Deleted Added
full compact
SemaChecking.cpp (280031) SemaChecking.cpp (283526)
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements extra semantic analysis beyond what is enforced
11// by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Analysis/Analyses/FormatString.h"
27#include "clang/Basic/CharInfo.h"
28#include "clang/Basic/TargetBuiltins.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "llvm/ADT/STLExtras.h"
36#include "llvm/ADT/SmallBitVector.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/Support/ConvertUTF.h"
39#include "llvm/Support/raw_ostream.h"
40#include <limits>
41using namespace clang;
42using namespace sema;
43
44SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
45 unsigned ByteNo) const {
46 return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
47 Context.getTargetInfo());
48}
49
50/// Checks that a call expression's argument count is the desired number.
51/// This is useful when doing custom type-checking. Returns true on error.
52static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
53 unsigned argCount = call->getNumArgs();
54 if (argCount == desiredArgCount) return false;
55
56 if (argCount < desiredArgCount)
57 return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
58 << 0 /*function call*/ << desiredArgCount << argCount
59 << call->getSourceRange();
60
61 // Highlight all the excess arguments.
62 SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
63 call->getArg(argCount - 1)->getLocEnd());
64
65 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
66 << 0 /*function call*/ << desiredArgCount << argCount
67 << call->getArg(1)->getSourceRange();
68}
69
70/// Check that the first argument to __builtin_annotation is an integer
71/// and the second argument is a non-wide string literal.
72static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
73 if (checkArgCount(S, TheCall, 2))
74 return true;
75
76 // First argument should be an integer.
77 Expr *ValArg = TheCall->getArg(0);
78 QualType Ty = ValArg->getType();
79 if (!Ty->isIntegerType()) {
80 S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
81 << ValArg->getSourceRange();
82 return true;
83 }
84
85 // Second argument should be a constant string.
86 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
87 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
88 if (!Literal || !Literal->isAscii()) {
89 S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
90 << StrArg->getSourceRange();
91 return true;
92 }
93
94 TheCall->setType(Ty);
95 return false;
96}
97
98/// Check that the argument to __builtin_addressof is a glvalue, and set the
99/// result type to the corresponding pointer type.
100static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
101 if (checkArgCount(S, TheCall, 1))
102 return true;
103
104 ExprResult Arg(TheCall->getArg(0));
105 QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getLocStart());
106 if (ResultType.isNull())
107 return true;
108
109 TheCall->setArg(0, Arg.get());
110 TheCall->setType(ResultType);
111 return false;
112}
113
114static void SemaBuiltinMemChkCall(Sema &S, FunctionDecl *FDecl,
115 CallExpr *TheCall, unsigned SizeIdx,
116 unsigned DstSizeIdx) {
117 if (TheCall->getNumArgs() <= SizeIdx ||
118 TheCall->getNumArgs() <= DstSizeIdx)
119 return;
120
121 const Expr *SizeArg = TheCall->getArg(SizeIdx);
122 const Expr *DstSizeArg = TheCall->getArg(DstSizeIdx);
123
124 llvm::APSInt Size, DstSize;
125
126 // find out if both sizes are known at compile time
127 if (!SizeArg->EvaluateAsInt(Size, S.Context) ||
128 !DstSizeArg->EvaluateAsInt(DstSize, S.Context))
129 return;
130
131 if (Size.ule(DstSize))
132 return;
133
134 // confirmed overflow so generate the diagnostic.
135 IdentifierInfo *FnName = FDecl->getIdentifier();
136 SourceLocation SL = TheCall->getLocStart();
137 SourceRange SR = TheCall->getSourceRange();
138
139 S.Diag(SL, diag::warn_memcpy_chk_overflow) << SR << FnName;
140}
141
142static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
143 if (checkArgCount(S, BuiltinCall, 2))
144 return true;
145
146 SourceLocation BuiltinLoc = BuiltinCall->getLocStart();
147 Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
148 Expr *Call = BuiltinCall->getArg(0);
149 Expr *Chain = BuiltinCall->getArg(1);
150
151 if (Call->getStmtClass() != Stmt::CallExprClass) {
152 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
153 << Call->getSourceRange();
154 return true;
155 }
156
157 auto CE = cast<CallExpr>(Call);
158 if (CE->getCallee()->getType()->isBlockPointerType()) {
159 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
160 << Call->getSourceRange();
161 return true;
162 }
163
164 const Decl *TargetDecl = CE->getCalleeDecl();
165 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
166 if (FD->getBuiltinID()) {
167 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
168 << Call->getSourceRange();
169 return true;
170 }
171
172 if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
173 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
174 << Call->getSourceRange();
175 return true;
176 }
177
178 ExprResult ChainResult = S.UsualUnaryConversions(Chain);
179 if (ChainResult.isInvalid())
180 return true;
181 if (!ChainResult.get()->getType()->isPointerType()) {
182 S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
183 << Chain->getSourceRange();
184 return true;
185 }
186
187 QualType ReturnTy = CE->getCallReturnType();
188 QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
189 QualType BuiltinTy = S.Context.getFunctionType(
190 ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
191 QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
192
193 Builtin =
194 S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
195
196 BuiltinCall->setType(CE->getType());
197 BuiltinCall->setValueKind(CE->getValueKind());
198 BuiltinCall->setObjectKind(CE->getObjectKind());
199 BuiltinCall->setCallee(Builtin);
200 BuiltinCall->setArg(1, ChainResult.get());
201
202 return false;
203}
204
205ExprResult
206Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
207 CallExpr *TheCall) {
208 ExprResult TheCallResult(TheCall);
209
210 // Find out if any arguments are required to be integer constant expressions.
211 unsigned ICEArguments = 0;
212 ASTContext::GetBuiltinTypeError Error;
213 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
214 if (Error != ASTContext::GE_None)
215 ICEArguments = 0; // Don't diagnose previously diagnosed errors.
216
217 // If any arguments are required to be ICE's, check and diagnose.
218 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
219 // Skip arguments not required to be ICE's.
220 if ((ICEArguments & (1 << ArgNo)) == 0) continue;
221
222 llvm::APSInt Result;
223 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
224 return true;
225 ICEArguments &= ~(1 << ArgNo);
226 }
227
228 switch (BuiltinID) {
229 case Builtin::BI__builtin___CFStringMakeConstantString:
230 assert(TheCall->getNumArgs() == 1 &&
231 "Wrong # arguments to builtin CFStringMakeConstantString");
232 if (CheckObjCString(TheCall->getArg(0)))
233 return ExprError();
234 break;
235 case Builtin::BI__builtin_stdarg_start:
236 case Builtin::BI__builtin_va_start:
237 if (SemaBuiltinVAStart(TheCall))
238 return ExprError();
239 break;
240 case Builtin::BI__va_start: {
241 switch (Context.getTargetInfo().getTriple().getArch()) {
242 case llvm::Triple::arm:
243 case llvm::Triple::thumb:
244 if (SemaBuiltinVAStartARM(TheCall))
245 return ExprError();
246 break;
247 default:
248 if (SemaBuiltinVAStart(TheCall))
249 return ExprError();
250 break;
251 }
252 break;
253 }
254 case Builtin::BI__builtin_isgreater:
255 case Builtin::BI__builtin_isgreaterequal:
256 case Builtin::BI__builtin_isless:
257 case Builtin::BI__builtin_islessequal:
258 case Builtin::BI__builtin_islessgreater:
259 case Builtin::BI__builtin_isunordered:
260 if (SemaBuiltinUnorderedCompare(TheCall))
261 return ExprError();
262 break;
263 case Builtin::BI__builtin_fpclassify:
264 if (SemaBuiltinFPClassification(TheCall, 6))
265 return ExprError();
266 break;
267 case Builtin::BI__builtin_isfinite:
268 case Builtin::BI__builtin_isinf:
269 case Builtin::BI__builtin_isinf_sign:
270 case Builtin::BI__builtin_isnan:
271 case Builtin::BI__builtin_isnormal:
272 if (SemaBuiltinFPClassification(TheCall, 1))
273 return ExprError();
274 break;
275 case Builtin::BI__builtin_shufflevector:
276 return SemaBuiltinShuffleVector(TheCall);
277 // TheCall will be freed by the smart pointer here, but that's fine, since
278 // SemaBuiltinShuffleVector guts it, but then doesn't release it.
279 case Builtin::BI__builtin_prefetch:
280 if (SemaBuiltinPrefetch(TheCall))
281 return ExprError();
282 break;
283 case Builtin::BI__assume:
284 case Builtin::BI__builtin_assume:
285 if (SemaBuiltinAssume(TheCall))
286 return ExprError();
287 break;
288 case Builtin::BI__builtin_assume_aligned:
289 if (SemaBuiltinAssumeAligned(TheCall))
290 return ExprError();
291 break;
292 case Builtin::BI__builtin_object_size:
293 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
294 return ExprError();
295 break;
296 case Builtin::BI__builtin_longjmp:
297 if (SemaBuiltinLongjmp(TheCall))
298 return ExprError();
299 break;
1//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements extra semantic analysis beyond what is enforced
11// by the C type system.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Analysis/Analyses/FormatString.h"
27#include "clang/Basic/CharInfo.h"
28#include "clang/Basic/TargetBuiltins.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "llvm/ADT/STLExtras.h"
36#include "llvm/ADT/SmallBitVector.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/Support/ConvertUTF.h"
39#include "llvm/Support/raw_ostream.h"
40#include <limits>
41using namespace clang;
42using namespace sema;
43
44SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
45 unsigned ByteNo) const {
46 return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
47 Context.getTargetInfo());
48}
49
50/// Checks that a call expression's argument count is the desired number.
51/// This is useful when doing custom type-checking. Returns true on error.
52static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
53 unsigned argCount = call->getNumArgs();
54 if (argCount == desiredArgCount) return false;
55
56 if (argCount < desiredArgCount)
57 return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
58 << 0 /*function call*/ << desiredArgCount << argCount
59 << call->getSourceRange();
60
61 // Highlight all the excess arguments.
62 SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
63 call->getArg(argCount - 1)->getLocEnd());
64
65 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
66 << 0 /*function call*/ << desiredArgCount << argCount
67 << call->getArg(1)->getSourceRange();
68}
69
70/// Check that the first argument to __builtin_annotation is an integer
71/// and the second argument is a non-wide string literal.
72static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
73 if (checkArgCount(S, TheCall, 2))
74 return true;
75
76 // First argument should be an integer.
77 Expr *ValArg = TheCall->getArg(0);
78 QualType Ty = ValArg->getType();
79 if (!Ty->isIntegerType()) {
80 S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
81 << ValArg->getSourceRange();
82 return true;
83 }
84
85 // Second argument should be a constant string.
86 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
87 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
88 if (!Literal || !Literal->isAscii()) {
89 S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
90 << StrArg->getSourceRange();
91 return true;
92 }
93
94 TheCall->setType(Ty);
95 return false;
96}
97
98/// Check that the argument to __builtin_addressof is a glvalue, and set the
99/// result type to the corresponding pointer type.
100static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
101 if (checkArgCount(S, TheCall, 1))
102 return true;
103
104 ExprResult Arg(TheCall->getArg(0));
105 QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getLocStart());
106 if (ResultType.isNull())
107 return true;
108
109 TheCall->setArg(0, Arg.get());
110 TheCall->setType(ResultType);
111 return false;
112}
113
114static void SemaBuiltinMemChkCall(Sema &S, FunctionDecl *FDecl,
115 CallExpr *TheCall, unsigned SizeIdx,
116 unsigned DstSizeIdx) {
117 if (TheCall->getNumArgs() <= SizeIdx ||
118 TheCall->getNumArgs() <= DstSizeIdx)
119 return;
120
121 const Expr *SizeArg = TheCall->getArg(SizeIdx);
122 const Expr *DstSizeArg = TheCall->getArg(DstSizeIdx);
123
124 llvm::APSInt Size, DstSize;
125
126 // find out if both sizes are known at compile time
127 if (!SizeArg->EvaluateAsInt(Size, S.Context) ||
128 !DstSizeArg->EvaluateAsInt(DstSize, S.Context))
129 return;
130
131 if (Size.ule(DstSize))
132 return;
133
134 // confirmed overflow so generate the diagnostic.
135 IdentifierInfo *FnName = FDecl->getIdentifier();
136 SourceLocation SL = TheCall->getLocStart();
137 SourceRange SR = TheCall->getSourceRange();
138
139 S.Diag(SL, diag::warn_memcpy_chk_overflow) << SR << FnName;
140}
141
142static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
143 if (checkArgCount(S, BuiltinCall, 2))
144 return true;
145
146 SourceLocation BuiltinLoc = BuiltinCall->getLocStart();
147 Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
148 Expr *Call = BuiltinCall->getArg(0);
149 Expr *Chain = BuiltinCall->getArg(1);
150
151 if (Call->getStmtClass() != Stmt::CallExprClass) {
152 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
153 << Call->getSourceRange();
154 return true;
155 }
156
157 auto CE = cast<CallExpr>(Call);
158 if (CE->getCallee()->getType()->isBlockPointerType()) {
159 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
160 << Call->getSourceRange();
161 return true;
162 }
163
164 const Decl *TargetDecl = CE->getCalleeDecl();
165 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
166 if (FD->getBuiltinID()) {
167 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
168 << Call->getSourceRange();
169 return true;
170 }
171
172 if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
173 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
174 << Call->getSourceRange();
175 return true;
176 }
177
178 ExprResult ChainResult = S.UsualUnaryConversions(Chain);
179 if (ChainResult.isInvalid())
180 return true;
181 if (!ChainResult.get()->getType()->isPointerType()) {
182 S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
183 << Chain->getSourceRange();
184 return true;
185 }
186
187 QualType ReturnTy = CE->getCallReturnType();
188 QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
189 QualType BuiltinTy = S.Context.getFunctionType(
190 ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
191 QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
192
193 Builtin =
194 S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
195
196 BuiltinCall->setType(CE->getType());
197 BuiltinCall->setValueKind(CE->getValueKind());
198 BuiltinCall->setObjectKind(CE->getObjectKind());
199 BuiltinCall->setCallee(Builtin);
200 BuiltinCall->setArg(1, ChainResult.get());
201
202 return false;
203}
204
205ExprResult
206Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
207 CallExpr *TheCall) {
208 ExprResult TheCallResult(TheCall);
209
210 // Find out if any arguments are required to be integer constant expressions.
211 unsigned ICEArguments = 0;
212 ASTContext::GetBuiltinTypeError Error;
213 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
214 if (Error != ASTContext::GE_None)
215 ICEArguments = 0; // Don't diagnose previously diagnosed errors.
216
217 // If any arguments are required to be ICE's, check and diagnose.
218 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
219 // Skip arguments not required to be ICE's.
220 if ((ICEArguments & (1 << ArgNo)) == 0) continue;
221
222 llvm::APSInt Result;
223 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
224 return true;
225 ICEArguments &= ~(1 << ArgNo);
226 }
227
228 switch (BuiltinID) {
229 case Builtin::BI__builtin___CFStringMakeConstantString:
230 assert(TheCall->getNumArgs() == 1 &&
231 "Wrong # arguments to builtin CFStringMakeConstantString");
232 if (CheckObjCString(TheCall->getArg(0)))
233 return ExprError();
234 break;
235 case Builtin::BI__builtin_stdarg_start:
236 case Builtin::BI__builtin_va_start:
237 if (SemaBuiltinVAStart(TheCall))
238 return ExprError();
239 break;
240 case Builtin::BI__va_start: {
241 switch (Context.getTargetInfo().getTriple().getArch()) {
242 case llvm::Triple::arm:
243 case llvm::Triple::thumb:
244 if (SemaBuiltinVAStartARM(TheCall))
245 return ExprError();
246 break;
247 default:
248 if (SemaBuiltinVAStart(TheCall))
249 return ExprError();
250 break;
251 }
252 break;
253 }
254 case Builtin::BI__builtin_isgreater:
255 case Builtin::BI__builtin_isgreaterequal:
256 case Builtin::BI__builtin_isless:
257 case Builtin::BI__builtin_islessequal:
258 case Builtin::BI__builtin_islessgreater:
259 case Builtin::BI__builtin_isunordered:
260 if (SemaBuiltinUnorderedCompare(TheCall))
261 return ExprError();
262 break;
263 case Builtin::BI__builtin_fpclassify:
264 if (SemaBuiltinFPClassification(TheCall, 6))
265 return ExprError();
266 break;
267 case Builtin::BI__builtin_isfinite:
268 case Builtin::BI__builtin_isinf:
269 case Builtin::BI__builtin_isinf_sign:
270 case Builtin::BI__builtin_isnan:
271 case Builtin::BI__builtin_isnormal:
272 if (SemaBuiltinFPClassification(TheCall, 1))
273 return ExprError();
274 break;
275 case Builtin::BI__builtin_shufflevector:
276 return SemaBuiltinShuffleVector(TheCall);
277 // TheCall will be freed by the smart pointer here, but that's fine, since
278 // SemaBuiltinShuffleVector guts it, but then doesn't release it.
279 case Builtin::BI__builtin_prefetch:
280 if (SemaBuiltinPrefetch(TheCall))
281 return ExprError();
282 break;
283 case Builtin::BI__assume:
284 case Builtin::BI__builtin_assume:
285 if (SemaBuiltinAssume(TheCall))
286 return ExprError();
287 break;
288 case Builtin::BI__builtin_assume_aligned:
289 if (SemaBuiltinAssumeAligned(TheCall))
290 return ExprError();
291 break;
292 case Builtin::BI__builtin_object_size:
293 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
294 return ExprError();
295 break;
296 case Builtin::BI__builtin_longjmp:
297 if (SemaBuiltinLongjmp(TheCall))
298 return ExprError();
299 break;
300 case Builtin::BI__builtin_setjmp:
301 if (SemaBuiltinSetjmp(TheCall))
302 return ExprError();
303 break;
300
301 case Builtin::BI__builtin_classify_type:
302 if (checkArgCount(*this, TheCall, 1)) return true;
303 TheCall->setType(Context.IntTy);
304 break;
305 case Builtin::BI__builtin_constant_p:
306 if (checkArgCount(*this, TheCall, 1)) return true;
307 TheCall->setType(Context.IntTy);
308 break;
309 case Builtin::BI__sync_fetch_and_add:
310 case Builtin::BI__sync_fetch_and_add_1:
311 case Builtin::BI__sync_fetch_and_add_2:
312 case Builtin::BI__sync_fetch_and_add_4:
313 case Builtin::BI__sync_fetch_and_add_8:
314 case Builtin::BI__sync_fetch_and_add_16:
315 case Builtin::BI__sync_fetch_and_sub:
316 case Builtin::BI__sync_fetch_and_sub_1:
317 case Builtin::BI__sync_fetch_and_sub_2:
318 case Builtin::BI__sync_fetch_and_sub_4:
319 case Builtin::BI__sync_fetch_and_sub_8:
320 case Builtin::BI__sync_fetch_and_sub_16:
321 case Builtin::BI__sync_fetch_and_or:
322 case Builtin::BI__sync_fetch_and_or_1:
323 case Builtin::BI__sync_fetch_and_or_2:
324 case Builtin::BI__sync_fetch_and_or_4:
325 case Builtin::BI__sync_fetch_and_or_8:
326 case Builtin::BI__sync_fetch_and_or_16:
327 case Builtin::BI__sync_fetch_and_and:
328 case Builtin::BI__sync_fetch_and_and_1:
329 case Builtin::BI__sync_fetch_and_and_2:
330 case Builtin::BI__sync_fetch_and_and_4:
331 case Builtin::BI__sync_fetch_and_and_8:
332 case Builtin::BI__sync_fetch_and_and_16:
333 case Builtin::BI__sync_fetch_and_xor:
334 case Builtin::BI__sync_fetch_and_xor_1:
335 case Builtin::BI__sync_fetch_and_xor_2:
336 case Builtin::BI__sync_fetch_and_xor_4:
337 case Builtin::BI__sync_fetch_and_xor_8:
338 case Builtin::BI__sync_fetch_and_xor_16:
339 case Builtin::BI__sync_fetch_and_nand:
340 case Builtin::BI__sync_fetch_and_nand_1:
341 case Builtin::BI__sync_fetch_and_nand_2:
342 case Builtin::BI__sync_fetch_and_nand_4:
343 case Builtin::BI__sync_fetch_and_nand_8:
344 case Builtin::BI__sync_fetch_and_nand_16:
345 case Builtin::BI__sync_add_and_fetch:
346 case Builtin::BI__sync_add_and_fetch_1:
347 case Builtin::BI__sync_add_and_fetch_2:
348 case Builtin::BI__sync_add_and_fetch_4:
349 case Builtin::BI__sync_add_and_fetch_8:
350 case Builtin::BI__sync_add_and_fetch_16:
351 case Builtin::BI__sync_sub_and_fetch:
352 case Builtin::BI__sync_sub_and_fetch_1:
353 case Builtin::BI__sync_sub_and_fetch_2:
354 case Builtin::BI__sync_sub_and_fetch_4:
355 case Builtin::BI__sync_sub_and_fetch_8:
356 case Builtin::BI__sync_sub_and_fetch_16:
357 case Builtin::BI__sync_and_and_fetch:
358 case Builtin::BI__sync_and_and_fetch_1:
359 case Builtin::BI__sync_and_and_fetch_2:
360 case Builtin::BI__sync_and_and_fetch_4:
361 case Builtin::BI__sync_and_and_fetch_8:
362 case Builtin::BI__sync_and_and_fetch_16:
363 case Builtin::BI__sync_or_and_fetch:
364 case Builtin::BI__sync_or_and_fetch_1:
365 case Builtin::BI__sync_or_and_fetch_2:
366 case Builtin::BI__sync_or_and_fetch_4:
367 case Builtin::BI__sync_or_and_fetch_8:
368 case Builtin::BI__sync_or_and_fetch_16:
369 case Builtin::BI__sync_xor_and_fetch:
370 case Builtin::BI__sync_xor_and_fetch_1:
371 case Builtin::BI__sync_xor_and_fetch_2:
372 case Builtin::BI__sync_xor_and_fetch_4:
373 case Builtin::BI__sync_xor_and_fetch_8:
374 case Builtin::BI__sync_xor_and_fetch_16:
375 case Builtin::BI__sync_nand_and_fetch:
376 case Builtin::BI__sync_nand_and_fetch_1:
377 case Builtin::BI__sync_nand_and_fetch_2:
378 case Builtin::BI__sync_nand_and_fetch_4:
379 case Builtin::BI__sync_nand_and_fetch_8:
380 case Builtin::BI__sync_nand_and_fetch_16:
381 case Builtin::BI__sync_val_compare_and_swap:
382 case Builtin::BI__sync_val_compare_and_swap_1:
383 case Builtin::BI__sync_val_compare_and_swap_2:
384 case Builtin::BI__sync_val_compare_and_swap_4:
385 case Builtin::BI__sync_val_compare_and_swap_8:
386 case Builtin::BI__sync_val_compare_and_swap_16:
387 case Builtin::BI__sync_bool_compare_and_swap:
388 case Builtin::BI__sync_bool_compare_and_swap_1:
389 case Builtin::BI__sync_bool_compare_and_swap_2:
390 case Builtin::BI__sync_bool_compare_and_swap_4:
391 case Builtin::BI__sync_bool_compare_and_swap_8:
392 case Builtin::BI__sync_bool_compare_and_swap_16:
393 case Builtin::BI__sync_lock_test_and_set:
394 case Builtin::BI__sync_lock_test_and_set_1:
395 case Builtin::BI__sync_lock_test_and_set_2:
396 case Builtin::BI__sync_lock_test_and_set_4:
397 case Builtin::BI__sync_lock_test_and_set_8:
398 case Builtin::BI__sync_lock_test_and_set_16:
399 case Builtin::BI__sync_lock_release:
400 case Builtin::BI__sync_lock_release_1:
401 case Builtin::BI__sync_lock_release_2:
402 case Builtin::BI__sync_lock_release_4:
403 case Builtin::BI__sync_lock_release_8:
404 case Builtin::BI__sync_lock_release_16:
405 case Builtin::BI__sync_swap:
406 case Builtin::BI__sync_swap_1:
407 case Builtin::BI__sync_swap_2:
408 case Builtin::BI__sync_swap_4:
409 case Builtin::BI__sync_swap_8:
410 case Builtin::BI__sync_swap_16:
411 return SemaBuiltinAtomicOverloaded(TheCallResult);
412#define BUILTIN(ID, TYPE, ATTRS)
413#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
414 case Builtin::BI##ID: \
415 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
416#include "clang/Basic/Builtins.def"
417 case Builtin::BI__builtin_annotation:
418 if (SemaBuiltinAnnotation(*this, TheCall))
419 return ExprError();
420 break;
421 case Builtin::BI__builtin_addressof:
422 if (SemaBuiltinAddressof(*this, TheCall))
423 return ExprError();
424 break;
425 case Builtin::BI__builtin_operator_new:
426 case Builtin::BI__builtin_operator_delete:
427 if (!getLangOpts().CPlusPlus) {
428 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
429 << (BuiltinID == Builtin::BI__builtin_operator_new
430 ? "__builtin_operator_new"
431 : "__builtin_operator_delete")
432 << "C++";
433 return ExprError();
434 }
435 // CodeGen assumes it can find the global new and delete to call,
436 // so ensure that they are declared.
437 DeclareGlobalNewDelete();
438 break;
439
440 // check secure string manipulation functions where overflows
441 // are detectable at compile time
442 case Builtin::BI__builtin___memcpy_chk:
443 case Builtin::BI__builtin___memmove_chk:
444 case Builtin::BI__builtin___memset_chk:
445 case Builtin::BI__builtin___strlcat_chk:
446 case Builtin::BI__builtin___strlcpy_chk:
447 case Builtin::BI__builtin___strncat_chk:
448 case Builtin::BI__builtin___strncpy_chk:
449 case Builtin::BI__builtin___stpncpy_chk:
450 SemaBuiltinMemChkCall(*this, FDecl, TheCall, 2, 3);
451 break;
452 case Builtin::BI__builtin___memccpy_chk:
453 SemaBuiltinMemChkCall(*this, FDecl, TheCall, 3, 4);
454 break;
455 case Builtin::BI__builtin___snprintf_chk:
456 case Builtin::BI__builtin___vsnprintf_chk:
457 SemaBuiltinMemChkCall(*this, FDecl, TheCall, 1, 3);
458 break;
459
460 case Builtin::BI__builtin_call_with_static_chain:
461 if (SemaBuiltinCallWithStaticChain(*this, TheCall))
462 return ExprError();
463 break;
464 }
465
466 // Since the target specific builtins for each arch overlap, only check those
467 // of the arch we are compiling for.
468 if (BuiltinID >= Builtin::FirstTSBuiltin) {
469 switch (Context.getTargetInfo().getTriple().getArch()) {
470 case llvm::Triple::arm:
471 case llvm::Triple::armeb:
472 case llvm::Triple::thumb:
473 case llvm::Triple::thumbeb:
474 if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
475 return ExprError();
476 break;
477 case llvm::Triple::aarch64:
478 case llvm::Triple::aarch64_be:
479 if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
480 return ExprError();
481 break;
482 case llvm::Triple::mips:
483 case llvm::Triple::mipsel:
484 case llvm::Triple::mips64:
485 case llvm::Triple::mips64el:
486 if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
487 return ExprError();
488 break;
489 case llvm::Triple::x86:
490 case llvm::Triple::x86_64:
491 if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
492 return ExprError();
493 break;
494 default:
495 break;
496 }
497 }
498
499 return TheCallResult;
500}
501
502// Get the valid immediate range for the specified NEON type code.
503static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
504 NeonTypeFlags Type(t);
505 int IsQuad = ForceQuad ? true : Type.isQuad();
506 switch (Type.getEltType()) {
507 case NeonTypeFlags::Int8:
508 case NeonTypeFlags::Poly8:
509 return shift ? 7 : (8 << IsQuad) - 1;
510 case NeonTypeFlags::Int16:
511 case NeonTypeFlags::Poly16:
512 return shift ? 15 : (4 << IsQuad) - 1;
513 case NeonTypeFlags::Int32:
514 return shift ? 31 : (2 << IsQuad) - 1;
515 case NeonTypeFlags::Int64:
516 case NeonTypeFlags::Poly64:
517 return shift ? 63 : (1 << IsQuad) - 1;
518 case NeonTypeFlags::Poly128:
519 return shift ? 127 : (1 << IsQuad) - 1;
520 case NeonTypeFlags::Float16:
521 assert(!shift && "cannot shift float types!");
522 return (4 << IsQuad) - 1;
523 case NeonTypeFlags::Float32:
524 assert(!shift && "cannot shift float types!");
525 return (2 << IsQuad) - 1;
526 case NeonTypeFlags::Float64:
527 assert(!shift && "cannot shift float types!");
528 return (1 << IsQuad) - 1;
529 }
530 llvm_unreachable("Invalid NeonTypeFlag!");
531}
532
533/// getNeonEltType - Return the QualType corresponding to the elements of
534/// the vector type specified by the NeonTypeFlags. This is used to check
535/// the pointer arguments for Neon load/store intrinsics.
