Deleted Added
full compact
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34#if 0
35#if defined(LIBC_SCCS) && !defined(lint)
36static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
37#endif /* LIBC_SCCS and not lint */
38#endif
39
40#include <sys/cdefs.h>
41__FBSDID("$FreeBSD: head/lib/libkvm/kvm_proc.c 170178 2007-06-01 04:14:57Z jeff $");
41__FBSDID("$FreeBSD: head/lib/libkvm/kvm_proc.c 172207 2007-09-17 05:31:39Z jeff $");
42
43/*
44 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
45 * users of this code, so we've factored it out into a separate module.
46 * Thus, we keep this grunge out of the other kvm applications (i.e.,
47 * most other applications are interested only in open/close/read/nlist).
48 */
49
50#include <sys/param.h>
51#define _WANT_UCRED /* make ucred.h give us 'struct ucred' */
52#include <sys/ucred.h>
53#include <sys/queue.h>
54#include <sys/_lock.h>
55#include <sys/_mutex.h>
56#include <sys/_task.h>
57#define _WANT_PRISON /* make jail.h give us 'struct prison' */
58#include <sys/jail.h>
59#include <sys/user.h>
60#include <sys/proc.h>
61#include <sys/exec.h>
62#include <sys/stat.h>
63#include <sys/sysent.h>
64#include <sys/ioctl.h>
65#include <sys/tty.h>
66#include <sys/file.h>
67#include <sys/conf.h>
68#include <stdio.h>
69#include <stdlib.h>
70#include <unistd.h>
71#include <nlist.h>
72#include <kvm.h>
73
74#include <vm/vm.h>
75#include <vm/vm_param.h>
76
77#include <sys/sysctl.h>
78
79#include <limits.h>
80#include <memory.h>
81#include <paths.h>
82
83#include "kvm_private.h"
84
85#define KREAD(kd, addr, obj) \
86 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
87
88/*
89 * Read proc's from memory file into buffer bp, which has space to hold
90 * at most maxcnt procs.
91 */
92static int
93kvm_proclist(kd, what, arg, p, bp, maxcnt)
94 kvm_t *kd;
95 int what, arg;
96 struct proc *p;
97 struct kinfo_proc *bp;
98 int maxcnt;
99{
100 int cnt = 0;
101 struct kinfo_proc kinfo_proc, *kp;
102 struct pgrp pgrp;
103 struct session sess;
104 struct cdev t_cdev;
105 struct tty tty;
106 struct vmspace vmspace;
107 struct sigacts sigacts;
108 struct pstats pstats;
109 struct ucred ucred;
110 struct prison pr;
111 struct thread mtd;
112 struct proc proc;
113 struct proc pproc;
114 struct timeval tv;
115 struct sysentvec sysent;
116 char svname[KI_EMULNAMELEN];
117
118 kp = &kinfo_proc;
119 kp->ki_structsize = sizeof(kinfo_proc);
120 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
121 memset(kp, 0, sizeof *kp);
122 if (KREAD(kd, (u_long)p, &proc)) {
123 _kvm_err(kd, kd->program, "can't read proc at %x", p);
124 return (-1);
125 }
126 if (proc.p_state != PRS_ZOMBIE) {
127 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
128 &mtd)) {
129 _kvm_err(kd, kd->program,
130 "can't read thread at %x",
131 TAILQ_FIRST(&proc.p_threads));
132 return (-1);
133 }
134 }
135 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
136 kp->ki_ruid = ucred.cr_ruid;
137 kp->ki_svuid = ucred.cr_svuid;
138 kp->ki_rgid = ucred.cr_rgid;
139 kp->ki_svgid = ucred.cr_svgid;
140 kp->ki_ngroups = ucred.cr_ngroups;
141 bcopy(ucred.cr_groups, kp->ki_groups,
142 NGROUPS * sizeof(gid_t));
143 kp->ki_uid = ucred.cr_uid;
144 if (ucred.cr_prison != NULL) {
145 if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) {
146 _kvm_err(kd, kd->program,
147 "can't read prison at %x",
148 ucred.cr_prison);
149 return (-1);
150 }
151 kp->ki_jid = pr.pr_id;
152 }
153 }
154
155 switch(what & ~KERN_PROC_INC_THREAD) {
156
157 case KERN_PROC_GID:
158 if (kp->ki_groups[0] != (gid_t)arg)
159 continue;
160 break;
161
162 case KERN_PROC_PID:
163 if (proc.p_pid != (pid_t)arg)
164 continue;
165 break;
166
167 case KERN_PROC_RGID:
168 if (kp->ki_rgid != (gid_t)arg)
169 continue;
170 break;
171
172 case KERN_PROC_UID:
173 if (kp->ki_uid != (uid_t)arg)
174 continue;
175 break;
176
177 case KERN_PROC_RUID:
178 if (kp->ki_ruid != (uid_t)arg)
179 continue;
180 break;
181 }
182 /*
183 * We're going to add another proc to the set. If this
184 * will overflow the buffer, assume the reason is because
185 * nprocs (or the proc list) is corrupt and declare an error.
