Deleted Added
sdiff udiff text old ( 195099 ) new ( 195341 )
full compact
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers. The main entry
11// point is Sema::CheckInitList(), but all of the work is performed
12// within the InitListChecker class.
13//
14// This file also implements Sema::CheckInitializerTypes.
15//
16//===----------------------------------------------------------------------===//
17
18#include "Sema.h"
19#include "clang/Parse/Designator.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprObjC.h"
23#include <map>
24using namespace clang;
25
26//===----------------------------------------------------------------------===//
27// Sema Initialization Checking
28//===----------------------------------------------------------------------===//
29
30static Expr *IsStringInit(Expr *Init, QualType DeclType, ASTContext &Context) {
31 const ArrayType *AT = Context.getAsArrayType(DeclType);
32 if (!AT) return 0;
33
34 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
35 return 0;
36
37 // See if this is a string literal or @encode.
38 Init = Init->IgnoreParens();
39
40 // Handle @encode, which is a narrow string.
41 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
42 return Init;
43
44 // Otherwise we can only handle string literals.
45 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
46 if (SL == 0) return 0;
47
48 QualType ElemTy = Context.getCanonicalType(AT->getElementType());
49 // char array can be initialized with a narrow string.
50 // Only allow char x[] = "foo"; not char x[] = L"foo";
51 if (!SL->isWide())
52 return ElemTy->isCharType() ? Init : 0;
53
54 // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
55 // correction from DR343): "An array with element type compatible with a
56 // qualified or unqualified version of wchar_t may be initialized by a wide
57 // string literal, optionally enclosed in braces."
58 if (Context.typesAreCompatible(Context.getWCharType(),
59 ElemTy.getUnqualifiedType()))
60 return Init;
61
62 return 0;
63}
64
65static bool CheckSingleInitializer(Expr *&Init, QualType DeclType,
66 bool DirectInit, Sema &S) {
67 // Get the type before calling CheckSingleAssignmentConstraints(), since
68 // it can promote the expression.
69 QualType InitType = Init->getType();
70
71 if (S.getLangOptions().CPlusPlus) {
72 // FIXME: I dislike this error message. A lot.
73 if (S.PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
74 return S.Diag(Init->getSourceRange().getBegin(),
75 diag::err_typecheck_convert_incompatible)
76 << DeclType << Init->getType() << "initializing"
77 << Init->getSourceRange();
78 return false;
79 }
80
81 Sema::AssignConvertType ConvTy =
82 S.CheckSingleAssignmentConstraints(DeclType, Init);
83 return S.DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
84 InitType, Init, "initializing");
85}
86
87static void CheckStringInit(Expr *Str, QualType &DeclT, Sema &S) {
88 // Get the length of the string as parsed.
89 uint64_t StrLength =
90 cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
91
92
93 const ArrayType *AT = S.Context.getAsArrayType(DeclT);
94 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
95 // C99 6.7.8p14. We have an array of character type with unknown size
96 // being initialized to a string literal.
97 llvm::APSInt ConstVal(32);
98 ConstVal = StrLength;
99 // Return a new array type (C99 6.7.8p22).
100 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), ConstVal,
101 ArrayType::Normal, 0);
102 return;
103 }
104
105 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
106
107 // C99 6.7.8p14. We have an array of character type with known size. However,
108 // the size may be smaller or larger than the string we are initializing.
109 // FIXME: Avoid truncation for 64-bit length strings.
110 if (StrLength-1 > CAT->getSize().getZExtValue())
111 S.Diag(Str->getSourceRange().getBegin(),
112 diag::warn_initializer_string_for_char_array_too_long)
113 << Str->getSourceRange();
114
115 // Set the type to the actual size that we are initializing. If we have
116 // something like:
117 // char x[1] = "foo";
118 // then this will set the string literal's type to char[1].
119 Str->setType(DeclT);
120}
121
122bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
123 SourceLocation InitLoc,
124 DeclarationName InitEntity, bool DirectInit) {
125 if (DeclType->isDependentType() ||
126 Init->isTypeDependent() || Init->isValueDependent())
127 return false;
128
129 // C++ [dcl.init.ref]p1:
130 // A variable declared to be a T& or T&&, that is "reference to type T"
131 // (8.3.2), shall be initialized by an object, or function, of
132 // type T or by an object that can be converted into a T.
133 if (DeclType->isReferenceType())
134 return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
135
136 // C99 6.7.8p3: The type of the entity to be initialized shall be an array
137 // of unknown size ("[]") or an object type that is not a variable array type.
138 if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
139 return Diag(InitLoc, diag::err_variable_object_no_init)
140 << VAT->getSizeExpr()->getSourceRange();
141
142 InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
143 if (!InitList) {
144 // FIXME: Handle wide strings
145 if (Expr *Str = IsStringInit(Init, DeclType, Context)) {
146 CheckStringInit(Str, DeclType, *this);
147 return false;
148 }
149
150 // C++ [dcl.init]p14:
151 // -- If the destination type is a (possibly cv-qualified) class
152 // type:
153 if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
154 QualType DeclTypeC = Context.getCanonicalType(DeclType);
155 QualType InitTypeC = Context.getCanonicalType(Init->getType());
156
157 // -- If the initialization is direct-initialization, or if it is
158 // copy-initialization where the cv-unqualified version of the
159 // source type is the same class as, or a derived class of, the
160 // class of the destination, constructors are considered.
161 if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
162 IsDerivedFrom(InitTypeC, DeclTypeC)) {
163 const CXXRecordDecl *RD =
164 cast<CXXRecordDecl>(DeclType->getAsRecordType()->getDecl());
165
166 // No need to make a CXXConstructExpr if both the ctor and dtor are
167 // trivial.
168 if (RD->hasTrivialConstructor() && RD->hasTrivialDestructor())
169 return false;
170
171 CXXConstructorDecl *Constructor
172 = PerformInitializationByConstructor(DeclType, &Init, 1,
173 InitLoc, Init->getSourceRange(),
174 InitEntity,
175 DirectInit? IK_Direct : IK_Copy);
176 if (!Constructor)
177 return true;
178
179 Init = CXXConstructExpr::Create(Context, DeclType, Constructor, false,
180 &Init, 1);
181 return false;
182 }
183
184 // -- Otherwise (i.e., for the remaining copy-initialization
185 // cases), user-defined conversion sequences that can
186 // convert from the source type to the destination type or
187 // (when a conversion function is used) to a derived class
188 // thereof are enumerated as described in 13.3.1.4, and the
189 // best one is chosen through overload resolution
190 // (13.3). If the conversion cannot be done or is
191 // ambiguous, the initialization is ill-formed. The
192 // function selected is called with the initializer
193 // expression as its argument; if the function is a
194 // constructor, the call initializes a temporary of the
195 // destination type.
196 // FIXME: We're pretending to do copy elision here; return to this when we
197 // have ASTs for such things.
198 if (!PerformImplicitConversion(Init, DeclType, "initializing"))
199 return false;
200
201 if (InitEntity)
202 return Diag(InitLoc, diag::err_cannot_initialize_decl)
203 << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
204 << Init->getType() << Init->getSourceRange();
205 return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
206 << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
207 << Init->getType() << Init->getSourceRange();
208 }
209
210 // C99 6.7.8p16.
211 if (DeclType->isArrayType())
212 return Diag(Init->getLocStart(), diag::err_array_init_list_required)
213 << Init->getSourceRange();
214
215 return CheckSingleInitializer(Init, DeclType, DirectInit, *this);
216 }
217
218 bool hadError = CheckInitList(InitList, DeclType);
219 Init = InitList;
220 return hadError;
221}
222
223//===----------------------------------------------------------------------===//
224// Semantic checking for initializer lists.
225//===----------------------------------------------------------------------===//
226
227/// @brief Semantic checking for initializer lists.
