Deleted Added
full compact
kvm_proc.c (130552) kvm_proc.c (130640)
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38#if 0
39#if defined(LIBC_SCCS) && !defined(lint)
40static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
41#endif /* LIBC_SCCS and not lint */
42#endif
43
44#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 1989, 1992, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software developed by the Computer Systems
6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7 * BG 91-66 and contributed to Berkeley.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38#if 0
39#if defined(LIBC_SCCS) && !defined(lint)
40static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
41#endif /* LIBC_SCCS and not lint */
42#endif
43
44#include <sys/cdefs.h>
45__FBSDID("$FreeBSD: head/lib/libkvm/kvm_proc.c 130552 2004-06-16 00:34:31Z julian $");
45__FBSDID("$FreeBSD: head/lib/libkvm/kvm_proc.c 130640 2004-06-17 17:16:53Z phk $");
46
47/*
48 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
49 * users of this code, so we've factored it out into a separate module.
50 * Thus, we keep this grunge out of the other kvm applications (i.e.,
51 * most other applications are interested only in open/close/read/nlist).
52 */
53
54#include <sys/param.h>
55#define _WANT_UCRED /* make ucred.h give us 'struct ucred' */
56#include <sys/ucred.h>
57#include <sys/user.h>
58#include <sys/proc.h>
59#include <sys/exec.h>
60#include <sys/stat.h>
61#include <sys/ioctl.h>
62#include <sys/tty.h>
63#include <sys/file.h>
64#include <stdio.h>
65#include <stdlib.h>
66#include <unistd.h>
67#include <nlist.h>
68#include <kvm.h>
69
70#include <vm/vm.h>
71#include <vm/vm_param.h>
72
73#include <sys/sysctl.h>
74
75#include <limits.h>
76#include <memory.h>
77#include <paths.h>
78
79#include "kvm_private.h"
80
81#define KREAD(kd, addr, obj) \
82 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
83
84/*
85 * Read proc's from memory file into buffer bp, which has space to hold
86 * at most maxcnt procs.
87 */
88static int
89kvm_proclist(kd, what, arg, p, bp, maxcnt)
90 kvm_t *kd;
91 int what, arg;
92 struct proc *p;
93 struct kinfo_proc *bp;
94 int maxcnt;
95{
96 int cnt = 0;
97 struct kinfo_proc kinfo_proc, *kp;
98 struct pgrp pgrp;
99 struct session sess;
100 struct tty tty;
101 struct vmspace vmspace;
102 struct sigacts sigacts;
103 struct pstats pstats;
104 struct ucred ucred;
105 struct thread mtd;
106 struct kse mke;
107 struct ksegrp mkg;
108 struct proc proc;
109 struct proc pproc;
110 struct timeval tv;
111
112 kp = &kinfo_proc;
113 kp->ki_structsize = sizeof(kinfo_proc);
114 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
115 memset(kp, 0, sizeof *kp);
116 if (KREAD(kd, (u_long)p, &proc)) {
117 _kvm_err(kd, kd->program, "can't read proc at %x", p);
118 return (-1);
119 }
120 if (proc.p_state != PRS_ZOMBIE) {
121 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
122 &mtd)) {
123 _kvm_err(kd, kd->program,
124 "can't read thread at %x",
125 TAILQ_FIRST(&proc.p_threads));
126 return (-1);
127 }
128 if (proc.p_flag & P_SA == 0) {
129 if (KREAD(kd,
130 (u_long)TAILQ_FIRST(&proc.p_ksegrps),
131 &mkg)) {
132 _kvm_err(kd, kd->program,
133 "can't read ksegrp at %x",
134 TAILQ_FIRST(&proc.p_ksegrps));
135 return (-1);
136 }
137 if (KREAD(kd,
138 (u_long)TAILQ_FIRST(&mkg.kg_kseq), &mke)) {
139 _kvm_err(kd, kd->program,
140 "can't read kse at %x",
141 TAILQ_FIRST(&mkg.kg_kseq));
142 return (-1);
143 }
144 }
145 }
146 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
147 kp->ki_ruid = ucred.cr_ruid;
148 kp->ki_svuid = ucred.cr_svuid;
149 kp->ki_rgid = ucred.cr_rgid;
150 kp->ki_svgid = ucred.cr_svgid;
151 kp->ki_ngroups = ucred.cr_ngroups;
152 bcopy(ucred.cr_groups, kp->ki_groups,
153 NGROUPS * sizeof(gid_t));
154 kp->ki_uid = ucred.cr_uid;
155 }
156
157 switch(what & ~KERN_PROC_INC_THREAD) {
158
159 case KERN_PROC_PID:
160 if (proc.p_pid != (pid_t)arg)
161 continue;
162 break;
163
164 case KERN_PROC_UID:
165 if (kp->ki_uid != (uid_t)arg)
166 continue;
167 break;
168
169 case KERN_PROC_RUID:
170 if (kp->ki_ruid != (uid_t)arg)
171 continue;
172 break;
173 }
174 /*
175 * We're going to add another proc to the set. If this
176 * will overflow the buffer, assume the reason is because
177 * nprocs (or the proc list) is corrupt and declare an error.
178 */
179 if (cnt >= maxcnt) {
180 _kvm_err(kd, kd->program, "nprocs corrupt");
181 return (-1);
182 }
183 /*
184 * gather kinfo_proc
185 */
186 kp->ki_paddr = p;
187 kp->ki_addr = proc.p_uarea;
188 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
189 kp->ki_args = proc.p_args;
190 kp->ki_tracep = proc.p_tracevp;
191 kp->ki_textvp = proc.p_textvp;
192 kp->ki_fd = proc.p_fd;
193 kp->ki_vmspace = proc.p_vmspace;
194 if (proc.p_sigacts != NULL) {
195 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
196 _kvm_err(kd, kd->program,
197 "can't read sigacts at %x", proc.p_sigacts);
198 return (-1);
199 }
200 kp->ki_sigignore = sigacts.ps_sigignore;
201 kp->ki_sigcatch = sigacts.ps_sigcatch;
202 }
203 if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
204 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
205 _kvm_err(kd, kd->program,
206 "can't read stats at %x", proc.p_stats);
207 return (-1);
208 }
209 kp->ki_start = pstats.p_start;
210 kp->ki_rusage = pstats.p_ru;
211 kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec +
212 pstats.p_cru.ru_stime.tv_sec;
213 kp->ki_childtime.tv_usec =
214 pstats.p_cru.ru_utime.tv_usec +
215 pstats.p_cru.ru_stime.tv_usec;
216 }
217 if (proc.p_oppid)
218 kp->ki_ppid = proc.p_oppid;
219 else if (proc.p_pptr) {
220 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
221 _kvm_err(kd, kd->program,
222 "can't read pproc at %x", proc.p_pptr);
223 return (-1);
224 }
225 kp->ki_ppid = pproc.p_pid;
226 } else
227 kp->ki_ppid = 0;
228 if (proc.p_pgrp == NULL)
229 goto nopgrp;
230 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
231 _kvm_err(kd, kd->program, "can't read pgrp at %x",
232 proc.p_pgrp);
233 return (-1);
234 }
235 kp->ki_pgid = pgrp.pg_id;
236 kp->ki_jobc = pgrp.pg_jobc;
237 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
238 _kvm_err(kd, kd->program, "can't read session at %x",
239 pgrp.pg_session);
240 return (-1);
241 }
242 kp->ki_sid = sess.s_sid;
243 (void)memcpy(kp->ki_login, sess.s_login,
244 sizeof(kp->ki_login));
245 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
246 if (sess.s_leader == p)
247 kp->ki_kiflag |= KI_SLEADER;
248 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
249 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
250 _kvm_err(kd, kd->program,
251 "can't read tty at %x", sess.s_ttyp);
252 return (-1);
253 }
46
47/*
48 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
49 * users of this code, so we've factored it out into a separate module.