186 */
187 if (cnt >= maxcnt) {
188 _kvm_err(kd, kd->program, "nprocs corrupt");
189 return (-1);
190 }
191 /*
192 * gather kinfo_proc
193 */
194 kp->ki_paddr = p;
195 kp->ki_addr = 0; /* XXX uarea */
196 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
197 kp->ki_args = proc.p_args;
198 kp->ki_tracep = proc.p_tracevp;
199 kp->ki_textvp = proc.p_textvp;
200 kp->ki_fd = proc.p_fd;
201 kp->ki_vmspace = proc.p_vmspace;
202 if (proc.p_sigacts != NULL) {
203 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
204 _kvm_err(kd, kd->program,
205 "can't read sigacts at %x", proc.p_sigacts);
206 return (-1);
207 }
208 kp->ki_sigignore = sigacts.ps_sigignore;
209 kp->ki_sigcatch = sigacts.ps_sigcatch;
210 }
211#if 0
212 if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
212 if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) {
213 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
214 _kvm_err(kd, kd->program,
215 "can't read stats at %x", proc.p_stats);
216 return (-1);
217 }
218 kp->ki_start = pstats.p_start;
219
220 /*
221 * XXX: The times here are probably zero and need
222 * to be calculated from the raw data in p_rux and
223 * p_crux.
224 */
225 kp->ki_rusage = pstats.p_ru;
226 kp->ki_childstime = pstats.p_cru.ru_stime;
227 kp->ki_childutime = pstats.p_cru.ru_utime;
228 /* Some callers want child-times in a single value */
229 timeradd(&kp->ki_childstime, &kp->ki_childutime,
230 &kp->ki_childtime);
231 }
232#endif
233 if (proc.p_oppid)
234 kp->ki_ppid = proc.p_oppid;
235 else if (proc.p_pptr) {
236 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
237 _kvm_err(kd, kd->program,
238 "can't read pproc at %x", proc.p_pptr);
239 return (-1);
240 }
241 kp->ki_ppid = pproc.p_pid;
242 } else
243 kp->ki_ppid = 0;
244 if (proc.p_pgrp == NULL)
245 goto nopgrp;
246 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
247 _kvm_err(kd, kd->program, "can't read pgrp at %x",
248 proc.p_pgrp);
249 return (-1);
250 }
251 kp->ki_pgid = pgrp.pg_id;
252 kp->ki_jobc = pgrp.pg_jobc;
253 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
254 _kvm_err(kd, kd->program, "can't read session at %x",
255 pgrp.pg_session);
256 return (-1);
257 }
258 kp->ki_sid = sess.s_sid;
259 (void)memcpy(kp->ki_login, sess.s_login,
260 sizeof(kp->ki_login));
261 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
262 if (sess.s_leader == p)
263 kp->ki_kiflag |= KI_SLEADER;
264 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
265 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
266 _kvm_err(kd, kd->program,
267 "can't read tty at %x", sess.s_ttyp);
268 return (-1);
269 }
270 if (tty.t_dev != NULL) {
271 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) {
272 _kvm_err(kd, kd->program,
273 "can't read cdev at %x",
274 tty.t_dev);
275 return (-1);
276 }
277#if 0
278 kp->ki_tdev = t_cdev.si_udev;
279#else
280 kp->ki_tdev = NODEV;
281#endif
282 }
283 if (tty.t_pgrp != NULL) {
284 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
285 _kvm_err(kd, kd->program,
286 "can't read tpgrp at %x",
287 tty.t_pgrp);
288 return (-1);
289 }
290 kp->ki_tpgid = pgrp.pg_id;
291 } else
292 kp->ki_tpgid = -1;
293 if (tty.t_session != NULL) {
294 if (KREAD(kd, (u_long)tty.t_session, &sess)) {
295 _kvm_err(kd, kd->program,
296 "can't read session at %x",
297 tty.t_session);
298 return (-1);
299 }
300 kp->ki_tsid = sess.s_sid;
301 }
302 } else {
303nopgrp:
304 kp->ki_tdev = NODEV;