228///
229/// The InitListChecker class contains a set of routines that each
230/// handle the initialization of a certain kind of entity, e.g.,
231/// arrays, vectors, struct/union types, scalars, etc. The
232/// InitListChecker itself performs a recursive walk of the subobject
233/// structure of the type to be initialized, while stepping through
234/// the initializer list one element at a time. The IList and Index
235/// parameters to each of the Check* routines contain the active
236/// (syntactic) initializer list and the index into that initializer
237/// list that represents the current initializer. Each routine is
238/// responsible for moving that Index forward as it consumes elements.
239///
240/// Each Check* routine also has a StructuredList/StructuredIndex
241/// arguments, which contains the current the "structured" (semantic)
242/// initializer list and the index into that initializer list where we
243/// are copying initializers as we map them over to the semantic
244/// list. Once we have completed our recursive walk of the subobject
245/// structure, we will have constructed a full semantic initializer
246/// list.
247///
248/// C99 designators cause changes in the initializer list traversal,
249/// because they make the initialization "jump" into a specific
250/// subobject and then continue the initialization from that
251/// point. CheckDesignatedInitializer() recursively steps into the
252/// designated subobject and manages backing out the recursion to
253/// initialize the subobjects after the one designated.
254namespace {
255class InitListChecker {
256 Sema &SemaRef;
257 bool hadError;
258 std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
259 InitListExpr *FullyStructuredList;
260
261 void CheckImplicitInitList(InitListExpr *ParentIList, QualType T,
262 unsigned &Index, InitListExpr *StructuredList,
263 unsigned &StructuredIndex,
264 bool TopLevelObject = false);
265 void CheckExplicitInitList(InitListExpr *IList, QualType &T,
266 unsigned &Index, InitListExpr *StructuredList,
267 unsigned &StructuredIndex,
268 bool TopLevelObject = false);
269 void CheckListElementTypes(InitListExpr *IList, QualType &DeclType,
270 bool SubobjectIsDesignatorContext,
271 unsigned &Index,
272 InitListExpr *StructuredList,
273 unsigned &StructuredIndex,
274 bool TopLevelObject = false);
275 void CheckSubElementType(InitListExpr *IList, QualType ElemType,
276 unsigned &Index,
277 InitListExpr *StructuredList,
278 unsigned &StructuredIndex);
279 void CheckScalarType(InitListExpr *IList, QualType DeclType,
280 unsigned &Index,
281 InitListExpr *StructuredList,
282 unsigned &StructuredIndex);
283 void CheckReferenceType(InitListExpr *IList, QualType DeclType,
284 unsigned &Index,
285 InitListExpr *StructuredList,
286 unsigned &StructuredIndex);
287 void CheckVectorType(InitListExpr *IList, QualType DeclType, unsigned &Index,
288 InitListExpr *StructuredList,
289 unsigned &StructuredIndex);
290 void CheckStructUnionTypes(InitListExpr *IList, QualType DeclType,
291 RecordDecl::field_iterator Field,
292 bool SubobjectIsDesignatorContext, unsigned &Index,
293 InitListExpr *StructuredList,
294 unsigned &StructuredIndex,
295 bool TopLevelObject = false);
296 void CheckArrayType(InitListExpr *IList, QualType &DeclType,
297 llvm::APSInt elementIndex,
298 bool SubobjectIsDesignatorContext, unsigned &Index,
299 InitListExpr *StructuredList,
300 unsigned &StructuredIndex);
301 bool CheckDesignatedInitializer(InitListExpr *IList, DesignatedInitExpr *DIE,
302 unsigned DesigIdx,
303 QualType &CurrentObjectType,
304 RecordDecl::field_iterator *NextField,
305 llvm::APSInt *NextElementIndex,
306 unsigned &Index,
307 InitListExpr *StructuredList,
308 unsigned &StructuredIndex,
309 bool FinishSubobjectInit,
310 bool TopLevelObject);
311 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
312 QualType CurrentObjectType,
313 InitListExpr *StructuredList,
314 unsigned StructuredIndex,
315 SourceRange InitRange);
316 void UpdateStructuredListElement(InitListExpr *StructuredList,
317 unsigned &StructuredIndex,
318 Expr *expr);
319 int numArrayElements(QualType DeclType);
320 int numStructUnionElements(QualType DeclType);
321
322 void FillInValueInitializations(InitListExpr *ILE);
323public:
324 InitListChecker(Sema &S, InitListExpr *IL, QualType &T);
325 bool HadError() { return hadError; }
326
327 // @brief Retrieves the fully-structured initializer list used for
328 // semantic analysis and code generation.
329 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
330};
331} // end anonymous namespace
332
333/// Recursively replaces NULL values within the given initializer list
334/// with expressions that perform value-initialization of the
335/// appropriate type.
336void InitListChecker::FillInValueInitializations(InitListExpr *ILE) {
337 assert((ILE->getType() != SemaRef.Context.VoidTy) &&
338 "Should not have void type");
339 SourceLocation Loc = ILE->getSourceRange().getBegin();
340 if (ILE->getSyntacticForm())
341 Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
342
343 if (const RecordType *RType = ILE->getType()->getAsRecordType()) {
344 unsigned Init = 0, NumInits = ILE->getNumInits();
345 for (RecordDecl::field_iterator
346 Field = RType->getDecl()->field_begin(),
347 FieldEnd = RType->getDecl()->field_end();
348 Field != FieldEnd; ++Field) {
349 if (Field->isUnnamedBitfield())
350 continue;
351
352 if (Init >= NumInits || !ILE->getInit(Init)) {
353 if (Field->getType()->isReferenceType()) {
354 // C++ [dcl.init.aggr]p9:
355 // If an incomplete or empty initializer-list leaves a
356 // member of reference type uninitialized, the program is
357 // ill-formed.
358 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
359 << Field->getType()
360 << ILE->getSyntacticForm()->getSourceRange();
361 SemaRef.Diag(Field->getLocation(),
362 diag::note_uninit_reference_member);
363 hadError = true;
364 return;
365 } else if (SemaRef.CheckValueInitialization(Field->getType(), Loc)) {
366 hadError = true;
367 return;
368 }
369
370 // FIXME: If value-initialization involves calling a constructor, should
371 // we make that call explicit in the representation (even when it means
372 // extending the initializer list)?
373 if (Init < NumInits && !hadError)
374 ILE->setInit(Init,
375 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()));
376 } else if (InitListExpr *InnerILE
377 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
378 FillInValueInitializations(InnerILE);
379 ++Init;
380
381 // Only look at the first initialization of a union.
382 if (RType->getDecl()->isUnion())
383 break;
384 }
385
386 return;
387 }
388
389 QualType ElementType;
390
391 unsigned NumInits = ILE->getNumInits();
392 unsigned NumElements = NumInits;
393 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
394 ElementType = AType->getElementType();
395 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
396 NumElements = CAType->getSize().getZExtValue();
397 } else if (const VectorType *VType = ILE->getType()->getAsVectorType()) {
398 ElementType = VType->getElementType();
399 NumElements = VType->getNumElements();
400 } else
401 ElementType = ILE->getType();
402
403 for (unsigned Init = 0; Init != NumElements; ++Init) {
404 if (Init >= NumInits || !ILE->getInit(Init)) {
405 if (SemaRef.CheckValueInitialization(ElementType, Loc)) {
406 hadError = true;
407 return;
408 }
409
410 // FIXME: If value-initialization involves calling a constructor, should
411 // we make that call explicit in the representation (even when it means
412 // extending the initializer list)?