536static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
537 bool IsPolyUnsigned, bool IsInt64Long) {
538 switch (Flags.getEltType()) {
539 case NeonTypeFlags::Int8:
540 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
541 case NeonTypeFlags::Int16:
542 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
543 case NeonTypeFlags::Int32:
544 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
545 case NeonTypeFlags::Int64:
546 if (IsInt64Long)
547 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
548 else
549 return Flags.isUnsigned() ? Context.UnsignedLongLongTy
550 : Context.LongLongTy;
551 case NeonTypeFlags::Poly8:
552 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
553 case NeonTypeFlags::Poly16:
554 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
555 case NeonTypeFlags::Poly64:
556 return Context.UnsignedLongTy;
557 case NeonTypeFlags::Poly128:
558 break;
559 case NeonTypeFlags::Float16:
560 return Context.HalfTy;
561 case NeonTypeFlags::Float32:
562 return Context.FloatTy;
563 case NeonTypeFlags::Float64:
564 return Context.DoubleTy;
565 }
566 llvm_unreachable("Invalid NeonTypeFlag!");
567}
568
569bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
570 llvm::APSInt Result;
571 uint64_t mask = 0;
572 unsigned TV = 0;
573 int PtrArgNum = -1;
574 bool HasConstPtr = false;
575 switch (BuiltinID) {
576#define GET_NEON_OVERLOAD_CHECK
577#include "clang/Basic/arm_neon.inc"
578#undef GET_NEON_OVERLOAD_CHECK
579 }
580
581 // For NEON intrinsics which are overloaded on vector element type, validate
582 // the immediate which specifies which variant to emit.
583 unsigned ImmArg = TheCall->getNumArgs()-1;
584 if (mask) {
585 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
586 return true;
587
588 TV = Result.getLimitedValue(64);
589 if ((TV > 63) || (mask & (1ULL << TV)) == 0)
590 return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
591 << TheCall->getArg(ImmArg)->getSourceRange();
592 }
593
594 if (PtrArgNum >= 0) {
595 // Check that pointer arguments have the specified type.
596 Expr *Arg = TheCall->getArg(PtrArgNum);
597 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
598 Arg = ICE->getSubExpr();
599 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
600 QualType RHSTy = RHS.get()->getType();
601
602 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
603 bool IsPolyUnsigned = Arch == llvm::Triple::aarch64;
604 bool IsInt64Long =
605 Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong;
606 QualType EltTy =
607 getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
608 if (HasConstPtr)
609 EltTy = EltTy.withConst();
610 QualType LHSTy = Context.getPointerType(EltTy);
611 AssignConvertType ConvTy;
612 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
613 if (RHS.isInvalid())
614 return true;
615 if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
616 RHS.get(), AA_Assigning))
617 return true;
618 }
619
620 // For NEON intrinsics which take an immediate value as part of the
621 // instruction, range check them here.
622 unsigned i = 0, l = 0, u = 0;
623 switch (BuiltinID) {
624 default:
625 return false;
626#define GET_NEON_IMMEDIATE_CHECK
627#include "clang/Basic/arm_neon.inc"
628#undef GET_NEON_IMMEDIATE_CHECK
629 }
630
631 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
632}
633
634bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
635 unsigned MaxWidth) {
636 assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
637 BuiltinID == ARM::BI__builtin_arm_ldaex ||
638 BuiltinID == ARM::BI__builtin_arm_strex ||
639 BuiltinID == ARM::BI__builtin_arm_stlex ||
640 BuiltinID == AArch64::BI__builtin_arm_ldrex ||
641 BuiltinID == AArch64::BI__builtin_arm_ldaex ||
642 BuiltinID == AArch64::BI__builtin_arm_strex ||
643 BuiltinID == AArch64::BI__builtin_arm_stlex) &&
644 "unexpected ARM builtin");
645 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
646 BuiltinID == ARM::BI__builtin_arm_ldaex ||
647 BuiltinID == AArch64::BI__builtin_arm_ldrex ||
648 BuiltinID == AArch64::BI__builtin_arm_ldaex;
649
650 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
651
652 // Ensure that we have the proper number of arguments.
653 if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
654 return true;
655
656 // Inspect the pointer argument of the atomic builtin. This should always be
657 // a pointer type, whose element is an integral scalar or pointer type.
658 // Because it is a pointer type, we don't have to worry about any implicit
659 // casts here.
660 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
661 ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
662 if (PointerArgRes.isInvalid())
663 return true;
664 PointerArg = PointerArgRes.get();
665
666 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
667 if (!pointerType) {
668 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
669 << PointerArg->getType() << PointerArg->getSourceRange();
670 return true;
671 }
672
673 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
674 // task is to insert the appropriate casts into the AST. First work out just
675 // what the appropriate type is.
676 QualType ValType = pointerType->getPointeeType();
677 QualType AddrType = ValType.getUnqualifiedType().withVolatile();
678 if (IsLdrex)
679 AddrType.addConst();
680
681 // Issue a warning if the cast is dodgy.
682 CastKind CastNeeded = CK_NoOp;
683 if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
684 CastNeeded = CK_BitCast;
685 Diag(DRE->getLocStart(), diag::ext_typecheck_convert_discards_qualifiers)
686 << PointerArg->getType()
687 << Context.getPointerType(AddrType)
688 << AA_Passing << PointerArg->getSourceRange();
689 }
690
691 // Finally, do the cast and replace the argument with the corrected version.
692 AddrType = Context.getPointerType(AddrType);
693 PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
694 if (PointerArgRes.isInvalid())
695 return true;
696 PointerArg = PointerArgRes.get();
697
698 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
699
700 // In general, we allow ints, floats and pointers to be loaded and stored.
701 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
702 !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
703 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
704 << PointerArg->getType() << PointerArg->getSourceRange();
705 return true;
706 }
707
708 // But ARM doesn't have instructions to deal with 128-bit versions.
709 if (Context.getTypeSize(ValType) > MaxWidth) {
710 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
711 Diag(DRE->getLocStart(), diag::err_atomic_exclusive_builtin_pointer_size)
712 << PointerArg->getType() << PointerArg->getSourceRange();
713 return true;
714 }
715
716 switch (ValType.getObjCLifetime()) {
717 case Qualifiers::OCL_None:
718 case Qualifiers::OCL_ExplicitNone:
719 // okay
720 break;
721
722 case Qualifiers::OCL_Weak:
723 case Qualifiers::OCL_Strong:
724 case Qualifiers::OCL_Autoreleasing:
725 Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
726 << ValType << PointerArg->getSourceRange();
727 return true;
728 }
729
730
731 if (IsLdrex) {
732 TheCall->setType(ValType);
733 return false;
734 }
735
736 // Initialize the argument to be stored.
737 ExprResult ValArg = TheCall->getArg(0);
738 InitializedEntity Entity = InitializedEntity::InitializeParameter(
739 Context, ValType, /*consume*/ false);
740 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
741 if (ValArg.isInvalid())
742 return true;
743 TheCall->setArg(0, ValArg.get());
744
745 // __builtin_arm_strex always returns an int. It's marked as such in the .def,
746 // but the custom checker bypasses all default analysis.
747 TheCall->setType(Context.IntTy);
748 return false;
749}
750
751bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
752 llvm::APSInt Result;
753
754 if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
755 BuiltinID == ARM::BI__builtin_arm_ldaex ||
756 BuiltinID == ARM::BI__builtin_arm_strex ||
757 BuiltinID == ARM::BI__builtin_arm_stlex) {
758 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
759 }
760
761 if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
762 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
763 SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
764 }
765
766 if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
767 return true;
768
769 // For intrinsics which take an immediate value as part of the instruction,
770 // range check them here.
771 unsigned i = 0, l = 0, u = 0;
772 switch (BuiltinID) {
773 default: return false;
774 case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
775 case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
776 case ARM::BI__builtin_arm_vcvtr_f:
777 case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
778 case ARM::BI__builtin_arm_dmb:
779 case ARM::BI__builtin_arm_dsb:
780 case ARM::BI__builtin_arm_isb:
781 case ARM::BI__builtin_arm_dbg: l = 0; u = 15; break;
782 }
783
784 // FIXME: VFP Intrinsics should error if VFP not present.
785 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
786}
787
788bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
789 CallExpr *TheCall) {
790 llvm::APSInt Result;
791
792 if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
793 BuiltinID == AArch64::BI__builtin_arm_ldaex ||
794 BuiltinID == AArch64::BI__builtin_arm_strex ||
795 BuiltinID == AArch64::BI__builtin_arm_stlex) {
796 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
797 }
798
799 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
800 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
801 SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
802 SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
803 SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
804 }
805
806 if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
807 return true;
808
809 // For intrinsics which take an immediate value as part of the instruction,
810 // range check them here.
811 unsigned i = 0, l = 0, u = 0;
812 switch (BuiltinID) {
813 default: return false;
814 case AArch64::BI__builtin_arm_dmb:
815 case AArch64::BI__builtin_arm_dsb:
816 case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
817 }
818
819 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
820}
821
822bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
823 unsigned i = 0, l = 0, u = 0;
824 switch (BuiltinID) {
825 default: return false;
826 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
827 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
828 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
829 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
830 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
831 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
832 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
833 }
834
835 return SemaBuiltinConstantArgRange(TheCall, i, l, u);
836}
837
838bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
839 unsigned i = 0, l = 0, u = 0;
840 switch (BuiltinID) {
841 default: return false;
842 case X86::BI_mm_prefetch: i = 1; l = 0; u = 3; break;
843 case X86::BI__builtin_ia32_cmpps:
844 case X86::BI__builtin_ia32_cmpss:
845 case X86::BI__builtin_ia32_cmppd:
846 case X86::BI__builtin_ia32_cmpsd: i = 2; l = 0; u = 31; break;
847 }
848 return SemaBuiltinConstantArgRange(TheCall, i, l, u);
849}
850
851/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
852/// parameter with the FormatAttr's correct format_idx and firstDataArg.
853/// Returns true when the format fits the function and the FormatStringInfo has
854/// been populated.
855bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
856 FormatStringInfo *FSI) {
857 FSI->HasVAListArg = Format->getFirstArg() == 0;
858 FSI->FormatIdx = Format->getFormatIdx() - 1;
859 FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
860
861 // The way the format attribute works in GCC, the implicit this argument
862 // of member functions is counted. However, it doesn't appear in our own
863 // lists, so decrement format_idx in that case.
864 if (IsCXXMember) {
865 if(FSI->FormatIdx == 0)
866 return false;
867 --FSI->FormatIdx;
868 if (FSI->FirstDataArg != 0)
869 --FSI->FirstDataArg;
870 }
871 return true;
872}
873
874/// Checks if a the given expression evaluates to null.
875///
876/// \brief Returns true if the value evaluates to null.
877static bool CheckNonNullExpr(Sema &S,
878 const Expr *Expr) {
879 // As a special case, transparent unions initialized with zero are
880 // considered null for the purposes of the nonnull attribute.
881 if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
882 if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
883 if (const CompoundLiteralExpr *CLE =
884 dyn_cast<CompoundLiteralExpr>(Expr))
885 if (const InitListExpr *ILE =
886 dyn_cast<InitListExpr>(CLE->getInitializer()))
887 Expr = ILE->getInit(0);
888 }
889
890 bool Result;
891 return (!Expr->isValueDependent() &&
892 Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
893 !Result);
894}
895
896static void CheckNonNullArgument(Sema &S,
897 const Expr *ArgExpr,
898 SourceLocation CallSiteLoc) {
899 if (CheckNonNullExpr(S, ArgExpr))
900 S.Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
901}
902
903bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
904 FormatStringInfo FSI;
905 if ((GetFormatStringType(Format) == FST_NSString) &&
906 getFormatStringInfo(Format, false, &FSI)) {
907 Idx = FSI.FormatIdx;
908 return true;
909 }
910 return false;
911}
912/// \brief Diagnose use of %s directive in an NSString which is being passed
913/// as formatting string to formatting method.
914static void
915DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
916 const NamedDecl *FDecl,
917 Expr **Args,
918 unsigned NumArgs) {
919 unsigned Idx = 0;
920 bool Format = false;
921 ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
922 if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
923 Idx = 2;
924 Format = true;
925 }
926 else
927 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
928 if (S.GetFormatNSStringIdx(I, Idx)) {
929 Format = true;
930 break;
931 }
932 }
933 if (!Format || NumArgs <= Idx)
934 return;
935 const Expr *FormatExpr = Args[Idx];
936 if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
937 FormatExpr = CSCE->getSubExpr();
938 const StringLiteral *FormatString;
939 if (const ObjCStringLiteral *OSL =
940 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
941 FormatString = OSL->getString();
942 else
943 FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
944 if (!FormatString)
945 return;
946 if (S.FormatStringHasSArg(FormatString)) {
947 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
948 << "%s" << 1 << 1;
949 S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
950 << FDecl->getDeclName();
951 }
952}
953
954static void CheckNonNullArguments(Sema &S,
955 const NamedDecl *FDecl,
956 ArrayRef<const Expr *> Args,
957 SourceLocation CallSiteLoc) {
958 // Check the attributes attached to the method/function itself.
959 llvm::SmallBitVector NonNullArgs;
960 for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
961 if (!NonNull->args_size()) {
962 // Easy case: all pointer arguments are nonnull.
963 for (const auto *Arg : Args)
964 if (S.isValidPointerAttrType(Arg->getType()))
965 CheckNonNullArgument(S, Arg, CallSiteLoc);
966 return;
967 }
968
969 for (unsigned Val : NonNull->args()) {
970 if (Val >= Args.size())
971 continue;
972 if (NonNullArgs.empty())
973 NonNullArgs.resize(Args.size());
974 NonNullArgs.set(Val);
975 }
976 }
977
978 // Check the attributes on the parameters.
979 ArrayRef<ParmVarDecl*> parms;
980 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
981 parms = FD->parameters();
982 else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(FDecl))
983 parms = MD->parameters();
984
985 unsigned ArgIndex = 0;
986 for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
987 I != E; ++I, ++ArgIndex) {
988 const ParmVarDecl *PVD = *I;
989 if (PVD->hasAttr<NonNullAttr>() ||
990 (ArgIndex < NonNullArgs.size() && NonNullArgs[ArgIndex]))
991 CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
992 }
993
994 // In case this is a variadic call, check any remaining arguments.
995 for (/**/; ArgIndex < NonNullArgs.size(); ++ArgIndex)
996 if (NonNullArgs[ArgIndex])
997 CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
998}
999
1000/// Handles the checks for format strings, non-POD arguments to vararg
1001/// functions, and NULL arguments passed to non-NULL parameters.
1002void Sema::checkCall(NamedDecl *FDecl, ArrayRef<const Expr *> Args,
1003 unsigned NumParams, bool IsMemberFunction,
1004 SourceLocation Loc, SourceRange Range,
1005 VariadicCallType CallType) {
1006 // FIXME: We should check as much as we can in the template definition.
1007 if (CurContext->isDependentContext())
1008 return;
1009
1010 // Printf and scanf checking.
1011 llvm::SmallBitVector CheckedVarArgs;
1012 if (FDecl) {
1013 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
1014 // Only create vector if there are format attributes.
1015 CheckedVarArgs.resize(Args.size());
1016
1017 CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
1018 CheckedVarArgs);
1019 }
1020 }
1021
1022 // Refuse POD arguments that weren't caught by the format string
1023 // checks above.
1024 if (CallType != VariadicDoesNotApply) {
1025 for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
1026 // Args[ArgIdx] can be null in malformed code.
1027 if (const Expr *Arg = Args[ArgIdx]) {
1028 if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
1029 checkVariadicArgument(Arg, CallType);
1030 }
1031 }
1032 }
1033
1034 if (FDecl) {
1035 CheckNonNullArguments(*this, FDecl, Args, Loc);
1036
1037 // Type safety checking.
1038 for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
1039 CheckArgumentWithTypeTag(I, Args.data());
1040 }
1041}
1042
1043/// CheckConstructorCall - Check a constructor call for correctness and safety
1044/// properties not enforced by the C type system.
1045void Sema::CheckConstructorCall(FunctionDecl *FDecl,
1046 ArrayRef<const Expr *> Args,
1047 const FunctionProtoType *Proto,
1048 SourceLocation Loc) {
1049 VariadicCallType CallType =
1050 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
1051 checkCall(FDecl, Args, Proto->getNumParams(),
1052 /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
1053}
1054
1055/// CheckFunctionCall - Check a direct function call for various correctness
1056/// and safety properties not strictly enforced by the C type system.
1057bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
1058 const FunctionProtoType *Proto) {
1059 bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
1060 isa<CXXMethodDecl>(FDecl);
1061 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
1062 IsMemberOperatorCall;
1063 VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
1064 TheCall->getCallee());
1065 unsigned NumParams = Proto ? Proto->getNumParams() : 0;
1066 Expr** Args = TheCall->getArgs();
1067 unsigned NumArgs = TheCall->getNumArgs();
1068 if (IsMemberOperatorCall) {
1069 // If this is a call to a member operator, hide the first argument
1070 // from checkCall.
1071 // FIXME: Our choice of AST representation here is less than ideal.
1072 ++Args;
1073 --NumArgs;
1074 }
1075 checkCall(FDecl, llvm::makeArrayRef(Args, NumArgs), NumParams,
1076 IsMemberFunction, TheCall->getRParenLoc(),
1077 TheCall->getCallee()->getSourceRange(), CallType);
1078
1079 IdentifierInfo *FnInfo = FDecl->getIdentifier();
1080 // None of the checks below are needed for functions that don't have
1081 // simple names (e.g., C++ conversion functions).
1082 if (!FnInfo)
1083 return false;
1084
1085 CheckAbsoluteValueFunction(TheCall, FDecl, FnInfo);
1086 if (getLangOpts().ObjC1)
1087 DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
1088
1089 unsigned CMId = FDecl->getMemoryFunctionKind();
1090 if (CMId == 0)
1091 return false;
1092
1093 // Handle memory setting and copying functions.
1094 if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
1095 CheckStrlcpycatArguments(TheCall, FnInfo);
1096 else if (CMId == Builtin::BIstrncat)
1097 CheckStrncatArguments(TheCall, FnInfo);
1098 else
1099 CheckMemaccessArguments(TheCall, CMId, FnInfo);
1100
1101 return false;
1102}
1103
1104bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
1105 ArrayRef<const Expr *> Args) {
1106 VariadicCallType CallType =
1107 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
1108
1109 checkCall(Method, Args, Method->param_size(),
1110 /*IsMemberFunction=*/false,
1111 lbrac, Method->getSourceRange(), CallType);
1112
1113 return false;
1114}
1115
1116bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
1117 const FunctionProtoType *Proto) {
1118 const VarDecl *V = dyn_cast<VarDecl>(NDecl);
1119 if (!V)
1120 return false;
1121
1122 QualType Ty = V->getType();
1123 if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType())
1124 return false;
1125
1126 VariadicCallType CallType;
1127 if (!Proto || !Proto->isVariadic()) {
1128 CallType = VariadicDoesNotApply;
1129 } else if (Ty->isBlockPointerType()) {
1130 CallType = VariadicBlock;
1131 } else { // Ty->isFunctionPointerType()
1132 CallType = VariadicFunction;
1133 }
1134 unsigned NumParams = Proto ? Proto->getNumParams() : 0;
1135
1136 checkCall(NDecl, llvm::makeArrayRef(TheCall->getArgs(),
1137 TheCall->getNumArgs()),
1138 NumParams, /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
1139 TheCall->getCallee()->getSourceRange(), CallType);
1140
1141 return false;
1142}
1143
1144/// Checks function calls when a FunctionDecl or a NamedDecl is not available,
1145/// such as function pointers returned from functions.
1146bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
1147 VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
1148 TheCall->getCallee());
1149 unsigned NumParams = Proto ? Proto->getNumParams() : 0;
1150
1151 checkCall(/*FDecl=*/nullptr,
1152 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
1153 NumParams, /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
1154 TheCall->getCallee()->getSourceRange(), CallType);
1155
1156 return false;
1157}
1158
1159static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
1160 if (Ordering < AtomicExpr::AO_ABI_memory_order_relaxed ||
1161 Ordering > AtomicExpr::AO_ABI_memory_order_seq_cst)
1162 return false;
1163
1164 switch (Op) {
1165 case AtomicExpr::AO__c11_atomic_init:
1166 llvm_unreachable("There is no ordering argument for an init");
1167
1168 case AtomicExpr::AO__c11_atomic_load:
1169 case AtomicExpr::AO__atomic_load_n:
1170 case AtomicExpr::AO__atomic_load:
1171 return Ordering != AtomicExpr::AO_ABI_memory_order_release &&
1172 Ordering != AtomicExpr::AO_ABI_memory_order_acq_rel;
1173
1174 case AtomicExpr::AO__c11_atomic_store:
1175 case AtomicExpr::AO__atomic_store:
1176 case AtomicExpr::AO__atomic_store_n:
1177 return Ordering != AtomicExpr::AO_ABI_memory_order_consume &&
1178 Ordering != AtomicExpr::AO_ABI_memory_order_acquire &&
1179 Ordering != AtomicExpr::AO_ABI_memory_order_acq_rel;
1180
1181 default:
1182 return true;
1183 }
1184}
1185
1186ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
1187 AtomicExpr::AtomicOp Op) {
1188 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
1189 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1190
1191 // All these operations take one of the following forms:
1192 enum {
1193 // C __c11_atomic_init(A *, C)
1194 Init,
1195 // C __c11_atomic_load(A *, int)
1196 Load,
1197 // void __atomic_load(A *, CP, int)
1198 Copy,
1199 // C __c11_atomic_add(A *, M, int)
1200 Arithmetic,
1201 // C __atomic_exchange_n(A *, CP, int)
1202 Xchg,
1203 // void __atomic_exchange(A *, C *, CP, int)
1204 GNUXchg,
1205 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
1206 C11CmpXchg,
1207 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
1208 GNUCmpXchg
1209 } Form = Init;
1210 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
1211 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
1212 // where:
1213 // C is an appropriate type,
1214 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
1215 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
1216 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and
1217 // the int parameters are for orderings.
1218
1219 assert(AtomicExpr::AO__c11_atomic_init == 0 &&
1220 AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
1221 && "need to update code for modified C11 atomics");
1222 bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
1223 Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
1224 bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
1225 Op == AtomicExpr::AO__atomic_store_n ||
1226 Op == AtomicExpr::AO__atomic_exchange_n ||
1227 Op == AtomicExpr::AO__atomic_compare_exchange_n;
1228 bool IsAddSub = false;
1229
1230 switch (Op) {
1231 case AtomicExpr::AO__c11_atomic_init:
1232 Form = Init;
1233 break;
1234
1235 case AtomicExpr::AO__c11_atomic_load:
1236 case AtomicExpr::AO__atomic_load_n:
1237 Form = Load;
1238 break;
1239
1240 case AtomicExpr::AO__c11_atomic_store:
1241 case AtomicExpr::AO__atomic_load:
1242 case AtomicExpr::AO__atomic_store:
1243 case AtomicExpr::AO__atomic_store_n:
1244 Form = Copy;
1245 break;
1246
1247 case AtomicExpr::AO__c11_atomic_fetch_add:
1248 case AtomicExpr::AO__c11_atomic_fetch_sub:
1249 case AtomicExpr::AO__atomic_fetch_add:
1250 case AtomicExpr::AO__atomic_fetch_sub:
1251 case AtomicExpr::AO__atomic_add_fetch:
1252 case AtomicExpr::AO__atomic_sub_fetch:
1253 IsAddSub = true;
1254 // Fall through.
1255 case AtomicExpr::AO__c11_atomic_fetch_and:
1256 case AtomicExpr::AO__c11_atomic_fetch_or:
1257 case AtomicExpr::AO__c11_atomic_fetch_xor:
1258 case AtomicExpr::AO__atomic_fetch_and:
1259 case AtomicExpr::AO__atomic_fetch_or:
1260 case AtomicExpr::AO__atomic_fetch_xor:
1261 case AtomicExpr::AO__atomic_fetch_nand:
1262 case AtomicExpr::AO__atomic_and_fetch:
1263 case AtomicExpr::AO__atomic_or_fetch:
1264 case AtomicExpr::AO__atomic_xor_fetch:
1265 case AtomicExpr::AO__atomic_nand_fetch:
1266 Form = Arithmetic;
1267 break;
1268
1269 case AtomicExpr::AO__c11_atomic_exchange:
1270 case AtomicExpr::AO__atomic_exchange_n:
1271 Form = Xchg;
1272 break;
1273
1274 case AtomicExpr::AO__atomic_exchange:
1275 Form = GNUXchg;
1276 break;
1277
1278 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
1279 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
1280 Form = C11CmpXchg;
1281 break;
1282
1283 case AtomicExpr::AO__atomic_compare_exchange:
1284 case AtomicExpr::AO__atomic_compare_exchange_n:
1285 Form = GNUCmpXchg;
1286 break;
1287 }
1288
1289 // Check we have the right number of arguments.
1290 if (TheCall->getNumArgs() < NumArgs[Form]) {
1291 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1292 << 0 << NumArgs[Form] << TheCall->getNumArgs()
1293 << TheCall->getCallee()->getSourceRange();
1294 return ExprError();
1295 } else if (TheCall->getNumArgs() > NumArgs[Form]) {
1296 Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
1297 diag::err_typecheck_call_too_many_args)
1298 << 0 << NumArgs[Form] << TheCall->getNumArgs()
1299 << TheCall->getCallee()->getSourceRange();
1300 return ExprError();
1301 }
1302
1303 // Inspect the first argument of the atomic operation.
1304 Expr *Ptr = TheCall->getArg(0);
1305 Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
1306 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
1307 if (!pointerType) {
1308 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1309 << Ptr->getType() << Ptr->getSourceRange();
1310 return ExprError();
1311 }
1312
1313 // For a __c11 builtin, this should be a pointer to an _Atomic type.
1314 QualType AtomTy = pointerType->getPointeeType(); // 'A'
1315 QualType ValType = AtomTy; // 'C'
1316 if (IsC11) {
1317 if (!AtomTy->isAtomicType()) {
1318 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
1319 << Ptr->getType() << Ptr->getSourceRange();
1320 return ExprError();
1321 }
1322 if (AtomTy.isConstQualified()) {
1323 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
1324 << Ptr->getType() << Ptr->getSourceRange();
1325 return ExprError();
1326 }
1327 ValType = AtomTy->getAs<AtomicType>()->getValueType();
1328 }
1329
1330 // For an arithmetic operation, the implied arithmetic must be well-formed.
1331 if (Form == Arithmetic) {
1332 // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
1333 if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
1334 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1335 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1336 return ExprError();
1337 }
1338 if (!IsAddSub && !ValType->isIntegerType()) {
1339 Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
1340 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1341 return ExprError();
1342 }
1343 if (IsC11 && ValType->isPointerType() &&
1344 RequireCompleteType(Ptr->getLocStart(), ValType->getPointeeType(),
1345 diag::err_incomplete_type)) {
1346 return ExprError();
1347 }
1348 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
1349 // For __atomic_*_n operations, the value type must be a scalar integral or
1350 // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
1351 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1352 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1353 return ExprError();
1354 }
1355
1356 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
1357 !AtomTy->isScalarType()) {
1358 // For GNU atomics, require a trivially-copyable type. This is not part of
1359 // the GNU atomics specification, but we enforce it for sanity.
1360 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
1361 << Ptr->getType() << Ptr->getSourceRange();
1362 return ExprError();
1363 }
1364
1365 // FIXME: For any builtin other than a load, the ValType must not be
1366 // const-qualified.
1367
1368 switch (ValType.getObjCLifetime()) {
1369 case Qualifiers::OCL_None:
1370 case Qualifiers::OCL_ExplicitNone:
1371 // okay
1372 break;
1373
1374 case Qualifiers::OCL_Weak:
1375 case Qualifiers::OCL_Strong:
1376 case Qualifiers::OCL_Autoreleasing:
1377 // FIXME: Can this happen? By this point, ValType should be known
1378 // to be trivially copyable.
1379 Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1380 << ValType << Ptr->getSourceRange();
1381 return ExprError();
1382 }
1383
1384 QualType ResultType = ValType;
1385 if (Form == Copy || Form == GNUXchg || Form == Init)
1386 ResultType = Context.VoidTy;
1387 else if (Form == C11CmpXchg || Form == GNUCmpXchg)
1388 ResultType = Context.BoolTy;
1389
1390 // The type of a parameter passed 'by value'. In the GNU atomics, such
1391 // arguments are actually passed as pointers.
1392 QualType ByValType = ValType; // 'CP'
1393 if (!IsC11 && !IsN)
1394 ByValType = Ptr->getType();
1395
1396 // The first argument --- the pointer --- has a fixed type; we
1397 // deduce the types of the rest of the arguments accordingly. Walk
1398 // the remaining arguments, converting them to the deduced value type.
1399 for (unsigned i = 1; i != NumArgs[Form]; ++i) {
1400 QualType Ty;
1401 if (i < NumVals[Form] + 1) {
1402 switch (i) {
1403 case 1:
1404 // The second argument is the non-atomic operand. For arithmetic, this
1405 // is always passed by value, and for a compare_exchange it is always
1406 // passed by address. For the rest, GNU uses by-address and C11 uses
1407 // by-value.
1408 assert(Form != Load);
1409 if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
1410 Ty = ValType;
1411 else if (Form == Copy || Form == Xchg)
1412 Ty = ByValType;
1413 else if (Form == Arithmetic)
1414 Ty = Context.getPointerDiffType();
1415 else
1416 Ty = Context.getPointerType(ValType.getUnqualifiedType());
1417 break;
1418 case 2:
1419 // The third argument to compare_exchange / GNU exchange is a
1420 // (pointer to a) desired value.