305 }
306 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
307 (void)kvm_read(kd, (u_long)mtd.td_wmesg,
308 kp->ki_wmesg, WMESGLEN);
309
310 (void)kvm_read(kd, (u_long)proc.p_vmspace,
311 (char *)&vmspace, sizeof(vmspace));
312 kp->ki_size = vmspace.vm_map.size;
313 kp->ki_rssize = vmspace.vm_swrss; /* XXX */
314 kp->ki_swrss = vmspace.vm_swrss;
315 kp->ki_tsize = vmspace.vm_tsize;
316 kp->ki_dsize = vmspace.vm_dsize;
317 kp->ki_ssize = vmspace.vm_ssize;
318
319 switch (what & ~KERN_PROC_INC_THREAD) {
320
321 case KERN_PROC_PGRP:
322 if (kp->ki_pgid != (pid_t)arg)
323 continue;
324 break;
325
326 case KERN_PROC_SESSION:
327 if (kp->ki_sid != (pid_t)arg)
328 continue;
329 break;
330
331 case KERN_PROC_TTY:
332 if ((proc.p_flag & P_CONTROLT) == 0 ||
333 kp->ki_tdev != (dev_t)arg)
334 continue;
335 break;
336 }
337 if (proc.p_comm[0] != 0)
338 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
339 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
340 sizeof(sysent));
341 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
342 sizeof(svname));
343 if (svname[0] != 0)
344 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
345 if ((proc.p_state != PRS_ZOMBIE) &&
346 (mtd.td_blocked != 0)) {
347 kp->ki_kiflag |= KI_LOCKBLOCK;
348 if (mtd.td_lockname)
349 (void)kvm_read(kd,
350 (u_long)mtd.td_lockname,
351 kp->ki_lockname, LOCKNAMELEN);
352 kp->ki_lockname[LOCKNAMELEN] = 0;
353 }
354 /*
355 * XXX: This is plain wrong, rux_runtime has nothing
356 * to do with struct bintime, rux_runtime is just a 64-bit
357 * integer counter of cputicks. What we need here is a way
358 * to convert cputicks to usecs. The kernel does it in
359 * kern/kern_tc.c, but the function can't be just copied.
360 */
361 bintime2timeval(&proc.p_rux.rux_runtime, &tv);
362 kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
363 kp->ki_pid = proc.p_pid;
364 kp->ki_siglist = proc.p_siglist;
365 SIGSETOR(kp->ki_siglist, mtd.td_siglist);
366 kp->ki_sigmask = mtd.td_sigmask;
367 kp->ki_xstat = proc.p_xstat;
368 kp->ki_acflag = proc.p_acflag;
369 kp->ki_lock = proc.p_lock;
370 if (proc.p_state != PRS_ZOMBIE) {
371 kp->ki_swtime = proc.p_swtime;
372 kp->ki_flag = proc.p_flag;
373 kp->ki_sflag = proc.p_sflag;
373 kp->ki_sflag = 0;
374 kp->ki_nice = proc.p_nice;
375 kp->ki_traceflag = proc.p_traceflag;
376 if (proc.p_state == PRS_NORMAL) {
377 if (TD_ON_RUNQ(&mtd) ||
378 TD_CAN_RUN(&mtd) ||
379 TD_IS_RUNNING(&mtd)) {
380 kp->ki_stat = SRUN;
381 } else if (mtd.td_state ==
382 TDS_INHIBITED) {
383 if (P_SHOULDSTOP(&proc)) {
384 kp->ki_stat = SSTOP;
385 } else if (
386 TD_IS_SLEEPING(&mtd)) {
387 kp->ki_stat = SSLEEP;
388 } else if (TD_ON_LOCK(&mtd)) {
389 kp->ki_stat = SLOCK;
390 } else {
391 kp->ki_stat = SWAIT;
392 }
393 }
394 } else {
395 kp->ki_stat = SIDL;
396 }
397 /* Stuff from the thread */
398 kp->ki_pri.pri_level = mtd.td_priority;
399 kp->ki_pri.pri_native = mtd.td_base_pri;
400 kp->ki_lastcpu = mtd.td_lastcpu;
401 kp->ki_wchan = mtd.td_wchan;
402 kp->ki_oncpu = mtd.td_oncpu;
403
404 if (!(proc.p_flag & P_SA)) {
405 kp->ki_pctcpu = 0;
406 kp->ki_rqindex = 0;
407 } else {
408 kp->ki_tdflags = -1;
409 /* All the rest are 0 for now */
410 }
411 } else {
412 kp->ki_stat = SZOMB;
413 }
414 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
415 ++bp;
416 ++cnt;
417 }
418 return (cnt);
419}
420
421/*
422 * Build proc info array by reading in proc list from a crash dump.