50 * Thus, we keep this grunge out of the other kvm applications (i.e.,
51 * most other applications are interested only in open/close/read/nlist).
52 */
53
54#include <sys/param.h>
55#define _WANT_UCRED /* make ucred.h give us 'struct ucred' */
56#include <sys/ucred.h>
57#include <sys/user.h>
58#include <sys/proc.h>
59#include <sys/exec.h>
60#include <sys/stat.h>
61#include <sys/ioctl.h>
62#include <sys/tty.h>
63#include <sys/file.h>
64#include <stdio.h>
65#include <stdlib.h>
66#include <unistd.h>
67#include <nlist.h>
68#include <kvm.h>
69
70#include <vm/vm.h>
71#include <vm/vm_param.h>
72
73#include <sys/sysctl.h>
74
75#include <limits.h>
76#include <memory.h>
77#include <paths.h>
78
79#include "kvm_private.h"
80
81#define KREAD(kd, addr, obj) \
82 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
83
84/*
85 * Read proc's from memory file into buffer bp, which has space to hold
86 * at most maxcnt procs.
87 */
88static int
89kvm_proclist(kd, what, arg, p, bp, maxcnt)
90 kvm_t *kd;
91 int what, arg;
92 struct proc *p;
93 struct kinfo_proc *bp;
94 int maxcnt;
95{
96 int cnt = 0;
97 struct kinfo_proc kinfo_proc, *kp;
98 struct pgrp pgrp;
99 struct session sess;
100 struct tty tty;
101 struct vmspace vmspace;
102 struct sigacts sigacts;
103 struct pstats pstats;
104 struct ucred ucred;
105 struct thread mtd;
106 struct kse mke;
107 struct ksegrp mkg;
108 struct proc proc;
109 struct proc pproc;
110 struct timeval tv;
111
112 kp = &kinfo_proc;
113 kp->ki_structsize = sizeof(kinfo_proc);
114 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
115 memset(kp, 0, sizeof *kp);
116 if (KREAD(kd, (u_long)p, &proc)) {
117 _kvm_err(kd, kd->program, "can't read proc at %x", p);
118 return (-1);
119 }
120 if (proc.p_state != PRS_ZOMBIE) {
121 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
122 &mtd)) {
123 _kvm_err(kd, kd->program,
124 "can't read thread at %x",
125 TAILQ_FIRST(&proc.p_threads));
126 return (-1);
127 }
128 if (proc.p_flag & P_SA == 0) {
129 if (KREAD(kd,
130 (u_long)TAILQ_FIRST(&proc.p_ksegrps),
131 &mkg)) {
132 _kvm_err(kd, kd->program,
133 "can't read ksegrp at %x",
134 TAILQ_FIRST(&proc.p_ksegrps));
135 return (-1);
136 }
137 if (KREAD(kd,
138 (u_long)TAILQ_FIRST(&mkg.kg_kseq), &mke)) {
139 _kvm_err(kd, kd->program,
140 "can't read kse at %x",
141 TAILQ_FIRST(&mkg.kg_kseq));
142 return (-1);
143 }
144 }
145 }
146 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
147 kp->ki_ruid = ucred.cr_ruid;
148 kp->ki_svuid = ucred.cr_svuid;
149 kp->ki_rgid = ucred.cr_rgid;
150 kp->ki_svgid = ucred.cr_svgid;
151 kp->ki_ngroups = ucred.cr_ngroups;
152 bcopy(ucred.cr_groups, kp->ki_groups,
153 NGROUPS * sizeof(gid_t));
154 kp->ki_uid = ucred.cr_uid;
155 }
156
157 switch(what & ~KERN_PROC_INC_THREAD) {
158
159 case KERN_PROC_PID:
160 if (proc.p_pid != (pid_t)arg)
161 continue;
162 break;
163
164 case KERN_PROC_UID:
165 if (kp->ki_uid != (uid_t)arg)
166 continue;
167 break;
168
169 case KERN_PROC_RUID:
170 if (kp->ki_ruid != (uid_t)arg)
171 continue;
172 break;
173 }
174 /*
175 * We're going to add another proc to the set. If this
176 * will overflow the buffer, assume the reason is because
177 * nprocs (or the proc list) is corrupt and declare an error.
178 */
179 if (cnt >= maxcnt) {
180 _kvm_err(kd, kd->program, "nprocs corrupt");
181 return (-1);
182 }
183 /*
184 * gather kinfo_proc
185 */
186 kp->ki_paddr = p;
187 kp->ki_addr = proc.p_uarea;
188 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
189 kp->ki_args = proc.p_args;
190 kp->ki_tracep = proc.p_tracevp;
191 kp->ki_textvp = proc.p_textvp;
192 kp->ki_fd = proc.p_fd;
193 kp->ki_vmspace = proc.p_vmspace;
194 if (proc.p_sigacts != NULL) {
195 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
196 _kvm_err(kd, kd->program,
197 "can't read sigacts at %x", proc.p_sigacts);
198 return (-1);
199 }
200 kp->ki_sigignore = sigacts.ps_sigignore;
201 kp->ki_sigcatch = sigacts.ps_sigcatch;
202 }
203 if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
204 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
205 _kvm_err(kd, kd->program,
206 "can't read stats at %x", proc.p_stats);
207 return (-1);
208 }
209 kp->ki_start = pstats.p_start;
210 kp->ki_rusage = pstats.p_ru;
211 kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec +
212 pstats.p_cru.ru_stime.tv_sec;
213 kp->ki_childtime.tv_usec =
214 pstats.p_cru.ru_utime.tv_usec +
215 pstats.p_cru.ru_stime.tv_usec;
216 }
217 if (proc.p_oppid)
218 kp->ki_ppid = proc.p_oppid;
219 else if (proc.p_pptr) {
220 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
221 _kvm_err(kd, kd->program,
222 "can't read pproc at %x", proc.p_pptr);
223 return (-1);
224 }
225 kp->ki_ppid = pproc.p_pid;
226 } else
227 kp->ki_ppid = 0;
228 if (proc.p_pgrp == NULL)
229 goto nopgrp;
230 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
231 _kvm_err(kd, kd->program, "can't read pgrp at %x",
232 proc.p_pgrp);
233 return (-1);
234 }
235 kp->ki_pgid = pgrp.pg_id;
236 kp->ki_jobc = pgrp.pg_jobc;
237 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
238 _kvm_err(kd, kd->program, "can't read session at %x",
239 pgrp.pg_session);
240 return (-1);
241 }
242 kp->ki_sid = sess.s_sid;
243 (void)memcpy(kp->ki_login, sess.s_login,
244 sizeof(kp->ki_login));
245 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
246 if (sess.s_leader == p)
247 kp->ki_kiflag |= KI_SLEADER;
248 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
249 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
250 _kvm_err(kd, kd->program,
251 "can't read tty at %x", sess.s_ttyp);
252 return (-1);
253 }
254 kp->ki_tdev = tty.t_dev;