1421 Ty = ByValType;
1422 break;
1423 case 3:
1424 // The fourth argument to GNU compare_exchange is a 'weak' flag.
1425 Ty = Context.BoolTy;
1426 break;
1427 }
1428 } else {
1429 // The order(s) are always converted to int.
1430 Ty = Context.IntTy;
1431 }
1432
1433 InitializedEntity Entity =
1434 InitializedEntity::InitializeParameter(Context, Ty, false);
1435 ExprResult Arg = TheCall->getArg(i);
1436 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1437 if (Arg.isInvalid())
1438 return true;
1439 TheCall->setArg(i, Arg.get());
1440 }
1441
1442 // Permute the arguments into a 'consistent' order.
1443 SmallVector<Expr*, 5> SubExprs;
1444 SubExprs.push_back(Ptr);
1445 switch (Form) {
1446 case Init:
1447 // Note, AtomicExpr::getVal1() has a special case for this atomic.
1448 SubExprs.push_back(TheCall->getArg(1)); // Val1
1449 break;
1450 case Load:
1451 SubExprs.push_back(TheCall->getArg(1)); // Order
1452 break;
1453 case Copy:
1454 case Arithmetic:
1455 case Xchg:
1456 SubExprs.push_back(TheCall->getArg(2)); // Order
1457 SubExprs.push_back(TheCall->getArg(1)); // Val1
1458 break;
1459 case GNUXchg:
1460 // Note, AtomicExpr::getVal2() has a special case for this atomic.
1461 SubExprs.push_back(TheCall->getArg(3)); // Order
1462 SubExprs.push_back(TheCall->getArg(1)); // Val1
1463 SubExprs.push_back(TheCall->getArg(2)); // Val2
1464 break;
1465 case C11CmpXchg:
1466 SubExprs.push_back(TheCall->getArg(3)); // Order
1467 SubExprs.push_back(TheCall->getArg(1)); // Val1
1468 SubExprs.push_back(TheCall->getArg(4)); // OrderFail
1469 SubExprs.push_back(TheCall->getArg(2)); // Val2
1470 break;
1471 case GNUCmpXchg:
1472 SubExprs.push_back(TheCall->getArg(4)); // Order
1473 SubExprs.push_back(TheCall->getArg(1)); // Val1
1474 SubExprs.push_back(TheCall->getArg(5)); // OrderFail
1475 SubExprs.push_back(TheCall->getArg(2)); // Val2
1476 SubExprs.push_back(TheCall->getArg(3)); // Weak
1477 break;
1478 }
1479
1480 if (SubExprs.size() >= 2 && Form != Init) {
1481 llvm::APSInt Result(32);
1482 if (SubExprs[1]->isIntegerConstantExpr(Result, Context) &&
1483 !isValidOrderingForOp(Result.getSExtValue(), Op))
1484 Diag(SubExprs[1]->getLocStart(),
1485 diag::warn_atomic_op_has_invalid_memory_order)
1486 << SubExprs[1]->getSourceRange();
1487 }
1488
1489 AtomicExpr *AE = new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
1490 SubExprs, ResultType, Op,
1491 TheCall->getRParenLoc());
1492
1493 if ((Op == AtomicExpr::AO__c11_atomic_load ||
1494 (Op == AtomicExpr::AO__c11_atomic_store)) &&
1495 Context.AtomicUsesUnsupportedLibcall(AE))
1496 Diag(AE->getLocStart(), diag::err_atomic_load_store_uses_lib) <<
1497 ((Op == AtomicExpr::AO__c11_atomic_load) ? 0 : 1);
1498
1499 return AE;
1500}
1501
1502
1503/// checkBuiltinArgument - Given a call to a builtin function, perform
1504/// normal type-checking on the given argument, updating the call in
1505/// place. This is useful when a builtin function requires custom
1506/// type-checking for some of its arguments but not necessarily all of
1507/// them.
1508///
1509/// Returns true on error.
1510static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
1511 FunctionDecl *Fn = E->getDirectCallee();
1512 assert(Fn && "builtin call without direct callee!");
1513
1514 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
1515 InitializedEntity Entity =
1516 InitializedEntity::InitializeParameter(S.Context, Param);
1517
1518 ExprResult Arg = E->getArg(0);
1519 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
1520 if (Arg.isInvalid())
1521 return true;
1522
1523 E->setArg(ArgIndex, Arg.get());
1524 return false;
1525}
1526
1527/// SemaBuiltinAtomicOverloaded - We have a call to a function like
1528/// __sync_fetch_and_add, which is an overloaded function based on the pointer
1529/// type of its first argument. The main ActOnCallExpr routines have already
1530/// promoted the types of arguments because all of these calls are prototyped as
1531/// void(...).
1532///
1533/// This function goes through and does final semantic checking for these
1534/// builtins,
1535ExprResult
1536Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
1537 CallExpr *TheCall = (CallExpr *)TheCallResult.get();
1538 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1539 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1540
1541 // Ensure that we have at least one argument to do type inference from.
1542 if (TheCall->getNumArgs() < 1) {
1543 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1544 << 0 << 1 << TheCall->getNumArgs()
1545 << TheCall->getCallee()->getSourceRange();
1546 return ExprError();
1547 }
1548
1549 // Inspect the first argument of the atomic builtin. This should always be
1550 // a pointer type, whose element is an integral scalar or pointer type.
1551 // Because it is a pointer type, we don't have to worry about any implicit
1552 // casts here.
1553 // FIXME: We don't allow floating point scalars as input.
1554 Expr *FirstArg = TheCall->getArg(0);
1555 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
1556 if (FirstArgResult.isInvalid())
1557 return ExprError();
1558 FirstArg = FirstArgResult.get();
1559 TheCall->setArg(0, FirstArg);
1560
1561 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
1562 if (!pointerType) {
1563 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1564 << FirstArg->getType() << FirstArg->getSourceRange();
1565 return ExprError();
1566 }
1567
1568 QualType ValType = pointerType->getPointeeType();
1569 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
1570 !ValType->isBlockPointerType()) {
1571 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
1572 << FirstArg->getType() << FirstArg->getSourceRange();
1573 return ExprError();
1574 }
1575
1576 switch (ValType.getObjCLifetime()) {
1577 case Qualifiers::OCL_None:
1578 case Qualifiers::OCL_ExplicitNone:
1579 // okay
1580 break;
1581
1582 case Qualifiers::OCL_Weak:
1583 case Qualifiers::OCL_Strong:
1584 case Qualifiers::OCL_Autoreleasing:
1585 Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1586 << ValType << FirstArg->getSourceRange();
1587 return ExprError();
1588 }
1589
1590 // Strip any qualifiers off ValType.
1591 ValType = ValType.getUnqualifiedType();
1592
1593 // The majority of builtins return a value, but a few have special return
1594 // types, so allow them to override appropriately below.
1595 QualType ResultType = ValType;
1596
1597 // We need to figure out which concrete builtin this maps onto. For example,
1598 // __sync_fetch_and_add with a 2 byte object turns into
1599 // __sync_fetch_and_add_2.
1600#define BUILTIN_ROW(x) \
1601 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1602 Builtin::BI##x##_8, Builtin::BI##x##_16 }
1603
1604 static const unsigned BuiltinIndices[][5] = {
1605 BUILTIN_ROW(__sync_fetch_and_add),
1606 BUILTIN_ROW(__sync_fetch_and_sub),
1607 BUILTIN_ROW(__sync_fetch_and_or),
1608 BUILTIN_ROW(__sync_fetch_and_and),
1609 BUILTIN_ROW(__sync_fetch_and_xor),
1610 BUILTIN_ROW(__sync_fetch_and_nand),
1611
1612 BUILTIN_ROW(__sync_add_and_fetch),
1613 BUILTIN_ROW(__sync_sub_and_fetch),
1614 BUILTIN_ROW(__sync_and_and_fetch),
1615 BUILTIN_ROW(__sync_or_and_fetch),
1616 BUILTIN_ROW(__sync_xor_and_fetch),
1617 BUILTIN_ROW(__sync_nand_and_fetch),
1618
1619 BUILTIN_ROW(__sync_val_compare_and_swap),
1620 BUILTIN_ROW(__sync_bool_compare_and_swap),
1621 BUILTIN_ROW(__sync_lock_test_and_set),
1622 BUILTIN_ROW(__sync_lock_release),
1623 BUILTIN_ROW(__sync_swap)
1624 };
1625#undef BUILTIN_ROW
1626
1627 // Determine the index of the size.
1628 unsigned SizeIndex;
1629 switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1630 case 1: SizeIndex = 0; break;
1631 case 2: SizeIndex = 1; break;
1632 case 4: SizeIndex = 2; break;
1633 case 8: SizeIndex = 3; break;
1634 case 16: SizeIndex = 4; break;
1635 default:
1636 Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1637 << FirstArg->getType() << FirstArg->getSourceRange();
1638 return ExprError();
1639 }
1640
1641 // Each of these builtins has one pointer argument, followed by some number of
1642 // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1643 // that we ignore. Find out which row of BuiltinIndices to read from as well
1644 // as the number of fixed args.
1645 unsigned BuiltinID = FDecl->getBuiltinID();
1646 unsigned BuiltinIndex, NumFixed = 1;
1647 bool WarnAboutSemanticsChange = false;
1648 switch (BuiltinID) {
1649 default: llvm_unreachable("Unknown overloaded atomic builtin!");
1650 case Builtin::BI__sync_fetch_and_add:
1651 case Builtin::BI__sync_fetch_and_add_1:
1652 case Builtin::BI__sync_fetch_and_add_2:
1653 case Builtin::BI__sync_fetch_and_add_4:
1654 case Builtin::BI__sync_fetch_and_add_8:
1655 case Builtin::BI__sync_fetch_and_add_16:
1656 BuiltinIndex = 0;
1657 break;
1658
1659 case Builtin::BI__sync_fetch_and_sub:
1660 case Builtin::BI__sync_fetch_and_sub_1:
1661 case Builtin::BI__sync_fetch_and_sub_2:
1662 case Builtin::BI__sync_fetch_and_sub_4:
1663 case Builtin::BI__sync_fetch_and_sub_8:
1664 case Builtin::BI__sync_fetch_and_sub_16:
1665 BuiltinIndex = 1;
1666 break;
1667
1668 case Builtin::BI__sync_fetch_and_or:
1669 case Builtin::BI__sync_fetch_and_or_1:
1670 case Builtin::BI__sync_fetch_and_or_2:
1671 case Builtin::BI__sync_fetch_and_or_4:
1672 case Builtin::BI__sync_fetch_and_or_8:
1673 case Builtin::BI__sync_fetch_and_or_16:
1674 BuiltinIndex = 2;
1675 break;
1676
1677 case Builtin::BI__sync_fetch_and_and:
1678 case Builtin::BI__sync_fetch_and_and_1:
1679 case Builtin::BI__sync_fetch_and_and_2:
1680 case Builtin::BI__sync_fetch_and_and_4:
1681 case Builtin::BI__sync_fetch_and_and_8:
1682 case Builtin::BI__sync_fetch_and_and_16:
1683 BuiltinIndex = 3;
1684 break;
1685
1686 case Builtin::BI__sync_fetch_and_xor:
1687 case Builtin::BI__sync_fetch_and_xor_1:
1688 case Builtin::BI__sync_fetch_and_xor_2:
1689 case Builtin::BI__sync_fetch_and_xor_4:
1690 case Builtin::BI__sync_fetch_and_xor_8:
1691 case Builtin::BI__sync_fetch_and_xor_16:
1692 BuiltinIndex = 4;
1693 break;
1694
1695 case Builtin::BI__sync_fetch_and_nand:
1696 case Builtin::BI__sync_fetch_and_nand_1:
1697 case Builtin::BI__sync_fetch_and_nand_2:
1698 case Builtin::BI__sync_fetch_and_nand_4:
1699 case Builtin::BI__sync_fetch_and_nand_8:
1700 case Builtin::BI__sync_fetch_and_nand_16:
1701 BuiltinIndex = 5;
1702 WarnAboutSemanticsChange = true;
1703 break;
1704
1705 case Builtin::BI__sync_add_and_fetch:
1706 case Builtin::BI__sync_add_and_fetch_1:
1707 case Builtin::BI__sync_add_and_fetch_2:
1708 case Builtin::BI__sync_add_and_fetch_4:
1709 case Builtin::BI__sync_add_and_fetch_8:
1710 case Builtin::BI__sync_add_and_fetch_16:
1711 BuiltinIndex = 6;
1712 break;
1713
1714 case Builtin::BI__sync_sub_and_fetch:
1715 case Builtin::BI__sync_sub_and_fetch_1:
1716 case Builtin::BI__sync_sub_and_fetch_2:
1717 case Builtin::BI__sync_sub_and_fetch_4:
1718 case Builtin::BI__sync_sub_and_fetch_8:
1719 case Builtin::BI__sync_sub_and_fetch_16:
1720 BuiltinIndex = 7;
1721 break;
1722
1723 case Builtin::BI__sync_and_and_fetch:
1724 case Builtin::BI__sync_and_and_fetch_1:
1725 case Builtin::BI__sync_and_and_fetch_2:
1726 case Builtin::BI__sync_and_and_fetch_4:
1727 case Builtin::BI__sync_and_and_fetch_8:
1728 case Builtin::BI__sync_and_and_fetch_16:
1729 BuiltinIndex = 8;
1730 break;
1731
1732 case Builtin::BI__sync_or_and_fetch:
1733 case Builtin::BI__sync_or_and_fetch_1:
1734 case Builtin::BI__sync_or_and_fetch_2:
1735 case Builtin::BI__sync_or_and_fetch_4:
1736 case Builtin::BI__sync_or_and_fetch_8:
1737 case Builtin::BI__sync_or_and_fetch_16:
1738 BuiltinIndex = 9;
1739 break;
1740
1741 case Builtin::BI__sync_xor_and_fetch:
1742 case Builtin::BI__sync_xor_and_fetch_1:
1743 case Builtin::BI__sync_xor_and_fetch_2:
1744 case Builtin::BI__sync_xor_and_fetch_4:
1745 case Builtin::BI__sync_xor_and_fetch_8:
1746 case Builtin::BI__sync_xor_and_fetch_16:
1747 BuiltinIndex = 10;
1748 break;
1749
1750 case Builtin::BI__sync_nand_and_fetch:
1751 case Builtin::BI__sync_nand_and_fetch_1:
1752 case Builtin::BI__sync_nand_and_fetch_2:
1753 case Builtin::BI__sync_nand_and_fetch_4:
1754 case Builtin::BI__sync_nand_and_fetch_8:
1755 case Builtin::BI__sync_nand_and_fetch_16:
1756 BuiltinIndex = 11;
1757 WarnAboutSemanticsChange = true;
1758 break;
1759
1760 case Builtin::BI__sync_val_compare_and_swap:
1761 case Builtin::BI__sync_val_compare_and_swap_1:
1762 case Builtin::BI__sync_val_compare_and_swap_2:
1763 case Builtin::BI__sync_val_compare_and_swap_4:
1764 case Builtin::BI__sync_val_compare_and_swap_8:
1765 case Builtin::BI__sync_val_compare_and_swap_16:
1766 BuiltinIndex = 12;
1767 NumFixed = 2;
1768 break;
1769
1770 case Builtin::BI__sync_bool_compare_and_swap:
1771 case Builtin::BI__sync_bool_compare_and_swap_1:
1772 case Builtin::BI__sync_bool_compare_and_swap_2:
1773 case Builtin::BI__sync_bool_compare_and_swap_4:
1774 case Builtin::BI__sync_bool_compare_and_swap_8:
1775 case Builtin::BI__sync_bool_compare_and_swap_16:
1776 BuiltinIndex = 13;
1777 NumFixed = 2;
1778 ResultType = Context.BoolTy;
1779 break;
1780
1781 case Builtin::BI__sync_lock_test_and_set:
1782 case Builtin::BI__sync_lock_test_and_set_1:
1783 case Builtin::BI__sync_lock_test_and_set_2:
1784 case Builtin::BI__sync_lock_test_and_set_4:
1785 case Builtin::BI__sync_lock_test_and_set_8:
1786 case Builtin::BI__sync_lock_test_and_set_16:
1787 BuiltinIndex = 14;
1788 break;
1789
1790 case Builtin::BI__sync_lock_release:
1791 case Builtin::BI__sync_lock_release_1:
1792 case Builtin::BI__sync_lock_release_2:
1793 case Builtin::BI__sync_lock_release_4:
1794 case Builtin::BI__sync_lock_release_8:
1795 case Builtin::BI__sync_lock_release_16:
1796 BuiltinIndex = 15;
1797 NumFixed = 0;
1798 ResultType = Context.VoidTy;
1799 break;
1800
1801 case Builtin::BI__sync_swap:
1802 case Builtin::BI__sync_swap_1:
1803 case Builtin::BI__sync_swap_2:
1804 case Builtin::BI__sync_swap_4:
1805 case Builtin::BI__sync_swap_8:
1806 case Builtin::BI__sync_swap_16:
1807 BuiltinIndex = 16;
1808 break;
1809 }
1810
1811 // Now that we know how many fixed arguments we expect, first check that we
1812 // have at least that many.
1813 if (TheCall->getNumArgs() < 1+NumFixed) {
1814 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1815 << 0 << 1+NumFixed << TheCall->getNumArgs()
1816 << TheCall->getCallee()->getSourceRange();
1817 return ExprError();
1818 }
1819
1820 if (WarnAboutSemanticsChange) {
1821 Diag(TheCall->getLocEnd(), diag::warn_sync_fetch_and_nand_semantics_change)
1822 << TheCall->getCallee()->getSourceRange();
1823 }
1824
1825 // Get the decl for the concrete builtin from this, we can tell what the
1826 // concrete integer type we should convert to is.
1827 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1828 const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1829 FunctionDecl *NewBuiltinDecl;
1830 if (NewBuiltinID == BuiltinID)
1831 NewBuiltinDecl = FDecl;
1832 else {
1833 // Perform builtin lookup to avoid redeclaring it.
1834 DeclarationName DN(&Context.Idents.get(NewBuiltinName));
1835 LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
1836 LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
1837 assert(Res.getFoundDecl());
1838 NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
1839 if (!NewBuiltinDecl)
1840 return ExprError();
1841 }
1842
1843 // The first argument --- the pointer --- has a fixed type; we
1844 // deduce the types of the rest of the arguments accordingly. Walk
1845 // the remaining arguments, converting them to the deduced value type.
1846 for (unsigned i = 0; i != NumFixed; ++i) {
1847 ExprResult Arg = TheCall->getArg(i+1);
1848
1849 // GCC does an implicit conversion to the pointer or integer ValType. This
1850 // can fail in some cases (1i -> int**), check for this error case now.
1851 // Initialize the argument.
1852 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1853 ValType, /*consume*/ false);
1854 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1855 if (Arg.isInvalid())
1856 return ExprError();
1857
1858 // Okay, we have something that *can* be converted to the right type. Check
1859 // to see if there is a potentially weird extension going on here. This can
1860 // happen when you do an atomic operation on something like an char* and
1861 // pass in 42. The 42 gets converted to char. This is even more strange
1862 // for things like 45.123 -> char, etc.
1863 // FIXME: Do this check.
1864 TheCall->setArg(i+1, Arg.get());
1865 }
1866
1867 ASTContext& Context = this->getASTContext();
1868
1869 // Create a new DeclRefExpr to refer to the new decl.
1870 DeclRefExpr* NewDRE = DeclRefExpr::Create(
1871 Context,
1872 DRE->getQualifierLoc(),
1873 SourceLocation(),
1874 NewBuiltinDecl,
1875 /*enclosing*/ false,
1876 DRE->getLocation(),
1877 Context.BuiltinFnTy,
1878 DRE->getValueKind());
1879
1880 // Set the callee in the CallExpr.
1881 // FIXME: This loses syntactic information.
1882 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
1883 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
1884 CK_BuiltinFnToFnPtr);
1885 TheCall->setCallee(PromotedCall.get());
1886
1887 // Change the result type of the call to match the original value type. This
1888 // is arbitrary, but the codegen for these builtins ins design to handle it
1889 // gracefully.
1890 TheCall->setType(ResultType);
1891
1892 return TheCallResult;
1893}
1894
1895/// CheckObjCString - Checks that the argument to the builtin
1896/// CFString constructor is correct
1897/// Note: It might also make sense to do the UTF-16 conversion here (would
1898/// simplify the backend).
1899bool Sema::CheckObjCString(Expr *Arg) {
1900 Arg = Arg->IgnoreParenCasts();
1901 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1902
1903 if (!Literal || !Literal->isAscii()) {
1904 Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1905 << Arg->getSourceRange();
1906 return true;
1907 }
1908
1909 if (Literal->containsNonAsciiOrNull()) {
1910 StringRef String = Literal->getString();
1911 unsigned NumBytes = String.size();
1912 SmallVector<UTF16, 128> ToBuf(NumBytes);
1913 const UTF8 *FromPtr = (const UTF8 *)String.data();
1914 UTF16 *ToPtr = &ToBuf[0];
1915
1916 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1917 &ToPtr, ToPtr + NumBytes,
1918 strictConversion);
1919 // Check for conversion failure.
1920 if (Result != conversionOK)
1921 Diag(Arg->getLocStart(),
1922 diag::warn_cfstring_truncated) << Arg->getSourceRange();
1923 }
1924 return false;
1925}
1926
1927/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1928/// Emit an error and return true on failure, return false on success.
1929bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1930 Expr *Fn = TheCall->getCallee();
1931 if (TheCall->getNumArgs() > 2) {
1932 Diag(TheCall->getArg(2)->getLocStart(),
1933 diag::err_typecheck_call_too_many_args)
1934 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1935 << Fn->getSourceRange()
1936 << SourceRange(TheCall->getArg(2)->getLocStart(),
1937 (*(TheCall->arg_end()-1))->getLocEnd());
1938 return true;
1939 }
1940
1941 if (TheCall->getNumArgs() < 2) {
1942 return Diag(TheCall->getLocEnd(),
1943 diag::err_typecheck_call_too_few_args_at_least)
1944 << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1945 }
1946
1947 // Type-check the first argument normally.
1948 if (checkBuiltinArgument(*this, TheCall, 0))
1949 return true;
1950
1951 // Determine whether the current function is variadic or not.
1952 BlockScopeInfo *CurBlock = getCurBlock();
1953 bool isVariadic;
1954 if (CurBlock)
1955 isVariadic = CurBlock->TheDecl->isVariadic();
1956 else if (FunctionDecl *FD = getCurFunctionDecl())
1957 isVariadic = FD->isVariadic();
1958 else
1959 isVariadic = getCurMethodDecl()->isVariadic();
1960
1961 if (!isVariadic) {
1962 Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1963 return true;
1964 }
1965
1966 // Verify that the second argument to the builtin is the last argument of the
1967 // current function or method.
1968 bool SecondArgIsLastNamedArgument = false;
1969 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1970
1971 // These are valid if SecondArgIsLastNamedArgument is false after the next
1972 // block.
1973 QualType Type;
1974 SourceLocation ParamLoc;
1975
1976 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1977 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1978 // FIXME: This isn't correct for methods (results in bogus warning).
1979 // Get the last formal in the current function.
1980 const ParmVarDecl *LastArg;
1981 if (CurBlock)
1982 LastArg = *(CurBlock->TheDecl->param_end()-1);
1983 else if (FunctionDecl *FD = getCurFunctionDecl())
1984 LastArg = *(FD->param_end()-1);
1985 else
1986 LastArg = *(getCurMethodDecl()->param_end()-1);
1987 SecondArgIsLastNamedArgument = PV == LastArg;
1988
1989 Type = PV->getType();
1990 ParamLoc = PV->getLocation();
1991 }
1992 }
1993
1994 if (!SecondArgIsLastNamedArgument)
1995 Diag(TheCall->getArg(1)->getLocStart(),
1996 diag::warn_second_parameter_of_va_start_not_last_named_argument);
1997 else if (Type->isReferenceType()) {
1998 Diag(Arg->getLocStart(),
1999 diag::warn_va_start_of_reference_type_is_undefined);
2000 Diag(ParamLoc, diag::note_parameter_type) << Type;
2001 }
2002
2003 TheCall->setType(Context.VoidTy);
2004 return false;
2005}
2006
2007bool Sema::SemaBuiltinVAStartARM(CallExpr *Call) {
2008 // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
2009 // const char *named_addr);
2010
2011 Expr *Func = Call->getCallee();
2012
2013 if (Call->getNumArgs() < 3)
2014 return Diag(Call->getLocEnd(),
2015 diag::err_typecheck_call_too_few_args_at_least)
2016 << 0 /*function call*/ << 3 << Call->getNumArgs();
2017
2018 // Determine whether the current function is variadic or not.
2019 bool IsVariadic;
2020 if (BlockScopeInfo *CurBlock = getCurBlock())
2021 IsVariadic = CurBlock->TheDecl->isVariadic();
2022 else if (FunctionDecl *FD = getCurFunctionDecl())
2023 IsVariadic = FD->isVariadic();
2024 else if (ObjCMethodDecl *MD = getCurMethodDecl())
2025 IsVariadic = MD->isVariadic();
2026 else
2027 llvm_unreachable("unexpected statement type");
2028
2029 if (!IsVariadic) {
2030 Diag(Func->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
2031 return true;
2032 }
2033
2034 // Type-check the first argument normally.
2035 if (checkBuiltinArgument(*this, Call, 0))
2036 return true;
2037
2038 static const struct {
2039 unsigned ArgNo;
2040 QualType Type;
2041 } ArgumentTypes[] = {
2042 { 1, Context.getPointerType(Context.CharTy.withConst()) },
2043 { 2, Context.getSizeType() },
2044 };
2045
2046 for (const auto &AT : ArgumentTypes) {
2047 const Expr *Arg = Call->getArg(AT.ArgNo)->IgnoreParens();
2048 if (Arg->getType().getCanonicalType() == AT.Type.getCanonicalType())
2049 continue;
2050 Diag(Arg->getLocStart(), diag::err_typecheck_convert_incompatible)
2051 << Arg->getType() << AT.Type << 1 /* different class */
2052 << 0 /* qualifier difference */ << 3 /* parameter mismatch */
2053 << AT.ArgNo + 1 << Arg->getType() << AT.Type;
2054 }
2055
2056 return false;
2057}
2058
2059/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
2060/// friends. This is declared to take (...), so we have to check everything.
2061bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
2062 if (TheCall->getNumArgs() < 2)
2063 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
2064 << 0 << 2 << TheCall->getNumArgs()/*function call*/;
2065 if (TheCall->getNumArgs() > 2)
2066 return Diag(TheCall->getArg(2)->getLocStart(),
2067 diag::err_typecheck_call_too_many_args)
2068 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
2069 << SourceRange(TheCall->getArg(2)->getLocStart(),
2070 (*(TheCall->arg_end()-1))->getLocEnd());
2071
2072 ExprResult OrigArg0 = TheCall->getArg(0);
2073 ExprResult OrigArg1 = TheCall->getArg(1);
2074
2075 // Do standard promotions between the two arguments, returning their common
2076 // type.
2077 QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
2078 if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
2079 return true;
2080
2081 // Make sure any conversions are pushed back into the call; this is
2082 // type safe since unordered compare builtins are declared as "_Bool
2083 // foo(...)".
2084 TheCall->setArg(0, OrigArg0.get());
2085 TheCall->setArg(1, OrigArg1.get());
2086
2087 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
2088 return false;
2089
2090 // If the common type isn't a real floating type, then the arguments were
2091 // invalid for this operation.
2092 if (Res.isNull() || !Res->isRealFloatingType())
2093 return Diag(OrigArg0.get()->getLocStart(),
2094 diag::err_typecheck_call_invalid_ordered_compare)
2095 << OrigArg0.get()->getType() << OrigArg1.get()->getType()
2096 << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
2097
2098 return false;
2099}
2100
2101/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
2102/// __builtin_isnan and friends. This is declared to take (...), so we have
2103/// to check everything. We expect the last argument to be a floating point
2104/// value.
2105bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
2106 if (TheCall->getNumArgs() < NumArgs)
2107 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
2108 << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
2109 if (TheCall->getNumArgs() > NumArgs)
2110 return Diag(TheCall->getArg(NumArgs)->getLocStart(),
2111 diag::err_typecheck_call_too_many_args)
2112 << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
2113 << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
2114 (*(TheCall->arg_end()-1))->getLocEnd());
2115
2116 Expr *OrigArg = TheCall->getArg(NumArgs-1);
2117
2118 if (OrigArg->isTypeDependent())
2119 return false;
2120
2121 // This operation requires a non-_Complex floating-point number.
2122 if (!OrigArg->getType()->isRealFloatingType())
2123 return Diag(OrigArg->getLocStart(),
2124 diag::err_typecheck_call_invalid_unary_fp)
2125 << OrigArg->getType() << OrigArg->getSourceRange();
2126
2127 // If this is an implicit conversion from float -> double, remove it.
2128 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
2129 Expr *CastArg = Cast->getSubExpr();
2130 if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
2131 assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
2132 "promotion from float to double is the only expected cast here");
2133 Cast->setSubExpr(nullptr);
2134 TheCall->setArg(NumArgs-1, CastArg);
2135 }
2136 }
2137
2138 return false;
2139}
2140
2141/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
2142// This is declared to take (...), so we have to check everything.
