Deleted Added
full compact
fpu_explode.c (92986) fpu_explode.c (95587)
1/*
2 * Copyright (c) 1992, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This software was developed by the Computer Systems Engineering group
6 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7 * contributed to Berkeley.
8 *
9 * All advertising materials mentioning features or use of this software
10 * must display the following acknowledgement:
11 * This product includes software developed by the University of
12 * California, Lawrence Berkeley Laboratory.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 * @(#)fpu_explode.c 8.1 (Berkeley) 6/11/93
43 * $NetBSD: fpu_explode.c,v 1.5 2000/08/03 18:32:08 eeh Exp $
44 */
45
46#include <sys/cdefs.h>
1/*
2 * Copyright (c) 1992, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This software was developed by the Computer Systems Engineering group
6 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7 * contributed to Berkeley.
8 *
9 * All advertising materials mentioning features or use of this software
10 * must display the following acknowledgement:
11 * This product includes software developed by the University of
12 * California, Lawrence Berkeley Laboratory.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 * must display the following acknowledgement:
24 * This product includes software developed by the University of
25 * California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 * may be used to endorse or promote products derived from this software
28 * without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 * @(#)fpu_explode.c 8.1 (Berkeley) 6/11/93
43 * $NetBSD: fpu_explode.c,v 1.5 2000/08/03 18:32:08 eeh Exp $
44 */
45
46#include <sys/cdefs.h>
47__FBSDID("$FreeBSD: head/lib/libc/sparc64/fpu/fpu_explode.c 92986 2002-03-22 21:53:29Z obrien $");
47__FBSDID("$FreeBSD: head/lib/libc/sparc64/fpu/fpu_explode.c 95587 2002-04-27 21:56:28Z jake $");
48
49/*
50 * FPU subroutines: `explode' the machine's `packed binary' format numbers
51 * into our internal format.
52 */
53
54#include <sys/param.h>
55
56#include <machine/frame.h>
57#include <machine/fp.h>
58#include <machine/fsr.h>
59#include <machine/ieee.h>
60#include <machine/instr.h>
61
62#include "fpu_arith.h"
63#include "fpu_emu.h"
64#include "fpu_extern.h"
48
49/*
50 * FPU subroutines: `explode' the machine's `packed binary' format numbers
51 * into our internal format.
52 */
53
54#include <sys/param.h>
55
56#include <machine/frame.h>
57#include <machine/fp.h>
58#include <machine/fsr.h>
59#include <machine/ieee.h>
60#include <machine/instr.h>
61
62#include "fpu_arith.h"
63#include "fpu_emu.h"
64#include "fpu_extern.h"
65#include "__sparc_utrap_private.h"
65
66/*
67 * N.B.: in all of the following, we assume the FP format is
68 *
69 * ---------------------------
70 * | s | exponent | fraction |
71 * ---------------------------
72 *
73 * (which represents -1**s * 1.fraction * 2**exponent), so that the
74 * sign bit is way at the top (bit 31), the exponent is next, and
75 * then the remaining bits mark the fraction. A zero exponent means
76 * zero or denormalized (0.fraction rather than 1.fraction), and the
77 * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
78 *
79 * Since the sign bit is always the topmost bit---this holds even for
80 * integers---we set that outside all the *tof functions. Each function
81 * returns the class code for the new number (but note that we use
82 * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
83 */
84
85/*
86 * int -> fpn.
87 */
88int
89__fpu_itof(fp, i)
90 struct fpn *fp;
91 u_int i;
92{
93
94 if (i == 0)
95 return (FPC_ZERO);
96 /*
97 * The value FP_1 represents 2^FP_LG, so set the exponent
98 * there and let normalization fix it up. Convert negative
99 * numbers to sign-and-magnitude. Note that this relies on
100 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
101 */
102 fp->fp_exp = FP_LG;
103 fp->fp_mant[0] = (int)i < 0 ? -i : i;
104 fp->fp_mant[1] = 0;
105 fp->fp_mant[2] = 0;
106 fp->fp_mant[3] = 0;
107 __fpu_norm(fp);
108 return (FPC_NUM);
109}
110
111/*
112 * 64-bit int -> fpn.
