sc->mem_res) {
689 device_printf(dev, "cannot allocate memory window\n");
690 err = ENXIO;
691 goto fail;
692 }
693
694 rid = 0;
695 sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
696 RF_ACTIVE);
697 if (!sc->irq_res) {
698 device_printf(dev, "cannot allocate interrupt\n");
699 err = ENXIO;
700 goto fail;
701 }
702
703 if (bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
704 NULL, imx_sdhci_intr, sc, &sc->intr_cookie)) {
705 device_printf(dev, "cannot setup interrupt handler\n");
706 err = ENXIO;
707 goto fail;
708 }
709
710 sc->slot.quirks |= SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK;
711
712 /*
713 * DMA is not really broken, I just haven't implemented it yet.
714 */
715 sc->slot.quirks |= SDHCI_QUIRK_BROKEN_DMA;
716
717 /*
718 * Set the buffer watermark level to 128 words (512 bytes) for both read
719 * and write. The hardware has a restriction that when the read or
720 * write ready status is asserted, that means you can read exactly the
721 * number of words set in the watermark register before you have to
722 * re-check the status and potentially wait for more data. The main
723 * sdhci driver provides no hook for doing status checking on less than
724 * a full block boundary, so we set the watermark level to be a full
725 * block. Reads and writes where the block size is less than the
726 * watermark size will work correctly too, no need to change the
727 * watermark for different size blocks. However, 128 is the maximum
728 * allowed for the watermark, so PIO is limitted to 512 byte blocks
729 * (which works fine for SD cards, may be a problem for SDIO some day).
730 *
731 * XXX need named constants for this stuff.
732 */
733 WR4(sc, SDHC_WTMK_LVL, 0x08800880);
734
735 sc->baseclk_hz = imx_ccm_sdhci_hz();
736
737 /*
738 * If the slot is flagged with the non-removable property, set our flag
739 * to always force the SDHCI_CARD_PRESENT bit on.
740 *
741 * XXX Workaround for gpio-based card detect...
742 *
743 * We don't have gpio support yet. If there's a cd-gpios property just
744 * force the SDHCI_CARD_PRESENT bit on for now. If there isn't really a
745 * card there it will fail to probe at the mmc layer and nothing bad
746 * happens except instantiating an mmcN device for an empty slot.
747 */
748 node = ofw_bus_get_node(dev);
749 if (OF_hasprop(node, "non-removable"))
750 sc->force_card_present = true;
751 else if (OF_hasprop(node, "cd-gpios")) {
752 /* XXX put real gpio hookup here. */
753 sc->force_card_present = true;
754 }
755
756 callout_init(&sc->r1bfix_callout, 1);
757 sdhci_init_slot(dev, &sc->slot, 0);
758
759 bus_generic_probe(dev);
760 bus_generic_attach(dev);
761
762 sdhci_start_slot(&sc->slot);
763
764 return (0);
765
766fail:
767 if (sc->intr_cookie)
768 bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
769 if (sc->irq_res)
770 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq_res);
771 if (sc->mem_res)
772 bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
773
774 return (err);
775}
776
777static int
778imx_sdhci_probe(device_t dev)
779{
780
781 if (!ofw_bus_status_okay(dev))
782 return (ENXIO);
783
784 switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data) {
785 case HWTYPE_ESDHC:
786 device_set_desc(dev, "Freescale eSDHC controller");
787 return (BUS_PROBE_DEFAULT);
788 case HWTYPE_USDHC:
789 device_set_desc(dev, "Freescale uSDHC controller");
790 return (BUS_PROBE_DEFAULT);
791 default:
792 break;
793 }
794 return (ENXIO);
795}
796
797static device_method_t imx_sdhci_methods[] = {
798 /* Device interface */
799 DEVMETHOD(device_probe, imx_sdhci_probe),
800 DEVMETHOD(device_attach, imx_sdhci_attach),
801 DEVMETHOD(device_detach, imx_sdhci_detach),
802
803 /* Bus interface */
804 DEVMETHOD(bus_read_ivar, sdhci_generic_read_ivar),
805 DEVMETHOD(bus_write_ivar, sdhci_generic_write_ivar),
806 DEVMETHOD(bus_print_child, bus_generic_print_child),
807
808 /* MMC bridge interface */
809 DEVMETHOD(mmcbr_update_ios, sdhci_generic_update_ios),
810 DEVMETHOD(mmcbr_request, sdhci_generic_request),
811 DEVMETHOD(mmcbr_get_ro, imx_sdhci_get_ro),