2143ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
2144 if (TheCall->getNumArgs() < 2)
2145 return ExprError(Diag(TheCall->getLocEnd(),
2146 diag::err_typecheck_call_too_few_args_at_least)
2147 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
2148 << TheCall->getSourceRange());
2149
2150 // Determine which of the following types of shufflevector we're checking:
2151 // 1) unary, vector mask: (lhs, mask)
2152 // 2) binary, vector mask: (lhs, rhs, mask)
2153 // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
2154 QualType resType = TheCall->getArg(0)->getType();
2155 unsigned numElements = 0;
2156
2157 if (!TheCall->getArg(0)->isTypeDependent() &&
2158 !TheCall->getArg(1)->isTypeDependent()) {
2159 QualType LHSType = TheCall->getArg(0)->getType();
2160 QualType RHSType = TheCall->getArg(1)->getType();
2161
2162 if (!LHSType->isVectorType() || !RHSType->isVectorType())
2163 return ExprError(Diag(TheCall->getLocStart(),
2164 diag::err_shufflevector_non_vector)
2165 << SourceRange(TheCall->getArg(0)->getLocStart(),
2166 TheCall->getArg(1)->getLocEnd()));
2167
2168 numElements = LHSType->getAs<VectorType>()->getNumElements();
2169 unsigned numResElements = TheCall->getNumArgs() - 2;
2170
2171 // Check to see if we have a call with 2 vector arguments, the unary shuffle
2172 // with mask. If so, verify that RHS is an integer vector type with the
2173 // same number of elts as lhs.
2174 if (TheCall->getNumArgs() == 2) {
2175 if (!RHSType->hasIntegerRepresentation() ||
2176 RHSType->getAs<VectorType>()->getNumElements() != numElements)
2177 return ExprError(Diag(TheCall->getLocStart(),
2178 diag::err_shufflevector_incompatible_vector)
2179 << SourceRange(TheCall->getArg(1)->getLocStart(),
2180 TheCall->getArg(1)->getLocEnd()));
2181 } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
2182 return ExprError(Diag(TheCall->getLocStart(),
2183 diag::err_shufflevector_incompatible_vector)
2184 << SourceRange(TheCall->getArg(0)->getLocStart(),
2185 TheCall->getArg(1)->getLocEnd()));
2186 } else if (numElements != numResElements) {
2187 QualType eltType = LHSType->getAs<VectorType>()->getElementType();
2188 resType = Context.getVectorType(eltType, numResElements,
2189 VectorType::GenericVector);
2190 }
2191 }
2192
2193 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
2194 if (TheCall->getArg(i)->isTypeDependent() ||
2195 TheCall->getArg(i)->isValueDependent())
2196 continue;
2197
2198 llvm::APSInt Result(32);
2199 if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
2200 return ExprError(Diag(TheCall->getLocStart(),
2201 diag::err_shufflevector_nonconstant_argument)
2202 << TheCall->getArg(i)->getSourceRange());
2203
2204 // Allow -1 which will be translated to undef in the IR.
2205 if (Result.isSigned() && Result.isAllOnesValue())
2206 continue;
2207
2208 if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
2209 return ExprError(Diag(TheCall->getLocStart(),
2210 diag::err_shufflevector_argument_too_large)
2211 << TheCall->getArg(i)->getSourceRange());
2212 }
2213
2214 SmallVector<Expr*, 32> exprs;
2215
2216 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
2217 exprs.push_back(TheCall->getArg(i));
2218 TheCall->setArg(i, nullptr);
2219 }
2220
2221 return new (Context) ShuffleVectorExpr(Context, exprs, resType,
2222 TheCall->getCallee()->getLocStart(),
2223 TheCall->getRParenLoc());
2224}
2225
2226/// SemaConvertVectorExpr - Handle __builtin_convertvector
2227ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
2228 SourceLocation BuiltinLoc,
2229 SourceLocation RParenLoc) {
2230 ExprValueKind VK = VK_RValue;
2231 ExprObjectKind OK = OK_Ordinary;
2232 QualType DstTy = TInfo->getType();
2233 QualType SrcTy = E->getType();
2234
2235 if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
2236 return ExprError(Diag(BuiltinLoc,
2237 diag::err_convertvector_non_vector)
2238 << E->getSourceRange());
2239 if (!DstTy->isVectorType() && !DstTy->isDependentType())
2240 return ExprError(Diag(BuiltinLoc,
2241 diag::err_convertvector_non_vector_type));
2242
2243 if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
2244 unsigned SrcElts = SrcTy->getAs<VectorType>()->getNumElements();
2245 unsigned DstElts = DstTy->getAs<VectorType>()->getNumElements();
2246 if (SrcElts != DstElts)
2247 return ExprError(Diag(BuiltinLoc,
2248 diag::err_convertvector_incompatible_vector)
2249 << E->getSourceRange());
2250 }
2251
2252 return new (Context)
2253 ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
2254}
2255
2256/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
2257// This is declared to take (const void*, ...) and can take two
2258// optional constant int args.
2259bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
2260 unsigned NumArgs = TheCall->getNumArgs();
2261
2262 if (NumArgs > 3)
2263 return Diag(TheCall->getLocEnd(),
2264 diag::err_typecheck_call_too_many_args_at_most)
2265 << 0 /*function call*/ << 3 << NumArgs
2266 << TheCall->getSourceRange();
2267
2268 // Argument 0 is checked for us and the remaining arguments must be
2269 // constant integers.
2270 for (unsigned i = 1; i != NumArgs; ++i)
2271 if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
2272 return true;
2273
2274 return false;
2275}
2276
2277/// SemaBuiltinAssume - Handle __assume (MS Extension).
2278// __assume does not evaluate its arguments, and should warn if its argument
2279// has side effects.
2280bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
2281 Expr *Arg = TheCall->getArg(0);
2282 if (Arg->isInstantiationDependent()) return false;
2283
2284 if (Arg->HasSideEffects(Context))
2285 return Diag(Arg->getLocStart(), diag::warn_assume_side_effects)
2286 << Arg->getSourceRange()
2287 << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
2288
2289 return false;
2290}
2291
2292/// Handle __builtin_assume_aligned. This is declared
2293/// as (const void*, size_t, ...) and can take one optional constant int arg.
2294bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
2295 unsigned NumArgs = TheCall->getNumArgs();
2296
2297 if (NumArgs > 3)
2298 return Diag(TheCall->getLocEnd(),
2299 diag::err_typecheck_call_too_many_args_at_most)
2300 << 0 /*function call*/ << 3 << NumArgs
2301 << TheCall->getSourceRange();
2302
2303 // The alignment must be a constant integer.
2304 Expr *Arg = TheCall->getArg(1);
2305
2306 // We can't check the value of a dependent argument.
2307 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
2308 llvm::APSInt Result;
2309 if (SemaBuiltinConstantArg(TheCall, 1, Result))
2310 return true;
2311
2312 if (!Result.isPowerOf2())
2313 return Diag(TheCall->getLocStart(),
2314 diag::err_alignment_not_power_of_two)
2315 << Arg->getSourceRange();
2316 }
2317
2318 if (NumArgs > 2) {
2319 ExprResult Arg(TheCall->getArg(2));
2320 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
2321 Context.getSizeType(), false);
2322 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
2323 if (Arg.isInvalid()) return true;
2324 TheCall->setArg(2, Arg.get());
2325 }
2326
2327 return false;
2328}
2329
2330/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
2331/// TheCall is a constant expression.
2332bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
2333 llvm::APSInt &Result) {
2334 Expr *Arg = TheCall->getArg(ArgNum);
2335 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2336 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
2337
2338 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
2339
2340 if (!Arg->isIntegerConstantExpr(Result, Context))
2341 return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
2342 << FDecl->getDeclName() << Arg->getSourceRange();
2343
2344 return false;
2345}
2346
2347/// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
2348/// TheCall is a constant expression in the range [Low, High].
2349bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
2350 int Low, int High) {
2351 llvm::APSInt Result;
2352
2353 // We can't check the value of a dependent argument.
2354 Expr *Arg = TheCall->getArg(ArgNum);
2355 if (Arg->isTypeDependent() || Arg->isValueDependent())
2356 return false;
2357
2358 // Check constant-ness first.
2359 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
2360 return true;
2361
2362 if (Result.getSExtValue() < Low || Result.getSExtValue() > High)
2363 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
2364 << Low << High << Arg->getSourceRange();
2365
2366 return false;
2367}
2368
2369/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
304
305 case Builtin::BI__builtin_classify_type:
306 if (checkArgCount(*this, TheCall, 1)) return true;
307 TheCall->setType(Context.IntTy);
308 break;
309 case Builtin::BI__builtin_constant_p:
310 if (checkArgCount(*this, TheCall, 1)) return true;
311 TheCall->setType(Context.IntTy);
312 break;
313 case Builtin::BI__sync_fetch_and_add:
314 case Builtin::BI__sync_fetch_and_add_1:
315 case Builtin::BI__sync_fetch_and_add_2:
316 case Builtin::BI__sync_fetch_and_add_4:
317 case Builtin::BI__sync_fetch_and_add_8:
318 case Builtin::BI__sync_fetch_and_add_16:
319 case Builtin::BI__sync_fetch_and_sub:
320 case Builtin::BI__sync_fetch_and_sub_1:
321 case Builtin::BI__sync_fetch_and_sub_2:
322 case Builtin::BI__sync_fetch_and_sub_4:
323 case Builtin::BI__sync_fetch_and_sub_8:
324 case Builtin::BI__sync_fetch_and_sub_16:
325 case Builtin::BI__sync_fetch_and_or:
326 case Builtin::BI__sync_fetch_and_or_1:
327 case Builtin::BI__sync_fetch_and_or_2:
328 case Builtin::BI__sync_fetch_and_or_4:
329 case Builtin::BI__sync_fetch_and_or_8:
330 case Builtin::BI__sync_fetch_and_or_16:
331 case Builtin::BI__sync_fetch_and_and:
332 case Builtin::BI__sync_fetch_and_and_1:
333 case Builtin::BI__sync_fetch_and_and_2:
334 case Builtin::BI__sync_fetch_and_and_4:
335 case Builtin::BI__sync_fetch_and_and_8:
336 case Builtin::BI__sync_fetch_and_and_16:
337 case Builtin::BI__sync_fetch_and_xor:
338 case Builtin::BI__sync_fetch_and_xor_1:
339 case Builtin::BI__sync_fetch_and_xor_2:
340 case Builtin::BI__sync_fetch_and_xor_4:
341 case Builtin::BI__sync_fetch_and_xor_8:
342 case Builtin::BI__sync_fetch_and_xor_16:
343 case Builtin::BI__sync_fetch_and_nand:
344 case Builtin::BI__sync_fetch_and_nand_1:
345 case Builtin::BI__sync_fetch_and_nand_2:
346 case Builtin::BI__sync_fetch_and_nand_4:
347 case Builtin::BI__sync_fetch_and_nand_8:
348 case Builtin::BI__sync_fetch_and_nand_16:
349 case Builtin::BI__sync_add_and_fetch:
350 case Builtin::BI__sync_add_and_fetch_1:
351 case Builtin::BI__sync_add_and_fetch_2:
352 case Builtin::BI__sync_add_and_fetch_4:
353 case Builtin::BI__sync_add_and_fetch_8:
354 case Builtin::BI__sync_add_and_fetch_16:
355 case Builtin::BI__sync_sub_and_fetch:
356 case Builtin::BI__sync_sub_and_fetch_1:
357 case Builtin::BI__sync_sub_and_fetch_2:
358 case Builtin::BI__sync_sub_and_fetch_4:
359 case Builtin::BI__sync_sub_and_fetch_8:
360 case Builtin::BI__sync_sub_and_fetch_16:
361 case Builtin::BI__sync_and_and_fetch:
362 case Builtin::BI__sync_and_and_fetch_1:
363 case Builtin::BI__sync_and_and_fetch_2:
364 case Builtin::BI__sync_and_and_fetch_4:
365 case Builtin::BI__sync_and_and_fetch_8:
366 case Builtin::BI__sync_and_and_fetch_16:
367 case Builtin::BI__sync_or_and_fetch:
368 case Builtin::BI__sync_or_and_fetch_1:
369 case Builtin::BI__sync_or_and_fetch_2:
370 case Builtin::BI__sync_or_and_fetch_4:
371 case Builtin::BI__sync_or_and_fetch_8:
372 case Builtin::BI__sync_or_and_fetch_16:
373 case Builtin::BI__sync_xor_and_fetch:
374 case Builtin::BI__sync_xor_and_fetch_1:
375 case Builtin::BI__sync_xor_and_fetch_2:
376 case Builtin::BI__sync_xor_and_fetch_4:
377 case Builtin::BI__sync_xor_and_fetch_8:
378 case Builtin::BI__sync_xor_and_fetch_16:
379 case Builtin::BI__sync_nand_and_fetch:
380 case Builtin::BI__sync_nand_and_fetch_1:
381 case Builtin::BI__sync_nand_and_fetch_2:
382 case Builtin::BI__sync_nand_and_fetch_4:
383 case Builtin::BI__sync_nand_and_fetch_8:
384 case Builtin::BI__sync_nand_and_fetch_16:
385 case Builtin::BI__sync_val_compare_and_swap:
386 case Builtin::BI__sync_val_compare_and_swap_1:
387 case Builtin::BI__sync_val_compare_and_swap_2:
388 case Builtin::BI__sync_val_compare_and_swap_4:
389 case Builtin::BI__sync_val_compare_and_swap_8:
390 case Builtin::BI__sync_val_compare_and_swap_16:
391 case Builtin::BI__sync_bool_compare_and_swap:
392 case Builtin::BI__sync_bool_compare_and_swap_1:
393 case Builtin::BI__sync_bool_compare_and_swap_2:
394 case Builtin::BI__sync_bool_compare_and_swap_4:
395 case Builtin::BI__sync_bool_compare_and_swap_8:
396 case Builtin::BI__sync_bool_compare_and_swap_16:
397 case Builtin::BI__sync_lock_test_and_set:
398 case Builtin::BI__sync_lock_test_and_set_1:
399 case Builtin::BI__sync_lock_test_and_set_2:
400 case Builtin::BI__sync_lock_test_and_set_4:
401 case Builtin::BI__sync_lock_test_and_set_8:
402 case Builtin::BI__sync_lock_test_and_set_16:
403 case Builtin::BI__sync_lock_release:
404 case Builtin::BI__sync_lock_release_1:
405 case Builtin::BI__sync_lock_release_2:
406 case Builtin::BI__sync_lock_release_4:
407 case Builtin::BI__sync_lock_release_8:
408 case Builtin::BI__sync_lock_release_16:
409 case Builtin::BI__sync_swap:
410 case Builtin::BI__sync_swap_1:
411 case Builtin::BI__sync_swap_2:
412 case Builtin::BI__sync_swap_4:
413 case Builtin::BI__sync_swap_8:
414 case Builtin::BI__sync_swap_16:
415 return SemaBuiltinAtomicOverloaded(TheCallResult);
416#define BUILTIN(ID, TYPE, ATTRS)
417#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
418 case Builtin::BI##ID: \
419 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
420#include "clang/Basic/Builtins.def"
421 case Builtin::BI__builtin_annotation:
422 if (SemaBuiltinAnnotation(*this, TheCall))
423 return ExprError();
424 break;
425 case Builtin::BI__builtin_addressof:
426 if (SemaBuiltinAddressof(*this, TheCall))
427 return ExprError();
428 break;
429 case Builtin::BI__builtin_operator_new:
430 case Builtin::BI__builtin_operator_delete:
431 if (!getLangOpts().CPlusPlus) {
432 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
433 << (BuiltinID == Builtin::BI__builtin_operator_new
434 ? "__builtin_operator_new"
435 : "__builtin_operator_delete")
436 << "C++";
437 return ExprError();
438 }
439 // CodeGen assumes it can find the global new and delete to call,
440 // so ensure that they are declared.
441 DeclareGlobalNewDelete();
442 break;
443
444 // check secure string manipulation functions where overflows
445 // are detectable at compile time
446 case Builtin::BI__builtin___memcpy_chk:
447 case Builtin::BI__builtin___memmove_chk:
448 case Builtin::BI__builtin___memset_chk:
449 case Builtin::BI__builtin___strlcat_chk:
450 case Builtin::BI__builtin___strlcpy_chk:
451 case Builtin::BI__builtin___strncat_chk:
452 case Builtin::BI__builtin___strncpy_chk:
453 case Builtin::BI__builtin___stpncpy_chk:
454 SemaBuiltinMemChkCall(*this, FDecl, TheCall, 2, 3);
455 break;
456 case Builtin::BI__builtin___memccpy_chk:
457 SemaBuiltinMemChkCall(*this, FDecl, TheCall, 3, 4);
458 break;
459 case Builtin::BI__builtin___snprintf_chk:
460 case Builtin::BI__builtin___vsnprintf_chk:
461 SemaBuiltinMemChkCall(*this, FDecl, TheCall, 1, 3);
462 break;
463
464 case Builtin::BI__builtin_call_with_static_chain:
465 if (SemaBuiltinCallWithStaticChain(*this, TheCall))
466 return ExprError();
467 break;
468 }
469
470 // Since the target specific builtins for each arch overlap, only check those
471 // of the arch we are compiling for.
472 if (BuiltinID >= Builtin::FirstTSBuiltin) {
473 switch (Context.getTargetInfo().getTriple().getArch()) {
474 case llvm::Triple::arm:
475 case llvm::Triple::armeb:
476 case llvm::Triple::thumb:
477 case llvm::Triple::thumbeb:
478 if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
479 return ExprError();
480 break;
481 case llvm::Triple::aarch64:
482 case llvm::Triple::aarch64_be:
483 if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
484 return ExprError();
485 break;
486 case llvm::Triple::mips:
487 case llvm::Triple::mipsel:
488 case llvm::Triple::mips64:
489 case llvm::Triple::mips64el:
490 if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
491 return ExprError();
492 break;
493 case llvm::Triple::x86:
494 case llvm::Triple::x86_64:
495 if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
496 return ExprError();
497 break;
498 default:
499 break;
500 }
501 }
502
503 return TheCallResult;
504}
505
506// Get the valid immediate range for the specified NEON type code.
507static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
508 NeonTypeFlags Type(t);
509 int IsQuad = ForceQuad ? true : Type.isQuad();
510 switch (Type.getEltType()) {
511 case NeonTypeFlags::Int8:
512 case NeonTypeFlags::Poly8:
513 return shift ? 7 : (8 << IsQuad) - 1;
514 case NeonTypeFlags::Int16:
515 case NeonTypeFlags::Poly16:
516 return shift ? 15 : (4 << IsQuad) - 1;
517 case NeonTypeFlags::Int32:
518 return shift ? 31 : (2 << IsQuad) - 1;
519 case NeonTypeFlags::Int64:
520 case NeonTypeFlags::Poly64:
521 return shift ? 63 : (1 << IsQuad) - 1;
522 case NeonTypeFlags::Poly128:
523 return shift ? 127 : (1 << IsQuad) - 1;
524 case NeonTypeFlags::Float16:
525 assert(!shift && "cannot shift float types!");
526 return (4 << IsQuad) - 1;
527 case NeonTypeFlags::Float32:
528 assert(!shift && "cannot shift float types!");
529 return (2 << IsQuad) - 1;
530 case NeonTypeFlags::Float64:
531 assert(!shift && "cannot shift float types!");
532 return (1 << IsQuad) - 1;
533 }
534 llvm_unreachable("Invalid NeonTypeFlag!");
535}
536
537/// getNeonEltType - Return the QualType corresponding to the elements of
538/// the vector type specified by the NeonTypeFlags. This is used to check
539/// the pointer arguments for Neon load/store intrinsics.
540static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
541 bool IsPolyUnsigned, bool IsInt64Long) {
542 switch (Flags.getEltType()) {
543 case NeonTypeFlags::Int8:
544 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
545 case NeonTypeFlags::Int16:
546 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
547 case NeonTypeFlags::Int32:
548 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
549 case NeonTypeFlags::Int64:
550 if (IsInt64Long)
551 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
552 else
553 return Flags.isUnsigned() ? Context.UnsignedLongLongTy
554 : Context.LongLongTy;
555 case NeonTypeFlags::Poly8:
556 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
557 case NeonTypeFlags::Poly16:
558 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
559 case NeonTypeFlags::Poly64:
560 return Context.UnsignedLongTy;
561 case NeonTypeFlags::Poly128:
562 break;
563 case NeonTypeFlags::Float16:
564 return Context.HalfTy;
565 case NeonTypeFlags::Float32:
566 return Context.FloatTy;
567 case NeonTypeFlags::Float64:
568 return Context.DoubleTy;
569 }
570 llvm_unreachable("Invalid NeonTypeFlag!");
571}
572
573bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
574 llvm::APSInt Result;
575 uint64_t mask = 0;
576 unsigned TV = 0;
577 int PtrArgNum = -1;
578 bool HasConstPtr = false;
579 switch (BuiltinID) {
580#define GET_NEON_OVERLOAD_CHECK
581#include "clang/Basic/arm_neon.inc"
582#undef GET_NEON_OVERLOAD_CHECK
583 }
584
585 // For NEON intrinsics which are overloaded on vector element type, validate
586 // the immediate which specifies which variant to emit.
587 unsigned ImmArg = TheCall->getNumArgs()-1;
588 if (mask) {
589 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
590 return true;
591
592 TV = Result.getLimitedValue(64);
593 if ((TV > 63) || (mask & (1ULL << TV)) == 0)
594 return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
595 << TheCall->getArg(ImmArg)->getSourceRange();
596 }
597
598 if (PtrArgNum >= 0) {
599 // Check that pointer arguments have the specified type.
600 Expr *Arg = TheCall->getArg(PtrArgNum);
601 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
602 Arg = ICE->getSubExpr();
603 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
604 QualType RHSTy = RHS.get()->getType();
605
606 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
607 bool IsPolyUnsigned = Arch == llvm::Triple::aarch64;
608 bool IsInt64Long =
609 Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong;
610 QualType EltTy =
611 getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
612 if (HasConstPtr)
613 EltTy = EltTy.withConst();
614 QualType LHSTy = Context.getPointerType(EltTy);
615 AssignConvertType ConvTy;
616 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
617 if (RHS.isInvalid())
618 return true;
619 if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
620 RHS.get(), AA_Assigning))
621 return true;
622 }
623
624 // For NEON intrinsics which take an immediate value as part of the
625 // instruction, range check them here.
626 unsigned i = 0, l = 0, u = 0;
627 switch (BuiltinID) {
628 default:
629 return false;
630#define GET_NEON_IMMEDIATE_CHECK
631#include "clang/Basic/arm_neon.inc"
632#undef GET_NEON_IMMEDIATE_CHECK
633 }
634
635 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
636}
637
638bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
639 unsigned MaxWidth) {
640 assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
641 BuiltinID == ARM::BI__builtin_arm_ldaex ||
642 BuiltinID == ARM::BI__builtin_arm_strex ||
643 BuiltinID == ARM::BI__builtin_arm_stlex ||
644 BuiltinID == AArch64::BI__builtin_arm_ldrex ||
645 BuiltinID == AArch64::BI__builtin_arm_ldaex ||
646 BuiltinID == AArch64::BI__builtin_arm_strex ||
647 BuiltinID == AArch64::BI__builtin_arm_stlex) &&
648 "unexpected ARM builtin");
649 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
650 BuiltinID == ARM::BI__builtin_arm_ldaex ||
651 BuiltinID == AArch64::BI__builtin_arm_ldrex ||
652 BuiltinID == AArch64::BI__builtin_arm_ldaex;
653
654 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
655
656 // Ensure that we have the proper number of arguments.
657 if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
658 return true;
659
660 // Inspect the pointer argument of the atomic builtin. This should always be
661 // a pointer type, whose element is an integral scalar or pointer type.
662 // Because it is a pointer type, we don't have to worry about any implicit
663 // casts here.
664 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
665 ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
666 if (PointerArgRes.isInvalid())
667 return true;
668 PointerArg = PointerArgRes.get();
669
670 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
671 if (!pointerType) {
672 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
673 << PointerArg->getType() << PointerArg->getSourceRange();
674 return true;
675 }
676
677 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
678 // task is to insert the appropriate casts into the AST. First work out just
679 // what the appropriate type is.
680 QualType ValType = pointerType->getPointeeType();
681 QualType AddrType = ValType.getUnqualifiedType().withVolatile();
682 if (IsLdrex)
683 AddrType.addConst();
684
685 // Issue a warning if the cast is dodgy.
686 CastKind CastNeeded = CK_NoOp;
687 if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
688 CastNeeded = CK_BitCast;
689 Diag(DRE->getLocStart(), diag::ext_typecheck_convert_discards_qualifiers)
690 << PointerArg->getType()
691 << Context.getPointerType(AddrType)
692 << AA_Passing << PointerArg->getSourceRange();
693 }
694
695 // Finally, do the cast and replace the argument with the corrected version.
696 AddrType = Context.getPointerType(AddrType);
697 PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
698 if (PointerArgRes.isInvalid())
699 return true;
700 PointerArg = PointerArgRes.get();
701
702 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
703
704 // In general, we allow ints, floats and pointers to be loaded and stored.
705 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
706 !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
707 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
708 << PointerArg->getType() << PointerArg->getSourceRange();
709 return true;
710 }
711
712 // But ARM doesn't have instructions to deal with 128-bit versions.
713 if (Context.getTypeSize(ValType) > MaxWidth) {
714 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
715 Diag(DRE->getLocStart(), diag::err_atomic_exclusive_builtin_pointer_size)
716 << PointerArg->getType() << PointerArg->getSourceRange();
717 return true;
718 }
719
720 switch (ValType.getObjCLifetime()) {
721 case Qualifiers::OCL_None:
722 case Qualifiers::OCL_ExplicitNone:
723 // okay
724 break;
725
726 case Qualifiers::OCL_Weak:
727 case Qualifiers::OCL_Strong:
728 case Qualifiers::OCL_Autoreleasing:
729 Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
730 << ValType << PointerArg->getSourceRange();
731 return true;
732 }
733
734
735 if (IsLdrex) {
736 TheCall->setType(ValType);
737 return false;
738 }
739
740 // Initialize the argument to be stored.
741 ExprResult ValArg = TheCall->getArg(0);
742 InitializedEntity Entity = InitializedEntity::InitializeParameter(
743 Context, ValType, /*consume*/ false);
744 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
745 if (ValArg.isInvalid())
746 return true;
747 TheCall->setArg(0, ValArg.get());
748
749 // __builtin_arm_strex always returns an int. It's marked as such in the .def,
750 // but the custom checker bypasses all default analysis.
751 TheCall->setType(Context.IntTy);
752 return false;
753}
754
755bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
756 llvm::APSInt Result;
757
758 if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
759 BuiltinID == ARM::BI__builtin_arm_ldaex ||
760 BuiltinID == ARM::BI__builtin_arm_strex ||
761 BuiltinID == ARM::BI__builtin_arm_stlex) {
762 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
763 }
764
765 if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
766 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
767 SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
768 }
769
770 if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
771 return true;
772
773 // For intrinsics which take an immediate value as part of the instruction,
774 // range check them here.
775 unsigned i = 0, l = 0, u = 0;
776 switch (BuiltinID) {
777 default: return false;
778 case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
779 case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
780 case ARM::BI__builtin_arm_vcvtr_f:
781 case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
782 case ARM::BI__builtin_arm_dmb:
783 case ARM::BI__builtin_arm_dsb:
784 case ARM::BI__builtin_arm_isb:
785 case ARM::BI__builtin_arm_dbg: l = 0; u = 15; break;
786 }
787
788 // FIXME: VFP Intrinsics should error if VFP not present.
789 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
790}
791
792bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
793 CallExpr *TheCall) {
794 llvm::APSInt Result;
795
796 if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
797 BuiltinID == AArch64::BI__builtin_arm_ldaex ||
798 BuiltinID == AArch64::BI__builtin_arm_strex ||
799 BuiltinID == AArch64::BI__builtin_arm_stlex) {
800 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
801 }
802
803 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
804 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
805 SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
806 SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
807 SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
808 }
809
810 if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
811 return true;
812
813 // For intrinsics which take an immediate value as part of the instruction,
814 // range check them here.
815 unsigned i = 0, l = 0, u = 0;
816 switch (BuiltinID) {
817 default: return false;
818 case AArch64::BI__builtin_arm_dmb:
819 case AArch64::BI__builtin_arm_dsb:
820 case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
821 }
822
823 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
824}
825
826bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
827 unsigned i = 0, l = 0, u = 0;
828 switch (BuiltinID) {
829 default: return false;
830 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
831 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
832 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
833 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
834 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
835 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
836 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
837 }
838
839 return SemaBuiltinConstantArgRange(TheCall, i, l, u);
840}
841
842bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
843 unsigned i = 0, l = 0, u = 0;
844 switch (BuiltinID) {
845 default: return false;
846 case X86::BI_mm_prefetch: i = 1; l = 0; u = 3; break;
847 case X86::BI__builtin_ia32_cmpps:
848 case X86::BI__builtin_ia32_cmpss:
849 case X86::BI__builtin_ia32_cmppd:
850 case X86::BI__builtin_ia32_cmpsd: i = 2; l = 0; u = 31; break;
851 }
852 return SemaBuiltinConstantArgRange(TheCall, i, l, u);
853}
854
855/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
856/// parameter with the FormatAttr's correct format_idx and firstDataArg.