254 kp->ki_tdev = tty.t_dev; /* XXX: wrong */
255 if (tty.t_pgrp != NULL) {
256 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
257 _kvm_err(kd, kd->program,
258 "can't read tpgrp at %x",
259 tty.t_pgrp);
260 return (-1);
261 }
262 kp->ki_tpgid = pgrp.pg_id;
263 } else
264 kp->ki_tpgid = -1;
265 if (tty.t_session != NULL) {
266 if (KREAD(kd, (u_long)tty.t_session, &sess)) {
267 _kvm_err(kd, kd->program,
268 "can't read session at %x",
269 tty.t_session);
270 return (-1);
271 }
272 kp->ki_tsid = sess.s_sid;
273 }
274 } else {
275nopgrp:
276 kp->ki_tdev = NODEV;
277 }
278 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
279 (void)kvm_read(kd, (u_long)mtd.td_wmesg,
280 kp->ki_wmesg, WMESGLEN);
281
282#ifdef sparc
283 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
284 (char *)&kp->ki_rssize,
285 sizeof(kp->ki_rssize));
286 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
287 (char *)&kp->ki_tsize,
288 3 * sizeof(kp->ki_rssize)); /* XXX */
289#else
290 (void)kvm_read(kd, (u_long)proc.p_vmspace,
291 (char *)&vmspace, sizeof(vmspace));
292 kp->ki_size = vmspace.vm_map.size;
293 kp->ki_rssize = vmspace.vm_swrss; /* XXX */
294 kp->ki_swrss = vmspace.vm_swrss;
295 kp->ki_tsize = vmspace.vm_tsize;
296 kp->ki_dsize = vmspace.vm_dsize;
297 kp->ki_ssize = vmspace.vm_ssize;
298#endif
299
300 switch (what & ~KERN_PROC_INC_THREAD) {
301
302 case KERN_PROC_PGRP:
303 if (kp->ki_pgid != (pid_t)arg)
304 continue;
305 break;
306
307 case KERN_PROC_TTY:
308 if ((proc.p_flag & P_CONTROLT) == 0 ||
309 kp->ki_tdev != (dev_t)arg)
310 continue;
311 break;
312 }
313 if (proc.p_comm[0] != 0) {
314 strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
315 kp->ki_comm[MAXCOMLEN] = 0;
316 }
317 if ((proc.p_state != PRS_ZOMBIE) &&
318 (mtd.td_blocked != 0)) {
319 kp->ki_kiflag |= KI_LOCKBLOCK;
320 if (mtd.td_lockname)
321 (void)kvm_read(kd,
322 (u_long)mtd.td_lockname,
323 kp->ki_lockname, LOCKNAMELEN);
324 kp->ki_lockname[LOCKNAMELEN] = 0;
325 }
326 bintime2timeval(&proc.p_runtime, &tv);
327 kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
328 kp->ki_pid = proc.p_pid;
329 kp->ki_siglist = proc.p_siglist;
330 SIGSETOR(kp->ki_siglist, mtd.td_siglist);
331 kp->ki_sigmask = mtd.td_sigmask;
332 kp->ki_xstat = proc.p_xstat;
333 kp->ki_acflag = proc.p_acflag;
334 kp->ki_lock = proc.p_lock;
335 if (proc.p_state != PRS_ZOMBIE) {
336 kp->ki_swtime = proc.p_swtime;
337 kp->ki_flag = proc.p_flag;
338 kp->ki_sflag = proc.p_sflag;
339 kp->ki_nice = proc.p_nice;
340 kp->ki_traceflag = proc.p_traceflag;
341 if (proc.p_state == PRS_NORMAL) {
342 if (TD_ON_RUNQ(&mtd) ||
343 TD_CAN_RUN(&mtd) ||
344 TD_IS_RUNNING(&mtd)) {
345 kp->ki_stat = SRUN;
346 } else if (mtd.td_state ==
347 TDS_INHIBITED) {
348 if (P_SHOULDSTOP(&proc)) {
349 kp->ki_stat = SSTOP;
350 } else if (
351 TD_IS_SLEEPING(&mtd)) {
352 kp->ki_stat = SSLEEP;
353 } else if (TD_ON_LOCK(&mtd)) {
354 kp->ki_stat = SLOCK;
355 } else {
356 kp->ki_stat = SWAIT;
357 }
358 }
359 } else {
360 kp->ki_stat = SIDL;
361 }
362 /* Stuff from the thread */
363 kp->ki_pri.pri_level = mtd.td_priority;
364 kp->ki_pri.pri_native = mtd.td_base_pri;
365 kp->ki_lastcpu = mtd.td_lastcpu;
366 kp->ki_wchan = mtd.td_wchan;
367 kp->ki_oncpu = mtd.td_oncpu;
368
369 if (!(proc.p_flag & P_SA)) {
370 /* stuff from the ksegrp */
371 kp->ki_slptime = mkg.kg_slptime;
372 kp->ki_pri.pri_class = mkg.kg_pri_class;
373 kp->ki_pri.pri_user = mkg.kg_user_pri;
374 kp->ki_estcpu = mkg.kg_estcpu;
375
376 /* Stuff from the kse */
377 kp->ki_pctcpu = mke.ke_pctcpu;
378 kp->ki_rqindex = mke.ke_rqindex;
379 } else {
380 kp->ki_tdflags = -1;
381 /* All the rest are 0 for now */
382 }
383 } else {
384 kp->ki_stat = SZOMB;
385 }
386 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
387 ++bp;
388 ++cnt;
389 }
390 return (cnt);
391}
392
393/*
394 * Build proc info array by reading in proc list from a crash dump.
395 * Return number of procs read. maxcnt is the max we will read.
396 */
397static int
398kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
399 kvm_t *kd;
400 int what, arg;
401 u_long a_allproc;
402 u_long a_zombproc;
403 int maxcnt;
404{
405 struct kinfo_proc *bp = kd->procbase;
406 int acnt, zcnt;
407 struct proc *p;
408
409 if (KREAD(kd, a_allproc, &p)) {
410 _kvm_err(kd, kd->program, "cannot read allproc");
411 return (-1);
412 }
413 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
414 if (acnt < 0)
415 return (acnt);
416
417 if (KREAD(kd, a_zombproc, &p)) {
418 _kvm_err(kd, kd->program, "cannot read zombproc");
419 return (-1);
420 }
421 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
422 if (zcnt < 0)
423 zcnt = 0;
424
425 return (acnt + zcnt);
426}
427
428struct kinfo_proc *
429kvm_getprocs(kd, op, arg, cnt)
430 kvm_t *kd;
431 int op, arg;
432 int *cnt;
433{
434 int mib[4], st, nprocs;
435 size_t size;
436 int temp_op;
437
438 if (kd->procbase != 0) {
439 free((void *)kd->procbase);
440 /*
441 * Clear this pointer in case this call fails. Otherwise,
442 * kvm_close() will free it again.
443 */
444 kd->procbase = 0;
445 }
446 if (ISALIVE(kd)) {
447 size = 0;
448 mib[0] = CTL_KERN;
449 mib[1] = KERN_PROC;
450 mib[2] = op;
451 mib[3] = arg;
452 temp_op = op & ~KERN_PROC_INC_THREAD;
453 st = sysctl(mib,
454 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
455 3 : 4, NULL, &size, NULL, 0);
456 if (st == -1) {
457 _kvm_syserr(kd, kd->program, "kvm_getprocs");
458 return (0);
459 }
460 /*
461 * We can't continue with a size of 0 because we pass
462 * it to realloc() (via _kvm_realloc()), and passing 0
463 * to realloc() results in undefined behavior.