413 if (Init < NumInits && !hadError)
414 ILE->setInit(Init,
415 new (SemaRef.Context) ImplicitValueInitExpr(ElementType));
416 }
417 else if (InitListExpr *InnerILE =dyn_cast<InitListExpr>(ILE->getInit(Init)))
418 FillInValueInitializations(InnerILE);
419 }
420}
421
422
423InitListChecker::InitListChecker(Sema &S, InitListExpr *IL, QualType &T)
424 : SemaRef(S) {
425 hadError = false;
426
427 unsigned newIndex = 0;
428 unsigned newStructuredIndex = 0;
429 FullyStructuredList
430 = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
431 CheckExplicitInitList(IL, T, newIndex, FullyStructuredList, newStructuredIndex,
432 /*TopLevelObject=*/true);
433
434 if (!hadError)
435 FillInValueInitializations(FullyStructuredList);
436}
437
438int InitListChecker::numArrayElements(QualType DeclType) {
439 // FIXME: use a proper constant
440 int maxElements = 0x7FFFFFFF;
441 if (const ConstantArrayType *CAT =
442 SemaRef.Context.getAsConstantArrayType(DeclType)) {
443 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
444 }
445 return maxElements;
446}
447
448int InitListChecker::numStructUnionElements(QualType DeclType) {
449 RecordDecl *structDecl = DeclType->getAsRecordType()->getDecl();
450 int InitializableMembers = 0;
451 for (RecordDecl::field_iterator
452 Field = structDecl->field_begin(),
453 FieldEnd = structDecl->field_end();
454 Field != FieldEnd; ++Field) {
455 if ((*Field)->getIdentifier() || !(*Field)->isBitField())
456 ++InitializableMembers;
457 }
458 if (structDecl->isUnion())
459 return std::min(InitializableMembers, 1);
460 return InitializableMembers - structDecl->hasFlexibleArrayMember();
461}
462
463void InitListChecker::CheckImplicitInitList(InitListExpr *ParentIList,
464 QualType T, unsigned &Index,
465 InitListExpr *StructuredList,
466 unsigned &StructuredIndex,
467 bool TopLevelObject) {
468 int maxElements = 0;
469
470 if (T->isArrayType())
471 maxElements = numArrayElements(T);
472 else if (T->isStructureType() || T->isUnionType())
473 maxElements = numStructUnionElements(T);
474 else if (T->isVectorType())
475 maxElements = T->getAsVectorType()->getNumElements();
476 else
477 assert(0 && "CheckImplicitInitList(): Illegal type");
478
479 if (maxElements == 0) {
480 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
481 diag::err_implicit_empty_initializer);
482 ++Index;
483 hadError = true;
484 return;
485 }
486
487 // Build a structured initializer list corresponding to this subobject.
488 InitListExpr *StructuredSubobjectInitList
489 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
490 StructuredIndex,
491 SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
492 ParentIList->getSourceRange().getEnd()));
493 unsigned StructuredSubobjectInitIndex = 0;
494
495 // Check the element types and build the structural subobject.
496 unsigned StartIndex = Index;
497 CheckListElementTypes(ParentIList, T, false, Index,
498 StructuredSubobjectInitList,
499 StructuredSubobjectInitIndex,
500 TopLevelObject);
501 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
502 StructuredSubobjectInitList->setType(T);
503
504 // Update the structured sub-object initializer so that it's ending
505 // range corresponds with the end of the last initializer it used.
506 if (EndIndex < ParentIList->getNumInits()) {
507 SourceLocation EndLoc
508 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
509 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
510 }
511}
512
513void InitListChecker::CheckExplicitInitList(InitListExpr *IList, QualType &T,
514 unsigned &Index,
515 InitListExpr *StructuredList,
516 unsigned &StructuredIndex,
517 bool TopLevelObject) {
518 assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
519 SyntacticToSemantic[IList] = StructuredList;
520 StructuredList->setSyntacticForm(IList);
521 CheckListElementTypes(IList, T, true, Index, StructuredList,
522 StructuredIndex, TopLevelObject);
523 IList->setType(T);
524 StructuredList->setType(T);
525 if (hadError)
526 return;
527
528 if (Index < IList->getNumInits()) {
529 // We have leftover initializers
530 if (StructuredIndex == 1 &&
531 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
532 unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
533 if (SemaRef.getLangOptions().CPlusPlus) {
534 DK = diag::err_excess_initializers_in_char_array_initializer;
535 hadError = true;
536 }
537 // Special-case
538 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
539 << IList->getInit(Index)->getSourceRange();
540 } else if (!T->isIncompleteType()) {
541 // Don't complain for incomplete types, since we'll get an error
542 // elsewhere
543 QualType CurrentObjectType = StructuredList->getType();
544 int initKind =
545 CurrentObjectType->isArrayType()? 0 :
546 CurrentObjectType->isVectorType()? 1 :
547 CurrentObjectType->isScalarType()? 2 :
548 CurrentObjectType->isUnionType()? 3 :
549 4;
550
551 unsigned DK = diag::warn_excess_initializers;
552 if (SemaRef.getLangOptions().CPlusPlus) {
553 DK = diag::err_excess_initializers;
554 hadError = true;
555 }
556
557 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
558 << initKind << IList->getInit(Index)->getSourceRange();
559 }
560 }
561
562 if (T->isScalarType() && !TopLevelObject)
563 SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
564 << IList->getSourceRange()
565 << CodeModificationHint::CreateRemoval(SourceRange(IList->getLocStart()))
566 << CodeModificationHint::CreateRemoval(SourceRange(IList->getLocEnd()));
567}
568
569void InitListChecker::CheckListElementTypes(InitListExpr *IList,
570 QualType &DeclType,
571 bool SubobjectIsDesignatorContext,
572 unsigned &Index,
573 InitListExpr *StructuredList,
574 unsigned &StructuredIndex,
575 bool TopLevelObject) {
576 if (DeclType->isScalarType()) {
577 CheckScalarType(IList, DeclType, Index, StructuredList, StructuredIndex);
578 } else if (DeclType->isVectorType()) {
579 CheckVectorType(IList, DeclType, Index, StructuredList, StructuredIndex);
580 } else if (DeclType->isAggregateType()) {
581 if (DeclType->isRecordType()) {
582 RecordDecl *RD = DeclType->getAsRecordType()->getDecl();
583 CheckStructUnionTypes(IList, DeclType, RD->field_begin(),
584 SubobjectIsDesignatorContext, Index,
585 StructuredList, StructuredIndex,
586 TopLevelObject);
587 } else if (DeclType->isArrayType()) {
588 llvm::APSInt Zero(
589 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
590 false);
591 CheckArrayType(IList, DeclType, Zero, SubobjectIsDesignatorContext, Index,
592 StructuredList, StructuredIndex);
593 }
594 else
595 assert(0 && "Aggregate that isn't a structure or array?!");
596 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
597 // This type is invalid, issue a diagnostic.
598 ++Index;
599 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
600 << DeclType;
601 hadError = true;
602 } else if (DeclType->isRecordType()) {
603 // C++ [dcl.init]p14:
604 // [...] If the class is an aggregate (8.5.1), and the initializer
605 // is a brace-enclosed list, see 8.5.1.
606 //
607 // Note: 8.5.1 is handled below; here, we diagnose the case where
608 // we have an initializer list and a destination type that is not
609 // an aggregate.
610 // FIXME: In C++0x, this is yet another form of initialization.
611 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
612 << DeclType << IList->getSourceRange();
613 hadError = true;
614 } else if (DeclType->isReferenceType()) {
615 CheckReferenceType(IList, DeclType, Index, StructuredList, StructuredIndex);
616 } else {
617 // In C, all types are either scalars or aggregates, but
618 // additional handling is needed here for C++ (and possibly others?).
619 assert(0 && "Unsupported initializer type");
620 }
621}
622
623void InitListChecker::CheckSubElementType(InitListExpr *IList,
624 QualType ElemType,
625 unsigned &Index,
626 InitListExpr *StructuredList,
627 unsigned &StructuredIndex) {
628 Expr *expr = IList->getInit(Index);
629 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
630 unsigned newIndex = 0;
631 unsigned newStructuredIndex = 0;
632 InitListExpr *newStructuredList
633 = getStructuredSubobjectInit(IList, Index, ElemType,
634 StructuredList, StructuredIndex,
635 SubInitList->getSourceRange());
636 CheckExplicitInitList(SubInitList, ElemType, newIndex,
637 newStructuredList, newStructuredIndex);
638 ++StructuredIndex;
639 ++Index;
640 } else if (Expr *Str = IsStringInit(expr, ElemType, SemaRef.Context)) {
641 CheckStringInit(Str, ElemType, SemaRef);
642 UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
643 ++Index;
644 } else if (ElemType->isScalarType()) {
645 CheckScalarType(IList, ElemType, Index, StructuredList, StructuredIndex);
646 } else if (ElemType->isReferenceType()) {
647 CheckReferenceType(IList, ElemType, Index, StructuredList, StructuredIndex);
648 } else {
649 if (SemaRef.getLangOptions().CPlusPlus) {
650 // C++ [dcl.init.aggr]p12:
651 // All implicit type conversions (clause 4) are considered when
652 // initializing the aggregate member with an ini- tializer from
653 // an initializer-list. If the initializer can initialize a
654 // member, the member is initialized. [...]