812 DEVMETHOD(mmcbr_acquire_host, sdhci_generic_acquire_host),
813 DEVMETHOD(mmcbr_release_host, sdhci_generic_release_host),
814
815 /* SDHCI registers accessors */
816 DEVMETHOD(sdhci_read_1, imx_sdhci_read_1),
817 DEVMETHOD(sdhci_read_2, imx_sdhci_read_2),
818 DEVMETHOD(sdhci_read_4, imx_sdhci_read_4),
819 DEVMETHOD(sdhci_read_multi_4, imx_sdhci_read_multi_4),
820 DEVMETHOD(sdhci_write_1, imx_sdhci_write_1),
821 DEVMETHOD(sdhci_write_2, imx_sdhci_write_2),
822 DEVMETHOD(sdhci_write_4, imx_sdhci_write_4),
823 DEVMETHOD(sdhci_write_multi_4, imx_sdhci_write_multi_4),
824
825 { 0, 0 }
826};
827
828static devclass_t imx_sdhci_devclass;
829
830static driver_t imx_sdhci_driver = {
831 "sdhci_imx",
832 imx_sdhci_methods,
833 sizeof(struct imx_sdhci_softc),
834};
835
836DRIVER_MODULE(sdhci_imx, simplebus, imx_sdhci_driver, imx_sdhci_devclass, 0, 0);
837MODULE_DEPEND(sdhci_imx, sdhci, 1, 1, 1);
838DRIVER_MODULE(mmc, sdhci_imx, mmc_driver, mmc_devclass, NULL, NULL);
839MODULE_DEPEND(sdhci_imx, mmc, 1, 1, 1);
629 * timeout point 250ms in the future. This number comes from the SD
630 * spec, which allows a command to take that long. In the real world,
631 * cards tend to take 10-20ms for a long-running command such as a write
632 * or erase that spans two pages.
633 */
634 switch (sc->r1bfix_type) {
635 case R1BFIX_NODATA:
636 intmask = RD4(sc, SDHC_INT_STATUS) & SDHCI_INT_RESPONSE;
637 break;
638 case R1BFIX_AC12:
639 intmask = RD4(sc, SDHC_INT_STATUS) & SDHCI_INT_DATA_END;
640 break;
641 default:
642 intmask = 0;
643 break;
644 }
645 if (intmask) {
646 sc->r1bfix_timeout_at = getsbinuptime() + 250 * SBT_1MS;
647 if (!imx_sdhci_r1bfix_is_wait_done(sc)) {
648 WR4(sc, SDHC_INT_STATUS, intmask);
649 bus_barrier(sc->mem_res, SDHC_INT_STATUS, 4,
650 BUS_SPACE_BARRIER_WRITE);
651 }
652 }
653
654 mtx_unlock(&sc->slot.mtx);
655 sdhci_generic_intr(&sc->slot);
656}
657
658static int
659imx_sdhci_get_ro(device_t bus, device_t child)
660{
661
662 return (false);
663}
664
665static int
666imx_sdhci_detach(device_t dev)
667{
668
669 return (EBUSY);
670}
671
672static int
673imx_sdhci_attach(device_t dev)
674{
675 struct imx_sdhci_softc *sc = device_get_softc(dev);
676 int rid, err;
677 phandle_t node;
678
679 sc->dev = dev;
680
681 sc->hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
682 if (sc->hwtype == HWTYPE_NONE)
683 panic("Impossible: not compatible in imx_sdhci_attach()");
684
685 rid = 0;
686 sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
687 RF_ACTIVE);
688 if (!sc->mem_res) {
689 device_printf(dev, "cannot allocate memory window\n");
690 err = ENXIO;
691 goto fail;
692 }
693
694 rid = 0;
695 sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
696 RF_ACTIVE);
697 if (!sc->irq_res) {
698 device_printf(dev, "cannot allocate interrupt\n");
699 err = ENXIO;
700 goto fail;
701 }
702
703 if (bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
704 NULL, imx_sdhci_intr, sc, &sc->intr_cookie)) {
705 device_printf(dev, "cannot setup interrupt handler\n");
706 err = ENXIO;
707 goto fail;
708 }
709
710 sc->slot.quirks |= SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK;
711
712 /*
713 * DMA is not really broken, I just haven't implemented it yet.
714 */
715 sc->slot.quirks |= SDHCI_QUIRK_BROKEN_DMA;
716
717 /*
718 * Set the buffer watermark level to 128 words (512 bytes) for both read
719 * and write. The hardware has a restriction that when the read or
720 * write ready status is asserted, that means you can read exactly the
721 * number of words set in the watermark register before you have to
722 * re-check the status and potentially wait for more data. The main
723 * sdhci driver provides no hook for doing status checking on less than
724 * a full block boundary, so we set the watermark level to be a full
725 * block. Reads and writes where the block size is less than the
726 * watermark size will work correctly too, no need to change the
727 * watermark for different size blocks. However, 128 is the maximum
728 * allowed for the watermark, so PIO is limitted to 512 byte blocks
729 * (which works fine for SD cards, may be a problem for SDIO some day).