464 */
465 if (size == 0) {
466 /*
467 * XXX: We should probably return an invalid,
468 * but non-NULL, pointer here so any client
469 * program trying to dereference it will
470 * crash. However, _kvm_freeprocs() calls
471 * free() on kd->procbase if it isn't NULL,
472 * and free()'ing a junk pointer isn't good.
473 * Then again, _kvm_freeprocs() isn't used
474 * anywhere . . .
475 */
476 kd->procbase = _kvm_malloc(kd, 1);
477 goto liveout;
478 }
479 do {
480 size += size / 10;
481 kd->procbase = (struct kinfo_proc *)
482 _kvm_realloc(kd, kd->procbase, size);
483 if (kd->procbase == 0)
484 return (0);
485 st = sysctl(mib, temp_op == KERN_PROC_ALL ||
486 temp_op == KERN_PROC_PROC ? 3 : 4,
487 kd->procbase, &size, NULL, 0);
488 } while (st == -1 && errno == ENOMEM);
489 if (st == -1) {
490 _kvm_syserr(kd, kd->program, "kvm_getprocs");
491 return (0);
492 }
493 /*
494 * We have to check the size again because sysctl()
495 * may "round up" oldlenp if oldp is NULL; hence it
496 * might've told us that there was data to get when
497 * there really isn't any.
498 */
499 if (size > 0 &&
500 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
501 _kvm_err(kd, kd->program,
502 "kinfo_proc size mismatch (expected %d, got %d)",
503 sizeof(struct kinfo_proc),
504 kd->procbase->ki_structsize);
505 return (0);
506 }
507liveout:
508 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
509 } else {
510 struct nlist nl[4], *p;
511
512 nl[0].n_name = "_nprocs";
513 nl[1].n_name = "_allproc";
514 nl[2].n_name = "_zombproc";
515 nl[3].n_name = 0;
516
517 if (kvm_nlist(kd, nl) != 0) {
518 for (p = nl; p->n_type != 0; ++p)
519 ;
520 _kvm_err(kd, kd->program,
521 "%s: no such symbol", p->n_name);
522 return (0);
523 }
524 if (KREAD(kd, nl[0].n_value, &nprocs)) {
525 _kvm_err(kd, kd->program, "can't read nprocs");
526 return (0);
527 }
528 size = nprocs * sizeof(struct kinfo_proc);
529 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
530 if (kd->procbase == 0)
531 return (0);
532
533 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
534 nl[2].n_value, nprocs);
535#ifdef notdef
536 size = nprocs * sizeof(struct kinfo_proc);
537 (void)realloc(kd->procbase, size);
538#endif
539 }
540 *cnt = nprocs;
541 return (kd->procbase);
542}
543
544void
545_kvm_freeprocs(kd)
546 kvm_t *kd;
547{
548 if (kd->procbase) {
549 free(kd->procbase);
550 kd->procbase = 0;
551 }
552}
553
554void *
555_kvm_realloc(kd, p, n)
556 kvm_t *kd;
557 void *p;
558 size_t n;
559{
560 void *np = (void *)realloc(p, n);
561
562 if (np == 0) {
563 free(p);
564 _kvm_err(kd, kd->program, "out of memory");
565 }
566 return (np);
567}
568
569#ifndef MAX
570#define MAX(a, b) ((a) > (b) ? (a) : (b))
571#endif
572
573/*
574 * Read in an argument vector from the user address space of process kp.
575 * addr if the user-space base address of narg null-terminated contiguous
576 * strings. This is used to read in both the command arguments and
577 * environment strings. Read at most maxcnt characters of strings.
578 */
579static char **
580kvm_argv(kd, kp, addr, narg, maxcnt)
581 kvm_t *kd;
582 struct kinfo_proc *kp;
583 u_long addr;
584 int narg;
585 int maxcnt;
586{
587 char *np, *cp, *ep, *ap;
588 u_long oaddr = -1;
589 int len, cc;
590 char **argv;
591
592 /*
593 * Check that there aren't an unreasonable number of agruments,
594 * and that the address is in user space.
595 */
596 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
597 return (0);
598
599 /*
600 * kd->argv : work space for fetching the strings from the target
601 * process's space, and is converted for returning to caller
602 */
603 if (kd->argv == 0) {
604 /*
605 * Try to avoid reallocs.
606 */
607 kd->argc = MAX(narg + 1, 32);
608 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
609 sizeof(*kd->argv));
610 if (kd->argv == 0)
611 return (0);
612 } else if (narg + 1 > kd->argc) {
613 kd->argc = MAX(2 * kd->argc, narg + 1);
614 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
615 sizeof(*kd->argv));
616 if (kd->argv == 0)
617 return (0);
618 }
619 /*
620 * kd->argspc : returned to user, this is where the kd->argv
621 * arrays are left pointing to the collected strings.
622 */
623 if (kd->argspc == 0) {
624 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
625 if (kd->argspc == 0)
626 return (0);
627 kd->arglen = PAGE_SIZE;
628 }
629 /*
630 * kd->argbuf : used to pull in pages from the target process.
631 * the strings are copied out of here.
632 */
633 if (kd->argbuf == 0) {
634 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
635 if (kd->argbuf == 0)
636 return (0);
637 }
638
639 /* Pull in the target process'es argv vector */
640 cc = sizeof(char *) * narg;
641 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
642 return (0);
643 /*
644 * ap : saved start address of string we're working on in kd->argspc
645 * np : pointer to next place to write in kd->argspc
646 * len: length of data in kd->argspc
647 * argv: pointer to the argv vector that we are hunting around the
648 * target process space for, and converting to addresses in
649 * our address space (kd->argspc).
650 */
651 ap = np = kd->argspc;
652 argv = kd->argv;
653 len = 0;
654 /*
655 * Loop over pages, filling in the argument vector.
656 * Note that the argv strings could be pointing *anywhere* in
657 * the user address space and are no longer contiguous.
658 * Note that *argv is modified when we are going to fetch a string
659 * that crosses a page boundary. We copy the next part of the string
660 * into to "np" and eventually convert the pointer.
661 */
662 while (argv < kd->argv + narg && *argv != 0) {
663
664 /* get the address that the current argv string is on */
665 addr = (u_long)*argv & ~(PAGE_SIZE - 1);
666
667 /* is it the same page as the last one? */
668 if (addr != oaddr) {
669 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
670 PAGE_SIZE)
671 return (0);
672 oaddr = addr;
673 }
674
675 /* offset within the page... kd->argbuf */
676 addr = (u_long)*argv & (PAGE_SIZE - 1);
677
678 /* cp = start of string, cc = count of chars in this chunk */
679 cp = kd->argbuf + addr;
680 cc = PAGE_SIZE - addr;
681
682 /* dont get more than asked for by user process */
683 if (maxcnt > 0 && cc > maxcnt - len)
684 cc = maxcnt - len;
685
686 /* pointer to end of string if we found it in this page */
687 ep = memchr(cp, '\0', cc);
688 if (ep != 0)
689 cc = ep - cp + 1;
690 /*
691 * at this point, cc is the count of the chars that we are
692 * going to retrieve this time. we may or may not have found
693 * the end of it. (ep points to the null if the end is known)
694 */
695
696 /* will we exceed the malloc/realloced buffer? */
697 if (len + cc > kd->arglen) {
698 int off;
699 char **pp;
700 char *op = kd->argspc;
701
702 kd->arglen *= 2;
703 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
704 kd->arglen);
705 if (kd->argspc == 0)
706 return (0);
707 /*
708 * Adjust argv pointers in case realloc moved
709 * the string space.