113 */
114int
115__fpu_xtof(fp, i)
116 struct fpn *fp;
117 u_int64_t i;
118{
119
120 if (i == 0)
121 return (FPC_ZERO);
122 /*
123 * The value FP_1 represents 2^FP_LG, so set the exponent
124 * there and let normalization fix it up. Convert negative
125 * numbers to sign-and-magnitude. Note that this relies on
126 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
127 */
128 fp->fp_exp = FP_LG2;
129 *((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
130 fp->fp_mant[2] = 0;
131 fp->fp_mant[3] = 0;
132 __fpu_norm(fp);
133 return (FPC_NUM);
134}
135
136#define mask(nbits) ((1L << (nbits)) - 1)
137
138/*
139 * All external floating formats convert to internal in the same manner,
140 * as defined here. Note that only normals get an implied 1.0 inserted.
141 */
142#define FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
143 if (exp == 0) { \
144 if (allfrac == 0) \
145 return (FPC_ZERO); \
146 fp->fp_exp = 1 - expbias; \
147 fp->fp_mant[0] = f0; \
148 fp->fp_mant[1] = f1; \
149 fp->fp_mant[2] = f2; \
150 fp->fp_mant[3] = f3; \
151 __fpu_norm(fp); \
152 return (FPC_NUM); \
153 } \
154 if (exp == (2 * expbias + 1)) { \
155 if (allfrac == 0) \
156 return (FPC_INF); \
157 fp->fp_mant[0] = f0; \
158 fp->fp_mant[1] = f1; \
159 fp->fp_mant[2] = f2; \
160 fp->fp_mant[3] = f3; \
161 return (FPC_QNAN); \
162 } \
163 fp->fp_exp = exp - expbias; \
164 fp->fp_mant[0] = FP_1 | f0; \
165 fp->fp_mant[1] = f1; \
166 fp->fp_mant[2] = f2; \
167 fp->fp_mant[3] = f3; \
168 return (FPC_NUM)
169
170/*
171 * 32-bit single precision -> fpn.
172 * We assume a single occupies at most (64-FP_LG) bits in the internal
173 * format: i.e., needs at most fp_mant[0] and fp_mant[1].
174 */
175int
176__fpu_stof(fp, i)
177 struct fpn *fp;
178 u_int i;
179{
180 int exp;
181 u_int frac, f0, f1;
182#define SNG_SHIFT (SNG_FRACBITS - FP_LG)
183
184 exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
185 frac = i & mask(SNG_FRACBITS);
186 f0 = frac >> SNG_SHIFT;
187 f1 = frac << (32 - SNG_SHIFT);
188 FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
189}
190
191/*
192 * 64-bit double -> fpn.
193 * We assume this uses at most (96-FP_LG) bits.
194 */
195int
196__fpu_dtof(fp, i, j)
197 struct fpn *fp;
198 u_int i, j;
199{
200 int exp;
201 u_int frac, f0, f1, f2;
202#define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
203
204 exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
205 frac = i & mask(DBL_FRACBITS - 32);
206 f0 = frac >> DBL_SHIFT;
207 f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
208 f2 = j << (32 - DBL_SHIFT);
209 frac |= j;
210 FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
211}
212
213/*
214 * 128-bit extended -> fpn.
215 */
216int
217__fpu_qtof(fp, i, j, k, l)
218 struct fpn *fp;
219 u_int i, j, k, l;
220{
221 int exp;
222 u_int frac, f0, f1, f2, f3;
223#define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG)) /* left shift! */
224
225 /*
226 * Note that ext and fpn `line up', hence no shifting needed.
227 */
228 exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
229 frac = i & mask(EXT_FRACBITS - 3 * 32);
230 f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
231 f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
232 f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
233 f3 = l << EXT_SHIFT;
234 frac |= j | k | l;
235 FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
236}
237
238/*
239 * Explode the contents of a / regpair / regquad.
240 * If the input is a signalling NaN, an NV (invalid) exception
241 * will be set. (Note that nothing but NV can occur until ALU
242 * operations are performed.)