730 *
731 * XXX need named constants for this stuff.
732 */
733 WR4(sc, SDHC_WTMK_LVL, 0x08800880);
734
735 sc->baseclk_hz = imx_ccm_sdhci_hz();
736
737 /*
738 * If the slot is flagged with the non-removable property, set our flag
739 * to always force the SDHCI_CARD_PRESENT bit on.
740 *
741 * XXX Workaround for gpio-based card detect...
742 *
743 * We don't have gpio support yet. If there's a cd-gpios property just
744 * force the SDHCI_CARD_PRESENT bit on for now. If there isn't really a
745 * card there it will fail to probe at the mmc layer and nothing bad
746 * happens except instantiating an mmcN device for an empty slot.
747 */
748 node = ofw_bus_get_node(dev);
749 if (OF_hasprop(node, "non-removable"))
750 sc->force_card_present = true;
751 else if (OF_hasprop(node, "cd-gpios")) {
752 /* XXX put real gpio hookup here. */
753 sc->force_card_present = true;
754 }
755
756 callout_init(&sc->r1bfix_callout, 1);
757 sdhci_init_slot(dev, &sc->slot, 0);
758
759 bus_generic_probe(dev);
760 bus_generic_attach(dev);
761
762 sdhci_start_slot(&sc->slot);
763
764 return (0);
765
766fail:
767 if (sc->intr_cookie)
768 bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie);
769 if (sc->irq_res)
770 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq_res);
771 if (sc->mem_res)
772 bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
773
774 return (err);
775}
776
777static int
778imx_sdhci_probe(device_t dev)
779{
780
781 if (!ofw_bus_status_okay(dev))
782 return (ENXIO);
783
784 switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data) {
785 case HWTYPE_ESDHC:
786 device_set_desc(dev, "Freescale eSDHC controller");
787 return (BUS_PROBE_DEFAULT);
788 case HWTYPE_USDHC:
789 device_set_desc(dev, "Freescale uSDHC controller");
790 return (BUS_PROBE_DEFAULT);
791 default:
792 break;
793 }
794 return (ENXIO);
795}
796
797static device_method_t imx_sdhci_methods[] = {
798 /* Device interface */
799 DEVMETHOD(device_probe, imx_sdhci_probe),
800 DEVMETHOD(device_attach, imx_sdhci_attach),
801 DEVMETHOD(device_detach, imx_sdhci_detach),
802
803 /* Bus interface */
804 DEVMETHOD(bus_read_ivar, sdhci_generic_read_ivar),
805 DEVMETHOD(bus_write_ivar, sdhci_generic_write_ivar),
806 DEVMETHOD(bus_print_child, bus_generic_print_child),
807
808 /* MMC bridge interface */
809 DEVMETHOD(mmcbr_update_ios, sdhci_generic_update_ios),
810 DEVMETHOD(mmcbr_request, sdhci_generic_request),
811 DEVMETHOD(mmcbr_get_ro, imx_sdhci_get_ro),
812 DEVMETHOD(mmcbr_acquire_host, sdhci_generic_acquire_host),
813 DEVMETHOD(mmcbr_release_host, sdhci_generic_release_host),
814
815 /* SDHCI registers accessors */
816 DEVMETHOD(sdhci_read_1, imx_sdhci_read_1),
817 DEVMETHOD(sdhci_read_2, imx_sdhci_read_2),
818 DEVMETHOD(sdhci_read_4, imx_sdhci_read_4),
819 DEVMETHOD(sdhci_read_multi_4, imx_sdhci_read_multi_4),
820 DEVMETHOD(sdhci_write_1, imx_sdhci_write_1),
821 DEVMETHOD(sdhci_write_2, imx_sdhci_write_2),
822 DEVMETHOD(sdhci_write_4, imx_sdhci_write_4),
823 DEVMETHOD(sdhci_write_multi_4, imx_sdhci_write_multi_4),
824
825 { 0, 0 }
826};
827
828static devclass_t imx_sdhci_devclass;
829
830static driver_t imx_sdhci_driver = {
831 "sdhci_imx",
832 imx_sdhci_methods,
833 sizeof(struct imx_sdhci_softc),
834};
835
836DRIVER_MODULE(sdhci_imx, simplebus, imx_sdhci_driver, imx_sdhci_devclass, 0, 0);
837MODULE_DEPEND(sdhci_imx, sdhci, 1, 1, 1);
838DRIVER_MODULE(mmc, sdhci_imx, mmc_driver, mmc_devclass, NULL, NULL);
839MODULE_DEPEND(sdhci_imx, mmc, 1, 1, 1);