655 ImplicitConversionSequence ICS
656 = SemaRef.TryCopyInitialization(expr, ElemType);
657 if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion) {
658 if (SemaRef.PerformImplicitConversion(expr, ElemType, ICS,
659 "initializing"))
660 hadError = true;
661 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
662 ++Index;
663 return;
664 }
665
666 // Fall through for subaggregate initialization
667 } else {
668 // C99 6.7.8p13:
669 //
670 // The initializer for a structure or union object that has
671 // automatic storage duration shall be either an initializer
672 // list as described below, or a single expression that has
673 // compatible structure or union type. In the latter case, the
674 // initial value of the object, including unnamed members, is
675 // that of the expression.
676 if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
677 SemaRef.Context.hasSameUnqualifiedType(expr->getType(), ElemType)) {
678 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
679 ++Index;
680 return;
681 }
682
683 // Fall through for subaggregate initialization
684 }
685
686 // C++ [dcl.init.aggr]p12:
687 //
688 // [...] Otherwise, if the member is itself a non-empty
689 // subaggregate, brace elision is assumed and the initializer is
690 // considered for the initialization of the first member of
691 // the subaggregate.
692 if (ElemType->isAggregateType() || ElemType->isVectorType()) {
693 CheckImplicitInitList(IList, ElemType, Index, StructuredList,
694 StructuredIndex);
695 ++StructuredIndex;
696 } else {
697 // We cannot initialize this element, so let
698 // PerformCopyInitialization produce the appropriate diagnostic.
699 SemaRef.PerformCopyInitialization(expr, ElemType, "initializing");
700 hadError = true;
701 ++Index;
702 ++StructuredIndex;
703 }
704 }
705}
706
707void InitListChecker::CheckScalarType(InitListExpr *IList, QualType DeclType,
708 unsigned &Index,
709 InitListExpr *StructuredList,
710 unsigned &StructuredIndex) {
711 if (Index < IList->getNumInits()) {
712 Expr *expr = IList->getInit(Index);
713 if (isa<InitListExpr>(expr)) {
714 SemaRef.Diag(IList->getLocStart(),
715 diag::err_many_braces_around_scalar_init)
716 << IList->getSourceRange();
717 hadError = true;
718 ++Index;
719 ++StructuredIndex;
720 return;
721 } else if (isa<DesignatedInitExpr>(expr)) {
722 SemaRef.Diag(expr->getSourceRange().getBegin(),
723 diag::err_designator_for_scalar_init)
724 << DeclType << expr->getSourceRange();
725 hadError = true;
726 ++Index;
727 ++StructuredIndex;
728 return;
729 }
730
731 Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
732 if (CheckSingleInitializer(expr, DeclType, false, SemaRef))
733 hadError = true; // types weren't compatible.
734 else if (savExpr != expr) {
735 // The type was promoted, update initializer list.
736 IList->setInit(Index, expr);
737 }
738 if (hadError)
739 ++StructuredIndex;
740 else
741 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
742 ++Index;
743 } else {
744 SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
745 << IList->getSourceRange();
746 hadError = true;
747 ++Index;
748 ++StructuredIndex;
749 return;
750 }
751}
752
753void InitListChecker::CheckReferenceType(InitListExpr *IList, QualType DeclType,
754 unsigned &Index,
755 InitListExpr *StructuredList,
756 unsigned &StructuredIndex) {
757 if (Index < IList->getNumInits()) {
758 Expr *expr = IList->getInit(Index);
759 if (isa<InitListExpr>(expr)) {
760 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
761 << DeclType << IList->getSourceRange();
762 hadError = true;
763 ++Index;
764 ++StructuredIndex;
765 return;
766 }
767
768 Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
769 if (SemaRef.CheckReferenceInit(expr, DeclType))
770 hadError = true;
771 else if (savExpr != expr) {
772 // The type was promoted, update initializer list.
773 IList->setInit(Index, expr);
774 }
775 if (hadError)
776 ++StructuredIndex;
777 else
778 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
779 ++Index;
780 } else {
781 // FIXME: It would be wonderful if we could point at the actual member. In
782 // general, it would be useful to pass location information down the stack,
783 // so that we know the location (or decl) of the "current object" being
784 // initialized.
785 SemaRef.Diag(IList->getLocStart(),
786 diag::err_init_reference_member_uninitialized)
787 << DeclType
788 << IList->getSourceRange();
789 hadError = true;
790 ++Index;
791 ++StructuredIndex;
792 return;
793 }
794}
795
796void InitListChecker::CheckVectorType(InitListExpr *IList, QualType DeclType,
797 unsigned &Index,
798 InitListExpr *StructuredList,
799 unsigned &StructuredIndex) {
800 if (Index < IList->getNumInits()) {
801 const VectorType *VT = DeclType->getAsVectorType();
802 int maxElements = VT->getNumElements();
803 QualType elementType = VT->getElementType();
804
805 for (int i = 0; i < maxElements; ++i) {
806 // Don't attempt to go past the end of the init list
807 if (Index >= IList->getNumInits())
808 break;
809 CheckSubElementType(IList, elementType, Index,
810 StructuredList, StructuredIndex);
811 }
812 }
813}
814
815void InitListChecker::CheckArrayType(InitListExpr *IList, QualType &DeclType,
816 llvm::APSInt elementIndex,
817 bool SubobjectIsDesignatorContext,
818 unsigned &Index,
819 InitListExpr *StructuredList,
820 unsigned &StructuredIndex) {
821 // Check for the special-case of initializing an array with a string.
822 if (Index < IList->getNumInits()) {
823 if (Expr *Str = IsStringInit(IList->getInit(Index), DeclType,
824 SemaRef.Context)) {
825 CheckStringInit(Str, DeclType, SemaRef);
826 // We place the string literal directly into the resulting
827 // initializer list. This is the only place where the structure
828 // of the structured initializer list doesn't match exactly,
829 // because doing so would involve allocating one character
830 // constant for each string.
831 UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
832 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
833 ++Index;
834 return;
835 }
836 }
837 if (const VariableArrayType *VAT =
838 SemaRef.Context.getAsVariableArrayType(DeclType)) {
839 // Check for VLAs; in standard C it would be possible to check this
840 // earlier, but I don't know where clang accepts VLAs (gcc accepts
841 // them in all sorts of strange places).
842 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
843 diag::err_variable_object_no_init)
844 << VAT->getSizeExpr()->getSourceRange();
845 hadError = true;
846 ++Index;
847 ++StructuredIndex;
848 return;
849 }
850
851 // We might know the maximum number of elements in advance.
852 llvm::APSInt maxElements(elementIndex.getBitWidth(),
853 elementIndex.isUnsigned());
854 bool maxElementsKnown = false;
855 if (const ConstantArrayType *CAT =
856 SemaRef.Context.getAsConstantArrayType(DeclType)) {
857 maxElements = CAT->getSize();
858 elementIndex.extOrTrunc(maxElements.getBitWidth());
859 elementIndex.setIsUnsigned(maxElements.isUnsigned());
860 maxElementsKnown = true;
861 }
862
863 QualType elementType = SemaRef.Context.getAsArrayType(DeclType)
864 ->getElementType();
865 while (Index < IList->getNumInits()) {
866 Expr *Init = IList->getInit(Index);
867 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
868 // If we're not the subobject that matches up with the '{' for
869 // the designator, we shouldn't be handling the
870 // designator. Return immediately.
871 if (!SubobjectIsDesignatorContext)
872 return;
873
874 // Handle this designated initializer. elementIndex will be
875 // updated to be the next array element we'll initialize.