423 * Return number of procs read. maxcnt is the max we will read.
424 */
425static int
426kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
427 kvm_t *kd;
428 int what, arg;
429 u_long a_allproc;
430 u_long a_zombproc;
431 int maxcnt;
432{
433 struct kinfo_proc *bp = kd->procbase;
434 int acnt, zcnt;
435 struct proc *p;
436
437 if (KREAD(kd, a_allproc, &p)) {
438 _kvm_err(kd, kd->program, "cannot read allproc");
439 return (-1);
440 }
441 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
442 if (acnt < 0)
443 return (acnt);
444
445 if (KREAD(kd, a_zombproc, &p)) {
446 _kvm_err(kd, kd->program, "cannot read zombproc");
447 return (-1);
448 }
449 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
450 if (zcnt < 0)
451 zcnt = 0;
452
453 return (acnt + zcnt);
454}
455
456struct kinfo_proc *
457kvm_getprocs(kd, op, arg, cnt)
458 kvm_t *kd;
459 int op, arg;
460 int *cnt;
461{
462 int mib[4], st, nprocs;
463 size_t size;
464 int temp_op;
465
466 if (kd->procbase != 0) {
467 free((void *)kd->procbase);
468 /*
469 * Clear this pointer in case this call fails. Otherwise,
470 * kvm_close() will free it again.
471 */
472 kd->procbase = 0;
473 }
474 if (ISALIVE(kd)) {
475 size = 0;
476 mib[0] = CTL_KERN;
477 mib[1] = KERN_PROC;
478 mib[2] = op;
479 mib[3] = arg;
480 temp_op = op & ~KERN_PROC_INC_THREAD;
481 st = sysctl(mib,
482 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
483 3 : 4, NULL, &size, NULL, 0);
484 if (st == -1) {
485 _kvm_syserr(kd, kd->program, "kvm_getprocs");
486 return (0);
487 }
488 /*
489 * We can't continue with a size of 0 because we pass
490 * it to realloc() (via _kvm_realloc()), and passing 0
491 * to realloc() results in undefined behavior.
492 */
493 if (size == 0) {
494 /*
495 * XXX: We should probably return an invalid,
496 * but non-NULL, pointer here so any client
497 * program trying to dereference it will
498 * crash. However, _kvm_freeprocs() calls
499 * free() on kd->procbase if it isn't NULL,
500 * and free()'ing a junk pointer isn't good.
501 * Then again, _kvm_freeprocs() isn't used
502 * anywhere . . .
503 */
504 kd->procbase = _kvm_malloc(kd, 1);
505 goto liveout;
506 }
507 do {
508 size += size / 10;
509 kd->procbase = (struct kinfo_proc *)
510 _kvm_realloc(kd, kd->procbase, size);
511 if (kd->procbase == 0)
512 return (0);
513 st = sysctl(mib, temp_op == KERN_PROC_ALL ||
514 temp_op == KERN_PROC_PROC ? 3 : 4,
515 kd->procbase, &size, NULL, 0);
516 } while (st == -1 && errno == ENOMEM);
517 if (st == -1) {
518 _kvm_syserr(kd, kd->program, "kvm_getprocs");
519 return (0);
520 }
521 /*
522 * We have to check the size again because sysctl()
523 * may "round up" oldlenp if oldp is NULL; hence it
524 * might've told us that there was data to get when
525 * there really isn't any.