710 */
711 off = kd->argspc - op;
712 for (pp = kd->argv; pp < argv; pp++)
713 *pp += off;
714 ap += off;
715 np += off;
716 }
717 /* np = where to put the next part of the string in kd->argspc*/
718 /* np is kinda redundant.. could use "kd->argspc + len" */
719 memcpy(np, cp, cc);
720 np += cc; /* inc counters */
721 len += cc;
722
723 /*
724 * if end of string found, set the *argv pointer to the
725 * saved beginning of string, and advance. argv points to
726 * somewhere in kd->argv.. This is initially relative
727 * to the target process, but when we close it off, we set
728 * it to point in our address space.
729 */
730 if (ep != 0) {
731 *argv++ = ap;
732 ap = np;
733 } else {
734 /* update the address relative to the target process */
735 *argv += cc;
736 }
737
738 if (maxcnt > 0 && len >= maxcnt) {
739 /*
740 * We're stopping prematurely. Terminate the
741 * current string.
742 */
743 if (ep == 0) {
744 *np = '\0';
745 *argv++ = ap;
746 }
747 break;
748 }
749 }
750 /* Make sure argv is terminated. */
751 *argv = 0;
752 return (kd->argv);
753}
754
755static void
756ps_str_a(p, addr, n)
757 struct ps_strings *p;
758 u_long *addr;
759 int *n;
760{
761 *addr = (u_long)p->ps_argvstr;
762 *n = p->ps_nargvstr;
763}
764
765static void
766ps_str_e(p, addr, n)
767 struct ps_strings *p;
768 u_long *addr;
769 int *n;
770{
771 *addr = (u_long)p->ps_envstr;
772 *n = p->ps_nenvstr;
773}
774
775/*
776 * Determine if the proc indicated by p is still active.
777 * This test is not 100% foolproof in theory, but chances of
778 * being wrong are very low.
779 */
780static int
781proc_verify(curkp)
782 struct kinfo_proc *curkp;
783{
784 struct kinfo_proc newkp;
785 int mib[4];
786 size_t len;
787
788 mib[0] = CTL_KERN;
789 mib[1] = KERN_PROC;
790 mib[2] = KERN_PROC_PID;
791 mib[3] = curkp->ki_pid;
792 len = sizeof(newkp);
793 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
794 return (0);
795 return (curkp->ki_pid == newkp.ki_pid &&
796 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
797}
798
799static char **
800kvm_doargv(kd, kp, nchr, info)
801 kvm_t *kd;
802 struct kinfo_proc *kp;
803 int nchr;
804 void (*info)(struct ps_strings *, u_long *, int *);
805{
806 char **ap;
807 u_long addr;
808 int cnt;
809 static struct ps_strings arginfo;
810 static u_long ps_strings;
811 size_t len;
812
813 if (ps_strings == 0) {
814 len = sizeof(ps_strings);
815 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
816 0) == -1)
817 ps_strings = PS_STRINGS;
818 }
819
820 /*
821 * Pointers are stored at the top of the user stack.
822 */
823 if (kp->ki_stat == SZOMB ||
824 kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
825 sizeof(arginfo)) != sizeof(arginfo))
826 return (0);
827
828 (*info)(&arginfo, &addr, &cnt);
829 if (cnt == 0)
830 return (0);
831 ap = kvm_argv(kd, kp, addr, cnt, nchr);
832 /*
833 * For live kernels, make sure this process didn't go away.
834 */
835 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
836 ap = 0;
837 return (ap);
838}
839
840/*
841 * Get the command args. This code is now machine independent.
842 */
843char **
844kvm_getargv(kd, kp, nchr)
845 kvm_t *kd;
846 const struct kinfo_proc *kp;
847 int nchr;
848{
849 int oid[4];
850 int i;
851 size_t bufsz;
852 static unsigned long buflen;
853 static char *buf, *p;
854 static char **bufp;
855 static int argc;
856
857 if (!ISALIVE(kd)) {
858 _kvm_err(kd, kd->program,
859 "cannot read user space from dead kernel");
860 return (0);
861 }
862
863 if (!buflen) {
864 bufsz = sizeof(buflen);
865 i = sysctlbyname("kern.ps_arg_cache_limit",
866 &buflen, &bufsz, NULL, 0);
867 if (i == -1) {
868 buflen = 0;
869 } else {
870 buf = malloc(buflen);
871 if (buf == NULL)
872 buflen = 0;
873 argc = 32;
874 bufp = malloc(sizeof(char *) * argc);
875 }
876 }
877 if (buf != NULL) {
878 oid[0] = CTL_KERN;
879 oid[1] = KERN_PROC;
880 oid[2] = KERN_PROC_ARGS;
881 oid[3] = kp->ki_pid;
882 bufsz = buflen;
883 i = sysctl(oid, 4, buf, &bufsz, 0, 0);
884 if (i == 0 && bufsz > 0) {
885 i = 0;
886 p = buf;
887 do {
888 bufp[i++] = p;
889 p += strlen(p) + 1;
890 if (i >= argc) {
891 argc += argc;
892 bufp = realloc(bufp,
893 sizeof(char *) * argc);
894 }
895 } while (p < buf + bufsz);
896 bufp[i++] = 0;
897 return (bufp);
898 }
899 }
900 if (kp->ki_flag & P_SYSTEM)
901 return (NULL);
902 return (kvm_doargv(kd, kp, nchr, ps_str_a));
903}
904
905char **
906kvm_getenvv(kd, kp, nchr)
907 kvm_t *kd;
908 const struct kinfo_proc *kp;
909 int nchr;
910{
911 return (kvm_doargv(kd, kp, nchr, ps_str_e));
912}
913
914/*
915 * Read from user space. The user context is given by p.