876 if (CheckDesignatedInitializer(IList, DIE, 0,
877 DeclType, 0, &elementIndex, Index,
878 StructuredList, StructuredIndex, true,
879 false)) {
880 hadError = true;
881 continue;
882 }
883
884 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
885 maxElements.extend(elementIndex.getBitWidth());
886 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
887 elementIndex.extend(maxElements.getBitWidth());
888 elementIndex.setIsUnsigned(maxElements.isUnsigned());
889
890 // If the array is of incomplete type, keep track of the number of
891 // elements in the initializer.
892 if (!maxElementsKnown && elementIndex > maxElements)
893 maxElements = elementIndex;
894
895 continue;
896 }
897
898 // If we know the maximum number of elements, and we've already
899 // hit it, stop consuming elements in the initializer list.
900 if (maxElementsKnown && elementIndex == maxElements)
901 break;
902
903 // Check this element.
904 CheckSubElementType(IList, elementType, Index,
905 StructuredList, StructuredIndex);
906 ++elementIndex;
907
908 // If the array is of incomplete type, keep track of the number of
909 // elements in the initializer.
910 if (!maxElementsKnown && elementIndex > maxElements)
911 maxElements = elementIndex;
912 }
913 if (!hadError && DeclType->isIncompleteArrayType()) {
914 // If this is an incomplete array type, the actual type needs to
915 // be calculated here.
916 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
917 if (maxElements == Zero) {
918 // Sizing an array implicitly to zero is not allowed by ISO C,
919 // but is supported by GNU.
920 SemaRef.Diag(IList->getLocStart(),
921 diag::ext_typecheck_zero_array_size);
922 }
923
924 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
925 ArrayType::Normal, 0);
926 }
927}
928
929void InitListChecker::CheckStructUnionTypes(InitListExpr *IList,
930 QualType DeclType,
931 RecordDecl::field_iterator Field,
932 bool SubobjectIsDesignatorContext,
933 unsigned &Index,
934 InitListExpr *StructuredList,
935 unsigned &StructuredIndex,
936 bool TopLevelObject) {
937 RecordDecl* structDecl = DeclType->getAsRecordType()->getDecl();
938
939 // If the record is invalid, some of it's members are invalid. To avoid
940 // confusion, we forgo checking the intializer for the entire record.
941 if (structDecl->isInvalidDecl()) {
942 hadError = true;
943 return;
944 }
945
946 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
947 // Value-initialize the first named member of the union.
948 RecordDecl *RD = DeclType->getAsRecordType()->getDecl();
949 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
950 Field != FieldEnd; ++Field) {
951 if (Field->getDeclName()) {
952 StructuredList->setInitializedFieldInUnion(*Field);
953 break;
954 }
955 }
956 return;
957 }
958
959 // If structDecl is a forward declaration, this loop won't do
960 // anything except look at designated initializers; That's okay,
961 // because an error should get printed out elsewhere. It might be
962 // worthwhile to skip over the rest of the initializer, though.
963 RecordDecl *RD = DeclType->getAsRecordType()->getDecl();
964 RecordDecl::field_iterator FieldEnd = RD->field_end();
965 bool InitializedSomething = false;
966 while (Index < IList->getNumInits()) {
967 Expr *Init = IList->getInit(Index);
968
969 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
970 // If we're not the subobject that matches up with the '{' for
971 // the designator, we shouldn't be handling the
972 // designator. Return immediately.
973 if (!SubobjectIsDesignatorContext)
974 return;
975
976 // Handle this designated initializer. Field will be updated to
977 // the next field that we'll be initializing.
978 if (CheckDesignatedInitializer(IList, DIE, 0,
979 DeclType, &Field, 0, Index,
980 StructuredList, StructuredIndex,
981 true, TopLevelObject))
982 hadError = true;
983
984 InitializedSomething = true;
985 continue;
986 }
987
988 if (Field == FieldEnd) {
989 // We've run out of fields. We're done.
990 break;
991 }
992
993 // We've already initialized a member of a union. We're done.
994 if (InitializedSomething && DeclType->isUnionType())
995 break;
996
997 // If we've hit the flexible array member at the end, we're done.
998 if (Field->getType()->isIncompleteArrayType())
999 break;
1000
1001 if (Field->isUnnamedBitfield()) {
1002 // Don't initialize unnamed bitfields, e.g. "int : 20;"
1003 ++Field;
1004 continue;
1005 }
1006
1007 CheckSubElementType(IList, Field->getType(), Index,
1008 StructuredList, StructuredIndex);
1009 InitializedSomething = true;
1010
1011 if (DeclType->isUnionType()) {
1012 // Initialize the first field within the union.
1013 StructuredList->setInitializedFieldInUnion(*Field);
1014 }
1015
1016 ++Field;
1017 }
1018
1019 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1020 Index >= IList->getNumInits())
1021 return;
1022
1023 // Handle GNU flexible array initializers.
1024 if (!TopLevelObject &&
1025 (!isa<InitListExpr>(IList->getInit(Index)) ||
1026 cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1027 SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1028 diag::err_flexible_array_init_nonempty)
1029 << IList->getInit(Index)->getSourceRange().getBegin();
1030 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1031 << *Field;
1032 hadError = true;
1033 ++Index;
1034 return;
1035 } else {
1036 SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1037 diag::ext_flexible_array_init)
1038 << IList->getInit(Index)->getSourceRange().getBegin();
1039 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1040 << *Field;
1041 }
1042
1043 if (isa<InitListExpr>(IList->getInit(Index)))
1044 CheckSubElementType(IList, Field->getType(), Index, StructuredList,
1045 StructuredIndex);
1046 else
1047 CheckImplicitInitList(IList, Field->getType(), Index, StructuredList,
1048 StructuredIndex);
1049}
1050
1051/// \brief Expand a field designator that refers to a member of an
1052/// anonymous struct or union into a series of field designators that
1053/// refers to the field within the appropriate subobject.
1054///
1055/// Field/FieldIndex will be updated to point to the (new)
1056/// currently-designated field.
1057static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1058 DesignatedInitExpr *DIE,
1059 unsigned DesigIdx,
1060 FieldDecl *Field,
1061 RecordDecl::field_iterator &FieldIter,
1062 unsigned &FieldIndex) {
1063 typedef DesignatedInitExpr::Designator Designator;
1064
1065 // Build the path from the current object to the member of the
1066 // anonymous struct/union (backwards).
1067 llvm::SmallVector<FieldDecl *, 4> Path;
1068 SemaRef.BuildAnonymousStructUnionMemberPath(Field, Path);
1069
1070 // Build the replacement designators.
1071 llvm::SmallVector<Designator, 4> Replacements;
1072 for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
1073 FI = Path.rbegin(), FIEnd = Path.rend();
1074 FI != FIEnd; ++FI) {
1075 if (FI + 1 == FIEnd)
1076 Replacements.push_back(Designator((IdentifierInfo *)0,
1077 DIE->getDesignator(DesigIdx)->getDotLoc(),
1078 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1079 else
1080 Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1081 SourceLocation()));
1082 Replacements.back().setField(*FI);
1083 }
1084
1085 // Expand the current designator into the set of replacement
1086 // designators, so we have a full subobject path down to where the
1087 // member of the anonymous struct/union is actually stored.
1088 DIE->ExpandDesignator(DesigIdx, &Replacements[0],
1089 &Replacements[0] + Replacements.size());
1090
1091 // Update FieldIter/FieldIndex;
1092 RecordDecl *Record = cast<RecordDecl>(Path.back()->getDeclContext());
1093 FieldIter = Record->field_begin();
1094 FieldIndex = 0;
1095 for (RecordDecl::field_iterator FEnd = Record->field_end();
1096 FieldIter != FEnd; ++FieldIter) {
1097 if (FieldIter->isUnnamedBitfield())
1098 continue;
1099
1100 if (*FieldIter == Path.back())
1101 return;
1102
1103 ++FieldIndex;
1104 }
1105
1106 assert(false && "Unable to find anonymous struct/union field");
1107}
1108
1109/// @brief Check the well-formedness of a C99 designated initializer.
