Deleted Added
full compact
at91_machdep.c (160282) at91_machdep.c (160363)
1/*-
2 * Copyright (c) 1994-1998 Mark Brinicombe.
3 * Copyright (c) 1994 Brini.
4 * All rights reserved.
5 *
6 * This code is derived from software written for Brini by Mark Brinicombe
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * machdep.c
38 *
39 * Machine dependant functions for kernel setup
40 *
41 * This file needs a lot of work.
42 *
43 * Created : 17/09/94
44 */
45
46#include "opt_msgbuf.h"
47#include "opt_ddb.h"
1/*-
2 * Copyright (c) 1994-1998 Mark Brinicombe.
3 * Copyright (c) 1994 Brini.
4 * All rights reserved.
5 *
6 * This code is derived from software written for Brini by Mark Brinicombe
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 * endorse or promote products derived from this software without specific
21 * prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * machdep.c
38 *
39 * Machine dependant functions for kernel setup
40 *
41 * This file needs a lot of work.
42 *
43 * Created : 17/09/94
44 */
45
46#include "opt_msgbuf.h"
47#include "opt_ddb.h"
48#include "opt_at91.h"
48
49#include <sys/cdefs.h>
49
50#include <sys/cdefs.h>
50__FBSDID("$FreeBSD: head/sys/arm/at91/kb920x_machdep.c 160282 2006-07-12 00:48:50Z cognet $");
51__FBSDID("$FreeBSD: head/sys/arm/at91/kb920x_machdep.c 160363 2006-07-14 22:22:57Z imp $");
51
52#define _ARM32_BUS_DMA_PRIVATE
53#include <sys/param.h>
54#include <sys/systm.h>
55#include <sys/sysproto.h>
56#include <sys/signalvar.h>
57#include <sys/imgact.h>
58#include <sys/kernel.h>
59#include <sys/ktr.h>
60#include <sys/linker.h>
61#include <sys/lock.h>
62#include <sys/malloc.h>
63#include <sys/mutex.h>
64#include <sys/pcpu.h>
65#include <sys/proc.h>
66#include <sys/ptrace.h>
67#include <sys/cons.h>
68#include <sys/bio.h>
69#include <sys/bus.h>
70#include <sys/buf.h>
71#include <sys/exec.h>
72#include <sys/kdb.h>
73#include <sys/msgbuf.h>
74#include <machine/reg.h>
75#include <machine/cpu.h>
76
77#include <vm/vm.h>
78#include <vm/pmap.h>
79#include <vm/vm.h>
80#include <vm/vm_object.h>
81#include <vm/vm_page.h>
82#include <vm/vm_pager.h>
83#include <vm/vm_map.h>
84#include <vm/vnode_pager.h>
85#include <machine/pmap.h>
86#include <machine/vmparam.h>
87#include <machine/pcb.h>
88#include <machine/undefined.h>
89#include <machine/machdep.h>
90#include <machine/metadata.h>
91#include <machine/armreg.h>
92#include <machine/bus.h>
93#include <sys/reboot.h>
94
95#include <arm/at91/at91rm92reg.h>
52
53#define _ARM32_BUS_DMA_PRIVATE
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/sysproto.h>
57#include <sys/signalvar.h>
58#include <sys/imgact.h>
59#include <sys/kernel.h>
60#include <sys/ktr.h>
61#include <sys/linker.h>
62#include <sys/lock.h>
63#include <sys/malloc.h>
64#include <sys/mutex.h>