857/// Returns true when the format fits the function and the FormatStringInfo has
858/// been populated.
859bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
860 FormatStringInfo *FSI) {
861 FSI->HasVAListArg = Format->getFirstArg() == 0;
862 FSI->FormatIdx = Format->getFormatIdx() - 1;
863 FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
864
865 // The way the format attribute works in GCC, the implicit this argument
866 // of member functions is counted. However, it doesn't appear in our own
867 // lists, so decrement format_idx in that case.
868 if (IsCXXMember) {
869 if(FSI->FormatIdx == 0)
870 return false;
871 --FSI->FormatIdx;
872 if (FSI->FirstDataArg != 0)
873 --FSI->FirstDataArg;
874 }
875 return true;
876}
877
878/// Checks if a the given expression evaluates to null.
879///
880/// \brief Returns true if the value evaluates to null.
881static bool CheckNonNullExpr(Sema &S,
882 const Expr *Expr) {
883 // As a special case, transparent unions initialized with zero are
884 // considered null for the purposes of the nonnull attribute.
885 if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
886 if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
887 if (const CompoundLiteralExpr *CLE =
888 dyn_cast<CompoundLiteralExpr>(Expr))
889 if (const InitListExpr *ILE =
890 dyn_cast<InitListExpr>(CLE->getInitializer()))
891 Expr = ILE->getInit(0);
892 }
893
894 bool Result;
895 return (!Expr->isValueDependent() &&
896 Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
897 !Result);
898}
899
900static void CheckNonNullArgument(Sema &S,
901 const Expr *ArgExpr,
902 SourceLocation CallSiteLoc) {
903 if (CheckNonNullExpr(S, ArgExpr))
904 S.Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
905}
906
907bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
908 FormatStringInfo FSI;
909 if ((GetFormatStringType(Format) == FST_NSString) &&
910 getFormatStringInfo(Format, false, &FSI)) {
911 Idx = FSI.FormatIdx;
912 return true;
913 }
914 return false;
915}
916/// \brief Diagnose use of %s directive in an NSString which is being passed
917/// as formatting string to formatting method.
918static void
919DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
920 const NamedDecl *FDecl,
921 Expr **Args,
922 unsigned NumArgs) {
923 unsigned Idx = 0;
924 bool Format = false;
925 ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
926 if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
927 Idx = 2;
928 Format = true;
929 }
930 else
931 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
932 if (S.GetFormatNSStringIdx(I, Idx)) {
933 Format = true;
934 break;
935 }
936 }
937 if (!Format || NumArgs <= Idx)
938 return;
939 const Expr *FormatExpr = Args[Idx];
940 if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
941 FormatExpr = CSCE->getSubExpr();
942 const StringLiteral *FormatString;
943 if (const ObjCStringLiteral *OSL =
944 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
945 FormatString = OSL->getString();
946 else
947 FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
948 if (!FormatString)
949 return;
950 if (S.FormatStringHasSArg(FormatString)) {
951 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
952 << "%s" << 1 << 1;
953 S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
954 << FDecl->getDeclName();
955 }
956}
957
958static void CheckNonNullArguments(Sema &S,
959 const NamedDecl *FDecl,
960 ArrayRef<const Expr *> Args,
961 SourceLocation CallSiteLoc) {
962 // Check the attributes attached to the method/function itself.
963 llvm::SmallBitVector NonNullArgs;
964 for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
965 if (!NonNull->args_size()) {
966 // Easy case: all pointer arguments are nonnull.
967 for (const auto *Arg : Args)
968 if (S.isValidPointerAttrType(Arg->getType()))
969 CheckNonNullArgument(S, Arg, CallSiteLoc);
970 return;
971 }
972
973 for (unsigned Val : NonNull->args()) {
974 if (Val >= Args.size())
975 continue;
976 if (NonNullArgs.empty())
977 NonNullArgs.resize(Args.size());
978 NonNullArgs.set(Val);
979 }
980 }
981
982 // Check the attributes on the parameters.
983 ArrayRef<ParmVarDecl*> parms;
984 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
985 parms = FD->parameters();
986 else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(FDecl))
987 parms = MD->parameters();
988
989 unsigned ArgIndex = 0;
990 for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
991 I != E; ++I, ++ArgIndex) {
992 const ParmVarDecl *PVD = *I;
993 if (PVD->hasAttr<NonNullAttr>() ||
994 (ArgIndex < NonNullArgs.size() && NonNullArgs[ArgIndex]))
995 CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
996 }
997
998 // In case this is a variadic call, check any remaining arguments.
999 for (/**/; ArgIndex < NonNullArgs.size(); ++ArgIndex)
1000 if (NonNullArgs[ArgIndex])
1001 CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
1002}
1003
1004/// Handles the checks for format strings, non-POD arguments to vararg
1005/// functions, and NULL arguments passed to non-NULL parameters.
1006void Sema::checkCall(NamedDecl *FDecl, ArrayRef<const Expr *> Args,
1007 unsigned NumParams, bool IsMemberFunction,
1008 SourceLocation Loc, SourceRange Range,
1009 VariadicCallType CallType) {
1010 // FIXME: We should check as much as we can in the template definition.
1011 if (CurContext->isDependentContext())
1012 return;
1013
1014 // Printf and scanf checking.
1015 llvm::SmallBitVector CheckedVarArgs;
1016 if (FDecl) {
1017 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
1018 // Only create vector if there are format attributes.
1019 CheckedVarArgs.resize(Args.size());
1020
1021 CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
1022 CheckedVarArgs);
1023 }
1024 }
1025
1026 // Refuse POD arguments that weren't caught by the format string
1027 // checks above.
1028 if (CallType != VariadicDoesNotApply) {
1029 for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
1030 // Args[ArgIdx] can be null in malformed code.
1031 if (const Expr *Arg = Args[ArgIdx]) {
1032 if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
1033 checkVariadicArgument(Arg, CallType);
1034 }
1035 }
1036 }
1037
1038 if (FDecl) {
1039 CheckNonNullArguments(*this, FDecl, Args, Loc);
1040
1041 // Type safety checking.
1042 for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
1043 CheckArgumentWithTypeTag(I, Args.data());
1044 }
1045}
1046
1047/// CheckConstructorCall - Check a constructor call for correctness and safety
1048/// properties not enforced by the C type system.
1049void Sema::CheckConstructorCall(FunctionDecl *FDecl,
1050 ArrayRef<const Expr *> Args,
1051 const FunctionProtoType *Proto,
1052 SourceLocation Loc) {
1053 VariadicCallType CallType =
1054 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
1055 checkCall(FDecl, Args, Proto->getNumParams(),
1056 /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
1057}
1058
1059/// CheckFunctionCall - Check a direct function call for various correctness
1060/// and safety properties not strictly enforced by the C type system.
1061bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
1062 const FunctionProtoType *Proto) {
1063 bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
1064 isa<CXXMethodDecl>(FDecl);
1065 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
1066 IsMemberOperatorCall;
1067 VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
1068 TheCall->getCallee());
1069 unsigned NumParams = Proto ? Proto->getNumParams() : 0;
1070 Expr** Args = TheCall->getArgs();
1071 unsigned NumArgs = TheCall->getNumArgs();
1072 if (IsMemberOperatorCall) {
1073 // If this is a call to a member operator, hide the first argument
1074 // from checkCall.
1075 // FIXME: Our choice of AST representation here is less than ideal.
1076 ++Args;
1077 --NumArgs;
1078 }
1079 checkCall(FDecl, llvm::makeArrayRef(Args, NumArgs), NumParams,
1080 IsMemberFunction, TheCall->getRParenLoc(),
1081 TheCall->getCallee()->getSourceRange(), CallType);
1082
1083 IdentifierInfo *FnInfo = FDecl->getIdentifier();
1084 // None of the checks below are needed for functions that don't have
1085 // simple names (e.g., C++ conversion functions).
1086 if (!FnInfo)
1087 return false;
1088
1089 CheckAbsoluteValueFunction(TheCall, FDecl, FnInfo);
1090 if (getLangOpts().ObjC1)
1091 DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
1092
1093 unsigned CMId = FDecl->getMemoryFunctionKind();
1094 if (CMId == 0)
1095 return false;
1096
1097 // Handle memory setting and copying functions.
1098 if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
1099 CheckStrlcpycatArguments(TheCall, FnInfo);
1100 else if (CMId == Builtin::BIstrncat)
1101 CheckStrncatArguments(TheCall, FnInfo);
1102 else
1103 CheckMemaccessArguments(TheCall, CMId, FnInfo);
1104
1105 return false;
1106}
1107
1108bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
1109 ArrayRef<const Expr *> Args) {
1110 VariadicCallType CallType =
1111 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
1112
1113 checkCall(Method, Args, Method->param_size(),
1114 /*IsMemberFunction=*/false,
1115 lbrac, Method->getSourceRange(), CallType);
1116
1117 return false;
1118}
1119
1120bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
1121 const FunctionProtoType *Proto) {
1122 const VarDecl *V = dyn_cast<VarDecl>(NDecl);
1123 if (!V)
1124 return false;
1125
1126 QualType Ty = V->getType();
1127 if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType())
1128 return false;
1129
1130 VariadicCallType CallType;
1131 if (!Proto || !Proto->isVariadic()) {
1132 CallType = VariadicDoesNotApply;
1133 } else if (Ty->isBlockPointerType()) {
1134 CallType = VariadicBlock;
1135 } else { // Ty->isFunctionPointerType()
1136 CallType = VariadicFunction;
1137 }
1138 unsigned NumParams = Proto ? Proto->getNumParams() : 0;
1139
1140 checkCall(NDecl, llvm::makeArrayRef(TheCall->getArgs(),
1141 TheCall->getNumArgs()),
1142 NumParams, /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
1143 TheCall->getCallee()->getSourceRange(), CallType);
1144
1145 return false;
1146}
1147
1148/// Checks function calls when a FunctionDecl or a NamedDecl is not available,
1149/// such as function pointers returned from functions.
1150bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
1151 VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
1152 TheCall->getCallee());
1153 unsigned NumParams = Proto ? Proto->getNumParams() : 0;
1154
1155 checkCall(/*FDecl=*/nullptr,
1156 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
1157 NumParams, /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
1158 TheCall->getCallee()->getSourceRange(), CallType);
1159
1160 return false;
1161}
1162
1163static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
1164 if (Ordering < AtomicExpr::AO_ABI_memory_order_relaxed ||
1165 Ordering > AtomicExpr::AO_ABI_memory_order_seq_cst)
1166 return false;
1167
1168 switch (Op) {
1169 case AtomicExpr::AO__c11_atomic_init:
1170 llvm_unreachable("There is no ordering argument for an init");
1171
1172 case AtomicExpr::AO__c11_atomic_load:
1173 case AtomicExpr::AO__atomic_load_n:
1174 case AtomicExpr::AO__atomic_load:
1175 return Ordering != AtomicExpr::AO_ABI_memory_order_release &&
1176 Ordering != AtomicExpr::AO_ABI_memory_order_acq_rel;
1177
1178 case AtomicExpr::AO__c11_atomic_store:
1179 case AtomicExpr::AO__atomic_store:
1180 case AtomicExpr::AO__atomic_store_n:
1181 return Ordering != AtomicExpr::AO_ABI_memory_order_consume &&
1182 Ordering != AtomicExpr::AO_ABI_memory_order_acquire &&
1183 Ordering != AtomicExpr::AO_ABI_memory_order_acq_rel;
1184
1185 default:
1186 return true;
1187 }
1188}
1189
1190ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
1191 AtomicExpr::AtomicOp Op) {
1192 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
1193 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1194
1195 // All these operations take one of the following forms:
1196 enum {
1197 // C __c11_atomic_init(A *, C)
1198 Init,
1199 // C __c11_atomic_load(A *, int)
1200 Load,
1201 // void __atomic_load(A *, CP, int)
1202 Copy,
1203 // C __c11_atomic_add(A *, M, int)
1204 Arithmetic,
1205 // C __atomic_exchange_n(A *, CP, int)
1206 Xchg,
1207 // void __atomic_exchange(A *, C *, CP, int)
1208 GNUXchg,
1209 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
1210 C11CmpXchg,
1211 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
1212 GNUCmpXchg
1213 } Form = Init;
1214 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
1215 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
1216 // where:
1217 // C is an appropriate type,
1218 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
1219 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
1220 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and
1221 // the int parameters are for orderings.
1222
1223 assert(AtomicExpr::AO__c11_atomic_init == 0 &&
1224 AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
1225 && "need to update code for modified C11 atomics");
1226 bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
1227 Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
1228 bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
1229 Op == AtomicExpr::AO__atomic_store_n ||
1230 Op == AtomicExpr::AO__atomic_exchange_n ||
1231 Op == AtomicExpr::AO__atomic_compare_exchange_n;
1232 bool IsAddSub = false;
1233
1234 switch (Op) {
1235 case AtomicExpr::AO__c11_atomic_init:
1236 Form = Init;
1237 break;
1238
1239 case AtomicExpr::AO__c11_atomic_load:
1240 case AtomicExpr::AO__atomic_load_n:
1241 Form = Load;
1242 break;
1243
1244 case AtomicExpr::AO__c11_atomic_store:
1245 case AtomicExpr::AO__atomic_load:
1246 case AtomicExpr::AO__atomic_store:
1247 case AtomicExpr::AO__atomic_store_n:
1248 Form = Copy;
1249 break;
1250
1251 case AtomicExpr::AO__c11_atomic_fetch_add:
1252 case AtomicExpr::AO__c11_atomic_fetch_sub:
1253 case AtomicExpr::AO__atomic_fetch_add:
1254 case AtomicExpr::AO__atomic_fetch_sub:
1255 case AtomicExpr::AO__atomic_add_fetch:
1256 case AtomicExpr::AO__atomic_sub_fetch:
1257 IsAddSub = true;
1258 // Fall through.
1259 case AtomicExpr::AO__c11_atomic_fetch_and:
1260 case AtomicExpr::AO__c11_atomic_fetch_or:
1261 case AtomicExpr::AO__c11_atomic_fetch_xor:
1262 case AtomicExpr::AO__atomic_fetch_and:
1263 case AtomicExpr::AO__atomic_fetch_or:
1264 case AtomicExpr::AO__atomic_fetch_xor:
1265 case AtomicExpr::AO__atomic_fetch_nand:
1266 case AtomicExpr::AO__atomic_and_fetch:
1267 case AtomicExpr::AO__atomic_or_fetch:
1268 case AtomicExpr::AO__atomic_xor_fetch:
1269 case AtomicExpr::AO__atomic_nand_fetch:
1270 Form = Arithmetic;
1271 break;
1272
1273 case AtomicExpr::AO__c11_atomic_exchange:
1274 case AtomicExpr::AO__atomic_exchange_n:
1275 Form = Xchg;
1276 break;
1277
1278 case AtomicExpr::AO__atomic_exchange:
1279 Form = GNUXchg;
1280 break;
1281
1282 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
1283 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
1284 Form = C11CmpXchg;
1285 break;
1286
1287 case AtomicExpr::AO__atomic_compare_exchange:
1288 case AtomicExpr::AO__atomic_compare_exchange_n:
1289 Form = GNUCmpXchg;
1290 break;
1291 }
1292
1293 // Check we have the right number of arguments.
1294 if (TheCall->getNumArgs() < NumArgs[Form]) {
1295 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1296 << 0 << NumArgs[Form] << TheCall->getNumArgs()
1297 << TheCall->getCallee()->getSourceRange();
1298 return ExprError();
1299 } else if (TheCall->getNumArgs() > NumArgs[Form]) {
1300 Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
1301 diag::err_typecheck_call_too_many_args)
1302 << 0 << NumArgs[Form] << TheCall->getNumArgs()
1303 << TheCall->getCallee()->getSourceRange();
1304 return ExprError();
1305 }
1306
1307 // Inspect the first argument of the atomic operation.
1308 Expr *Ptr = TheCall->getArg(0);
1309 Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
1310 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
1311 if (!pointerType) {
1312 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1313 << Ptr->getType() << Ptr->getSourceRange();
1314 return ExprError();
1315 }
1316
1317 // For a __c11 builtin, this should be a pointer to an _Atomic type.
1318 QualType AtomTy = pointerType->getPointeeType(); // 'A'
1319 QualType ValType = AtomTy; // 'C'
1320 if (IsC11) {
1321 if (!AtomTy->isAtomicType()) {
1322 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
1323 << Ptr->getType() << Ptr->getSourceRange();
1324 return ExprError();
1325 }
1326 if (AtomTy.isConstQualified()) {
1327 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
1328 << Ptr->getType() << Ptr->getSourceRange();
1329 return ExprError();
1330 }
1331 ValType = AtomTy->getAs<AtomicType>()->getValueType();
1332 }
1333
1334 // For an arithmetic operation, the implied arithmetic must be well-formed.
1335 if (Form == Arithmetic) {
1336 // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
1337 if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
1338 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1339 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1340 return ExprError();
1341 }
1342 if (!IsAddSub && !ValType->isIntegerType()) {
1343 Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
1344 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1345 return ExprError();
1346 }
1347 if (IsC11 && ValType->isPointerType() &&
1348 RequireCompleteType(Ptr->getLocStart(), ValType->getPointeeType(),
1349 diag::err_incomplete_type)) {
1350 return ExprError();
1351 }
1352 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
1353 // For __atomic_*_n operations, the value type must be a scalar integral or
1354 // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
1355 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1356 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1357 return ExprError();
1358 }
1359
1360 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
1361 !AtomTy->isScalarType()) {
1362 // For GNU atomics, require a trivially-copyable type. This is not part of
1363 // the GNU atomics specification, but we enforce it for sanity.
1364 Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
1365 << Ptr->getType() << Ptr->getSourceRange();
1366 return ExprError();
1367 }
1368
1369 // FIXME: For any builtin other than a load, the ValType must not be
1370 // const-qualified.
1371
1372 switch (ValType.getObjCLifetime()) {
1373 case Qualifiers::OCL_None:
1374 case Qualifiers::OCL_ExplicitNone:
1375 // okay
1376 break;
1377
1378 case Qualifiers::OCL_Weak:
1379 case Qualifiers::OCL_Strong:
1380 case Qualifiers::OCL_Autoreleasing:
1381 // FIXME: Can this happen? By this point, ValType should be known
1382 // to be trivially copyable.
1383 Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1384 << ValType << Ptr->getSourceRange();
1385 return ExprError();
1386 }
1387
1388 QualType ResultType = ValType;
1389 if (Form == Copy || Form == GNUXchg || Form == Init)
1390 ResultType = Context.VoidTy;
1391 else if (Form == C11CmpXchg || Form == GNUCmpXchg)
1392 ResultType = Context.BoolTy;
1393
1394 // The type of a parameter passed 'by value'. In the GNU atomics, such
1395 // arguments are actually passed as pointers.
1396 QualType ByValType = ValType; // 'CP'
1397 if (!IsC11 && !IsN)
1398 ByValType = Ptr->getType();
1399
1400 // The first argument --- the pointer --- has a fixed type; we
1401 // deduce the types of the rest of the arguments accordingly. Walk
1402 // the remaining arguments, converting them to the deduced value type.
1403 for (unsigned i = 1; i != NumArgs[Form]; ++i) {
1404 QualType Ty;
1405 if (i < NumVals[Form] + 1) {
1406 switch (i) {
1407 case 1:
1408 // The second argument is the non-atomic operand. For arithmetic, this
1409 // is always passed by value, and for a compare_exchange it is always
1410 // passed by address. For the rest, GNU uses by-address and C11 uses
1411 // by-value.
1412 assert(Form != Load);
1413 if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
1414 Ty = ValType;
1415 else if (Form == Copy || Form == Xchg)
1416 Ty = ByValType;
1417 else if (Form == Arithmetic)
1418 Ty = Context.getPointerDiffType();
1419 else
1420 Ty = Context.getPointerType(ValType.getUnqualifiedType());
1421 break;
1422 case 2:
1423 // The third argument to compare_exchange / GNU exchange is a
1424 // (pointer to a) desired value.
1425 Ty = ByValType;
1426 break;
1427 case 3:
1428 // The fourth argument to GNU compare_exchange is a 'weak' flag.
1429 Ty = Context.BoolTy;
1430 break;
1431 }
1432 } else {
1433 // The order(s) are always converted to int.
1434 Ty = Context.IntTy;
1435 }
1436
1437 InitializedEntity Entity =
1438 InitializedEntity::InitializeParameter(Context, Ty, false);
1439 ExprResult Arg = TheCall->getArg(i);
1440 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1441 if (Arg.isInvalid())
1442 return true;
1443 TheCall->setArg(i, Arg.get());
1444 }
1445
1446 // Permute the arguments into a 'consistent' order.
1447 SmallVector<Expr*, 5> SubExprs;
1448 SubExprs.push_back(Ptr);
1449 switch (Form) {
1450 case Init:
1451 // Note, AtomicExpr::getVal1() has a special case for this atomic.
1452 SubExprs.push_back(TheCall->getArg(1)); // Val1
1453 break;
1454 case Load:
1455 SubExprs.push_back(TheCall->getArg(1)); // Order
1456 break;
1457 case Copy:
1458 case Arithmetic:
1459 case Xchg:
1460 SubExprs.push_back(TheCall->getArg(2)); // Order
1461 SubExprs.push_back(TheCall->getArg(1)); // Val1
1462 break;
1463 case GNUXchg:
1464 // Note, AtomicExpr::getVal2() has a special case for this atomic.
1465 SubExprs.push_back(TheCall->getArg(3)); // Order
1466 SubExprs.push_back(TheCall->getArg(1)); // Val1
1467 SubExprs.push_back(TheCall->getArg(2)); // Val2
1468 break;
1469 case C11CmpXchg:
1470 SubExprs.push_back(TheCall->getArg(3)); // Order
1471 SubExprs.push_back(TheCall->getArg(1)); // Val1
1472 SubExprs.push_back(TheCall->getArg(4)); // OrderFail
1473 SubExprs.push_back(TheCall->getArg(2)); // Val2
1474 break;
1475 case GNUCmpXchg:
1476 SubExprs.push_back(TheCall->getArg(4)); // Order
1477 SubExprs.push_back(TheCall->getArg(1)); // Val1
1478 SubExprs.push_back(TheCall->getArg(5)); // OrderFail
1479 SubExprs.push_back(TheCall->getArg(2)); // Val2
1480 SubExprs.push_back(TheCall->getArg(3)); // Weak
1481 break;
1482 }
1483
1484 if (SubExprs.size() >= 2 && Form != Init) {
1485 llvm::APSInt Result(32);
1486 if (SubExprs[1]->isIntegerConstantExpr(Result, Context) &&
1487 !isValidOrderingForOp(Result.getSExtValue(), Op))
1488 Diag(SubExprs[1]->getLocStart(),
1489 diag::warn_atomic_op_has_invalid_memory_order)
1490 << SubExprs[1]->getSourceRange();
1491 }
1492
1493 AtomicExpr *AE = new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
1494 SubExprs, ResultType, Op,
1495 TheCall->getRParenLoc());
1496
1497 if ((Op == AtomicExpr::AO__c11_atomic_load ||
1498 (Op == AtomicExpr::AO__c11_atomic_store)) &&
1499 Context.AtomicUsesUnsupportedLibcall(AE))
1500 Diag(AE->getLocStart(), diag::err_atomic_load_store_uses_lib) <<
1501 ((Op == AtomicExpr::AO__c11_atomic_load) ? 0 : 1);
1502
1503 return AE;
1504}
1505
1506
1507/// checkBuiltinArgument - Given a call to a builtin function, perform
1508/// normal type-checking on the given argument, updating the call in
1509/// place. This is useful when a builtin function requires custom
1510/// type-checking for some of its arguments but not necessarily all of
1511/// them.
1512///
1513/// Returns true on error.
1514static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
1515 FunctionDecl *Fn = E->getDirectCallee();
1516 assert(Fn && "builtin call without direct callee!");
1517
1518 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
1519 InitializedEntity Entity =
1520 InitializedEntity::InitializeParameter(S.Context, Param);
1521
1522 ExprResult Arg = E->getArg(0);
1523 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
1524 if (Arg.isInvalid())
1525 return true;
1526
1527 E->setArg(ArgIndex, Arg.get());
1528 return false;
1529}
1530
1531/// SemaBuiltinAtomicOverloaded - We have a call to a function like
1532/// __sync_fetch_and_add, which is an overloaded function based on the pointer
1533/// type of its first argument. The main ActOnCallExpr routines have already
1534/// promoted the types of arguments because all of these calls are prototyped as
1535/// void(...).
1536///
1537/// This function goes through and does final semantic checking for these
1538/// builtins,
1539ExprResult
1540Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
1541 CallExpr *TheCall = (CallExpr *)TheCallResult.get();
1542 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1543 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1544
1545 // Ensure that we have at least one argument to do type inference from.
1546 if (TheCall->getNumArgs() < 1) {
1547 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1548 << 0 << 1 << TheCall->getNumArgs()
1549 << TheCall->getCallee()->getSourceRange();
1550 return ExprError();
1551 }
1552
1553 // Inspect the first argument of the atomic builtin. This should always be
1554 // a pointer type, whose element is an integral scalar or pointer type.
1555 // Because it is a pointer type, we don't have to worry about any implicit
1556 // casts here.
1557 // FIXME: We don't allow floating point scalars as input.
1558 Expr *FirstArg = TheCall->getArg(0);
1559 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
1560 if (FirstArgResult.isInvalid())
1561 return ExprError();
1562 FirstArg = FirstArgResult.get();
1563 TheCall->setArg(0, FirstArg);
1564
1565 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
1566 if (!pointerType) {
1567 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1568 << FirstArg->getType() << FirstArg->getSourceRange();
1569 return ExprError();
1570 }
1571
1572 QualType ValType = pointerType->getPointeeType();
1573 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
1574 !ValType->isBlockPointerType()) {
1575 Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
1576 << FirstArg->getType() << FirstArg->getSourceRange();
1577 return ExprError();
1578 }
1579
1580 switch (ValType.getObjCLifetime()) {
1581 case Qualifiers::OCL_None:
1582 case Qualifiers::OCL_ExplicitNone:
1583 // okay
1584 break;
1585
1586 case Qualifiers::OCL_Weak:
1587 case Qualifiers::OCL_Strong:
1588 case Qualifiers::OCL_Autoreleasing:
1589 Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1590 << ValType << FirstArg->getSourceRange();
1591 return ExprError();
1592 }
1593
1594 // Strip any qualifiers off ValType.
1595 ValType = ValType.getUnqualifiedType();
1596
1597 // The majority of builtins return a value, but a few have special return
1598 // types, so allow them to override appropriately below.
1599 QualType ResultType = ValType;
1600
1601 // We need to figure out which concrete builtin this maps onto. For example,
1602 // __sync_fetch_and_add with a 2 byte object turns into
1603 // __sync_fetch_and_add_2.
1604#define BUILTIN_ROW(x) \
1605 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1606 Builtin::BI##x##_8, Builtin::BI##x##_16 }
1607
1608 static const unsigned BuiltinIndices[][5] = {
1609 BUILTIN_ROW(__sync_fetch_and_add),
1610 BUILTIN_ROW(__sync_fetch_and_sub),
1611 BUILTIN_ROW(__sync_fetch_and_or),
1612 BUILTIN_ROW(__sync_fetch_and_and),
1613 BUILTIN_ROW(__sync_fetch_and_xor),
1614 BUILTIN_ROW(__sync_fetch_and_nand),
1615
1616 BUILTIN_ROW(__sync_add_and_fetch),
1617 BUILTIN_ROW(__sync_sub_and_fetch),
1618 BUILTIN_ROW(__sync_and_and_fetch),
1619 BUILTIN_ROW(__sync_or_and_fetch),
1620 BUILTIN_ROW(__sync_xor_and_fetch),
1621 BUILTIN_ROW(__sync_nand_and_fetch),
1622
1623 BUILTIN_ROW(__sync_val_compare_and_swap),
1624 BUILTIN_ROW(__sync_bool_compare_and_swap),
1625 BUILTIN_ROW(__sync_lock_test_and_set),
1626 BUILTIN_ROW(__sync_lock_release),
1627 BUILTIN_ROW(__sync_swap)
1628 };
1629#undef BUILTIN_ROW
1630
1631 // Determine the index of the size.
1632 unsigned SizeIndex;
1633 switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1634 case 1: SizeIndex = 0; break;
1635 case 2: SizeIndex = 1; break;
1636 case 4: SizeIndex = 2; break;
1637 case 8: SizeIndex = 3; break;
1638 case 16: SizeIndex = 4; break;
1639 default:
1640 Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1641 << FirstArg->getType() << FirstArg->getSourceRange();
1642 return ExprError();
1643 }
1644
1645 // Each of these builtins has one pointer argument, followed by some number of
1646 // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1647 // that we ignore. Find out which row of BuiltinIndices to read from as well
1648 // as the number of fixed args.