1110///
1111/// Determines whether the designated initializer @p DIE, which
1112/// resides at the given @p Index within the initializer list @p
1113/// IList, is well-formed for a current object of type @p DeclType
1114/// (C99 6.7.8). The actual subobject that this designator refers to
1115/// within the current subobject is returned in either
1116/// @p NextField or @p NextElementIndex (whichever is appropriate).
1117///
1118/// @param IList The initializer list in which this designated
1119/// initializer occurs.
1120///
1121/// @param DIE The designated initializer expression.
1122///
1123/// @param DesigIdx The index of the current designator.
1124///
1125/// @param DeclType The type of the "current object" (C99 6.7.8p17),
1126/// into which the designation in @p DIE should refer.
1127///
1128/// @param NextField If non-NULL and the first designator in @p DIE is
1129/// a field, this will be set to the field declaration corresponding
1130/// to the field named by the designator.
1131///
1132/// @param NextElementIndex If non-NULL and the first designator in @p
1133/// DIE is an array designator or GNU array-range designator, this
1134/// will be set to the last index initialized by this designator.
1135///
1136/// @param Index Index into @p IList where the designated initializer
1137/// @p DIE occurs.
1138///
1139/// @param StructuredList The initializer list expression that
1140/// describes all of the subobject initializers in the order they'll
1141/// actually be initialized.
1142///
1143/// @returns true if there was an error, false otherwise.
1144bool
1145InitListChecker::CheckDesignatedInitializer(InitListExpr *IList,
1146 DesignatedInitExpr *DIE,
1147 unsigned DesigIdx,
1148 QualType &CurrentObjectType,
1149 RecordDecl::field_iterator *NextField,
1150 llvm::APSInt *NextElementIndex,
1151 unsigned &Index,
1152 InitListExpr *StructuredList,
1153 unsigned &StructuredIndex,
1154 bool FinishSubobjectInit,
1155 bool TopLevelObject) {
1156 if (DesigIdx == DIE->size()) {
1157 // Check the actual initialization for the designated object type.
1158 bool prevHadError = hadError;
1159
1160 // Temporarily remove the designator expression from the
1161 // initializer list that the child calls see, so that we don't try
1162 // to re-process the designator.
1163 unsigned OldIndex = Index;
1164 IList->setInit(OldIndex, DIE->getInit());
1165
1166 CheckSubElementType(IList, CurrentObjectType, Index,
1167 StructuredList, StructuredIndex);
1168
1169 // Restore the designated initializer expression in the syntactic
1170 // form of the initializer list.
1171 if (IList->getInit(OldIndex) != DIE->getInit())
1172 DIE->setInit(IList->getInit(OldIndex));
1173 IList->setInit(OldIndex, DIE);
1174
1175 return hadError && !prevHadError;
1176 }
1177
1178 bool IsFirstDesignator = (DesigIdx == 0);
1179 assert((IsFirstDesignator || StructuredList) &&
1180 "Need a non-designated initializer list to start from");
1181
1182 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1183 // Determine the structural initializer list that corresponds to the
1184 // current subobject.
1185 StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1186 : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1187 StructuredList, StructuredIndex,
1188 SourceRange(D->getStartLocation(),
1189 DIE->getSourceRange().getEnd()));
1190 assert(StructuredList && "Expected a structured initializer list");
1191
1192 if (D->isFieldDesignator()) {
1193 // C99 6.7.8p7:
1194 //
1195 // If a designator has the form
1196 //
1197 // . identifier
1198 //
1199 // then the current object (defined below) shall have
1200 // structure or union type and the identifier shall be the
1201 // name of a member of that type.
1202 const RecordType *RT = CurrentObjectType->getAsRecordType();
1203 if (!RT) {
1204 SourceLocation Loc = D->getDotLoc();
1205 if (Loc.isInvalid())
1206 Loc = D->getFieldLoc();
1207 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1208 << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1209 ++Index;
1210 return true;
1211 }
1212
1213 // Note: we perform a linear search of the fields here, despite
1214 // the fact that we have a faster lookup method, because we always
1215 // need to compute the field's index.
1216 FieldDecl *KnownField = D->getField();
1217 IdentifierInfo *FieldName = D->getFieldName();
1218 unsigned FieldIndex = 0;
1219 RecordDecl::field_iterator
1220 Field = RT->getDecl()->field_begin(),
1221 FieldEnd = RT->getDecl()->field_end();
1222 for (; Field != FieldEnd; ++Field) {
1223 if (Field->isUnnamedBitfield())
1224 continue;
1225
1226 if (KnownField == *Field || Field->getIdentifier() == FieldName)
1227 break;
1228
1229 ++FieldIndex;
1230 }
1231
1232 if (Field == FieldEnd) {
1233 // There was no normal field in the struct with the designated
1234 // name. Perform another lookup for this name, which may find
1235 // something that we can't designate (e.g., a member function),
1236 // may find nothing, or may find a member of an anonymous
1237 // struct/union.
1238 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1239 if (Lookup.first == Lookup.second) {
1240 // Name lookup didn't find anything.
1241 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1242 << FieldName << CurrentObjectType;
1243 ++Index;
1244 return true;
1245 } else if (!KnownField && isa<FieldDecl>(*Lookup.first) &&
1246 cast<RecordDecl>((*Lookup.first)->getDeclContext())
1247 ->isAnonymousStructOrUnion()) {
1248 // Handle an field designator that refers to a member of an
1249 // anonymous struct or union.
1250 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx,
1251 cast<FieldDecl>(*Lookup.first),
1252 Field, FieldIndex);
1253 D = DIE->getDesignator(DesigIdx);
1254 } else {
1255 // Name lookup found something, but it wasn't a field.
1256 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1257 << FieldName;
1258 SemaRef.Diag((*Lookup.first)->getLocation(),
1259 diag::note_field_designator_found);
1260 ++Index;
1261 return true;
1262 }
1263 } else if (!KnownField &&
1264 cast<RecordDecl>((*Field)->getDeclContext())
1265 ->isAnonymousStructOrUnion()) {
1266 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, *Field,
1267 Field, FieldIndex);
1268 D = DIE->getDesignator(DesigIdx);
1269 }
1270
1271 // All of the fields of a union are located at the same place in
1272 // the initializer list.
1273 if (RT->getDecl()->isUnion()) {
1274 FieldIndex = 0;
1275 StructuredList->setInitializedFieldInUnion(*Field);
1276 }
1277
1278 // Update the designator with the field declaration.
1279 D->setField(*Field);
1280
1281 // Make sure that our non-designated initializer list has space
1282 // for a subobject corresponding to this field.
1283 if (FieldIndex >= StructuredList->getNumInits())
1284 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1285
1286 // This designator names a flexible array member.
1287 if (Field->getType()->isIncompleteArrayType()) {
1288 bool Invalid = false;
1289 if ((DesigIdx + 1) != DIE->size()) {
1290 // We can't designate an object within the flexible array
1291 // member (because GCC doesn't allow it).
1292 DesignatedInitExpr::Designator *NextD
1293 = DIE->getDesignator(DesigIdx + 1);
1294 SemaRef.Diag(NextD->getStartLocation(),
1295 diag::err_designator_into_flexible_array_member)
1296 << SourceRange(NextD->getStartLocation(),
1297 DIE->getSourceRange().getEnd());
1298 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1299 << *Field;
1300 Invalid = true;
1301 }
1302
1303 if (!hadError && !isa<InitListExpr>(DIE->getInit())) {
1304 // The initializer is not an initializer list.
1305 SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1306 diag::err_flexible_array_init_needs_braces)
1307 << DIE->getInit()->getSourceRange();
1308 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1309 << *Field;
1310 Invalid = true;
1311 }
1312
1313 // Handle GNU flexible array initializers.
1314 if (!Invalid && !TopLevelObject &&
1315 cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1316 SemaRef.Diag(DIE->getSourceRange().getBegin(),
1317 diag::err_flexible_array_init_nonempty)
1318 << DIE->getSourceRange().getBegin();
1319 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1320 << *Field;
1321 Invalid = true;
1322 }
1323
1324 if (Invalid) {
1325 ++Index;
1326 return true;
1327 }
1328
1329 // Initialize the array.