916 */
917ssize_t
918kvm_uread(kd, kp, uva, buf, len)
919 kvm_t *kd;
920 struct kinfo_proc *kp;
921 u_long uva;
922 char *buf;
923 size_t len;
924{
925 char *cp;
926 char procfile[MAXPATHLEN];
927 ssize_t amount;
928 int fd;
929
930 if (!ISALIVE(kd)) {
931 _kvm_err(kd, kd->program,
932 "cannot read user space from dead kernel");
933 return (0);
934 }
935
936 sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
937 fd = open(procfile, O_RDONLY, 0);
938 if (fd < 0) {
939 _kvm_err(kd, kd->program, "cannot open %s", procfile);
940 close(fd);
941 return (0);
942 }
943
944 cp = buf;
945 while (len > 0) {
946 errno = 0;
947 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
948 _kvm_err(kd, kd->program, "invalid address (%x) in %s",
949 uva, procfile);
950 break;
951 }
952 amount = read(fd, cp, len);
953 if (amount < 0) {
954 _kvm_syserr(kd, kd->program, "error reading %s",
955 procfile);
956 break;
957 }
958 if (amount == 0) {
959 _kvm_err(kd, kd->program, "EOF reading %s", procfile);
960 break;
961 }
962 cp += amount;
963 uva += amount;
964 len -= amount;
965 }
966
967 close(fd);
968 return ((ssize_t)(cp - buf));
969}
255 if (tty.t_pgrp != NULL) {
256 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
257 _kvm_err(kd, kd->program,
258 "can't read tpgrp at %x",
259 tty.t_pgrp);
260 return (-1);
261 }
262 kp->ki_tpgid = pgrp.pg_id;
263 } else
264 kp->ki_tpgid = -1;
265 if (tty.t_session != NULL) {
266 if (KREAD(kd, (u_long)tty.t_session, &sess)) {
267 _kvm_err(kd, kd->program,
268 "can't read session at %x",
269 tty.t_session);
270 return (-1);
271 }
272 kp->ki_tsid = sess.s_sid;
273 }
274 } else {
275nopgrp:
276 kp->ki_tdev = NODEV;
277 }
278 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
279 (void)kvm_read(kd, (u_long)mtd.td_wmesg,
280 kp->ki_wmesg, WMESGLEN);
281
282#ifdef sparc
283 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
284 (char *)&kp->ki_rssize,
285 sizeof(kp->ki_rssize));
286 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
287 (char *)&kp->ki_tsize,
288 3 * sizeof(kp->ki_rssize)); /* XXX */
289#else
290 (void)kvm_read(kd, (u_long)proc.p_vmspace,
291 (char *)&vmspace, sizeof(vmspace));
292 kp->ki_size = vmspace.vm_map.size;
293 kp->ki_rssize = vmspace.vm_swrss; /* XXX */
294 kp->ki_swrss = vmspace.vm_swrss;
295 kp->ki_tsize = vmspace.vm_tsize;
296 kp->ki_dsize = vmspace.vm_dsize;
297 kp->ki_ssize = vmspace.vm_ssize;
298#endif
299
300 switch (what & ~KERN_PROC_INC_THREAD) {
301
302 case KERN_PROC_PGRP:
303 if (kp->ki_pgid != (pid_t)arg)
304 continue;
305 break;
306
307 case KERN_PROC_TTY:
308 if ((proc.p_flag & P_CONTROLT) == 0 ||
309 kp->ki_tdev != (dev_t)arg)
310 continue;
311 break;
312 }
313 if (proc.p_comm[0] != 0) {
314 strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
315 kp->ki_comm[MAXCOMLEN] = 0;
316 }
317 if ((proc.p_state != PRS_ZOMBIE) &&
318 (mtd.td_blocked != 0)) {
319 kp->ki_kiflag |= KI_LOCKBLOCK;
320 if (mtd.td_lockname)
321 (void)kvm_read(kd,
322 (u_long)mtd.td_lockname,
323 kp->ki_lockname, LOCKNAMELEN);
324 kp->ki_lockname[LOCKNAMELEN] = 0;
325 }
326 bintime2timeval(&proc.p_runtime, &tv);
327 kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
328 kp->ki_pid = proc.p_pid;
329 kp->ki_siglist = proc.p_siglist;
330 SIGSETOR(kp->ki_siglist, mtd.td_siglist);
331 kp->ki_sigmask = mtd.td_sigmask;
332 kp->ki_xstat = proc.p_xstat;
333 kp->ki_acflag = proc.p_acflag;
334 kp->ki_lock = proc.p_lock;
335 if (proc.p_state != PRS_ZOMBIE) {
336 kp->ki_swtime = proc.p_swtime;
337 kp->ki_flag = proc.p_flag;
338 kp->ki_sflag = proc.p_sflag;
339 kp->ki_nice = proc.p_nice;
340 kp->ki_traceflag = proc.p_traceflag;
341 if (proc.p_state == PRS_NORMAL) {
342 if (TD_ON_RUNQ(&mtd) ||
343 TD_CAN_RUN(&mtd) ||
344 TD_IS_RUNNING(&mtd)) {
345 kp->ki_stat = SRUN;
346 } else if (mtd.td_state ==
347 TDS_INHIBITED) {
348 if (P_SHOULDSTOP(&proc)) {
349 kp->ki_stat = SSTOP;
350 } else if (
351 TD_IS_SLEEPING(&mtd)) {
352 kp->ki_stat = SSLEEP;
353 } else if (TD_ON_LOCK(&mtd)) {
354 kp->ki_stat = SLOCK;
355 } else {
356 kp->ki_stat = SWAIT;
357 }
358 }
359 } else {
360 kp->ki_stat = SIDL;
361 }
362 /* Stuff from the thread */
363 kp->ki_pri.pri_level = mtd.td_priority;
364 kp->ki_pri.pri_native = mtd.td_base_pri;
365 kp->ki_lastcpu = mtd.td_lastcpu;
366 kp->ki_wchan = mtd.td_wchan;
367 kp->ki_oncpu = mtd.td_oncpu;
368
369 if (!(proc.p_flag & P_SA)) {
370 /* stuff from the ksegrp */
371 kp->ki_slptime = mkg.kg_slptime;
372 kp->ki_pri.pri_class = mkg.kg_pri_class;
373 kp->ki_pri.pri_user = mkg.kg_user_pri;
374 kp->ki_estcpu = mkg.kg_estcpu;
375
376 /* Stuff from the kse */
377 kp->ki_pctcpu = mke.ke_pctcpu;
378 kp->ki_rqindex = mke.ke_rqindex;
379 } else {
380 kp->ki_tdflags = -1;
381 /* All the rest are 0 for now */
382 }
383 } else {
384 kp->ki_stat = SZOMB;
385 }
386 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
387 ++bp;
388 ++cnt;
389 }
390 return (cnt);
391}
392
393/*
394 * Build proc info array by reading in proc list from a crash dump.
395 * Return number of procs read. maxcnt is the max we will read.
396 */
397static int
398kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
399 kvm_t *kd;
400 int what, arg;
401 u_long a_allproc;
402 u_long a_zombproc;
403 int maxcnt;
404{
405 struct kinfo_proc *bp = kd->procbase;
406 int acnt, zcnt;
407 struct proc *p;
408
409 if (KREAD(kd, a_allproc, &p)) {
410 _kvm_err(kd, kd->program, "cannot read allproc");
411 return (-1);
412 }
413 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
414 if (acnt < 0)
415 return (acnt);
416
417 if (KREAD(kd, a_zombproc, &p)) {
418 _kvm_err(kd, kd->program, "cannot read zombproc");
419 return (-1);
420 }
421 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
422 if (zcnt < 0)
423 zcnt = 0;
424
425 return (acnt + zcnt);
426}
427
428struct kinfo_proc *
429kvm_getprocs(kd, op, arg, cnt)
430 kvm_t *kd;
431 int op, arg;
432 int *cnt;
433{
434 int mib[4], st, nprocs;
435 size_t size;
436 int temp_op;
437
438 if (kd->procbase != 0) {
439 free((void *)kd->procbase);
440 /*
441 * Clear this pointer in case this call fails. Otherwise,
442 * kvm_close() will free it again.
443 */
444 kd->procbase = 0;
445 }
446 if (ISALIVE(kd)) {
447 size = 0;
448 mib[0] = CTL_KERN;
449 mib[1] = KERN_PROC;
450 mib[2] = op;
451 mib[3] = arg;
452 temp_op = op & ~KERN_PROC_INC_THREAD;
453 st = sysctl(mib,
454 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
455 3 : 4, NULL, &size, NULL, 0);
456 if (st == -1) {
457 _kvm_syserr(kd, kd->program, "kvm_getprocs");
458 return (0);
459 }
460 /*
461 * We can't continue with a size of 0 because we pass
462 * it to realloc() (via _kvm_realloc()), and passing 0
463 * to realloc() results in undefined behavior.