526 */
527 if (size > 0 &&
528 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
529 _kvm_err(kd, kd->program,
530 "kinfo_proc size mismatch (expected %d, got %d)",
531 sizeof(struct kinfo_proc),
532 kd->procbase->ki_structsize);
533 return (0);
534 }
535liveout:
536 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
537 } else {
538 struct nlist nl[4], *p;
539
540 nl[0].n_name = "_nprocs";
541 nl[1].n_name = "_allproc";
542 nl[2].n_name = "_zombproc";
543 nl[3].n_name = 0;
544
545 if (kvm_nlist(kd, nl) != 0) {
546 for (p = nl; p->n_type != 0; ++p)
547 ;
548 _kvm_err(kd, kd->program,
549 "%s: no such symbol", p->n_name);
550 return (0);
551 }
552 if (KREAD(kd, nl[0].n_value, &nprocs)) {
553 _kvm_err(kd, kd->program, "can't read nprocs");
554 return (0);
555 }
556 size = nprocs * sizeof(struct kinfo_proc);
557 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
558 if (kd->procbase == 0)
559 return (0);
560
561 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
562 nl[2].n_value, nprocs);
563#ifdef notdef
564 size = nprocs * sizeof(struct kinfo_proc);
565 (void)realloc(kd->procbase, size);
566#endif
567 }
568 *cnt = nprocs;
569 return (kd->procbase);
570}
571
572void
573_kvm_freeprocs(kd)
574 kvm_t *kd;
575{
576 if (kd->procbase) {
577 free(kd->procbase);
578 kd->procbase = 0;
579 }
580}
581
582void *
583_kvm_realloc(kd, p, n)
584 kvm_t *kd;
585 void *p;
586 size_t n;
587{
588 void *np = (void *)realloc(p, n);
589
590 if (np == 0) {
591 free(p);
592 _kvm_err(kd, kd->program, "out of memory");
593 }
594 return (np);
595}
596
597#ifndef MAX
598#define MAX(a, b) ((a) > (b) ? (a) : (b))
599#endif
600
601/*
602 * Read in an argument vector from the user address space of process kp.
603 * addr if the user-space base address of narg null-terminated contiguous
604 * strings. This is used to read in both the command arguments and
605 * environment strings. Read at most maxcnt characters of strings.
606 */
607static char **
608kvm_argv(kd, kp, addr, narg, maxcnt)
609 kvm_t *kd;
610 struct kinfo_proc *kp;
611 u_long addr;
612 int narg;
613 int maxcnt;
614{
615 char *np, *cp, *ep, *ap;
616 u_long oaddr = -1;
617 int len, cc;
618 char **argv;
619
620 /*
621 * Check that there aren't an unreasonable number of agruments,
622 * and that the address is in user space.
623 */
624 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
625 return (0);
626
627 /*
628 * kd->argv : work space for fetching the strings from the target
629 * process's space, and is converted for returning to caller
630 */
631 if (kd->argv == 0) {
632 /*
633 * Try to avoid reallocs.
634 */
635 kd->argc = MAX(narg + 1, 32);
636 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
637 sizeof(*kd->argv));
638 if (kd->argv == 0)
639 return (0);
640 } else if (narg + 1 > kd->argc) {
641 kd->argc = MAX(2 * kd->argc, narg + 1);
642 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
643 sizeof(*kd->argv));
644 if (kd->argv == 0)
645 return (0);
646 }
647 /*
648 * kd->argspc : returned to user, this is where the kd->argv
649 * arrays are left pointing to the collected strings.
650 */
651 if (kd->argspc == 0) {
652 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
653 if (kd->argspc == 0)
654 return (0);
655 kd->arglen = PAGE_SIZE;
656 }
657 /*
658 * kd->argbuf : used to pull in pages from the target process.
659 * the strings are copied out of here.
660 */
661 if (kd->argbuf == 0) {
662 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
663 if (kd->argbuf == 0)
664 return (0);
665 }
666
667 /* Pull in the target process'es argv vector */
668 cc = sizeof(char *) * narg;
669 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
670 return (0);
671 /*
672 * ap : saved start address of string we're working on in kd->argspc
673 * np : pointer to next place to write in kd->argspc
674 * len: length of data in kd->argspc
675 * argv: pointer to the argv vector that we are hunting around the
676 * target process space for, and converting to addresses in
677 * our address space (kd->argspc).
678 */
679 ap = np = kd->argspc;
680 argv = kd->argv;
681 len = 0;
682 /*
683 * Loop over pages, filling in the argument vector.
684 * Note that the argv strings could be pointing *anywhere* in
685 * the user address space and are no longer contiguous.