1330 bool prevHadError = hadError;
1331 unsigned newStructuredIndex = FieldIndex;
1332 unsigned OldIndex = Index;
1333 IList->setInit(Index, DIE->getInit());
1334 CheckSubElementType(IList, Field->getType(), Index,
1335 StructuredList, newStructuredIndex);
1336 IList->setInit(OldIndex, DIE);
1337 if (hadError && !prevHadError) {
1338 ++Field;
1339 ++FieldIndex;
1340 if (NextField)
1341 *NextField = Field;
1342 StructuredIndex = FieldIndex;
1343 return true;
1344 }
1345 } else {
1346 // Recurse to check later designated subobjects.
1347 QualType FieldType = (*Field)->getType();
1348 unsigned newStructuredIndex = FieldIndex;
1349 if (CheckDesignatedInitializer(IList, DIE, DesigIdx + 1, FieldType, 0, 0,
1350 Index, StructuredList, newStructuredIndex,
1351 true, false))
1352 return true;
1353 }
1354
1355 // Find the position of the next field to be initialized in this
1356 // subobject.
1357 ++Field;
1358 ++FieldIndex;
1359
1360 // If this the first designator, our caller will continue checking
1361 // the rest of this struct/class/union subobject.
1362 if (IsFirstDesignator) {
1363 if (NextField)
1364 *NextField = Field;
1365 StructuredIndex = FieldIndex;
1366 return false;
1367 }
1368
1369 if (!FinishSubobjectInit)
1370 return false;
1371
1372 // We've already initialized something in the union; we're done.
1373 if (RT->getDecl()->isUnion())
1374 return hadError;
1375
1376 // Check the remaining fields within this class/struct/union subobject.
1377 bool prevHadError = hadError;
1378 CheckStructUnionTypes(IList, CurrentObjectType, Field, false, Index,
1379 StructuredList, FieldIndex);
1380 return hadError && !prevHadError;
1381 }
1382
1383 // C99 6.7.8p6:
1384 //
1385 // If a designator has the form
1386 //
1387 // [ constant-expression ]
1388 //
1389 // then the current object (defined below) shall have array
1390 // type and the expression shall be an integer constant
1391 // expression. If the array is of unknown size, any
1392 // nonnegative value is valid.
1393 //
1394 // Additionally, cope with the GNU extension that permits
1395 // designators of the form
1396 //
1397 // [ constant-expression ... constant-expression ]
1398 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1399 if (!AT) {
1400 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1401 << CurrentObjectType;
1402 ++Index;
1403 return true;
1404 }
1405
1406 Expr *IndexExpr = 0;
1407 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1408 if (D->isArrayDesignator()) {
1409 IndexExpr = DIE->getArrayIndex(*D);
1410 DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1411 DesignatedEndIndex = DesignatedStartIndex;
1412 } else {
1413 assert(D->isArrayRangeDesignator() && "Need array-range designator");
1414
1415
1416 DesignatedStartIndex =
1417 DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1418 DesignatedEndIndex =
1419 DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1420 IndexExpr = DIE->getArrayRangeEnd(*D);
1421
1422 if (DesignatedStartIndex.getZExtValue() !=DesignatedEndIndex.getZExtValue())
1423 FullyStructuredList->sawArrayRangeDesignator();
1424 }
1425
1426 if (isa<ConstantArrayType>(AT)) {
1427 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1428 DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1429 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1430 DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1431 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1432 if (DesignatedEndIndex >= MaxElements) {
1433 SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1434 diag::err_array_designator_too_large)
1435 << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1436 << IndexExpr->getSourceRange();
1437 ++Index;
1438 return true;
1439 }
1440 } else {
1441 // Make sure the bit-widths and signedness match.
1442 if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1443 DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1444 else if (DesignatedStartIndex.getBitWidth() <
1445 DesignatedEndIndex.getBitWidth())
1446 DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1447 DesignatedStartIndex.setIsUnsigned(true);
1448 DesignatedEndIndex.setIsUnsigned(true);
1449 }
1450
1451 // Make sure that our non-designated initializer list has space
1452 // for a subobject corresponding to this array element.
1453 if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1454 StructuredList->resizeInits(SemaRef.Context,
1455 DesignatedEndIndex.getZExtValue() + 1);
1456
1457 // Repeatedly perform subobject initializations in the range
1458 // [DesignatedStartIndex, DesignatedEndIndex].
1459
1460 // Move to the next designator
1461 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1462 unsigned OldIndex = Index;
1463 while (DesignatedStartIndex <= DesignatedEndIndex) {
1464 // Recurse to check later designated subobjects.
1465 QualType ElementType = AT->getElementType();
1466 Index = OldIndex;
1467 if (CheckDesignatedInitializer(IList, DIE, DesigIdx + 1, ElementType, 0, 0,
1468 Index, StructuredList, ElementIndex,
1469 (DesignatedStartIndex == DesignatedEndIndex),
1470 false))
1471 return true;
1472
1473 // Move to the next index in the array that we'll be initializing.
1474 ++DesignatedStartIndex;
1475 ElementIndex = DesignatedStartIndex.getZExtValue();
1476 }
1477
1478 // If this the first designator, our caller will continue checking
1479 // the rest of this array subobject.
1480 if (IsFirstDesignator) {
1481 if (NextElementIndex)
1482 *NextElementIndex = DesignatedStartIndex;
1483 StructuredIndex = ElementIndex;
1484 return false;
1485 }
1486
1487 if (!FinishSubobjectInit)
1488 return false;
1489
1490 // Check the remaining elements within this array subobject.
1491 bool prevHadError = hadError;
1492 CheckArrayType(IList, CurrentObjectType, DesignatedStartIndex, false, Index,
1493 StructuredList, ElementIndex);
1494 return hadError && !prevHadError;
1495}
1496
1497// Get the structured initializer list for a subobject of type
1498// @p CurrentObjectType.
1499InitListExpr *
1500InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1501 QualType CurrentObjectType,
1502 InitListExpr *StructuredList,
1503 unsigned StructuredIndex,
1504 SourceRange InitRange) {
1505 Expr *ExistingInit = 0;
1506 if (!StructuredList)
1507 ExistingInit = SyntacticToSemantic[IList];
1508 else if (StructuredIndex < StructuredList->getNumInits())
1509 ExistingInit = StructuredList->getInit(StructuredIndex);
1510
1511 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1512 return Result;
1513
1514 if (ExistingInit) {
1515 // We are creating an initializer list that initializes the
1516 // subobjects of the current object, but there was already an
1517 // initialization that completely initialized the current
1518 // subobject, e.g., by a compound literal:
1519 //
1520 // struct X { int a, b; };
1521 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1522 //
1523 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1524 // designated initializer re-initializes the whole
1525 // subobject [0], overwriting previous initializers.
1526 SemaRef.Diag(InitRange.getBegin(),
1527 diag::warn_subobject_initializer_overrides)
1528 << InitRange;
1529 SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1530 diag::note_previous_initializer)
1531 << /*FIXME:has side effects=*/0
1532 << ExistingInit->getSourceRange();
1533 }
1534
1535 InitListExpr *Result
1536 = new (SemaRef.Context) InitListExpr(InitRange.getBegin(), 0, 0,
1537 InitRange.getEnd());
1538
1539 Result->setType(CurrentObjectType);
1540
1541 // Pre-allocate storage for the structured initializer list.
1542 unsigned NumElements = 0;
1543 unsigned NumInits = 0;
1544 if (!StructuredList)
1545 NumInits = IList->getNumInits();
1546 else if (Index < IList->getNumInits()) {
1547 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
1548 NumInits = SubList->getNumInits();
1549 }
1550
1551 if (const ArrayType *AType
1552 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1553 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1554 NumElements = CAType->getSize().getZExtValue();
1555 // Simple heuristic so that we don't allocate a very large
1556 // initializer with many empty entries at the end.