243 */
244void
245__fpu_explode(fe, fp, type, reg)
246 struct fpemu *fe;
247 struct fpn *fp;
248 int type, reg;
249{
250 u_int s;
251 u_int64_t l;
252
253 l = __fpu_getreg64(reg & ~1);
254 s = __fpu_getreg(reg);
255 fp->fp_sign = s >> 31;
256 fp->fp_sticky = 0;
257 switch (type) {
258 case FTYPE_LNG:
259 s = __fpu_xtof(fp, l);
260 break;
261
262 case FTYPE_INT:
263 s = __fpu_itof(fp, s);
264 break;
265
266 case FTYPE_SNG:
267 s = __fpu_stof(fp, s);
268 break;
269
270 case FTYPE_DBL:
271 s = __fpu_dtof(fp, s, __fpu_getreg(reg + 1));
272 break;
273
274 case FTYPE_EXT:
275 s = __fpu_qtof(fp, s, __fpu_getreg(reg + 1),
276 __fpu_getreg(reg + 2),
277 __fpu_getreg(reg + 3));
278 break;
279
280 default:
66
67/*
68 * N.B.: in all of the following, we assume the FP format is
69 *
70 * ---------------------------
71 * | s | exponent | fraction |
72 * ---------------------------
73 *
74 * (which represents -1**s * 1.fraction * 2**exponent), so that the
75 * sign bit is way at the top (bit 31), the exponent is next, and
76 * then the remaining bits mark the fraction. A zero exponent means
77 * zero or denormalized (0.fraction rather than 1.fraction), and the
78 * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
79 *
80 * Since the sign bit is always the topmost bit---this holds even for
81 * integers---we set that outside all the *tof functions. Each function
82 * returns the class code for the new number (but note that we use
83 * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
84 */
85
86/*
87 * int -> fpn.
88 */
89int
90__fpu_itof(fp, i)
91 struct fpn *fp;
92 u_int i;
93{
94
95 if (i == 0)
96 return (FPC_ZERO);
97 /*
98 * The value FP_1 represents 2^FP_LG, so set the exponent
99 * there and let normalization fix it up. Convert negative
100 * numbers to sign-and-magnitude. Note that this relies on
101 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
102 */
103 fp->fp_exp = FP_LG;
104 fp->fp_mant[0] = (int)i < 0 ? -i : i;
105 fp->fp_mant[1] = 0;
106 fp->fp_mant[2] = 0;
107 fp->fp_mant[3] = 0;
108 __fpu_norm(fp);
109 return (FPC_NUM);
110}
111
112/*
113 * 64-bit int -> fpn.
114 */
115int
116__fpu_xtof(fp, i)
117 struct fpn *fp;
118 u_int64_t i;
119{
120
121 if (i == 0)
122 return (FPC_ZERO);
123 /*
124 * The value FP_1 represents 2^FP_LG, so set the exponent
125 * there and let normalization fix it up. Convert negative
126 * numbers to sign-and-magnitude. Note that this relies on
127 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
128 */
129 fp->fp_exp = FP_LG2;
130 *((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
131 fp->fp_mant[2] = 0;
132 fp->fp_mant[3] = 0;
133 __fpu_norm(fp);
134 return (FPC_NUM);
135}
136
137#define mask(nbits) ((1L << (nbits)) - 1)
138
139/*
140 * All external floating formats convert to internal in the same manner,
141 * as defined here. Note that only normals get an implied 1.0 inserted.
142 */
143#define FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
144 if (exp == 0) { \
145 if (allfrac == 0) \
146 return (FPC_ZERO); \
147 fp->fp_exp = 1 - expbias; \
148 fp->fp_mant[0] = f0; \
149 fp->fp_mant[1] = f1; \
150 fp->fp_mant[2] = f2; \
151 fp->fp_mant[3] = f3; \
152 __fpu_norm(fp); \
153 return (FPC_NUM); \
154 } \
155 if (exp == (2 * expbias + 1)) { \
156 if (allfrac == 0) \
157 return (FPC_INF); \
158 fp->fp_mant[0] = f0; \
159 fp->fp_mant[1] = f1; \
160 fp->fp_mant[2] = f2; \
161 fp->fp_mant[3] = f3; \
162 return (FPC_QNAN); \
163 } \
164 fp->fp_exp = exp - expbias; \
165 fp->fp_mant[0] = FP_1 | f0; \
166 fp->fp_mant[1] = f1; \
167 fp->fp_mant[2] = f2; \
168 fp->fp_mant[3] = f3; \
169 return (FPC_NUM)
170
171/*
172 * 32-bit single precision -> fpn.
173 * We assume a single occupies at most (64-FP_LG) bits in the internal
174 * format: i.e., needs at most fp_mant[0] and fp_mant[1].
175 */
176int
177__fpu_stof(fp, i)
178 struct fpn *fp;
179 u_int i;
180{
181 int exp;
182 u_int frac, f0, f1;
183#define SNG_SHIFT (SNG_FRACBITS - FP_LG)
184
185 exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
186 frac = i & mask(SNG_FRACBITS);
187 f0 = frac >> SNG_SHIFT;
188 f1 = frac << (32 - SNG_SHIFT);
189 FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
190}
191
192/*
193 * 64-bit double -> fpn.