1649 unsigned BuiltinID = FDecl->getBuiltinID();
1650 unsigned BuiltinIndex, NumFixed = 1;
1651 bool WarnAboutSemanticsChange = false;
1652 switch (BuiltinID) {
1653 default: llvm_unreachable("Unknown overloaded atomic builtin!");
1654 case Builtin::BI__sync_fetch_and_add:
1655 case Builtin::BI__sync_fetch_and_add_1:
1656 case Builtin::BI__sync_fetch_and_add_2:
1657 case Builtin::BI__sync_fetch_and_add_4:
1658 case Builtin::BI__sync_fetch_and_add_8:
1659 case Builtin::BI__sync_fetch_and_add_16:
1660 BuiltinIndex = 0;
1661 break;
1662
1663 case Builtin::BI__sync_fetch_and_sub:
1664 case Builtin::BI__sync_fetch_and_sub_1:
1665 case Builtin::BI__sync_fetch_and_sub_2:
1666 case Builtin::BI__sync_fetch_and_sub_4:
1667 case Builtin::BI__sync_fetch_and_sub_8:
1668 case Builtin::BI__sync_fetch_and_sub_16:
1669 BuiltinIndex = 1;
1670 break;
1671
1672 case Builtin::BI__sync_fetch_and_or:
1673 case Builtin::BI__sync_fetch_and_or_1:
1674 case Builtin::BI__sync_fetch_and_or_2:
1675 case Builtin::BI__sync_fetch_and_or_4:
1676 case Builtin::BI__sync_fetch_and_or_8:
1677 case Builtin::BI__sync_fetch_and_or_16:
1678 BuiltinIndex = 2;
1679 break;
1680
1681 case Builtin::BI__sync_fetch_and_and:
1682 case Builtin::BI__sync_fetch_and_and_1:
1683 case Builtin::BI__sync_fetch_and_and_2:
1684 case Builtin::BI__sync_fetch_and_and_4:
1685 case Builtin::BI__sync_fetch_and_and_8:
1686 case Builtin::BI__sync_fetch_and_and_16:
1687 BuiltinIndex = 3;
1688 break;
1689
1690 case Builtin::BI__sync_fetch_and_xor:
1691 case Builtin::BI__sync_fetch_and_xor_1:
1692 case Builtin::BI__sync_fetch_and_xor_2:
1693 case Builtin::BI__sync_fetch_and_xor_4:
1694 case Builtin::BI__sync_fetch_and_xor_8:
1695 case Builtin::BI__sync_fetch_and_xor_16:
1696 BuiltinIndex = 4;
1697 break;
1698
1699 case Builtin::BI__sync_fetch_and_nand:
1700 case Builtin::BI__sync_fetch_and_nand_1:
1701 case Builtin::BI__sync_fetch_and_nand_2:
1702 case Builtin::BI__sync_fetch_and_nand_4:
1703 case Builtin::BI__sync_fetch_and_nand_8:
1704 case Builtin::BI__sync_fetch_and_nand_16:
1705 BuiltinIndex = 5;
1706 WarnAboutSemanticsChange = true;
1707 break;
1708
1709 case Builtin::BI__sync_add_and_fetch:
1710 case Builtin::BI__sync_add_and_fetch_1:
1711 case Builtin::BI__sync_add_and_fetch_2:
1712 case Builtin::BI__sync_add_and_fetch_4:
1713 case Builtin::BI__sync_add_and_fetch_8:
1714 case Builtin::BI__sync_add_and_fetch_16:
1715 BuiltinIndex = 6;
1716 break;
1717
1718 case Builtin::BI__sync_sub_and_fetch:
1719 case Builtin::BI__sync_sub_and_fetch_1:
1720 case Builtin::BI__sync_sub_and_fetch_2:
1721 case Builtin::BI__sync_sub_and_fetch_4:
1722 case Builtin::BI__sync_sub_and_fetch_8:
1723 case Builtin::BI__sync_sub_and_fetch_16:
1724 BuiltinIndex = 7;
1725 break;
1726
1727 case Builtin::BI__sync_and_and_fetch:
1728 case Builtin::BI__sync_and_and_fetch_1:
1729 case Builtin::BI__sync_and_and_fetch_2:
1730 case Builtin::BI__sync_and_and_fetch_4:
1731 case Builtin::BI__sync_and_and_fetch_8:
1732 case Builtin::BI__sync_and_and_fetch_16:
1733 BuiltinIndex = 8;
1734 break;
1735
1736 case Builtin::BI__sync_or_and_fetch:
1737 case Builtin::BI__sync_or_and_fetch_1:
1738 case Builtin::BI__sync_or_and_fetch_2:
1739 case Builtin::BI__sync_or_and_fetch_4:
1740 case Builtin::BI__sync_or_and_fetch_8:
1741 case Builtin::BI__sync_or_and_fetch_16:
1742 BuiltinIndex = 9;
1743 break;
1744
1745 case Builtin::BI__sync_xor_and_fetch:
1746 case Builtin::BI__sync_xor_and_fetch_1:
1747 case Builtin::BI__sync_xor_and_fetch_2:
1748 case Builtin::BI__sync_xor_and_fetch_4:
1749 case Builtin::BI__sync_xor_and_fetch_8:
1750 case Builtin::BI__sync_xor_and_fetch_16:
1751 BuiltinIndex = 10;
1752 break;
1753
1754 case Builtin::BI__sync_nand_and_fetch:
1755 case Builtin::BI__sync_nand_and_fetch_1:
1756 case Builtin::BI__sync_nand_and_fetch_2:
1757 case Builtin::BI__sync_nand_and_fetch_4:
1758 case Builtin::BI__sync_nand_and_fetch_8:
1759 case Builtin::BI__sync_nand_and_fetch_16:
1760 BuiltinIndex = 11;
1761 WarnAboutSemanticsChange = true;
1762 break;
1763
1764 case Builtin::BI__sync_val_compare_and_swap:
1765 case Builtin::BI__sync_val_compare_and_swap_1:
1766 case Builtin::BI__sync_val_compare_and_swap_2:
1767 case Builtin::BI__sync_val_compare_and_swap_4:
1768 case Builtin::BI__sync_val_compare_and_swap_8:
1769 case Builtin::BI__sync_val_compare_and_swap_16:
1770 BuiltinIndex = 12;
1771 NumFixed = 2;
1772 break;
1773
1774 case Builtin::BI__sync_bool_compare_and_swap:
1775 case Builtin::BI__sync_bool_compare_and_swap_1:
1776 case Builtin::BI__sync_bool_compare_and_swap_2:
1777 case Builtin::BI__sync_bool_compare_and_swap_4:
1778 case Builtin::BI__sync_bool_compare_and_swap_8:
1779 case Builtin::BI__sync_bool_compare_and_swap_16:
1780 BuiltinIndex = 13;
1781 NumFixed = 2;
1782 ResultType = Context.BoolTy;
1783 break;
1784
1785 case Builtin::BI__sync_lock_test_and_set:
1786 case Builtin::BI__sync_lock_test_and_set_1:
1787 case Builtin::BI__sync_lock_test_and_set_2:
1788 case Builtin::BI__sync_lock_test_and_set_4:
1789 case Builtin::BI__sync_lock_test_and_set_8:
1790 case Builtin::BI__sync_lock_test_and_set_16:
1791 BuiltinIndex = 14;
1792 break;
1793
1794 case Builtin::BI__sync_lock_release:
1795 case Builtin::BI__sync_lock_release_1:
1796 case Builtin::BI__sync_lock_release_2:
1797 case Builtin::BI__sync_lock_release_4:
1798 case Builtin::BI__sync_lock_release_8:
1799 case Builtin::BI__sync_lock_release_16:
1800 BuiltinIndex = 15;
1801 NumFixed = 0;
1802 ResultType = Context.VoidTy;
1803 break;
1804
1805 case Builtin::BI__sync_swap:
1806 case Builtin::BI__sync_swap_1:
1807 case Builtin::BI__sync_swap_2:
1808 case Builtin::BI__sync_swap_4:
1809 case Builtin::BI__sync_swap_8:
1810 case Builtin::BI__sync_swap_16:
1811 BuiltinIndex = 16;
1812 break;
1813 }
1814
1815 // Now that we know how many fixed arguments we expect, first check that we
1816 // have at least that many.
1817 if (TheCall->getNumArgs() < 1+NumFixed) {
1818 Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1819 << 0 << 1+NumFixed << TheCall->getNumArgs()
1820 << TheCall->getCallee()->getSourceRange();
1821 return ExprError();
1822 }
1823
1824 if (WarnAboutSemanticsChange) {
1825 Diag(TheCall->getLocEnd(), diag::warn_sync_fetch_and_nand_semantics_change)
1826 << TheCall->getCallee()->getSourceRange();
1827 }
1828
1829 // Get the decl for the concrete builtin from this, we can tell what the
1830 // concrete integer type we should convert to is.
1831 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
1832 const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
1833 FunctionDecl *NewBuiltinDecl;
1834 if (NewBuiltinID == BuiltinID)
1835 NewBuiltinDecl = FDecl;
1836 else {
1837 // Perform builtin lookup to avoid redeclaring it.
1838 DeclarationName DN(&Context.Idents.get(NewBuiltinName));
1839 LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
1840 LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
1841 assert(Res.getFoundDecl());
1842 NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
1843 if (!NewBuiltinDecl)
1844 return ExprError();
1845 }
1846
1847 // The first argument --- the pointer --- has a fixed type; we
1848 // deduce the types of the rest of the arguments accordingly. Walk
1849 // the remaining arguments, converting them to the deduced value type.
1850 for (unsigned i = 0; i != NumFixed; ++i) {
1851 ExprResult Arg = TheCall->getArg(i+1);
1852
1853 // GCC does an implicit conversion to the pointer or integer ValType. This
1854 // can fail in some cases (1i -> int**), check for this error case now.
1855 // Initialize the argument.
1856 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1857 ValType, /*consume*/ false);
1858 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1859 if (Arg.isInvalid())
1860 return ExprError();
1861
1862 // Okay, we have something that *can* be converted to the right type. Check
1863 // to see if there is a potentially weird extension going on here. This can
1864 // happen when you do an atomic operation on something like an char* and
1865 // pass in 42. The 42 gets converted to char. This is even more strange
1866 // for things like 45.123 -> char, etc.
1867 // FIXME: Do this check.
1868 TheCall->setArg(i+1, Arg.get());
1869 }
1870
1871 ASTContext& Context = this->getASTContext();
1872
1873 // Create a new DeclRefExpr to refer to the new decl.
1874 DeclRefExpr* NewDRE = DeclRefExpr::Create(
1875 Context,
1876 DRE->getQualifierLoc(),
1877 SourceLocation(),
1878 NewBuiltinDecl,
1879 /*enclosing*/ false,
1880 DRE->getLocation(),
1881 Context.BuiltinFnTy,
1882 DRE->getValueKind());
1883
1884 // Set the callee in the CallExpr.
1885 // FIXME: This loses syntactic information.
1886 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
1887 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
1888 CK_BuiltinFnToFnPtr);
1889 TheCall->setCallee(PromotedCall.get());
1890
1891 // Change the result type of the call to match the original value type. This
1892 // is arbitrary, but the codegen for these builtins ins design to handle it
1893 // gracefully.
1894 TheCall->setType(ResultType);
1895
1896 return TheCallResult;
1897}
1898
1899/// CheckObjCString - Checks that the argument to the builtin
1900/// CFString constructor is correct
1901/// Note: It might also make sense to do the UTF-16 conversion here (would
1902/// simplify the backend).
1903bool Sema::CheckObjCString(Expr *Arg) {
1904 Arg = Arg->IgnoreParenCasts();
1905 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
1906
1907 if (!Literal || !Literal->isAscii()) {
1908 Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
1909 << Arg->getSourceRange();
1910 return true;
1911 }
1912
1913 if (Literal->containsNonAsciiOrNull()) {
1914 StringRef String = Literal->getString();
1915 unsigned NumBytes = String.size();
1916 SmallVector<UTF16, 128> ToBuf(NumBytes);
1917 const UTF8 *FromPtr = (const UTF8 *)String.data();
1918 UTF16 *ToPtr = &ToBuf[0];
1919
1920 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1921 &ToPtr, ToPtr + NumBytes,
1922 strictConversion);
1923 // Check for conversion failure.
1924 if (Result != conversionOK)
1925 Diag(Arg->getLocStart(),
1926 diag::warn_cfstring_truncated) << Arg->getSourceRange();
1927 }
1928 return false;
1929}
1930
1931/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
1932/// Emit an error and return true on failure, return false on success.
1933bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
1934 Expr *Fn = TheCall->getCallee();
1935 if (TheCall->getNumArgs() > 2) {
1936 Diag(TheCall->getArg(2)->getLocStart(),
1937 diag::err_typecheck_call_too_many_args)
1938 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
1939 << Fn->getSourceRange()
1940 << SourceRange(TheCall->getArg(2)->getLocStart(),
1941 (*(TheCall->arg_end()-1))->getLocEnd());
1942 return true;
1943 }
1944
1945 if (TheCall->getNumArgs() < 2) {
1946 return Diag(TheCall->getLocEnd(),
1947 diag::err_typecheck_call_too_few_args_at_least)
1948 << 0 /*function call*/ << 2 << TheCall->getNumArgs();
1949 }
1950
1951 // Type-check the first argument normally.
1952 if (checkBuiltinArgument(*this, TheCall, 0))
1953 return true;
1954
1955 // Determine whether the current function is variadic or not.
1956 BlockScopeInfo *CurBlock = getCurBlock();
1957 bool isVariadic;
1958 if (CurBlock)
1959 isVariadic = CurBlock->TheDecl->isVariadic();
1960 else if (FunctionDecl *FD = getCurFunctionDecl())
1961 isVariadic = FD->isVariadic();
1962 else
1963 isVariadic = getCurMethodDecl()->isVariadic();
1964
1965 if (!isVariadic) {
1966 Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
1967 return true;
1968 }
1969
1970 // Verify that the second argument to the builtin is the last argument of the
1971 // current function or method.
1972 bool SecondArgIsLastNamedArgument = false;
1973 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
1974
1975 // These are valid if SecondArgIsLastNamedArgument is false after the next
1976 // block.
1977 QualType Type;
1978 SourceLocation ParamLoc;
1979
1980 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
1981 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
1982 // FIXME: This isn't correct for methods (results in bogus warning).
1983 // Get the last formal in the current function.
1984 const ParmVarDecl *LastArg;
1985 if (CurBlock)
1986 LastArg = *(CurBlock->TheDecl->param_end()-1);
1987 else if (FunctionDecl *FD = getCurFunctionDecl())
1988 LastArg = *(FD->param_end()-1);
1989 else
1990 LastArg = *(getCurMethodDecl()->param_end()-1);
1991 SecondArgIsLastNamedArgument = PV == LastArg;
1992
1993 Type = PV->getType();
1994 ParamLoc = PV->getLocation();
1995 }
1996 }
1997
1998 if (!SecondArgIsLastNamedArgument)
1999 Diag(TheCall->getArg(1)->getLocStart(),
2000 diag::warn_second_parameter_of_va_start_not_last_named_argument);
2001 else if (Type->isReferenceType()) {
2002 Diag(Arg->getLocStart(),
2003 diag::warn_va_start_of_reference_type_is_undefined);
2004 Diag(ParamLoc, diag::note_parameter_type) << Type;
2005 }
2006
2007 TheCall->setType(Context.VoidTy);
2008 return false;
2009}
2010
2011bool Sema::SemaBuiltinVAStartARM(CallExpr *Call) {
2012 // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
2013 // const char *named_addr);
2014
2015 Expr *Func = Call->getCallee();
2016
2017 if (Call->getNumArgs() < 3)
2018 return Diag(Call->getLocEnd(),
2019 diag::err_typecheck_call_too_few_args_at_least)
2020 << 0 /*function call*/ << 3 << Call->getNumArgs();
2021
2022 // Determine whether the current function is variadic or not.
2023 bool IsVariadic;
2024 if (BlockScopeInfo *CurBlock = getCurBlock())
2025 IsVariadic = CurBlock->TheDecl->isVariadic();
2026 else if (FunctionDecl *FD = getCurFunctionDecl())
2027 IsVariadic = FD->isVariadic();
2028 else if (ObjCMethodDecl *MD = getCurMethodDecl())
2029 IsVariadic = MD->isVariadic();
2030 else
2031 llvm_unreachable("unexpected statement type");
2032
2033 if (!IsVariadic) {
2034 Diag(Func->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
2035 return true;
2036 }
2037
2038 // Type-check the first argument normally.
2039 if (checkBuiltinArgument(*this, Call, 0))
2040 return true;
2041
2042 static const struct {
2043 unsigned ArgNo;
2044 QualType Type;
2045 } ArgumentTypes[] = {
2046 { 1, Context.getPointerType(Context.CharTy.withConst()) },
2047 { 2, Context.getSizeType() },
2048 };
2049
2050 for (const auto &AT : ArgumentTypes) {
2051 const Expr *Arg = Call->getArg(AT.ArgNo)->IgnoreParens();
2052 if (Arg->getType().getCanonicalType() == AT.Type.getCanonicalType())
2053 continue;
2054 Diag(Arg->getLocStart(), diag::err_typecheck_convert_incompatible)
2055 << Arg->getType() << AT.Type << 1 /* different class */
2056 << 0 /* qualifier difference */ << 3 /* parameter mismatch */
2057 << AT.ArgNo + 1 << Arg->getType() << AT.Type;
2058 }
2059
2060 return false;
2061}
2062
2063/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
2064/// friends. This is declared to take (...), so we have to check everything.
2065bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
2066 if (TheCall->getNumArgs() < 2)
2067 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
2068 << 0 << 2 << TheCall->getNumArgs()/*function call*/;
2069 if (TheCall->getNumArgs() > 2)
2070 return Diag(TheCall->getArg(2)->getLocStart(),
2071 diag::err_typecheck_call_too_many_args)
2072 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
2073 << SourceRange(TheCall->getArg(2)->getLocStart(),
2074 (*(TheCall->arg_end()-1))->getLocEnd());
2075
2076 ExprResult OrigArg0 = TheCall->getArg(0);
2077 ExprResult OrigArg1 = TheCall->getArg(1);
2078
2079 // Do standard promotions between the two arguments, returning their common
2080 // type.
2081 QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
2082 if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
2083 return true;
2084
2085 // Make sure any conversions are pushed back into the call; this is
2086 // type safe since unordered compare builtins are declared as "_Bool
2087 // foo(...)".
2088 TheCall->setArg(0, OrigArg0.get());
2089 TheCall->setArg(1, OrigArg1.get());
2090
2091 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
2092 return false;
2093
2094 // If the common type isn't a real floating type, then the arguments were
2095 // invalid for this operation.
2096 if (Res.isNull() || !Res->isRealFloatingType())
2097 return Diag(OrigArg0.get()->getLocStart(),
2098 diag::err_typecheck_call_invalid_ordered_compare)
2099 << OrigArg0.get()->getType() << OrigArg1.get()->getType()
2100 << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
2101
2102 return false;
2103}
2104
2105/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
2106/// __builtin_isnan and friends. This is declared to take (...), so we have
2107/// to check everything. We expect the last argument to be a floating point
2108/// value.
2109bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
2110 if (TheCall->getNumArgs() < NumArgs)
2111 return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
2112 << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
2113 if (TheCall->getNumArgs() > NumArgs)
2114 return Diag(TheCall->getArg(NumArgs)->getLocStart(),
2115 diag::err_typecheck_call_too_many_args)
2116 << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
2117 << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
2118 (*(TheCall->arg_end()-1))->getLocEnd());
2119
2120 Expr *OrigArg = TheCall->getArg(NumArgs-1);
2121
2122 if (OrigArg->isTypeDependent())
2123 return false;
2124
2125 // This operation requires a non-_Complex floating-point number.
2126 if (!OrigArg->getType()->isRealFloatingType())
2127 return Diag(OrigArg->getLocStart(),
2128 diag::err_typecheck_call_invalid_unary_fp)
2129 << OrigArg->getType() << OrigArg->getSourceRange();
2130
2131 // If this is an implicit conversion from float -> double, remove it.
2132 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
2133 Expr *CastArg = Cast->getSubExpr();
2134 if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
2135 assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
2136 "promotion from float to double is the only expected cast here");
2137 Cast->setSubExpr(nullptr);
2138 TheCall->setArg(NumArgs-1, CastArg);
2139 }
2140 }
2141
2142 return false;
2143}
2144
2145/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
2146// This is declared to take (...), so we have to check everything.
2147ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
2148 if (TheCall->getNumArgs() < 2)
2149 return ExprError(Diag(TheCall->getLocEnd(),
2150 diag::err_typecheck_call_too_few_args_at_least)
2151 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
2152 << TheCall->getSourceRange());
2153
2154 // Determine which of the following types of shufflevector we're checking:
2155 // 1) unary, vector mask: (lhs, mask)
2156 // 2) binary, vector mask: (lhs, rhs, mask)
2157 // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
2158 QualType resType = TheCall->getArg(0)->getType();
2159 unsigned numElements = 0;
2160
2161 if (!TheCall->getArg(0)->isTypeDependent() &&
2162 !TheCall->getArg(1)->isTypeDependent()) {
2163 QualType LHSType = TheCall->getArg(0)->getType();
2164 QualType RHSType = TheCall->getArg(1)->getType();
2165
2166 if (!LHSType->isVectorType() || !RHSType->isVectorType())
2167 return ExprError(Diag(TheCall->getLocStart(),
2168 diag::err_shufflevector_non_vector)
2169 << SourceRange(TheCall->getArg(0)->getLocStart(),
2170 TheCall->getArg(1)->getLocEnd()));
2171
2172 numElements = LHSType->getAs<VectorType>()->getNumElements();
2173 unsigned numResElements = TheCall->getNumArgs() - 2;
2174
2175 // Check to see if we have a call with 2 vector arguments, the unary shuffle
2176 // with mask. If so, verify that RHS is an integer vector type with the
2177 // same number of elts as lhs.
2178 if (TheCall->getNumArgs() == 2) {
2179 if (!RHSType->hasIntegerRepresentation() ||
2180 RHSType->getAs<VectorType>()->getNumElements() != numElements)
2181 return ExprError(Diag(TheCall->getLocStart(),
2182 diag::err_shufflevector_incompatible_vector)
2183 << SourceRange(TheCall->getArg(1)->getLocStart(),
2184 TheCall->getArg(1)->getLocEnd()));
2185 } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
2186 return ExprError(Diag(TheCall->getLocStart(),
2187 diag::err_shufflevector_incompatible_vector)
2188 << SourceRange(TheCall->getArg(0)->getLocStart(),
2189 TheCall->getArg(1)->getLocEnd()));
2190 } else if (numElements != numResElements) {
2191 QualType eltType = LHSType->getAs<VectorType>()->getElementType();
2192 resType = Context.getVectorType(eltType, numResElements,
2193 VectorType::GenericVector);
2194 }
2195 }
2196
2197 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
2198 if (TheCall->getArg(i)->isTypeDependent() ||
2199 TheCall->getArg(i)->isValueDependent())
2200 continue;
2201
2202 llvm::APSInt Result(32);
2203 if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
2204 return ExprError(Diag(TheCall->getLocStart(),
2205 diag::err_shufflevector_nonconstant_argument)
2206 << TheCall->getArg(i)->getSourceRange());
2207
2208 // Allow -1 which will be translated to undef in the IR.
2209 if (Result.isSigned() && Result.isAllOnesValue())
2210 continue;
2211
2212 if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
2213 return ExprError(Diag(TheCall->getLocStart(),
2214 diag::err_shufflevector_argument_too_large)
2215 << TheCall->getArg(i)->getSourceRange());
2216 }
2217
2218 SmallVector<Expr*, 32> exprs;
2219
2220 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
2221 exprs.push_back(TheCall->getArg(i));
2222 TheCall->setArg(i, nullptr);
2223 }
2224
2225 return new (Context) ShuffleVectorExpr(Context, exprs, resType,
2226 TheCall->getCallee()->getLocStart(),
2227 TheCall->getRParenLoc());
2228}
2229
2230/// SemaConvertVectorExpr - Handle __builtin_convertvector
2231ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
2232 SourceLocation BuiltinLoc,
2233 SourceLocation RParenLoc) {
2234 ExprValueKind VK = VK_RValue;
2235 ExprObjectKind OK = OK_Ordinary;
2236 QualType DstTy = TInfo->getType();
2237 QualType SrcTy = E->getType();
2238
2239 if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
2240 return ExprError(Diag(BuiltinLoc,
2241 diag::err_convertvector_non_vector)
2242 << E->getSourceRange());
2243 if (!DstTy->isVectorType() && !DstTy->isDependentType())
2244 return ExprError(Diag(BuiltinLoc,
2245 diag::err_convertvector_non_vector_type));
2246
2247 if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
2248 unsigned SrcElts = SrcTy->getAs<VectorType>()->getNumElements();
2249 unsigned DstElts = DstTy->getAs<VectorType>()->getNumElements();
2250 if (SrcElts != DstElts)
2251 return ExprError(Diag(BuiltinLoc,
2252 diag::err_convertvector_incompatible_vector)
2253 << E->getSourceRange());
2254 }
2255
2256 return new (Context)
2257 ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
2258}
2259
2260/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
2261// This is declared to take (const void*, ...) and can take two
2262// optional constant int args.
2263bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
2264 unsigned NumArgs = TheCall->getNumArgs();
2265
2266 if (NumArgs > 3)
2267 return Diag(TheCall->getLocEnd(),
2268 diag::err_typecheck_call_too_many_args_at_most)
2269 << 0 /*function call*/ << 3 << NumArgs
2270 << TheCall->getSourceRange();
2271
2272 // Argument 0 is checked for us and the remaining arguments must be
2273 // constant integers.
2274 for (unsigned i = 1; i != NumArgs; ++i)
2275 if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
2276 return true;
2277
2278 return false;
2279}
2280
2281/// SemaBuiltinAssume - Handle __assume (MS Extension).
2282// __assume does not evaluate its arguments, and should warn if its argument
2283// has side effects.
2284bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
2285 Expr *Arg = TheCall->getArg(0);
2286 if (Arg->isInstantiationDependent()) return false;
2287
2288 if (Arg->HasSideEffects(Context))
2289 return Diag(Arg->getLocStart(), diag::warn_assume_side_effects)
2290 << Arg->getSourceRange()
2291 << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
2292
2293 return false;
2294}
2295
2296/// Handle __builtin_assume_aligned. This is declared
2297/// as (const void*, size_t, ...) and can take one optional constant int arg.
2298bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
2299 unsigned NumArgs = TheCall->getNumArgs();
2300
2301 if (NumArgs > 3)
2302 return Diag(TheCall->getLocEnd(),
2303 diag::err_typecheck_call_too_many_args_at_most)
2304 << 0 /*function call*/ << 3 << NumArgs
2305 << TheCall->getSourceRange();
2306
2307 // The alignment must be a constant integer.
2308 Expr *Arg = TheCall->getArg(1);
2309
2310 // We can't check the value of a dependent argument.
2311 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
2312 llvm::APSInt Result;
2313 if (SemaBuiltinConstantArg(TheCall, 1, Result))
2314 return true;
2315
2316 if (!Result.isPowerOf2())
2317 return Diag(TheCall->getLocStart(),
2318 diag::err_alignment_not_power_of_two)
2319 << Arg->getSourceRange();
2320 }
2321
2322 if (NumArgs > 2) {
2323 ExprResult Arg(TheCall->getArg(2));
2324 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
2325 Context.getSizeType(), false);
2326 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
2327 if (Arg.isInvalid()) return true;
2328 TheCall->setArg(2, Arg.get());
2329 }
2330
2331 return false;
2332}
2333
2334/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
2335/// TheCall is a constant expression.
2336bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
2337 llvm::APSInt &Result) {
2338 Expr *Arg = TheCall->getArg(ArgNum);
2339 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2340 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
2341
2342 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
2343
2344 if (!Arg->isIntegerConstantExpr(Result, Context))
2345 return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
2346 << FDecl->getDeclName() << Arg->getSourceRange();
2347
2348 return false;
2349}
2350
2351/// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
2352/// TheCall is a constant expression in the range [Low, High].
2353bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
2354 int Low, int High) {
2355 llvm::APSInt Result;
2356
2357 // We can't check the value of a dependent argument.
2358 Expr *Arg = TheCall->getArg(ArgNum);
2359 if (Arg->isTypeDependent() || Arg->isValueDependent())
2360 return false;
2361
2362 // Check constant-ness first.
2363 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
2364 return true;
2365
2366 if (Result.getSExtValue() < Low || Result.getSExtValue() > High)
2367 return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
2368 << Low << High << Arg->getSourceRange();
2369
2370 return false;
2371}
2372
2373/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
2370/// This checks that val is a constant 1.
2374/// This checks that the target supports __builtin_longjmp and
2375/// that val is a constant 1.
2371bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
2376bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
2377 if (!Context.getTargetInfo().hasSjLjLowering())
2378 return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_unsupported)
2379 << SourceRange(TheCall->getLocStart(), TheCall->getLocEnd());
2380
2372 Expr *Arg = TheCall->getArg(1);
2373 llvm::APSInt Result;
2374
2375 // TODO: This is less than ideal. Overload this to take a value.
2376 if (SemaBuiltinConstantArg(TheCall, 1, Result))
2377 return true;
2378
2379 if (Result != 1)
2380 return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
2381 << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
2382
2383 return false;
2384}
2385
2381 Expr *Arg = TheCall->getArg(1);
2382 llvm::APSInt Result;
2383
2384 // TODO: This is less than ideal. Overload this to take a value.
2385 if (SemaBuiltinConstantArg(TheCall, 1, Result))
2386 return true;
2387
2388 if (Result != 1)
2389 return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
2390 << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
2391
2392 return false;
2393}
2394
2395
2396/// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
2397/// This checks that the target supports __builtin_setjmp.