65#include <sys/pcpu.h>
66#include <sys/proc.h>
67#include <sys/ptrace.h>
68#include <sys/cons.h>
69#include <sys/bio.h>
70#include <sys/bus.h>
71#include <sys/buf.h>
72#include <sys/exec.h>
73#include <sys/kdb.h>
74#include <sys/msgbuf.h>
75#include <machine/reg.h>
76#include <machine/cpu.h>
77
78#include <vm/vm.h>
79#include <vm/pmap.h>
80#include <vm/vm.h>
81#include <vm/vm_object.h>
82#include <vm/vm_page.h>
83#include <vm/vm_pager.h>
84#include <vm/vm_map.h>
85#include <vm/vnode_pager.h>
86#include <machine/pmap.h>
87#include <machine/vmparam.h>
88#include <machine/pcb.h>
89#include <machine/undefined.h>
90#include <machine/machdep.h>
91#include <machine/metadata.h>
92#include <machine/armreg.h>
93#include <machine/bus.h>
94#include <sys/reboot.h>
95
96#include <arm/at91/at91rm92reg.h>
97#include <arm/at91/at91_piovar.h>
98#include <arm/at91/at91_pio_rm9200.h>
96
97#define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
98#define KERNEL_PT_KERN 1
99#define KERNEL_PT_KERN_NUM 22
100#define KERNEL_PT_AFKERNEL KERNEL_PT_KERN + KERNEL_PT_KERN_NUM /* L2 table for mapping after kernel */
101#define KERNEL_PT_AFKERNEL_NUM 5
102
103/* this should be evenly divisable by PAGE_SIZE / L2_TABLE_SIZE_REAL (or 4) */
104#define NUM_KERNEL_PTS (KERNEL_PT_AFKERNEL + KERNEL_PT_AFKERNEL_NUM)
105
106/* Define various stack sizes in pages */
107#define IRQ_STACK_SIZE 1
108#define ABT_STACK_SIZE 1
109#define UND_STACK_SIZE 1
110
111extern u_int data_abort_handler_address;
112extern u_int prefetch_abort_handler_address;
113extern u_int undefined_handler_address;
114
115struct pv_addr kernel_pt_table[NUM_KERNEL_PTS];
116
117extern void *_end;
118
119extern int *end;
120
121struct pcpu __pcpu;
122struct pcpu *pcpup = &__pcpu;
123
124/* Physical and virtual addresses for some global pages */
125
126vm_paddr_t phys_avail[10];
127vm_paddr_t dump_avail[4];
128vm_offset_t physical_pages;
129vm_offset_t clean_sva, clean_eva;
130
131struct pv_addr systempage;
132struct pv_addr msgbufpv;
133struct pv_addr irqstack;
134struct pv_addr undstack;
135struct pv_addr abtstack;
136struct pv_addr kernelstack;
137struct pv_addr minidataclean;
138
139static struct trapframe proc0_tf;
140
141/* Static device mappings. */
142static const struct pmap_devmap kb920x_devmap[] = {
143 /*
144 * Map the on-board devices VA == PA so that we can access them
145 * with the MMU on or off.
146 */
147 {
148 /*
149 * This at least maps the interrupt controller, the UART
150 * and the timer. Other devices should use newbus to
151 * map their memory anyway.
152 */
153 0xfff00000,
154 0xfff00000,
155 0x100000,
156 VM_PROT_READ|VM_PROT_WRITE,
157 PTE_NOCACHE,
158 },
159#if 0
160 {
161 /*
162 * Add the ohci controller, and anything else that might be
163 * on this chip select for a VA/PA mapping.