194 * We assume this uses at most (96-FP_LG) bits.
195 */
196int
197__fpu_dtof(fp, i, j)
198 struct fpn *fp;
199 u_int i, j;
200{
201 int exp;
202 u_int frac, f0, f1, f2;
203#define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
204
205 exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
206 frac = i & mask(DBL_FRACBITS - 32);
207 f0 = frac >> DBL_SHIFT;
208 f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
209 f2 = j << (32 - DBL_SHIFT);
210 frac |= j;
211 FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
212}
213
214/*
215 * 128-bit extended -> fpn.
216 */
217int
218__fpu_qtof(fp, i, j, k, l)
219 struct fpn *fp;
220 u_int i, j, k, l;
221{
222 int exp;
223 u_int frac, f0, f1, f2, f3;
224#define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG)) /* left shift! */
225
226 /*
227 * Note that ext and fpn `line up', hence no shifting needed.
228 */
229 exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
230 frac = i & mask(EXT_FRACBITS - 3 * 32);
231 f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
232 f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
233 f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
234 f3 = l << EXT_SHIFT;
235 frac |= j | k | l;
236 FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
237}
238
239/*
240 * Explode the contents of a / regpair / regquad.
241 * If the input is a signalling NaN, an NV (invalid) exception
242 * will be set. (Note that nothing but NV can occur until ALU
243 * operations are performed.)
244 */
245void
246__fpu_explode(fe, fp, type, reg)
247 struct fpemu *fe;
248 struct fpn *fp;
249 int type, reg;
250{
251 u_int s;
252 u_int64_t l;
253
254 l = __fpu_getreg64(reg & ~1);
255 s = __fpu_getreg(reg);
256 fp->fp_sign = s >> 31;
257 fp->fp_sticky = 0;
258 switch (type) {
259 case FTYPE_LNG:
260 s = __fpu_xtof(fp, l);
261 break;
262
263 case FTYPE_INT:
264 s = __fpu_itof(fp, s);
265 break;
266
267 case FTYPE_SNG:
268 s = __fpu_stof(fp, s);
269 break;
270
271 case FTYPE_DBL:
272 s = __fpu_dtof(fp, s, __fpu_getreg(reg + 1));
273 break;
274
275 case FTYPE_EXT:
276 s = __fpu_qtof(fp, s, __fpu_getreg(reg + 1),
277 __fpu_getreg(reg + 2),
278 __fpu_getreg(reg + 3));
279 break;
280
281 default:
281 __fpu_panic("fpu_explode");
282 __utrap_panic("fpu_explode");
282 }
283
284 if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
285 /*
286 * Input is a signalling NaN. All operations that return
287 * an input NaN operand put it through a ``NaN conversion'',
288 * which basically just means ``turn on the quiet bit''.
289 * We do this here so that all NaNs internally look quiet
290 * (we can tell signalling ones by their class).
291 */
292 fp->fp_mant[0] |= FP_QUIETBIT;
293 fe->fe_cx = FSR_NV; /* assert invalid operand */
294 s = FPC_SNAN;
295 }
296 fp->fp_class = s;
297 DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
298 ((type == FTYPE_INT) ? 'i' :
299 ((type == FTYPE_SNG) ? 's' :
300 ((type == FTYPE_DBL) ? 'd' :
301 ((type == FTYPE_EXT) ? 'q' : '?')))),
302 reg));
303 DUMPFPN(FPE_REG, fp);
304 DPRINTF(FPE_REG, ("\n"));
305}
283 }
284
285 if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
286 /*
287 * Input is a signalling NaN. All operations that return
288 * an input NaN operand put it through a ``NaN conversion'',
289 * which basically just means ``turn on the quiet bit''.
290 * We do this here so that all NaNs internally look quiet
291 * (we can tell signalling ones by their class).
292 */
293 fp->fp_mant[0] |= FP_QUIETBIT;
294 fe->fe_cx = FSR_NV; /* assert invalid operand */
295 s = FPC_SNAN;
296 }
297 fp->fp_class = s;
298 DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
299 ((type == FTYPE_INT) ? 'i' :
300 ((type == FTYPE_SNG) ? 's' :
301 ((type == FTYPE_DBL) ? 'd' :
302 ((type == FTYPE_EXT) ? 'q' : '?')))),
303 reg));
304 DUMPFPN(FPE_REG, fp);
305 DPRINTF(FPE_REG, ("\n"));
306}