464 */
465 if (size == 0) {
466 /*
467 * XXX: We should probably return an invalid,
468 * but non-NULL, pointer here so any client
469 * program trying to dereference it will
470 * crash. However, _kvm_freeprocs() calls
471 * free() on kd->procbase if it isn't NULL,
472 * and free()'ing a junk pointer isn't good.
473 * Then again, _kvm_freeprocs() isn't used
474 * anywhere . . .
475 */
476 kd->procbase = _kvm_malloc(kd, 1);
477 goto liveout;
478 }
479 do {
480 size += size / 10;
481 kd->procbase = (struct kinfo_proc *)
482 _kvm_realloc(kd, kd->procbase, size);
483 if (kd->procbase == 0)
484 return (0);
485 st = sysctl(mib, temp_op == KERN_PROC_ALL ||
486 temp_op == KERN_PROC_PROC ? 3 : 4,
487 kd->procbase, &size, NULL, 0);
488 } while (st == -1 && errno == ENOMEM);
489 if (st == -1) {
490 _kvm_syserr(kd, kd->program, "kvm_getprocs");
491 return (0);
492 }
493 /*
494 * We have to check the size again because sysctl()
495 * may "round up" oldlenp if oldp is NULL; hence it
496 * might've told us that there was data to get when
497 * there really isn't any.
498 */
499 if (size > 0 &&
500 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
501 _kvm_err(kd, kd->program,
502 "kinfo_proc size mismatch (expected %d, got %d)",
503 sizeof(struct kinfo_proc),
504 kd->procbase->ki_structsize);
505 return (0);
506 }
507liveout:
508 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
509 } else {
510 struct nlist nl[4], *p;
511
512 nl[0].n_name = "_nprocs";
513 nl[1].n_name = "_allproc";
514 nl[2].n_name = "_zombproc";
515 nl[3].n_name = 0;
516
517 if (kvm_nlist(kd, nl) != 0) {
518 for (p = nl; p->n_type != 0; ++p)
519 ;
520 _kvm_err(kd, kd->program,
521 "%s: no such symbol", p->n_name);
522 return (0);
523 }
524 if (KREAD(kd, nl[0].n_value, &nprocs)) {
525 _kvm_err(kd, kd->program, "can't read nprocs");
526 return (0);
527 }
528 size = nprocs * sizeof(struct kinfo_proc);
529 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
530 if (kd->procbase == 0)
531 return (0);
532
533 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
534 nl[2].n_value, nprocs);
535#ifdef notdef
536 size = nprocs * sizeof(struct kinfo_proc);
537 (void)realloc(kd->procbase, size);
538#endif
539 }
540 *cnt = nprocs;
541 return (kd->procbase);
542}
543
544void
545_kvm_freeprocs(kd)
546 kvm_t *kd;
547{
548 if (kd->procbase) {
549 free(kd->procbase);
550 kd->procbase = 0;
551 }
552}
553
554void *
555_kvm_realloc(kd, p, n)
556 kvm_t *kd;
557 void *p;
558 size_t n;
559{
560 void *np = (void *)realloc(p, n);
561
562 if (np == 0) {
563 free(p);
564 _kvm_err(kd, kd->program, "out of memory");
565 }
566 return (np);
567}
568
569#ifndef MAX
570#define MAX(a, b) ((a) > (b) ? (a) : (b))
571#endif
572
573/*
574 * Read in an argument vector from the user address space of process kp.
575 * addr if the user-space base address of narg null-terminated contiguous
576 * strings. This is used to read in both the command arguments and
577 * environment strings. Read at most maxcnt characters of strings.
578 */
579static char **
580kvm_argv(kd, kp, addr, narg, maxcnt)
581 kvm_t *kd;
582 struct kinfo_proc *kp;
583 u_long addr;
584 int narg;
585 int maxcnt;
586{
587 char *np, *cp, *ep, *ap;
588 u_long oaddr = -1;
589 int len, cc;
590 char **argv;
591
592 /*
593 * Check that there aren't an unreasonable number of agruments,
594 * and that the address is in user space.
595 */
596 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
597 return (0);
598
599 /*
600 * kd->argv : work space for fetching the strings from the target
601 * process's space, and is converted for returning to caller
602 */
603 if (kd->argv == 0) {
604 /*
605 * Try to avoid reallocs.
606 */
607 kd->argc = MAX(narg + 1, 32);
608 kd->argv = (char **)_kvm_malloc(kd, kd->argc *
609 sizeof(*kd->argv));
610 if (kd->argv == 0)
611 return (0);
612 } else if (narg + 1 > kd->argc) {
613 kd->argc = MAX(2 * kd->argc, narg + 1);
614 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
615 sizeof(*kd->argv));
616 if (kd->argv == 0)
617 return (0);
618 }
619 /*
620 * kd->argspc : returned to user, this is where the kd->argv
621 * arrays are left pointing to the collected strings.
622 */
623 if (kd->argspc == 0) {
624 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
625 if (kd->argspc == 0)
626 return (0);
627 kd->arglen = PAGE_SIZE;
628 }
629 /*
630 * kd->argbuf : used to pull in pages from the target process.
631 * the strings are copied out of here.
632 */
633 if (kd->argbuf == 0) {
634 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
635 if (kd->argbuf == 0)
636 return (0);
637 }
638
639 /* Pull in the target process'es argv vector */
640 cc = sizeof(char *) * narg;
641 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
642 return (0);
643 /*
644 * ap : saved start address of string we're working on in kd->argspc
645 * np : pointer to next place to write in kd->argspc
646 * len: length of data in kd->argspc
647 * argv: pointer to the argv vector that we are hunting around the
648 * target process space for, and converting to addresses in
649 * our address space (kd->argspc).
650 */
651 ap = np = kd->argspc;
652 argv = kd->argv;
653 len = 0;
654 /*
655 * Loop over pages, filling in the argument vector.
656 * Note that the argv strings could be pointing *anywhere* in
657 * the user address space and are no longer contiguous.
658 * Note that *argv is modified when we are going to fetch a string
659 * that crosses a page boundary. We copy the next part of the string
660 * into to "np" and eventually convert the pointer.
661 */
662 while (argv < kd->argv + narg && *argv != 0) {
663
664 /* get the address that the current argv string is on */
665 addr = (u_long)*argv & ~(PAGE_SIZE - 1);
666
667 /* is it the same page as the last one? */
668 if (addr != oaddr) {
669 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
670 PAGE_SIZE)
671 return (0);
672 oaddr = addr;
673 }
674
675 /* offset within the page... kd->argbuf */
676 addr = (u_long)*argv & (PAGE_SIZE - 1);
677
678 /* cp = start of string, cc = count of chars in this chunk */
679 cp = kd->argbuf + addr;
680 cc = PAGE_SIZE - addr;
681
682 /* dont get more than asked for by user process */
683 if (maxcnt > 0 && cc > maxcnt - len)
684 cc = maxcnt - len;
685
686 /* pointer to end of string if we found it in this page */
687 ep = memchr(cp, '\0', cc);
688 if (ep != 0)
689 cc = ep - cp + 1;
690 /*
691 * at this point, cc is the count of the chars that we are
692 * going to retrieve this time. we may or may not have found
693 * the end of it. (ep points to the null if the end is known)
694 */
695
696 /* will we exceed the malloc/realloced buffer? */
697 if (len + cc > kd->arglen) {
698 int off;
699 char **pp;
700 char *op = kd->argspc;
701
702 kd->arglen *= 2;
703 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
704 kd->arglen);
705 if (kd->argspc == 0)
706 return (0);
707 /*
708 * Adjust argv pointers in case realloc moved
709 * the string space.