164 */
165 AT91RM92_OHCI_BASE,
166 AT91RM92_OHCI_BASE,
167 AT91RM92_OHCI_SIZE,
168 VM_PROT_READ|VM_PROT_WRITE,
169 PTE_NOCACHE,
170 },
171#endif
172 {
173 0,
174 0,
175 0,
176 0,
177 0,
178 }
179};
180
181#define SDRAM_START 0xa0000000
182
183#ifdef DDB
184extern vm_offset_t ksym_start, ksym_end;
185#endif
186
187static long
99
100#define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
101#define KERNEL_PT_KERN 1
102#define KERNEL_PT_KERN_NUM 22
103#define KERNEL_PT_AFKERNEL KERNEL_PT_KERN + KERNEL_PT_KERN_NUM /* L2 table for mapping after kernel */
104#define KERNEL_PT_AFKERNEL_NUM 5
105
106/* this should be evenly divisable by PAGE_SIZE / L2_TABLE_SIZE_REAL (or 4) */
107#define NUM_KERNEL_PTS (KERNEL_PT_AFKERNEL + KERNEL_PT_AFKERNEL_NUM)
108
109/* Define various stack sizes in pages */
110#define IRQ_STACK_SIZE 1
111#define ABT_STACK_SIZE 1
112#define UND_STACK_SIZE 1
113
114extern u_int data_abort_handler_address;
115extern u_int prefetch_abort_handler_address;
116extern u_int undefined_handler_address;
117
118struct pv_addr kernel_pt_table[NUM_KERNEL_PTS];
119
120extern void *_end;
121
122extern int *end;
123
124struct pcpu __pcpu;
125struct pcpu *pcpup = &__pcpu;
126
127/* Physical and virtual addresses for some global pages */
128
129vm_paddr_t phys_avail[10];
130vm_paddr_t dump_avail[4];
131vm_offset_t physical_pages;
132vm_offset_t clean_sva, clean_eva;
133
134struct pv_addr systempage;
135struct pv_addr msgbufpv;
136struct pv_addr irqstack;
137struct pv_addr undstack;
138struct pv_addr abtstack;
139struct pv_addr kernelstack;
140struct pv_addr minidataclean;
141
142static struct trapframe proc0_tf;
143
144/* Static device mappings. */
145static const struct pmap_devmap kb920x_devmap[] = {
146 /*
147 * Map the on-board devices VA == PA so that we can access them
148 * with the MMU on or off.
149 */
150 {
151 /*
152 * This at least maps the interrupt controller, the UART
153 * and the timer. Other devices should use newbus to
154 * map their memory anyway.
155 */
156 0xfff00000,
157 0xfff00000,
158 0x100000,
159 VM_PROT_READ|VM_PROT_WRITE,
160 PTE_NOCACHE,
161 },
162#if 0
163 {
164 /*
165 * Add the ohci controller, and anything else that might be
166 * on this chip select for a VA/PA mapping.
167 */
168 AT91RM92_OHCI_BASE,
169 AT91RM92_OHCI_BASE,
170 AT91RM92_OHCI_SIZE,
171 VM_PROT_READ|VM_PROT_WRITE,
172 PTE_NOCACHE,
173 },
174#endif
175 {
176 0,
177 0,
178 0,
179 0,
180 0,
181 }
182};
183
184#define SDRAM_START 0xa0000000
185
186#ifdef DDB
187extern vm_offset_t ksym_start, ksym_end;
188#endif
189
190static long
188board_init(void)
191ramsize(void)
189{
190 uint32_t *SDRAMC = (uint32_t *)(AT91RM92_BASE + AT91RM92_SDRAMC_BASE);
191 uint32_t cr, mr;
192{
193 uint32_t *SDRAMC = (uint32_t *)(AT91RM92_BASE + AT91RM92_SDRAMC_BASE);
194 uint32_t cr, mr;
192 int banks, rows, cols, bw; /* log2 size */
195 int banks, rows, cols, bw;
193
194 cr = SDRAMC[AT91RM92_SDRAMC_CR / 4];
195 mr = SDRAMC[AT91RM92_SDRAMC_MR / 4];
196 bw = (mr & AT91RM92_SDRAMC_MR_DBW_16) ? 1 : 2;
197 banks = (cr & AT91RM92_SDRAMC_CR_NB_4) ? 2 : 1;
198 rows = ((cr & AT91RM92_SDRAMC_CR_NR_MASK) >> 2) + 11;
199 cols = (cr & AT91RM92_SDRAMC_CR_NC_MASK) + 8;
200 return (1 << (cols + rows + banks + bw));
201}
202
196
197 cr = SDRAMC[AT91RM92_SDRAMC_CR / 4];
198 mr = SDRAMC[AT91RM92_SDRAMC_MR / 4];
199 bw = (mr & AT91RM92_SDRAMC_MR_DBW_16) ? 1 : 2;
200 banks = (cr & AT91RM92_SDRAMC_CR_NB_4) ? 2 : 1;
201 rows = ((cr & AT91RM92_SDRAMC_CR_NR_MASK) >> 2) + 11;
202 cols = (cr & AT91RM92_SDRAMC_CR_NC_MASK) + 8;
203 return (1 << (cols + rows + banks + bw));
204}
205
206static long
207board_init(void)
208{
209 /*
210 * Since the USART supprots RS-485 multidrop mode, it allows the
211 * TX pins to float. However, for RS-232 operations, we don't want
212 * these pins to float. Instead, they should be pulled up to avoid
213 * mismatches. Linux does something similar when it configures the
214 * TX lines. This implies that we also allow the RX lines to float
215 * rather than be in the state they are left in by the boot loader.
216 * Since they are input pins, I think that this is the right thing
217 * to do.
218 */
219
220 /* PIOA's A periph: Turn USART 0 and 2's TX/RX pins */
221 at91_pio_use_periph_a(AT91RM92_PIOA_BASE,
222 AT91C_PA18_RXD0 | AT91C_PA22_RXD2, 0);
223 at91_pio_use_periph_a(AT91RM92_PIOA_BASE,
224 AT91C_PA17_TXD0 | AT91C_PA23_TXD2, 1);
225 /* PIOA's B periph: Turn USART 3's TX/RX pins */
226 at91_pio_use_periph_b(AT91RM92_PIOA_BASE, AT91C_PA6_RXD3, 0);
227 at91_pio_use_periph_b(AT91RM92_PIOA_BASE, AT91C_PA5_TXD3, 1);
228#if AT91_TSC
229 /* We're using TC0's A1 and A2 input */
230 at91_pio_use_periph_b(AT91RM92_PIOA_BASE,
231 AT91C_PA19_TIOA1 | AT91C_PA21_TIOA2, 0);
232#endif
233 /* PIOB's A periph: Turn USART 1's TX/RX pins */
234 at91_pio_use_periph_a(AT91RM92_PIOB_BASE, AT91C_PB21_RXD1, 0);
235 at91_pio_use_periph_a(AT91RM92_PIOB_BASE, AT91C_PB20_TXD1, 1);
236
237 /* Pin assignment */
238#if AT91_TSC
239 /* Assert PA24 low -- talk to rubidium */
240 at91_pio_use_gpio(AT91RM92_PIOA_BASE, AT91C_PIO_PA24);
241 at91_pio_gpio_output(AT91RM92_PIOA_BASE, AT91C_PIO_PA24, 0);
242 at91_pio_gpio_clear(AT91RM92_PIOA_BASE, AT91C_PIO_PA24);
243#endif
244
245 return (ramsize());
246}
247
203void *
204initarm(void *arg, void *arg2)
205{
206 struct pv_addr kernel_l1pt;
207 int loop;
208 u_int l1pagetable;
209 vm_offset_t freemempos;
210 vm_offset_t afterkern;
211 int i = 0;
212 uint32_t fake_preload[35];
213 uint32_t memsize;
214 vm_offset_t lastaddr;
215#ifdef DDB
216 vm_offset_t zstart = 0, zend = 0;
217#endif
218
219 i = 0;
220
221 set_cpufuncs();
222
223 fake_preload[i++] = MODINFO_NAME;
224 fake_preload[i++] = strlen("elf kernel") + 1;
225 strcpy((char*)&fake_preload[i++], "elf kernel");
226 i += 2;
227 fake_preload[i++] = MODINFO_TYPE;
228 fake_preload[i++] = strlen("elf kernel") + 1;
229 strcpy((char*)&fake_preload[i++], "elf kernel");
230 i += 2;
231 fake_preload[i++] = MODINFO_ADDR;
232 fake_preload[i++] = sizeof(vm_offset_t);
233 fake_preload[i++] = KERNBASE;
234 fake_preload[i++] = MODINFO_SIZE;
235 fake_preload[i++] = sizeof(uint32_t);
236 fake_preload[i++] = (uint32_t)&end - KERNBASE;
237#ifdef DDB
238 if (*(uint32_t *)KERNVIRTADDR == MAGIC_TRAMP_NUMBER) {
239 fake_preload[i++] = MODINFO_METADATA|MODINFOMD_SSYM;
240 fake_preload[i++] = sizeof(vm_offset_t);
241 fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 4);
242 fake_preload[i++] = MODINFO_METADATA|MODINFOMD_ESYM;
243 fake_preload[i++] = sizeof(vm_offset_t);
244 fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 8);
245 lastaddr = *(uint32_t *)(KERNVIRTADDR + 8);
246 zend = lastaddr;
247 zstart = *(uint32_t *)(KERNVIRTADDR + 4);
248 ksym_start = zstart;
249 ksym_end = zend;
250 } else
251#endif
252 lastaddr = (vm_offset_t)&end;
253
254 fake_preload[i++] = 0;
255 fake_preload[i] = 0;
256 preload_metadata = (void *)fake_preload;
257
258
259 pcpu_init(pcpup, 0, sizeof(struct pcpu));
260 PCPU_SET(curthread, &thread0);
261
262#define KERNEL_TEXT_BASE (KERNBASE)
263 freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
264 /* Define a macro to simplify memory allocation */
265#define valloc_pages(var, np) \
266 alloc_pages((var).pv_va, (np)); \
267 (var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR);
268
269#define alloc_pages(var, np) \
270 (var) = freemempos; \
271 freemempos += (np * PAGE_SIZE); \
272 memset((char *)(var), 0, ((np) * PAGE_SIZE));
273
274 while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
275 freemempos += PAGE_SIZE;
276 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
277 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
278 if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
279 valloc_pages(kernel_pt_table[loop],
280 L2_TABLE_SIZE / PAGE_SIZE);
281 } else {
282 kernel_pt_table[loop].pv_va = freemempos -
283 (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
284 L2_TABLE_SIZE_REAL;
285 kernel_pt_table[loop].pv_pa =
286 kernel_pt_table[loop].pv_va - KERNVIRTADDR +
287 KERNPHYSADDR;
288 }
289 i++;
290 }
291 /*
292 * Allocate a page for the system page mapped to V0x00000000
293 * This page will just contain the system vectors and can be
294 * shared by all processes.
295 */
296 valloc_pages(systempage, 1);
297
298 /* Allocate stacks for all modes */
299 valloc_pages(irqstack, IRQ_STACK_SIZE);
300 valloc_pages(abtstack, ABT_STACK_SIZE);
301 valloc_pages(undstack, UND_STACK_SIZE);
302 valloc_pages(kernelstack, KSTACK_PAGES);
303 alloc_pages(minidataclean.pv_pa, 1);
304 valloc_pages(msgbufpv, round_page(MSGBUF_SIZE) / PAGE_SIZE);
305 /*
306 * Now we start construction of the L1 page table
307 * We start by mapping the L2 page tables into the L1.
308 * This means that we can replace L1 mappings later on if necessary
309 */
310 l1pagetable = kernel_l1pt.pv_va;
311
312 /* Map the L2 pages tables in the L1 page table */
313 pmap_link_l2pt(l1pagetable, ARM_VECTORS_LOW,
314 &kernel_pt_table[KERNEL_PT_SYS]);
315 for (i = 0; i < KERNEL_PT_KERN_NUM; i++)
316 pmap_link_l2pt(l1pagetable, KERNBASE + i * 0x100000,
317 &kernel_pt_table[KERNEL_PT_KERN + i]);
318 pmap_map_chunk(l1pagetable, KERNBASE, KERNPHYSADDR,
319 (((uint32_t)(lastaddr) - KERNBASE) + PAGE_SIZE) & ~(PAGE_SIZE - 1),
320 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
321 afterkern = round_page((lastaddr + L1_S_SIZE) & ~(L1_S_SIZE
322 - 1));
323 for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
324 pmap_link_l2pt(l1pagetable, afterkern + i * 0x00100000,
325 &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
326 }
327 pmap_map_entry(l1pagetable, afterkern, minidataclean.pv_pa,
328 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
329
330
331 /* Map the vector page. */
332 pmap_map_entry(l1pagetable, ARM_VECTORS_LOW, systempage.pv_pa,
333 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
334 /* Map the stack pages */
335 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
336 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
337 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
338 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
339 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
340 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
341 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
342 KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
343
344 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
345 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
346 pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa,
347 MSGBUF_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
348
349
350 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
351 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
352 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
353 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
354 }
355
356 pmap_devmap_bootstrap(l1pagetable, kb920x_devmap);
357 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
358 setttb(kernel_l1pt.pv_pa);
359 cpu_tlb_flushID();
360 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
361 cninit();
362 memsize = board_init();
363 physmem = memsize / PAGE_SIZE;
364
365 /*
366 * Pages were allocated during the secondary bootstrap for the
367 * stacks for different CPU modes.
368 * We must now set the r13 registers in the different CPU modes to
369 * point to these stacks.
370 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
371 * of the stack memory.
372 */
373
374 cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
375 set_stackptr(PSR_IRQ32_MODE,
376 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
377 set_stackptr(PSR_ABT32_MODE,
378 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
379 set_stackptr(PSR_UND32_MODE,
380 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
381
382
383
384 /*
385 * We must now clean the cache again....
386 * Cleaning may be done by reading new data to displace any
387 * dirty data in the cache. This will have happened in setttb()
388 * but since we are boot strapping the addresses used for the read
389 * may have just been remapped and thus the cache could be out
390 * of sync. A re-clean after the switch will cure this.
391 * After booting there are no gross reloations of the kernel thus
392 * this problem will not occur after initarm().
393 */
394 cpu_idcache_wbinv_all();
395
396 /* Set stack for exception handlers */
397
398 data_abort_handler_address = (u_int)data_abort_handler;
399 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
400 undefined_handler_address = (u_int)undefinedinstruction_bounce;
401 undefined_init();
402
403 proc_linkup(&proc0, &ksegrp0, &thread0);
404 thread0.td_kstack = kernelstack.pv_va;
405 thread0.td_pcb = (struct pcb *)
406 (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
407 thread0.td_pcb->pcb_flags = 0;
408 thread0.td_frame = &proc0_tf;
409 pcpup->pc_curpcb = thread0.td_pcb;
410
411 arm_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
412
413 pmap_curmaxkvaddr = afterkern + 0x100000 * (KERNEL_PT_KERN_NUM - 1);
414 pmap_bootstrap(freemempos,
415 KERNVIRTADDR + 3 * memsize,
416 &kernel_l1pt);
417 msgbufp = (void*)msgbufpv.pv_va;
418 msgbufinit(msgbufp, MSGBUF_SIZE);
419 mutex_init();
420
421 i = 0;
422 dump_avail[0] = KERNPHYSADDR;
423 dump_avail[1] = KERNPHYSADDR + memsize;
424 dump_avail[2] = 0;
425 dump_avail[3] = 0;
426
427 phys_avail[0] = freemempos - KERNVIRTADDR + KERNPHYSADDR;
428 phys_avail[1] = KERNPHYSADDR + memsize;
429 phys_avail[2] = 0;
430 phys_avail[3] = 0;
431 /* Do basic tuning, hz etc */
432 init_param1();
433 init_param2(physmem);
434 avail_end = KERNPHYSADDR + memsize - 1;
435 kdb_init();
436 return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
437 sizeof(struct pcb)));
438}
248void *
249initarm(void *arg, void *arg2)
250{
251 struct pv_addr kernel_l1pt;
252 int loop;
253 u_int l1pagetable;
254 vm_offset_t freemempos;
255 vm_offset_t afterkern;
256 int i = 0;
257 uint32_t fake_preload[35];
258 uint32_t memsize;
259 vm_offset_t lastaddr;
260#ifdef DDB
261 vm_offset_t zstart = 0, zend = 0;
262#endif
263
264 i = 0;
265
266 set_cpufuncs();
267
268 fake_preload[i++] = MODINFO_NAME;
269 fake_preload[i++] = strlen("elf kernel") + 1;
270 strcpy((char*)&fake_preload[i++], "elf kernel");
271 i += 2;
272 fake_preload[i++] = MODINFO_TYPE;
273 fake_preload[i++] = strlen("elf kernel") + 1;
274 strcpy((char*)&fake_preload[i++], "elf kernel");
275 i += 2;
276 fake_preload[i++] = MODINFO_ADDR;
277 fake_preload[i++] = sizeof(vm_offset_t);
278 fake_preload[i++] = KERNBASE;
279 fake_preload[i++] = MODINFO_SIZE;
280 fake_preload[i++] = sizeof(uint32_t);
281 fake_preload[i++] = (uint32_t)&end - KERNBASE;
282#ifdef DDB
283 if (*(uint32_t *)KERNVIRTADDR == MAGIC_TRAMP_NUMBER) {
284 fake_preload[i++] = MODINFO_METADATA|MODINFOMD_SSYM;
285 fake_preload[i++] = sizeof(vm_offset_t);
286 fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 4);
287 fake_preload[i++] = MODINFO_METADATA|MODINFOMD_ESYM;
288 fake_preload[i++] = sizeof(vm_offset_t);
289 fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 8);
290 lastaddr = *(uint32_t *)(KERNVIRTADDR + 8);
291 zend = lastaddr;
292 zstart = *(uint32_t *)(KERNVIRTADDR + 4);
293 ksym_start = zstart;
294 ksym_end = zend;
295 } else
296#endif
297 lastaddr = (vm_offset_t)&end;
298
299 fake_preload[i++] = 0;
300 fake_preload[i] = 0;
301 preload_metadata = (void *)fake_preload;
302
303
304 pcpu_init(pcpup, 0, sizeof(struct pcpu));
305 PCPU_SET(curthread, &thread0);
306
307#define KERNEL_TEXT_BASE (KERNBASE)
308 freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
309 /* Define a macro to simplify memory allocation */
310#define valloc_pages(var, np) \
311 alloc_pages((var).pv_va, (np)); \
312 (var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR);
313
314#define alloc_pages(var, np) \
315 (var) = freemempos; \
316 freemempos += (np * PAGE_SIZE); \
317 memset((char *)(var), 0, ((np) * PAGE_SIZE));
318
319 while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
320 freemempos += PAGE_SIZE;
321 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
322 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
323 if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
324 valloc_pages(kernel_pt_table[loop],
325 L2_TABLE_SIZE / PAGE_SIZE);
326 } else {
327 kernel_pt_table[loop].pv_va = freemempos -
328 (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
329 L2_TABLE_SIZE_REAL;
330 kernel_pt_table[loop].pv_pa =
331 kernel_pt_table[loop].pv_va - KERNVIRTADDR +
332 KERNPHYSADDR;
333 }
334 i++;
335 }
336 /*
337 * Allocate a page for the system page mapped to V0x00000000
338 * This page will just contain the system vectors and can be
339 * shared by all processes.
340 */
341 valloc_pages(systempage, 1);
342
343 /* Allocate stacks for all modes */
344 valloc_pages(irqstack, IRQ_STACK_SIZE);
345 valloc_pages(abtstack, ABT_STACK_SIZE);
346 valloc_pages(undstack, UND_STACK_SIZE);
347 valloc_pages(kernelstack, KSTACK_PAGES);
348 alloc_pages(minidataclean.pv_pa, 1);
349 valloc_pages(msgbufpv, round_page(MSGBUF_SIZE) / PAGE_SIZE);
350 /*
351 * Now we start construction of the L1 page table
352 * We start by mapping the L2 page tables into the L1.