2398bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
2399 if (!Context.getTargetInfo().hasSjLjLowering())
2400 return Diag(TheCall->getLocStart(), diag::err_builtin_setjmp_unsupported)
2401 << SourceRange(TheCall->getLocStart(), TheCall->getLocEnd());
2402 return false;
2403}
2404
2386namespace {
2387enum StringLiteralCheckType {
2388 SLCT_NotALiteral,
2389 SLCT_UncheckedLiteral,
2390 SLCT_CheckedLiteral
2391};
2392}
2393
2394// Determine if an expression is a string literal or constant string.
2395// If this function returns false on the arguments to a function expecting a
2396// format string, we will usually need to emit a warning.
2397// True string literals are then checked by CheckFormatString.
2398static StringLiteralCheckType
2399checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
2400 bool HasVAListArg, unsigned format_idx,
2401 unsigned firstDataArg, Sema::FormatStringType Type,
2402 Sema::VariadicCallType CallType, bool InFunctionCall,
2403 llvm::SmallBitVector &CheckedVarArgs) {
2404 tryAgain:
2405 if (E->isTypeDependent() || E->isValueDependent())
2406 return SLCT_NotALiteral;
2407
2408 E = E->IgnoreParenCasts();
2409
2410 if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
2411 // Technically -Wformat-nonliteral does not warn about this case.
2412 // The behavior of printf and friends in this case is implementation
2413 // dependent. Ideally if the format string cannot be null then
2414 // it should have a 'nonnull' attribute in the function prototype.
2415 return SLCT_UncheckedLiteral;
2416
2417 switch (E->getStmtClass()) {
2418 case Stmt::BinaryConditionalOperatorClass:
2419 case Stmt::ConditionalOperatorClass: {
2420 // The expression is a literal if both sub-expressions were, and it was
2421 // completely checked only if both sub-expressions were checked.
2422 const AbstractConditionalOperator *C =
2423 cast<AbstractConditionalOperator>(E);
2424 StringLiteralCheckType Left =
2425 checkFormatStringExpr(S, C->getTrueExpr(), Args,
2426 HasVAListArg, format_idx, firstDataArg,
2427 Type, CallType, InFunctionCall, CheckedVarArgs);
2428 if (Left == SLCT_NotALiteral)
2429 return SLCT_NotALiteral;
2430 StringLiteralCheckType Right =
2431 checkFormatStringExpr(S, C->getFalseExpr(), Args,
2432 HasVAListArg, format_idx, firstDataArg,
2433 Type, CallType, InFunctionCall, CheckedVarArgs);
2434 return Left < Right ? Left : Right;
2435 }
2436
2437 case Stmt::ImplicitCastExprClass: {
2438 E = cast<ImplicitCastExpr>(E)->getSubExpr();
2439 goto tryAgain;
2440 }
2441
2442 case Stmt::OpaqueValueExprClass:
2443 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
2444 E = src;
2445 goto tryAgain;
2446 }
2447 return SLCT_NotALiteral;
2448
2449 case Stmt::PredefinedExprClass:
2450 // While __func__, etc., are technically not string literals, they
2451 // cannot contain format specifiers and thus are not a security
2452 // liability.
2453 return SLCT_UncheckedLiteral;
2454
2455 case Stmt::DeclRefExprClass: {
2456 const DeclRefExpr *DR = cast<DeclRefExpr>(E);
2457
2458 // As an exception, do not flag errors for variables binding to
2459 // const string literals.
2460 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
2461 bool isConstant = false;
2462 QualType T = DR->getType();
2463
2464 if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
2465 isConstant = AT->getElementType().isConstant(S.Context);
2466 } else if (const PointerType *PT = T->getAs<PointerType>()) {
2467 isConstant = T.isConstant(S.Context) &&
2468 PT->getPointeeType().isConstant(S.Context);
2469 } else if (T->isObjCObjectPointerType()) {
2470 // In ObjC, there is usually no "const ObjectPointer" type,
2471 // so don't check if the pointee type is constant.
2472 isConstant = T.isConstant(S.Context);
2473 }
2474
2475 if (isConstant) {
2476 if (const Expr *Init = VD->getAnyInitializer()) {
2477 // Look through initializers like const char c[] = { "foo" }
2478 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2479 if (InitList->isStringLiteralInit())
2480 Init = InitList->getInit(0)->IgnoreParenImpCasts();
2481 }
2482 return checkFormatStringExpr(S, Init, Args,
2483 HasVAListArg, format_idx,
2484 firstDataArg, Type, CallType,
2485 /*InFunctionCall*/false, CheckedVarArgs);
2486 }
2487 }
2488
2489 // For vprintf* functions (i.e., HasVAListArg==true), we add a
2490 // special check to see if the format string is a function parameter
2491 // of the function calling the printf function. If the function
2492 // has an attribute indicating it is a printf-like function, then we
2493 // should suppress warnings concerning non-literals being used in a call
2494 // to a vprintf function. For example:
2495 //
2496 // void
2497 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
2498 // va_list ap;
2499 // va_start(ap, fmt);
2500 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
2501 // ...
2502 // }
2503 if (HasVAListArg) {
2504 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
2505 if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
2506 int PVIndex = PV->getFunctionScopeIndex() + 1;
2507 for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
2508 // adjust for implicit parameter
2509 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2510 if (MD->isInstance())
2511 ++PVIndex;
2512 // We also check if the formats are compatible.
2513 // We can't pass a 'scanf' string to a 'printf' function.
2514 if (PVIndex == PVFormat->getFormatIdx() &&
2515 Type == S.GetFormatStringType(PVFormat))
2516 return SLCT_UncheckedLiteral;
2517 }
2518 }
2519 }
2520 }
2521 }
2522
2523 return SLCT_NotALiteral;
2524 }
2525
2526 case Stmt::CallExprClass:
2527 case Stmt::CXXMemberCallExprClass: {
2528 const CallExpr *CE = cast<CallExpr>(E);
2529 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
2530 if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
2531 unsigned ArgIndex = FA->getFormatIdx();
2532 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2533 if (MD->isInstance())
2534 --ArgIndex;
2535 const Expr *Arg = CE->getArg(ArgIndex - 1);
2536
2537 return checkFormatStringExpr(S, Arg, Args,
2538 HasVAListArg, format_idx, firstDataArg,
2539 Type, CallType, InFunctionCall,
2540 CheckedVarArgs);
2541 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
2542 unsigned BuiltinID = FD->getBuiltinID();
2543 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
2544 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
2545 const Expr *Arg = CE->getArg(0);
2546 return checkFormatStringExpr(S, Arg, Args,
2547 HasVAListArg, format_idx,
2548 firstDataArg, Type, CallType,
2549 InFunctionCall, CheckedVarArgs);
2550 }
2551 }
2552 }
2553
2554 return SLCT_NotALiteral;
2555 }
2556 case Stmt::ObjCStringLiteralClass:
2557 case Stmt::StringLiteralClass: {
2558 const StringLiteral *StrE = nullptr;
2559
2560 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
2561 StrE = ObjCFExpr->getString();
2562 else
2563 StrE = cast<StringLiteral>(E);
2564
2565 if (StrE) {
2566 S.CheckFormatString(StrE, E, Args, HasVAListArg, format_idx, firstDataArg,
2567 Type, InFunctionCall, CallType, CheckedVarArgs);
2568 return SLCT_CheckedLiteral;
2569 }
2570
2571 return SLCT_NotALiteral;
2572 }
2573
2574 default:
2575 return SLCT_NotALiteral;
2576 }
2577}
2578
2579Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
2580 return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
2581 .Case("scanf", FST_Scanf)
2582 .Cases("printf", "printf0", FST_Printf)
2583 .Cases("NSString", "CFString", FST_NSString)
2584 .Case("strftime", FST_Strftime)
2585 .Case("strfmon", FST_Strfmon)
2586 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
2587 .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
2588 .Default(FST_Unknown);
2589}
2590
2591/// CheckFormatArguments - Check calls to printf and scanf (and similar
2592/// functions) for correct use of format strings.
2593/// Returns true if a format string has been fully checked.
2594bool Sema::CheckFormatArguments(const FormatAttr *Format,
2595 ArrayRef<const Expr *> Args,
2596 bool IsCXXMember,
2597 VariadicCallType CallType,
2598 SourceLocation Loc, SourceRange Range,
2599 llvm::SmallBitVector &CheckedVarArgs) {
2600 FormatStringInfo FSI;
2601 if (getFormatStringInfo(Format, IsCXXMember, &FSI))
2602 return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
2603 FSI.FirstDataArg, GetFormatStringType(Format),
2604 CallType, Loc, Range, CheckedVarArgs);
2605 return false;
2606}
2607
2608bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
2609 bool HasVAListArg, unsigned format_idx,
2610 unsigned firstDataArg, FormatStringType Type,
2611 VariadicCallType CallType,
2612 SourceLocation Loc, SourceRange Range,
2613 llvm::SmallBitVector &CheckedVarArgs) {
2614 // CHECK: printf/scanf-like function is called with no format string.
2615 if (format_idx >= Args.size()) {
2616 Diag(Loc, diag::warn_missing_format_string) << Range;
2617 return false;
2618 }
2619
2620 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
2621
2622 // CHECK: format string is not a string literal.
2623 //
2624 // Dynamically generated format strings are difficult to
2625 // automatically vet at compile time. Requiring that format strings
2626 // are string literals: (1) permits the checking of format strings by
2627 // the compiler and thereby (2) can practically remove the source of
2628 // many format string exploits.
2629
2630 // Format string can be either ObjC string (e.g. @"%d") or
2631 // C string (e.g. "%d")
2632 // ObjC string uses the same format specifiers as C string, so we can use
2633 // the same format string checking logic for both ObjC and C strings.
2634 StringLiteralCheckType CT =
2635 checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
2636 format_idx, firstDataArg, Type, CallType,
2637 /*IsFunctionCall*/true, CheckedVarArgs);
2638 if (CT != SLCT_NotALiteral)
2639 // Literal format string found, check done!
2640 return CT == SLCT_CheckedLiteral;
2641
2642 // Strftime is particular as it always uses a single 'time' argument,
2643 // so it is safe to pass a non-literal string.
2644 if (Type == FST_Strftime)
2645 return false;
2646
2647 // Do not emit diag when the string param is a macro expansion and the
2648 // format is either NSString or CFString. This is a hack to prevent
2649 // diag when using the NSLocalizedString and CFCopyLocalizedString macros
2650 // which are usually used in place of NS and CF string literals.
2651 if (Type == FST_NSString &&
2652 SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
2653 return false;
2654
2655 // If there are no arguments specified, warn with -Wformat-security, otherwise
2656 // warn only with -Wformat-nonliteral.
2657 if (Args.size() == firstDataArg)
2658 Diag(Args[format_idx]->getLocStart(),
2659 diag::warn_format_nonliteral_noargs)
2660 << OrigFormatExpr->getSourceRange();
2661 else
2662 Diag(Args[format_idx]->getLocStart(),
2663 diag::warn_format_nonliteral)
2664 << OrigFormatExpr->getSourceRange();
2665 return false;
2666}
2667
2668namespace {
2669class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
2670protected:
2671 Sema &S;
2672 const StringLiteral *FExpr;
2673 const Expr *OrigFormatExpr;
2674 const unsigned FirstDataArg;
2675 const unsigned NumDataArgs;
2676 const char *Beg; // Start of format string.
2677 const bool HasVAListArg;
2678 ArrayRef<const Expr *> Args;
2679 unsigned FormatIdx;
2680 llvm::SmallBitVector CoveredArgs;
2681 bool usesPositionalArgs;
2682 bool atFirstArg;
2683 bool inFunctionCall;
2684 Sema::VariadicCallType CallType;
2685 llvm::SmallBitVector &CheckedVarArgs;
2686public:
2687 CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
2688 const Expr *origFormatExpr, unsigned firstDataArg,
2689 unsigned numDataArgs, const char *beg, bool hasVAListArg,
2690 ArrayRef<const Expr *> Args,
2691 unsigned formatIdx, bool inFunctionCall,
2692 Sema::VariadicCallType callType,
2693 llvm::SmallBitVector &CheckedVarArgs)
2694 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
2695 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
2696 Beg(beg), HasVAListArg(hasVAListArg),
2697 Args(Args), FormatIdx(formatIdx),
2698 usesPositionalArgs(false), atFirstArg(true),
2699 inFunctionCall(inFunctionCall), CallType(callType),
2700 CheckedVarArgs(CheckedVarArgs) {
2701 CoveredArgs.resize(numDataArgs);
2702 CoveredArgs.reset();
2703 }
2704
2705 void DoneProcessing();
2706
2707 void HandleIncompleteSpecifier(const char *startSpecifier,
2708 unsigned specifierLen) override;
2709
2710 void HandleInvalidLengthModifier(
2711 const analyze_format_string::FormatSpecifier &FS,
2712 const analyze_format_string::ConversionSpecifier &CS,
2713 const char *startSpecifier, unsigned specifierLen,
2714 unsigned DiagID);
2715
2716 void HandleNonStandardLengthModifier(
2717 const analyze_format_string::FormatSpecifier &FS,
2718 const char *startSpecifier, unsigned specifierLen);
2719
2720 void HandleNonStandardConversionSpecifier(
2721 const analyze_format_string::ConversionSpecifier &CS,
2722 const char *startSpecifier, unsigned specifierLen);
2723
2724 void HandlePosition(const char *startPos, unsigned posLen) override;
2725
2726 void HandleInvalidPosition(const char *startSpecifier,
2727 unsigned specifierLen,
2728 analyze_format_string::PositionContext p) override;
2729
2730 void HandleZeroPosition(const char *startPos, unsigned posLen) override;
2731
2732 void HandleNullChar(const char *nullCharacter) override;
2733
2734 template <typename Range>
2735 static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
2736 const Expr *ArgumentExpr,
2737 PartialDiagnostic PDiag,
2738 SourceLocation StringLoc,
2739 bool IsStringLocation, Range StringRange,
2740 ArrayRef<FixItHint> Fixit = None);
2741
2742protected:
2743 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
2744 const char *startSpec,
2745 unsigned specifierLen,
2746 const char *csStart, unsigned csLen);
2747
2748 void HandlePositionalNonpositionalArgs(SourceLocation Loc,
2749 const char *startSpec,
2750 unsigned specifierLen);
2751
2752 SourceRange getFormatStringRange();
2753 CharSourceRange getSpecifierRange(const char *startSpecifier,
2754 unsigned specifierLen);
2755 SourceLocation getLocationOfByte(const char *x);
2756
2757 const Expr *getDataArg(unsigned i) const;
2758
2759 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
2760 const analyze_format_string::ConversionSpecifier &CS,
2761 const char *startSpecifier, unsigned specifierLen,
2762 unsigned argIndex);
2763
2764 template <typename Range>
2765 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
2766 bool IsStringLocation, Range StringRange,
2767 ArrayRef<FixItHint> Fixit = None);
2768};
2769}
2770
2771SourceRange CheckFormatHandler::getFormatStringRange() {
2772 return OrigFormatExpr->getSourceRange();
2773}
2774
2775CharSourceRange CheckFormatHandler::
2776getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2777 SourceLocation Start = getLocationOfByte(startSpecifier);
2778 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1);
2779
2780 // Advance the end SourceLocation by one due to half-open ranges.
2781 End = End.getLocWithOffset(1);
2782
2783 return CharSourceRange::getCharRange(Start, End);
2784}
2785
2786SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2787 return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2788}
2789
2790void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2791 unsigned specifierLen){
2792 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2793 getLocationOfByte(startSpecifier),
2794 /*IsStringLocation*/true,
2795 getSpecifierRange(startSpecifier, specifierLen));
2796}
2797
2798void CheckFormatHandler::HandleInvalidLengthModifier(
2799 const analyze_format_string::FormatSpecifier &FS,
2800 const analyze_format_string::ConversionSpecifier &CS,
2801 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
2802 using namespace analyze_format_string;
2803
2804 const LengthModifier &LM = FS.getLengthModifier();
2805 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2806
2807 // See if we know how to fix this length modifier.
2808 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2809 if (FixedLM) {
2810 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2811 getLocationOfByte(LM.getStart()),
2812 /*IsStringLocation*/true,
2813 getSpecifierRange(startSpecifier, specifierLen));
2814
2815 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2816 << FixedLM->toString()
2817 << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2818
2819 } else {
2820 FixItHint Hint;
2821 if (DiagID == diag::warn_format_nonsensical_length)
2822 Hint = FixItHint::CreateRemoval(LMRange);
2823
2824 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2825 getLocationOfByte(LM.getStart()),
2826 /*IsStringLocation*/true,
2827 getSpecifierRange(startSpecifier, specifierLen),
2828 Hint);
2829 }
2830}
2831
2832void CheckFormatHandler::HandleNonStandardLengthModifier(
2833 const analyze_format_string::FormatSpecifier &FS,
2834 const char *startSpecifier, unsigned specifierLen) {
2835 using namespace analyze_format_string;
2836
2837 const LengthModifier &LM = FS.getLengthModifier();
2838 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2839
2840 // See if we know how to fix this length modifier.
2841 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2842 if (FixedLM) {
2843 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2844 << LM.toString() << 0,
2845 getLocationOfByte(LM.getStart()),
2846 /*IsStringLocation*/true,
2847 getSpecifierRange(startSpecifier, specifierLen));
2848
2849 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2850 << FixedLM->toString()
2851 << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2852
2853 } else {
2854 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2855 << LM.toString() << 0,
2856 getLocationOfByte(LM.getStart()),
2857 /*IsStringLocation*/true,
2858 getSpecifierRange(startSpecifier, specifierLen));
2859 }
2860}
2861
2862void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2863 const analyze_format_string::ConversionSpecifier &CS,
2864 const char *startSpecifier, unsigned specifierLen) {
2865 using namespace analyze_format_string;
2866
2867 // See if we know how to fix this conversion specifier.
2868 Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
2869 if (FixedCS) {
2870 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2871 << CS.toString() << /*conversion specifier*/1,
2872 getLocationOfByte(CS.getStart()),
2873 /*IsStringLocation*/true,
2874 getSpecifierRange(startSpecifier, specifierLen));
2875
2876 CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
2877 S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
2878 << FixedCS->toString()
2879 << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
2880 } else {
2881 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2882 << CS.toString() << /*conversion specifier*/1,
2883 getLocationOfByte(CS.getStart()),
2884 /*IsStringLocation*/true,
2885 getSpecifierRange(startSpecifier, specifierLen));
2886 }
2887}
2888
2889void CheckFormatHandler::HandlePosition(const char *startPos,
2890 unsigned posLen) {
2891 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2892 getLocationOfByte(startPos),
2893 /*IsStringLocation*/true,
2894 getSpecifierRange(startPos, posLen));
2895}
2896
2897void
2898CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2899 analyze_format_string::PositionContext p) {
2900 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2901 << (unsigned) p,
2902 getLocationOfByte(startPos), /*IsStringLocation*/true,
2903 getSpecifierRange(startPos, posLen));
2904}
2905
2906void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2907 unsigned posLen) {
2908 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2909 getLocationOfByte(startPos),
2910 /*IsStringLocation*/true,
2911 getSpecifierRange(startPos, posLen));
2912}
2913
2914void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2915 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2916 // The presence of a null character is likely an error.
2917 EmitFormatDiagnostic(
2918 S.PDiag(diag::warn_printf_format_string_contains_null_char),
2919 getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2920 getFormatStringRange());
2921 }
2922}
2923
2924// Note that this may return NULL if there was an error parsing or building
2925// one of the argument expressions.
2926const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2927 return Args[FirstDataArg + i];
2928}
2929
2930void CheckFormatHandler::DoneProcessing() {
2931 // Does the number of data arguments exceed the number of
2932 // format conversions in the format string?
2933 if (!HasVAListArg) {
2934 // Find any arguments that weren't covered.
2935 CoveredArgs.flip();
2936 signed notCoveredArg = CoveredArgs.find_first();
2937 if (notCoveredArg >= 0) {
2938 assert((unsigned)notCoveredArg < NumDataArgs);
2939 if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2940 SourceLocation Loc = E->getLocStart();
2941 if (!S.getSourceManager().isInSystemMacro(Loc)) {
2942 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2943 Loc, /*IsStringLocation*/false,
2944 getFormatStringRange());
2945 }
2946 }
2947 }
2948 }
2949}
2950
2951bool
2952CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2953 SourceLocation Loc,
2954 const char *startSpec,
2955 unsigned specifierLen,
2956 const char *csStart,
2957 unsigned csLen) {
2958
2959 bool keepGoing = true;
2960 if (argIndex < NumDataArgs) {
2961 // Consider the argument coverered, even though the specifier doesn't
2962 // make sense.
2963 CoveredArgs.set(argIndex);
2964 }
2965 else {
2966 // If argIndex exceeds the number of data arguments we
2967 // don't issue a warning because that is just a cascade of warnings (and
2968 // they may have intended '%%' anyway). We don't want to continue processing
2969 // the format string after this point, however, as we will like just get
2970 // gibberish when trying to match arguments.
2971 keepGoing = false;
2972 }
2973
2974 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2975 << StringRef(csStart, csLen),
2976 Loc, /*IsStringLocation*/true,
2977 getSpecifierRange(startSpec, specifierLen));
2978
2979 return keepGoing;
2980}
2981
2982void
2983CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
2984 const char *startSpec,
2985 unsigned specifierLen) {
2986 EmitFormatDiagnostic(
2987 S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
2988 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
2989}
2990
2991bool
2992CheckFormatHandler::CheckNumArgs(
2993 const analyze_format_string::FormatSpecifier &FS,
2994 const analyze_format_string::ConversionSpecifier &CS,
2995 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
2996
2997 if (argIndex >= NumDataArgs) {
2998 PartialDiagnostic PDiag = FS.usesPositionalArg()
2999 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
3000 << (argIndex+1) << NumDataArgs)
3001 : S.PDiag(diag::warn_printf_insufficient_data_args);
3002 EmitFormatDiagnostic(
3003 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
3004 getSpecifierRange(startSpecifier, specifierLen));
3005 return false;
3006 }
3007 return true;
3008}
3009
3010template<typename Range>
3011void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
3012 SourceLocation Loc,
3013 bool IsStringLocation,
3014 Range StringRange,
3015 ArrayRef<FixItHint> FixIt) {
3016 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
3017 Loc, IsStringLocation, StringRange, FixIt);
3018}
3019
3020/// \brief If the format string is not within the funcion call, emit a note
3021/// so that the function call and string are in diagnostic messages.
3022///
3023/// \param InFunctionCall if true, the format string is within the function
3024/// call and only one diagnostic message will be produced. Otherwise, an
3025/// extra note will be emitted pointing to location of the format string.
3026///
3027/// \param ArgumentExpr the expression that is passed as the format string
3028/// argument in the function call. Used for getting locations when two
3029/// diagnostics are emitted.
3030///
3031/// \param PDiag the callee should already have provided any strings for the
3032/// diagnostic message. This function only adds locations and fixits
3033/// to diagnostics.
3034///
3035/// \param Loc primary location for diagnostic. If two diagnostics are
3036/// required, one will be at Loc and a new SourceLocation will be created for
3037/// the other one.
3038///
3039/// \param IsStringLocation if true, Loc points to the format string should be
3040/// used for the note. Otherwise, Loc points to the argument list and will
3041/// be used with PDiag.
3042///
3043/// \param StringRange some or all of the string to highlight. This is
3044/// templated so it can accept either a CharSourceRange or a SourceRange.
3045///
3046/// \param FixIt optional fix it hint for the format string.
3047template<typename Range>
3048void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
3049 const Expr *ArgumentExpr,
3050 PartialDiagnostic PDiag,
3051 SourceLocation Loc,
3052 bool IsStringLocation,
3053 Range StringRange,
3054 ArrayRef<FixItHint> FixIt) {
3055 if (InFunctionCall) {
3056 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
3057 D << StringRange;
3058 for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
3059 I != E; ++I) {
3060 D << *I;
3061 }
3062 } else {
3063 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
3064 << ArgumentExpr->getSourceRange();
3065
3066 const Sema::SemaDiagnosticBuilder &Note =
3067 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
3068 diag::note_format_string_defined);
3069
3070 Note << StringRange;
3071 for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
3072 I != E; ++I) {
3073 Note << *I;
3074 }
3075 }
3076}
3077
3078//===--- CHECK: Printf format string checking ------------------------------===//
3079
3080namespace {
3081class CheckPrintfHandler : public CheckFormatHandler {
3082 bool ObjCContext;
3083public:
3084 CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
3085 const Expr *origFormatExpr, unsigned firstDataArg,
3086 unsigned numDataArgs, bool isObjC,
3087 const char *beg, bool hasVAListArg,
3088 ArrayRef<const Expr *> Args,
3089 unsigned formatIdx, bool inFunctionCall,
3090 Sema::VariadicCallType CallType,
3091 llvm::SmallBitVector &CheckedVarArgs)
3092 : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
3093 numDataArgs, beg, hasVAListArg, Args,
3094 formatIdx, inFunctionCall, CallType, CheckedVarArgs),
3095 ObjCContext(isObjC)
3096 {}
3097
3098
3099 bool HandleInvalidPrintfConversionSpecifier(
3100 const analyze_printf::PrintfSpecifier &FS,
3101 const char *startSpecifier,
3102 unsigned specifierLen) override;
3103
3104 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
3105 const char *startSpecifier,
3106 unsigned specifierLen) override;
3107 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
3108 const char *StartSpecifier,
3109 unsigned SpecifierLen,
3110 const Expr *E);
3111
3112 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
3113 const char *startSpecifier, unsigned specifierLen);
3114 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
3115 const analyze_printf::OptionalAmount &Amt,
3116 unsigned type,
3117 const char *startSpecifier, unsigned specifierLen);
3118 void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
3119 const analyze_printf::OptionalFlag &flag,
3120 const char *startSpecifier, unsigned specifierLen);
3121 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
3122 const analyze_printf::OptionalFlag &ignoredFlag,
3123 const analyze_printf::OptionalFlag &flag,
3124 const char *startSpecifier, unsigned specifierLen);
3125 bool checkForCStrMembers(const analyze_printf::ArgType &AT,
3126 const Expr *E);
3127
3128};
3129}
3130
3131bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
3132 const analyze_printf::PrintfSpecifier &FS,
3133 const char *startSpecifier,
3134 unsigned specifierLen) {
3135 const analyze_printf::PrintfConversionSpecifier &CS =
3136 FS.getConversionSpecifier();
3137
3138 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
3139 getLocationOfByte(CS.getStart()),
3140 startSpecifier, specifierLen,
3141 CS.getStart(), CS.getLength());
3142}
3143
3144bool CheckPrintfHandler::HandleAmount(
3145 const analyze_format_string::OptionalAmount &Amt,
3146 unsigned k, const char *startSpecifier,
3147 unsigned specifierLen) {
3148
3149 if (Amt.hasDataArgument()) {
3150 if (!HasVAListArg) {
3151 unsigned argIndex = Amt.getArgIndex();
3152 if (argIndex >= NumDataArgs) {
3153 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
3154 << k,
3155 getLocationOfByte(Amt.getStart()),
3156 /*IsStringLocation*/true,
3157 getSpecifierRange(startSpecifier, specifierLen));
3158 // Don't do any more checking. We will just emit
3159 // spurious errors.
3160 return false;
3161 }
3162
3163 // Type check the data argument. It should be an 'int'.
3164 // Although not in conformance with C99, we also allow the argument to be
3165 // an 'unsigned int' as that is a reasonably safe case. GCC also
3166 // doesn't emit a warning for that case.
3167 CoveredArgs.set(argIndex);
3168 const Expr *Arg = getDataArg(argIndex);
3169 if (!Arg)
3170 return false;
3171
3172 QualType T = Arg->getType();
3173
3174 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
3175 assert(AT.isValid());
3176
3177 if (!AT.matchesType(S.Context, T)) {
3178 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
3179 << k << AT.getRepresentativeTypeName(S.Context)
3180 << T << Arg->getSourceRange(),
3181 getLocationOfByte(Amt.getStart()),
3182 /*IsStringLocation*/true,
3183 getSpecifierRange(startSpecifier, specifierLen));
3184 // Don't do any more checking. We will just emit
3185 // spurious errors.
3186 return false;
3187 }
3188 }
3189 }
3190 return true;
3191}
3192
3193void CheckPrintfHandler::HandleInvalidAmount(
3194 const analyze_printf::PrintfSpecifier &FS,
3195 const analyze_printf::OptionalAmount &Amt,
3196 unsigned type,
3197 const char *startSpecifier,
3198 unsigned specifierLen) {
3199 const analyze_printf::PrintfConversionSpecifier &CS =
3200 FS.getConversionSpecifier();
3201
3202 FixItHint fixit =
3203 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
3204 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
3205 Amt.getConstantLength()))
3206 : FixItHint();
3207
3208 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
3209 << type << CS.toString(),
3210 getLocationOfByte(Amt.getStart()),
3211 /*IsStringLocation*/true,
3212 getSpecifierRange(startSpecifier, specifierLen),
3213 fixit);
3214}
3215
3216void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
3217 const analyze_printf::OptionalFlag &flag,
3218 const char *startSpecifier,
3219 unsigned specifierLen) {
3220 // Warn about pointless flag with a fixit removal.