686 * Note that *argv is modified when we are going to fetch a string
687 * that crosses a page boundary. We copy the next part of the string
688 * into to "np" and eventually convert the pointer.
689 */
690 while (argv < kd->argv + narg && *argv != 0) {
691
692 /* get the address that the current argv string is on */
693 addr = (u_long)*argv & ~(PAGE_SIZE - 1);
694
695 /* is it the same page as the last one? */
696 if (addr != oaddr) {
697 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
698 PAGE_SIZE)
699 return (0);
700 oaddr = addr;
701 }
702
703 /* offset within the page... kd->argbuf */
704 addr = (u_long)*argv & (PAGE_SIZE - 1);
705
706 /* cp = start of string, cc = count of chars in this chunk */
707 cp = kd->argbuf + addr;
708 cc = PAGE_SIZE - addr;
709
710 /* dont get more than asked for by user process */
711 if (maxcnt > 0 && cc > maxcnt - len)
712 cc = maxcnt - len;
713
714 /* pointer to end of string if we found it in this page */
715 ep = memchr(cp, '\0', cc);
716 if (ep != 0)
717 cc = ep - cp + 1;
718 /*
719 * at this point, cc is the count of the chars that we are
720 * going to retrieve this time. we may or may not have found
721 * the end of it. (ep points to the null if the end is known)
722 */
723
724 /* will we exceed the malloc/realloced buffer? */
725 if (len + cc > kd->arglen) {
726 int off;
727 char **pp;
728 char *op = kd->argspc;
729
730 kd->arglen *= 2;
731 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
732 kd->arglen);
733 if (kd->argspc == 0)
734 return (0);
735 /*
736 * Adjust argv pointers in case realloc moved
737 * the string space.
738 */
739 off = kd->argspc - op;
740 for (pp = kd->argv; pp < argv; pp++)
741 *pp += off;
742 ap += off;
743 np += off;
744 }
745 /* np = where to put the next part of the string in kd->argspc*/
746 /* np is kinda redundant.. could use "kd->argspc + len" */
747 memcpy(np, cp, cc);
748 np += cc; /* inc counters */
749 len += cc;
750
751 /*
752 * if end of string found, set the *argv pointer to the
753 * saved beginning of string, and advance. argv points to
754 * somewhere in kd->argv.. This is initially relative
755 * to the target process, but when we close it off, we set
756 * it to point in our address space.
757 */
758 if (ep != 0) {
759 *argv++ = ap;
760 ap = np;
761 } else {
762 /* update the address relative to the target process */
763 *argv += cc;
764 }
765
766 if (maxcnt > 0 && len >= maxcnt) {
767 /*
768 * We're stopping prematurely. Terminate the
769 * current string.
770 */
771 if (ep == 0) {
772 *np = '\0';
773 *argv++ = ap;
774 }
775 break;
776 }
777 }
778 /* Make sure argv is terminated. */
779 *argv = 0;
780 return (kd->argv);
781}
782
783static void
784ps_str_a(p, addr, n)
785 struct ps_strings *p;
786 u_long *addr;
787 int *n;
788{
789 *addr = (u_long)p->ps_argvstr;
790 *n = p->ps_nargvstr;
791}
792
793static void
794ps_str_e(p, addr, n)
795 struct ps_strings *p;
796 u_long *addr;
797 int *n;
798{
799 *addr = (u_long)p->ps_envstr;
800 *n = p->ps_nenvstr;
801}
802
803/*
804 * Determine if the proc indicated by p is still active.
805 * This test is not 100% foolproof in theory, but chances of
806 * being wrong are very low.
807 */
808static int
809proc_verify(curkp)
810 struct kinfo_proc *curkp;
811{
812 struct kinfo_proc newkp;
813 int mib[4];
814 size_t len;
815
816 mib[0] = CTL_KERN;
817 mib[1] = KERN_PROC;
818 mib[2] = KERN_PROC_PID;
819 mib[3] = curkp->ki_pid;
820 len = sizeof(newkp);
821 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
822 return (0);
823 return (curkp->ki_pid == newkp.ki_pid &&
824 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
825}
826
827static char **
828kvm_doargv(kd, kp, nchr, info)
829 kvm_t *kd;
830 struct kinfo_proc *kp;
831 int nchr;
832 void (*info)(struct ps_strings *, u_long *, int *);
833{
834 char **ap;
835 u_long addr;
836 int cnt;
837 static struct ps_strings arginfo;
838 static u_long ps_strings;
839 size_t len;
840
841 if (ps_strings == 0) {
842 len = sizeof(ps_strings);
843 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
844 0) == -1)
845 ps_strings = PS_STRINGS;
846 }
847
848 /*
849 * Pointers are stored at the top of the user stack.