353 * This means that we can replace L1 mappings later on if necessary
354 */
355 l1pagetable = kernel_l1pt.pv_va;
356
357 /* Map the L2 pages tables in the L1 page table */
358 pmap_link_l2pt(l1pagetable, ARM_VECTORS_LOW,
359 &kernel_pt_table[KERNEL_PT_SYS]);
360 for (i = 0; i < KERNEL_PT_KERN_NUM; i++)
361 pmap_link_l2pt(l1pagetable, KERNBASE + i * 0x100000,
362 &kernel_pt_table[KERNEL_PT_KERN + i]);
363 pmap_map_chunk(l1pagetable, KERNBASE, KERNPHYSADDR,
364 (((uint32_t)(lastaddr) - KERNBASE) + PAGE_SIZE) & ~(PAGE_SIZE - 1),
365 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
366 afterkern = round_page((lastaddr + L1_S_SIZE) & ~(L1_S_SIZE
367 - 1));
368 for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
369 pmap_link_l2pt(l1pagetable, afterkern + i * 0x00100000,
370 &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
371 }
372 pmap_map_entry(l1pagetable, afterkern, minidataclean.pv_pa,
373 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
374
375
376 /* Map the vector page. */
377 pmap_map_entry(l1pagetable, ARM_VECTORS_LOW, systempage.pv_pa,
378 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
379 /* Map the stack pages */
380 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
381 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
382 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
383 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
384 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
385 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
386 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
387 KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
388
389 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
390 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
391 pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa,
392 MSGBUF_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
393
394
395 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
396 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
397 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
398 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
399 }
400
401 pmap_devmap_bootstrap(l1pagetable, kb920x_devmap);
402 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
403 setttb(kernel_l1pt.pv_pa);
404 cpu_tlb_flushID();
405 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
406 cninit();
407 memsize = board_init();
408 physmem = memsize / PAGE_SIZE;
409
410 /*
411 * Pages were allocated during the secondary bootstrap for the
412 * stacks for different CPU modes.
413 * We must now set the r13 registers in the different CPU modes to
414 * point to these stacks.
415 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
416 * of the stack memory.
417 */
418
419 cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
420 set_stackptr(PSR_IRQ32_MODE,
421 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
422 set_stackptr(PSR_ABT32_MODE,
423 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
424 set_stackptr(PSR_UND32_MODE,
425 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
426
427
428
429 /*
430 * We must now clean the cache again....
431 * Cleaning may be done by reading new data to displace any
432 * dirty data in the cache. This will have happened in setttb()
433 * but since we are boot strapping the addresses used for the read
434 * may have just been remapped and thus the cache could be out
435 * of sync. A re-clean after the switch will cure this.
436 * After booting there are no gross reloations of the kernel thus
437 * this problem will not occur after initarm().
438 */
439 cpu_idcache_wbinv_all();
440
441 /* Set stack for exception handlers */
442
443 data_abort_handler_address = (u_int)data_abort_handler;
444 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
445 undefined_handler_address = (u_int)undefinedinstruction_bounce;
446 undefined_init();
447
448 proc_linkup(&proc0, &ksegrp0, &thread0);
449 thread0.td_kstack = kernelstack.pv_va;
450 thread0.td_pcb = (struct pcb *)
451 (thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
452 thread0.td_pcb->pcb_flags = 0;
453 thread0.td_frame = &proc0_tf;
454 pcpup->pc_curpcb = thread0.td_pcb;
455
456 arm_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
457
458 pmap_curmaxkvaddr = afterkern + 0x100000 * (KERNEL_PT_KERN_NUM - 1);
459 pmap_bootstrap(freemempos,
460 KERNVIRTADDR + 3 * memsize,
461 &kernel_l1pt);
462 msgbufp = (void*)msgbufpv.pv_va;
463 msgbufinit(msgbufp, MSGBUF_SIZE);
464 mutex_init();
465
466 i = 0;
467 dump_avail[0] = KERNPHYSADDR;
468 dump_avail[1] = KERNPHYSADDR + memsize;
469 dump_avail[2] = 0;
470 dump_avail[3] = 0;
471
472 phys_avail[0] = freemempos - KERNVIRTADDR + KERNPHYSADDR;
473 phys_avail[1] = KERNPHYSADDR + memsize;
474 phys_avail[2] = 0;
475 phys_avail[3] = 0;
476 /* Do basic tuning, hz etc */
477 init_param1();
478 init_param2(physmem);
479 avail_end = KERNPHYSADDR + memsize - 1;
480 kdb_init();
481 return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
482 sizeof(struct pcb)));
483}