3221 const analyze_printf::PrintfConversionSpecifier &CS =
3222 FS.getConversionSpecifier();
3223 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
3224 << flag.toString() << CS.toString(),
3225 getLocationOfByte(flag.getPosition()),
3226 /*IsStringLocation*/true,
3227 getSpecifierRange(startSpecifier, specifierLen),
3228 FixItHint::CreateRemoval(
3229 getSpecifierRange(flag.getPosition(), 1)));
3230}
3231
3232void CheckPrintfHandler::HandleIgnoredFlag(
3233 const analyze_printf::PrintfSpecifier &FS,
3234 const analyze_printf::OptionalFlag &ignoredFlag,
3235 const analyze_printf::OptionalFlag &flag,
3236 const char *startSpecifier,
3237 unsigned specifierLen) {
3238 // Warn about ignored flag with a fixit removal.
3239 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
3240 << ignoredFlag.toString() << flag.toString(),
3241 getLocationOfByte(ignoredFlag.getPosition()),
3242 /*IsStringLocation*/true,
3243 getSpecifierRange(startSpecifier, specifierLen),
3244 FixItHint::CreateRemoval(
3245 getSpecifierRange(ignoredFlag.getPosition(), 1)));
3246}
3247
3248// Determines if the specified is a C++ class or struct containing
3249// a member with the specified name and kind (e.g. a CXXMethodDecl named
3250// "c_str()").
3251template<typename MemberKind>
3252static llvm::SmallPtrSet<MemberKind*, 1>
3253CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
3254 const RecordType *RT = Ty->getAs<RecordType>();
3255 llvm::SmallPtrSet<MemberKind*, 1> Results;
3256
3257 if (!RT)
3258 return Results;
3259 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
3260 if (!RD || !RD->getDefinition())
3261 return Results;
3262
3263 LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
3264 Sema::LookupMemberName);
3265 R.suppressDiagnostics();
3266
3267 // We just need to include all members of the right kind turned up by the
3268 // filter, at this point.
3269 if (S.LookupQualifiedName(R, RT->getDecl()))
3270 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3271 NamedDecl *decl = (*I)->getUnderlyingDecl();
3272 if (MemberKind *FK = dyn_cast<MemberKind>(decl))
3273 Results.insert(FK);
3274 }
3275 return Results;
3276}
3277
3278/// Check if we could call '.c_str()' on an object.
3279///
3280/// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
3281/// allow the call, or if it would be ambiguous).
3282bool Sema::hasCStrMethod(const Expr *E) {
3283 typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
3284 MethodSet Results =
3285 CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
3286 for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
3287 MI != ME; ++MI)
3288 if ((*MI)->getMinRequiredArguments() == 0)
3289 return true;
3290 return false;
3291}
3292
3293// Check if a (w)string was passed when a (w)char* was needed, and offer a
3294// better diagnostic if so. AT is assumed to be valid.
3295// Returns true when a c_str() conversion method is found.
3296bool CheckPrintfHandler::checkForCStrMembers(
3297 const analyze_printf::ArgType &AT, const Expr *E) {
3298 typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
3299
3300 MethodSet Results =
3301 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
3302
3303 for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
3304 MI != ME; ++MI) {
3305 const CXXMethodDecl *Method = *MI;
3306 if (Method->getMinRequiredArguments() == 0 &&
3307 AT.matchesType(S.Context, Method->getReturnType())) {
3308 // FIXME: Suggest parens if the expression needs them.
3309 SourceLocation EndLoc = S.getLocForEndOfToken(E->getLocEnd());
3310 S.Diag(E->getLocStart(), diag::note_printf_c_str)
3311 << "c_str()"
3312 << FixItHint::CreateInsertion(EndLoc, ".c_str()");
3313 return true;
3314 }
3315 }
3316
3317 return false;
3318}
3319
3320bool
3321CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
3322 &FS,
3323 const char *startSpecifier,
3324 unsigned specifierLen) {
3325
3326 using namespace analyze_format_string;
3327 using namespace analyze_printf;
3328 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
3329
3330 if (FS.consumesDataArgument()) {
3331 if (atFirstArg) {
3332 atFirstArg = false;
3333 usesPositionalArgs = FS.usesPositionalArg();
3334 }
3335 else if (usesPositionalArgs != FS.usesPositionalArg()) {
3336 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3337 startSpecifier, specifierLen);
3338 return false;
3339 }
3340 }
3341
3342 // First check if the field width, precision, and conversion specifier
3343 // have matching data arguments.
3344 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
3345 startSpecifier, specifierLen)) {
3346 return false;
3347 }
3348
3349 if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
3350 startSpecifier, specifierLen)) {
3351 return false;
3352 }
3353
3354 if (!CS.consumesDataArgument()) {
3355 // FIXME: Technically specifying a precision or field width here
3356 // makes no sense. Worth issuing a warning at some point.
3357 return true;
3358 }
3359
3360 // Consume the argument.
3361 unsigned argIndex = FS.getArgIndex();
3362 if (argIndex < NumDataArgs) {
3363 // The check to see if the argIndex is valid will come later.
3364 // We set the bit here because we may exit early from this
3365 // function if we encounter some other error.
3366 CoveredArgs.set(argIndex);
3367 }
3368
3369 // FreeBSD kernel extensions.
3370 if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
3371 CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
3372 // We need at least two arguments.
3373 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
3374 return false;
3375
3376 // Claim the second argument.
3377 CoveredArgs.set(argIndex + 1);
3378
3379 // Type check the first argument (int for %b, pointer for %D)
3380 const Expr *Ex = getDataArg(argIndex);
3381 const analyze_printf::ArgType &AT =
3382 (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
3383 ArgType(S.Context.IntTy) : ArgType::CPointerTy;
3384 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
3385 EmitFormatDiagnostic(
3386 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3387 << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3388 << false << Ex->getSourceRange(),
3389 Ex->getLocStart(), /*IsStringLocation*/false,
3390 getSpecifierRange(startSpecifier, specifierLen));
3391
3392 // Type check the second argument (char * for both %b and %D)
3393 Ex = getDataArg(argIndex + 1);
3394 const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
3395 if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
3396 EmitFormatDiagnostic(
3397 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3398 << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
3399 << false << Ex->getSourceRange(),
3400 Ex->getLocStart(), /*IsStringLocation*/false,
3401 getSpecifierRange(startSpecifier, specifierLen));
3402
3403 return true;
3404 }
3405
3406 // Check for using an Objective-C specific conversion specifier
3407 // in a non-ObjC literal.
3408 if (!ObjCContext && CS.isObjCArg()) {
3409 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
3410 specifierLen);
3411 }
3412
3413 // Check for invalid use of field width
3414 if (!FS.hasValidFieldWidth()) {
3415 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
3416 startSpecifier, specifierLen);
3417 }
3418
3419 // Check for invalid use of precision
3420 if (!FS.hasValidPrecision()) {
3421 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
3422 startSpecifier, specifierLen);
3423 }
3424
3425 // Check each flag does not conflict with any other component.
3426 if (!FS.hasValidThousandsGroupingPrefix())
3427 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
3428 if (!FS.hasValidLeadingZeros())
3429 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
3430 if (!FS.hasValidPlusPrefix())
3431 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
3432 if (!FS.hasValidSpacePrefix())
3433 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
3434 if (!FS.hasValidAlternativeForm())
3435 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
3436 if (!FS.hasValidLeftJustified())
3437 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
3438
3439 // Check that flags are not ignored by another flag
3440 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
3441 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
3442 startSpecifier, specifierLen);
3443 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
3444 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
3445 startSpecifier, specifierLen);
3446
3447 // Check the length modifier is valid with the given conversion specifier.
3448 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3449 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3450 diag::warn_format_nonsensical_length);
3451 else if (!FS.hasStandardLengthModifier())
3452 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3453 else if (!FS.hasStandardLengthConversionCombination())
3454 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3455 diag::warn_format_non_standard_conversion_spec);
3456
3457 if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3458 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3459
3460 // The remaining checks depend on the data arguments.
3461 if (HasVAListArg)
3462 return true;
3463
3464 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3465 return false;
3466
3467 const Expr *Arg = getDataArg(argIndex);
3468 if (!Arg)
3469 return true;
3470
3471 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
3472}
3473
3474static bool requiresParensToAddCast(const Expr *E) {
3475 // FIXME: We should have a general way to reason about operator
3476 // precedence and whether parens are actually needed here.
3477 // Take care of a few common cases where they aren't.
3478 const Expr *Inside = E->IgnoreImpCasts();
3479 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
3480 Inside = POE->getSyntacticForm()->IgnoreImpCasts();
3481
3482 switch (Inside->getStmtClass()) {
3483 case Stmt::ArraySubscriptExprClass:
3484 case Stmt::CallExprClass:
3485 case Stmt::CharacterLiteralClass:
3486 case Stmt::CXXBoolLiteralExprClass:
3487 case Stmt::DeclRefExprClass:
3488 case Stmt::FloatingLiteralClass:
3489 case Stmt::IntegerLiteralClass:
3490 case Stmt::MemberExprClass:
3491 case Stmt::ObjCArrayLiteralClass:
3492 case Stmt::ObjCBoolLiteralExprClass:
3493 case Stmt::ObjCBoxedExprClass:
3494 case Stmt::ObjCDictionaryLiteralClass:
3495 case Stmt::ObjCEncodeExprClass:
3496 case Stmt::ObjCIvarRefExprClass:
3497 case Stmt::ObjCMessageExprClass:
3498 case Stmt::ObjCPropertyRefExprClass:
3499 case Stmt::ObjCStringLiteralClass:
3500 case Stmt::ObjCSubscriptRefExprClass:
3501 case Stmt::ParenExprClass:
3502 case Stmt::StringLiteralClass:
3503 case Stmt::UnaryOperatorClass:
3504 return false;
3505 default:
3506 return true;
3507 }
3508}
3509
3510static std::pair<QualType, StringRef>
3511shouldNotPrintDirectly(const ASTContext &Context,
3512 QualType IntendedTy,
3513 const Expr *E) {
3514 // Use a 'while' to peel off layers of typedefs.
3515 QualType TyTy = IntendedTy;
3516 while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
3517 StringRef Name = UserTy->getDecl()->getName();
3518 QualType CastTy = llvm::StringSwitch<QualType>(Name)
3519 .Case("NSInteger", Context.LongTy)
3520 .Case("NSUInteger", Context.UnsignedLongTy)
3521 .Case("SInt32", Context.IntTy)
3522 .Case("UInt32", Context.UnsignedIntTy)
3523 .Default(QualType());
3524
3525 if (!CastTy.isNull())
3526 return std::make_pair(CastTy, Name);
3527
3528 TyTy = UserTy->desugar();
3529 }
3530
3531 // Strip parens if necessary.
3532 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
3533 return shouldNotPrintDirectly(Context,
3534 PE->getSubExpr()->getType(),
3535 PE->getSubExpr());
3536
3537 // If this is a conditional expression, then its result type is constructed
3538 // via usual arithmetic conversions and thus there might be no necessary
3539 // typedef sugar there. Recurse to operands to check for NSInteger &
3540 // Co. usage condition.
3541 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3542 QualType TrueTy, FalseTy;
3543 StringRef TrueName, FalseName;
3544
3545 std::tie(TrueTy, TrueName) =
3546 shouldNotPrintDirectly(Context,
3547 CO->getTrueExpr()->getType(),
3548 CO->getTrueExpr());
3549 std::tie(FalseTy, FalseName) =
3550 shouldNotPrintDirectly(Context,
3551 CO->getFalseExpr()->getType(),
3552 CO->getFalseExpr());
3553
3554 if (TrueTy == FalseTy)
3555 return std::make_pair(TrueTy, TrueName);
3556 else if (TrueTy.isNull())
3557 return std::make_pair(FalseTy, FalseName);
3558 else if (FalseTy.isNull())
3559 return std::make_pair(TrueTy, TrueName);
3560 }
3561
3562 return std::make_pair(QualType(), StringRef());
3563}
3564
3565bool
3566CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
3567 const char *StartSpecifier,
3568 unsigned SpecifierLen,
3569 const Expr *E) {
3570 using namespace analyze_format_string;
3571 using namespace analyze_printf;
3572 // Now type check the data expression that matches the
3573 // format specifier.
3574 const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
3575 ObjCContext);
3576 if (!AT.isValid())
3577 return true;
3578
3579 QualType ExprTy = E->getType();
3580 while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
3581 ExprTy = TET->getUnderlyingExpr()->getType();
3582 }
3583
3584 if (AT.matchesType(S.Context, ExprTy))
3585 return true;
3586
3587 // Look through argument promotions for our error message's reported type.
3588 // This includes the integral and floating promotions, but excludes array
3589 // and function pointer decay; seeing that an argument intended to be a
3590 // string has type 'char [6]' is probably more confusing than 'char *'.
3591 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3592 if (ICE->getCastKind() == CK_IntegralCast ||
3593 ICE->getCastKind() == CK_FloatingCast) {
3594 E = ICE->getSubExpr();
3595 ExprTy = E->getType();
3596
3597 // Check if we didn't match because of an implicit cast from a 'char'
3598 // or 'short' to an 'int'. This is done because printf is a varargs
3599 // function.
3600 if (ICE->getType() == S.Context.IntTy ||
3601 ICE->getType() == S.Context.UnsignedIntTy) {
3602 // All further checking is done on the subexpression.
3603 if (AT.matchesType(S.Context, ExprTy))
3604 return true;
3605 }
3606 }
3607 } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
3608 // Special case for 'a', which has type 'int' in C.
3609 // Note, however, that we do /not/ want to treat multibyte constants like
3610 // 'MooV' as characters! This form is deprecated but still exists.
3611 if (ExprTy == S.Context.IntTy)
3612 if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
3613 ExprTy = S.Context.CharTy;
3614 }
3615
3616 // Look through enums to their underlying type.
3617 bool IsEnum = false;
3618 if (auto EnumTy = ExprTy->getAs<EnumType>()) {
3619 ExprTy = EnumTy->getDecl()->getIntegerType();
3620 IsEnum = true;
3621 }
3622
3623 // %C in an Objective-C context prints a unichar, not a wchar_t.
3624 // If the argument is an integer of some kind, believe the %C and suggest
3625 // a cast instead of changing the conversion specifier.
3626 QualType IntendedTy = ExprTy;
3627 if (ObjCContext &&
3628 FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
3629 if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
3630 !ExprTy->isCharType()) {
3631 // 'unichar' is defined as a typedef of unsigned short, but we should
3632 // prefer using the typedef if it is visible.
3633 IntendedTy = S.Context.UnsignedShortTy;
3634
3635 // While we are here, check if the value is an IntegerLiteral that happens
3636 // to be within the valid range.
3637 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
3638 const llvm::APInt &V = IL->getValue();
3639 if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
3640 return true;
3641 }
3642
3643 LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
3644 Sema::LookupOrdinaryName);
3645 if (S.LookupName(Result, S.getCurScope())) {
3646 NamedDecl *ND = Result.getFoundDecl();
3647 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
3648 if (TD->getUnderlyingType() == IntendedTy)
3649 IntendedTy = S.Context.getTypedefType(TD);
3650 }
3651 }
3652 }
3653
3654 // Special-case some of Darwin's platform-independence types by suggesting
3655 // casts to primitive types that are known to be large enough.
3656 bool ShouldNotPrintDirectly = false; StringRef CastTyName;
3657 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
3658 QualType CastTy;
3659 std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
3660 if (!CastTy.isNull()) {
3661 IntendedTy = CastTy;
3662 ShouldNotPrintDirectly = true;
3663 }
3664 }
3665
3666 // We may be able to offer a FixItHint if it is a supported type.
3667 PrintfSpecifier fixedFS = FS;
3668 bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
3669 S.Context, ObjCContext);
3670
3671 if (success) {
3672 // Get the fix string from the fixed format specifier
3673 SmallString<16> buf;
3674 llvm::raw_svector_ostream os(buf);
3675 fixedFS.toString(os);
3676
3677 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
3678
3679 if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
3680 // In this case, the specifier is wrong and should be changed to match
3681 // the argument.
3682 EmitFormatDiagnostic(
3683 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3684 << AT.getRepresentativeTypeName(S.Context) << IntendedTy << IsEnum
3685 << E->getSourceRange(),
3686 E->getLocStart(),
3687 /*IsStringLocation*/false,
3688 SpecRange,
3689 FixItHint::CreateReplacement(SpecRange, os.str()));
3690
3691 } else {
3692 // The canonical type for formatting this value is different from the
3693 // actual type of the expression. (This occurs, for example, with Darwin's
3694 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
3695 // should be printed as 'long' for 64-bit compatibility.)
3696 // Rather than emitting a normal format/argument mismatch, we want to
3697 // add a cast to the recommended type (and correct the format string
3698 // if necessary).
3699 SmallString<16> CastBuf;
3700 llvm::raw_svector_ostream CastFix(CastBuf);
3701 CastFix << "(";
3702 IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
3703 CastFix << ")";
3704
3705 SmallVector<FixItHint,4> Hints;
3706 if (!AT.matchesType(S.Context, IntendedTy))
3707 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
3708
3709 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
3710 // If there's already a cast present, just replace it.
3711 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
3712 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
3713
3714 } else if (!requiresParensToAddCast(E)) {
3715 // If the expression has high enough precedence,
3716 // just write the C-style cast.
3717 Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3718 CastFix.str()));
3719 } else {
3720 // Otherwise, add parens around the expression as well as the cast.
3721 CastFix << "(";
3722 Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3723 CastFix.str()));
3724
3725 SourceLocation After = S.getLocForEndOfToken(E->getLocEnd());
3726 Hints.push_back(FixItHint::CreateInsertion(After, ")"));
3727 }
3728
3729 if (ShouldNotPrintDirectly) {
3730 // The expression has a type that should not be printed directly.
3731 // We extract the name from the typedef because we don't want to show
3732 // the underlying type in the diagnostic.
3733 StringRef Name;
3734 if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
3735 Name = TypedefTy->getDecl()->getName();
3736 else
3737 Name = CastTyName;
3738 EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
3739 << Name << IntendedTy << IsEnum
3740 << E->getSourceRange(),
3741 E->getLocStart(), /*IsStringLocation=*/false,
3742 SpecRange, Hints);
3743 } else {
3744 // In this case, the expression could be printed using a different
3745 // specifier, but we've decided that the specifier is probably correct
3746 // and we should cast instead. Just use the normal warning message.
3747 EmitFormatDiagnostic(
3748 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3749 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
3750 << E->getSourceRange(),
3751 E->getLocStart(), /*IsStringLocation*/false,
3752 SpecRange, Hints);
3753 }
3754 }
3755 } else {
3756 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
3757 SpecifierLen);
3758 // Since the warning for passing non-POD types to variadic functions
3759 // was deferred until now, we emit a warning for non-POD
3760 // arguments here.
3761 switch (S.isValidVarArgType(ExprTy)) {
3762 case Sema::VAK_Valid:
3763 case Sema::VAK_ValidInCXX11:
3764 EmitFormatDiagnostic(
3765 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3766 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
3767 << CSR
3768 << E->getSourceRange(),
3769 E->getLocStart(), /*IsStringLocation*/false, CSR);
3770 break;
3771
3772 case Sema::VAK_Undefined:
3773 case Sema::VAK_MSVCUndefined:
3774 EmitFormatDiagnostic(
3775 S.PDiag(diag::warn_non_pod_vararg_with_format_string)
3776 << S.getLangOpts().CPlusPlus11
3777 << ExprTy
3778 << CallType
3779 << AT.getRepresentativeTypeName(S.Context)
3780 << CSR
3781 << E->getSourceRange(),
3782 E->getLocStart(), /*IsStringLocation*/false, CSR);
3783 checkForCStrMembers(AT, E);
3784 break;
3785
3786 case Sema::VAK_Invalid:
3787 if (ExprTy->isObjCObjectType())
3788 EmitFormatDiagnostic(
3789 S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
3790 << S.getLangOpts().CPlusPlus11
3791 << ExprTy
3792 << CallType
3793 << AT.getRepresentativeTypeName(S.Context)
3794 << CSR
3795 << E->getSourceRange(),
3796 E->getLocStart(), /*IsStringLocation*/false, CSR);
3797 else
3798 // FIXME: If this is an initializer list, suggest removing the braces
3799 // or inserting a cast to the target type.
3800 S.Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg_format)
3801 << isa<InitListExpr>(E) << ExprTy << CallType
3802 << AT.getRepresentativeTypeName(S.Context)
3803 << E->getSourceRange();
3804 break;
3805 }
3806
3807 assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
3808 "format string specifier index out of range");
3809 CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
3810 }
3811
3812 return true;
3813}
3814
3815//===--- CHECK: Scanf format string checking ------------------------------===//
3816
3817namespace {
3818class CheckScanfHandler : public CheckFormatHandler {
3819public:
3820 CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
3821 const Expr *origFormatExpr, unsigned firstDataArg,
3822 unsigned numDataArgs, const char *beg, bool hasVAListArg,
3823 ArrayRef<const Expr *> Args,
3824 unsigned formatIdx, bool inFunctionCall,
3825 Sema::VariadicCallType CallType,
3826 llvm::SmallBitVector &CheckedVarArgs)
3827 : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
3828 numDataArgs, beg, hasVAListArg,
3829 Args, formatIdx, inFunctionCall, CallType,
3830 CheckedVarArgs)
3831 {}
3832
3833 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
3834 const char *startSpecifier,
3835 unsigned specifierLen) override;
3836
3837 bool HandleInvalidScanfConversionSpecifier(
3838 const analyze_scanf::ScanfSpecifier &FS,
3839 const char *startSpecifier,
3840 unsigned specifierLen) override;
3841
3842 void HandleIncompleteScanList(const char *start, const char *end) override;
3843};
3844}
3845
3846void CheckScanfHandler::HandleIncompleteScanList(const char *start,
3847 const char *end) {
3848 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
3849 getLocationOfByte(end), /*IsStringLocation*/true,
3850 getSpecifierRange(start, end - start));
3851}
3852
3853bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
3854 const analyze_scanf::ScanfSpecifier &FS,
3855 const char *startSpecifier,
3856 unsigned specifierLen) {
3857
3858 const analyze_scanf::ScanfConversionSpecifier &CS =
3859 FS.getConversionSpecifier();
3860
3861 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
3862 getLocationOfByte(CS.getStart()),
3863 startSpecifier, specifierLen,
3864 CS.getStart(), CS.getLength());
3865}
3866
3867bool CheckScanfHandler::HandleScanfSpecifier(
3868 const analyze_scanf::ScanfSpecifier &FS,
3869 const char *startSpecifier,
3870 unsigned specifierLen) {
3871
3872 using namespace analyze_scanf;
3873 using namespace analyze_format_string;
3874
3875 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
3876
3877 // Handle case where '%' and '*' don't consume an argument. These shouldn't
3878 // be used to decide if we are using positional arguments consistently.
3879 if (FS.consumesDataArgument()) {
3880 if (atFirstArg) {
3881 atFirstArg = false;
3882 usesPositionalArgs = FS.usesPositionalArg();
3883 }
3884 else if (usesPositionalArgs != FS.usesPositionalArg()) {
3885 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3886 startSpecifier, specifierLen);
3887 return false;
3888 }
3889 }
3890
3891 // Check if the field with is non-zero.
3892 const OptionalAmount &Amt = FS.getFieldWidth();
3893 if (Amt.getHowSpecified() == OptionalAmount::Constant) {
3894 if (Amt.getConstantAmount() == 0) {
3895 const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
3896 Amt.getConstantLength());
3897 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
3898 getLocationOfByte(Amt.getStart()),
3899 /*IsStringLocation*/true, R,
3900 FixItHint::CreateRemoval(R));
3901 }
3902 }
3903
3904 if (!FS.consumesDataArgument()) {
3905 // FIXME: Technically specifying a precision or field width here
3906 // makes no sense. Worth issuing a warning at some point.
3907 return true;
3908 }
3909
3910 // Consume the argument.
3911 unsigned argIndex = FS.getArgIndex();
3912 if (argIndex < NumDataArgs) {
3913 // The check to see if the argIndex is valid will come later.
3914 // We set the bit here because we may exit early from this
3915 // function if we encounter some other error.
3916 CoveredArgs.set(argIndex);
3917 }
3918
3919 // Check the length modifier is valid with the given conversion specifier.
3920 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3921 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3922 diag::warn_format_nonsensical_length);
3923 else if (!FS.hasStandardLengthModifier())
3924 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3925 else if (!FS.hasStandardLengthConversionCombination())
3926 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3927 diag::warn_format_non_standard_conversion_spec);
3928
3929 if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3930 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3931
3932 // The remaining checks depend on the data arguments.
3933 if (HasVAListArg)
3934 return true;
3935
3936 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3937 return false;
3938
3939 // Check that the argument type matches the format specifier.
3940 const Expr *Ex = getDataArg(argIndex);
3941 if (!Ex)
3942 return true;
3943
3944 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
3945 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
3946 ScanfSpecifier fixedFS = FS;
3947 bool success = fixedFS.fixType(Ex->getType(),
3948 Ex->IgnoreImpCasts()->getType(),
3949 S.getLangOpts(), S.Context);
3950
3951 if (success) {
3952 // Get the fix string from the fixed format specifier.
3953 SmallString<128> buf;
3954 llvm::raw_svector_ostream os(buf);
3955 fixedFS.toString(os);
3956
3957 EmitFormatDiagnostic(
3958 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3959 << AT.getRepresentativeTypeName(S.Context) << Ex->getType() << false
3960 << Ex->getSourceRange(),
3961 Ex->getLocStart(),
3962 /*IsStringLocation*/false,
3963 getSpecifierRange(startSpecifier, specifierLen),
3964 FixItHint::CreateReplacement(
3965 getSpecifierRange(startSpecifier, specifierLen),
3966 os.str()));
3967 } else {
3968 EmitFormatDiagnostic(
3969 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3970 << AT.getRepresentativeTypeName(S.Context) << Ex->getType() << false
3971 << Ex->getSourceRange(),
3972 Ex->getLocStart(),
3973 /*IsStringLocation*/false,
3974 getSpecifierRange(startSpecifier, specifierLen));
3975 }
3976 }
3977
3978 return true;
3979}
3980
3981void Sema::CheckFormatString(const StringLiteral *FExpr,
3982 const Expr *OrigFormatExpr,
3983 ArrayRef<const Expr *> Args,
3984 bool HasVAListArg, unsigned format_idx,
3985 unsigned firstDataArg, FormatStringType Type,
3986 bool inFunctionCall, VariadicCallType CallType,
3987 llvm::SmallBitVector &CheckedVarArgs) {
3988
3989 // CHECK: is the format string a wide literal?
3990 if (!FExpr->isAscii() && !FExpr->isUTF8()) {
3991 CheckFormatHandler::EmitFormatDiagnostic(
3992 *this, inFunctionCall, Args[format_idx],
3993 PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
3994 /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
3995 return;
3996 }
3997
3998 // Str - The format string. NOTE: this is NOT null-terminated!
3999 StringRef StrRef = FExpr->getString();
4000 const char *Str = StrRef.data();
4001 // Account for cases where the string literal is truncated in a declaration.
4002 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
4003 assert(T && "String literal not of constant array type!");
4004 size_t TypeSize = T->getSize().getZExtValue();
4005 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
4006 const unsigned numDataArgs = Args.size() - firstDataArg;
4007
4008 // Emit a warning if the string literal is truncated and does not contain an
4009 // embedded null character.
4010 if (TypeSize <= StrRef.size() &&
4011 StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
4012 CheckFormatHandler::EmitFormatDiagnostic(
4013 *this, inFunctionCall, Args[format_idx],
4014 PDiag(diag::warn_printf_format_string_not_null_terminated),
4015 FExpr->getLocStart(),
4016 /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
4017 return;
4018 }
4019
4020 // CHECK: empty format string?
4021 if (StrLen == 0 && numDataArgs > 0) {
4022 CheckFormatHandler::EmitFormatDiagnostic(
4023 *this, inFunctionCall, Args[format_idx],
4024 PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
4025 /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
4026 return;
4027 }
4028
4029 if (Type == FST_Printf || Type == FST_NSString ||
4030 Type == FST_FreeBSDKPrintf) {
4031 CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
4032 numDataArgs, (Type == FST_NSString),
4033 Str, HasVAListArg, Args, format_idx,
4034 inFunctionCall, CallType, CheckedVarArgs);
4035
4036 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
4037 getLangOpts(),
4038 Context.getTargetInfo(),
4039 Type == FST_FreeBSDKPrintf))
4040 H.DoneProcessing();
4041 } else if (Type == FST_Scanf) {
4042 CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
4043 Str, HasVAListArg, Args, format_idx,
4044 inFunctionCall, CallType, CheckedVarArgs);
4045
4046 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
4047 getLangOpts(),
4048 Context.getTargetInfo()))
4049 H.DoneProcessing();
4050 } // TODO: handle other formats
4051}
4052
4053bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
4054 // Str - The format string. NOTE: this is NOT null-terminated!
4055 StringRef StrRef = FExpr->getString();
4056 const char *Str = StrRef.data();
4057 // Account for cases where the string literal is truncated in a declaration.
4058 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
4059 assert(T && "String literal not of constant array type!");
4060 size_t TypeSize = T->getSize().getZExtValue();
4061 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
4062 return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
4063 getLangOpts(),
4064 Context.getTargetInfo());
4065}
4066
4067//===--- CHECK: Warn on use of wrong absolute value function. -------------===//
4068
4069// