Deleted Added
full compact
SemaExpr.cpp (280031) SemaExpr.cpp (283526)
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TreeTransform.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTLambda.h"
19#include "clang/AST/ASTMutationListener.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/EvaluatedExprVisitor.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/RecursiveASTVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/LiteralSupport.h"
33#include "clang/Lex/Preprocessor.h"
34#include "clang/Sema/AnalysisBasedWarnings.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Designator.h"
38#include "clang/Sema/Initialization.h"
39#include "clang/Sema/Lookup.h"
40#include "clang/Sema/ParsedTemplate.h"
41#include "clang/Sema/Scope.h"
42#include "clang/Sema/ScopeInfo.h"
43#include "clang/Sema/SemaFixItUtils.h"
44#include "clang/Sema/Template.h"
45#include "llvm/Support/ConvertUTF.h"
46using namespace clang;
47using namespace sema;
48
49/// \brief Determine whether the use of this declaration is valid, without
50/// emitting diagnostics.
51bool Sema::CanUseDecl(NamedDecl *D) {
52 // See if this is an auto-typed variable whose initializer we are parsing.
53 if (ParsingInitForAutoVars.count(D))
54 return false;
55
56 // See if this is a deleted function.
57 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
58 if (FD->isDeleted())
59 return false;
60
61 // If the function has a deduced return type, and we can't deduce it,
62 // then we can't use it either.
63 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
64 DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
65 return false;
66 }
67
68 // See if this function is unavailable.
69 if (D->getAvailability() == AR_Unavailable &&
70 cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
71 return false;
72
73 return true;
74}
75
76static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
77 // Warn if this is used but marked unused.
78 if (D->hasAttr<UnusedAttr>()) {
79 const Decl *DC = cast<Decl>(S.getCurObjCLexicalContext());
80 if (!DC->hasAttr<UnusedAttr>())
81 S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
82 }
83}
84
85static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
86 NamedDecl *D, SourceLocation Loc,
87 const ObjCInterfaceDecl *UnknownObjCClass,
88 bool ObjCPropertyAccess) {
89 // See if this declaration is unavailable or deprecated.
90 std::string Message;
91
92 // Forward class declarations get their attributes from their definition.
93 if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
94 if (IDecl->getDefinition())
95 D = IDecl->getDefinition();
96 }
97 AvailabilityResult Result = D->getAvailability(&Message);
98 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
99 if (Result == AR_Available) {
100 const DeclContext *DC = ECD->getDeclContext();
101 if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
102 Result = TheEnumDecl->getAvailability(&Message);
103 }
104
105 const ObjCPropertyDecl *ObjCPDecl = nullptr;
106 if (Result == AR_Deprecated || Result == AR_Unavailable) {
107 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
108 if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
109 AvailabilityResult PDeclResult = PD->getAvailability(nullptr);
110 if (PDeclResult == Result)
111 ObjCPDecl = PD;
112 }
113 }
114 }
115
116 switch (Result) {
117 case AR_Available:
118 case AR_NotYetIntroduced:
119 break;
1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TreeTransform.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTLambda.h"
19#include "clang/AST/ASTMutationListener.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/EvaluatedExprVisitor.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/RecursiveASTVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/LiteralSupport.h"
33#include "clang/Lex/Preprocessor.h"
34#include "clang/Sema/AnalysisBasedWarnings.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Designator.h"
38#include "clang/Sema/Initialization.h"
39#include "clang/Sema/Lookup.h"
40#include "clang/Sema/ParsedTemplate.h"
41#include "clang/Sema/Scope.h"
42#include "clang/Sema/ScopeInfo.h"
43#include "clang/Sema/SemaFixItUtils.h"
44#include "clang/Sema/Template.h"
45#include "llvm/Support/ConvertUTF.h"
46using namespace clang;
47using namespace sema;
48
49/// \brief Determine whether the use of this declaration is valid, without
50/// emitting diagnostics.
51bool Sema::CanUseDecl(NamedDecl *D) {
52 // See if this is an auto-typed variable whose initializer we are parsing.
53 if (ParsingInitForAutoVars.count(D))
54 return false;
55
56 // See if this is a deleted function.
57 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
58 if (FD->isDeleted())
59 return false;
60
61 // If the function has a deduced return type, and we can't deduce it,
62 // then we can't use it either.
63 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
64 DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
65 return false;
66 }
67
68 // See if this function is unavailable.
69 if (D->getAvailability() == AR_Unavailable &&
70 cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
71 return false;
72
73 return true;
74}
75
76static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
77 // Warn if this is used but marked unused.
78 if (D->hasAttr<UnusedAttr>()) {
79 const Decl *DC = cast<Decl>(S.getCurObjCLexicalContext());
80 if (!DC->hasAttr<UnusedAttr>())
81 S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
82 }
83}
84
85static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
86 NamedDecl *D, SourceLocation Loc,
87 const ObjCInterfaceDecl *UnknownObjCClass,
88 bool ObjCPropertyAccess) {
89 // See if this declaration is unavailable or deprecated.
90 std::string Message;
91
92 // Forward class declarations get their attributes from their definition.
93 if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
94 if (IDecl->getDefinition())
95 D = IDecl->getDefinition();
96 }
97 AvailabilityResult Result = D->getAvailability(&Message);
98 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
99 if (Result == AR_Available) {
100 const DeclContext *DC = ECD->getDeclContext();
101 if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
102 Result = TheEnumDecl->getAvailability(&Message);
103 }
104
105 const ObjCPropertyDecl *ObjCPDecl = nullptr;
106 if (Result == AR_Deprecated || Result == AR_Unavailable) {
107 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
108 if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
109 AvailabilityResult PDeclResult = PD->getAvailability(nullptr);
110 if (PDeclResult == Result)
111 ObjCPDecl = PD;
112 }
113 }
114 }
115
116 switch (Result) {
117 case AR_Available:
118 case AR_NotYetIntroduced:
119 break;
120
120
121 case AR_Deprecated:
122 if (S.getCurContextAvailability() != AR_Deprecated)
123 S.EmitAvailabilityWarning(Sema::AD_Deprecation,
124 D, Message, Loc, UnknownObjCClass, ObjCPDecl,
125 ObjCPropertyAccess);
126 break;
127
128 case AR_Unavailable:
129 if (S.getCurContextAvailability() != AR_Unavailable)
130 S.EmitAvailabilityWarning(Sema::AD_Unavailable,
131 D, Message, Loc, UnknownObjCClass, ObjCPDecl,
132 ObjCPropertyAccess);
133 break;
134
135 }
136 return Result;
137}
138
139/// \brief Emit a note explaining that this function is deleted.
140void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
141 assert(Decl->isDeleted());
142
143 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
144
145 if (Method && Method->isDeleted() && Method->isDefaulted()) {
146 // If the method was explicitly defaulted, point at that declaration.
147 if (!Method->isImplicit())
148 Diag(Decl->getLocation(), diag::note_implicitly_deleted);
149
150 // Try to diagnose why this special member function was implicitly
151 // deleted. This might fail, if that reason no longer applies.
152 CXXSpecialMember CSM = getSpecialMember(Method);
153 if (CSM != CXXInvalid)
154 ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
155
156 return;
157 }
158
159 if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Decl)) {
160 if (CXXConstructorDecl *BaseCD =
161 const_cast<CXXConstructorDecl*>(CD->getInheritedConstructor())) {
162 Diag(Decl->getLocation(), diag::note_inherited_deleted_here);
163 if (BaseCD->isDeleted()) {
164 NoteDeletedFunction(BaseCD);
165 } else {
166 // FIXME: An explanation of why exactly it can't be inherited
167 // would be nice.
168 Diag(BaseCD->getLocation(), diag::note_cannot_inherit);
169 }
170 return;
171 }
172 }
173
174 Diag(Decl->getLocation(), diag::note_availability_specified_here)
175 << Decl << true;
176}
177
178/// \brief Determine whether a FunctionDecl was ever declared with an
179/// explicit storage class.
180static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
181 for (auto I : D->redecls()) {
182 if (I->getStorageClass() != SC_None)
183 return true;
184 }
185 return false;
186}
187
188/// \brief Check whether we're in an extern inline function and referring to a
189/// variable or function with internal linkage (C11 6.7.4p3).
190///
191/// This is only a warning because we used to silently accept this code, but
192/// in many cases it will not behave correctly. This is not enabled in C++ mode
193/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
194/// and so while there may still be user mistakes, most of the time we can't
195/// prove that there are errors.
196static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
197 const NamedDecl *D,
198 SourceLocation Loc) {
199 // This is disabled under C++; there are too many ways for this to fire in
200 // contexts where the warning is a false positive, or where it is technically
201 // correct but benign.
202 if (S.getLangOpts().CPlusPlus)
203 return;
204
205 // Check if this is an inlined function or method.
206 FunctionDecl *Current = S.getCurFunctionDecl();
207 if (!Current)
208 return;
209 if (!Current->isInlined())
210 return;
211 if (!Current->isExternallyVisible())
212 return;
213
214 // Check if the decl has internal linkage.
215 if (D->getFormalLinkage() != InternalLinkage)
216 return;
217
218 // Downgrade from ExtWarn to Extension if
219 // (1) the supposedly external inline function is in the main file,
220 // and probably won't be included anywhere else.
221 // (2) the thing we're referencing is a pure function.
222 // (3) the thing we're referencing is another inline function.
223 // This last can give us false negatives, but it's better than warning on
224 // wrappers for simple C library functions.
225 const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
226 bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
227 if (!DowngradeWarning && UsedFn)
228 DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
229
230 S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
231 : diag::ext_internal_in_extern_inline)
232 << /*IsVar=*/!UsedFn << D;
233
234 S.MaybeSuggestAddingStaticToDecl(Current);
235
236 S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
237 << D;
238}
239
240void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
241 const FunctionDecl *First = Cur->getFirstDecl();
242
243 // Suggest "static" on the function, if possible.
244 if (!hasAnyExplicitStorageClass(First)) {
245 SourceLocation DeclBegin = First->getSourceRange().getBegin();
246 Diag(DeclBegin, diag::note_convert_inline_to_static)
247 << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
248 }
249}
250
251/// \brief Determine whether the use of this declaration is valid, and
252/// emit any corresponding diagnostics.
253///
254/// This routine diagnoses various problems with referencing
255/// declarations that can occur when using a declaration. For example,
256/// it might warn if a deprecated or unavailable declaration is being
257/// used, or produce an error (and return true) if a C++0x deleted
258/// function is being used.
259///
260/// \returns true if there was an error (this declaration cannot be
261/// referenced), false otherwise.
262///
263bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
264 const ObjCInterfaceDecl *UnknownObjCClass,
265 bool ObjCPropertyAccess) {
266 if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
267 // If there were any diagnostics suppressed by template argument deduction,
268 // emit them now.
269 SuppressedDiagnosticsMap::iterator
270 Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
271 if (Pos != SuppressedDiagnostics.end()) {
272 SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
273 for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
274 Diag(Suppressed[I].first, Suppressed[I].second);
275
276 // Clear out the list of suppressed diagnostics, so that we don't emit
277 // them again for this specialization. However, we don't obsolete this
278 // entry from the table, because we want to avoid ever emitting these
279 // diagnostics again.
280 Suppressed.clear();
281 }
282
283 // C++ [basic.start.main]p3:
284 // The function 'main' shall not be used within a program.
285 if (cast<FunctionDecl>(D)->isMain())
286 Diag(Loc, diag::ext_main_used);
287 }
288
289 // See if this is an auto-typed variable whose initializer we are parsing.
290 if (ParsingInitForAutoVars.count(D)) {
291 Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
292 << D->getDeclName();
293 return true;
294 }
295
296 // See if this is a deleted function.
297 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
298 if (FD->isDeleted()) {
299 Diag(Loc, diag::err_deleted_function_use);
300 NoteDeletedFunction(FD);
301 return true;
302 }
303
304 // If the function has a deduced return type, and we can't deduce it,
305 // then we can't use it either.
306 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
307 DeduceReturnType(FD, Loc))
308 return true;
309 }
310 DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass, ObjCPropertyAccess);
311
312 DiagnoseUnusedOfDecl(*this, D, Loc);
313
314 diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
315
316 return false;
317}
318
319/// \brief Retrieve the message suffix that should be added to a
320/// diagnostic complaining about the given function being deleted or
321/// unavailable.
322std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
323 std::string Message;
324 if (FD->getAvailability(&Message))
325 return ": " + Message;
326
327 return std::string();
328}
329
330/// DiagnoseSentinelCalls - This routine checks whether a call or
331/// message-send is to a declaration with the sentinel attribute, and
332/// if so, it checks that the requirements of the sentinel are
333/// satisfied.
334void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
335 ArrayRef<Expr *> Args) {
336 const SentinelAttr *attr = D->getAttr<SentinelAttr>();
337 if (!attr)
338 return;
339
340 // The number of formal parameters of the declaration.
341 unsigned numFormalParams;
342
343 // The kind of declaration. This is also an index into a %select in
344 // the diagnostic.
345 enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
346
347 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
348 numFormalParams = MD->param_size();
349 calleeType = CT_Method;
350 } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
351 numFormalParams = FD->param_size();
352 calleeType = CT_Function;
353 } else if (isa<VarDecl>(D)) {
354 QualType type = cast<ValueDecl>(D)->getType();
355 const FunctionType *fn = nullptr;
356 if (const PointerType *ptr = type->getAs<PointerType>()) {
357 fn = ptr->getPointeeType()->getAs<FunctionType>();
358 if (!fn) return;
359 calleeType = CT_Function;
360 } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
361 fn = ptr->getPointeeType()->castAs<FunctionType>();
362 calleeType = CT_Block;
363 } else {
364 return;
365 }
366
367 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
368 numFormalParams = proto->getNumParams();
369 } else {
370 numFormalParams = 0;
371 }
372 } else {
373 return;
374 }
375
376 // "nullPos" is the number of formal parameters at the end which
377 // effectively count as part of the variadic arguments. This is
378 // useful if you would prefer to not have *any* formal parameters,
379 // but the language forces you to have at least one.
380 unsigned nullPos = attr->getNullPos();
381 assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
382 numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
383
384 // The number of arguments which should follow the sentinel.
385 unsigned numArgsAfterSentinel = attr->getSentinel();
386
387 // If there aren't enough arguments for all the formal parameters,
388 // the sentinel, and the args after the sentinel, complain.
389 if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
390 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
391 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
392 return;
393 }
394
395 // Otherwise, find the sentinel expression.
396 Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
397 if (!sentinelExpr) return;
398 if (sentinelExpr->isValueDependent()) return;
399 if (Context.isSentinelNullExpr(sentinelExpr)) return;
400
401 // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
402 // or 'NULL' if those are actually defined in the context. Only use
403 // 'nil' for ObjC methods, where it's much more likely that the
404 // variadic arguments form a list of object pointers.
405 SourceLocation MissingNilLoc
406 = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
407 std::string NullValue;
408 if (calleeType == CT_Method &&
409 PP.getIdentifierInfo("nil")->hasMacroDefinition())
410 NullValue = "nil";
411 else if (getLangOpts().CPlusPlus11)
412 NullValue = "nullptr";
413 else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
414 NullValue = "NULL";
415 else
416 NullValue = "(void*) 0";
417
418 if (MissingNilLoc.isInvalid())
419 Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
420 else
421 Diag(MissingNilLoc, diag::warn_missing_sentinel)
422 << int(calleeType)
423 << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
424 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
425}
426
427SourceRange Sema::getExprRange(Expr *E) const {
428 return E ? E->getSourceRange() : SourceRange();
429}
430
431//===----------------------------------------------------------------------===//
432// Standard Promotions and Conversions
433//===----------------------------------------------------------------------===//
434
435/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
436ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
437 // Handle any placeholder expressions which made it here.
438 if (E->getType()->isPlaceholderType()) {
439 ExprResult result = CheckPlaceholderExpr(E);
440 if (result.isInvalid()) return ExprError();
441 E = result.get();
442 }
443
444 QualType Ty = E->getType();
445 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
446
447 if (Ty->isFunctionType()) {
448 // If we are here, we are not calling a function but taking
449 // its address (which is not allowed in OpenCL v1.0 s6.8.a.3).
450 if (getLangOpts().OpenCL) {
451 Diag(E->getExprLoc(), diag::err_opencl_taking_function_address);
452 return ExprError();
453 }
454 E = ImpCastExprToType(E, Context.getPointerType(Ty),
455 CK_FunctionToPointerDecay).get();
456 } else if (Ty->isArrayType()) {
457 // In C90 mode, arrays only promote to pointers if the array expression is
458 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
459 // type 'array of type' is converted to an expression that has type 'pointer
460 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
461 // that has type 'array of type' ...". The relevant change is "an lvalue"
462 // (C90) to "an expression" (C99).
463 //
464 // C++ 4.2p1:
465 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
466 // T" can be converted to an rvalue of type "pointer to T".
467 //
468 if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
469 E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
470 CK_ArrayToPointerDecay).get();
471 }
472 return E;
473}
474
475static void CheckForNullPointerDereference(Sema &S, Expr *E) {
476 // Check to see if we are dereferencing a null pointer. If so,
477 // and if not volatile-qualified, this is undefined behavior that the
478 // optimizer will delete, so warn about it. People sometimes try to use this
479 // to get a deterministic trap and are surprised by clang's behavior. This
480 // only handles the pattern "*null", which is a very syntactic check.
481 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
482 if (UO->getOpcode() == UO_Deref &&
483 UO->getSubExpr()->IgnoreParenCasts()->
484 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
485 !UO->getType().isVolatileQualified()) {
486 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
487 S.PDiag(diag::warn_indirection_through_null)
488 << UO->getSubExpr()->getSourceRange());
489 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
490 S.PDiag(diag::note_indirection_through_null));
491 }
492}
493
494static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
495 SourceLocation AssignLoc,
496 const Expr* RHS) {
497 const ObjCIvarDecl *IV = OIRE->getDecl();
498 if (!IV)
499 return;
500
501 DeclarationName MemberName = IV->getDeclName();
502 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
503 if (!Member || !Member->isStr("isa"))
504 return;
505
506 const Expr *Base = OIRE->getBase();
507 QualType BaseType = Base->getType();
508 if (OIRE->isArrow())
509 BaseType = BaseType->getPointeeType();
510 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
511 if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
512 ObjCInterfaceDecl *ClassDeclared = nullptr;
513 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
514 if (!ClassDeclared->getSuperClass()
515 && (*ClassDeclared->ivar_begin()) == IV) {
516 if (RHS) {
517 NamedDecl *ObjectSetClass =
518 S.LookupSingleName(S.TUScope,
519 &S.Context.Idents.get("object_setClass"),
520 SourceLocation(), S.LookupOrdinaryName);
521 if (ObjectSetClass) {
522 SourceLocation RHSLocEnd = S.PP.getLocForEndOfToken(RHS->getLocEnd());
523 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) <<
524 FixItHint::CreateInsertion(OIRE->getLocStart(), "object_setClass(") <<
525 FixItHint::CreateReplacement(SourceRange(OIRE->getOpLoc(),
526 AssignLoc), ",") <<
527 FixItHint::CreateInsertion(RHSLocEnd, ")");
528 }
529 else
530 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
531 } else {
532 NamedDecl *ObjectGetClass =
533 S.LookupSingleName(S.TUScope,
534 &S.Context.Idents.get("object_getClass"),
535 SourceLocation(), S.LookupOrdinaryName);
536 if (ObjectGetClass)
537 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) <<
538 FixItHint::CreateInsertion(OIRE->getLocStart(), "object_getClass(") <<
539 FixItHint::CreateReplacement(
540 SourceRange(OIRE->getOpLoc(),
541 OIRE->getLocEnd()), ")");
542 else
543 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
544 }
545 S.Diag(IV->getLocation(), diag::note_ivar_decl);
546 }
547 }
548}
549
550ExprResult Sema::DefaultLvalueConversion(Expr *E) {
551 // Handle any placeholder expressions which made it here.
552 if (E->getType()->isPlaceholderType()) {
553 ExprResult result = CheckPlaceholderExpr(E);
554 if (result.isInvalid()) return ExprError();
555 E = result.get();
556 }
557
558 // C++ [conv.lval]p1:
559 // A glvalue of a non-function, non-array type T can be
560 // converted to a prvalue.
561 if (!E->isGLValue()) return E;
562
563 QualType T = E->getType();
564 assert(!T.isNull() && "r-value conversion on typeless expression?");
565
566 // We don't want to throw lvalue-to-rvalue casts on top of
567 // expressions of certain types in C++.
568 if (getLangOpts().CPlusPlus &&
569 (E->getType() == Context.OverloadTy ||
570 T->isDependentType() ||
571 T->isRecordType()))
572 return E;
573
574 // The C standard is actually really unclear on this point, and
575 // DR106 tells us what the result should be but not why. It's
576 // generally best to say that void types just doesn't undergo
577 // lvalue-to-rvalue at all. Note that expressions of unqualified
578 // 'void' type are never l-values, but qualified void can be.
579 if (T->isVoidType())
580 return E;
581
582 // OpenCL usually rejects direct accesses to values of 'half' type.
583 if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
584 T->isHalfType()) {
585 Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
586 << 0 << T;
587 return ExprError();
588 }
589
590 CheckForNullPointerDereference(*this, E);
591 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
592 NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
593 &Context.Idents.get("object_getClass"),
594 SourceLocation(), LookupOrdinaryName);
595 if (ObjectGetClass)
596 Diag(E->getExprLoc(), diag::warn_objc_isa_use) <<
597 FixItHint::CreateInsertion(OISA->getLocStart(), "object_getClass(") <<
598 FixItHint::CreateReplacement(
599 SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
600 else
601 Diag(E->getExprLoc(), diag::warn_objc_isa_use);
602 }
603 else if (const ObjCIvarRefExpr *OIRE =
604 dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
605 DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
606
607 // C++ [conv.lval]p1:
608 // [...] If T is a non-class type, the type of the prvalue is the
609 // cv-unqualified version of T. Otherwise, the type of the
610 // rvalue is T.
611 //
612 // C99 6.3.2.1p2:
613 // If the lvalue has qualified type, the value has the unqualified
614 // version of the type of the lvalue; otherwise, the value has the
615 // type of the lvalue.
616 if (T.hasQualifiers())
617 T = T.getUnqualifiedType();
618
619 UpdateMarkingForLValueToRValue(E);
620
621 // Loading a __weak object implicitly retains the value, so we need a cleanup to
622 // balance that.
623 if (getLangOpts().ObjCAutoRefCount &&
624 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
625 ExprNeedsCleanups = true;
626
627 ExprResult Res = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue, E,
628 nullptr, VK_RValue);
629
630 // C11 6.3.2.1p2:
631 // ... if the lvalue has atomic type, the value has the non-atomic version
632 // of the type of the lvalue ...
633 if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
634 T = Atomic->getValueType().getUnqualifiedType();
635 Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
636 nullptr, VK_RValue);
637 }
638
639 return Res;
640}
641
642ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
643 ExprResult Res = DefaultFunctionArrayConversion(E);
644 if (Res.isInvalid())
645 return ExprError();
646 Res = DefaultLvalueConversion(Res.get());
647 if (Res.isInvalid())
648 return ExprError();
649 return Res;
650}
651
652/// CallExprUnaryConversions - a special case of an unary conversion
653/// performed on a function designator of a call expression.
654ExprResult Sema::CallExprUnaryConversions(Expr *E) {
655 QualType Ty = E->getType();
656 ExprResult Res = E;
657 // Only do implicit cast for a function type, but not for a pointer
658 // to function type.
659 if (Ty->isFunctionType()) {
660 Res = ImpCastExprToType(E, Context.getPointerType(Ty),
661 CK_FunctionToPointerDecay).get();
662 if (Res.isInvalid())
663 return ExprError();
664 }
665 Res = DefaultLvalueConversion(Res.get());
666 if (Res.isInvalid())
667 return ExprError();
668 return Res.get();
669}
670
671/// UsualUnaryConversions - Performs various conversions that are common to most
672/// operators (C99 6.3). The conversions of array and function types are
673/// sometimes suppressed. For example, the array->pointer conversion doesn't
674/// apply if the array is an argument to the sizeof or address (&) operators.
675/// In these instances, this routine should *not* be called.
676ExprResult Sema::UsualUnaryConversions(Expr *E) {
677 // First, convert to an r-value.
678 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
679 if (Res.isInvalid())
680 return ExprError();
681 E = Res.get();
682
683 QualType Ty = E->getType();
684 assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
685
686 // Half FP have to be promoted to float unless it is natively supported
687 if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
688 return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
689
690 // Try to perform integral promotions if the object has a theoretically
691 // promotable type.
692 if (Ty->isIntegralOrUnscopedEnumerationType()) {
693 // C99 6.3.1.1p2:
694 //
695 // The following may be used in an expression wherever an int or
696 // unsigned int may be used:
697 // - an object or expression with an integer type whose integer
698 // conversion rank is less than or equal to the rank of int
699 // and unsigned int.
700 // - A bit-field of type _Bool, int, signed int, or unsigned int.
701 //
702 // If an int can represent all values of the original type, the
703 // value is converted to an int; otherwise, it is converted to an
704 // unsigned int. These are called the integer promotions. All
705 // other types are unchanged by the integer promotions.
706
707 QualType PTy = Context.isPromotableBitField(E);
708 if (!PTy.isNull()) {
709 E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
710 return E;
711 }
712 if (Ty->isPromotableIntegerType()) {
713 QualType PT = Context.getPromotedIntegerType(Ty);
714 E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
715 return E;
716 }
717 }
718 return E;
719}
720
721/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
722/// do not have a prototype. Arguments that have type float or __fp16
723/// are promoted to double. All other argument types are converted by
724/// UsualUnaryConversions().
725ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
726 QualType Ty = E->getType();
727 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
728
729 ExprResult Res = UsualUnaryConversions(E);
730 if (Res.isInvalid())
731 return ExprError();
732 E = Res.get();
733
734 // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
735 // double.
736 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
737 if (BTy && (BTy->getKind() == BuiltinType::Half ||
738 BTy->getKind() == BuiltinType::Float))
739 E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
740
741 // C++ performs lvalue-to-rvalue conversion as a default argument
742 // promotion, even on class types, but note:
743 // C++11 [conv.lval]p2:
744 // When an lvalue-to-rvalue conversion occurs in an unevaluated
745 // operand or a subexpression thereof the value contained in the
746 // referenced object is not accessed. Otherwise, if the glvalue
747 // has a class type, the conversion copy-initializes a temporary
748 // of type T from the glvalue and the result of the conversion
749 // is a prvalue for the temporary.
750 // FIXME: add some way to gate this entire thing for correctness in
751 // potentially potentially evaluated contexts.
752 if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
753 ExprResult Temp = PerformCopyInitialization(
754 InitializedEntity::InitializeTemporary(E->getType()),
755 E->getExprLoc(), E);
756 if (Temp.isInvalid())
757 return ExprError();
758 E = Temp.get();
759 }
760
761 return E;
762}
763
764/// Determine the degree of POD-ness for an expression.
765/// Incomplete types are considered POD, since this check can be performed
766/// when we're in an unevaluated context.
767Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
768 if (Ty->isIncompleteType()) {
769 // C++11 [expr.call]p7:
770 // After these conversions, if the argument does not have arithmetic,
771 // enumeration, pointer, pointer to member, or class type, the program
772 // is ill-formed.
773 //
774 // Since we've already performed array-to-pointer and function-to-pointer
775 // decay, the only such type in C++ is cv void. This also handles
776 // initializer lists as variadic arguments.
777 if (Ty->isVoidType())
778 return VAK_Invalid;
779
780 if (Ty->isObjCObjectType())
781 return VAK_Invalid;
782 return VAK_Valid;
783 }
784
785 if (Ty.isCXX98PODType(Context))
786 return VAK_Valid;
787
788 // C++11 [expr.call]p7:
789 // Passing a potentially-evaluated argument of class type (Clause 9)
790 // having a non-trivial copy constructor, a non-trivial move constructor,
791 // or a non-trivial destructor, with no corresponding parameter,
792 // is conditionally-supported with implementation-defined semantics.
793 if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
794 if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
795 if (!Record->hasNonTrivialCopyConstructor() &&
796 !Record->hasNonTrivialMoveConstructor() &&
797 !Record->hasNonTrivialDestructor())
798 return VAK_ValidInCXX11;
799
800 if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
801 return VAK_Valid;
802
803 if (Ty->isObjCObjectType())
804 return VAK_Invalid;
805
806 if (getLangOpts().MSVCCompat)
807 return VAK_MSVCUndefined;
808
809 // FIXME: In C++11, these cases are conditionally-supported, meaning we're
810 // permitted to reject them. We should consider doing so.
811 return VAK_Undefined;
812}
813
814void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
815 // Don't allow one to pass an Objective-C interface to a vararg.
816 const QualType &Ty = E->getType();
817 VarArgKind VAK = isValidVarArgType(Ty);
818
819 // Complain about passing non-POD types through varargs.
820 switch (VAK) {
821 case VAK_ValidInCXX11:
822 DiagRuntimeBehavior(
823 E->getLocStart(), nullptr,
824 PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
825 << Ty << CT);
826 // Fall through.
827 case VAK_Valid:
828 if (Ty->isRecordType()) {
829 // This is unlikely to be what the user intended. If the class has a
830 // 'c_str' member function, the user probably meant to call that.
831 DiagRuntimeBehavior(E->getLocStart(), nullptr,
832 PDiag(diag::warn_pass_class_arg_to_vararg)
833 << Ty << CT << hasCStrMethod(E) << ".c_str()");
834 }
835 break;
836
837 case VAK_Undefined:
838 case VAK_MSVCUndefined:
839 DiagRuntimeBehavior(
840 E->getLocStart(), nullptr,
841 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
842 << getLangOpts().CPlusPlus11 << Ty << CT);
843 break;
844
845 case VAK_Invalid:
846 if (Ty->isObjCObjectType())
847 DiagRuntimeBehavior(
848 E->getLocStart(), nullptr,
849 PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
850 << Ty << CT);
851 else
852 Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg)
853 << isa<InitListExpr>(E) << Ty << CT;
854 break;
855 }
856}
857
858/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
859/// will create a trap if the resulting type is not a POD type.
860ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
861 FunctionDecl *FDecl) {
862 if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
863 // Strip the unbridged-cast placeholder expression off, if applicable.
864 if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
865 (CT == VariadicMethod ||
866 (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
867 E = stripARCUnbridgedCast(E);
868
869 // Otherwise, do normal placeholder checking.
870 } else {
871 ExprResult ExprRes = CheckPlaceholderExpr(E);
872 if (ExprRes.isInvalid())
873 return ExprError();
874 E = ExprRes.get();
875 }
876 }
877
878 ExprResult ExprRes = DefaultArgumentPromotion(E);
879 if (ExprRes.isInvalid())
880 return ExprError();
881 E = ExprRes.get();
882
883 // Diagnostics regarding non-POD argument types are
884 // emitted along with format string checking in Sema::CheckFunctionCall().
885 if (isValidVarArgType(E->getType()) == VAK_Undefined) {
886 // Turn this into a trap.
887 CXXScopeSpec SS;
888 SourceLocation TemplateKWLoc;
889 UnqualifiedId Name;
890 Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
891 E->getLocStart());
892 ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
893 Name, true, false);
894 if (TrapFn.isInvalid())
895 return ExprError();
896
897 ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
898 E->getLocStart(), None,
899 E->getLocEnd());
900 if (Call.isInvalid())
901 return ExprError();
902
903 ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
904 Call.get(), E);
905 if (Comma.isInvalid())
906 return ExprError();
907 return Comma.get();
908 }
909
910 if (!getLangOpts().CPlusPlus &&
911 RequireCompleteType(E->getExprLoc(), E->getType(),
912 diag::err_call_incomplete_argument))
913 return ExprError();
914
915 return E;
916}
917
918/// \brief Converts an integer to complex float type. Helper function of
919/// UsualArithmeticConversions()
920///
921/// \return false if the integer expression is an integer type and is
922/// successfully converted to the complex type.
923static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
924 ExprResult &ComplexExpr,
925 QualType IntTy,
926 QualType ComplexTy,
927 bool SkipCast) {
928 if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
929 if (SkipCast) return false;
930 if (IntTy->isIntegerType()) {
931 QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
932 IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
933 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
934 CK_FloatingRealToComplex);
935 } else {
936 assert(IntTy->isComplexIntegerType());
937 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
938 CK_IntegralComplexToFloatingComplex);
939 }
940 return false;
941}
942
943/// \brief Handle arithmetic conversion with complex types. Helper function of
944/// UsualArithmeticConversions()
945static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
946 ExprResult &RHS, QualType LHSType,
947 QualType RHSType,
948 bool IsCompAssign) {
949 // if we have an integer operand, the result is the complex type.
950 if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
951 /*skipCast*/false))
952 return LHSType;
953 if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
954 /*skipCast*/IsCompAssign))
955 return RHSType;
956
957 // This handles complex/complex, complex/float, or float/complex.
958 // When both operands are complex, the shorter operand is converted to the
959 // type of the longer, and that is the type of the result. This corresponds
960 // to what is done when combining two real floating-point operands.
961 // The fun begins when size promotion occur across type domains.
962 // From H&S 6.3.4: When one operand is complex and the other is a real
963 // floating-point type, the less precise type is converted, within it's
964 // real or complex domain, to the precision of the other type. For example,
965 // when combining a "long double" with a "double _Complex", the
966 // "double _Complex" is promoted to "long double _Complex".
967
968 // Compute the rank of the two types, regardless of whether they are complex.
969 int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
970
971 auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
972 auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
973 QualType LHSElementType =
974 LHSComplexType ? LHSComplexType->getElementType() : LHSType;
975 QualType RHSElementType =
976 RHSComplexType ? RHSComplexType->getElementType() : RHSType;
977
978 QualType ResultType = S.Context.getComplexType(LHSElementType);
979 if (Order < 0) {
980 // Promote the precision of the LHS if not an assignment.
981 ResultType = S.Context.getComplexType(RHSElementType);
982 if (!IsCompAssign) {
983 if (LHSComplexType)
984 LHS =
985 S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
986 else
987 LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
988 }
989 } else if (Order > 0) {
990 // Promote the precision of the RHS.
991 if (RHSComplexType)
992 RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
993 else
994 RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
995 }
996 return ResultType;
997}
998
999/// \brief Hande arithmetic conversion from integer to float. Helper function
1000/// of UsualArithmeticConversions()
1001static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1002 ExprResult &IntExpr,
1003 QualType FloatTy, QualType IntTy,
1004 bool ConvertFloat, bool ConvertInt) {
1005 if (IntTy->isIntegerType()) {
1006 if (ConvertInt)
1007 // Convert intExpr to the lhs floating point type.
1008 IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1009 CK_IntegralToFloating);
1010 return FloatTy;
1011 }
1012
1013 // Convert both sides to the appropriate complex float.
1014 assert(IntTy->isComplexIntegerType());
1015 QualType result = S.Context.getComplexType(FloatTy);
1016
1017 // _Complex int -> _Complex float
1018 if (ConvertInt)
1019 IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1020 CK_IntegralComplexToFloatingComplex);
1021
1022 // float -> _Complex float
1023 if (ConvertFloat)
1024 FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1025 CK_FloatingRealToComplex);
1026
1027 return result;
1028}
1029
1030/// \brief Handle arithmethic conversion with floating point types. Helper
1031/// function of UsualArithmeticConversions()
1032static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1033 ExprResult &RHS, QualType LHSType,
1034 QualType RHSType, bool IsCompAssign) {
1035 bool LHSFloat = LHSType->isRealFloatingType();
1036 bool RHSFloat = RHSType->isRealFloatingType();
1037
1038 // If we have two real floating types, convert the smaller operand
1039 // to the bigger result.
1040 if (LHSFloat && RHSFloat) {
1041 int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1042 if (order > 0) {
1043 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1044 return LHSType;
1045 }
1046
1047 assert(order < 0 && "illegal float comparison");
1048 if (!IsCompAssign)
1049 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1050 return RHSType;
1051 }
1052
1053 if (LHSFloat)
1054 return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1055 /*convertFloat=*/!IsCompAssign,
1056 /*convertInt=*/ true);
1057 assert(RHSFloat);
1058 return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1059 /*convertInt=*/ true,
1060 /*convertFloat=*/!IsCompAssign);
1061}
1062
1063typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1064
1065namespace {
1066/// These helper callbacks are placed in an anonymous namespace to
1067/// permit their use as function template parameters.
1068ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1069 return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1070}
1071
1072ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1073 return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1074 CK_IntegralComplexCast);
1075}
1076}
1077
1078/// \brief Handle integer arithmetic conversions. Helper function of
1079/// UsualArithmeticConversions()
1080template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1081static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1082 ExprResult &RHS, QualType LHSType,
1083 QualType RHSType, bool IsCompAssign) {
1084 // The rules for this case are in C99 6.3.1.8
1085 int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1086 bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1087 bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1088 if (LHSSigned == RHSSigned) {
1089 // Same signedness; use the higher-ranked type
1090 if (order >= 0) {
1091 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1092 return LHSType;
1093 } else if (!IsCompAssign)
1094 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1095 return RHSType;
1096 } else if (order != (LHSSigned ? 1 : -1)) {
1097 // The unsigned type has greater than or equal rank to the
1098 // signed type, so use the unsigned type
1099 if (RHSSigned) {
1100 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1101 return LHSType;
1102 } else if (!IsCompAssign)
1103 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1104 return RHSType;
1105 } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1106 // The two types are different widths; if we are here, that
1107 // means the signed type is larger than the unsigned type, so
1108 // use the signed type.
1109 if (LHSSigned) {
1110 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1111 return LHSType;
1112 } else if (!IsCompAssign)
1113 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1114 return RHSType;
1115 } else {
1116 // The signed type is higher-ranked than the unsigned type,
1117 // but isn't actually any bigger (like unsigned int and long
1118 // on most 32-bit systems). Use the unsigned type corresponding
1119 // to the signed type.
1120 QualType result =
1121 S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1122 RHS = (*doRHSCast)(S, RHS.get(), result);
1123 if (!IsCompAssign)
1124 LHS = (*doLHSCast)(S, LHS.get(), result);
1125 return result;
1126 }
1127}
1128
1129/// \brief Handle conversions with GCC complex int extension. Helper function
1130/// of UsualArithmeticConversions()
1131static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1132 ExprResult &RHS, QualType LHSType,
1133 QualType RHSType,
1134 bool IsCompAssign) {
1135 const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1136 const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1137
1138 if (LHSComplexInt && RHSComplexInt) {
1139 QualType LHSEltType = LHSComplexInt->getElementType();
1140 QualType RHSEltType = RHSComplexInt->getElementType();
1141 QualType ScalarType =
1142 handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1143 (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1144
1145 return S.Context.getComplexType(ScalarType);
1146 }
1147
1148 if (LHSComplexInt) {
1149 QualType LHSEltType = LHSComplexInt->getElementType();
1150 QualType ScalarType =
1151 handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1152 (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1153 QualType ComplexType = S.Context.getComplexType(ScalarType);
1154 RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1155 CK_IntegralRealToComplex);
1156
1157 return ComplexType;
1158 }
1159
1160 assert(RHSComplexInt);
1161
1162 QualType RHSEltType = RHSComplexInt->getElementType();
1163 QualType ScalarType =
1164 handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1165 (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1166 QualType ComplexType = S.Context.getComplexType(ScalarType);
1167
1168 if (!IsCompAssign)
1169 LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1170 CK_IntegralRealToComplex);
1171 return ComplexType;
1172}
1173
1174/// UsualArithmeticConversions - Performs various conversions that are common to
1175/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1176/// routine returns the first non-arithmetic type found. The client is
1177/// responsible for emitting appropriate error diagnostics.
1178QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1179 bool IsCompAssign) {
1180 if (!IsCompAssign) {
1181 LHS = UsualUnaryConversions(LHS.get());
1182 if (LHS.isInvalid())
1183 return QualType();
1184 }
1185
1186 RHS = UsualUnaryConversions(RHS.get());
1187 if (RHS.isInvalid())
1188 return QualType();
1189
1190 // For conversion purposes, we ignore any qualifiers.
1191 // For example, "const float" and "float" are equivalent.
1192 QualType LHSType =
1193 Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1194 QualType RHSType =
1195 Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1196
1197 // For conversion purposes, we ignore any atomic qualifier on the LHS.
1198 if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1199 LHSType = AtomicLHS->getValueType();
1200
1201 // If both types are identical, no conversion is needed.
1202 if (LHSType == RHSType)
1203 return LHSType;
1204
1205 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1206 // The caller can deal with this (e.g. pointer + int).
1207 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1208 return QualType();
1209
1210 // Apply unary and bitfield promotions to the LHS's type.
1211 QualType LHSUnpromotedType = LHSType;
1212 if (LHSType->isPromotableIntegerType())
1213 LHSType = Context.getPromotedIntegerType(LHSType);
1214 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1215 if (!LHSBitfieldPromoteTy.isNull())
1216 LHSType = LHSBitfieldPromoteTy;
1217 if (LHSType != LHSUnpromotedType && !IsCompAssign)
1218 LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1219
1220 // If both types are identical, no conversion is needed.
1221 if (LHSType == RHSType)
1222 return LHSType;
1223
1224 // At this point, we have two different arithmetic types.
1225
1226 // Handle complex types first (C99 6.3.1.8p1).
1227 if (LHSType->isComplexType() || RHSType->isComplexType())
1228 return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1229 IsCompAssign);
1230
1231 // Now handle "real" floating types (i.e. float, double, long double).
1232 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1233 return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1234 IsCompAssign);
1235
1236 // Handle GCC complex int extension.
1237 if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1238 return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1239 IsCompAssign);
1240
1241 // Finally, we have two differing integer types.
1242 return handleIntegerConversion<doIntegralCast, doIntegralCast>
1243 (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
1244}
1245
1246
1247//===----------------------------------------------------------------------===//
1248// Semantic Analysis for various Expression Types
1249//===----------------------------------------------------------------------===//
1250
1251
1252ExprResult
1253Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1254 SourceLocation DefaultLoc,
1255 SourceLocation RParenLoc,
1256 Expr *ControllingExpr,
1257 ArrayRef<ParsedType> ArgTypes,
1258 ArrayRef<Expr *> ArgExprs) {
1259 unsigned NumAssocs = ArgTypes.size();
1260 assert(NumAssocs == ArgExprs.size());
1261
1262 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1263 for (unsigned i = 0; i < NumAssocs; ++i) {
1264 if (ArgTypes[i])
1265 (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1266 else
1267 Types[i] = nullptr;
1268 }
1269
1270 ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1271 ControllingExpr,
1272 llvm::makeArrayRef(Types, NumAssocs),
1273 ArgExprs);
1274 delete [] Types;
1275 return ER;
1276}
1277
1278ExprResult
1279Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1280 SourceLocation DefaultLoc,
1281 SourceLocation RParenLoc,
1282 Expr *ControllingExpr,
1283 ArrayRef<TypeSourceInfo *> Types,
1284 ArrayRef<Expr *> Exprs) {
1285 unsigned NumAssocs = Types.size();
1286 assert(NumAssocs == Exprs.size());
1287 if (ControllingExpr->getType()->isPlaceholderType()) {
1288 ExprResult result = CheckPlaceholderExpr(ControllingExpr);
1289 if (result.isInvalid()) return ExprError();
1290 ControllingExpr = result.get();
1291 }
1292
1293 // The controlling expression is an unevaluated operand, so side effects are
1294 // likely unintended.
1295 if (ActiveTemplateInstantiations.empty() &&
1296 ControllingExpr->HasSideEffects(Context, false))
1297 Diag(ControllingExpr->getExprLoc(),
1298 diag::warn_side_effects_unevaluated_context);
1299
1300 bool TypeErrorFound = false,
1301 IsResultDependent = ControllingExpr->isTypeDependent(),
1302 ContainsUnexpandedParameterPack
1303 = ControllingExpr->containsUnexpandedParameterPack();
1304
1305 for (unsigned i = 0; i < NumAssocs; ++i) {
1306 if (Exprs[i]->containsUnexpandedParameterPack())
1307 ContainsUnexpandedParameterPack = true;
1308
1309 if (Types[i]) {
1310 if (Types[i]->getType()->containsUnexpandedParameterPack())
1311 ContainsUnexpandedParameterPack = true;
1312
1313 if (Types[i]->getType()->isDependentType()) {
1314 IsResultDependent = true;
1315 } else {
1316 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1317 // complete object type other than a variably modified type."
1318 unsigned D = 0;
1319 if (Types[i]->getType()->isIncompleteType())
1320 D = diag::err_assoc_type_incomplete;
1321 else if (!Types[i]->getType()->isObjectType())
1322 D = diag::err_assoc_type_nonobject;
1323 else if (Types[i]->getType()->isVariablyModifiedType())
1324 D = diag::err_assoc_type_variably_modified;
1325
1326 if (D != 0) {
1327 Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1328 << Types[i]->getTypeLoc().getSourceRange()
1329 << Types[i]->getType();
1330 TypeErrorFound = true;
1331 }
1332
1333 // C11 6.5.1.1p2 "No two generic associations in the same generic
1334 // selection shall specify compatible types."
1335 for (unsigned j = i+1; j < NumAssocs; ++j)
1336 if (Types[j] && !Types[j]->getType()->isDependentType() &&
1337 Context.typesAreCompatible(Types[i]->getType(),
1338 Types[j]->getType())) {
1339 Diag(Types[j]->getTypeLoc().getBeginLoc(),
1340 diag::err_assoc_compatible_types)
1341 << Types[j]->getTypeLoc().getSourceRange()
1342 << Types[j]->getType()
1343 << Types[i]->getType();
1344 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1345 diag::note_compat_assoc)
1346 << Types[i]->getTypeLoc().getSourceRange()
1347 << Types[i]->getType();
1348 TypeErrorFound = true;
1349 }
1350 }
1351 }
1352 }
1353 if (TypeErrorFound)
1354 return ExprError();
1355
1356 // If we determined that the generic selection is result-dependent, don't
1357 // try to compute the result expression.
1358 if (IsResultDependent)
1359 return new (Context) GenericSelectionExpr(
1360 Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1361 ContainsUnexpandedParameterPack);
1362
1363 SmallVector<unsigned, 1> CompatIndices;
1364 unsigned DefaultIndex = -1U;
1365 for (unsigned i = 0; i < NumAssocs; ++i) {
1366 if (!Types[i])
1367 DefaultIndex = i;
1368 else if (Context.typesAreCompatible(ControllingExpr->getType(),
1369 Types[i]->getType()))
1370 CompatIndices.push_back(i);
1371 }
1372
1373 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1374 // type compatible with at most one of the types named in its generic
1375 // association list."
1376 if (CompatIndices.size() > 1) {
1377 // We strip parens here because the controlling expression is typically
1378 // parenthesized in macro definitions.
1379 ControllingExpr = ControllingExpr->IgnoreParens();
1380 Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1381 << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1382 << (unsigned) CompatIndices.size();
1383 for (SmallVectorImpl<unsigned>::iterator I = CompatIndices.begin(),
1384 E = CompatIndices.end(); I != E; ++I) {
1385 Diag(Types[*I]->getTypeLoc().getBeginLoc(),
1386 diag::note_compat_assoc)
1387 << Types[*I]->getTypeLoc().getSourceRange()
1388 << Types[*I]->getType();
1389 }
1390 return ExprError();
1391 }
1392
1393 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1394 // its controlling expression shall have type compatible with exactly one of
1395 // the types named in its generic association list."
1396 if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1397 // We strip parens here because the controlling expression is typically
1398 // parenthesized in macro definitions.
1399 ControllingExpr = ControllingExpr->IgnoreParens();
1400 Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1401 << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1402 return ExprError();
1403 }
1404
1405 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1406 // type name that is compatible with the type of the controlling expression,
1407 // then the result expression of the generic selection is the expression
1408 // in that generic association. Otherwise, the result expression of the
1409 // generic selection is the expression in the default generic association."
1410 unsigned ResultIndex =
1411 CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1412
1413 return new (Context) GenericSelectionExpr(
1414 Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1415 ContainsUnexpandedParameterPack, ResultIndex);
1416}
1417
1418/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1419/// location of the token and the offset of the ud-suffix within it.
1420static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1421 unsigned Offset) {
1422 return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1423 S.getLangOpts());
1424}
1425
1426/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1427/// the corresponding cooked (non-raw) literal operator, and build a call to it.
1428static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1429 IdentifierInfo *UDSuffix,
1430 SourceLocation UDSuffixLoc,
1431 ArrayRef<Expr*> Args,
1432 SourceLocation LitEndLoc) {
1433 assert(Args.size() <= 2 && "too many arguments for literal operator");
1434
1435 QualType ArgTy[2];
1436 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1437 ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1438 if (ArgTy[ArgIdx]->isArrayType())
1439 ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1440 }
1441
1442 DeclarationName OpName =
1443 S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1444 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1445 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1446
1447 LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1448 if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1449 /*AllowRaw*/false, /*AllowTemplate*/false,
1450 /*AllowStringTemplate*/false) == Sema::LOLR_Error)
1451 return ExprError();
1452
1453 return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1454}
1455
1456/// ActOnStringLiteral - The specified tokens were lexed as pasted string
1457/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
1458/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1459/// multiple tokens. However, the common case is that StringToks points to one
1460/// string.
1461///
1462ExprResult
1463Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1464 assert(!StringToks.empty() && "Must have at least one string!");
1465
1466 StringLiteralParser Literal(StringToks, PP);
1467 if (Literal.hadError)
1468 return ExprError();
1469
1470 SmallVector<SourceLocation, 4> StringTokLocs;
1471 for (unsigned i = 0; i != StringToks.size(); ++i)
1472 StringTokLocs.push_back(StringToks[i].getLocation());
1473
1474 QualType CharTy = Context.CharTy;
1475 StringLiteral::StringKind Kind = StringLiteral::Ascii;
1476 if (Literal.isWide()) {
1477 CharTy = Context.getWideCharType();
1478 Kind = StringLiteral::Wide;
1479 } else if (Literal.isUTF8()) {
1480 Kind = StringLiteral::UTF8;
1481 } else if (Literal.isUTF16()) {
1482 CharTy = Context.Char16Ty;
1483 Kind = StringLiteral::UTF16;
1484 } else if (Literal.isUTF32()) {
1485 CharTy = Context.Char32Ty;
1486 Kind = StringLiteral::UTF32;
1487 } else if (Literal.isPascal()) {
1488 CharTy = Context.UnsignedCharTy;
1489 }
1490
1491 QualType CharTyConst = CharTy;
1492 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1493 if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1494 CharTyConst.addConst();
1495
1496 // Get an array type for the string, according to C99 6.4.5. This includes
1497 // the nul terminator character as well as the string length for pascal
1498 // strings.
1499 QualType StrTy = Context.getConstantArrayType(CharTyConst,
1500 llvm::APInt(32, Literal.GetNumStringChars()+1),
1501 ArrayType::Normal, 0);
1502
1503 // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
1504 if (getLangOpts().OpenCL) {
1505 StrTy = Context.getAddrSpaceQualType(StrTy, LangAS::opencl_constant);
1506 }
1507
1508 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1509 StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1510 Kind, Literal.Pascal, StrTy,
1511 &StringTokLocs[0],
1512 StringTokLocs.size());
1513 if (Literal.getUDSuffix().empty())
1514 return Lit;
1515
1516 // We're building a user-defined literal.
1517 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1518 SourceLocation UDSuffixLoc =
1519 getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1520 Literal.getUDSuffixOffset());
1521
1522 // Make sure we're allowed user-defined literals here.
1523 if (!UDLScope)
1524 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1525
1526 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1527 // operator "" X (str, len)
1528 QualType SizeType = Context.getSizeType();
1529
1530 DeclarationName OpName =
1531 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1532 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1533 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1534
1535 QualType ArgTy[] = {
1536 Context.getArrayDecayedType(StrTy), SizeType
1537 };
1538
1539 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1540 switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1541 /*AllowRaw*/false, /*AllowTemplate*/false,
1542 /*AllowStringTemplate*/true)) {
1543
1544 case LOLR_Cooked: {
1545 llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1546 IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1547 StringTokLocs[0]);
1548 Expr *Args[] = { Lit, LenArg };
1549
1550 return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1551 }
1552
1553 case LOLR_StringTemplate: {
1554 TemplateArgumentListInfo ExplicitArgs;
1555
1556 unsigned CharBits = Context.getIntWidth(CharTy);
1557 bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1558 llvm::APSInt Value(CharBits, CharIsUnsigned);
1559
1560 TemplateArgument TypeArg(CharTy);
1561 TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1562 ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1563
1564 for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1565 Value = Lit->getCodeUnit(I);
1566 TemplateArgument Arg(Context, Value, CharTy);
1567 TemplateArgumentLocInfo ArgInfo;
1568 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1569 }
1570 return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1571 &ExplicitArgs);
1572 }
1573 case LOLR_Raw:
1574 case LOLR_Template:
1575 llvm_unreachable("unexpected literal operator lookup result");
1576 case LOLR_Error:
1577 return ExprError();
1578 }
1579 llvm_unreachable("unexpected literal operator lookup result");
1580}
1581
1582ExprResult
1583Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1584 SourceLocation Loc,
1585 const CXXScopeSpec *SS) {
1586 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1587 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1588}
1589
1590/// BuildDeclRefExpr - Build an expression that references a
1591/// declaration that does not require a closure capture.
1592ExprResult
1593Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1594 const DeclarationNameInfo &NameInfo,
1595 const CXXScopeSpec *SS, NamedDecl *FoundD,
1596 const TemplateArgumentListInfo *TemplateArgs) {
1597 if (getLangOpts().CUDA)
1598 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1599 if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1600 if (CheckCUDATarget(Caller, Callee)) {
1601 Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1602 << IdentifyCUDATarget(Callee) << D->getIdentifier()
1603 << IdentifyCUDATarget(Caller);
1604 Diag(D->getLocation(), diag::note_previous_decl)
1605 << D->getIdentifier();
1606 return ExprError();
1607 }
1608 }
1609
1610 bool RefersToCapturedVariable =
1611 isa<VarDecl>(D) &&
1612 NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
1613
1614 DeclRefExpr *E;
1615 if (isa<VarTemplateSpecializationDecl>(D)) {
1616 VarTemplateSpecializationDecl *VarSpec =
1617 cast<VarTemplateSpecializationDecl>(D);
1618
1619 E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
1620 : NestedNameSpecifierLoc(),
1621 VarSpec->getTemplateKeywordLoc(), D,
1622 RefersToCapturedVariable, NameInfo.getLoc(), Ty, VK,
1623 FoundD, TemplateArgs);
1624 } else {
1625 assert(!TemplateArgs && "No template arguments for non-variable"
1626 " template specialization references");
1627 E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
1628 : NestedNameSpecifierLoc(),
1629 SourceLocation(), D, RefersToCapturedVariable,
1630 NameInfo, Ty, VK, FoundD);
1631 }
1632
1633 MarkDeclRefReferenced(E);
1634
1635 if (getLangOpts().ObjCARCWeak && isa<VarDecl>(D) &&
1636 Ty.getObjCLifetime() == Qualifiers::OCL_Weak &&
1637 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getLocStart()))
1638 recordUseOfEvaluatedWeak(E);
1639
1640 // Just in case we're building an illegal pointer-to-member.
1641 FieldDecl *FD = dyn_cast<FieldDecl>(D);
1642 if (FD && FD->isBitField())
1643 E->setObjectKind(OK_BitField);
1644
1645 return E;
1646}
1647
1648/// Decomposes the given name into a DeclarationNameInfo, its location, and
1649/// possibly a list of template arguments.
1650///
1651/// If this produces template arguments, it is permitted to call
1652/// DecomposeTemplateName.
1653///
1654/// This actually loses a lot of source location information for
1655/// non-standard name kinds; we should consider preserving that in
1656/// some way.
1657void
1658Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1659 TemplateArgumentListInfo &Buffer,
1660 DeclarationNameInfo &NameInfo,
1661 const TemplateArgumentListInfo *&TemplateArgs) {
1662 if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1663 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1664 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1665
1666 ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
1667 Id.TemplateId->NumArgs);
1668 translateTemplateArguments(TemplateArgsPtr, Buffer);
1669
1670 TemplateName TName = Id.TemplateId->Template.get();
1671 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1672 NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1673 TemplateArgs = &Buffer;
1674 } else {
1675 NameInfo = GetNameFromUnqualifiedId(Id);
1676 TemplateArgs = nullptr;
1677 }
1678}
1679
1680static void emitEmptyLookupTypoDiagnostic(
1681 const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
1682 DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
1683 unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
1684 DeclContext *Ctx =
1685 SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
1686 if (!TC) {
1687 // Emit a special diagnostic for failed member lookups.
1688 // FIXME: computing the declaration context might fail here (?)
1689 if (Ctx)
1690 SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
1691 << SS.getRange();
1692 else
1693 SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
1694 return;
1695 }
1696
1697 std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
1698 bool DroppedSpecifier =
1699 TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
1700 unsigned NoteID =
1701 (TC.getCorrectionDecl() && isa<ImplicitParamDecl>(TC.getCorrectionDecl()))
1702 ? diag::note_implicit_param_decl
1703 : diag::note_previous_decl;
1704 if (!Ctx)
1705 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
1706 SemaRef.PDiag(NoteID));
1707 else
1708 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
1709 << Typo << Ctx << DroppedSpecifier
1710 << SS.getRange(),
1711 SemaRef.PDiag(NoteID));
1712}
1713
1714/// Diagnose an empty lookup.
1715///
1716/// \return false if new lookup candidates were found
1717bool
1718Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1719 std::unique_ptr<CorrectionCandidateCallback> CCC,
1720 TemplateArgumentListInfo *ExplicitTemplateArgs,
1721 ArrayRef<Expr *> Args, TypoExpr **Out) {
1722 DeclarationName Name = R.getLookupName();
1723
1724 unsigned diagnostic = diag::err_undeclared_var_use;
1725 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1726 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1727 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1728 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1729 diagnostic = diag::err_undeclared_use;
1730 diagnostic_suggest = diag::err_undeclared_use_suggest;
1731 }
1732
1733 // If the original lookup was an unqualified lookup, fake an
1734 // unqualified lookup. This is useful when (for example) the
1735 // original lookup would not have found something because it was a
1736 // dependent name.
1737 DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
1738 ? CurContext : nullptr;
1739 while (DC) {
1740 if (isa<CXXRecordDecl>(DC)) {
1741 LookupQualifiedName(R, DC);
1742
1743 if (!R.empty()) {
1744 // Don't give errors about ambiguities in this lookup.
1745 R.suppressDiagnostics();
1746
1747 // During a default argument instantiation the CurContext points
1748 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1749 // function parameter list, hence add an explicit check.
1750 bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1751 ActiveTemplateInstantiations.back().Kind ==
1752 ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1753 CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1754 bool isInstance = CurMethod &&
1755 CurMethod->isInstance() &&
1756 DC == CurMethod->getParent() && !isDefaultArgument;
1757
1758
1759 // Give a code modification hint to insert 'this->'.
1760 // TODO: fixit for inserting 'Base<T>::' in the other cases.
1761 // Actually quite difficult!
1762 if (getLangOpts().MSVCCompat)
1763 diagnostic = diag::ext_found_via_dependent_bases_lookup;
1764 if (isInstance) {
1765 Diag(R.getNameLoc(), diagnostic) << Name
1766 << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1767 UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1768 CallsUndergoingInstantiation.back()->getCallee());
1769
1770 CXXMethodDecl *DepMethod;
1771 if (CurMethod->isDependentContext())
1772 DepMethod = CurMethod;
1773 else if (CurMethod->getTemplatedKind() ==
1774 FunctionDecl::TK_FunctionTemplateSpecialization)
1775 DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
1776 getInstantiatedFromMemberTemplate()->getTemplatedDecl());
1777 else
1778 DepMethod = cast<CXXMethodDecl>(
1779 CurMethod->getInstantiatedFromMemberFunction());
1780 assert(DepMethod && "No template pattern found");
1781
1782 QualType DepThisType = DepMethod->getThisType(Context);
1783 CheckCXXThisCapture(R.getNameLoc());
1784 CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1785 R.getNameLoc(), DepThisType, false);
1786 TemplateArgumentListInfo TList;
1787 if (ULE->hasExplicitTemplateArgs())
1788 ULE->copyTemplateArgumentsInto(TList);
1789
1790 CXXScopeSpec SS;
1791 SS.Adopt(ULE->getQualifierLoc());
1792 CXXDependentScopeMemberExpr *DepExpr =
1793 CXXDependentScopeMemberExpr::Create(
1794 Context, DepThis, DepThisType, true, SourceLocation(),
1795 SS.getWithLocInContext(Context),
1796 ULE->getTemplateKeywordLoc(), nullptr,
1797 R.getLookupNameInfo(),
1798 ULE->hasExplicitTemplateArgs() ? &TList : nullptr);
1799 CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1800 } else {
1801 Diag(R.getNameLoc(), diagnostic) << Name;
1802 }
1803
1804 // Do we really want to note all of these?
1805 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1806 Diag((*I)->getLocation(), diag::note_dependent_var_use);
1807
1808 // Return true if we are inside a default argument instantiation
1809 // and the found name refers to an instance member function, otherwise
1810 // the function calling DiagnoseEmptyLookup will try to create an
1811 // implicit member call and this is wrong for default argument.
1812 if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1813 Diag(R.getNameLoc(), diag::err_member_call_without_object);
1814 return true;
1815 }
1816
1817 // Tell the callee to try to recover.
1818 return false;
1819 }
1820
1821 R.clear();
1822 }
1823
1824 // In Microsoft mode, if we are performing lookup from within a friend
1825 // function definition declared at class scope then we must set
1826 // DC to the lexical parent to be able to search into the parent
1827 // class.
1828 if (getLangOpts().MSVCCompat && isa<FunctionDecl>(DC) &&
1829 cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1830 DC->getLexicalParent()->isRecord())
1831 DC = DC->getLexicalParent();
1832 else
1833 DC = DC->getParent();
1834 }
1835
1836 // We didn't find anything, so try to correct for a typo.
1837 TypoCorrection Corrected;
1838 if (S && Out) {
1839 SourceLocation TypoLoc = R.getNameLoc();
1840 assert(!ExplicitTemplateArgs &&
1841 "Diagnosing an empty lookup with explicit template args!");
1842 *Out = CorrectTypoDelayed(
1843 R.getLookupNameInfo(), R.getLookupKind(), S, &SS, std::move(CCC),
1844 [=](const TypoCorrection &TC) {
1845 emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
1846 diagnostic, diagnostic_suggest);
1847 },
1848 nullptr, CTK_ErrorRecovery);
1849 if (*Out)
1850 return true;
1851 } else if (S && (Corrected =
1852 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S,
1853 &SS, std::move(CCC), CTK_ErrorRecovery))) {
1854 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1855 bool DroppedSpecifier =
1856 Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
1857 R.setLookupName(Corrected.getCorrection());
1858
1859 bool AcceptableWithRecovery = false;
1860 bool AcceptableWithoutRecovery = false;
1861 NamedDecl *ND = Corrected.getCorrectionDecl();
1862 if (ND) {
1863 if (Corrected.isOverloaded()) {
1864 OverloadCandidateSet OCS(R.getNameLoc(),
1865 OverloadCandidateSet::CSK_Normal);
1866 OverloadCandidateSet::iterator Best;
1867 for (TypoCorrection::decl_iterator CD = Corrected.begin(),
1868 CDEnd = Corrected.end();
1869 CD != CDEnd; ++CD) {
1870 if (FunctionTemplateDecl *FTD =
1871 dyn_cast<FunctionTemplateDecl>(*CD))
1872 AddTemplateOverloadCandidate(
1873 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1874 Args, OCS);
1875 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
1876 if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1877 AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1878 Args, OCS);
1879 }
1880 switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1881 case OR_Success:
1882 ND = Best->Function;
1883 Corrected.setCorrectionDecl(ND);
1884 break;
1885 default:
1886 // FIXME: Arbitrarily pick the first declaration for the note.
1887 Corrected.setCorrectionDecl(ND);
1888 break;
1889 }
1890 }
1891 R.addDecl(ND);
1892 if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
1893 CXXRecordDecl *Record = nullptr;
1894 if (Corrected.getCorrectionSpecifier()) {
1895 const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
1896 Record = Ty->getAsCXXRecordDecl();
1897 }
1898 if (!Record)
1899 Record = cast<CXXRecordDecl>(
1900 ND->getDeclContext()->getRedeclContext());
1901 R.setNamingClass(Record);
1902 }
1903
1904 AcceptableWithRecovery =
1905 isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND);
1906 // FIXME: If we ended up with a typo for a type name or
1907 // Objective-C class name, we're in trouble because the parser
1908 // is in the wrong place to recover. Suggest the typo
1909 // correction, but don't make it a fix-it since we're not going
1910 // to recover well anyway.
1911 AcceptableWithoutRecovery =
1912 isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
1913 } else {
1914 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1915 // because we aren't able to recover.
1916 AcceptableWithoutRecovery = true;
1917 }
1918
1919 if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
1920 unsigned NoteID = (Corrected.getCorrectionDecl() &&
1921 isa<ImplicitParamDecl>(Corrected.getCorrectionDecl()))
1922 ? diag::note_implicit_param_decl
1923 : diag::note_previous_decl;
1924 if (SS.isEmpty())
1925 diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
1926 PDiag(NoteID), AcceptableWithRecovery);
1927 else
1928 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
1929 << Name << computeDeclContext(SS, false)
1930 << DroppedSpecifier << SS.getRange(),
1931 PDiag(NoteID), AcceptableWithRecovery);
1932
1933 // Tell the callee whether to try to recover.
1934 return !AcceptableWithRecovery;
1935 }
1936 }
1937 R.clear();
1938
1939 // Emit a special diagnostic for failed member lookups.
1940 // FIXME: computing the declaration context might fail here (?)
1941 if (!SS.isEmpty()) {
1942 Diag(R.getNameLoc(), diag::err_no_member)
1943 << Name << computeDeclContext(SS, false)
1944 << SS.getRange();
1945 return true;
1946 }
1947
1948 // Give up, we can't recover.
1949 Diag(R.getNameLoc(), diagnostic) << Name;
1950 return true;
1951}
1952
1953/// In Microsoft mode, if we are inside a template class whose parent class has
1954/// dependent base classes, and we can't resolve an unqualified identifier, then
1955/// assume the identifier is a member of a dependent base class. We can only
1956/// recover successfully in static methods, instance methods, and other contexts
1957/// where 'this' is available. This doesn't precisely match MSVC's
1958/// instantiation model, but it's close enough.
1959static Expr *
1960recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
1961 DeclarationNameInfo &NameInfo,
1962 SourceLocation TemplateKWLoc,
1963 const TemplateArgumentListInfo *TemplateArgs) {
1964 // Only try to recover from lookup into dependent bases in static methods or
1965 // contexts where 'this' is available.
1966 QualType ThisType = S.getCurrentThisType();
1967 const CXXRecordDecl *RD = nullptr;
1968 if (!ThisType.isNull())
1969 RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
1970 else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
1971 RD = MD->getParent();
1972 if (!RD || !RD->hasAnyDependentBases())
1973 return nullptr;
1974
1975 // Diagnose this as unqualified lookup into a dependent base class. If 'this'
1976 // is available, suggest inserting 'this->' as a fixit.
1977 SourceLocation Loc = NameInfo.getLoc();
1978 auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
1979 DB << NameInfo.getName() << RD;
1980
1981 if (!ThisType.isNull()) {
1982 DB << FixItHint::CreateInsertion(Loc, "this->");
1983 return CXXDependentScopeMemberExpr::Create(
1984 Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
1985 /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
1986 /*FirstQualifierInScope=*/nullptr, NameInfo, TemplateArgs);
1987 }
1988
1989 // Synthesize a fake NNS that points to the derived class. This will
1990 // perform name lookup during template instantiation.
1991 CXXScopeSpec SS;
1992 auto *NNS =
1993 NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
1994 SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
1995 return DependentScopeDeclRefExpr::Create(
1996 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
1997 TemplateArgs);
1998}
1999
2000ExprResult
2001Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2002 SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2003 bool HasTrailingLParen, bool IsAddressOfOperand,
2004 std::unique_ptr<CorrectionCandidateCallback> CCC,
2005 bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2006 assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2007 "cannot be direct & operand and have a trailing lparen");
2008 if (SS.isInvalid())
2009 return ExprError();
2010
2011 TemplateArgumentListInfo TemplateArgsBuffer;
2012
2013 // Decompose the UnqualifiedId into the following data.
2014 DeclarationNameInfo NameInfo;
2015 const TemplateArgumentListInfo *TemplateArgs;
2016 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2017
2018 DeclarationName Name = NameInfo.getName();
2019 IdentifierInfo *II = Name.getAsIdentifierInfo();
2020 SourceLocation NameLoc = NameInfo.getLoc();
2021
2022 // C++ [temp.dep.expr]p3:
2023 // An id-expression is type-dependent if it contains:
2024 // -- an identifier that was declared with a dependent type,
2025 // (note: handled after lookup)
2026 // -- a template-id that is dependent,
2027 // (note: handled in BuildTemplateIdExpr)
2028 // -- a conversion-function-id that specifies a dependent type,
2029 // -- a nested-name-specifier that contains a class-name that
2030 // names a dependent type.
2031 // Determine whether this is a member of an unknown specialization;
2032 // we need to handle these differently.
2033 bool DependentID = false;
2034 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2035 Name.getCXXNameType()->isDependentType()) {
2036 DependentID = true;
2037 } else if (SS.isSet()) {
2038 if (DeclContext *DC = computeDeclContext(SS, false)) {
2039 if (RequireCompleteDeclContext(SS, DC))
2040 return ExprError();
2041 } else {
2042 DependentID = true;
2043 }
2044 }
2045
2046 if (DependentID)
2047 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2048 IsAddressOfOperand, TemplateArgs);
2049
2050 // Perform the required lookup.
2051 LookupResult R(*this, NameInfo,
2052 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
2053 ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
2054 if (TemplateArgs) {
2055 // Lookup the template name again to correctly establish the context in
2056 // which it was found. This is really unfortunate as we already did the
2057 // lookup to determine that it was a template name in the first place. If
2058 // this becomes a performance hit, we can work harder to preserve those
2059 // results until we get here but it's likely not worth it.
2060 bool MemberOfUnknownSpecialization;
2061 LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2062 MemberOfUnknownSpecialization);
2063
2064 if (MemberOfUnknownSpecialization ||
2065 (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2066 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2067 IsAddressOfOperand, TemplateArgs);
2068 } else {
2069 bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2070 LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2071
2072 // If the result might be in a dependent base class, this is a dependent
2073 // id-expression.
2074 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2075 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2076 IsAddressOfOperand, TemplateArgs);
2077
2078 // If this reference is in an Objective-C method, then we need to do
2079 // some special Objective-C lookup, too.
2080 if (IvarLookupFollowUp) {
2081 ExprResult E(LookupInObjCMethod(R, S, II, true));
2082 if (E.isInvalid())
2083 return ExprError();
2084
2085 if (Expr *Ex = E.getAs<Expr>())
2086 return Ex;
2087 }
2088 }
2089
2090 if (R.isAmbiguous())
2091 return ExprError();
2092
2093 // This could be an implicitly declared function reference (legal in C90,
2094 // extension in C99, forbidden in C++).
2095 if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
2096 NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2097 if (D) R.addDecl(D);
2098 }
2099
2100 // Determine whether this name might be a candidate for
2101 // argument-dependent lookup.
2102 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2103
2104 if (R.empty() && !ADL) {
2105 if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2106 if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2107 TemplateKWLoc, TemplateArgs))
2108 return E;
2109 }
2110
2111 // Don't diagnose an empty lookup for inline assembly.
2112 if (IsInlineAsmIdentifier)
2113 return ExprError();
2114
2115 // If this name wasn't predeclared and if this is not a function
2116 // call, diagnose the problem.
2117 TypoExpr *TE = nullptr;
2118 auto DefaultValidator = llvm::make_unique<CorrectionCandidateCallback>(
2119 II, SS.isValid() ? SS.getScopeRep() : nullptr);
2120 DefaultValidator->IsAddressOfOperand = IsAddressOfOperand;
2121 assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2122 "Typo correction callback misconfigured");
2123 if (CCC) {
2124 // Make sure the callback knows what the typo being diagnosed is.
2125 CCC->setTypoName(II);
2126 if (SS.isValid())
2127 CCC->setTypoNNS(SS.getScopeRep());
2128 }
2129 if (DiagnoseEmptyLookup(S, SS, R,
2130 CCC ? std::move(CCC) : std::move(DefaultValidator),
2131 nullptr, None, &TE)) {
2132 if (TE && KeywordReplacement) {
2133 auto &State = getTypoExprState(TE);
2134 auto BestTC = State.Consumer->getNextCorrection();
2135 if (BestTC.isKeyword()) {
2136 auto *II = BestTC.getCorrectionAsIdentifierInfo();
2137 if (State.DiagHandler)
2138 State.DiagHandler(BestTC);
2139 KeywordReplacement->startToken();
2140 KeywordReplacement->setKind(II->getTokenID());
2141 KeywordReplacement->setIdentifierInfo(II);
2142 KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2143 // Clean up the state associated with the TypoExpr, since it has
2144 // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2145 clearDelayedTypo(TE);
2146 // Signal that a correction to a keyword was performed by returning a
2147 // valid-but-null ExprResult.
2148 return (Expr*)nullptr;
2149 }
2150 State.Consumer->resetCorrectionStream();
2151 }
2152 return TE ? TE : ExprError();
2153 }
2154
2155 assert(!R.empty() &&
2156 "DiagnoseEmptyLookup returned false but added no results");
2157
2158 // If we found an Objective-C instance variable, let
2159 // LookupInObjCMethod build the appropriate expression to
2160 // reference the ivar.
2161 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2162 R.clear();
2163 ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2164 // In a hopelessly buggy code, Objective-C instance variable
2165 // lookup fails and no expression will be built to reference it.
2166 if (!E.isInvalid() && !E.get())
2167 return ExprError();
2168 return E;
2169 }
2170 }
2171
2172 // This is guaranteed from this point on.
2173 assert(!R.empty() || ADL);
2174
2175 // Check whether this might be a C++ implicit instance member access.
2176 // C++ [class.mfct.non-static]p3:
2177 // When an id-expression that is not part of a class member access
2178 // syntax and not used to form a pointer to member is used in the
2179 // body of a non-static member function of class X, if name lookup
2180 // resolves the name in the id-expression to a non-static non-type
2181 // member of some class C, the id-expression is transformed into a
2182 // class member access expression using (*this) as the
2183 // postfix-expression to the left of the . operator.
2184 //
2185 // But we don't actually need to do this for '&' operands if R
2186 // resolved to a function or overloaded function set, because the
2187 // expression is ill-formed if it actually works out to be a
2188 // non-static member function:
2189 //
2190 // C++ [expr.ref]p4:
2191 // Otherwise, if E1.E2 refers to a non-static member function. . .
2192 // [t]he expression can be used only as the left-hand operand of a
2193 // member function call.
2194 //
2195 // There are other safeguards against such uses, but it's important
2196 // to get this right here so that we don't end up making a
2197 // spuriously dependent expression if we're inside a dependent
2198 // instance method.
2199 if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2200 bool MightBeImplicitMember;
2201 if (!IsAddressOfOperand)
2202 MightBeImplicitMember = true;
2203 else if (!SS.isEmpty())
2204 MightBeImplicitMember = false;
2205 else if (R.isOverloadedResult())
2206 MightBeImplicitMember = false;
2207 else if (R.isUnresolvableResult())
2208 MightBeImplicitMember = true;
2209 else
2210 MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2211 isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2212 isa<MSPropertyDecl>(R.getFoundDecl());
2213
2214 if (MightBeImplicitMember)
2215 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2216 R, TemplateArgs);
2217 }
2218
2219 if (TemplateArgs || TemplateKWLoc.isValid()) {
2220
2221 // In C++1y, if this is a variable template id, then check it
2222 // in BuildTemplateIdExpr().
2223 // The single lookup result must be a variable template declaration.
2224 if (Id.getKind() == UnqualifiedId::IK_TemplateId && Id.TemplateId &&
2225 Id.TemplateId->Kind == TNK_Var_template) {
2226 assert(R.getAsSingle<VarTemplateDecl>() &&
2227 "There should only be one declaration found.");
2228 }
2229
2230 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2231 }
2232
2233 return BuildDeclarationNameExpr(SS, R, ADL);
2234}
2235
2236/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2237/// declaration name, generally during template instantiation.
2238/// There's a large number of things which don't need to be done along
2239/// this path.
2240ExprResult
2241Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
2242 const DeclarationNameInfo &NameInfo,
2243 bool IsAddressOfOperand,
2244 TypeSourceInfo **RecoveryTSI) {
2245 DeclContext *DC = computeDeclContext(SS, false);
2246 if (!DC)
2247 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2248 NameInfo, /*TemplateArgs=*/nullptr);
2249
2250 if (RequireCompleteDeclContext(SS, DC))
2251 return ExprError();
2252
2253 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2254 LookupQualifiedName(R, DC);
2255
2256 if (R.isAmbiguous())
2257 return ExprError();
2258
2259 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2260 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2261 NameInfo, /*TemplateArgs=*/nullptr);
2262
2263 if (R.empty()) {
2264 Diag(NameInfo.getLoc(), diag::err_no_member)
2265 << NameInfo.getName() << DC << SS.getRange();
2266 return ExprError();
2267 }
2268
2269 if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2270 // Diagnose a missing typename if this resolved unambiguously to a type in
2271 // a dependent context. If we can recover with a type, downgrade this to
2272 // a warning in Microsoft compatibility mode.
2273 unsigned DiagID = diag::err_typename_missing;
2274 if (RecoveryTSI && getLangOpts().MSVCCompat)
2275 DiagID = diag::ext_typename_missing;
2276 SourceLocation Loc = SS.getBeginLoc();
2277 auto D = Diag(Loc, DiagID);
2278 D << SS.getScopeRep() << NameInfo.getName().getAsString()
2279 << SourceRange(Loc, NameInfo.getEndLoc());
2280
2281 // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2282 // context.
2283 if (!RecoveryTSI)
2284 return ExprError();
2285
2286 // Only issue the fixit if we're prepared to recover.
2287 D << FixItHint::CreateInsertion(Loc, "typename ");
2288
2289 // Recover by pretending this was an elaborated type.
2290 QualType Ty = Context.getTypeDeclType(TD);
2291 TypeLocBuilder TLB;
2292 TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2293
2294 QualType ET = getElaboratedType(ETK_None, SS, Ty);
2295 ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2296 QTL.setElaboratedKeywordLoc(SourceLocation());
2297 QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2298
2299 *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2300
2301 return ExprEmpty();
2302 }
2303
2304 // Defend against this resolving to an implicit member access. We usually
2305 // won't get here if this might be a legitimate a class member (we end up in
2306 // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2307 // a pointer-to-member or in an unevaluated context in C++11.
2308 if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2309 return BuildPossibleImplicitMemberExpr(SS,
2310 /*TemplateKWLoc=*/SourceLocation(),
2311 R, /*TemplateArgs=*/nullptr);
2312
2313 return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2314}
2315
2316/// LookupInObjCMethod - The parser has read a name in, and Sema has
2317/// detected that we're currently inside an ObjC method. Perform some
2318/// additional lookup.
2319///
2320/// Ideally, most of this would be done by lookup, but there's
2321/// actually quite a lot of extra work involved.
2322///
2323/// Returns a null sentinel to indicate trivial success.
2324ExprResult
2325Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2326 IdentifierInfo *II, bool AllowBuiltinCreation) {
2327 SourceLocation Loc = Lookup.getNameLoc();
2328 ObjCMethodDecl *CurMethod = getCurMethodDecl();
2329
2330 // Check for error condition which is already reported.
2331 if (!CurMethod)
2332 return ExprError();
2333
2334 // There are two cases to handle here. 1) scoped lookup could have failed,
2335 // in which case we should look for an ivar. 2) scoped lookup could have
2336 // found a decl, but that decl is outside the current instance method (i.e.
2337 // a global variable). In these two cases, we do a lookup for an ivar with
2338 // this name, if the lookup sucedes, we replace it our current decl.
2339
2340 // If we're in a class method, we don't normally want to look for
2341 // ivars. But if we don't find anything else, and there's an
2342 // ivar, that's an error.
2343 bool IsClassMethod = CurMethod->isClassMethod();
2344
2345 bool LookForIvars;
2346 if (Lookup.empty())
2347 LookForIvars = true;
2348 else if (IsClassMethod)
2349 LookForIvars = false;
2350 else
2351 LookForIvars = (Lookup.isSingleResult() &&
2352 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2353 ObjCInterfaceDecl *IFace = nullptr;
2354 if (LookForIvars) {
2355 IFace = CurMethod->getClassInterface();
2356 ObjCInterfaceDecl *ClassDeclared;
2357 ObjCIvarDecl *IV = nullptr;
2358 if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2359 // Diagnose using an ivar in a class method.
2360 if (IsClassMethod)
2361 return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2362 << IV->getDeclName());
2363
2364 // If we're referencing an invalid decl, just return this as a silent
2365 // error node. The error diagnostic was already emitted on the decl.
2366 if (IV->isInvalidDecl())
2367 return ExprError();
2368
2369 // Check if referencing a field with __attribute__((deprecated)).
2370 if (DiagnoseUseOfDecl(IV, Loc))
2371 return ExprError();
2372
2373 // Diagnose the use of an ivar outside of the declaring class.
2374 if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2375 !declaresSameEntity(ClassDeclared, IFace) &&
2376 !getLangOpts().DebuggerSupport)
2377 Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
2378
2379 // FIXME: This should use a new expr for a direct reference, don't
2380 // turn this into Self->ivar, just return a BareIVarExpr or something.
2381 IdentifierInfo &II = Context.Idents.get("self");
2382 UnqualifiedId SelfName;
2383 SelfName.setIdentifier(&II, SourceLocation());
2384 SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
2385 CXXScopeSpec SelfScopeSpec;
2386 SourceLocation TemplateKWLoc;
2387 ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
2388 SelfName, false, false);
2389 if (SelfExpr.isInvalid())
2390 return ExprError();
2391
2392 SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2393 if (SelfExpr.isInvalid())
2394 return ExprError();
2395
2396 MarkAnyDeclReferenced(Loc, IV, true);
2397
2398 ObjCMethodFamily MF = CurMethod->getMethodFamily();
2399 if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2400 !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2401 Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2402
2403 ObjCIvarRefExpr *Result = new (Context)
2404 ObjCIvarRefExpr(IV, IV->getType(), Loc, IV->getLocation(),
2405 SelfExpr.get(), true, true);
2406
2407 if (getLangOpts().ObjCAutoRefCount) {
2408 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2409 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2410 recordUseOfEvaluatedWeak(Result);
2411 }
2412 if (CurContext->isClosure())
2413 Diag(Loc, diag::warn_implicitly_retains_self)
2414 << FixItHint::CreateInsertion(Loc, "self->");
2415 }
2416
2417 return Result;
2418 }
2419 } else if (CurMethod->isInstanceMethod()) {
2420 // We should warn if a local variable hides an ivar.
2421 if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2422 ObjCInterfaceDecl *ClassDeclared;
2423 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2424 if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2425 declaresSameEntity(IFace, ClassDeclared))
2426 Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2427 }
2428 }
2429 } else if (Lookup.isSingleResult() &&
2430 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2431 // If accessing a stand-alone ivar in a class method, this is an error.
2432 if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
2433 return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2434 << IV->getDeclName());
2435 }
2436
2437 if (Lookup.empty() && II && AllowBuiltinCreation) {
2438 // FIXME. Consolidate this with similar code in LookupName.
2439 if (unsigned BuiltinID = II->getBuiltinID()) {
2440 if (!(getLangOpts().CPlusPlus &&
2441 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
2442 NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
2443 S, Lookup.isForRedeclaration(),
2444 Lookup.getNameLoc());
2445 if (D) Lookup.addDecl(D);
2446 }
2447 }
2448 }
2449 // Sentinel value saying that we didn't do anything special.
2450 return ExprResult((Expr *)nullptr);
2451}
2452
2453/// \brief Cast a base object to a member's actual type.
2454///
2455/// Logically this happens in three phases:
2456///
2457/// * First we cast from the base type to the naming class.
2458/// The naming class is the class into which we were looking
2459/// when we found the member; it's the qualifier type if a
2460/// qualifier was provided, and otherwise it's the base type.
2461///
2462/// * Next we cast from the naming class to the declaring class.
2463/// If the member we found was brought into a class's scope by
2464/// a using declaration, this is that class; otherwise it's
2465/// the class declaring the member.
2466///
2467/// * Finally we cast from the declaring class to the "true"
2468/// declaring class of the member. This conversion does not
2469/// obey access control.
2470ExprResult
2471Sema::PerformObjectMemberConversion(Expr *From,
2472 NestedNameSpecifier *Qualifier,
2473 NamedDecl *FoundDecl,
2474 NamedDecl *Member) {
2475 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2476 if (!RD)
2477 return From;
2478
2479 QualType DestRecordType;
2480 QualType DestType;
2481 QualType FromRecordType;
2482 QualType FromType = From->getType();
2483 bool PointerConversions = false;
2484 if (isa<FieldDecl>(Member)) {
2485 DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2486
2487 if (FromType->getAs<PointerType>()) {
2488 DestType = Context.getPointerType(DestRecordType);
2489 FromRecordType = FromType->getPointeeType();
2490 PointerConversions = true;
2491 } else {
2492 DestType = DestRecordType;
2493 FromRecordType = FromType;
2494 }
2495 } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2496 if (Method->isStatic())
2497 return From;
2498
2499 DestType = Method->getThisType(Context);
2500 DestRecordType = DestType->getPointeeType();
2501
2502 if (FromType->getAs<PointerType>()) {
2503 FromRecordType = FromType->getPointeeType();
2504 PointerConversions = true;
2505 } else {
2506 FromRecordType = FromType;
2507 DestType = DestRecordType;
2508 }
2509 } else {
2510 // No conversion necessary.
2511 return From;
2512 }
2513
2514 if (DestType->isDependentType() || FromType->isDependentType())
2515 return From;
2516
2517 // If the unqualified types are the same, no conversion is necessary.
2518 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2519 return From;
2520
2521 SourceRange FromRange = From->getSourceRange();
2522 SourceLocation FromLoc = FromRange.getBegin();
2523
2524 ExprValueKind VK = From->getValueKind();
2525
2526 // C++ [class.member.lookup]p8:
2527 // [...] Ambiguities can often be resolved by qualifying a name with its
2528 // class name.
2529 //
2530 // If the member was a qualified name and the qualified referred to a
2531 // specific base subobject type, we'll cast to that intermediate type
2532 // first and then to the object in which the member is declared. That allows
2533 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2534 //
2535 // class Base { public: int x; };
2536 // class Derived1 : public Base { };
2537 // class Derived2 : public Base { };
2538 // class VeryDerived : public Derived1, public Derived2 { void f(); };
2539 //
2540 // void VeryDerived::f() {
2541 // x = 17; // error: ambiguous base subobjects
2542 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
2543 // }
2544 if (Qualifier && Qualifier->getAsType()) {
2545 QualType QType = QualType(Qualifier->getAsType(), 0);
2546 assert(QType->isRecordType() && "lookup done with non-record type");
2547
2548 QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2549
2550 // In C++98, the qualifier type doesn't actually have to be a base
2551 // type of the object type, in which case we just ignore it.
2552 // Otherwise build the appropriate casts.
2553 if (IsDerivedFrom(FromRecordType, QRecordType)) {
2554 CXXCastPath BasePath;
2555 if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2556 FromLoc, FromRange, &BasePath))
2557 return ExprError();
2558
2559 if (PointerConversions)
2560 QType = Context.getPointerType(QType);
2561 From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2562 VK, &BasePath).get();
2563
2564 FromType = QType;
2565 FromRecordType = QRecordType;
2566
2567 // If the qualifier type was the same as the destination type,
2568 // we're done.
2569 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2570 return From;
2571 }
2572 }
2573
2574 bool IgnoreAccess = false;
2575
2576 // If we actually found the member through a using declaration, cast
2577 // down to the using declaration's type.
2578 //
2579 // Pointer equality is fine here because only one declaration of a
2580 // class ever has member declarations.
2581 if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2582 assert(isa<UsingShadowDecl>(FoundDecl));
2583 QualType URecordType = Context.getTypeDeclType(
2584 cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2585
2586 // We only need to do this if the naming-class to declaring-class
2587 // conversion is non-trivial.
2588 if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2589 assert(IsDerivedFrom(FromRecordType, URecordType));
2590 CXXCastPath BasePath;
2591 if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2592 FromLoc, FromRange, &BasePath))
2593 return ExprError();
2594
2595 QualType UType = URecordType;
2596 if (PointerConversions)
2597 UType = Context.getPointerType(UType);
2598 From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2599 VK, &BasePath).get();
2600 FromType = UType;
2601 FromRecordType = URecordType;
2602 }
2603
2604 // We don't do access control for the conversion from the
2605 // declaring class to the true declaring class.
2606 IgnoreAccess = true;
2607 }
2608
2609 CXXCastPath BasePath;
2610 if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2611 FromLoc, FromRange, &BasePath,
2612 IgnoreAccess))
2613 return ExprError();
2614
2615 return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2616 VK, &BasePath);
2617}
2618
2619bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2620 const LookupResult &R,
2621 bool HasTrailingLParen) {
2622 // Only when used directly as the postfix-expression of a call.
2623 if (!HasTrailingLParen)
2624 return false;
2625
2626 // Never if a scope specifier was provided.
2627 if (SS.isSet())
2628 return false;
2629
2630 // Only in C++ or ObjC++.
2631 if (!getLangOpts().CPlusPlus)
2632 return false;
2633
2634 // Turn off ADL when we find certain kinds of declarations during
2635 // normal lookup:
2636 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2637 NamedDecl *D = *I;
2638
2639 // C++0x [basic.lookup.argdep]p3:
2640 // -- a declaration of a class member
2641 // Since using decls preserve this property, we check this on the
2642 // original decl.
2643 if (D->isCXXClassMember())
2644 return false;
2645
2646 // C++0x [basic.lookup.argdep]p3:
2647 // -- a block-scope function declaration that is not a
2648 // using-declaration
2649 // NOTE: we also trigger this for function templates (in fact, we
2650 // don't check the decl type at all, since all other decl types
2651 // turn off ADL anyway).
2652 if (isa<UsingShadowDecl>(D))
2653 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2654 else if (D->getLexicalDeclContext()->isFunctionOrMethod())
2655 return false;
2656
2657 // C++0x [basic.lookup.argdep]p3:
2658 // -- a declaration that is neither a function or a function
2659 // template
2660 // And also for builtin functions.
2661 if (isa<FunctionDecl>(D)) {
2662 FunctionDecl *FDecl = cast<FunctionDecl>(D);
2663
2664 // But also builtin functions.
2665 if (FDecl->getBuiltinID() && FDecl->isImplicit())
2666 return false;
2667 } else if (!isa<FunctionTemplateDecl>(D))
2668 return false;
2669 }
2670
2671 return true;
2672}
2673
2674
2675/// Diagnoses obvious problems with the use of the given declaration
2676/// as an expression. This is only actually called for lookups that
2677/// were not overloaded, and it doesn't promise that the declaration
2678/// will in fact be used.
2679static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2680 if (isa<TypedefNameDecl>(D)) {
2681 S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2682 return true;
2683 }
2684
2685 if (isa<ObjCInterfaceDecl>(D)) {
2686 S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2687 return true;
2688 }
2689
2690 if (isa<NamespaceDecl>(D)) {
2691 S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2692 return true;
2693 }
2694
2695 return false;
2696}
2697
2698ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2699 LookupResult &R, bool NeedsADL,
2700 bool AcceptInvalidDecl) {
2701 // If this is a single, fully-resolved result and we don't need ADL,
2702 // just build an ordinary singleton decl ref.
2703 if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2704 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
2705 R.getRepresentativeDecl(), nullptr,
2706 AcceptInvalidDecl);
2707
2708 // We only need to check the declaration if there's exactly one
2709 // result, because in the overloaded case the results can only be
2710 // functions and function templates.
2711 if (R.isSingleResult() &&
2712 CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2713 return ExprError();
2714
2715 // Otherwise, just build an unresolved lookup expression. Suppress
2716 // any lookup-related diagnostics; we'll hash these out later, when
2717 // we've picked a target.
2718 R.suppressDiagnostics();
2719
2720 UnresolvedLookupExpr *ULE
2721 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2722 SS.getWithLocInContext(Context),
2723 R.getLookupNameInfo(),
2724 NeedsADL, R.isOverloadedResult(),
2725 R.begin(), R.end());
2726
2727 return ULE;
2728}
2729
2730/// \brief Complete semantic analysis for a reference to the given declaration.
2731ExprResult Sema::BuildDeclarationNameExpr(
2732 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
2733 NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
2734 bool AcceptInvalidDecl) {
2735 assert(D && "Cannot refer to a NULL declaration");
2736 assert(!isa<FunctionTemplateDecl>(D) &&
2737 "Cannot refer unambiguously to a function template");
2738
2739 SourceLocation Loc = NameInfo.getLoc();
2740 if (CheckDeclInExpr(*this, Loc, D))
2741 return ExprError();
2742
2743 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2744 // Specifically diagnose references to class templates that are missing
2745 // a template argument list.
2746 Diag(Loc, diag::err_template_decl_ref) << (isa<VarTemplateDecl>(D) ? 1 : 0)
2747 << Template << SS.getRange();
2748 Diag(Template->getLocation(), diag::note_template_decl_here);
2749 return ExprError();
2750 }
2751
2752 // Make sure that we're referring to a value.
2753 ValueDecl *VD = dyn_cast<ValueDecl>(D);
2754 if (!VD) {
2755 Diag(Loc, diag::err_ref_non_value)
2756 << D << SS.getRange();
2757 Diag(D->getLocation(), diag::note_declared_at);
2758 return ExprError();
2759 }
2760
2761 // Check whether this declaration can be used. Note that we suppress
2762 // this check when we're going to perform argument-dependent lookup
2763 // on this function name, because this might not be the function
2764 // that overload resolution actually selects.
2765 if (DiagnoseUseOfDecl(VD, Loc))
2766 return ExprError();
2767
2768 // Only create DeclRefExpr's for valid Decl's.
2769 if (VD->isInvalidDecl() && !AcceptInvalidDecl)
2770 return ExprError();
2771
2772 // Handle members of anonymous structs and unions. If we got here,
2773 // and the reference is to a class member indirect field, then this
2774 // must be the subject of a pointer-to-member expression.
2775 if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2776 if (!indirectField->isCXXClassMember())
2777 return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2778 indirectField);
2779
2780 {
2781 QualType type = VD->getType();
2782 ExprValueKind valueKind = VK_RValue;
2783
2784 switch (D->getKind()) {
2785 // Ignore all the non-ValueDecl kinds.
2786#define ABSTRACT_DECL(kind)
2787#define VALUE(type, base)
2788#define DECL(type, base) \
2789 case Decl::type:
2790#include "clang/AST/DeclNodes.inc"
2791 llvm_unreachable("invalid value decl kind");
2792
2793 // These shouldn't make it here.
2794 case Decl::ObjCAtDefsField:
2795 case Decl::ObjCIvar:
2796 llvm_unreachable("forming non-member reference to ivar?");
2797
2798 // Enum constants are always r-values and never references.
2799 // Unresolved using declarations are dependent.
2800 case Decl::EnumConstant:
2801 case Decl::UnresolvedUsingValue:
2802 valueKind = VK_RValue;
2803 break;
2804
2805 // Fields and indirect fields that got here must be for
2806 // pointer-to-member expressions; we just call them l-values for
2807 // internal consistency, because this subexpression doesn't really
2808 // exist in the high-level semantics.
2809 case Decl::Field:
2810 case Decl::IndirectField:
2811 assert(getLangOpts().CPlusPlus &&
2812 "building reference to field in C?");
2813
2814 // These can't have reference type in well-formed programs, but
2815 // for internal consistency we do this anyway.
2816 type = type.getNonReferenceType();
2817 valueKind = VK_LValue;
2818 break;
2819
2820 // Non-type template parameters are either l-values or r-values
2821 // depending on the type.
2822 case Decl::NonTypeTemplateParm: {
2823 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2824 type = reftype->getPointeeType();
2825 valueKind = VK_LValue; // even if the parameter is an r-value reference
2826 break;
2827 }
2828
2829 // For non-references, we need to strip qualifiers just in case
2830 // the template parameter was declared as 'const int' or whatever.
2831 valueKind = VK_RValue;
2832 type = type.getUnqualifiedType();
2833 break;
2834 }
2835
2836 case Decl::Var:
2837 case Decl::VarTemplateSpecialization:
2838 case Decl::VarTemplatePartialSpecialization:
2839 // In C, "extern void blah;" is valid and is an r-value.
2840 if (!getLangOpts().CPlusPlus &&
2841 !type.hasQualifiers() &&
2842 type->isVoidType()) {
2843 valueKind = VK_RValue;
2844 break;
2845 }
2846 // fallthrough
2847
2848 case Decl::ImplicitParam:
2849 case Decl::ParmVar: {
2850 // These are always l-values.
2851 valueKind = VK_LValue;
2852 type = type.getNonReferenceType();
2853
2854 // FIXME: Does the addition of const really only apply in
2855 // potentially-evaluated contexts? Since the variable isn't actually
2856 // captured in an unevaluated context, it seems that the answer is no.
2857 if (!isUnevaluatedContext()) {
2858 QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2859 if (!CapturedType.isNull())
2860 type = CapturedType;
2861 }
2862
2863 break;
2864 }
2865
2866 case Decl::Function: {
2867 if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
2868 if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
2869 type = Context.BuiltinFnTy;
2870 valueKind = VK_RValue;
2871 break;
2872 }
2873 }
2874
2875 const FunctionType *fty = type->castAs<FunctionType>();
2876
2877 // If we're referring to a function with an __unknown_anytype
2878 // result type, make the entire expression __unknown_anytype.
2879 if (fty->getReturnType() == Context.UnknownAnyTy) {
2880 type = Context.UnknownAnyTy;
2881 valueKind = VK_RValue;
2882 break;
2883 }
2884
2885 // Functions are l-values in C++.
2886 if (getLangOpts().CPlusPlus) {
2887 valueKind = VK_LValue;
2888 break;
2889 }
2890
2891 // C99 DR 316 says that, if a function type comes from a
2892 // function definition (without a prototype), that type is only
2893 // used for checking compatibility. Therefore, when referencing
2894 // the function, we pretend that we don't have the full function
2895 // type.
2896 if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2897 isa<FunctionProtoType>(fty))
2898 type = Context.getFunctionNoProtoType(fty->getReturnType(),
2899 fty->getExtInfo());
2900
2901 // Functions are r-values in C.
2902 valueKind = VK_RValue;
2903 break;
2904 }
2905
2906 case Decl::MSProperty:
2907 valueKind = VK_LValue;
2908 break;
2909
2910 case Decl::CXXMethod:
2911 // If we're referring to a method with an __unknown_anytype
2912 // result type, make the entire expression __unknown_anytype.
2913 // This should only be possible with a type written directly.
2914 if (const FunctionProtoType *proto
2915 = dyn_cast<FunctionProtoType>(VD->getType()))
2916 if (proto->getReturnType() == Context.UnknownAnyTy) {
2917 type = Context.UnknownAnyTy;
2918 valueKind = VK_RValue;
2919 break;
2920 }
2921
2922 // C++ methods are l-values if static, r-values if non-static.
2923 if (cast<CXXMethodDecl>(VD)->isStatic()) {
2924 valueKind = VK_LValue;
2925 break;
2926 }
2927 // fallthrough
2928
2929 case Decl::CXXConversion:
2930 case Decl::CXXDestructor:
2931 case Decl::CXXConstructor:
2932 valueKind = VK_RValue;
2933 break;
2934 }
2935
2936 return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
2937 TemplateArgs);
2938 }
2939}
2940
2941static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
2942 SmallString<32> &Target) {
2943 Target.resize(CharByteWidth * (Source.size() + 1));
2944 char *ResultPtr = &Target[0];
2945 const UTF8 *ErrorPtr;
2946 bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
2947 (void)success;
2948 assert(success);
2949 Target.resize(ResultPtr - &Target[0]);
2950}
2951
2952ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
2953 PredefinedExpr::IdentType IT) {
2954 // Pick the current block, lambda, captured statement or function.
2955 Decl *currentDecl = nullptr;
2956 if (const BlockScopeInfo *BSI = getCurBlock())
2957 currentDecl = BSI->TheDecl;
2958 else if (const LambdaScopeInfo *LSI = getCurLambda())
2959 currentDecl = LSI->CallOperator;
2960 else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
2961 currentDecl = CSI->TheCapturedDecl;
2962 else
2963 currentDecl = getCurFunctionOrMethodDecl();
2964
2965 if (!currentDecl) {
2966 Diag(Loc, diag::ext_predef_outside_function);
2967 currentDecl = Context.getTranslationUnitDecl();
2968 }
2969
2970 QualType ResTy;
2971 StringLiteral *SL = nullptr;
2972 if (cast<DeclContext>(currentDecl)->isDependentContext())
2973 ResTy = Context.DependentTy;
2974 else {
2975 // Pre-defined identifiers are of type char[x], where x is the length of
2976 // the string.
2977 auto Str = PredefinedExpr::ComputeName(IT, currentDecl);
2978 unsigned Length = Str.length();
2979
2980 llvm::APInt LengthI(32, Length + 1);
2981 if (IT == PredefinedExpr::LFunction) {
2982 ResTy = Context.WideCharTy.withConst();
2983 SmallString<32> RawChars;
2984 ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
2985 Str, RawChars);
2986 ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
2987 /*IndexTypeQuals*/ 0);
2988 SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
2989 /*Pascal*/ false, ResTy, Loc);
2990 } else {
2991 ResTy = Context.CharTy.withConst();
2992 ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
2993 /*IndexTypeQuals*/ 0);
2994 SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
2995 /*Pascal*/ false, ResTy, Loc);
2996 }
2997 }
2998
2999 return new (Context) PredefinedExpr(Loc, ResTy, IT, SL);
3000}
3001
3002ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3003 PredefinedExpr::IdentType IT;
3004
3005 switch (Kind) {
3006 default: llvm_unreachable("Unknown simple primary expr!");
3007 case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3008 case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
3009 case tok::kw___FUNCDNAME__: IT = PredefinedExpr::FuncDName; break; // [MS]
3010 case tok::kw___FUNCSIG__: IT = PredefinedExpr::FuncSig; break; // [MS]
3011 case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
3012 case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
3013 }
3014
3015 return BuildPredefinedExpr(Loc, IT);
3016}
3017
3018ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3019 SmallString<16> CharBuffer;
3020 bool Invalid = false;
3021 StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3022 if (Invalid)
3023 return ExprError();
3024
3025 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3026 PP, Tok.getKind());
3027 if (Literal.hadError())
3028 return ExprError();
3029
3030 QualType Ty;
3031 if (Literal.isWide())
3032 Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3033 else if (Literal.isUTF16())
3034 Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3035 else if (Literal.isUTF32())
3036 Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3037 else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3038 Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
3039 else
3040 Ty = Context.CharTy; // 'x' -> char in C++
3041
3042 CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3043 if (Literal.isWide())
3044 Kind = CharacterLiteral::Wide;
3045 else if (Literal.isUTF16())
3046 Kind = CharacterLiteral::UTF16;
3047 else if (Literal.isUTF32())
3048 Kind = CharacterLiteral::UTF32;
3049
3050 Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3051 Tok.getLocation());
3052
3053 if (Literal.getUDSuffix().empty())
3054 return Lit;
3055
3056 // We're building a user-defined literal.
3057 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3058 SourceLocation UDSuffixLoc =
3059 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3060
3061 // Make sure we're allowed user-defined literals here.
3062 if (!UDLScope)
3063 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3064
3065 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3066 // operator "" X (ch)
3067 return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3068 Lit, Tok.getLocation());
3069}
3070
3071ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3072 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3073 return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3074 Context.IntTy, Loc);
3075}
3076
3077static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3078 QualType Ty, SourceLocation Loc) {
3079 const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3080
3081 using llvm::APFloat;
3082 APFloat Val(Format);
3083
3084 APFloat::opStatus result = Literal.GetFloatValue(Val);
3085
3086 // Overflow is always an error, but underflow is only an error if
3087 // we underflowed to zero (APFloat reports denormals as underflow).
3088 if ((result & APFloat::opOverflow) ||
3089 ((result & APFloat::opUnderflow) && Val.isZero())) {
3090 unsigned diagnostic;
3091 SmallString<20> buffer;
3092 if (result & APFloat::opOverflow) {
3093 diagnostic = diag::warn_float_overflow;
3094 APFloat::getLargest(Format).toString(buffer);
3095 } else {
3096 diagnostic = diag::warn_float_underflow;
3097 APFloat::getSmallest(Format).toString(buffer);
3098 }
3099
3100 S.Diag(Loc, diagnostic)
3101 << Ty
3102 << StringRef(buffer.data(), buffer.size());
3103 }
3104
3105 bool isExact = (result == APFloat::opOK);
3106 return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3107}
3108
3109bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3110 assert(E && "Invalid expression");
3111
3112 if (E->isValueDependent())
3113 return false;
3114
3115 QualType QT = E->getType();
3116 if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3117 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3118 return true;
3119 }
3120
3121 llvm::APSInt ValueAPS;
3122 ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3123
3124 if (R.isInvalid())
3125 return true;
3126
3127 bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3128 if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3129 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3130 << ValueAPS.toString(10) << ValueIsPositive;
3131 return true;
3132 }
3133
3134 return false;
3135}
3136
3137ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3138 // Fast path for a single digit (which is quite common). A single digit
3139 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3140 if (Tok.getLength() == 1) {
3141 const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3142 return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3143 }
3144
3145 SmallString<128> SpellingBuffer;
3146 // NumericLiteralParser wants to overread by one character. Add padding to
3147 // the buffer in case the token is copied to the buffer. If getSpelling()
3148 // returns a StringRef to the memory buffer, it should have a null char at
3149 // the EOF, so it is also safe.
3150 SpellingBuffer.resize(Tok.getLength() + 1);
3151
3152 // Get the spelling of the token, which eliminates trigraphs, etc.
3153 bool Invalid = false;
3154 StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3155 if (Invalid)
3156 return ExprError();
3157
3158 NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
3159 if (Literal.hadError)
3160 return ExprError();
3161
3162 if (Literal.hasUDSuffix()) {
3163 // We're building a user-defined literal.
3164 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3165 SourceLocation UDSuffixLoc =
3166 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3167
3168 // Make sure we're allowed user-defined literals here.
3169 if (!UDLScope)
3170 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3171
3172 QualType CookedTy;
3173 if (Literal.isFloatingLiteral()) {
3174 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3175 // long double, the literal is treated as a call of the form
3176 // operator "" X (f L)
3177 CookedTy = Context.LongDoubleTy;
3178 } else {
3179 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3180 // unsigned long long, the literal is treated as a call of the form
3181 // operator "" X (n ULL)
3182 CookedTy = Context.UnsignedLongLongTy;
3183 }
3184
3185 DeclarationName OpName =
3186 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3187 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3188 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3189
3190 SourceLocation TokLoc = Tok.getLocation();
3191
3192 // Perform literal operator lookup to determine if we're building a raw
3193 // literal or a cooked one.
3194 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3195 switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3196 /*AllowRaw*/true, /*AllowTemplate*/true,
3197 /*AllowStringTemplate*/false)) {
3198 case LOLR_Error:
3199 return ExprError();
3200
3201 case LOLR_Cooked: {
3202 Expr *Lit;
3203 if (Literal.isFloatingLiteral()) {
3204 Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3205 } else {
3206 llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3207 if (Literal.GetIntegerValue(ResultVal))
3208 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3209 << /* Unsigned */ 1;
3210 Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3211 Tok.getLocation());
3212 }
3213 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3214 }
3215
3216 case LOLR_Raw: {
3217 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3218 // literal is treated as a call of the form
3219 // operator "" X ("n")
3220 unsigned Length = Literal.getUDSuffixOffset();
3221 QualType StrTy = Context.getConstantArrayType(
3222 Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
3223 ArrayType::Normal, 0);
3224 Expr *Lit = StringLiteral::Create(
3225 Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
3226 /*Pascal*/false, StrTy, &TokLoc, 1);
3227 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3228 }
3229
3230 case LOLR_Template: {
3231 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3232 // template), L is treated as a call fo the form
3233 // operator "" X <'c1', 'c2', ... 'ck'>()
3234 // where n is the source character sequence c1 c2 ... ck.
3235 TemplateArgumentListInfo ExplicitArgs;
3236 unsigned CharBits = Context.getIntWidth(Context.CharTy);
3237 bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3238 llvm::APSInt Value(CharBits, CharIsUnsigned);
3239 for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3240 Value = TokSpelling[I];
3241 TemplateArgument Arg(Context, Value, Context.CharTy);
3242 TemplateArgumentLocInfo ArgInfo;
3243 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3244 }
3245 return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3246 &ExplicitArgs);
3247 }
3248 case LOLR_StringTemplate:
3249 llvm_unreachable("unexpected literal operator lookup result");
3250 }
3251 }
3252
3253 Expr *Res;
3254
3255 if (Literal.isFloatingLiteral()) {
3256 QualType Ty;
3257 if (Literal.isFloat)
3258 Ty = Context.FloatTy;
3259 else if (!Literal.isLong)
3260 Ty = Context.DoubleTy;
3261 else
3262 Ty = Context.LongDoubleTy;
3263
3264 Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3265
3266 if (Ty == Context.DoubleTy) {
3267 if (getLangOpts().SinglePrecisionConstants) {
3268 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3269 } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
3270 Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
3271 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3272 }
3273 }
3274 } else if (!Literal.isIntegerLiteral()) {
3275 return ExprError();
3276 } else {
3277 QualType Ty;
3278
3279 // 'long long' is a C99 or C++11 feature.
3280 if (!getLangOpts().C99 && Literal.isLongLong) {
3281 if (getLangOpts().CPlusPlus)
3282 Diag(Tok.getLocation(),
3283 getLangOpts().CPlusPlus11 ?
3284 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3285 else
3286 Diag(Tok.getLocation(), diag::ext_c99_longlong);
3287 }
3288
3289 // Get the value in the widest-possible width.
3290 unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
3291 // The microsoft literal suffix extensions support 128-bit literals, which
3292 // may be wider than [u]intmax_t.
3293 // FIXME: Actually, they don't. We seem to have accidentally invented the
3294 // i128 suffix.
3295 if (Literal.MicrosoftInteger == 128 && MaxWidth < 128 &&
3296 Context.getTargetInfo().hasInt128Type())
3297 MaxWidth = 128;
3298 llvm::APInt ResultVal(MaxWidth, 0);
3299
3300 if (Literal.GetIntegerValue(ResultVal)) {
3301 // If this value didn't fit into uintmax_t, error and force to ull.
3302 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3303 << /* Unsigned */ 1;
3304 Ty = Context.UnsignedLongLongTy;
3305 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3306 "long long is not intmax_t?");
3307 } else {
3308 // If this value fits into a ULL, try to figure out what else it fits into
3309 // according to the rules of C99 6.4.4.1p5.
3310
3311 // Octal, Hexadecimal, and integers with a U suffix are allowed to
3312 // be an unsigned int.
3313 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3314
3315 // Check from smallest to largest, picking the smallest type we can.
3316 unsigned Width = 0;
3317
3318 // Microsoft specific integer suffixes are explicitly sized.
3319 if (Literal.MicrosoftInteger) {
3320 if (Literal.MicrosoftInteger > MaxWidth) {
3321 // If this target doesn't support __int128, error and force to ull.
3322 Diag(Tok.getLocation(), diag::err_int128_unsupported);
3323 Width = MaxWidth;
3324 Ty = Context.getIntMaxType();
3325 } else {
3326 Width = Literal.MicrosoftInteger;
3327 Ty = Context.getIntTypeForBitwidth(Width,
3328 /*Signed=*/!Literal.isUnsigned);
3329 }
3330 }
3331
3332 if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
3333 // Are int/unsigned possibilities?
3334 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3335
3336 // Does it fit in a unsigned int?
3337 if (ResultVal.isIntN(IntSize)) {
3338 // Does it fit in a signed int?
3339 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3340 Ty = Context.IntTy;
3341 else if (AllowUnsigned)
3342 Ty = Context.UnsignedIntTy;
3343 Width = IntSize;
3344 }
3345 }
3346
3347 // Are long/unsigned long possibilities?
3348 if (Ty.isNull() && !Literal.isLongLong) {
3349 unsigned LongSize = Context.getTargetInfo().getLongWidth();
3350
3351 // Does it fit in a unsigned long?
3352 if (ResultVal.isIntN(LongSize)) {
3353 // Does it fit in a signed long?
3354 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3355 Ty = Context.LongTy;
3356 else if (AllowUnsigned)
3357 Ty = Context.UnsignedLongTy;
3358 Width = LongSize;
3359 }
3360 }
3361
3362 // Check long long if needed.
3363 if (Ty.isNull()) {
3364 unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
3365
3366 // Does it fit in a unsigned long long?
3367 if (ResultVal.isIntN(LongLongSize)) {
3368 // Does it fit in a signed long long?
3369 // To be compatible with MSVC, hex integer literals ending with the
3370 // LL or i64 suffix are always signed in Microsoft mode.
3371 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3372 (getLangOpts().MicrosoftExt && Literal.isLongLong)))
3373 Ty = Context.LongLongTy;
3374 else if (AllowUnsigned)
3375 Ty = Context.UnsignedLongLongTy;
3376 Width = LongLongSize;
3377 }
3378 }
3379
3380 // If we still couldn't decide a type, we probably have something that
3381 // does not fit in a signed long long, but has no U suffix.
3382 if (Ty.isNull()) {
3383 Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
3384 Ty = Context.UnsignedLongLongTy;
3385 Width = Context.getTargetInfo().getLongLongWidth();
3386 }
3387
3388 if (ResultVal.getBitWidth() != Width)
3389 ResultVal = ResultVal.trunc(Width);
3390 }
3391 Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
3392 }
3393
3394 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
3395 if (Literal.isImaginary)
3396 Res = new (Context) ImaginaryLiteral(Res,
3397 Context.getComplexType(Res->getType()));
3398
3399 return Res;
3400}
3401
3402ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
3403 assert(E && "ActOnParenExpr() missing expr");
3404 return new (Context) ParenExpr(L, R, E);
3405}
3406
3407static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
3408 SourceLocation Loc,
3409 SourceRange ArgRange) {
3410 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
3411 // scalar or vector data type argument..."
3412 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
3413 // type (C99 6.2.5p18) or void.
3414 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
3415 S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
3416 << T << ArgRange;
3417 return true;
3418 }
3419
3420 assert((T->isVoidType() || !T->isIncompleteType()) &&
3421 "Scalar types should always be complete");
3422 return false;
3423}
3424
3425static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
3426 SourceLocation Loc,
3427 SourceRange ArgRange,
3428 UnaryExprOrTypeTrait TraitKind) {
3429 // Invalid types must be hard errors for SFINAE in C++.
3430 if (S.LangOpts.CPlusPlus)
3431 return true;
3432
3433 // C99 6.5.3.4p1:
3434 if (T->isFunctionType() &&
3435 (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf)) {
3436 // sizeof(function)/alignof(function) is allowed as an extension.
3437 S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
3438 << TraitKind << ArgRange;
3439 return false;
3440 }
3441
3442 // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
3443 // this is an error (OpenCL v1.1 s6.3.k)
3444 if (T->isVoidType()) {
3445 unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
3446 : diag::ext_sizeof_alignof_void_type;
3447 S.Diag(Loc, DiagID) << TraitKind << ArgRange;
3448 return false;
3449 }
3450
3451 return true;
3452}
3453
3454static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
3455 SourceLocation Loc,
3456 SourceRange ArgRange,
3457 UnaryExprOrTypeTrait TraitKind) {
3458 // Reject sizeof(interface) and sizeof(interface<proto>) if the
3459 // runtime doesn't allow it.
3460 if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
3461 S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
3462 << T << (TraitKind == UETT_SizeOf)
3463 << ArgRange;
3464 return true;
3465 }
3466
3467 return false;
3468}
3469
3470/// \brief Check whether E is a pointer from a decayed array type (the decayed
3471/// pointer type is equal to T) and emit a warning if it is.
3472static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
3473 Expr *E) {
3474 // Don't warn if the operation changed the type.
3475 if (T != E->getType())
3476 return;
3477
3478 // Now look for array decays.
3479 ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
3480 if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
3481 return;
3482
3483 S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
3484 << ICE->getType()
3485 << ICE->getSubExpr()->getType();
3486}
3487
3488/// \brief Check the constraints on expression operands to unary type expression
3489/// and type traits.
3490///
3491/// Completes any types necessary and validates the constraints on the operand
3492/// expression. The logic mostly mirrors the type-based overload, but may modify
3493/// the expression as it completes the type for that expression through template
3494/// instantiation, etc.
3495bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
3496 UnaryExprOrTypeTrait ExprKind) {
3497 QualType ExprTy = E->getType();
3498 assert(!ExprTy->isReferenceType());
3499
3500 if (ExprKind == UETT_VecStep)
3501 return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
3502 E->getSourceRange());
3503
3504 // Whitelist some types as extensions
3505 if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
3506 E->getSourceRange(), ExprKind))
3507 return false;
3508
3509 // 'alignof' applied to an expression only requires the base element type of
3510 // the expression to be complete. 'sizeof' requires the expression's type to
3511 // be complete (and will attempt to complete it if it's an array of unknown
3512 // bound).
3513 if (ExprKind == UETT_AlignOf) {
3514 if (RequireCompleteType(E->getExprLoc(),
3515 Context.getBaseElementType(E->getType()),
3516 diag::err_sizeof_alignof_incomplete_type, ExprKind,
3517 E->getSourceRange()))
3518 return true;
3519 } else {
3520 if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type,
3521 ExprKind, E->getSourceRange()))
3522 return true;
3523 }
3524
3525 // Completing the expression's type may have changed it.
3526 ExprTy = E->getType();
3527 assert(!ExprTy->isReferenceType());
3528
3529 if (ExprTy->isFunctionType()) {
3530 Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
3531 << ExprKind << E->getSourceRange();
3532 return true;
3533 }
3534
3535 // The operand for sizeof and alignof is in an unevaluated expression context,
3536 // so side effects could result in unintended consequences.
3537 if ((ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf) &&
3538 ActiveTemplateInstantiations.empty() && E->HasSideEffects(Context, false))
3539 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
3540
3541 if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
3542 E->getSourceRange(), ExprKind))
3543 return true;
3544
3545 if (ExprKind == UETT_SizeOf) {
3546 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
3547 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
3548 QualType OType = PVD->getOriginalType();
3549 QualType Type = PVD->getType();
3550 if (Type->isPointerType() && OType->isArrayType()) {
3551 Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
3552 << Type << OType;
3553 Diag(PVD->getLocation(), diag::note_declared_at);
3554 }
3555 }
3556 }
3557
3558 // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
3559 // decays into a pointer and returns an unintended result. This is most
3560 // likely a typo for "sizeof(array) op x".
3561 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
3562 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3563 BO->getLHS());
3564 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3565 BO->getRHS());
3566 }
3567 }
3568
3569 return false;
3570}
3571
3572/// \brief Check the constraints on operands to unary expression and type
3573/// traits.
3574///
3575/// This will complete any types necessary, and validate the various constraints
3576/// on those operands.
3577///
3578/// The UsualUnaryConversions() function is *not* called by this routine.
3579/// C99 6.3.2.1p[2-4] all state:
3580/// Except when it is the operand of the sizeof operator ...
3581///
3582/// C++ [expr.sizeof]p4
3583/// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
3584/// standard conversions are not applied to the operand of sizeof.
3585///
3586/// This policy is followed for all of the unary trait expressions.
3587bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
3588 SourceLocation OpLoc,
3589 SourceRange ExprRange,
3590 UnaryExprOrTypeTrait ExprKind) {
3591 if (ExprType->isDependentType())
3592 return false;
3593
3594 // C++ [expr.sizeof]p2:
3595 // When applied to a reference or a reference type, the result
3596 // is the size of the referenced type.
3597 // C++11 [expr.alignof]p3:
3598 // When alignof is applied to a reference type, the result
3599 // shall be the alignment of the referenced type.
3600 if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
3601 ExprType = Ref->getPointeeType();
3602
3603 // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
3604 // When alignof or _Alignof is applied to an array type, the result
3605 // is the alignment of the element type.
3606 if (ExprKind == UETT_AlignOf)
3607 ExprType = Context.getBaseElementType(ExprType);
3608
3609 if (ExprKind == UETT_VecStep)
3610 return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
3611
3612 // Whitelist some types as extensions
3613 if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
3614 ExprKind))
3615 return false;
3616
3617 if (RequireCompleteType(OpLoc, ExprType,
3618 diag::err_sizeof_alignof_incomplete_type,
3619 ExprKind, ExprRange))
3620 return true;
3621
3622 if (ExprType->isFunctionType()) {
3623 Diag(OpLoc, diag::err_sizeof_alignof_function_type)
3624 << ExprKind << ExprRange;
3625 return true;
3626 }
3627
3628 if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
3629 ExprKind))
3630 return true;
3631
3632 return false;
3633}
3634
3635static bool CheckAlignOfExpr(Sema &S, Expr *E) {
3636 E = E->IgnoreParens();
3637
3638 // Cannot know anything else if the expression is dependent.
3639 if (E->isTypeDependent())
3640 return false;
3641
3642 if (E->getObjectKind() == OK_BitField) {
3643 S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
3644 << 1 << E->getSourceRange();
3645 return true;
3646 }
3647
3648 ValueDecl *D = nullptr;
3649 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3650 D = DRE->getDecl();
3651 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3652 D = ME->getMemberDecl();
3653 }
3654
3655 // If it's a field, require the containing struct to have a
3656 // complete definition so that we can compute the layout.
3657 //
3658 // This can happen in C++11 onwards, either by naming the member
3659 // in a way that is not transformed into a member access expression
3660 // (in an unevaluated operand, for instance), or by naming the member
3661 // in a trailing-return-type.
3662 //
3663 // For the record, since __alignof__ on expressions is a GCC
3664 // extension, GCC seems to permit this but always gives the
3665 // nonsensical answer 0.
3666 //
3667 // We don't really need the layout here --- we could instead just
3668 // directly check for all the appropriate alignment-lowing
3669 // attributes --- but that would require duplicating a lot of
3670 // logic that just isn't worth duplicating for such a marginal
3671 // use-case.
3672 if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
3673 // Fast path this check, since we at least know the record has a
3674 // definition if we can find a member of it.
3675 if (!FD->getParent()->isCompleteDefinition()) {
3676 S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
3677 << E->getSourceRange();
3678 return true;
3679 }
3680
3681 // Otherwise, if it's a field, and the field doesn't have
3682 // reference type, then it must have a complete type (or be a
3683 // flexible array member, which we explicitly want to
3684 // white-list anyway), which makes the following checks trivial.
3685 if (!FD->getType()->isReferenceType())
3686 return false;
3687 }
3688
3689 return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
3690}
3691
3692bool Sema::CheckVecStepExpr(Expr *E) {
3693 E = E->IgnoreParens();
3694
3695 // Cannot know anything else if the expression is dependent.
3696 if (E->isTypeDependent())
3697 return false;
3698
3699 return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
3700}
3701
3702/// \brief Build a sizeof or alignof expression given a type operand.
3703ExprResult
3704Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
3705 SourceLocation OpLoc,
3706 UnaryExprOrTypeTrait ExprKind,
3707 SourceRange R) {
3708 if (!TInfo)
3709 return ExprError();
3710
3711 QualType T = TInfo->getType();
3712
3713 if (!T->isDependentType() &&
3714 CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
3715 return ExprError();
3716
3717 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3718 return new (Context) UnaryExprOrTypeTraitExpr(
3719 ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
3720}
3721
3722/// \brief Build a sizeof or alignof expression given an expression
3723/// operand.
3724ExprResult
3725Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
3726 UnaryExprOrTypeTrait ExprKind) {
3727 ExprResult PE = CheckPlaceholderExpr(E);
3728 if (PE.isInvalid())
3729 return ExprError();
3730
3731 E = PE.get();
3732
3733 // Verify that the operand is valid.
3734 bool isInvalid = false;
3735 if (E->isTypeDependent()) {
3736 // Delay type-checking for type-dependent expressions.
3737 } else if (ExprKind == UETT_AlignOf) {
3738 isInvalid = CheckAlignOfExpr(*this, E);
3739 } else if (ExprKind == UETT_VecStep) {
3740 isInvalid = CheckVecStepExpr(E);
3741 } else if (E->refersToBitField()) { // C99 6.5.3.4p1.
3742 Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
3743 isInvalid = true;
3744 } else {
3745 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
3746 }
3747
3748 if (isInvalid)
3749 return ExprError();
3750
3751 if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
3752 PE = TransformToPotentiallyEvaluated(E);
3753 if (PE.isInvalid()) return ExprError();
3754 E = PE.get();
3755 }
3756
3757 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3758 return new (Context) UnaryExprOrTypeTraitExpr(
3759 ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
3760}
3761
3762/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3763/// expr and the same for @c alignof and @c __alignof
3764/// Note that the ArgRange is invalid if isType is false.
3765ExprResult
3766Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3767 UnaryExprOrTypeTrait ExprKind, bool IsType,
3768 void *TyOrEx, const SourceRange &ArgRange) {
3769 // If error parsing type, ignore.
3770 if (!TyOrEx) return ExprError();
3771
3772 if (IsType) {
3773 TypeSourceInfo *TInfo;
3774 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3775 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3776 }
3777
3778 Expr *ArgEx = (Expr *)TyOrEx;
3779 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3780 return Result;
3781}
3782
3783static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3784 bool IsReal) {
3785 if (V.get()->isTypeDependent())
3786 return S.Context.DependentTy;
3787
3788 // _Real and _Imag are only l-values for normal l-values.
3789 if (V.get()->getObjectKind() != OK_Ordinary) {
3790 V = S.DefaultLvalueConversion(V.get());
3791 if (V.isInvalid())
3792 return QualType();
3793 }
3794
3795 // These operators return the element type of a complex type.
3796 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3797 return CT->getElementType();
3798
3799 // Otherwise they pass through real integer and floating point types here.
3800 if (V.get()->getType()->isArithmeticType())
3801 return V.get()->getType();
3802
3803 // Test for placeholders.
3804 ExprResult PR = S.CheckPlaceholderExpr(V.get());
3805 if (PR.isInvalid()) return QualType();
3806 if (PR.get() != V.get()) {
3807 V = PR;
3808 return CheckRealImagOperand(S, V, Loc, IsReal);
3809 }
3810
3811 // Reject anything else.
3812 S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3813 << (IsReal ? "__real" : "__imag");
3814 return QualType();
3815}
3816
3817
3818
3819ExprResult
3820Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3821 tok::TokenKind Kind, Expr *Input) {
3822 UnaryOperatorKind Opc;
3823 switch (Kind) {
3824 default: llvm_unreachable("Unknown unary op!");
3825 case tok::plusplus: Opc = UO_PostInc; break;
3826 case tok::minusminus: Opc = UO_PostDec; break;
3827 }
3828
3829 // Since this might is a postfix expression, get rid of ParenListExprs.
3830 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
3831 if (Result.isInvalid()) return ExprError();
3832 Input = Result.get();
3833
3834 return BuildUnaryOp(S, OpLoc, Opc, Input);
3835}
3836
3837/// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
3838///
3839/// \return true on error
3840static bool checkArithmeticOnObjCPointer(Sema &S,
3841 SourceLocation opLoc,
3842 Expr *op) {
3843 assert(op->getType()->isObjCObjectPointerType());
3844 if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
3845 !S.LangOpts.ObjCSubscriptingLegacyRuntime)
3846 return false;
3847
3848 S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
3849 << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
3850 << op->getSourceRange();
3851 return true;
3852}
3853
3854ExprResult
3855Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
3856 Expr *idx, SourceLocation rbLoc) {
3857 // Since this might be a postfix expression, get rid of ParenListExprs.
3858 if (isa<ParenListExpr>(base)) {
3859 ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
3860 if (result.isInvalid()) return ExprError();
3861 base = result.get();
3862 }
3863
3864 // Handle any non-overload placeholder types in the base and index
3865 // expressions. We can't handle overloads here because the other
3866 // operand might be an overloadable type, in which case the overload
3867 // resolution for the operator overload should get the first crack
3868 // at the overload.
3869 if (base->getType()->isNonOverloadPlaceholderType()) {
3870 ExprResult result = CheckPlaceholderExpr(base);
3871 if (result.isInvalid()) return ExprError();
3872 base = result.get();
3873 }
3874 if (idx->getType()->isNonOverloadPlaceholderType()) {
3875 ExprResult result = CheckPlaceholderExpr(idx);
3876 if (result.isInvalid()) return ExprError();
3877 idx = result.get();
3878 }
3879
3880 // Build an unanalyzed expression if either operand is type-dependent.
3881 if (getLangOpts().CPlusPlus &&
3882 (base->isTypeDependent() || idx->isTypeDependent())) {
3883 return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
3884 VK_LValue, OK_Ordinary, rbLoc);
3885 }
3886
3887 // Use C++ overloaded-operator rules if either operand has record
3888 // type. The spec says to do this if either type is *overloadable*,
3889 // but enum types can't declare subscript operators or conversion
3890 // operators, so there's nothing interesting for overload resolution
3891 // to do if there aren't any record types involved.
3892 //
3893 // ObjC pointers have their own subscripting logic that is not tied
3894 // to overload resolution and so should not take this path.
3895 if (getLangOpts().CPlusPlus &&
3896 (base->getType()->isRecordType() ||
3897 (!base->getType()->isObjCObjectPointerType() &&
3898 idx->getType()->isRecordType()))) {
3899 return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
3900 }
3901
3902 return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
3903}
3904
3905ExprResult
3906Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3907 Expr *Idx, SourceLocation RLoc) {
3908 Expr *LHSExp = Base;
3909 Expr *RHSExp = Idx;
3910
3911 // Perform default conversions.
3912 if (!LHSExp->getType()->getAs<VectorType>()) {
3913 ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3914 if (Result.isInvalid())
3915 return ExprError();
3916 LHSExp = Result.get();
3917 }
3918 ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3919 if (Result.isInvalid())
3920 return ExprError();
3921 RHSExp = Result.get();
3922
3923 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3924 ExprValueKind VK = VK_LValue;
3925 ExprObjectKind OK = OK_Ordinary;
3926
3927 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3928 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3929 // in the subscript position. As a result, we need to derive the array base
3930 // and index from the expression types.
3931 Expr *BaseExpr, *IndexExpr;
3932 QualType ResultType;
3933 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3934 BaseExpr = LHSExp;
3935 IndexExpr = RHSExp;
3936 ResultType = Context.DependentTy;
3937 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3938 BaseExpr = LHSExp;
3939 IndexExpr = RHSExp;
3940 ResultType = PTy->getPointeeType();
3941 } else if (const ObjCObjectPointerType *PTy =
3942 LHSTy->getAs<ObjCObjectPointerType>()) {
3943 BaseExpr = LHSExp;
3944 IndexExpr = RHSExp;
3945
3946 // Use custom logic if this should be the pseudo-object subscript
3947 // expression.
3948 if (!LangOpts.isSubscriptPointerArithmetic())
3949 return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
3950 nullptr);
3951
3952 ResultType = PTy->getPointeeType();
3953 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3954 // Handle the uncommon case of "123[Ptr]".
3955 BaseExpr = RHSExp;
3956 IndexExpr = LHSExp;
3957 ResultType = PTy->getPointeeType();
3958 } else if (const ObjCObjectPointerType *PTy =
3959 RHSTy->getAs<ObjCObjectPointerType>()) {
3960 // Handle the uncommon case of "123[Ptr]".
3961 BaseExpr = RHSExp;
3962 IndexExpr = LHSExp;
3963 ResultType = PTy->getPointeeType();
3964 if (!LangOpts.isSubscriptPointerArithmetic()) {
3965 Diag(LLoc, diag::err_subscript_nonfragile_interface)
3966 << ResultType << BaseExpr->getSourceRange();
3967 return ExprError();
3968 }
3969 } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3970 BaseExpr = LHSExp; // vectors: V[123]
3971 IndexExpr = RHSExp;
3972 VK = LHSExp->getValueKind();
3973 if (VK != VK_RValue)
3974 OK = OK_VectorComponent;
3975
3976 // FIXME: need to deal with const...
3977 ResultType = VTy->getElementType();
3978 } else if (LHSTy->isArrayType()) {
3979 // If we see an array that wasn't promoted by
3980 // DefaultFunctionArrayLvalueConversion, it must be an array that
3981 // wasn't promoted because of the C90 rule that doesn't
3982 // allow promoting non-lvalue arrays. Warn, then
3983 // force the promotion here.
3984 Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3985 LHSExp->getSourceRange();
3986 LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3987 CK_ArrayToPointerDecay).get();
3988 LHSTy = LHSExp->getType();
3989
3990 BaseExpr = LHSExp;
3991 IndexExpr = RHSExp;
3992 ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3993 } else if (RHSTy->isArrayType()) {
3994 // Same as previous, except for 123[f().a] case
3995 Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3996 RHSExp->getSourceRange();
3997 RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3998 CK_ArrayToPointerDecay).get();
3999 RHSTy = RHSExp->getType();
4000
4001 BaseExpr = RHSExp;
4002 IndexExpr = LHSExp;
4003 ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
4004 } else {
4005 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
4006 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
4007 }
4008 // C99 6.5.2.1p1
4009 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
4010 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
4011 << IndexExpr->getSourceRange());
4012
4013 if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4014 IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4015 && !IndexExpr->isTypeDependent())
4016 Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
4017
4018 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4019 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4020 // type. Note that Functions are not objects, and that (in C99 parlance)
4021 // incomplete types are not object types.
4022 if (ResultType->isFunctionType()) {
4023 Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
4024 << ResultType << BaseExpr->getSourceRange();
4025 return ExprError();
4026 }
4027
4028 if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
4029 // GNU extension: subscripting on pointer to void
4030 Diag(LLoc, diag::ext_gnu_subscript_void_type)
4031 << BaseExpr->getSourceRange();
4032
4033 // C forbids expressions of unqualified void type from being l-values.
4034 // See IsCForbiddenLValueType.
4035 if (!ResultType.hasQualifiers()) VK = VK_RValue;
4036 } else if (!ResultType->isDependentType() &&
4037 RequireCompleteType(LLoc, ResultType,
4038 diag::err_subscript_incomplete_type, BaseExpr))
4039 return ExprError();
4040
4041 assert(VK == VK_RValue || LangOpts.CPlusPlus ||
4042 !ResultType.isCForbiddenLValueType());
4043
4044 return new (Context)
4045 ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
4046}
4047
4048ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
4049 FunctionDecl *FD,
4050 ParmVarDecl *Param) {
4051 if (Param->hasUnparsedDefaultArg()) {
4052 Diag(CallLoc,
4053 diag::err_use_of_default_argument_to_function_declared_later) <<
4054 FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
4055 Diag(UnparsedDefaultArgLocs[Param],
4056 diag::note_default_argument_declared_here);
4057 return ExprError();
4058 }
4059
4060 if (Param->hasUninstantiatedDefaultArg()) {
4061 Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
4062
4063 EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
4064 Param);
4065
4066 // Instantiate the expression.
4067 MultiLevelTemplateArgumentList MutiLevelArgList
4068 = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
4069
4070 InstantiatingTemplate Inst(*this, CallLoc, Param,
4071 MutiLevelArgList.getInnermost());
4072 if (Inst.isInvalid())
4073 return ExprError();
4074
4075 ExprResult Result;
4076 {
4077 // C++ [dcl.fct.default]p5:
4078 // The names in the [default argument] expression are bound, and
4079 // the semantic constraints are checked, at the point where the
4080 // default argument expression appears.
4081 ContextRAII SavedContext(*this, FD);
4082 LocalInstantiationScope Local(*this);
4083 Result = SubstExpr(UninstExpr, MutiLevelArgList);
4084 }
4085 if (Result.isInvalid())
4086 return ExprError();
4087
4088 // Check the expression as an initializer for the parameter.
4089 InitializedEntity Entity
4090 = InitializedEntity::InitializeParameter(Context, Param);
4091 InitializationKind Kind
4092 = InitializationKind::CreateCopy(Param->getLocation(),
4093 /*FIXME:EqualLoc*/UninstExpr->getLocStart());
4094 Expr *ResultE = Result.getAs<Expr>();
4095
4096 InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
4097 Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
4098 if (Result.isInvalid())
4099 return ExprError();
4100
4101 Expr *Arg = Result.getAs<Expr>();
4102 CheckCompletedExpr(Arg, Param->getOuterLocStart());
4103 // Build the default argument expression.
4104 return CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg);
4105 }
4106
4107 // If the default expression creates temporaries, we need to
4108 // push them to the current stack of expression temporaries so they'll
4109 // be properly destroyed.
4110 // FIXME: We should really be rebuilding the default argument with new
4111 // bound temporaries; see the comment in PR5810.
4112 // We don't need to do that with block decls, though, because
4113 // blocks in default argument expression can never capture anything.
4114 if (isa<ExprWithCleanups>(Param->getInit())) {
4115 // Set the "needs cleanups" bit regardless of whether there are
4116 // any explicit objects.
4117 ExprNeedsCleanups = true;
4118
4119 // Append all the objects to the cleanup list. Right now, this
4120 // should always be a no-op, because blocks in default argument
4121 // expressions should never be able to capture anything.
4122 assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
4123 "default argument expression has capturing blocks?");
4124 }
4125
4126 // We already type-checked the argument, so we know it works.
4127 // Just mark all of the declarations in this potentially-evaluated expression
4128 // as being "referenced".
4129 MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
4130 /*SkipLocalVariables=*/true);
4131 return CXXDefaultArgExpr::Create(Context, CallLoc, Param);
4132}
4133
4134
4135Sema::VariadicCallType
4136Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
4137 Expr *Fn) {
4138 if (Proto && Proto->isVariadic()) {
4139 if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
4140 return VariadicConstructor;
4141 else if (Fn && Fn->getType()->isBlockPointerType())
4142 return VariadicBlock;
4143 else if (FDecl) {
4144 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4145 if (Method->isInstance())
4146 return VariadicMethod;
4147 } else if (Fn && Fn->getType() == Context.BoundMemberTy)
4148 return VariadicMethod;
4149 return VariadicFunction;
4150 }
4151 return VariadicDoesNotApply;
4152}
4153
4154namespace {
4155class FunctionCallCCC : public FunctionCallFilterCCC {
4156public:
4157 FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
4158 unsigned NumArgs, MemberExpr *ME)
4159 : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
4160 FunctionName(FuncName) {}
4161
4162 bool ValidateCandidate(const TypoCorrection &candidate) override {
4163 if (!candidate.getCorrectionSpecifier() ||
4164 candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
4165 return false;
4166 }
4167
4168 return FunctionCallFilterCCC::ValidateCandidate(candidate);
4169 }
4170
4171private:
4172 const IdentifierInfo *const FunctionName;
4173};
4174}
4175
4176static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
4177 FunctionDecl *FDecl,
4178 ArrayRef<Expr *> Args) {
4179 MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
4180 DeclarationName FuncName = FDecl->getDeclName();
4181 SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getLocStart();
4182
4183 if (TypoCorrection Corrected = S.CorrectTypo(
4184 DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
4185 S.getScopeForContext(S.CurContext), nullptr,
4186 llvm::make_unique<FunctionCallCCC>(S, FuncName.getAsIdentifierInfo(),
4187 Args.size(), ME),
4188 Sema::CTK_ErrorRecovery)) {
4189 if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
4190 if (Corrected.isOverloaded()) {
4191 OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
4192 OverloadCandidateSet::iterator Best;
4193 for (TypoCorrection::decl_iterator CD = Corrected.begin(),
4194 CDEnd = Corrected.end();
4195 CD != CDEnd; ++CD) {
4196 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
4197 S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
4198 OCS);
4199 }
4200 switch (OCS.BestViableFunction(S, NameLoc, Best)) {
4201 case OR_Success:
4202 ND = Best->Function;
4203 Corrected.setCorrectionDecl(ND);
4204 break;
4205 default:
4206 break;
4207 }
4208 }
4209 if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
4210 return Corrected;
4211 }
4212 }
4213 }
4214 return TypoCorrection();
4215}
4216
4217/// ConvertArgumentsForCall - Converts the arguments specified in
4218/// Args/NumArgs to the parameter types of the function FDecl with
4219/// function prototype Proto. Call is the call expression itself, and
4220/// Fn is the function expression. For a C++ member function, this
4221/// routine does not attempt to convert the object argument. Returns
4222/// true if the call is ill-formed.
4223bool
4224Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
4225 FunctionDecl *FDecl,
4226 const FunctionProtoType *Proto,
4227 ArrayRef<Expr *> Args,
4228 SourceLocation RParenLoc,
4229 bool IsExecConfig) {
4230 // Bail out early if calling a builtin with custom typechecking.
4231 // We don't need to do this in the
4232 if (FDecl)
4233 if (unsigned ID = FDecl->getBuiltinID())
4234 if (Context.BuiltinInfo.hasCustomTypechecking(ID))
4235 return false;
4236
4237 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
4238 // assignment, to the types of the corresponding parameter, ...
4239 unsigned NumParams = Proto->getNumParams();
4240 bool Invalid = false;
4241 unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
4242 unsigned FnKind = Fn->getType()->isBlockPointerType()
4243 ? 1 /* block */
4244 : (IsExecConfig ? 3 /* kernel function (exec config) */
4245 : 0 /* function */);
4246
4247 // If too few arguments are available (and we don't have default
4248 // arguments for the remaining parameters), don't make the call.
4249 if (Args.size() < NumParams) {
4250 if (Args.size() < MinArgs) {
4251 TypoCorrection TC;
4252 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
4253 unsigned diag_id =
4254 MinArgs == NumParams && !Proto->isVariadic()
4255 ? diag::err_typecheck_call_too_few_args_suggest
4256 : diag::err_typecheck_call_too_few_args_at_least_suggest;
4257 diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
4258 << static_cast<unsigned>(Args.size())
4259 << TC.getCorrectionRange());
4260 } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
4261 Diag(RParenLoc,
4262 MinArgs == NumParams && !Proto->isVariadic()
4263 ? diag::err_typecheck_call_too_few_args_one
4264 : diag::err_typecheck_call_too_few_args_at_least_one)
4265 << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
4266 else
4267 Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
4268 ? diag::err_typecheck_call_too_few_args
4269 : diag::err_typecheck_call_too_few_args_at_least)
4270 << FnKind << MinArgs << static_cast<unsigned>(Args.size())
4271 << Fn->getSourceRange();
4272
4273 // Emit the location of the prototype.
4274 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
4275 Diag(FDecl->getLocStart(), diag::note_callee_decl)
4276 << FDecl;
4277
4278 return true;
4279 }
4280 Call->setNumArgs(Context, NumParams);
4281 }
4282
4283 // If too many are passed and not variadic, error on the extras and drop
4284 // them.
4285 if (Args.size() > NumParams) {
4286 if (!Proto->isVariadic()) {
4287 TypoCorrection TC;
4288 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
4289 unsigned diag_id =
4290 MinArgs == NumParams && !Proto->isVariadic()
4291 ? diag::err_typecheck_call_too_many_args_suggest
4292 : diag::err_typecheck_call_too_many_args_at_most_suggest;
4293 diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
4294 << static_cast<unsigned>(Args.size())
4295 << TC.getCorrectionRange());
4296 } else if (NumParams == 1 && FDecl &&
4297 FDecl->getParamDecl(0)->getDeclName())
4298 Diag(Args[NumParams]->getLocStart(),
4299 MinArgs == NumParams
4300 ? diag::err_typecheck_call_too_many_args_one
4301 : diag::err_typecheck_call_too_many_args_at_most_one)
4302 << FnKind << FDecl->getParamDecl(0)
4303 << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
4304 << SourceRange(Args[NumParams]->getLocStart(),
4305 Args.back()->getLocEnd());
4306 else
4307 Diag(Args[NumParams]->getLocStart(),
4308 MinArgs == NumParams
4309 ? diag::err_typecheck_call_too_many_args
4310 : diag::err_typecheck_call_too_many_args_at_most)
4311 << FnKind << NumParams << static_cast<unsigned>(Args.size())
4312 << Fn->getSourceRange()
4313 << SourceRange(Args[NumParams]->getLocStart(),
4314 Args.back()->getLocEnd());
4315
4316 // Emit the location of the prototype.
4317 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
4318 Diag(FDecl->getLocStart(), diag::note_callee_decl)
4319 << FDecl;
4320
4321 // This deletes the extra arguments.
4322 Call->setNumArgs(Context, NumParams);
4323 return true;
4324 }
4325 }
4326 SmallVector<Expr *, 8> AllArgs;
4327 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
4328
4329 Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
4330 Proto, 0, Args, AllArgs, CallType);
4331 if (Invalid)
4332 return true;
4333 unsigned TotalNumArgs = AllArgs.size();
4334 for (unsigned i = 0; i < TotalNumArgs; ++i)
4335 Call->setArg(i, AllArgs[i]);
4336
4337 return false;
4338}
4339
4340bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
4341 const FunctionProtoType *Proto,
4342 unsigned FirstParam, ArrayRef<Expr *> Args,
4343 SmallVectorImpl<Expr *> &AllArgs,
4344 VariadicCallType CallType, bool AllowExplicit,
4345 bool IsListInitialization) {
4346 unsigned NumParams = Proto->getNumParams();
4347 bool Invalid = false;
4348 unsigned ArgIx = 0;
4349 // Continue to check argument types (even if we have too few/many args).
4350 for (unsigned i = FirstParam; i < NumParams; i++) {
4351 QualType ProtoArgType = Proto->getParamType(i);
4352
4353 Expr *Arg;
4354 ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
4355 if (ArgIx < Args.size()) {
4356 Arg = Args[ArgIx++];
4357
4358 if (RequireCompleteType(Arg->getLocStart(),
4359 ProtoArgType,
4360 diag::err_call_incomplete_argument, Arg))
4361 return true;
4362
4363 // Strip the unbridged-cast placeholder expression off, if applicable.
4364 bool CFAudited = false;
4365 if (Arg->getType() == Context.ARCUnbridgedCastTy &&
4366 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
4367 (!Param || !Param->hasAttr<CFConsumedAttr>()))
4368 Arg = stripARCUnbridgedCast(Arg);
4369 else if (getLangOpts().ObjCAutoRefCount &&
4370 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
4371 (!Param || !Param->hasAttr<CFConsumedAttr>()))
4372 CFAudited = true;
4373
4374 InitializedEntity Entity =
4375 Param ? InitializedEntity::InitializeParameter(Context, Param,
4376 ProtoArgType)
4377 : InitializedEntity::InitializeParameter(
4378 Context, ProtoArgType, Proto->isParamConsumed(i));
4379
4380 // Remember that parameter belongs to a CF audited API.
4381 if (CFAudited)
4382 Entity.setParameterCFAudited();
4383
4384 ExprResult ArgE = PerformCopyInitialization(
4385 Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
4386 if (ArgE.isInvalid())
4387 return true;
4388
4389 Arg = ArgE.getAs<Expr>();
4390 } else {
4391 assert(Param && "can't use default arguments without a known callee");
4392
4393 ExprResult ArgExpr =
4394 BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
4395 if (ArgExpr.isInvalid())
4396 return true;
4397
4398 Arg = ArgExpr.getAs<Expr>();
4399 }
4400
4401 // Check for array bounds violations for each argument to the call. This
4402 // check only triggers warnings when the argument isn't a more complex Expr
4403 // with its own checking, such as a BinaryOperator.
4404 CheckArrayAccess(Arg);
4405
4406 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
4407 CheckStaticArrayArgument(CallLoc, Param, Arg);
4408
4409 AllArgs.push_back(Arg);
4410 }
4411
4412 // If this is a variadic call, handle args passed through "...".
4413 if (CallType != VariadicDoesNotApply) {
4414 // Assume that extern "C" functions with variadic arguments that
4415 // return __unknown_anytype aren't *really* variadic.
4416 if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
4417 FDecl->isExternC()) {
4418 for (unsigned i = ArgIx, e = Args.size(); i != e; ++i) {
4419 QualType paramType; // ignored
4420 ExprResult arg = checkUnknownAnyArg(CallLoc, Args[i], paramType);
4421 Invalid |= arg.isInvalid();
4422 AllArgs.push_back(arg.get());
4423 }
4424
4425 // Otherwise do argument promotion, (C99 6.5.2.2p7).
4426 } else {
4427 for (unsigned i = ArgIx, e = Args.size(); i != e; ++i) {
4428 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
4429 FDecl);
4430 Invalid |= Arg.isInvalid();
4431 AllArgs.push_back(Arg.get());
4432 }
4433 }
4434
4435 // Check for array bounds violations.
4436 for (unsigned i = ArgIx, e = Args.size(); i != e; ++i)
4437 CheckArrayAccess(Args[i]);
4438 }
4439 return Invalid;
4440}
4441
4442static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
4443 TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
4444 if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
4445 TL = DTL.getOriginalLoc();
4446 if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
4447 S.Diag(PVD->getLocation(), diag::note_callee_static_array)
4448 << ATL.getLocalSourceRange();
4449}
4450
4451/// CheckStaticArrayArgument - If the given argument corresponds to a static
4452/// array parameter, check that it is non-null, and that if it is formed by
4453/// array-to-pointer decay, the underlying array is sufficiently large.
4454///
4455/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
4456/// array type derivation, then for each call to the function, the value of the
4457/// corresponding actual argument shall provide access to the first element of
4458/// an array with at least as many elements as specified by the size expression.
4459void
4460Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
4461 ParmVarDecl *Param,
4462 const Expr *ArgExpr) {
4463 // Static array parameters are not supported in C++.
4464 if (!Param || getLangOpts().CPlusPlus)
4465 return;
4466
4467 QualType OrigTy = Param->getOriginalType();
4468
4469 const ArrayType *AT = Context.getAsArrayType(OrigTy);
4470 if (!AT || AT->getSizeModifier() != ArrayType::Static)
4471 return;
4472
4473 if (ArgExpr->isNullPointerConstant(Context,
4474 Expr::NPC_NeverValueDependent)) {
4475 Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
4476 DiagnoseCalleeStaticArrayParam(*this, Param);
4477 return;
4478 }
4479
4480 const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
4481 if (!CAT)
4482 return;
4483
4484 const ConstantArrayType *ArgCAT =
4485 Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
4486 if (!ArgCAT)
4487 return;
4488
4489 if (ArgCAT->getSize().ult(CAT->getSize())) {
4490 Diag(CallLoc, diag::warn_static_array_too_small)
4491 << ArgExpr->getSourceRange()
4492 << (unsigned) ArgCAT->getSize().getZExtValue()
4493 << (unsigned) CAT->getSize().getZExtValue();
4494 DiagnoseCalleeStaticArrayParam(*this, Param);
4495 }
4496}
4497
4498/// Given a function expression of unknown-any type, try to rebuild it
4499/// to have a function type.
4500static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
4501
4502/// Is the given type a placeholder that we need to lower out
4503/// immediately during argument processing?
4504static bool isPlaceholderToRemoveAsArg(QualType type) {
4505 // Placeholders are never sugared.
4506 const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
4507 if (!placeholder) return false;
4508
4509 switch (placeholder->getKind()) {
4510 // Ignore all the non-placeholder types.
4511#define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
4512#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
4513#include "clang/AST/BuiltinTypes.def"
4514 return false;
4515
4516 // We cannot lower out overload sets; they might validly be resolved
4517 // by the call machinery.
4518 case BuiltinType::Overload:
4519 return false;
4520
4521 // Unbridged casts in ARC can be handled in some call positions and
4522 // should be left in place.
4523 case BuiltinType::ARCUnbridgedCast:
4524 return false;
4525
4526 // Pseudo-objects should be converted as soon as possible.
4527 case BuiltinType::PseudoObject:
4528 return true;
4529
4530 // The debugger mode could theoretically but currently does not try
4531 // to resolve unknown-typed arguments based on known parameter types.
4532 case BuiltinType::UnknownAny:
4533 return true;
4534
4535 // These are always invalid as call arguments and should be reported.
4536 case BuiltinType::BoundMember:
4537 case BuiltinType::BuiltinFn:
4538 return true;
4539 }
4540 llvm_unreachable("bad builtin type kind");
4541}
4542
4543/// Check an argument list for placeholders that we won't try to
4544/// handle later.
4545static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
4546 // Apply this processing to all the arguments at once instead of
4547 // dying at the first failure.
4548 bool hasInvalid = false;
4549 for (size_t i = 0, e = args.size(); i != e; i++) {
4550 if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
4551 ExprResult result = S.CheckPlaceholderExpr(args[i]);
4552 if (result.isInvalid()) hasInvalid = true;
4553 else args[i] = result.get();
4554 } else if (hasInvalid) {
4555 (void)S.CorrectDelayedTyposInExpr(args[i]);
4556 }
4557 }
4558 return hasInvalid;
4559}
4560
4561/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
4562/// This provides the location of the left/right parens and a list of comma
4563/// locations.
4564ExprResult
4565Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
4566 MultiExprArg ArgExprs, SourceLocation RParenLoc,
4567 Expr *ExecConfig, bool IsExecConfig) {
4568 // Since this might be a postfix expression, get rid of ParenListExprs.
4569 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
4570 if (Result.isInvalid()) return ExprError();
4571 Fn = Result.get();
4572
4573 if (checkArgsForPlaceholders(*this, ArgExprs))
4574 return ExprError();
4575
4576 if (getLangOpts().CPlusPlus) {
4577 // If this is a pseudo-destructor expression, build the call immediately.
4578 if (isa<CXXPseudoDestructorExpr>(Fn)) {
4579 if (!ArgExprs.empty()) {
4580 // Pseudo-destructor calls should not have any arguments.
4581 Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
4582 << FixItHint::CreateRemoval(
4583 SourceRange(ArgExprs[0]->getLocStart(),
4584 ArgExprs.back()->getLocEnd()));
4585 }
4586
4587 return new (Context)
4588 CallExpr(Context, Fn, None, Context.VoidTy, VK_RValue, RParenLoc);
4589 }
4590 if (Fn->getType() == Context.PseudoObjectTy) {
4591 ExprResult result = CheckPlaceholderExpr(Fn);
4592 if (result.isInvalid()) return ExprError();
4593 Fn = result.get();
4594 }
4595
4596 // Determine whether this is a dependent call inside a C++ template,
4597 // in which case we won't do any semantic analysis now.
4598 // FIXME: Will need to cache the results of name lookup (including ADL) in
4599 // Fn.
4600 bool Dependent = false;
4601 if (Fn->isTypeDependent())
4602 Dependent = true;
4603 else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
4604 Dependent = true;
4605
4606 if (Dependent) {
4607 if (ExecConfig) {
4608 return new (Context) CUDAKernelCallExpr(
4609 Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
4610 Context.DependentTy, VK_RValue, RParenLoc);
4611 } else {
4612 return new (Context) CallExpr(
4613 Context, Fn, ArgExprs, Context.DependentTy, VK_RValue, RParenLoc);
4614 }
4615 }
4616
4617 // Determine whether this is a call to an object (C++ [over.call.object]).
4618 if (Fn->getType()->isRecordType())
4619 return BuildCallToObjectOfClassType(S, Fn, LParenLoc, ArgExprs,
4620 RParenLoc);
4621
4622 if (Fn->getType() == Context.UnknownAnyTy) {
4623 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
4624 if (result.isInvalid()) return ExprError();
4625 Fn = result.get();
4626 }
4627
4628 if (Fn->getType() == Context.BoundMemberTy) {
4629 return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs, RParenLoc);
4630 }
4631 }
4632
4633 // Check for overloaded calls. This can happen even in C due to extensions.
4634 if (Fn->getType() == Context.OverloadTy) {
4635 OverloadExpr::FindResult find = OverloadExpr::find(Fn);
4636
4637 // We aren't supposed to apply this logic for if there's an '&' involved.
4638 if (!find.HasFormOfMemberPointer) {
4639 OverloadExpr *ovl = find.Expression;
4640 if (isa<UnresolvedLookupExpr>(ovl)) {
4641 UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
4642 return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs,
4643 RParenLoc, ExecConfig);
4644 } else {
4645 return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs,
4646 RParenLoc);
4647 }
4648 }
4649 }
4650
4651 // If we're directly calling a function, get the appropriate declaration.
4652 if (Fn->getType() == Context.UnknownAnyTy) {
4653 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
4654 if (result.isInvalid()) return ExprError();
4655 Fn = result.get();
4656 }
4657
4658 Expr *NakedFn = Fn->IgnoreParens();
4659
4660 NamedDecl *NDecl = nullptr;
4661 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
4662 if (UnOp->getOpcode() == UO_AddrOf)
4663 NakedFn = UnOp->getSubExpr()->IgnoreParens();
4664
4665 if (isa<DeclRefExpr>(NakedFn))
4666 NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
4667 else if (isa<MemberExpr>(NakedFn))
4668 NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
4669
4670 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
4671 if (FD->hasAttr<EnableIfAttr>()) {
4672 if (const EnableIfAttr *Attr = CheckEnableIf(FD, ArgExprs, true)) {
4673 Diag(Fn->getLocStart(),
4674 isa<CXXMethodDecl>(FD) ?
4675 diag::err_ovl_no_viable_member_function_in_call :
4676 diag::err_ovl_no_viable_function_in_call)
4677 << FD << FD->getSourceRange();
4678 Diag(FD->getLocation(),
4679 diag::note_ovl_candidate_disabled_by_enable_if_attr)
4680 << Attr->getCond()->getSourceRange() << Attr->getMessage();
4681 }
4682 }
4683 }
4684
4685 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
4686 ExecConfig, IsExecConfig);
4687}
4688
4689/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
4690///
4691/// __builtin_astype( value, dst type )
4692///
4693ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
4694 SourceLocation BuiltinLoc,
4695 SourceLocation RParenLoc) {
4696 ExprValueKind VK = VK_RValue;
4697 ExprObjectKind OK = OK_Ordinary;
4698 QualType DstTy = GetTypeFromParser(ParsedDestTy);
4699 QualType SrcTy = E->getType();
4700 if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
4701 return ExprError(Diag(BuiltinLoc,
4702 diag::err_invalid_astype_of_different_size)
4703 << DstTy
4704 << SrcTy
4705 << E->getSourceRange());
4706 return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
4707}
4708
4709/// ActOnConvertVectorExpr - create a new convert-vector expression from the
4710/// provided arguments.
4711///
4712/// __builtin_convertvector( value, dst type )
4713///
4714ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
4715 SourceLocation BuiltinLoc,
4716 SourceLocation RParenLoc) {
4717 TypeSourceInfo *TInfo;
4718 GetTypeFromParser(ParsedDestTy, &TInfo);
4719 return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
4720}
4721
4722/// BuildResolvedCallExpr - Build a call to a resolved expression,
4723/// i.e. an expression not of \p OverloadTy. The expression should
4724/// unary-convert to an expression of function-pointer or
4725/// block-pointer type.
4726///
4727/// \param NDecl the declaration being called, if available
4728ExprResult
4729Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
4730 SourceLocation LParenLoc,
4731 ArrayRef<Expr *> Args,
4732 SourceLocation RParenLoc,
4733 Expr *Config, bool IsExecConfig) {
4734 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
4735 unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
4736
4737 // Promote the function operand.
4738 // We special-case function promotion here because we only allow promoting
4739 // builtin functions to function pointers in the callee of a call.
4740 ExprResult Result;
4741 if (BuiltinID &&
4742 Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
4743 Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
4744 CK_BuiltinFnToFnPtr).get();
4745 } else {
4746 Result = CallExprUnaryConversions(Fn);
4747 }
4748 if (Result.isInvalid())
4749 return ExprError();
4750 Fn = Result.get();
4751
4752 // Make the call expr early, before semantic checks. This guarantees cleanup
4753 // of arguments and function on error.
4754 CallExpr *TheCall;
4755 if (Config)
4756 TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
4757 cast<CallExpr>(Config), Args,
4758 Context.BoolTy, VK_RValue,
4759 RParenLoc);
4760 else
4761 TheCall = new (Context) CallExpr(Context, Fn, Args, Context.BoolTy,
4762 VK_RValue, RParenLoc);
4763
4764 // Bail out early if calling a builtin with custom typechecking.
4765 if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
4766 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
4767
4768 retry:
4769 const FunctionType *FuncT;
4770 if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
4771 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
4772 // have type pointer to function".
4773 FuncT = PT->getPointeeType()->getAs<FunctionType>();
4774 if (!FuncT)
4775 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4776 << Fn->getType() << Fn->getSourceRange());
4777 } else if (const BlockPointerType *BPT =
4778 Fn->getType()->getAs<BlockPointerType>()) {
4779 FuncT = BPT->getPointeeType()->castAs<FunctionType>();
4780 } else {
4781 // Handle calls to expressions of unknown-any type.
4782 if (Fn->getType() == Context.UnknownAnyTy) {
4783 ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
4784 if (rewrite.isInvalid()) return ExprError();
4785 Fn = rewrite.get();
4786 TheCall->setCallee(Fn);
4787 goto retry;
4788 }
4789
4790 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4791 << Fn->getType() << Fn->getSourceRange());
4792 }
4793
4794 if (getLangOpts().CUDA) {
4795 if (Config) {
4796 // CUDA: Kernel calls must be to global functions
4797 if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
4798 return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
4799 << FDecl->getName() << Fn->getSourceRange());
4800
4801 // CUDA: Kernel function must have 'void' return type
4802 if (!FuncT->getReturnType()->isVoidType())
4803 return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
4804 << Fn->getType() << Fn->getSourceRange());
4805 } else {
4806 // CUDA: Calls to global functions must be configured
4807 if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
4808 return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
4809 << FDecl->getName() << Fn->getSourceRange());
4810 }
4811 }
4812
4813 // Check for a valid return type
4814 if (CheckCallReturnType(FuncT->getReturnType(), Fn->getLocStart(), TheCall,
4815 FDecl))
4816 return ExprError();
4817
4818 // We know the result type of the call, set it.
4819 TheCall->setType(FuncT->getCallResultType(Context));
4820 TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
4821
4822 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
4823 if (Proto) {
4824 if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
4825 IsExecConfig))
4826 return ExprError();
4827 } else {
4828 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
4829
4830 if (FDecl) {
4831 // Check if we have too few/too many template arguments, based
4832 // on our knowledge of the function definition.
4833 const FunctionDecl *Def = nullptr;
4834 if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
4835 Proto = Def->getType()->getAs<FunctionProtoType>();
4836 if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
4837 Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
4838 << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
4839 }
4840
4841 // If the function we're calling isn't a function prototype, but we have
4842 // a function prototype from a prior declaratiom, use that prototype.
4843 if (!FDecl->hasPrototype())
4844 Proto = FDecl->getType()->getAs<FunctionProtoType>();
4845 }
4846
4847 // Promote the arguments (C99 6.5.2.2p6).
4848 for (unsigned i = 0, e = Args.size(); i != e; i++) {
4849 Expr *Arg = Args[i];
4850
4851 if (Proto && i < Proto->getNumParams()) {
4852 InitializedEntity Entity = InitializedEntity::InitializeParameter(
4853 Context, Proto->getParamType(i), Proto->isParamConsumed(i));
4854 ExprResult ArgE =
4855 PerformCopyInitialization(Entity, SourceLocation(), Arg);
4856 if (ArgE.isInvalid())
4857 return true;
4858
4859 Arg = ArgE.getAs<Expr>();
4860
4861 } else {
4862 ExprResult ArgE = DefaultArgumentPromotion(Arg);
4863
4864 if (ArgE.isInvalid())
4865 return true;
4866
4867 Arg = ArgE.getAs<Expr>();
4868 }
4869
4870 if (RequireCompleteType(Arg->getLocStart(),
4871 Arg->getType(),
4872 diag::err_call_incomplete_argument, Arg))
4873 return ExprError();
4874
4875 TheCall->setArg(i, Arg);
4876 }
4877 }
4878
4879 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4880 if (!Method->isStatic())
4881 return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
4882 << Fn->getSourceRange());
4883
4884 // Check for sentinels
4885 if (NDecl)
4886 DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
4887
4888 // Do special checking on direct calls to functions.
4889 if (FDecl) {
4890 if (CheckFunctionCall(FDecl, TheCall, Proto))
4891 return ExprError();
4892
4893 if (BuiltinID)
4894 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
4895 } else if (NDecl) {
4896 if (CheckPointerCall(NDecl, TheCall, Proto))
4897 return ExprError();
4898 } else {
4899 if (CheckOtherCall(TheCall, Proto))
4900 return ExprError();
4901 }
4902
4903 return MaybeBindToTemporary(TheCall);
4904}
4905
4906ExprResult
4907Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
4908 SourceLocation RParenLoc, Expr *InitExpr) {
4909 assert(Ty && "ActOnCompoundLiteral(): missing type");
4910 // FIXME: put back this assert when initializers are worked out.
4911 //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
4912
4913 TypeSourceInfo *TInfo;
4914 QualType literalType = GetTypeFromParser(Ty, &TInfo);
4915 if (!TInfo)
4916 TInfo = Context.getTrivialTypeSourceInfo(literalType);
4917
4918 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
4919}
4920
4921ExprResult
4922Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
4923 SourceLocation RParenLoc, Expr *LiteralExpr) {
4924 QualType literalType = TInfo->getType();
4925
4926 if (literalType->isArrayType()) {
4927 if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
4928 diag::err_illegal_decl_array_incomplete_type,
4929 SourceRange(LParenLoc,
4930 LiteralExpr->getSourceRange().getEnd())))
4931 return ExprError();
4932 if (literalType->isVariableArrayType())
4933 return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
4934 << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
4935 } else if (!literalType->isDependentType() &&
4936 RequireCompleteType(LParenLoc, literalType,
4937 diag::err_typecheck_decl_incomplete_type,
4938 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
4939 return ExprError();
4940
4941 InitializedEntity Entity
4942 = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
4943 InitializationKind Kind
4944 = InitializationKind::CreateCStyleCast(LParenLoc,
4945 SourceRange(LParenLoc, RParenLoc),
4946 /*InitList=*/true);
4947 InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
4948 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
4949 &literalType);
4950 if (Result.isInvalid())
4951 return ExprError();
4952 LiteralExpr = Result.get();
4953
4954 bool isFileScope = getCurFunctionOrMethodDecl() == nullptr;
4955 if (isFileScope &&
4956 !LiteralExpr->isTypeDependent() &&
4957 !LiteralExpr->isValueDependent() &&
4958 !literalType->isDependentType()) { // 6.5.2.5p3
4959 if (CheckForConstantInitializer(LiteralExpr, literalType))
4960 return ExprError();
4961 }
4962
4963 // In C, compound literals are l-values for some reason.
4964 ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
4965
4966 return MaybeBindToTemporary(
4967 new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
4968 VK, LiteralExpr, isFileScope));
4969}
4970
4971ExprResult
4972Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
4973 SourceLocation RBraceLoc) {
4974 // Immediately handle non-overload placeholders. Overloads can be
4975 // resolved contextually, but everything else here can't.
4976 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
4977 if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
4978 ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
4979
4980 // Ignore failures; dropping the entire initializer list because
4981 // of one failure would be terrible for indexing/etc.
4982 if (result.isInvalid()) continue;
4983
4984 InitArgList[I] = result.get();
4985 }
4986 }
4987
4988 // Semantic analysis for initializers is done by ActOnDeclarator() and
4989 // CheckInitializer() - it requires knowledge of the object being intialized.
4990
4991 InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
4992 RBraceLoc);
4993 E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4994 return E;
4995}
4996
4997/// Do an explicit extend of the given block pointer if we're in ARC.
4998static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
4999 assert(E.get()->getType()->isBlockPointerType());
5000 assert(E.get()->isRValue());
5001
5002 // Only do this in an r-value context.
5003 if (!S.getLangOpts().ObjCAutoRefCount) return;
5004
5005 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
5006 CK_ARCExtendBlockObject, E.get(),
5007 /*base path*/ nullptr, VK_RValue);
5008 S.ExprNeedsCleanups = true;
5009}
5010
5011/// Prepare a conversion of the given expression to an ObjC object
5012/// pointer type.
5013CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
5014 QualType type = E.get()->getType();
5015 if (type->isObjCObjectPointerType()) {
5016 return CK_BitCast;
5017 } else if (type->isBlockPointerType()) {
5018 maybeExtendBlockObject(*this, E);
5019 return CK_BlockPointerToObjCPointerCast;
5020 } else {
5021 assert(type->isPointerType());
5022 return CK_CPointerToObjCPointerCast;
5023 }
5024}
5025
5026/// Prepares for a scalar cast, performing all the necessary stages
5027/// except the final cast and returning the kind required.
5028CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
5029 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
5030 // Also, callers should have filtered out the invalid cases with
5031 // pointers. Everything else should be possible.
5032
5033 QualType SrcTy = Src.get()->getType();
5034 if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
5035 return CK_NoOp;
5036
5037 switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
5038 case Type::STK_MemberPointer:
5039 llvm_unreachable("member pointer type in C");
5040
5041 case Type::STK_CPointer:
5042 case Type::STK_BlockPointer:
5043 case Type::STK_ObjCObjectPointer:
5044 switch (DestTy->getScalarTypeKind()) {
5045 case Type::STK_CPointer: {
5046 unsigned SrcAS = SrcTy->getPointeeType().getAddressSpace();
5047 unsigned DestAS = DestTy->getPointeeType().getAddressSpace();
5048 if (SrcAS != DestAS)
5049 return CK_AddressSpaceConversion;
5050 return CK_BitCast;
5051 }
5052 case Type::STK_BlockPointer:
5053 return (SrcKind == Type::STK_BlockPointer
5054 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
5055 case Type::STK_ObjCObjectPointer:
5056 if (SrcKind == Type::STK_ObjCObjectPointer)
5057 return CK_BitCast;
5058 if (SrcKind == Type::STK_CPointer)
5059 return CK_CPointerToObjCPointerCast;
5060 maybeExtendBlockObject(*this, Src);
5061 return CK_BlockPointerToObjCPointerCast;
5062 case Type::STK_Bool:
5063 return CK_PointerToBoolean;
5064 case Type::STK_Integral:
5065 return CK_PointerToIntegral;
5066 case Type::STK_Floating:
5067 case Type::STK_FloatingComplex:
5068 case Type::STK_IntegralComplex:
5069 case Type::STK_MemberPointer:
5070 llvm_unreachable("illegal cast from pointer");
5071 }
5072 llvm_unreachable("Should have returned before this");
5073
5074 case Type::STK_Bool: // casting from bool is like casting from an integer
5075 case Type::STK_Integral:
5076 switch (DestTy->getScalarTypeKind()) {
5077 case Type::STK_CPointer:
5078 case Type::STK_ObjCObjectPointer:
5079 case Type::STK_BlockPointer:
5080 if (Src.get()->isNullPointerConstant(Context,
5081 Expr::NPC_ValueDependentIsNull))
5082 return CK_NullToPointer;
5083 return CK_IntegralToPointer;
5084 case Type::STK_Bool:
5085 return CK_IntegralToBoolean;
5086 case Type::STK_Integral:
5087 return CK_IntegralCast;
5088 case Type::STK_Floating:
5089 return CK_IntegralToFloating;
5090 case Type::STK_IntegralComplex:
5091 Src = ImpCastExprToType(Src.get(),
5092 DestTy->castAs<ComplexType>()->getElementType(),
5093 CK_IntegralCast);
5094 return CK_IntegralRealToComplex;
5095 case Type::STK_FloatingComplex:
5096 Src = ImpCastExprToType(Src.get(),
5097 DestTy->castAs<ComplexType>()->getElementType(),
5098 CK_IntegralToFloating);
5099 return CK_FloatingRealToComplex;
5100 case Type::STK_MemberPointer:
5101 llvm_unreachable("member pointer type in C");
5102 }
5103 llvm_unreachable("Should have returned before this");
5104
5105 case Type::STK_Floating:
5106 switch (DestTy->getScalarTypeKind()) {
5107 case Type::STK_Floating:
5108 return CK_FloatingCast;
5109 case Type::STK_Bool:
5110 return CK_FloatingToBoolean;
5111 case Type::STK_Integral:
5112 return CK_FloatingToIntegral;
5113 case Type::STK_FloatingComplex:
5114 Src = ImpCastExprToType(Src.get(),
5115 DestTy->castAs<ComplexType>()->getElementType(),
5116 CK_FloatingCast);
5117 return CK_FloatingRealToComplex;
5118 case Type::STK_IntegralComplex:
5119 Src = ImpCastExprToType(Src.get(),
5120 DestTy->castAs<ComplexType>()->getElementType(),
5121 CK_FloatingToIntegral);
5122 return CK_IntegralRealToComplex;
5123 case Type::STK_CPointer:
5124 case Type::STK_ObjCObjectPointer:
5125 case Type::STK_BlockPointer:
5126 llvm_unreachable("valid float->pointer cast?");
5127 case Type::STK_MemberPointer:
5128 llvm_unreachable("member pointer type in C");
5129 }
5130 llvm_unreachable("Should have returned before this");
5131
5132 case Type::STK_FloatingComplex:
5133 switch (DestTy->getScalarTypeKind()) {
5134 case Type::STK_FloatingComplex:
5135 return CK_FloatingComplexCast;
5136 case Type::STK_IntegralComplex:
5137 return CK_FloatingComplexToIntegralComplex;
5138 case Type::STK_Floating: {
5139 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
5140 if (Context.hasSameType(ET, DestTy))
5141 return CK_FloatingComplexToReal;
5142 Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
5143 return CK_FloatingCast;
5144 }
5145 case Type::STK_Bool:
5146 return CK_FloatingComplexToBoolean;
5147 case Type::STK_Integral:
5148 Src = ImpCastExprToType(Src.get(),
5149 SrcTy->castAs<ComplexType>()->getElementType(),
5150 CK_FloatingComplexToReal);
5151 return CK_FloatingToIntegral;
5152 case Type::STK_CPointer:
5153 case Type::STK_ObjCObjectPointer:
5154 case Type::STK_BlockPointer:
5155 llvm_unreachable("valid complex float->pointer cast?");
5156 case Type::STK_MemberPointer:
5157 llvm_unreachable("member pointer type in C");
5158 }
5159 llvm_unreachable("Should have returned before this");
5160
5161 case Type::STK_IntegralComplex:
5162 switch (DestTy->getScalarTypeKind()) {
5163 case Type::STK_FloatingComplex:
5164 return CK_IntegralComplexToFloatingComplex;
5165 case Type::STK_IntegralComplex:
5166 return CK_IntegralComplexCast;
5167 case Type::STK_Integral: {
5168 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
5169 if (Context.hasSameType(ET, DestTy))
5170 return CK_IntegralComplexToReal;
5171 Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
5172 return CK_IntegralCast;
5173 }
5174 case Type::STK_Bool:
5175 return CK_IntegralComplexToBoolean;
5176 case Type::STK_Floating:
5177 Src = ImpCastExprToType(Src.get(),
5178 SrcTy->castAs<ComplexType>()->getElementType(),
5179 CK_IntegralComplexToReal);
5180 return CK_IntegralToFloating;
5181 case Type::STK_CPointer:
5182 case Type::STK_ObjCObjectPointer:
5183 case Type::STK_BlockPointer:
5184 llvm_unreachable("valid complex int->pointer cast?");
5185 case Type::STK_MemberPointer:
5186 llvm_unreachable("member pointer type in C");
5187 }
5188 llvm_unreachable("Should have returned before this");
5189 }
5190
5191 llvm_unreachable("Unhandled scalar cast");
5192}
5193
5194static bool breakDownVectorType(QualType type, uint64_t &len,
5195 QualType &eltType) {
5196 // Vectors are simple.
5197 if (const VectorType *vecType = type->getAs<VectorType>()) {
5198 len = vecType->getNumElements();
5199 eltType = vecType->getElementType();
5200 assert(eltType->isScalarType());
5201 return true;
5202 }
5203
5204 // We allow lax conversion to and from non-vector types, but only if
5205 // they're real types (i.e. non-complex, non-pointer scalar types).
5206 if (!type->isRealType()) return false;
5207
5208 len = 1;
5209 eltType = type;
5210 return true;
5211}
5212
5213static bool VectorTypesMatch(Sema &S, QualType srcTy, QualType destTy) {
5214 uint64_t srcLen, destLen;
5215 QualType srcElt, destElt;
5216 if (!breakDownVectorType(srcTy, srcLen, srcElt)) return false;
5217 if (!breakDownVectorType(destTy, destLen, destElt)) return false;
5218
5219 // ASTContext::getTypeSize will return the size rounded up to a
5220 // power of 2, so instead of using that, we need to use the raw
5221 // element size multiplied by the element count.
5222 uint64_t srcEltSize = S.Context.getTypeSize(srcElt);
5223 uint64_t destEltSize = S.Context.getTypeSize(destElt);
5224
5225 return (srcLen * srcEltSize == destLen * destEltSize);
5226}
5227
5228/// Is this a legal conversion between two known vector types?
5229bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
5230 assert(destTy->isVectorType() || srcTy->isVectorType());
5231
5232 if (!Context.getLangOpts().LaxVectorConversions)
5233 return false;
5234 return VectorTypesMatch(*this, srcTy, destTy);
5235}
5236
5237bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
5238 CastKind &Kind) {
5239 assert(VectorTy->isVectorType() && "Not a vector type!");
5240
5241 if (Ty->isVectorType() || Ty->isIntegerType()) {
5242 if (!VectorTypesMatch(*this, Ty, VectorTy))
5243 return Diag(R.getBegin(),
5244 Ty->isVectorType() ?
5245 diag::err_invalid_conversion_between_vectors :
5246 diag::err_invalid_conversion_between_vector_and_integer)
5247 << VectorTy << Ty << R;
5248 } else
5249 return Diag(R.getBegin(),
5250 diag::err_invalid_conversion_between_vector_and_scalar)
5251 << VectorTy << Ty << R;
5252
5253 Kind = CK_BitCast;
5254 return false;
5255}
5256
5257ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
5258 Expr *CastExpr, CastKind &Kind) {
5259 assert(DestTy->isExtVectorType() && "Not an extended vector type!");
5260
5261 QualType SrcTy = CastExpr->getType();
5262
5263 // If SrcTy is a VectorType, the total size must match to explicitly cast to
5264 // an ExtVectorType.
5265 // In OpenCL, casts between vectors of different types are not allowed.
5266 // (See OpenCL 6.2).
5267 if (SrcTy->isVectorType()) {
5268 if (!VectorTypesMatch(*this, SrcTy, DestTy)
5269 || (getLangOpts().OpenCL &&
5270 (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
5271 Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
5272 << DestTy << SrcTy << R;
5273 return ExprError();
5274 }
5275 Kind = CK_BitCast;
5276 return CastExpr;
5277 }
5278
5279 // All non-pointer scalars can be cast to ExtVector type. The appropriate
5280 // conversion will take place first from scalar to elt type, and then
5281 // splat from elt type to vector.
5282 if (SrcTy->isPointerType())
5283 return Diag(R.getBegin(),
5284 diag::err_invalid_conversion_between_vector_and_scalar)
5285 << DestTy << SrcTy << R;
5286
5287 QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
5288 ExprResult CastExprRes = CastExpr;
5289 CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
5290 if (CastExprRes.isInvalid())
5291 return ExprError();
5292 CastExpr = ImpCastExprToType(CastExprRes.get(), DestElemTy, CK).get();
5293
5294 Kind = CK_VectorSplat;
5295 return CastExpr;
5296}
5297
5298ExprResult
5299Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
5300 Declarator &D, ParsedType &Ty,
5301 SourceLocation RParenLoc, Expr *CastExpr) {
5302 assert(!D.isInvalidType() && (CastExpr != nullptr) &&
5303 "ActOnCastExpr(): missing type or expr");
5304
5305 TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
5306 if (D.isInvalidType())
5307 return ExprError();
5308
5309 if (getLangOpts().CPlusPlus) {
5310 // Check that there are no default arguments (C++ only).
5311 CheckExtraCXXDefaultArguments(D);
5312 } else {
5313 // Make sure any TypoExprs have been dealt with.
5314 ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
5315 if (!Res.isUsable())
5316 return ExprError();
5317 CastExpr = Res.get();
5318 }
5319
5320 checkUnusedDeclAttributes(D);
5321
5322 QualType castType = castTInfo->getType();
5323 Ty = CreateParsedType(castType, castTInfo);
5324
5325 bool isVectorLiteral = false;
5326
5327 // Check for an altivec or OpenCL literal,
5328 // i.e. all the elements are integer constants.
5329 ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
5330 ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
5331 if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
5332 && castType->isVectorType() && (PE || PLE)) {
5333 if (PLE && PLE->getNumExprs() == 0) {
5334 Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
5335 return ExprError();
5336 }
5337 if (PE || PLE->getNumExprs() == 1) {
5338 Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
5339 if (!E->getType()->isVectorType())
5340 isVectorLiteral = true;
5341 }
5342 else
5343 isVectorLiteral = true;
5344 }
5345
5346 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
5347 // then handle it as such.
5348 if (isVectorLiteral)
5349 return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
5350
5351 // If the Expr being casted is a ParenListExpr, handle it specially.
5352 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
5353 // sequence of BinOp comma operators.
5354 if (isa<ParenListExpr>(CastExpr)) {
5355 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
5356 if (Result.isInvalid()) return ExprError();
5357 CastExpr = Result.get();
5358 }
5359
5360 if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
5361 !getSourceManager().isInSystemMacro(LParenLoc))
5362 Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
5363
5364 CheckTollFreeBridgeCast(castType, CastExpr);
5365
5366 CheckObjCBridgeRelatedCast(castType, CastExpr);
5367
5368 return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
5369}
5370
5371ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
5372 SourceLocation RParenLoc, Expr *E,
5373 TypeSourceInfo *TInfo) {
5374 assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
5375 "Expected paren or paren list expression");
5376
5377 Expr **exprs;
5378 unsigned numExprs;
5379 Expr *subExpr;
5380 SourceLocation LiteralLParenLoc, LiteralRParenLoc;
5381 if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
5382 LiteralLParenLoc = PE->getLParenLoc();
5383 LiteralRParenLoc = PE->getRParenLoc();
5384 exprs = PE->getExprs();
5385 numExprs = PE->getNumExprs();
5386 } else { // isa<ParenExpr> by assertion at function entrance
5387 LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
5388 LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
5389 subExpr = cast<ParenExpr>(E)->getSubExpr();
5390 exprs = &subExpr;
5391 numExprs = 1;
5392 }
5393
5394 QualType Ty = TInfo->getType();
5395 assert(Ty->isVectorType() && "Expected vector type");
5396
5397 SmallVector<Expr *, 8> initExprs;
5398 const VectorType *VTy = Ty->getAs<VectorType>();
5399 unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
5400
5401 // '(...)' form of vector initialization in AltiVec: the number of
5402 // initializers must be one or must match the size of the vector.
5403 // If a single value is specified in the initializer then it will be
5404 // replicated to all the components of the vector
5405 if (VTy->getVectorKind() == VectorType::AltiVecVector) {
5406 // The number of initializers must be one or must match the size of the
5407 // vector. If a single value is specified in the initializer then it will
5408 // be replicated to all the components of the vector
5409 if (numExprs == 1) {
5410 QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
5411 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
5412 if (Literal.isInvalid())
5413 return ExprError();
5414 Literal = ImpCastExprToType(Literal.get(), ElemTy,
5415 PrepareScalarCast(Literal, ElemTy));
5416 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
5417 }
5418 else if (numExprs < numElems) {
5419 Diag(E->getExprLoc(),
5420 diag::err_incorrect_number_of_vector_initializers);
5421 return ExprError();
5422 }
5423 else
5424 initExprs.append(exprs, exprs + numExprs);
5425 }
5426 else {
5427 // For OpenCL, when the number of initializers is a single value,
5428 // it will be replicated to all components of the vector.
5429 if (getLangOpts().OpenCL &&
5430 VTy->getVectorKind() == VectorType::GenericVector &&
5431 numExprs == 1) {
5432 QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
5433 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
5434 if (Literal.isInvalid())
5435 return ExprError();
5436 Literal = ImpCastExprToType(Literal.get(), ElemTy,
5437 PrepareScalarCast(Literal, ElemTy));
5438 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
5439 }
5440
5441 initExprs.append(exprs, exprs + numExprs);
5442 }
5443 // FIXME: This means that pretty-printing the final AST will produce curly
5444 // braces instead of the original commas.
5445 InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
5446 initExprs, LiteralRParenLoc);
5447 initE->setType(Ty);
5448 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
5449}
5450
5451/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
5452/// the ParenListExpr into a sequence of comma binary operators.
5453ExprResult
5454Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
5455 ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
5456 if (!E)
5457 return OrigExpr;
5458
5459 ExprResult Result(E->getExpr(0));
5460
5461 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
5462 Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
5463 E->getExpr(i));
5464
5465 if (Result.isInvalid()) return ExprError();
5466
5467 return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
5468}
5469
5470ExprResult Sema::ActOnParenListExpr(SourceLocation L,
5471 SourceLocation R,
5472 MultiExprArg Val) {
5473 Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
5474 return expr;
5475}
5476
5477/// \brief Emit a specialized diagnostic when one expression is a null pointer
5478/// constant and the other is not a pointer. Returns true if a diagnostic is
5479/// emitted.
5480bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
5481 SourceLocation QuestionLoc) {
5482 Expr *NullExpr = LHSExpr;
5483 Expr *NonPointerExpr = RHSExpr;
5484 Expr::NullPointerConstantKind NullKind =
5485 NullExpr->isNullPointerConstant(Context,
5486 Expr::NPC_ValueDependentIsNotNull);
5487
5488 if (NullKind == Expr::NPCK_NotNull) {
5489 NullExpr = RHSExpr;
5490 NonPointerExpr = LHSExpr;
5491 NullKind =
5492 NullExpr->isNullPointerConstant(Context,
5493 Expr::NPC_ValueDependentIsNotNull);
5494 }
5495
5496 if (NullKind == Expr::NPCK_NotNull)
5497 return false;
5498
5499 if (NullKind == Expr::NPCK_ZeroExpression)
5500 return false;
5501
5502 if (NullKind == Expr::NPCK_ZeroLiteral) {
5503 // In this case, check to make sure that we got here from a "NULL"
5504 // string in the source code.
5505 NullExpr = NullExpr->IgnoreParenImpCasts();
5506 SourceLocation loc = NullExpr->getExprLoc();
5507 if (!findMacroSpelling(loc, "NULL"))
5508 return false;
5509 }
5510
5511 int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
5512 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
5513 << NonPointerExpr->getType() << DiagType
5514 << NonPointerExpr->getSourceRange();
5515 return true;
5516}
5517
5518/// \brief Return false if the condition expression is valid, true otherwise.
5519static bool checkCondition(Sema &S, Expr *Cond) {
5520 QualType CondTy = Cond->getType();
5521
5522 // C99 6.5.15p2
5523 if (CondTy->isScalarType()) return false;
5524
5525 // OpenCL v1.1 s6.3.i says the condition is allowed to be a vector or scalar.
5526 if (S.getLangOpts().OpenCL && CondTy->isVectorType())
5527 return false;
5528
5529 // Emit the proper error message.
5530 S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
5531 diag::err_typecheck_cond_expect_scalar :
5532 diag::err_typecheck_cond_expect_scalar_or_vector)
5533 << CondTy;
5534 return true;
5535}
5536
5537/// \brief Return false if the two expressions can be converted to a vector,
5538/// true otherwise
5539static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
5540 ExprResult &RHS,
5541 QualType CondTy) {
5542 // Both operands should be of scalar type.
5543 if (!LHS.get()->getType()->isScalarType()) {
5544 S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
5545 << CondTy;
5546 return true;
5547 }
5548 if (!RHS.get()->getType()->isScalarType()) {
5549 S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
5550 << CondTy;
5551 return true;
5552 }
5553
5554 // Implicity convert these scalars to the type of the condition.
5555 LHS = S.ImpCastExprToType(LHS.get(), CondTy, CK_IntegralCast);
5556 RHS = S.ImpCastExprToType(RHS.get(), CondTy, CK_IntegralCast);
5557 return false;
5558}
5559
5560/// \brief Handle when one or both operands are void type.
5561static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
5562 ExprResult &RHS) {
5563 Expr *LHSExpr = LHS.get();
5564 Expr *RHSExpr = RHS.get();
5565
5566 if (!LHSExpr->getType()->isVoidType())
5567 S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
5568 << RHSExpr->getSourceRange();
5569 if (!RHSExpr->getType()->isVoidType())
5570 S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
5571 << LHSExpr->getSourceRange();
5572 LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
5573 RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
5574 return S.Context.VoidTy;
5575}
5576
5577/// \brief Return false if the NullExpr can be promoted to PointerTy,
5578/// true otherwise.
5579static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
5580 QualType PointerTy) {
5581 if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
5582 !NullExpr.get()->isNullPointerConstant(S.Context,
5583 Expr::NPC_ValueDependentIsNull))
5584 return true;
5585
5586 NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
5587 return false;
5588}
5589
5590/// \brief Checks compatibility between two pointers and return the resulting
5591/// type.
5592static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
5593 ExprResult &RHS,
5594 SourceLocation Loc) {
5595 QualType LHSTy = LHS.get()->getType();
5596 QualType RHSTy = RHS.get()->getType();
5597
5598 if (S.Context.hasSameType(LHSTy, RHSTy)) {
5599 // Two identical pointers types are always compatible.
5600 return LHSTy;
5601 }
5602
5603 QualType lhptee, rhptee;
5604
5605 // Get the pointee types.
5606 bool IsBlockPointer = false;
5607 if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
5608 lhptee = LHSBTy->getPointeeType();
5609 rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
5610 IsBlockPointer = true;
5611 } else {
5612 lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
5613 rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
5614 }
5615
5616 // C99 6.5.15p6: If both operands are pointers to compatible types or to
5617 // differently qualified versions of compatible types, the result type is
5618 // a pointer to an appropriately qualified version of the composite
5619 // type.
5620
5621 // Only CVR-qualifiers exist in the standard, and the differently-qualified
5622 // clause doesn't make sense for our extensions. E.g. address space 2 should
5623 // be incompatible with address space 3: they may live on different devices or
5624 // anything.
5625 Qualifiers lhQual = lhptee.getQualifiers();
5626 Qualifiers rhQual = rhptee.getQualifiers();
5627
5628 unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
5629 lhQual.removeCVRQualifiers();
5630 rhQual.removeCVRQualifiers();
5631
5632 lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
5633 rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
5634
5635 QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
5636
5637 if (CompositeTy.isNull()) {
5638 S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
5639 << LHSTy << RHSTy << LHS.get()->getSourceRange()
5640 << RHS.get()->getSourceRange();
5641 // In this situation, we assume void* type. No especially good
5642 // reason, but this is what gcc does, and we do have to pick
5643 // to get a consistent AST.
5644 QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
5645 LHS = S.ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
5646 RHS = S.ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
5647 return incompatTy;
5648 }
5649
5650 // The pointer types are compatible.
5651 QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
5652 if (IsBlockPointer)
5653 ResultTy = S.Context.getBlockPointerType(ResultTy);
5654 else
5655 ResultTy = S.Context.getPointerType(ResultTy);
5656
5657 LHS = S.ImpCastExprToType(LHS.get(), ResultTy, CK_BitCast);
5658 RHS = S.ImpCastExprToType(RHS.get(), ResultTy, CK_BitCast);
5659 return ResultTy;
5660}
5661
5662/// \brief Returns true if QT is quelified-id and implements 'NSObject' and/or
5663/// 'NSCopying' protocols (and nothing else); or QT is an NSObject and optionally
5664/// implements 'NSObject' and/or NSCopying' protocols (and nothing else).
5665static bool isObjCPtrBlockCompatible(Sema &S, ASTContext &C, QualType QT) {
5666 if (QT->isObjCIdType())
5667 return true;
5668
5669 const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
5670 if (!OPT)
5671 return false;
5672
5673 if (ObjCInterfaceDecl *ID = OPT->getInterfaceDecl())
5674 if (ID->getIdentifier() != &C.Idents.get("NSObject"))
5675 return false;
5676
5677 ObjCProtocolDecl* PNSCopying =
5678 S.LookupProtocol(&C.Idents.get("NSCopying"), SourceLocation());
5679 ObjCProtocolDecl* PNSObject =
5680 S.LookupProtocol(&C.Idents.get("NSObject"), SourceLocation());
5681
5682 for (auto *Proto : OPT->quals()) {
5683 if ((PNSCopying && declaresSameEntity(Proto, PNSCopying)) ||
5684 (PNSObject && declaresSameEntity(Proto, PNSObject)))
5685 ;
5686 else
5687 return false;
5688 }
5689 return true;
5690}
5691
5692/// \brief Return the resulting type when the operands are both block pointers.
5693static QualType checkConditionalBlockPointerCompatibility(Sema &S,
5694 ExprResult &LHS,
5695 ExprResult &RHS,
5696 SourceLocation Loc) {
5697 QualType LHSTy = LHS.get()->getType();
5698 QualType RHSTy = RHS.get()->getType();
5699
5700 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
5701 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
5702 QualType destType = S.Context.getPointerType(S.Context.VoidTy);
5703 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
5704 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
5705 return destType;
5706 }
5707 S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
5708 << LHSTy << RHSTy << LHS.get()->getSourceRange()
5709 << RHS.get()->getSourceRange();
5710 return QualType();
5711 }
5712
5713 // We have 2 block pointer types.
5714 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
5715}
5716
5717/// \brief Return the resulting type when the operands are both pointers.
5718static QualType
5719checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
5720 ExprResult &RHS,
5721 SourceLocation Loc) {
5722 // get the pointer types
5723 QualType LHSTy = LHS.get()->getType();
5724 QualType RHSTy = RHS.get()->getType();
5725
5726 // get the "pointed to" types
5727 QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5728 QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5729
5730 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
5731 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
5732 // Figure out necessary qualifiers (C99 6.5.15p6)
5733 QualType destPointee
5734 = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5735 QualType destType = S.Context.getPointerType(destPointee);
5736 // Add qualifiers if necessary.
5737 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
5738 // Promote to void*.
5739 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
5740 return destType;
5741 }
5742 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
5743 QualType destPointee
5744 = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5745 QualType destType = S.Context.getPointerType(destPointee);
5746 // Add qualifiers if necessary.
5747 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
5748 // Promote to void*.
5749 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
5750 return destType;
5751 }
5752
5753 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
5754}
5755
5756/// \brief Return false if the first expression is not an integer and the second
5757/// expression is not a pointer, true otherwise.
5758static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
5759 Expr* PointerExpr, SourceLocation Loc,
5760 bool IsIntFirstExpr) {
5761 if (!PointerExpr->getType()->isPointerType() ||
5762 !Int.get()->getType()->isIntegerType())
5763 return false;
5764
5765 Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
5766 Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
5767
5768 S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
5769 << Expr1->getType() << Expr2->getType()
5770 << Expr1->getSourceRange() << Expr2->getSourceRange();
5771 Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
5772 CK_IntegralToPointer);
5773 return true;
5774}
5775
5776/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
5777/// In that case, LHS = cond.
5778/// C99 6.5.15
5779QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
5780 ExprResult &RHS, ExprValueKind &VK,
5781 ExprObjectKind &OK,
5782 SourceLocation QuestionLoc) {
5783
5784 ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
5785 if (!LHSResult.isUsable()) return QualType();
5786 LHS = LHSResult;
5787
5788 ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
5789 if (!RHSResult.isUsable()) return QualType();
5790 RHS = RHSResult;
5791
5792 // C++ is sufficiently different to merit its own checker.
5793 if (getLangOpts().CPlusPlus)
5794 return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
5795
5796 VK = VK_RValue;
5797 OK = OK_Ordinary;
5798
5799 // First, check the condition.
5800 Cond = UsualUnaryConversions(Cond.get());
5801 if (Cond.isInvalid())
5802 return QualType();
5803 if (checkCondition(*this, Cond.get()))
5804 return QualType();
5805
5806 // Now check the two expressions.
5807 if (LHS.get()->getType()->isVectorType() ||
5808 RHS.get()->getType()->isVectorType())
5809 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
5810
5811 QualType ResTy = UsualArithmeticConversions(LHS, RHS);
5812 if (LHS.isInvalid() || RHS.isInvalid())
5813 return QualType();
5814
5815 QualType CondTy = Cond.get()->getType();
5816 QualType LHSTy = LHS.get()->getType();
5817 QualType RHSTy = RHS.get()->getType();
5818
5819 // If the condition is a vector, and both operands are scalar,
5820 // attempt to implicity convert them to the vector type to act like the
5821 // built in select. (OpenCL v1.1 s6.3.i)
5822 if (getLangOpts().OpenCL && CondTy->isVectorType())
5823 if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
5824 return QualType();
5825
5826 // If both operands have arithmetic type, do the usual arithmetic conversions
5827 // to find a common type: C99 6.5.15p3,5.
5828 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
5829 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
5830 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
5831
5832 return ResTy;
5833 }
5834
5835 // If both operands are the same structure or union type, the result is that
5836 // type.
5837 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
5838 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
5839 if (LHSRT->getDecl() == RHSRT->getDecl())
5840 // "If both the operands have structure or union type, the result has
5841 // that type." This implies that CV qualifiers are dropped.
5842 return LHSTy.getUnqualifiedType();
5843 // FIXME: Type of conditional expression must be complete in C mode.
5844 }
5845
5846 // C99 6.5.15p5: "If both operands have void type, the result has void type."
5847 // The following || allows only one side to be void (a GCC-ism).
5848 if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
5849 return checkConditionalVoidType(*this, LHS, RHS);
5850 }
5851
5852 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
5853 // the type of the other operand."
5854 if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
5855 if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
5856
5857 // All objective-c pointer type analysis is done here.
5858 QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
5859 QuestionLoc);
5860 if (LHS.isInvalid() || RHS.isInvalid())
5861 return QualType();
5862 if (!compositeType.isNull())
5863 return compositeType;
5864
5865
5866 // Handle block pointer types.
5867 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
5868 return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
5869 QuestionLoc);
5870
5871 // Check constraints for C object pointers types (C99 6.5.15p3,6).
5872 if (LHSTy->isPointerType() && RHSTy->isPointerType())
5873 return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
5874 QuestionLoc);
5875
5876 // GCC compatibility: soften pointer/integer mismatch. Note that
5877 // null pointers have been filtered out by this point.
5878 if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
5879 /*isIntFirstExpr=*/true))
5880 return RHSTy;
5881 if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
5882 /*isIntFirstExpr=*/false))
5883 return LHSTy;
5884
5885 // Emit a better diagnostic if one of the expressions is a null pointer
5886 // constant and the other is not a pointer type. In this case, the user most
5887 // likely forgot to take the address of the other expression.
5888 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5889 return QualType();
5890
5891 // Otherwise, the operands are not compatible.
5892 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5893 << LHSTy << RHSTy << LHS.get()->getSourceRange()
5894 << RHS.get()->getSourceRange();
5895 return QualType();
5896}
5897
5898/// FindCompositeObjCPointerType - Helper method to find composite type of
5899/// two objective-c pointer types of the two input expressions.
5900QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
5901 SourceLocation QuestionLoc) {
5902 QualType LHSTy = LHS.get()->getType();
5903 QualType RHSTy = RHS.get()->getType();
5904
5905 // Handle things like Class and struct objc_class*. Here we case the result
5906 // to the pseudo-builtin, because that will be implicitly cast back to the
5907 // redefinition type if an attempt is made to access its fields.
5908 if (LHSTy->isObjCClassType() &&
5909 (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
5910 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
5911 return LHSTy;
5912 }
5913 if (RHSTy->isObjCClassType() &&
5914 (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
5915 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
5916 return RHSTy;
5917 }
5918 // And the same for struct objc_object* / id
5919 if (LHSTy->isObjCIdType() &&
5920 (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
5921 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
5922 return LHSTy;
5923 }
5924 if (RHSTy->isObjCIdType() &&
5925 (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
5926 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
5927 return RHSTy;
5928 }
5929 // And the same for struct objc_selector* / SEL
5930 if (Context.isObjCSelType(LHSTy) &&
5931 (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
5932 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
5933 return LHSTy;
5934 }
5935 if (Context.isObjCSelType(RHSTy) &&
5936 (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
5937 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
5938 return RHSTy;
5939 }
5940 // Check constraints for Objective-C object pointers types.
5941 if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
5942
5943 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
5944 // Two identical object pointer types are always compatible.
5945 return LHSTy;
5946 }
5947 const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
5948 const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
5949 QualType compositeType = LHSTy;
5950
5951 // If both operands are interfaces and either operand can be
5952 // assigned to the other, use that type as the composite
5953 // type. This allows
5954 // xxx ? (A*) a : (B*) b
5955 // where B is a subclass of A.
5956 //
5957 // Additionally, as for assignment, if either type is 'id'
5958 // allow silent coercion. Finally, if the types are
5959 // incompatible then make sure to use 'id' as the composite
5960 // type so the result is acceptable for sending messages to.
5961
5962 // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
5963 // It could return the composite type.
5964 if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
5965 compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
5966 } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
5967 compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
5968 } else if ((LHSTy->isObjCQualifiedIdType() ||
5969 RHSTy->isObjCQualifiedIdType()) &&
5970 Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
5971 // Need to handle "id<xx>" explicitly.
5972 // GCC allows qualified id and any Objective-C type to devolve to
5973 // id. Currently localizing to here until clear this should be
5974 // part of ObjCQualifiedIdTypesAreCompatible.
5975 compositeType = Context.getObjCIdType();
5976 } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
5977 compositeType = Context.getObjCIdType();
5978 } else if (!(compositeType =
5979 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
5980 ;
5981 else {
5982 Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
5983 << LHSTy << RHSTy
5984 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5985 QualType incompatTy = Context.getObjCIdType();
5986 LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
5987 RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
5988 return incompatTy;
5989 }
5990 // The object pointer types are compatible.
5991 LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
5992 RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
5993 return compositeType;
5994 }
5995 // Check Objective-C object pointer types and 'void *'
5996 if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
5997 if (getLangOpts().ObjCAutoRefCount) {
5998 // ARC forbids the implicit conversion of object pointers to 'void *',
5999 // so these types are not compatible.
6000 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
6001 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6002 LHS = RHS = true;
6003 return QualType();
6004 }
6005 QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
6006 QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
6007 QualType destPointee
6008 = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
6009 QualType destType = Context.getPointerType(destPointee);
6010 // Add qualifiers if necessary.
6011 LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
6012 // Promote to void*.
6013 RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
6014 return destType;
6015 }
6016 if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
6017 if (getLangOpts().ObjCAutoRefCount) {
6018 // ARC forbids the implicit conversion of object pointers to 'void *',
6019 // so these types are not compatible.
6020 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
6021 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6022 LHS = RHS = true;
6023 return QualType();
6024 }
6025 QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
6026 QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
6027 QualType destPointee
6028 = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
6029 QualType destType = Context.getPointerType(destPointee);
6030 // Add qualifiers if necessary.
6031 RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
6032 // Promote to void*.
6033 LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
6034 return destType;
6035 }
6036 return QualType();
6037}
6038
6039/// SuggestParentheses - Emit a note with a fixit hint that wraps
6040/// ParenRange in parentheses.
6041static void SuggestParentheses(Sema &Self, SourceLocation Loc,
6042 const PartialDiagnostic &Note,
6043 SourceRange ParenRange) {
6044 SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
6045 if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
6046 EndLoc.isValid()) {
6047 Self.Diag(Loc, Note)
6048 << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
6049 << FixItHint::CreateInsertion(EndLoc, ")");
6050 } else {
6051 // We can't display the parentheses, so just show the bare note.
6052 Self.Diag(Loc, Note) << ParenRange;
6053 }
6054}
6055
6056static bool IsArithmeticOp(BinaryOperatorKind Opc) {
6057 return Opc >= BO_Mul && Opc <= BO_Shr;
6058}
6059
6060/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
6061/// expression, either using a built-in or overloaded operator,
6062/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
6063/// expression.
6064static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
6065 Expr **RHSExprs) {
6066 // Don't strip parenthesis: we should not warn if E is in parenthesis.
6067 E = E->IgnoreImpCasts();
6068 E = E->IgnoreConversionOperator();
6069 E = E->IgnoreImpCasts();
6070
6071 // Built-in binary operator.
6072 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
6073 if (IsArithmeticOp(OP->getOpcode())) {
6074 *Opcode = OP->getOpcode();
6075 *RHSExprs = OP->getRHS();
6076 return true;
6077 }
6078 }
6079
6080 // Overloaded operator.
6081 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
6082 if (Call->getNumArgs() != 2)
6083 return false;
6084
6085 // Make sure this is really a binary operator that is safe to pass into
6086 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
6087 OverloadedOperatorKind OO = Call->getOperator();
6088 if (OO < OO_Plus || OO > OO_Arrow ||
6089 OO == OO_PlusPlus || OO == OO_MinusMinus)
6090 return false;
6091
6092 BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
6093 if (IsArithmeticOp(OpKind)) {
6094 *Opcode = OpKind;
6095 *RHSExprs = Call->getArg(1);
6096 return true;
6097 }
6098 }
6099
6100 return false;
6101}
6102
6103static bool IsLogicOp(BinaryOperatorKind Opc) {
6104 return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
6105}
6106
6107/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
6108/// or is a logical expression such as (x==y) which has int type, but is
6109/// commonly interpreted as boolean.
6110static bool ExprLooksBoolean(Expr *E) {
6111 E = E->IgnoreParenImpCasts();
6112
6113 if (E->getType()->isBooleanType())
6114 return true;
6115 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
6116 return IsLogicOp(OP->getOpcode());
6117 if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
6118 return OP->getOpcode() == UO_LNot;
6119
6120 return false;
6121}
6122
6123/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
6124/// and binary operator are mixed in a way that suggests the programmer assumed
6125/// the conditional operator has higher precedence, for example:
6126/// "int x = a + someBinaryCondition ? 1 : 2".
6127static void DiagnoseConditionalPrecedence(Sema &Self,
6128 SourceLocation OpLoc,
6129 Expr *Condition,
6130 Expr *LHSExpr,
6131 Expr *RHSExpr) {
6132 BinaryOperatorKind CondOpcode;
6133 Expr *CondRHS;
6134
6135 if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
6136 return;
6137 if (!ExprLooksBoolean(CondRHS))
6138 return;
6139
6140 // The condition is an arithmetic binary expression, with a right-
6141 // hand side that looks boolean, so warn.
6142
6143 Self.Diag(OpLoc, diag::warn_precedence_conditional)
6144 << Condition->getSourceRange()
6145 << BinaryOperator::getOpcodeStr(CondOpcode);
6146
6147 SuggestParentheses(Self, OpLoc,
6148 Self.PDiag(diag::note_precedence_silence)
6149 << BinaryOperator::getOpcodeStr(CondOpcode),
6150 SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
6151
6152 SuggestParentheses(Self, OpLoc,
6153 Self.PDiag(diag::note_precedence_conditional_first),
6154 SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
6155}
6156
6157/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
6158/// in the case of a the GNU conditional expr extension.
6159ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
6160 SourceLocation ColonLoc,
6161 Expr *CondExpr, Expr *LHSExpr,
6162 Expr *RHSExpr) {
6163 if (!getLangOpts().CPlusPlus) {
6164 // C cannot handle TypoExpr nodes in the condition because it
6165 // doesn't handle dependent types properly, so make sure any TypoExprs have
6166 // been dealt with before checking the operands.
6167 ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
6168 if (!CondResult.isUsable()) return ExprError();
6169 CondExpr = CondResult.get();
6170 }
6171
6172 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
6173 // was the condition.
6174 OpaqueValueExpr *opaqueValue = nullptr;
6175 Expr *commonExpr = nullptr;
6176 if (!LHSExpr) {
6177 commonExpr = CondExpr;
6178 // Lower out placeholder types first. This is important so that we don't
6179 // try to capture a placeholder. This happens in few cases in C++; such
6180 // as Objective-C++'s dictionary subscripting syntax.
6181 if (commonExpr->hasPlaceholderType()) {
6182 ExprResult result = CheckPlaceholderExpr(commonExpr);
6183 if (!result.isUsable()) return ExprError();
6184 commonExpr = result.get();
6185 }
6186 // We usually want to apply unary conversions *before* saving, except
6187 // in the special case of a C++ l-value conditional.
6188 if (!(getLangOpts().CPlusPlus
6189 && !commonExpr->isTypeDependent()
6190 && commonExpr->getValueKind() == RHSExpr->getValueKind()
6191 && commonExpr->isGLValue()
6192 && commonExpr->isOrdinaryOrBitFieldObject()
6193 && RHSExpr->isOrdinaryOrBitFieldObject()
6194 && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
6195 ExprResult commonRes = UsualUnaryConversions(commonExpr);
6196 if (commonRes.isInvalid())
6197 return ExprError();
6198 commonExpr = commonRes.get();
6199 }
6200
6201 opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
6202 commonExpr->getType(),
6203 commonExpr->getValueKind(),
6204 commonExpr->getObjectKind(),
6205 commonExpr);
6206 LHSExpr = CondExpr = opaqueValue;
6207 }
6208
6209 ExprValueKind VK = VK_RValue;
6210 ExprObjectKind OK = OK_Ordinary;
6211 ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
6212 QualType result = CheckConditionalOperands(Cond, LHS, RHS,
6213 VK, OK, QuestionLoc);
6214 if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
6215 RHS.isInvalid())
6216 return ExprError();
6217
6218 DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
6219 RHS.get());
6220
6221 if (!commonExpr)
6222 return new (Context)
6223 ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
6224 RHS.get(), result, VK, OK);
6225
6226 return new (Context) BinaryConditionalOperator(
6227 commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
6228 ColonLoc, result, VK, OK);
6229}
6230
6231// checkPointerTypesForAssignment - This is a very tricky routine (despite
6232// being closely modeled after the C99 spec:-). The odd characteristic of this
6233// routine is it effectively iqnores the qualifiers on the top level pointee.
6234// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
6235// FIXME: add a couple examples in this comment.
6236static Sema::AssignConvertType
6237checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
6238 assert(LHSType.isCanonical() && "LHS not canonicalized!");
6239 assert(RHSType.isCanonical() && "RHS not canonicalized!");
6240
6241 // get the "pointed to" type (ignoring qualifiers at the top level)
6242 const Type *lhptee, *rhptee;
6243 Qualifiers lhq, rhq;
6244 std::tie(lhptee, lhq) =
6245 cast<PointerType>(LHSType)->getPointeeType().split().asPair();
6246 std::tie(rhptee, rhq) =
6247 cast<PointerType>(RHSType)->getPointeeType().split().asPair();
6248
6249 Sema::AssignConvertType ConvTy = Sema::Compatible;
6250
6251 // C99 6.5.16.1p1: This following citation is common to constraints
6252 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
6253 // qualifiers of the type *pointed to* by the right;
6254
6255 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
6256 if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
6257 lhq.compatiblyIncludesObjCLifetime(rhq)) {
6258 // Ignore lifetime for further calculation.
6259 lhq.removeObjCLifetime();
6260 rhq.removeObjCLifetime();
6261 }
6262
6263 if (!lhq.compatiblyIncludes(rhq)) {
6264 // Treat address-space mismatches as fatal. TODO: address subspaces
6265 if (!lhq.isAddressSpaceSupersetOf(rhq))
6266 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
6267
6268 // It's okay to add or remove GC or lifetime qualifiers when converting to
6269 // and from void*.
6270 else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
6271 .compatiblyIncludes(
6272 rhq.withoutObjCGCAttr().withoutObjCLifetime())
6273 && (lhptee->isVoidType() || rhptee->isVoidType()))
6274 ; // keep old
6275
6276 // Treat lifetime mismatches as fatal.
6277 else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
6278 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
6279
6280 // For GCC compatibility, other qualifier mismatches are treated
6281 // as still compatible in C.
6282 else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
6283 }
6284
6285 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
6286 // incomplete type and the other is a pointer to a qualified or unqualified
6287 // version of void...
6288 if (lhptee->isVoidType()) {
6289 if (rhptee->isIncompleteOrObjectType())
6290 return ConvTy;
6291
6292 // As an extension, we allow cast to/from void* to function pointer.
6293 assert(rhptee->isFunctionType());
6294 return Sema::FunctionVoidPointer;
6295 }
6296
6297 if (rhptee->isVoidType()) {
6298 if (lhptee->isIncompleteOrObjectType())
6299 return ConvTy;
6300
6301 // As an extension, we allow cast to/from void* to function pointer.
6302 assert(lhptee->isFunctionType());
6303 return Sema::FunctionVoidPointer;
6304 }
6305
6306 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
6307 // unqualified versions of compatible types, ...
6308 QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
6309 if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
6310 // Check if the pointee types are compatible ignoring the sign.
6311 // We explicitly check for char so that we catch "char" vs
6312 // "unsigned char" on systems where "char" is unsigned.
6313 if (lhptee->isCharType())
6314 ltrans = S.Context.UnsignedCharTy;
6315 else if (lhptee->hasSignedIntegerRepresentation())
6316 ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
6317
6318 if (rhptee->isCharType())
6319 rtrans = S.Context.UnsignedCharTy;
6320 else if (rhptee->hasSignedIntegerRepresentation())
6321 rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
6322
6323 if (ltrans == rtrans) {
6324 // Types are compatible ignoring the sign. Qualifier incompatibility
6325 // takes priority over sign incompatibility because the sign
6326 // warning can be disabled.
6327 if (ConvTy != Sema::Compatible)
6328 return ConvTy;
6329
6330 return Sema::IncompatiblePointerSign;
6331 }
6332
6333 // If we are a multi-level pointer, it's possible that our issue is simply
6334 // one of qualification - e.g. char ** -> const char ** is not allowed. If
6335 // the eventual target type is the same and the pointers have the same
6336 // level of indirection, this must be the issue.
6337 if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
6338 do {
6339 lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
6340 rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
6341 } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
6342
6343 if (lhptee == rhptee)
6344 return Sema::IncompatibleNestedPointerQualifiers;
6345 }
6346
6347 // General pointer incompatibility takes priority over qualifiers.
6348 return Sema::IncompatiblePointer;
6349 }
6350 if (!S.getLangOpts().CPlusPlus &&
6351 S.IsNoReturnConversion(ltrans, rtrans, ltrans))
6352 return Sema::IncompatiblePointer;
6353 return ConvTy;
6354}
6355
6356/// checkBlockPointerTypesForAssignment - This routine determines whether two
6357/// block pointer types are compatible or whether a block and normal pointer
6358/// are compatible. It is more restrict than comparing two function pointer
6359// types.
6360static Sema::AssignConvertType
6361checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
6362 QualType RHSType) {
6363 assert(LHSType.isCanonical() && "LHS not canonicalized!");
6364 assert(RHSType.isCanonical() && "RHS not canonicalized!");
6365
6366 QualType lhptee, rhptee;
6367
6368 // get the "pointed to" type (ignoring qualifiers at the top level)
6369 lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
6370 rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
6371
6372 // In C++, the types have to match exactly.
6373 if (S.getLangOpts().CPlusPlus)
6374 return Sema::IncompatibleBlockPointer;
6375
6376 Sema::AssignConvertType ConvTy = Sema::Compatible;
6377
6378 // For blocks we enforce that qualifiers are identical.
6379 if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
6380 ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
6381
6382 if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
6383 return Sema::IncompatibleBlockPointer;
6384
6385 return ConvTy;
6386}
6387
6388/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
6389/// for assignment compatibility.
6390static Sema::AssignConvertType
6391checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
6392 QualType RHSType) {
6393 assert(LHSType.isCanonical() && "LHS was not canonicalized!");
6394 assert(RHSType.isCanonical() && "RHS was not canonicalized!");
6395
6396 if (LHSType->isObjCBuiltinType()) {
6397 // Class is not compatible with ObjC object pointers.
6398 if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
6399 !RHSType->isObjCQualifiedClassType())
6400 return Sema::IncompatiblePointer;
6401 return Sema::Compatible;
6402 }
6403 if (RHSType->isObjCBuiltinType()) {
6404 if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
6405 !LHSType->isObjCQualifiedClassType())
6406 return Sema::IncompatiblePointer;
6407 return Sema::Compatible;
6408 }
6409 QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
6410 QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
6411
6412 if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
6413 // make an exception for id<P>
6414 !LHSType->isObjCQualifiedIdType())
6415 return Sema::CompatiblePointerDiscardsQualifiers;
6416
6417 if (S.Context.typesAreCompatible(LHSType, RHSType))
6418 return Sema::Compatible;
6419 if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
6420 return Sema::IncompatibleObjCQualifiedId;
6421 return Sema::IncompatiblePointer;
6422}
6423
6424Sema::AssignConvertType
6425Sema::CheckAssignmentConstraints(SourceLocation Loc,
6426 QualType LHSType, QualType RHSType) {
6427 // Fake up an opaque expression. We don't actually care about what
6428 // cast operations are required, so if CheckAssignmentConstraints
6429 // adds casts to this they'll be wasted, but fortunately that doesn't
6430 // usually happen on valid code.
6431 OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
6432 ExprResult RHSPtr = &RHSExpr;
6433 CastKind K = CK_Invalid;
6434
6435 return CheckAssignmentConstraints(LHSType, RHSPtr, K);
6436}
6437
6438/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
6439/// has code to accommodate several GCC extensions when type checking
6440/// pointers. Here are some objectionable examples that GCC considers warnings:
6441///
6442/// int a, *pint;
6443/// short *pshort;
6444/// struct foo *pfoo;
6445///
6446/// pint = pshort; // warning: assignment from incompatible pointer type
6447/// a = pint; // warning: assignment makes integer from pointer without a cast
6448/// pint = a; // warning: assignment makes pointer from integer without a cast
6449/// pint = pfoo; // warning: assignment from incompatible pointer type
6450///
6451/// As a result, the code for dealing with pointers is more complex than the
6452/// C99 spec dictates.
6453///
6454/// Sets 'Kind' for any result kind except Incompatible.
6455Sema::AssignConvertType
6456Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
6457 CastKind &Kind) {
6458 QualType RHSType = RHS.get()->getType();
6459 QualType OrigLHSType = LHSType;
6460
6461 // Get canonical types. We're not formatting these types, just comparing
6462 // them.
6463 LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
6464 RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
6465
6466 // Common case: no conversion required.
6467 if (LHSType == RHSType) {
6468 Kind = CK_NoOp;
6469 return Compatible;
6470 }
6471
6472 // If we have an atomic type, try a non-atomic assignment, then just add an
6473 // atomic qualification step.
6474 if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
6475 Sema::AssignConvertType result =
6476 CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
6477 if (result != Compatible)
6478 return result;
6479 if (Kind != CK_NoOp)
6480 RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
6481 Kind = CK_NonAtomicToAtomic;
6482 return Compatible;
6483 }
6484
6485 // If the left-hand side is a reference type, then we are in a
6486 // (rare!) case where we've allowed the use of references in C,
6487 // e.g., as a parameter type in a built-in function. In this case,
6488 // just make sure that the type referenced is compatible with the
6489 // right-hand side type. The caller is responsible for adjusting
6490 // LHSType so that the resulting expression does not have reference
6491 // type.
6492 if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
6493 if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
6494 Kind = CK_LValueBitCast;
6495 return Compatible;
6496 }
6497 return Incompatible;
6498 }
6499
6500 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
6501 // to the same ExtVector type.
6502 if (LHSType->isExtVectorType()) {
6503 if (RHSType->isExtVectorType())
6504 return Incompatible;
6505 if (RHSType->isArithmeticType()) {
6506 // CK_VectorSplat does T -> vector T, so first cast to the
6507 // element type.
6508 QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
6509 if (elType != RHSType) {
6510 Kind = PrepareScalarCast(RHS, elType);
6511 RHS = ImpCastExprToType(RHS.get(), elType, Kind);
6512 }
6513 Kind = CK_VectorSplat;
6514 return Compatible;
6515 }
6516 }
6517
6518 // Conversions to or from vector type.
6519 if (LHSType->isVectorType() || RHSType->isVectorType()) {
6520 if (LHSType->isVectorType() && RHSType->isVectorType()) {
6521 // Allow assignments of an AltiVec vector type to an equivalent GCC
6522 // vector type and vice versa
6523 if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
6524 Kind = CK_BitCast;
6525 return Compatible;
6526 }
6527
6528 // If we are allowing lax vector conversions, and LHS and RHS are both
6529 // vectors, the total size only needs to be the same. This is a bitcast;
6530 // no bits are changed but the result type is different.
6531 if (isLaxVectorConversion(RHSType, LHSType)) {
6532 Kind = CK_BitCast;
6533 return IncompatibleVectors;
6534 }
6535 }
6536 return Incompatible;
6537 }
6538
6539 // Arithmetic conversions.
6540 if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
6541 !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
6542 Kind = PrepareScalarCast(RHS, LHSType);
6543 return Compatible;
6544 }
6545
6546 // Conversions to normal pointers.
6547 if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
6548 // U* -> T*
6549 if (isa<PointerType>(RHSType)) {
6550 unsigned AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
6551 unsigned AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
6552 Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
6553 return checkPointerTypesForAssignment(*this, LHSType, RHSType);
6554 }
6555
6556 // int -> T*
6557 if (RHSType->isIntegerType()) {
6558 Kind = CK_IntegralToPointer; // FIXME: null?
6559 return IntToPointer;
6560 }
6561
6562 // C pointers are not compatible with ObjC object pointers,
6563 // with two exceptions:
6564 if (isa<ObjCObjectPointerType>(RHSType)) {
6565 // - conversions to void*
6566 if (LHSPointer->getPointeeType()->isVoidType()) {
6567 Kind = CK_BitCast;
6568 return Compatible;
6569 }
6570
6571 // - conversions from 'Class' to the redefinition type
6572 if (RHSType->isObjCClassType() &&
6573 Context.hasSameType(LHSType,
6574 Context.getObjCClassRedefinitionType())) {
6575 Kind = CK_BitCast;
6576 return Compatible;
6577 }
6578
6579 Kind = CK_BitCast;
6580 return IncompatiblePointer;
6581 }
6582
6583 // U^ -> void*
6584 if (RHSType->getAs<BlockPointerType>()) {
6585 if (LHSPointer->getPointeeType()->isVoidType()) {
6586 Kind = CK_BitCast;
6587 return Compatible;
6588 }
6589 }
6590
6591 return Incompatible;
6592 }
6593
6594 // Conversions to block pointers.
6595 if (isa<BlockPointerType>(LHSType)) {
6596 // U^ -> T^
6597 if (RHSType->isBlockPointerType()) {
6598 Kind = CK_BitCast;
6599 return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
6600 }
6601
6602 // int or null -> T^
6603 if (RHSType->isIntegerType()) {
6604 Kind = CK_IntegralToPointer; // FIXME: null
6605 return IntToBlockPointer;
6606 }
6607
6608 // id -> T^
6609 if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
6610 Kind = CK_AnyPointerToBlockPointerCast;
6611 return Compatible;
6612 }
6613
6614 // void* -> T^
6615 if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
6616 if (RHSPT->getPointeeType()->isVoidType()) {
6617 Kind = CK_AnyPointerToBlockPointerCast;
6618 return Compatible;
6619 }
6620
6621 return Incompatible;
6622 }
6623
6624 // Conversions to Objective-C pointers.
6625 if (isa<ObjCObjectPointerType>(LHSType)) {
6626 // A* -> B*
6627 if (RHSType->isObjCObjectPointerType()) {
6628 Kind = CK_BitCast;
6629 Sema::AssignConvertType result =
6630 checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
6631 if (getLangOpts().ObjCAutoRefCount &&
6632 result == Compatible &&
6633 !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
6634 result = IncompatibleObjCWeakRef;
6635 return result;
6636 }
6637
6638 // int or null -> A*
6639 if (RHSType->isIntegerType()) {
6640 Kind = CK_IntegralToPointer; // FIXME: null
6641 return IntToPointer;
6642 }
6643
6644 // In general, C pointers are not compatible with ObjC object pointers,
6645 // with two exceptions:
6646 if (isa<PointerType>(RHSType)) {
6647 Kind = CK_CPointerToObjCPointerCast;
6648
6649 // - conversions from 'void*'
6650 if (RHSType->isVoidPointerType()) {
6651 return Compatible;
6652 }
6653
6654 // - conversions to 'Class' from its redefinition type
6655 if (LHSType->isObjCClassType() &&
6656 Context.hasSameType(RHSType,
6657 Context.getObjCClassRedefinitionType())) {
6658 return Compatible;
6659 }
6660
6661 return IncompatiblePointer;
6662 }
6663
6664 // Only under strict condition T^ is compatible with an Objective-C pointer.
6665 if (RHSType->isBlockPointerType() &&
6666 isObjCPtrBlockCompatible(*this, Context, LHSType)) {
6667 maybeExtendBlockObject(*this, RHS);
6668 Kind = CK_BlockPointerToObjCPointerCast;
6669 return Compatible;
6670 }
6671
6672 return Incompatible;
6673 }
6674
6675 // Conversions from pointers that are not covered by the above.
6676 if (isa<PointerType>(RHSType)) {
6677 // T* -> _Bool
6678 if (LHSType == Context.BoolTy) {
6679 Kind = CK_PointerToBoolean;
6680 return Compatible;
6681 }
6682
6683 // T* -> int
6684 if (LHSType->isIntegerType()) {
6685 Kind = CK_PointerToIntegral;
6686 return PointerToInt;
6687 }
6688
6689 return Incompatible;
6690 }
6691
6692 // Conversions from Objective-C pointers that are not covered by the above.
6693 if (isa<ObjCObjectPointerType>(RHSType)) {
6694 // T* -> _Bool
6695 if (LHSType == Context.BoolTy) {
6696 Kind = CK_PointerToBoolean;
6697 return Compatible;
6698 }
6699
6700 // T* -> int
6701 if (LHSType->isIntegerType()) {
6702 Kind = CK_PointerToIntegral;
6703 return PointerToInt;
6704 }
6705
6706 return Incompatible;
6707 }
6708
6709 // struct A -> struct B
6710 if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
6711 if (Context.typesAreCompatible(LHSType, RHSType)) {
6712 Kind = CK_NoOp;
6713 return Compatible;
6714 }
6715 }
6716
6717 return Incompatible;
6718}
6719
6720/// \brief Constructs a transparent union from an expression that is
6721/// used to initialize the transparent union.
6722static void ConstructTransparentUnion(Sema &S, ASTContext &C,
6723 ExprResult &EResult, QualType UnionType,
6724 FieldDecl *Field) {
6725 // Build an initializer list that designates the appropriate member
6726 // of the transparent union.
6727 Expr *E = EResult.get();
6728 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
6729 E, SourceLocation());
6730 Initializer->setType(UnionType);
6731 Initializer->setInitializedFieldInUnion(Field);
6732
6733 // Build a compound literal constructing a value of the transparent
6734 // union type from this initializer list.
6735 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
6736 EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
6737 VK_RValue, Initializer, false);
6738}
6739
6740Sema::AssignConvertType
6741Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
6742 ExprResult &RHS) {
6743 QualType RHSType = RHS.get()->getType();
6744
6745 // If the ArgType is a Union type, we want to handle a potential
6746 // transparent_union GCC extension.
6747 const RecordType *UT = ArgType->getAsUnionType();
6748 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
6749 return Incompatible;
6750
6751 // The field to initialize within the transparent union.
6752 RecordDecl *UD = UT->getDecl();
6753 FieldDecl *InitField = nullptr;
6754 // It's compatible if the expression matches any of the fields.
6755 for (auto *it : UD->fields()) {
6756 if (it->getType()->isPointerType()) {
6757 // If the transparent union contains a pointer type, we allow:
6758 // 1) void pointer
6759 // 2) null pointer constant
6760 if (RHSType->isPointerType())
6761 if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
6762 RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
6763 InitField = it;
6764 break;
6765 }
6766
6767 if (RHS.get()->isNullPointerConstant(Context,
6768 Expr::NPC_ValueDependentIsNull)) {
6769 RHS = ImpCastExprToType(RHS.get(), it->getType(),
6770 CK_NullToPointer);
6771 InitField = it;
6772 break;
6773 }
6774 }
6775
6776 CastKind Kind = CK_Invalid;
6777 if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
6778 == Compatible) {
6779 RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
6780 InitField = it;
6781 break;
6782 }
6783 }
6784
6785 if (!InitField)
6786 return Incompatible;
6787
6788 ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
6789 return Compatible;
6790}
6791
6792Sema::AssignConvertType
6793Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
6794 bool Diagnose,
6795 bool DiagnoseCFAudited) {
6796 if (getLangOpts().CPlusPlus) {
6797 if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
6798 // C++ 5.17p3: If the left operand is not of class type, the
6799 // expression is implicitly converted (C++ 4) to the
6800 // cv-unqualified type of the left operand.
6801 ExprResult Res;
6802 if (Diagnose) {
6803 Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6804 AA_Assigning);
6805 } else {
6806 ImplicitConversionSequence ICS =
6807 TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6808 /*SuppressUserConversions=*/false,
6809 /*AllowExplicit=*/false,
6810 /*InOverloadResolution=*/false,
6811 /*CStyle=*/false,
6812 /*AllowObjCWritebackConversion=*/false);
6813 if (ICS.isFailure())
6814 return Incompatible;
6815 Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6816 ICS, AA_Assigning);
6817 }
6818 if (Res.isInvalid())
6819 return Incompatible;
6820 Sema::AssignConvertType result = Compatible;
6821 if (getLangOpts().ObjCAutoRefCount &&
6822 !CheckObjCARCUnavailableWeakConversion(LHSType,
6823 RHS.get()->getType()))
6824 result = IncompatibleObjCWeakRef;
6825 RHS = Res;
6826 return result;
6827 }
6828
6829 // FIXME: Currently, we fall through and treat C++ classes like C
6830 // structures.
6831 // FIXME: We also fall through for atomics; not sure what should
6832 // happen there, though.
6833 }
6834
6835 // C99 6.5.16.1p1: the left operand is a pointer and the right is
6836 // a null pointer constant.
6837 if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
6838 LHSType->isBlockPointerType()) &&
6839 RHS.get()->isNullPointerConstant(Context,
6840 Expr::NPC_ValueDependentIsNull)) {
6841 CastKind Kind;
6842 CXXCastPath Path;
6843 CheckPointerConversion(RHS.get(), LHSType, Kind, Path, false);
6844 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
6845 return Compatible;
6846 }
6847
6848 // This check seems unnatural, however it is necessary to ensure the proper
6849 // conversion of functions/arrays. If the conversion were done for all
6850 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
6851 // expressions that suppress this implicit conversion (&, sizeof).
6852 //
6853 // Suppress this for references: C++ 8.5.3p5.
6854 if (!LHSType->isReferenceType()) {
6855 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6856 if (RHS.isInvalid())
6857 return Incompatible;
6858 }
6859
6860 Expr *PRE = RHS.get()->IgnoreParenCasts();
6861 if (ObjCProtocolExpr *OPE = dyn_cast<ObjCProtocolExpr>(PRE)) {
6862 ObjCProtocolDecl *PDecl = OPE->getProtocol();
6863 if (PDecl && !PDecl->hasDefinition()) {
6864 Diag(PRE->getExprLoc(), diag::warn_atprotocol_protocol) << PDecl->getName();
6865 Diag(PDecl->getLocation(), diag::note_entity_declared_at) << PDecl;
6866 }
6867 }
6868
6869 CastKind Kind = CK_Invalid;
6870 Sema::AssignConvertType result =
6871 CheckAssignmentConstraints(LHSType, RHS, Kind);
6872
6873 // C99 6.5.16.1p2: The value of the right operand is converted to the
6874 // type of the assignment expression.
6875 // CheckAssignmentConstraints allows the left-hand side to be a reference,
6876 // so that we can use references in built-in functions even in C.
6877 // The getNonReferenceType() call makes sure that the resulting expression
6878 // does not have reference type.
6879 if (result != Incompatible && RHS.get()->getType() != LHSType) {
6880 QualType Ty = LHSType.getNonLValueExprType(Context);
6881 Expr *E = RHS.get();
6882 if (getLangOpts().ObjCAutoRefCount)
6883 CheckObjCARCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
6884 DiagnoseCFAudited);
6885 if (getLangOpts().ObjC1 &&
6886 (CheckObjCBridgeRelatedConversions(E->getLocStart(),
6887 LHSType, E->getType(), E) ||
6888 ConversionToObjCStringLiteralCheck(LHSType, E))) {
6889 RHS = E;
6890 return Compatible;
6891 }
6892
6893 RHS = ImpCastExprToType(E, Ty, Kind);
6894 }
6895 return result;
6896}
6897
6898QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
6899 ExprResult &RHS) {
6900 Diag(Loc, diag::err_typecheck_invalid_operands)
6901 << LHS.get()->getType() << RHS.get()->getType()
6902 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6903 return QualType();
6904}
6905
6906/// Try to convert a value of non-vector type to a vector type by converting
6907/// the type to the element type of the vector and then performing a splat.
6908/// If the language is OpenCL, we only use conversions that promote scalar
6909/// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
6910/// for float->int.
6911///
6912/// \param scalar - if non-null, actually perform the conversions
6913/// \return true if the operation fails (but without diagnosing the failure)
6914static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
6915 QualType scalarTy,
6916 QualType vectorEltTy,
6917 QualType vectorTy) {
6918 // The conversion to apply to the scalar before splatting it,
6919 // if necessary.
6920 CastKind scalarCast = CK_Invalid;
6921
6922 if (vectorEltTy->isIntegralType(S.Context)) {
6923 if (!scalarTy->isIntegralType(S.Context))
6924 return true;
6925 if (S.getLangOpts().OpenCL &&
6926 S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0)
6927 return true;
6928 scalarCast = CK_IntegralCast;
6929 } else if (vectorEltTy->isRealFloatingType()) {
6930 if (scalarTy->isRealFloatingType()) {
6931 if (S.getLangOpts().OpenCL &&
6932 S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0)
6933 return true;
6934 scalarCast = CK_FloatingCast;
6935 }
6936 else if (scalarTy->isIntegralType(S.Context))
6937 scalarCast = CK_IntegralToFloating;
6938 else
6939 return true;
6940 } else {
6941 return true;
6942 }
6943
6944 // Adjust scalar if desired.
6945 if (scalar) {
6946 if (scalarCast != CK_Invalid)
6947 *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
6948 *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
6949 }
6950 return false;
6951}
6952
6953QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
6954 SourceLocation Loc, bool IsCompAssign) {
6955 if (!IsCompAssign) {
6956 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6957 if (LHS.isInvalid())
6958 return QualType();
6959 }
6960 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6961 if (RHS.isInvalid())
6962 return QualType();
6963
6964 // For conversion purposes, we ignore any qualifiers.
6965 // For example, "const float" and "float" are equivalent.
6966 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
6967 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
6968
6969 // If the vector types are identical, return.
6970 if (Context.hasSameType(LHSType, RHSType))
6971 return LHSType;
6972
6973 const VectorType *LHSVecType = LHSType->getAs<VectorType>();
6974 const VectorType *RHSVecType = RHSType->getAs<VectorType>();
6975 assert(LHSVecType || RHSVecType);
6976
6977 // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
6978 if (LHSVecType && RHSVecType &&
6979 Context.areCompatibleVectorTypes(LHSType, RHSType)) {
6980 if (isa<ExtVectorType>(LHSVecType)) {
6981 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
6982 return LHSType;
6983 }
6984
6985 if (!IsCompAssign)
6986 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
6987 return RHSType;
6988 }
6989
6990 // If there's an ext-vector type and a scalar, try to convert the scalar to
6991 // the vector element type and splat.
6992 if (!RHSVecType && isa<ExtVectorType>(LHSVecType)) {
6993 if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
6994 LHSVecType->getElementType(), LHSType))
6995 return LHSType;
6996 }
6997 if (!LHSVecType && isa<ExtVectorType>(RHSVecType)) {
6998 if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
6999 LHSType, RHSVecType->getElementType(),
7000 RHSType))
7001 return RHSType;
7002 }
7003
7004 // If we're allowing lax vector conversions, only the total (data) size
7005 // needs to be the same.
7006 // FIXME: Should we really be allowing this?
7007 // FIXME: We really just pick the LHS type arbitrarily?
7008 if (isLaxVectorConversion(RHSType, LHSType)) {
7009 QualType resultType = LHSType;
7010 RHS = ImpCastExprToType(RHS.get(), resultType, CK_BitCast);
7011 return resultType;
7012 }
7013
7014 // Okay, the expression is invalid.
7015
7016 // If there's a non-vector, non-real operand, diagnose that.
7017 if ((!RHSVecType && !RHSType->isRealType()) ||
7018 (!LHSVecType && !LHSType->isRealType())) {
7019 Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
7020 << LHSType << RHSType
7021 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7022 return QualType();
7023 }
7024
7025 // Otherwise, use the generic diagnostic.
7026 Diag(Loc, diag::err_typecheck_vector_not_convertable)
7027 << LHSType << RHSType
7028 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7029 return QualType();
7030}
7031
7032// checkArithmeticNull - Detect when a NULL constant is used improperly in an
7033// expression. These are mainly cases where the null pointer is used as an
7034// integer instead of a pointer.
7035static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
7036 SourceLocation Loc, bool IsCompare) {
7037 // The canonical way to check for a GNU null is with isNullPointerConstant,
7038 // but we use a bit of a hack here for speed; this is a relatively
7039 // hot path, and isNullPointerConstant is slow.
7040 bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
7041 bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
7042
7043 QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
7044
7045 // Avoid analyzing cases where the result will either be invalid (and
7046 // diagnosed as such) or entirely valid and not something to warn about.
7047 if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
7048 NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
7049 return;
7050
7051 // Comparison operations would not make sense with a null pointer no matter
7052 // what the other expression is.
7053 if (!IsCompare) {
7054 S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
7055 << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
7056 << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
7057 return;
7058 }
7059
7060 // The rest of the operations only make sense with a null pointer
7061 // if the other expression is a pointer.
7062 if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
7063 NonNullType->canDecayToPointerType())
7064 return;
7065
7066 S.Diag(Loc, diag::warn_null_in_comparison_operation)
7067 << LHSNull /* LHS is NULL */ << NonNullType
7068 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7069}
7070
7071QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
7072 SourceLocation Loc,
7073 bool IsCompAssign, bool IsDiv) {
7074 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7075
7076 if (LHS.get()->getType()->isVectorType() ||
7077 RHS.get()->getType()->isVectorType())
7078 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7079
7080 QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
7081 if (LHS.isInvalid() || RHS.isInvalid())
7082 return QualType();
7083
7084
7085 if (compType.isNull() || !compType->isArithmeticType())
7086 return InvalidOperands(Loc, LHS, RHS);
7087
7088 // Check for division by zero.
7089 llvm::APSInt RHSValue;
7090 if (IsDiv && !RHS.get()->isValueDependent() &&
7091 RHS.get()->EvaluateAsInt(RHSValue, Context) && RHSValue == 0)
7092 DiagRuntimeBehavior(Loc, RHS.get(),
7093 PDiag(diag::warn_division_by_zero)
7094 << RHS.get()->getSourceRange());
7095
7096 return compType;
7097}
7098
7099QualType Sema::CheckRemainderOperands(
7100 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
7101 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7102
7103 if (LHS.get()->getType()->isVectorType() ||
7104 RHS.get()->getType()->isVectorType()) {
7105 if (LHS.get()->getType()->hasIntegerRepresentation() &&
7106 RHS.get()->getType()->hasIntegerRepresentation())
7107 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7108 return InvalidOperands(Loc, LHS, RHS);
7109 }
7110
7111 QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
7112 if (LHS.isInvalid() || RHS.isInvalid())
7113 return QualType();
7114
7115 if (compType.isNull() || !compType->isIntegerType())
7116 return InvalidOperands(Loc, LHS, RHS);
7117
7118 // Check for remainder by zero.
7119 llvm::APSInt RHSValue;
7120 if (!RHS.get()->isValueDependent() &&
7121 RHS.get()->EvaluateAsInt(RHSValue, Context) && RHSValue == 0)
7122 DiagRuntimeBehavior(Loc, RHS.get(),
7123 PDiag(diag::warn_remainder_by_zero)
7124 << RHS.get()->getSourceRange());
7125
7126 return compType;
7127}
7128
7129/// \brief Diagnose invalid arithmetic on two void pointers.
7130static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
7131 Expr *LHSExpr, Expr *RHSExpr) {
7132 S.Diag(Loc, S.getLangOpts().CPlusPlus
7133 ? diag::err_typecheck_pointer_arith_void_type
7134 : diag::ext_gnu_void_ptr)
7135 << 1 /* two pointers */ << LHSExpr->getSourceRange()
7136 << RHSExpr->getSourceRange();
7137}
7138
7139/// \brief Diagnose invalid arithmetic on a void pointer.
7140static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
7141 Expr *Pointer) {
7142 S.Diag(Loc, S.getLangOpts().CPlusPlus
7143 ? diag::err_typecheck_pointer_arith_void_type
7144 : diag::ext_gnu_void_ptr)
7145 << 0 /* one pointer */ << Pointer->getSourceRange();
7146}
7147
7148/// \brief Diagnose invalid arithmetic on two function pointers.
7149static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
7150 Expr *LHS, Expr *RHS) {
7151 assert(LHS->getType()->isAnyPointerType());
7152 assert(RHS->getType()->isAnyPointerType());
7153 S.Diag(Loc, S.getLangOpts().CPlusPlus
7154 ? diag::err_typecheck_pointer_arith_function_type
7155 : diag::ext_gnu_ptr_func_arith)
7156 << 1 /* two pointers */ << LHS->getType()->getPointeeType()
7157 // We only show the second type if it differs from the first.
7158 << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
7159 RHS->getType())
7160 << RHS->getType()->getPointeeType()
7161 << LHS->getSourceRange() << RHS->getSourceRange();
7162}
7163
7164/// \brief Diagnose invalid arithmetic on a function pointer.
7165static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
7166 Expr *Pointer) {
7167 assert(Pointer->getType()->isAnyPointerType());
7168 S.Diag(Loc, S.getLangOpts().CPlusPlus
7169 ? diag::err_typecheck_pointer_arith_function_type
7170 : diag::ext_gnu_ptr_func_arith)
7171 << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
7172 << 0 /* one pointer, so only one type */
7173 << Pointer->getSourceRange();
7174}
7175
7176/// \brief Emit error if Operand is incomplete pointer type
7177///
7178/// \returns True if pointer has incomplete type
7179static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
7180 Expr *Operand) {
7181 assert(Operand->getType()->isAnyPointerType() &&
7182 !Operand->getType()->isDependentType());
7183 QualType PointeeTy = Operand->getType()->getPointeeType();
7184 return S.RequireCompleteType(Loc, PointeeTy,
7185 diag::err_typecheck_arithmetic_incomplete_type,
7186 PointeeTy, Operand->getSourceRange());
7187}
7188
7189/// \brief Check the validity of an arithmetic pointer operand.
7190///
7191/// If the operand has pointer type, this code will check for pointer types
7192/// which are invalid in arithmetic operations. These will be diagnosed
7193/// appropriately, including whether or not the use is supported as an
7194/// extension.
7195///
7196/// \returns True when the operand is valid to use (even if as an extension).
7197static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
7198 Expr *Operand) {
7199 if (!Operand->getType()->isAnyPointerType()) return true;
7200
7201 QualType PointeeTy = Operand->getType()->getPointeeType();
7202 if (PointeeTy->isVoidType()) {
7203 diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
7204 return !S.getLangOpts().CPlusPlus;
7205 }
7206 if (PointeeTy->isFunctionType()) {
7207 diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
7208 return !S.getLangOpts().CPlusPlus;
7209 }
7210
7211 if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
7212
7213 return true;
7214}
7215
7216/// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
7217/// operands.
7218///
7219/// This routine will diagnose any invalid arithmetic on pointer operands much
7220/// like \see checkArithmeticOpPointerOperand. However, it has special logic
7221/// for emitting a single diagnostic even for operations where both LHS and RHS
7222/// are (potentially problematic) pointers.
7223///
7224/// \returns True when the operand is valid to use (even if as an extension).
7225static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
7226 Expr *LHSExpr, Expr *RHSExpr) {
7227 bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
7228 bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
7229 if (!isLHSPointer && !isRHSPointer) return true;
7230
7231 QualType LHSPointeeTy, RHSPointeeTy;
7232 if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
7233 if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
7234
7235 // if both are pointers check if operation is valid wrt address spaces
7236 if (isLHSPointer && isRHSPointer) {
7237 const PointerType *lhsPtr = LHSExpr->getType()->getAs<PointerType>();
7238 const PointerType *rhsPtr = RHSExpr->getType()->getAs<PointerType>();
7239 if (!lhsPtr->isAddressSpaceOverlapping(*rhsPtr)) {
7240 S.Diag(Loc,
7241 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
7242 << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
7243 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
7244 return false;
7245 }
7246 }
7247
7248 // Check for arithmetic on pointers to incomplete types.
7249 bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
7250 bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
7251 if (isLHSVoidPtr || isRHSVoidPtr) {
7252 if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
7253 else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
7254 else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
7255
7256 return !S.getLangOpts().CPlusPlus;
7257 }
7258
7259 bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
7260 bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
7261 if (isLHSFuncPtr || isRHSFuncPtr) {
7262 if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
7263 else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
7264 RHSExpr);
7265 else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
7266
7267 return !S.getLangOpts().CPlusPlus;
7268 }
7269
7270 if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
7271 return false;
7272 if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
7273 return false;
7274
7275 return true;
7276}
7277
7278/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
7279/// literal.
7280static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
7281 Expr *LHSExpr, Expr *RHSExpr) {
7282 StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
7283 Expr* IndexExpr = RHSExpr;
7284 if (!StrExpr) {
7285 StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
7286 IndexExpr = LHSExpr;
7287 }
7288
7289 bool IsStringPlusInt = StrExpr &&
7290 IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
7291 if (!IsStringPlusInt || IndexExpr->isValueDependent())
7292 return;
7293
7294 llvm::APSInt index;
7295 if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
7296 unsigned StrLenWithNull = StrExpr->getLength() + 1;
7297 if (index.isNonNegative() &&
7298 index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
7299 index.isUnsigned()))
7300 return;
7301 }
7302
7303 SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
7304 Self.Diag(OpLoc, diag::warn_string_plus_int)
7305 << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
7306
7307 // Only print a fixit for "str" + int, not for int + "str".
7308 if (IndexExpr == RHSExpr) {
7309 SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
7310 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
7311 << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
7312 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
7313 << FixItHint::CreateInsertion(EndLoc, "]");
7314 } else
7315 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
7316}
7317
7318/// \brief Emit a warning when adding a char literal to a string.
7319static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
7320 Expr *LHSExpr, Expr *RHSExpr) {
7321 const Expr *StringRefExpr = LHSExpr;
7322 const CharacterLiteral *CharExpr =
7323 dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
7324
7325 if (!CharExpr) {
7326 CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
7327 StringRefExpr = RHSExpr;
7328 }
7329
7330 if (!CharExpr || !StringRefExpr)
7331 return;
7332
7333 const QualType StringType = StringRefExpr->getType();
7334
7335 // Return if not a PointerType.
7336 if (!StringType->isAnyPointerType())
7337 return;
7338
7339 // Return if not a CharacterType.
7340 if (!StringType->getPointeeType()->isAnyCharacterType())
7341 return;
7342
7343 ASTContext &Ctx = Self.getASTContext();
7344 SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
7345
7346 const QualType CharType = CharExpr->getType();
7347 if (!CharType->isAnyCharacterType() &&
7348 CharType->isIntegerType() &&
7349 llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
7350 Self.Diag(OpLoc, diag::warn_string_plus_char)
7351 << DiagRange << Ctx.CharTy;
7352 } else {
7353 Self.Diag(OpLoc, diag::warn_string_plus_char)
7354 << DiagRange << CharExpr->getType();
7355 }
7356
7357 // Only print a fixit for str + char, not for char + str.
7358 if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
7359 SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
7360 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
7361 << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
7362 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
7363 << FixItHint::CreateInsertion(EndLoc, "]");
7364 } else {
7365 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
7366 }
7367}
7368
7369/// \brief Emit error when two pointers are incompatible.
7370static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
7371 Expr *LHSExpr, Expr *RHSExpr) {
7372 assert(LHSExpr->getType()->isAnyPointerType());
7373 assert(RHSExpr->getType()->isAnyPointerType());
7374 S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
7375 << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
7376 << RHSExpr->getSourceRange();
7377}
7378
7379QualType Sema::CheckAdditionOperands( // C99 6.5.6
7380 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
7381 QualType* CompLHSTy) {
7382 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7383
7384 if (LHS.get()->getType()->isVectorType() ||
7385 RHS.get()->getType()->isVectorType()) {
7386 QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
7387 if (CompLHSTy) *CompLHSTy = compType;
7388 return compType;
7389 }
7390
7391 QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
7392 if (LHS.isInvalid() || RHS.isInvalid())
7393 return QualType();
7394
7395 // Diagnose "string literal" '+' int and string '+' "char literal".
7396 if (Opc == BO_Add) {
7397 diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
7398 diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
7399 }
7400
7401 // handle the common case first (both operands are arithmetic).
7402 if (!compType.isNull() && compType->isArithmeticType()) {
7403 if (CompLHSTy) *CompLHSTy = compType;
7404 return compType;
7405 }
7406
7407 // Type-checking. Ultimately the pointer's going to be in PExp;
7408 // note that we bias towards the LHS being the pointer.
7409 Expr *PExp = LHS.get(), *IExp = RHS.get();
7410
7411 bool isObjCPointer;
7412 if (PExp->getType()->isPointerType()) {
7413 isObjCPointer = false;
7414 } else if (PExp->getType()->isObjCObjectPointerType()) {
7415 isObjCPointer = true;
7416 } else {
7417 std::swap(PExp, IExp);
7418 if (PExp->getType()->isPointerType()) {
7419 isObjCPointer = false;
7420 } else if (PExp->getType()->isObjCObjectPointerType()) {
7421 isObjCPointer = true;
7422 } else {
7423 return InvalidOperands(Loc, LHS, RHS);
7424 }
7425 }
7426 assert(PExp->getType()->isAnyPointerType());
7427
7428 if (!IExp->getType()->isIntegerType())
7429 return InvalidOperands(Loc, LHS, RHS);
7430
7431 if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
7432 return QualType();
7433
7434 if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
7435 return QualType();
7436
7437 // Check array bounds for pointer arithemtic
7438 CheckArrayAccess(PExp, IExp);
7439
7440 if (CompLHSTy) {
7441 QualType LHSTy = Context.isPromotableBitField(LHS.get());
7442 if (LHSTy.isNull()) {
7443 LHSTy = LHS.get()->getType();
7444 if (LHSTy->isPromotableIntegerType())
7445 LHSTy = Context.getPromotedIntegerType(LHSTy);
7446 }
7447 *CompLHSTy = LHSTy;
7448 }
7449
7450 return PExp->getType();
7451}
7452
7453// C99 6.5.6
7454QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
7455 SourceLocation Loc,
7456 QualType* CompLHSTy) {
7457 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7458
7459 if (LHS.get()->getType()->isVectorType() ||
7460 RHS.get()->getType()->isVectorType()) {
7461 QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
7462 if (CompLHSTy) *CompLHSTy = compType;
7463 return compType;
7464 }
7465
7466 QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
7467 if (LHS.isInvalid() || RHS.isInvalid())
7468 return QualType();
7469
7470 // Enforce type constraints: C99 6.5.6p3.
7471
7472 // Handle the common case first (both operands are arithmetic).
7473 if (!compType.isNull() && compType->isArithmeticType()) {
7474 if (CompLHSTy) *CompLHSTy = compType;
7475 return compType;
7476 }
7477
7478 // Either ptr - int or ptr - ptr.
7479 if (LHS.get()->getType()->isAnyPointerType()) {
7480 QualType lpointee = LHS.get()->getType()->getPointeeType();
7481
7482 // Diagnose bad cases where we step over interface counts.
7483 if (LHS.get()->getType()->isObjCObjectPointerType() &&
7484 checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
7485 return QualType();
7486
7487 // The result type of a pointer-int computation is the pointer type.
7488 if (RHS.get()->getType()->isIntegerType()) {
7489 if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
7490 return QualType();
7491
7492 // Check array bounds for pointer arithemtic
7493 CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
7494 /*AllowOnePastEnd*/true, /*IndexNegated*/true);
7495
7496 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
7497 return LHS.get()->getType();
7498 }
7499
7500 // Handle pointer-pointer subtractions.
7501 if (const PointerType *RHSPTy
7502 = RHS.get()->getType()->getAs<PointerType>()) {
7503 QualType rpointee = RHSPTy->getPointeeType();
7504
7505 if (getLangOpts().CPlusPlus) {
7506 // Pointee types must be the same: C++ [expr.add]
7507 if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
7508 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
7509 }
7510 } else {
7511 // Pointee types must be compatible C99 6.5.6p3
7512 if (!Context.typesAreCompatible(
7513 Context.getCanonicalType(lpointee).getUnqualifiedType(),
7514 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
7515 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
7516 return QualType();
7517 }
7518 }
7519
7520 if (!checkArithmeticBinOpPointerOperands(*this, Loc,
7521 LHS.get(), RHS.get()))
7522 return QualType();
7523
7524 // The pointee type may have zero size. As an extension, a structure or
7525 // union may have zero size or an array may have zero length. In this
7526 // case subtraction does not make sense.
7527 if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
7528 CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
7529 if (ElementSize.isZero()) {
7530 Diag(Loc,diag::warn_sub_ptr_zero_size_types)
7531 << rpointee.getUnqualifiedType()
7532 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7533 }
7534 }
7535
7536 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
7537 return Context.getPointerDiffType();
7538 }
7539 }
7540
7541 return InvalidOperands(Loc, LHS, RHS);
7542}
7543
7544static bool isScopedEnumerationType(QualType T) {
7545 if (const EnumType *ET = T->getAs<EnumType>())
7546 return ET->getDecl()->isScoped();
7547 return false;
7548}
7549
7550static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
7551 SourceLocation Loc, unsigned Opc,
7552 QualType LHSType) {
7553 // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
7554 // so skip remaining warnings as we don't want to modify values within Sema.
7555 if (S.getLangOpts().OpenCL)
7556 return;
7557
7558 llvm::APSInt Right;
7559 // Check right/shifter operand
7560 if (RHS.get()->isValueDependent() ||
7561 !RHS.get()->isIntegerConstantExpr(Right, S.Context))
7562 return;
7563
7564 if (Right.isNegative()) {
7565 S.DiagRuntimeBehavior(Loc, RHS.get(),
7566 S.PDiag(diag::warn_shift_negative)
7567 << RHS.get()->getSourceRange());
7568 return;
7569 }
7570 llvm::APInt LeftBits(Right.getBitWidth(),
7571 S.Context.getTypeSize(LHS.get()->getType()));
7572 if (Right.uge(LeftBits)) {
7573 S.DiagRuntimeBehavior(Loc, RHS.get(),
7574 S.PDiag(diag::warn_shift_gt_typewidth)
7575 << RHS.get()->getSourceRange());
7576 return;
7577 }
7578 if (Opc != BO_Shl)
7579 return;
7580
7581 // When left shifting an ICE which is signed, we can check for overflow which
7582 // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
7583 // integers have defined behavior modulo one more than the maximum value
7584 // representable in the result type, so never warn for those.
7585 llvm::APSInt Left;
7586 if (LHS.get()->isValueDependent() ||
7587 !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
7588 LHSType->hasUnsignedIntegerRepresentation())
7589 return;
7590 llvm::APInt ResultBits =
7591 static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
7592 if (LeftBits.uge(ResultBits))
7593 return;
7594 llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
7595 Result = Result.shl(Right);
7596
7597 // Print the bit representation of the signed integer as an unsigned
7598 // hexadecimal number.
7599 SmallString<40> HexResult;
7600 Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
7601
7602 // If we are only missing a sign bit, this is less likely to result in actual
7603 // bugs -- if the result is cast back to an unsigned type, it will have the
7604 // expected value. Thus we place this behind a different warning that can be
7605 // turned off separately if needed.
7606 if (LeftBits == ResultBits - 1) {
7607 S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
7608 << HexResult.str() << LHSType
7609 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7610 return;
7611 }
7612
7613 S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
7614 << HexResult.str() << Result.getMinSignedBits() << LHSType
7615 << Left.getBitWidth() << LHS.get()->getSourceRange()
7616 << RHS.get()->getSourceRange();
7617}
7618
7619// C99 6.5.7
7620QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
7621 SourceLocation Loc, unsigned Opc,
7622 bool IsCompAssign) {
7623 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7624
7625 // Vector shifts promote their scalar inputs to vector type.
7626 if (LHS.get()->getType()->isVectorType() ||
7627 RHS.get()->getType()->isVectorType())
7628 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7629
7630 // Shifts don't perform usual arithmetic conversions, they just do integer
7631 // promotions on each operand. C99 6.5.7p3
7632
7633 // For the LHS, do usual unary conversions, but then reset them away
7634 // if this is a compound assignment.
7635 ExprResult OldLHS = LHS;
7636 LHS = UsualUnaryConversions(LHS.get());
7637 if (LHS.isInvalid())
7638 return QualType();
7639 QualType LHSType = LHS.get()->getType();
7640 if (IsCompAssign) LHS = OldLHS;
7641
7642 // The RHS is simpler.
7643 RHS = UsualUnaryConversions(RHS.get());
7644 if (RHS.isInvalid())
7645 return QualType();
7646 QualType RHSType = RHS.get()->getType();
7647
7648 // C99 6.5.7p2: Each of the operands shall have integer type.
7649 if (!LHSType->hasIntegerRepresentation() ||
7650 !RHSType->hasIntegerRepresentation())
7651 return InvalidOperands(Loc, LHS, RHS);
7652
7653 // C++0x: Don't allow scoped enums. FIXME: Use something better than
7654 // hasIntegerRepresentation() above instead of this.
7655 if (isScopedEnumerationType(LHSType) ||
7656 isScopedEnumerationType(RHSType)) {
7657 return InvalidOperands(Loc, LHS, RHS);
7658 }
7659 // Sanity-check shift operands
7660 DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
7661
7662 // "The type of the result is that of the promoted left operand."
7663 return LHSType;
7664}
7665
7666static bool IsWithinTemplateSpecialization(Decl *D) {
7667 if (DeclContext *DC = D->getDeclContext()) {
7668 if (isa<ClassTemplateSpecializationDecl>(DC))
7669 return true;
7670 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
7671 return FD->isFunctionTemplateSpecialization();
7672 }
7673 return false;
7674}
7675
7676/// If two different enums are compared, raise a warning.
7677static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
7678 Expr *RHS) {
7679 QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
7680 QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
7681
7682 const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
7683 if (!LHSEnumType)
7684 return;
7685 const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
7686 if (!RHSEnumType)
7687 return;
7688
7689 // Ignore anonymous enums.
7690 if (!LHSEnumType->getDecl()->getIdentifier())
7691 return;
7692 if (!RHSEnumType->getDecl()->getIdentifier())
7693 return;
7694
7695 if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
7696 return;
7697
7698 S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
7699 << LHSStrippedType << RHSStrippedType
7700 << LHS->getSourceRange() << RHS->getSourceRange();
7701}
7702
7703/// \brief Diagnose bad pointer comparisons.
7704static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
7705 ExprResult &LHS, ExprResult &RHS,
7706 bool IsError) {
7707 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
7708 : diag::ext_typecheck_comparison_of_distinct_pointers)
7709 << LHS.get()->getType() << RHS.get()->getType()
7710 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7711}
7712
7713/// \brief Returns false if the pointers are converted to a composite type,
7714/// true otherwise.
7715static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
7716 ExprResult &LHS, ExprResult &RHS) {
7717 // C++ [expr.rel]p2:
7718 // [...] Pointer conversions (4.10) and qualification
7719 // conversions (4.4) are performed on pointer operands (or on
7720 // a pointer operand and a null pointer constant) to bring
7721 // them to their composite pointer type. [...]
7722 //
7723 // C++ [expr.eq]p1 uses the same notion for (in)equality
7724 // comparisons of pointers.
7725
7726 // C++ [expr.eq]p2:
7727 // In addition, pointers to members can be compared, or a pointer to
7728 // member and a null pointer constant. Pointer to member conversions
7729 // (4.11) and qualification conversions (4.4) are performed to bring
7730 // them to a common type. If one operand is a null pointer constant,
7731 // the common type is the type of the other operand. Otherwise, the
7732 // common type is a pointer to member type similar (4.4) to the type
7733 // of one of the operands, with a cv-qualification signature (4.4)
7734 // that is the union of the cv-qualification signatures of the operand
7735 // types.
7736
7737 QualType LHSType = LHS.get()->getType();
7738 QualType RHSType = RHS.get()->getType();
7739 assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
7740 (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
7741
7742 bool NonStandardCompositeType = false;
7743 bool *BoolPtr = S.isSFINAEContext() ? nullptr : &NonStandardCompositeType;
7744 QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
7745 if (T.isNull()) {
7746 diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
7747 return true;
7748 }
7749
7750 if (NonStandardCompositeType)
7751 S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
7752 << LHSType << RHSType << T << LHS.get()->getSourceRange()
7753 << RHS.get()->getSourceRange();
7754
7755 LHS = S.ImpCastExprToType(LHS.get(), T, CK_BitCast);
7756 RHS = S.ImpCastExprToType(RHS.get(), T, CK_BitCast);
7757 return false;
7758}
7759
7760static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
7761 ExprResult &LHS,
7762 ExprResult &RHS,
7763 bool IsError) {
7764 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
7765 : diag::ext_typecheck_comparison_of_fptr_to_void)
7766 << LHS.get()->getType() << RHS.get()->getType()
7767 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7768}
7769
7770static bool isObjCObjectLiteral(ExprResult &E) {
7771 switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
7772 case Stmt::ObjCArrayLiteralClass:
7773 case Stmt::ObjCDictionaryLiteralClass:
7774 case Stmt::ObjCStringLiteralClass:
7775 case Stmt::ObjCBoxedExprClass:
7776 return true;
7777 default:
7778 // Note that ObjCBoolLiteral is NOT an object literal!
7779 return false;
7780 }
7781}
7782
7783static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
7784 const ObjCObjectPointerType *Type =
7785 LHS->getType()->getAs<ObjCObjectPointerType>();
7786
7787 // If this is not actually an Objective-C object, bail out.
7788 if (!Type)
7789 return false;
7790
7791 // Get the LHS object's interface type.
7792 QualType InterfaceType = Type->getPointeeType();
7793 if (const ObjCObjectType *iQFaceTy =
7794 InterfaceType->getAsObjCQualifiedInterfaceType())
7795 InterfaceType = iQFaceTy->getBaseType();
7796
7797 // If the RHS isn't an Objective-C object, bail out.
7798 if (!RHS->getType()->isObjCObjectPointerType())
7799 return false;
7800
7801 // Try to find the -isEqual: method.
7802 Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
7803 ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
7804 InterfaceType,
7805 /*instance=*/true);
7806 if (!Method) {
7807 if (Type->isObjCIdType()) {
7808 // For 'id', just check the global pool.
7809 Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
7810 /*receiverId=*/true,
7811 /*warn=*/false);
7812 } else {
7813 // Check protocols.
7814 Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
7815 /*instance=*/true);
7816 }
7817 }
7818
7819 if (!Method)
7820 return false;
7821
7822 QualType T = Method->parameters()[0]->getType();
7823 if (!T->isObjCObjectPointerType())
7824 return false;
7825
7826 QualType R = Method->getReturnType();
7827 if (!R->isScalarType())
7828 return false;
7829
7830 return true;
7831}
7832
7833Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
7834 FromE = FromE->IgnoreParenImpCasts();
7835 switch (FromE->getStmtClass()) {
7836 default:
7837 break;
7838 case Stmt::ObjCStringLiteralClass:
7839 // "string literal"
7840 return LK_String;
7841 case Stmt::ObjCArrayLiteralClass:
7842 // "array literal"
7843 return LK_Array;
7844 case Stmt::ObjCDictionaryLiteralClass:
7845 // "dictionary literal"
7846 return LK_Dictionary;
7847 case Stmt::BlockExprClass:
7848 return LK_Block;
7849 case Stmt::ObjCBoxedExprClass: {
7850 Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
7851 switch (Inner->getStmtClass()) {
7852 case Stmt::IntegerLiteralClass:
7853 case Stmt::FloatingLiteralClass:
7854 case Stmt::CharacterLiteralClass:
7855 case Stmt::ObjCBoolLiteralExprClass:
7856 case Stmt::CXXBoolLiteralExprClass:
7857 // "numeric literal"
7858 return LK_Numeric;
7859 case Stmt::ImplicitCastExprClass: {
7860 CastKind CK = cast<CastExpr>(Inner)->getCastKind();
7861 // Boolean literals can be represented by implicit casts.
7862 if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
7863 return LK_Numeric;
7864 break;
7865 }
7866 default:
7867 break;
7868 }
7869 return LK_Boxed;
7870 }
7871 }
7872 return LK_None;
7873}
7874
7875static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
7876 ExprResult &LHS, ExprResult &RHS,
7877 BinaryOperator::Opcode Opc){
7878 Expr *Literal;
7879 Expr *Other;
7880 if (isObjCObjectLiteral(LHS)) {
7881 Literal = LHS.get();
7882 Other = RHS.get();
7883 } else {
7884 Literal = RHS.get();
7885 Other = LHS.get();
7886 }
7887
7888 // Don't warn on comparisons against nil.
7889 Other = Other->IgnoreParenCasts();
7890 if (Other->isNullPointerConstant(S.getASTContext(),
7891 Expr::NPC_ValueDependentIsNotNull))
7892 return;
7893
7894 // This should be kept in sync with warn_objc_literal_comparison.
7895 // LK_String should always be after the other literals, since it has its own
7896 // warning flag.
7897 Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
7898 assert(LiteralKind != Sema::LK_Block);
7899 if (LiteralKind == Sema::LK_None) {
7900 llvm_unreachable("Unknown Objective-C object literal kind");
7901 }
7902
7903 if (LiteralKind == Sema::LK_String)
7904 S.Diag(Loc, diag::warn_objc_string_literal_comparison)
7905 << Literal->getSourceRange();
7906 else
7907 S.Diag(Loc, diag::warn_objc_literal_comparison)
7908 << LiteralKind << Literal->getSourceRange();
7909
7910 if (BinaryOperator::isEqualityOp(Opc) &&
7911 hasIsEqualMethod(S, LHS.get(), RHS.get())) {
7912 SourceLocation Start = LHS.get()->getLocStart();
7913 SourceLocation End = S.PP.getLocForEndOfToken(RHS.get()->getLocEnd());
7914 CharSourceRange OpRange =
7915 CharSourceRange::getCharRange(Loc, S.PP.getLocForEndOfToken(Loc));
7916
7917 S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
7918 << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
7919 << FixItHint::CreateReplacement(OpRange, " isEqual:")
7920 << FixItHint::CreateInsertion(End, "]");
7921 }
7922}
7923
7924static void diagnoseLogicalNotOnLHSofComparison(Sema &S, ExprResult &LHS,
7925 ExprResult &RHS,
7926 SourceLocation Loc,
7927 unsigned OpaqueOpc) {
7928 // This checking requires bools.
7929 if (!S.getLangOpts().Bool) return;
7930
7931 // Check that left hand side is !something.
7932 UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
7933 if (!UO || UO->getOpcode() != UO_LNot) return;
7934
7935 // Only check if the right hand side is non-bool arithmetic type.
7936 if (RHS.get()->getType()->isBooleanType()) return;
7937
7938 // Make sure that the something in !something is not bool.
7939 Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
7940 if (SubExpr->getType()->isBooleanType()) return;
7941
7942 // Emit warning.
7943 S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_comparison)
7944 << Loc;
7945
7946 // First note suggest !(x < y)
7947 SourceLocation FirstOpen = SubExpr->getLocStart();
7948 SourceLocation FirstClose = RHS.get()->getLocEnd();
7949 FirstClose = S.getPreprocessor().getLocForEndOfToken(FirstClose);
7950 if (FirstClose.isInvalid())
7951 FirstOpen = SourceLocation();
7952 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
7953 << FixItHint::CreateInsertion(FirstOpen, "(")
7954 << FixItHint::CreateInsertion(FirstClose, ")");
7955
7956 // Second note suggests (!x) < y
7957 SourceLocation SecondOpen = LHS.get()->getLocStart();
7958 SourceLocation SecondClose = LHS.get()->getLocEnd();
7959 SecondClose = S.getPreprocessor().getLocForEndOfToken(SecondClose);
7960 if (SecondClose.isInvalid())
7961 SecondOpen = SourceLocation();
7962 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
7963 << FixItHint::CreateInsertion(SecondOpen, "(")
7964 << FixItHint::CreateInsertion(SecondClose, ")");
7965}
7966
7967// Get the decl for a simple expression: a reference to a variable,
7968// an implicit C++ field reference, or an implicit ObjC ivar reference.
7969static ValueDecl *getCompareDecl(Expr *E) {
7970 if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E))
7971 return DR->getDecl();
7972 if (ObjCIvarRefExpr* Ivar = dyn_cast<ObjCIvarRefExpr>(E)) {
7973 if (Ivar->isFreeIvar())
7974 return Ivar->getDecl();
7975 }
7976 if (MemberExpr* Mem = dyn_cast<MemberExpr>(E)) {
7977 if (Mem->isImplicitAccess())
7978 return Mem->getMemberDecl();
7979 }
7980 return nullptr;
7981}
7982
7983// C99 6.5.8, C++ [expr.rel]
7984QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
7985 SourceLocation Loc, unsigned OpaqueOpc,
7986 bool IsRelational) {
7987 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
7988
7989 BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
7990
7991 // Handle vector comparisons separately.
7992 if (LHS.get()->getType()->isVectorType() ||
7993 RHS.get()->getType()->isVectorType())
7994 return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
7995
7996 QualType LHSType = LHS.get()->getType();
7997 QualType RHSType = RHS.get()->getType();
7998
7999 Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
8000 Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
8001
8002 checkEnumComparison(*this, Loc, LHS.get(), RHS.get());
8003 diagnoseLogicalNotOnLHSofComparison(*this, LHS, RHS, Loc, OpaqueOpc);
8004
8005 if (!LHSType->hasFloatingRepresentation() &&
8006 !(LHSType->isBlockPointerType() && IsRelational) &&
8007 !LHS.get()->getLocStart().isMacroID() &&
8008 !RHS.get()->getLocStart().isMacroID() &&
8009 ActiveTemplateInstantiations.empty()) {
8010 // For non-floating point types, check for self-comparisons of the form
8011 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
8012 // often indicate logic errors in the program.
8013 //
8014 // NOTE: Don't warn about comparison expressions resulting from macro
8015 // expansion. Also don't warn about comparisons which are only self
8016 // comparisons within a template specialization. The warnings should catch
8017 // obvious cases in the definition of the template anyways. The idea is to
8018 // warn when the typed comparison operator will always evaluate to the same
8019 // result.
8020 ValueDecl *DL = getCompareDecl(LHSStripped);
8021 ValueDecl *DR = getCompareDecl(RHSStripped);
8022 if (DL && DR && DL == DR && !IsWithinTemplateSpecialization(DL)) {
8023 DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
8024 << 0 // self-
8025 << (Opc == BO_EQ
8026 || Opc == BO_LE
8027 || Opc == BO_GE));
8028 } else if (DL && DR && LHSType->isArrayType() && RHSType->isArrayType() &&
8029 !DL->getType()->isReferenceType() &&
8030 !DR->getType()->isReferenceType()) {
8031 // what is it always going to eval to?
8032 char always_evals_to;
8033 switch(Opc) {
8034 case BO_EQ: // e.g. array1 == array2
8035 always_evals_to = 0; // false
8036 break;
8037 case BO_NE: // e.g. array1 != array2
8038 always_evals_to = 1; // true
8039 break;
8040 default:
8041 // best we can say is 'a constant'
8042 always_evals_to = 2; // e.g. array1 <= array2
8043 break;
8044 }
8045 DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
8046 << 1 // array
8047 << always_evals_to);
8048 }
8049
8050 if (isa<CastExpr>(LHSStripped))
8051 LHSStripped = LHSStripped->IgnoreParenCasts();
8052 if (isa<CastExpr>(RHSStripped))
8053 RHSStripped = RHSStripped->IgnoreParenCasts();
8054
8055 // Warn about comparisons against a string constant (unless the other
8056 // operand is null), the user probably wants strcmp.
8057 Expr *literalString = nullptr;
8058 Expr *literalStringStripped = nullptr;
8059 if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
8060 !RHSStripped->isNullPointerConstant(Context,
8061 Expr::NPC_ValueDependentIsNull)) {
8062 literalString = LHS.get();
8063 literalStringStripped = LHSStripped;
8064 } else if ((isa<StringLiteral>(RHSStripped) ||
8065 isa<ObjCEncodeExpr>(RHSStripped)) &&
8066 !LHSStripped->isNullPointerConstant(Context,
8067 Expr::NPC_ValueDependentIsNull)) {
8068 literalString = RHS.get();
8069 literalStringStripped = RHSStripped;
8070 }
8071
8072 if (literalString) {
8073 DiagRuntimeBehavior(Loc, nullptr,
8074 PDiag(diag::warn_stringcompare)
8075 << isa<ObjCEncodeExpr>(literalStringStripped)
8076 << literalString->getSourceRange());
8077 }
8078 }
8079
8080 // C99 6.5.8p3 / C99 6.5.9p4
8081 UsualArithmeticConversions(LHS, RHS);
8082 if (LHS.isInvalid() || RHS.isInvalid())
8083 return QualType();
8084
8085 LHSType = LHS.get()->getType();
8086 RHSType = RHS.get()->getType();
8087
8088 // The result of comparisons is 'bool' in C++, 'int' in C.
8089 QualType ResultTy = Context.getLogicalOperationType();
8090
8091 if (IsRelational) {
8092 if (LHSType->isRealType() && RHSType->isRealType())
8093 return ResultTy;
8094 } else {
8095 // Check for comparisons of floating point operands using != and ==.
8096 if (LHSType->hasFloatingRepresentation())
8097 CheckFloatComparison(Loc, LHS.get(), RHS.get());
8098
8099 if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
8100 return ResultTy;
8101 }
8102
8103 const Expr::NullPointerConstantKind LHSNullKind =
8104 LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
8105 const Expr::NullPointerConstantKind RHSNullKind =
8106 RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
8107 bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
8108 bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
8109
8110 if (!IsRelational && LHSIsNull != RHSIsNull) {
8111 bool IsEquality = Opc == BO_EQ;
8112 if (RHSIsNull)
8113 DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
8114 RHS.get()->getSourceRange());
8115 else
8116 DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
8117 LHS.get()->getSourceRange());
8118 }
8119
8120 // All of the following pointer-related warnings are GCC extensions, except
8121 // when handling null pointer constants.
8122 if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
8123 QualType LCanPointeeTy =
8124 LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
8125 QualType RCanPointeeTy =
8126 RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
8127
8128 if (getLangOpts().CPlusPlus) {
8129 if (LCanPointeeTy == RCanPointeeTy)
8130 return ResultTy;
8131 if (!IsRelational &&
8132 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
8133 // Valid unless comparison between non-null pointer and function pointer
8134 // This is a gcc extension compatibility comparison.
8135 // In a SFINAE context, we treat this as a hard error to maintain
8136 // conformance with the C++ standard.
8137 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
8138 && !LHSIsNull && !RHSIsNull) {
8139 diagnoseFunctionPointerToVoidComparison(
8140 *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
8141
8142 if (isSFINAEContext())
8143 return QualType();
8144
8145 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
8146 return ResultTy;
8147 }
8148 }
8149
8150 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
8151 return QualType();
8152 else
8153 return ResultTy;
8154 }
8155 // C99 6.5.9p2 and C99 6.5.8p2
8156 if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
8157 RCanPointeeTy.getUnqualifiedType())) {
8158 // Valid unless a relational comparison of function pointers
8159 if (IsRelational && LCanPointeeTy->isFunctionType()) {
8160 Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
8161 << LHSType << RHSType << LHS.get()->getSourceRange()
8162 << RHS.get()->getSourceRange();
8163 }
8164 } else if (!IsRelational &&
8165 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
8166 // Valid unless comparison between non-null pointer and function pointer
8167 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
8168 && !LHSIsNull && !RHSIsNull)
8169 diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
8170 /*isError*/false);
8171 } else {
8172 // Invalid
8173 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
8174 }
8175 if (LCanPointeeTy != RCanPointeeTy) {
8176 const PointerType *lhsPtr = LHSType->getAs<PointerType>();
8177 if (!lhsPtr->isAddressSpaceOverlapping(*RHSType->getAs<PointerType>())) {
8178 Diag(Loc,
8179 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8180 << LHSType << RHSType << 0 /* comparison */
8181 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8182 }
8183 unsigned AddrSpaceL = LCanPointeeTy.getAddressSpace();
8184 unsigned AddrSpaceR = RCanPointeeTy.getAddressSpace();
8185 CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
8186 : CK_BitCast;
8187 if (LHSIsNull && !RHSIsNull)
8188 LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
8189 else
8190 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
8191 }
8192 return ResultTy;
8193 }
8194
8195 if (getLangOpts().CPlusPlus) {
8196 // Comparison of nullptr_t with itself.
8197 if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
8198 return ResultTy;
8199
8200 // Comparison of pointers with null pointer constants and equality
8201 // comparisons of member pointers to null pointer constants.
8202 if (RHSIsNull &&
8203 ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
8204 (!IsRelational &&
8205 (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
8206 RHS = ImpCastExprToType(RHS.get(), LHSType,
8207 LHSType->isMemberPointerType()
8208 ? CK_NullToMemberPointer
8209 : CK_NullToPointer);
8210 return ResultTy;
8211 }
8212 if (LHSIsNull &&
8213 ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
8214 (!IsRelational &&
8215 (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
8216 LHS = ImpCastExprToType(LHS.get(), RHSType,
8217 RHSType->isMemberPointerType()
8218 ? CK_NullToMemberPointer
8219 : CK_NullToPointer);
8220 return ResultTy;
8221 }
8222
8223 // Comparison of member pointers.
8224 if (!IsRelational &&
8225 LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
8226 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
8227 return QualType();
8228 else
8229 return ResultTy;
8230 }
8231
8232 // Handle scoped enumeration types specifically, since they don't promote
8233 // to integers.
8234 if (LHS.get()->getType()->isEnumeralType() &&
8235 Context.hasSameUnqualifiedType(LHS.get()->getType(),
8236 RHS.get()->getType()))
8237 return ResultTy;
8238 }
8239
8240 // Handle block pointer types.
8241 if (!IsRelational && LHSType->isBlockPointerType() &&
8242 RHSType->isBlockPointerType()) {
8243 QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
8244 QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
8245
8246 if (!LHSIsNull && !RHSIsNull &&
8247 !Context.typesAreCompatible(lpointee, rpointee)) {
8248 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
8249 << LHSType << RHSType << LHS.get()->getSourceRange()
8250 << RHS.get()->getSourceRange();
8251 }
8252 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
8253 return ResultTy;
8254 }
8255
8256 // Allow block pointers to be compared with null pointer constants.
8257 if (!IsRelational
8258 && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
8259 || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
8260 if (!LHSIsNull && !RHSIsNull) {
8261 if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
8262 ->getPointeeType()->isVoidType())
8263 || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
8264 ->getPointeeType()->isVoidType())))
8265 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
8266 << LHSType << RHSType << LHS.get()->getSourceRange()
8267 << RHS.get()->getSourceRange();
8268 }
8269 if (LHSIsNull && !RHSIsNull)
8270 LHS = ImpCastExprToType(LHS.get(), RHSType,
8271 RHSType->isPointerType() ? CK_BitCast
8272 : CK_AnyPointerToBlockPointerCast);
8273 else
8274 RHS = ImpCastExprToType(RHS.get(), LHSType,
8275 LHSType->isPointerType() ? CK_BitCast
8276 : CK_AnyPointerToBlockPointerCast);
8277 return ResultTy;
8278 }
8279
8280 if (LHSType->isObjCObjectPointerType() ||
8281 RHSType->isObjCObjectPointerType()) {
8282 const PointerType *LPT = LHSType->getAs<PointerType>();
8283 const PointerType *RPT = RHSType->getAs<PointerType>();
8284 if (LPT || RPT) {
8285 bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
8286 bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
8287
8288 if (!LPtrToVoid && !RPtrToVoid &&
8289 !Context.typesAreCompatible(LHSType, RHSType)) {
8290 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
8291 /*isError*/false);
8292 }
8293 if (LHSIsNull && !RHSIsNull) {
8294 Expr *E = LHS.get();
8295 if (getLangOpts().ObjCAutoRefCount)
8296 CheckObjCARCConversion(SourceRange(), RHSType, E, CCK_ImplicitConversion);
8297 LHS = ImpCastExprToType(E, RHSType,
8298 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
8299 }
8300 else {
8301 Expr *E = RHS.get();
8302 if (getLangOpts().ObjCAutoRefCount)
8303 CheckObjCARCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion, false,
8304 Opc);
8305 RHS = ImpCastExprToType(E, LHSType,
8306 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
8307 }
8308 return ResultTy;
8309 }
8310 if (LHSType->isObjCObjectPointerType() &&
8311 RHSType->isObjCObjectPointerType()) {
8312 if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
8313 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
8314 /*isError*/false);
8315 if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
8316 diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
8317
8318 if (LHSIsNull && !RHSIsNull)
8319 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
8320 else
8321 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
8322 return ResultTy;
8323 }
8324 }
8325 if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
8326 (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
8327 unsigned DiagID = 0;
8328 bool isError = false;
8329 if (LangOpts.DebuggerSupport) {
8330 // Under a debugger, allow the comparison of pointers to integers,
8331 // since users tend to want to compare addresses.
8332 } else if ((LHSIsNull && LHSType->isIntegerType()) ||
8333 (RHSIsNull && RHSType->isIntegerType())) {
8334 if (IsRelational && !getLangOpts().CPlusPlus)
8335 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
8336 } else if (IsRelational && !getLangOpts().CPlusPlus)
8337 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
8338 else if (getLangOpts().CPlusPlus) {
8339 DiagID = diag::err_typecheck_comparison_of_pointer_integer;
8340 isError = true;
8341 } else
8342 DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
8343
8344 if (DiagID) {
8345 Diag(Loc, DiagID)
8346 << LHSType << RHSType << LHS.get()->getSourceRange()
8347 << RHS.get()->getSourceRange();
8348 if (isError)
8349 return QualType();
8350 }
8351
8352 if (LHSType->isIntegerType())
8353 LHS = ImpCastExprToType(LHS.get(), RHSType,
8354 LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
8355 else
8356 RHS = ImpCastExprToType(RHS.get(), LHSType,
8357 RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
8358 return ResultTy;
8359 }
8360
8361 // Handle block pointers.
8362 if (!IsRelational && RHSIsNull
8363 && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
8364 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
8365 return ResultTy;
8366 }
8367 if (!IsRelational && LHSIsNull
8368 && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
8369 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
8370 return ResultTy;
8371 }
8372
8373 return InvalidOperands(Loc, LHS, RHS);
8374}
8375
8376
8377// Return a signed type that is of identical size and number of elements.
8378// For floating point vectors, return an integer type of identical size
8379// and number of elements.
8380QualType Sema::GetSignedVectorType(QualType V) {
8381 const VectorType *VTy = V->getAs<VectorType>();
8382 unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
8383 if (TypeSize == Context.getTypeSize(Context.CharTy))
8384 return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
8385 else if (TypeSize == Context.getTypeSize(Context.ShortTy))
8386 return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
8387 else if (TypeSize == Context.getTypeSize(Context.IntTy))
8388 return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
8389 else if (TypeSize == Context.getTypeSize(Context.LongTy))
8390 return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
8391 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
8392 "Unhandled vector element size in vector compare");
8393 return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
8394}
8395
8396/// CheckVectorCompareOperands - vector comparisons are a clang extension that
8397/// operates on extended vector types. Instead of producing an IntTy result,
8398/// like a scalar comparison, a vector comparison produces a vector of integer
8399/// types.
8400QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
8401 SourceLocation Loc,
8402 bool IsRelational) {
8403 // Check to make sure we're operating on vectors of the same type and width,
8404 // Allowing one side to be a scalar of element type.
8405 QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
8406 if (vType.isNull())
8407 return vType;
8408
8409 QualType LHSType = LHS.get()->getType();
8410
8411 // If AltiVec, the comparison results in a numeric type, i.e.
8412 // bool for C++, int for C
8413 if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
8414 return Context.getLogicalOperationType();
8415
8416 // For non-floating point types, check for self-comparisons of the form
8417 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
8418 // often indicate logic errors in the program.
8419 if (!LHSType->hasFloatingRepresentation() &&
8420 ActiveTemplateInstantiations.empty()) {
8421 if (DeclRefExpr* DRL
8422 = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
8423 if (DeclRefExpr* DRR
8424 = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
8425 if (DRL->getDecl() == DRR->getDecl())
8426 DiagRuntimeBehavior(Loc, nullptr,
8427 PDiag(diag::warn_comparison_always)
8428 << 0 // self-
8429 << 2 // "a constant"
8430 );
8431 }
8432
8433 // Check for comparisons of floating point operands using != and ==.
8434 if (!IsRelational && LHSType->hasFloatingRepresentation()) {
8435 assert (RHS.get()->getType()->hasFloatingRepresentation());
8436 CheckFloatComparison(Loc, LHS.get(), RHS.get());
8437 }
8438
8439 // Return a signed type for the vector.
8440 return GetSignedVectorType(LHSType);
8441}
8442
8443QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
8444 SourceLocation Loc) {
8445 // Ensure that either both operands are of the same vector type, or
8446 // one operand is of a vector type and the other is of its element type.
8447 QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
8448 if (vType.isNull())
8449 return InvalidOperands(Loc, LHS, RHS);
8450 if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
8451 vType->hasFloatingRepresentation())
8452 return InvalidOperands(Loc, LHS, RHS);
8453
8454 return GetSignedVectorType(LHS.get()->getType());
8455}
8456
8457inline QualType Sema::CheckBitwiseOperands(
8458 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
8459 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
8460
8461 if (LHS.get()->getType()->isVectorType() ||
8462 RHS.get()->getType()->isVectorType()) {
8463 if (LHS.get()->getType()->hasIntegerRepresentation() &&
8464 RHS.get()->getType()->hasIntegerRepresentation())
8465 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
8466
8467 return InvalidOperands(Loc, LHS, RHS);
8468 }
8469
8470 ExprResult LHSResult = LHS, RHSResult = RHS;
8471 QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
8472 IsCompAssign);
8473 if (LHSResult.isInvalid() || RHSResult.isInvalid())
8474 return QualType();
8475 LHS = LHSResult.get();
8476 RHS = RHSResult.get();
8477
8478 if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
8479 return compType;
8480 return InvalidOperands(Loc, LHS, RHS);
8481}
8482
8483inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
8484 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
8485
8486 // Check vector operands differently.
8487 if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
8488 return CheckVectorLogicalOperands(LHS, RHS, Loc);
8489
8490 // Diagnose cases where the user write a logical and/or but probably meant a
8491 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
8492 // is a constant.
8493 if (LHS.get()->getType()->isIntegerType() &&
8494 !LHS.get()->getType()->isBooleanType() &&
8495 RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
8496 // Don't warn in macros or template instantiations.
8497 !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
8498 // If the RHS can be constant folded, and if it constant folds to something
8499 // that isn't 0 or 1 (which indicate a potential logical operation that
8500 // happened to fold to true/false) then warn.
8501 // Parens on the RHS are ignored.
8502 llvm::APSInt Result;
8503 if (RHS.get()->EvaluateAsInt(Result, Context))
8504 if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
8505 !RHS.get()->getExprLoc().isMacroID()) ||
8506 (Result != 0 && Result != 1)) {
8507 Diag(Loc, diag::warn_logical_instead_of_bitwise)
8508 << RHS.get()->getSourceRange()
8509 << (Opc == BO_LAnd ? "&&" : "||");
8510 // Suggest replacing the logical operator with the bitwise version
8511 Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
8512 << (Opc == BO_LAnd ? "&" : "|")
8513 << FixItHint::CreateReplacement(SourceRange(
8514 Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
8515 getLangOpts())),
8516 Opc == BO_LAnd ? "&" : "|");
8517 if (Opc == BO_LAnd)
8518 // Suggest replacing "Foo() && kNonZero" with "Foo()"
8519 Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
8520 << FixItHint::CreateRemoval(
8521 SourceRange(
8522 Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
8523 0, getSourceManager(),
8524 getLangOpts()),
8525 RHS.get()->getLocEnd()));
8526 }
8527 }
8528
8529 if (!Context.getLangOpts().CPlusPlus) {
8530 // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
8531 // not operate on the built-in scalar and vector float types.
8532 if (Context.getLangOpts().OpenCL &&
8533 Context.getLangOpts().OpenCLVersion < 120) {
8534 if (LHS.get()->getType()->isFloatingType() ||
8535 RHS.get()->getType()->isFloatingType())
8536 return InvalidOperands(Loc, LHS, RHS);
8537 }
8538
8539 LHS = UsualUnaryConversions(LHS.get());
8540 if (LHS.isInvalid())
8541 return QualType();
8542
8543 RHS = UsualUnaryConversions(RHS.get());
8544 if (RHS.isInvalid())
8545 return QualType();
8546
8547 if (!LHS.get()->getType()->isScalarType() ||
8548 !RHS.get()->getType()->isScalarType())
8549 return InvalidOperands(Loc, LHS, RHS);
8550
8551 return Context.IntTy;
8552 }
8553
8554 // The following is safe because we only use this method for
8555 // non-overloadable operands.
8556
8557 // C++ [expr.log.and]p1
8558 // C++ [expr.log.or]p1
8559 // The operands are both contextually converted to type bool.
8560 ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
8561 if (LHSRes.isInvalid())
8562 return InvalidOperands(Loc, LHS, RHS);
8563 LHS = LHSRes;
8564
8565 ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
8566 if (RHSRes.isInvalid())
8567 return InvalidOperands(Loc, LHS, RHS);
8568 RHS = RHSRes;
8569
8570 // C++ [expr.log.and]p2
8571 // C++ [expr.log.or]p2
8572 // The result is a bool.
8573 return Context.BoolTy;
8574}
8575
8576static bool IsReadonlyMessage(Expr *E, Sema &S) {
8577 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
8578 if (!ME) return false;
8579 if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
8580 ObjCMessageExpr *Base =
8581 dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
8582 if (!Base) return false;
8583 return Base->getMethodDecl() != nullptr;
8584}
8585
8586/// Is the given expression (which must be 'const') a reference to a
8587/// variable which was originally non-const, but which has become
8588/// 'const' due to being captured within a block?
8589enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
8590static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
8591 assert(E->isLValue() && E->getType().isConstQualified());
8592 E = E->IgnoreParens();
8593
8594 // Must be a reference to a declaration from an enclosing scope.
8595 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
8596 if (!DRE) return NCCK_None;
8597 if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
8598
8599 // The declaration must be a variable which is not declared 'const'.
8600 VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
8601 if (!var) return NCCK_None;
8602 if (var->getType().isConstQualified()) return NCCK_None;
8603 assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
8604
8605 // Decide whether the first capture was for a block or a lambda.
8606 DeclContext *DC = S.CurContext, *Prev = nullptr;
8607 while (DC != var->getDeclContext()) {
8608 Prev = DC;
8609 DC = DC->getParent();
8610 }
8611 // Unless we have an init-capture, we've gone one step too far.
8612 if (!var->isInitCapture())
8613 DC = Prev;
8614 return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
8615}
8616
8617/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
8618/// emit an error and return true. If so, return false.
8619static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
8620 assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
8621 SourceLocation OrigLoc = Loc;
8622 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
8623 &Loc);
8624 if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
8625 IsLV = Expr::MLV_InvalidMessageExpression;
8626 if (IsLV == Expr::MLV_Valid)
8627 return false;
8628
8629 unsigned DiagID = 0;
8630 bool NeedType = false;
8631 switch (IsLV) { // C99 6.5.16p2
8632 case Expr::MLV_ConstQualified:
8633 DiagID = diag::err_typecheck_assign_const;
8634
8635 // Use a specialized diagnostic when we're assigning to an object
8636 // from an enclosing function or block.
8637 if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
8638 if (NCCK == NCCK_Block)
8639 DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
8640 else
8641 DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
8642 break;
8643 }
8644
8645 // In ARC, use some specialized diagnostics for occasions where we
8646 // infer 'const'. These are always pseudo-strong variables.
8647 if (S.getLangOpts().ObjCAutoRefCount) {
8648 DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
8649 if (declRef && isa<VarDecl>(declRef->getDecl())) {
8650 VarDecl *var = cast<VarDecl>(declRef->getDecl());
8651
8652 // Use the normal diagnostic if it's pseudo-__strong but the
8653 // user actually wrote 'const'.
8654 if (var->isARCPseudoStrong() &&
8655 (!var->getTypeSourceInfo() ||
8656 !var->getTypeSourceInfo()->getType().isConstQualified())) {
8657 // There are two pseudo-strong cases:
8658 // - self
8659 ObjCMethodDecl *method = S.getCurMethodDecl();
8660 if (method && var == method->getSelfDecl())
8661 DiagID = method->isClassMethod()
8662 ? diag::err_typecheck_arc_assign_self_class_method
8663 : diag::err_typecheck_arc_assign_self;
8664
8665 // - fast enumeration variables
8666 else
8667 DiagID = diag::err_typecheck_arr_assign_enumeration;
8668
8669 SourceRange Assign;
8670 if (Loc != OrigLoc)
8671 Assign = SourceRange(OrigLoc, OrigLoc);
8672 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
8673 // We need to preserve the AST regardless, so migration tool
8674 // can do its job.
8675 return false;
8676 }
8677 }
8678 }
8679
8680 break;
8681 case Expr::MLV_ArrayType:
8682 case Expr::MLV_ArrayTemporary:
8683 DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
8684 NeedType = true;
8685 break;
8686 case Expr::MLV_NotObjectType:
8687 DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
8688 NeedType = true;
8689 break;
8690 case Expr::MLV_LValueCast:
8691 DiagID = diag::err_typecheck_lvalue_casts_not_supported;
8692 break;
8693 case Expr::MLV_Valid:
8694 llvm_unreachable("did not take early return for MLV_Valid");
8695 case Expr::MLV_InvalidExpression:
8696 case Expr::MLV_MemberFunction:
8697 case Expr::MLV_ClassTemporary:
8698 DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
8699 break;
8700 case Expr::MLV_IncompleteType:
8701 case Expr::MLV_IncompleteVoidType:
8702 return S.RequireCompleteType(Loc, E->getType(),
8703 diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
8704 case Expr::MLV_DuplicateVectorComponents:
8705 DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
8706 break;
8707 case Expr::MLV_NoSetterProperty:
8708 llvm_unreachable("readonly properties should be processed differently");
8709 case Expr::MLV_InvalidMessageExpression:
8710 DiagID = diag::error_readonly_message_assignment;
8711 break;
8712 case Expr::MLV_SubObjCPropertySetting:
8713 DiagID = diag::error_no_subobject_property_setting;
8714 break;
8715 }
8716
8717 SourceRange Assign;
8718 if (Loc != OrigLoc)
8719 Assign = SourceRange(OrigLoc, OrigLoc);
8720 if (NeedType)
8721 S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
8722 else
8723 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
8724 return true;
8725}
8726
8727static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
8728 SourceLocation Loc,
8729 Sema &Sema) {
8730 // C / C++ fields
8731 MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
8732 MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
8733 if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
8734 if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
8735 Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
8736 }
8737
8738 // Objective-C instance variables
8739 ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
8740 ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
8741 if (OL && OR && OL->getDecl() == OR->getDecl()) {
8742 DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
8743 DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
8744 if (RL && RR && RL->getDecl() == RR->getDecl())
8745 Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
8746 }
8747}
8748
8749// C99 6.5.16.1
8750QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
8751 SourceLocation Loc,
8752 QualType CompoundType) {
8753 assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
8754
8755 // Verify that LHS is a modifiable lvalue, and emit error if not.
8756 if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
8757 return QualType();
8758
8759 QualType LHSType = LHSExpr->getType();
8760 QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
8761 CompoundType;
8762 AssignConvertType ConvTy;
8763 if (CompoundType.isNull()) {
8764 Expr *RHSCheck = RHS.get();
8765
8766 CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
8767
8768 QualType LHSTy(LHSType);
8769 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
8770 if (RHS.isInvalid())
8771 return QualType();
8772 // Special case of NSObject attributes on c-style pointer types.
8773 if (ConvTy == IncompatiblePointer &&
8774 ((Context.isObjCNSObjectType(LHSType) &&
8775 RHSType->isObjCObjectPointerType()) ||
8776 (Context.isObjCNSObjectType(RHSType) &&
8777 LHSType->isObjCObjectPointerType())))
8778 ConvTy = Compatible;
8779
8780 if (ConvTy == Compatible &&
8781 LHSType->isObjCObjectType())
8782 Diag(Loc, diag::err_objc_object_assignment)
8783 << LHSType;
8784
8785 // If the RHS is a unary plus or minus, check to see if they = and + are
8786 // right next to each other. If so, the user may have typo'd "x =+ 4"
8787 // instead of "x += 4".
8788 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
8789 RHSCheck = ICE->getSubExpr();
8790 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
8791 if ((UO->getOpcode() == UO_Plus ||
8792 UO->getOpcode() == UO_Minus) &&
8793 Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
8794 // Only if the two operators are exactly adjacent.
8795 Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
8796 // And there is a space or other character before the subexpr of the
8797 // unary +/-. We don't want to warn on "x=-1".
8798 Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
8799 UO->getSubExpr()->getLocStart().isFileID()) {
8800 Diag(Loc, diag::warn_not_compound_assign)
8801 << (UO->getOpcode() == UO_Plus ? "+" : "-")
8802 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
8803 }
8804 }
8805
8806 if (ConvTy == Compatible) {
8807 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
8808 // Warn about retain cycles where a block captures the LHS, but
8809 // not if the LHS is a simple variable into which the block is
8810 // being stored...unless that variable can be captured by reference!
8811 const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
8812 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
8813 if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
8814 checkRetainCycles(LHSExpr, RHS.get());
8815
8816 // It is safe to assign a weak reference into a strong variable.
8817 // Although this code can still have problems:
8818 // id x = self.weakProp;
8819 // id y = self.weakProp;
8820 // we do not warn to warn spuriously when 'x' and 'y' are on separate
8821 // paths through the function. This should be revisited if
8822 // -Wrepeated-use-of-weak is made flow-sensitive.
8823 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
8824 RHS.get()->getLocStart()))
8825 getCurFunction()->markSafeWeakUse(RHS.get());
8826
8827 } else if (getLangOpts().ObjCAutoRefCount) {
8828 checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
8829 }
8830 }
8831 } else {
8832 // Compound assignment "x += y"
8833 ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
8834 }
8835
8836 if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
8837 RHS.get(), AA_Assigning))
8838 return QualType();
8839
8840 CheckForNullPointerDereference(*this, LHSExpr);
8841
8842 // C99 6.5.16p3: The type of an assignment expression is the type of the
8843 // left operand unless the left operand has qualified type, in which case
8844 // it is the unqualified version of the type of the left operand.
8845 // C99 6.5.16.1p2: In simple assignment, the value of the right operand
8846 // is converted to the type of the assignment expression (above).
8847 // C++ 5.17p1: the type of the assignment expression is that of its left
8848 // operand.
8849 return (getLangOpts().CPlusPlus
8850 ? LHSType : LHSType.getUnqualifiedType());
8851}
8852
8853// C99 6.5.17
8854static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
8855 SourceLocation Loc) {
8856 LHS = S.CheckPlaceholderExpr(LHS.get());
8857 RHS = S.CheckPlaceholderExpr(RHS.get());
8858 if (LHS.isInvalid() || RHS.isInvalid())
8859 return QualType();
8860
8861 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
8862 // operands, but not unary promotions.
8863 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
8864
8865 // So we treat the LHS as a ignored value, and in C++ we allow the
8866 // containing site to determine what should be done with the RHS.
8867 LHS = S.IgnoredValueConversions(LHS.get());
8868 if (LHS.isInvalid())
8869 return QualType();
8870
8871 S.DiagnoseUnusedExprResult(LHS.get());
8872
8873 if (!S.getLangOpts().CPlusPlus) {
8874 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8875 if (RHS.isInvalid())
8876 return QualType();
8877 if (!RHS.get()->getType()->isVoidType())
8878 S.RequireCompleteType(Loc, RHS.get()->getType(),
8879 diag::err_incomplete_type);
8880 }
8881
8882 return RHS.get()->getType();
8883}
8884
8885/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
8886/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
8887static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
8888 ExprValueKind &VK,
8889 ExprObjectKind &OK,
8890 SourceLocation OpLoc,
8891 bool IsInc, bool IsPrefix) {
8892 if (Op->isTypeDependent())
8893 return S.Context.DependentTy;
8894
8895 QualType ResType = Op->getType();
8896 // Atomic types can be used for increment / decrement where the non-atomic
8897 // versions can, so ignore the _Atomic() specifier for the purpose of
8898 // checking.
8899 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
8900 ResType = ResAtomicType->getValueType();
8901
8902 assert(!ResType.isNull() && "no type for increment/decrement expression");
8903
8904 if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
8905 // Decrement of bool is not allowed.
8906 if (!IsInc) {
8907 S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
8908 return QualType();
8909 }
8910 // Increment of bool sets it to true, but is deprecated.
8911 S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
8912 } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
8913 // Error on enum increments and decrements in C++ mode
8914 S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
8915 return QualType();
8916 } else if (ResType->isRealType()) {
8917 // OK!
8918 } else if (ResType->isPointerType()) {
8919 // C99 6.5.2.4p2, 6.5.6p2
8920 if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
8921 return QualType();
8922 } else if (ResType->isObjCObjectPointerType()) {
8923 // On modern runtimes, ObjC pointer arithmetic is forbidden.
8924 // Otherwise, we just need a complete type.
8925 if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
8926 checkArithmeticOnObjCPointer(S, OpLoc, Op))
8927 return QualType();
8928 } else if (ResType->isAnyComplexType()) {
8929 // C99 does not support ++/-- on complex types, we allow as an extension.
8930 S.Diag(OpLoc, diag::ext_integer_increment_complex)
8931 << ResType << Op->getSourceRange();
8932 } else if (ResType->isPlaceholderType()) {
8933 ExprResult PR = S.CheckPlaceholderExpr(Op);
8934 if (PR.isInvalid()) return QualType();
8935 return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
8936 IsInc, IsPrefix);
8937 } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
8938 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
8939 } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
8940 ResType->getAs<VectorType>()->getElementType()->isIntegerType()) {
8941 // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
8942 } else {
8943 S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
8944 << ResType << int(IsInc) << Op->getSourceRange();
8945 return QualType();
8946 }
8947 // At this point, we know we have a real, complex or pointer type.
8948 // Now make sure the operand is a modifiable lvalue.
8949 if (CheckForModifiableLvalue(Op, OpLoc, S))
8950 return QualType();
8951 // In C++, a prefix increment is the same type as the operand. Otherwise
8952 // (in C or with postfix), the increment is the unqualified type of the
8953 // operand.
8954 if (IsPrefix && S.getLangOpts().CPlusPlus) {
8955 VK = VK_LValue;
8956 OK = Op->getObjectKind();
8957 return ResType;
8958 } else {
8959 VK = VK_RValue;
8960 return ResType.getUnqualifiedType();
8961 }
8962}
8963
8964
8965/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
8966/// This routine allows us to typecheck complex/recursive expressions
8967/// where the declaration is needed for type checking. We only need to
8968/// handle cases when the expression references a function designator
8969/// or is an lvalue. Here are some examples:
8970/// - &(x) => x
8971/// - &*****f => f for f a function designator.
8972/// - &s.xx => s
8973/// - &s.zz[1].yy -> s, if zz is an array
8974/// - *(x + 1) -> x, if x is an array
8975/// - &"123"[2] -> 0
8976/// - & __real__ x -> x
8977static ValueDecl *getPrimaryDecl(Expr *E) {
8978 switch (E->getStmtClass()) {
8979 case Stmt::DeclRefExprClass:
8980 return cast<DeclRefExpr>(E)->getDecl();
8981 case Stmt::MemberExprClass:
8982 // If this is an arrow operator, the address is an offset from
8983 // the base's value, so the object the base refers to is
8984 // irrelevant.
8985 if (cast<MemberExpr>(E)->isArrow())
8986 return nullptr;
8987 // Otherwise, the expression refers to a part of the base
8988 return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
8989 case Stmt::ArraySubscriptExprClass: {
8990 // FIXME: This code shouldn't be necessary! We should catch the implicit
8991 // promotion of register arrays earlier.
8992 Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
8993 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
8994 if (ICE->getSubExpr()->getType()->isArrayType())
8995 return getPrimaryDecl(ICE->getSubExpr());
8996 }
8997 return nullptr;
8998 }
8999 case Stmt::UnaryOperatorClass: {
9000 UnaryOperator *UO = cast<UnaryOperator>(E);
9001
9002 switch(UO->getOpcode()) {
9003 case UO_Real:
9004 case UO_Imag:
9005 case UO_Extension:
9006 return getPrimaryDecl(UO->getSubExpr());
9007 default:
9008 return nullptr;
9009 }
9010 }
9011 case Stmt::ParenExprClass:
9012 return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
9013 case Stmt::ImplicitCastExprClass:
9014 // If the result of an implicit cast is an l-value, we care about
9015 // the sub-expression; otherwise, the result here doesn't matter.
9016 return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
9017 default:
9018 return nullptr;
9019 }
9020}
9021
9022namespace {
9023 enum {
9024 AO_Bit_Field = 0,
9025 AO_Vector_Element = 1,
9026 AO_Property_Expansion = 2,
9027 AO_Register_Variable = 3,
9028 AO_No_Error = 4
9029 };
9030}
9031/// \brief Diagnose invalid operand for address of operations.
9032///
9033/// \param Type The type of operand which cannot have its address taken.
9034static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
9035 Expr *E, unsigned Type) {
9036 S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
9037}
9038
9039/// CheckAddressOfOperand - The operand of & must be either a function
9040/// designator or an lvalue designating an object. If it is an lvalue, the
9041/// object cannot be declared with storage class register or be a bit field.
9042/// Note: The usual conversions are *not* applied to the operand of the &
9043/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
9044/// In C++, the operand might be an overloaded function name, in which case
9045/// we allow the '&' but retain the overloaded-function type.
9046QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
9047 if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
9048 if (PTy->getKind() == BuiltinType::Overload) {
9049 Expr *E = OrigOp.get()->IgnoreParens();
9050 if (!isa<OverloadExpr>(E)) {
9051 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
9052 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
9053 << OrigOp.get()->getSourceRange();
9054 return QualType();
9055 }
9056
9057 OverloadExpr *Ovl = cast<OverloadExpr>(E);
9058 if (isa<UnresolvedMemberExpr>(Ovl))
9059 if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
9060 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
9061 << OrigOp.get()->getSourceRange();
9062 return QualType();
9063 }
9064
9065 return Context.OverloadTy;
9066 }
9067
9068 if (PTy->getKind() == BuiltinType::UnknownAny)
9069 return Context.UnknownAnyTy;
9070
9071 if (PTy->getKind() == BuiltinType::BoundMember) {
9072 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
9073 << OrigOp.get()->getSourceRange();
9074 return QualType();
9075 }
9076
9077 OrigOp = CheckPlaceholderExpr(OrigOp.get());
9078 if (OrigOp.isInvalid()) return QualType();
9079 }
9080
9081 if (OrigOp.get()->isTypeDependent())
9082 return Context.DependentTy;
9083
9084 assert(!OrigOp.get()->getType()->isPlaceholderType());
9085
9086 // Make sure to ignore parentheses in subsequent checks
9087 Expr *op = OrigOp.get()->IgnoreParens();
9088
9089 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
9090 if (LangOpts.OpenCL && op->getType()->isFunctionType()) {
9091 Diag(op->getExprLoc(), diag::err_opencl_taking_function_address);
9092 return QualType();
9093 }
9094
9095 if (getLangOpts().C99) {
9096 // Implement C99-only parts of addressof rules.
9097 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
9098 if (uOp->getOpcode() == UO_Deref)
9099 // Per C99 6.5.3.2, the address of a deref always returns a valid result
9100 // (assuming the deref expression is valid).
9101 return uOp->getSubExpr()->getType();
9102 }
9103 // Technically, there should be a check for array subscript
9104 // expressions here, but the result of one is always an lvalue anyway.
9105 }
9106 ValueDecl *dcl = getPrimaryDecl(op);
9107 Expr::LValueClassification lval = op->ClassifyLValue(Context);
9108 unsigned AddressOfError = AO_No_Error;
9109
9110 if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
9111 bool sfinae = (bool)isSFINAEContext();
9112 Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
9113 : diag::ext_typecheck_addrof_temporary)
9114 << op->getType() << op->getSourceRange();
9115 if (sfinae)
9116 return QualType();
9117 // Materialize the temporary as an lvalue so that we can take its address.
9118 OrigOp = op = new (Context)
9119 MaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
9120 } else if (isa<ObjCSelectorExpr>(op)) {
9121 return Context.getPointerType(op->getType());
9122 } else if (lval == Expr::LV_MemberFunction) {
9123 // If it's an instance method, make a member pointer.
9124 // The expression must have exactly the form &A::foo.
9125
9126 // If the underlying expression isn't a decl ref, give up.
9127 if (!isa<DeclRefExpr>(op)) {
9128 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
9129 << OrigOp.get()->getSourceRange();
9130 return QualType();
9131 }
9132 DeclRefExpr *DRE = cast<DeclRefExpr>(op);
9133 CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
9134
9135 // The id-expression was parenthesized.
9136 if (OrigOp.get() != DRE) {
9137 Diag(OpLoc, diag::err_parens_pointer_member_function)
9138 << OrigOp.get()->getSourceRange();
9139
9140 // The method was named without a qualifier.
9141 } else if (!DRE->getQualifier()) {
9142 if (MD->getParent()->getName().empty())
9143 Diag(OpLoc, diag::err_unqualified_pointer_member_function)
9144 << op->getSourceRange();
9145 else {
9146 SmallString<32> Str;
9147 StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
9148 Diag(OpLoc, diag::err_unqualified_pointer_member_function)
9149 << op->getSourceRange()
9150 << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
9151 }
9152 }
9153
9154 // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
9155 if (isa<CXXDestructorDecl>(MD))
9156 Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
9157
9158 QualType MPTy = Context.getMemberPointerType(
9159 op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
9160 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
9161 RequireCompleteType(OpLoc, MPTy, 0);
9162 return MPTy;
9163 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
9164 // C99 6.5.3.2p1
9165 // The operand must be either an l-value or a function designator
9166 if (!op->getType()->isFunctionType()) {
9167 // Use a special diagnostic for loads from property references.
9168 if (isa<PseudoObjectExpr>(op)) {
9169 AddressOfError = AO_Property_Expansion;
9170 } else {
9171 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
9172 << op->getType() << op->getSourceRange();
9173 return QualType();
9174 }
9175 }
9176 } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
9177 // The operand cannot be a bit-field
9178 AddressOfError = AO_Bit_Field;
9179 } else if (op->getObjectKind() == OK_VectorComponent) {
9180 // The operand cannot be an element of a vector
9181 AddressOfError = AO_Vector_Element;
9182 } else if (dcl) { // C99 6.5.3.2p1
9183 // We have an lvalue with a decl. Make sure the decl is not declared
9184 // with the register storage-class specifier.
9185 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
9186 // in C++ it is not error to take address of a register
9187 // variable (c++03 7.1.1P3)
9188 if (vd->getStorageClass() == SC_Register &&
9189 !getLangOpts().CPlusPlus) {
9190 AddressOfError = AO_Register_Variable;
9191 }
9192 } else if (isa<FunctionTemplateDecl>(dcl)) {
9193 return Context.OverloadTy;
9194 } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
9195 // Okay: we can take the address of a field.
9196 // Could be a pointer to member, though, if there is an explicit
9197 // scope qualifier for the class.
9198 if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
9199 DeclContext *Ctx = dcl->getDeclContext();
9200 if (Ctx && Ctx->isRecord()) {
9201 if (dcl->getType()->isReferenceType()) {
9202 Diag(OpLoc,
9203 diag::err_cannot_form_pointer_to_member_of_reference_type)
9204 << dcl->getDeclName() << dcl->getType();
9205 return QualType();
9206 }
9207
9208 while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
9209 Ctx = Ctx->getParent();
9210
9211 QualType MPTy = Context.getMemberPointerType(
9212 op->getType(),
9213 Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
9214 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
9215 RequireCompleteType(OpLoc, MPTy, 0);
9216 return MPTy;
9217 }
9218 }
9219 } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
9220 llvm_unreachable("Unknown/unexpected decl type");
9221 }
9222
9223 if (AddressOfError != AO_No_Error) {
9224 diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
9225 return QualType();
9226 }
9227
9228 if (lval == Expr::LV_IncompleteVoidType) {
9229 // Taking the address of a void variable is technically illegal, but we
9230 // allow it in cases which are otherwise valid.
9231 // Example: "extern void x; void* y = &x;".
9232 Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
9233 }
9234
9235 // If the operand has type "type", the result has type "pointer to type".
9236 if (op->getType()->isObjCObjectType())
9237 return Context.getObjCObjectPointerType(op->getType());
9238 return Context.getPointerType(op->getType());
9239}
9240
9241static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
9242 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
9243 if (!DRE)
9244 return;
9245 const Decl *D = DRE->getDecl();
9246 if (!D)
9247 return;
9248 const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
9249 if (!Param)
9250 return;
9251 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
9252 if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
9253 return;
9254 if (FunctionScopeInfo *FD = S.getCurFunction())
9255 if (!FD->ModifiedNonNullParams.count(Param))
9256 FD->ModifiedNonNullParams.insert(Param);
9257}
9258
9259/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
9260static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
9261 SourceLocation OpLoc) {
9262 if (Op->isTypeDependent())
9263 return S.Context.DependentTy;
9264
9265 ExprResult ConvResult = S.UsualUnaryConversions(Op);
9266 if (ConvResult.isInvalid())
9267 return QualType();
9268 Op = ConvResult.get();
9269 QualType OpTy = Op->getType();
9270 QualType Result;
9271
9272 if (isa<CXXReinterpretCastExpr>(Op)) {
9273 QualType OpOrigType = Op->IgnoreParenCasts()->getType();
9274 S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
9275 Op->getSourceRange());
9276 }
9277
9278 if (const PointerType *PT = OpTy->getAs<PointerType>())
9279 Result = PT->getPointeeType();
9280 else if (const ObjCObjectPointerType *OPT =
9281 OpTy->getAs<ObjCObjectPointerType>())
9282 Result = OPT->getPointeeType();
9283 else {
9284 ExprResult PR = S.CheckPlaceholderExpr(Op);
9285 if (PR.isInvalid()) return QualType();
9286 if (PR.get() != Op)
9287 return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
9288 }
9289
9290 if (Result.isNull()) {
9291 S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
9292 << OpTy << Op->getSourceRange();
9293 return QualType();
9294 }
9295
9296 // Note that per both C89 and C99, indirection is always legal, even if Result
9297 // is an incomplete type or void. It would be possible to warn about
9298 // dereferencing a void pointer, but it's completely well-defined, and such a
9299 // warning is unlikely to catch any mistakes. In C++, indirection is not valid
9300 // for pointers to 'void' but is fine for any other pointer type:
9301 //
9302 // C++ [expr.unary.op]p1:
9303 // [...] the expression to which [the unary * operator] is applied shall
9304 // be a pointer to an object type, or a pointer to a function type
9305 if (S.getLangOpts().CPlusPlus && Result->isVoidType())
9306 S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
9307 << OpTy << Op->getSourceRange();
9308
9309 // Dereferences are usually l-values...
9310 VK = VK_LValue;
9311
9312 // ...except that certain expressions are never l-values in C.
9313 if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
9314 VK = VK_RValue;
9315
9316 return Result;
9317}
9318
9319BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
9320 BinaryOperatorKind Opc;
9321 switch (Kind) {
9322 default: llvm_unreachable("Unknown binop!");
9323 case tok::periodstar: Opc = BO_PtrMemD; break;
9324 case tok::arrowstar: Opc = BO_PtrMemI; break;
9325 case tok::star: Opc = BO_Mul; break;
9326 case tok::slash: Opc = BO_Div; break;
9327 case tok::percent: Opc = BO_Rem; break;
9328 case tok::plus: Opc = BO_Add; break;
9329 case tok::minus: Opc = BO_Sub; break;
9330 case tok::lessless: Opc = BO_Shl; break;
9331 case tok::greatergreater: Opc = BO_Shr; break;
9332 case tok::lessequal: Opc = BO_LE; break;
9333 case tok::less: Opc = BO_LT; break;
9334 case tok::greaterequal: Opc = BO_GE; break;
9335 case tok::greater: Opc = BO_GT; break;
9336 case tok::exclaimequal: Opc = BO_NE; break;
9337 case tok::equalequal: Opc = BO_EQ; break;
9338 case tok::amp: Opc = BO_And; break;
9339 case tok::caret: Opc = BO_Xor; break;
9340 case tok::pipe: Opc = BO_Or; break;
9341 case tok::ampamp: Opc = BO_LAnd; break;
9342 case tok::pipepipe: Opc = BO_LOr; break;
9343 case tok::equal: Opc = BO_Assign; break;
9344 case tok::starequal: Opc = BO_MulAssign; break;
9345 case tok::slashequal: Opc = BO_DivAssign; break;
9346 case tok::percentequal: Opc = BO_RemAssign; break;
9347 case tok::plusequal: Opc = BO_AddAssign; break;
9348 case tok::minusequal: Opc = BO_SubAssign; break;
9349 case tok::lesslessequal: Opc = BO_ShlAssign; break;
9350 case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
9351 case tok::ampequal: Opc = BO_AndAssign; break;
9352 case tok::caretequal: Opc = BO_XorAssign; break;
9353 case tok::pipeequal: Opc = BO_OrAssign; break;
9354 case tok::comma: Opc = BO_Comma; break;
9355 }
9356 return Opc;
9357}
9358
9359static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
9360 tok::TokenKind Kind) {
9361 UnaryOperatorKind Opc;
9362 switch (Kind) {
9363 default: llvm_unreachable("Unknown unary op!");
9364 case tok::plusplus: Opc = UO_PreInc; break;
9365 case tok::minusminus: Opc = UO_PreDec; break;
9366 case tok::amp: Opc = UO_AddrOf; break;
9367 case tok::star: Opc = UO_Deref; break;
9368 case tok::plus: Opc = UO_Plus; break;
9369 case tok::minus: Opc = UO_Minus; break;
9370 case tok::tilde: Opc = UO_Not; break;
9371 case tok::exclaim: Opc = UO_LNot; break;
9372 case tok::kw___real: Opc = UO_Real; break;
9373 case tok::kw___imag: Opc = UO_Imag; break;
9374 case tok::kw___extension__: Opc = UO_Extension; break;
9375 }
9376 return Opc;
9377}
9378
9379/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
9380/// This warning is only emitted for builtin assignment operations. It is also
9381/// suppressed in the event of macro expansions.
9382static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
9383 SourceLocation OpLoc) {
9384 if (!S.ActiveTemplateInstantiations.empty())
9385 return;
9386 if (OpLoc.isInvalid() || OpLoc.isMacroID())
9387 return;
9388 LHSExpr = LHSExpr->IgnoreParenImpCasts();
9389 RHSExpr = RHSExpr->IgnoreParenImpCasts();
9390 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
9391 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
9392 if (!LHSDeclRef || !RHSDeclRef ||
9393 LHSDeclRef->getLocation().isMacroID() ||
9394 RHSDeclRef->getLocation().isMacroID())
9395 return;
9396 const ValueDecl *LHSDecl =
9397 cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
9398 const ValueDecl *RHSDecl =
9399 cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
9400 if (LHSDecl != RHSDecl)
9401 return;
9402 if (LHSDecl->getType().isVolatileQualified())
9403 return;
9404 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
9405 if (RefTy->getPointeeType().isVolatileQualified())
9406 return;
9407
9408 S.Diag(OpLoc, diag::warn_self_assignment)
9409 << LHSDeclRef->getType()
9410 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
9411}
9412
9413/// Check if a bitwise-& is performed on an Objective-C pointer. This
9414/// is usually indicative of introspection within the Objective-C pointer.
9415static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
9416 SourceLocation OpLoc) {
9417 if (!S.getLangOpts().ObjC1)
9418 return;
9419
9420 const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
9421 const Expr *LHS = L.get();
9422 const Expr *RHS = R.get();
9423
9424 if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
9425 ObjCPointerExpr = LHS;
9426 OtherExpr = RHS;
9427 }
9428 else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
9429 ObjCPointerExpr = RHS;
9430 OtherExpr = LHS;
9431 }
9432
9433 // This warning is deliberately made very specific to reduce false
9434 // positives with logic that uses '&' for hashing. This logic mainly
9435 // looks for code trying to introspect into tagged pointers, which
9436 // code should generally never do.
9437 if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
9438 unsigned Diag = diag::warn_objc_pointer_masking;
9439 // Determine if we are introspecting the result of performSelectorXXX.
9440 const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
9441 // Special case messages to -performSelector and friends, which
9442 // can return non-pointer values boxed in a pointer value.
9443 // Some clients may wish to silence warnings in this subcase.
9444 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
9445 Selector S = ME->getSelector();
9446 StringRef SelArg0 = S.getNameForSlot(0);
9447 if (SelArg0.startswith("performSelector"))
9448 Diag = diag::warn_objc_pointer_masking_performSelector;
9449 }
9450
9451 S.Diag(OpLoc, Diag)
9452 << ObjCPointerExpr->getSourceRange();
9453 }
9454}
9455
9456static NamedDecl *getDeclFromExpr(Expr *E) {
9457 if (!E)
9458 return nullptr;
9459 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
9460 return DRE->getDecl();
9461 if (auto *ME = dyn_cast<MemberExpr>(E))
9462 return ME->getMemberDecl();
9463 if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
9464 return IRE->getDecl();
9465 return nullptr;
9466}
9467
9468/// CreateBuiltinBinOp - Creates a new built-in binary operation with
9469/// operator @p Opc at location @c TokLoc. This routine only supports
9470/// built-in operations; ActOnBinOp handles overloaded operators.
9471ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
9472 BinaryOperatorKind Opc,
9473 Expr *LHSExpr, Expr *RHSExpr) {
9474 if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
9475 // The syntax only allows initializer lists on the RHS of assignment,
9476 // so we don't need to worry about accepting invalid code for
9477 // non-assignment operators.
9478 // C++11 5.17p9:
9479 // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
9480 // of x = {} is x = T().
9481 InitializationKind Kind =
9482 InitializationKind::CreateDirectList(RHSExpr->getLocStart());
9483 InitializedEntity Entity =
9484 InitializedEntity::InitializeTemporary(LHSExpr->getType());
9485 InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
9486 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
9487 if (Init.isInvalid())
9488 return Init;
9489 RHSExpr = Init.get();
9490 }
9491
9492 ExprResult LHS = LHSExpr, RHS = RHSExpr;
9493 QualType ResultTy; // Result type of the binary operator.
9494 // The following two variables are used for compound assignment operators
9495 QualType CompLHSTy; // Type of LHS after promotions for computation
9496 QualType CompResultTy; // Type of computation result
9497 ExprValueKind VK = VK_RValue;
9498 ExprObjectKind OK = OK_Ordinary;
9499
9500 if (!getLangOpts().CPlusPlus) {
9501 // C cannot handle TypoExpr nodes on either side of a binop because it
9502 // doesn't handle dependent types properly, so make sure any TypoExprs have
9503 // been dealt with before checking the operands.
9504 LHS = CorrectDelayedTyposInExpr(LHSExpr);
9505 RHS = CorrectDelayedTyposInExpr(RHSExpr, [Opc, LHS](Expr *E) {
9506 if (Opc != BO_Assign)
9507 return ExprResult(E);
9508 // Avoid correcting the RHS to the same Expr as the LHS.
9509 Decl *D = getDeclFromExpr(E);
9510 return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
9511 });
9512 if (!LHS.isUsable() || !RHS.isUsable())
9513 return ExprError();
9514 }
9515
9516 switch (Opc) {
9517 case BO_Assign:
9518 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
9519 if (getLangOpts().CPlusPlus &&
9520 LHS.get()->getObjectKind() != OK_ObjCProperty) {
9521 VK = LHS.get()->getValueKind();
9522 OK = LHS.get()->getObjectKind();
9523 }
9524 if (!ResultTy.isNull()) {
9525 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
9526 DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
9527 }
9528 RecordModifiableNonNullParam(*this, LHS.get());
9529 break;
9530 case BO_PtrMemD:
9531 case BO_PtrMemI:
9532 ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
9533 Opc == BO_PtrMemI);
9534 break;
9535 case BO_Mul:
9536 case BO_Div:
9537 ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
9538 Opc == BO_Div);
9539 break;
9540 case BO_Rem:
9541 ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
9542 break;
9543 case BO_Add:
9544 ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
9545 break;
9546 case BO_Sub:
9547 ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
9548 break;
9549 case BO_Shl:
9550 case BO_Shr:
9551 ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
9552 break;
9553 case BO_LE:
9554 case BO_LT:
9555 case BO_GE:
9556 case BO_GT:
9557 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
9558 break;
9559 case BO_EQ:
9560 case BO_NE:
9561 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
9562 break;
9563 case BO_And:
9564 checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
9565 case BO_Xor:
9566 case BO_Or:
9567 ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
9568 break;
9569 case BO_LAnd:
9570 case BO_LOr:
9571 ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
9572 break;
9573 case BO_MulAssign:
9574 case BO_DivAssign:
9575 CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
9576 Opc == BO_DivAssign);
9577 CompLHSTy = CompResultTy;
9578 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9579 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9580 break;
9581 case BO_RemAssign:
9582 CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
9583 CompLHSTy = CompResultTy;
9584 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9585 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9586 break;
9587 case BO_AddAssign:
9588 CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
9589 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9590 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9591 break;
9592 case BO_SubAssign:
9593 CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
9594 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9595 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9596 break;
9597 case BO_ShlAssign:
9598 case BO_ShrAssign:
9599 CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
9600 CompLHSTy = CompResultTy;
9601 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9602 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9603 break;
9604 case BO_AndAssign:
9605 case BO_OrAssign: // fallthrough
9606 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
9607 case BO_XorAssign:
9608 CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
9609 CompLHSTy = CompResultTy;
9610 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9611 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9612 break;
9613 case BO_Comma:
9614 ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
9615 if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
9616 VK = RHS.get()->getValueKind();
9617 OK = RHS.get()->getObjectKind();
9618 }
9619 break;
9620 }
9621 if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
9622 return ExprError();
9623
9624 // Check for array bounds violations for both sides of the BinaryOperator
9625 CheckArrayAccess(LHS.get());
9626 CheckArrayAccess(RHS.get());
9627
9628 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
9629 NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
9630 &Context.Idents.get("object_setClass"),
9631 SourceLocation(), LookupOrdinaryName);
9632 if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
9633 SourceLocation RHSLocEnd = PP.getLocForEndOfToken(RHS.get()->getLocEnd());
9634 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) <<
9635 FixItHint::CreateInsertion(LHS.get()->getLocStart(), "object_setClass(") <<
9636 FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), ",") <<
9637 FixItHint::CreateInsertion(RHSLocEnd, ")");
9638 }
9639 else
9640 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
9641 }
9642 else if (const ObjCIvarRefExpr *OIRE =
9643 dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
9644 DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
9645
9646 if (CompResultTy.isNull())
9647 return new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, ResultTy, VK,
9648 OK, OpLoc, FPFeatures.fp_contract);
9649 if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
9650 OK_ObjCProperty) {
9651 VK = VK_LValue;
9652 OK = LHS.get()->getObjectKind();
9653 }
9654 return new (Context) CompoundAssignOperator(
9655 LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, CompLHSTy, CompResultTy,
9656 OpLoc, FPFeatures.fp_contract);
9657}
9658
9659/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
9660/// operators are mixed in a way that suggests that the programmer forgot that
9661/// comparison operators have higher precedence. The most typical example of
9662/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
9663static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
9664 SourceLocation OpLoc, Expr *LHSExpr,
9665 Expr *RHSExpr) {
9666 BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
9667 BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
9668
9669 // Check that one of the sides is a comparison operator.
9670 bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
9671 bool isRightComp = RHSBO && RHSBO->isComparisonOp();
9672 if (!isLeftComp && !isRightComp)
9673 return;
9674
9675 // Bitwise operations are sometimes used as eager logical ops.
9676 // Don't diagnose this.
9677 bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
9678 bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
9679 if ((isLeftComp || isLeftBitwise) && (isRightComp || isRightBitwise))
9680 return;
9681
9682 SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
9683 OpLoc)
9684 : SourceRange(OpLoc, RHSExpr->getLocEnd());
9685 StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
9686 SourceRange ParensRange = isLeftComp ?
9687 SourceRange(LHSBO->getRHS()->getLocStart(), RHSExpr->getLocEnd())
9688 : SourceRange(LHSExpr->getLocStart(), RHSBO->getLHS()->getLocEnd());
9689
9690 Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
9691 << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
9692 SuggestParentheses(Self, OpLoc,
9693 Self.PDiag(diag::note_precedence_silence) << OpStr,
9694 (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
9695 SuggestParentheses(Self, OpLoc,
9696 Self.PDiag(diag::note_precedence_bitwise_first)
9697 << BinaryOperator::getOpcodeStr(Opc),
9698 ParensRange);
9699}
9700
9701/// \brief It accepts a '&' expr that is inside a '|' one.
9702/// Emit a diagnostic together with a fixit hint that wraps the '&' expression
9703/// in parentheses.
9704static void
9705EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
9706 BinaryOperator *Bop) {
9707 assert(Bop->getOpcode() == BO_And);
9708 Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
9709 << Bop->getSourceRange() << OpLoc;
9710 SuggestParentheses(Self, Bop->getOperatorLoc(),
9711 Self.PDiag(diag::note_precedence_silence)
9712 << Bop->getOpcodeStr(),
9713 Bop->getSourceRange());
9714}
9715
9716/// \brief It accepts a '&&' expr that is inside a '||' one.
9717/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
9718/// in parentheses.
9719static void
9720EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
9721 BinaryOperator *Bop) {
9722 assert(Bop->getOpcode() == BO_LAnd);
9723 Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
9724 << Bop->getSourceRange() << OpLoc;
9725 SuggestParentheses(Self, Bop->getOperatorLoc(),
9726 Self.PDiag(diag::note_precedence_silence)
9727 << Bop->getOpcodeStr(),
9728 Bop->getSourceRange());
9729}
9730
9731/// \brief Returns true if the given expression can be evaluated as a constant
9732/// 'true'.
9733static bool EvaluatesAsTrue(Sema &S, Expr *E) {
9734 bool Res;
9735 return !E->isValueDependent() &&
9736 E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
9737}
9738
9739/// \brief Returns true if the given expression can be evaluated as a constant
9740/// 'false'.
9741static bool EvaluatesAsFalse(Sema &S, Expr *E) {
9742 bool Res;
9743 return !E->isValueDependent() &&
9744 E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
9745}
9746
9747/// \brief Look for '&&' in the left hand of a '||' expr.
9748static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
9749 Expr *LHSExpr, Expr *RHSExpr) {
9750 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
9751 if (Bop->getOpcode() == BO_LAnd) {
9752 // If it's "a && b || 0" don't warn since the precedence doesn't matter.
9753 if (EvaluatesAsFalse(S, RHSExpr))
9754 return;
9755 // If it's "1 && a || b" don't warn since the precedence doesn't matter.
9756 if (!EvaluatesAsTrue(S, Bop->getLHS()))
9757 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
9758 } else if (Bop->getOpcode() == BO_LOr) {
9759 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
9760 // If it's "a || b && 1 || c" we didn't warn earlier for
9761 // "a || b && 1", but warn now.
9762 if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
9763 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
9764 }
9765 }
9766 }
9767}
9768
9769/// \brief Look for '&&' in the right hand of a '||' expr.
9770static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
9771 Expr *LHSExpr, Expr *RHSExpr) {
9772 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
9773 if (Bop->getOpcode() == BO_LAnd) {
9774 // If it's "0 || a && b" don't warn since the precedence doesn't matter.
9775 if (EvaluatesAsFalse(S, LHSExpr))
9776 return;
9777 // If it's "a || b && 1" don't warn since the precedence doesn't matter.
9778 if (!EvaluatesAsTrue(S, Bop->getRHS()))
9779 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
9780 }
9781 }
9782}
9783
9784/// \brief Look for '&' in the left or right hand of a '|' expr.
9785static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
9786 Expr *OrArg) {
9787 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
9788 if (Bop->getOpcode() == BO_And)
9789 return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
9790 }
9791}
9792
9793static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
9794 Expr *SubExpr, StringRef Shift) {
9795 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
9796 if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
9797 StringRef Op = Bop->getOpcodeStr();
9798 S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
9799 << Bop->getSourceRange() << OpLoc << Shift << Op;
9800 SuggestParentheses(S, Bop->getOperatorLoc(),
9801 S.PDiag(diag::note_precedence_silence) << Op,
9802 Bop->getSourceRange());
9803 }
9804 }
9805}
9806
9807static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
9808 Expr *LHSExpr, Expr *RHSExpr) {
9809 CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
9810 if (!OCE)
9811 return;
9812
9813 FunctionDecl *FD = OCE->getDirectCallee();
9814 if (!FD || !FD->isOverloadedOperator())
9815 return;
9816
9817 OverloadedOperatorKind Kind = FD->getOverloadedOperator();
9818 if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
9819 return;
9820
9821 S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
9822 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
9823 << (Kind == OO_LessLess);
9824 SuggestParentheses(S, OCE->getOperatorLoc(),
9825 S.PDiag(diag::note_precedence_silence)
9826 << (Kind == OO_LessLess ? "<<" : ">>"),
9827 OCE->getSourceRange());
9828 SuggestParentheses(S, OpLoc,
9829 S.PDiag(diag::note_evaluate_comparison_first),
9830 SourceRange(OCE->getArg(1)->getLocStart(),
9831 RHSExpr->getLocEnd()));
9832}
9833
9834/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
9835/// precedence.
9836static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
9837 SourceLocation OpLoc, Expr *LHSExpr,
9838 Expr *RHSExpr){
9839 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
9840 if (BinaryOperator::isBitwiseOp(Opc))
9841 DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
9842
9843 // Diagnose "arg1 & arg2 | arg3"
9844 if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
9845 DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
9846 DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
9847 }
9848
9849 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
9850 // We don't warn for 'assert(a || b && "bad")' since this is safe.
9851 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
9852 DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
9853 DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
9854 }
9855
9856 if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
9857 || Opc == BO_Shr) {
9858 StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
9859 DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
9860 DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
9861 }
9862
9863 // Warn on overloaded shift operators and comparisons, such as:
9864 // cout << 5 == 4;
9865 if (BinaryOperator::isComparisonOp(Opc))
9866 DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
9867}
9868
9869// Binary Operators. 'Tok' is the token for the operator.
9870ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
9871 tok::TokenKind Kind,
9872 Expr *LHSExpr, Expr *RHSExpr) {
9873 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
9874 assert(LHSExpr && "ActOnBinOp(): missing left expression");
9875 assert(RHSExpr && "ActOnBinOp(): missing right expression");
9876
9877 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
9878 DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
9879
9880 return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
9881}
9882
9883/// Build an overloaded binary operator expression in the given scope.
9884static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
9885 BinaryOperatorKind Opc,
9886 Expr *LHS, Expr *RHS) {
9887 // Find all of the overloaded operators visible from this
9888 // point. We perform both an operator-name lookup from the local
9889 // scope and an argument-dependent lookup based on the types of
9890 // the arguments.
9891 UnresolvedSet<16> Functions;
9892 OverloadedOperatorKind OverOp
9893 = BinaryOperator::getOverloadedOperator(Opc);
9894 if (Sc && OverOp != OO_None && OverOp != OO_Equal)
9895 S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
9896 RHS->getType(), Functions);
9897
9898 // Build the (potentially-overloaded, potentially-dependent)
9899 // binary operation.
9900 return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
9901}
9902
9903ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
9904 BinaryOperatorKind Opc,
9905 Expr *LHSExpr, Expr *RHSExpr) {
9906 // We want to end up calling one of checkPseudoObjectAssignment
9907 // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
9908 // both expressions are overloadable or either is type-dependent),
9909 // or CreateBuiltinBinOp (in any other case). We also want to get
9910 // any placeholder types out of the way.
9911
9912 // Handle pseudo-objects in the LHS.
9913 if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
9914 // Assignments with a pseudo-object l-value need special analysis.
9915 if (pty->getKind() == BuiltinType::PseudoObject &&
9916 BinaryOperator::isAssignmentOp(Opc))
9917 return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
9918
9919 // Don't resolve overloads if the other type is overloadable.
9920 if (pty->getKind() == BuiltinType::Overload) {
9921 // We can't actually test that if we still have a placeholder,
9922 // though. Fortunately, none of the exceptions we see in that
9923 // code below are valid when the LHS is an overload set. Note
9924 // that an overload set can be dependently-typed, but it never
9925 // instantiates to having an overloadable type.
9926 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
9927 if (resolvedRHS.isInvalid()) return ExprError();
9928 RHSExpr = resolvedRHS.get();
9929
9930 if (RHSExpr->isTypeDependent() ||
9931 RHSExpr->getType()->isOverloadableType())
9932 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9933 }
9934
9935 ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
9936 if (LHS.isInvalid()) return ExprError();
9937 LHSExpr = LHS.get();
9938 }
9939
9940 // Handle pseudo-objects in the RHS.
9941 if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
9942 // An overload in the RHS can potentially be resolved by the type
9943 // being assigned to.
9944 if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
9945 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
9946 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9947
9948 if (LHSExpr->getType()->isOverloadableType())
9949 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9950
9951 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
9952 }
9953
9954 // Don't resolve overloads if the other type is overloadable.
9955 if (pty->getKind() == BuiltinType::Overload &&
9956 LHSExpr->getType()->isOverloadableType())
9957 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9958
9959 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
9960 if (!resolvedRHS.isUsable()) return ExprError();
9961 RHSExpr = resolvedRHS.get();
9962 }
9963
9964 if (getLangOpts().CPlusPlus) {
9965 // If either expression is type-dependent, always build an
9966 // overloaded op.
9967 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
9968 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9969
9970 // Otherwise, build an overloaded op if either expression has an
9971 // overloadable type.
9972 if (LHSExpr->getType()->isOverloadableType() ||
9973 RHSExpr->getType()->isOverloadableType())
9974 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9975 }
9976
9977 // Build a built-in binary operation.
9978 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
9979}
9980
9981ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
9982 UnaryOperatorKind Opc,
9983 Expr *InputExpr) {
9984 ExprResult Input = InputExpr;
9985 ExprValueKind VK = VK_RValue;
9986 ExprObjectKind OK = OK_Ordinary;
9987 QualType resultType;
9988 switch (Opc) {
9989 case UO_PreInc:
9990 case UO_PreDec:
9991 case UO_PostInc:
9992 case UO_PostDec:
9993 resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
9994 OpLoc,
9995 Opc == UO_PreInc ||
9996 Opc == UO_PostInc,
9997 Opc == UO_PreInc ||
9998 Opc == UO_PreDec);
9999 break;
10000 case UO_AddrOf:
10001 resultType = CheckAddressOfOperand(Input, OpLoc);
10002 RecordModifiableNonNullParam(*this, InputExpr);
10003 break;
10004 case UO_Deref: {
10005 Input = DefaultFunctionArrayLvalueConversion(Input.get());
10006 if (Input.isInvalid()) return ExprError();
10007 resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
10008 break;
10009 }
10010 case UO_Plus:
10011 case UO_Minus:
10012 Input = UsualUnaryConversions(Input.get());
10013 if (Input.isInvalid()) return ExprError();
10014 resultType = Input.get()->getType();
10015 if (resultType->isDependentType())
10016 break;
10017 if (resultType->isArithmeticType() || // C99 6.5.3.3p1
10018 resultType->isVectorType())
10019 break;
10020 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
10021 Opc == UO_Plus &&
10022 resultType->isPointerType())
10023 break;
10024
10025 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10026 << resultType << Input.get()->getSourceRange());
10027
10028 case UO_Not: // bitwise complement
10029 Input = UsualUnaryConversions(Input.get());
10030 if (Input.isInvalid())
10031 return ExprError();
10032 resultType = Input.get()->getType();
10033 if (resultType->isDependentType())
10034 break;
10035 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
10036 if (resultType->isComplexType() || resultType->isComplexIntegerType())
10037 // C99 does not support '~' for complex conjugation.
10038 Diag(OpLoc, diag::ext_integer_complement_complex)
10039 << resultType << Input.get()->getSourceRange();
10040 else if (resultType->hasIntegerRepresentation())
10041 break;
10042 else if (resultType->isExtVectorType()) {
10043 if (Context.getLangOpts().OpenCL) {
10044 // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
10045 // on vector float types.
10046 QualType T = resultType->getAs<ExtVectorType>()->getElementType();
10047 if (!T->isIntegerType())
10048 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10049 << resultType << Input.get()->getSourceRange());
10050 }
10051 break;
10052 } else {
10053 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10054 << resultType << Input.get()->getSourceRange());
10055 }
10056 break;
10057
10058 case UO_LNot: // logical negation
10059 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
10060 Input = DefaultFunctionArrayLvalueConversion(Input.get());
10061 if (Input.isInvalid()) return ExprError();
10062 resultType = Input.get()->getType();
10063
10064 // Though we still have to promote half FP to float...
10065 if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
10066 Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
10067 resultType = Context.FloatTy;
10068 }
10069
10070 if (resultType->isDependentType())
10071 break;
10072 if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
10073 // C99 6.5.3.3p1: ok, fallthrough;
10074 if (Context.getLangOpts().CPlusPlus) {
10075 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
10076 // operand contextually converted to bool.
10077 Input = ImpCastExprToType(Input.get(), Context.BoolTy,
10078 ScalarTypeToBooleanCastKind(resultType));
10079 } else if (Context.getLangOpts().OpenCL &&
10080 Context.getLangOpts().OpenCLVersion < 120) {
10081 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
10082 // operate on scalar float types.
10083 if (!resultType->isIntegerType())
10084 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10085 << resultType << Input.get()->getSourceRange());
10086 }
10087 } else if (resultType->isExtVectorType()) {
10088 if (Context.getLangOpts().OpenCL &&
10089 Context.getLangOpts().OpenCLVersion < 120) {
10090 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
10091 // operate on vector float types.
10092 QualType T = resultType->getAs<ExtVectorType>()->getElementType();
10093 if (!T->isIntegerType())
10094 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10095 << resultType << Input.get()->getSourceRange());
10096 }
10097 // Vector logical not returns the signed variant of the operand type.
10098 resultType = GetSignedVectorType(resultType);
10099 break;
10100 } else {
10101 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10102 << resultType << Input.get()->getSourceRange());
10103 }
10104
10105 // LNot always has type int. C99 6.5.3.3p5.
10106 // In C++, it's bool. C++ 5.3.1p8
10107 resultType = Context.getLogicalOperationType();
10108 break;
10109 case UO_Real:
10110 case UO_Imag:
10111 resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
10112 // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
10113 // complex l-values to ordinary l-values and all other values to r-values.
10114 if (Input.isInvalid()) return ExprError();
10115 if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
10116 if (Input.get()->getValueKind() != VK_RValue &&
10117 Input.get()->getObjectKind() == OK_Ordinary)
10118 VK = Input.get()->getValueKind();
10119 } else if (!getLangOpts().CPlusPlus) {
10120 // In C, a volatile scalar is read by __imag. In C++, it is not.
10121 Input = DefaultLvalueConversion(Input.get());
10122 }
10123 break;
10124 case UO_Extension:
10125 resultType = Input.get()->getType();
10126 VK = Input.get()->getValueKind();
10127 OK = Input.get()->getObjectKind();
10128 break;
10129 }
10130 if (resultType.isNull() || Input.isInvalid())
10131 return ExprError();
10132
10133 // Check for array bounds violations in the operand of the UnaryOperator,
10134 // except for the '*' and '&' operators that have to be handled specially
10135 // by CheckArrayAccess (as there are special cases like &array[arraysize]
10136 // that are explicitly defined as valid by the standard).
10137 if (Opc != UO_AddrOf && Opc != UO_Deref)
10138 CheckArrayAccess(Input.get());
10139
10140 return new (Context)
10141 UnaryOperator(Input.get(), Opc, resultType, VK, OK, OpLoc);
10142}
10143
10144/// \brief Determine whether the given expression is a qualified member
10145/// access expression, of a form that could be turned into a pointer to member
10146/// with the address-of operator.
10147static bool isQualifiedMemberAccess(Expr *E) {
10148 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
10149 if (!DRE->getQualifier())
10150 return false;
10151
10152 ValueDecl *VD = DRE->getDecl();
10153 if (!VD->isCXXClassMember())
10154 return false;
10155
10156 if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
10157 return true;
10158 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
10159 return Method->isInstance();
10160
10161 return false;
10162 }
10163
10164 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
10165 if (!ULE->getQualifier())
10166 return false;
10167
10168 for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
10169 DEnd = ULE->decls_end();
10170 D != DEnd; ++D) {
10171 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
10172 if (Method->isInstance())
10173 return true;
10174 } else {
10175 // Overload set does not contain methods.
10176 break;
10177 }
10178 }
10179
10180 return false;
10181 }
10182
10183 return false;
10184}
10185
10186ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
10187 UnaryOperatorKind Opc, Expr *Input) {
10188 // First things first: handle placeholders so that the
10189 // overloaded-operator check considers the right type.
10190 if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
10191 // Increment and decrement of pseudo-object references.
10192 if (pty->getKind() == BuiltinType::PseudoObject &&
10193 UnaryOperator::isIncrementDecrementOp(Opc))
10194 return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
10195
10196 // extension is always a builtin operator.
10197 if (Opc == UO_Extension)
10198 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
10199
10200 // & gets special logic for several kinds of placeholder.
10201 // The builtin code knows what to do.
10202 if (Opc == UO_AddrOf &&
10203 (pty->getKind() == BuiltinType::Overload ||
10204 pty->getKind() == BuiltinType::UnknownAny ||
10205 pty->getKind() == BuiltinType::BoundMember))
10206 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
10207
10208 // Anything else needs to be handled now.
10209 ExprResult Result = CheckPlaceholderExpr(Input);
10210 if (Result.isInvalid()) return ExprError();
10211 Input = Result.get();
10212 }
10213
10214 if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
10215 UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
10216 !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
10217 // Find all of the overloaded operators visible from this
10218 // point. We perform both an operator-name lookup from the local
10219 // scope and an argument-dependent lookup based on the types of
10220 // the arguments.
10221 UnresolvedSet<16> Functions;
10222 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
10223 if (S && OverOp != OO_None)
10224 LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
10225 Functions);
10226
10227 return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
10228 }
10229
10230 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
10231}
10232
10233// Unary Operators. 'Tok' is the token for the operator.
10234ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
10235 tok::TokenKind Op, Expr *Input) {
10236 return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
10237}
10238
10239/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
10240ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
10241 LabelDecl *TheDecl) {
10242 TheDecl->markUsed(Context);
10243 // Create the AST node. The address of a label always has type 'void*'.
10244 return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
10245 Context.getPointerType(Context.VoidTy));
10246}
10247
10248/// Given the last statement in a statement-expression, check whether
10249/// the result is a producing expression (like a call to an
10250/// ns_returns_retained function) and, if so, rebuild it to hoist the
10251/// release out of the full-expression. Otherwise, return null.
10252/// Cannot fail.
10253static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
10254 // Should always be wrapped with one of these.
10255 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
10256 if (!cleanups) return nullptr;
10257
10258 ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
10259 if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
10260 return nullptr;
10261
10262 // Splice out the cast. This shouldn't modify any interesting
10263 // features of the statement.
10264 Expr *producer = cast->getSubExpr();
10265 assert(producer->getType() == cast->getType());
10266 assert(producer->getValueKind() == cast->getValueKind());
10267 cleanups->setSubExpr(producer);
10268 return cleanups;
10269}
10270
10271void Sema::ActOnStartStmtExpr() {
10272 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
10273}
10274
10275void Sema::ActOnStmtExprError() {
10276 // Note that function is also called by TreeTransform when leaving a
10277 // StmtExpr scope without rebuilding anything.
10278
10279 DiscardCleanupsInEvaluationContext();
10280 PopExpressionEvaluationContext();
10281}
10282
10283ExprResult
10284Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
10285 SourceLocation RPLoc) { // "({..})"
10286 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
10287 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
10288
10289 if (hasAnyUnrecoverableErrorsInThisFunction())
10290 DiscardCleanupsInEvaluationContext();
10291 assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
10292 PopExpressionEvaluationContext();
10293
10294 // FIXME: there are a variety of strange constraints to enforce here, for
10295 // example, it is not possible to goto into a stmt expression apparently.
10296 // More semantic analysis is needed.
10297
10298 // If there are sub-stmts in the compound stmt, take the type of the last one
10299 // as the type of the stmtexpr.
10300 QualType Ty = Context.VoidTy;
10301 bool StmtExprMayBindToTemp = false;
10302 if (!Compound->body_empty()) {
10303 Stmt *LastStmt = Compound->body_back();
10304 LabelStmt *LastLabelStmt = nullptr;
10305 // If LastStmt is a label, skip down through into the body.
10306 while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
10307 LastLabelStmt = Label;
10308 LastStmt = Label->getSubStmt();
10309 }
10310
10311 if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
10312 // Do function/array conversion on the last expression, but not
10313 // lvalue-to-rvalue. However, initialize an unqualified type.
10314 ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
10315 if (LastExpr.isInvalid())
10316 return ExprError();
10317 Ty = LastExpr.get()->getType().getUnqualifiedType();
10318
10319 if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
10320 // In ARC, if the final expression ends in a consume, splice
10321 // the consume out and bind it later. In the alternate case
10322 // (when dealing with a retainable type), the result
10323 // initialization will create a produce. In both cases the
10324 // result will be +1, and we'll need to balance that out with
10325 // a bind.
10326 if (Expr *rebuiltLastStmt
10327 = maybeRebuildARCConsumingStmt(LastExpr.get())) {
10328 LastExpr = rebuiltLastStmt;
10329 } else {
10330 LastExpr = PerformCopyInitialization(
10331 InitializedEntity::InitializeResult(LPLoc,
10332 Ty,
10333 false),
10334 SourceLocation(),
10335 LastExpr);
10336 }
10337
10338 if (LastExpr.isInvalid())
10339 return ExprError();
10340 if (LastExpr.get() != nullptr) {
10341 if (!LastLabelStmt)
10342 Compound->setLastStmt(LastExpr.get());
10343 else
10344 LastLabelStmt->setSubStmt(LastExpr.get());
10345 StmtExprMayBindToTemp = true;
10346 }
10347 }
10348 }
10349 }
10350
10351 // FIXME: Check that expression type is complete/non-abstract; statement
10352 // expressions are not lvalues.
10353 Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
10354 if (StmtExprMayBindToTemp)
10355 return MaybeBindToTemporary(ResStmtExpr);
10356 return ResStmtExpr;
10357}
10358
10359ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
10360 TypeSourceInfo *TInfo,
10361 OffsetOfComponent *CompPtr,
10362 unsigned NumComponents,
10363 SourceLocation RParenLoc) {
10364 QualType ArgTy = TInfo->getType();
10365 bool Dependent = ArgTy->isDependentType();
10366 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
10367
10368 // We must have at least one component that refers to the type, and the first
10369 // one is known to be a field designator. Verify that the ArgTy represents
10370 // a struct/union/class.
10371 if (!Dependent && !ArgTy->isRecordType())
10372 return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
10373 << ArgTy << TypeRange);
10374
10375 // Type must be complete per C99 7.17p3 because a declaring a variable
10376 // with an incomplete type would be ill-formed.
10377 if (!Dependent
10378 && RequireCompleteType(BuiltinLoc, ArgTy,
10379 diag::err_offsetof_incomplete_type, TypeRange))
10380 return ExprError();
10381
10382 // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
10383 // GCC extension, diagnose them.
10384 // FIXME: This diagnostic isn't actually visible because the location is in
10385 // a system header!
10386 if (NumComponents != 1)
10387 Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
10388 << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
10389
10390 bool DidWarnAboutNonPOD = false;
10391 QualType CurrentType = ArgTy;
10392 typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
10393 SmallVector<OffsetOfNode, 4> Comps;
10394 SmallVector<Expr*, 4> Exprs;
10395 for (unsigned i = 0; i != NumComponents; ++i) {
10396 const OffsetOfComponent &OC = CompPtr[i];
10397 if (OC.isBrackets) {
10398 // Offset of an array sub-field. TODO: Should we allow vector elements?
10399 if (!CurrentType->isDependentType()) {
10400 const ArrayType *AT = Context.getAsArrayType(CurrentType);
10401 if(!AT)
10402 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
10403 << CurrentType);
10404 CurrentType = AT->getElementType();
10405 } else
10406 CurrentType = Context.DependentTy;
10407
10408 ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
10409 if (IdxRval.isInvalid())
10410 return ExprError();
10411 Expr *Idx = IdxRval.get();
10412
10413 // The expression must be an integral expression.
10414 // FIXME: An integral constant expression?
10415 if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
10416 !Idx->getType()->isIntegerType())
10417 return ExprError(Diag(Idx->getLocStart(),
10418 diag::err_typecheck_subscript_not_integer)
10419 << Idx->getSourceRange());
10420
10421 // Record this array index.
10422 Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
10423 Exprs.push_back(Idx);
10424 continue;
10425 }
10426
10427 // Offset of a field.
10428 if (CurrentType->isDependentType()) {
10429 // We have the offset of a field, but we can't look into the dependent
10430 // type. Just record the identifier of the field.
10431 Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
10432 CurrentType = Context.DependentTy;
10433 continue;
10434 }
10435
10436 // We need to have a complete type to look into.
10437 if (RequireCompleteType(OC.LocStart, CurrentType,
10438 diag::err_offsetof_incomplete_type))
10439 return ExprError();
10440
10441 // Look for the designated field.
10442 const RecordType *RC = CurrentType->getAs<RecordType>();
10443 if (!RC)
10444 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
10445 << CurrentType);
10446 RecordDecl *RD = RC->getDecl();
10447
10448 // C++ [lib.support.types]p5:
10449 // The macro offsetof accepts a restricted set of type arguments in this
10450 // International Standard. type shall be a POD structure or a POD union
10451 // (clause 9).
10452 // C++11 [support.types]p4:
10453 // If type is not a standard-layout class (Clause 9), the results are
10454 // undefined.
10455 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
10456 bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
10457 unsigned DiagID =
10458 LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
10459 : diag::ext_offsetof_non_pod_type;
10460
10461 if (!IsSafe && !DidWarnAboutNonPOD &&
10462 DiagRuntimeBehavior(BuiltinLoc, nullptr,
10463 PDiag(DiagID)
10464 << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
10465 << CurrentType))
10466 DidWarnAboutNonPOD = true;
10467 }
10468
10469 // Look for the field.
10470 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
10471 LookupQualifiedName(R, RD);
10472 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
10473 IndirectFieldDecl *IndirectMemberDecl = nullptr;
10474 if (!MemberDecl) {
10475 if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
10476 MemberDecl = IndirectMemberDecl->getAnonField();
10477 }
10478
10479 if (!MemberDecl)
10480 return ExprError(Diag(BuiltinLoc, diag::err_no_member)
10481 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
10482 OC.LocEnd));
10483
10484 // C99 7.17p3:
10485 // (If the specified member is a bit-field, the behavior is undefined.)
10486 //
10487 // We diagnose this as an error.
10488 if (MemberDecl->isBitField()) {
10489 Diag(OC.LocEnd, diag::err_offsetof_bitfield)
10490 << MemberDecl->getDeclName()
10491 << SourceRange(BuiltinLoc, RParenLoc);
10492 Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
10493 return ExprError();
10494 }
10495
10496 RecordDecl *Parent = MemberDecl->getParent();
10497 if (IndirectMemberDecl)
10498 Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
10499
10500 // If the member was found in a base class, introduce OffsetOfNodes for
10501 // the base class indirections.
10502 CXXBasePaths Paths;
10503 if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
10504 if (Paths.getDetectedVirtual()) {
10505 Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
10506 << MemberDecl->getDeclName()
10507 << SourceRange(BuiltinLoc, RParenLoc);
10508 return ExprError();
10509 }
10510
10511 CXXBasePath &Path = Paths.front();
10512 for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
10513 B != BEnd; ++B)
10514 Comps.push_back(OffsetOfNode(B->Base));
10515 }
10516
10517 if (IndirectMemberDecl) {
10518 for (auto *FI : IndirectMemberDecl->chain()) {
10519 assert(isa<FieldDecl>(FI));
10520 Comps.push_back(OffsetOfNode(OC.LocStart,
10521 cast<FieldDecl>(FI), OC.LocEnd));
10522 }
10523 } else
10524 Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
10525
10526 CurrentType = MemberDecl->getType().getNonReferenceType();
10527 }
10528
10529 return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
10530 Comps, Exprs, RParenLoc);
10531}
10532
10533ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
10534 SourceLocation BuiltinLoc,
10535 SourceLocation TypeLoc,
10536 ParsedType ParsedArgTy,
10537 OffsetOfComponent *CompPtr,
10538 unsigned NumComponents,
10539 SourceLocation RParenLoc) {
10540
10541 TypeSourceInfo *ArgTInfo;
10542 QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
10543 if (ArgTy.isNull())
10544 return ExprError();
10545
10546 if (!ArgTInfo)
10547 ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
10548
10549 return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
10550 RParenLoc);
10551}
10552
10553
10554ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
10555 Expr *CondExpr,
10556 Expr *LHSExpr, Expr *RHSExpr,
10557 SourceLocation RPLoc) {
10558 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
10559
10560 ExprValueKind VK = VK_RValue;
10561 ExprObjectKind OK = OK_Ordinary;
10562 QualType resType;
10563 bool ValueDependent = false;
10564 bool CondIsTrue = false;
10565 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
10566 resType = Context.DependentTy;
10567 ValueDependent = true;
10568 } else {
10569 // The conditional expression is required to be a constant expression.
10570 llvm::APSInt condEval(32);
10571 ExprResult CondICE
10572 = VerifyIntegerConstantExpression(CondExpr, &condEval,
10573 diag::err_typecheck_choose_expr_requires_constant, false);
10574 if (CondICE.isInvalid())
10575 return ExprError();
10576 CondExpr = CondICE.get();
10577 CondIsTrue = condEval.getZExtValue();
10578
10579 // If the condition is > zero, then the AST type is the same as the LSHExpr.
10580 Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
10581
10582 resType = ActiveExpr->getType();
10583 ValueDependent = ActiveExpr->isValueDependent();
10584 VK = ActiveExpr->getValueKind();
10585 OK = ActiveExpr->getObjectKind();
10586 }
10587
10588 return new (Context)
10589 ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, VK, OK, RPLoc,
10590 CondIsTrue, resType->isDependentType(), ValueDependent);
10591}
10592
10593//===----------------------------------------------------------------------===//
10594// Clang Extensions.
10595//===----------------------------------------------------------------------===//
10596
10597/// ActOnBlockStart - This callback is invoked when a block literal is started.
10598void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
10599 BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
10600
10601 if (LangOpts.CPlusPlus) {
10602 Decl *ManglingContextDecl;
10603 if (MangleNumberingContext *MCtx =
10604 getCurrentMangleNumberContext(Block->getDeclContext(),
10605 ManglingContextDecl)) {
10606 unsigned ManglingNumber = MCtx->getManglingNumber(Block);
10607 Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
10608 }
10609 }
10610
10611 PushBlockScope(CurScope, Block);
10612 CurContext->addDecl(Block);
10613 if (CurScope)
10614 PushDeclContext(CurScope, Block);
10615 else
10616 CurContext = Block;
10617
10618 getCurBlock()->HasImplicitReturnType = true;
10619
10620 // Enter a new evaluation context to insulate the block from any
10621 // cleanups from the enclosing full-expression.
10622 PushExpressionEvaluationContext(PotentiallyEvaluated);
10623}
10624
10625void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
10626 Scope *CurScope) {
10627 assert(ParamInfo.getIdentifier() == nullptr &&
10628 "block-id should have no identifier!");
10629 assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
10630 BlockScopeInfo *CurBlock = getCurBlock();
10631
10632 TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
10633 QualType T = Sig->getType();
10634
10635 // FIXME: We should allow unexpanded parameter packs here, but that would,
10636 // in turn, make the block expression contain unexpanded parameter packs.
10637 if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
10638 // Drop the parameters.
10639 FunctionProtoType::ExtProtoInfo EPI;
10640 EPI.HasTrailingReturn = false;
10641 EPI.TypeQuals |= DeclSpec::TQ_const;
10642 T = Context.getFunctionType(Context.DependentTy, None, EPI);
10643 Sig = Context.getTrivialTypeSourceInfo(T);
10644 }
10645
10646 // GetTypeForDeclarator always produces a function type for a block
10647 // literal signature. Furthermore, it is always a FunctionProtoType
10648 // unless the function was written with a typedef.
10649 assert(T->isFunctionType() &&
10650 "GetTypeForDeclarator made a non-function block signature");
10651
10652 // Look for an explicit signature in that function type.
10653 FunctionProtoTypeLoc ExplicitSignature;
10654
10655 TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
10656 if ((ExplicitSignature = tmp.getAs<FunctionProtoTypeLoc>())) {
10657
10658 // Check whether that explicit signature was synthesized by
10659 // GetTypeForDeclarator. If so, don't save that as part of the
10660 // written signature.
10661 if (ExplicitSignature.getLocalRangeBegin() ==
10662 ExplicitSignature.getLocalRangeEnd()) {
10663 // This would be much cheaper if we stored TypeLocs instead of
10664 // TypeSourceInfos.
10665 TypeLoc Result = ExplicitSignature.getReturnLoc();
10666 unsigned Size = Result.getFullDataSize();
10667 Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
10668 Sig->getTypeLoc().initializeFullCopy(Result, Size);
10669
10670 ExplicitSignature = FunctionProtoTypeLoc();
10671 }
10672 }
10673
10674 CurBlock->TheDecl->setSignatureAsWritten(Sig);
10675 CurBlock->FunctionType = T;
10676
10677 const FunctionType *Fn = T->getAs<FunctionType>();
10678 QualType RetTy = Fn->getReturnType();
10679 bool isVariadic =
10680 (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
10681
10682 CurBlock->TheDecl->setIsVariadic(isVariadic);
10683
10684 // Context.DependentTy is used as a placeholder for a missing block
10685 // return type. TODO: what should we do with declarators like:
10686 // ^ * { ... }
10687 // If the answer is "apply template argument deduction"....
10688 if (RetTy != Context.DependentTy) {
10689 CurBlock->ReturnType = RetTy;
10690 CurBlock->TheDecl->setBlockMissingReturnType(false);
10691 CurBlock->HasImplicitReturnType = false;
10692 }
10693
10694 // Push block parameters from the declarator if we had them.
10695 SmallVector<ParmVarDecl*, 8> Params;
10696 if (ExplicitSignature) {
10697 for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
10698 ParmVarDecl *Param = ExplicitSignature.getParam(I);
10699 if (Param->getIdentifier() == nullptr &&
10700 !Param->isImplicit() &&
10701 !Param->isInvalidDecl() &&
10702 !getLangOpts().CPlusPlus)
10703 Diag(Param->getLocation(), diag::err_parameter_name_omitted);
10704 Params.push_back(Param);
10705 }
10706
10707 // Fake up parameter variables if we have a typedef, like
10708 // ^ fntype { ... }
10709 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
10710 for (const auto &I : Fn->param_types()) {
10711 ParmVarDecl *Param = BuildParmVarDeclForTypedef(
10712 CurBlock->TheDecl, ParamInfo.getLocStart(), I);
10713 Params.push_back(Param);
10714 }
10715 }
10716
10717 // Set the parameters on the block decl.
10718 if (!Params.empty()) {
10719 CurBlock->TheDecl->setParams(Params);
10720 CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
10721 CurBlock->TheDecl->param_end(),
10722 /*CheckParameterNames=*/false);
10723 }
10724
10725 // Finally we can process decl attributes.
10726 ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
10727
10728 // Put the parameter variables in scope.
10729 for (auto AI : CurBlock->TheDecl->params()) {
10730 AI->setOwningFunction(CurBlock->TheDecl);
10731
10732 // If this has an identifier, add it to the scope stack.
10733 if (AI->getIdentifier()) {
10734 CheckShadow(CurBlock->TheScope, AI);
10735
10736 PushOnScopeChains(AI, CurBlock->TheScope);
10737 }
10738 }
10739}
10740
10741/// ActOnBlockError - If there is an error parsing a block, this callback
10742/// is invoked to pop the information about the block from the action impl.
10743void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
10744 // Leave the expression-evaluation context.
10745 DiscardCleanupsInEvaluationContext();
10746 PopExpressionEvaluationContext();
10747
10748 // Pop off CurBlock, handle nested blocks.
10749 PopDeclContext();
10750 PopFunctionScopeInfo();
10751}
10752
10753/// ActOnBlockStmtExpr - This is called when the body of a block statement
10754/// literal was successfully completed. ^(int x){...}
10755ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
10756 Stmt *Body, Scope *CurScope) {
10757 // If blocks are disabled, emit an error.
10758 if (!LangOpts.Blocks)
10759 Diag(CaretLoc, diag::err_blocks_disable);
10760
10761 // Leave the expression-evaluation context.
10762 if (hasAnyUnrecoverableErrorsInThisFunction())
10763 DiscardCleanupsInEvaluationContext();
10764 assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
10765 PopExpressionEvaluationContext();
10766
10767 BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
10768
10769 if (BSI->HasImplicitReturnType)
10770 deduceClosureReturnType(*BSI);
10771
10772 PopDeclContext();
10773
10774 QualType RetTy = Context.VoidTy;
10775 if (!BSI->ReturnType.isNull())
10776 RetTy = BSI->ReturnType;
10777
10778 bool NoReturn = BSI->TheDecl->hasAttr<NoReturnAttr>();
10779 QualType BlockTy;
10780
10781 // Set the captured variables on the block.
10782 // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
10783 SmallVector<BlockDecl::Capture, 4> Captures;
10784 for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
10785 CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
10786 if (Cap.isThisCapture())
10787 continue;
10788 BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
10789 Cap.isNested(), Cap.getInitExpr());
10790 Captures.push_back(NewCap);
10791 }
10792 BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
10793 BSI->CXXThisCaptureIndex != 0);
10794
10795 // If the user wrote a function type in some form, try to use that.
10796 if (!BSI->FunctionType.isNull()) {
10797 const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
10798
10799 FunctionType::ExtInfo Ext = FTy->getExtInfo();
10800 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
10801
10802 // Turn protoless block types into nullary block types.
10803 if (isa<FunctionNoProtoType>(FTy)) {
10804 FunctionProtoType::ExtProtoInfo EPI;
10805 EPI.ExtInfo = Ext;
10806 BlockTy = Context.getFunctionType(RetTy, None, EPI);
10807
10808 // Otherwise, if we don't need to change anything about the function type,
10809 // preserve its sugar structure.
10810 } else if (FTy->getReturnType() == RetTy &&
10811 (!NoReturn || FTy->getNoReturnAttr())) {
10812 BlockTy = BSI->FunctionType;
10813
10814 // Otherwise, make the minimal modifications to the function type.
10815 } else {
10816 const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
10817 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10818 EPI.TypeQuals = 0; // FIXME: silently?
10819 EPI.ExtInfo = Ext;
10820 BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
10821 }
10822
10823 // If we don't have a function type, just build one from nothing.
10824 } else {
10825 FunctionProtoType::ExtProtoInfo EPI;
10826 EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
10827 BlockTy = Context.getFunctionType(RetTy, None, EPI);
10828 }
10829
10830 DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
10831 BSI->TheDecl->param_end());
10832 BlockTy = Context.getBlockPointerType(BlockTy);
10833
10834 // If needed, diagnose invalid gotos and switches in the block.
10835 if (getCurFunction()->NeedsScopeChecking() &&
10836 !PP.isCodeCompletionEnabled())
10837 DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
10838
10839 BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
10840
10841 // Try to apply the named return value optimization. We have to check again
10842 // if we can do this, though, because blocks keep return statements around
10843 // to deduce an implicit return type.
10844 if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
10845 !BSI->TheDecl->isDependentContext())
10846 computeNRVO(Body, BSI);
10847
10848 BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
10849 AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
10850 PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
10851
10852 // If the block isn't obviously global, i.e. it captures anything at
10853 // all, then we need to do a few things in the surrounding context:
10854 if (Result->getBlockDecl()->hasCaptures()) {
10855 // First, this expression has a new cleanup object.
10856 ExprCleanupObjects.push_back(Result->getBlockDecl());
10857 ExprNeedsCleanups = true;
10858
10859 // It also gets a branch-protected scope if any of the captured
10860 // variables needs destruction.
10861 for (const auto &CI : Result->getBlockDecl()->captures()) {
10862 const VarDecl *var = CI.getVariable();
10863 if (var->getType().isDestructedType() != QualType::DK_none) {
10864 getCurFunction()->setHasBranchProtectedScope();
10865 break;
10866 }
10867 }
10868 }
10869
10870 return Result;
10871}
10872
10873ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
10874 Expr *E, ParsedType Ty,
10875 SourceLocation RPLoc) {
10876 TypeSourceInfo *TInfo;
10877 GetTypeFromParser(Ty, &TInfo);
10878 return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
10879}
10880
10881ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
10882 Expr *E, TypeSourceInfo *TInfo,
10883 SourceLocation RPLoc) {
10884 Expr *OrigExpr = E;
10885
10886 // Get the va_list type
10887 QualType VaListType = Context.getBuiltinVaListType();
10888 if (VaListType->isArrayType()) {
10889 // Deal with implicit array decay; for example, on x86-64,
10890 // va_list is an array, but it's supposed to decay to
10891 // a pointer for va_arg.
10892 VaListType = Context.getArrayDecayedType(VaListType);
10893 // Make sure the input expression also decays appropriately.
10894 ExprResult Result = UsualUnaryConversions(E);
10895 if (Result.isInvalid())
10896 return ExprError();
10897 E = Result.get();
10898 } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
10899 // If va_list is a record type and we are compiling in C++ mode,
10900 // check the argument using reference binding.
10901 InitializedEntity Entity
10902 = InitializedEntity::InitializeParameter(Context,
10903 Context.getLValueReferenceType(VaListType), false);
10904 ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
10905 if (Init.isInvalid())
10906 return ExprError();
10907 E = Init.getAs<Expr>();
10908 } else {
10909 // Otherwise, the va_list argument must be an l-value because
10910 // it is modified by va_arg.
10911 if (!E->isTypeDependent() &&
10912 CheckForModifiableLvalue(E, BuiltinLoc, *this))
10913 return ExprError();
10914 }
10915
10916 if (!E->isTypeDependent() &&
10917 !Context.hasSameType(VaListType, E->getType())) {
10918 return ExprError(Diag(E->getLocStart(),
10919 diag::err_first_argument_to_va_arg_not_of_type_va_list)
10920 << OrigExpr->getType() << E->getSourceRange());
10921 }
10922
10923 if (!TInfo->getType()->isDependentType()) {
10924 if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
10925 diag::err_second_parameter_to_va_arg_incomplete,
10926 TInfo->getTypeLoc()))
10927 return ExprError();
10928
10929 if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
10930 TInfo->getType(),
10931 diag::err_second_parameter_to_va_arg_abstract,
10932 TInfo->getTypeLoc()))
10933 return ExprError();
10934
10935 if (!TInfo->getType().isPODType(Context)) {
10936 Diag(TInfo->getTypeLoc().getBeginLoc(),
10937 TInfo->getType()->isObjCLifetimeType()
10938 ? diag::warn_second_parameter_to_va_arg_ownership_qualified
10939 : diag::warn_second_parameter_to_va_arg_not_pod)
10940 << TInfo->getType()
10941 << TInfo->getTypeLoc().getSourceRange();
10942 }
10943
10944 // Check for va_arg where arguments of the given type will be promoted
10945 // (i.e. this va_arg is guaranteed to have undefined behavior).
10946 QualType PromoteType;
10947 if (TInfo->getType()->isPromotableIntegerType()) {
10948 PromoteType = Context.getPromotedIntegerType(TInfo->getType());
10949 if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
10950 PromoteType = QualType();
10951 }
10952 if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
10953 PromoteType = Context.DoubleTy;
10954 if (!PromoteType.isNull())
10955 DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
10956 PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
10957 << TInfo->getType()
10958 << PromoteType
10959 << TInfo->getTypeLoc().getSourceRange());
10960 }
10961
10962 QualType T = TInfo->getType().getNonLValueExprType(Context);
10963 return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T);
10964}
10965
10966ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
10967 // The type of __null will be int or long, depending on the size of
10968 // pointers on the target.
10969 QualType Ty;
10970 unsigned pw = Context.getTargetInfo().getPointerWidth(0);
10971 if (pw == Context.getTargetInfo().getIntWidth())
10972 Ty = Context.IntTy;
10973 else if (pw == Context.getTargetInfo().getLongWidth())
10974 Ty = Context.LongTy;
10975 else if (pw == Context.getTargetInfo().getLongLongWidth())
10976 Ty = Context.LongLongTy;
10977 else {
10978 llvm_unreachable("I don't know size of pointer!");
10979 }
10980
10981 return new (Context) GNUNullExpr(Ty, TokenLoc);
10982}
10983
10984bool
10985Sema::ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&Exp) {
10986 if (!getLangOpts().ObjC1)
10987 return false;
10988
10989 const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
10990 if (!PT)
10991 return false;
10992
10993 if (!PT->isObjCIdType()) {
10994 // Check if the destination is the 'NSString' interface.
10995 const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
10996 if (!ID || !ID->getIdentifier()->isStr("NSString"))
10997 return false;
10998 }
10999
11000 // Ignore any parens, implicit casts (should only be
11001 // array-to-pointer decays), and not-so-opaque values. The last is
11002 // important for making this trigger for property assignments.
11003 Expr *SrcExpr = Exp->IgnoreParenImpCasts();
11004 if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
11005 if (OV->getSourceExpr())
11006 SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
11007
11008 StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
11009 if (!SL || !SL->isAscii())
11010 return false;
11011 Diag(SL->getLocStart(), diag::err_missing_atsign_prefix)
11012 << FixItHint::CreateInsertion(SL->getLocStart(), "@");
11013 Exp = BuildObjCStringLiteral(SL->getLocStart(), SL).get();
11014 return true;
11015}
11016
11017bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
11018 SourceLocation Loc,
11019 QualType DstType, QualType SrcType,
11020 Expr *SrcExpr, AssignmentAction Action,
11021 bool *Complained) {
11022 if (Complained)
11023 *Complained = false;
11024
11025 // Decode the result (notice that AST's are still created for extensions).
11026 bool CheckInferredResultType = false;
11027 bool isInvalid = false;
11028 unsigned DiagKind = 0;
11029 FixItHint Hint;
11030 ConversionFixItGenerator ConvHints;
11031 bool MayHaveConvFixit = false;
11032 bool MayHaveFunctionDiff = false;
11033 const ObjCInterfaceDecl *IFace = nullptr;
11034 const ObjCProtocolDecl *PDecl = nullptr;
11035
11036 switch (ConvTy) {
11037 case Compatible:
11038 DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
11039 return false;
11040
11041 case PointerToInt:
11042 DiagKind = diag::ext_typecheck_convert_pointer_int;
11043 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
11044 MayHaveConvFixit = true;
11045 break;
11046 case IntToPointer:
11047 DiagKind = diag::ext_typecheck_convert_int_pointer;
11048 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
11049 MayHaveConvFixit = true;
11050 break;
11051 case IncompatiblePointer:
11052 DiagKind =
11053 (Action == AA_Passing_CFAudited ?
11054 diag::err_arc_typecheck_convert_incompatible_pointer :
11055 diag::ext_typecheck_convert_incompatible_pointer);
11056 CheckInferredResultType = DstType->isObjCObjectPointerType() &&
11057 SrcType->isObjCObjectPointerType();
11058 if (Hint.isNull() && !CheckInferredResultType) {
11059 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
11060 }
11061 else if (CheckInferredResultType) {
11062 SrcType = SrcType.getUnqualifiedType();
11063 DstType = DstType.getUnqualifiedType();
11064 }
11065 MayHaveConvFixit = true;
11066 break;
11067 case IncompatiblePointerSign:
11068 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
11069 break;
11070 case FunctionVoidPointer:
11071 DiagKind = diag::ext_typecheck_convert_pointer_void_func;
11072 break;
11073 case IncompatiblePointerDiscardsQualifiers: {
11074 // Perform array-to-pointer decay if necessary.
11075 if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
11076
11077 Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
11078 Qualifiers rhq = DstType->getPointeeType().getQualifiers();
11079 if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
11080 DiagKind = diag::err_typecheck_incompatible_address_space;
11081 break;
11082
11083
11084 } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
11085 DiagKind = diag::err_typecheck_incompatible_ownership;
11086 break;
11087 }
11088
11089 llvm_unreachable("unknown error case for discarding qualifiers!");
11090 // fallthrough
11091 }
11092 case CompatiblePointerDiscardsQualifiers:
11093 // If the qualifiers lost were because we were applying the
11094 // (deprecated) C++ conversion from a string literal to a char*
11095 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
11096 // Ideally, this check would be performed in
11097 // checkPointerTypesForAssignment. However, that would require a
11098 // bit of refactoring (so that the second argument is an
11099 // expression, rather than a type), which should be done as part
11100 // of a larger effort to fix checkPointerTypesForAssignment for
11101 // C++ semantics.
11102 if (getLangOpts().CPlusPlus &&
11103 IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
11104 return false;
11105 DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
11106 break;
11107 case IncompatibleNestedPointerQualifiers:
11108 DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
11109 break;
11110 case IntToBlockPointer:
11111 DiagKind = diag::err_int_to_block_pointer;
11112 break;
11113 case IncompatibleBlockPointer:
11114 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
11115 break;
11116 case IncompatibleObjCQualifiedId: {
11117 if (SrcType->isObjCQualifiedIdType()) {
11118 const ObjCObjectPointerType *srcOPT =
11119 SrcType->getAs<ObjCObjectPointerType>();
11120 for (auto *srcProto : srcOPT->quals()) {
11121 PDecl = srcProto;
11122 break;
11123 }
11124 if (const ObjCInterfaceType *IFaceT =
11125 DstType->getAs<ObjCObjectPointerType>()->getInterfaceType())
11126 IFace = IFaceT->getDecl();
11127 }
11128 else if (DstType->isObjCQualifiedIdType()) {
11129 const ObjCObjectPointerType *dstOPT =
11130 DstType->getAs<ObjCObjectPointerType>();
11131 for (auto *dstProto : dstOPT->quals()) {
11132 PDecl = dstProto;
11133 break;
11134 }
11135 if (const ObjCInterfaceType *IFaceT =
11136 SrcType->getAs<ObjCObjectPointerType>()->getInterfaceType())
11137 IFace = IFaceT->getDecl();
11138 }
11139 DiagKind = diag::warn_incompatible_qualified_id;
11140 break;
11141 }
11142 case IncompatibleVectors:
11143 DiagKind = diag::warn_incompatible_vectors;
11144 break;
11145 case IncompatibleObjCWeakRef:
11146 DiagKind = diag::err_arc_weak_unavailable_assign;
11147 break;
11148 case Incompatible:
11149 DiagKind = diag::err_typecheck_convert_incompatible;
11150 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
11151 MayHaveConvFixit = true;
11152 isInvalid = true;
11153 MayHaveFunctionDiff = true;
11154 break;
11155 }
11156
11157 QualType FirstType, SecondType;
11158 switch (Action) {
11159 case AA_Assigning:
11160 case AA_Initializing:
11161 // The destination type comes first.
11162 FirstType = DstType;
11163 SecondType = SrcType;
11164 break;
11165
11166 case AA_Returning:
11167 case AA_Passing:
11168 case AA_Passing_CFAudited:
11169 case AA_Converting:
11170 case AA_Sending:
11171 case AA_Casting:
11172 // The source type comes first.
11173 FirstType = SrcType;
11174 SecondType = DstType;
11175 break;
11176 }
11177
11178 PartialDiagnostic FDiag = PDiag(DiagKind);
11179 if (Action == AA_Passing_CFAudited)
11180 FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
11181 else
11182 FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
11183
11184 // If we can fix the conversion, suggest the FixIts.
11185 assert(ConvHints.isNull() || Hint.isNull());
11186 if (!ConvHints.isNull()) {
11187 for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
11188 HE = ConvHints.Hints.end(); HI != HE; ++HI)
11189 FDiag << *HI;
11190 } else {
11191 FDiag << Hint;
11192 }
11193 if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
11194
11195 if (MayHaveFunctionDiff)
11196 HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
11197
11198 Diag(Loc, FDiag);
11199 if (DiagKind == diag::warn_incompatible_qualified_id &&
11200 PDecl && IFace && !IFace->hasDefinition())
11201 Diag(IFace->getLocation(), diag::not_incomplete_class_and_qualified_id)
11202 << IFace->getName() << PDecl->getName();
11203
11204 if (SecondType == Context.OverloadTy)
11205 NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
11206 FirstType);
11207
11208 if (CheckInferredResultType)
11209 EmitRelatedResultTypeNote(SrcExpr);
11210
11211 if (Action == AA_Returning && ConvTy == IncompatiblePointer)
11212 EmitRelatedResultTypeNoteForReturn(DstType);
11213
11214 if (Complained)
11215 *Complained = true;
11216 return isInvalid;
11217}
11218
11219ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
11220 llvm::APSInt *Result) {
11221 class SimpleICEDiagnoser : public VerifyICEDiagnoser {
11222 public:
11223 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
11224 S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
11225 }
11226 } Diagnoser;
11227
11228 return VerifyIntegerConstantExpression(E, Result, Diagnoser);
11229}
11230
11231ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
11232 llvm::APSInt *Result,
11233 unsigned DiagID,
11234 bool AllowFold) {
11235 class IDDiagnoser : public VerifyICEDiagnoser {
11236 unsigned DiagID;
11237
11238 public:
11239 IDDiagnoser(unsigned DiagID)
11240 : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
11241
11242 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
11243 S.Diag(Loc, DiagID) << SR;
11244 }
11245 } Diagnoser(DiagID);
11246
11247 return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
11248}
11249
11250void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
11251 SourceRange SR) {
11252 S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
11253}
11254
11255ExprResult
11256Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
11257 VerifyICEDiagnoser &Diagnoser,
11258 bool AllowFold) {
11259 SourceLocation DiagLoc = E->getLocStart();
11260
11261 if (getLangOpts().CPlusPlus11) {
11262 // C++11 [expr.const]p5:
11263 // If an expression of literal class type is used in a context where an
11264 // integral constant expression is required, then that class type shall
11265 // have a single non-explicit conversion function to an integral or
11266 // unscoped enumeration type
11267 ExprResult Converted;
11268 class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
11269 public:
11270 CXX11ConvertDiagnoser(bool Silent)
11271 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false,
11272 Silent, true) {}
11273
11274 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
11275 QualType T) override {
11276 return S.Diag(Loc, diag::err_ice_not_integral) << T;
11277 }
11278
11279 SemaDiagnosticBuilder diagnoseIncomplete(
11280 Sema &S, SourceLocation Loc, QualType T) override {
11281 return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
11282 }
11283
11284 SemaDiagnosticBuilder diagnoseExplicitConv(
11285 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
11286 return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
11287 }
11288
11289 SemaDiagnosticBuilder noteExplicitConv(
11290 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
11291 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
11292 << ConvTy->isEnumeralType() << ConvTy;
11293 }
11294
11295 SemaDiagnosticBuilder diagnoseAmbiguous(
11296 Sema &S, SourceLocation Loc, QualType T) override {
11297 return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
11298 }
11299
11300 SemaDiagnosticBuilder noteAmbiguous(
11301 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
11302 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
11303 << ConvTy->isEnumeralType() << ConvTy;
11304 }
11305
11306 SemaDiagnosticBuilder diagnoseConversion(
11307 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
11308 llvm_unreachable("conversion functions are permitted");
11309 }
11310 } ConvertDiagnoser(Diagnoser.Suppress);
11311
11312 Converted = PerformContextualImplicitConversion(DiagLoc, E,
11313 ConvertDiagnoser);
11314 if (Converted.isInvalid())
11315 return Converted;
11316 E = Converted.get();
11317 if (!E->getType()->isIntegralOrUnscopedEnumerationType())
11318 return ExprError();
11319 } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
11320 // An ICE must be of integral or unscoped enumeration type.
11321 if (!Diagnoser.Suppress)
11322 Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
11323 return ExprError();
11324 }
11325
11326 // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
11327 // in the non-ICE case.
11328 if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
11329 if (Result)
11330 *Result = E->EvaluateKnownConstInt(Context);
11331 return E;
11332 }
11333
11334 Expr::EvalResult EvalResult;
11335 SmallVector<PartialDiagnosticAt, 8> Notes;
11336 EvalResult.Diag = &Notes;
11337
11338 // Try to evaluate the expression, and produce diagnostics explaining why it's
11339 // not a constant expression as a side-effect.
11340 bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
11341 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
11342
11343 // In C++11, we can rely on diagnostics being produced for any expression
11344 // which is not a constant expression. If no diagnostics were produced, then
11345 // this is a constant expression.
11346 if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
11347 if (Result)
11348 *Result = EvalResult.Val.getInt();
11349 return E;
11350 }
11351
11352 // If our only note is the usual "invalid subexpression" note, just point
11353 // the caret at its location rather than producing an essentially
11354 // redundant note.
11355 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
11356 diag::note_invalid_subexpr_in_const_expr) {
11357 DiagLoc = Notes[0].first;
11358 Notes.clear();
11359 }
11360
11361 if (!Folded || !AllowFold) {
11362 if (!Diagnoser.Suppress) {
11363 Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
11364 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
11365 Diag(Notes[I].first, Notes[I].second);
11366 }
11367
11368 return ExprError();
11369 }
11370
11371 Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
11372 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
11373 Diag(Notes[I].first, Notes[I].second);
11374
11375 if (Result)
11376 *Result = EvalResult.Val.getInt();
11377 return E;
11378}
11379
11380namespace {
11381 // Handle the case where we conclude a expression which we speculatively
11382 // considered to be unevaluated is actually evaluated.
11383 class TransformToPE : public TreeTransform<TransformToPE> {
11384 typedef TreeTransform<TransformToPE> BaseTransform;
11385
11386 public:
11387 TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
11388
11389 // Make sure we redo semantic analysis
11390 bool AlwaysRebuild() { return true; }
11391
11392 // Make sure we handle LabelStmts correctly.
11393 // FIXME: This does the right thing, but maybe we need a more general
11394 // fix to TreeTransform?
11395 StmtResult TransformLabelStmt(LabelStmt *S) {
11396 S->getDecl()->setStmt(nullptr);
11397 return BaseTransform::TransformLabelStmt(S);
11398 }
11399
11400 // We need to special-case DeclRefExprs referring to FieldDecls which
11401 // are not part of a member pointer formation; normal TreeTransforming
11402 // doesn't catch this case because of the way we represent them in the AST.
11403 // FIXME: This is a bit ugly; is it really the best way to handle this
11404 // case?
11405 //
11406 // Error on DeclRefExprs referring to FieldDecls.
11407 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
11408 if (isa<FieldDecl>(E->getDecl()) &&
11409 !SemaRef.isUnevaluatedContext())
11410 return SemaRef.Diag(E->getLocation(),
11411 diag::err_invalid_non_static_member_use)
11412 << E->getDecl() << E->getSourceRange();
11413
11414 return BaseTransform::TransformDeclRefExpr(E);
11415 }
11416
11417 // Exception: filter out member pointer formation
11418 ExprResult TransformUnaryOperator(UnaryOperator *E) {
11419 if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
11420 return E;
11421
11422 return BaseTransform::TransformUnaryOperator(E);
11423 }
11424
11425 ExprResult TransformLambdaExpr(LambdaExpr *E) {
11426 // Lambdas never need to be transformed.
11427 return E;
11428 }
11429 };
11430}
11431
11432ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
11433 assert(isUnevaluatedContext() &&
11434 "Should only transform unevaluated expressions");
11435 ExprEvalContexts.back().Context =
11436 ExprEvalContexts[ExprEvalContexts.size()-2].Context;
11437 if (isUnevaluatedContext())
11438 return E;
11439 return TransformToPE(*this).TransformExpr(E);
11440}
11441
11442void
11443Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
11444 Decl *LambdaContextDecl,
11445 bool IsDecltype) {
11446 ExprEvalContexts.push_back(
11447 ExpressionEvaluationContextRecord(NewContext,
11448 ExprCleanupObjects.size(),
11449 ExprNeedsCleanups,
11450 LambdaContextDecl,
11451 IsDecltype));
11452 ExprNeedsCleanups = false;
11453 if (!MaybeODRUseExprs.empty())
11454 std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
11455}
11456
11457void
11458Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
11459 ReuseLambdaContextDecl_t,
11460 bool IsDecltype) {
11461 Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
11462 PushExpressionEvaluationContext(NewContext, ClosureContextDecl, IsDecltype);
11463}
11464
11465void Sema::PopExpressionEvaluationContext() {
11466 ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
11467 unsigned NumTypos = Rec.NumTypos;
11468
11469 if (!Rec.Lambdas.empty()) {
11470 if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
11471 unsigned D;
11472 if (Rec.isUnevaluated()) {
11473 // C++11 [expr.prim.lambda]p2:
11474 // A lambda-expression shall not appear in an unevaluated operand
11475 // (Clause 5).
11476 D = diag::err_lambda_unevaluated_operand;
11477 } else {
11478 // C++1y [expr.const]p2:
11479 // A conditional-expression e is a core constant expression unless the
11480 // evaluation of e, following the rules of the abstract machine, would
11481 // evaluate [...] a lambda-expression.
11482 D = diag::err_lambda_in_constant_expression;
11483 }
11484 for (const auto *L : Rec.Lambdas)
11485 Diag(L->getLocStart(), D);
11486 } else {
11487 // Mark the capture expressions odr-used. This was deferred
11488 // during lambda expression creation.
11489 for (auto *Lambda : Rec.Lambdas) {
11490 for (auto *C : Lambda->capture_inits())
11491 MarkDeclarationsReferencedInExpr(C);
11492 }
11493 }
11494 }
11495
11496 // When are coming out of an unevaluated context, clear out any
11497 // temporaries that we may have created as part of the evaluation of
11498 // the expression in that context: they aren't relevant because they
11499 // will never be constructed.
11500 if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
11501 ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
11502 ExprCleanupObjects.end());
11503 ExprNeedsCleanups = Rec.ParentNeedsCleanups;
11504 CleanupVarDeclMarking();
11505 std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
11506 // Otherwise, merge the contexts together.
11507 } else {
11508 ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
11509 MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
11510 Rec.SavedMaybeODRUseExprs.end());
11511 }
11512
11513 // Pop the current expression evaluation context off the stack.
11514 ExprEvalContexts.pop_back();
11515
11516 if (!ExprEvalContexts.empty())
11517 ExprEvalContexts.back().NumTypos += NumTypos;
11518 else
11519 assert(NumTypos == 0 && "There are outstanding typos after popping the "
11520 "last ExpressionEvaluationContextRecord");
11521}
11522
11523void Sema::DiscardCleanupsInEvaluationContext() {
11524 ExprCleanupObjects.erase(
11525 ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
11526 ExprCleanupObjects.end());
11527 ExprNeedsCleanups = false;
11528 MaybeODRUseExprs.clear();
11529}
11530
11531ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
11532 if (!E->getType()->isVariablyModifiedType())
11533 return E;
11534 return TransformToPotentiallyEvaluated(E);
11535}
11536
11537static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
11538 // Do not mark anything as "used" within a dependent context; wait for
11539 // an instantiation.
11540 if (SemaRef.CurContext->isDependentContext())
11541 return false;
11542
11543 switch (SemaRef.ExprEvalContexts.back().Context) {
11544 case Sema::Unevaluated:
11545 case Sema::UnevaluatedAbstract:
11546 // We are in an expression that is not potentially evaluated; do nothing.
11547 // (Depending on how you read the standard, we actually do need to do
11548 // something here for null pointer constants, but the standard's
11549 // definition of a null pointer constant is completely crazy.)
11550 return false;
11551
11552 case Sema::ConstantEvaluated:
11553 case Sema::PotentiallyEvaluated:
11554 // We are in a potentially evaluated expression (or a constant-expression
11555 // in C++03); we need to do implicit template instantiation, implicitly
11556 // define class members, and mark most declarations as used.
11557 return true;
11558
11559 case Sema::PotentiallyEvaluatedIfUsed:
11560 // Referenced declarations will only be used if the construct in the
11561 // containing expression is used.
11562 return false;
11563 }
11564 llvm_unreachable("Invalid context");
11565}
11566
11567/// \brief Mark a function referenced, and check whether it is odr-used
11568/// (C++ [basic.def.odr]p2, C99 6.9p3)
11569void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
11570 bool OdrUse) {
11571 assert(Func && "No function?");
11572
11573 Func->setReferenced();
11574
11575 // C++11 [basic.def.odr]p3:
11576 // A function whose name appears as a potentially-evaluated expression is
11577 // odr-used if it is the unique lookup result or the selected member of a
11578 // set of overloaded functions [...].
11579 //
11580 // We (incorrectly) mark overload resolution as an unevaluated context, so we
11581 // can just check that here. Skip the rest of this function if we've already
11582 // marked the function as used.
11583 if (Func->isUsed(false) || !IsPotentiallyEvaluatedContext(*this)) {
11584 // C++11 [temp.inst]p3:
11585 // Unless a function template specialization has been explicitly
11586 // instantiated or explicitly specialized, the function template
11587 // specialization is implicitly instantiated when the specialization is
11588 // referenced in a context that requires a function definition to exist.
11589 //
11590 // We consider constexpr function templates to be referenced in a context
11591 // that requires a definition to exist whenever they are referenced.
11592 //
11593 // FIXME: This instantiates constexpr functions too frequently. If this is
11594 // really an unevaluated context (and we're not just in the definition of a
11595 // function template or overload resolution or other cases which we
11596 // incorrectly consider to be unevaluated contexts), and we're not in a
11597 // subexpression which we actually need to evaluate (for instance, a
11598 // template argument, array bound or an expression in a braced-init-list),
11599 // we are not permitted to instantiate this constexpr function definition.
11600 //
11601 // FIXME: This also implicitly defines special members too frequently. They
11602 // are only supposed to be implicitly defined if they are odr-used, but they
11603 // are not odr-used from constant expressions in unevaluated contexts.
11604 // However, they cannot be referenced if they are deleted, and they are
11605 // deleted whenever the implicit definition of the special member would
11606 // fail.
11607 if (!Func->isConstexpr() || Func->getBody())
11608 return;
11609 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
11610 if (!Func->isImplicitlyInstantiable() && (!MD || MD->isUserProvided()))
11611 return;
11612 }
11613
11614 // Note that this declaration has been used.
11615 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
11616 Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
11617 if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
11618 if (Constructor->isDefaultConstructor()) {
11619 if (Constructor->isTrivial() && !Constructor->hasAttr<DLLExportAttr>())
11620 return;
11621 DefineImplicitDefaultConstructor(Loc, Constructor);
11622 } else if (Constructor->isCopyConstructor()) {
11623 DefineImplicitCopyConstructor(Loc, Constructor);
11624 } else if (Constructor->isMoveConstructor()) {
11625 DefineImplicitMoveConstructor(Loc, Constructor);
11626 }
11627 } else if (Constructor->getInheritedConstructor()) {
11628 DefineInheritingConstructor(Loc, Constructor);
11629 }
11630 } else if (CXXDestructorDecl *Destructor =
11631 dyn_cast<CXXDestructorDecl>(Func)) {
11632 Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
121 case AR_Deprecated:
122 if (S.getCurContextAvailability() != AR_Deprecated)
123 S.EmitAvailabilityWarning(Sema::AD_Deprecation,
124 D, Message, Loc, UnknownObjCClass, ObjCPDecl,
125 ObjCPropertyAccess);
126 break;
127
128 case AR_Unavailable:
129 if (S.getCurContextAvailability() != AR_Unavailable)
130 S.EmitAvailabilityWarning(Sema::AD_Unavailable,
131 D, Message, Loc, UnknownObjCClass, ObjCPDecl,
132 ObjCPropertyAccess);
133 break;
134
135 }
136 return Result;
137}
138
139/// \brief Emit a note explaining that this function is deleted.
140void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
141 assert(Decl->isDeleted());
142
143 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
144
145 if (Method && Method->isDeleted() && Method->isDefaulted()) {
146 // If the method was explicitly defaulted, point at that declaration.
147 if (!Method->isImplicit())
148 Diag(Decl->getLocation(), diag::note_implicitly_deleted);
149
150 // Try to diagnose why this special member function was implicitly
151 // deleted. This might fail, if that reason no longer applies.
152 CXXSpecialMember CSM = getSpecialMember(Method);
153 if (CSM != CXXInvalid)
154 ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
155
156 return;
157 }
158
159 if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Decl)) {
160 if (CXXConstructorDecl *BaseCD =
161 const_cast<CXXConstructorDecl*>(CD->getInheritedConstructor())) {
162 Diag(Decl->getLocation(), diag::note_inherited_deleted_here);
163 if (BaseCD->isDeleted()) {
164 NoteDeletedFunction(BaseCD);
165 } else {
166 // FIXME: An explanation of why exactly it can't be inherited
167 // would be nice.
168 Diag(BaseCD->getLocation(), diag::note_cannot_inherit);
169 }
170 return;
171 }
172 }
173
174 Diag(Decl->getLocation(), diag::note_availability_specified_here)
175 << Decl << true;
176}
177
178/// \brief Determine whether a FunctionDecl was ever declared with an
179/// explicit storage class.
180static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
181 for (auto I : D->redecls()) {
182 if (I->getStorageClass() != SC_None)
183 return true;
184 }
185 return false;
186}
187
188/// \brief Check whether we're in an extern inline function and referring to a
189/// variable or function with internal linkage (C11 6.7.4p3).
190///
191/// This is only a warning because we used to silently accept this code, but
192/// in many cases it will not behave correctly. This is not enabled in C++ mode
193/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
194/// and so while there may still be user mistakes, most of the time we can't
195/// prove that there are errors.
196static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
197 const NamedDecl *D,
198 SourceLocation Loc) {
199 // This is disabled under C++; there are too many ways for this to fire in
200 // contexts where the warning is a false positive, or where it is technically
201 // correct but benign.
202 if (S.getLangOpts().CPlusPlus)
203 return;
204
205 // Check if this is an inlined function or method.
206 FunctionDecl *Current = S.getCurFunctionDecl();
207 if (!Current)
208 return;
209 if (!Current->isInlined())
210 return;
211 if (!Current->isExternallyVisible())
212 return;
213
214 // Check if the decl has internal linkage.
215 if (D->getFormalLinkage() != InternalLinkage)
216 return;
217
218 // Downgrade from ExtWarn to Extension if
219 // (1) the supposedly external inline function is in the main file,
220 // and probably won't be included anywhere else.
221 // (2) the thing we're referencing is a pure function.
222 // (3) the thing we're referencing is another inline function.
223 // This last can give us false negatives, but it's better than warning on
224 // wrappers for simple C library functions.
225 const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
226 bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
227 if (!DowngradeWarning && UsedFn)
228 DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
229
230 S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
231 : diag::ext_internal_in_extern_inline)
232 << /*IsVar=*/!UsedFn << D;
233
234 S.MaybeSuggestAddingStaticToDecl(Current);
235
236 S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
237 << D;
238}
239
240void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
241 const FunctionDecl *First = Cur->getFirstDecl();
242
243 // Suggest "static" on the function, if possible.
244 if (!hasAnyExplicitStorageClass(First)) {
245 SourceLocation DeclBegin = First->getSourceRange().getBegin();
246 Diag(DeclBegin, diag::note_convert_inline_to_static)
247 << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
248 }
249}
250
251/// \brief Determine whether the use of this declaration is valid, and
252/// emit any corresponding diagnostics.
253///
254/// This routine diagnoses various problems with referencing
255/// declarations that can occur when using a declaration. For example,
256/// it might warn if a deprecated or unavailable declaration is being
257/// used, or produce an error (and return true) if a C++0x deleted
258/// function is being used.
259///
260/// \returns true if there was an error (this declaration cannot be
261/// referenced), false otherwise.
262///
263bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
264 const ObjCInterfaceDecl *UnknownObjCClass,
265 bool ObjCPropertyAccess) {
266 if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
267 // If there were any diagnostics suppressed by template argument deduction,
268 // emit them now.
269 SuppressedDiagnosticsMap::iterator
270 Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
271 if (Pos != SuppressedDiagnostics.end()) {
272 SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
273 for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
274 Diag(Suppressed[I].first, Suppressed[I].second);
275
276 // Clear out the list of suppressed diagnostics, so that we don't emit
277 // them again for this specialization. However, we don't obsolete this
278 // entry from the table, because we want to avoid ever emitting these
279 // diagnostics again.
280 Suppressed.clear();
281 }
282
283 // C++ [basic.start.main]p3:
284 // The function 'main' shall not be used within a program.
285 if (cast<FunctionDecl>(D)->isMain())
286 Diag(Loc, diag::ext_main_used);
287 }
288
289 // See if this is an auto-typed variable whose initializer we are parsing.
290 if (ParsingInitForAutoVars.count(D)) {
291 Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
292 << D->getDeclName();
293 return true;
294 }
295
296 // See if this is a deleted function.
297 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
298 if (FD->isDeleted()) {
299 Diag(Loc, diag::err_deleted_function_use);
300 NoteDeletedFunction(FD);
301 return true;
302 }
303
304 // If the function has a deduced return type, and we can't deduce it,
305 // then we can't use it either.
306 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
307 DeduceReturnType(FD, Loc))
308 return true;
309 }
310 DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass, ObjCPropertyAccess);
311
312 DiagnoseUnusedOfDecl(*this, D, Loc);
313
314 diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
315
316 return false;
317}
318
319/// \brief Retrieve the message suffix that should be added to a
320/// diagnostic complaining about the given function being deleted or
321/// unavailable.
322std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
323 std::string Message;
324 if (FD->getAvailability(&Message))
325 return ": " + Message;
326
327 return std::string();
328}
329
330/// DiagnoseSentinelCalls - This routine checks whether a call or
331/// message-send is to a declaration with the sentinel attribute, and
332/// if so, it checks that the requirements of the sentinel are
333/// satisfied.
334void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
335 ArrayRef<Expr *> Args) {
336 const SentinelAttr *attr = D->getAttr<SentinelAttr>();
337 if (!attr)
338 return;
339
340 // The number of formal parameters of the declaration.
341 unsigned numFormalParams;
342
343 // The kind of declaration. This is also an index into a %select in
344 // the diagnostic.
345 enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
346
347 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
348 numFormalParams = MD->param_size();
349 calleeType = CT_Method;
350 } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
351 numFormalParams = FD->param_size();
352 calleeType = CT_Function;
353 } else if (isa<VarDecl>(D)) {
354 QualType type = cast<ValueDecl>(D)->getType();
355 const FunctionType *fn = nullptr;
356 if (const PointerType *ptr = type->getAs<PointerType>()) {
357 fn = ptr->getPointeeType()->getAs<FunctionType>();
358 if (!fn) return;
359 calleeType = CT_Function;
360 } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
361 fn = ptr->getPointeeType()->castAs<FunctionType>();
362 calleeType = CT_Block;
363 } else {
364 return;
365 }
366
367 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
368 numFormalParams = proto->getNumParams();
369 } else {
370 numFormalParams = 0;
371 }
372 } else {
373 return;
374 }
375
376 // "nullPos" is the number of formal parameters at the end which
377 // effectively count as part of the variadic arguments. This is
378 // useful if you would prefer to not have *any* formal parameters,
379 // but the language forces you to have at least one.
380 unsigned nullPos = attr->getNullPos();
381 assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
382 numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
383
384 // The number of arguments which should follow the sentinel.
385 unsigned numArgsAfterSentinel = attr->getSentinel();
386
387 // If there aren't enough arguments for all the formal parameters,
388 // the sentinel, and the args after the sentinel, complain.
389 if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
390 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
391 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
392 return;
393 }
394
395 // Otherwise, find the sentinel expression.
396 Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
397 if (!sentinelExpr) return;
398 if (sentinelExpr->isValueDependent()) return;
399 if (Context.isSentinelNullExpr(sentinelExpr)) return;
400
401 // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
402 // or 'NULL' if those are actually defined in the context. Only use
403 // 'nil' for ObjC methods, where it's much more likely that the
404 // variadic arguments form a list of object pointers.
405 SourceLocation MissingNilLoc
406 = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
407 std::string NullValue;
408 if (calleeType == CT_Method &&
409 PP.getIdentifierInfo("nil")->hasMacroDefinition())
410 NullValue = "nil";
411 else if (getLangOpts().CPlusPlus11)
412 NullValue = "nullptr";
413 else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
414 NullValue = "NULL";
415 else
416 NullValue = "(void*) 0";
417
418 if (MissingNilLoc.isInvalid())
419 Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
420 else
421 Diag(MissingNilLoc, diag::warn_missing_sentinel)
422 << int(calleeType)
423 << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
424 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
425}
426
427SourceRange Sema::getExprRange(Expr *E) const {
428 return E ? E->getSourceRange() : SourceRange();
429}
430
431//===----------------------------------------------------------------------===//
432// Standard Promotions and Conversions
433//===----------------------------------------------------------------------===//
434
435/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
436ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
437 // Handle any placeholder expressions which made it here.
438 if (E->getType()->isPlaceholderType()) {
439 ExprResult result = CheckPlaceholderExpr(E);
440 if (result.isInvalid()) return ExprError();
441 E = result.get();
442 }
443
444 QualType Ty = E->getType();
445 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
446
447 if (Ty->isFunctionType()) {
448 // If we are here, we are not calling a function but taking
449 // its address (which is not allowed in OpenCL v1.0 s6.8.a.3).
450 if (getLangOpts().OpenCL) {
451 Diag(E->getExprLoc(), diag::err_opencl_taking_function_address);
452 return ExprError();
453 }
454 E = ImpCastExprToType(E, Context.getPointerType(Ty),
455 CK_FunctionToPointerDecay).get();
456 } else if (Ty->isArrayType()) {
457 // In C90 mode, arrays only promote to pointers if the array expression is
458 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
459 // type 'array of type' is converted to an expression that has type 'pointer
460 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
461 // that has type 'array of type' ...". The relevant change is "an lvalue"
462 // (C90) to "an expression" (C99).
463 //
464 // C++ 4.2p1:
465 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
466 // T" can be converted to an rvalue of type "pointer to T".
467 //
468 if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
469 E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
470 CK_ArrayToPointerDecay).get();
471 }
472 return E;
473}
474
475static void CheckForNullPointerDereference(Sema &S, Expr *E) {
476 // Check to see if we are dereferencing a null pointer. If so,
477 // and if not volatile-qualified, this is undefined behavior that the
478 // optimizer will delete, so warn about it. People sometimes try to use this
479 // to get a deterministic trap and are surprised by clang's behavior. This
480 // only handles the pattern "*null", which is a very syntactic check.
481 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
482 if (UO->getOpcode() == UO_Deref &&
483 UO->getSubExpr()->IgnoreParenCasts()->
484 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
485 !UO->getType().isVolatileQualified()) {
486 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
487 S.PDiag(diag::warn_indirection_through_null)
488 << UO->getSubExpr()->getSourceRange());
489 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
490 S.PDiag(diag::note_indirection_through_null));
491 }
492}
493
494static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
495 SourceLocation AssignLoc,
496 const Expr* RHS) {
497 const ObjCIvarDecl *IV = OIRE->getDecl();
498 if (!IV)
499 return;
500
501 DeclarationName MemberName = IV->getDeclName();
502 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
503 if (!Member || !Member->isStr("isa"))
504 return;
505
506 const Expr *Base = OIRE->getBase();
507 QualType BaseType = Base->getType();
508 if (OIRE->isArrow())
509 BaseType = BaseType->getPointeeType();
510 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
511 if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
512 ObjCInterfaceDecl *ClassDeclared = nullptr;
513 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
514 if (!ClassDeclared->getSuperClass()
515 && (*ClassDeclared->ivar_begin()) == IV) {
516 if (RHS) {
517 NamedDecl *ObjectSetClass =
518 S.LookupSingleName(S.TUScope,
519 &S.Context.Idents.get("object_setClass"),
520 SourceLocation(), S.LookupOrdinaryName);
521 if (ObjectSetClass) {
522 SourceLocation RHSLocEnd = S.PP.getLocForEndOfToken(RHS->getLocEnd());
523 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) <<
524 FixItHint::CreateInsertion(OIRE->getLocStart(), "object_setClass(") <<
525 FixItHint::CreateReplacement(SourceRange(OIRE->getOpLoc(),
526 AssignLoc), ",") <<
527 FixItHint::CreateInsertion(RHSLocEnd, ")");
528 }
529 else
530 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
531 } else {
532 NamedDecl *ObjectGetClass =
533 S.LookupSingleName(S.TUScope,
534 &S.Context.Idents.get("object_getClass"),
535 SourceLocation(), S.LookupOrdinaryName);
536 if (ObjectGetClass)
537 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) <<
538 FixItHint::CreateInsertion(OIRE->getLocStart(), "object_getClass(") <<
539 FixItHint::CreateReplacement(
540 SourceRange(OIRE->getOpLoc(),
541 OIRE->getLocEnd()), ")");
542 else
543 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
544 }
545 S.Diag(IV->getLocation(), diag::note_ivar_decl);
546 }
547 }
548}
549
550ExprResult Sema::DefaultLvalueConversion(Expr *E) {
551 // Handle any placeholder expressions which made it here.
552 if (E->getType()->isPlaceholderType()) {
553 ExprResult result = CheckPlaceholderExpr(E);
554 if (result.isInvalid()) return ExprError();
555 E = result.get();
556 }
557
558 // C++ [conv.lval]p1:
559 // A glvalue of a non-function, non-array type T can be
560 // converted to a prvalue.
561 if (!E->isGLValue()) return E;
562
563 QualType T = E->getType();
564 assert(!T.isNull() && "r-value conversion on typeless expression?");
565
566 // We don't want to throw lvalue-to-rvalue casts on top of
567 // expressions of certain types in C++.
568 if (getLangOpts().CPlusPlus &&
569 (E->getType() == Context.OverloadTy ||
570 T->isDependentType() ||
571 T->isRecordType()))
572 return E;
573
574 // The C standard is actually really unclear on this point, and
575 // DR106 tells us what the result should be but not why. It's
576 // generally best to say that void types just doesn't undergo
577 // lvalue-to-rvalue at all. Note that expressions of unqualified
578 // 'void' type are never l-values, but qualified void can be.
579 if (T->isVoidType())
580 return E;
581
582 // OpenCL usually rejects direct accesses to values of 'half' type.
583 if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
584 T->isHalfType()) {
585 Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
586 << 0 << T;
587 return ExprError();
588 }
589
590 CheckForNullPointerDereference(*this, E);
591 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
592 NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
593 &Context.Idents.get("object_getClass"),
594 SourceLocation(), LookupOrdinaryName);
595 if (ObjectGetClass)
596 Diag(E->getExprLoc(), diag::warn_objc_isa_use) <<
597 FixItHint::CreateInsertion(OISA->getLocStart(), "object_getClass(") <<
598 FixItHint::CreateReplacement(
599 SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
600 else
601 Diag(E->getExprLoc(), diag::warn_objc_isa_use);
602 }
603 else if (const ObjCIvarRefExpr *OIRE =
604 dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
605 DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
606
607 // C++ [conv.lval]p1:
608 // [...] If T is a non-class type, the type of the prvalue is the
609 // cv-unqualified version of T. Otherwise, the type of the
610 // rvalue is T.
611 //
612 // C99 6.3.2.1p2:
613 // If the lvalue has qualified type, the value has the unqualified
614 // version of the type of the lvalue; otherwise, the value has the
615 // type of the lvalue.
616 if (T.hasQualifiers())
617 T = T.getUnqualifiedType();
618
619 UpdateMarkingForLValueToRValue(E);
620
621 // Loading a __weak object implicitly retains the value, so we need a cleanup to
622 // balance that.
623 if (getLangOpts().ObjCAutoRefCount &&
624 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
625 ExprNeedsCleanups = true;
626
627 ExprResult Res = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue, E,
628 nullptr, VK_RValue);
629
630 // C11 6.3.2.1p2:
631 // ... if the lvalue has atomic type, the value has the non-atomic version
632 // of the type of the lvalue ...
633 if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
634 T = Atomic->getValueType().getUnqualifiedType();
635 Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
636 nullptr, VK_RValue);
637 }
638
639 return Res;
640}
641
642ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
643 ExprResult Res = DefaultFunctionArrayConversion(E);
644 if (Res.isInvalid())
645 return ExprError();
646 Res = DefaultLvalueConversion(Res.get());
647 if (Res.isInvalid())
648 return ExprError();
649 return Res;
650}
651
652/// CallExprUnaryConversions - a special case of an unary conversion
653/// performed on a function designator of a call expression.
654ExprResult Sema::CallExprUnaryConversions(Expr *E) {
655 QualType Ty = E->getType();
656 ExprResult Res = E;
657 // Only do implicit cast for a function type, but not for a pointer
658 // to function type.
659 if (Ty->isFunctionType()) {
660 Res = ImpCastExprToType(E, Context.getPointerType(Ty),
661 CK_FunctionToPointerDecay).get();
662 if (Res.isInvalid())
663 return ExprError();
664 }
665 Res = DefaultLvalueConversion(Res.get());
666 if (Res.isInvalid())
667 return ExprError();
668 return Res.get();
669}
670
671/// UsualUnaryConversions - Performs various conversions that are common to most
672/// operators (C99 6.3). The conversions of array and function types are
673/// sometimes suppressed. For example, the array->pointer conversion doesn't
674/// apply if the array is an argument to the sizeof or address (&) operators.
675/// In these instances, this routine should *not* be called.
676ExprResult Sema::UsualUnaryConversions(Expr *E) {
677 // First, convert to an r-value.
678 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
679 if (Res.isInvalid())
680 return ExprError();
681 E = Res.get();
682
683 QualType Ty = E->getType();
684 assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
685
686 // Half FP have to be promoted to float unless it is natively supported
687 if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
688 return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
689
690 // Try to perform integral promotions if the object has a theoretically
691 // promotable type.
692 if (Ty->isIntegralOrUnscopedEnumerationType()) {
693 // C99 6.3.1.1p2:
694 //
695 // The following may be used in an expression wherever an int or
696 // unsigned int may be used:
697 // - an object or expression with an integer type whose integer
698 // conversion rank is less than or equal to the rank of int
699 // and unsigned int.
700 // - A bit-field of type _Bool, int, signed int, or unsigned int.
701 //
702 // If an int can represent all values of the original type, the
703 // value is converted to an int; otherwise, it is converted to an
704 // unsigned int. These are called the integer promotions. All
705 // other types are unchanged by the integer promotions.
706
707 QualType PTy = Context.isPromotableBitField(E);
708 if (!PTy.isNull()) {
709 E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
710 return E;
711 }
712 if (Ty->isPromotableIntegerType()) {
713 QualType PT = Context.getPromotedIntegerType(Ty);
714 E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
715 return E;
716 }
717 }
718 return E;
719}
720
721/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
722/// do not have a prototype. Arguments that have type float or __fp16
723/// are promoted to double. All other argument types are converted by
724/// UsualUnaryConversions().
725ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
726 QualType Ty = E->getType();
727 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
728
729 ExprResult Res = UsualUnaryConversions(E);
730 if (Res.isInvalid())
731 return ExprError();
732 E = Res.get();
733
734 // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
735 // double.
736 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
737 if (BTy && (BTy->getKind() == BuiltinType::Half ||
738 BTy->getKind() == BuiltinType::Float))
739 E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
740
741 // C++ performs lvalue-to-rvalue conversion as a default argument
742 // promotion, even on class types, but note:
743 // C++11 [conv.lval]p2:
744 // When an lvalue-to-rvalue conversion occurs in an unevaluated
745 // operand or a subexpression thereof the value contained in the
746 // referenced object is not accessed. Otherwise, if the glvalue
747 // has a class type, the conversion copy-initializes a temporary
748 // of type T from the glvalue and the result of the conversion
749 // is a prvalue for the temporary.
750 // FIXME: add some way to gate this entire thing for correctness in
751 // potentially potentially evaluated contexts.
752 if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
753 ExprResult Temp = PerformCopyInitialization(
754 InitializedEntity::InitializeTemporary(E->getType()),
755 E->getExprLoc(), E);
756 if (Temp.isInvalid())
757 return ExprError();
758 E = Temp.get();
759 }
760
761 return E;
762}
763
764/// Determine the degree of POD-ness for an expression.
765/// Incomplete types are considered POD, since this check can be performed
766/// when we're in an unevaluated context.
767Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
768 if (Ty->isIncompleteType()) {
769 // C++11 [expr.call]p7:
770 // After these conversions, if the argument does not have arithmetic,
771 // enumeration, pointer, pointer to member, or class type, the program
772 // is ill-formed.
773 //
774 // Since we've already performed array-to-pointer and function-to-pointer
775 // decay, the only such type in C++ is cv void. This also handles
776 // initializer lists as variadic arguments.
777 if (Ty->isVoidType())
778 return VAK_Invalid;
779
780 if (Ty->isObjCObjectType())
781 return VAK_Invalid;
782 return VAK_Valid;
783 }
784
785 if (Ty.isCXX98PODType(Context))
786 return VAK_Valid;
787
788 // C++11 [expr.call]p7:
789 // Passing a potentially-evaluated argument of class type (Clause 9)
790 // having a non-trivial copy constructor, a non-trivial move constructor,
791 // or a non-trivial destructor, with no corresponding parameter,
792 // is conditionally-supported with implementation-defined semantics.
793 if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
794 if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
795 if (!Record->hasNonTrivialCopyConstructor() &&
796 !Record->hasNonTrivialMoveConstructor() &&
797 !Record->hasNonTrivialDestructor())
798 return VAK_ValidInCXX11;
799
800 if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
801 return VAK_Valid;
802
803 if (Ty->isObjCObjectType())
804 return VAK_Invalid;
805
806 if (getLangOpts().MSVCCompat)
807 return VAK_MSVCUndefined;
808
809 // FIXME: In C++11, these cases are conditionally-supported, meaning we're
810 // permitted to reject them. We should consider doing so.
811 return VAK_Undefined;
812}
813
814void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
815 // Don't allow one to pass an Objective-C interface to a vararg.
816 const QualType &Ty = E->getType();
817 VarArgKind VAK = isValidVarArgType(Ty);
818
819 // Complain about passing non-POD types through varargs.
820 switch (VAK) {
821 case VAK_ValidInCXX11:
822 DiagRuntimeBehavior(
823 E->getLocStart(), nullptr,
824 PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
825 << Ty << CT);
826 // Fall through.
827 case VAK_Valid:
828 if (Ty->isRecordType()) {
829 // This is unlikely to be what the user intended. If the class has a
830 // 'c_str' member function, the user probably meant to call that.
831 DiagRuntimeBehavior(E->getLocStart(), nullptr,
832 PDiag(diag::warn_pass_class_arg_to_vararg)
833 << Ty << CT << hasCStrMethod(E) << ".c_str()");
834 }
835 break;
836
837 case VAK_Undefined:
838 case VAK_MSVCUndefined:
839 DiagRuntimeBehavior(
840 E->getLocStart(), nullptr,
841 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
842 << getLangOpts().CPlusPlus11 << Ty << CT);
843 break;
844
845 case VAK_Invalid:
846 if (Ty->isObjCObjectType())
847 DiagRuntimeBehavior(
848 E->getLocStart(), nullptr,
849 PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
850 << Ty << CT);
851 else
852 Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg)
853 << isa<InitListExpr>(E) << Ty << CT;
854 break;
855 }
856}
857
858/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
859/// will create a trap if the resulting type is not a POD type.
860ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
861 FunctionDecl *FDecl) {
862 if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
863 // Strip the unbridged-cast placeholder expression off, if applicable.
864 if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
865 (CT == VariadicMethod ||
866 (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
867 E = stripARCUnbridgedCast(E);
868
869 // Otherwise, do normal placeholder checking.
870 } else {
871 ExprResult ExprRes = CheckPlaceholderExpr(E);
872 if (ExprRes.isInvalid())
873 return ExprError();
874 E = ExprRes.get();
875 }
876 }
877
878 ExprResult ExprRes = DefaultArgumentPromotion(E);
879 if (ExprRes.isInvalid())
880 return ExprError();
881 E = ExprRes.get();
882
883 // Diagnostics regarding non-POD argument types are
884 // emitted along with format string checking in Sema::CheckFunctionCall().
885 if (isValidVarArgType(E->getType()) == VAK_Undefined) {
886 // Turn this into a trap.
887 CXXScopeSpec SS;
888 SourceLocation TemplateKWLoc;
889 UnqualifiedId Name;
890 Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
891 E->getLocStart());
892 ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
893 Name, true, false);
894 if (TrapFn.isInvalid())
895 return ExprError();
896
897 ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
898 E->getLocStart(), None,
899 E->getLocEnd());
900 if (Call.isInvalid())
901 return ExprError();
902
903 ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
904 Call.get(), E);
905 if (Comma.isInvalid())
906 return ExprError();
907 return Comma.get();
908 }
909
910 if (!getLangOpts().CPlusPlus &&
911 RequireCompleteType(E->getExprLoc(), E->getType(),
912 diag::err_call_incomplete_argument))
913 return ExprError();
914
915 return E;
916}
917
918/// \brief Converts an integer to complex float type. Helper function of
919/// UsualArithmeticConversions()
920///
921/// \return false if the integer expression is an integer type and is
922/// successfully converted to the complex type.
923static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
924 ExprResult &ComplexExpr,
925 QualType IntTy,
926 QualType ComplexTy,
927 bool SkipCast) {
928 if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
929 if (SkipCast) return false;
930 if (IntTy->isIntegerType()) {
931 QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
932 IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
933 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
934 CK_FloatingRealToComplex);
935 } else {
936 assert(IntTy->isComplexIntegerType());
937 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
938 CK_IntegralComplexToFloatingComplex);
939 }
940 return false;
941}
942
943/// \brief Handle arithmetic conversion with complex types. Helper function of
944/// UsualArithmeticConversions()
945static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
946 ExprResult &RHS, QualType LHSType,
947 QualType RHSType,
948 bool IsCompAssign) {
949 // if we have an integer operand, the result is the complex type.
950 if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
951 /*skipCast*/false))
952 return LHSType;
953 if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
954 /*skipCast*/IsCompAssign))
955 return RHSType;
956
957 // This handles complex/complex, complex/float, or float/complex.
958 // When both operands are complex, the shorter operand is converted to the
959 // type of the longer, and that is the type of the result. This corresponds
960 // to what is done when combining two real floating-point operands.
961 // The fun begins when size promotion occur across type domains.
962 // From H&S 6.3.4: When one operand is complex and the other is a real
963 // floating-point type, the less precise type is converted, within it's
964 // real or complex domain, to the precision of the other type. For example,
965 // when combining a "long double" with a "double _Complex", the
966 // "double _Complex" is promoted to "long double _Complex".
967
968 // Compute the rank of the two types, regardless of whether they are complex.
969 int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
970
971 auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
972 auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
973 QualType LHSElementType =
974 LHSComplexType ? LHSComplexType->getElementType() : LHSType;
975 QualType RHSElementType =
976 RHSComplexType ? RHSComplexType->getElementType() : RHSType;
977
978 QualType ResultType = S.Context.getComplexType(LHSElementType);
979 if (Order < 0) {
980 // Promote the precision of the LHS if not an assignment.
981 ResultType = S.Context.getComplexType(RHSElementType);
982 if (!IsCompAssign) {
983 if (LHSComplexType)
984 LHS =
985 S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
986 else
987 LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
988 }
989 } else if (Order > 0) {
990 // Promote the precision of the RHS.
991 if (RHSComplexType)
992 RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
993 else
994 RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
995 }
996 return ResultType;
997}
998
999/// \brief Hande arithmetic conversion from integer to float. Helper function
1000/// of UsualArithmeticConversions()
1001static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1002 ExprResult &IntExpr,
1003 QualType FloatTy, QualType IntTy,
1004 bool ConvertFloat, bool ConvertInt) {
1005 if (IntTy->isIntegerType()) {
1006 if (ConvertInt)
1007 // Convert intExpr to the lhs floating point type.
1008 IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1009 CK_IntegralToFloating);
1010 return FloatTy;
1011 }
1012
1013 // Convert both sides to the appropriate complex float.
1014 assert(IntTy->isComplexIntegerType());
1015 QualType result = S.Context.getComplexType(FloatTy);
1016
1017 // _Complex int -> _Complex float
1018 if (ConvertInt)
1019 IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1020 CK_IntegralComplexToFloatingComplex);
1021
1022 // float -> _Complex float
1023 if (ConvertFloat)
1024 FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1025 CK_FloatingRealToComplex);
1026
1027 return result;
1028}
1029
1030/// \brief Handle arithmethic conversion with floating point types. Helper
1031/// function of UsualArithmeticConversions()
1032static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1033 ExprResult &RHS, QualType LHSType,
1034 QualType RHSType, bool IsCompAssign) {
1035 bool LHSFloat = LHSType->isRealFloatingType();
1036 bool RHSFloat = RHSType->isRealFloatingType();
1037
1038 // If we have two real floating types, convert the smaller operand
1039 // to the bigger result.
1040 if (LHSFloat && RHSFloat) {
1041 int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1042 if (order > 0) {
1043 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1044 return LHSType;
1045 }
1046
1047 assert(order < 0 && "illegal float comparison");
1048 if (!IsCompAssign)
1049 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1050 return RHSType;
1051 }
1052
1053 if (LHSFloat)
1054 return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1055 /*convertFloat=*/!IsCompAssign,
1056 /*convertInt=*/ true);
1057 assert(RHSFloat);
1058 return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1059 /*convertInt=*/ true,
1060 /*convertFloat=*/!IsCompAssign);
1061}
1062
1063typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1064
1065namespace {
1066/// These helper callbacks are placed in an anonymous namespace to
1067/// permit their use as function template parameters.
1068ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1069 return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1070}
1071
1072ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1073 return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1074 CK_IntegralComplexCast);
1075}
1076}
1077
1078/// \brief Handle integer arithmetic conversions. Helper function of
1079/// UsualArithmeticConversions()
1080template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1081static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1082 ExprResult &RHS, QualType LHSType,
1083 QualType RHSType, bool IsCompAssign) {
1084 // The rules for this case are in C99 6.3.1.8
1085 int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1086 bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1087 bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1088 if (LHSSigned == RHSSigned) {
1089 // Same signedness; use the higher-ranked type
1090 if (order >= 0) {
1091 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1092 return LHSType;
1093 } else if (!IsCompAssign)
1094 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1095 return RHSType;
1096 } else if (order != (LHSSigned ? 1 : -1)) {
1097 // The unsigned type has greater than or equal rank to the
1098 // signed type, so use the unsigned type
1099 if (RHSSigned) {
1100 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1101 return LHSType;
1102 } else if (!IsCompAssign)
1103 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1104 return RHSType;
1105 } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1106 // The two types are different widths; if we are here, that
1107 // means the signed type is larger than the unsigned type, so
1108 // use the signed type.
1109 if (LHSSigned) {
1110 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1111 return LHSType;
1112 } else if (!IsCompAssign)
1113 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1114 return RHSType;
1115 } else {
1116 // The signed type is higher-ranked than the unsigned type,
1117 // but isn't actually any bigger (like unsigned int and long
1118 // on most 32-bit systems). Use the unsigned type corresponding
1119 // to the signed type.
1120 QualType result =
1121 S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1122 RHS = (*doRHSCast)(S, RHS.get(), result);
1123 if (!IsCompAssign)
1124 LHS = (*doLHSCast)(S, LHS.get(), result);
1125 return result;
1126 }
1127}
1128
1129/// \brief Handle conversions with GCC complex int extension. Helper function
1130/// of UsualArithmeticConversions()
1131static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1132 ExprResult &RHS, QualType LHSType,
1133 QualType RHSType,
1134 bool IsCompAssign) {
1135 const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1136 const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1137
1138 if (LHSComplexInt && RHSComplexInt) {
1139 QualType LHSEltType = LHSComplexInt->getElementType();
1140 QualType RHSEltType = RHSComplexInt->getElementType();
1141 QualType ScalarType =
1142 handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1143 (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1144
1145 return S.Context.getComplexType(ScalarType);
1146 }
1147
1148 if (LHSComplexInt) {
1149 QualType LHSEltType = LHSComplexInt->getElementType();
1150 QualType ScalarType =
1151 handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1152 (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1153 QualType ComplexType = S.Context.getComplexType(ScalarType);
1154 RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1155 CK_IntegralRealToComplex);
1156
1157 return ComplexType;
1158 }
1159
1160 assert(RHSComplexInt);
1161
1162 QualType RHSEltType = RHSComplexInt->getElementType();
1163 QualType ScalarType =
1164 handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1165 (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1166 QualType ComplexType = S.Context.getComplexType(ScalarType);
1167
1168 if (!IsCompAssign)
1169 LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1170 CK_IntegralRealToComplex);
1171 return ComplexType;
1172}
1173
1174/// UsualArithmeticConversions - Performs various conversions that are common to
1175/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1176/// routine returns the first non-arithmetic type found. The client is
1177/// responsible for emitting appropriate error diagnostics.
1178QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1179 bool IsCompAssign) {
1180 if (!IsCompAssign) {
1181 LHS = UsualUnaryConversions(LHS.get());
1182 if (LHS.isInvalid())
1183 return QualType();
1184 }
1185
1186 RHS = UsualUnaryConversions(RHS.get());
1187 if (RHS.isInvalid())
1188 return QualType();
1189
1190 // For conversion purposes, we ignore any qualifiers.
1191 // For example, "const float" and "float" are equivalent.
1192 QualType LHSType =
1193 Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1194 QualType RHSType =
1195 Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1196
1197 // For conversion purposes, we ignore any atomic qualifier on the LHS.
1198 if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1199 LHSType = AtomicLHS->getValueType();
1200
1201 // If both types are identical, no conversion is needed.
1202 if (LHSType == RHSType)
1203 return LHSType;
1204
1205 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1206 // The caller can deal with this (e.g. pointer + int).
1207 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1208 return QualType();
1209
1210 // Apply unary and bitfield promotions to the LHS's type.
1211 QualType LHSUnpromotedType = LHSType;
1212 if (LHSType->isPromotableIntegerType())
1213 LHSType = Context.getPromotedIntegerType(LHSType);
1214 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1215 if (!LHSBitfieldPromoteTy.isNull())
1216 LHSType = LHSBitfieldPromoteTy;
1217 if (LHSType != LHSUnpromotedType && !IsCompAssign)
1218 LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1219
1220 // If both types are identical, no conversion is needed.
1221 if (LHSType == RHSType)
1222 return LHSType;
1223
1224 // At this point, we have two different arithmetic types.
1225
1226 // Handle complex types first (C99 6.3.1.8p1).
1227 if (LHSType->isComplexType() || RHSType->isComplexType())
1228 return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1229 IsCompAssign);
1230
1231 // Now handle "real" floating types (i.e. float, double, long double).
1232 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1233 return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1234 IsCompAssign);
1235
1236 // Handle GCC complex int extension.
1237 if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1238 return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1239 IsCompAssign);
1240
1241 // Finally, we have two differing integer types.
1242 return handleIntegerConversion<doIntegralCast, doIntegralCast>
1243 (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
1244}
1245
1246
1247//===----------------------------------------------------------------------===//
1248// Semantic Analysis for various Expression Types
1249//===----------------------------------------------------------------------===//
1250
1251
1252ExprResult
1253Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1254 SourceLocation DefaultLoc,
1255 SourceLocation RParenLoc,
1256 Expr *ControllingExpr,
1257 ArrayRef<ParsedType> ArgTypes,
1258 ArrayRef<Expr *> ArgExprs) {
1259 unsigned NumAssocs = ArgTypes.size();
1260 assert(NumAssocs == ArgExprs.size());
1261
1262 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1263 for (unsigned i = 0; i < NumAssocs; ++i) {
1264 if (ArgTypes[i])
1265 (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1266 else
1267 Types[i] = nullptr;
1268 }
1269
1270 ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1271 ControllingExpr,
1272 llvm::makeArrayRef(Types, NumAssocs),
1273 ArgExprs);
1274 delete [] Types;
1275 return ER;
1276}
1277
1278ExprResult
1279Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1280 SourceLocation DefaultLoc,
1281 SourceLocation RParenLoc,
1282 Expr *ControllingExpr,
1283 ArrayRef<TypeSourceInfo *> Types,
1284 ArrayRef<Expr *> Exprs) {
1285 unsigned NumAssocs = Types.size();
1286 assert(NumAssocs == Exprs.size());
1287 if (ControllingExpr->getType()->isPlaceholderType()) {
1288 ExprResult result = CheckPlaceholderExpr(ControllingExpr);
1289 if (result.isInvalid()) return ExprError();
1290 ControllingExpr = result.get();
1291 }
1292
1293 // The controlling expression is an unevaluated operand, so side effects are
1294 // likely unintended.
1295 if (ActiveTemplateInstantiations.empty() &&
1296 ControllingExpr->HasSideEffects(Context, false))
1297 Diag(ControllingExpr->getExprLoc(),
1298 diag::warn_side_effects_unevaluated_context);
1299
1300 bool TypeErrorFound = false,
1301 IsResultDependent = ControllingExpr->isTypeDependent(),
1302 ContainsUnexpandedParameterPack
1303 = ControllingExpr->containsUnexpandedParameterPack();
1304
1305 for (unsigned i = 0; i < NumAssocs; ++i) {
1306 if (Exprs[i]->containsUnexpandedParameterPack())
1307 ContainsUnexpandedParameterPack = true;
1308
1309 if (Types[i]) {
1310 if (Types[i]->getType()->containsUnexpandedParameterPack())
1311 ContainsUnexpandedParameterPack = true;
1312
1313 if (Types[i]->getType()->isDependentType()) {
1314 IsResultDependent = true;
1315 } else {
1316 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1317 // complete object type other than a variably modified type."
1318 unsigned D = 0;
1319 if (Types[i]->getType()->isIncompleteType())
1320 D = diag::err_assoc_type_incomplete;
1321 else if (!Types[i]->getType()->isObjectType())
1322 D = diag::err_assoc_type_nonobject;
1323 else if (Types[i]->getType()->isVariablyModifiedType())
1324 D = diag::err_assoc_type_variably_modified;
1325
1326 if (D != 0) {
1327 Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1328 << Types[i]->getTypeLoc().getSourceRange()
1329 << Types[i]->getType();
1330 TypeErrorFound = true;
1331 }
1332
1333 // C11 6.5.1.1p2 "No two generic associations in the same generic
1334 // selection shall specify compatible types."
1335 for (unsigned j = i+1; j < NumAssocs; ++j)
1336 if (Types[j] && !Types[j]->getType()->isDependentType() &&
1337 Context.typesAreCompatible(Types[i]->getType(),
1338 Types[j]->getType())) {
1339 Diag(Types[j]->getTypeLoc().getBeginLoc(),
1340 diag::err_assoc_compatible_types)
1341 << Types[j]->getTypeLoc().getSourceRange()
1342 << Types[j]->getType()
1343 << Types[i]->getType();
1344 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1345 diag::note_compat_assoc)
1346 << Types[i]->getTypeLoc().getSourceRange()
1347 << Types[i]->getType();
1348 TypeErrorFound = true;
1349 }
1350 }
1351 }
1352 }
1353 if (TypeErrorFound)
1354 return ExprError();
1355
1356 // If we determined that the generic selection is result-dependent, don't
1357 // try to compute the result expression.
1358 if (IsResultDependent)
1359 return new (Context) GenericSelectionExpr(
1360 Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1361 ContainsUnexpandedParameterPack);
1362
1363 SmallVector<unsigned, 1> CompatIndices;
1364 unsigned DefaultIndex = -1U;
1365 for (unsigned i = 0; i < NumAssocs; ++i) {
1366 if (!Types[i])
1367 DefaultIndex = i;
1368 else if (Context.typesAreCompatible(ControllingExpr->getType(),
1369 Types[i]->getType()))
1370 CompatIndices.push_back(i);
1371 }
1372
1373 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1374 // type compatible with at most one of the types named in its generic
1375 // association list."
1376 if (CompatIndices.size() > 1) {
1377 // We strip parens here because the controlling expression is typically
1378 // parenthesized in macro definitions.
1379 ControllingExpr = ControllingExpr->IgnoreParens();
1380 Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
1381 << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1382 << (unsigned) CompatIndices.size();
1383 for (SmallVectorImpl<unsigned>::iterator I = CompatIndices.begin(),
1384 E = CompatIndices.end(); I != E; ++I) {
1385 Diag(Types[*I]->getTypeLoc().getBeginLoc(),
1386 diag::note_compat_assoc)
1387 << Types[*I]->getTypeLoc().getSourceRange()
1388 << Types[*I]->getType();
1389 }
1390 return ExprError();
1391 }
1392
1393 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1394 // its controlling expression shall have type compatible with exactly one of
1395 // the types named in its generic association list."
1396 if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1397 // We strip parens here because the controlling expression is typically
1398 // parenthesized in macro definitions.
1399 ControllingExpr = ControllingExpr->IgnoreParens();
1400 Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
1401 << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1402 return ExprError();
1403 }
1404
1405 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1406 // type name that is compatible with the type of the controlling expression,
1407 // then the result expression of the generic selection is the expression
1408 // in that generic association. Otherwise, the result expression of the
1409 // generic selection is the expression in the default generic association."
1410 unsigned ResultIndex =
1411 CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1412
1413 return new (Context) GenericSelectionExpr(
1414 Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1415 ContainsUnexpandedParameterPack, ResultIndex);
1416}
1417
1418/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1419/// location of the token and the offset of the ud-suffix within it.
1420static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1421 unsigned Offset) {
1422 return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1423 S.getLangOpts());
1424}
1425
1426/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1427/// the corresponding cooked (non-raw) literal operator, and build a call to it.
1428static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1429 IdentifierInfo *UDSuffix,
1430 SourceLocation UDSuffixLoc,
1431 ArrayRef<Expr*> Args,
1432 SourceLocation LitEndLoc) {
1433 assert(Args.size() <= 2 && "too many arguments for literal operator");
1434
1435 QualType ArgTy[2];
1436 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1437 ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1438 if (ArgTy[ArgIdx]->isArrayType())
1439 ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1440 }
1441
1442 DeclarationName OpName =
1443 S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1444 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1445 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1446
1447 LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1448 if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1449 /*AllowRaw*/false, /*AllowTemplate*/false,
1450 /*AllowStringTemplate*/false) == Sema::LOLR_Error)
1451 return ExprError();
1452
1453 return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1454}
1455
1456/// ActOnStringLiteral - The specified tokens were lexed as pasted string
1457/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
1458/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1459/// multiple tokens. However, the common case is that StringToks points to one
1460/// string.
1461///
1462ExprResult
1463Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1464 assert(!StringToks.empty() && "Must have at least one string!");
1465
1466 StringLiteralParser Literal(StringToks, PP);
1467 if (Literal.hadError)
1468 return ExprError();
1469
1470 SmallVector<SourceLocation, 4> StringTokLocs;
1471 for (unsigned i = 0; i != StringToks.size(); ++i)
1472 StringTokLocs.push_back(StringToks[i].getLocation());
1473
1474 QualType CharTy = Context.CharTy;
1475 StringLiteral::StringKind Kind = StringLiteral::Ascii;
1476 if (Literal.isWide()) {
1477 CharTy = Context.getWideCharType();
1478 Kind = StringLiteral::Wide;
1479 } else if (Literal.isUTF8()) {
1480 Kind = StringLiteral::UTF8;
1481 } else if (Literal.isUTF16()) {
1482 CharTy = Context.Char16Ty;
1483 Kind = StringLiteral::UTF16;
1484 } else if (Literal.isUTF32()) {
1485 CharTy = Context.Char32Ty;
1486 Kind = StringLiteral::UTF32;
1487 } else if (Literal.isPascal()) {
1488 CharTy = Context.UnsignedCharTy;
1489 }
1490
1491 QualType CharTyConst = CharTy;
1492 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
1493 if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
1494 CharTyConst.addConst();
1495
1496 // Get an array type for the string, according to C99 6.4.5. This includes
1497 // the nul terminator character as well as the string length for pascal
1498 // strings.
1499 QualType StrTy = Context.getConstantArrayType(CharTyConst,
1500 llvm::APInt(32, Literal.GetNumStringChars()+1),
1501 ArrayType::Normal, 0);
1502
1503 // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
1504 if (getLangOpts().OpenCL) {
1505 StrTy = Context.getAddrSpaceQualType(StrTy, LangAS::opencl_constant);
1506 }
1507
1508 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1509 StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1510 Kind, Literal.Pascal, StrTy,
1511 &StringTokLocs[0],
1512 StringTokLocs.size());
1513 if (Literal.getUDSuffix().empty())
1514 return Lit;
1515
1516 // We're building a user-defined literal.
1517 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1518 SourceLocation UDSuffixLoc =
1519 getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1520 Literal.getUDSuffixOffset());
1521
1522 // Make sure we're allowed user-defined literals here.
1523 if (!UDLScope)
1524 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1525
1526 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1527 // operator "" X (str, len)
1528 QualType SizeType = Context.getSizeType();
1529
1530 DeclarationName OpName =
1531 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1532 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1533 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1534
1535 QualType ArgTy[] = {
1536 Context.getArrayDecayedType(StrTy), SizeType
1537 };
1538
1539 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1540 switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1541 /*AllowRaw*/false, /*AllowTemplate*/false,
1542 /*AllowStringTemplate*/true)) {
1543
1544 case LOLR_Cooked: {
1545 llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1546 IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1547 StringTokLocs[0]);
1548 Expr *Args[] = { Lit, LenArg };
1549
1550 return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1551 }
1552
1553 case LOLR_StringTemplate: {
1554 TemplateArgumentListInfo ExplicitArgs;
1555
1556 unsigned CharBits = Context.getIntWidth(CharTy);
1557 bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1558 llvm::APSInt Value(CharBits, CharIsUnsigned);
1559
1560 TemplateArgument TypeArg(CharTy);
1561 TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1562 ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1563
1564 for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1565 Value = Lit->getCodeUnit(I);
1566 TemplateArgument Arg(Context, Value, CharTy);
1567 TemplateArgumentLocInfo ArgInfo;
1568 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1569 }
1570 return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1571 &ExplicitArgs);
1572 }
1573 case LOLR_Raw:
1574 case LOLR_Template:
1575 llvm_unreachable("unexpected literal operator lookup result");
1576 case LOLR_Error:
1577 return ExprError();
1578 }
1579 llvm_unreachable("unexpected literal operator lookup result");
1580}
1581
1582ExprResult
1583Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1584 SourceLocation Loc,
1585 const CXXScopeSpec *SS) {
1586 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1587 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1588}
1589
1590/// BuildDeclRefExpr - Build an expression that references a
1591/// declaration that does not require a closure capture.
1592ExprResult
1593Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1594 const DeclarationNameInfo &NameInfo,
1595 const CXXScopeSpec *SS, NamedDecl *FoundD,
1596 const TemplateArgumentListInfo *TemplateArgs) {
1597 if (getLangOpts().CUDA)
1598 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
1599 if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
1600 if (CheckCUDATarget(Caller, Callee)) {
1601 Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
1602 << IdentifyCUDATarget(Callee) << D->getIdentifier()
1603 << IdentifyCUDATarget(Caller);
1604 Diag(D->getLocation(), diag::note_previous_decl)
1605 << D->getIdentifier();
1606 return ExprError();
1607 }
1608 }
1609
1610 bool RefersToCapturedVariable =
1611 isa<VarDecl>(D) &&
1612 NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
1613
1614 DeclRefExpr *E;
1615 if (isa<VarTemplateSpecializationDecl>(D)) {
1616 VarTemplateSpecializationDecl *VarSpec =
1617 cast<VarTemplateSpecializationDecl>(D);
1618
1619 E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
1620 : NestedNameSpecifierLoc(),
1621 VarSpec->getTemplateKeywordLoc(), D,
1622 RefersToCapturedVariable, NameInfo.getLoc(), Ty, VK,
1623 FoundD, TemplateArgs);
1624 } else {
1625 assert(!TemplateArgs && "No template arguments for non-variable"
1626 " template specialization references");
1627 E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
1628 : NestedNameSpecifierLoc(),
1629 SourceLocation(), D, RefersToCapturedVariable,
1630 NameInfo, Ty, VK, FoundD);
1631 }
1632
1633 MarkDeclRefReferenced(E);
1634
1635 if (getLangOpts().ObjCARCWeak && isa<VarDecl>(D) &&
1636 Ty.getObjCLifetime() == Qualifiers::OCL_Weak &&
1637 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getLocStart()))
1638 recordUseOfEvaluatedWeak(E);
1639
1640 // Just in case we're building an illegal pointer-to-member.
1641 FieldDecl *FD = dyn_cast<FieldDecl>(D);
1642 if (FD && FD->isBitField())
1643 E->setObjectKind(OK_BitField);
1644
1645 return E;
1646}
1647
1648/// Decomposes the given name into a DeclarationNameInfo, its location, and
1649/// possibly a list of template arguments.
1650///
1651/// If this produces template arguments, it is permitted to call
1652/// DecomposeTemplateName.
1653///
1654/// This actually loses a lot of source location information for
1655/// non-standard name kinds; we should consider preserving that in
1656/// some way.
1657void
1658Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1659 TemplateArgumentListInfo &Buffer,
1660 DeclarationNameInfo &NameInfo,
1661 const TemplateArgumentListInfo *&TemplateArgs) {
1662 if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
1663 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1664 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1665
1666 ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
1667 Id.TemplateId->NumArgs);
1668 translateTemplateArguments(TemplateArgsPtr, Buffer);
1669
1670 TemplateName TName = Id.TemplateId->Template.get();
1671 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1672 NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1673 TemplateArgs = &Buffer;
1674 } else {
1675 NameInfo = GetNameFromUnqualifiedId(Id);
1676 TemplateArgs = nullptr;
1677 }
1678}
1679
1680static void emitEmptyLookupTypoDiagnostic(
1681 const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
1682 DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
1683 unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
1684 DeclContext *Ctx =
1685 SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
1686 if (!TC) {
1687 // Emit a special diagnostic for failed member lookups.
1688 // FIXME: computing the declaration context might fail here (?)
1689 if (Ctx)
1690 SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
1691 << SS.getRange();
1692 else
1693 SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
1694 return;
1695 }
1696
1697 std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
1698 bool DroppedSpecifier =
1699 TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
1700 unsigned NoteID =
1701 (TC.getCorrectionDecl() && isa<ImplicitParamDecl>(TC.getCorrectionDecl()))
1702 ? diag::note_implicit_param_decl
1703 : diag::note_previous_decl;
1704 if (!Ctx)
1705 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
1706 SemaRef.PDiag(NoteID));
1707 else
1708 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
1709 << Typo << Ctx << DroppedSpecifier
1710 << SS.getRange(),
1711 SemaRef.PDiag(NoteID));
1712}
1713
1714/// Diagnose an empty lookup.
1715///
1716/// \return false if new lookup candidates were found
1717bool
1718Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1719 std::unique_ptr<CorrectionCandidateCallback> CCC,
1720 TemplateArgumentListInfo *ExplicitTemplateArgs,
1721 ArrayRef<Expr *> Args, TypoExpr **Out) {
1722 DeclarationName Name = R.getLookupName();
1723
1724 unsigned diagnostic = diag::err_undeclared_var_use;
1725 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1726 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1727 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1728 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1729 diagnostic = diag::err_undeclared_use;
1730 diagnostic_suggest = diag::err_undeclared_use_suggest;
1731 }
1732
1733 // If the original lookup was an unqualified lookup, fake an
1734 // unqualified lookup. This is useful when (for example) the
1735 // original lookup would not have found something because it was a
1736 // dependent name.
1737 DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
1738 ? CurContext : nullptr;
1739 while (DC) {
1740 if (isa<CXXRecordDecl>(DC)) {
1741 LookupQualifiedName(R, DC);
1742
1743 if (!R.empty()) {
1744 // Don't give errors about ambiguities in this lookup.
1745 R.suppressDiagnostics();
1746
1747 // During a default argument instantiation the CurContext points
1748 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1749 // function parameter list, hence add an explicit check.
1750 bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
1751 ActiveTemplateInstantiations.back().Kind ==
1752 ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
1753 CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1754 bool isInstance = CurMethod &&
1755 CurMethod->isInstance() &&
1756 DC == CurMethod->getParent() && !isDefaultArgument;
1757
1758
1759 // Give a code modification hint to insert 'this->'.
1760 // TODO: fixit for inserting 'Base<T>::' in the other cases.
1761 // Actually quite difficult!
1762 if (getLangOpts().MSVCCompat)
1763 diagnostic = diag::ext_found_via_dependent_bases_lookup;
1764 if (isInstance) {
1765 Diag(R.getNameLoc(), diagnostic) << Name
1766 << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1767 UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
1768 CallsUndergoingInstantiation.back()->getCallee());
1769
1770 CXXMethodDecl *DepMethod;
1771 if (CurMethod->isDependentContext())
1772 DepMethod = CurMethod;
1773 else if (CurMethod->getTemplatedKind() ==
1774 FunctionDecl::TK_FunctionTemplateSpecialization)
1775 DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
1776 getInstantiatedFromMemberTemplate()->getTemplatedDecl());
1777 else
1778 DepMethod = cast<CXXMethodDecl>(
1779 CurMethod->getInstantiatedFromMemberFunction());
1780 assert(DepMethod && "No template pattern found");
1781
1782 QualType DepThisType = DepMethod->getThisType(Context);
1783 CheckCXXThisCapture(R.getNameLoc());
1784 CXXThisExpr *DepThis = new (Context) CXXThisExpr(
1785 R.getNameLoc(), DepThisType, false);
1786 TemplateArgumentListInfo TList;
1787 if (ULE->hasExplicitTemplateArgs())
1788 ULE->copyTemplateArgumentsInto(TList);
1789
1790 CXXScopeSpec SS;
1791 SS.Adopt(ULE->getQualifierLoc());
1792 CXXDependentScopeMemberExpr *DepExpr =
1793 CXXDependentScopeMemberExpr::Create(
1794 Context, DepThis, DepThisType, true, SourceLocation(),
1795 SS.getWithLocInContext(Context),
1796 ULE->getTemplateKeywordLoc(), nullptr,
1797 R.getLookupNameInfo(),
1798 ULE->hasExplicitTemplateArgs() ? &TList : nullptr);
1799 CallsUndergoingInstantiation.back()->setCallee(DepExpr);
1800 } else {
1801 Diag(R.getNameLoc(), diagnostic) << Name;
1802 }
1803
1804 // Do we really want to note all of these?
1805 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
1806 Diag((*I)->getLocation(), diag::note_dependent_var_use);
1807
1808 // Return true if we are inside a default argument instantiation
1809 // and the found name refers to an instance member function, otherwise
1810 // the function calling DiagnoseEmptyLookup will try to create an
1811 // implicit member call and this is wrong for default argument.
1812 if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1813 Diag(R.getNameLoc(), diag::err_member_call_without_object);
1814 return true;
1815 }
1816
1817 // Tell the callee to try to recover.
1818 return false;
1819 }
1820
1821 R.clear();
1822 }
1823
1824 // In Microsoft mode, if we are performing lookup from within a friend
1825 // function definition declared at class scope then we must set
1826 // DC to the lexical parent to be able to search into the parent
1827 // class.
1828 if (getLangOpts().MSVCCompat && isa<FunctionDecl>(DC) &&
1829 cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1830 DC->getLexicalParent()->isRecord())
1831 DC = DC->getLexicalParent();
1832 else
1833 DC = DC->getParent();
1834 }
1835
1836 // We didn't find anything, so try to correct for a typo.
1837 TypoCorrection Corrected;
1838 if (S && Out) {
1839 SourceLocation TypoLoc = R.getNameLoc();
1840 assert(!ExplicitTemplateArgs &&
1841 "Diagnosing an empty lookup with explicit template args!");
1842 *Out = CorrectTypoDelayed(
1843 R.getLookupNameInfo(), R.getLookupKind(), S, &SS, std::move(CCC),
1844 [=](const TypoCorrection &TC) {
1845 emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
1846 diagnostic, diagnostic_suggest);
1847 },
1848 nullptr, CTK_ErrorRecovery);
1849 if (*Out)
1850 return true;
1851 } else if (S && (Corrected =
1852 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S,
1853 &SS, std::move(CCC), CTK_ErrorRecovery))) {
1854 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1855 bool DroppedSpecifier =
1856 Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
1857 R.setLookupName(Corrected.getCorrection());
1858
1859 bool AcceptableWithRecovery = false;
1860 bool AcceptableWithoutRecovery = false;
1861 NamedDecl *ND = Corrected.getCorrectionDecl();
1862 if (ND) {
1863 if (Corrected.isOverloaded()) {
1864 OverloadCandidateSet OCS(R.getNameLoc(),
1865 OverloadCandidateSet::CSK_Normal);
1866 OverloadCandidateSet::iterator Best;
1867 for (TypoCorrection::decl_iterator CD = Corrected.begin(),
1868 CDEnd = Corrected.end();
1869 CD != CDEnd; ++CD) {
1870 if (FunctionTemplateDecl *FTD =
1871 dyn_cast<FunctionTemplateDecl>(*CD))
1872 AddTemplateOverloadCandidate(
1873 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
1874 Args, OCS);
1875 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
1876 if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
1877 AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
1878 Args, OCS);
1879 }
1880 switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
1881 case OR_Success:
1882 ND = Best->Function;
1883 Corrected.setCorrectionDecl(ND);
1884 break;
1885 default:
1886 // FIXME: Arbitrarily pick the first declaration for the note.
1887 Corrected.setCorrectionDecl(ND);
1888 break;
1889 }
1890 }
1891 R.addDecl(ND);
1892 if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
1893 CXXRecordDecl *Record = nullptr;
1894 if (Corrected.getCorrectionSpecifier()) {
1895 const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
1896 Record = Ty->getAsCXXRecordDecl();
1897 }
1898 if (!Record)
1899 Record = cast<CXXRecordDecl>(
1900 ND->getDeclContext()->getRedeclContext());
1901 R.setNamingClass(Record);
1902 }
1903
1904 AcceptableWithRecovery =
1905 isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND);
1906 // FIXME: If we ended up with a typo for a type name or
1907 // Objective-C class name, we're in trouble because the parser
1908 // is in the wrong place to recover. Suggest the typo
1909 // correction, but don't make it a fix-it since we're not going
1910 // to recover well anyway.
1911 AcceptableWithoutRecovery =
1912 isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
1913 } else {
1914 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
1915 // because we aren't able to recover.
1916 AcceptableWithoutRecovery = true;
1917 }
1918
1919 if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
1920 unsigned NoteID = (Corrected.getCorrectionDecl() &&
1921 isa<ImplicitParamDecl>(Corrected.getCorrectionDecl()))
1922 ? diag::note_implicit_param_decl
1923 : diag::note_previous_decl;
1924 if (SS.isEmpty())
1925 diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
1926 PDiag(NoteID), AcceptableWithRecovery);
1927 else
1928 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
1929 << Name << computeDeclContext(SS, false)
1930 << DroppedSpecifier << SS.getRange(),
1931 PDiag(NoteID), AcceptableWithRecovery);
1932
1933 // Tell the callee whether to try to recover.
1934 return !AcceptableWithRecovery;
1935 }
1936 }
1937 R.clear();
1938
1939 // Emit a special diagnostic for failed member lookups.
1940 // FIXME: computing the declaration context might fail here (?)
1941 if (!SS.isEmpty()) {
1942 Diag(R.getNameLoc(), diag::err_no_member)
1943 << Name << computeDeclContext(SS, false)
1944 << SS.getRange();
1945 return true;
1946 }
1947
1948 // Give up, we can't recover.
1949 Diag(R.getNameLoc(), diagnostic) << Name;
1950 return true;
1951}
1952
1953/// In Microsoft mode, if we are inside a template class whose parent class has
1954/// dependent base classes, and we can't resolve an unqualified identifier, then
1955/// assume the identifier is a member of a dependent base class. We can only
1956/// recover successfully in static methods, instance methods, and other contexts
1957/// where 'this' is available. This doesn't precisely match MSVC's
1958/// instantiation model, but it's close enough.
1959static Expr *
1960recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
1961 DeclarationNameInfo &NameInfo,
1962 SourceLocation TemplateKWLoc,
1963 const TemplateArgumentListInfo *TemplateArgs) {
1964 // Only try to recover from lookup into dependent bases in static methods or
1965 // contexts where 'this' is available.
1966 QualType ThisType = S.getCurrentThisType();
1967 const CXXRecordDecl *RD = nullptr;
1968 if (!ThisType.isNull())
1969 RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
1970 else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
1971 RD = MD->getParent();
1972 if (!RD || !RD->hasAnyDependentBases())
1973 return nullptr;
1974
1975 // Diagnose this as unqualified lookup into a dependent base class. If 'this'
1976 // is available, suggest inserting 'this->' as a fixit.
1977 SourceLocation Loc = NameInfo.getLoc();
1978 auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
1979 DB << NameInfo.getName() << RD;
1980
1981 if (!ThisType.isNull()) {
1982 DB << FixItHint::CreateInsertion(Loc, "this->");
1983 return CXXDependentScopeMemberExpr::Create(
1984 Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
1985 /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
1986 /*FirstQualifierInScope=*/nullptr, NameInfo, TemplateArgs);
1987 }
1988
1989 // Synthesize a fake NNS that points to the derived class. This will
1990 // perform name lookup during template instantiation.
1991 CXXScopeSpec SS;
1992 auto *NNS =
1993 NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
1994 SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
1995 return DependentScopeDeclRefExpr::Create(
1996 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
1997 TemplateArgs);
1998}
1999
2000ExprResult
2001Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2002 SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2003 bool HasTrailingLParen, bool IsAddressOfOperand,
2004 std::unique_ptr<CorrectionCandidateCallback> CCC,
2005 bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2006 assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2007 "cannot be direct & operand and have a trailing lparen");
2008 if (SS.isInvalid())
2009 return ExprError();
2010
2011 TemplateArgumentListInfo TemplateArgsBuffer;
2012
2013 // Decompose the UnqualifiedId into the following data.
2014 DeclarationNameInfo NameInfo;
2015 const TemplateArgumentListInfo *TemplateArgs;
2016 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2017
2018 DeclarationName Name = NameInfo.getName();
2019 IdentifierInfo *II = Name.getAsIdentifierInfo();
2020 SourceLocation NameLoc = NameInfo.getLoc();
2021
2022 // C++ [temp.dep.expr]p3:
2023 // An id-expression is type-dependent if it contains:
2024 // -- an identifier that was declared with a dependent type,
2025 // (note: handled after lookup)
2026 // -- a template-id that is dependent,
2027 // (note: handled in BuildTemplateIdExpr)
2028 // -- a conversion-function-id that specifies a dependent type,
2029 // -- a nested-name-specifier that contains a class-name that
2030 // names a dependent type.
2031 // Determine whether this is a member of an unknown specialization;
2032 // we need to handle these differently.
2033 bool DependentID = false;
2034 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2035 Name.getCXXNameType()->isDependentType()) {
2036 DependentID = true;
2037 } else if (SS.isSet()) {
2038 if (DeclContext *DC = computeDeclContext(SS, false)) {
2039 if (RequireCompleteDeclContext(SS, DC))
2040 return ExprError();
2041 } else {
2042 DependentID = true;
2043 }
2044 }
2045
2046 if (DependentID)
2047 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2048 IsAddressOfOperand, TemplateArgs);
2049
2050 // Perform the required lookup.
2051 LookupResult R(*this, NameInfo,
2052 (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
2053 ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
2054 if (TemplateArgs) {
2055 // Lookup the template name again to correctly establish the context in
2056 // which it was found. This is really unfortunate as we already did the
2057 // lookup to determine that it was a template name in the first place. If
2058 // this becomes a performance hit, we can work harder to preserve those
2059 // results until we get here but it's likely not worth it.
2060 bool MemberOfUnknownSpecialization;
2061 LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2062 MemberOfUnknownSpecialization);
2063
2064 if (MemberOfUnknownSpecialization ||
2065 (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2066 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2067 IsAddressOfOperand, TemplateArgs);
2068 } else {
2069 bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2070 LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2071
2072 // If the result might be in a dependent base class, this is a dependent
2073 // id-expression.
2074 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2075 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2076 IsAddressOfOperand, TemplateArgs);
2077
2078 // If this reference is in an Objective-C method, then we need to do
2079 // some special Objective-C lookup, too.
2080 if (IvarLookupFollowUp) {
2081 ExprResult E(LookupInObjCMethod(R, S, II, true));
2082 if (E.isInvalid())
2083 return ExprError();
2084
2085 if (Expr *Ex = E.getAs<Expr>())
2086 return Ex;
2087 }
2088 }
2089
2090 if (R.isAmbiguous())
2091 return ExprError();
2092
2093 // This could be an implicitly declared function reference (legal in C90,
2094 // extension in C99, forbidden in C++).
2095 if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
2096 NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2097 if (D) R.addDecl(D);
2098 }
2099
2100 // Determine whether this name might be a candidate for
2101 // argument-dependent lookup.
2102 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2103
2104 if (R.empty() && !ADL) {
2105 if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2106 if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2107 TemplateKWLoc, TemplateArgs))
2108 return E;
2109 }
2110
2111 // Don't diagnose an empty lookup for inline assembly.
2112 if (IsInlineAsmIdentifier)
2113 return ExprError();
2114
2115 // If this name wasn't predeclared and if this is not a function
2116 // call, diagnose the problem.
2117 TypoExpr *TE = nullptr;
2118 auto DefaultValidator = llvm::make_unique<CorrectionCandidateCallback>(
2119 II, SS.isValid() ? SS.getScopeRep() : nullptr);
2120 DefaultValidator->IsAddressOfOperand = IsAddressOfOperand;
2121 assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2122 "Typo correction callback misconfigured");
2123 if (CCC) {
2124 // Make sure the callback knows what the typo being diagnosed is.
2125 CCC->setTypoName(II);
2126 if (SS.isValid())
2127 CCC->setTypoNNS(SS.getScopeRep());
2128 }
2129 if (DiagnoseEmptyLookup(S, SS, R,
2130 CCC ? std::move(CCC) : std::move(DefaultValidator),
2131 nullptr, None, &TE)) {
2132 if (TE && KeywordReplacement) {
2133 auto &State = getTypoExprState(TE);
2134 auto BestTC = State.Consumer->getNextCorrection();
2135 if (BestTC.isKeyword()) {
2136 auto *II = BestTC.getCorrectionAsIdentifierInfo();
2137 if (State.DiagHandler)
2138 State.DiagHandler(BestTC);
2139 KeywordReplacement->startToken();
2140 KeywordReplacement->setKind(II->getTokenID());
2141 KeywordReplacement->setIdentifierInfo(II);
2142 KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2143 // Clean up the state associated with the TypoExpr, since it has
2144 // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2145 clearDelayedTypo(TE);
2146 // Signal that a correction to a keyword was performed by returning a
2147 // valid-but-null ExprResult.
2148 return (Expr*)nullptr;
2149 }
2150 State.Consumer->resetCorrectionStream();
2151 }
2152 return TE ? TE : ExprError();
2153 }
2154
2155 assert(!R.empty() &&
2156 "DiagnoseEmptyLookup returned false but added no results");
2157
2158 // If we found an Objective-C instance variable, let
2159 // LookupInObjCMethod build the appropriate expression to
2160 // reference the ivar.
2161 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2162 R.clear();
2163 ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2164 // In a hopelessly buggy code, Objective-C instance variable
2165 // lookup fails and no expression will be built to reference it.
2166 if (!E.isInvalid() && !E.get())
2167 return ExprError();
2168 return E;
2169 }
2170 }
2171
2172 // This is guaranteed from this point on.
2173 assert(!R.empty() || ADL);
2174
2175 // Check whether this might be a C++ implicit instance member access.
2176 // C++ [class.mfct.non-static]p3:
2177 // When an id-expression that is not part of a class member access
2178 // syntax and not used to form a pointer to member is used in the
2179 // body of a non-static member function of class X, if name lookup
2180 // resolves the name in the id-expression to a non-static non-type
2181 // member of some class C, the id-expression is transformed into a
2182 // class member access expression using (*this) as the
2183 // postfix-expression to the left of the . operator.
2184 //
2185 // But we don't actually need to do this for '&' operands if R
2186 // resolved to a function or overloaded function set, because the
2187 // expression is ill-formed if it actually works out to be a
2188 // non-static member function:
2189 //
2190 // C++ [expr.ref]p4:
2191 // Otherwise, if E1.E2 refers to a non-static member function. . .
2192 // [t]he expression can be used only as the left-hand operand of a
2193 // member function call.
2194 //
2195 // There are other safeguards against such uses, but it's important
2196 // to get this right here so that we don't end up making a
2197 // spuriously dependent expression if we're inside a dependent
2198 // instance method.
2199 if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2200 bool MightBeImplicitMember;
2201 if (!IsAddressOfOperand)
2202 MightBeImplicitMember = true;
2203 else if (!SS.isEmpty())
2204 MightBeImplicitMember = false;
2205 else if (R.isOverloadedResult())
2206 MightBeImplicitMember = false;
2207 else if (R.isUnresolvableResult())
2208 MightBeImplicitMember = true;
2209 else
2210 MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2211 isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2212 isa<MSPropertyDecl>(R.getFoundDecl());
2213
2214 if (MightBeImplicitMember)
2215 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2216 R, TemplateArgs);
2217 }
2218
2219 if (TemplateArgs || TemplateKWLoc.isValid()) {
2220
2221 // In C++1y, if this is a variable template id, then check it
2222 // in BuildTemplateIdExpr().
2223 // The single lookup result must be a variable template declaration.
2224 if (Id.getKind() == UnqualifiedId::IK_TemplateId && Id.TemplateId &&
2225 Id.TemplateId->Kind == TNK_Var_template) {
2226 assert(R.getAsSingle<VarTemplateDecl>() &&
2227 "There should only be one declaration found.");
2228 }
2229
2230 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2231 }
2232
2233 return BuildDeclarationNameExpr(SS, R, ADL);
2234}
2235
2236/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2237/// declaration name, generally during template instantiation.
2238/// There's a large number of things which don't need to be done along
2239/// this path.
2240ExprResult
2241Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
2242 const DeclarationNameInfo &NameInfo,
2243 bool IsAddressOfOperand,
2244 TypeSourceInfo **RecoveryTSI) {
2245 DeclContext *DC = computeDeclContext(SS, false);
2246 if (!DC)
2247 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2248 NameInfo, /*TemplateArgs=*/nullptr);
2249
2250 if (RequireCompleteDeclContext(SS, DC))
2251 return ExprError();
2252
2253 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2254 LookupQualifiedName(R, DC);
2255
2256 if (R.isAmbiguous())
2257 return ExprError();
2258
2259 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2260 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2261 NameInfo, /*TemplateArgs=*/nullptr);
2262
2263 if (R.empty()) {
2264 Diag(NameInfo.getLoc(), diag::err_no_member)
2265 << NameInfo.getName() << DC << SS.getRange();
2266 return ExprError();
2267 }
2268
2269 if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2270 // Diagnose a missing typename if this resolved unambiguously to a type in
2271 // a dependent context. If we can recover with a type, downgrade this to
2272 // a warning in Microsoft compatibility mode.
2273 unsigned DiagID = diag::err_typename_missing;
2274 if (RecoveryTSI && getLangOpts().MSVCCompat)
2275 DiagID = diag::ext_typename_missing;
2276 SourceLocation Loc = SS.getBeginLoc();
2277 auto D = Diag(Loc, DiagID);
2278 D << SS.getScopeRep() << NameInfo.getName().getAsString()
2279 << SourceRange(Loc, NameInfo.getEndLoc());
2280
2281 // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2282 // context.
2283 if (!RecoveryTSI)
2284 return ExprError();
2285
2286 // Only issue the fixit if we're prepared to recover.
2287 D << FixItHint::CreateInsertion(Loc, "typename ");
2288
2289 // Recover by pretending this was an elaborated type.
2290 QualType Ty = Context.getTypeDeclType(TD);
2291 TypeLocBuilder TLB;
2292 TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2293
2294 QualType ET = getElaboratedType(ETK_None, SS, Ty);
2295 ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2296 QTL.setElaboratedKeywordLoc(SourceLocation());
2297 QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2298
2299 *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2300
2301 return ExprEmpty();
2302 }
2303
2304 // Defend against this resolving to an implicit member access. We usually
2305 // won't get here if this might be a legitimate a class member (we end up in
2306 // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2307 // a pointer-to-member or in an unevaluated context in C++11.
2308 if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2309 return BuildPossibleImplicitMemberExpr(SS,
2310 /*TemplateKWLoc=*/SourceLocation(),
2311 R, /*TemplateArgs=*/nullptr);
2312
2313 return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2314}
2315
2316/// LookupInObjCMethod - The parser has read a name in, and Sema has
2317/// detected that we're currently inside an ObjC method. Perform some
2318/// additional lookup.
2319///
2320/// Ideally, most of this would be done by lookup, but there's
2321/// actually quite a lot of extra work involved.
2322///
2323/// Returns a null sentinel to indicate trivial success.
2324ExprResult
2325Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2326 IdentifierInfo *II, bool AllowBuiltinCreation) {
2327 SourceLocation Loc = Lookup.getNameLoc();
2328 ObjCMethodDecl *CurMethod = getCurMethodDecl();
2329
2330 // Check for error condition which is already reported.
2331 if (!CurMethod)
2332 return ExprError();
2333
2334 // There are two cases to handle here. 1) scoped lookup could have failed,
2335 // in which case we should look for an ivar. 2) scoped lookup could have
2336 // found a decl, but that decl is outside the current instance method (i.e.
2337 // a global variable). In these two cases, we do a lookup for an ivar with
2338 // this name, if the lookup sucedes, we replace it our current decl.
2339
2340 // If we're in a class method, we don't normally want to look for
2341 // ivars. But if we don't find anything else, and there's an
2342 // ivar, that's an error.
2343 bool IsClassMethod = CurMethod->isClassMethod();
2344
2345 bool LookForIvars;
2346 if (Lookup.empty())
2347 LookForIvars = true;
2348 else if (IsClassMethod)
2349 LookForIvars = false;
2350 else
2351 LookForIvars = (Lookup.isSingleResult() &&
2352 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2353 ObjCInterfaceDecl *IFace = nullptr;
2354 if (LookForIvars) {
2355 IFace = CurMethod->getClassInterface();
2356 ObjCInterfaceDecl *ClassDeclared;
2357 ObjCIvarDecl *IV = nullptr;
2358 if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2359 // Diagnose using an ivar in a class method.
2360 if (IsClassMethod)
2361 return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2362 << IV->getDeclName());
2363
2364 // If we're referencing an invalid decl, just return this as a silent
2365 // error node. The error diagnostic was already emitted on the decl.
2366 if (IV->isInvalidDecl())
2367 return ExprError();
2368
2369 // Check if referencing a field with __attribute__((deprecated)).
2370 if (DiagnoseUseOfDecl(IV, Loc))
2371 return ExprError();
2372
2373 // Diagnose the use of an ivar outside of the declaring class.
2374 if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2375 !declaresSameEntity(ClassDeclared, IFace) &&
2376 !getLangOpts().DebuggerSupport)
2377 Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
2378
2379 // FIXME: This should use a new expr for a direct reference, don't
2380 // turn this into Self->ivar, just return a BareIVarExpr or something.
2381 IdentifierInfo &II = Context.Idents.get("self");
2382 UnqualifiedId SelfName;
2383 SelfName.setIdentifier(&II, SourceLocation());
2384 SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
2385 CXXScopeSpec SelfScopeSpec;
2386 SourceLocation TemplateKWLoc;
2387 ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
2388 SelfName, false, false);
2389 if (SelfExpr.isInvalid())
2390 return ExprError();
2391
2392 SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2393 if (SelfExpr.isInvalid())
2394 return ExprError();
2395
2396 MarkAnyDeclReferenced(Loc, IV, true);
2397
2398 ObjCMethodFamily MF = CurMethod->getMethodFamily();
2399 if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2400 !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2401 Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2402
2403 ObjCIvarRefExpr *Result = new (Context)
2404 ObjCIvarRefExpr(IV, IV->getType(), Loc, IV->getLocation(),
2405 SelfExpr.get(), true, true);
2406
2407 if (getLangOpts().ObjCAutoRefCount) {
2408 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2409 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2410 recordUseOfEvaluatedWeak(Result);
2411 }
2412 if (CurContext->isClosure())
2413 Diag(Loc, diag::warn_implicitly_retains_self)
2414 << FixItHint::CreateInsertion(Loc, "self->");
2415 }
2416
2417 return Result;
2418 }
2419 } else if (CurMethod->isInstanceMethod()) {
2420 // We should warn if a local variable hides an ivar.
2421 if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2422 ObjCInterfaceDecl *ClassDeclared;
2423 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2424 if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2425 declaresSameEntity(IFace, ClassDeclared))
2426 Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2427 }
2428 }
2429 } else if (Lookup.isSingleResult() &&
2430 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2431 // If accessing a stand-alone ivar in a class method, this is an error.
2432 if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
2433 return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
2434 << IV->getDeclName());
2435 }
2436
2437 if (Lookup.empty() && II && AllowBuiltinCreation) {
2438 // FIXME. Consolidate this with similar code in LookupName.
2439 if (unsigned BuiltinID = II->getBuiltinID()) {
2440 if (!(getLangOpts().CPlusPlus &&
2441 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
2442 NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
2443 S, Lookup.isForRedeclaration(),
2444 Lookup.getNameLoc());
2445 if (D) Lookup.addDecl(D);
2446 }
2447 }
2448 }
2449 // Sentinel value saying that we didn't do anything special.
2450 return ExprResult((Expr *)nullptr);
2451}
2452
2453/// \brief Cast a base object to a member's actual type.
2454///
2455/// Logically this happens in three phases:
2456///
2457/// * First we cast from the base type to the naming class.
2458/// The naming class is the class into which we were looking
2459/// when we found the member; it's the qualifier type if a
2460/// qualifier was provided, and otherwise it's the base type.
2461///
2462/// * Next we cast from the naming class to the declaring class.
2463/// If the member we found was brought into a class's scope by
2464/// a using declaration, this is that class; otherwise it's
2465/// the class declaring the member.
2466///
2467/// * Finally we cast from the declaring class to the "true"
2468/// declaring class of the member. This conversion does not
2469/// obey access control.
2470ExprResult
2471Sema::PerformObjectMemberConversion(Expr *From,
2472 NestedNameSpecifier *Qualifier,
2473 NamedDecl *FoundDecl,
2474 NamedDecl *Member) {
2475 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2476 if (!RD)
2477 return From;
2478
2479 QualType DestRecordType;
2480 QualType DestType;
2481 QualType FromRecordType;
2482 QualType FromType = From->getType();
2483 bool PointerConversions = false;
2484 if (isa<FieldDecl>(Member)) {
2485 DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2486
2487 if (FromType->getAs<PointerType>()) {
2488 DestType = Context.getPointerType(DestRecordType);
2489 FromRecordType = FromType->getPointeeType();
2490 PointerConversions = true;
2491 } else {
2492 DestType = DestRecordType;
2493 FromRecordType = FromType;
2494 }
2495 } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2496 if (Method->isStatic())
2497 return From;
2498
2499 DestType = Method->getThisType(Context);
2500 DestRecordType = DestType->getPointeeType();
2501
2502 if (FromType->getAs<PointerType>()) {
2503 FromRecordType = FromType->getPointeeType();
2504 PointerConversions = true;
2505 } else {
2506 FromRecordType = FromType;
2507 DestType = DestRecordType;
2508 }
2509 } else {
2510 // No conversion necessary.
2511 return From;
2512 }
2513
2514 if (DestType->isDependentType() || FromType->isDependentType())
2515 return From;
2516
2517 // If the unqualified types are the same, no conversion is necessary.
2518 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2519 return From;
2520
2521 SourceRange FromRange = From->getSourceRange();
2522 SourceLocation FromLoc = FromRange.getBegin();
2523
2524 ExprValueKind VK = From->getValueKind();
2525
2526 // C++ [class.member.lookup]p8:
2527 // [...] Ambiguities can often be resolved by qualifying a name with its
2528 // class name.
2529 //
2530 // If the member was a qualified name and the qualified referred to a
2531 // specific base subobject type, we'll cast to that intermediate type
2532 // first and then to the object in which the member is declared. That allows
2533 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2534 //
2535 // class Base { public: int x; };
2536 // class Derived1 : public Base { };
2537 // class Derived2 : public Base { };
2538 // class VeryDerived : public Derived1, public Derived2 { void f(); };
2539 //
2540 // void VeryDerived::f() {
2541 // x = 17; // error: ambiguous base subobjects
2542 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
2543 // }
2544 if (Qualifier && Qualifier->getAsType()) {
2545 QualType QType = QualType(Qualifier->getAsType(), 0);
2546 assert(QType->isRecordType() && "lookup done with non-record type");
2547
2548 QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2549
2550 // In C++98, the qualifier type doesn't actually have to be a base
2551 // type of the object type, in which case we just ignore it.
2552 // Otherwise build the appropriate casts.
2553 if (IsDerivedFrom(FromRecordType, QRecordType)) {
2554 CXXCastPath BasePath;
2555 if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2556 FromLoc, FromRange, &BasePath))
2557 return ExprError();
2558
2559 if (PointerConversions)
2560 QType = Context.getPointerType(QType);
2561 From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2562 VK, &BasePath).get();
2563
2564 FromType = QType;
2565 FromRecordType = QRecordType;
2566
2567 // If the qualifier type was the same as the destination type,
2568 // we're done.
2569 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2570 return From;
2571 }
2572 }
2573
2574 bool IgnoreAccess = false;
2575
2576 // If we actually found the member through a using declaration, cast
2577 // down to the using declaration's type.
2578 //
2579 // Pointer equality is fine here because only one declaration of a
2580 // class ever has member declarations.
2581 if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2582 assert(isa<UsingShadowDecl>(FoundDecl));
2583 QualType URecordType = Context.getTypeDeclType(
2584 cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2585
2586 // We only need to do this if the naming-class to declaring-class
2587 // conversion is non-trivial.
2588 if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2589 assert(IsDerivedFrom(FromRecordType, URecordType));
2590 CXXCastPath BasePath;
2591 if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2592 FromLoc, FromRange, &BasePath))
2593 return ExprError();
2594
2595 QualType UType = URecordType;
2596 if (PointerConversions)
2597 UType = Context.getPointerType(UType);
2598 From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2599 VK, &BasePath).get();
2600 FromType = UType;
2601 FromRecordType = URecordType;
2602 }
2603
2604 // We don't do access control for the conversion from the
2605 // declaring class to the true declaring class.
2606 IgnoreAccess = true;
2607 }
2608
2609 CXXCastPath BasePath;
2610 if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2611 FromLoc, FromRange, &BasePath,
2612 IgnoreAccess))
2613 return ExprError();
2614
2615 return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2616 VK, &BasePath);
2617}
2618
2619bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2620 const LookupResult &R,
2621 bool HasTrailingLParen) {
2622 // Only when used directly as the postfix-expression of a call.
2623 if (!HasTrailingLParen)
2624 return false;
2625
2626 // Never if a scope specifier was provided.
2627 if (SS.isSet())
2628 return false;
2629
2630 // Only in C++ or ObjC++.
2631 if (!getLangOpts().CPlusPlus)
2632 return false;
2633
2634 // Turn off ADL when we find certain kinds of declarations during
2635 // normal lookup:
2636 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2637 NamedDecl *D = *I;
2638
2639 // C++0x [basic.lookup.argdep]p3:
2640 // -- a declaration of a class member
2641 // Since using decls preserve this property, we check this on the
2642 // original decl.
2643 if (D->isCXXClassMember())
2644 return false;
2645
2646 // C++0x [basic.lookup.argdep]p3:
2647 // -- a block-scope function declaration that is not a
2648 // using-declaration
2649 // NOTE: we also trigger this for function templates (in fact, we
2650 // don't check the decl type at all, since all other decl types
2651 // turn off ADL anyway).
2652 if (isa<UsingShadowDecl>(D))
2653 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2654 else if (D->getLexicalDeclContext()->isFunctionOrMethod())
2655 return false;
2656
2657 // C++0x [basic.lookup.argdep]p3:
2658 // -- a declaration that is neither a function or a function
2659 // template
2660 // And also for builtin functions.
2661 if (isa<FunctionDecl>(D)) {
2662 FunctionDecl *FDecl = cast<FunctionDecl>(D);
2663
2664 // But also builtin functions.
2665 if (FDecl->getBuiltinID() && FDecl->isImplicit())
2666 return false;
2667 } else if (!isa<FunctionTemplateDecl>(D))
2668 return false;
2669 }
2670
2671 return true;
2672}
2673
2674
2675/// Diagnoses obvious problems with the use of the given declaration
2676/// as an expression. This is only actually called for lookups that
2677/// were not overloaded, and it doesn't promise that the declaration
2678/// will in fact be used.
2679static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2680 if (isa<TypedefNameDecl>(D)) {
2681 S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2682 return true;
2683 }
2684
2685 if (isa<ObjCInterfaceDecl>(D)) {
2686 S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2687 return true;
2688 }
2689
2690 if (isa<NamespaceDecl>(D)) {
2691 S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2692 return true;
2693 }
2694
2695 return false;
2696}
2697
2698ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2699 LookupResult &R, bool NeedsADL,
2700 bool AcceptInvalidDecl) {
2701 // If this is a single, fully-resolved result and we don't need ADL,
2702 // just build an ordinary singleton decl ref.
2703 if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
2704 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
2705 R.getRepresentativeDecl(), nullptr,
2706 AcceptInvalidDecl);
2707
2708 // We only need to check the declaration if there's exactly one
2709 // result, because in the overloaded case the results can only be
2710 // functions and function templates.
2711 if (R.isSingleResult() &&
2712 CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2713 return ExprError();
2714
2715 // Otherwise, just build an unresolved lookup expression. Suppress
2716 // any lookup-related diagnostics; we'll hash these out later, when
2717 // we've picked a target.
2718 R.suppressDiagnostics();
2719
2720 UnresolvedLookupExpr *ULE
2721 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2722 SS.getWithLocInContext(Context),
2723 R.getLookupNameInfo(),
2724 NeedsADL, R.isOverloadedResult(),
2725 R.begin(), R.end());
2726
2727 return ULE;
2728}
2729
2730/// \brief Complete semantic analysis for a reference to the given declaration.
2731ExprResult Sema::BuildDeclarationNameExpr(
2732 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
2733 NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
2734 bool AcceptInvalidDecl) {
2735 assert(D && "Cannot refer to a NULL declaration");
2736 assert(!isa<FunctionTemplateDecl>(D) &&
2737 "Cannot refer unambiguously to a function template");
2738
2739 SourceLocation Loc = NameInfo.getLoc();
2740 if (CheckDeclInExpr(*this, Loc, D))
2741 return ExprError();
2742
2743 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2744 // Specifically diagnose references to class templates that are missing
2745 // a template argument list.
2746 Diag(Loc, diag::err_template_decl_ref) << (isa<VarTemplateDecl>(D) ? 1 : 0)
2747 << Template << SS.getRange();
2748 Diag(Template->getLocation(), diag::note_template_decl_here);
2749 return ExprError();
2750 }
2751
2752 // Make sure that we're referring to a value.
2753 ValueDecl *VD = dyn_cast<ValueDecl>(D);
2754 if (!VD) {
2755 Diag(Loc, diag::err_ref_non_value)
2756 << D << SS.getRange();
2757 Diag(D->getLocation(), diag::note_declared_at);
2758 return ExprError();
2759 }
2760
2761 // Check whether this declaration can be used. Note that we suppress
2762 // this check when we're going to perform argument-dependent lookup
2763 // on this function name, because this might not be the function
2764 // that overload resolution actually selects.
2765 if (DiagnoseUseOfDecl(VD, Loc))
2766 return ExprError();
2767
2768 // Only create DeclRefExpr's for valid Decl's.
2769 if (VD->isInvalidDecl() && !AcceptInvalidDecl)
2770 return ExprError();
2771
2772 // Handle members of anonymous structs and unions. If we got here,
2773 // and the reference is to a class member indirect field, then this
2774 // must be the subject of a pointer-to-member expression.
2775 if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2776 if (!indirectField->isCXXClassMember())
2777 return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2778 indirectField);
2779
2780 {
2781 QualType type = VD->getType();
2782 ExprValueKind valueKind = VK_RValue;
2783
2784 switch (D->getKind()) {
2785 // Ignore all the non-ValueDecl kinds.
2786#define ABSTRACT_DECL(kind)
2787#define VALUE(type, base)
2788#define DECL(type, base) \
2789 case Decl::type:
2790#include "clang/AST/DeclNodes.inc"
2791 llvm_unreachable("invalid value decl kind");
2792
2793 // These shouldn't make it here.
2794 case Decl::ObjCAtDefsField:
2795 case Decl::ObjCIvar:
2796 llvm_unreachable("forming non-member reference to ivar?");
2797
2798 // Enum constants are always r-values and never references.
2799 // Unresolved using declarations are dependent.
2800 case Decl::EnumConstant:
2801 case Decl::UnresolvedUsingValue:
2802 valueKind = VK_RValue;
2803 break;
2804
2805 // Fields and indirect fields that got here must be for
2806 // pointer-to-member expressions; we just call them l-values for
2807 // internal consistency, because this subexpression doesn't really
2808 // exist in the high-level semantics.
2809 case Decl::Field:
2810 case Decl::IndirectField:
2811 assert(getLangOpts().CPlusPlus &&
2812 "building reference to field in C?");
2813
2814 // These can't have reference type in well-formed programs, but
2815 // for internal consistency we do this anyway.
2816 type = type.getNonReferenceType();
2817 valueKind = VK_LValue;
2818 break;
2819
2820 // Non-type template parameters are either l-values or r-values
2821 // depending on the type.
2822 case Decl::NonTypeTemplateParm: {
2823 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
2824 type = reftype->getPointeeType();
2825 valueKind = VK_LValue; // even if the parameter is an r-value reference
2826 break;
2827 }
2828
2829 // For non-references, we need to strip qualifiers just in case
2830 // the template parameter was declared as 'const int' or whatever.
2831 valueKind = VK_RValue;
2832 type = type.getUnqualifiedType();
2833 break;
2834 }
2835
2836 case Decl::Var:
2837 case Decl::VarTemplateSpecialization:
2838 case Decl::VarTemplatePartialSpecialization:
2839 // In C, "extern void blah;" is valid and is an r-value.
2840 if (!getLangOpts().CPlusPlus &&
2841 !type.hasQualifiers() &&
2842 type->isVoidType()) {
2843 valueKind = VK_RValue;
2844 break;
2845 }
2846 // fallthrough
2847
2848 case Decl::ImplicitParam:
2849 case Decl::ParmVar: {
2850 // These are always l-values.
2851 valueKind = VK_LValue;
2852 type = type.getNonReferenceType();
2853
2854 // FIXME: Does the addition of const really only apply in
2855 // potentially-evaluated contexts? Since the variable isn't actually
2856 // captured in an unevaluated context, it seems that the answer is no.
2857 if (!isUnevaluatedContext()) {
2858 QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
2859 if (!CapturedType.isNull())
2860 type = CapturedType;
2861 }
2862
2863 break;
2864 }
2865
2866 case Decl::Function: {
2867 if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
2868 if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
2869 type = Context.BuiltinFnTy;
2870 valueKind = VK_RValue;
2871 break;
2872 }
2873 }
2874
2875 const FunctionType *fty = type->castAs<FunctionType>();
2876
2877 // If we're referring to a function with an __unknown_anytype
2878 // result type, make the entire expression __unknown_anytype.
2879 if (fty->getReturnType() == Context.UnknownAnyTy) {
2880 type = Context.UnknownAnyTy;
2881 valueKind = VK_RValue;
2882 break;
2883 }
2884
2885 // Functions are l-values in C++.
2886 if (getLangOpts().CPlusPlus) {
2887 valueKind = VK_LValue;
2888 break;
2889 }
2890
2891 // C99 DR 316 says that, if a function type comes from a
2892 // function definition (without a prototype), that type is only
2893 // used for checking compatibility. Therefore, when referencing
2894 // the function, we pretend that we don't have the full function
2895 // type.
2896 if (!cast<FunctionDecl>(VD)->hasPrototype() &&
2897 isa<FunctionProtoType>(fty))
2898 type = Context.getFunctionNoProtoType(fty->getReturnType(),
2899 fty->getExtInfo());
2900
2901 // Functions are r-values in C.
2902 valueKind = VK_RValue;
2903 break;
2904 }
2905
2906 case Decl::MSProperty:
2907 valueKind = VK_LValue;
2908 break;
2909
2910 case Decl::CXXMethod:
2911 // If we're referring to a method with an __unknown_anytype
2912 // result type, make the entire expression __unknown_anytype.
2913 // This should only be possible with a type written directly.
2914 if (const FunctionProtoType *proto
2915 = dyn_cast<FunctionProtoType>(VD->getType()))
2916 if (proto->getReturnType() == Context.UnknownAnyTy) {
2917 type = Context.UnknownAnyTy;
2918 valueKind = VK_RValue;
2919 break;
2920 }
2921
2922 // C++ methods are l-values if static, r-values if non-static.
2923 if (cast<CXXMethodDecl>(VD)->isStatic()) {
2924 valueKind = VK_LValue;
2925 break;
2926 }
2927 // fallthrough
2928
2929 case Decl::CXXConversion:
2930 case Decl::CXXDestructor:
2931 case Decl::CXXConstructor:
2932 valueKind = VK_RValue;
2933 break;
2934 }
2935
2936 return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
2937 TemplateArgs);
2938 }
2939}
2940
2941static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
2942 SmallString<32> &Target) {
2943 Target.resize(CharByteWidth * (Source.size() + 1));
2944 char *ResultPtr = &Target[0];
2945 const UTF8 *ErrorPtr;
2946 bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
2947 (void)success;
2948 assert(success);
2949 Target.resize(ResultPtr - &Target[0]);
2950}
2951
2952ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
2953 PredefinedExpr::IdentType IT) {
2954 // Pick the current block, lambda, captured statement or function.
2955 Decl *currentDecl = nullptr;
2956 if (const BlockScopeInfo *BSI = getCurBlock())
2957 currentDecl = BSI->TheDecl;
2958 else if (const LambdaScopeInfo *LSI = getCurLambda())
2959 currentDecl = LSI->CallOperator;
2960 else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
2961 currentDecl = CSI->TheCapturedDecl;
2962 else
2963 currentDecl = getCurFunctionOrMethodDecl();
2964
2965 if (!currentDecl) {
2966 Diag(Loc, diag::ext_predef_outside_function);
2967 currentDecl = Context.getTranslationUnitDecl();
2968 }
2969
2970 QualType ResTy;
2971 StringLiteral *SL = nullptr;
2972 if (cast<DeclContext>(currentDecl)->isDependentContext())
2973 ResTy = Context.DependentTy;
2974 else {
2975 // Pre-defined identifiers are of type char[x], where x is the length of
2976 // the string.
2977 auto Str = PredefinedExpr::ComputeName(IT, currentDecl);
2978 unsigned Length = Str.length();
2979
2980 llvm::APInt LengthI(32, Length + 1);
2981 if (IT == PredefinedExpr::LFunction) {
2982 ResTy = Context.WideCharTy.withConst();
2983 SmallString<32> RawChars;
2984 ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
2985 Str, RawChars);
2986 ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
2987 /*IndexTypeQuals*/ 0);
2988 SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
2989 /*Pascal*/ false, ResTy, Loc);
2990 } else {
2991 ResTy = Context.CharTy.withConst();
2992 ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
2993 /*IndexTypeQuals*/ 0);
2994 SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
2995 /*Pascal*/ false, ResTy, Loc);
2996 }
2997 }
2998
2999 return new (Context) PredefinedExpr(Loc, ResTy, IT, SL);
3000}
3001
3002ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3003 PredefinedExpr::IdentType IT;
3004
3005 switch (Kind) {
3006 default: llvm_unreachable("Unknown simple primary expr!");
3007 case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3008 case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
3009 case tok::kw___FUNCDNAME__: IT = PredefinedExpr::FuncDName; break; // [MS]
3010 case tok::kw___FUNCSIG__: IT = PredefinedExpr::FuncSig; break; // [MS]
3011 case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
3012 case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
3013 }
3014
3015 return BuildPredefinedExpr(Loc, IT);
3016}
3017
3018ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3019 SmallString<16> CharBuffer;
3020 bool Invalid = false;
3021 StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3022 if (Invalid)
3023 return ExprError();
3024
3025 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3026 PP, Tok.getKind());
3027 if (Literal.hadError())
3028 return ExprError();
3029
3030 QualType Ty;
3031 if (Literal.isWide())
3032 Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3033 else if (Literal.isUTF16())
3034 Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3035 else if (Literal.isUTF32())
3036 Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3037 else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3038 Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
3039 else
3040 Ty = Context.CharTy; // 'x' -> char in C++
3041
3042 CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3043 if (Literal.isWide())
3044 Kind = CharacterLiteral::Wide;
3045 else if (Literal.isUTF16())
3046 Kind = CharacterLiteral::UTF16;
3047 else if (Literal.isUTF32())
3048 Kind = CharacterLiteral::UTF32;
3049
3050 Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3051 Tok.getLocation());
3052
3053 if (Literal.getUDSuffix().empty())
3054 return Lit;
3055
3056 // We're building a user-defined literal.
3057 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3058 SourceLocation UDSuffixLoc =
3059 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3060
3061 // Make sure we're allowed user-defined literals here.
3062 if (!UDLScope)
3063 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3064
3065 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3066 // operator "" X (ch)
3067 return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3068 Lit, Tok.getLocation());
3069}
3070
3071ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3072 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3073 return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3074 Context.IntTy, Loc);
3075}
3076
3077static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3078 QualType Ty, SourceLocation Loc) {
3079 const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3080
3081 using llvm::APFloat;
3082 APFloat Val(Format);
3083
3084 APFloat::opStatus result = Literal.GetFloatValue(Val);
3085
3086 // Overflow is always an error, but underflow is only an error if
3087 // we underflowed to zero (APFloat reports denormals as underflow).
3088 if ((result & APFloat::opOverflow) ||
3089 ((result & APFloat::opUnderflow) && Val.isZero())) {
3090 unsigned diagnostic;
3091 SmallString<20> buffer;
3092 if (result & APFloat::opOverflow) {
3093 diagnostic = diag::warn_float_overflow;
3094 APFloat::getLargest(Format).toString(buffer);
3095 } else {
3096 diagnostic = diag::warn_float_underflow;
3097 APFloat::getSmallest(Format).toString(buffer);
3098 }
3099
3100 S.Diag(Loc, diagnostic)
3101 << Ty
3102 << StringRef(buffer.data(), buffer.size());
3103 }
3104
3105 bool isExact = (result == APFloat::opOK);
3106 return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3107}
3108
3109bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3110 assert(E && "Invalid expression");
3111
3112 if (E->isValueDependent())
3113 return false;
3114
3115 QualType QT = E->getType();
3116 if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3117 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3118 return true;
3119 }
3120
3121 llvm::APSInt ValueAPS;
3122 ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3123
3124 if (R.isInvalid())
3125 return true;
3126
3127 bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3128 if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3129 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3130 << ValueAPS.toString(10) << ValueIsPositive;
3131 return true;
3132 }
3133
3134 return false;
3135}
3136
3137ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3138 // Fast path for a single digit (which is quite common). A single digit
3139 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3140 if (Tok.getLength() == 1) {
3141 const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3142 return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3143 }
3144
3145 SmallString<128> SpellingBuffer;
3146 // NumericLiteralParser wants to overread by one character. Add padding to
3147 // the buffer in case the token is copied to the buffer. If getSpelling()
3148 // returns a StringRef to the memory buffer, it should have a null char at
3149 // the EOF, so it is also safe.
3150 SpellingBuffer.resize(Tok.getLength() + 1);
3151
3152 // Get the spelling of the token, which eliminates trigraphs, etc.
3153 bool Invalid = false;
3154 StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3155 if (Invalid)
3156 return ExprError();
3157
3158 NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
3159 if (Literal.hadError)
3160 return ExprError();
3161
3162 if (Literal.hasUDSuffix()) {
3163 // We're building a user-defined literal.
3164 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3165 SourceLocation UDSuffixLoc =
3166 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3167
3168 // Make sure we're allowed user-defined literals here.
3169 if (!UDLScope)
3170 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3171
3172 QualType CookedTy;
3173 if (Literal.isFloatingLiteral()) {
3174 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3175 // long double, the literal is treated as a call of the form
3176 // operator "" X (f L)
3177 CookedTy = Context.LongDoubleTy;
3178 } else {
3179 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3180 // unsigned long long, the literal is treated as a call of the form
3181 // operator "" X (n ULL)
3182 CookedTy = Context.UnsignedLongLongTy;
3183 }
3184
3185 DeclarationName OpName =
3186 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3187 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3188 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3189
3190 SourceLocation TokLoc = Tok.getLocation();
3191
3192 // Perform literal operator lookup to determine if we're building a raw
3193 // literal or a cooked one.
3194 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3195 switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3196 /*AllowRaw*/true, /*AllowTemplate*/true,
3197 /*AllowStringTemplate*/false)) {
3198 case LOLR_Error:
3199 return ExprError();
3200
3201 case LOLR_Cooked: {
3202 Expr *Lit;
3203 if (Literal.isFloatingLiteral()) {
3204 Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3205 } else {
3206 llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3207 if (Literal.GetIntegerValue(ResultVal))
3208 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3209 << /* Unsigned */ 1;
3210 Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3211 Tok.getLocation());
3212 }
3213 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3214 }
3215
3216 case LOLR_Raw: {
3217 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3218 // literal is treated as a call of the form
3219 // operator "" X ("n")
3220 unsigned Length = Literal.getUDSuffixOffset();
3221 QualType StrTy = Context.getConstantArrayType(
3222 Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
3223 ArrayType::Normal, 0);
3224 Expr *Lit = StringLiteral::Create(
3225 Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
3226 /*Pascal*/false, StrTy, &TokLoc, 1);
3227 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3228 }
3229
3230 case LOLR_Template: {
3231 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3232 // template), L is treated as a call fo the form
3233 // operator "" X <'c1', 'c2', ... 'ck'>()
3234 // where n is the source character sequence c1 c2 ... ck.
3235 TemplateArgumentListInfo ExplicitArgs;
3236 unsigned CharBits = Context.getIntWidth(Context.CharTy);
3237 bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3238 llvm::APSInt Value(CharBits, CharIsUnsigned);
3239 for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3240 Value = TokSpelling[I];
3241 TemplateArgument Arg(Context, Value, Context.CharTy);
3242 TemplateArgumentLocInfo ArgInfo;
3243 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3244 }
3245 return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3246 &ExplicitArgs);
3247 }
3248 case LOLR_StringTemplate:
3249 llvm_unreachable("unexpected literal operator lookup result");
3250 }
3251 }
3252
3253 Expr *Res;
3254
3255 if (Literal.isFloatingLiteral()) {
3256 QualType Ty;
3257 if (Literal.isFloat)
3258 Ty = Context.FloatTy;
3259 else if (!Literal.isLong)
3260 Ty = Context.DoubleTy;
3261 else
3262 Ty = Context.LongDoubleTy;
3263
3264 Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3265
3266 if (Ty == Context.DoubleTy) {
3267 if (getLangOpts().SinglePrecisionConstants) {
3268 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3269 } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
3270 Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
3271 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3272 }
3273 }
3274 } else if (!Literal.isIntegerLiteral()) {
3275 return ExprError();
3276 } else {
3277 QualType Ty;
3278
3279 // 'long long' is a C99 or C++11 feature.
3280 if (!getLangOpts().C99 && Literal.isLongLong) {
3281 if (getLangOpts().CPlusPlus)
3282 Diag(Tok.getLocation(),
3283 getLangOpts().CPlusPlus11 ?
3284 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3285 else
3286 Diag(Tok.getLocation(), diag::ext_c99_longlong);
3287 }
3288
3289 // Get the value in the widest-possible width.
3290 unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
3291 // The microsoft literal suffix extensions support 128-bit literals, which
3292 // may be wider than [u]intmax_t.
3293 // FIXME: Actually, they don't. We seem to have accidentally invented the
3294 // i128 suffix.
3295 if (Literal.MicrosoftInteger == 128 && MaxWidth < 128 &&
3296 Context.getTargetInfo().hasInt128Type())
3297 MaxWidth = 128;
3298 llvm::APInt ResultVal(MaxWidth, 0);
3299
3300 if (Literal.GetIntegerValue(ResultVal)) {
3301 // If this value didn't fit into uintmax_t, error and force to ull.
3302 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3303 << /* Unsigned */ 1;
3304 Ty = Context.UnsignedLongLongTy;
3305 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3306 "long long is not intmax_t?");
3307 } else {
3308 // If this value fits into a ULL, try to figure out what else it fits into
3309 // according to the rules of C99 6.4.4.1p5.
3310
3311 // Octal, Hexadecimal, and integers with a U suffix are allowed to
3312 // be an unsigned int.
3313 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3314
3315 // Check from smallest to largest, picking the smallest type we can.
3316 unsigned Width = 0;
3317
3318 // Microsoft specific integer suffixes are explicitly sized.
3319 if (Literal.MicrosoftInteger) {
3320 if (Literal.MicrosoftInteger > MaxWidth) {
3321 // If this target doesn't support __int128, error and force to ull.
3322 Diag(Tok.getLocation(), diag::err_int128_unsupported);
3323 Width = MaxWidth;
3324 Ty = Context.getIntMaxType();
3325 } else {
3326 Width = Literal.MicrosoftInteger;
3327 Ty = Context.getIntTypeForBitwidth(Width,
3328 /*Signed=*/!Literal.isUnsigned);
3329 }
3330 }
3331
3332 if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
3333 // Are int/unsigned possibilities?
3334 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3335
3336 // Does it fit in a unsigned int?
3337 if (ResultVal.isIntN(IntSize)) {
3338 // Does it fit in a signed int?
3339 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3340 Ty = Context.IntTy;
3341 else if (AllowUnsigned)
3342 Ty = Context.UnsignedIntTy;
3343 Width = IntSize;
3344 }
3345 }
3346
3347 // Are long/unsigned long possibilities?
3348 if (Ty.isNull() && !Literal.isLongLong) {
3349 unsigned LongSize = Context.getTargetInfo().getLongWidth();
3350
3351 // Does it fit in a unsigned long?
3352 if (ResultVal.isIntN(LongSize)) {
3353 // Does it fit in a signed long?
3354 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3355 Ty = Context.LongTy;
3356 else if (AllowUnsigned)
3357 Ty = Context.UnsignedLongTy;
3358 Width = LongSize;
3359 }
3360 }
3361
3362 // Check long long if needed.
3363 if (Ty.isNull()) {
3364 unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
3365
3366 // Does it fit in a unsigned long long?
3367 if (ResultVal.isIntN(LongLongSize)) {
3368 // Does it fit in a signed long long?
3369 // To be compatible with MSVC, hex integer literals ending with the
3370 // LL or i64 suffix are always signed in Microsoft mode.
3371 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3372 (getLangOpts().MicrosoftExt && Literal.isLongLong)))
3373 Ty = Context.LongLongTy;
3374 else if (AllowUnsigned)
3375 Ty = Context.UnsignedLongLongTy;
3376 Width = LongLongSize;
3377 }
3378 }
3379
3380 // If we still couldn't decide a type, we probably have something that
3381 // does not fit in a signed long long, but has no U suffix.
3382 if (Ty.isNull()) {
3383 Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
3384 Ty = Context.UnsignedLongLongTy;
3385 Width = Context.getTargetInfo().getLongLongWidth();
3386 }
3387
3388 if (ResultVal.getBitWidth() != Width)
3389 ResultVal = ResultVal.trunc(Width);
3390 }
3391 Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
3392 }
3393
3394 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
3395 if (Literal.isImaginary)
3396 Res = new (Context) ImaginaryLiteral(Res,
3397 Context.getComplexType(Res->getType()));
3398
3399 return Res;
3400}
3401
3402ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
3403 assert(E && "ActOnParenExpr() missing expr");
3404 return new (Context) ParenExpr(L, R, E);
3405}
3406
3407static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
3408 SourceLocation Loc,
3409 SourceRange ArgRange) {
3410 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
3411 // scalar or vector data type argument..."
3412 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
3413 // type (C99 6.2.5p18) or void.
3414 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
3415 S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
3416 << T << ArgRange;
3417 return true;
3418 }
3419
3420 assert((T->isVoidType() || !T->isIncompleteType()) &&
3421 "Scalar types should always be complete");
3422 return false;
3423}
3424
3425static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
3426 SourceLocation Loc,
3427 SourceRange ArgRange,
3428 UnaryExprOrTypeTrait TraitKind) {
3429 // Invalid types must be hard errors for SFINAE in C++.
3430 if (S.LangOpts.CPlusPlus)
3431 return true;
3432
3433 // C99 6.5.3.4p1:
3434 if (T->isFunctionType() &&
3435 (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf)) {
3436 // sizeof(function)/alignof(function) is allowed as an extension.
3437 S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
3438 << TraitKind << ArgRange;
3439 return false;
3440 }
3441
3442 // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
3443 // this is an error (OpenCL v1.1 s6.3.k)
3444 if (T->isVoidType()) {
3445 unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
3446 : diag::ext_sizeof_alignof_void_type;
3447 S.Diag(Loc, DiagID) << TraitKind << ArgRange;
3448 return false;
3449 }
3450
3451 return true;
3452}
3453
3454static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
3455 SourceLocation Loc,
3456 SourceRange ArgRange,
3457 UnaryExprOrTypeTrait TraitKind) {
3458 // Reject sizeof(interface) and sizeof(interface<proto>) if the
3459 // runtime doesn't allow it.
3460 if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
3461 S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
3462 << T << (TraitKind == UETT_SizeOf)
3463 << ArgRange;
3464 return true;
3465 }
3466
3467 return false;
3468}
3469
3470/// \brief Check whether E is a pointer from a decayed array type (the decayed
3471/// pointer type is equal to T) and emit a warning if it is.
3472static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
3473 Expr *E) {
3474 // Don't warn if the operation changed the type.
3475 if (T != E->getType())
3476 return;
3477
3478 // Now look for array decays.
3479 ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
3480 if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
3481 return;
3482
3483 S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
3484 << ICE->getType()
3485 << ICE->getSubExpr()->getType();
3486}
3487
3488/// \brief Check the constraints on expression operands to unary type expression
3489/// and type traits.
3490///
3491/// Completes any types necessary and validates the constraints on the operand
3492/// expression. The logic mostly mirrors the type-based overload, but may modify
3493/// the expression as it completes the type for that expression through template
3494/// instantiation, etc.
3495bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
3496 UnaryExprOrTypeTrait ExprKind) {
3497 QualType ExprTy = E->getType();
3498 assert(!ExprTy->isReferenceType());
3499
3500 if (ExprKind == UETT_VecStep)
3501 return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
3502 E->getSourceRange());
3503
3504 // Whitelist some types as extensions
3505 if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
3506 E->getSourceRange(), ExprKind))
3507 return false;
3508
3509 // 'alignof' applied to an expression only requires the base element type of
3510 // the expression to be complete. 'sizeof' requires the expression's type to
3511 // be complete (and will attempt to complete it if it's an array of unknown
3512 // bound).
3513 if (ExprKind == UETT_AlignOf) {
3514 if (RequireCompleteType(E->getExprLoc(),
3515 Context.getBaseElementType(E->getType()),
3516 diag::err_sizeof_alignof_incomplete_type, ExprKind,
3517 E->getSourceRange()))
3518 return true;
3519 } else {
3520 if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type,
3521 ExprKind, E->getSourceRange()))
3522 return true;
3523 }
3524
3525 // Completing the expression's type may have changed it.
3526 ExprTy = E->getType();
3527 assert(!ExprTy->isReferenceType());
3528
3529 if (ExprTy->isFunctionType()) {
3530 Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
3531 << ExprKind << E->getSourceRange();
3532 return true;
3533 }
3534
3535 // The operand for sizeof and alignof is in an unevaluated expression context,
3536 // so side effects could result in unintended consequences.
3537 if ((ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf) &&
3538 ActiveTemplateInstantiations.empty() && E->HasSideEffects(Context, false))
3539 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
3540
3541 if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
3542 E->getSourceRange(), ExprKind))
3543 return true;
3544
3545 if (ExprKind == UETT_SizeOf) {
3546 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
3547 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
3548 QualType OType = PVD->getOriginalType();
3549 QualType Type = PVD->getType();
3550 if (Type->isPointerType() && OType->isArrayType()) {
3551 Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
3552 << Type << OType;
3553 Diag(PVD->getLocation(), diag::note_declared_at);
3554 }
3555 }
3556 }
3557
3558 // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
3559 // decays into a pointer and returns an unintended result. This is most
3560 // likely a typo for "sizeof(array) op x".
3561 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
3562 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3563 BO->getLHS());
3564 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3565 BO->getRHS());
3566 }
3567 }
3568
3569 return false;
3570}
3571
3572/// \brief Check the constraints on operands to unary expression and type
3573/// traits.
3574///
3575/// This will complete any types necessary, and validate the various constraints
3576/// on those operands.
3577///
3578/// The UsualUnaryConversions() function is *not* called by this routine.
3579/// C99 6.3.2.1p[2-4] all state:
3580/// Except when it is the operand of the sizeof operator ...
3581///
3582/// C++ [expr.sizeof]p4
3583/// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
3584/// standard conversions are not applied to the operand of sizeof.
3585///
3586/// This policy is followed for all of the unary trait expressions.
3587bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
3588 SourceLocation OpLoc,
3589 SourceRange ExprRange,
3590 UnaryExprOrTypeTrait ExprKind) {
3591 if (ExprType->isDependentType())
3592 return false;
3593
3594 // C++ [expr.sizeof]p2:
3595 // When applied to a reference or a reference type, the result
3596 // is the size of the referenced type.
3597 // C++11 [expr.alignof]p3:
3598 // When alignof is applied to a reference type, the result
3599 // shall be the alignment of the referenced type.
3600 if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
3601 ExprType = Ref->getPointeeType();
3602
3603 // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
3604 // When alignof or _Alignof is applied to an array type, the result
3605 // is the alignment of the element type.
3606 if (ExprKind == UETT_AlignOf)
3607 ExprType = Context.getBaseElementType(ExprType);
3608
3609 if (ExprKind == UETT_VecStep)
3610 return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
3611
3612 // Whitelist some types as extensions
3613 if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
3614 ExprKind))
3615 return false;
3616
3617 if (RequireCompleteType(OpLoc, ExprType,
3618 diag::err_sizeof_alignof_incomplete_type,
3619 ExprKind, ExprRange))
3620 return true;
3621
3622 if (ExprType->isFunctionType()) {
3623 Diag(OpLoc, diag::err_sizeof_alignof_function_type)
3624 << ExprKind << ExprRange;
3625 return true;
3626 }
3627
3628 if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
3629 ExprKind))
3630 return true;
3631
3632 return false;
3633}
3634
3635static bool CheckAlignOfExpr(Sema &S, Expr *E) {
3636 E = E->IgnoreParens();
3637
3638 // Cannot know anything else if the expression is dependent.
3639 if (E->isTypeDependent())
3640 return false;
3641
3642 if (E->getObjectKind() == OK_BitField) {
3643 S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
3644 << 1 << E->getSourceRange();
3645 return true;
3646 }
3647
3648 ValueDecl *D = nullptr;
3649 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3650 D = DRE->getDecl();
3651 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3652 D = ME->getMemberDecl();
3653 }
3654
3655 // If it's a field, require the containing struct to have a
3656 // complete definition so that we can compute the layout.
3657 //
3658 // This can happen in C++11 onwards, either by naming the member
3659 // in a way that is not transformed into a member access expression
3660 // (in an unevaluated operand, for instance), or by naming the member
3661 // in a trailing-return-type.
3662 //
3663 // For the record, since __alignof__ on expressions is a GCC
3664 // extension, GCC seems to permit this but always gives the
3665 // nonsensical answer 0.
3666 //
3667 // We don't really need the layout here --- we could instead just
3668 // directly check for all the appropriate alignment-lowing
3669 // attributes --- but that would require duplicating a lot of
3670 // logic that just isn't worth duplicating for such a marginal
3671 // use-case.
3672 if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
3673 // Fast path this check, since we at least know the record has a
3674 // definition if we can find a member of it.
3675 if (!FD->getParent()->isCompleteDefinition()) {
3676 S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
3677 << E->getSourceRange();
3678 return true;
3679 }
3680
3681 // Otherwise, if it's a field, and the field doesn't have
3682 // reference type, then it must have a complete type (or be a
3683 // flexible array member, which we explicitly want to
3684 // white-list anyway), which makes the following checks trivial.
3685 if (!FD->getType()->isReferenceType())
3686 return false;
3687 }
3688
3689 return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
3690}
3691
3692bool Sema::CheckVecStepExpr(Expr *E) {
3693 E = E->IgnoreParens();
3694
3695 // Cannot know anything else if the expression is dependent.
3696 if (E->isTypeDependent())
3697 return false;
3698
3699 return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
3700}
3701
3702/// \brief Build a sizeof or alignof expression given a type operand.
3703ExprResult
3704Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
3705 SourceLocation OpLoc,
3706 UnaryExprOrTypeTrait ExprKind,
3707 SourceRange R) {
3708 if (!TInfo)
3709 return ExprError();
3710
3711 QualType T = TInfo->getType();
3712
3713 if (!T->isDependentType() &&
3714 CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
3715 return ExprError();
3716
3717 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3718 return new (Context) UnaryExprOrTypeTraitExpr(
3719 ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
3720}
3721
3722/// \brief Build a sizeof or alignof expression given an expression
3723/// operand.
3724ExprResult
3725Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
3726 UnaryExprOrTypeTrait ExprKind) {
3727 ExprResult PE = CheckPlaceholderExpr(E);
3728 if (PE.isInvalid())
3729 return ExprError();
3730
3731 E = PE.get();
3732
3733 // Verify that the operand is valid.
3734 bool isInvalid = false;
3735 if (E->isTypeDependent()) {
3736 // Delay type-checking for type-dependent expressions.
3737 } else if (ExprKind == UETT_AlignOf) {
3738 isInvalid = CheckAlignOfExpr(*this, E);
3739 } else if (ExprKind == UETT_VecStep) {
3740 isInvalid = CheckVecStepExpr(E);
3741 } else if (E->refersToBitField()) { // C99 6.5.3.4p1.
3742 Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
3743 isInvalid = true;
3744 } else {
3745 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
3746 }
3747
3748 if (isInvalid)
3749 return ExprError();
3750
3751 if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
3752 PE = TransformToPotentiallyEvaluated(E);
3753 if (PE.isInvalid()) return ExprError();
3754 E = PE.get();
3755 }
3756
3757 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
3758 return new (Context) UnaryExprOrTypeTraitExpr(
3759 ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
3760}
3761
3762/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
3763/// expr and the same for @c alignof and @c __alignof
3764/// Note that the ArgRange is invalid if isType is false.
3765ExprResult
3766Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
3767 UnaryExprOrTypeTrait ExprKind, bool IsType,
3768 void *TyOrEx, const SourceRange &ArgRange) {
3769 // If error parsing type, ignore.
3770 if (!TyOrEx) return ExprError();
3771
3772 if (IsType) {
3773 TypeSourceInfo *TInfo;
3774 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
3775 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
3776 }
3777
3778 Expr *ArgEx = (Expr *)TyOrEx;
3779 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
3780 return Result;
3781}
3782
3783static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
3784 bool IsReal) {
3785 if (V.get()->isTypeDependent())
3786 return S.Context.DependentTy;
3787
3788 // _Real and _Imag are only l-values for normal l-values.
3789 if (V.get()->getObjectKind() != OK_Ordinary) {
3790 V = S.DefaultLvalueConversion(V.get());
3791 if (V.isInvalid())
3792 return QualType();
3793 }
3794
3795 // These operators return the element type of a complex type.
3796 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
3797 return CT->getElementType();
3798
3799 // Otherwise they pass through real integer and floating point types here.
3800 if (V.get()->getType()->isArithmeticType())
3801 return V.get()->getType();
3802
3803 // Test for placeholders.
3804 ExprResult PR = S.CheckPlaceholderExpr(V.get());
3805 if (PR.isInvalid()) return QualType();
3806 if (PR.get() != V.get()) {
3807 V = PR;
3808 return CheckRealImagOperand(S, V, Loc, IsReal);
3809 }
3810
3811 // Reject anything else.
3812 S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
3813 << (IsReal ? "__real" : "__imag");
3814 return QualType();
3815}
3816
3817
3818
3819ExprResult
3820Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
3821 tok::TokenKind Kind, Expr *Input) {
3822 UnaryOperatorKind Opc;
3823 switch (Kind) {
3824 default: llvm_unreachable("Unknown unary op!");
3825 case tok::plusplus: Opc = UO_PostInc; break;
3826 case tok::minusminus: Opc = UO_PostDec; break;
3827 }
3828
3829 // Since this might is a postfix expression, get rid of ParenListExprs.
3830 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
3831 if (Result.isInvalid()) return ExprError();
3832 Input = Result.get();
3833
3834 return BuildUnaryOp(S, OpLoc, Opc, Input);
3835}
3836
3837/// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
3838///
3839/// \return true on error
3840static bool checkArithmeticOnObjCPointer(Sema &S,
3841 SourceLocation opLoc,
3842 Expr *op) {
3843 assert(op->getType()->isObjCObjectPointerType());
3844 if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
3845 !S.LangOpts.ObjCSubscriptingLegacyRuntime)
3846 return false;
3847
3848 S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
3849 << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
3850 << op->getSourceRange();
3851 return true;
3852}
3853
3854ExprResult
3855Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
3856 Expr *idx, SourceLocation rbLoc) {
3857 // Since this might be a postfix expression, get rid of ParenListExprs.
3858 if (isa<ParenListExpr>(base)) {
3859 ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
3860 if (result.isInvalid()) return ExprError();
3861 base = result.get();
3862 }
3863
3864 // Handle any non-overload placeholder types in the base and index
3865 // expressions. We can't handle overloads here because the other
3866 // operand might be an overloadable type, in which case the overload
3867 // resolution for the operator overload should get the first crack
3868 // at the overload.
3869 if (base->getType()->isNonOverloadPlaceholderType()) {
3870 ExprResult result = CheckPlaceholderExpr(base);
3871 if (result.isInvalid()) return ExprError();
3872 base = result.get();
3873 }
3874 if (idx->getType()->isNonOverloadPlaceholderType()) {
3875 ExprResult result = CheckPlaceholderExpr(idx);
3876 if (result.isInvalid()) return ExprError();
3877 idx = result.get();
3878 }
3879
3880 // Build an unanalyzed expression if either operand is type-dependent.
3881 if (getLangOpts().CPlusPlus &&
3882 (base->isTypeDependent() || idx->isTypeDependent())) {
3883 return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
3884 VK_LValue, OK_Ordinary, rbLoc);
3885 }
3886
3887 // Use C++ overloaded-operator rules if either operand has record
3888 // type. The spec says to do this if either type is *overloadable*,
3889 // but enum types can't declare subscript operators or conversion
3890 // operators, so there's nothing interesting for overload resolution
3891 // to do if there aren't any record types involved.
3892 //
3893 // ObjC pointers have their own subscripting logic that is not tied
3894 // to overload resolution and so should not take this path.
3895 if (getLangOpts().CPlusPlus &&
3896 (base->getType()->isRecordType() ||
3897 (!base->getType()->isObjCObjectPointerType() &&
3898 idx->getType()->isRecordType()))) {
3899 return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
3900 }
3901
3902 return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
3903}
3904
3905ExprResult
3906Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
3907 Expr *Idx, SourceLocation RLoc) {
3908 Expr *LHSExp = Base;
3909 Expr *RHSExp = Idx;
3910
3911 // Perform default conversions.
3912 if (!LHSExp->getType()->getAs<VectorType>()) {
3913 ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
3914 if (Result.isInvalid())
3915 return ExprError();
3916 LHSExp = Result.get();
3917 }
3918 ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
3919 if (Result.isInvalid())
3920 return ExprError();
3921 RHSExp = Result.get();
3922
3923 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
3924 ExprValueKind VK = VK_LValue;
3925 ExprObjectKind OK = OK_Ordinary;
3926
3927 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
3928 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
3929 // in the subscript position. As a result, we need to derive the array base
3930 // and index from the expression types.
3931 Expr *BaseExpr, *IndexExpr;
3932 QualType ResultType;
3933 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
3934 BaseExpr = LHSExp;
3935 IndexExpr = RHSExp;
3936 ResultType = Context.DependentTy;
3937 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
3938 BaseExpr = LHSExp;
3939 IndexExpr = RHSExp;
3940 ResultType = PTy->getPointeeType();
3941 } else if (const ObjCObjectPointerType *PTy =
3942 LHSTy->getAs<ObjCObjectPointerType>()) {
3943 BaseExpr = LHSExp;
3944 IndexExpr = RHSExp;
3945
3946 // Use custom logic if this should be the pseudo-object subscript
3947 // expression.
3948 if (!LangOpts.isSubscriptPointerArithmetic())
3949 return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
3950 nullptr);
3951
3952 ResultType = PTy->getPointeeType();
3953 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
3954 // Handle the uncommon case of "123[Ptr]".
3955 BaseExpr = RHSExp;
3956 IndexExpr = LHSExp;
3957 ResultType = PTy->getPointeeType();
3958 } else if (const ObjCObjectPointerType *PTy =
3959 RHSTy->getAs<ObjCObjectPointerType>()) {
3960 // Handle the uncommon case of "123[Ptr]".
3961 BaseExpr = RHSExp;
3962 IndexExpr = LHSExp;
3963 ResultType = PTy->getPointeeType();
3964 if (!LangOpts.isSubscriptPointerArithmetic()) {
3965 Diag(LLoc, diag::err_subscript_nonfragile_interface)
3966 << ResultType << BaseExpr->getSourceRange();
3967 return ExprError();
3968 }
3969 } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
3970 BaseExpr = LHSExp; // vectors: V[123]
3971 IndexExpr = RHSExp;
3972 VK = LHSExp->getValueKind();
3973 if (VK != VK_RValue)
3974 OK = OK_VectorComponent;
3975
3976 // FIXME: need to deal with const...
3977 ResultType = VTy->getElementType();
3978 } else if (LHSTy->isArrayType()) {
3979 // If we see an array that wasn't promoted by
3980 // DefaultFunctionArrayLvalueConversion, it must be an array that
3981 // wasn't promoted because of the C90 rule that doesn't
3982 // allow promoting non-lvalue arrays. Warn, then
3983 // force the promotion here.
3984 Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3985 LHSExp->getSourceRange();
3986 LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
3987 CK_ArrayToPointerDecay).get();
3988 LHSTy = LHSExp->getType();
3989
3990 BaseExpr = LHSExp;
3991 IndexExpr = RHSExp;
3992 ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
3993 } else if (RHSTy->isArrayType()) {
3994 // Same as previous, except for 123[f().a] case
3995 Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
3996 RHSExp->getSourceRange();
3997 RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
3998 CK_ArrayToPointerDecay).get();
3999 RHSTy = RHSExp->getType();
4000
4001 BaseExpr = RHSExp;
4002 IndexExpr = LHSExp;
4003 ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
4004 } else {
4005 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
4006 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
4007 }
4008 // C99 6.5.2.1p1
4009 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
4010 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
4011 << IndexExpr->getSourceRange());
4012
4013 if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4014 IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4015 && !IndexExpr->isTypeDependent())
4016 Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
4017
4018 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4019 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4020 // type. Note that Functions are not objects, and that (in C99 parlance)
4021 // incomplete types are not object types.
4022 if (ResultType->isFunctionType()) {
4023 Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
4024 << ResultType << BaseExpr->getSourceRange();
4025 return ExprError();
4026 }
4027
4028 if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
4029 // GNU extension: subscripting on pointer to void
4030 Diag(LLoc, diag::ext_gnu_subscript_void_type)
4031 << BaseExpr->getSourceRange();
4032
4033 // C forbids expressions of unqualified void type from being l-values.
4034 // See IsCForbiddenLValueType.
4035 if (!ResultType.hasQualifiers()) VK = VK_RValue;
4036 } else if (!ResultType->isDependentType() &&
4037 RequireCompleteType(LLoc, ResultType,
4038 diag::err_subscript_incomplete_type, BaseExpr))
4039 return ExprError();
4040
4041 assert(VK == VK_RValue || LangOpts.CPlusPlus ||
4042 !ResultType.isCForbiddenLValueType());
4043
4044 return new (Context)
4045 ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
4046}
4047
4048ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
4049 FunctionDecl *FD,
4050 ParmVarDecl *Param) {
4051 if (Param->hasUnparsedDefaultArg()) {
4052 Diag(CallLoc,
4053 diag::err_use_of_default_argument_to_function_declared_later) <<
4054 FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
4055 Diag(UnparsedDefaultArgLocs[Param],
4056 diag::note_default_argument_declared_here);
4057 return ExprError();
4058 }
4059
4060 if (Param->hasUninstantiatedDefaultArg()) {
4061 Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
4062
4063 EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
4064 Param);
4065
4066 // Instantiate the expression.
4067 MultiLevelTemplateArgumentList MutiLevelArgList
4068 = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
4069
4070 InstantiatingTemplate Inst(*this, CallLoc, Param,
4071 MutiLevelArgList.getInnermost());
4072 if (Inst.isInvalid())
4073 return ExprError();
4074
4075 ExprResult Result;
4076 {
4077 // C++ [dcl.fct.default]p5:
4078 // The names in the [default argument] expression are bound, and
4079 // the semantic constraints are checked, at the point where the
4080 // default argument expression appears.
4081 ContextRAII SavedContext(*this, FD);
4082 LocalInstantiationScope Local(*this);
4083 Result = SubstExpr(UninstExpr, MutiLevelArgList);
4084 }
4085 if (Result.isInvalid())
4086 return ExprError();
4087
4088 // Check the expression as an initializer for the parameter.
4089 InitializedEntity Entity
4090 = InitializedEntity::InitializeParameter(Context, Param);
4091 InitializationKind Kind
4092 = InitializationKind::CreateCopy(Param->getLocation(),
4093 /*FIXME:EqualLoc*/UninstExpr->getLocStart());
4094 Expr *ResultE = Result.getAs<Expr>();
4095
4096 InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
4097 Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
4098 if (Result.isInvalid())
4099 return ExprError();
4100
4101 Expr *Arg = Result.getAs<Expr>();
4102 CheckCompletedExpr(Arg, Param->getOuterLocStart());
4103 // Build the default argument expression.
4104 return CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg);
4105 }
4106
4107 // If the default expression creates temporaries, we need to
4108 // push them to the current stack of expression temporaries so they'll
4109 // be properly destroyed.
4110 // FIXME: We should really be rebuilding the default argument with new
4111 // bound temporaries; see the comment in PR5810.
4112 // We don't need to do that with block decls, though, because
4113 // blocks in default argument expression can never capture anything.
4114 if (isa<ExprWithCleanups>(Param->getInit())) {
4115 // Set the "needs cleanups" bit regardless of whether there are
4116 // any explicit objects.
4117 ExprNeedsCleanups = true;
4118
4119 // Append all the objects to the cleanup list. Right now, this
4120 // should always be a no-op, because blocks in default argument
4121 // expressions should never be able to capture anything.
4122 assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
4123 "default argument expression has capturing blocks?");
4124 }
4125
4126 // We already type-checked the argument, so we know it works.
4127 // Just mark all of the declarations in this potentially-evaluated expression
4128 // as being "referenced".
4129 MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
4130 /*SkipLocalVariables=*/true);
4131 return CXXDefaultArgExpr::Create(Context, CallLoc, Param);
4132}
4133
4134
4135Sema::VariadicCallType
4136Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
4137 Expr *Fn) {
4138 if (Proto && Proto->isVariadic()) {
4139 if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
4140 return VariadicConstructor;
4141 else if (Fn && Fn->getType()->isBlockPointerType())
4142 return VariadicBlock;
4143 else if (FDecl) {
4144 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4145 if (Method->isInstance())
4146 return VariadicMethod;
4147 } else if (Fn && Fn->getType() == Context.BoundMemberTy)
4148 return VariadicMethod;
4149 return VariadicFunction;
4150 }
4151 return VariadicDoesNotApply;
4152}
4153
4154namespace {
4155class FunctionCallCCC : public FunctionCallFilterCCC {
4156public:
4157 FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
4158 unsigned NumArgs, MemberExpr *ME)
4159 : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
4160 FunctionName(FuncName) {}
4161
4162 bool ValidateCandidate(const TypoCorrection &candidate) override {
4163 if (!candidate.getCorrectionSpecifier() ||
4164 candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
4165 return false;
4166 }
4167
4168 return FunctionCallFilterCCC::ValidateCandidate(candidate);
4169 }
4170
4171private:
4172 const IdentifierInfo *const FunctionName;
4173};
4174}
4175
4176static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
4177 FunctionDecl *FDecl,
4178 ArrayRef<Expr *> Args) {
4179 MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
4180 DeclarationName FuncName = FDecl->getDeclName();
4181 SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getLocStart();
4182
4183 if (TypoCorrection Corrected = S.CorrectTypo(
4184 DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
4185 S.getScopeForContext(S.CurContext), nullptr,
4186 llvm::make_unique<FunctionCallCCC>(S, FuncName.getAsIdentifierInfo(),
4187 Args.size(), ME),
4188 Sema::CTK_ErrorRecovery)) {
4189 if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
4190 if (Corrected.isOverloaded()) {
4191 OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
4192 OverloadCandidateSet::iterator Best;
4193 for (TypoCorrection::decl_iterator CD = Corrected.begin(),
4194 CDEnd = Corrected.end();
4195 CD != CDEnd; ++CD) {
4196 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
4197 S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
4198 OCS);
4199 }
4200 switch (OCS.BestViableFunction(S, NameLoc, Best)) {
4201 case OR_Success:
4202 ND = Best->Function;
4203 Corrected.setCorrectionDecl(ND);
4204 break;
4205 default:
4206 break;
4207 }
4208 }
4209 if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
4210 return Corrected;
4211 }
4212 }
4213 }
4214 return TypoCorrection();
4215}
4216
4217/// ConvertArgumentsForCall - Converts the arguments specified in
4218/// Args/NumArgs to the parameter types of the function FDecl with
4219/// function prototype Proto. Call is the call expression itself, and
4220/// Fn is the function expression. For a C++ member function, this
4221/// routine does not attempt to convert the object argument. Returns
4222/// true if the call is ill-formed.
4223bool
4224Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
4225 FunctionDecl *FDecl,
4226 const FunctionProtoType *Proto,
4227 ArrayRef<Expr *> Args,
4228 SourceLocation RParenLoc,
4229 bool IsExecConfig) {
4230 // Bail out early if calling a builtin with custom typechecking.
4231 // We don't need to do this in the
4232 if (FDecl)
4233 if (unsigned ID = FDecl->getBuiltinID())
4234 if (Context.BuiltinInfo.hasCustomTypechecking(ID))
4235 return false;
4236
4237 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
4238 // assignment, to the types of the corresponding parameter, ...
4239 unsigned NumParams = Proto->getNumParams();
4240 bool Invalid = false;
4241 unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
4242 unsigned FnKind = Fn->getType()->isBlockPointerType()
4243 ? 1 /* block */
4244 : (IsExecConfig ? 3 /* kernel function (exec config) */
4245 : 0 /* function */);
4246
4247 // If too few arguments are available (and we don't have default
4248 // arguments for the remaining parameters), don't make the call.
4249 if (Args.size() < NumParams) {
4250 if (Args.size() < MinArgs) {
4251 TypoCorrection TC;
4252 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
4253 unsigned diag_id =
4254 MinArgs == NumParams && !Proto->isVariadic()
4255 ? diag::err_typecheck_call_too_few_args_suggest
4256 : diag::err_typecheck_call_too_few_args_at_least_suggest;
4257 diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
4258 << static_cast<unsigned>(Args.size())
4259 << TC.getCorrectionRange());
4260 } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
4261 Diag(RParenLoc,
4262 MinArgs == NumParams && !Proto->isVariadic()
4263 ? diag::err_typecheck_call_too_few_args_one
4264 : diag::err_typecheck_call_too_few_args_at_least_one)
4265 << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
4266 else
4267 Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
4268 ? diag::err_typecheck_call_too_few_args
4269 : diag::err_typecheck_call_too_few_args_at_least)
4270 << FnKind << MinArgs << static_cast<unsigned>(Args.size())
4271 << Fn->getSourceRange();
4272
4273 // Emit the location of the prototype.
4274 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
4275 Diag(FDecl->getLocStart(), diag::note_callee_decl)
4276 << FDecl;
4277
4278 return true;
4279 }
4280 Call->setNumArgs(Context, NumParams);
4281 }
4282
4283 // If too many are passed and not variadic, error on the extras and drop
4284 // them.
4285 if (Args.size() > NumParams) {
4286 if (!Proto->isVariadic()) {
4287 TypoCorrection TC;
4288 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
4289 unsigned diag_id =
4290 MinArgs == NumParams && !Proto->isVariadic()
4291 ? diag::err_typecheck_call_too_many_args_suggest
4292 : diag::err_typecheck_call_too_many_args_at_most_suggest;
4293 diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
4294 << static_cast<unsigned>(Args.size())
4295 << TC.getCorrectionRange());
4296 } else if (NumParams == 1 && FDecl &&
4297 FDecl->getParamDecl(0)->getDeclName())
4298 Diag(Args[NumParams]->getLocStart(),
4299 MinArgs == NumParams
4300 ? diag::err_typecheck_call_too_many_args_one
4301 : diag::err_typecheck_call_too_many_args_at_most_one)
4302 << FnKind << FDecl->getParamDecl(0)
4303 << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
4304 << SourceRange(Args[NumParams]->getLocStart(),
4305 Args.back()->getLocEnd());
4306 else
4307 Diag(Args[NumParams]->getLocStart(),
4308 MinArgs == NumParams
4309 ? diag::err_typecheck_call_too_many_args
4310 : diag::err_typecheck_call_too_many_args_at_most)
4311 << FnKind << NumParams << static_cast<unsigned>(Args.size())
4312 << Fn->getSourceRange()
4313 << SourceRange(Args[NumParams]->getLocStart(),
4314 Args.back()->getLocEnd());
4315
4316 // Emit the location of the prototype.
4317 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
4318 Diag(FDecl->getLocStart(), diag::note_callee_decl)
4319 << FDecl;
4320
4321 // This deletes the extra arguments.
4322 Call->setNumArgs(Context, NumParams);
4323 return true;
4324 }
4325 }
4326 SmallVector<Expr *, 8> AllArgs;
4327 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
4328
4329 Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
4330 Proto, 0, Args, AllArgs, CallType);
4331 if (Invalid)
4332 return true;
4333 unsigned TotalNumArgs = AllArgs.size();
4334 for (unsigned i = 0; i < TotalNumArgs; ++i)
4335 Call->setArg(i, AllArgs[i]);
4336
4337 return false;
4338}
4339
4340bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
4341 const FunctionProtoType *Proto,
4342 unsigned FirstParam, ArrayRef<Expr *> Args,
4343 SmallVectorImpl<Expr *> &AllArgs,
4344 VariadicCallType CallType, bool AllowExplicit,
4345 bool IsListInitialization) {
4346 unsigned NumParams = Proto->getNumParams();
4347 bool Invalid = false;
4348 unsigned ArgIx = 0;
4349 // Continue to check argument types (even if we have too few/many args).
4350 for (unsigned i = FirstParam; i < NumParams; i++) {
4351 QualType ProtoArgType = Proto->getParamType(i);
4352
4353 Expr *Arg;
4354 ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
4355 if (ArgIx < Args.size()) {
4356 Arg = Args[ArgIx++];
4357
4358 if (RequireCompleteType(Arg->getLocStart(),
4359 ProtoArgType,
4360 diag::err_call_incomplete_argument, Arg))
4361 return true;
4362
4363 // Strip the unbridged-cast placeholder expression off, if applicable.
4364 bool CFAudited = false;
4365 if (Arg->getType() == Context.ARCUnbridgedCastTy &&
4366 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
4367 (!Param || !Param->hasAttr<CFConsumedAttr>()))
4368 Arg = stripARCUnbridgedCast(Arg);
4369 else if (getLangOpts().ObjCAutoRefCount &&
4370 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
4371 (!Param || !Param->hasAttr<CFConsumedAttr>()))
4372 CFAudited = true;
4373
4374 InitializedEntity Entity =
4375 Param ? InitializedEntity::InitializeParameter(Context, Param,
4376 ProtoArgType)
4377 : InitializedEntity::InitializeParameter(
4378 Context, ProtoArgType, Proto->isParamConsumed(i));
4379
4380 // Remember that parameter belongs to a CF audited API.
4381 if (CFAudited)
4382 Entity.setParameterCFAudited();
4383
4384 ExprResult ArgE = PerformCopyInitialization(
4385 Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
4386 if (ArgE.isInvalid())
4387 return true;
4388
4389 Arg = ArgE.getAs<Expr>();
4390 } else {
4391 assert(Param && "can't use default arguments without a known callee");
4392
4393 ExprResult ArgExpr =
4394 BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
4395 if (ArgExpr.isInvalid())
4396 return true;
4397
4398 Arg = ArgExpr.getAs<Expr>();
4399 }
4400
4401 // Check for array bounds violations for each argument to the call. This
4402 // check only triggers warnings when the argument isn't a more complex Expr
4403 // with its own checking, such as a BinaryOperator.
4404 CheckArrayAccess(Arg);
4405
4406 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
4407 CheckStaticArrayArgument(CallLoc, Param, Arg);
4408
4409 AllArgs.push_back(Arg);
4410 }
4411
4412 // If this is a variadic call, handle args passed through "...".
4413 if (CallType != VariadicDoesNotApply) {
4414 // Assume that extern "C" functions with variadic arguments that
4415 // return __unknown_anytype aren't *really* variadic.
4416 if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
4417 FDecl->isExternC()) {
4418 for (unsigned i = ArgIx, e = Args.size(); i != e; ++i) {
4419 QualType paramType; // ignored
4420 ExprResult arg = checkUnknownAnyArg(CallLoc, Args[i], paramType);
4421 Invalid |= arg.isInvalid();
4422 AllArgs.push_back(arg.get());
4423 }
4424
4425 // Otherwise do argument promotion, (C99 6.5.2.2p7).
4426 } else {
4427 for (unsigned i = ArgIx, e = Args.size(); i != e; ++i) {
4428 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
4429 FDecl);
4430 Invalid |= Arg.isInvalid();
4431 AllArgs.push_back(Arg.get());
4432 }
4433 }
4434
4435 // Check for array bounds violations.
4436 for (unsigned i = ArgIx, e = Args.size(); i != e; ++i)
4437 CheckArrayAccess(Args[i]);
4438 }
4439 return Invalid;
4440}
4441
4442static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
4443 TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
4444 if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
4445 TL = DTL.getOriginalLoc();
4446 if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
4447 S.Diag(PVD->getLocation(), diag::note_callee_static_array)
4448 << ATL.getLocalSourceRange();
4449}
4450
4451/// CheckStaticArrayArgument - If the given argument corresponds to a static
4452/// array parameter, check that it is non-null, and that if it is formed by
4453/// array-to-pointer decay, the underlying array is sufficiently large.
4454///
4455/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
4456/// array type derivation, then for each call to the function, the value of the
4457/// corresponding actual argument shall provide access to the first element of
4458/// an array with at least as many elements as specified by the size expression.
4459void
4460Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
4461 ParmVarDecl *Param,
4462 const Expr *ArgExpr) {
4463 // Static array parameters are not supported in C++.
4464 if (!Param || getLangOpts().CPlusPlus)
4465 return;
4466
4467 QualType OrigTy = Param->getOriginalType();
4468
4469 const ArrayType *AT = Context.getAsArrayType(OrigTy);
4470 if (!AT || AT->getSizeModifier() != ArrayType::Static)
4471 return;
4472
4473 if (ArgExpr->isNullPointerConstant(Context,
4474 Expr::NPC_NeverValueDependent)) {
4475 Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
4476 DiagnoseCalleeStaticArrayParam(*this, Param);
4477 return;
4478 }
4479
4480 const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
4481 if (!CAT)
4482 return;
4483
4484 const ConstantArrayType *ArgCAT =
4485 Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
4486 if (!ArgCAT)
4487 return;
4488
4489 if (ArgCAT->getSize().ult(CAT->getSize())) {
4490 Diag(CallLoc, diag::warn_static_array_too_small)
4491 << ArgExpr->getSourceRange()
4492 << (unsigned) ArgCAT->getSize().getZExtValue()
4493 << (unsigned) CAT->getSize().getZExtValue();
4494 DiagnoseCalleeStaticArrayParam(*this, Param);
4495 }
4496}
4497
4498/// Given a function expression of unknown-any type, try to rebuild it
4499/// to have a function type.
4500static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
4501
4502/// Is the given type a placeholder that we need to lower out
4503/// immediately during argument processing?
4504static bool isPlaceholderToRemoveAsArg(QualType type) {
4505 // Placeholders are never sugared.
4506 const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
4507 if (!placeholder) return false;
4508
4509 switch (placeholder->getKind()) {
4510 // Ignore all the non-placeholder types.
4511#define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
4512#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
4513#include "clang/AST/BuiltinTypes.def"
4514 return false;
4515
4516 // We cannot lower out overload sets; they might validly be resolved
4517 // by the call machinery.
4518 case BuiltinType::Overload:
4519 return false;
4520
4521 // Unbridged casts in ARC can be handled in some call positions and
4522 // should be left in place.
4523 case BuiltinType::ARCUnbridgedCast:
4524 return false;
4525
4526 // Pseudo-objects should be converted as soon as possible.
4527 case BuiltinType::PseudoObject:
4528 return true;
4529
4530 // The debugger mode could theoretically but currently does not try
4531 // to resolve unknown-typed arguments based on known parameter types.
4532 case BuiltinType::UnknownAny:
4533 return true;
4534
4535 // These are always invalid as call arguments and should be reported.
4536 case BuiltinType::BoundMember:
4537 case BuiltinType::BuiltinFn:
4538 return true;
4539 }
4540 llvm_unreachable("bad builtin type kind");
4541}
4542
4543/// Check an argument list for placeholders that we won't try to
4544/// handle later.
4545static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
4546 // Apply this processing to all the arguments at once instead of
4547 // dying at the first failure.
4548 bool hasInvalid = false;
4549 for (size_t i = 0, e = args.size(); i != e; i++) {
4550 if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
4551 ExprResult result = S.CheckPlaceholderExpr(args[i]);
4552 if (result.isInvalid()) hasInvalid = true;
4553 else args[i] = result.get();
4554 } else if (hasInvalid) {
4555 (void)S.CorrectDelayedTyposInExpr(args[i]);
4556 }
4557 }
4558 return hasInvalid;
4559}
4560
4561/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
4562/// This provides the location of the left/right parens and a list of comma
4563/// locations.
4564ExprResult
4565Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
4566 MultiExprArg ArgExprs, SourceLocation RParenLoc,
4567 Expr *ExecConfig, bool IsExecConfig) {
4568 // Since this might be a postfix expression, get rid of ParenListExprs.
4569 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
4570 if (Result.isInvalid()) return ExprError();
4571 Fn = Result.get();
4572
4573 if (checkArgsForPlaceholders(*this, ArgExprs))
4574 return ExprError();
4575
4576 if (getLangOpts().CPlusPlus) {
4577 // If this is a pseudo-destructor expression, build the call immediately.
4578 if (isa<CXXPseudoDestructorExpr>(Fn)) {
4579 if (!ArgExprs.empty()) {
4580 // Pseudo-destructor calls should not have any arguments.
4581 Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
4582 << FixItHint::CreateRemoval(
4583 SourceRange(ArgExprs[0]->getLocStart(),
4584 ArgExprs.back()->getLocEnd()));
4585 }
4586
4587 return new (Context)
4588 CallExpr(Context, Fn, None, Context.VoidTy, VK_RValue, RParenLoc);
4589 }
4590 if (Fn->getType() == Context.PseudoObjectTy) {
4591 ExprResult result = CheckPlaceholderExpr(Fn);
4592 if (result.isInvalid()) return ExprError();
4593 Fn = result.get();
4594 }
4595
4596 // Determine whether this is a dependent call inside a C++ template,
4597 // in which case we won't do any semantic analysis now.
4598 // FIXME: Will need to cache the results of name lookup (including ADL) in
4599 // Fn.
4600 bool Dependent = false;
4601 if (Fn->isTypeDependent())
4602 Dependent = true;
4603 else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
4604 Dependent = true;
4605
4606 if (Dependent) {
4607 if (ExecConfig) {
4608 return new (Context) CUDAKernelCallExpr(
4609 Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
4610 Context.DependentTy, VK_RValue, RParenLoc);
4611 } else {
4612 return new (Context) CallExpr(
4613 Context, Fn, ArgExprs, Context.DependentTy, VK_RValue, RParenLoc);
4614 }
4615 }
4616
4617 // Determine whether this is a call to an object (C++ [over.call.object]).
4618 if (Fn->getType()->isRecordType())
4619 return BuildCallToObjectOfClassType(S, Fn, LParenLoc, ArgExprs,
4620 RParenLoc);
4621
4622 if (Fn->getType() == Context.UnknownAnyTy) {
4623 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
4624 if (result.isInvalid()) return ExprError();
4625 Fn = result.get();
4626 }
4627
4628 if (Fn->getType() == Context.BoundMemberTy) {
4629 return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs, RParenLoc);
4630 }
4631 }
4632
4633 // Check for overloaded calls. This can happen even in C due to extensions.
4634 if (Fn->getType() == Context.OverloadTy) {
4635 OverloadExpr::FindResult find = OverloadExpr::find(Fn);
4636
4637 // We aren't supposed to apply this logic for if there's an '&' involved.
4638 if (!find.HasFormOfMemberPointer) {
4639 OverloadExpr *ovl = find.Expression;
4640 if (isa<UnresolvedLookupExpr>(ovl)) {
4641 UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
4642 return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs,
4643 RParenLoc, ExecConfig);
4644 } else {
4645 return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs,
4646 RParenLoc);
4647 }
4648 }
4649 }
4650
4651 // If we're directly calling a function, get the appropriate declaration.
4652 if (Fn->getType() == Context.UnknownAnyTy) {
4653 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
4654 if (result.isInvalid()) return ExprError();
4655 Fn = result.get();
4656 }
4657
4658 Expr *NakedFn = Fn->IgnoreParens();
4659
4660 NamedDecl *NDecl = nullptr;
4661 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
4662 if (UnOp->getOpcode() == UO_AddrOf)
4663 NakedFn = UnOp->getSubExpr()->IgnoreParens();
4664
4665 if (isa<DeclRefExpr>(NakedFn))
4666 NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
4667 else if (isa<MemberExpr>(NakedFn))
4668 NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
4669
4670 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
4671 if (FD->hasAttr<EnableIfAttr>()) {
4672 if (const EnableIfAttr *Attr = CheckEnableIf(FD, ArgExprs, true)) {
4673 Diag(Fn->getLocStart(),
4674 isa<CXXMethodDecl>(FD) ?
4675 diag::err_ovl_no_viable_member_function_in_call :
4676 diag::err_ovl_no_viable_function_in_call)
4677 << FD << FD->getSourceRange();
4678 Diag(FD->getLocation(),
4679 diag::note_ovl_candidate_disabled_by_enable_if_attr)
4680 << Attr->getCond()->getSourceRange() << Attr->getMessage();
4681 }
4682 }
4683 }
4684
4685 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
4686 ExecConfig, IsExecConfig);
4687}
4688
4689/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
4690///
4691/// __builtin_astype( value, dst type )
4692///
4693ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
4694 SourceLocation BuiltinLoc,
4695 SourceLocation RParenLoc) {
4696 ExprValueKind VK = VK_RValue;
4697 ExprObjectKind OK = OK_Ordinary;
4698 QualType DstTy = GetTypeFromParser(ParsedDestTy);
4699 QualType SrcTy = E->getType();
4700 if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
4701 return ExprError(Diag(BuiltinLoc,
4702 diag::err_invalid_astype_of_different_size)
4703 << DstTy
4704 << SrcTy
4705 << E->getSourceRange());
4706 return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
4707}
4708
4709/// ActOnConvertVectorExpr - create a new convert-vector expression from the
4710/// provided arguments.
4711///
4712/// __builtin_convertvector( value, dst type )
4713///
4714ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
4715 SourceLocation BuiltinLoc,
4716 SourceLocation RParenLoc) {
4717 TypeSourceInfo *TInfo;
4718 GetTypeFromParser(ParsedDestTy, &TInfo);
4719 return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
4720}
4721
4722/// BuildResolvedCallExpr - Build a call to a resolved expression,
4723/// i.e. an expression not of \p OverloadTy. The expression should
4724/// unary-convert to an expression of function-pointer or
4725/// block-pointer type.
4726///
4727/// \param NDecl the declaration being called, if available
4728ExprResult
4729Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
4730 SourceLocation LParenLoc,
4731 ArrayRef<Expr *> Args,
4732 SourceLocation RParenLoc,
4733 Expr *Config, bool IsExecConfig) {
4734 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
4735 unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
4736
4737 // Promote the function operand.
4738 // We special-case function promotion here because we only allow promoting
4739 // builtin functions to function pointers in the callee of a call.
4740 ExprResult Result;
4741 if (BuiltinID &&
4742 Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
4743 Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
4744 CK_BuiltinFnToFnPtr).get();
4745 } else {
4746 Result = CallExprUnaryConversions(Fn);
4747 }
4748 if (Result.isInvalid())
4749 return ExprError();
4750 Fn = Result.get();
4751
4752 // Make the call expr early, before semantic checks. This guarantees cleanup
4753 // of arguments and function on error.
4754 CallExpr *TheCall;
4755 if (Config)
4756 TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
4757 cast<CallExpr>(Config), Args,
4758 Context.BoolTy, VK_RValue,
4759 RParenLoc);
4760 else
4761 TheCall = new (Context) CallExpr(Context, Fn, Args, Context.BoolTy,
4762 VK_RValue, RParenLoc);
4763
4764 // Bail out early if calling a builtin with custom typechecking.
4765 if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
4766 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
4767
4768 retry:
4769 const FunctionType *FuncT;
4770 if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
4771 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
4772 // have type pointer to function".
4773 FuncT = PT->getPointeeType()->getAs<FunctionType>();
4774 if (!FuncT)
4775 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4776 << Fn->getType() << Fn->getSourceRange());
4777 } else if (const BlockPointerType *BPT =
4778 Fn->getType()->getAs<BlockPointerType>()) {
4779 FuncT = BPT->getPointeeType()->castAs<FunctionType>();
4780 } else {
4781 // Handle calls to expressions of unknown-any type.
4782 if (Fn->getType() == Context.UnknownAnyTy) {
4783 ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
4784 if (rewrite.isInvalid()) return ExprError();
4785 Fn = rewrite.get();
4786 TheCall->setCallee(Fn);
4787 goto retry;
4788 }
4789
4790 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
4791 << Fn->getType() << Fn->getSourceRange());
4792 }
4793
4794 if (getLangOpts().CUDA) {
4795 if (Config) {
4796 // CUDA: Kernel calls must be to global functions
4797 if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
4798 return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
4799 << FDecl->getName() << Fn->getSourceRange());
4800
4801 // CUDA: Kernel function must have 'void' return type
4802 if (!FuncT->getReturnType()->isVoidType())
4803 return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
4804 << Fn->getType() << Fn->getSourceRange());
4805 } else {
4806 // CUDA: Calls to global functions must be configured
4807 if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
4808 return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
4809 << FDecl->getName() << Fn->getSourceRange());
4810 }
4811 }
4812
4813 // Check for a valid return type
4814 if (CheckCallReturnType(FuncT->getReturnType(), Fn->getLocStart(), TheCall,
4815 FDecl))
4816 return ExprError();
4817
4818 // We know the result type of the call, set it.
4819 TheCall->setType(FuncT->getCallResultType(Context));
4820 TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
4821
4822 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
4823 if (Proto) {
4824 if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
4825 IsExecConfig))
4826 return ExprError();
4827 } else {
4828 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
4829
4830 if (FDecl) {
4831 // Check if we have too few/too many template arguments, based
4832 // on our knowledge of the function definition.
4833 const FunctionDecl *Def = nullptr;
4834 if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
4835 Proto = Def->getType()->getAs<FunctionProtoType>();
4836 if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
4837 Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
4838 << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
4839 }
4840
4841 // If the function we're calling isn't a function prototype, but we have
4842 // a function prototype from a prior declaratiom, use that prototype.
4843 if (!FDecl->hasPrototype())
4844 Proto = FDecl->getType()->getAs<FunctionProtoType>();
4845 }
4846
4847 // Promote the arguments (C99 6.5.2.2p6).
4848 for (unsigned i = 0, e = Args.size(); i != e; i++) {
4849 Expr *Arg = Args[i];
4850
4851 if (Proto && i < Proto->getNumParams()) {
4852 InitializedEntity Entity = InitializedEntity::InitializeParameter(
4853 Context, Proto->getParamType(i), Proto->isParamConsumed(i));
4854 ExprResult ArgE =
4855 PerformCopyInitialization(Entity, SourceLocation(), Arg);
4856 if (ArgE.isInvalid())
4857 return true;
4858
4859 Arg = ArgE.getAs<Expr>();
4860
4861 } else {
4862 ExprResult ArgE = DefaultArgumentPromotion(Arg);
4863
4864 if (ArgE.isInvalid())
4865 return true;
4866
4867 Arg = ArgE.getAs<Expr>();
4868 }
4869
4870 if (RequireCompleteType(Arg->getLocStart(),
4871 Arg->getType(),
4872 diag::err_call_incomplete_argument, Arg))
4873 return ExprError();
4874
4875 TheCall->setArg(i, Arg);
4876 }
4877 }
4878
4879 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4880 if (!Method->isStatic())
4881 return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
4882 << Fn->getSourceRange());
4883
4884 // Check for sentinels
4885 if (NDecl)
4886 DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
4887
4888 // Do special checking on direct calls to functions.
4889 if (FDecl) {
4890 if (CheckFunctionCall(FDecl, TheCall, Proto))
4891 return ExprError();
4892
4893 if (BuiltinID)
4894 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
4895 } else if (NDecl) {
4896 if (CheckPointerCall(NDecl, TheCall, Proto))
4897 return ExprError();
4898 } else {
4899 if (CheckOtherCall(TheCall, Proto))
4900 return ExprError();
4901 }
4902
4903 return MaybeBindToTemporary(TheCall);
4904}
4905
4906ExprResult
4907Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
4908 SourceLocation RParenLoc, Expr *InitExpr) {
4909 assert(Ty && "ActOnCompoundLiteral(): missing type");
4910 // FIXME: put back this assert when initializers are worked out.
4911 //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
4912
4913 TypeSourceInfo *TInfo;
4914 QualType literalType = GetTypeFromParser(Ty, &TInfo);
4915 if (!TInfo)
4916 TInfo = Context.getTrivialTypeSourceInfo(literalType);
4917
4918 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
4919}
4920
4921ExprResult
4922Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
4923 SourceLocation RParenLoc, Expr *LiteralExpr) {
4924 QualType literalType = TInfo->getType();
4925
4926 if (literalType->isArrayType()) {
4927 if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
4928 diag::err_illegal_decl_array_incomplete_type,
4929 SourceRange(LParenLoc,
4930 LiteralExpr->getSourceRange().getEnd())))
4931 return ExprError();
4932 if (literalType->isVariableArrayType())
4933 return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
4934 << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
4935 } else if (!literalType->isDependentType() &&
4936 RequireCompleteType(LParenLoc, literalType,
4937 diag::err_typecheck_decl_incomplete_type,
4938 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
4939 return ExprError();
4940
4941 InitializedEntity Entity
4942 = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
4943 InitializationKind Kind
4944 = InitializationKind::CreateCStyleCast(LParenLoc,
4945 SourceRange(LParenLoc, RParenLoc),
4946 /*InitList=*/true);
4947 InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
4948 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
4949 &literalType);
4950 if (Result.isInvalid())
4951 return ExprError();
4952 LiteralExpr = Result.get();
4953
4954 bool isFileScope = getCurFunctionOrMethodDecl() == nullptr;
4955 if (isFileScope &&
4956 !LiteralExpr->isTypeDependent() &&
4957 !LiteralExpr->isValueDependent() &&
4958 !literalType->isDependentType()) { // 6.5.2.5p3
4959 if (CheckForConstantInitializer(LiteralExpr, literalType))
4960 return ExprError();
4961 }
4962
4963 // In C, compound literals are l-values for some reason.
4964 ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
4965
4966 return MaybeBindToTemporary(
4967 new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
4968 VK, LiteralExpr, isFileScope));
4969}
4970
4971ExprResult
4972Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
4973 SourceLocation RBraceLoc) {
4974 // Immediately handle non-overload placeholders. Overloads can be
4975 // resolved contextually, but everything else here can't.
4976 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
4977 if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
4978 ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
4979
4980 // Ignore failures; dropping the entire initializer list because
4981 // of one failure would be terrible for indexing/etc.
4982 if (result.isInvalid()) continue;
4983
4984 InitArgList[I] = result.get();
4985 }
4986 }
4987
4988 // Semantic analysis for initializers is done by ActOnDeclarator() and
4989 // CheckInitializer() - it requires knowledge of the object being intialized.
4990
4991 InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
4992 RBraceLoc);
4993 E->setType(Context.VoidTy); // FIXME: just a place holder for now.
4994 return E;
4995}
4996
4997/// Do an explicit extend of the given block pointer if we're in ARC.
4998static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
4999 assert(E.get()->getType()->isBlockPointerType());
5000 assert(E.get()->isRValue());
5001
5002 // Only do this in an r-value context.
5003 if (!S.getLangOpts().ObjCAutoRefCount) return;
5004
5005 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
5006 CK_ARCExtendBlockObject, E.get(),
5007 /*base path*/ nullptr, VK_RValue);
5008 S.ExprNeedsCleanups = true;
5009}
5010
5011/// Prepare a conversion of the given expression to an ObjC object
5012/// pointer type.
5013CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
5014 QualType type = E.get()->getType();
5015 if (type->isObjCObjectPointerType()) {
5016 return CK_BitCast;
5017 } else if (type->isBlockPointerType()) {
5018 maybeExtendBlockObject(*this, E);
5019 return CK_BlockPointerToObjCPointerCast;
5020 } else {
5021 assert(type->isPointerType());
5022 return CK_CPointerToObjCPointerCast;
5023 }
5024}
5025
5026/// Prepares for a scalar cast, performing all the necessary stages
5027/// except the final cast and returning the kind required.
5028CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
5029 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
5030 // Also, callers should have filtered out the invalid cases with
5031 // pointers. Everything else should be possible.
5032
5033 QualType SrcTy = Src.get()->getType();
5034 if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
5035 return CK_NoOp;
5036
5037 switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
5038 case Type::STK_MemberPointer:
5039 llvm_unreachable("member pointer type in C");
5040
5041 case Type::STK_CPointer:
5042 case Type::STK_BlockPointer:
5043 case Type::STK_ObjCObjectPointer:
5044 switch (DestTy->getScalarTypeKind()) {
5045 case Type::STK_CPointer: {
5046 unsigned SrcAS = SrcTy->getPointeeType().getAddressSpace();
5047 unsigned DestAS = DestTy->getPointeeType().getAddressSpace();
5048 if (SrcAS != DestAS)
5049 return CK_AddressSpaceConversion;
5050 return CK_BitCast;
5051 }
5052 case Type::STK_BlockPointer:
5053 return (SrcKind == Type::STK_BlockPointer
5054 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
5055 case Type::STK_ObjCObjectPointer:
5056 if (SrcKind == Type::STK_ObjCObjectPointer)
5057 return CK_BitCast;
5058 if (SrcKind == Type::STK_CPointer)
5059 return CK_CPointerToObjCPointerCast;
5060 maybeExtendBlockObject(*this, Src);
5061 return CK_BlockPointerToObjCPointerCast;
5062 case Type::STK_Bool:
5063 return CK_PointerToBoolean;
5064 case Type::STK_Integral:
5065 return CK_PointerToIntegral;
5066 case Type::STK_Floating:
5067 case Type::STK_FloatingComplex:
5068 case Type::STK_IntegralComplex:
5069 case Type::STK_MemberPointer:
5070 llvm_unreachable("illegal cast from pointer");
5071 }
5072 llvm_unreachable("Should have returned before this");
5073
5074 case Type::STK_Bool: // casting from bool is like casting from an integer
5075 case Type::STK_Integral:
5076 switch (DestTy->getScalarTypeKind()) {
5077 case Type::STK_CPointer:
5078 case Type::STK_ObjCObjectPointer:
5079 case Type::STK_BlockPointer:
5080 if (Src.get()->isNullPointerConstant(Context,
5081 Expr::NPC_ValueDependentIsNull))
5082 return CK_NullToPointer;
5083 return CK_IntegralToPointer;
5084 case Type::STK_Bool:
5085 return CK_IntegralToBoolean;
5086 case Type::STK_Integral:
5087 return CK_IntegralCast;
5088 case Type::STK_Floating:
5089 return CK_IntegralToFloating;
5090 case Type::STK_IntegralComplex:
5091 Src = ImpCastExprToType(Src.get(),
5092 DestTy->castAs<ComplexType>()->getElementType(),
5093 CK_IntegralCast);
5094 return CK_IntegralRealToComplex;
5095 case Type::STK_FloatingComplex:
5096 Src = ImpCastExprToType(Src.get(),
5097 DestTy->castAs<ComplexType>()->getElementType(),
5098 CK_IntegralToFloating);
5099 return CK_FloatingRealToComplex;
5100 case Type::STK_MemberPointer:
5101 llvm_unreachable("member pointer type in C");
5102 }
5103 llvm_unreachable("Should have returned before this");
5104
5105 case Type::STK_Floating:
5106 switch (DestTy->getScalarTypeKind()) {
5107 case Type::STK_Floating:
5108 return CK_FloatingCast;
5109 case Type::STK_Bool:
5110 return CK_FloatingToBoolean;
5111 case Type::STK_Integral:
5112 return CK_FloatingToIntegral;
5113 case Type::STK_FloatingComplex:
5114 Src = ImpCastExprToType(Src.get(),
5115 DestTy->castAs<ComplexType>()->getElementType(),
5116 CK_FloatingCast);
5117 return CK_FloatingRealToComplex;
5118 case Type::STK_IntegralComplex:
5119 Src = ImpCastExprToType(Src.get(),
5120 DestTy->castAs<ComplexType>()->getElementType(),
5121 CK_FloatingToIntegral);
5122 return CK_IntegralRealToComplex;
5123 case Type::STK_CPointer:
5124 case Type::STK_ObjCObjectPointer:
5125 case Type::STK_BlockPointer:
5126 llvm_unreachable("valid float->pointer cast?");
5127 case Type::STK_MemberPointer:
5128 llvm_unreachable("member pointer type in C");
5129 }
5130 llvm_unreachable("Should have returned before this");
5131
5132 case Type::STK_FloatingComplex:
5133 switch (DestTy->getScalarTypeKind()) {
5134 case Type::STK_FloatingComplex:
5135 return CK_FloatingComplexCast;
5136 case Type::STK_IntegralComplex:
5137 return CK_FloatingComplexToIntegralComplex;
5138 case Type::STK_Floating: {
5139 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
5140 if (Context.hasSameType(ET, DestTy))
5141 return CK_FloatingComplexToReal;
5142 Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
5143 return CK_FloatingCast;
5144 }
5145 case Type::STK_Bool:
5146 return CK_FloatingComplexToBoolean;
5147 case Type::STK_Integral:
5148 Src = ImpCastExprToType(Src.get(),
5149 SrcTy->castAs<ComplexType>()->getElementType(),
5150 CK_FloatingComplexToReal);
5151 return CK_FloatingToIntegral;
5152 case Type::STK_CPointer:
5153 case Type::STK_ObjCObjectPointer:
5154 case Type::STK_BlockPointer:
5155 llvm_unreachable("valid complex float->pointer cast?");
5156 case Type::STK_MemberPointer:
5157 llvm_unreachable("member pointer type in C");
5158 }
5159 llvm_unreachable("Should have returned before this");
5160
5161 case Type::STK_IntegralComplex:
5162 switch (DestTy->getScalarTypeKind()) {
5163 case Type::STK_FloatingComplex:
5164 return CK_IntegralComplexToFloatingComplex;
5165 case Type::STK_IntegralComplex:
5166 return CK_IntegralComplexCast;
5167 case Type::STK_Integral: {
5168 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
5169 if (Context.hasSameType(ET, DestTy))
5170 return CK_IntegralComplexToReal;
5171 Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
5172 return CK_IntegralCast;
5173 }
5174 case Type::STK_Bool:
5175 return CK_IntegralComplexToBoolean;
5176 case Type::STK_Floating:
5177 Src = ImpCastExprToType(Src.get(),
5178 SrcTy->castAs<ComplexType>()->getElementType(),
5179 CK_IntegralComplexToReal);
5180 return CK_IntegralToFloating;
5181 case Type::STK_CPointer:
5182 case Type::STK_ObjCObjectPointer:
5183 case Type::STK_BlockPointer:
5184 llvm_unreachable("valid complex int->pointer cast?");
5185 case Type::STK_MemberPointer:
5186 llvm_unreachable("member pointer type in C");
5187 }
5188 llvm_unreachable("Should have returned before this");
5189 }
5190
5191 llvm_unreachable("Unhandled scalar cast");
5192}
5193
5194static bool breakDownVectorType(QualType type, uint64_t &len,
5195 QualType &eltType) {
5196 // Vectors are simple.
5197 if (const VectorType *vecType = type->getAs<VectorType>()) {
5198 len = vecType->getNumElements();
5199 eltType = vecType->getElementType();
5200 assert(eltType->isScalarType());
5201 return true;
5202 }
5203
5204 // We allow lax conversion to and from non-vector types, but only if
5205 // they're real types (i.e. non-complex, non-pointer scalar types).
5206 if (!type->isRealType()) return false;
5207
5208 len = 1;
5209 eltType = type;
5210 return true;
5211}
5212
5213static bool VectorTypesMatch(Sema &S, QualType srcTy, QualType destTy) {
5214 uint64_t srcLen, destLen;
5215 QualType srcElt, destElt;
5216 if (!breakDownVectorType(srcTy, srcLen, srcElt)) return false;
5217 if (!breakDownVectorType(destTy, destLen, destElt)) return false;
5218
5219 // ASTContext::getTypeSize will return the size rounded up to a
5220 // power of 2, so instead of using that, we need to use the raw
5221 // element size multiplied by the element count.
5222 uint64_t srcEltSize = S.Context.getTypeSize(srcElt);
5223 uint64_t destEltSize = S.Context.getTypeSize(destElt);
5224
5225 return (srcLen * srcEltSize == destLen * destEltSize);
5226}
5227
5228/// Is this a legal conversion between two known vector types?
5229bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
5230 assert(destTy->isVectorType() || srcTy->isVectorType());
5231
5232 if (!Context.getLangOpts().LaxVectorConversions)
5233 return false;
5234 return VectorTypesMatch(*this, srcTy, destTy);
5235}
5236
5237bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
5238 CastKind &Kind) {
5239 assert(VectorTy->isVectorType() && "Not a vector type!");
5240
5241 if (Ty->isVectorType() || Ty->isIntegerType()) {
5242 if (!VectorTypesMatch(*this, Ty, VectorTy))
5243 return Diag(R.getBegin(),
5244 Ty->isVectorType() ?
5245 diag::err_invalid_conversion_between_vectors :
5246 diag::err_invalid_conversion_between_vector_and_integer)
5247 << VectorTy << Ty << R;
5248 } else
5249 return Diag(R.getBegin(),
5250 diag::err_invalid_conversion_between_vector_and_scalar)
5251 << VectorTy << Ty << R;
5252
5253 Kind = CK_BitCast;
5254 return false;
5255}
5256
5257ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
5258 Expr *CastExpr, CastKind &Kind) {
5259 assert(DestTy->isExtVectorType() && "Not an extended vector type!");
5260
5261 QualType SrcTy = CastExpr->getType();
5262
5263 // If SrcTy is a VectorType, the total size must match to explicitly cast to
5264 // an ExtVectorType.
5265 // In OpenCL, casts between vectors of different types are not allowed.
5266 // (See OpenCL 6.2).
5267 if (SrcTy->isVectorType()) {
5268 if (!VectorTypesMatch(*this, SrcTy, DestTy)
5269 || (getLangOpts().OpenCL &&
5270 (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
5271 Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
5272 << DestTy << SrcTy << R;
5273 return ExprError();
5274 }
5275 Kind = CK_BitCast;
5276 return CastExpr;
5277 }
5278
5279 // All non-pointer scalars can be cast to ExtVector type. The appropriate
5280 // conversion will take place first from scalar to elt type, and then
5281 // splat from elt type to vector.
5282 if (SrcTy->isPointerType())
5283 return Diag(R.getBegin(),
5284 diag::err_invalid_conversion_between_vector_and_scalar)
5285 << DestTy << SrcTy << R;
5286
5287 QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
5288 ExprResult CastExprRes = CastExpr;
5289 CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
5290 if (CastExprRes.isInvalid())
5291 return ExprError();
5292 CastExpr = ImpCastExprToType(CastExprRes.get(), DestElemTy, CK).get();
5293
5294 Kind = CK_VectorSplat;
5295 return CastExpr;
5296}
5297
5298ExprResult
5299Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
5300 Declarator &D, ParsedType &Ty,
5301 SourceLocation RParenLoc, Expr *CastExpr) {
5302 assert(!D.isInvalidType() && (CastExpr != nullptr) &&
5303 "ActOnCastExpr(): missing type or expr");
5304
5305 TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
5306 if (D.isInvalidType())
5307 return ExprError();
5308
5309 if (getLangOpts().CPlusPlus) {
5310 // Check that there are no default arguments (C++ only).
5311 CheckExtraCXXDefaultArguments(D);
5312 } else {
5313 // Make sure any TypoExprs have been dealt with.
5314 ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
5315 if (!Res.isUsable())
5316 return ExprError();
5317 CastExpr = Res.get();
5318 }
5319
5320 checkUnusedDeclAttributes(D);
5321
5322 QualType castType = castTInfo->getType();
5323 Ty = CreateParsedType(castType, castTInfo);
5324
5325 bool isVectorLiteral = false;
5326
5327 // Check for an altivec or OpenCL literal,
5328 // i.e. all the elements are integer constants.
5329 ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
5330 ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
5331 if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
5332 && castType->isVectorType() && (PE || PLE)) {
5333 if (PLE && PLE->getNumExprs() == 0) {
5334 Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
5335 return ExprError();
5336 }
5337 if (PE || PLE->getNumExprs() == 1) {
5338 Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
5339 if (!E->getType()->isVectorType())
5340 isVectorLiteral = true;
5341 }
5342 else
5343 isVectorLiteral = true;
5344 }
5345
5346 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
5347 // then handle it as such.
5348 if (isVectorLiteral)
5349 return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
5350
5351 // If the Expr being casted is a ParenListExpr, handle it specially.
5352 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
5353 // sequence of BinOp comma operators.
5354 if (isa<ParenListExpr>(CastExpr)) {
5355 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
5356 if (Result.isInvalid()) return ExprError();
5357 CastExpr = Result.get();
5358 }
5359
5360 if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
5361 !getSourceManager().isInSystemMacro(LParenLoc))
5362 Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
5363
5364 CheckTollFreeBridgeCast(castType, CastExpr);
5365
5366 CheckObjCBridgeRelatedCast(castType, CastExpr);
5367
5368 return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
5369}
5370
5371ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
5372 SourceLocation RParenLoc, Expr *E,
5373 TypeSourceInfo *TInfo) {
5374 assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
5375 "Expected paren or paren list expression");
5376
5377 Expr **exprs;
5378 unsigned numExprs;
5379 Expr *subExpr;
5380 SourceLocation LiteralLParenLoc, LiteralRParenLoc;
5381 if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
5382 LiteralLParenLoc = PE->getLParenLoc();
5383 LiteralRParenLoc = PE->getRParenLoc();
5384 exprs = PE->getExprs();
5385 numExprs = PE->getNumExprs();
5386 } else { // isa<ParenExpr> by assertion at function entrance
5387 LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
5388 LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
5389 subExpr = cast<ParenExpr>(E)->getSubExpr();
5390 exprs = &subExpr;
5391 numExprs = 1;
5392 }
5393
5394 QualType Ty = TInfo->getType();
5395 assert(Ty->isVectorType() && "Expected vector type");
5396
5397 SmallVector<Expr *, 8> initExprs;
5398 const VectorType *VTy = Ty->getAs<VectorType>();
5399 unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
5400
5401 // '(...)' form of vector initialization in AltiVec: the number of
5402 // initializers must be one or must match the size of the vector.
5403 // If a single value is specified in the initializer then it will be
5404 // replicated to all the components of the vector
5405 if (VTy->getVectorKind() == VectorType::AltiVecVector) {
5406 // The number of initializers must be one or must match the size of the
5407 // vector. If a single value is specified in the initializer then it will
5408 // be replicated to all the components of the vector
5409 if (numExprs == 1) {
5410 QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
5411 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
5412 if (Literal.isInvalid())
5413 return ExprError();
5414 Literal = ImpCastExprToType(Literal.get(), ElemTy,
5415 PrepareScalarCast(Literal, ElemTy));
5416 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
5417 }
5418 else if (numExprs < numElems) {
5419 Diag(E->getExprLoc(),
5420 diag::err_incorrect_number_of_vector_initializers);
5421 return ExprError();
5422 }
5423 else
5424 initExprs.append(exprs, exprs + numExprs);
5425 }
5426 else {
5427 // For OpenCL, when the number of initializers is a single value,
5428 // it will be replicated to all components of the vector.
5429 if (getLangOpts().OpenCL &&
5430 VTy->getVectorKind() == VectorType::GenericVector &&
5431 numExprs == 1) {
5432 QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
5433 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
5434 if (Literal.isInvalid())
5435 return ExprError();
5436 Literal = ImpCastExprToType(Literal.get(), ElemTy,
5437 PrepareScalarCast(Literal, ElemTy));
5438 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
5439 }
5440
5441 initExprs.append(exprs, exprs + numExprs);
5442 }
5443 // FIXME: This means that pretty-printing the final AST will produce curly
5444 // braces instead of the original commas.
5445 InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
5446 initExprs, LiteralRParenLoc);
5447 initE->setType(Ty);
5448 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
5449}
5450
5451/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
5452/// the ParenListExpr into a sequence of comma binary operators.
5453ExprResult
5454Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
5455 ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
5456 if (!E)
5457 return OrigExpr;
5458
5459 ExprResult Result(E->getExpr(0));
5460
5461 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
5462 Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
5463 E->getExpr(i));
5464
5465 if (Result.isInvalid()) return ExprError();
5466
5467 return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
5468}
5469
5470ExprResult Sema::ActOnParenListExpr(SourceLocation L,
5471 SourceLocation R,
5472 MultiExprArg Val) {
5473 Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
5474 return expr;
5475}
5476
5477/// \brief Emit a specialized diagnostic when one expression is a null pointer
5478/// constant and the other is not a pointer. Returns true if a diagnostic is
5479/// emitted.
5480bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
5481 SourceLocation QuestionLoc) {
5482 Expr *NullExpr = LHSExpr;
5483 Expr *NonPointerExpr = RHSExpr;
5484 Expr::NullPointerConstantKind NullKind =
5485 NullExpr->isNullPointerConstant(Context,
5486 Expr::NPC_ValueDependentIsNotNull);
5487
5488 if (NullKind == Expr::NPCK_NotNull) {
5489 NullExpr = RHSExpr;
5490 NonPointerExpr = LHSExpr;
5491 NullKind =
5492 NullExpr->isNullPointerConstant(Context,
5493 Expr::NPC_ValueDependentIsNotNull);
5494 }
5495
5496 if (NullKind == Expr::NPCK_NotNull)
5497 return false;
5498
5499 if (NullKind == Expr::NPCK_ZeroExpression)
5500 return false;
5501
5502 if (NullKind == Expr::NPCK_ZeroLiteral) {
5503 // In this case, check to make sure that we got here from a "NULL"
5504 // string in the source code.
5505 NullExpr = NullExpr->IgnoreParenImpCasts();
5506 SourceLocation loc = NullExpr->getExprLoc();
5507 if (!findMacroSpelling(loc, "NULL"))
5508 return false;
5509 }
5510
5511 int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
5512 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
5513 << NonPointerExpr->getType() << DiagType
5514 << NonPointerExpr->getSourceRange();
5515 return true;
5516}
5517
5518/// \brief Return false if the condition expression is valid, true otherwise.
5519static bool checkCondition(Sema &S, Expr *Cond) {
5520 QualType CondTy = Cond->getType();
5521
5522 // C99 6.5.15p2
5523 if (CondTy->isScalarType()) return false;
5524
5525 // OpenCL v1.1 s6.3.i says the condition is allowed to be a vector or scalar.
5526 if (S.getLangOpts().OpenCL && CondTy->isVectorType())
5527 return false;
5528
5529 // Emit the proper error message.
5530 S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
5531 diag::err_typecheck_cond_expect_scalar :
5532 diag::err_typecheck_cond_expect_scalar_or_vector)
5533 << CondTy;
5534 return true;
5535}
5536
5537/// \brief Return false if the two expressions can be converted to a vector,
5538/// true otherwise
5539static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
5540 ExprResult &RHS,
5541 QualType CondTy) {
5542 // Both operands should be of scalar type.
5543 if (!LHS.get()->getType()->isScalarType()) {
5544 S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
5545 << CondTy;
5546 return true;
5547 }
5548 if (!RHS.get()->getType()->isScalarType()) {
5549 S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
5550 << CondTy;
5551 return true;
5552 }
5553
5554 // Implicity convert these scalars to the type of the condition.
5555 LHS = S.ImpCastExprToType(LHS.get(), CondTy, CK_IntegralCast);
5556 RHS = S.ImpCastExprToType(RHS.get(), CondTy, CK_IntegralCast);
5557 return false;
5558}
5559
5560/// \brief Handle when one or both operands are void type.
5561static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
5562 ExprResult &RHS) {
5563 Expr *LHSExpr = LHS.get();
5564 Expr *RHSExpr = RHS.get();
5565
5566 if (!LHSExpr->getType()->isVoidType())
5567 S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
5568 << RHSExpr->getSourceRange();
5569 if (!RHSExpr->getType()->isVoidType())
5570 S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
5571 << LHSExpr->getSourceRange();
5572 LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
5573 RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
5574 return S.Context.VoidTy;
5575}
5576
5577/// \brief Return false if the NullExpr can be promoted to PointerTy,
5578/// true otherwise.
5579static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
5580 QualType PointerTy) {
5581 if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
5582 !NullExpr.get()->isNullPointerConstant(S.Context,
5583 Expr::NPC_ValueDependentIsNull))
5584 return true;
5585
5586 NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
5587 return false;
5588}
5589
5590/// \brief Checks compatibility between two pointers and return the resulting
5591/// type.
5592static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
5593 ExprResult &RHS,
5594 SourceLocation Loc) {
5595 QualType LHSTy = LHS.get()->getType();
5596 QualType RHSTy = RHS.get()->getType();
5597
5598 if (S.Context.hasSameType(LHSTy, RHSTy)) {
5599 // Two identical pointers types are always compatible.
5600 return LHSTy;
5601 }
5602
5603 QualType lhptee, rhptee;
5604
5605 // Get the pointee types.
5606 bool IsBlockPointer = false;
5607 if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
5608 lhptee = LHSBTy->getPointeeType();
5609 rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
5610 IsBlockPointer = true;
5611 } else {
5612 lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
5613 rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
5614 }
5615
5616 // C99 6.5.15p6: If both operands are pointers to compatible types or to
5617 // differently qualified versions of compatible types, the result type is
5618 // a pointer to an appropriately qualified version of the composite
5619 // type.
5620
5621 // Only CVR-qualifiers exist in the standard, and the differently-qualified
5622 // clause doesn't make sense for our extensions. E.g. address space 2 should
5623 // be incompatible with address space 3: they may live on different devices or
5624 // anything.
5625 Qualifiers lhQual = lhptee.getQualifiers();
5626 Qualifiers rhQual = rhptee.getQualifiers();
5627
5628 unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
5629 lhQual.removeCVRQualifiers();
5630 rhQual.removeCVRQualifiers();
5631
5632 lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
5633 rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
5634
5635 QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
5636
5637 if (CompositeTy.isNull()) {
5638 S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
5639 << LHSTy << RHSTy << LHS.get()->getSourceRange()
5640 << RHS.get()->getSourceRange();
5641 // In this situation, we assume void* type. No especially good
5642 // reason, but this is what gcc does, and we do have to pick
5643 // to get a consistent AST.
5644 QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
5645 LHS = S.ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
5646 RHS = S.ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
5647 return incompatTy;
5648 }
5649
5650 // The pointer types are compatible.
5651 QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
5652 if (IsBlockPointer)
5653 ResultTy = S.Context.getBlockPointerType(ResultTy);
5654 else
5655 ResultTy = S.Context.getPointerType(ResultTy);
5656
5657 LHS = S.ImpCastExprToType(LHS.get(), ResultTy, CK_BitCast);
5658 RHS = S.ImpCastExprToType(RHS.get(), ResultTy, CK_BitCast);
5659 return ResultTy;
5660}
5661
5662/// \brief Returns true if QT is quelified-id and implements 'NSObject' and/or
5663/// 'NSCopying' protocols (and nothing else); or QT is an NSObject and optionally
5664/// implements 'NSObject' and/or NSCopying' protocols (and nothing else).
5665static bool isObjCPtrBlockCompatible(Sema &S, ASTContext &C, QualType QT) {
5666 if (QT->isObjCIdType())
5667 return true;
5668
5669 const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
5670 if (!OPT)
5671 return false;
5672
5673 if (ObjCInterfaceDecl *ID = OPT->getInterfaceDecl())
5674 if (ID->getIdentifier() != &C.Idents.get("NSObject"))
5675 return false;
5676
5677 ObjCProtocolDecl* PNSCopying =
5678 S.LookupProtocol(&C.Idents.get("NSCopying"), SourceLocation());
5679 ObjCProtocolDecl* PNSObject =
5680 S.LookupProtocol(&C.Idents.get("NSObject"), SourceLocation());
5681
5682 for (auto *Proto : OPT->quals()) {
5683 if ((PNSCopying && declaresSameEntity(Proto, PNSCopying)) ||
5684 (PNSObject && declaresSameEntity(Proto, PNSObject)))
5685 ;
5686 else
5687 return false;
5688 }
5689 return true;
5690}
5691
5692/// \brief Return the resulting type when the operands are both block pointers.
5693static QualType checkConditionalBlockPointerCompatibility(Sema &S,
5694 ExprResult &LHS,
5695 ExprResult &RHS,
5696 SourceLocation Loc) {
5697 QualType LHSTy = LHS.get()->getType();
5698 QualType RHSTy = RHS.get()->getType();
5699
5700 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
5701 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
5702 QualType destType = S.Context.getPointerType(S.Context.VoidTy);
5703 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
5704 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
5705 return destType;
5706 }
5707 S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
5708 << LHSTy << RHSTy << LHS.get()->getSourceRange()
5709 << RHS.get()->getSourceRange();
5710 return QualType();
5711 }
5712
5713 // We have 2 block pointer types.
5714 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
5715}
5716
5717/// \brief Return the resulting type when the operands are both pointers.
5718static QualType
5719checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
5720 ExprResult &RHS,
5721 SourceLocation Loc) {
5722 // get the pointer types
5723 QualType LHSTy = LHS.get()->getType();
5724 QualType RHSTy = RHS.get()->getType();
5725
5726 // get the "pointed to" types
5727 QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
5728 QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
5729
5730 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
5731 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
5732 // Figure out necessary qualifiers (C99 6.5.15p6)
5733 QualType destPointee
5734 = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
5735 QualType destType = S.Context.getPointerType(destPointee);
5736 // Add qualifiers if necessary.
5737 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
5738 // Promote to void*.
5739 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
5740 return destType;
5741 }
5742 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
5743 QualType destPointee
5744 = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
5745 QualType destType = S.Context.getPointerType(destPointee);
5746 // Add qualifiers if necessary.
5747 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
5748 // Promote to void*.
5749 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
5750 return destType;
5751 }
5752
5753 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
5754}
5755
5756/// \brief Return false if the first expression is not an integer and the second
5757/// expression is not a pointer, true otherwise.
5758static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
5759 Expr* PointerExpr, SourceLocation Loc,
5760 bool IsIntFirstExpr) {
5761 if (!PointerExpr->getType()->isPointerType() ||
5762 !Int.get()->getType()->isIntegerType())
5763 return false;
5764
5765 Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
5766 Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
5767
5768 S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
5769 << Expr1->getType() << Expr2->getType()
5770 << Expr1->getSourceRange() << Expr2->getSourceRange();
5771 Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
5772 CK_IntegralToPointer);
5773 return true;
5774}
5775
5776/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
5777/// In that case, LHS = cond.
5778/// C99 6.5.15
5779QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
5780 ExprResult &RHS, ExprValueKind &VK,
5781 ExprObjectKind &OK,
5782 SourceLocation QuestionLoc) {
5783
5784 ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
5785 if (!LHSResult.isUsable()) return QualType();
5786 LHS = LHSResult;
5787
5788 ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
5789 if (!RHSResult.isUsable()) return QualType();
5790 RHS = RHSResult;
5791
5792 // C++ is sufficiently different to merit its own checker.
5793 if (getLangOpts().CPlusPlus)
5794 return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
5795
5796 VK = VK_RValue;
5797 OK = OK_Ordinary;
5798
5799 // First, check the condition.
5800 Cond = UsualUnaryConversions(Cond.get());
5801 if (Cond.isInvalid())
5802 return QualType();
5803 if (checkCondition(*this, Cond.get()))
5804 return QualType();
5805
5806 // Now check the two expressions.
5807 if (LHS.get()->getType()->isVectorType() ||
5808 RHS.get()->getType()->isVectorType())
5809 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
5810
5811 QualType ResTy = UsualArithmeticConversions(LHS, RHS);
5812 if (LHS.isInvalid() || RHS.isInvalid())
5813 return QualType();
5814
5815 QualType CondTy = Cond.get()->getType();
5816 QualType LHSTy = LHS.get()->getType();
5817 QualType RHSTy = RHS.get()->getType();
5818
5819 // If the condition is a vector, and both operands are scalar,
5820 // attempt to implicity convert them to the vector type to act like the
5821 // built in select. (OpenCL v1.1 s6.3.i)
5822 if (getLangOpts().OpenCL && CondTy->isVectorType())
5823 if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
5824 return QualType();
5825
5826 // If both operands have arithmetic type, do the usual arithmetic conversions
5827 // to find a common type: C99 6.5.15p3,5.
5828 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
5829 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
5830 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
5831
5832 return ResTy;
5833 }
5834
5835 // If both operands are the same structure or union type, the result is that
5836 // type.
5837 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
5838 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
5839 if (LHSRT->getDecl() == RHSRT->getDecl())
5840 // "If both the operands have structure or union type, the result has
5841 // that type." This implies that CV qualifiers are dropped.
5842 return LHSTy.getUnqualifiedType();
5843 // FIXME: Type of conditional expression must be complete in C mode.
5844 }
5845
5846 // C99 6.5.15p5: "If both operands have void type, the result has void type."
5847 // The following || allows only one side to be void (a GCC-ism).
5848 if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
5849 return checkConditionalVoidType(*this, LHS, RHS);
5850 }
5851
5852 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
5853 // the type of the other operand."
5854 if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
5855 if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
5856
5857 // All objective-c pointer type analysis is done here.
5858 QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
5859 QuestionLoc);
5860 if (LHS.isInvalid() || RHS.isInvalid())
5861 return QualType();
5862 if (!compositeType.isNull())
5863 return compositeType;
5864
5865
5866 // Handle block pointer types.
5867 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
5868 return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
5869 QuestionLoc);
5870
5871 // Check constraints for C object pointers types (C99 6.5.15p3,6).
5872 if (LHSTy->isPointerType() && RHSTy->isPointerType())
5873 return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
5874 QuestionLoc);
5875
5876 // GCC compatibility: soften pointer/integer mismatch. Note that
5877 // null pointers have been filtered out by this point.
5878 if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
5879 /*isIntFirstExpr=*/true))
5880 return RHSTy;
5881 if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
5882 /*isIntFirstExpr=*/false))
5883 return LHSTy;
5884
5885 // Emit a better diagnostic if one of the expressions is a null pointer
5886 // constant and the other is not a pointer type. In this case, the user most
5887 // likely forgot to take the address of the other expression.
5888 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5889 return QualType();
5890
5891 // Otherwise, the operands are not compatible.
5892 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5893 << LHSTy << RHSTy << LHS.get()->getSourceRange()
5894 << RHS.get()->getSourceRange();
5895 return QualType();
5896}
5897
5898/// FindCompositeObjCPointerType - Helper method to find composite type of
5899/// two objective-c pointer types of the two input expressions.
5900QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
5901 SourceLocation QuestionLoc) {
5902 QualType LHSTy = LHS.get()->getType();
5903 QualType RHSTy = RHS.get()->getType();
5904
5905 // Handle things like Class and struct objc_class*. Here we case the result
5906 // to the pseudo-builtin, because that will be implicitly cast back to the
5907 // redefinition type if an attempt is made to access its fields.
5908 if (LHSTy->isObjCClassType() &&
5909 (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
5910 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
5911 return LHSTy;
5912 }
5913 if (RHSTy->isObjCClassType() &&
5914 (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
5915 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
5916 return RHSTy;
5917 }
5918 // And the same for struct objc_object* / id
5919 if (LHSTy->isObjCIdType() &&
5920 (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
5921 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
5922 return LHSTy;
5923 }
5924 if (RHSTy->isObjCIdType() &&
5925 (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
5926 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
5927 return RHSTy;
5928 }
5929 // And the same for struct objc_selector* / SEL
5930 if (Context.isObjCSelType(LHSTy) &&
5931 (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
5932 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
5933 return LHSTy;
5934 }
5935 if (Context.isObjCSelType(RHSTy) &&
5936 (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
5937 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
5938 return RHSTy;
5939 }
5940 // Check constraints for Objective-C object pointers types.
5941 if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
5942
5943 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
5944 // Two identical object pointer types are always compatible.
5945 return LHSTy;
5946 }
5947 const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
5948 const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
5949 QualType compositeType = LHSTy;
5950
5951 // If both operands are interfaces and either operand can be
5952 // assigned to the other, use that type as the composite
5953 // type. This allows
5954 // xxx ? (A*) a : (B*) b
5955 // where B is a subclass of A.
5956 //
5957 // Additionally, as for assignment, if either type is 'id'
5958 // allow silent coercion. Finally, if the types are
5959 // incompatible then make sure to use 'id' as the composite
5960 // type so the result is acceptable for sending messages to.
5961
5962 // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
5963 // It could return the composite type.
5964 if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
5965 compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
5966 } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
5967 compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
5968 } else if ((LHSTy->isObjCQualifiedIdType() ||
5969 RHSTy->isObjCQualifiedIdType()) &&
5970 Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
5971 // Need to handle "id<xx>" explicitly.
5972 // GCC allows qualified id and any Objective-C type to devolve to
5973 // id. Currently localizing to here until clear this should be
5974 // part of ObjCQualifiedIdTypesAreCompatible.
5975 compositeType = Context.getObjCIdType();
5976 } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
5977 compositeType = Context.getObjCIdType();
5978 } else if (!(compositeType =
5979 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
5980 ;
5981 else {
5982 Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
5983 << LHSTy << RHSTy
5984 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5985 QualType incompatTy = Context.getObjCIdType();
5986 LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
5987 RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
5988 return incompatTy;
5989 }
5990 // The object pointer types are compatible.
5991 LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
5992 RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
5993 return compositeType;
5994 }
5995 // Check Objective-C object pointer types and 'void *'
5996 if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
5997 if (getLangOpts().ObjCAutoRefCount) {
5998 // ARC forbids the implicit conversion of object pointers to 'void *',
5999 // so these types are not compatible.
6000 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
6001 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6002 LHS = RHS = true;
6003 return QualType();
6004 }
6005 QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
6006 QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
6007 QualType destPointee
6008 = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
6009 QualType destType = Context.getPointerType(destPointee);
6010 // Add qualifiers if necessary.
6011 LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
6012 // Promote to void*.
6013 RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
6014 return destType;
6015 }
6016 if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
6017 if (getLangOpts().ObjCAutoRefCount) {
6018 // ARC forbids the implicit conversion of object pointers to 'void *',
6019 // so these types are not compatible.
6020 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
6021 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6022 LHS = RHS = true;
6023 return QualType();
6024 }
6025 QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
6026 QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
6027 QualType destPointee
6028 = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
6029 QualType destType = Context.getPointerType(destPointee);
6030 // Add qualifiers if necessary.
6031 RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
6032 // Promote to void*.
6033 LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
6034 return destType;
6035 }
6036 return QualType();
6037}
6038
6039/// SuggestParentheses - Emit a note with a fixit hint that wraps
6040/// ParenRange in parentheses.
6041static void SuggestParentheses(Sema &Self, SourceLocation Loc,
6042 const PartialDiagnostic &Note,
6043 SourceRange ParenRange) {
6044 SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
6045 if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
6046 EndLoc.isValid()) {
6047 Self.Diag(Loc, Note)
6048 << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
6049 << FixItHint::CreateInsertion(EndLoc, ")");
6050 } else {
6051 // We can't display the parentheses, so just show the bare note.
6052 Self.Diag(Loc, Note) << ParenRange;
6053 }
6054}
6055
6056static bool IsArithmeticOp(BinaryOperatorKind Opc) {
6057 return Opc >= BO_Mul && Opc <= BO_Shr;
6058}
6059
6060/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
6061/// expression, either using a built-in or overloaded operator,
6062/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
6063/// expression.
6064static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
6065 Expr **RHSExprs) {
6066 // Don't strip parenthesis: we should not warn if E is in parenthesis.
6067 E = E->IgnoreImpCasts();
6068 E = E->IgnoreConversionOperator();
6069 E = E->IgnoreImpCasts();
6070
6071 // Built-in binary operator.
6072 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
6073 if (IsArithmeticOp(OP->getOpcode())) {
6074 *Opcode = OP->getOpcode();
6075 *RHSExprs = OP->getRHS();
6076 return true;
6077 }
6078 }
6079
6080 // Overloaded operator.
6081 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
6082 if (Call->getNumArgs() != 2)
6083 return false;
6084
6085 // Make sure this is really a binary operator that is safe to pass into
6086 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
6087 OverloadedOperatorKind OO = Call->getOperator();
6088 if (OO < OO_Plus || OO > OO_Arrow ||
6089 OO == OO_PlusPlus || OO == OO_MinusMinus)
6090 return false;
6091
6092 BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
6093 if (IsArithmeticOp(OpKind)) {
6094 *Opcode = OpKind;
6095 *RHSExprs = Call->getArg(1);
6096 return true;
6097 }
6098 }
6099
6100 return false;
6101}
6102
6103static bool IsLogicOp(BinaryOperatorKind Opc) {
6104 return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
6105}
6106
6107/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
6108/// or is a logical expression such as (x==y) which has int type, but is
6109/// commonly interpreted as boolean.
6110static bool ExprLooksBoolean(Expr *E) {
6111 E = E->IgnoreParenImpCasts();
6112
6113 if (E->getType()->isBooleanType())
6114 return true;
6115 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
6116 return IsLogicOp(OP->getOpcode());
6117 if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
6118 return OP->getOpcode() == UO_LNot;
6119
6120 return false;
6121}
6122
6123/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
6124/// and binary operator are mixed in a way that suggests the programmer assumed
6125/// the conditional operator has higher precedence, for example:
6126/// "int x = a + someBinaryCondition ? 1 : 2".
6127static void DiagnoseConditionalPrecedence(Sema &Self,
6128 SourceLocation OpLoc,
6129 Expr *Condition,
6130 Expr *LHSExpr,
6131 Expr *RHSExpr) {
6132 BinaryOperatorKind CondOpcode;
6133 Expr *CondRHS;
6134
6135 if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
6136 return;
6137 if (!ExprLooksBoolean(CondRHS))
6138 return;
6139
6140 // The condition is an arithmetic binary expression, with a right-
6141 // hand side that looks boolean, so warn.
6142
6143 Self.Diag(OpLoc, diag::warn_precedence_conditional)
6144 << Condition->getSourceRange()
6145 << BinaryOperator::getOpcodeStr(CondOpcode);
6146
6147 SuggestParentheses(Self, OpLoc,
6148 Self.PDiag(diag::note_precedence_silence)
6149 << BinaryOperator::getOpcodeStr(CondOpcode),
6150 SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
6151
6152 SuggestParentheses(Self, OpLoc,
6153 Self.PDiag(diag::note_precedence_conditional_first),
6154 SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
6155}
6156
6157/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
6158/// in the case of a the GNU conditional expr extension.
6159ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
6160 SourceLocation ColonLoc,
6161 Expr *CondExpr, Expr *LHSExpr,
6162 Expr *RHSExpr) {
6163 if (!getLangOpts().CPlusPlus) {
6164 // C cannot handle TypoExpr nodes in the condition because it
6165 // doesn't handle dependent types properly, so make sure any TypoExprs have
6166 // been dealt with before checking the operands.
6167 ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
6168 if (!CondResult.isUsable()) return ExprError();
6169 CondExpr = CondResult.get();
6170 }
6171
6172 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
6173 // was the condition.
6174 OpaqueValueExpr *opaqueValue = nullptr;
6175 Expr *commonExpr = nullptr;
6176 if (!LHSExpr) {
6177 commonExpr = CondExpr;
6178 // Lower out placeholder types first. This is important so that we don't
6179 // try to capture a placeholder. This happens in few cases in C++; such
6180 // as Objective-C++'s dictionary subscripting syntax.
6181 if (commonExpr->hasPlaceholderType()) {
6182 ExprResult result = CheckPlaceholderExpr(commonExpr);
6183 if (!result.isUsable()) return ExprError();
6184 commonExpr = result.get();
6185 }
6186 // We usually want to apply unary conversions *before* saving, except
6187 // in the special case of a C++ l-value conditional.
6188 if (!(getLangOpts().CPlusPlus
6189 && !commonExpr->isTypeDependent()
6190 && commonExpr->getValueKind() == RHSExpr->getValueKind()
6191 && commonExpr->isGLValue()
6192 && commonExpr->isOrdinaryOrBitFieldObject()
6193 && RHSExpr->isOrdinaryOrBitFieldObject()
6194 && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
6195 ExprResult commonRes = UsualUnaryConversions(commonExpr);
6196 if (commonRes.isInvalid())
6197 return ExprError();
6198 commonExpr = commonRes.get();
6199 }
6200
6201 opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
6202 commonExpr->getType(),
6203 commonExpr->getValueKind(),
6204 commonExpr->getObjectKind(),
6205 commonExpr);
6206 LHSExpr = CondExpr = opaqueValue;
6207 }
6208
6209 ExprValueKind VK = VK_RValue;
6210 ExprObjectKind OK = OK_Ordinary;
6211 ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
6212 QualType result = CheckConditionalOperands(Cond, LHS, RHS,
6213 VK, OK, QuestionLoc);
6214 if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
6215 RHS.isInvalid())
6216 return ExprError();
6217
6218 DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
6219 RHS.get());
6220
6221 if (!commonExpr)
6222 return new (Context)
6223 ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
6224 RHS.get(), result, VK, OK);
6225
6226 return new (Context) BinaryConditionalOperator(
6227 commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
6228 ColonLoc, result, VK, OK);
6229}
6230
6231// checkPointerTypesForAssignment - This is a very tricky routine (despite
6232// being closely modeled after the C99 spec:-). The odd characteristic of this
6233// routine is it effectively iqnores the qualifiers on the top level pointee.
6234// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
6235// FIXME: add a couple examples in this comment.
6236static Sema::AssignConvertType
6237checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
6238 assert(LHSType.isCanonical() && "LHS not canonicalized!");
6239 assert(RHSType.isCanonical() && "RHS not canonicalized!");
6240
6241 // get the "pointed to" type (ignoring qualifiers at the top level)
6242 const Type *lhptee, *rhptee;
6243 Qualifiers lhq, rhq;
6244 std::tie(lhptee, lhq) =
6245 cast<PointerType>(LHSType)->getPointeeType().split().asPair();
6246 std::tie(rhptee, rhq) =
6247 cast<PointerType>(RHSType)->getPointeeType().split().asPair();
6248
6249 Sema::AssignConvertType ConvTy = Sema::Compatible;
6250
6251 // C99 6.5.16.1p1: This following citation is common to constraints
6252 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
6253 // qualifiers of the type *pointed to* by the right;
6254
6255 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
6256 if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
6257 lhq.compatiblyIncludesObjCLifetime(rhq)) {
6258 // Ignore lifetime for further calculation.
6259 lhq.removeObjCLifetime();
6260 rhq.removeObjCLifetime();
6261 }
6262
6263 if (!lhq.compatiblyIncludes(rhq)) {
6264 // Treat address-space mismatches as fatal. TODO: address subspaces
6265 if (!lhq.isAddressSpaceSupersetOf(rhq))
6266 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
6267
6268 // It's okay to add or remove GC or lifetime qualifiers when converting to
6269 // and from void*.
6270 else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
6271 .compatiblyIncludes(
6272 rhq.withoutObjCGCAttr().withoutObjCLifetime())
6273 && (lhptee->isVoidType() || rhptee->isVoidType()))
6274 ; // keep old
6275
6276 // Treat lifetime mismatches as fatal.
6277 else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
6278 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
6279
6280 // For GCC compatibility, other qualifier mismatches are treated
6281 // as still compatible in C.
6282 else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
6283 }
6284
6285 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
6286 // incomplete type and the other is a pointer to a qualified or unqualified
6287 // version of void...
6288 if (lhptee->isVoidType()) {
6289 if (rhptee->isIncompleteOrObjectType())
6290 return ConvTy;
6291
6292 // As an extension, we allow cast to/from void* to function pointer.
6293 assert(rhptee->isFunctionType());
6294 return Sema::FunctionVoidPointer;
6295 }
6296
6297 if (rhptee->isVoidType()) {
6298 if (lhptee->isIncompleteOrObjectType())
6299 return ConvTy;
6300
6301 // As an extension, we allow cast to/from void* to function pointer.
6302 assert(lhptee->isFunctionType());
6303 return Sema::FunctionVoidPointer;
6304 }
6305
6306 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
6307 // unqualified versions of compatible types, ...
6308 QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
6309 if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
6310 // Check if the pointee types are compatible ignoring the sign.
6311 // We explicitly check for char so that we catch "char" vs
6312 // "unsigned char" on systems where "char" is unsigned.
6313 if (lhptee->isCharType())
6314 ltrans = S.Context.UnsignedCharTy;
6315 else if (lhptee->hasSignedIntegerRepresentation())
6316 ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
6317
6318 if (rhptee->isCharType())
6319 rtrans = S.Context.UnsignedCharTy;
6320 else if (rhptee->hasSignedIntegerRepresentation())
6321 rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
6322
6323 if (ltrans == rtrans) {
6324 // Types are compatible ignoring the sign. Qualifier incompatibility
6325 // takes priority over sign incompatibility because the sign
6326 // warning can be disabled.
6327 if (ConvTy != Sema::Compatible)
6328 return ConvTy;
6329
6330 return Sema::IncompatiblePointerSign;
6331 }
6332
6333 // If we are a multi-level pointer, it's possible that our issue is simply
6334 // one of qualification - e.g. char ** -> const char ** is not allowed. If
6335 // the eventual target type is the same and the pointers have the same
6336 // level of indirection, this must be the issue.
6337 if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
6338 do {
6339 lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
6340 rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
6341 } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
6342
6343 if (lhptee == rhptee)
6344 return Sema::IncompatibleNestedPointerQualifiers;
6345 }
6346
6347 // General pointer incompatibility takes priority over qualifiers.
6348 return Sema::IncompatiblePointer;
6349 }
6350 if (!S.getLangOpts().CPlusPlus &&
6351 S.IsNoReturnConversion(ltrans, rtrans, ltrans))
6352 return Sema::IncompatiblePointer;
6353 return ConvTy;
6354}
6355
6356/// checkBlockPointerTypesForAssignment - This routine determines whether two
6357/// block pointer types are compatible or whether a block and normal pointer
6358/// are compatible. It is more restrict than comparing two function pointer
6359// types.
6360static Sema::AssignConvertType
6361checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
6362 QualType RHSType) {
6363 assert(LHSType.isCanonical() && "LHS not canonicalized!");
6364 assert(RHSType.isCanonical() && "RHS not canonicalized!");
6365
6366 QualType lhptee, rhptee;
6367
6368 // get the "pointed to" type (ignoring qualifiers at the top level)
6369 lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
6370 rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
6371
6372 // In C++, the types have to match exactly.
6373 if (S.getLangOpts().CPlusPlus)
6374 return Sema::IncompatibleBlockPointer;
6375
6376 Sema::AssignConvertType ConvTy = Sema::Compatible;
6377
6378 // For blocks we enforce that qualifiers are identical.
6379 if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
6380 ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
6381
6382 if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
6383 return Sema::IncompatibleBlockPointer;
6384
6385 return ConvTy;
6386}
6387
6388/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
6389/// for assignment compatibility.
6390static Sema::AssignConvertType
6391checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
6392 QualType RHSType) {
6393 assert(LHSType.isCanonical() && "LHS was not canonicalized!");
6394 assert(RHSType.isCanonical() && "RHS was not canonicalized!");
6395
6396 if (LHSType->isObjCBuiltinType()) {
6397 // Class is not compatible with ObjC object pointers.
6398 if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
6399 !RHSType->isObjCQualifiedClassType())
6400 return Sema::IncompatiblePointer;
6401 return Sema::Compatible;
6402 }
6403 if (RHSType->isObjCBuiltinType()) {
6404 if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
6405 !LHSType->isObjCQualifiedClassType())
6406 return Sema::IncompatiblePointer;
6407 return Sema::Compatible;
6408 }
6409 QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
6410 QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
6411
6412 if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
6413 // make an exception for id<P>
6414 !LHSType->isObjCQualifiedIdType())
6415 return Sema::CompatiblePointerDiscardsQualifiers;
6416
6417 if (S.Context.typesAreCompatible(LHSType, RHSType))
6418 return Sema::Compatible;
6419 if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
6420 return Sema::IncompatibleObjCQualifiedId;
6421 return Sema::IncompatiblePointer;
6422}
6423
6424Sema::AssignConvertType
6425Sema::CheckAssignmentConstraints(SourceLocation Loc,
6426 QualType LHSType, QualType RHSType) {
6427 // Fake up an opaque expression. We don't actually care about what
6428 // cast operations are required, so if CheckAssignmentConstraints
6429 // adds casts to this they'll be wasted, but fortunately that doesn't
6430 // usually happen on valid code.
6431 OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
6432 ExprResult RHSPtr = &RHSExpr;
6433 CastKind K = CK_Invalid;
6434
6435 return CheckAssignmentConstraints(LHSType, RHSPtr, K);
6436}
6437
6438/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
6439/// has code to accommodate several GCC extensions when type checking
6440/// pointers. Here are some objectionable examples that GCC considers warnings:
6441///
6442/// int a, *pint;
6443/// short *pshort;
6444/// struct foo *pfoo;
6445///
6446/// pint = pshort; // warning: assignment from incompatible pointer type
6447/// a = pint; // warning: assignment makes integer from pointer without a cast
6448/// pint = a; // warning: assignment makes pointer from integer without a cast
6449/// pint = pfoo; // warning: assignment from incompatible pointer type
6450///
6451/// As a result, the code for dealing with pointers is more complex than the
6452/// C99 spec dictates.
6453///
6454/// Sets 'Kind' for any result kind except Incompatible.
6455Sema::AssignConvertType
6456Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
6457 CastKind &Kind) {
6458 QualType RHSType = RHS.get()->getType();
6459 QualType OrigLHSType = LHSType;
6460
6461 // Get canonical types. We're not formatting these types, just comparing
6462 // them.
6463 LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
6464 RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
6465
6466 // Common case: no conversion required.
6467 if (LHSType == RHSType) {
6468 Kind = CK_NoOp;
6469 return Compatible;
6470 }
6471
6472 // If we have an atomic type, try a non-atomic assignment, then just add an
6473 // atomic qualification step.
6474 if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
6475 Sema::AssignConvertType result =
6476 CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
6477 if (result != Compatible)
6478 return result;
6479 if (Kind != CK_NoOp)
6480 RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
6481 Kind = CK_NonAtomicToAtomic;
6482 return Compatible;
6483 }
6484
6485 // If the left-hand side is a reference type, then we are in a
6486 // (rare!) case where we've allowed the use of references in C,
6487 // e.g., as a parameter type in a built-in function. In this case,
6488 // just make sure that the type referenced is compatible with the
6489 // right-hand side type. The caller is responsible for adjusting
6490 // LHSType so that the resulting expression does not have reference
6491 // type.
6492 if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
6493 if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
6494 Kind = CK_LValueBitCast;
6495 return Compatible;
6496 }
6497 return Incompatible;
6498 }
6499
6500 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
6501 // to the same ExtVector type.
6502 if (LHSType->isExtVectorType()) {
6503 if (RHSType->isExtVectorType())
6504 return Incompatible;
6505 if (RHSType->isArithmeticType()) {
6506 // CK_VectorSplat does T -> vector T, so first cast to the
6507 // element type.
6508 QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
6509 if (elType != RHSType) {
6510 Kind = PrepareScalarCast(RHS, elType);
6511 RHS = ImpCastExprToType(RHS.get(), elType, Kind);
6512 }
6513 Kind = CK_VectorSplat;
6514 return Compatible;
6515 }
6516 }
6517
6518 // Conversions to or from vector type.
6519 if (LHSType->isVectorType() || RHSType->isVectorType()) {
6520 if (LHSType->isVectorType() && RHSType->isVectorType()) {
6521 // Allow assignments of an AltiVec vector type to an equivalent GCC
6522 // vector type and vice versa
6523 if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
6524 Kind = CK_BitCast;
6525 return Compatible;
6526 }
6527
6528 // If we are allowing lax vector conversions, and LHS and RHS are both
6529 // vectors, the total size only needs to be the same. This is a bitcast;
6530 // no bits are changed but the result type is different.
6531 if (isLaxVectorConversion(RHSType, LHSType)) {
6532 Kind = CK_BitCast;
6533 return IncompatibleVectors;
6534 }
6535 }
6536 return Incompatible;
6537 }
6538
6539 // Arithmetic conversions.
6540 if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
6541 !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
6542 Kind = PrepareScalarCast(RHS, LHSType);
6543 return Compatible;
6544 }
6545
6546 // Conversions to normal pointers.
6547 if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
6548 // U* -> T*
6549 if (isa<PointerType>(RHSType)) {
6550 unsigned AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
6551 unsigned AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
6552 Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
6553 return checkPointerTypesForAssignment(*this, LHSType, RHSType);
6554 }
6555
6556 // int -> T*
6557 if (RHSType->isIntegerType()) {
6558 Kind = CK_IntegralToPointer; // FIXME: null?
6559 return IntToPointer;
6560 }
6561
6562 // C pointers are not compatible with ObjC object pointers,
6563 // with two exceptions:
6564 if (isa<ObjCObjectPointerType>(RHSType)) {
6565 // - conversions to void*
6566 if (LHSPointer->getPointeeType()->isVoidType()) {
6567 Kind = CK_BitCast;
6568 return Compatible;
6569 }
6570
6571 // - conversions from 'Class' to the redefinition type
6572 if (RHSType->isObjCClassType() &&
6573 Context.hasSameType(LHSType,
6574 Context.getObjCClassRedefinitionType())) {
6575 Kind = CK_BitCast;
6576 return Compatible;
6577 }
6578
6579 Kind = CK_BitCast;
6580 return IncompatiblePointer;
6581 }
6582
6583 // U^ -> void*
6584 if (RHSType->getAs<BlockPointerType>()) {
6585 if (LHSPointer->getPointeeType()->isVoidType()) {
6586 Kind = CK_BitCast;
6587 return Compatible;
6588 }
6589 }
6590
6591 return Incompatible;
6592 }
6593
6594 // Conversions to block pointers.
6595 if (isa<BlockPointerType>(LHSType)) {
6596 // U^ -> T^
6597 if (RHSType->isBlockPointerType()) {
6598 Kind = CK_BitCast;
6599 return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
6600 }
6601
6602 // int or null -> T^
6603 if (RHSType->isIntegerType()) {
6604 Kind = CK_IntegralToPointer; // FIXME: null
6605 return IntToBlockPointer;
6606 }
6607
6608 // id -> T^
6609 if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
6610 Kind = CK_AnyPointerToBlockPointerCast;
6611 return Compatible;
6612 }
6613
6614 // void* -> T^
6615 if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
6616 if (RHSPT->getPointeeType()->isVoidType()) {
6617 Kind = CK_AnyPointerToBlockPointerCast;
6618 return Compatible;
6619 }
6620
6621 return Incompatible;
6622 }
6623
6624 // Conversions to Objective-C pointers.
6625 if (isa<ObjCObjectPointerType>(LHSType)) {
6626 // A* -> B*
6627 if (RHSType->isObjCObjectPointerType()) {
6628 Kind = CK_BitCast;
6629 Sema::AssignConvertType result =
6630 checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
6631 if (getLangOpts().ObjCAutoRefCount &&
6632 result == Compatible &&
6633 !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
6634 result = IncompatibleObjCWeakRef;
6635 return result;
6636 }
6637
6638 // int or null -> A*
6639 if (RHSType->isIntegerType()) {
6640 Kind = CK_IntegralToPointer; // FIXME: null
6641 return IntToPointer;
6642 }
6643
6644 // In general, C pointers are not compatible with ObjC object pointers,
6645 // with two exceptions:
6646 if (isa<PointerType>(RHSType)) {
6647 Kind = CK_CPointerToObjCPointerCast;
6648
6649 // - conversions from 'void*'
6650 if (RHSType->isVoidPointerType()) {
6651 return Compatible;
6652 }
6653
6654 // - conversions to 'Class' from its redefinition type
6655 if (LHSType->isObjCClassType() &&
6656 Context.hasSameType(RHSType,
6657 Context.getObjCClassRedefinitionType())) {
6658 return Compatible;
6659 }
6660
6661 return IncompatiblePointer;
6662 }
6663
6664 // Only under strict condition T^ is compatible with an Objective-C pointer.
6665 if (RHSType->isBlockPointerType() &&
6666 isObjCPtrBlockCompatible(*this, Context, LHSType)) {
6667 maybeExtendBlockObject(*this, RHS);
6668 Kind = CK_BlockPointerToObjCPointerCast;
6669 return Compatible;
6670 }
6671
6672 return Incompatible;
6673 }
6674
6675 // Conversions from pointers that are not covered by the above.
6676 if (isa<PointerType>(RHSType)) {
6677 // T* -> _Bool
6678 if (LHSType == Context.BoolTy) {
6679 Kind = CK_PointerToBoolean;
6680 return Compatible;
6681 }
6682
6683 // T* -> int
6684 if (LHSType->isIntegerType()) {
6685 Kind = CK_PointerToIntegral;
6686 return PointerToInt;
6687 }
6688
6689 return Incompatible;
6690 }
6691
6692 // Conversions from Objective-C pointers that are not covered by the above.
6693 if (isa<ObjCObjectPointerType>(RHSType)) {
6694 // T* -> _Bool
6695 if (LHSType == Context.BoolTy) {
6696 Kind = CK_PointerToBoolean;
6697 return Compatible;
6698 }
6699
6700 // T* -> int
6701 if (LHSType->isIntegerType()) {
6702 Kind = CK_PointerToIntegral;
6703 return PointerToInt;
6704 }
6705
6706 return Incompatible;
6707 }
6708
6709 // struct A -> struct B
6710 if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
6711 if (Context.typesAreCompatible(LHSType, RHSType)) {
6712 Kind = CK_NoOp;
6713 return Compatible;
6714 }
6715 }
6716
6717 return Incompatible;
6718}
6719
6720/// \brief Constructs a transparent union from an expression that is
6721/// used to initialize the transparent union.
6722static void ConstructTransparentUnion(Sema &S, ASTContext &C,
6723 ExprResult &EResult, QualType UnionType,
6724 FieldDecl *Field) {
6725 // Build an initializer list that designates the appropriate member
6726 // of the transparent union.
6727 Expr *E = EResult.get();
6728 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
6729 E, SourceLocation());
6730 Initializer->setType(UnionType);
6731 Initializer->setInitializedFieldInUnion(Field);
6732
6733 // Build a compound literal constructing a value of the transparent
6734 // union type from this initializer list.
6735 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
6736 EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
6737 VK_RValue, Initializer, false);
6738}
6739
6740Sema::AssignConvertType
6741Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
6742 ExprResult &RHS) {
6743 QualType RHSType = RHS.get()->getType();
6744
6745 // If the ArgType is a Union type, we want to handle a potential
6746 // transparent_union GCC extension.
6747 const RecordType *UT = ArgType->getAsUnionType();
6748 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
6749 return Incompatible;
6750
6751 // The field to initialize within the transparent union.
6752 RecordDecl *UD = UT->getDecl();
6753 FieldDecl *InitField = nullptr;
6754 // It's compatible if the expression matches any of the fields.
6755 for (auto *it : UD->fields()) {
6756 if (it->getType()->isPointerType()) {
6757 // If the transparent union contains a pointer type, we allow:
6758 // 1) void pointer
6759 // 2) null pointer constant
6760 if (RHSType->isPointerType())
6761 if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
6762 RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
6763 InitField = it;
6764 break;
6765 }
6766
6767 if (RHS.get()->isNullPointerConstant(Context,
6768 Expr::NPC_ValueDependentIsNull)) {
6769 RHS = ImpCastExprToType(RHS.get(), it->getType(),
6770 CK_NullToPointer);
6771 InitField = it;
6772 break;
6773 }
6774 }
6775
6776 CastKind Kind = CK_Invalid;
6777 if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
6778 == Compatible) {
6779 RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
6780 InitField = it;
6781 break;
6782 }
6783 }
6784
6785 if (!InitField)
6786 return Incompatible;
6787
6788 ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
6789 return Compatible;
6790}
6791
6792Sema::AssignConvertType
6793Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
6794 bool Diagnose,
6795 bool DiagnoseCFAudited) {
6796 if (getLangOpts().CPlusPlus) {
6797 if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
6798 // C++ 5.17p3: If the left operand is not of class type, the
6799 // expression is implicitly converted (C++ 4) to the
6800 // cv-unqualified type of the left operand.
6801 ExprResult Res;
6802 if (Diagnose) {
6803 Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6804 AA_Assigning);
6805 } else {
6806 ImplicitConversionSequence ICS =
6807 TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6808 /*SuppressUserConversions=*/false,
6809 /*AllowExplicit=*/false,
6810 /*InOverloadResolution=*/false,
6811 /*CStyle=*/false,
6812 /*AllowObjCWritebackConversion=*/false);
6813 if (ICS.isFailure())
6814 return Incompatible;
6815 Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
6816 ICS, AA_Assigning);
6817 }
6818 if (Res.isInvalid())
6819 return Incompatible;
6820 Sema::AssignConvertType result = Compatible;
6821 if (getLangOpts().ObjCAutoRefCount &&
6822 !CheckObjCARCUnavailableWeakConversion(LHSType,
6823 RHS.get()->getType()))
6824 result = IncompatibleObjCWeakRef;
6825 RHS = Res;
6826 return result;
6827 }
6828
6829 // FIXME: Currently, we fall through and treat C++ classes like C
6830 // structures.
6831 // FIXME: We also fall through for atomics; not sure what should
6832 // happen there, though.
6833 }
6834
6835 // C99 6.5.16.1p1: the left operand is a pointer and the right is
6836 // a null pointer constant.
6837 if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
6838 LHSType->isBlockPointerType()) &&
6839 RHS.get()->isNullPointerConstant(Context,
6840 Expr::NPC_ValueDependentIsNull)) {
6841 CastKind Kind;
6842 CXXCastPath Path;
6843 CheckPointerConversion(RHS.get(), LHSType, Kind, Path, false);
6844 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
6845 return Compatible;
6846 }
6847
6848 // This check seems unnatural, however it is necessary to ensure the proper
6849 // conversion of functions/arrays. If the conversion were done for all
6850 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
6851 // expressions that suppress this implicit conversion (&, sizeof).
6852 //
6853 // Suppress this for references: C++ 8.5.3p5.
6854 if (!LHSType->isReferenceType()) {
6855 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6856 if (RHS.isInvalid())
6857 return Incompatible;
6858 }
6859
6860 Expr *PRE = RHS.get()->IgnoreParenCasts();
6861 if (ObjCProtocolExpr *OPE = dyn_cast<ObjCProtocolExpr>(PRE)) {
6862 ObjCProtocolDecl *PDecl = OPE->getProtocol();
6863 if (PDecl && !PDecl->hasDefinition()) {
6864 Diag(PRE->getExprLoc(), diag::warn_atprotocol_protocol) << PDecl->getName();
6865 Diag(PDecl->getLocation(), diag::note_entity_declared_at) << PDecl;
6866 }
6867 }
6868
6869 CastKind Kind = CK_Invalid;
6870 Sema::AssignConvertType result =
6871 CheckAssignmentConstraints(LHSType, RHS, Kind);
6872
6873 // C99 6.5.16.1p2: The value of the right operand is converted to the
6874 // type of the assignment expression.
6875 // CheckAssignmentConstraints allows the left-hand side to be a reference,
6876 // so that we can use references in built-in functions even in C.
6877 // The getNonReferenceType() call makes sure that the resulting expression
6878 // does not have reference type.
6879 if (result != Incompatible && RHS.get()->getType() != LHSType) {
6880 QualType Ty = LHSType.getNonLValueExprType(Context);
6881 Expr *E = RHS.get();
6882 if (getLangOpts().ObjCAutoRefCount)
6883 CheckObjCARCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
6884 DiagnoseCFAudited);
6885 if (getLangOpts().ObjC1 &&
6886 (CheckObjCBridgeRelatedConversions(E->getLocStart(),
6887 LHSType, E->getType(), E) ||
6888 ConversionToObjCStringLiteralCheck(LHSType, E))) {
6889 RHS = E;
6890 return Compatible;
6891 }
6892
6893 RHS = ImpCastExprToType(E, Ty, Kind);
6894 }
6895 return result;
6896}
6897
6898QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
6899 ExprResult &RHS) {
6900 Diag(Loc, diag::err_typecheck_invalid_operands)
6901 << LHS.get()->getType() << RHS.get()->getType()
6902 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6903 return QualType();
6904}
6905
6906/// Try to convert a value of non-vector type to a vector type by converting
6907/// the type to the element type of the vector and then performing a splat.
6908/// If the language is OpenCL, we only use conversions that promote scalar
6909/// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
6910/// for float->int.
6911///
6912/// \param scalar - if non-null, actually perform the conversions
6913/// \return true if the operation fails (but without diagnosing the failure)
6914static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
6915 QualType scalarTy,
6916 QualType vectorEltTy,
6917 QualType vectorTy) {
6918 // The conversion to apply to the scalar before splatting it,
6919 // if necessary.
6920 CastKind scalarCast = CK_Invalid;
6921
6922 if (vectorEltTy->isIntegralType(S.Context)) {
6923 if (!scalarTy->isIntegralType(S.Context))
6924 return true;
6925 if (S.getLangOpts().OpenCL &&
6926 S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0)
6927 return true;
6928 scalarCast = CK_IntegralCast;
6929 } else if (vectorEltTy->isRealFloatingType()) {
6930 if (scalarTy->isRealFloatingType()) {
6931 if (S.getLangOpts().OpenCL &&
6932 S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0)
6933 return true;
6934 scalarCast = CK_FloatingCast;
6935 }
6936 else if (scalarTy->isIntegralType(S.Context))
6937 scalarCast = CK_IntegralToFloating;
6938 else
6939 return true;
6940 } else {
6941 return true;
6942 }
6943
6944 // Adjust scalar if desired.
6945 if (scalar) {
6946 if (scalarCast != CK_Invalid)
6947 *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
6948 *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
6949 }
6950 return false;
6951}
6952
6953QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
6954 SourceLocation Loc, bool IsCompAssign) {
6955 if (!IsCompAssign) {
6956 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6957 if (LHS.isInvalid())
6958 return QualType();
6959 }
6960 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6961 if (RHS.isInvalid())
6962 return QualType();
6963
6964 // For conversion purposes, we ignore any qualifiers.
6965 // For example, "const float" and "float" are equivalent.
6966 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
6967 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
6968
6969 // If the vector types are identical, return.
6970 if (Context.hasSameType(LHSType, RHSType))
6971 return LHSType;
6972
6973 const VectorType *LHSVecType = LHSType->getAs<VectorType>();
6974 const VectorType *RHSVecType = RHSType->getAs<VectorType>();
6975 assert(LHSVecType || RHSVecType);
6976
6977 // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
6978 if (LHSVecType && RHSVecType &&
6979 Context.areCompatibleVectorTypes(LHSType, RHSType)) {
6980 if (isa<ExtVectorType>(LHSVecType)) {
6981 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
6982 return LHSType;
6983 }
6984
6985 if (!IsCompAssign)
6986 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
6987 return RHSType;
6988 }
6989
6990 // If there's an ext-vector type and a scalar, try to convert the scalar to
6991 // the vector element type and splat.
6992 if (!RHSVecType && isa<ExtVectorType>(LHSVecType)) {
6993 if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
6994 LHSVecType->getElementType(), LHSType))
6995 return LHSType;
6996 }
6997 if (!LHSVecType && isa<ExtVectorType>(RHSVecType)) {
6998 if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
6999 LHSType, RHSVecType->getElementType(),
7000 RHSType))
7001 return RHSType;
7002 }
7003
7004 // If we're allowing lax vector conversions, only the total (data) size
7005 // needs to be the same.
7006 // FIXME: Should we really be allowing this?
7007 // FIXME: We really just pick the LHS type arbitrarily?
7008 if (isLaxVectorConversion(RHSType, LHSType)) {
7009 QualType resultType = LHSType;
7010 RHS = ImpCastExprToType(RHS.get(), resultType, CK_BitCast);
7011 return resultType;
7012 }
7013
7014 // Okay, the expression is invalid.
7015
7016 // If there's a non-vector, non-real operand, diagnose that.
7017 if ((!RHSVecType && !RHSType->isRealType()) ||
7018 (!LHSVecType && !LHSType->isRealType())) {
7019 Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
7020 << LHSType << RHSType
7021 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7022 return QualType();
7023 }
7024
7025 // Otherwise, use the generic diagnostic.
7026 Diag(Loc, diag::err_typecheck_vector_not_convertable)
7027 << LHSType << RHSType
7028 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7029 return QualType();
7030}
7031
7032// checkArithmeticNull - Detect when a NULL constant is used improperly in an
7033// expression. These are mainly cases where the null pointer is used as an
7034// integer instead of a pointer.
7035static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
7036 SourceLocation Loc, bool IsCompare) {
7037 // The canonical way to check for a GNU null is with isNullPointerConstant,
7038 // but we use a bit of a hack here for speed; this is a relatively
7039 // hot path, and isNullPointerConstant is slow.
7040 bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
7041 bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
7042
7043 QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
7044
7045 // Avoid analyzing cases where the result will either be invalid (and
7046 // diagnosed as such) or entirely valid and not something to warn about.
7047 if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
7048 NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
7049 return;
7050
7051 // Comparison operations would not make sense with a null pointer no matter
7052 // what the other expression is.
7053 if (!IsCompare) {
7054 S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
7055 << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
7056 << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
7057 return;
7058 }
7059
7060 // The rest of the operations only make sense with a null pointer
7061 // if the other expression is a pointer.
7062 if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
7063 NonNullType->canDecayToPointerType())
7064 return;
7065
7066 S.Diag(Loc, diag::warn_null_in_comparison_operation)
7067 << LHSNull /* LHS is NULL */ << NonNullType
7068 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7069}
7070
7071QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
7072 SourceLocation Loc,
7073 bool IsCompAssign, bool IsDiv) {
7074 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7075
7076 if (LHS.get()->getType()->isVectorType() ||
7077 RHS.get()->getType()->isVectorType())
7078 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7079
7080 QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
7081 if (LHS.isInvalid() || RHS.isInvalid())
7082 return QualType();
7083
7084
7085 if (compType.isNull() || !compType->isArithmeticType())
7086 return InvalidOperands(Loc, LHS, RHS);
7087
7088 // Check for division by zero.
7089 llvm::APSInt RHSValue;
7090 if (IsDiv && !RHS.get()->isValueDependent() &&
7091 RHS.get()->EvaluateAsInt(RHSValue, Context) && RHSValue == 0)
7092 DiagRuntimeBehavior(Loc, RHS.get(),
7093 PDiag(diag::warn_division_by_zero)
7094 << RHS.get()->getSourceRange());
7095
7096 return compType;
7097}
7098
7099QualType Sema::CheckRemainderOperands(
7100 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
7101 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7102
7103 if (LHS.get()->getType()->isVectorType() ||
7104 RHS.get()->getType()->isVectorType()) {
7105 if (LHS.get()->getType()->hasIntegerRepresentation() &&
7106 RHS.get()->getType()->hasIntegerRepresentation())
7107 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7108 return InvalidOperands(Loc, LHS, RHS);
7109 }
7110
7111 QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
7112 if (LHS.isInvalid() || RHS.isInvalid())
7113 return QualType();
7114
7115 if (compType.isNull() || !compType->isIntegerType())
7116 return InvalidOperands(Loc, LHS, RHS);
7117
7118 // Check for remainder by zero.
7119 llvm::APSInt RHSValue;
7120 if (!RHS.get()->isValueDependent() &&
7121 RHS.get()->EvaluateAsInt(RHSValue, Context) && RHSValue == 0)
7122 DiagRuntimeBehavior(Loc, RHS.get(),
7123 PDiag(diag::warn_remainder_by_zero)
7124 << RHS.get()->getSourceRange());
7125
7126 return compType;
7127}
7128
7129/// \brief Diagnose invalid arithmetic on two void pointers.
7130static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
7131 Expr *LHSExpr, Expr *RHSExpr) {
7132 S.Diag(Loc, S.getLangOpts().CPlusPlus
7133 ? diag::err_typecheck_pointer_arith_void_type
7134 : diag::ext_gnu_void_ptr)
7135 << 1 /* two pointers */ << LHSExpr->getSourceRange()
7136 << RHSExpr->getSourceRange();
7137}
7138
7139/// \brief Diagnose invalid arithmetic on a void pointer.
7140static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
7141 Expr *Pointer) {
7142 S.Diag(Loc, S.getLangOpts().CPlusPlus
7143 ? diag::err_typecheck_pointer_arith_void_type
7144 : diag::ext_gnu_void_ptr)
7145 << 0 /* one pointer */ << Pointer->getSourceRange();
7146}
7147
7148/// \brief Diagnose invalid arithmetic on two function pointers.
7149static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
7150 Expr *LHS, Expr *RHS) {
7151 assert(LHS->getType()->isAnyPointerType());
7152 assert(RHS->getType()->isAnyPointerType());
7153 S.Diag(Loc, S.getLangOpts().CPlusPlus
7154 ? diag::err_typecheck_pointer_arith_function_type
7155 : diag::ext_gnu_ptr_func_arith)
7156 << 1 /* two pointers */ << LHS->getType()->getPointeeType()
7157 // We only show the second type if it differs from the first.
7158 << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
7159 RHS->getType())
7160 << RHS->getType()->getPointeeType()
7161 << LHS->getSourceRange() << RHS->getSourceRange();
7162}
7163
7164/// \brief Diagnose invalid arithmetic on a function pointer.
7165static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
7166 Expr *Pointer) {
7167 assert(Pointer->getType()->isAnyPointerType());
7168 S.Diag(Loc, S.getLangOpts().CPlusPlus
7169 ? diag::err_typecheck_pointer_arith_function_type
7170 : diag::ext_gnu_ptr_func_arith)
7171 << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
7172 << 0 /* one pointer, so only one type */
7173 << Pointer->getSourceRange();
7174}
7175
7176/// \brief Emit error if Operand is incomplete pointer type
7177///
7178/// \returns True if pointer has incomplete type
7179static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
7180 Expr *Operand) {
7181 assert(Operand->getType()->isAnyPointerType() &&
7182 !Operand->getType()->isDependentType());
7183 QualType PointeeTy = Operand->getType()->getPointeeType();
7184 return S.RequireCompleteType(Loc, PointeeTy,
7185 diag::err_typecheck_arithmetic_incomplete_type,
7186 PointeeTy, Operand->getSourceRange());
7187}
7188
7189/// \brief Check the validity of an arithmetic pointer operand.
7190///
7191/// If the operand has pointer type, this code will check for pointer types
7192/// which are invalid in arithmetic operations. These will be diagnosed
7193/// appropriately, including whether or not the use is supported as an
7194/// extension.
7195///
7196/// \returns True when the operand is valid to use (even if as an extension).
7197static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
7198 Expr *Operand) {
7199 if (!Operand->getType()->isAnyPointerType()) return true;
7200
7201 QualType PointeeTy = Operand->getType()->getPointeeType();
7202 if (PointeeTy->isVoidType()) {
7203 diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
7204 return !S.getLangOpts().CPlusPlus;
7205 }
7206 if (PointeeTy->isFunctionType()) {
7207 diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
7208 return !S.getLangOpts().CPlusPlus;
7209 }
7210
7211 if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
7212
7213 return true;
7214}
7215
7216/// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
7217/// operands.
7218///
7219/// This routine will diagnose any invalid arithmetic on pointer operands much
7220/// like \see checkArithmeticOpPointerOperand. However, it has special logic
7221/// for emitting a single diagnostic even for operations where both LHS and RHS
7222/// are (potentially problematic) pointers.
7223///
7224/// \returns True when the operand is valid to use (even if as an extension).
7225static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
7226 Expr *LHSExpr, Expr *RHSExpr) {
7227 bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
7228 bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
7229 if (!isLHSPointer && !isRHSPointer) return true;
7230
7231 QualType LHSPointeeTy, RHSPointeeTy;
7232 if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
7233 if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
7234
7235 // if both are pointers check if operation is valid wrt address spaces
7236 if (isLHSPointer && isRHSPointer) {
7237 const PointerType *lhsPtr = LHSExpr->getType()->getAs<PointerType>();
7238 const PointerType *rhsPtr = RHSExpr->getType()->getAs<PointerType>();
7239 if (!lhsPtr->isAddressSpaceOverlapping(*rhsPtr)) {
7240 S.Diag(Loc,
7241 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
7242 << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
7243 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
7244 return false;
7245 }
7246 }
7247
7248 // Check for arithmetic on pointers to incomplete types.
7249 bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
7250 bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
7251 if (isLHSVoidPtr || isRHSVoidPtr) {
7252 if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
7253 else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
7254 else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
7255
7256 return !S.getLangOpts().CPlusPlus;
7257 }
7258
7259 bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
7260 bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
7261 if (isLHSFuncPtr || isRHSFuncPtr) {
7262 if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
7263 else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
7264 RHSExpr);
7265 else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
7266
7267 return !S.getLangOpts().CPlusPlus;
7268 }
7269
7270 if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
7271 return false;
7272 if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
7273 return false;
7274
7275 return true;
7276}
7277
7278/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
7279/// literal.
7280static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
7281 Expr *LHSExpr, Expr *RHSExpr) {
7282 StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
7283 Expr* IndexExpr = RHSExpr;
7284 if (!StrExpr) {
7285 StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
7286 IndexExpr = LHSExpr;
7287 }
7288
7289 bool IsStringPlusInt = StrExpr &&
7290 IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
7291 if (!IsStringPlusInt || IndexExpr->isValueDependent())
7292 return;
7293
7294 llvm::APSInt index;
7295 if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
7296 unsigned StrLenWithNull = StrExpr->getLength() + 1;
7297 if (index.isNonNegative() &&
7298 index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
7299 index.isUnsigned()))
7300 return;
7301 }
7302
7303 SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
7304 Self.Diag(OpLoc, diag::warn_string_plus_int)
7305 << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
7306
7307 // Only print a fixit for "str" + int, not for int + "str".
7308 if (IndexExpr == RHSExpr) {
7309 SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
7310 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
7311 << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
7312 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
7313 << FixItHint::CreateInsertion(EndLoc, "]");
7314 } else
7315 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
7316}
7317
7318/// \brief Emit a warning when adding a char literal to a string.
7319static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
7320 Expr *LHSExpr, Expr *RHSExpr) {
7321 const Expr *StringRefExpr = LHSExpr;
7322 const CharacterLiteral *CharExpr =
7323 dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
7324
7325 if (!CharExpr) {
7326 CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
7327 StringRefExpr = RHSExpr;
7328 }
7329
7330 if (!CharExpr || !StringRefExpr)
7331 return;
7332
7333 const QualType StringType = StringRefExpr->getType();
7334
7335 // Return if not a PointerType.
7336 if (!StringType->isAnyPointerType())
7337 return;
7338
7339 // Return if not a CharacterType.
7340 if (!StringType->getPointeeType()->isAnyCharacterType())
7341 return;
7342
7343 ASTContext &Ctx = Self.getASTContext();
7344 SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
7345
7346 const QualType CharType = CharExpr->getType();
7347 if (!CharType->isAnyCharacterType() &&
7348 CharType->isIntegerType() &&
7349 llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
7350 Self.Diag(OpLoc, diag::warn_string_plus_char)
7351 << DiagRange << Ctx.CharTy;
7352 } else {
7353 Self.Diag(OpLoc, diag::warn_string_plus_char)
7354 << DiagRange << CharExpr->getType();
7355 }
7356
7357 // Only print a fixit for str + char, not for char + str.
7358 if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
7359 SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
7360 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
7361 << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
7362 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
7363 << FixItHint::CreateInsertion(EndLoc, "]");
7364 } else {
7365 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
7366 }
7367}
7368
7369/// \brief Emit error when two pointers are incompatible.
7370static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
7371 Expr *LHSExpr, Expr *RHSExpr) {
7372 assert(LHSExpr->getType()->isAnyPointerType());
7373 assert(RHSExpr->getType()->isAnyPointerType());
7374 S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
7375 << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
7376 << RHSExpr->getSourceRange();
7377}
7378
7379QualType Sema::CheckAdditionOperands( // C99 6.5.6
7380 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
7381 QualType* CompLHSTy) {
7382 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7383
7384 if (LHS.get()->getType()->isVectorType() ||
7385 RHS.get()->getType()->isVectorType()) {
7386 QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
7387 if (CompLHSTy) *CompLHSTy = compType;
7388 return compType;
7389 }
7390
7391 QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
7392 if (LHS.isInvalid() || RHS.isInvalid())
7393 return QualType();
7394
7395 // Diagnose "string literal" '+' int and string '+' "char literal".
7396 if (Opc == BO_Add) {
7397 diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
7398 diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
7399 }
7400
7401 // handle the common case first (both operands are arithmetic).
7402 if (!compType.isNull() && compType->isArithmeticType()) {
7403 if (CompLHSTy) *CompLHSTy = compType;
7404 return compType;
7405 }
7406
7407 // Type-checking. Ultimately the pointer's going to be in PExp;
7408 // note that we bias towards the LHS being the pointer.
7409 Expr *PExp = LHS.get(), *IExp = RHS.get();
7410
7411 bool isObjCPointer;
7412 if (PExp->getType()->isPointerType()) {
7413 isObjCPointer = false;
7414 } else if (PExp->getType()->isObjCObjectPointerType()) {
7415 isObjCPointer = true;
7416 } else {
7417 std::swap(PExp, IExp);
7418 if (PExp->getType()->isPointerType()) {
7419 isObjCPointer = false;
7420 } else if (PExp->getType()->isObjCObjectPointerType()) {
7421 isObjCPointer = true;
7422 } else {
7423 return InvalidOperands(Loc, LHS, RHS);
7424 }
7425 }
7426 assert(PExp->getType()->isAnyPointerType());
7427
7428 if (!IExp->getType()->isIntegerType())
7429 return InvalidOperands(Loc, LHS, RHS);
7430
7431 if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
7432 return QualType();
7433
7434 if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
7435 return QualType();
7436
7437 // Check array bounds for pointer arithemtic
7438 CheckArrayAccess(PExp, IExp);
7439
7440 if (CompLHSTy) {
7441 QualType LHSTy = Context.isPromotableBitField(LHS.get());
7442 if (LHSTy.isNull()) {
7443 LHSTy = LHS.get()->getType();
7444 if (LHSTy->isPromotableIntegerType())
7445 LHSTy = Context.getPromotedIntegerType(LHSTy);
7446 }
7447 *CompLHSTy = LHSTy;
7448 }
7449
7450 return PExp->getType();
7451}
7452
7453// C99 6.5.6
7454QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
7455 SourceLocation Loc,
7456 QualType* CompLHSTy) {
7457 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7458
7459 if (LHS.get()->getType()->isVectorType() ||
7460 RHS.get()->getType()->isVectorType()) {
7461 QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
7462 if (CompLHSTy) *CompLHSTy = compType;
7463 return compType;
7464 }
7465
7466 QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
7467 if (LHS.isInvalid() || RHS.isInvalid())
7468 return QualType();
7469
7470 // Enforce type constraints: C99 6.5.6p3.
7471
7472 // Handle the common case first (both operands are arithmetic).
7473 if (!compType.isNull() && compType->isArithmeticType()) {
7474 if (CompLHSTy) *CompLHSTy = compType;
7475 return compType;
7476 }
7477
7478 // Either ptr - int or ptr - ptr.
7479 if (LHS.get()->getType()->isAnyPointerType()) {
7480 QualType lpointee = LHS.get()->getType()->getPointeeType();
7481
7482 // Diagnose bad cases where we step over interface counts.
7483 if (LHS.get()->getType()->isObjCObjectPointerType() &&
7484 checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
7485 return QualType();
7486
7487 // The result type of a pointer-int computation is the pointer type.
7488 if (RHS.get()->getType()->isIntegerType()) {
7489 if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
7490 return QualType();
7491
7492 // Check array bounds for pointer arithemtic
7493 CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
7494 /*AllowOnePastEnd*/true, /*IndexNegated*/true);
7495
7496 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
7497 return LHS.get()->getType();
7498 }
7499
7500 // Handle pointer-pointer subtractions.
7501 if (const PointerType *RHSPTy
7502 = RHS.get()->getType()->getAs<PointerType>()) {
7503 QualType rpointee = RHSPTy->getPointeeType();
7504
7505 if (getLangOpts().CPlusPlus) {
7506 // Pointee types must be the same: C++ [expr.add]
7507 if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
7508 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
7509 }
7510 } else {
7511 // Pointee types must be compatible C99 6.5.6p3
7512 if (!Context.typesAreCompatible(
7513 Context.getCanonicalType(lpointee).getUnqualifiedType(),
7514 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
7515 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
7516 return QualType();
7517 }
7518 }
7519
7520 if (!checkArithmeticBinOpPointerOperands(*this, Loc,
7521 LHS.get(), RHS.get()))
7522 return QualType();
7523
7524 // The pointee type may have zero size. As an extension, a structure or
7525 // union may have zero size or an array may have zero length. In this
7526 // case subtraction does not make sense.
7527 if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
7528 CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
7529 if (ElementSize.isZero()) {
7530 Diag(Loc,diag::warn_sub_ptr_zero_size_types)
7531 << rpointee.getUnqualifiedType()
7532 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7533 }
7534 }
7535
7536 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
7537 return Context.getPointerDiffType();
7538 }
7539 }
7540
7541 return InvalidOperands(Loc, LHS, RHS);
7542}
7543
7544static bool isScopedEnumerationType(QualType T) {
7545 if (const EnumType *ET = T->getAs<EnumType>())
7546 return ET->getDecl()->isScoped();
7547 return false;
7548}
7549
7550static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
7551 SourceLocation Loc, unsigned Opc,
7552 QualType LHSType) {
7553 // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
7554 // so skip remaining warnings as we don't want to modify values within Sema.
7555 if (S.getLangOpts().OpenCL)
7556 return;
7557
7558 llvm::APSInt Right;
7559 // Check right/shifter operand
7560 if (RHS.get()->isValueDependent() ||
7561 !RHS.get()->isIntegerConstantExpr(Right, S.Context))
7562 return;
7563
7564 if (Right.isNegative()) {
7565 S.DiagRuntimeBehavior(Loc, RHS.get(),
7566 S.PDiag(diag::warn_shift_negative)
7567 << RHS.get()->getSourceRange());
7568 return;
7569 }
7570 llvm::APInt LeftBits(Right.getBitWidth(),
7571 S.Context.getTypeSize(LHS.get()->getType()));
7572 if (Right.uge(LeftBits)) {
7573 S.DiagRuntimeBehavior(Loc, RHS.get(),
7574 S.PDiag(diag::warn_shift_gt_typewidth)
7575 << RHS.get()->getSourceRange());
7576 return;
7577 }
7578 if (Opc != BO_Shl)
7579 return;
7580
7581 // When left shifting an ICE which is signed, we can check for overflow which
7582 // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
7583 // integers have defined behavior modulo one more than the maximum value
7584 // representable in the result type, so never warn for those.
7585 llvm::APSInt Left;
7586 if (LHS.get()->isValueDependent() ||
7587 !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
7588 LHSType->hasUnsignedIntegerRepresentation())
7589 return;
7590 llvm::APInt ResultBits =
7591 static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
7592 if (LeftBits.uge(ResultBits))
7593 return;
7594 llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
7595 Result = Result.shl(Right);
7596
7597 // Print the bit representation of the signed integer as an unsigned
7598 // hexadecimal number.
7599 SmallString<40> HexResult;
7600 Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
7601
7602 // If we are only missing a sign bit, this is less likely to result in actual
7603 // bugs -- if the result is cast back to an unsigned type, it will have the
7604 // expected value. Thus we place this behind a different warning that can be
7605 // turned off separately if needed.
7606 if (LeftBits == ResultBits - 1) {
7607 S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
7608 << HexResult.str() << LHSType
7609 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7610 return;
7611 }
7612
7613 S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
7614 << HexResult.str() << Result.getMinSignedBits() << LHSType
7615 << Left.getBitWidth() << LHS.get()->getSourceRange()
7616 << RHS.get()->getSourceRange();
7617}
7618
7619// C99 6.5.7
7620QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
7621 SourceLocation Loc, unsigned Opc,
7622 bool IsCompAssign) {
7623 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
7624
7625 // Vector shifts promote their scalar inputs to vector type.
7626 if (LHS.get()->getType()->isVectorType() ||
7627 RHS.get()->getType()->isVectorType())
7628 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
7629
7630 // Shifts don't perform usual arithmetic conversions, they just do integer
7631 // promotions on each operand. C99 6.5.7p3
7632
7633 // For the LHS, do usual unary conversions, but then reset them away
7634 // if this is a compound assignment.
7635 ExprResult OldLHS = LHS;
7636 LHS = UsualUnaryConversions(LHS.get());
7637 if (LHS.isInvalid())
7638 return QualType();
7639 QualType LHSType = LHS.get()->getType();
7640 if (IsCompAssign) LHS = OldLHS;
7641
7642 // The RHS is simpler.
7643 RHS = UsualUnaryConversions(RHS.get());
7644 if (RHS.isInvalid())
7645 return QualType();
7646 QualType RHSType = RHS.get()->getType();
7647
7648 // C99 6.5.7p2: Each of the operands shall have integer type.
7649 if (!LHSType->hasIntegerRepresentation() ||
7650 !RHSType->hasIntegerRepresentation())
7651 return InvalidOperands(Loc, LHS, RHS);
7652
7653 // C++0x: Don't allow scoped enums. FIXME: Use something better than
7654 // hasIntegerRepresentation() above instead of this.
7655 if (isScopedEnumerationType(LHSType) ||
7656 isScopedEnumerationType(RHSType)) {
7657 return InvalidOperands(Loc, LHS, RHS);
7658 }
7659 // Sanity-check shift operands
7660 DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
7661
7662 // "The type of the result is that of the promoted left operand."
7663 return LHSType;
7664}
7665
7666static bool IsWithinTemplateSpecialization(Decl *D) {
7667 if (DeclContext *DC = D->getDeclContext()) {
7668 if (isa<ClassTemplateSpecializationDecl>(DC))
7669 return true;
7670 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
7671 return FD->isFunctionTemplateSpecialization();
7672 }
7673 return false;
7674}
7675
7676/// If two different enums are compared, raise a warning.
7677static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
7678 Expr *RHS) {
7679 QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
7680 QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
7681
7682 const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
7683 if (!LHSEnumType)
7684 return;
7685 const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
7686 if (!RHSEnumType)
7687 return;
7688
7689 // Ignore anonymous enums.
7690 if (!LHSEnumType->getDecl()->getIdentifier())
7691 return;
7692 if (!RHSEnumType->getDecl()->getIdentifier())
7693 return;
7694
7695 if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
7696 return;
7697
7698 S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
7699 << LHSStrippedType << RHSStrippedType
7700 << LHS->getSourceRange() << RHS->getSourceRange();
7701}
7702
7703/// \brief Diagnose bad pointer comparisons.
7704static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
7705 ExprResult &LHS, ExprResult &RHS,
7706 bool IsError) {
7707 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
7708 : diag::ext_typecheck_comparison_of_distinct_pointers)
7709 << LHS.get()->getType() << RHS.get()->getType()
7710 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7711}
7712
7713/// \brief Returns false if the pointers are converted to a composite type,
7714/// true otherwise.
7715static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
7716 ExprResult &LHS, ExprResult &RHS) {
7717 // C++ [expr.rel]p2:
7718 // [...] Pointer conversions (4.10) and qualification
7719 // conversions (4.4) are performed on pointer operands (or on
7720 // a pointer operand and a null pointer constant) to bring
7721 // them to their composite pointer type. [...]
7722 //
7723 // C++ [expr.eq]p1 uses the same notion for (in)equality
7724 // comparisons of pointers.
7725
7726 // C++ [expr.eq]p2:
7727 // In addition, pointers to members can be compared, or a pointer to
7728 // member and a null pointer constant. Pointer to member conversions
7729 // (4.11) and qualification conversions (4.4) are performed to bring
7730 // them to a common type. If one operand is a null pointer constant,
7731 // the common type is the type of the other operand. Otherwise, the
7732 // common type is a pointer to member type similar (4.4) to the type
7733 // of one of the operands, with a cv-qualification signature (4.4)
7734 // that is the union of the cv-qualification signatures of the operand
7735 // types.
7736
7737 QualType LHSType = LHS.get()->getType();
7738 QualType RHSType = RHS.get()->getType();
7739 assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
7740 (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
7741
7742 bool NonStandardCompositeType = false;
7743 bool *BoolPtr = S.isSFINAEContext() ? nullptr : &NonStandardCompositeType;
7744 QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
7745 if (T.isNull()) {
7746 diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
7747 return true;
7748 }
7749
7750 if (NonStandardCompositeType)
7751 S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
7752 << LHSType << RHSType << T << LHS.get()->getSourceRange()
7753 << RHS.get()->getSourceRange();
7754
7755 LHS = S.ImpCastExprToType(LHS.get(), T, CK_BitCast);
7756 RHS = S.ImpCastExprToType(RHS.get(), T, CK_BitCast);
7757 return false;
7758}
7759
7760static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
7761 ExprResult &LHS,
7762 ExprResult &RHS,
7763 bool IsError) {
7764 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
7765 : diag::ext_typecheck_comparison_of_fptr_to_void)
7766 << LHS.get()->getType() << RHS.get()->getType()
7767 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7768}
7769
7770static bool isObjCObjectLiteral(ExprResult &E) {
7771 switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
7772 case Stmt::ObjCArrayLiteralClass:
7773 case Stmt::ObjCDictionaryLiteralClass:
7774 case Stmt::ObjCStringLiteralClass:
7775 case Stmt::ObjCBoxedExprClass:
7776 return true;
7777 default:
7778 // Note that ObjCBoolLiteral is NOT an object literal!
7779 return false;
7780 }
7781}
7782
7783static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
7784 const ObjCObjectPointerType *Type =
7785 LHS->getType()->getAs<ObjCObjectPointerType>();
7786
7787 // If this is not actually an Objective-C object, bail out.
7788 if (!Type)
7789 return false;
7790
7791 // Get the LHS object's interface type.
7792 QualType InterfaceType = Type->getPointeeType();
7793 if (const ObjCObjectType *iQFaceTy =
7794 InterfaceType->getAsObjCQualifiedInterfaceType())
7795 InterfaceType = iQFaceTy->getBaseType();
7796
7797 // If the RHS isn't an Objective-C object, bail out.
7798 if (!RHS->getType()->isObjCObjectPointerType())
7799 return false;
7800
7801 // Try to find the -isEqual: method.
7802 Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
7803 ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
7804 InterfaceType,
7805 /*instance=*/true);
7806 if (!Method) {
7807 if (Type->isObjCIdType()) {
7808 // For 'id', just check the global pool.
7809 Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
7810 /*receiverId=*/true,
7811 /*warn=*/false);
7812 } else {
7813 // Check protocols.
7814 Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
7815 /*instance=*/true);
7816 }
7817 }
7818
7819 if (!Method)
7820 return false;
7821
7822 QualType T = Method->parameters()[0]->getType();
7823 if (!T->isObjCObjectPointerType())
7824 return false;
7825
7826 QualType R = Method->getReturnType();
7827 if (!R->isScalarType())
7828 return false;
7829
7830 return true;
7831}
7832
7833Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
7834 FromE = FromE->IgnoreParenImpCasts();
7835 switch (FromE->getStmtClass()) {
7836 default:
7837 break;
7838 case Stmt::ObjCStringLiteralClass:
7839 // "string literal"
7840 return LK_String;
7841 case Stmt::ObjCArrayLiteralClass:
7842 // "array literal"
7843 return LK_Array;
7844 case Stmt::ObjCDictionaryLiteralClass:
7845 // "dictionary literal"
7846 return LK_Dictionary;
7847 case Stmt::BlockExprClass:
7848 return LK_Block;
7849 case Stmt::ObjCBoxedExprClass: {
7850 Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
7851 switch (Inner->getStmtClass()) {
7852 case Stmt::IntegerLiteralClass:
7853 case Stmt::FloatingLiteralClass:
7854 case Stmt::CharacterLiteralClass:
7855 case Stmt::ObjCBoolLiteralExprClass:
7856 case Stmt::CXXBoolLiteralExprClass:
7857 // "numeric literal"
7858 return LK_Numeric;
7859 case Stmt::ImplicitCastExprClass: {
7860 CastKind CK = cast<CastExpr>(Inner)->getCastKind();
7861 // Boolean literals can be represented by implicit casts.
7862 if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
7863 return LK_Numeric;
7864 break;
7865 }
7866 default:
7867 break;
7868 }
7869 return LK_Boxed;
7870 }
7871 }
7872 return LK_None;
7873}
7874
7875static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
7876 ExprResult &LHS, ExprResult &RHS,
7877 BinaryOperator::Opcode Opc){
7878 Expr *Literal;
7879 Expr *Other;
7880 if (isObjCObjectLiteral(LHS)) {
7881 Literal = LHS.get();
7882 Other = RHS.get();
7883 } else {
7884 Literal = RHS.get();
7885 Other = LHS.get();
7886 }
7887
7888 // Don't warn on comparisons against nil.
7889 Other = Other->IgnoreParenCasts();
7890 if (Other->isNullPointerConstant(S.getASTContext(),
7891 Expr::NPC_ValueDependentIsNotNull))
7892 return;
7893
7894 // This should be kept in sync with warn_objc_literal_comparison.
7895 // LK_String should always be after the other literals, since it has its own
7896 // warning flag.
7897 Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
7898 assert(LiteralKind != Sema::LK_Block);
7899 if (LiteralKind == Sema::LK_None) {
7900 llvm_unreachable("Unknown Objective-C object literal kind");
7901 }
7902
7903 if (LiteralKind == Sema::LK_String)
7904 S.Diag(Loc, diag::warn_objc_string_literal_comparison)
7905 << Literal->getSourceRange();
7906 else
7907 S.Diag(Loc, diag::warn_objc_literal_comparison)
7908 << LiteralKind << Literal->getSourceRange();
7909
7910 if (BinaryOperator::isEqualityOp(Opc) &&
7911 hasIsEqualMethod(S, LHS.get(), RHS.get())) {
7912 SourceLocation Start = LHS.get()->getLocStart();
7913 SourceLocation End = S.PP.getLocForEndOfToken(RHS.get()->getLocEnd());
7914 CharSourceRange OpRange =
7915 CharSourceRange::getCharRange(Loc, S.PP.getLocForEndOfToken(Loc));
7916
7917 S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
7918 << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
7919 << FixItHint::CreateReplacement(OpRange, " isEqual:")
7920 << FixItHint::CreateInsertion(End, "]");
7921 }
7922}
7923
7924static void diagnoseLogicalNotOnLHSofComparison(Sema &S, ExprResult &LHS,
7925 ExprResult &RHS,
7926 SourceLocation Loc,
7927 unsigned OpaqueOpc) {
7928 // This checking requires bools.
7929 if (!S.getLangOpts().Bool) return;
7930
7931 // Check that left hand side is !something.
7932 UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
7933 if (!UO || UO->getOpcode() != UO_LNot) return;
7934
7935 // Only check if the right hand side is non-bool arithmetic type.
7936 if (RHS.get()->getType()->isBooleanType()) return;
7937
7938 // Make sure that the something in !something is not bool.
7939 Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
7940 if (SubExpr->getType()->isBooleanType()) return;
7941
7942 // Emit warning.
7943 S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_comparison)
7944 << Loc;
7945
7946 // First note suggest !(x < y)
7947 SourceLocation FirstOpen = SubExpr->getLocStart();
7948 SourceLocation FirstClose = RHS.get()->getLocEnd();
7949 FirstClose = S.getPreprocessor().getLocForEndOfToken(FirstClose);
7950 if (FirstClose.isInvalid())
7951 FirstOpen = SourceLocation();
7952 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
7953 << FixItHint::CreateInsertion(FirstOpen, "(")
7954 << FixItHint::CreateInsertion(FirstClose, ")");
7955
7956 // Second note suggests (!x) < y
7957 SourceLocation SecondOpen = LHS.get()->getLocStart();
7958 SourceLocation SecondClose = LHS.get()->getLocEnd();
7959 SecondClose = S.getPreprocessor().getLocForEndOfToken(SecondClose);
7960 if (SecondClose.isInvalid())
7961 SecondOpen = SourceLocation();
7962 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
7963 << FixItHint::CreateInsertion(SecondOpen, "(")
7964 << FixItHint::CreateInsertion(SecondClose, ")");
7965}
7966
7967// Get the decl for a simple expression: a reference to a variable,
7968// an implicit C++ field reference, or an implicit ObjC ivar reference.
7969static ValueDecl *getCompareDecl(Expr *E) {
7970 if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E))
7971 return DR->getDecl();
7972 if (ObjCIvarRefExpr* Ivar = dyn_cast<ObjCIvarRefExpr>(E)) {
7973 if (Ivar->isFreeIvar())
7974 return Ivar->getDecl();
7975 }
7976 if (MemberExpr* Mem = dyn_cast<MemberExpr>(E)) {
7977 if (Mem->isImplicitAccess())
7978 return Mem->getMemberDecl();
7979 }
7980 return nullptr;
7981}
7982
7983// C99 6.5.8, C++ [expr.rel]
7984QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
7985 SourceLocation Loc, unsigned OpaqueOpc,
7986 bool IsRelational) {
7987 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
7988
7989 BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
7990
7991 // Handle vector comparisons separately.
7992 if (LHS.get()->getType()->isVectorType() ||
7993 RHS.get()->getType()->isVectorType())
7994 return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
7995
7996 QualType LHSType = LHS.get()->getType();
7997 QualType RHSType = RHS.get()->getType();
7998
7999 Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
8000 Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
8001
8002 checkEnumComparison(*this, Loc, LHS.get(), RHS.get());
8003 diagnoseLogicalNotOnLHSofComparison(*this, LHS, RHS, Loc, OpaqueOpc);
8004
8005 if (!LHSType->hasFloatingRepresentation() &&
8006 !(LHSType->isBlockPointerType() && IsRelational) &&
8007 !LHS.get()->getLocStart().isMacroID() &&
8008 !RHS.get()->getLocStart().isMacroID() &&
8009 ActiveTemplateInstantiations.empty()) {
8010 // For non-floating point types, check for self-comparisons of the form
8011 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
8012 // often indicate logic errors in the program.
8013 //
8014 // NOTE: Don't warn about comparison expressions resulting from macro
8015 // expansion. Also don't warn about comparisons which are only self
8016 // comparisons within a template specialization. The warnings should catch
8017 // obvious cases in the definition of the template anyways. The idea is to
8018 // warn when the typed comparison operator will always evaluate to the same
8019 // result.
8020 ValueDecl *DL = getCompareDecl(LHSStripped);
8021 ValueDecl *DR = getCompareDecl(RHSStripped);
8022 if (DL && DR && DL == DR && !IsWithinTemplateSpecialization(DL)) {
8023 DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
8024 << 0 // self-
8025 << (Opc == BO_EQ
8026 || Opc == BO_LE
8027 || Opc == BO_GE));
8028 } else if (DL && DR && LHSType->isArrayType() && RHSType->isArrayType() &&
8029 !DL->getType()->isReferenceType() &&
8030 !DR->getType()->isReferenceType()) {
8031 // what is it always going to eval to?
8032 char always_evals_to;
8033 switch(Opc) {
8034 case BO_EQ: // e.g. array1 == array2
8035 always_evals_to = 0; // false
8036 break;
8037 case BO_NE: // e.g. array1 != array2
8038 always_evals_to = 1; // true
8039 break;
8040 default:
8041 // best we can say is 'a constant'
8042 always_evals_to = 2; // e.g. array1 <= array2
8043 break;
8044 }
8045 DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
8046 << 1 // array
8047 << always_evals_to);
8048 }
8049
8050 if (isa<CastExpr>(LHSStripped))
8051 LHSStripped = LHSStripped->IgnoreParenCasts();
8052 if (isa<CastExpr>(RHSStripped))
8053 RHSStripped = RHSStripped->IgnoreParenCasts();
8054
8055 // Warn about comparisons against a string constant (unless the other
8056 // operand is null), the user probably wants strcmp.
8057 Expr *literalString = nullptr;
8058 Expr *literalStringStripped = nullptr;
8059 if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
8060 !RHSStripped->isNullPointerConstant(Context,
8061 Expr::NPC_ValueDependentIsNull)) {
8062 literalString = LHS.get();
8063 literalStringStripped = LHSStripped;
8064 } else if ((isa<StringLiteral>(RHSStripped) ||
8065 isa<ObjCEncodeExpr>(RHSStripped)) &&
8066 !LHSStripped->isNullPointerConstant(Context,
8067 Expr::NPC_ValueDependentIsNull)) {
8068 literalString = RHS.get();
8069 literalStringStripped = RHSStripped;
8070 }
8071
8072 if (literalString) {
8073 DiagRuntimeBehavior(Loc, nullptr,
8074 PDiag(diag::warn_stringcompare)
8075 << isa<ObjCEncodeExpr>(literalStringStripped)
8076 << literalString->getSourceRange());
8077 }
8078 }
8079
8080 // C99 6.5.8p3 / C99 6.5.9p4
8081 UsualArithmeticConversions(LHS, RHS);
8082 if (LHS.isInvalid() || RHS.isInvalid())
8083 return QualType();
8084
8085 LHSType = LHS.get()->getType();
8086 RHSType = RHS.get()->getType();
8087
8088 // The result of comparisons is 'bool' in C++, 'int' in C.
8089 QualType ResultTy = Context.getLogicalOperationType();
8090
8091 if (IsRelational) {
8092 if (LHSType->isRealType() && RHSType->isRealType())
8093 return ResultTy;
8094 } else {
8095 // Check for comparisons of floating point operands using != and ==.
8096 if (LHSType->hasFloatingRepresentation())
8097 CheckFloatComparison(Loc, LHS.get(), RHS.get());
8098
8099 if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
8100 return ResultTy;
8101 }
8102
8103 const Expr::NullPointerConstantKind LHSNullKind =
8104 LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
8105 const Expr::NullPointerConstantKind RHSNullKind =
8106 RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
8107 bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
8108 bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
8109
8110 if (!IsRelational && LHSIsNull != RHSIsNull) {
8111 bool IsEquality = Opc == BO_EQ;
8112 if (RHSIsNull)
8113 DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
8114 RHS.get()->getSourceRange());
8115 else
8116 DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
8117 LHS.get()->getSourceRange());
8118 }
8119
8120 // All of the following pointer-related warnings are GCC extensions, except
8121 // when handling null pointer constants.
8122 if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
8123 QualType LCanPointeeTy =
8124 LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
8125 QualType RCanPointeeTy =
8126 RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
8127
8128 if (getLangOpts().CPlusPlus) {
8129 if (LCanPointeeTy == RCanPointeeTy)
8130 return ResultTy;
8131 if (!IsRelational &&
8132 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
8133 // Valid unless comparison between non-null pointer and function pointer
8134 // This is a gcc extension compatibility comparison.
8135 // In a SFINAE context, we treat this as a hard error to maintain
8136 // conformance with the C++ standard.
8137 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
8138 && !LHSIsNull && !RHSIsNull) {
8139 diagnoseFunctionPointerToVoidComparison(
8140 *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
8141
8142 if (isSFINAEContext())
8143 return QualType();
8144
8145 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
8146 return ResultTy;
8147 }
8148 }
8149
8150 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
8151 return QualType();
8152 else
8153 return ResultTy;
8154 }
8155 // C99 6.5.9p2 and C99 6.5.8p2
8156 if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
8157 RCanPointeeTy.getUnqualifiedType())) {
8158 // Valid unless a relational comparison of function pointers
8159 if (IsRelational && LCanPointeeTy->isFunctionType()) {
8160 Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
8161 << LHSType << RHSType << LHS.get()->getSourceRange()
8162 << RHS.get()->getSourceRange();
8163 }
8164 } else if (!IsRelational &&
8165 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
8166 // Valid unless comparison between non-null pointer and function pointer
8167 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
8168 && !LHSIsNull && !RHSIsNull)
8169 diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
8170 /*isError*/false);
8171 } else {
8172 // Invalid
8173 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
8174 }
8175 if (LCanPointeeTy != RCanPointeeTy) {
8176 const PointerType *lhsPtr = LHSType->getAs<PointerType>();
8177 if (!lhsPtr->isAddressSpaceOverlapping(*RHSType->getAs<PointerType>())) {
8178 Diag(Loc,
8179 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8180 << LHSType << RHSType << 0 /* comparison */
8181 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8182 }
8183 unsigned AddrSpaceL = LCanPointeeTy.getAddressSpace();
8184 unsigned AddrSpaceR = RCanPointeeTy.getAddressSpace();
8185 CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
8186 : CK_BitCast;
8187 if (LHSIsNull && !RHSIsNull)
8188 LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
8189 else
8190 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
8191 }
8192 return ResultTy;
8193 }
8194
8195 if (getLangOpts().CPlusPlus) {
8196 // Comparison of nullptr_t with itself.
8197 if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
8198 return ResultTy;
8199
8200 // Comparison of pointers with null pointer constants and equality
8201 // comparisons of member pointers to null pointer constants.
8202 if (RHSIsNull &&
8203 ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
8204 (!IsRelational &&
8205 (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
8206 RHS = ImpCastExprToType(RHS.get(), LHSType,
8207 LHSType->isMemberPointerType()
8208 ? CK_NullToMemberPointer
8209 : CK_NullToPointer);
8210 return ResultTy;
8211 }
8212 if (LHSIsNull &&
8213 ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
8214 (!IsRelational &&
8215 (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
8216 LHS = ImpCastExprToType(LHS.get(), RHSType,
8217 RHSType->isMemberPointerType()
8218 ? CK_NullToMemberPointer
8219 : CK_NullToPointer);
8220 return ResultTy;
8221 }
8222
8223 // Comparison of member pointers.
8224 if (!IsRelational &&
8225 LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
8226 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
8227 return QualType();
8228 else
8229 return ResultTy;
8230 }
8231
8232 // Handle scoped enumeration types specifically, since they don't promote
8233 // to integers.
8234 if (LHS.get()->getType()->isEnumeralType() &&
8235 Context.hasSameUnqualifiedType(LHS.get()->getType(),
8236 RHS.get()->getType()))
8237 return ResultTy;
8238 }
8239
8240 // Handle block pointer types.
8241 if (!IsRelational && LHSType->isBlockPointerType() &&
8242 RHSType->isBlockPointerType()) {
8243 QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
8244 QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
8245
8246 if (!LHSIsNull && !RHSIsNull &&
8247 !Context.typesAreCompatible(lpointee, rpointee)) {
8248 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
8249 << LHSType << RHSType << LHS.get()->getSourceRange()
8250 << RHS.get()->getSourceRange();
8251 }
8252 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
8253 return ResultTy;
8254 }
8255
8256 // Allow block pointers to be compared with null pointer constants.
8257 if (!IsRelational
8258 && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
8259 || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
8260 if (!LHSIsNull && !RHSIsNull) {
8261 if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
8262 ->getPointeeType()->isVoidType())
8263 || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
8264 ->getPointeeType()->isVoidType())))
8265 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
8266 << LHSType << RHSType << LHS.get()->getSourceRange()
8267 << RHS.get()->getSourceRange();
8268 }
8269 if (LHSIsNull && !RHSIsNull)
8270 LHS = ImpCastExprToType(LHS.get(), RHSType,
8271 RHSType->isPointerType() ? CK_BitCast
8272 : CK_AnyPointerToBlockPointerCast);
8273 else
8274 RHS = ImpCastExprToType(RHS.get(), LHSType,
8275 LHSType->isPointerType() ? CK_BitCast
8276 : CK_AnyPointerToBlockPointerCast);
8277 return ResultTy;
8278 }
8279
8280 if (LHSType->isObjCObjectPointerType() ||
8281 RHSType->isObjCObjectPointerType()) {
8282 const PointerType *LPT = LHSType->getAs<PointerType>();
8283 const PointerType *RPT = RHSType->getAs<PointerType>();
8284 if (LPT || RPT) {
8285 bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
8286 bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
8287
8288 if (!LPtrToVoid && !RPtrToVoid &&
8289 !Context.typesAreCompatible(LHSType, RHSType)) {
8290 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
8291 /*isError*/false);
8292 }
8293 if (LHSIsNull && !RHSIsNull) {
8294 Expr *E = LHS.get();
8295 if (getLangOpts().ObjCAutoRefCount)
8296 CheckObjCARCConversion(SourceRange(), RHSType, E, CCK_ImplicitConversion);
8297 LHS = ImpCastExprToType(E, RHSType,
8298 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
8299 }
8300 else {
8301 Expr *E = RHS.get();
8302 if (getLangOpts().ObjCAutoRefCount)
8303 CheckObjCARCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion, false,
8304 Opc);
8305 RHS = ImpCastExprToType(E, LHSType,
8306 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
8307 }
8308 return ResultTy;
8309 }
8310 if (LHSType->isObjCObjectPointerType() &&
8311 RHSType->isObjCObjectPointerType()) {
8312 if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
8313 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
8314 /*isError*/false);
8315 if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
8316 diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
8317
8318 if (LHSIsNull && !RHSIsNull)
8319 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
8320 else
8321 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
8322 return ResultTy;
8323 }
8324 }
8325 if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
8326 (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
8327 unsigned DiagID = 0;
8328 bool isError = false;
8329 if (LangOpts.DebuggerSupport) {
8330 // Under a debugger, allow the comparison of pointers to integers,
8331 // since users tend to want to compare addresses.
8332 } else if ((LHSIsNull && LHSType->isIntegerType()) ||
8333 (RHSIsNull && RHSType->isIntegerType())) {
8334 if (IsRelational && !getLangOpts().CPlusPlus)
8335 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
8336 } else if (IsRelational && !getLangOpts().CPlusPlus)
8337 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
8338 else if (getLangOpts().CPlusPlus) {
8339 DiagID = diag::err_typecheck_comparison_of_pointer_integer;
8340 isError = true;
8341 } else
8342 DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
8343
8344 if (DiagID) {
8345 Diag(Loc, DiagID)
8346 << LHSType << RHSType << LHS.get()->getSourceRange()
8347 << RHS.get()->getSourceRange();
8348 if (isError)
8349 return QualType();
8350 }
8351
8352 if (LHSType->isIntegerType())
8353 LHS = ImpCastExprToType(LHS.get(), RHSType,
8354 LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
8355 else
8356 RHS = ImpCastExprToType(RHS.get(), LHSType,
8357 RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
8358 return ResultTy;
8359 }
8360
8361 // Handle block pointers.
8362 if (!IsRelational && RHSIsNull
8363 && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
8364 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
8365 return ResultTy;
8366 }
8367 if (!IsRelational && LHSIsNull
8368 && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
8369 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
8370 return ResultTy;
8371 }
8372
8373 return InvalidOperands(Loc, LHS, RHS);
8374}
8375
8376
8377// Return a signed type that is of identical size and number of elements.
8378// For floating point vectors, return an integer type of identical size
8379// and number of elements.
8380QualType Sema::GetSignedVectorType(QualType V) {
8381 const VectorType *VTy = V->getAs<VectorType>();
8382 unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
8383 if (TypeSize == Context.getTypeSize(Context.CharTy))
8384 return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
8385 else if (TypeSize == Context.getTypeSize(Context.ShortTy))
8386 return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
8387 else if (TypeSize == Context.getTypeSize(Context.IntTy))
8388 return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
8389 else if (TypeSize == Context.getTypeSize(Context.LongTy))
8390 return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
8391 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
8392 "Unhandled vector element size in vector compare");
8393 return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
8394}
8395
8396/// CheckVectorCompareOperands - vector comparisons are a clang extension that
8397/// operates on extended vector types. Instead of producing an IntTy result,
8398/// like a scalar comparison, a vector comparison produces a vector of integer
8399/// types.
8400QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
8401 SourceLocation Loc,
8402 bool IsRelational) {
8403 // Check to make sure we're operating on vectors of the same type and width,
8404 // Allowing one side to be a scalar of element type.
8405 QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
8406 if (vType.isNull())
8407 return vType;
8408
8409 QualType LHSType = LHS.get()->getType();
8410
8411 // If AltiVec, the comparison results in a numeric type, i.e.
8412 // bool for C++, int for C
8413 if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
8414 return Context.getLogicalOperationType();
8415
8416 // For non-floating point types, check for self-comparisons of the form
8417 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
8418 // often indicate logic errors in the program.
8419 if (!LHSType->hasFloatingRepresentation() &&
8420 ActiveTemplateInstantiations.empty()) {
8421 if (DeclRefExpr* DRL
8422 = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
8423 if (DeclRefExpr* DRR
8424 = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
8425 if (DRL->getDecl() == DRR->getDecl())
8426 DiagRuntimeBehavior(Loc, nullptr,
8427 PDiag(diag::warn_comparison_always)
8428 << 0 // self-
8429 << 2 // "a constant"
8430 );
8431 }
8432
8433 // Check for comparisons of floating point operands using != and ==.
8434 if (!IsRelational && LHSType->hasFloatingRepresentation()) {
8435 assert (RHS.get()->getType()->hasFloatingRepresentation());
8436 CheckFloatComparison(Loc, LHS.get(), RHS.get());
8437 }
8438
8439 // Return a signed type for the vector.
8440 return GetSignedVectorType(LHSType);
8441}
8442
8443QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
8444 SourceLocation Loc) {
8445 // Ensure that either both operands are of the same vector type, or
8446 // one operand is of a vector type and the other is of its element type.
8447 QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
8448 if (vType.isNull())
8449 return InvalidOperands(Loc, LHS, RHS);
8450 if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
8451 vType->hasFloatingRepresentation())
8452 return InvalidOperands(Loc, LHS, RHS);
8453
8454 return GetSignedVectorType(LHS.get()->getType());
8455}
8456
8457inline QualType Sema::CheckBitwiseOperands(
8458 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
8459 checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
8460
8461 if (LHS.get()->getType()->isVectorType() ||
8462 RHS.get()->getType()->isVectorType()) {
8463 if (LHS.get()->getType()->hasIntegerRepresentation() &&
8464 RHS.get()->getType()->hasIntegerRepresentation())
8465 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
8466
8467 return InvalidOperands(Loc, LHS, RHS);
8468 }
8469
8470 ExprResult LHSResult = LHS, RHSResult = RHS;
8471 QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
8472 IsCompAssign);
8473 if (LHSResult.isInvalid() || RHSResult.isInvalid())
8474 return QualType();
8475 LHS = LHSResult.get();
8476 RHS = RHSResult.get();
8477
8478 if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
8479 return compType;
8480 return InvalidOperands(Loc, LHS, RHS);
8481}
8482
8483inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
8484 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
8485
8486 // Check vector operands differently.
8487 if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
8488 return CheckVectorLogicalOperands(LHS, RHS, Loc);
8489
8490 // Diagnose cases where the user write a logical and/or but probably meant a
8491 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
8492 // is a constant.
8493 if (LHS.get()->getType()->isIntegerType() &&
8494 !LHS.get()->getType()->isBooleanType() &&
8495 RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
8496 // Don't warn in macros or template instantiations.
8497 !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
8498 // If the RHS can be constant folded, and if it constant folds to something
8499 // that isn't 0 or 1 (which indicate a potential logical operation that
8500 // happened to fold to true/false) then warn.
8501 // Parens on the RHS are ignored.
8502 llvm::APSInt Result;
8503 if (RHS.get()->EvaluateAsInt(Result, Context))
8504 if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
8505 !RHS.get()->getExprLoc().isMacroID()) ||
8506 (Result != 0 && Result != 1)) {
8507 Diag(Loc, diag::warn_logical_instead_of_bitwise)
8508 << RHS.get()->getSourceRange()
8509 << (Opc == BO_LAnd ? "&&" : "||");
8510 // Suggest replacing the logical operator with the bitwise version
8511 Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
8512 << (Opc == BO_LAnd ? "&" : "|")
8513 << FixItHint::CreateReplacement(SourceRange(
8514 Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
8515 getLangOpts())),
8516 Opc == BO_LAnd ? "&" : "|");
8517 if (Opc == BO_LAnd)
8518 // Suggest replacing "Foo() && kNonZero" with "Foo()"
8519 Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
8520 << FixItHint::CreateRemoval(
8521 SourceRange(
8522 Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
8523 0, getSourceManager(),
8524 getLangOpts()),
8525 RHS.get()->getLocEnd()));
8526 }
8527 }
8528
8529 if (!Context.getLangOpts().CPlusPlus) {
8530 // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
8531 // not operate on the built-in scalar and vector float types.
8532 if (Context.getLangOpts().OpenCL &&
8533 Context.getLangOpts().OpenCLVersion < 120) {
8534 if (LHS.get()->getType()->isFloatingType() ||
8535 RHS.get()->getType()->isFloatingType())
8536 return InvalidOperands(Loc, LHS, RHS);
8537 }
8538
8539 LHS = UsualUnaryConversions(LHS.get());
8540 if (LHS.isInvalid())
8541 return QualType();
8542
8543 RHS = UsualUnaryConversions(RHS.get());
8544 if (RHS.isInvalid())
8545 return QualType();
8546
8547 if (!LHS.get()->getType()->isScalarType() ||
8548 !RHS.get()->getType()->isScalarType())
8549 return InvalidOperands(Loc, LHS, RHS);
8550
8551 return Context.IntTy;
8552 }
8553
8554 // The following is safe because we only use this method for
8555 // non-overloadable operands.
8556
8557 // C++ [expr.log.and]p1
8558 // C++ [expr.log.or]p1
8559 // The operands are both contextually converted to type bool.
8560 ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
8561 if (LHSRes.isInvalid())
8562 return InvalidOperands(Loc, LHS, RHS);
8563 LHS = LHSRes;
8564
8565 ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
8566 if (RHSRes.isInvalid())
8567 return InvalidOperands(Loc, LHS, RHS);
8568 RHS = RHSRes;
8569
8570 // C++ [expr.log.and]p2
8571 // C++ [expr.log.or]p2
8572 // The result is a bool.
8573 return Context.BoolTy;
8574}
8575
8576static bool IsReadonlyMessage(Expr *E, Sema &S) {
8577 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
8578 if (!ME) return false;
8579 if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
8580 ObjCMessageExpr *Base =
8581 dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
8582 if (!Base) return false;
8583 return Base->getMethodDecl() != nullptr;
8584}
8585
8586/// Is the given expression (which must be 'const') a reference to a
8587/// variable which was originally non-const, but which has become
8588/// 'const' due to being captured within a block?
8589enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
8590static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
8591 assert(E->isLValue() && E->getType().isConstQualified());
8592 E = E->IgnoreParens();
8593
8594 // Must be a reference to a declaration from an enclosing scope.
8595 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
8596 if (!DRE) return NCCK_None;
8597 if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
8598
8599 // The declaration must be a variable which is not declared 'const'.
8600 VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
8601 if (!var) return NCCK_None;
8602 if (var->getType().isConstQualified()) return NCCK_None;
8603 assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
8604
8605 // Decide whether the first capture was for a block or a lambda.
8606 DeclContext *DC = S.CurContext, *Prev = nullptr;
8607 while (DC != var->getDeclContext()) {
8608 Prev = DC;
8609 DC = DC->getParent();
8610 }
8611 // Unless we have an init-capture, we've gone one step too far.
8612 if (!var->isInitCapture())
8613 DC = Prev;
8614 return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
8615}
8616
8617/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
8618/// emit an error and return true. If so, return false.
8619static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
8620 assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
8621 SourceLocation OrigLoc = Loc;
8622 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
8623 &Loc);
8624 if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
8625 IsLV = Expr::MLV_InvalidMessageExpression;
8626 if (IsLV == Expr::MLV_Valid)
8627 return false;
8628
8629 unsigned DiagID = 0;
8630 bool NeedType = false;
8631 switch (IsLV) { // C99 6.5.16p2
8632 case Expr::MLV_ConstQualified:
8633 DiagID = diag::err_typecheck_assign_const;
8634
8635 // Use a specialized diagnostic when we're assigning to an object
8636 // from an enclosing function or block.
8637 if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
8638 if (NCCK == NCCK_Block)
8639 DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
8640 else
8641 DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
8642 break;
8643 }
8644
8645 // In ARC, use some specialized diagnostics for occasions where we
8646 // infer 'const'. These are always pseudo-strong variables.
8647 if (S.getLangOpts().ObjCAutoRefCount) {
8648 DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
8649 if (declRef && isa<VarDecl>(declRef->getDecl())) {
8650 VarDecl *var = cast<VarDecl>(declRef->getDecl());
8651
8652 // Use the normal diagnostic if it's pseudo-__strong but the
8653 // user actually wrote 'const'.
8654 if (var->isARCPseudoStrong() &&
8655 (!var->getTypeSourceInfo() ||
8656 !var->getTypeSourceInfo()->getType().isConstQualified())) {
8657 // There are two pseudo-strong cases:
8658 // - self
8659 ObjCMethodDecl *method = S.getCurMethodDecl();
8660 if (method && var == method->getSelfDecl())
8661 DiagID = method->isClassMethod()
8662 ? diag::err_typecheck_arc_assign_self_class_method
8663 : diag::err_typecheck_arc_assign_self;
8664
8665 // - fast enumeration variables
8666 else
8667 DiagID = diag::err_typecheck_arr_assign_enumeration;
8668
8669 SourceRange Assign;
8670 if (Loc != OrigLoc)
8671 Assign = SourceRange(OrigLoc, OrigLoc);
8672 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
8673 // We need to preserve the AST regardless, so migration tool
8674 // can do its job.
8675 return false;
8676 }
8677 }
8678 }
8679
8680 break;
8681 case Expr::MLV_ArrayType:
8682 case Expr::MLV_ArrayTemporary:
8683 DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
8684 NeedType = true;
8685 break;
8686 case Expr::MLV_NotObjectType:
8687 DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
8688 NeedType = true;
8689 break;
8690 case Expr::MLV_LValueCast:
8691 DiagID = diag::err_typecheck_lvalue_casts_not_supported;
8692 break;
8693 case Expr::MLV_Valid:
8694 llvm_unreachable("did not take early return for MLV_Valid");
8695 case Expr::MLV_InvalidExpression:
8696 case Expr::MLV_MemberFunction:
8697 case Expr::MLV_ClassTemporary:
8698 DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
8699 break;
8700 case Expr::MLV_IncompleteType:
8701 case Expr::MLV_IncompleteVoidType:
8702 return S.RequireCompleteType(Loc, E->getType(),
8703 diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
8704 case Expr::MLV_DuplicateVectorComponents:
8705 DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
8706 break;
8707 case Expr::MLV_NoSetterProperty:
8708 llvm_unreachable("readonly properties should be processed differently");
8709 case Expr::MLV_InvalidMessageExpression:
8710 DiagID = diag::error_readonly_message_assignment;
8711 break;
8712 case Expr::MLV_SubObjCPropertySetting:
8713 DiagID = diag::error_no_subobject_property_setting;
8714 break;
8715 }
8716
8717 SourceRange Assign;
8718 if (Loc != OrigLoc)
8719 Assign = SourceRange(OrigLoc, OrigLoc);
8720 if (NeedType)
8721 S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
8722 else
8723 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
8724 return true;
8725}
8726
8727static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
8728 SourceLocation Loc,
8729 Sema &Sema) {
8730 // C / C++ fields
8731 MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
8732 MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
8733 if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
8734 if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
8735 Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
8736 }
8737
8738 // Objective-C instance variables
8739 ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
8740 ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
8741 if (OL && OR && OL->getDecl() == OR->getDecl()) {
8742 DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
8743 DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
8744 if (RL && RR && RL->getDecl() == RR->getDecl())
8745 Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
8746 }
8747}
8748
8749// C99 6.5.16.1
8750QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
8751 SourceLocation Loc,
8752 QualType CompoundType) {
8753 assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
8754
8755 // Verify that LHS is a modifiable lvalue, and emit error if not.
8756 if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
8757 return QualType();
8758
8759 QualType LHSType = LHSExpr->getType();
8760 QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
8761 CompoundType;
8762 AssignConvertType ConvTy;
8763 if (CompoundType.isNull()) {
8764 Expr *RHSCheck = RHS.get();
8765
8766 CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
8767
8768 QualType LHSTy(LHSType);
8769 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
8770 if (RHS.isInvalid())
8771 return QualType();
8772 // Special case of NSObject attributes on c-style pointer types.
8773 if (ConvTy == IncompatiblePointer &&
8774 ((Context.isObjCNSObjectType(LHSType) &&
8775 RHSType->isObjCObjectPointerType()) ||
8776 (Context.isObjCNSObjectType(RHSType) &&
8777 LHSType->isObjCObjectPointerType())))
8778 ConvTy = Compatible;
8779
8780 if (ConvTy == Compatible &&
8781 LHSType->isObjCObjectType())
8782 Diag(Loc, diag::err_objc_object_assignment)
8783 << LHSType;
8784
8785 // If the RHS is a unary plus or minus, check to see if they = and + are
8786 // right next to each other. If so, the user may have typo'd "x =+ 4"
8787 // instead of "x += 4".
8788 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
8789 RHSCheck = ICE->getSubExpr();
8790 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
8791 if ((UO->getOpcode() == UO_Plus ||
8792 UO->getOpcode() == UO_Minus) &&
8793 Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
8794 // Only if the two operators are exactly adjacent.
8795 Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
8796 // And there is a space or other character before the subexpr of the
8797 // unary +/-. We don't want to warn on "x=-1".
8798 Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
8799 UO->getSubExpr()->getLocStart().isFileID()) {
8800 Diag(Loc, diag::warn_not_compound_assign)
8801 << (UO->getOpcode() == UO_Plus ? "+" : "-")
8802 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
8803 }
8804 }
8805
8806 if (ConvTy == Compatible) {
8807 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
8808 // Warn about retain cycles where a block captures the LHS, but
8809 // not if the LHS is a simple variable into which the block is
8810 // being stored...unless that variable can be captured by reference!
8811 const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
8812 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
8813 if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
8814 checkRetainCycles(LHSExpr, RHS.get());
8815
8816 // It is safe to assign a weak reference into a strong variable.
8817 // Although this code can still have problems:
8818 // id x = self.weakProp;
8819 // id y = self.weakProp;
8820 // we do not warn to warn spuriously when 'x' and 'y' are on separate
8821 // paths through the function. This should be revisited if
8822 // -Wrepeated-use-of-weak is made flow-sensitive.
8823 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
8824 RHS.get()->getLocStart()))
8825 getCurFunction()->markSafeWeakUse(RHS.get());
8826
8827 } else if (getLangOpts().ObjCAutoRefCount) {
8828 checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
8829 }
8830 }
8831 } else {
8832 // Compound assignment "x += y"
8833 ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
8834 }
8835
8836 if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
8837 RHS.get(), AA_Assigning))
8838 return QualType();
8839
8840 CheckForNullPointerDereference(*this, LHSExpr);
8841
8842 // C99 6.5.16p3: The type of an assignment expression is the type of the
8843 // left operand unless the left operand has qualified type, in which case
8844 // it is the unqualified version of the type of the left operand.
8845 // C99 6.5.16.1p2: In simple assignment, the value of the right operand
8846 // is converted to the type of the assignment expression (above).
8847 // C++ 5.17p1: the type of the assignment expression is that of its left
8848 // operand.
8849 return (getLangOpts().CPlusPlus
8850 ? LHSType : LHSType.getUnqualifiedType());
8851}
8852
8853// C99 6.5.17
8854static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
8855 SourceLocation Loc) {
8856 LHS = S.CheckPlaceholderExpr(LHS.get());
8857 RHS = S.CheckPlaceholderExpr(RHS.get());
8858 if (LHS.isInvalid() || RHS.isInvalid())
8859 return QualType();
8860
8861 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
8862 // operands, but not unary promotions.
8863 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
8864
8865 // So we treat the LHS as a ignored value, and in C++ we allow the
8866 // containing site to determine what should be done with the RHS.
8867 LHS = S.IgnoredValueConversions(LHS.get());
8868 if (LHS.isInvalid())
8869 return QualType();
8870
8871 S.DiagnoseUnusedExprResult(LHS.get());
8872
8873 if (!S.getLangOpts().CPlusPlus) {
8874 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8875 if (RHS.isInvalid())
8876 return QualType();
8877 if (!RHS.get()->getType()->isVoidType())
8878 S.RequireCompleteType(Loc, RHS.get()->getType(),
8879 diag::err_incomplete_type);
8880 }
8881
8882 return RHS.get()->getType();
8883}
8884
8885/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
8886/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
8887static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
8888 ExprValueKind &VK,
8889 ExprObjectKind &OK,
8890 SourceLocation OpLoc,
8891 bool IsInc, bool IsPrefix) {
8892 if (Op->isTypeDependent())
8893 return S.Context.DependentTy;
8894
8895 QualType ResType = Op->getType();
8896 // Atomic types can be used for increment / decrement where the non-atomic
8897 // versions can, so ignore the _Atomic() specifier for the purpose of
8898 // checking.
8899 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
8900 ResType = ResAtomicType->getValueType();
8901
8902 assert(!ResType.isNull() && "no type for increment/decrement expression");
8903
8904 if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
8905 // Decrement of bool is not allowed.
8906 if (!IsInc) {
8907 S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
8908 return QualType();
8909 }
8910 // Increment of bool sets it to true, but is deprecated.
8911 S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
8912 } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
8913 // Error on enum increments and decrements in C++ mode
8914 S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
8915 return QualType();
8916 } else if (ResType->isRealType()) {
8917 // OK!
8918 } else if (ResType->isPointerType()) {
8919 // C99 6.5.2.4p2, 6.5.6p2
8920 if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
8921 return QualType();
8922 } else if (ResType->isObjCObjectPointerType()) {
8923 // On modern runtimes, ObjC pointer arithmetic is forbidden.
8924 // Otherwise, we just need a complete type.
8925 if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
8926 checkArithmeticOnObjCPointer(S, OpLoc, Op))
8927 return QualType();
8928 } else if (ResType->isAnyComplexType()) {
8929 // C99 does not support ++/-- on complex types, we allow as an extension.
8930 S.Diag(OpLoc, diag::ext_integer_increment_complex)
8931 << ResType << Op->getSourceRange();
8932 } else if (ResType->isPlaceholderType()) {
8933 ExprResult PR = S.CheckPlaceholderExpr(Op);
8934 if (PR.isInvalid()) return QualType();
8935 return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
8936 IsInc, IsPrefix);
8937 } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
8938 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
8939 } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
8940 ResType->getAs<VectorType>()->getElementType()->isIntegerType()) {
8941 // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
8942 } else {
8943 S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
8944 << ResType << int(IsInc) << Op->getSourceRange();
8945 return QualType();
8946 }
8947 // At this point, we know we have a real, complex or pointer type.
8948 // Now make sure the operand is a modifiable lvalue.
8949 if (CheckForModifiableLvalue(Op, OpLoc, S))
8950 return QualType();
8951 // In C++, a prefix increment is the same type as the operand. Otherwise
8952 // (in C or with postfix), the increment is the unqualified type of the
8953 // operand.
8954 if (IsPrefix && S.getLangOpts().CPlusPlus) {
8955 VK = VK_LValue;
8956 OK = Op->getObjectKind();
8957 return ResType;
8958 } else {
8959 VK = VK_RValue;
8960 return ResType.getUnqualifiedType();
8961 }
8962}
8963
8964
8965/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
8966/// This routine allows us to typecheck complex/recursive expressions
8967/// where the declaration is needed for type checking. We only need to
8968/// handle cases when the expression references a function designator
8969/// or is an lvalue. Here are some examples:
8970/// - &(x) => x
8971/// - &*****f => f for f a function designator.
8972/// - &s.xx => s
8973/// - &s.zz[1].yy -> s, if zz is an array
8974/// - *(x + 1) -> x, if x is an array
8975/// - &"123"[2] -> 0
8976/// - & __real__ x -> x
8977static ValueDecl *getPrimaryDecl(Expr *E) {
8978 switch (E->getStmtClass()) {
8979 case Stmt::DeclRefExprClass:
8980 return cast<DeclRefExpr>(E)->getDecl();
8981 case Stmt::MemberExprClass:
8982 // If this is an arrow operator, the address is an offset from
8983 // the base's value, so the object the base refers to is
8984 // irrelevant.
8985 if (cast<MemberExpr>(E)->isArrow())
8986 return nullptr;
8987 // Otherwise, the expression refers to a part of the base
8988 return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
8989 case Stmt::ArraySubscriptExprClass: {
8990 // FIXME: This code shouldn't be necessary! We should catch the implicit
8991 // promotion of register arrays earlier.
8992 Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
8993 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
8994 if (ICE->getSubExpr()->getType()->isArrayType())
8995 return getPrimaryDecl(ICE->getSubExpr());
8996 }
8997 return nullptr;
8998 }
8999 case Stmt::UnaryOperatorClass: {
9000 UnaryOperator *UO = cast<UnaryOperator>(E);
9001
9002 switch(UO->getOpcode()) {
9003 case UO_Real:
9004 case UO_Imag:
9005 case UO_Extension:
9006 return getPrimaryDecl(UO->getSubExpr());
9007 default:
9008 return nullptr;
9009 }
9010 }
9011 case Stmt::ParenExprClass:
9012 return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
9013 case Stmt::ImplicitCastExprClass:
9014 // If the result of an implicit cast is an l-value, we care about
9015 // the sub-expression; otherwise, the result here doesn't matter.
9016 return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
9017 default:
9018 return nullptr;
9019 }
9020}
9021
9022namespace {
9023 enum {
9024 AO_Bit_Field = 0,
9025 AO_Vector_Element = 1,
9026 AO_Property_Expansion = 2,
9027 AO_Register_Variable = 3,
9028 AO_No_Error = 4
9029 };
9030}
9031/// \brief Diagnose invalid operand for address of operations.
9032///
9033/// \param Type The type of operand which cannot have its address taken.
9034static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
9035 Expr *E, unsigned Type) {
9036 S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
9037}
9038
9039/// CheckAddressOfOperand - The operand of & must be either a function
9040/// designator or an lvalue designating an object. If it is an lvalue, the
9041/// object cannot be declared with storage class register or be a bit field.
9042/// Note: The usual conversions are *not* applied to the operand of the &
9043/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
9044/// In C++, the operand might be an overloaded function name, in which case
9045/// we allow the '&' but retain the overloaded-function type.
9046QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
9047 if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
9048 if (PTy->getKind() == BuiltinType::Overload) {
9049 Expr *E = OrigOp.get()->IgnoreParens();
9050 if (!isa<OverloadExpr>(E)) {
9051 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
9052 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
9053 << OrigOp.get()->getSourceRange();
9054 return QualType();
9055 }
9056
9057 OverloadExpr *Ovl = cast<OverloadExpr>(E);
9058 if (isa<UnresolvedMemberExpr>(Ovl))
9059 if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
9060 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
9061 << OrigOp.get()->getSourceRange();
9062 return QualType();
9063 }
9064
9065 return Context.OverloadTy;
9066 }
9067
9068 if (PTy->getKind() == BuiltinType::UnknownAny)
9069 return Context.UnknownAnyTy;
9070
9071 if (PTy->getKind() == BuiltinType::BoundMember) {
9072 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
9073 << OrigOp.get()->getSourceRange();
9074 return QualType();
9075 }
9076
9077 OrigOp = CheckPlaceholderExpr(OrigOp.get());
9078 if (OrigOp.isInvalid()) return QualType();
9079 }
9080
9081 if (OrigOp.get()->isTypeDependent())
9082 return Context.DependentTy;
9083
9084 assert(!OrigOp.get()->getType()->isPlaceholderType());
9085
9086 // Make sure to ignore parentheses in subsequent checks
9087 Expr *op = OrigOp.get()->IgnoreParens();
9088
9089 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
9090 if (LangOpts.OpenCL && op->getType()->isFunctionType()) {
9091 Diag(op->getExprLoc(), diag::err_opencl_taking_function_address);
9092 return QualType();
9093 }
9094
9095 if (getLangOpts().C99) {
9096 // Implement C99-only parts of addressof rules.
9097 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
9098 if (uOp->getOpcode() == UO_Deref)
9099 // Per C99 6.5.3.2, the address of a deref always returns a valid result
9100 // (assuming the deref expression is valid).
9101 return uOp->getSubExpr()->getType();
9102 }
9103 // Technically, there should be a check for array subscript
9104 // expressions here, but the result of one is always an lvalue anyway.
9105 }
9106 ValueDecl *dcl = getPrimaryDecl(op);
9107 Expr::LValueClassification lval = op->ClassifyLValue(Context);
9108 unsigned AddressOfError = AO_No_Error;
9109
9110 if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
9111 bool sfinae = (bool)isSFINAEContext();
9112 Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
9113 : diag::ext_typecheck_addrof_temporary)
9114 << op->getType() << op->getSourceRange();
9115 if (sfinae)
9116 return QualType();
9117 // Materialize the temporary as an lvalue so that we can take its address.
9118 OrigOp = op = new (Context)
9119 MaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
9120 } else if (isa<ObjCSelectorExpr>(op)) {
9121 return Context.getPointerType(op->getType());
9122 } else if (lval == Expr::LV_MemberFunction) {
9123 // If it's an instance method, make a member pointer.
9124 // The expression must have exactly the form &A::foo.
9125
9126 // If the underlying expression isn't a decl ref, give up.
9127 if (!isa<DeclRefExpr>(op)) {
9128 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
9129 << OrigOp.get()->getSourceRange();
9130 return QualType();
9131 }
9132 DeclRefExpr *DRE = cast<DeclRefExpr>(op);
9133 CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
9134
9135 // The id-expression was parenthesized.
9136 if (OrigOp.get() != DRE) {
9137 Diag(OpLoc, diag::err_parens_pointer_member_function)
9138 << OrigOp.get()->getSourceRange();
9139
9140 // The method was named without a qualifier.
9141 } else if (!DRE->getQualifier()) {
9142 if (MD->getParent()->getName().empty())
9143 Diag(OpLoc, diag::err_unqualified_pointer_member_function)
9144 << op->getSourceRange();
9145 else {
9146 SmallString<32> Str;
9147 StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
9148 Diag(OpLoc, diag::err_unqualified_pointer_member_function)
9149 << op->getSourceRange()
9150 << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
9151 }
9152 }
9153
9154 // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
9155 if (isa<CXXDestructorDecl>(MD))
9156 Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
9157
9158 QualType MPTy = Context.getMemberPointerType(
9159 op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
9160 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
9161 RequireCompleteType(OpLoc, MPTy, 0);
9162 return MPTy;
9163 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
9164 // C99 6.5.3.2p1
9165 // The operand must be either an l-value or a function designator
9166 if (!op->getType()->isFunctionType()) {
9167 // Use a special diagnostic for loads from property references.
9168 if (isa<PseudoObjectExpr>(op)) {
9169 AddressOfError = AO_Property_Expansion;
9170 } else {
9171 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
9172 << op->getType() << op->getSourceRange();
9173 return QualType();
9174 }
9175 }
9176 } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
9177 // The operand cannot be a bit-field
9178 AddressOfError = AO_Bit_Field;
9179 } else if (op->getObjectKind() == OK_VectorComponent) {
9180 // The operand cannot be an element of a vector
9181 AddressOfError = AO_Vector_Element;
9182 } else if (dcl) { // C99 6.5.3.2p1
9183 // We have an lvalue with a decl. Make sure the decl is not declared
9184 // with the register storage-class specifier.
9185 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
9186 // in C++ it is not error to take address of a register
9187 // variable (c++03 7.1.1P3)
9188 if (vd->getStorageClass() == SC_Register &&
9189 !getLangOpts().CPlusPlus) {
9190 AddressOfError = AO_Register_Variable;
9191 }
9192 } else if (isa<FunctionTemplateDecl>(dcl)) {
9193 return Context.OverloadTy;
9194 } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
9195 // Okay: we can take the address of a field.
9196 // Could be a pointer to member, though, if there is an explicit
9197 // scope qualifier for the class.
9198 if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
9199 DeclContext *Ctx = dcl->getDeclContext();
9200 if (Ctx && Ctx->isRecord()) {
9201 if (dcl->getType()->isReferenceType()) {
9202 Diag(OpLoc,
9203 diag::err_cannot_form_pointer_to_member_of_reference_type)
9204 << dcl->getDeclName() << dcl->getType();
9205 return QualType();
9206 }
9207
9208 while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
9209 Ctx = Ctx->getParent();
9210
9211 QualType MPTy = Context.getMemberPointerType(
9212 op->getType(),
9213 Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
9214 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
9215 RequireCompleteType(OpLoc, MPTy, 0);
9216 return MPTy;
9217 }
9218 }
9219 } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
9220 llvm_unreachable("Unknown/unexpected decl type");
9221 }
9222
9223 if (AddressOfError != AO_No_Error) {
9224 diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
9225 return QualType();
9226 }
9227
9228 if (lval == Expr::LV_IncompleteVoidType) {
9229 // Taking the address of a void variable is technically illegal, but we
9230 // allow it in cases which are otherwise valid.
9231 // Example: "extern void x; void* y = &x;".
9232 Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
9233 }
9234
9235 // If the operand has type "type", the result has type "pointer to type".
9236 if (op->getType()->isObjCObjectType())
9237 return Context.getObjCObjectPointerType(op->getType());
9238 return Context.getPointerType(op->getType());
9239}
9240
9241static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
9242 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
9243 if (!DRE)
9244 return;
9245 const Decl *D = DRE->getDecl();
9246 if (!D)
9247 return;
9248 const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
9249 if (!Param)
9250 return;
9251 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
9252 if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
9253 return;
9254 if (FunctionScopeInfo *FD = S.getCurFunction())
9255 if (!FD->ModifiedNonNullParams.count(Param))
9256 FD->ModifiedNonNullParams.insert(Param);
9257}
9258
9259/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
9260static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
9261 SourceLocation OpLoc) {
9262 if (Op->isTypeDependent())
9263 return S.Context.DependentTy;
9264
9265 ExprResult ConvResult = S.UsualUnaryConversions(Op);
9266 if (ConvResult.isInvalid())
9267 return QualType();
9268 Op = ConvResult.get();
9269 QualType OpTy = Op->getType();
9270 QualType Result;
9271
9272 if (isa<CXXReinterpretCastExpr>(Op)) {
9273 QualType OpOrigType = Op->IgnoreParenCasts()->getType();
9274 S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
9275 Op->getSourceRange());
9276 }
9277
9278 if (const PointerType *PT = OpTy->getAs<PointerType>())
9279 Result = PT->getPointeeType();
9280 else if (const ObjCObjectPointerType *OPT =
9281 OpTy->getAs<ObjCObjectPointerType>())
9282 Result = OPT->getPointeeType();
9283 else {
9284 ExprResult PR = S.CheckPlaceholderExpr(Op);
9285 if (PR.isInvalid()) return QualType();
9286 if (PR.get() != Op)
9287 return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
9288 }
9289
9290 if (Result.isNull()) {
9291 S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
9292 << OpTy << Op->getSourceRange();
9293 return QualType();
9294 }
9295
9296 // Note that per both C89 and C99, indirection is always legal, even if Result
9297 // is an incomplete type or void. It would be possible to warn about
9298 // dereferencing a void pointer, but it's completely well-defined, and such a
9299 // warning is unlikely to catch any mistakes. In C++, indirection is not valid
9300 // for pointers to 'void' but is fine for any other pointer type:
9301 //
9302 // C++ [expr.unary.op]p1:
9303 // [...] the expression to which [the unary * operator] is applied shall
9304 // be a pointer to an object type, or a pointer to a function type
9305 if (S.getLangOpts().CPlusPlus && Result->isVoidType())
9306 S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
9307 << OpTy << Op->getSourceRange();
9308
9309 // Dereferences are usually l-values...
9310 VK = VK_LValue;
9311
9312 // ...except that certain expressions are never l-values in C.
9313 if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
9314 VK = VK_RValue;
9315
9316 return Result;
9317}
9318
9319BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
9320 BinaryOperatorKind Opc;
9321 switch (Kind) {
9322 default: llvm_unreachable("Unknown binop!");
9323 case tok::periodstar: Opc = BO_PtrMemD; break;
9324 case tok::arrowstar: Opc = BO_PtrMemI; break;
9325 case tok::star: Opc = BO_Mul; break;
9326 case tok::slash: Opc = BO_Div; break;
9327 case tok::percent: Opc = BO_Rem; break;
9328 case tok::plus: Opc = BO_Add; break;
9329 case tok::minus: Opc = BO_Sub; break;
9330 case tok::lessless: Opc = BO_Shl; break;
9331 case tok::greatergreater: Opc = BO_Shr; break;
9332 case tok::lessequal: Opc = BO_LE; break;
9333 case tok::less: Opc = BO_LT; break;
9334 case tok::greaterequal: Opc = BO_GE; break;
9335 case tok::greater: Opc = BO_GT; break;
9336 case tok::exclaimequal: Opc = BO_NE; break;
9337 case tok::equalequal: Opc = BO_EQ; break;
9338 case tok::amp: Opc = BO_And; break;
9339 case tok::caret: Opc = BO_Xor; break;
9340 case tok::pipe: Opc = BO_Or; break;
9341 case tok::ampamp: Opc = BO_LAnd; break;
9342 case tok::pipepipe: Opc = BO_LOr; break;
9343 case tok::equal: Opc = BO_Assign; break;
9344 case tok::starequal: Opc = BO_MulAssign; break;
9345 case tok::slashequal: Opc = BO_DivAssign; break;
9346 case tok::percentequal: Opc = BO_RemAssign; break;
9347 case tok::plusequal: Opc = BO_AddAssign; break;
9348 case tok::minusequal: Opc = BO_SubAssign; break;
9349 case tok::lesslessequal: Opc = BO_ShlAssign; break;
9350 case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
9351 case tok::ampequal: Opc = BO_AndAssign; break;
9352 case tok::caretequal: Opc = BO_XorAssign; break;
9353 case tok::pipeequal: Opc = BO_OrAssign; break;
9354 case tok::comma: Opc = BO_Comma; break;
9355 }
9356 return Opc;
9357}
9358
9359static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
9360 tok::TokenKind Kind) {
9361 UnaryOperatorKind Opc;
9362 switch (Kind) {
9363 default: llvm_unreachable("Unknown unary op!");
9364 case tok::plusplus: Opc = UO_PreInc; break;
9365 case tok::minusminus: Opc = UO_PreDec; break;
9366 case tok::amp: Opc = UO_AddrOf; break;
9367 case tok::star: Opc = UO_Deref; break;
9368 case tok::plus: Opc = UO_Plus; break;
9369 case tok::minus: Opc = UO_Minus; break;
9370 case tok::tilde: Opc = UO_Not; break;
9371 case tok::exclaim: Opc = UO_LNot; break;
9372 case tok::kw___real: Opc = UO_Real; break;
9373 case tok::kw___imag: Opc = UO_Imag; break;
9374 case tok::kw___extension__: Opc = UO_Extension; break;
9375 }
9376 return Opc;
9377}
9378
9379/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
9380/// This warning is only emitted for builtin assignment operations. It is also
9381/// suppressed in the event of macro expansions.
9382static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
9383 SourceLocation OpLoc) {
9384 if (!S.ActiveTemplateInstantiations.empty())
9385 return;
9386 if (OpLoc.isInvalid() || OpLoc.isMacroID())
9387 return;
9388 LHSExpr = LHSExpr->IgnoreParenImpCasts();
9389 RHSExpr = RHSExpr->IgnoreParenImpCasts();
9390 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
9391 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
9392 if (!LHSDeclRef || !RHSDeclRef ||
9393 LHSDeclRef->getLocation().isMacroID() ||
9394 RHSDeclRef->getLocation().isMacroID())
9395 return;
9396 const ValueDecl *LHSDecl =
9397 cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
9398 const ValueDecl *RHSDecl =
9399 cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
9400 if (LHSDecl != RHSDecl)
9401 return;
9402 if (LHSDecl->getType().isVolatileQualified())
9403 return;
9404 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
9405 if (RefTy->getPointeeType().isVolatileQualified())
9406 return;
9407
9408 S.Diag(OpLoc, diag::warn_self_assignment)
9409 << LHSDeclRef->getType()
9410 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
9411}
9412
9413/// Check if a bitwise-& is performed on an Objective-C pointer. This
9414/// is usually indicative of introspection within the Objective-C pointer.
9415static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
9416 SourceLocation OpLoc) {
9417 if (!S.getLangOpts().ObjC1)
9418 return;
9419
9420 const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
9421 const Expr *LHS = L.get();
9422 const Expr *RHS = R.get();
9423
9424 if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
9425 ObjCPointerExpr = LHS;
9426 OtherExpr = RHS;
9427 }
9428 else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
9429 ObjCPointerExpr = RHS;
9430 OtherExpr = LHS;
9431 }
9432
9433 // This warning is deliberately made very specific to reduce false
9434 // positives with logic that uses '&' for hashing. This logic mainly
9435 // looks for code trying to introspect into tagged pointers, which
9436 // code should generally never do.
9437 if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
9438 unsigned Diag = diag::warn_objc_pointer_masking;
9439 // Determine if we are introspecting the result of performSelectorXXX.
9440 const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
9441 // Special case messages to -performSelector and friends, which
9442 // can return non-pointer values boxed in a pointer value.
9443 // Some clients may wish to silence warnings in this subcase.
9444 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
9445 Selector S = ME->getSelector();
9446 StringRef SelArg0 = S.getNameForSlot(0);
9447 if (SelArg0.startswith("performSelector"))
9448 Diag = diag::warn_objc_pointer_masking_performSelector;
9449 }
9450
9451 S.Diag(OpLoc, Diag)
9452 << ObjCPointerExpr->getSourceRange();
9453 }
9454}
9455
9456static NamedDecl *getDeclFromExpr(Expr *E) {
9457 if (!E)
9458 return nullptr;
9459 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
9460 return DRE->getDecl();
9461 if (auto *ME = dyn_cast<MemberExpr>(E))
9462 return ME->getMemberDecl();
9463 if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
9464 return IRE->getDecl();
9465 return nullptr;
9466}
9467
9468/// CreateBuiltinBinOp - Creates a new built-in binary operation with
9469/// operator @p Opc at location @c TokLoc. This routine only supports
9470/// built-in operations; ActOnBinOp handles overloaded operators.
9471ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
9472 BinaryOperatorKind Opc,
9473 Expr *LHSExpr, Expr *RHSExpr) {
9474 if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
9475 // The syntax only allows initializer lists on the RHS of assignment,
9476 // so we don't need to worry about accepting invalid code for
9477 // non-assignment operators.
9478 // C++11 5.17p9:
9479 // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
9480 // of x = {} is x = T().
9481 InitializationKind Kind =
9482 InitializationKind::CreateDirectList(RHSExpr->getLocStart());
9483 InitializedEntity Entity =
9484 InitializedEntity::InitializeTemporary(LHSExpr->getType());
9485 InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
9486 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
9487 if (Init.isInvalid())
9488 return Init;
9489 RHSExpr = Init.get();
9490 }
9491
9492 ExprResult LHS = LHSExpr, RHS = RHSExpr;
9493 QualType ResultTy; // Result type of the binary operator.
9494 // The following two variables are used for compound assignment operators
9495 QualType CompLHSTy; // Type of LHS after promotions for computation
9496 QualType CompResultTy; // Type of computation result
9497 ExprValueKind VK = VK_RValue;
9498 ExprObjectKind OK = OK_Ordinary;
9499
9500 if (!getLangOpts().CPlusPlus) {
9501 // C cannot handle TypoExpr nodes on either side of a binop because it
9502 // doesn't handle dependent types properly, so make sure any TypoExprs have
9503 // been dealt with before checking the operands.
9504 LHS = CorrectDelayedTyposInExpr(LHSExpr);
9505 RHS = CorrectDelayedTyposInExpr(RHSExpr, [Opc, LHS](Expr *E) {
9506 if (Opc != BO_Assign)
9507 return ExprResult(E);
9508 // Avoid correcting the RHS to the same Expr as the LHS.
9509 Decl *D = getDeclFromExpr(E);
9510 return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
9511 });
9512 if (!LHS.isUsable() || !RHS.isUsable())
9513 return ExprError();
9514 }
9515
9516 switch (Opc) {
9517 case BO_Assign:
9518 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
9519 if (getLangOpts().CPlusPlus &&
9520 LHS.get()->getObjectKind() != OK_ObjCProperty) {
9521 VK = LHS.get()->getValueKind();
9522 OK = LHS.get()->getObjectKind();
9523 }
9524 if (!ResultTy.isNull()) {
9525 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
9526 DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
9527 }
9528 RecordModifiableNonNullParam(*this, LHS.get());
9529 break;
9530 case BO_PtrMemD:
9531 case BO_PtrMemI:
9532 ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
9533 Opc == BO_PtrMemI);
9534 break;
9535 case BO_Mul:
9536 case BO_Div:
9537 ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
9538 Opc == BO_Div);
9539 break;
9540 case BO_Rem:
9541 ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
9542 break;
9543 case BO_Add:
9544 ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
9545 break;
9546 case BO_Sub:
9547 ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
9548 break;
9549 case BO_Shl:
9550 case BO_Shr:
9551 ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
9552 break;
9553 case BO_LE:
9554 case BO_LT:
9555 case BO_GE:
9556 case BO_GT:
9557 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
9558 break;
9559 case BO_EQ:
9560 case BO_NE:
9561 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
9562 break;
9563 case BO_And:
9564 checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
9565 case BO_Xor:
9566 case BO_Or:
9567 ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
9568 break;
9569 case BO_LAnd:
9570 case BO_LOr:
9571 ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
9572 break;
9573 case BO_MulAssign:
9574 case BO_DivAssign:
9575 CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
9576 Opc == BO_DivAssign);
9577 CompLHSTy = CompResultTy;
9578 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9579 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9580 break;
9581 case BO_RemAssign:
9582 CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
9583 CompLHSTy = CompResultTy;
9584 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9585 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9586 break;
9587 case BO_AddAssign:
9588 CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
9589 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9590 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9591 break;
9592 case BO_SubAssign:
9593 CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
9594 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9595 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9596 break;
9597 case BO_ShlAssign:
9598 case BO_ShrAssign:
9599 CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
9600 CompLHSTy = CompResultTy;
9601 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9602 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9603 break;
9604 case BO_AndAssign:
9605 case BO_OrAssign: // fallthrough
9606 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
9607 case BO_XorAssign:
9608 CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
9609 CompLHSTy = CompResultTy;
9610 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
9611 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
9612 break;
9613 case BO_Comma:
9614 ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
9615 if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
9616 VK = RHS.get()->getValueKind();
9617 OK = RHS.get()->getObjectKind();
9618 }
9619 break;
9620 }
9621 if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
9622 return ExprError();
9623
9624 // Check for array bounds violations for both sides of the BinaryOperator
9625 CheckArrayAccess(LHS.get());
9626 CheckArrayAccess(RHS.get());
9627
9628 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
9629 NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
9630 &Context.Idents.get("object_setClass"),
9631 SourceLocation(), LookupOrdinaryName);
9632 if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
9633 SourceLocation RHSLocEnd = PP.getLocForEndOfToken(RHS.get()->getLocEnd());
9634 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) <<
9635 FixItHint::CreateInsertion(LHS.get()->getLocStart(), "object_setClass(") <<
9636 FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), ",") <<
9637 FixItHint::CreateInsertion(RHSLocEnd, ")");
9638 }
9639 else
9640 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
9641 }
9642 else if (const ObjCIvarRefExpr *OIRE =
9643 dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
9644 DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
9645
9646 if (CompResultTy.isNull())
9647 return new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, ResultTy, VK,
9648 OK, OpLoc, FPFeatures.fp_contract);
9649 if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
9650 OK_ObjCProperty) {
9651 VK = VK_LValue;
9652 OK = LHS.get()->getObjectKind();
9653 }
9654 return new (Context) CompoundAssignOperator(
9655 LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, CompLHSTy, CompResultTy,
9656 OpLoc, FPFeatures.fp_contract);
9657}
9658
9659/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
9660/// operators are mixed in a way that suggests that the programmer forgot that
9661/// comparison operators have higher precedence. The most typical example of
9662/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
9663static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
9664 SourceLocation OpLoc, Expr *LHSExpr,
9665 Expr *RHSExpr) {
9666 BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
9667 BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
9668
9669 // Check that one of the sides is a comparison operator.
9670 bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
9671 bool isRightComp = RHSBO && RHSBO->isComparisonOp();
9672 if (!isLeftComp && !isRightComp)
9673 return;
9674
9675 // Bitwise operations are sometimes used as eager logical ops.
9676 // Don't diagnose this.
9677 bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
9678 bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
9679 if ((isLeftComp || isLeftBitwise) && (isRightComp || isRightBitwise))
9680 return;
9681
9682 SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
9683 OpLoc)
9684 : SourceRange(OpLoc, RHSExpr->getLocEnd());
9685 StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
9686 SourceRange ParensRange = isLeftComp ?
9687 SourceRange(LHSBO->getRHS()->getLocStart(), RHSExpr->getLocEnd())
9688 : SourceRange(LHSExpr->getLocStart(), RHSBO->getLHS()->getLocEnd());
9689
9690 Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
9691 << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
9692 SuggestParentheses(Self, OpLoc,
9693 Self.PDiag(diag::note_precedence_silence) << OpStr,
9694 (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
9695 SuggestParentheses(Self, OpLoc,
9696 Self.PDiag(diag::note_precedence_bitwise_first)
9697 << BinaryOperator::getOpcodeStr(Opc),
9698 ParensRange);
9699}
9700
9701/// \brief It accepts a '&' expr that is inside a '|' one.
9702/// Emit a diagnostic together with a fixit hint that wraps the '&' expression
9703/// in parentheses.
9704static void
9705EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
9706 BinaryOperator *Bop) {
9707 assert(Bop->getOpcode() == BO_And);
9708 Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
9709 << Bop->getSourceRange() << OpLoc;
9710 SuggestParentheses(Self, Bop->getOperatorLoc(),
9711 Self.PDiag(diag::note_precedence_silence)
9712 << Bop->getOpcodeStr(),
9713 Bop->getSourceRange());
9714}
9715
9716/// \brief It accepts a '&&' expr that is inside a '||' one.
9717/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
9718/// in parentheses.
9719static void
9720EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
9721 BinaryOperator *Bop) {
9722 assert(Bop->getOpcode() == BO_LAnd);
9723 Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
9724 << Bop->getSourceRange() << OpLoc;
9725 SuggestParentheses(Self, Bop->getOperatorLoc(),
9726 Self.PDiag(diag::note_precedence_silence)
9727 << Bop->getOpcodeStr(),
9728 Bop->getSourceRange());
9729}
9730
9731/// \brief Returns true if the given expression can be evaluated as a constant
9732/// 'true'.
9733static bool EvaluatesAsTrue(Sema &S, Expr *E) {
9734 bool Res;
9735 return !E->isValueDependent() &&
9736 E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
9737}
9738
9739/// \brief Returns true if the given expression can be evaluated as a constant
9740/// 'false'.
9741static bool EvaluatesAsFalse(Sema &S, Expr *E) {
9742 bool Res;
9743 return !E->isValueDependent() &&
9744 E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
9745}
9746
9747/// \brief Look for '&&' in the left hand of a '||' expr.
9748static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
9749 Expr *LHSExpr, Expr *RHSExpr) {
9750 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
9751 if (Bop->getOpcode() == BO_LAnd) {
9752 // If it's "a && b || 0" don't warn since the precedence doesn't matter.
9753 if (EvaluatesAsFalse(S, RHSExpr))
9754 return;
9755 // If it's "1 && a || b" don't warn since the precedence doesn't matter.
9756 if (!EvaluatesAsTrue(S, Bop->getLHS()))
9757 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
9758 } else if (Bop->getOpcode() == BO_LOr) {
9759 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
9760 // If it's "a || b && 1 || c" we didn't warn earlier for
9761 // "a || b && 1", but warn now.
9762 if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
9763 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
9764 }
9765 }
9766 }
9767}
9768
9769/// \brief Look for '&&' in the right hand of a '||' expr.
9770static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
9771 Expr *LHSExpr, Expr *RHSExpr) {
9772 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
9773 if (Bop->getOpcode() == BO_LAnd) {
9774 // If it's "0 || a && b" don't warn since the precedence doesn't matter.
9775 if (EvaluatesAsFalse(S, LHSExpr))
9776 return;
9777 // If it's "a || b && 1" don't warn since the precedence doesn't matter.
9778 if (!EvaluatesAsTrue(S, Bop->getRHS()))
9779 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
9780 }
9781 }
9782}
9783
9784/// \brief Look for '&' in the left or right hand of a '|' expr.
9785static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
9786 Expr *OrArg) {
9787 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
9788 if (Bop->getOpcode() == BO_And)
9789 return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
9790 }
9791}
9792
9793static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
9794 Expr *SubExpr, StringRef Shift) {
9795 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
9796 if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
9797 StringRef Op = Bop->getOpcodeStr();
9798 S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
9799 << Bop->getSourceRange() << OpLoc << Shift << Op;
9800 SuggestParentheses(S, Bop->getOperatorLoc(),
9801 S.PDiag(diag::note_precedence_silence) << Op,
9802 Bop->getSourceRange());
9803 }
9804 }
9805}
9806
9807static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
9808 Expr *LHSExpr, Expr *RHSExpr) {
9809 CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
9810 if (!OCE)
9811 return;
9812
9813 FunctionDecl *FD = OCE->getDirectCallee();
9814 if (!FD || !FD->isOverloadedOperator())
9815 return;
9816
9817 OverloadedOperatorKind Kind = FD->getOverloadedOperator();
9818 if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
9819 return;
9820
9821 S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
9822 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
9823 << (Kind == OO_LessLess);
9824 SuggestParentheses(S, OCE->getOperatorLoc(),
9825 S.PDiag(diag::note_precedence_silence)
9826 << (Kind == OO_LessLess ? "<<" : ">>"),
9827 OCE->getSourceRange());
9828 SuggestParentheses(S, OpLoc,
9829 S.PDiag(diag::note_evaluate_comparison_first),
9830 SourceRange(OCE->getArg(1)->getLocStart(),
9831 RHSExpr->getLocEnd()));
9832}
9833
9834/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
9835/// precedence.
9836static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
9837 SourceLocation OpLoc, Expr *LHSExpr,
9838 Expr *RHSExpr){
9839 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
9840 if (BinaryOperator::isBitwiseOp(Opc))
9841 DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
9842
9843 // Diagnose "arg1 & arg2 | arg3"
9844 if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
9845 DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
9846 DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
9847 }
9848
9849 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
9850 // We don't warn for 'assert(a || b && "bad")' since this is safe.
9851 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
9852 DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
9853 DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
9854 }
9855
9856 if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
9857 || Opc == BO_Shr) {
9858 StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
9859 DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
9860 DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
9861 }
9862
9863 // Warn on overloaded shift operators and comparisons, such as:
9864 // cout << 5 == 4;
9865 if (BinaryOperator::isComparisonOp(Opc))
9866 DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
9867}
9868
9869// Binary Operators. 'Tok' is the token for the operator.
9870ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
9871 tok::TokenKind Kind,
9872 Expr *LHSExpr, Expr *RHSExpr) {
9873 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
9874 assert(LHSExpr && "ActOnBinOp(): missing left expression");
9875 assert(RHSExpr && "ActOnBinOp(): missing right expression");
9876
9877 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
9878 DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
9879
9880 return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
9881}
9882
9883/// Build an overloaded binary operator expression in the given scope.
9884static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
9885 BinaryOperatorKind Opc,
9886 Expr *LHS, Expr *RHS) {
9887 // Find all of the overloaded operators visible from this
9888 // point. We perform both an operator-name lookup from the local
9889 // scope and an argument-dependent lookup based on the types of
9890 // the arguments.
9891 UnresolvedSet<16> Functions;
9892 OverloadedOperatorKind OverOp
9893 = BinaryOperator::getOverloadedOperator(Opc);
9894 if (Sc && OverOp != OO_None && OverOp != OO_Equal)
9895 S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
9896 RHS->getType(), Functions);
9897
9898 // Build the (potentially-overloaded, potentially-dependent)
9899 // binary operation.
9900 return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
9901}
9902
9903ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
9904 BinaryOperatorKind Opc,
9905 Expr *LHSExpr, Expr *RHSExpr) {
9906 // We want to end up calling one of checkPseudoObjectAssignment
9907 // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
9908 // both expressions are overloadable or either is type-dependent),
9909 // or CreateBuiltinBinOp (in any other case). We also want to get
9910 // any placeholder types out of the way.
9911
9912 // Handle pseudo-objects in the LHS.
9913 if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
9914 // Assignments with a pseudo-object l-value need special analysis.
9915 if (pty->getKind() == BuiltinType::PseudoObject &&
9916 BinaryOperator::isAssignmentOp(Opc))
9917 return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
9918
9919 // Don't resolve overloads if the other type is overloadable.
9920 if (pty->getKind() == BuiltinType::Overload) {
9921 // We can't actually test that if we still have a placeholder,
9922 // though. Fortunately, none of the exceptions we see in that
9923 // code below are valid when the LHS is an overload set. Note
9924 // that an overload set can be dependently-typed, but it never
9925 // instantiates to having an overloadable type.
9926 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
9927 if (resolvedRHS.isInvalid()) return ExprError();
9928 RHSExpr = resolvedRHS.get();
9929
9930 if (RHSExpr->isTypeDependent() ||
9931 RHSExpr->getType()->isOverloadableType())
9932 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9933 }
9934
9935 ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
9936 if (LHS.isInvalid()) return ExprError();
9937 LHSExpr = LHS.get();
9938 }
9939
9940 // Handle pseudo-objects in the RHS.
9941 if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
9942 // An overload in the RHS can potentially be resolved by the type
9943 // being assigned to.
9944 if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
9945 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
9946 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9947
9948 if (LHSExpr->getType()->isOverloadableType())
9949 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9950
9951 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
9952 }
9953
9954 // Don't resolve overloads if the other type is overloadable.
9955 if (pty->getKind() == BuiltinType::Overload &&
9956 LHSExpr->getType()->isOverloadableType())
9957 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9958
9959 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
9960 if (!resolvedRHS.isUsable()) return ExprError();
9961 RHSExpr = resolvedRHS.get();
9962 }
9963
9964 if (getLangOpts().CPlusPlus) {
9965 // If either expression is type-dependent, always build an
9966 // overloaded op.
9967 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
9968 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9969
9970 // Otherwise, build an overloaded op if either expression has an
9971 // overloadable type.
9972 if (LHSExpr->getType()->isOverloadableType() ||
9973 RHSExpr->getType()->isOverloadableType())
9974 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
9975 }
9976
9977 // Build a built-in binary operation.
9978 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
9979}
9980
9981ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
9982 UnaryOperatorKind Opc,
9983 Expr *InputExpr) {
9984 ExprResult Input = InputExpr;
9985 ExprValueKind VK = VK_RValue;
9986 ExprObjectKind OK = OK_Ordinary;
9987 QualType resultType;
9988 switch (Opc) {
9989 case UO_PreInc:
9990 case UO_PreDec:
9991 case UO_PostInc:
9992 case UO_PostDec:
9993 resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
9994 OpLoc,
9995 Opc == UO_PreInc ||
9996 Opc == UO_PostInc,
9997 Opc == UO_PreInc ||
9998 Opc == UO_PreDec);
9999 break;
10000 case UO_AddrOf:
10001 resultType = CheckAddressOfOperand(Input, OpLoc);
10002 RecordModifiableNonNullParam(*this, InputExpr);
10003 break;
10004 case UO_Deref: {
10005 Input = DefaultFunctionArrayLvalueConversion(Input.get());
10006 if (Input.isInvalid()) return ExprError();
10007 resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
10008 break;
10009 }
10010 case UO_Plus:
10011 case UO_Minus:
10012 Input = UsualUnaryConversions(Input.get());
10013 if (Input.isInvalid()) return ExprError();
10014 resultType = Input.get()->getType();
10015 if (resultType->isDependentType())
10016 break;
10017 if (resultType->isArithmeticType() || // C99 6.5.3.3p1
10018 resultType->isVectorType())
10019 break;
10020 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
10021 Opc == UO_Plus &&
10022 resultType->isPointerType())
10023 break;
10024
10025 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10026 << resultType << Input.get()->getSourceRange());
10027
10028 case UO_Not: // bitwise complement
10029 Input = UsualUnaryConversions(Input.get());
10030 if (Input.isInvalid())
10031 return ExprError();
10032 resultType = Input.get()->getType();
10033 if (resultType->isDependentType())
10034 break;
10035 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
10036 if (resultType->isComplexType() || resultType->isComplexIntegerType())
10037 // C99 does not support '~' for complex conjugation.
10038 Diag(OpLoc, diag::ext_integer_complement_complex)
10039 << resultType << Input.get()->getSourceRange();
10040 else if (resultType->hasIntegerRepresentation())
10041 break;
10042 else if (resultType->isExtVectorType()) {
10043 if (Context.getLangOpts().OpenCL) {
10044 // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
10045 // on vector float types.
10046 QualType T = resultType->getAs<ExtVectorType>()->getElementType();
10047 if (!T->isIntegerType())
10048 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10049 << resultType << Input.get()->getSourceRange());
10050 }
10051 break;
10052 } else {
10053 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10054 << resultType << Input.get()->getSourceRange());
10055 }
10056 break;
10057
10058 case UO_LNot: // logical negation
10059 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
10060 Input = DefaultFunctionArrayLvalueConversion(Input.get());
10061 if (Input.isInvalid()) return ExprError();
10062 resultType = Input.get()->getType();
10063
10064 // Though we still have to promote half FP to float...
10065 if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
10066 Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
10067 resultType = Context.FloatTy;
10068 }
10069
10070 if (resultType->isDependentType())
10071 break;
10072 if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
10073 // C99 6.5.3.3p1: ok, fallthrough;
10074 if (Context.getLangOpts().CPlusPlus) {
10075 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
10076 // operand contextually converted to bool.
10077 Input = ImpCastExprToType(Input.get(), Context.BoolTy,
10078 ScalarTypeToBooleanCastKind(resultType));
10079 } else if (Context.getLangOpts().OpenCL &&
10080 Context.getLangOpts().OpenCLVersion < 120) {
10081 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
10082 // operate on scalar float types.
10083 if (!resultType->isIntegerType())
10084 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10085 << resultType << Input.get()->getSourceRange());
10086 }
10087 } else if (resultType->isExtVectorType()) {
10088 if (Context.getLangOpts().OpenCL &&
10089 Context.getLangOpts().OpenCLVersion < 120) {
10090 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
10091 // operate on vector float types.
10092 QualType T = resultType->getAs<ExtVectorType>()->getElementType();
10093 if (!T->isIntegerType())
10094 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10095 << resultType << Input.get()->getSourceRange());
10096 }
10097 // Vector logical not returns the signed variant of the operand type.
10098 resultType = GetSignedVectorType(resultType);
10099 break;
10100 } else {
10101 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
10102 << resultType << Input.get()->getSourceRange());
10103 }
10104
10105 // LNot always has type int. C99 6.5.3.3p5.
10106 // In C++, it's bool. C++ 5.3.1p8
10107 resultType = Context.getLogicalOperationType();
10108 break;
10109 case UO_Real:
10110 case UO_Imag:
10111 resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
10112 // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
10113 // complex l-values to ordinary l-values and all other values to r-values.
10114 if (Input.isInvalid()) return ExprError();
10115 if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
10116 if (Input.get()->getValueKind() != VK_RValue &&
10117 Input.get()->getObjectKind() == OK_Ordinary)
10118 VK = Input.get()->getValueKind();
10119 } else if (!getLangOpts().CPlusPlus) {
10120 // In C, a volatile scalar is read by __imag. In C++, it is not.
10121 Input = DefaultLvalueConversion(Input.get());
10122 }
10123 break;
10124 case UO_Extension:
10125 resultType = Input.get()->getType();
10126 VK = Input.get()->getValueKind();
10127 OK = Input.get()->getObjectKind();
10128 break;
10129 }
10130 if (resultType.isNull() || Input.isInvalid())
10131 return ExprError();
10132
10133 // Check for array bounds violations in the operand of the UnaryOperator,
10134 // except for the '*' and '&' operators that have to be handled specially
10135 // by CheckArrayAccess (as there are special cases like &array[arraysize]
10136 // that are explicitly defined as valid by the standard).
10137 if (Opc != UO_AddrOf && Opc != UO_Deref)
10138 CheckArrayAccess(Input.get());
10139
10140 return new (Context)
10141 UnaryOperator(Input.get(), Opc, resultType, VK, OK, OpLoc);
10142}
10143
10144/// \brief Determine whether the given expression is a qualified member
10145/// access expression, of a form that could be turned into a pointer to member
10146/// with the address-of operator.
10147static bool isQualifiedMemberAccess(Expr *E) {
10148 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
10149 if (!DRE->getQualifier())
10150 return false;
10151
10152 ValueDecl *VD = DRE->getDecl();
10153 if (!VD->isCXXClassMember())
10154 return false;
10155
10156 if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
10157 return true;
10158 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
10159 return Method->isInstance();
10160
10161 return false;
10162 }
10163
10164 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
10165 if (!ULE->getQualifier())
10166 return false;
10167
10168 for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
10169 DEnd = ULE->decls_end();
10170 D != DEnd; ++D) {
10171 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
10172 if (Method->isInstance())
10173 return true;
10174 } else {
10175 // Overload set does not contain methods.
10176 break;
10177 }
10178 }
10179
10180 return false;
10181 }
10182
10183 return false;
10184}
10185
10186ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
10187 UnaryOperatorKind Opc, Expr *Input) {
10188 // First things first: handle placeholders so that the
10189 // overloaded-operator check considers the right type.
10190 if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
10191 // Increment and decrement of pseudo-object references.
10192 if (pty->getKind() == BuiltinType::PseudoObject &&
10193 UnaryOperator::isIncrementDecrementOp(Opc))
10194 return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
10195
10196 // extension is always a builtin operator.
10197 if (Opc == UO_Extension)
10198 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
10199
10200 // & gets special logic for several kinds of placeholder.
10201 // The builtin code knows what to do.
10202 if (Opc == UO_AddrOf &&
10203 (pty->getKind() == BuiltinType::Overload ||
10204 pty->getKind() == BuiltinType::UnknownAny ||
10205 pty->getKind() == BuiltinType::BoundMember))
10206 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
10207
10208 // Anything else needs to be handled now.
10209 ExprResult Result = CheckPlaceholderExpr(Input);
10210 if (Result.isInvalid()) return ExprError();
10211 Input = Result.get();
10212 }
10213
10214 if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
10215 UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
10216 !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
10217 // Find all of the overloaded operators visible from this
10218 // point. We perform both an operator-name lookup from the local
10219 // scope and an argument-dependent lookup based on the types of
10220 // the arguments.
10221 UnresolvedSet<16> Functions;
10222 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
10223 if (S && OverOp != OO_None)
10224 LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
10225 Functions);
10226
10227 return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
10228 }
10229
10230 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
10231}
10232
10233// Unary Operators. 'Tok' is the token for the operator.
10234ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
10235 tok::TokenKind Op, Expr *Input) {
10236 return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
10237}
10238
10239/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
10240ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
10241 LabelDecl *TheDecl) {
10242 TheDecl->markUsed(Context);
10243 // Create the AST node. The address of a label always has type 'void*'.
10244 return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
10245 Context.getPointerType(Context.VoidTy));
10246}
10247
10248/// Given the last statement in a statement-expression, check whether
10249/// the result is a producing expression (like a call to an
10250/// ns_returns_retained function) and, if so, rebuild it to hoist the
10251/// release out of the full-expression. Otherwise, return null.
10252/// Cannot fail.
10253static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
10254 // Should always be wrapped with one of these.
10255 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
10256 if (!cleanups) return nullptr;
10257
10258 ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
10259 if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
10260 return nullptr;
10261
10262 // Splice out the cast. This shouldn't modify any interesting
10263 // features of the statement.
10264 Expr *producer = cast->getSubExpr();
10265 assert(producer->getType() == cast->getType());
10266 assert(producer->getValueKind() == cast->getValueKind());
10267 cleanups->setSubExpr(producer);
10268 return cleanups;
10269}
10270
10271void Sema::ActOnStartStmtExpr() {
10272 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
10273}
10274
10275void Sema::ActOnStmtExprError() {
10276 // Note that function is also called by TreeTransform when leaving a
10277 // StmtExpr scope without rebuilding anything.
10278
10279 DiscardCleanupsInEvaluationContext();
10280 PopExpressionEvaluationContext();
10281}
10282
10283ExprResult
10284Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
10285 SourceLocation RPLoc) { // "({..})"
10286 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
10287 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
10288
10289 if (hasAnyUnrecoverableErrorsInThisFunction())
10290 DiscardCleanupsInEvaluationContext();
10291 assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
10292 PopExpressionEvaluationContext();
10293
10294 // FIXME: there are a variety of strange constraints to enforce here, for
10295 // example, it is not possible to goto into a stmt expression apparently.
10296 // More semantic analysis is needed.
10297
10298 // If there are sub-stmts in the compound stmt, take the type of the last one
10299 // as the type of the stmtexpr.
10300 QualType Ty = Context.VoidTy;
10301 bool StmtExprMayBindToTemp = false;
10302 if (!Compound->body_empty()) {
10303 Stmt *LastStmt = Compound->body_back();
10304 LabelStmt *LastLabelStmt = nullptr;
10305 // If LastStmt is a label, skip down through into the body.
10306 while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
10307 LastLabelStmt = Label;
10308 LastStmt = Label->getSubStmt();
10309 }
10310
10311 if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
10312 // Do function/array conversion on the last expression, but not
10313 // lvalue-to-rvalue. However, initialize an unqualified type.
10314 ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
10315 if (LastExpr.isInvalid())
10316 return ExprError();
10317 Ty = LastExpr.get()->getType().getUnqualifiedType();
10318
10319 if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
10320 // In ARC, if the final expression ends in a consume, splice
10321 // the consume out and bind it later. In the alternate case
10322 // (when dealing with a retainable type), the result
10323 // initialization will create a produce. In both cases the
10324 // result will be +1, and we'll need to balance that out with
10325 // a bind.
10326 if (Expr *rebuiltLastStmt
10327 = maybeRebuildARCConsumingStmt(LastExpr.get())) {
10328 LastExpr = rebuiltLastStmt;
10329 } else {
10330 LastExpr = PerformCopyInitialization(
10331 InitializedEntity::InitializeResult(LPLoc,
10332 Ty,
10333 false),
10334 SourceLocation(),
10335 LastExpr);
10336 }
10337
10338 if (LastExpr.isInvalid())
10339 return ExprError();
10340 if (LastExpr.get() != nullptr) {
10341 if (!LastLabelStmt)
10342 Compound->setLastStmt(LastExpr.get());
10343 else
10344 LastLabelStmt->setSubStmt(LastExpr.get());
10345 StmtExprMayBindToTemp = true;
10346 }
10347 }
10348 }
10349 }
10350
10351 // FIXME: Check that expression type is complete/non-abstract; statement
10352 // expressions are not lvalues.
10353 Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
10354 if (StmtExprMayBindToTemp)
10355 return MaybeBindToTemporary(ResStmtExpr);
10356 return ResStmtExpr;
10357}
10358
10359ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
10360 TypeSourceInfo *TInfo,
10361 OffsetOfComponent *CompPtr,
10362 unsigned NumComponents,
10363 SourceLocation RParenLoc) {
10364 QualType ArgTy = TInfo->getType();
10365 bool Dependent = ArgTy->isDependentType();
10366 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
10367
10368 // We must have at least one component that refers to the type, and the first
10369 // one is known to be a field designator. Verify that the ArgTy represents
10370 // a struct/union/class.
10371 if (!Dependent && !ArgTy->isRecordType())
10372 return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
10373 << ArgTy << TypeRange);
10374
10375 // Type must be complete per C99 7.17p3 because a declaring a variable
10376 // with an incomplete type would be ill-formed.
10377 if (!Dependent
10378 && RequireCompleteType(BuiltinLoc, ArgTy,
10379 diag::err_offsetof_incomplete_type, TypeRange))
10380 return ExprError();
10381
10382 // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
10383 // GCC extension, diagnose them.
10384 // FIXME: This diagnostic isn't actually visible because the location is in
10385 // a system header!
10386 if (NumComponents != 1)
10387 Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
10388 << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
10389
10390 bool DidWarnAboutNonPOD = false;
10391 QualType CurrentType = ArgTy;
10392 typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
10393 SmallVector<OffsetOfNode, 4> Comps;
10394 SmallVector<Expr*, 4> Exprs;
10395 for (unsigned i = 0; i != NumComponents; ++i) {
10396 const OffsetOfComponent &OC = CompPtr[i];
10397 if (OC.isBrackets) {
10398 // Offset of an array sub-field. TODO: Should we allow vector elements?
10399 if (!CurrentType->isDependentType()) {
10400 const ArrayType *AT = Context.getAsArrayType(CurrentType);
10401 if(!AT)
10402 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
10403 << CurrentType);
10404 CurrentType = AT->getElementType();
10405 } else
10406 CurrentType = Context.DependentTy;
10407
10408 ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
10409 if (IdxRval.isInvalid())
10410 return ExprError();
10411 Expr *Idx = IdxRval.get();
10412
10413 // The expression must be an integral expression.
10414 // FIXME: An integral constant expression?
10415 if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
10416 !Idx->getType()->isIntegerType())
10417 return ExprError(Diag(Idx->getLocStart(),
10418 diag::err_typecheck_subscript_not_integer)
10419 << Idx->getSourceRange());
10420
10421 // Record this array index.
10422 Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
10423 Exprs.push_back(Idx);
10424 continue;
10425 }
10426
10427 // Offset of a field.
10428 if (CurrentType->isDependentType()) {
10429 // We have the offset of a field, but we can't look into the dependent
10430 // type. Just record the identifier of the field.
10431 Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
10432 CurrentType = Context.DependentTy;
10433 continue;
10434 }
10435
10436 // We need to have a complete type to look into.
10437 if (RequireCompleteType(OC.LocStart, CurrentType,
10438 diag::err_offsetof_incomplete_type))
10439 return ExprError();
10440
10441 // Look for the designated field.
10442 const RecordType *RC = CurrentType->getAs<RecordType>();
10443 if (!RC)
10444 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
10445 << CurrentType);
10446 RecordDecl *RD = RC->getDecl();
10447
10448 // C++ [lib.support.types]p5:
10449 // The macro offsetof accepts a restricted set of type arguments in this
10450 // International Standard. type shall be a POD structure or a POD union
10451 // (clause 9).
10452 // C++11 [support.types]p4:
10453 // If type is not a standard-layout class (Clause 9), the results are
10454 // undefined.
10455 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
10456 bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
10457 unsigned DiagID =
10458 LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
10459 : diag::ext_offsetof_non_pod_type;
10460
10461 if (!IsSafe && !DidWarnAboutNonPOD &&
10462 DiagRuntimeBehavior(BuiltinLoc, nullptr,
10463 PDiag(DiagID)
10464 << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
10465 << CurrentType))
10466 DidWarnAboutNonPOD = true;
10467 }
10468
10469 // Look for the field.
10470 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
10471 LookupQualifiedName(R, RD);
10472 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
10473 IndirectFieldDecl *IndirectMemberDecl = nullptr;
10474 if (!MemberDecl) {
10475 if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
10476 MemberDecl = IndirectMemberDecl->getAnonField();
10477 }
10478
10479 if (!MemberDecl)
10480 return ExprError(Diag(BuiltinLoc, diag::err_no_member)
10481 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
10482 OC.LocEnd));
10483
10484 // C99 7.17p3:
10485 // (If the specified member is a bit-field, the behavior is undefined.)
10486 //
10487 // We diagnose this as an error.
10488 if (MemberDecl->isBitField()) {
10489 Diag(OC.LocEnd, diag::err_offsetof_bitfield)
10490 << MemberDecl->getDeclName()
10491 << SourceRange(BuiltinLoc, RParenLoc);
10492 Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
10493 return ExprError();
10494 }
10495
10496 RecordDecl *Parent = MemberDecl->getParent();
10497 if (IndirectMemberDecl)
10498 Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
10499
10500 // If the member was found in a base class, introduce OffsetOfNodes for
10501 // the base class indirections.
10502 CXXBasePaths Paths;
10503 if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
10504 if (Paths.getDetectedVirtual()) {
10505 Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
10506 << MemberDecl->getDeclName()
10507 << SourceRange(BuiltinLoc, RParenLoc);
10508 return ExprError();
10509 }
10510
10511 CXXBasePath &Path = Paths.front();
10512 for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
10513 B != BEnd; ++B)
10514 Comps.push_back(OffsetOfNode(B->Base));
10515 }
10516
10517 if (IndirectMemberDecl) {
10518 for (auto *FI : IndirectMemberDecl->chain()) {
10519 assert(isa<FieldDecl>(FI));
10520 Comps.push_back(OffsetOfNode(OC.LocStart,
10521 cast<FieldDecl>(FI), OC.LocEnd));
10522 }
10523 } else
10524 Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
10525
10526 CurrentType = MemberDecl->getType().getNonReferenceType();
10527 }
10528
10529 return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
10530 Comps, Exprs, RParenLoc);
10531}
10532
10533ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
10534 SourceLocation BuiltinLoc,
10535 SourceLocation TypeLoc,
10536 ParsedType ParsedArgTy,
10537 OffsetOfComponent *CompPtr,
10538 unsigned NumComponents,
10539 SourceLocation RParenLoc) {
10540
10541 TypeSourceInfo *ArgTInfo;
10542 QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
10543 if (ArgTy.isNull())
10544 return ExprError();
10545
10546 if (!ArgTInfo)
10547 ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
10548
10549 return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
10550 RParenLoc);
10551}
10552
10553
10554ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
10555 Expr *CondExpr,
10556 Expr *LHSExpr, Expr *RHSExpr,
10557 SourceLocation RPLoc) {
10558 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
10559
10560 ExprValueKind VK = VK_RValue;
10561 ExprObjectKind OK = OK_Ordinary;
10562 QualType resType;
10563 bool ValueDependent = false;
10564 bool CondIsTrue = false;
10565 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
10566 resType = Context.DependentTy;
10567 ValueDependent = true;
10568 } else {
10569 // The conditional expression is required to be a constant expression.
10570 llvm::APSInt condEval(32);
10571 ExprResult CondICE
10572 = VerifyIntegerConstantExpression(CondExpr, &condEval,
10573 diag::err_typecheck_choose_expr_requires_constant, false);
10574 if (CondICE.isInvalid())
10575 return ExprError();
10576 CondExpr = CondICE.get();
10577 CondIsTrue = condEval.getZExtValue();
10578
10579 // If the condition is > zero, then the AST type is the same as the LSHExpr.
10580 Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
10581
10582 resType = ActiveExpr->getType();
10583 ValueDependent = ActiveExpr->isValueDependent();
10584 VK = ActiveExpr->getValueKind();
10585 OK = ActiveExpr->getObjectKind();
10586 }
10587
10588 return new (Context)
10589 ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, VK, OK, RPLoc,
10590 CondIsTrue, resType->isDependentType(), ValueDependent);
10591}
10592
10593//===----------------------------------------------------------------------===//
10594// Clang Extensions.
10595//===----------------------------------------------------------------------===//
10596
10597/// ActOnBlockStart - This callback is invoked when a block literal is started.
10598void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
10599 BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
10600
10601 if (LangOpts.CPlusPlus) {
10602 Decl *ManglingContextDecl;
10603 if (MangleNumberingContext *MCtx =
10604 getCurrentMangleNumberContext(Block->getDeclContext(),
10605 ManglingContextDecl)) {
10606 unsigned ManglingNumber = MCtx->getManglingNumber(Block);
10607 Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
10608 }
10609 }
10610
10611 PushBlockScope(CurScope, Block);
10612 CurContext->addDecl(Block);
10613 if (CurScope)
10614 PushDeclContext(CurScope, Block);
10615 else
10616 CurContext = Block;
10617
10618 getCurBlock()->HasImplicitReturnType = true;
10619
10620 // Enter a new evaluation context to insulate the block from any
10621 // cleanups from the enclosing full-expression.
10622 PushExpressionEvaluationContext(PotentiallyEvaluated);
10623}
10624
10625void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
10626 Scope *CurScope) {
10627 assert(ParamInfo.getIdentifier() == nullptr &&
10628 "block-id should have no identifier!");
10629 assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
10630 BlockScopeInfo *CurBlock = getCurBlock();
10631
10632 TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
10633 QualType T = Sig->getType();
10634
10635 // FIXME: We should allow unexpanded parameter packs here, but that would,
10636 // in turn, make the block expression contain unexpanded parameter packs.
10637 if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
10638 // Drop the parameters.
10639 FunctionProtoType::ExtProtoInfo EPI;
10640 EPI.HasTrailingReturn = false;
10641 EPI.TypeQuals |= DeclSpec::TQ_const;
10642 T = Context.getFunctionType(Context.DependentTy, None, EPI);
10643 Sig = Context.getTrivialTypeSourceInfo(T);
10644 }
10645
10646 // GetTypeForDeclarator always produces a function type for a block
10647 // literal signature. Furthermore, it is always a FunctionProtoType
10648 // unless the function was written with a typedef.
10649 assert(T->isFunctionType() &&
10650 "GetTypeForDeclarator made a non-function block signature");
10651
10652 // Look for an explicit signature in that function type.
10653 FunctionProtoTypeLoc ExplicitSignature;
10654
10655 TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
10656 if ((ExplicitSignature = tmp.getAs<FunctionProtoTypeLoc>())) {
10657
10658 // Check whether that explicit signature was synthesized by
10659 // GetTypeForDeclarator. If so, don't save that as part of the
10660 // written signature.
10661 if (ExplicitSignature.getLocalRangeBegin() ==
10662 ExplicitSignature.getLocalRangeEnd()) {
10663 // This would be much cheaper if we stored TypeLocs instead of
10664 // TypeSourceInfos.
10665 TypeLoc Result = ExplicitSignature.getReturnLoc();
10666 unsigned Size = Result.getFullDataSize();
10667 Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
10668 Sig->getTypeLoc().initializeFullCopy(Result, Size);
10669
10670 ExplicitSignature = FunctionProtoTypeLoc();
10671 }
10672 }
10673
10674 CurBlock->TheDecl->setSignatureAsWritten(Sig);
10675 CurBlock->FunctionType = T;
10676
10677 const FunctionType *Fn = T->getAs<FunctionType>();
10678 QualType RetTy = Fn->getReturnType();
10679 bool isVariadic =
10680 (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
10681
10682 CurBlock->TheDecl->setIsVariadic(isVariadic);
10683
10684 // Context.DependentTy is used as a placeholder for a missing block
10685 // return type. TODO: what should we do with declarators like:
10686 // ^ * { ... }
10687 // If the answer is "apply template argument deduction"....
10688 if (RetTy != Context.DependentTy) {
10689 CurBlock->ReturnType = RetTy;
10690 CurBlock->TheDecl->setBlockMissingReturnType(false);
10691 CurBlock->HasImplicitReturnType = false;
10692 }
10693
10694 // Push block parameters from the declarator if we had them.
10695 SmallVector<ParmVarDecl*, 8> Params;
10696 if (ExplicitSignature) {
10697 for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
10698 ParmVarDecl *Param = ExplicitSignature.getParam(I);
10699 if (Param->getIdentifier() == nullptr &&
10700 !Param->isImplicit() &&
10701 !Param->isInvalidDecl() &&
10702 !getLangOpts().CPlusPlus)
10703 Diag(Param->getLocation(), diag::err_parameter_name_omitted);
10704 Params.push_back(Param);
10705 }
10706
10707 // Fake up parameter variables if we have a typedef, like
10708 // ^ fntype { ... }
10709 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
10710 for (const auto &I : Fn->param_types()) {
10711 ParmVarDecl *Param = BuildParmVarDeclForTypedef(
10712 CurBlock->TheDecl, ParamInfo.getLocStart(), I);
10713 Params.push_back(Param);
10714 }
10715 }
10716
10717 // Set the parameters on the block decl.
10718 if (!Params.empty()) {
10719 CurBlock->TheDecl->setParams(Params);
10720 CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
10721 CurBlock->TheDecl->param_end(),
10722 /*CheckParameterNames=*/false);
10723 }
10724
10725 // Finally we can process decl attributes.
10726 ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
10727
10728 // Put the parameter variables in scope.
10729 for (auto AI : CurBlock->TheDecl->params()) {
10730 AI->setOwningFunction(CurBlock->TheDecl);
10731
10732 // If this has an identifier, add it to the scope stack.
10733 if (AI->getIdentifier()) {
10734 CheckShadow(CurBlock->TheScope, AI);
10735
10736 PushOnScopeChains(AI, CurBlock->TheScope);
10737 }
10738 }
10739}
10740
10741/// ActOnBlockError - If there is an error parsing a block, this callback
10742/// is invoked to pop the information about the block from the action impl.
10743void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
10744 // Leave the expression-evaluation context.
10745 DiscardCleanupsInEvaluationContext();
10746 PopExpressionEvaluationContext();
10747
10748 // Pop off CurBlock, handle nested blocks.
10749 PopDeclContext();
10750 PopFunctionScopeInfo();
10751}
10752
10753/// ActOnBlockStmtExpr - This is called when the body of a block statement
10754/// literal was successfully completed. ^(int x){...}
10755ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
10756 Stmt *Body, Scope *CurScope) {
10757 // If blocks are disabled, emit an error.
10758 if (!LangOpts.Blocks)
10759 Diag(CaretLoc, diag::err_blocks_disable);
10760
10761 // Leave the expression-evaluation context.
10762 if (hasAnyUnrecoverableErrorsInThisFunction())
10763 DiscardCleanupsInEvaluationContext();
10764 assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
10765 PopExpressionEvaluationContext();
10766
10767 BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
10768
10769 if (BSI->HasImplicitReturnType)
10770 deduceClosureReturnType(*BSI);
10771
10772 PopDeclContext();
10773
10774 QualType RetTy = Context.VoidTy;
10775 if (!BSI->ReturnType.isNull())
10776 RetTy = BSI->ReturnType;
10777
10778 bool NoReturn = BSI->TheDecl->hasAttr<NoReturnAttr>();
10779 QualType BlockTy;
10780
10781 // Set the captured variables on the block.
10782 // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
10783 SmallVector<BlockDecl::Capture, 4> Captures;
10784 for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
10785 CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
10786 if (Cap.isThisCapture())
10787 continue;
10788 BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
10789 Cap.isNested(), Cap.getInitExpr());
10790 Captures.push_back(NewCap);
10791 }
10792 BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
10793 BSI->CXXThisCaptureIndex != 0);
10794
10795 // If the user wrote a function type in some form, try to use that.
10796 if (!BSI->FunctionType.isNull()) {
10797 const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
10798
10799 FunctionType::ExtInfo Ext = FTy->getExtInfo();
10800 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
10801
10802 // Turn protoless block types into nullary block types.
10803 if (isa<FunctionNoProtoType>(FTy)) {
10804 FunctionProtoType::ExtProtoInfo EPI;
10805 EPI.ExtInfo = Ext;
10806 BlockTy = Context.getFunctionType(RetTy, None, EPI);
10807
10808 // Otherwise, if we don't need to change anything about the function type,
10809 // preserve its sugar structure.
10810 } else if (FTy->getReturnType() == RetTy &&
10811 (!NoReturn || FTy->getNoReturnAttr())) {
10812 BlockTy = BSI->FunctionType;
10813
10814 // Otherwise, make the minimal modifications to the function type.
10815 } else {
10816 const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
10817 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10818 EPI.TypeQuals = 0; // FIXME: silently?
10819 EPI.ExtInfo = Ext;
10820 BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
10821 }
10822
10823 // If we don't have a function type, just build one from nothing.
10824 } else {
10825 FunctionProtoType::ExtProtoInfo EPI;
10826 EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
10827 BlockTy = Context.getFunctionType(RetTy, None, EPI);
10828 }
10829
10830 DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
10831 BSI->TheDecl->param_end());
10832 BlockTy = Context.getBlockPointerType(BlockTy);
10833
10834 // If needed, diagnose invalid gotos and switches in the block.
10835 if (getCurFunction()->NeedsScopeChecking() &&
10836 !PP.isCodeCompletionEnabled())
10837 DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
10838
10839 BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
10840
10841 // Try to apply the named return value optimization. We have to check again
10842 // if we can do this, though, because blocks keep return statements around
10843 // to deduce an implicit return type.
10844 if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
10845 !BSI->TheDecl->isDependentContext())
10846 computeNRVO(Body, BSI);
10847
10848 BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
10849 AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
10850 PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
10851
10852 // If the block isn't obviously global, i.e. it captures anything at
10853 // all, then we need to do a few things in the surrounding context:
10854 if (Result->getBlockDecl()->hasCaptures()) {
10855 // First, this expression has a new cleanup object.
10856 ExprCleanupObjects.push_back(Result->getBlockDecl());
10857 ExprNeedsCleanups = true;
10858
10859 // It also gets a branch-protected scope if any of the captured
10860 // variables needs destruction.
10861 for (const auto &CI : Result->getBlockDecl()->captures()) {
10862 const VarDecl *var = CI.getVariable();
10863 if (var->getType().isDestructedType() != QualType::DK_none) {
10864 getCurFunction()->setHasBranchProtectedScope();
10865 break;
10866 }
10867 }
10868 }
10869
10870 return Result;
10871}
10872
10873ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
10874 Expr *E, ParsedType Ty,
10875 SourceLocation RPLoc) {
10876 TypeSourceInfo *TInfo;
10877 GetTypeFromParser(Ty, &TInfo);
10878 return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
10879}
10880
10881ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
10882 Expr *E, TypeSourceInfo *TInfo,
10883 SourceLocation RPLoc) {
10884 Expr *OrigExpr = E;
10885
10886 // Get the va_list type
10887 QualType VaListType = Context.getBuiltinVaListType();
10888 if (VaListType->isArrayType()) {
10889 // Deal with implicit array decay; for example, on x86-64,
10890 // va_list is an array, but it's supposed to decay to
10891 // a pointer for va_arg.
10892 VaListType = Context.getArrayDecayedType(VaListType);
10893 // Make sure the input expression also decays appropriately.
10894 ExprResult Result = UsualUnaryConversions(E);
10895 if (Result.isInvalid())
10896 return ExprError();
10897 E = Result.get();
10898 } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
10899 // If va_list is a record type and we are compiling in C++ mode,
10900 // check the argument using reference binding.
10901 InitializedEntity Entity
10902 = InitializedEntity::InitializeParameter(Context,
10903 Context.getLValueReferenceType(VaListType), false);
10904 ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
10905 if (Init.isInvalid())
10906 return ExprError();
10907 E = Init.getAs<Expr>();
10908 } else {
10909 // Otherwise, the va_list argument must be an l-value because
10910 // it is modified by va_arg.
10911 if (!E->isTypeDependent() &&
10912 CheckForModifiableLvalue(E, BuiltinLoc, *this))
10913 return ExprError();
10914 }
10915
10916 if (!E->isTypeDependent() &&
10917 !Context.hasSameType(VaListType, E->getType())) {
10918 return ExprError(Diag(E->getLocStart(),
10919 diag::err_first_argument_to_va_arg_not_of_type_va_list)
10920 << OrigExpr->getType() << E->getSourceRange());
10921 }
10922
10923 if (!TInfo->getType()->isDependentType()) {
10924 if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
10925 diag::err_second_parameter_to_va_arg_incomplete,
10926 TInfo->getTypeLoc()))
10927 return ExprError();
10928
10929 if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
10930 TInfo->getType(),
10931 diag::err_second_parameter_to_va_arg_abstract,
10932 TInfo->getTypeLoc()))
10933 return ExprError();
10934
10935 if (!TInfo->getType().isPODType(Context)) {
10936 Diag(TInfo->getTypeLoc().getBeginLoc(),
10937 TInfo->getType()->isObjCLifetimeType()
10938 ? diag::warn_second_parameter_to_va_arg_ownership_qualified
10939 : diag::warn_second_parameter_to_va_arg_not_pod)
10940 << TInfo->getType()
10941 << TInfo->getTypeLoc().getSourceRange();
10942 }
10943
10944 // Check for va_arg where arguments of the given type will be promoted
10945 // (i.e. this va_arg is guaranteed to have undefined behavior).
10946 QualType PromoteType;
10947 if (TInfo->getType()->isPromotableIntegerType()) {
10948 PromoteType = Context.getPromotedIntegerType(TInfo->getType());
10949 if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
10950 PromoteType = QualType();
10951 }
10952 if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
10953 PromoteType = Context.DoubleTy;
10954 if (!PromoteType.isNull())
10955 DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
10956 PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
10957 << TInfo->getType()
10958 << PromoteType
10959 << TInfo->getTypeLoc().getSourceRange());
10960 }
10961
10962 QualType T = TInfo->getType().getNonLValueExprType(Context);
10963 return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T);
10964}
10965
10966ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
10967 // The type of __null will be int or long, depending on the size of
10968 // pointers on the target.
10969 QualType Ty;
10970 unsigned pw = Context.getTargetInfo().getPointerWidth(0);
10971 if (pw == Context.getTargetInfo().getIntWidth())
10972 Ty = Context.IntTy;
10973 else if (pw == Context.getTargetInfo().getLongWidth())
10974 Ty = Context.LongTy;
10975 else if (pw == Context.getTargetInfo().getLongLongWidth())
10976 Ty = Context.LongLongTy;
10977 else {
10978 llvm_unreachable("I don't know size of pointer!");
10979 }
10980
10981 return new (Context) GNUNullExpr(Ty, TokenLoc);
10982}
10983
10984bool
10985Sema::ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&Exp) {
10986 if (!getLangOpts().ObjC1)
10987 return false;
10988
10989 const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
10990 if (!PT)
10991 return false;
10992
10993 if (!PT->isObjCIdType()) {
10994 // Check if the destination is the 'NSString' interface.
10995 const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
10996 if (!ID || !ID->getIdentifier()->isStr("NSString"))
10997 return false;
10998 }
10999
11000 // Ignore any parens, implicit casts (should only be
11001 // array-to-pointer decays), and not-so-opaque values. The last is
11002 // important for making this trigger for property assignments.
11003 Expr *SrcExpr = Exp->IgnoreParenImpCasts();
11004 if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
11005 if (OV->getSourceExpr())
11006 SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
11007
11008 StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
11009 if (!SL || !SL->isAscii())
11010 return false;
11011 Diag(SL->getLocStart(), diag::err_missing_atsign_prefix)
11012 << FixItHint::CreateInsertion(SL->getLocStart(), "@");
11013 Exp = BuildObjCStringLiteral(SL->getLocStart(), SL).get();
11014 return true;
11015}
11016
11017bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
11018 SourceLocation Loc,
11019 QualType DstType, QualType SrcType,
11020 Expr *SrcExpr, AssignmentAction Action,
11021 bool *Complained) {
11022 if (Complained)
11023 *Complained = false;
11024
11025 // Decode the result (notice that AST's are still created for extensions).
11026 bool CheckInferredResultType = false;
11027 bool isInvalid = false;
11028 unsigned DiagKind = 0;
11029 FixItHint Hint;
11030 ConversionFixItGenerator ConvHints;
11031 bool MayHaveConvFixit = false;
11032 bool MayHaveFunctionDiff = false;
11033 const ObjCInterfaceDecl *IFace = nullptr;
11034 const ObjCProtocolDecl *PDecl = nullptr;
11035
11036 switch (ConvTy) {
11037 case Compatible:
11038 DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
11039 return false;
11040
11041 case PointerToInt:
11042 DiagKind = diag::ext_typecheck_convert_pointer_int;
11043 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
11044 MayHaveConvFixit = true;
11045 break;
11046 case IntToPointer:
11047 DiagKind = diag::ext_typecheck_convert_int_pointer;
11048 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
11049 MayHaveConvFixit = true;
11050 break;
11051 case IncompatiblePointer:
11052 DiagKind =
11053 (Action == AA_Passing_CFAudited ?
11054 diag::err_arc_typecheck_convert_incompatible_pointer :
11055 diag::ext_typecheck_convert_incompatible_pointer);
11056 CheckInferredResultType = DstType->isObjCObjectPointerType() &&
11057 SrcType->isObjCObjectPointerType();
11058 if (Hint.isNull() && !CheckInferredResultType) {
11059 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
11060 }
11061 else if (CheckInferredResultType) {
11062 SrcType = SrcType.getUnqualifiedType();
11063 DstType = DstType.getUnqualifiedType();
11064 }
11065 MayHaveConvFixit = true;
11066 break;
11067 case IncompatiblePointerSign:
11068 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
11069 break;
11070 case FunctionVoidPointer:
11071 DiagKind = diag::ext_typecheck_convert_pointer_void_func;
11072 break;
11073 case IncompatiblePointerDiscardsQualifiers: {
11074 // Perform array-to-pointer decay if necessary.
11075 if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
11076
11077 Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
11078 Qualifiers rhq = DstType->getPointeeType().getQualifiers();
11079 if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
11080 DiagKind = diag::err_typecheck_incompatible_address_space;
11081 break;
11082
11083
11084 } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
11085 DiagKind = diag::err_typecheck_incompatible_ownership;
11086 break;
11087 }
11088
11089 llvm_unreachable("unknown error case for discarding qualifiers!");
11090 // fallthrough
11091 }
11092 case CompatiblePointerDiscardsQualifiers:
11093 // If the qualifiers lost were because we were applying the
11094 // (deprecated) C++ conversion from a string literal to a char*
11095 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
11096 // Ideally, this check would be performed in
11097 // checkPointerTypesForAssignment. However, that would require a
11098 // bit of refactoring (so that the second argument is an
11099 // expression, rather than a type), which should be done as part
11100 // of a larger effort to fix checkPointerTypesForAssignment for
11101 // C++ semantics.
11102 if (getLangOpts().CPlusPlus &&
11103 IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
11104 return false;
11105 DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
11106 break;
11107 case IncompatibleNestedPointerQualifiers:
11108 DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
11109 break;
11110 case IntToBlockPointer:
11111 DiagKind = diag::err_int_to_block_pointer;
11112 break;
11113 case IncompatibleBlockPointer:
11114 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
11115 break;
11116 case IncompatibleObjCQualifiedId: {
11117 if (SrcType->isObjCQualifiedIdType()) {
11118 const ObjCObjectPointerType *srcOPT =
11119 SrcType->getAs<ObjCObjectPointerType>();
11120 for (auto *srcProto : srcOPT->quals()) {
11121 PDecl = srcProto;
11122 break;
11123 }
11124 if (const ObjCInterfaceType *IFaceT =
11125 DstType->getAs<ObjCObjectPointerType>()->getInterfaceType())
11126 IFace = IFaceT->getDecl();
11127 }
11128 else if (DstType->isObjCQualifiedIdType()) {
11129 const ObjCObjectPointerType *dstOPT =
11130 DstType->getAs<ObjCObjectPointerType>();
11131 for (auto *dstProto : dstOPT->quals()) {
11132 PDecl = dstProto;
11133 break;
11134 }
11135 if (const ObjCInterfaceType *IFaceT =
11136 SrcType->getAs<ObjCObjectPointerType>()->getInterfaceType())
11137 IFace = IFaceT->getDecl();
11138 }
11139 DiagKind = diag::warn_incompatible_qualified_id;
11140 break;
11141 }
11142 case IncompatibleVectors:
11143 DiagKind = diag::warn_incompatible_vectors;
11144 break;
11145 case IncompatibleObjCWeakRef:
11146 DiagKind = diag::err_arc_weak_unavailable_assign;
11147 break;
11148 case Incompatible:
11149 DiagKind = diag::err_typecheck_convert_incompatible;
11150 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
11151 MayHaveConvFixit = true;
11152 isInvalid = true;
11153 MayHaveFunctionDiff = true;
11154 break;
11155 }
11156
11157 QualType FirstType, SecondType;
11158 switch (Action) {
11159 case AA_Assigning:
11160 case AA_Initializing:
11161 // The destination type comes first.
11162 FirstType = DstType;
11163 SecondType = SrcType;
11164 break;
11165
11166 case AA_Returning:
11167 case AA_Passing:
11168 case AA_Passing_CFAudited:
11169 case AA_Converting:
11170 case AA_Sending:
11171 case AA_Casting:
11172 // The source type comes first.
11173 FirstType = SrcType;
11174 SecondType = DstType;
11175 break;
11176 }
11177
11178 PartialDiagnostic FDiag = PDiag(DiagKind);
11179 if (Action == AA_Passing_CFAudited)
11180 FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
11181 else
11182 FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
11183
11184 // If we can fix the conversion, suggest the FixIts.
11185 assert(ConvHints.isNull() || Hint.isNull());
11186 if (!ConvHints.isNull()) {
11187 for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
11188 HE = ConvHints.Hints.end(); HI != HE; ++HI)
11189 FDiag << *HI;
11190 } else {
11191 FDiag << Hint;
11192 }
11193 if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
11194
11195 if (MayHaveFunctionDiff)
11196 HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
11197
11198 Diag(Loc, FDiag);
11199 if (DiagKind == diag::warn_incompatible_qualified_id &&
11200 PDecl && IFace && !IFace->hasDefinition())
11201 Diag(IFace->getLocation(), diag::not_incomplete_class_and_qualified_id)
11202 << IFace->getName() << PDecl->getName();
11203
11204 if (SecondType == Context.OverloadTy)
11205 NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
11206 FirstType);
11207
11208 if (CheckInferredResultType)
11209 EmitRelatedResultTypeNote(SrcExpr);
11210
11211 if (Action == AA_Returning && ConvTy == IncompatiblePointer)
11212 EmitRelatedResultTypeNoteForReturn(DstType);
11213
11214 if (Complained)
11215 *Complained = true;
11216 return isInvalid;
11217}
11218
11219ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
11220 llvm::APSInt *Result) {
11221 class SimpleICEDiagnoser : public VerifyICEDiagnoser {
11222 public:
11223 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
11224 S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
11225 }
11226 } Diagnoser;
11227
11228 return VerifyIntegerConstantExpression(E, Result, Diagnoser);
11229}
11230
11231ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
11232 llvm::APSInt *Result,
11233 unsigned DiagID,
11234 bool AllowFold) {
11235 class IDDiagnoser : public VerifyICEDiagnoser {
11236 unsigned DiagID;
11237
11238 public:
11239 IDDiagnoser(unsigned DiagID)
11240 : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
11241
11242 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
11243 S.Diag(Loc, DiagID) << SR;
11244 }
11245 } Diagnoser(DiagID);
11246
11247 return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
11248}
11249
11250void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
11251 SourceRange SR) {
11252 S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
11253}
11254
11255ExprResult
11256Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
11257 VerifyICEDiagnoser &Diagnoser,
11258 bool AllowFold) {
11259 SourceLocation DiagLoc = E->getLocStart();
11260
11261 if (getLangOpts().CPlusPlus11) {
11262 // C++11 [expr.const]p5:
11263 // If an expression of literal class type is used in a context where an
11264 // integral constant expression is required, then that class type shall
11265 // have a single non-explicit conversion function to an integral or
11266 // unscoped enumeration type
11267 ExprResult Converted;
11268 class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
11269 public:
11270 CXX11ConvertDiagnoser(bool Silent)
11271 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false,
11272 Silent, true) {}
11273
11274 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
11275 QualType T) override {
11276 return S.Diag(Loc, diag::err_ice_not_integral) << T;
11277 }
11278
11279 SemaDiagnosticBuilder diagnoseIncomplete(
11280 Sema &S, SourceLocation Loc, QualType T) override {
11281 return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
11282 }
11283
11284 SemaDiagnosticBuilder diagnoseExplicitConv(
11285 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
11286 return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
11287 }
11288
11289 SemaDiagnosticBuilder noteExplicitConv(
11290 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
11291 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
11292 << ConvTy->isEnumeralType() << ConvTy;
11293 }
11294
11295 SemaDiagnosticBuilder diagnoseAmbiguous(
11296 Sema &S, SourceLocation Loc, QualType T) override {
11297 return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
11298 }
11299
11300 SemaDiagnosticBuilder noteAmbiguous(
11301 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
11302 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
11303 << ConvTy->isEnumeralType() << ConvTy;
11304 }
11305
11306 SemaDiagnosticBuilder diagnoseConversion(
11307 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
11308 llvm_unreachable("conversion functions are permitted");
11309 }
11310 } ConvertDiagnoser(Diagnoser.Suppress);
11311
11312 Converted = PerformContextualImplicitConversion(DiagLoc, E,
11313 ConvertDiagnoser);
11314 if (Converted.isInvalid())
11315 return Converted;
11316 E = Converted.get();
11317 if (!E->getType()->isIntegralOrUnscopedEnumerationType())
11318 return ExprError();
11319 } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
11320 // An ICE must be of integral or unscoped enumeration type.
11321 if (!Diagnoser.Suppress)
11322 Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
11323 return ExprError();
11324 }
11325
11326 // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
11327 // in the non-ICE case.
11328 if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
11329 if (Result)
11330 *Result = E->EvaluateKnownConstInt(Context);
11331 return E;
11332 }
11333
11334 Expr::EvalResult EvalResult;
11335 SmallVector<PartialDiagnosticAt, 8> Notes;
11336 EvalResult.Diag = &Notes;
11337
11338 // Try to evaluate the expression, and produce diagnostics explaining why it's
11339 // not a constant expression as a side-effect.
11340 bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
11341 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
11342
11343 // In C++11, we can rely on diagnostics being produced for any expression
11344 // which is not a constant expression. If no diagnostics were produced, then
11345 // this is a constant expression.
11346 if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
11347 if (Result)
11348 *Result = EvalResult.Val.getInt();
11349 return E;
11350 }
11351
11352 // If our only note is the usual "invalid subexpression" note, just point
11353 // the caret at its location rather than producing an essentially
11354 // redundant note.
11355 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
11356 diag::note_invalid_subexpr_in_const_expr) {
11357 DiagLoc = Notes[0].first;
11358 Notes.clear();
11359 }
11360
11361 if (!Folded || !AllowFold) {
11362 if (!Diagnoser.Suppress) {
11363 Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
11364 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
11365 Diag(Notes[I].first, Notes[I].second);
11366 }
11367
11368 return ExprError();
11369 }
11370
11371 Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
11372 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
11373 Diag(Notes[I].first, Notes[I].second);
11374
11375 if (Result)
11376 *Result = EvalResult.Val.getInt();
11377 return E;
11378}
11379
11380namespace {
11381 // Handle the case where we conclude a expression which we speculatively
11382 // considered to be unevaluated is actually evaluated.
11383 class TransformToPE : public TreeTransform<TransformToPE> {
11384 typedef TreeTransform<TransformToPE> BaseTransform;
11385
11386 public:
11387 TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
11388
11389 // Make sure we redo semantic analysis
11390 bool AlwaysRebuild() { return true; }
11391
11392 // Make sure we handle LabelStmts correctly.
11393 // FIXME: This does the right thing, but maybe we need a more general
11394 // fix to TreeTransform?
11395 StmtResult TransformLabelStmt(LabelStmt *S) {
11396 S->getDecl()->setStmt(nullptr);
11397 return BaseTransform::TransformLabelStmt(S);
11398 }
11399
11400 // We need to special-case DeclRefExprs referring to FieldDecls which
11401 // are not part of a member pointer formation; normal TreeTransforming
11402 // doesn't catch this case because of the way we represent them in the AST.
11403 // FIXME: This is a bit ugly; is it really the best way to handle this
11404 // case?
11405 //
11406 // Error on DeclRefExprs referring to FieldDecls.
11407 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
11408 if (isa<FieldDecl>(E->getDecl()) &&
11409 !SemaRef.isUnevaluatedContext())
11410 return SemaRef.Diag(E->getLocation(),
11411 diag::err_invalid_non_static_member_use)
11412 << E->getDecl() << E->getSourceRange();
11413
11414 return BaseTransform::TransformDeclRefExpr(E);
11415 }
11416
11417 // Exception: filter out member pointer formation
11418 ExprResult TransformUnaryOperator(UnaryOperator *E) {
11419 if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
11420 return E;
11421
11422 return BaseTransform::TransformUnaryOperator(E);
11423 }
11424
11425 ExprResult TransformLambdaExpr(LambdaExpr *E) {
11426 // Lambdas never need to be transformed.
11427 return E;
11428 }
11429 };
11430}
11431
11432ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
11433 assert(isUnevaluatedContext() &&
11434 "Should only transform unevaluated expressions");
11435 ExprEvalContexts.back().Context =
11436 ExprEvalContexts[ExprEvalContexts.size()-2].Context;
11437 if (isUnevaluatedContext())
11438 return E;
11439 return TransformToPE(*this).TransformExpr(E);
11440}
11441
11442void
11443Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
11444 Decl *LambdaContextDecl,
11445 bool IsDecltype) {
11446 ExprEvalContexts.push_back(
11447 ExpressionEvaluationContextRecord(NewContext,
11448 ExprCleanupObjects.size(),
11449 ExprNeedsCleanups,
11450 LambdaContextDecl,
11451 IsDecltype));
11452 ExprNeedsCleanups = false;
11453 if (!MaybeODRUseExprs.empty())
11454 std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
11455}
11456
11457void
11458Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
11459 ReuseLambdaContextDecl_t,
11460 bool IsDecltype) {
11461 Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
11462 PushExpressionEvaluationContext(NewContext, ClosureContextDecl, IsDecltype);
11463}
11464
11465void Sema::PopExpressionEvaluationContext() {
11466 ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
11467 unsigned NumTypos = Rec.NumTypos;
11468
11469 if (!Rec.Lambdas.empty()) {
11470 if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
11471 unsigned D;
11472 if (Rec.isUnevaluated()) {
11473 // C++11 [expr.prim.lambda]p2:
11474 // A lambda-expression shall not appear in an unevaluated operand
11475 // (Clause 5).
11476 D = diag::err_lambda_unevaluated_operand;
11477 } else {
11478 // C++1y [expr.const]p2:
11479 // A conditional-expression e is a core constant expression unless the
11480 // evaluation of e, following the rules of the abstract machine, would
11481 // evaluate [...] a lambda-expression.
11482 D = diag::err_lambda_in_constant_expression;
11483 }
11484 for (const auto *L : Rec.Lambdas)
11485 Diag(L->getLocStart(), D);
11486 } else {
11487 // Mark the capture expressions odr-used. This was deferred
11488 // during lambda expression creation.
11489 for (auto *Lambda : Rec.Lambdas) {
11490 for (auto *C : Lambda->capture_inits())
11491 MarkDeclarationsReferencedInExpr(C);
11492 }
11493 }
11494 }
11495
11496 // When are coming out of an unevaluated context, clear out any
11497 // temporaries that we may have created as part of the evaluation of
11498 // the expression in that context: they aren't relevant because they
11499 // will never be constructed.
11500 if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
11501 ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
11502 ExprCleanupObjects.end());
11503 ExprNeedsCleanups = Rec.ParentNeedsCleanups;
11504 CleanupVarDeclMarking();
11505 std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
11506 // Otherwise, merge the contexts together.
11507 } else {
11508 ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
11509 MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
11510 Rec.SavedMaybeODRUseExprs.end());
11511 }
11512
11513 // Pop the current expression evaluation context off the stack.
11514 ExprEvalContexts.pop_back();
11515
11516 if (!ExprEvalContexts.empty())
11517 ExprEvalContexts.back().NumTypos += NumTypos;
11518 else
11519 assert(NumTypos == 0 && "There are outstanding typos after popping the "
11520 "last ExpressionEvaluationContextRecord");
11521}
11522
11523void Sema::DiscardCleanupsInEvaluationContext() {
11524 ExprCleanupObjects.erase(
11525 ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
11526 ExprCleanupObjects.end());
11527 ExprNeedsCleanups = false;
11528 MaybeODRUseExprs.clear();
11529}
11530
11531ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
11532 if (!E->getType()->isVariablyModifiedType())
11533 return E;
11534 return TransformToPotentiallyEvaluated(E);
11535}
11536
11537static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
11538 // Do not mark anything as "used" within a dependent context; wait for
11539 // an instantiation.
11540 if (SemaRef.CurContext->isDependentContext())
11541 return false;
11542
11543 switch (SemaRef.ExprEvalContexts.back().Context) {
11544 case Sema::Unevaluated:
11545 case Sema::UnevaluatedAbstract:
11546 // We are in an expression that is not potentially evaluated; do nothing.
11547 // (Depending on how you read the standard, we actually do need to do
11548 // something here for null pointer constants, but the standard's
11549 // definition of a null pointer constant is completely crazy.)
11550 return false;
11551
11552 case Sema::ConstantEvaluated:
11553 case Sema::PotentiallyEvaluated:
11554 // We are in a potentially evaluated expression (or a constant-expression
11555 // in C++03); we need to do implicit template instantiation, implicitly
11556 // define class members, and mark most declarations as used.
11557 return true;
11558
11559 case Sema::PotentiallyEvaluatedIfUsed:
11560 // Referenced declarations will only be used if the construct in the
11561 // containing expression is used.
11562 return false;
11563 }
11564 llvm_unreachable("Invalid context");
11565}
11566
11567/// \brief Mark a function referenced, and check whether it is odr-used
11568/// (C++ [basic.def.odr]p2, C99 6.9p3)
11569void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
11570 bool OdrUse) {
11571 assert(Func && "No function?");
11572
11573 Func->setReferenced();
11574
11575 // C++11 [basic.def.odr]p3:
11576 // A function whose name appears as a potentially-evaluated expression is
11577 // odr-used if it is the unique lookup result or the selected member of a
11578 // set of overloaded functions [...].
11579 //
11580 // We (incorrectly) mark overload resolution as an unevaluated context, so we
11581 // can just check that here. Skip the rest of this function if we've already
11582 // marked the function as used.
11583 if (Func->isUsed(false) || !IsPotentiallyEvaluatedContext(*this)) {
11584 // C++11 [temp.inst]p3:
11585 // Unless a function template specialization has been explicitly
11586 // instantiated or explicitly specialized, the function template
11587 // specialization is implicitly instantiated when the specialization is
11588 // referenced in a context that requires a function definition to exist.
11589 //
11590 // We consider constexpr function templates to be referenced in a context
11591 // that requires a definition to exist whenever they are referenced.
11592 //
11593 // FIXME: This instantiates constexpr functions too frequently. If this is
11594 // really an unevaluated context (and we're not just in the definition of a
11595 // function template or overload resolution or other cases which we
11596 // incorrectly consider to be unevaluated contexts), and we're not in a
11597 // subexpression which we actually need to evaluate (for instance, a
11598 // template argument, array bound or an expression in a braced-init-list),
11599 // we are not permitted to instantiate this constexpr function definition.
11600 //
11601 // FIXME: This also implicitly defines special members too frequently. They
11602 // are only supposed to be implicitly defined if they are odr-used, but they
11603 // are not odr-used from constant expressions in unevaluated contexts.
11604 // However, they cannot be referenced if they are deleted, and they are
11605 // deleted whenever the implicit definition of the special member would
11606 // fail.
11607 if (!Func->isConstexpr() || Func->getBody())
11608 return;
11609 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
11610 if (!Func->isImplicitlyInstantiable() && (!MD || MD->isUserProvided()))
11611 return;
11612 }
11613
11614 // Note that this declaration has been used.
11615 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
11616 Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
11617 if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
11618 if (Constructor->isDefaultConstructor()) {
11619 if (Constructor->isTrivial() && !Constructor->hasAttr<DLLExportAttr>())
11620 return;
11621 DefineImplicitDefaultConstructor(Loc, Constructor);
11622 } else if (Constructor->isCopyConstructor()) {
11623 DefineImplicitCopyConstructor(Loc, Constructor);
11624 } else if (Constructor->isMoveConstructor()) {
11625 DefineImplicitMoveConstructor(Loc, Constructor);
11626 }
11627 } else if (Constructor->getInheritedConstructor()) {
11628 DefineInheritingConstructor(Loc, Constructor);
11629 }
11630 } else if (CXXDestructorDecl *Destructor =
11631 dyn_cast<CXXDestructorDecl>(Func)) {
11632 Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
11633 if (Destructor->isDefaulted() && !Destructor->isDeleted())
11633 if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
11634 if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
11635 return;
11634 DefineImplicitDestructor(Loc, Destructor);
11636 DefineImplicitDestructor(Loc, Destructor);
11637 }
11635 if (Destructor->isVirtual())
11636 MarkVTableUsed(Loc, Destructor->getParent());
11637 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
11638 if (MethodDecl->isOverloadedOperator() &&
11639 MethodDecl->getOverloadedOperator() == OO_Equal) {
11640 MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
11641 if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
11642 if (MethodDecl->isCopyAssignmentOperator())
11643 DefineImplicitCopyAssignment(Loc, MethodDecl);
11644 else
11645 DefineImplicitMoveAssignment(Loc, MethodDecl);
11646 }
11647 } else if (isa<CXXConversionDecl>(MethodDecl) &&
11648 MethodDecl->getParent()->isLambda()) {
11649 CXXConversionDecl *Conversion =
11650 cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
11651 if (Conversion->isLambdaToBlockPointerConversion())
11652 DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
11653 else
11654 DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
11655 } else if (MethodDecl->isVirtual())
11656 MarkVTableUsed(Loc, MethodDecl->getParent());
11657 }
11658
11659 // Recursive functions should be marked when used from another function.
11660 // FIXME: Is this really right?
11661 if (CurContext == Func) return;
11662
11663 // Resolve the exception specification for any function which is
11664 // used: CodeGen will need it.
11665 const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
11666 if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
11667 ResolveExceptionSpec(Loc, FPT);
11668
11669 if (!OdrUse) return;
11670
11671 // Implicit instantiation of function templates and member functions of
11672 // class templates.
11673 if (Func->isImplicitlyInstantiable()) {
11674 bool AlreadyInstantiated = false;
11675 SourceLocation PointOfInstantiation = Loc;
11676 if (FunctionTemplateSpecializationInfo *SpecInfo
11677 = Func->getTemplateSpecializationInfo()) {
11678 if (SpecInfo->getPointOfInstantiation().isInvalid())
11679 SpecInfo->setPointOfInstantiation(Loc);
11680 else if (SpecInfo->getTemplateSpecializationKind()
11681 == TSK_ImplicitInstantiation) {
11682 AlreadyInstantiated = true;
11683 PointOfInstantiation = SpecInfo->getPointOfInstantiation();
11684 }
11685 } else if (MemberSpecializationInfo *MSInfo
11686 = Func->getMemberSpecializationInfo()) {
11687 if (MSInfo->getPointOfInstantiation().isInvalid())
11688 MSInfo->setPointOfInstantiation(Loc);
11689 else if (MSInfo->getTemplateSpecializationKind()
11690 == TSK_ImplicitInstantiation) {
11691 AlreadyInstantiated = true;
11692 PointOfInstantiation = MSInfo->getPointOfInstantiation();
11693 }
11694 }
11695
11696 if (!AlreadyInstantiated || Func->isConstexpr()) {
11697 if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
11698 cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
11699 ActiveTemplateInstantiations.size())
11700 PendingLocalImplicitInstantiations.push_back(
11701 std::make_pair(Func, PointOfInstantiation));
11702 else if (Func->isConstexpr())
11703 // Do not defer instantiations of constexpr functions, to avoid the
11704 // expression evaluator needing to call back into Sema if it sees a
11705 // call to such a function.
11706 InstantiateFunctionDefinition(PointOfInstantiation, Func);
11707 else {
11708 PendingInstantiations.push_back(std::make_pair(Func,
11709 PointOfInstantiation));
11710 // Notify the consumer that a function was implicitly instantiated.
11711 Consumer.HandleCXXImplicitFunctionInstantiation(Func);
11712 }
11713 }
11714 } else {
11715 // Walk redefinitions, as some of them may be instantiable.
11716 for (auto i : Func->redecls()) {
11717 if (!i->isUsed(false) && i->isImplicitlyInstantiable())
11718 MarkFunctionReferenced(Loc, i);
11719 }
11720 }
11721
11722 // Keep track of used but undefined functions.
11723 if (!Func->isDefined()) {
11724 if (mightHaveNonExternalLinkage(Func))
11725 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
11726 else if (Func->getMostRecentDecl()->isInlined() &&
11727 (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
11728 !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
11729 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
11730 }
11731
11732 // Normally the most current decl is marked used while processing the use and
11733 // any subsequent decls are marked used by decl merging. This fails with
11734 // template instantiation since marking can happen at the end of the file
11735 // and, because of the two phase lookup, this function is called with at
11736 // decl in the middle of a decl chain. We loop to maintain the invariant
11737 // that once a decl is used, all decls after it are also used.
11738 for (FunctionDecl *F = Func->getMostRecentDecl();; F = F->getPreviousDecl()) {
11739 F->markUsed(Context);
11740 if (F == Func)
11741 break;
11742 }
11743}
11744
11745static void
11746diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
11747 VarDecl *var, DeclContext *DC) {
11748 DeclContext *VarDC = var->getDeclContext();
11749
11750 // If the parameter still belongs to the translation unit, then
11751 // we're actually just using one parameter in the declaration of
11752 // the next.
11753 if (isa<ParmVarDecl>(var) &&
11754 isa<TranslationUnitDecl>(VarDC))
11755 return;
11756
11757 // For C code, don't diagnose about capture if we're not actually in code
11758 // right now; it's impossible to write a non-constant expression outside of
11759 // function context, so we'll get other (more useful) diagnostics later.
11760 //
11761 // For C++, things get a bit more nasty... it would be nice to suppress this
11762 // diagnostic for certain cases like using a local variable in an array bound
11763 // for a member of a local class, but the correct predicate is not obvious.
11764 if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
11765 return;
11766
11767 if (isa<CXXMethodDecl>(VarDC) &&
11768 cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
11769 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
11770 << var->getIdentifier();
11771 } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
11772 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
11773 << var->getIdentifier() << fn->getDeclName();
11774 } else if (isa<BlockDecl>(VarDC)) {
11775 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
11776 << var->getIdentifier();
11777 } else {
11778 // FIXME: Is there any other context where a local variable can be
11779 // declared?
11780 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
11781 << var->getIdentifier();
11782 }
11783
11784 S.Diag(var->getLocation(), diag::note_entity_declared_at)
11785 << var->getIdentifier();
11786
11787 // FIXME: Add additional diagnostic info about class etc. which prevents
11788 // capture.
11789}
11790
11791
11792static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
11793 bool &SubCapturesAreNested,
11794 QualType &CaptureType,
11795 QualType &DeclRefType) {
11796 // Check whether we've already captured it.
11797 if (CSI->CaptureMap.count(Var)) {
11798 // If we found a capture, any subcaptures are nested.
11799 SubCapturesAreNested = true;
11800
11801 // Retrieve the capture type for this variable.
11802 CaptureType = CSI->getCapture(Var).getCaptureType();
11803
11804 // Compute the type of an expression that refers to this variable.
11805 DeclRefType = CaptureType.getNonReferenceType();
11806
11807 const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
11808 if (Cap.isCopyCapture() &&
11809 !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
11810 DeclRefType.addConst();
11811 return true;
11812 }
11813 return false;
11814}
11815
11816// Only block literals, captured statements, and lambda expressions can
11817// capture; other scopes don't work.
11818static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
11819 SourceLocation Loc,
11820 const bool Diagnose, Sema &S) {
11821 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
11822 return getLambdaAwareParentOfDeclContext(DC);
11823 else if (Var->hasLocalStorage()) {
11824 if (Diagnose)
11825 diagnoseUncapturableValueReference(S, Loc, Var, DC);
11826 }
11827 return nullptr;
11828}
11829
11830// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
11831// certain types of variables (unnamed, variably modified types etc.)
11832// so check for eligibility.
11833static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
11834 SourceLocation Loc,
11835 const bool Diagnose, Sema &S) {
11836
11837 bool IsBlock = isa<BlockScopeInfo>(CSI);
11838 bool IsLambda = isa<LambdaScopeInfo>(CSI);
11839
11840 // Lambdas are not allowed to capture unnamed variables
11841 // (e.g. anonymous unions).
11842 // FIXME: The C++11 rule don't actually state this explicitly, but I'm
11843 // assuming that's the intent.
11844 if (IsLambda && !Var->getDeclName()) {
11845 if (Diagnose) {
11846 S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
11847 S.Diag(Var->getLocation(), diag::note_declared_at);
11848 }
11849 return false;
11850 }
11851
11852 // Prohibit variably-modified types in blocks; they're difficult to deal with.
11853 if (Var->getType()->isVariablyModifiedType() && IsBlock) {
11854 if (Diagnose) {
11855 S.Diag(Loc, diag::err_ref_vm_type);
11856 S.Diag(Var->getLocation(), diag::note_previous_decl)
11857 << Var->getDeclName();
11858 }
11859 return false;
11860 }
11861 // Prohibit structs with flexible array members too.
11862 // We cannot capture what is in the tail end of the struct.
11863 if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
11864 if (VTTy->getDecl()->hasFlexibleArrayMember()) {
11865 if (Diagnose) {
11866 if (IsBlock)
11867 S.Diag(Loc, diag::err_ref_flexarray_type);
11868 else
11869 S.Diag(Loc, diag::err_lambda_capture_flexarray_type)
11870 << Var->getDeclName();
11871 S.Diag(Var->getLocation(), diag::note_previous_decl)
11872 << Var->getDeclName();
11873 }
11874 return false;
11875 }
11876 }
11877 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
11878 // Lambdas and captured statements are not allowed to capture __block
11879 // variables; they don't support the expected semantics.
11880 if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
11881 if (Diagnose) {
11882 S.Diag(Loc, diag::err_capture_block_variable)
11883 << Var->getDeclName() << !IsLambda;
11884 S.Diag(Var->getLocation(), diag::note_previous_decl)
11885 << Var->getDeclName();
11886 }
11887 return false;
11888 }
11889
11890 return true;
11891}
11892
11893// Returns true if the capture by block was successful.
11894static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
11895 SourceLocation Loc,
11896 const bool BuildAndDiagnose,
11897 QualType &CaptureType,
11898 QualType &DeclRefType,
11899 const bool Nested,
11900 Sema &S) {
11901 Expr *CopyExpr = nullptr;
11902 bool ByRef = false;
11903
11904 // Blocks are not allowed to capture arrays.
11905 if (CaptureType->isArrayType()) {
11906 if (BuildAndDiagnose) {
11907 S.Diag(Loc, diag::err_ref_array_type);
11908 S.Diag(Var->getLocation(), diag::note_previous_decl)
11909 << Var->getDeclName();
11910 }
11911 return false;
11912 }
11913
11914 // Forbid the block-capture of autoreleasing variables.
11915 if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
11916 if (BuildAndDiagnose) {
11917 S.Diag(Loc, diag::err_arc_autoreleasing_capture)
11918 << /*block*/ 0;
11919 S.Diag(Var->getLocation(), diag::note_previous_decl)
11920 << Var->getDeclName();
11921 }
11922 return false;
11923 }
11924 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
11925 if (HasBlocksAttr || CaptureType->isReferenceType()) {
11926 // Block capture by reference does not change the capture or
11927 // declaration reference types.
11928 ByRef = true;
11929 } else {
11930 // Block capture by copy introduces 'const'.
11931 CaptureType = CaptureType.getNonReferenceType().withConst();
11932 DeclRefType = CaptureType;
11933
11934 if (S.getLangOpts().CPlusPlus && BuildAndDiagnose) {
11935 if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
11936 // The capture logic needs the destructor, so make sure we mark it.
11937 // Usually this is unnecessary because most local variables have
11938 // their destructors marked at declaration time, but parameters are
11939 // an exception because it's technically only the call site that
11940 // actually requires the destructor.
11941 if (isa<ParmVarDecl>(Var))
11942 S.FinalizeVarWithDestructor(Var, Record);
11943
11944 // Enter a new evaluation context to insulate the copy
11945 // full-expression.
11946 EnterExpressionEvaluationContext scope(S, S.PotentiallyEvaluated);
11947
11948 // According to the blocks spec, the capture of a variable from
11949 // the stack requires a const copy constructor. This is not true
11950 // of the copy/move done to move a __block variable to the heap.
11951 Expr *DeclRef = new (S.Context) DeclRefExpr(Var, Nested,
11952 DeclRefType.withConst(),
11953 VK_LValue, Loc);
11954
11955 ExprResult Result
11956 = S.PerformCopyInitialization(
11957 InitializedEntity::InitializeBlock(Var->getLocation(),
11958 CaptureType, false),
11959 Loc, DeclRef);
11960
11961 // Build a full-expression copy expression if initialization
11962 // succeeded and used a non-trivial constructor. Recover from
11963 // errors by pretending that the copy isn't necessary.
11964 if (!Result.isInvalid() &&
11965 !cast<CXXConstructExpr>(Result.get())->getConstructor()
11966 ->isTrivial()) {
11967 Result = S.MaybeCreateExprWithCleanups(Result);
11968 CopyExpr = Result.get();
11969 }
11970 }
11971 }
11972 }
11973
11974 // Actually capture the variable.
11975 if (BuildAndDiagnose)
11976 BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
11977 SourceLocation(), CaptureType, CopyExpr);
11978
11979 return true;
11980
11981}
11982
11983
11984/// \brief Capture the given variable in the captured region.
11985static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
11986 VarDecl *Var,
11987 SourceLocation Loc,
11988 const bool BuildAndDiagnose,
11989 QualType &CaptureType,
11990 QualType &DeclRefType,
11991 const bool RefersToCapturedVariable,
11992 Sema &S) {
11993
11994 // By default, capture variables by reference.
11995 bool ByRef = true;
11996 // Using an LValue reference type is consistent with Lambdas (see below).
11997 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
11998 Expr *CopyExpr = nullptr;
11999 if (BuildAndDiagnose) {
12000 // The current implementation assumes that all variables are captured
12001 // by references. Since there is no capture by copy, no expression
12002 // evaluation will be needed.
12003 RecordDecl *RD = RSI->TheRecordDecl;
12004
12005 FieldDecl *Field
12006 = FieldDecl::Create(S.Context, RD, Loc, Loc, nullptr, CaptureType,
12007 S.Context.getTrivialTypeSourceInfo(CaptureType, Loc),
12008 nullptr, false, ICIS_NoInit);
12009 Field->setImplicit(true);
12010 Field->setAccess(AS_private);
12011 RD->addDecl(Field);
12012
12013 CopyExpr = new (S.Context) DeclRefExpr(Var, RefersToCapturedVariable,
12014 DeclRefType, VK_LValue, Loc);
12015 Var->setReferenced(true);
12016 Var->markUsed(S.Context);
12017 }
12018
12019 // Actually capture the variable.
12020 if (BuildAndDiagnose)
12021 RSI->addCapture(Var, /*isBlock*/false, ByRef, RefersToCapturedVariable, Loc,
12022 SourceLocation(), CaptureType, CopyExpr);
12023
12024
12025 return true;
12026}
12027
12028/// \brief Create a field within the lambda class for the variable
12029/// being captured. Handle Array captures.
12030static ExprResult addAsFieldToClosureType(Sema &S,
12031 LambdaScopeInfo *LSI,
12032 VarDecl *Var, QualType FieldType,
12033 QualType DeclRefType,
12034 SourceLocation Loc,
12035 bool RefersToCapturedVariable) {
12036 CXXRecordDecl *Lambda = LSI->Lambda;
12037
12038 // Build the non-static data member.
12039 FieldDecl *Field
12040 = FieldDecl::Create(S.Context, Lambda, Loc, Loc, nullptr, FieldType,
12041 S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
12042 nullptr, false, ICIS_NoInit);
12043 Field->setImplicit(true);
12044 Field->setAccess(AS_private);
12045 Lambda->addDecl(Field);
12046
12047 // C++11 [expr.prim.lambda]p21:
12048 // When the lambda-expression is evaluated, the entities that
12049 // are captured by copy are used to direct-initialize each
12050 // corresponding non-static data member of the resulting closure
12051 // object. (For array members, the array elements are
12052 // direct-initialized in increasing subscript order.) These
12053 // initializations are performed in the (unspecified) order in
12054 // which the non-static data members are declared.
12055
12056 // Introduce a new evaluation context for the initialization, so
12057 // that temporaries introduced as part of the capture are retained
12058 // to be re-"exported" from the lambda expression itself.
12059 EnterExpressionEvaluationContext scope(S, Sema::PotentiallyEvaluated);
12060
12061 // C++ [expr.prim.labda]p12:
12062 // An entity captured by a lambda-expression is odr-used (3.2) in
12063 // the scope containing the lambda-expression.
12064 Expr *Ref = new (S.Context) DeclRefExpr(Var, RefersToCapturedVariable,
12065 DeclRefType, VK_LValue, Loc);
12066 Var->setReferenced(true);
12067 Var->markUsed(S.Context);
12068
12069 // When the field has array type, create index variables for each
12070 // dimension of the array. We use these index variables to subscript
12071 // the source array, and other clients (e.g., CodeGen) will perform
12072 // the necessary iteration with these index variables.
12073 SmallVector<VarDecl *, 4> IndexVariables;
12074 QualType BaseType = FieldType;
12075 QualType SizeType = S.Context.getSizeType();
12076 LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
12077 while (const ConstantArrayType *Array
12078 = S.Context.getAsConstantArrayType(BaseType)) {
12079 // Create the iteration variable for this array index.
12080 IdentifierInfo *IterationVarName = nullptr;
12081 {
12082 SmallString<8> Str;
12083 llvm::raw_svector_ostream OS(Str);
12084 OS << "__i" << IndexVariables.size();
12085 IterationVarName = &S.Context.Idents.get(OS.str());
12086 }
12087 VarDecl *IterationVar
12088 = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
12089 IterationVarName, SizeType,
12090 S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
12091 SC_None);
12092 IndexVariables.push_back(IterationVar);
12093 LSI->ArrayIndexVars.push_back(IterationVar);
12094
12095 // Create a reference to the iteration variable.
12096 ExprResult IterationVarRef
12097 = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
12098 assert(!IterationVarRef.isInvalid() &&
12099 "Reference to invented variable cannot fail!");
12100 IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.get());
12101 assert(!IterationVarRef.isInvalid() &&
12102 "Conversion of invented variable cannot fail!");
12103
12104 // Subscript the array with this iteration variable.
12105 ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
12106 Ref, Loc, IterationVarRef.get(), Loc);
12107 if (Subscript.isInvalid()) {
12108 S.CleanupVarDeclMarking();
12109 S.DiscardCleanupsInEvaluationContext();
12110 return ExprError();
12111 }
12112
12113 Ref = Subscript.get();
12114 BaseType = Array->getElementType();
12115 }
12116
12117 // Construct the entity that we will be initializing. For an array, this
12118 // will be first element in the array, which may require several levels
12119 // of array-subscript entities.
12120 SmallVector<InitializedEntity, 4> Entities;
12121 Entities.reserve(1 + IndexVariables.size());
12122 Entities.push_back(
12123 InitializedEntity::InitializeLambdaCapture(Var->getIdentifier(),
12124 Field->getType(), Loc));
12125 for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
12126 Entities.push_back(InitializedEntity::InitializeElement(S.Context,
12127 0,
12128 Entities.back()));
12129
12130 InitializationKind InitKind
12131 = InitializationKind::CreateDirect(Loc, Loc, Loc);
12132 InitializationSequence Init(S, Entities.back(), InitKind, Ref);
12133 ExprResult Result(true);
12134 if (!Init.Diagnose(S, Entities.back(), InitKind, Ref))
12135 Result = Init.Perform(S, Entities.back(), InitKind, Ref);
12136
12137 // If this initialization requires any cleanups (e.g., due to a
12138 // default argument to a copy constructor), note that for the
12139 // lambda.
12140 if (S.ExprNeedsCleanups)
12141 LSI->ExprNeedsCleanups = true;
12142
12143 // Exit the expression evaluation context used for the capture.
12144 S.CleanupVarDeclMarking();
12145 S.DiscardCleanupsInEvaluationContext();
12146 return Result;
12147}
12148
12149
12150
12151/// \brief Capture the given variable in the lambda.
12152static bool captureInLambda(LambdaScopeInfo *LSI,
12153 VarDecl *Var,
12154 SourceLocation Loc,
12155 const bool BuildAndDiagnose,
12156 QualType &CaptureType,
12157 QualType &DeclRefType,
12158 const bool RefersToCapturedVariable,
12159 const Sema::TryCaptureKind Kind,
12160 SourceLocation EllipsisLoc,
12161 const bool IsTopScope,
12162 Sema &S) {
12163
12164 // Determine whether we are capturing by reference or by value.
12165 bool ByRef = false;
12166 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
12167 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
12168 } else {
12169 ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
12170 }
12171
12172 // Compute the type of the field that will capture this variable.
12173 if (ByRef) {
12174 // C++11 [expr.prim.lambda]p15:
12175 // An entity is captured by reference if it is implicitly or
12176 // explicitly captured but not captured by copy. It is
12177 // unspecified whether additional unnamed non-static data
12178 // members are declared in the closure type for entities
12179 // captured by reference.
12180 //
12181 // FIXME: It is not clear whether we want to build an lvalue reference
12182 // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
12183 // to do the former, while EDG does the latter. Core issue 1249 will
12184 // clarify, but for now we follow GCC because it's a more permissive and
12185 // easily defensible position.
12186 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
12187 } else {
12188 // C++11 [expr.prim.lambda]p14:
12189 // For each entity captured by copy, an unnamed non-static
12190 // data member is declared in the closure type. The
12191 // declaration order of these members is unspecified. The type
12192 // of such a data member is the type of the corresponding
12193 // captured entity if the entity is not a reference to an
12194 // object, or the referenced type otherwise. [Note: If the
12195 // captured entity is a reference to a function, the
12196 // corresponding data member is also a reference to a
12197 // function. - end note ]
12198 if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
12199 if (!RefType->getPointeeType()->isFunctionType())
12200 CaptureType = RefType->getPointeeType();
12201 }
12202
12203 // Forbid the lambda copy-capture of autoreleasing variables.
12204 if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
12205 if (BuildAndDiagnose) {
12206 S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
12207 S.Diag(Var->getLocation(), diag::note_previous_decl)
12208 << Var->getDeclName();
12209 }
12210 return false;
12211 }
12212
12213 // Make sure that by-copy captures are of a complete and non-abstract type.
12214 if (BuildAndDiagnose) {
12215 if (!CaptureType->isDependentType() &&
12216 S.RequireCompleteType(Loc, CaptureType,
12217 diag::err_capture_of_incomplete_type,
12218 Var->getDeclName()))
12219 return false;
12220
12221 if (S.RequireNonAbstractType(Loc, CaptureType,
12222 diag::err_capture_of_abstract_type))
12223 return false;
12224 }
12225 }
12226
12227 // Capture this variable in the lambda.
12228 Expr *CopyExpr = nullptr;
12229 if (BuildAndDiagnose) {
12230 ExprResult Result = addAsFieldToClosureType(S, LSI, Var,
12231 CaptureType, DeclRefType, Loc,
12232 RefersToCapturedVariable);
12233 if (!Result.isInvalid())
12234 CopyExpr = Result.get();
12235 }
12236
12237 // Compute the type of a reference to this captured variable.
12238 if (ByRef)
12239 DeclRefType = CaptureType.getNonReferenceType();
12240 else {
12241 // C++ [expr.prim.lambda]p5:
12242 // The closure type for a lambda-expression has a public inline
12243 // function call operator [...]. This function call operator is
12244 // declared const (9.3.1) if and only if the lambda-expression���s
12245 // parameter-declaration-clause is not followed by mutable.
12246 DeclRefType = CaptureType.getNonReferenceType();
12247 if (!LSI->Mutable && !CaptureType->isReferenceType())
12248 DeclRefType.addConst();
12249 }
12250
12251 // Add the capture.
12252 if (BuildAndDiagnose)
12253 LSI->addCapture(Var, /*IsBlock=*/false, ByRef, RefersToCapturedVariable,
12254 Loc, EllipsisLoc, CaptureType, CopyExpr);
12255
12256 return true;
12257}
12258
12259bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation ExprLoc,
12260 TryCaptureKind Kind, SourceLocation EllipsisLoc,
12261 bool BuildAndDiagnose,
12262 QualType &CaptureType,
12263 QualType &DeclRefType,
12264 const unsigned *const FunctionScopeIndexToStopAt) {
12265 bool Nested = Var->isInitCapture();
12266
12267 DeclContext *DC = CurContext;
12268 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
12269 ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
12270 // We need to sync up the Declaration Context with the
12271 // FunctionScopeIndexToStopAt
12272 if (FunctionScopeIndexToStopAt) {
12273 unsigned FSIndex = FunctionScopes.size() - 1;
12274 while (FSIndex != MaxFunctionScopesIndex) {
12275 DC = getLambdaAwareParentOfDeclContext(DC);
12276 --FSIndex;
12277 }
12278 }
12279
12280
12281 // If the variable is declared in the current context (and is not an
12282 // init-capture), there is no need to capture it.
12283 if (!Nested && Var->getDeclContext() == DC) return true;
12284
12285 // Capture global variables if it is required to use private copy of this
12286 // variable.
12287 bool IsGlobal = !Var->hasLocalStorage();
12288 if (IsGlobal && !(LangOpts.OpenMP && IsOpenMPCapturedVar(Var)))
12289 return true;
12290
12291 // Walk up the stack to determine whether we can capture the variable,
12292 // performing the "simple" checks that don't depend on type. We stop when
12293 // we've either hit the declared scope of the variable or find an existing
12294 // capture of that variable. We start from the innermost capturing-entity
12295 // (the DC) and ensure that all intervening capturing-entities
12296 // (blocks/lambdas etc.) between the innermost capturer and the variable`s
12297 // declcontext can either capture the variable or have already captured
12298 // the variable.
12299 CaptureType = Var->getType();
12300 DeclRefType = CaptureType.getNonReferenceType();
12301 bool Explicit = (Kind != TryCapture_Implicit);
12302 unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
12303 do {
12304 // Only block literals, captured statements, and lambda expressions can
12305 // capture; other scopes don't work.
12306 DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
12307 ExprLoc,
12308 BuildAndDiagnose,
12309 *this);
12310 // We need to check for the parent *first* because, if we *have*
12311 // private-captured a global variable, we need to recursively capture it in
12312 // intermediate blocks, lambdas, etc.
12313 if (!ParentDC) {
12314 if (IsGlobal) {
12315 FunctionScopesIndex = MaxFunctionScopesIndex - 1;
12316 break;
12317 }
12318 return true;
12319 }
12320
12321 FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex];
12322 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
12323
12324
12325 // Check whether we've already captured it.
12326 if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
12327 DeclRefType))
12328 break;
12329 // If we are instantiating a generic lambda call operator body,
12330 // we do not want to capture new variables. What was captured
12331 // during either a lambdas transformation or initial parsing
12332 // should be used.
12333 if (isGenericLambdaCallOperatorSpecialization(DC)) {
12334 if (BuildAndDiagnose) {
12335 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
12336 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
12337 Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
12338 Diag(Var->getLocation(), diag::note_previous_decl)
12339 << Var->getDeclName();
12340 Diag(LSI->Lambda->getLocStart(), diag::note_lambda_decl);
12341 } else
12342 diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
12343 }
12344 return true;
12345 }
12346 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
12347 // certain types of variables (unnamed, variably modified types etc.)
12348 // so check for eligibility.
12349 if (!isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this))
12350 return true;
12351
12352 // Try to capture variable-length arrays types.
12353 if (Var->getType()->isVariablyModifiedType()) {
12354 // We're going to walk down into the type and look for VLA
12355 // expressions.
12356 QualType QTy = Var->getType();
12357 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
12358 QTy = PVD->getOriginalType();
12359 do {
12360 const Type *Ty = QTy.getTypePtr();
12361 switch (Ty->getTypeClass()) {
12362#define TYPE(Class, Base)
12363#define ABSTRACT_TYPE(Class, Base)
12364#define NON_CANONICAL_TYPE(Class, Base)
12365#define DEPENDENT_TYPE(Class, Base) case Type::Class:
12366#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
12367#include "clang/AST/TypeNodes.def"
12368 QTy = QualType();
12369 break;
12370 // These types are never variably-modified.
12371 case Type::Builtin:
12372 case Type::Complex:
12373 case Type::Vector:
12374 case Type::ExtVector:
12375 case Type::Record:
12376 case Type::Enum:
12377 case Type::Elaborated:
12378 case Type::TemplateSpecialization:
12379 case Type::ObjCObject:
12380 case Type::ObjCInterface:
12381 case Type::ObjCObjectPointer:
12382 llvm_unreachable("type class is never variably-modified!");
12383 case Type::Adjusted:
12384 QTy = cast<AdjustedType>(Ty)->getOriginalType();
12385 break;
12386 case Type::Decayed:
12387 QTy = cast<DecayedType>(Ty)->getPointeeType();
12388 break;
12389 case Type::Pointer:
12390 QTy = cast<PointerType>(Ty)->getPointeeType();
12391 break;
12392 case Type::BlockPointer:
12393 QTy = cast<BlockPointerType>(Ty)->getPointeeType();
12394 break;
12395 case Type::LValueReference:
12396 case Type::RValueReference:
12397 QTy = cast<ReferenceType>(Ty)->getPointeeType();
12398 break;
12399 case Type::MemberPointer:
12400 QTy = cast<MemberPointerType>(Ty)->getPointeeType();
12401 break;
12402 case Type::ConstantArray:
12403 case Type::IncompleteArray:
12404 // Losing element qualification here is fine.
12405 QTy = cast<ArrayType>(Ty)->getElementType();
12406 break;
12407 case Type::VariableArray: {
12408 // Losing element qualification here is fine.
12409 const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
12410
12411 // Unknown size indication requires no size computation.
12412 // Otherwise, evaluate and record it.
12413 if (auto Size = VAT->getSizeExpr()) {
12414 if (!CSI->isVLATypeCaptured(VAT)) {
12415 RecordDecl *CapRecord = nullptr;
12416 if (auto LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
12417 CapRecord = LSI->Lambda;
12418 } else if (auto CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
12419 CapRecord = CRSI->TheRecordDecl;
12420 }
12421 if (CapRecord) {
12422 auto ExprLoc = Size->getExprLoc();
12423 auto SizeType = Context.getSizeType();
12424 // Build the non-static data member.
12425 auto Field = FieldDecl::Create(
12426 Context, CapRecord, ExprLoc, ExprLoc,
12427 /*Id*/ nullptr, SizeType, /*TInfo*/ nullptr,
12428 /*BW*/ nullptr, /*Mutable*/ false,
12429 /*InitStyle*/ ICIS_NoInit);
12430 Field->setImplicit(true);
12431 Field->setAccess(AS_private);
12432 Field->setCapturedVLAType(VAT);
12433 CapRecord->addDecl(Field);
12434
12435 CSI->addVLATypeCapture(ExprLoc, SizeType);
12436 }
12437 }
12438 }
12439 QTy = VAT->getElementType();
12440 break;
12441 }
12442 case Type::FunctionProto:
12443 case Type::FunctionNoProto:
12444 QTy = cast<FunctionType>(Ty)->getReturnType();
12445 break;
12446 case Type::Paren:
12447 case Type::TypeOf:
12448 case Type::UnaryTransform:
12449 case Type::Attributed:
12450 case Type::SubstTemplateTypeParm:
12451 case Type::PackExpansion:
12452 // Keep walking after single level desugaring.
12453 QTy = QTy.getSingleStepDesugaredType(getASTContext());
12454 break;
12455 case Type::Typedef:
12456 QTy = cast<TypedefType>(Ty)->desugar();
12457 break;
12458 case Type::Decltype:
12459 QTy = cast<DecltypeType>(Ty)->desugar();
12460 break;
12461 case Type::Auto:
12462 QTy = cast<AutoType>(Ty)->getDeducedType();
12463 break;
12464 case Type::TypeOfExpr:
12465 QTy = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
12466 break;
12467 case Type::Atomic:
12468 QTy = cast<AtomicType>(Ty)->getValueType();
12469 break;
12470 }
12471 } while (!QTy.isNull() && QTy->isVariablyModifiedType());
12472 }
12473
12474 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
12475 // No capture-default, and this is not an explicit capture
12476 // so cannot capture this variable.
12477 if (BuildAndDiagnose) {
12478 Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
12479 Diag(Var->getLocation(), diag::note_previous_decl)
12480 << Var->getDeclName();
12481 Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
12482 diag::note_lambda_decl);
12483 // FIXME: If we error out because an outer lambda can not implicitly
12484 // capture a variable that an inner lambda explicitly captures, we
12485 // should have the inner lambda do the explicit capture - because
12486 // it makes for cleaner diagnostics later. This would purely be done
12487 // so that the diagnostic does not misleadingly claim that a variable
12488 // can not be captured by a lambda implicitly even though it is captured
12489 // explicitly. Suggestion:
12490 // - create const bool VariableCaptureWasInitiallyExplicit = Explicit
12491 // at the function head
12492 // - cache the StartingDeclContext - this must be a lambda
12493 // - captureInLambda in the innermost lambda the variable.
12494 }
12495 return true;
12496 }
12497
12498 FunctionScopesIndex--;
12499 DC = ParentDC;
12500 Explicit = false;
12501 } while (!Var->getDeclContext()->Equals(DC));
12502
12503 // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
12504 // computing the type of the capture at each step, checking type-specific
12505 // requirements, and adding captures if requested.
12506 // If the variable had already been captured previously, we start capturing
12507 // at the lambda nested within that one.
12508 for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
12509 ++I) {
12510 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
12511
12512 if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
12513 if (!captureInBlock(BSI, Var, ExprLoc,
12514 BuildAndDiagnose, CaptureType,
12515 DeclRefType, Nested, *this))
12516 return true;
12517 Nested = true;
12518 } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
12519 if (!captureInCapturedRegion(RSI, Var, ExprLoc,
12520 BuildAndDiagnose, CaptureType,
12521 DeclRefType, Nested, *this))
12522 return true;
12523 Nested = true;
12524 } else {
12525 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
12526 if (!captureInLambda(LSI, Var, ExprLoc,
12527 BuildAndDiagnose, CaptureType,
12528 DeclRefType, Nested, Kind, EllipsisLoc,
12529 /*IsTopScope*/I == N - 1, *this))
12530 return true;
12531 Nested = true;
12532 }
12533 }
12534 return false;
12535}
12536
12537bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
12538 TryCaptureKind Kind, SourceLocation EllipsisLoc) {
12539 QualType CaptureType;
12540 QualType DeclRefType;
12541 return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
12542 /*BuildAndDiagnose=*/true, CaptureType,
12543 DeclRefType, nullptr);
12544}
12545
12546bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
12547 QualType CaptureType;
12548 QualType DeclRefType;
12549 return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
12550 /*BuildAndDiagnose=*/false, CaptureType,
12551 DeclRefType, nullptr);
12552}
12553
12554QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
12555 QualType CaptureType;
12556 QualType DeclRefType;
12557
12558 // Determine whether we can capture this variable.
12559 if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
12560 /*BuildAndDiagnose=*/false, CaptureType,
12561 DeclRefType, nullptr))
12562 return QualType();
12563
12564 return DeclRefType;
12565}
12566
12567
12568
12569// If either the type of the variable or the initializer is dependent,
12570// return false. Otherwise, determine whether the variable is a constant
12571// expression. Use this if you need to know if a variable that might or
12572// might not be dependent is truly a constant expression.
12573static inline bool IsVariableNonDependentAndAConstantExpression(VarDecl *Var,
12574 ASTContext &Context) {
12575
12576 if (Var->getType()->isDependentType())
12577 return false;
12578 const VarDecl *DefVD = nullptr;
12579 Var->getAnyInitializer(DefVD);
12580 if (!DefVD)
12581 return false;
12582 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
12583 Expr *Init = cast<Expr>(Eval->Value);
12584 if (Init->isValueDependent())
12585 return false;
12586 return IsVariableAConstantExpression(Var, Context);
12587}
12588
12589
12590void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
12591 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
12592 // an object that satisfies the requirements for appearing in a
12593 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
12594 // is immediately applied." This function handles the lvalue-to-rvalue
12595 // conversion part.
12596 MaybeODRUseExprs.erase(E->IgnoreParens());
12597
12598 // If we are in a lambda, check if this DeclRefExpr or MemberExpr refers
12599 // to a variable that is a constant expression, and if so, identify it as
12600 // a reference to a variable that does not involve an odr-use of that
12601 // variable.
12602 if (LambdaScopeInfo *LSI = getCurLambda()) {
12603 Expr *SansParensExpr = E->IgnoreParens();
12604 VarDecl *Var = nullptr;
12605 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SansParensExpr))
12606 Var = dyn_cast<VarDecl>(DRE->getFoundDecl());
12607 else if (MemberExpr *ME = dyn_cast<MemberExpr>(SansParensExpr))
12608 Var = dyn_cast<VarDecl>(ME->getMemberDecl());
12609
12610 if (Var && IsVariableNonDependentAndAConstantExpression(Var, Context))
12611 LSI->markVariableExprAsNonODRUsed(SansParensExpr);
12612 }
12613}
12614
12615ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
12616 Res = CorrectDelayedTyposInExpr(Res);
12617
12618 if (!Res.isUsable())
12619 return Res;
12620
12621 // If a constant-expression is a reference to a variable where we delay
12622 // deciding whether it is an odr-use, just assume we will apply the
12623 // lvalue-to-rvalue conversion. In the one case where this doesn't happen
12624 // (a non-type template argument), we have special handling anyway.
12625 UpdateMarkingForLValueToRValue(Res.get());
12626 return Res;
12627}
12628
12629void Sema::CleanupVarDeclMarking() {
12630 for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
12631 e = MaybeODRUseExprs.end();
12632 i != e; ++i) {
12633 VarDecl *Var;
12634 SourceLocation Loc;
12635 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
12636 Var = cast<VarDecl>(DRE->getDecl());
12637 Loc = DRE->getLocation();
12638 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
12639 Var = cast<VarDecl>(ME->getMemberDecl());
12640 Loc = ME->getMemberLoc();
12641 } else {
12642 llvm_unreachable("Unexpected expression");
12643 }
12644
12645 MarkVarDeclODRUsed(Var, Loc, *this,
12646 /*MaxFunctionScopeIndex Pointer*/ nullptr);
12647 }
12648
12649 MaybeODRUseExprs.clear();
12650}
12651
12652
12653static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
12654 VarDecl *Var, Expr *E) {
12655 assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E)) &&
12656 "Invalid Expr argument to DoMarkVarDeclReferenced");
12657 Var->setReferenced();
12658
12659 TemplateSpecializationKind TSK = Var->getTemplateSpecializationKind();
12660 bool MarkODRUsed = true;
12661
12662 // If the context is not potentially evaluated, this is not an odr-use and
12663 // does not trigger instantiation.
12664 if (!IsPotentiallyEvaluatedContext(SemaRef)) {
12665 if (SemaRef.isUnevaluatedContext())
12666 return;
12667
12668 // If we don't yet know whether this context is going to end up being an
12669 // evaluated context, and we're referencing a variable from an enclosing
12670 // scope, add a potential capture.
12671 //
12672 // FIXME: Is this necessary? These contexts are only used for default
12673 // arguments, where local variables can't be used.
12674 const bool RefersToEnclosingScope =
12675 (SemaRef.CurContext != Var->getDeclContext() &&
12676 Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
12677 if (RefersToEnclosingScope) {
12678 if (LambdaScopeInfo *const LSI = SemaRef.getCurLambda()) {
12679 // If a variable could potentially be odr-used, defer marking it so
12680 // until we finish analyzing the full expression for any
12681 // lvalue-to-rvalue
12682 // or discarded value conversions that would obviate odr-use.
12683 // Add it to the list of potential captures that will be analyzed
12684 // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
12685 // unless the variable is a reference that was initialized by a constant
12686 // expression (this will never need to be captured or odr-used).
12687 assert(E && "Capture variable should be used in an expression.");
12688 if (!Var->getType()->isReferenceType() ||
12689 !IsVariableNonDependentAndAConstantExpression(Var, SemaRef.Context))
12690 LSI->addPotentialCapture(E->IgnoreParens());
12691 }
12692 }
12693
12694 if (!isTemplateInstantiation(TSK))
12695 return;
12696
12697 // Instantiate, but do not mark as odr-used, variable templates.
12698 MarkODRUsed = false;
12699 }
12700
12701 VarTemplateSpecializationDecl *VarSpec =
12702 dyn_cast<VarTemplateSpecializationDecl>(Var);
12703 assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
12704 "Can't instantiate a partial template specialization.");
12705
12706 // Perform implicit instantiation of static data members, static data member
12707 // templates of class templates, and variable template specializations. Delay
12708 // instantiations of variable templates, except for those that could be used
12709 // in a constant expression.
12710 if (isTemplateInstantiation(TSK)) {
12711 bool TryInstantiating = TSK == TSK_ImplicitInstantiation;
12712
12713 if (TryInstantiating && !isa<VarTemplateSpecializationDecl>(Var)) {
12714 if (Var->getPointOfInstantiation().isInvalid()) {
12715 // This is a modification of an existing AST node. Notify listeners.
12716 if (ASTMutationListener *L = SemaRef.getASTMutationListener())
12717 L->StaticDataMemberInstantiated(Var);
12718 } else if (!Var->isUsableInConstantExpressions(SemaRef.Context))
12719 // Don't bother trying to instantiate it again, unless we might need
12720 // its initializer before we get to the end of the TU.
12721 TryInstantiating = false;
12722 }
12723
12724 if (Var->getPointOfInstantiation().isInvalid())
12725 Var->setTemplateSpecializationKind(TSK, Loc);
12726
12727 if (TryInstantiating) {
12728 SourceLocation PointOfInstantiation = Var->getPointOfInstantiation();
12729 bool InstantiationDependent = false;
12730 bool IsNonDependent =
12731 VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments(
12732 VarSpec->getTemplateArgsInfo(), InstantiationDependent)
12733 : true;
12734
12735 // Do not instantiate specializations that are still type-dependent.
12736 if (IsNonDependent) {
12737 if (Var->isUsableInConstantExpressions(SemaRef.Context)) {
12738 // Do not defer instantiations of variables which could be used in a
12739 // constant expression.
12740 SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
12741 } else {
12742 SemaRef.PendingInstantiations
12743 .push_back(std::make_pair(Var, PointOfInstantiation));
12744 }
12745 }
12746 }
12747 }
12748
12749 if(!MarkODRUsed) return;
12750
12751 // Per C++11 [basic.def.odr], a variable is odr-used "unless it satisfies
12752 // the requirements for appearing in a constant expression (5.19) and, if
12753 // it is an object, the lvalue-to-rvalue conversion (4.1)
12754 // is immediately applied." We check the first part here, and
12755 // Sema::UpdateMarkingForLValueToRValue deals with the second part.
12756 // Note that we use the C++11 definition everywhere because nothing in
12757 // C++03 depends on whether we get the C++03 version correct. The second
12758 // part does not apply to references, since they are not objects.
12759 if (E && IsVariableAConstantExpression(Var, SemaRef.Context)) {
12760 // A reference initialized by a constant expression can never be
12761 // odr-used, so simply ignore it.
12762 if (!Var->getType()->isReferenceType())
12763 SemaRef.MaybeODRUseExprs.insert(E);
12764 } else
12765 MarkVarDeclODRUsed(Var, Loc, SemaRef,
12766 /*MaxFunctionScopeIndex ptr*/ nullptr);
12767}
12768
12769/// \brief Mark a variable referenced, and check whether it is odr-used
12770/// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
12771/// used directly for normal expressions referring to VarDecl.
12772void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
12773 DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
12774}
12775
12776static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
12777 Decl *D, Expr *E, bool OdrUse) {
12778 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
12779 DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
12780 return;
12781 }
12782
12783 SemaRef.MarkAnyDeclReferenced(Loc, D, OdrUse);
12784
12785 // If this is a call to a method via a cast, also mark the method in the
12786 // derived class used in case codegen can devirtualize the call.
12787 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
12788 if (!ME)
12789 return;
12790 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
12791 if (!MD)
12792 return;
12793 // Only attempt to devirtualize if this is truly a virtual call.
12794 bool IsVirtualCall = MD->isVirtual() && !ME->hasQualifier();
12795 if (!IsVirtualCall)
12796 return;
12797 const Expr *Base = ME->getBase();
12798 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
12799 if (!MostDerivedClassDecl)
12800 return;
12801 CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
12802 if (!DM || DM->isPure())
12803 return;
12804 SemaRef.MarkAnyDeclReferenced(Loc, DM, OdrUse);
12805}
12806
12807/// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
12808void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
12809 // TODO: update this with DR# once a defect report is filed.
12810 // C++11 defect. The address of a pure member should not be an ODR use, even
12811 // if it's a qualified reference.
12812 bool OdrUse = true;
12813 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
12814 if (Method->isVirtual())
12815 OdrUse = false;
12816 MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
12817}
12818
12819/// \brief Perform reference-marking and odr-use handling for a MemberExpr.
12820void Sema::MarkMemberReferenced(MemberExpr *E) {
12821 // C++11 [basic.def.odr]p2:
12822 // A non-overloaded function whose name appears as a potentially-evaluated
12823 // expression or a member of a set of candidate functions, if selected by
12824 // overload resolution when referred to from a potentially-evaluated
12825 // expression, is odr-used, unless it is a pure virtual function and its
12826 // name is not explicitly qualified.
12827 bool OdrUse = true;
12828 if (!E->hasQualifier()) {
12829 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
12830 if (Method->isPure())
12831 OdrUse = false;
12832 }
12833 SourceLocation Loc = E->getMemberLoc().isValid() ?
12834 E->getMemberLoc() : E->getLocStart();
12835 MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, OdrUse);
12836}
12837
12838/// \brief Perform marking for a reference to an arbitrary declaration. It
12839/// marks the declaration referenced, and performs odr-use checking for
12840/// functions and variables. This method should not be used when building a
12841/// normal expression which refers to a variable.
12842void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool OdrUse) {
12843 if (OdrUse) {
12844 if (auto *VD = dyn_cast<VarDecl>(D)) {
12845 MarkVariableReferenced(Loc, VD);
12846 return;
12847 }
12848 }
12849 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
12850 MarkFunctionReferenced(Loc, FD, OdrUse);
12851 return;
12852 }
12853 D->setReferenced();
12854}
12855
12856namespace {
12857 // Mark all of the declarations referenced
12858 // FIXME: Not fully implemented yet! We need to have a better understanding
12859 // of when we're entering
12860 class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
12861 Sema &S;
12862 SourceLocation Loc;
12863
12864 public:
12865 typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
12866
12867 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
12868
12869 bool TraverseTemplateArgument(const TemplateArgument &Arg);
12870 bool TraverseRecordType(RecordType *T);
12871 };
12872}
12873
12874bool MarkReferencedDecls::TraverseTemplateArgument(
12875 const TemplateArgument &Arg) {
12876 if (Arg.getKind() == TemplateArgument::Declaration) {
12877 if (Decl *D = Arg.getAsDecl())
12878 S.MarkAnyDeclReferenced(Loc, D, true);
12879 }
12880
12881 return Inherited::TraverseTemplateArgument(Arg);
12882}
12883
12884bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
12885 if (ClassTemplateSpecializationDecl *Spec
12886 = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
12887 const TemplateArgumentList &Args = Spec->getTemplateArgs();
12888 return TraverseTemplateArguments(Args.data(), Args.size());
12889 }
12890
12891 return true;
12892}
12893
12894void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
12895 MarkReferencedDecls Marker(*this, Loc);
12896 Marker.TraverseType(Context.getCanonicalType(T));
12897}
12898
12899namespace {
12900 /// \brief Helper class that marks all of the declarations referenced by
12901 /// potentially-evaluated subexpressions as "referenced".
12902 class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
12903 Sema &S;
12904 bool SkipLocalVariables;
12905
12906 public:
12907 typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
12908
12909 EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
12910 : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
12911
12912 void VisitDeclRefExpr(DeclRefExpr *E) {
12913 // If we were asked not to visit local variables, don't.
12914 if (SkipLocalVariables) {
12915 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
12916 if (VD->hasLocalStorage())
12917 return;
12918 }
12919
12920 S.MarkDeclRefReferenced(E);
12921 }
12922
12923 void VisitMemberExpr(MemberExpr *E) {
12924 S.MarkMemberReferenced(E);
12925 Inherited::VisitMemberExpr(E);
12926 }
12927
12928 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
12929 S.MarkFunctionReferenced(E->getLocStart(),
12930 const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
12931 Visit(E->getSubExpr());
12932 }
12933
12934 void VisitCXXNewExpr(CXXNewExpr *E) {
12935 if (E->getOperatorNew())
12936 S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
12937 if (E->getOperatorDelete())
12938 S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
12939 Inherited::VisitCXXNewExpr(E);
12940 }
12941
12942 void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
12943 if (E->getOperatorDelete())
12944 S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
12945 QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
12946 if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
12947 CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
12948 S.MarkFunctionReferenced(E->getLocStart(),
12949 S.LookupDestructor(Record));
12950 }
12951
12952 Inherited::VisitCXXDeleteExpr(E);
12953 }
12954
12955 void VisitCXXConstructExpr(CXXConstructExpr *E) {
12956 S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
12957 Inherited::VisitCXXConstructExpr(E);
12958 }
12959
12960 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
12961 Visit(E->getExpr());
12962 }
12963
12964 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
12965 Inherited::VisitImplicitCastExpr(E);
12966
12967 if (E->getCastKind() == CK_LValueToRValue)
12968 S.UpdateMarkingForLValueToRValue(E->getSubExpr());
12969 }
12970 };
12971}
12972
12973/// \brief Mark any declarations that appear within this expression or any
12974/// potentially-evaluated subexpressions as "referenced".
12975///
12976/// \param SkipLocalVariables If true, don't mark local variables as
12977/// 'referenced'.
12978void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
12979 bool SkipLocalVariables) {
12980 EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
12981}
12982
12983/// \brief Emit a diagnostic that describes an effect on the run-time behavior
12984/// of the program being compiled.
12985///
12986/// This routine emits the given diagnostic when the code currently being
12987/// type-checked is "potentially evaluated", meaning that there is a
12988/// possibility that the code will actually be executable. Code in sizeof()
12989/// expressions, code used only during overload resolution, etc., are not
12990/// potentially evaluated. This routine will suppress such diagnostics or,
12991/// in the absolutely nutty case of potentially potentially evaluated
12992/// expressions (C++ typeid), queue the diagnostic to potentially emit it
12993/// later.
12994///
12995/// This routine should be used for all diagnostics that describe the run-time
12996/// behavior of a program, such as passing a non-POD value through an ellipsis.
12997/// Failure to do so will likely result in spurious diagnostics or failures
12998/// during overload resolution or within sizeof/alignof/typeof/typeid.
12999bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
13000 const PartialDiagnostic &PD) {
13001 switch (ExprEvalContexts.back().Context) {
13002 case Unevaluated:
13003 case UnevaluatedAbstract:
13004 // The argument will never be evaluated, so don't complain.
13005 break;
13006
13007 case ConstantEvaluated:
13008 // Relevant diagnostics should be produced by constant evaluation.
13009 break;
13010
13011 case PotentiallyEvaluated:
13012 case PotentiallyEvaluatedIfUsed:
13013 if (Statement && getCurFunctionOrMethodDecl()) {
13014 FunctionScopes.back()->PossiblyUnreachableDiags.
13015 push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
13016 }
13017 else
13018 Diag(Loc, PD);
13019
13020 return true;
13021 }
13022
13023 return false;
13024}
13025
13026bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
13027 CallExpr *CE, FunctionDecl *FD) {
13028 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
13029 return false;
13030
13031 // If we're inside a decltype's expression, don't check for a valid return
13032 // type or construct temporaries until we know whether this is the last call.
13033 if (ExprEvalContexts.back().IsDecltype) {
13034 ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
13035 return false;
13036 }
13037
13038 class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
13039 FunctionDecl *FD;
13040 CallExpr *CE;
13041
13042 public:
13043 CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
13044 : FD(FD), CE(CE) { }
13045
13046 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
13047 if (!FD) {
13048 S.Diag(Loc, diag::err_call_incomplete_return)
13049 << T << CE->getSourceRange();
13050 return;
13051 }
13052
13053 S.Diag(Loc, diag::err_call_function_incomplete_return)
13054 << CE->getSourceRange() << FD->getDeclName() << T;
13055 S.Diag(FD->getLocation(), diag::note_entity_declared_at)
13056 << FD->getDeclName();
13057 }
13058 } Diagnoser(FD, CE);
13059
13060 if (RequireCompleteType(Loc, ReturnType, Diagnoser))
13061 return true;
13062
13063 return false;
13064}
13065
13066// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
13067// will prevent this condition from triggering, which is what we want.
13068void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
13069 SourceLocation Loc;
13070
13071 unsigned diagnostic = diag::warn_condition_is_assignment;
13072 bool IsOrAssign = false;
13073
13074 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
13075 if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
13076 return;
13077
13078 IsOrAssign = Op->getOpcode() == BO_OrAssign;
13079
13080 // Greylist some idioms by putting them into a warning subcategory.
13081 if (ObjCMessageExpr *ME
13082 = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
13083 Selector Sel = ME->getSelector();
13084
13085 // self = [<foo> init...]
13086 if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
13087 diagnostic = diag::warn_condition_is_idiomatic_assignment;
13088
13089 // <foo> = [<bar> nextObject]
13090 else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
13091 diagnostic = diag::warn_condition_is_idiomatic_assignment;
13092 }
13093
13094 Loc = Op->getOperatorLoc();
13095 } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
13096 if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
13097 return;
13098
13099 IsOrAssign = Op->getOperator() == OO_PipeEqual;
13100 Loc = Op->getOperatorLoc();
13101 } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
13102 return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
13103 else {
13104 // Not an assignment.
13105 return;
13106 }
13107
13108 Diag(Loc, diagnostic) << E->getSourceRange();
13109
13110 SourceLocation Open = E->getLocStart();
13111 SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
13112 Diag(Loc, diag::note_condition_assign_silence)
13113 << FixItHint::CreateInsertion(Open, "(")
13114 << FixItHint::CreateInsertion(Close, ")");
13115
13116 if (IsOrAssign)
13117 Diag(Loc, diag::note_condition_or_assign_to_comparison)
13118 << FixItHint::CreateReplacement(Loc, "!=");
13119 else
13120 Diag(Loc, diag::note_condition_assign_to_comparison)
13121 << FixItHint::CreateReplacement(Loc, "==");
13122}
13123
13124/// \brief Redundant parentheses over an equality comparison can indicate
13125/// that the user intended an assignment used as condition.
13126void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
13127 // Don't warn if the parens came from a macro.
13128 SourceLocation parenLoc = ParenE->getLocStart();
13129 if (parenLoc.isInvalid() || parenLoc.isMacroID())
13130 return;
13131 // Don't warn for dependent expressions.
13132 if (ParenE->isTypeDependent())
13133 return;
13134
13135 Expr *E = ParenE->IgnoreParens();
13136
13137 if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
13138 if (opE->getOpcode() == BO_EQ &&
13139 opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
13140 == Expr::MLV_Valid) {
13141 SourceLocation Loc = opE->getOperatorLoc();
13142
13143 Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
13144 SourceRange ParenERange = ParenE->getSourceRange();
13145 Diag(Loc, diag::note_equality_comparison_silence)
13146 << FixItHint::CreateRemoval(ParenERange.getBegin())
13147 << FixItHint::CreateRemoval(ParenERange.getEnd());
13148 Diag(Loc, diag::note_equality_comparison_to_assign)
13149 << FixItHint::CreateReplacement(Loc, "=");
13150 }
13151}
13152
13153ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
13154 DiagnoseAssignmentAsCondition(E);
13155 if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
13156 DiagnoseEqualityWithExtraParens(parenE);
13157
13158 ExprResult result = CheckPlaceholderExpr(E);
13159 if (result.isInvalid()) return ExprError();
13160 E = result.get();
13161
13162 if (!E->isTypeDependent()) {
13163 if (getLangOpts().CPlusPlus)
13164 return CheckCXXBooleanCondition(E); // C++ 6.4p4
13165
13166 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
13167 if (ERes.isInvalid())
13168 return ExprError();
13169 E = ERes.get();
13170
13171 QualType T = E->getType();
13172 if (!T->isScalarType()) { // C99 6.8.4.1p1
13173 Diag(Loc, diag::err_typecheck_statement_requires_scalar)
13174 << T << E->getSourceRange();
13175 return ExprError();
13176 }
13177 CheckBoolLikeConversion(E, Loc);
13178 }
13179
13180 return E;
13181}
13182
13183ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
13184 Expr *SubExpr) {
13185 if (!SubExpr)
13186 return ExprError();
13187
13188 return CheckBooleanCondition(SubExpr, Loc);
13189}
13190
13191namespace {
13192 /// A visitor for rebuilding a call to an __unknown_any expression
13193 /// to have an appropriate type.
13194 struct RebuildUnknownAnyFunction
13195 : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
13196
13197 Sema &S;
13198
13199 RebuildUnknownAnyFunction(Sema &S) : S(S) {}
13200
13201 ExprResult VisitStmt(Stmt *S) {
13202 llvm_unreachable("unexpected statement!");
13203 }
13204
13205 ExprResult VisitExpr(Expr *E) {
13206 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
13207 << E->getSourceRange();
13208 return ExprError();
13209 }
13210
13211 /// Rebuild an expression which simply semantically wraps another
13212 /// expression which it shares the type and value kind of.
13213 template <class T> ExprResult rebuildSugarExpr(T *E) {
13214 ExprResult SubResult = Visit(E->getSubExpr());
13215 if (SubResult.isInvalid()) return ExprError();
13216
13217 Expr *SubExpr = SubResult.get();
13218 E->setSubExpr(SubExpr);
13219 E->setType(SubExpr->getType());
13220 E->setValueKind(SubExpr->getValueKind());
13221 assert(E->getObjectKind() == OK_Ordinary);
13222 return E;
13223 }
13224
13225 ExprResult VisitParenExpr(ParenExpr *E) {
13226 return rebuildSugarExpr(E);
13227 }
13228
13229 ExprResult VisitUnaryExtension(UnaryOperator *E) {
13230 return rebuildSugarExpr(E);
13231 }
13232
13233 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
13234 ExprResult SubResult = Visit(E->getSubExpr());
13235 if (SubResult.isInvalid()) return ExprError();
13236
13237 Expr *SubExpr = SubResult.get();
13238 E->setSubExpr(SubExpr);
13239 E->setType(S.Context.getPointerType(SubExpr->getType()));
13240 assert(E->getValueKind() == VK_RValue);
13241 assert(E->getObjectKind() == OK_Ordinary);
13242 return E;
13243 }
13244
13245 ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
13246 if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
13247
13248 E->setType(VD->getType());
13249
13250 assert(E->getValueKind() == VK_RValue);
13251 if (S.getLangOpts().CPlusPlus &&
13252 !(isa<CXXMethodDecl>(VD) &&
13253 cast<CXXMethodDecl>(VD)->isInstance()))
13254 E->setValueKind(VK_LValue);
13255
13256 return E;
13257 }
13258
13259 ExprResult VisitMemberExpr(MemberExpr *E) {
13260 return resolveDecl(E, E->getMemberDecl());
13261 }
13262
13263 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
13264 return resolveDecl(E, E->getDecl());
13265 }
13266 };
13267}
13268
13269/// Given a function expression of unknown-any type, try to rebuild it
13270/// to have a function type.
13271static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
13272 ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
13273 if (Result.isInvalid()) return ExprError();
13274 return S.DefaultFunctionArrayConversion(Result.get());
13275}
13276
13277namespace {
13278 /// A visitor for rebuilding an expression of type __unknown_anytype
13279 /// into one which resolves the type directly on the referring
13280 /// expression. Strict preservation of the original source
13281 /// structure is not a goal.
13282 struct RebuildUnknownAnyExpr
13283 : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
13284
13285 Sema &S;
13286
13287 /// The current destination type.
13288 QualType DestType;
13289
13290 RebuildUnknownAnyExpr(Sema &S, QualType CastType)
13291 : S(S), DestType(CastType) {}
13292
13293 ExprResult VisitStmt(Stmt *S) {
13294 llvm_unreachable("unexpected statement!");
13295 }
13296
13297 ExprResult VisitExpr(Expr *E) {
13298 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
13299 << E->getSourceRange();
13300 return ExprError();
13301 }
13302
13303 ExprResult VisitCallExpr(CallExpr *E);
13304 ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
13305
13306 /// Rebuild an expression which simply semantically wraps another
13307 /// expression which it shares the type and value kind of.
13308 template <class T> ExprResult rebuildSugarExpr(T *E) {
13309 ExprResult SubResult = Visit(E->getSubExpr());
13310 if (SubResult.isInvalid()) return ExprError();
13311 Expr *SubExpr = SubResult.get();
13312 E->setSubExpr(SubExpr);
13313 E->setType(SubExpr->getType());
13314 E->setValueKind(SubExpr->getValueKind());
13315 assert(E->getObjectKind() == OK_Ordinary);
13316 return E;
13317 }
13318
13319 ExprResult VisitParenExpr(ParenExpr *E) {
13320 return rebuildSugarExpr(E);
13321 }
13322
13323 ExprResult VisitUnaryExtension(UnaryOperator *E) {
13324 return rebuildSugarExpr(E);
13325 }
13326
13327 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
13328 const PointerType *Ptr = DestType->getAs<PointerType>();
13329 if (!Ptr) {
13330 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
13331 << E->getSourceRange();
13332 return ExprError();
13333 }
13334 assert(E->getValueKind() == VK_RValue);
13335 assert(E->getObjectKind() == OK_Ordinary);
13336 E->setType(DestType);
13337
13338 // Build the sub-expression as if it were an object of the pointee type.
13339 DestType = Ptr->getPointeeType();
13340 ExprResult SubResult = Visit(E->getSubExpr());
13341 if (SubResult.isInvalid()) return ExprError();
13342 E->setSubExpr(SubResult.get());
13343 return E;
13344 }
13345
13346 ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
13347
13348 ExprResult resolveDecl(Expr *E, ValueDecl *VD);
13349
13350 ExprResult VisitMemberExpr(MemberExpr *E) {
13351 return resolveDecl(E, E->getMemberDecl());
13352 }
13353
13354 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
13355 return resolveDecl(E, E->getDecl());
13356 }
13357 };
13358}
13359
13360/// Rebuilds a call expression which yielded __unknown_anytype.
13361ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
13362 Expr *CalleeExpr = E->getCallee();
13363
13364 enum FnKind {
13365 FK_MemberFunction,
13366 FK_FunctionPointer,
13367 FK_BlockPointer
13368 };
13369
13370 FnKind Kind;
13371 QualType CalleeType = CalleeExpr->getType();
13372 if (CalleeType == S.Context.BoundMemberTy) {
13373 assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
13374 Kind = FK_MemberFunction;
13375 CalleeType = Expr::findBoundMemberType(CalleeExpr);
13376 } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
13377 CalleeType = Ptr->getPointeeType();
13378 Kind = FK_FunctionPointer;
13379 } else {
13380 CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
13381 Kind = FK_BlockPointer;
13382 }
13383 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
13384
13385 // Verify that this is a legal result type of a function.
13386 if (DestType->isArrayType() || DestType->isFunctionType()) {
13387 unsigned diagID = diag::err_func_returning_array_function;
13388 if (Kind == FK_BlockPointer)
13389 diagID = diag::err_block_returning_array_function;
13390
13391 S.Diag(E->getExprLoc(), diagID)
13392 << DestType->isFunctionType() << DestType;
13393 return ExprError();
13394 }
13395
13396 // Otherwise, go ahead and set DestType as the call's result.
13397 E->setType(DestType.getNonLValueExprType(S.Context));
13398 E->setValueKind(Expr::getValueKindForType(DestType));
13399 assert(E->getObjectKind() == OK_Ordinary);
13400
13401 // Rebuild the function type, replacing the result type with DestType.
13402 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
13403 if (Proto) {
13404 // __unknown_anytype(...) is a special case used by the debugger when
13405 // it has no idea what a function's signature is.
13406 //
13407 // We want to build this call essentially under the K&R
13408 // unprototyped rules, but making a FunctionNoProtoType in C++
13409 // would foul up all sorts of assumptions. However, we cannot
13410 // simply pass all arguments as variadic arguments, nor can we
13411 // portably just call the function under a non-variadic type; see
13412 // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
13413 // However, it turns out that in practice it is generally safe to
13414 // call a function declared as "A foo(B,C,D);" under the prototype
13415 // "A foo(B,C,D,...);". The only known exception is with the
13416 // Windows ABI, where any variadic function is implicitly cdecl
13417 // regardless of its normal CC. Therefore we change the parameter
13418 // types to match the types of the arguments.
13419 //
13420 // This is a hack, but it is far superior to moving the
13421 // corresponding target-specific code from IR-gen to Sema/AST.
13422
13423 ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
13424 SmallVector<QualType, 8> ArgTypes;
13425 if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
13426 ArgTypes.reserve(E->getNumArgs());
13427 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
13428 Expr *Arg = E->getArg(i);
13429 QualType ArgType = Arg->getType();
13430 if (E->isLValue()) {
13431 ArgType = S.Context.getLValueReferenceType(ArgType);
13432 } else if (E->isXValue()) {
13433 ArgType = S.Context.getRValueReferenceType(ArgType);
13434 }
13435 ArgTypes.push_back(ArgType);
13436 }
13437 ParamTypes = ArgTypes;
13438 }
13439 DestType = S.Context.getFunctionType(DestType, ParamTypes,
13440 Proto->getExtProtoInfo());
13441 } else {
13442 DestType = S.Context.getFunctionNoProtoType(DestType,
13443 FnType->getExtInfo());
13444 }
13445
13446 // Rebuild the appropriate pointer-to-function type.
13447 switch (Kind) {
13448 case FK_MemberFunction:
13449 // Nothing to do.
13450 break;
13451
13452 case FK_FunctionPointer:
13453 DestType = S.Context.getPointerType(DestType);
13454 break;
13455
13456 case FK_BlockPointer:
13457 DestType = S.Context.getBlockPointerType(DestType);
13458 break;
13459 }
13460
13461 // Finally, we can recurse.
13462 ExprResult CalleeResult = Visit(CalleeExpr);
13463 if (!CalleeResult.isUsable()) return ExprError();
13464 E->setCallee(CalleeResult.get());
13465
13466 // Bind a temporary if necessary.
13467 return S.MaybeBindToTemporary(E);
13468}
13469
13470ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
13471 // Verify that this is a legal result type of a call.
13472 if (DestType->isArrayType() || DestType->isFunctionType()) {
13473 S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
13474 << DestType->isFunctionType() << DestType;
13475 return ExprError();
13476 }
13477
13478 // Rewrite the method result type if available.
13479 if (ObjCMethodDecl *Method = E->getMethodDecl()) {
13480 assert(Method->getReturnType() == S.Context.UnknownAnyTy);
13481 Method->setReturnType(DestType);
13482 }
13483
13484 // Change the type of the message.
13485 E->setType(DestType.getNonReferenceType());
13486 E->setValueKind(Expr::getValueKindForType(DestType));
13487
13488 return S.MaybeBindToTemporary(E);
13489}
13490
13491ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
13492 // The only case we should ever see here is a function-to-pointer decay.
13493 if (E->getCastKind() == CK_FunctionToPointerDecay) {
13494 assert(E->getValueKind() == VK_RValue);
13495 assert(E->getObjectKind() == OK_Ordinary);
13496
13497 E->setType(DestType);
13498
13499 // Rebuild the sub-expression as the pointee (function) type.
13500 DestType = DestType->castAs<PointerType>()->getPointeeType();
13501
13502 ExprResult Result = Visit(E->getSubExpr());
13503 if (!Result.isUsable()) return ExprError();
13504
13505 E->setSubExpr(Result.get());
13506 return E;
13507 } else if (E->getCastKind() == CK_LValueToRValue) {
13508 assert(E->getValueKind() == VK_RValue);
13509 assert(E->getObjectKind() == OK_Ordinary);
13510
13511 assert(isa<BlockPointerType>(E->getType()));
13512
13513 E->setType(DestType);
13514
13515 // The sub-expression has to be a lvalue reference, so rebuild it as such.
13516 DestType = S.Context.getLValueReferenceType(DestType);
13517
13518 ExprResult Result = Visit(E->getSubExpr());
13519 if (!Result.isUsable()) return ExprError();
13520
13521 E->setSubExpr(Result.get());
13522 return E;
13523 } else {
13524 llvm_unreachable("Unhandled cast type!");
13525 }
13526}
13527
13528ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
13529 ExprValueKind ValueKind = VK_LValue;
13530 QualType Type = DestType;
13531
13532 // We know how to make this work for certain kinds of decls:
13533
13534 // - functions
13535 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
13536 if (const PointerType *Ptr = Type->getAs<PointerType>()) {
13537 DestType = Ptr->getPointeeType();
13538 ExprResult Result = resolveDecl(E, VD);
13539 if (Result.isInvalid()) return ExprError();
13540 return S.ImpCastExprToType(Result.get(), Type,
13541 CK_FunctionToPointerDecay, VK_RValue);
13542 }
13543
13544 if (!Type->isFunctionType()) {
13545 S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
13546 << VD << E->getSourceRange();
13547 return ExprError();
13548 }
13549 if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
13550 // We must match the FunctionDecl's type to the hack introduced in
13551 // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
13552 // type. See the lengthy commentary in that routine.
13553 QualType FDT = FD->getType();
13554 const FunctionType *FnType = FDT->castAs<FunctionType>();
13555 const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
13556 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
13557 if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
13558 SourceLocation Loc = FD->getLocation();
13559 FunctionDecl *NewFD = FunctionDecl::Create(FD->getASTContext(),
13560 FD->getDeclContext(),
13561 Loc, Loc, FD->getNameInfo().getName(),
13562 DestType, FD->getTypeSourceInfo(),
13563 SC_None, false/*isInlineSpecified*/,
13564 FD->hasPrototype(),
13565 false/*isConstexprSpecified*/);
13566
13567 if (FD->getQualifier())
13568 NewFD->setQualifierInfo(FD->getQualifierLoc());
13569
13570 SmallVector<ParmVarDecl*, 16> Params;
13571 for (const auto &AI : FT->param_types()) {
13572 ParmVarDecl *Param =
13573 S.BuildParmVarDeclForTypedef(FD, Loc, AI);
13574 Param->setScopeInfo(0, Params.size());
13575 Params.push_back(Param);
13576 }
13577 NewFD->setParams(Params);
13578 DRE->setDecl(NewFD);
13579 VD = DRE->getDecl();
13580 }
13581 }
13582
13583 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
13584 if (MD->isInstance()) {
13585 ValueKind = VK_RValue;
13586 Type = S.Context.BoundMemberTy;
13587 }
13588
13589 // Function references aren't l-values in C.
13590 if (!S.getLangOpts().CPlusPlus)
13591 ValueKind = VK_RValue;
13592
13593 // - variables
13594 } else if (isa<VarDecl>(VD)) {
13595 if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
13596 Type = RefTy->getPointeeType();
13597 } else if (Type->isFunctionType()) {
13598 S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
13599 << VD << E->getSourceRange();
13600 return ExprError();
13601 }
13602
13603 // - nothing else
13604 } else {
13605 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
13606 << VD << E->getSourceRange();
13607 return ExprError();
13608 }
13609
13610 // Modifying the declaration like this is friendly to IR-gen but
13611 // also really dangerous.
13612 VD->setType(DestType);
13613 E->setType(Type);
13614 E->setValueKind(ValueKind);
13615 return E;
13616}
13617
13618/// Check a cast of an unknown-any type. We intentionally only
13619/// trigger this for C-style casts.
13620ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
13621 Expr *CastExpr, CastKind &CastKind,
13622 ExprValueKind &VK, CXXCastPath &Path) {
13623 // Rewrite the casted expression from scratch.
13624 ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
13625 if (!result.isUsable()) return ExprError();
13626
13627 CastExpr = result.get();
13628 VK = CastExpr->getValueKind();
13629 CastKind = CK_NoOp;
13630
13631 return CastExpr;
13632}
13633
13634ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
13635 return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
13636}
13637
13638ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
13639 Expr *arg, QualType &paramType) {
13640 // If the syntactic form of the argument is not an explicit cast of
13641 // any sort, just do default argument promotion.
13642 ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
13643 if (!castArg) {
13644 ExprResult result = DefaultArgumentPromotion(arg);
13645 if (result.isInvalid()) return ExprError();
13646 paramType = result.get()->getType();
13647 return result;
13648 }
13649
13650 // Otherwise, use the type that was written in the explicit cast.
13651 assert(!arg->hasPlaceholderType());
13652 paramType = castArg->getTypeAsWritten();
13653
13654 // Copy-initialize a parameter of that type.
13655 InitializedEntity entity =
13656 InitializedEntity::InitializeParameter(Context, paramType,
13657 /*consumed*/ false);
13658 return PerformCopyInitialization(entity, callLoc, arg);
13659}
13660
13661static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
13662 Expr *orig = E;
13663 unsigned diagID = diag::err_uncasted_use_of_unknown_any;
13664 while (true) {
13665 E = E->IgnoreParenImpCasts();
13666 if (CallExpr *call = dyn_cast<CallExpr>(E)) {
13667 E = call->getCallee();
13668 diagID = diag::err_uncasted_call_of_unknown_any;
13669 } else {
13670 break;
13671 }
13672 }
13673
13674 SourceLocation loc;
13675 NamedDecl *d;
13676 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
13677 loc = ref->getLocation();
13678 d = ref->getDecl();
13679 } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
13680 loc = mem->getMemberLoc();
13681 d = mem->getMemberDecl();
13682 } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
13683 diagID = diag::err_uncasted_call_of_unknown_any;
13684 loc = msg->getSelectorStartLoc();
13685 d = msg->getMethodDecl();
13686 if (!d) {
13687 S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
13688 << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
13689 << orig->getSourceRange();
13690 return ExprError();
13691 }
13692 } else {
13693 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
13694 << E->getSourceRange();
13695 return ExprError();
13696 }
13697
13698 S.Diag(loc, diagID) << d << orig->getSourceRange();
13699
13700 // Never recoverable.
13701 return ExprError();
13702}
13703
13704/// Check for operands with placeholder types and complain if found.
13705/// Returns true if there was an error and no recovery was possible.
13706ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
13707 if (!getLangOpts().CPlusPlus) {
13708 // C cannot handle TypoExpr nodes on either side of a binop because it
13709 // doesn't handle dependent types properly, so make sure any TypoExprs have
13710 // been dealt with before checking the operands.
13711 ExprResult Result = CorrectDelayedTyposInExpr(E);
13712 if (!Result.isUsable()) return ExprError();
13713 E = Result.get();
13714 }
13715
13716 const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
13717 if (!placeholderType) return E;
13718
13719 switch (placeholderType->getKind()) {
13720
13721 // Overloaded expressions.
13722 case BuiltinType::Overload: {
13723 // Try to resolve a single function template specialization.
13724 // This is obligatory.
13725 ExprResult result = E;
13726 if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
13727 return result;
13728
13729 // If that failed, try to recover with a call.
13730 } else {
13731 tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
13732 /*complain*/ true);
13733 return result;
13734 }
13735 }
13736
13737 // Bound member functions.
13738 case BuiltinType::BoundMember: {
13739 ExprResult result = E;
13740 tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
13741 /*complain*/ true);
13742 return result;
13743 }
13744
13745 // ARC unbridged casts.
13746 case BuiltinType::ARCUnbridgedCast: {
13747 Expr *realCast = stripARCUnbridgedCast(E);
13748 diagnoseARCUnbridgedCast(realCast);
13749 return realCast;
13750 }
13751
13752 // Expressions of unknown type.
13753 case BuiltinType::UnknownAny:
13754 return diagnoseUnknownAnyExpr(*this, E);
13755
13756 // Pseudo-objects.
13757 case BuiltinType::PseudoObject:
13758 return checkPseudoObjectRValue(E);
13759
13760 case BuiltinType::BuiltinFn: {
13761 // Accept __noop without parens by implicitly converting it to a call expr.
13762 auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
13763 if (DRE) {
13764 auto *FD = cast<FunctionDecl>(DRE->getDecl());
13765 if (FD->getBuiltinID() == Builtin::BI__noop) {
13766 E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
13767 CK_BuiltinFnToFnPtr).get();
13768 return new (Context) CallExpr(Context, E, None, Context.IntTy,
13769 VK_RValue, SourceLocation());
13770 }
13771 }
13772
13773 Diag(E->getLocStart(), diag::err_builtin_fn_use);
13774 return ExprError();
13775 }
13776
13777 // Everything else should be impossible.
13778#define BUILTIN_TYPE(Id, SingletonId) \
13779 case BuiltinType::Id:
13780#define PLACEHOLDER_TYPE(Id, SingletonId)
13781#include "clang/AST/BuiltinTypes.def"
13782 break;
13783 }
13784
13785 llvm_unreachable("invalid placeholder type!");
13786}
13787
13788bool Sema::CheckCaseExpression(Expr *E) {
13789 if (E->isTypeDependent())
13790 return true;
13791 if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
13792 return E->getType()->isIntegralOrEnumerationType();
13793 return false;
13794}
13795
13796/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
13797ExprResult
13798Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
13799 assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
13800 "Unknown Objective-C Boolean value!");
13801 QualType BoolT = Context.ObjCBuiltinBoolTy;
13802 if (!Context.getBOOLDecl()) {
13803 LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
13804 Sema::LookupOrdinaryName);
13805 if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
13806 NamedDecl *ND = Result.getFoundDecl();
13807 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
13808 Context.setBOOLDecl(TD);
13809 }
13810 }
13811 if (Context.getBOOLDecl())
13812 BoolT = Context.getBOOLType();
13813 return new (Context)
13814 ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
13815}
11638 if (Destructor->isVirtual())
11639 MarkVTableUsed(Loc, Destructor->getParent());
11640 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
11641 if (MethodDecl->isOverloadedOperator() &&
11642 MethodDecl->getOverloadedOperator() == OO_Equal) {
11643 MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
11644 if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
11645 if (MethodDecl->isCopyAssignmentOperator())
11646 DefineImplicitCopyAssignment(Loc, MethodDecl);
11647 else
11648 DefineImplicitMoveAssignment(Loc, MethodDecl);
11649 }
11650 } else if (isa<CXXConversionDecl>(MethodDecl) &&
11651 MethodDecl->getParent()->isLambda()) {
11652 CXXConversionDecl *Conversion =
11653 cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
11654 if (Conversion->isLambdaToBlockPointerConversion())
11655 DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
11656 else
11657 DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
11658 } else if (MethodDecl->isVirtual())
11659 MarkVTableUsed(Loc, MethodDecl->getParent());
11660 }
11661
11662 // Recursive functions should be marked when used from another function.
11663 // FIXME: Is this really right?
11664 if (CurContext == Func) return;
11665
11666 // Resolve the exception specification for any function which is
11667 // used: CodeGen will need it.
11668 const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
11669 if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
11670 ResolveExceptionSpec(Loc, FPT);
11671
11672 if (!OdrUse) return;
11673
11674 // Implicit instantiation of function templates and member functions of
11675 // class templates.
11676 if (Func->isImplicitlyInstantiable()) {
11677 bool AlreadyInstantiated = false;
11678 SourceLocation PointOfInstantiation = Loc;
11679 if (FunctionTemplateSpecializationInfo *SpecInfo
11680 = Func->getTemplateSpecializationInfo()) {
11681 if (SpecInfo->getPointOfInstantiation().isInvalid())
11682 SpecInfo->setPointOfInstantiation(Loc);
11683 else if (SpecInfo->getTemplateSpecializationKind()
11684 == TSK_ImplicitInstantiation) {
11685 AlreadyInstantiated = true;
11686 PointOfInstantiation = SpecInfo->getPointOfInstantiation();
11687 }
11688 } else if (MemberSpecializationInfo *MSInfo
11689 = Func->getMemberSpecializationInfo()) {
11690 if (MSInfo->getPointOfInstantiation().isInvalid())
11691 MSInfo->setPointOfInstantiation(Loc);
11692 else if (MSInfo->getTemplateSpecializationKind()
11693 == TSK_ImplicitInstantiation) {
11694 AlreadyInstantiated = true;
11695 PointOfInstantiation = MSInfo->getPointOfInstantiation();
11696 }
11697 }
11698
11699 if (!AlreadyInstantiated || Func->isConstexpr()) {
11700 if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
11701 cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
11702 ActiveTemplateInstantiations.size())
11703 PendingLocalImplicitInstantiations.push_back(
11704 std::make_pair(Func, PointOfInstantiation));
11705 else if (Func->isConstexpr())
11706 // Do not defer instantiations of constexpr functions, to avoid the
11707 // expression evaluator needing to call back into Sema if it sees a
11708 // call to such a function.
11709 InstantiateFunctionDefinition(PointOfInstantiation, Func);
11710 else {
11711 PendingInstantiations.push_back(std::make_pair(Func,
11712 PointOfInstantiation));
11713 // Notify the consumer that a function was implicitly instantiated.
11714 Consumer.HandleCXXImplicitFunctionInstantiation(Func);
11715 }
11716 }
11717 } else {
11718 // Walk redefinitions, as some of them may be instantiable.
11719 for (auto i : Func->redecls()) {
11720 if (!i->isUsed(false) && i->isImplicitlyInstantiable())
11721 MarkFunctionReferenced(Loc, i);
11722 }
11723 }
11724
11725 // Keep track of used but undefined functions.
11726 if (!Func->isDefined()) {
11727 if (mightHaveNonExternalLinkage(Func))
11728 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
11729 else if (Func->getMostRecentDecl()->isInlined() &&
11730 (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
11731 !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
11732 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
11733 }
11734
11735 // Normally the most current decl is marked used while processing the use and
11736 // any subsequent decls are marked used by decl merging. This fails with
11737 // template instantiation since marking can happen at the end of the file
11738 // and, because of the two phase lookup, this function is called with at
11739 // decl in the middle of a decl chain. We loop to maintain the invariant
11740 // that once a decl is used, all decls after it are also used.
11741 for (FunctionDecl *F = Func->getMostRecentDecl();; F = F->getPreviousDecl()) {
11742 F->markUsed(Context);
11743 if (F == Func)
11744 break;
11745 }
11746}
11747
11748static void
11749diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
11750 VarDecl *var, DeclContext *DC) {
11751 DeclContext *VarDC = var->getDeclContext();
11752
11753 // If the parameter still belongs to the translation unit, then
11754 // we're actually just using one parameter in the declaration of
11755 // the next.
11756 if (isa<ParmVarDecl>(var) &&
11757 isa<TranslationUnitDecl>(VarDC))
11758 return;
11759
11760 // For C code, don't diagnose about capture if we're not actually in code
11761 // right now; it's impossible to write a non-constant expression outside of
11762 // function context, so we'll get other (more useful) diagnostics later.
11763 //
11764 // For C++, things get a bit more nasty... it would be nice to suppress this
11765 // diagnostic for certain cases like using a local variable in an array bound
11766 // for a member of a local class, but the correct predicate is not obvious.
11767 if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
11768 return;
11769
11770 if (isa<CXXMethodDecl>(VarDC) &&
11771 cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
11772 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
11773 << var->getIdentifier();
11774 } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
11775 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
11776 << var->getIdentifier() << fn->getDeclName();
11777 } else if (isa<BlockDecl>(VarDC)) {
11778 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
11779 << var->getIdentifier();
11780 } else {
11781 // FIXME: Is there any other context where a local variable can be
11782 // declared?
11783 S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
11784 << var->getIdentifier();
11785 }
11786
11787 S.Diag(var->getLocation(), diag::note_entity_declared_at)
11788 << var->getIdentifier();
11789
11790 // FIXME: Add additional diagnostic info about class etc. which prevents
11791 // capture.
11792}
11793
11794
11795static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
11796 bool &SubCapturesAreNested,
11797 QualType &CaptureType,
11798 QualType &DeclRefType) {
11799 // Check whether we've already captured it.
11800 if (CSI->CaptureMap.count(Var)) {
11801 // If we found a capture, any subcaptures are nested.
11802 SubCapturesAreNested = true;
11803
11804 // Retrieve the capture type for this variable.
11805 CaptureType = CSI->getCapture(Var).getCaptureType();
11806
11807 // Compute the type of an expression that refers to this variable.
11808 DeclRefType = CaptureType.getNonReferenceType();
11809
11810 const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
11811 if (Cap.isCopyCapture() &&
11812 !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
11813 DeclRefType.addConst();
11814 return true;
11815 }
11816 return false;
11817}
11818
11819// Only block literals, captured statements, and lambda expressions can
11820// capture; other scopes don't work.
11821static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
11822 SourceLocation Loc,
11823 const bool Diagnose, Sema &S) {
11824 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
11825 return getLambdaAwareParentOfDeclContext(DC);
11826 else if (Var->hasLocalStorage()) {
11827 if (Diagnose)
11828 diagnoseUncapturableValueReference(S, Loc, Var, DC);
11829 }
11830 return nullptr;
11831}
11832
11833// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
11834// certain types of variables (unnamed, variably modified types etc.)
11835// so check for eligibility.
11836static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
11837 SourceLocation Loc,
11838 const bool Diagnose, Sema &S) {
11839
11840 bool IsBlock = isa<BlockScopeInfo>(CSI);
11841 bool IsLambda = isa<LambdaScopeInfo>(CSI);
11842
11843 // Lambdas are not allowed to capture unnamed variables
11844 // (e.g. anonymous unions).
11845 // FIXME: The C++11 rule don't actually state this explicitly, but I'm
11846 // assuming that's the intent.
11847 if (IsLambda && !Var->getDeclName()) {
11848 if (Diagnose) {
11849 S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
11850 S.Diag(Var->getLocation(), diag::note_declared_at);
11851 }
11852 return false;
11853 }
11854
11855 // Prohibit variably-modified types in blocks; they're difficult to deal with.
11856 if (Var->getType()->isVariablyModifiedType() && IsBlock) {
11857 if (Diagnose) {
11858 S.Diag(Loc, diag::err_ref_vm_type);
11859 S.Diag(Var->getLocation(), diag::note_previous_decl)
11860 << Var->getDeclName();
11861 }
11862 return false;
11863 }
11864 // Prohibit structs with flexible array members too.
11865 // We cannot capture what is in the tail end of the struct.
11866 if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
11867 if (VTTy->getDecl()->hasFlexibleArrayMember()) {
11868 if (Diagnose) {
11869 if (IsBlock)
11870 S.Diag(Loc, diag::err_ref_flexarray_type);
11871 else
11872 S.Diag(Loc, diag::err_lambda_capture_flexarray_type)
11873 << Var->getDeclName();
11874 S.Diag(Var->getLocation(), diag::note_previous_decl)
11875 << Var->getDeclName();
11876 }
11877 return false;
11878 }
11879 }
11880 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
11881 // Lambdas and captured statements are not allowed to capture __block
11882 // variables; they don't support the expected semantics.
11883 if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
11884 if (Diagnose) {
11885 S.Diag(Loc, diag::err_capture_block_variable)
11886 << Var->getDeclName() << !IsLambda;
11887 S.Diag(Var->getLocation(), diag::note_previous_decl)
11888 << Var->getDeclName();
11889 }
11890 return false;
11891 }
11892
11893 return true;
11894}
11895
11896// Returns true if the capture by block was successful.
11897static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
11898 SourceLocation Loc,
11899 const bool BuildAndDiagnose,
11900 QualType &CaptureType,
11901 QualType &DeclRefType,
11902 const bool Nested,
11903 Sema &S) {
11904 Expr *CopyExpr = nullptr;
11905 bool ByRef = false;
11906
11907 // Blocks are not allowed to capture arrays.
11908 if (CaptureType->isArrayType()) {
11909 if (BuildAndDiagnose) {
11910 S.Diag(Loc, diag::err_ref_array_type);
11911 S.Diag(Var->getLocation(), diag::note_previous_decl)
11912 << Var->getDeclName();
11913 }
11914 return false;
11915 }
11916
11917 // Forbid the block-capture of autoreleasing variables.
11918 if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
11919 if (BuildAndDiagnose) {
11920 S.Diag(Loc, diag::err_arc_autoreleasing_capture)
11921 << /*block*/ 0;
11922 S.Diag(Var->getLocation(), diag::note_previous_decl)
11923 << Var->getDeclName();
11924 }
11925 return false;
11926 }
11927 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
11928 if (HasBlocksAttr || CaptureType->isReferenceType()) {
11929 // Block capture by reference does not change the capture or
11930 // declaration reference types.
11931 ByRef = true;
11932 } else {
11933 // Block capture by copy introduces 'const'.
11934 CaptureType = CaptureType.getNonReferenceType().withConst();
11935 DeclRefType = CaptureType;
11936
11937 if (S.getLangOpts().CPlusPlus && BuildAndDiagnose) {
11938 if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
11939 // The capture logic needs the destructor, so make sure we mark it.
11940 // Usually this is unnecessary because most local variables have
11941 // their destructors marked at declaration time, but parameters are
11942 // an exception because it's technically only the call site that
11943 // actually requires the destructor.
11944 if (isa<ParmVarDecl>(Var))
11945 S.FinalizeVarWithDestructor(Var, Record);
11946
11947 // Enter a new evaluation context to insulate the copy
11948 // full-expression.
11949 EnterExpressionEvaluationContext scope(S, S.PotentiallyEvaluated);
11950
11951 // According to the blocks spec, the capture of a variable from
11952 // the stack requires a const copy constructor. This is not true
11953 // of the copy/move done to move a __block variable to the heap.
11954 Expr *DeclRef = new (S.Context) DeclRefExpr(Var, Nested,
11955 DeclRefType.withConst(),
11956 VK_LValue, Loc);
11957
11958 ExprResult Result
11959 = S.PerformCopyInitialization(
11960 InitializedEntity::InitializeBlock(Var->getLocation(),
11961 CaptureType, false),
11962 Loc, DeclRef);
11963
11964 // Build a full-expression copy expression if initialization
11965 // succeeded and used a non-trivial constructor. Recover from
11966 // errors by pretending that the copy isn't necessary.
11967 if (!Result.isInvalid() &&
11968 !cast<CXXConstructExpr>(Result.get())->getConstructor()
11969 ->isTrivial()) {
11970 Result = S.MaybeCreateExprWithCleanups(Result);
11971 CopyExpr = Result.get();
11972 }
11973 }
11974 }
11975 }
11976
11977 // Actually capture the variable.
11978 if (BuildAndDiagnose)
11979 BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
11980 SourceLocation(), CaptureType, CopyExpr);
11981
11982 return true;
11983
11984}
11985
11986
11987/// \brief Capture the given variable in the captured region.
11988static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
11989 VarDecl *Var,
11990 SourceLocation Loc,
11991 const bool BuildAndDiagnose,
11992 QualType &CaptureType,
11993 QualType &DeclRefType,
11994 const bool RefersToCapturedVariable,
11995 Sema &S) {
11996
11997 // By default, capture variables by reference.
11998 bool ByRef = true;
11999 // Using an LValue reference type is consistent with Lambdas (see below).
12000 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
12001 Expr *CopyExpr = nullptr;
12002 if (BuildAndDiagnose) {
12003 // The current implementation assumes that all variables are captured
12004 // by references. Since there is no capture by copy, no expression
12005 // evaluation will be needed.
12006 RecordDecl *RD = RSI->TheRecordDecl;
12007
12008 FieldDecl *Field
12009 = FieldDecl::Create(S.Context, RD, Loc, Loc, nullptr, CaptureType,
12010 S.Context.getTrivialTypeSourceInfo(CaptureType, Loc),
12011 nullptr, false, ICIS_NoInit);
12012 Field->setImplicit(true);
12013 Field->setAccess(AS_private);
12014 RD->addDecl(Field);
12015
12016 CopyExpr = new (S.Context) DeclRefExpr(Var, RefersToCapturedVariable,
12017 DeclRefType, VK_LValue, Loc);
12018 Var->setReferenced(true);
12019 Var->markUsed(S.Context);
12020 }
12021
12022 // Actually capture the variable.
12023 if (BuildAndDiagnose)
12024 RSI->addCapture(Var, /*isBlock*/false, ByRef, RefersToCapturedVariable, Loc,
12025 SourceLocation(), CaptureType, CopyExpr);
12026
12027
12028 return true;
12029}
12030
12031/// \brief Create a field within the lambda class for the variable
12032/// being captured. Handle Array captures.
12033static ExprResult addAsFieldToClosureType(Sema &S,
12034 LambdaScopeInfo *LSI,
12035 VarDecl *Var, QualType FieldType,
12036 QualType DeclRefType,
12037 SourceLocation Loc,
12038 bool RefersToCapturedVariable) {
12039 CXXRecordDecl *Lambda = LSI->Lambda;
12040
12041 // Build the non-static data member.
12042 FieldDecl *Field
12043 = FieldDecl::Create(S.Context, Lambda, Loc, Loc, nullptr, FieldType,
12044 S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
12045 nullptr, false, ICIS_NoInit);
12046 Field->setImplicit(true);
12047 Field->setAccess(AS_private);
12048 Lambda->addDecl(Field);
12049
12050 // C++11 [expr.prim.lambda]p21:
12051 // When the lambda-expression is evaluated, the entities that
12052 // are captured by copy are used to direct-initialize each
12053 // corresponding non-static data member of the resulting closure
12054 // object. (For array members, the array elements are
12055 // direct-initialized in increasing subscript order.) These
12056 // initializations are performed in the (unspecified) order in
12057 // which the non-static data members are declared.
12058
12059 // Introduce a new evaluation context for the initialization, so
12060 // that temporaries introduced as part of the capture are retained
12061 // to be re-"exported" from the lambda expression itself.
12062 EnterExpressionEvaluationContext scope(S, Sema::PotentiallyEvaluated);
12063
12064 // C++ [expr.prim.labda]p12:
12065 // An entity captured by a lambda-expression is odr-used (3.2) in
12066 // the scope containing the lambda-expression.
12067 Expr *Ref = new (S.Context) DeclRefExpr(Var, RefersToCapturedVariable,
12068 DeclRefType, VK_LValue, Loc);
12069 Var->setReferenced(true);
12070 Var->markUsed(S.Context);
12071
12072 // When the field has array type, create index variables for each
12073 // dimension of the array. We use these index variables to subscript
12074 // the source array, and other clients (e.g., CodeGen) will perform
12075 // the necessary iteration with these index variables.
12076 SmallVector<VarDecl *, 4> IndexVariables;
12077 QualType BaseType = FieldType;
12078 QualType SizeType = S.Context.getSizeType();
12079 LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
12080 while (const ConstantArrayType *Array
12081 = S.Context.getAsConstantArrayType(BaseType)) {
12082 // Create the iteration variable for this array index.
12083 IdentifierInfo *IterationVarName = nullptr;
12084 {
12085 SmallString<8> Str;
12086 llvm::raw_svector_ostream OS(Str);
12087 OS << "__i" << IndexVariables.size();
12088 IterationVarName = &S.Context.Idents.get(OS.str());
12089 }
12090 VarDecl *IterationVar
12091 = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
12092 IterationVarName, SizeType,
12093 S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
12094 SC_None);
12095 IndexVariables.push_back(IterationVar);
12096 LSI->ArrayIndexVars.push_back(IterationVar);
12097
12098 // Create a reference to the iteration variable.
12099 ExprResult IterationVarRef
12100 = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
12101 assert(!IterationVarRef.isInvalid() &&
12102 "Reference to invented variable cannot fail!");
12103 IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.get());
12104 assert(!IterationVarRef.isInvalid() &&
12105 "Conversion of invented variable cannot fail!");
12106
12107 // Subscript the array with this iteration variable.
12108 ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
12109 Ref, Loc, IterationVarRef.get(), Loc);
12110 if (Subscript.isInvalid()) {
12111 S.CleanupVarDeclMarking();
12112 S.DiscardCleanupsInEvaluationContext();
12113 return ExprError();
12114 }
12115
12116 Ref = Subscript.get();
12117 BaseType = Array->getElementType();
12118 }
12119
12120 // Construct the entity that we will be initializing. For an array, this
12121 // will be first element in the array, which may require several levels
12122 // of array-subscript entities.
12123 SmallVector<InitializedEntity, 4> Entities;
12124 Entities.reserve(1 + IndexVariables.size());
12125 Entities.push_back(
12126 InitializedEntity::InitializeLambdaCapture(Var->getIdentifier(),
12127 Field->getType(), Loc));
12128 for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
12129 Entities.push_back(InitializedEntity::InitializeElement(S.Context,
12130 0,
12131 Entities.back()));
12132
12133 InitializationKind InitKind
12134 = InitializationKind::CreateDirect(Loc, Loc, Loc);
12135 InitializationSequence Init(S, Entities.back(), InitKind, Ref);
12136 ExprResult Result(true);
12137 if (!Init.Diagnose(S, Entities.back(), InitKind, Ref))
12138 Result = Init.Perform(S, Entities.back(), InitKind, Ref);
12139
12140 // If this initialization requires any cleanups (e.g., due to a
12141 // default argument to a copy constructor), note that for the
12142 // lambda.
12143 if (S.ExprNeedsCleanups)
12144 LSI->ExprNeedsCleanups = true;
12145
12146 // Exit the expression evaluation context used for the capture.
12147 S.CleanupVarDeclMarking();
12148 S.DiscardCleanupsInEvaluationContext();
12149 return Result;
12150}
12151
12152
12153
12154/// \brief Capture the given variable in the lambda.
12155static bool captureInLambda(LambdaScopeInfo *LSI,
12156 VarDecl *Var,
12157 SourceLocation Loc,
12158 const bool BuildAndDiagnose,
12159 QualType &CaptureType,
12160 QualType &DeclRefType,
12161 const bool RefersToCapturedVariable,
12162 const Sema::TryCaptureKind Kind,
12163 SourceLocation EllipsisLoc,
12164 const bool IsTopScope,
12165 Sema &S) {
12166
12167 // Determine whether we are capturing by reference or by value.
12168 bool ByRef = false;
12169 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
12170 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
12171 } else {
12172 ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
12173 }
12174
12175 // Compute the type of the field that will capture this variable.
12176 if (ByRef) {
12177 // C++11 [expr.prim.lambda]p15:
12178 // An entity is captured by reference if it is implicitly or
12179 // explicitly captured but not captured by copy. It is
12180 // unspecified whether additional unnamed non-static data
12181 // members are declared in the closure type for entities
12182 // captured by reference.
12183 //
12184 // FIXME: It is not clear whether we want to build an lvalue reference
12185 // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
12186 // to do the former, while EDG does the latter. Core issue 1249 will
12187 // clarify, but for now we follow GCC because it's a more permissive and
12188 // easily defensible position.
12189 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
12190 } else {
12191 // C++11 [expr.prim.lambda]p14:
12192 // For each entity captured by copy, an unnamed non-static
12193 // data member is declared in the closure type. The
12194 // declaration order of these members is unspecified. The type
12195 // of such a data member is the type of the corresponding
12196 // captured entity if the entity is not a reference to an
12197 // object, or the referenced type otherwise. [Note: If the
12198 // captured entity is a reference to a function, the
12199 // corresponding data member is also a reference to a
12200 // function. - end note ]
12201 if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
12202 if (!RefType->getPointeeType()->isFunctionType())
12203 CaptureType = RefType->getPointeeType();
12204 }
12205
12206 // Forbid the lambda copy-capture of autoreleasing variables.
12207 if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
12208 if (BuildAndDiagnose) {
12209 S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
12210 S.Diag(Var->getLocation(), diag::note_previous_decl)
12211 << Var->getDeclName();
12212 }
12213 return false;
12214 }
12215
12216 // Make sure that by-copy captures are of a complete and non-abstract type.
12217 if (BuildAndDiagnose) {
12218 if (!CaptureType->isDependentType() &&
12219 S.RequireCompleteType(Loc, CaptureType,
12220 diag::err_capture_of_incomplete_type,
12221 Var->getDeclName()))
12222 return false;
12223
12224 if (S.RequireNonAbstractType(Loc, CaptureType,
12225 diag::err_capture_of_abstract_type))
12226 return false;
12227 }
12228 }
12229
12230 // Capture this variable in the lambda.
12231 Expr *CopyExpr = nullptr;
12232 if (BuildAndDiagnose) {
12233 ExprResult Result = addAsFieldToClosureType(S, LSI, Var,
12234 CaptureType, DeclRefType, Loc,
12235 RefersToCapturedVariable);
12236 if (!Result.isInvalid())
12237 CopyExpr = Result.get();
12238 }
12239
12240 // Compute the type of a reference to this captured variable.
12241 if (ByRef)
12242 DeclRefType = CaptureType.getNonReferenceType();
12243 else {
12244 // C++ [expr.prim.lambda]p5:
12245 // The closure type for a lambda-expression has a public inline
12246 // function call operator [...]. This function call operator is
12247 // declared const (9.3.1) if and only if the lambda-expression���s
12248 // parameter-declaration-clause is not followed by mutable.
12249 DeclRefType = CaptureType.getNonReferenceType();
12250 if (!LSI->Mutable && !CaptureType->isReferenceType())
12251 DeclRefType.addConst();
12252 }
12253
12254 // Add the capture.
12255 if (BuildAndDiagnose)
12256 LSI->addCapture(Var, /*IsBlock=*/false, ByRef, RefersToCapturedVariable,
12257 Loc, EllipsisLoc, CaptureType, CopyExpr);
12258
12259 return true;
12260}
12261
12262bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation ExprLoc,
12263 TryCaptureKind Kind, SourceLocation EllipsisLoc,
12264 bool BuildAndDiagnose,
12265 QualType &CaptureType,
12266 QualType &DeclRefType,
12267 const unsigned *const FunctionScopeIndexToStopAt) {
12268 bool Nested = Var->isInitCapture();
12269
12270 DeclContext *DC = CurContext;
12271 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
12272 ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
12273 // We need to sync up the Declaration Context with the
12274 // FunctionScopeIndexToStopAt
12275 if (FunctionScopeIndexToStopAt) {
12276 unsigned FSIndex = FunctionScopes.size() - 1;
12277 while (FSIndex != MaxFunctionScopesIndex) {
12278 DC = getLambdaAwareParentOfDeclContext(DC);
12279 --FSIndex;
12280 }
12281 }
12282
12283
12284 // If the variable is declared in the current context (and is not an
12285 // init-capture), there is no need to capture it.
12286 if (!Nested && Var->getDeclContext() == DC) return true;
12287
12288 // Capture global variables if it is required to use private copy of this
12289 // variable.
12290 bool IsGlobal = !Var->hasLocalStorage();
12291 if (IsGlobal && !(LangOpts.OpenMP && IsOpenMPCapturedVar(Var)))
12292 return true;
12293
12294 // Walk up the stack to determine whether we can capture the variable,
12295 // performing the "simple" checks that don't depend on type. We stop when
12296 // we've either hit the declared scope of the variable or find an existing
12297 // capture of that variable. We start from the innermost capturing-entity
12298 // (the DC) and ensure that all intervening capturing-entities
12299 // (blocks/lambdas etc.) between the innermost capturer and the variable`s
12300 // declcontext can either capture the variable or have already captured
12301 // the variable.
12302 CaptureType = Var->getType();
12303 DeclRefType = CaptureType.getNonReferenceType();
12304 bool Explicit = (Kind != TryCapture_Implicit);
12305 unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
12306 do {
12307 // Only block literals, captured statements, and lambda expressions can
12308 // capture; other scopes don't work.
12309 DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
12310 ExprLoc,
12311 BuildAndDiagnose,
12312 *this);
12313 // We need to check for the parent *first* because, if we *have*
12314 // private-captured a global variable, we need to recursively capture it in
12315 // intermediate blocks, lambdas, etc.
12316 if (!ParentDC) {
12317 if (IsGlobal) {
12318 FunctionScopesIndex = MaxFunctionScopesIndex - 1;
12319 break;
12320 }
12321 return true;
12322 }
12323
12324 FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex];
12325 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
12326
12327
12328 // Check whether we've already captured it.
12329 if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
12330 DeclRefType))
12331 break;
12332 // If we are instantiating a generic lambda call operator body,
12333 // we do not want to capture new variables. What was captured
12334 // during either a lambdas transformation or initial parsing
12335 // should be used.
12336 if (isGenericLambdaCallOperatorSpecialization(DC)) {
12337 if (BuildAndDiagnose) {
12338 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
12339 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
12340 Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
12341 Diag(Var->getLocation(), diag::note_previous_decl)
12342 << Var->getDeclName();
12343 Diag(LSI->Lambda->getLocStart(), diag::note_lambda_decl);
12344 } else
12345 diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
12346 }
12347 return true;
12348 }
12349 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
12350 // certain types of variables (unnamed, variably modified types etc.)
12351 // so check for eligibility.
12352 if (!isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this))
12353 return true;
12354
12355 // Try to capture variable-length arrays types.
12356 if (Var->getType()->isVariablyModifiedType()) {
12357 // We're going to walk down into the type and look for VLA
12358 // expressions.
12359 QualType QTy = Var->getType();
12360 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
12361 QTy = PVD->getOriginalType();
12362 do {
12363 const Type *Ty = QTy.getTypePtr();
12364 switch (Ty->getTypeClass()) {
12365#define TYPE(Class, Base)
12366#define ABSTRACT_TYPE(Class, Base)
12367#define NON_CANONICAL_TYPE(Class, Base)
12368#define DEPENDENT_TYPE(Class, Base) case Type::Class:
12369#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
12370#include "clang/AST/TypeNodes.def"
12371 QTy = QualType();
12372 break;
12373 // These types are never variably-modified.
12374 case Type::Builtin:
12375 case Type::Complex:
12376 case Type::Vector:
12377 case Type::ExtVector:
12378 case Type::Record:
12379 case Type::Enum:
12380 case Type::Elaborated:
12381 case Type::TemplateSpecialization:
12382 case Type::ObjCObject:
12383 case Type::ObjCInterface:
12384 case Type::ObjCObjectPointer:
12385 llvm_unreachable("type class is never variably-modified!");
12386 case Type::Adjusted:
12387 QTy = cast<AdjustedType>(Ty)->getOriginalType();
12388 break;
12389 case Type::Decayed:
12390 QTy = cast<DecayedType>(Ty)->getPointeeType();
12391 break;
12392 case Type::Pointer:
12393 QTy = cast<PointerType>(Ty)->getPointeeType();
12394 break;
12395 case Type::BlockPointer:
12396 QTy = cast<BlockPointerType>(Ty)->getPointeeType();
12397 break;
12398 case Type::LValueReference:
12399 case Type::RValueReference:
12400 QTy = cast<ReferenceType>(Ty)->getPointeeType();
12401 break;
12402 case Type::MemberPointer:
12403 QTy = cast<MemberPointerType>(Ty)->getPointeeType();
12404 break;
12405 case Type::ConstantArray:
12406 case Type::IncompleteArray:
12407 // Losing element qualification here is fine.
12408 QTy = cast<ArrayType>(Ty)->getElementType();
12409 break;
12410 case Type::VariableArray: {
12411 // Losing element qualification here is fine.
12412 const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
12413
12414 // Unknown size indication requires no size computation.
12415 // Otherwise, evaluate and record it.
12416 if (auto Size = VAT->getSizeExpr()) {
12417 if (!CSI->isVLATypeCaptured(VAT)) {
12418 RecordDecl *CapRecord = nullptr;
12419 if (auto LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
12420 CapRecord = LSI->Lambda;
12421 } else if (auto CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
12422 CapRecord = CRSI->TheRecordDecl;
12423 }
12424 if (CapRecord) {
12425 auto ExprLoc = Size->getExprLoc();
12426 auto SizeType = Context.getSizeType();
12427 // Build the non-static data member.
12428 auto Field = FieldDecl::Create(
12429 Context, CapRecord, ExprLoc, ExprLoc,
12430 /*Id*/ nullptr, SizeType, /*TInfo*/ nullptr,
12431 /*BW*/ nullptr, /*Mutable*/ false,
12432 /*InitStyle*/ ICIS_NoInit);
12433 Field->setImplicit(true);
12434 Field->setAccess(AS_private);
12435 Field->setCapturedVLAType(VAT);
12436 CapRecord->addDecl(Field);
12437
12438 CSI->addVLATypeCapture(ExprLoc, SizeType);
12439 }
12440 }
12441 }
12442 QTy = VAT->getElementType();
12443 break;
12444 }
12445 case Type::FunctionProto:
12446 case Type::FunctionNoProto:
12447 QTy = cast<FunctionType>(Ty)->getReturnType();
12448 break;
12449 case Type::Paren:
12450 case Type::TypeOf:
12451 case Type::UnaryTransform:
12452 case Type::Attributed:
12453 case Type::SubstTemplateTypeParm:
12454 case Type::PackExpansion:
12455 // Keep walking after single level desugaring.
12456 QTy = QTy.getSingleStepDesugaredType(getASTContext());
12457 break;
12458 case Type::Typedef:
12459 QTy = cast<TypedefType>(Ty)->desugar();
12460 break;
12461 case Type::Decltype:
12462 QTy = cast<DecltypeType>(Ty)->desugar();
12463 break;
12464 case Type::Auto:
12465 QTy = cast<AutoType>(Ty)->getDeducedType();
12466 break;
12467 case Type::TypeOfExpr:
12468 QTy = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
12469 break;
12470 case Type::Atomic:
12471 QTy = cast<AtomicType>(Ty)->getValueType();
12472 break;
12473 }
12474 } while (!QTy.isNull() && QTy->isVariablyModifiedType());
12475 }
12476
12477 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
12478 // No capture-default, and this is not an explicit capture
12479 // so cannot capture this variable.
12480 if (BuildAndDiagnose) {
12481 Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
12482 Diag(Var->getLocation(), diag::note_previous_decl)
12483 << Var->getDeclName();
12484 Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
12485 diag::note_lambda_decl);
12486 // FIXME: If we error out because an outer lambda can not implicitly
12487 // capture a variable that an inner lambda explicitly captures, we
12488 // should have the inner lambda do the explicit capture - because
12489 // it makes for cleaner diagnostics later. This would purely be done
12490 // so that the diagnostic does not misleadingly claim that a variable
12491 // can not be captured by a lambda implicitly even though it is captured
12492 // explicitly. Suggestion:
12493 // - create const bool VariableCaptureWasInitiallyExplicit = Explicit
12494 // at the function head
12495 // - cache the StartingDeclContext - this must be a lambda
12496 // - captureInLambda in the innermost lambda the variable.
12497 }
12498 return true;
12499 }
12500
12501 FunctionScopesIndex--;
12502 DC = ParentDC;
12503 Explicit = false;
12504 } while (!Var->getDeclContext()->Equals(DC));
12505
12506 // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
12507 // computing the type of the capture at each step, checking type-specific
12508 // requirements, and adding captures if requested.
12509 // If the variable had already been captured previously, we start capturing
12510 // at the lambda nested within that one.
12511 for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
12512 ++I) {
12513 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
12514
12515 if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
12516 if (!captureInBlock(BSI, Var, ExprLoc,
12517 BuildAndDiagnose, CaptureType,
12518 DeclRefType, Nested, *this))
12519 return true;
12520 Nested = true;
12521 } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
12522 if (!captureInCapturedRegion(RSI, Var, ExprLoc,
12523 BuildAndDiagnose, CaptureType,
12524 DeclRefType, Nested, *this))
12525 return true;
12526 Nested = true;
12527 } else {
12528 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
12529 if (!captureInLambda(LSI, Var, ExprLoc,
12530 BuildAndDiagnose, CaptureType,
12531 DeclRefType, Nested, Kind, EllipsisLoc,
12532 /*IsTopScope*/I == N - 1, *this))
12533 return true;
12534 Nested = true;
12535 }
12536 }
12537 return false;
12538}
12539
12540bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
12541 TryCaptureKind Kind, SourceLocation EllipsisLoc) {
12542 QualType CaptureType;
12543 QualType DeclRefType;
12544 return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
12545 /*BuildAndDiagnose=*/true, CaptureType,
12546 DeclRefType, nullptr);
12547}
12548
12549bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
12550 QualType CaptureType;
12551 QualType DeclRefType;
12552 return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
12553 /*BuildAndDiagnose=*/false, CaptureType,
12554 DeclRefType, nullptr);
12555}
12556
12557QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
12558 QualType CaptureType;
12559 QualType DeclRefType;
12560
12561 // Determine whether we can capture this variable.
12562 if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
12563 /*BuildAndDiagnose=*/false, CaptureType,
12564 DeclRefType, nullptr))
12565 return QualType();
12566
12567 return DeclRefType;
12568}
12569
12570
12571
12572// If either the type of the variable or the initializer is dependent,
12573// return false. Otherwise, determine whether the variable is a constant
12574// expression. Use this if you need to know if a variable that might or
12575// might not be dependent is truly a constant expression.
12576static inline bool IsVariableNonDependentAndAConstantExpression(VarDecl *Var,
12577 ASTContext &Context) {
12578
12579 if (Var->getType()->isDependentType())
12580 return false;
12581 const VarDecl *DefVD = nullptr;
12582 Var->getAnyInitializer(DefVD);
12583 if (!DefVD)
12584 return false;
12585 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
12586 Expr *Init = cast<Expr>(Eval->Value);
12587 if (Init->isValueDependent())
12588 return false;
12589 return IsVariableAConstantExpression(Var, Context);
12590}
12591
12592
12593void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
12594 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
12595 // an object that satisfies the requirements for appearing in a
12596 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
12597 // is immediately applied." This function handles the lvalue-to-rvalue
12598 // conversion part.
12599 MaybeODRUseExprs.erase(E->IgnoreParens());
12600
12601 // If we are in a lambda, check if this DeclRefExpr or MemberExpr refers
12602 // to a variable that is a constant expression, and if so, identify it as
12603 // a reference to a variable that does not involve an odr-use of that
12604 // variable.
12605 if (LambdaScopeInfo *LSI = getCurLambda()) {
12606 Expr *SansParensExpr = E->IgnoreParens();
12607 VarDecl *Var = nullptr;
12608 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SansParensExpr))
12609 Var = dyn_cast<VarDecl>(DRE->getFoundDecl());
12610 else if (MemberExpr *ME = dyn_cast<MemberExpr>(SansParensExpr))
12611 Var = dyn_cast<VarDecl>(ME->getMemberDecl());
12612
12613 if (Var && IsVariableNonDependentAndAConstantExpression(Var, Context))
12614 LSI->markVariableExprAsNonODRUsed(SansParensExpr);
12615 }
12616}
12617
12618ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
12619 Res = CorrectDelayedTyposInExpr(Res);
12620
12621 if (!Res.isUsable())
12622 return Res;
12623
12624 // If a constant-expression is a reference to a variable where we delay
12625 // deciding whether it is an odr-use, just assume we will apply the
12626 // lvalue-to-rvalue conversion. In the one case where this doesn't happen
12627 // (a non-type template argument), we have special handling anyway.
12628 UpdateMarkingForLValueToRValue(Res.get());
12629 return Res;
12630}
12631
12632void Sema::CleanupVarDeclMarking() {
12633 for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
12634 e = MaybeODRUseExprs.end();
12635 i != e; ++i) {
12636 VarDecl *Var;
12637 SourceLocation Loc;
12638 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
12639 Var = cast<VarDecl>(DRE->getDecl());
12640 Loc = DRE->getLocation();
12641 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
12642 Var = cast<VarDecl>(ME->getMemberDecl());
12643 Loc = ME->getMemberLoc();
12644 } else {
12645 llvm_unreachable("Unexpected expression");
12646 }
12647
12648 MarkVarDeclODRUsed(Var, Loc, *this,
12649 /*MaxFunctionScopeIndex Pointer*/ nullptr);
12650 }
12651
12652 MaybeODRUseExprs.clear();
12653}
12654
12655
12656static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
12657 VarDecl *Var, Expr *E) {
12658 assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E)) &&
12659 "Invalid Expr argument to DoMarkVarDeclReferenced");
12660 Var->setReferenced();
12661
12662 TemplateSpecializationKind TSK = Var->getTemplateSpecializationKind();
12663 bool MarkODRUsed = true;
12664
12665 // If the context is not potentially evaluated, this is not an odr-use and
12666 // does not trigger instantiation.
12667 if (!IsPotentiallyEvaluatedContext(SemaRef)) {
12668 if (SemaRef.isUnevaluatedContext())
12669 return;
12670
12671 // If we don't yet know whether this context is going to end up being an
12672 // evaluated context, and we're referencing a variable from an enclosing
12673 // scope, add a potential capture.
12674 //
12675 // FIXME: Is this necessary? These contexts are only used for default
12676 // arguments, where local variables can't be used.
12677 const bool RefersToEnclosingScope =
12678 (SemaRef.CurContext != Var->getDeclContext() &&
12679 Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
12680 if (RefersToEnclosingScope) {
12681 if (LambdaScopeInfo *const LSI = SemaRef.getCurLambda()) {
12682 // If a variable could potentially be odr-used, defer marking it so
12683 // until we finish analyzing the full expression for any
12684 // lvalue-to-rvalue
12685 // or discarded value conversions that would obviate odr-use.
12686 // Add it to the list of potential captures that will be analyzed
12687 // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
12688 // unless the variable is a reference that was initialized by a constant
12689 // expression (this will never need to be captured or odr-used).
12690 assert(E && "Capture variable should be used in an expression.");
12691 if (!Var->getType()->isReferenceType() ||
12692 !IsVariableNonDependentAndAConstantExpression(Var, SemaRef.Context))
12693 LSI->addPotentialCapture(E->IgnoreParens());
12694 }
12695 }
12696
12697 if (!isTemplateInstantiation(TSK))
12698 return;
12699
12700 // Instantiate, but do not mark as odr-used, variable templates.
12701 MarkODRUsed = false;
12702 }
12703
12704 VarTemplateSpecializationDecl *VarSpec =
12705 dyn_cast<VarTemplateSpecializationDecl>(Var);
12706 assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
12707 "Can't instantiate a partial template specialization.");
12708
12709 // Perform implicit instantiation of static data members, static data member
12710 // templates of class templates, and variable template specializations. Delay
12711 // instantiations of variable templates, except for those that could be used
12712 // in a constant expression.
12713 if (isTemplateInstantiation(TSK)) {
12714 bool TryInstantiating = TSK == TSK_ImplicitInstantiation;
12715
12716 if (TryInstantiating && !isa<VarTemplateSpecializationDecl>(Var)) {
12717 if (Var->getPointOfInstantiation().isInvalid()) {
12718 // This is a modification of an existing AST node. Notify listeners.
12719 if (ASTMutationListener *L = SemaRef.getASTMutationListener())
12720 L->StaticDataMemberInstantiated(Var);
12721 } else if (!Var->isUsableInConstantExpressions(SemaRef.Context))
12722 // Don't bother trying to instantiate it again, unless we might need
12723 // its initializer before we get to the end of the TU.
12724 TryInstantiating = false;
12725 }
12726
12727 if (Var->getPointOfInstantiation().isInvalid())
12728 Var->setTemplateSpecializationKind(TSK, Loc);
12729
12730 if (TryInstantiating) {
12731 SourceLocation PointOfInstantiation = Var->getPointOfInstantiation();
12732 bool InstantiationDependent = false;
12733 bool IsNonDependent =
12734 VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments(
12735 VarSpec->getTemplateArgsInfo(), InstantiationDependent)
12736 : true;
12737
12738 // Do not instantiate specializations that are still type-dependent.
12739 if (IsNonDependent) {
12740 if (Var->isUsableInConstantExpressions(SemaRef.Context)) {
12741 // Do not defer instantiations of variables which could be used in a
12742 // constant expression.
12743 SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
12744 } else {
12745 SemaRef.PendingInstantiations
12746 .push_back(std::make_pair(Var, PointOfInstantiation));
12747 }
12748 }
12749 }
12750 }
12751
12752 if(!MarkODRUsed) return;
12753
12754 // Per C++11 [basic.def.odr], a variable is odr-used "unless it satisfies
12755 // the requirements for appearing in a constant expression (5.19) and, if
12756 // it is an object, the lvalue-to-rvalue conversion (4.1)
12757 // is immediately applied." We check the first part here, and
12758 // Sema::UpdateMarkingForLValueToRValue deals with the second part.
12759 // Note that we use the C++11 definition everywhere because nothing in
12760 // C++03 depends on whether we get the C++03 version correct. The second
12761 // part does not apply to references, since they are not objects.
12762 if (E && IsVariableAConstantExpression(Var, SemaRef.Context)) {
12763 // A reference initialized by a constant expression can never be
12764 // odr-used, so simply ignore it.
12765 if (!Var->getType()->isReferenceType())
12766 SemaRef.MaybeODRUseExprs.insert(E);
12767 } else
12768 MarkVarDeclODRUsed(Var, Loc, SemaRef,
12769 /*MaxFunctionScopeIndex ptr*/ nullptr);
12770}
12771
12772/// \brief Mark a variable referenced, and check whether it is odr-used
12773/// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
12774/// used directly for normal expressions referring to VarDecl.
12775void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
12776 DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
12777}
12778
12779static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
12780 Decl *D, Expr *E, bool OdrUse) {
12781 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
12782 DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
12783 return;
12784 }
12785
12786 SemaRef.MarkAnyDeclReferenced(Loc, D, OdrUse);
12787
12788 // If this is a call to a method via a cast, also mark the method in the
12789 // derived class used in case codegen can devirtualize the call.
12790 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
12791 if (!ME)
12792 return;
12793 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
12794 if (!MD)
12795 return;
12796 // Only attempt to devirtualize if this is truly a virtual call.
12797 bool IsVirtualCall = MD->isVirtual() && !ME->hasQualifier();
12798 if (!IsVirtualCall)
12799 return;
12800 const Expr *Base = ME->getBase();
12801 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
12802 if (!MostDerivedClassDecl)
12803 return;
12804 CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
12805 if (!DM || DM->isPure())
12806 return;
12807 SemaRef.MarkAnyDeclReferenced(Loc, DM, OdrUse);
12808}
12809
12810/// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
12811void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
12812 // TODO: update this with DR# once a defect report is filed.
12813 // C++11 defect. The address of a pure member should not be an ODR use, even
12814 // if it's a qualified reference.
12815 bool OdrUse = true;
12816 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
12817 if (Method->isVirtual())
12818 OdrUse = false;
12819 MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
12820}
12821
12822/// \brief Perform reference-marking and odr-use handling for a MemberExpr.
12823void Sema::MarkMemberReferenced(MemberExpr *E) {
12824 // C++11 [basic.def.odr]p2:
12825 // A non-overloaded function whose name appears as a potentially-evaluated
12826 // expression or a member of a set of candidate functions, if selected by
12827 // overload resolution when referred to from a potentially-evaluated
12828 // expression, is odr-used, unless it is a pure virtual function and its
12829 // name is not explicitly qualified.
12830 bool OdrUse = true;
12831 if (!E->hasQualifier()) {
12832 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
12833 if (Method->isPure())
12834 OdrUse = false;
12835 }
12836 SourceLocation Loc = E->getMemberLoc().isValid() ?
12837 E->getMemberLoc() : E->getLocStart();
12838 MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, OdrUse);
12839}
12840
12841/// \brief Perform marking for a reference to an arbitrary declaration. It
12842/// marks the declaration referenced, and performs odr-use checking for
12843/// functions and variables. This method should not be used when building a
12844/// normal expression which refers to a variable.
12845void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool OdrUse) {
12846 if (OdrUse) {
12847 if (auto *VD = dyn_cast<VarDecl>(D)) {
12848 MarkVariableReferenced(Loc, VD);
12849 return;
12850 }
12851 }
12852 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
12853 MarkFunctionReferenced(Loc, FD, OdrUse);
12854 return;
12855 }
12856 D->setReferenced();
12857}
12858
12859namespace {
12860 // Mark all of the declarations referenced
12861 // FIXME: Not fully implemented yet! We need to have a better understanding
12862 // of when we're entering
12863 class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
12864 Sema &S;
12865 SourceLocation Loc;
12866
12867 public:
12868 typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
12869
12870 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
12871
12872 bool TraverseTemplateArgument(const TemplateArgument &Arg);
12873 bool TraverseRecordType(RecordType *T);
12874 };
12875}
12876
12877bool MarkReferencedDecls::TraverseTemplateArgument(
12878 const TemplateArgument &Arg) {
12879 if (Arg.getKind() == TemplateArgument::Declaration) {
12880 if (Decl *D = Arg.getAsDecl())
12881 S.MarkAnyDeclReferenced(Loc, D, true);
12882 }
12883
12884 return Inherited::TraverseTemplateArgument(Arg);
12885}
12886
12887bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
12888 if (ClassTemplateSpecializationDecl *Spec
12889 = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
12890 const TemplateArgumentList &Args = Spec->getTemplateArgs();
12891 return TraverseTemplateArguments(Args.data(), Args.size());
12892 }
12893
12894 return true;
12895}
12896
12897void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
12898 MarkReferencedDecls Marker(*this, Loc);
12899 Marker.TraverseType(Context.getCanonicalType(T));
12900}
12901
12902namespace {
12903 /// \brief Helper class that marks all of the declarations referenced by
12904 /// potentially-evaluated subexpressions as "referenced".
12905 class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
12906 Sema &S;
12907 bool SkipLocalVariables;
12908
12909 public:
12910 typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
12911
12912 EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
12913 : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
12914
12915 void VisitDeclRefExpr(DeclRefExpr *E) {
12916 // If we were asked not to visit local variables, don't.
12917 if (SkipLocalVariables) {
12918 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
12919 if (VD->hasLocalStorage())
12920 return;
12921 }
12922
12923 S.MarkDeclRefReferenced(E);
12924 }
12925
12926 void VisitMemberExpr(MemberExpr *E) {
12927 S.MarkMemberReferenced(E);
12928 Inherited::VisitMemberExpr(E);
12929 }
12930
12931 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
12932 S.MarkFunctionReferenced(E->getLocStart(),
12933 const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
12934 Visit(E->getSubExpr());
12935 }
12936
12937 void VisitCXXNewExpr(CXXNewExpr *E) {
12938 if (E->getOperatorNew())
12939 S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
12940 if (E->getOperatorDelete())
12941 S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
12942 Inherited::VisitCXXNewExpr(E);
12943 }
12944
12945 void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
12946 if (E->getOperatorDelete())
12947 S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
12948 QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
12949 if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
12950 CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
12951 S.MarkFunctionReferenced(E->getLocStart(),
12952 S.LookupDestructor(Record));
12953 }
12954
12955 Inherited::VisitCXXDeleteExpr(E);
12956 }
12957
12958 void VisitCXXConstructExpr(CXXConstructExpr *E) {
12959 S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
12960 Inherited::VisitCXXConstructExpr(E);
12961 }
12962
12963 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
12964 Visit(E->getExpr());
12965 }
12966
12967 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
12968 Inherited::VisitImplicitCastExpr(E);
12969
12970 if (E->getCastKind() == CK_LValueToRValue)
12971 S.UpdateMarkingForLValueToRValue(E->getSubExpr());
12972 }
12973 };
12974}
12975
12976/// \brief Mark any declarations that appear within this expression or any
12977/// potentially-evaluated subexpressions as "referenced".
12978///
12979/// \param SkipLocalVariables If true, don't mark local variables as
12980/// 'referenced'.
12981void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
12982 bool SkipLocalVariables) {
12983 EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
12984}
12985
12986/// \brief Emit a diagnostic that describes an effect on the run-time behavior
12987/// of the program being compiled.
12988///
12989/// This routine emits the given diagnostic when the code currently being
12990/// type-checked is "potentially evaluated", meaning that there is a
12991/// possibility that the code will actually be executable. Code in sizeof()
12992/// expressions, code used only during overload resolution, etc., are not
12993/// potentially evaluated. This routine will suppress such diagnostics or,
12994/// in the absolutely nutty case of potentially potentially evaluated
12995/// expressions (C++ typeid), queue the diagnostic to potentially emit it
12996/// later.
12997///
12998/// This routine should be used for all diagnostics that describe the run-time
12999/// behavior of a program, such as passing a non-POD value through an ellipsis.
13000/// Failure to do so will likely result in spurious diagnostics or failures
13001/// during overload resolution or within sizeof/alignof/typeof/typeid.
13002bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
13003 const PartialDiagnostic &PD) {
13004 switch (ExprEvalContexts.back().Context) {
13005 case Unevaluated:
13006 case UnevaluatedAbstract:
13007 // The argument will never be evaluated, so don't complain.
13008 break;
13009
13010 case ConstantEvaluated:
13011 // Relevant diagnostics should be produced by constant evaluation.
13012 break;
13013
13014 case PotentiallyEvaluated:
13015 case PotentiallyEvaluatedIfUsed:
13016 if (Statement && getCurFunctionOrMethodDecl()) {
13017 FunctionScopes.back()->PossiblyUnreachableDiags.
13018 push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
13019 }
13020 else
13021 Diag(Loc, PD);
13022
13023 return true;
13024 }
13025
13026 return false;
13027}
13028
13029bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
13030 CallExpr *CE, FunctionDecl *FD) {
13031 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
13032 return false;
13033
13034 // If we're inside a decltype's expression, don't check for a valid return
13035 // type or construct temporaries until we know whether this is the last call.
13036 if (ExprEvalContexts.back().IsDecltype) {
13037 ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
13038 return false;
13039 }
13040
13041 class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
13042 FunctionDecl *FD;
13043 CallExpr *CE;
13044
13045 public:
13046 CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
13047 : FD(FD), CE(CE) { }
13048
13049 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
13050 if (!FD) {
13051 S.Diag(Loc, diag::err_call_incomplete_return)
13052 << T << CE->getSourceRange();
13053 return;
13054 }
13055
13056 S.Diag(Loc, diag::err_call_function_incomplete_return)
13057 << CE->getSourceRange() << FD->getDeclName() << T;
13058 S.Diag(FD->getLocation(), diag::note_entity_declared_at)
13059 << FD->getDeclName();
13060 }
13061 } Diagnoser(FD, CE);
13062
13063 if (RequireCompleteType(Loc, ReturnType, Diagnoser))
13064 return true;
13065
13066 return false;
13067}
13068
13069// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
13070// will prevent this condition from triggering, which is what we want.
13071void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
13072 SourceLocation Loc;
13073
13074 unsigned diagnostic = diag::warn_condition_is_assignment;
13075 bool IsOrAssign = false;
13076
13077 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
13078 if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
13079 return;
13080
13081 IsOrAssign = Op->getOpcode() == BO_OrAssign;
13082
13083 // Greylist some idioms by putting them into a warning subcategory.
13084 if (ObjCMessageExpr *ME
13085 = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
13086 Selector Sel = ME->getSelector();
13087
13088 // self = [<foo> init...]
13089 if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
13090 diagnostic = diag::warn_condition_is_idiomatic_assignment;
13091
13092 // <foo> = [<bar> nextObject]
13093 else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
13094 diagnostic = diag::warn_condition_is_idiomatic_assignment;
13095 }
13096
13097 Loc = Op->getOperatorLoc();
13098 } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
13099 if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
13100 return;
13101
13102 IsOrAssign = Op->getOperator() == OO_PipeEqual;
13103 Loc = Op->getOperatorLoc();
13104 } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
13105 return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
13106 else {
13107 // Not an assignment.
13108 return;
13109 }
13110
13111 Diag(Loc, diagnostic) << E->getSourceRange();
13112
13113 SourceLocation Open = E->getLocStart();
13114 SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
13115 Diag(Loc, diag::note_condition_assign_silence)
13116 << FixItHint::CreateInsertion(Open, "(")
13117 << FixItHint::CreateInsertion(Close, ")");
13118
13119 if (IsOrAssign)
13120 Diag(Loc, diag::note_condition_or_assign_to_comparison)
13121 << FixItHint::CreateReplacement(Loc, "!=");
13122 else
13123 Diag(Loc, diag::note_condition_assign_to_comparison)
13124 << FixItHint::CreateReplacement(Loc, "==");
13125}
13126
13127/// \brief Redundant parentheses over an equality comparison can indicate
13128/// that the user intended an assignment used as condition.
13129void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
13130 // Don't warn if the parens came from a macro.
13131 SourceLocation parenLoc = ParenE->getLocStart();
13132 if (parenLoc.isInvalid() || parenLoc.isMacroID())
13133 return;
13134 // Don't warn for dependent expressions.
13135 if (ParenE->isTypeDependent())
13136 return;
13137
13138 Expr *E = ParenE->IgnoreParens();
13139
13140 if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
13141 if (opE->getOpcode() == BO_EQ &&
13142 opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
13143 == Expr::MLV_Valid) {
13144 SourceLocation Loc = opE->getOperatorLoc();
13145
13146 Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
13147 SourceRange ParenERange = ParenE->getSourceRange();
13148 Diag(Loc, diag::note_equality_comparison_silence)
13149 << FixItHint::CreateRemoval(ParenERange.getBegin())
13150 << FixItHint::CreateRemoval(ParenERange.getEnd());
13151 Diag(Loc, diag::note_equality_comparison_to_assign)
13152 << FixItHint::CreateReplacement(Loc, "=");
13153 }
13154}
13155
13156ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
13157 DiagnoseAssignmentAsCondition(E);
13158 if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
13159 DiagnoseEqualityWithExtraParens(parenE);
13160
13161 ExprResult result = CheckPlaceholderExpr(E);
13162 if (result.isInvalid()) return ExprError();
13163 E = result.get();
13164
13165 if (!E->isTypeDependent()) {
13166 if (getLangOpts().CPlusPlus)
13167 return CheckCXXBooleanCondition(E); // C++ 6.4p4
13168
13169 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
13170 if (ERes.isInvalid())
13171 return ExprError();
13172 E = ERes.get();
13173
13174 QualType T = E->getType();
13175 if (!T->isScalarType()) { // C99 6.8.4.1p1
13176 Diag(Loc, diag::err_typecheck_statement_requires_scalar)
13177 << T << E->getSourceRange();
13178 return ExprError();
13179 }
13180 CheckBoolLikeConversion(E, Loc);
13181 }
13182
13183 return E;
13184}
13185
13186ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
13187 Expr *SubExpr) {
13188 if (!SubExpr)
13189 return ExprError();
13190
13191 return CheckBooleanCondition(SubExpr, Loc);
13192}
13193
13194namespace {
13195 /// A visitor for rebuilding a call to an __unknown_any expression
13196 /// to have an appropriate type.
13197 struct RebuildUnknownAnyFunction
13198 : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
13199
13200 Sema &S;
13201
13202 RebuildUnknownAnyFunction(Sema &S) : S(S) {}
13203
13204 ExprResult VisitStmt(Stmt *S) {
13205 llvm_unreachable("unexpected statement!");
13206 }
13207
13208 ExprResult VisitExpr(Expr *E) {
13209 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
13210 << E->getSourceRange();
13211 return ExprError();
13212 }
13213
13214 /// Rebuild an expression which simply semantically wraps another
13215 /// expression which it shares the type and value kind of.
13216 template <class T> ExprResult rebuildSugarExpr(T *E) {
13217 ExprResult SubResult = Visit(E->getSubExpr());
13218 if (SubResult.isInvalid()) return ExprError();
13219
13220 Expr *SubExpr = SubResult.get();
13221 E->setSubExpr(SubExpr);
13222 E->setType(SubExpr->getType());
13223 E->setValueKind(SubExpr->getValueKind());
13224 assert(E->getObjectKind() == OK_Ordinary);
13225 return E;
13226 }
13227
13228 ExprResult VisitParenExpr(ParenExpr *E) {
13229 return rebuildSugarExpr(E);
13230 }
13231
13232 ExprResult VisitUnaryExtension(UnaryOperator *E) {
13233 return rebuildSugarExpr(E);
13234 }
13235
13236 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
13237 ExprResult SubResult = Visit(E->getSubExpr());
13238 if (SubResult.isInvalid()) return ExprError();
13239
13240 Expr *SubExpr = SubResult.get();
13241 E->setSubExpr(SubExpr);
13242 E->setType(S.Context.getPointerType(SubExpr->getType()));
13243 assert(E->getValueKind() == VK_RValue);
13244 assert(E->getObjectKind() == OK_Ordinary);
13245 return E;
13246 }
13247
13248 ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
13249 if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
13250
13251 E->setType(VD->getType());
13252
13253 assert(E->getValueKind() == VK_RValue);
13254 if (S.getLangOpts().CPlusPlus &&
13255 !(isa<CXXMethodDecl>(VD) &&
13256 cast<CXXMethodDecl>(VD)->isInstance()))
13257 E->setValueKind(VK_LValue);
13258
13259 return E;
13260 }
13261
13262 ExprResult VisitMemberExpr(MemberExpr *E) {
13263 return resolveDecl(E, E->getMemberDecl());
13264 }
13265
13266 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
13267 return resolveDecl(E, E->getDecl());
13268 }
13269 };
13270}
13271
13272/// Given a function expression of unknown-any type, try to rebuild it
13273/// to have a function type.
13274static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
13275 ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
13276 if (Result.isInvalid()) return ExprError();
13277 return S.DefaultFunctionArrayConversion(Result.get());
13278}
13279
13280namespace {
13281 /// A visitor for rebuilding an expression of type __unknown_anytype
13282 /// into one which resolves the type directly on the referring
13283 /// expression. Strict preservation of the original source
13284 /// structure is not a goal.
13285 struct RebuildUnknownAnyExpr
13286 : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
13287
13288 Sema &S;
13289
13290 /// The current destination type.
13291 QualType DestType;
13292
13293 RebuildUnknownAnyExpr(Sema &S, QualType CastType)
13294 : S(S), DestType(CastType) {}
13295
13296 ExprResult VisitStmt(Stmt *S) {
13297 llvm_unreachable("unexpected statement!");
13298 }
13299
13300 ExprResult VisitExpr(Expr *E) {
13301 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
13302 << E->getSourceRange();
13303 return ExprError();
13304 }
13305
13306 ExprResult VisitCallExpr(CallExpr *E);
13307 ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
13308
13309 /// Rebuild an expression which simply semantically wraps another
13310 /// expression which it shares the type and value kind of.
13311 template <class T> ExprResult rebuildSugarExpr(T *E) {
13312 ExprResult SubResult = Visit(E->getSubExpr());
13313 if (SubResult.isInvalid()) return ExprError();
13314 Expr *SubExpr = SubResult.get();
13315 E->setSubExpr(SubExpr);
13316 E->setType(SubExpr->getType());
13317 E->setValueKind(SubExpr->getValueKind());
13318 assert(E->getObjectKind() == OK_Ordinary);
13319 return E;
13320 }
13321
13322 ExprResult VisitParenExpr(ParenExpr *E) {
13323 return rebuildSugarExpr(E);
13324 }
13325
13326 ExprResult VisitUnaryExtension(UnaryOperator *E) {
13327 return rebuildSugarExpr(E);
13328 }
13329
13330 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
13331 const PointerType *Ptr = DestType->getAs<PointerType>();
13332 if (!Ptr) {
13333 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
13334 << E->getSourceRange();
13335 return ExprError();
13336 }
13337 assert(E->getValueKind() == VK_RValue);
13338 assert(E->getObjectKind() == OK_Ordinary);
13339 E->setType(DestType);
13340
13341 // Build the sub-expression as if it were an object of the pointee type.
13342 DestType = Ptr->getPointeeType();
13343 ExprResult SubResult = Visit(E->getSubExpr());
13344 if (SubResult.isInvalid()) return ExprError();
13345 E->setSubExpr(SubResult.get());
13346 return E;
13347 }
13348
13349 ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
13350
13351 ExprResult resolveDecl(Expr *E, ValueDecl *VD);
13352
13353 ExprResult VisitMemberExpr(MemberExpr *E) {
13354 return resolveDecl(E, E->getMemberDecl());
13355 }
13356
13357 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
13358 return resolveDecl(E, E->getDecl());
13359 }
13360 };
13361}
13362
13363/// Rebuilds a call expression which yielded __unknown_anytype.
13364ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
13365 Expr *CalleeExpr = E->getCallee();
13366
13367 enum FnKind {
13368 FK_MemberFunction,
13369 FK_FunctionPointer,
13370 FK_BlockPointer
13371 };
13372
13373 FnKind Kind;
13374 QualType CalleeType = CalleeExpr->getType();
13375 if (CalleeType == S.Context.BoundMemberTy) {
13376 assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
13377 Kind = FK_MemberFunction;
13378 CalleeType = Expr::findBoundMemberType(CalleeExpr);
13379 } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
13380 CalleeType = Ptr->getPointeeType();
13381 Kind = FK_FunctionPointer;
13382 } else {
13383 CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
13384 Kind = FK_BlockPointer;
13385 }
13386 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
13387
13388 // Verify that this is a legal result type of a function.
13389 if (DestType->isArrayType() || DestType->isFunctionType()) {
13390 unsigned diagID = diag::err_func_returning_array_function;
13391 if (Kind == FK_BlockPointer)
13392 diagID = diag::err_block_returning_array_function;
13393
13394 S.Diag(E->getExprLoc(), diagID)
13395 << DestType->isFunctionType() << DestType;
13396 return ExprError();
13397 }
13398
13399 // Otherwise, go ahead and set DestType as the call's result.
13400 E->setType(DestType.getNonLValueExprType(S.Context));
13401 E->setValueKind(Expr::getValueKindForType(DestType));
13402 assert(E->getObjectKind() == OK_Ordinary);
13403
13404 // Rebuild the function type, replacing the result type with DestType.
13405 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
13406 if (Proto) {
13407 // __unknown_anytype(...) is a special case used by the debugger when
13408 // it has no idea what a function's signature is.
13409 //
13410 // We want to build this call essentially under the K&R
13411 // unprototyped rules, but making a FunctionNoProtoType in C++
13412 // would foul up all sorts of assumptions. However, we cannot
13413 // simply pass all arguments as variadic arguments, nor can we
13414 // portably just call the function under a non-variadic type; see
13415 // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
13416 // However, it turns out that in practice it is generally safe to
13417 // call a function declared as "A foo(B,C,D);" under the prototype
13418 // "A foo(B,C,D,...);". The only known exception is with the
13419 // Windows ABI, where any variadic function is implicitly cdecl
13420 // regardless of its normal CC. Therefore we change the parameter
13421 // types to match the types of the arguments.
13422 //
13423 // This is a hack, but it is far superior to moving the
13424 // corresponding target-specific code from IR-gen to Sema/AST.
13425
13426 ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
13427 SmallVector<QualType, 8> ArgTypes;
13428 if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
13429 ArgTypes.reserve(E->getNumArgs());
13430 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
13431 Expr *Arg = E->getArg(i);
13432 QualType ArgType = Arg->getType();
13433 if (E->isLValue()) {
13434 ArgType = S.Context.getLValueReferenceType(ArgType);
13435 } else if (E->isXValue()) {
13436 ArgType = S.Context.getRValueReferenceType(ArgType);
13437 }
13438 ArgTypes.push_back(ArgType);
13439 }
13440 ParamTypes = ArgTypes;
13441 }
13442 DestType = S.Context.getFunctionType(DestType, ParamTypes,
13443 Proto->getExtProtoInfo());
13444 } else {
13445 DestType = S.Context.getFunctionNoProtoType(DestType,
13446 FnType->getExtInfo());
13447 }
13448
13449 // Rebuild the appropriate pointer-to-function type.
13450 switch (Kind) {
13451 case FK_MemberFunction:
13452 // Nothing to do.
13453 break;
13454
13455 case FK_FunctionPointer:
13456 DestType = S.Context.getPointerType(DestType);
13457 break;
13458
13459 case FK_BlockPointer:
13460 DestType = S.Context.getBlockPointerType(DestType);
13461 break;
13462 }
13463
13464 // Finally, we can recurse.
13465 ExprResult CalleeResult = Visit(CalleeExpr);
13466 if (!CalleeResult.isUsable()) return ExprError();
13467 E->setCallee(CalleeResult.get());
13468
13469 // Bind a temporary if necessary.
13470 return S.MaybeBindToTemporary(E);
13471}
13472
13473ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
13474 // Verify that this is a legal result type of a call.
13475 if (DestType->isArrayType() || DestType->isFunctionType()) {
13476 S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
13477 << DestType->isFunctionType() << DestType;
13478 return ExprError();
13479 }
13480
13481 // Rewrite the method result type if available.
13482 if (ObjCMethodDecl *Method = E->getMethodDecl()) {
13483 assert(Method->getReturnType() == S.Context.UnknownAnyTy);
13484 Method->setReturnType(DestType);
13485 }
13486
13487 // Change the type of the message.
13488 E->setType(DestType.getNonReferenceType());
13489 E->setValueKind(Expr::getValueKindForType(DestType));
13490
13491 return S.MaybeBindToTemporary(E);
13492}
13493
13494ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
13495 // The only case we should ever see here is a function-to-pointer decay.
13496 if (E->getCastKind() == CK_FunctionToPointerDecay) {
13497 assert(E->getValueKind() == VK_RValue);
13498 assert(E->getObjectKind() == OK_Ordinary);
13499
13500 E->setType(DestType);
13501
13502 // Rebuild the sub-expression as the pointee (function) type.
13503 DestType = DestType->castAs<PointerType>()->getPointeeType();
13504
13505 ExprResult Result = Visit(E->getSubExpr());
13506 if (!Result.isUsable()) return ExprError();
13507
13508 E->setSubExpr(Result.get());
13509 return E;
13510 } else if (E->getCastKind() == CK_LValueToRValue) {
13511 assert(E->getValueKind() == VK_RValue);
13512 assert(E->getObjectKind() == OK_Ordinary);
13513
13514 assert(isa<BlockPointerType>(E->getType()));
13515
13516 E->setType(DestType);
13517
13518 // The sub-expression has to be a lvalue reference, so rebuild it as such.
13519 DestType = S.Context.getLValueReferenceType(DestType);
13520
13521 ExprResult Result = Visit(E->getSubExpr());
13522 if (!Result.isUsable()) return ExprError();
13523
13524 E->setSubExpr(Result.get());
13525 return E;
13526 } else {
13527 llvm_unreachable("Unhandled cast type!");
13528 }
13529}
13530
13531ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
13532 ExprValueKind ValueKind = VK_LValue;
13533 QualType Type = DestType;
13534
13535 // We know how to make this work for certain kinds of decls:
13536
13537 // - functions
13538 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
13539 if (const PointerType *Ptr = Type->getAs<PointerType>()) {
13540 DestType = Ptr->getPointeeType();
13541 ExprResult Result = resolveDecl(E, VD);
13542 if (Result.isInvalid()) return ExprError();
13543 return S.ImpCastExprToType(Result.get(), Type,
13544 CK_FunctionToPointerDecay, VK_RValue);
13545 }
13546
13547 if (!Type->isFunctionType()) {
13548 S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
13549 << VD << E->getSourceRange();
13550 return ExprError();
13551 }
13552 if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
13553 // We must match the FunctionDecl's type to the hack introduced in
13554 // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
13555 // type. See the lengthy commentary in that routine.
13556 QualType FDT = FD->getType();
13557 const FunctionType *FnType = FDT->castAs<FunctionType>();
13558 const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
13559 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
13560 if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
13561 SourceLocation Loc = FD->getLocation();
13562 FunctionDecl *NewFD = FunctionDecl::Create(FD->getASTContext(),
13563 FD->getDeclContext(),
13564 Loc, Loc, FD->getNameInfo().getName(),
13565 DestType, FD->getTypeSourceInfo(),
13566 SC_None, false/*isInlineSpecified*/,
13567 FD->hasPrototype(),
13568 false/*isConstexprSpecified*/);
13569
13570 if (FD->getQualifier())
13571 NewFD->setQualifierInfo(FD->getQualifierLoc());
13572
13573 SmallVector<ParmVarDecl*, 16> Params;
13574 for (const auto &AI : FT->param_types()) {
13575 ParmVarDecl *Param =
13576 S.BuildParmVarDeclForTypedef(FD, Loc, AI);
13577 Param->setScopeInfo(0, Params.size());
13578 Params.push_back(Param);
13579 }
13580 NewFD->setParams(Params);
13581 DRE->setDecl(NewFD);
13582 VD = DRE->getDecl();
13583 }
13584 }
13585
13586 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
13587 if (MD->isInstance()) {
13588 ValueKind = VK_RValue;
13589 Type = S.Context.BoundMemberTy;
13590 }
13591
13592 // Function references aren't l-values in C.
13593 if (!S.getLangOpts().CPlusPlus)
13594 ValueKind = VK_RValue;
13595
13596 // - variables
13597 } else if (isa<VarDecl>(VD)) {
13598 if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
13599 Type = RefTy->getPointeeType();
13600 } else if (Type->isFunctionType()) {
13601 S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
13602 << VD << E->getSourceRange();
13603 return ExprError();
13604 }
13605
13606 // - nothing else
13607 } else {
13608 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
13609 << VD << E->getSourceRange();
13610 return ExprError();
13611 }
13612
13613 // Modifying the declaration like this is friendly to IR-gen but
13614 // also really dangerous.
13615 VD->setType(DestType);
13616 E->setType(Type);
13617 E->setValueKind(ValueKind);
13618 return E;
13619}
13620
13621/// Check a cast of an unknown-any type. We intentionally only
13622/// trigger this for C-style casts.
13623ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
13624 Expr *CastExpr, CastKind &CastKind,
13625 ExprValueKind &VK, CXXCastPath &Path) {
13626 // Rewrite the casted expression from scratch.
13627 ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
13628 if (!result.isUsable()) return ExprError();
13629
13630 CastExpr = result.get();
13631 VK = CastExpr->getValueKind();
13632 CastKind = CK_NoOp;
13633
13634 return CastExpr;
13635}
13636
13637ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
13638 return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
13639}
13640
13641ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
13642 Expr *arg, QualType &paramType) {
13643 // If the syntactic form of the argument is not an explicit cast of
13644 // any sort, just do default argument promotion.
13645 ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
13646 if (!castArg) {
13647 ExprResult result = DefaultArgumentPromotion(arg);
13648 if (result.isInvalid()) return ExprError();
13649 paramType = result.get()->getType();
13650 return result;
13651 }
13652
13653 // Otherwise, use the type that was written in the explicit cast.
13654 assert(!arg->hasPlaceholderType());
13655 paramType = castArg->getTypeAsWritten();
13656
13657 // Copy-initialize a parameter of that type.
13658 InitializedEntity entity =
13659 InitializedEntity::InitializeParameter(Context, paramType,
13660 /*consumed*/ false);
13661 return PerformCopyInitialization(entity, callLoc, arg);
13662}
13663
13664static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
13665 Expr *orig = E;
13666 unsigned diagID = diag::err_uncasted_use_of_unknown_any;
13667 while (true) {
13668 E = E->IgnoreParenImpCasts();
13669 if (CallExpr *call = dyn_cast<CallExpr>(E)) {
13670 E = call->getCallee();
13671 diagID = diag::err_uncasted_call_of_unknown_any;
13672 } else {
13673 break;
13674 }
13675 }
13676
13677 SourceLocation loc;
13678 NamedDecl *d;
13679 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
13680 loc = ref->getLocation();
13681 d = ref->getDecl();
13682 } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
13683 loc = mem->getMemberLoc();
13684 d = mem->getMemberDecl();
13685 } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
13686 diagID = diag::err_uncasted_call_of_unknown_any;
13687 loc = msg->getSelectorStartLoc();
13688 d = msg->getMethodDecl();
13689 if (!d) {
13690 S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
13691 << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
13692 << orig->getSourceRange();
13693 return ExprError();
13694 }
13695 } else {
13696 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
13697 << E->getSourceRange();
13698 return ExprError();
13699 }
13700
13701 S.Diag(loc, diagID) << d << orig->getSourceRange();
13702
13703 // Never recoverable.
13704 return ExprError();
13705}
13706
13707/// Check for operands with placeholder types and complain if found.
13708/// Returns true if there was an error and no recovery was possible.
13709ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
13710 if (!getLangOpts().CPlusPlus) {
13711 // C cannot handle TypoExpr nodes on either side of a binop because it
13712 // doesn't handle dependent types properly, so make sure any TypoExprs have
13713 // been dealt with before checking the operands.
13714 ExprResult Result = CorrectDelayedTyposInExpr(E);
13715 if (!Result.isUsable()) return ExprError();
13716 E = Result.get();
13717 }
13718
13719 const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
13720 if (!placeholderType) return E;
13721
13722 switch (placeholderType->getKind()) {
13723
13724 // Overloaded expressions.
13725 case BuiltinType::Overload: {
13726 // Try to resolve a single function template specialization.
13727 // This is obligatory.
13728 ExprResult result = E;
13729 if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
13730 return result;
13731
13732 // If that failed, try to recover with a call.
13733 } else {
13734 tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
13735 /*complain*/ true);
13736 return result;
13737 }
13738 }
13739
13740 // Bound member functions.
13741 case BuiltinType::BoundMember: {
13742 ExprResult result = E;
13743 tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
13744 /*complain*/ true);
13745 return result;
13746 }
13747
13748 // ARC unbridged casts.
13749 case BuiltinType::ARCUnbridgedCast: {
13750 Expr *realCast = stripARCUnbridgedCast(E);
13751 diagnoseARCUnbridgedCast(realCast);
13752 return realCast;
13753 }
13754
13755 // Expressions of unknown type.
13756 case BuiltinType::UnknownAny:
13757 return diagnoseUnknownAnyExpr(*this, E);
13758
13759 // Pseudo-objects.
13760 case BuiltinType::PseudoObject:
13761 return checkPseudoObjectRValue(E);
13762
13763 case BuiltinType::BuiltinFn: {
13764 // Accept __noop without parens by implicitly converting it to a call expr.
13765 auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
13766 if (DRE) {
13767 auto *FD = cast<FunctionDecl>(DRE->getDecl());
13768 if (FD->getBuiltinID() == Builtin::BI__noop) {
13769 E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
13770 CK_BuiltinFnToFnPtr).get();
13771 return new (Context) CallExpr(Context, E, None, Context.IntTy,
13772 VK_RValue, SourceLocation());
13773 }
13774 }
13775
13776 Diag(E->getLocStart(), diag::err_builtin_fn_use);
13777 return ExprError();
13778 }
13779
13780 // Everything else should be impossible.
13781#define BUILTIN_TYPE(Id, SingletonId) \
13782 case BuiltinType::Id:
13783#define PLACEHOLDER_TYPE(Id, SingletonId)
13784#include "clang/AST/BuiltinTypes.def"
13785 break;
13786 }
13787
13788 llvm_unreachable("invalid placeholder type!");
13789}
13790
13791bool Sema::CheckCaseExpression(Expr *E) {
13792 if (E->isTypeDependent())
13793 return true;
13794 if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
13795 return E->getType()->isIntegralOrEnumerationType();
13796 return false;
13797}
13798
13799/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
13800ExprResult
13801Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
13802 assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
13803 "Unknown Objective-C Boolean value!");
13804 QualType BoolT = Context.ObjCBuiltinBoolTy;
13805 if (!Context.getBOOLDecl()) {
13806 LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
13807 Sema::LookupOrdinaryName);
13808 if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
13809 NamedDecl *ND = Result.getFoundDecl();
13810 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
13811 Context.setBOOLDecl(TD);
13812 }
13813 }
13814 if (Context.getBOOLDecl())
13815 BoolT = Context.getBOOLType();
13816 return new (Context)
13817 ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
13818}