850 */
851 if (kp->ki_stat == SZOMB ||
852 kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
853 sizeof(arginfo)) != sizeof(arginfo))
854 return (0);
855
856 (*info)(&arginfo, &addr, &cnt);
857 if (cnt == 0)
858 return (0);
859 ap = kvm_argv(kd, kp, addr, cnt, nchr);
860 /*
861 * For live kernels, make sure this process didn't go away.
862 */
863 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
864 ap = 0;
865 return (ap);
866}
867
868/*
869 * Get the command args. This code is now machine independent.
870 */
871char **
872kvm_getargv(kd, kp, nchr)
873 kvm_t *kd;
874 const struct kinfo_proc *kp;
875 int nchr;
876{
877 int oid[4];
878 int i;
879 size_t bufsz;
880 static unsigned long buflen;
881 static char *buf, *p;
882 static char **bufp;
883 static int argc;
884
885 if (!ISALIVE(kd)) {
886 _kvm_err(kd, kd->program,
887 "cannot read user space from dead kernel");
888 return (0);
889 }
890
891 if (!buflen) {
892 bufsz = sizeof(buflen);
893 i = sysctlbyname("kern.ps_arg_cache_limit",
894 &buflen, &bufsz, NULL, 0);
895 if (i == -1) {
896 buflen = 0;
897 } else {
898 buf = malloc(buflen);
899 if (buf == NULL)
900 buflen = 0;
901 argc = 32;
902 bufp = malloc(sizeof(char *) * argc);
903 }
904 }
905 if (buf != NULL) {
906 oid[0] = CTL_KERN;
907 oid[1] = KERN_PROC;
908 oid[2] = KERN_PROC_ARGS;
909 oid[3] = kp->ki_pid;
910 bufsz = buflen;
911 i = sysctl(oid, 4, buf, &bufsz, 0, 0);
912 if (i == 0 && bufsz > 0) {
913 i = 0;
914 p = buf;
915 do {
916 bufp[i++] = p;
917 p += strlen(p) + 1;
918 if (i >= argc) {
919 argc += argc;
920 bufp = realloc(bufp,
921 sizeof(char *) * argc);
922 }
923 } while (p < buf + bufsz);
924 bufp[i++] = 0;
925 return (bufp);
926 }
927 }
928 if (kp->ki_flag & P_SYSTEM)
929 return (NULL);
930 return (kvm_doargv(kd, kp, nchr, ps_str_a));
931}
932
933char **
934kvm_getenvv(kd, kp, nchr)
935 kvm_t *kd;
936 const struct kinfo_proc *kp;
937 int nchr;
938{
939 return (kvm_doargv(kd, kp, nchr, ps_str_e));
940}
941
942/*
943 * Read from user space. The user context is given by p.
944 */
945ssize_t
946kvm_uread(kd, kp, uva, buf, len)
947 kvm_t *kd;
948 struct kinfo_proc *kp;
949 u_long uva;
950 char *buf;
951 size_t len;
952{
953 char *cp;
954 char procfile[MAXPATHLEN];
955 ssize_t amount;
956 int fd;
957
958 if (!ISALIVE(kd)) {
959 _kvm_err(kd, kd->program,
960 "cannot read user space from dead kernel");
961 return (0);
962 }
963
964 sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
965 fd = open(procfile, O_RDONLY, 0);
966 if (fd < 0) {
967 _kvm_err(kd, kd->program, "cannot open %s", procfile);
968 return (0);
969 }
970
971 cp = buf;
972 while (len > 0) {
973 errno = 0;
974 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
975 _kvm_err(kd, kd->program, "invalid address (%x) in %s",
976 uva, procfile);
977 break;
978 }
979 amount = read(fd, cp, len);
980 if (amount < 0) {
981 _kvm_syserr(kd, kd->program, "error reading %s",
982 procfile);
983 break;
984 }
985 if (amount == 0) {
986 _kvm_err(kd, kd->program, "EOF reading %s", procfile);
987 break;
988 }
989 cp += amount;
990 uva += amount;
991 len -= amount;
992 }
993
994 close(fd);
995 return ((ssize_t)(cp - buf));
996}