710 */
711 off = kd->argspc - op;
712 for (pp = kd->argv; pp < argv; pp++)
713 *pp += off;
714 ap += off;
715 np += off;
716 }
717 /* np = where to put the next part of the string in kd->argspc*/
718 /* np is kinda redundant.. could use "kd->argspc + len" */
719 memcpy(np, cp, cc);
720 np += cc; /* inc counters */
721 len += cc;
722
723 /*
724 * if end of string found, set the *argv pointer to the
725 * saved beginning of string, and advance. argv points to
726 * somewhere in kd->argv.. This is initially relative
727 * to the target process, but when we close it off, we set
728 * it to point in our address space.
729 */
730 if (ep != 0) {
731 *argv++ = ap;
732 ap = np;
733 } else {
734 /* update the address relative to the target process */
735 *argv += cc;
736 }
737
738 if (maxcnt > 0 && len >= maxcnt) {
739 /*
740 * We're stopping prematurely. Terminate the
741 * current string.
742 */
743 if (ep == 0) {
744 *np = '\0';
745 *argv++ = ap;
746 }
747 break;
748 }
749 }
750 /* Make sure argv is terminated. */
751 *argv = 0;
752 return (kd->argv);
753}
754
755static void
756ps_str_a(p, addr, n)
757 struct ps_strings *p;
758 u_long *addr;
759 int *n;
760{
761 *addr = (u_long)p->ps_argvstr;
762 *n = p->ps_nargvstr;
763}
764
765static void
766ps_str_e(p, addr, n)
767 struct ps_strings *p;
768 u_long *addr;
769 int *n;
770{
771 *addr = (u_long)p->ps_envstr;
772 *n = p->ps_nenvstr;
773}
774
775/*
776 * Determine if the proc indicated by p is still active.
777 * This test is not 100% foolproof in theory, but chances of
778 * being wrong are very low.
779 */
780static int
781proc_verify(curkp)
782 struct kinfo_proc *curkp;
783{
784 struct kinfo_proc newkp;
785 int mib[4];
786 size_t len;
787
788 mib[0] = CTL_KERN;
789 mib[1] = KERN_PROC;
790 mib[2] = KERN_PROC_PID;
791 mib[3] = curkp->ki_pid;
792 len = sizeof(newkp);
793 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
794 return (0);
795 return (curkp->ki_pid == newkp.ki_pid &&
796 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
797}
798
799static char **
800kvm_doargv(kd, kp, nchr, info)
801 kvm_t *kd;
802 struct kinfo_proc *kp;
803 int nchr;
804 void (*info)(struct ps_strings *, u_long *, int *);
805{
806 char **ap;
807 u_long addr;
808 int cnt;
809 static struct ps_strings arginfo;
810 static u_long ps_strings;
811 size_t len;
812
813 if (ps_strings == 0) {
814 len = sizeof(ps_strings);
815 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
816 0) == -1)
817 ps_strings = PS_STRINGS;
818 }
819
820 /*
821 * Pointers are stored at the top of the user stack.
822 */
823 if (kp->ki_stat == SZOMB ||
824 kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
825 sizeof(arginfo)) != sizeof(arginfo))
826 return (0);
827
828 (*info)(&arginfo, &addr, &cnt);
829 if (cnt == 0)
830 return (0);
831 ap = kvm_argv(kd, kp, addr, cnt, nchr);
832 /*
833 * For live kernels, make sure this process didn't go away.
834 */
835 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
836 ap = 0;
837 return (ap);
838}
839
840/*
841 * Get the command args. This code is now machine independent.
842 */
843char **
844kvm_getargv(kd, kp, nchr)
845 kvm_t *kd;
846 const struct kinfo_proc *kp;
847 int nchr;
848{
849 int oid[4];
850 int i;
851 size_t bufsz;
852 static unsigned long buflen;
853 static char *buf, *p;
854 static char **bufp;
855 static int argc;
856
857 if (!ISALIVE(kd)) {
858 _kvm_err(kd, kd->program,
859 "cannot read user space from dead kernel");
860 return (0);
861 }
862
863 if (!buflen) {
864 bufsz = sizeof(buflen);
865 i = sysctlbyname("kern.ps_arg_cache_limit",
866 &buflen, &bufsz, NULL, 0);
867 if (i == -1) {
868 buflen = 0;
869 } else {
870 buf = malloc(buflen);
871 if (buf == NULL)
872 buflen = 0;
873 argc = 32;
874 bufp = malloc(sizeof(char *) * argc);
875 }
876 }
877 if (buf != NULL) {
878 oid[0] = CTL_KERN;
879 oid[1] = KERN_PROC;
880 oid[2] = KERN_PROC_ARGS;
881 oid[3] = kp->ki_pid;
882 bufsz = buflen;
883 i = sysctl(oid, 4, buf, &bufsz, 0, 0);
884 if (i == 0 && bufsz > 0) {
885 i = 0;
886 p = buf;
887 do {
888 bufp[i++] = p;
889 p += strlen(p) + 1;
890 if (i >= argc) {
891 argc += argc;
892 bufp = realloc(bufp,
893 sizeof(char *) * argc);
894 }
895 } while (p < buf + bufsz);
896 bufp[i++] = 0;
897 return (bufp);
898 }
899 }
900 if (kp->ki_flag & P_SYSTEM)
901 return (NULL);
902 return (kvm_doargv(kd, kp, nchr, ps_str_a));
903}
904
905char **
906kvm_getenvv(kd, kp, nchr)
907 kvm_t *kd;
908 const struct kinfo_proc *kp;
909 int nchr;
910{
911 return (kvm_doargv(kd, kp, nchr, ps_str_e));
912}
913
914/*
915 * Read from user space. The user context is given by p.
916 */
917ssize_t
918kvm_uread(kd, kp, uva, buf, len)
919 kvm_t *kd;
920 struct kinfo_proc *kp;
921 u_long uva;
922 char *buf;
923 size_t len;
924{
925 char *cp;
926 char procfile[MAXPATHLEN];
927 ssize_t amount;
928 int fd;
929
930 if (!ISALIVE(kd)) {
931 _kvm_err(kd, kd->program,
932 "cannot read user space from dead kernel");
933 return (0);
934 }
935
936 sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
937 fd = open(procfile, O_RDONLY, 0);
938 if (fd < 0) {
939 _kvm_err(kd, kd->program, "cannot open %s", procfile);
940 close(fd);
941 return (0);
942 }
943
944 cp = buf;
945 while (len > 0) {
946 errno = 0;
947 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
948 _kvm_err(kd, kd->program, "invalid address (%x) in %s",
949 uva, procfile);
950 break;
951 }
952 amount = read(fd, cp, len);
953 if (amount < 0) {
954 _kvm_syserr(kd, kd->program, "error reading %s",
955 procfile);
956 break;
957 }
958 if (amount == 0) {
959 _kvm_err(kd, kd->program, "EOF reading %s", procfile);
960 break;
961 }
962 cp += amount;
963 uva += amount;
964 len -= amount;
965 }
966
967 close(fd);
968 return ((ssize_t)(cp - buf));
969}