1557 if (NumInits && NumElements > NumInits)
1558 NumElements = 0;
1559 }
1560 } else if (const VectorType *VType = CurrentObjectType->getAsVectorType())
1561 NumElements = VType->getNumElements();
1562 else if (const RecordType *RType = CurrentObjectType->getAsRecordType()) {
1563 RecordDecl *RDecl = RType->getDecl();
1564 if (RDecl->isUnion())
1565 NumElements = 1;
1566 else
1567 NumElements = std::distance(RDecl->field_begin(),
1568 RDecl->field_end());
1569 }
1570
1571 if (NumElements < NumInits)
1572 NumElements = IList->getNumInits();
1573
1574 Result->reserveInits(NumElements);
1575
1576 // Link this new initializer list into the structured initializer
1577 // lists.
1578 if (StructuredList)
1579 StructuredList->updateInit(StructuredIndex, Result);
1580 else {
1581 Result->setSyntacticForm(IList);
1582 SyntacticToSemantic[IList] = Result;
1583 }
1584
1585 return Result;
1586}
1587
1588/// Update the initializer at index @p StructuredIndex within the
1589/// structured initializer list to the value @p expr.
1590void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1591 unsigned &StructuredIndex,
1592 Expr *expr) {
1593 // No structured initializer list to update
1594 if (!StructuredList)
1595 return;
1596
1597 if (Expr *PrevInit = StructuredList->updateInit(StructuredIndex, expr)) {
1598 // This initializer overwrites a previous initializer. Warn.
1599 SemaRef.Diag(expr->getSourceRange().getBegin(),
1600 diag::warn_initializer_overrides)
1601 << expr->getSourceRange();
1602 SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1603 diag::note_previous_initializer)
1604 << /*FIXME:has side effects=*/0
1605 << PrevInit->getSourceRange();
1606 }
1607
1608 ++StructuredIndex;
1609}
1610
1611/// Check that the given Index expression is a valid array designator
1612/// value. This is essentailly just a wrapper around
1613/// VerifyIntegerConstantExpression that also checks for negative values
1614/// and produces a reasonable diagnostic if there is a
1615/// failure. Returns true if there was an error, false otherwise. If
1616/// everything went okay, Value will receive the value of the constant
1617/// expression.
1618static bool
1619CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1620 SourceLocation Loc = Index->getSourceRange().getBegin();
1621
1622 // Make sure this is an integer constant expression.
1623 if (S.VerifyIntegerConstantExpression(Index, &Value))
1624 return true;
1625
1626 if (Value.isSigned() && Value.isNegative())
1627 return S.Diag(Loc, diag::err_array_designator_negative)
1628 << Value.toString(10) << Index->getSourceRange();
1629
1630 Value.setIsUnsigned(true);
1631 return false;
1632}
1633
1634Sema::OwningExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1635 SourceLocation Loc,
1636 bool GNUSyntax,
1637 OwningExprResult Init) {
1638 typedef DesignatedInitExpr::Designator ASTDesignator;
1639
1640 bool Invalid = false;
1641 llvm::SmallVector<ASTDesignator, 32> Designators;
1642 llvm::SmallVector<Expr *, 32> InitExpressions;
1643
1644 // Build designators and check array designator expressions.
1645 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1646 const Designator &D = Desig.getDesignator(Idx);
1647 switch (D.getKind()) {
1648 case Designator::FieldDesignator:
1649 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1650 D.getFieldLoc()));
1651 break;
1652
1653 case Designator::ArrayDesignator: {
1654 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1655 llvm::APSInt IndexValue;
1656 if (!Index->isTypeDependent() &&
1657 !Index->isValueDependent() &&
1658 CheckArrayDesignatorExpr(*this, Index, IndexValue))
1659 Invalid = true;
1660 else {
1661 Designators.push_back(ASTDesignator(InitExpressions.size(),
1662 D.getLBracketLoc(),
1663 D.getRBracketLoc()));
1664 InitExpressions.push_back(Index);
1665 }
1666 break;
1667 }
1668
1669 case Designator::ArrayRangeDesignator: {
1670 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1671 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1672 llvm::APSInt StartValue;
1673 llvm::APSInt EndValue;
1674 bool StartDependent = StartIndex->isTypeDependent() ||
1675 StartIndex->isValueDependent();
1676 bool EndDependent = EndIndex->isTypeDependent() ||
1677 EndIndex->isValueDependent();
1678 if ((!StartDependent &&
1679 CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1680 (!EndDependent &&
1681 CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1682 Invalid = true;
1683 else {
1684 // Make sure we're comparing values with the same bit width.
1685 if (StartDependent || EndDependent) {
1686 // Nothing to compute.
1687 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1688 EndValue.extend(StartValue.getBitWidth());
1689 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1690 StartValue.extend(EndValue.getBitWidth());
1691
1692 if (!StartDependent && !EndDependent && EndValue < StartValue) {
1693 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1694 << StartValue.toString(10) << EndValue.toString(10)
1695 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1696 Invalid = true;
1697 } else {
1698 Designators.push_back(ASTDesignator(InitExpressions.size(),
1699 D.getLBracketLoc(),
1700 D.getEllipsisLoc(),
1701 D.getRBracketLoc()));
1702 InitExpressions.push_back(StartIndex);
1703 InitExpressions.push_back(EndIndex);
1704 }
1705 }
1706 break;
1707 }
1708 }
1709 }
1710
1711 if (Invalid || Init.isInvalid())
1712 return ExprError();
1713
1714 // Clear out the expressions within the designation.
1715 Desig.ClearExprs(*this);
1716
1717 DesignatedInitExpr *DIE
1718 = DesignatedInitExpr::Create(Context,
1719 Designators.data(), Designators.size(),
1720 InitExpressions.data(), InitExpressions.size(),
1721 Loc, GNUSyntax, Init.takeAs<Expr>());
1722 return Owned(DIE);
1723}
1724
1725bool Sema::CheckInitList(InitListExpr *&InitList, QualType &DeclType) {
1726 InitListChecker CheckInitList(*this, InitList, DeclType);
1727 if (!CheckInitList.HadError())
1728 InitList = CheckInitList.getFullyStructuredList();
1729
1730 return CheckInitList.HadError();
1731}
1732
1733/// \brief Diagnose any semantic errors with value-initialization of
1734/// the given type.
1735///
1736/// Value-initialization effectively zero-initializes any types
1737/// without user-declared constructors, and calls the default
1738/// constructor for a for any type that has a user-declared
1739/// constructor (C++ [dcl.init]p5). Value-initialization can fail when
1740/// a type with a user-declared constructor does not have an
1741/// accessible, non-deleted default constructor. In C, everything can
1742/// be value-initialized, which corresponds to C's notion of
1743/// initializing objects with static storage duration when no
1744/// initializer is provided for that object.
1745///
1746/// \returns true if there was an error, false otherwise.
1747bool Sema::CheckValueInitialization(QualType Type, SourceLocation Loc) {
1748 // C++ [dcl.init]p5:
1749 //
1750 // To value-initialize an object of type T means:
1751
1752 // -- if T is an array type, then each element is value-initialized;
1753 if (const ArrayType *AT = Context.getAsArrayType(Type))
1754 return CheckValueInitialization(AT->getElementType(), Loc);
1755
1756 if (const RecordType *RT = Type->getAsRecordType()) {
1757 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1758 // -- if T is a class type (clause 9) with a user-declared
1759 // constructor (12.1), then the default constructor for T is
1760 // called (and the initialization is ill-formed if T has no
1761 // accessible default constructor);
1762 if (ClassDecl->hasUserDeclaredConstructor())
1763 // FIXME: Eventually, we'll need to put the constructor decl into the
1764 // AST.
1765 return PerformInitializationByConstructor(Type, 0, 0, Loc,
1766 SourceRange(Loc),
1767 DeclarationName(),
1768 IK_Direct);
1769 }
1770 }
1771
1772 if (Type->isReferenceType()) {
1773 // C++ [dcl.init]p5:
1774 // [...] A program that calls for default-initialization or
1775 // value-initialization of an entity of reference type is
1776 // ill-formed. [...]
1777 // FIXME: Once we have code that goes through this path, add an actual
1778 // diagnostic :)
1779 }
1780
1781 return false;
1782}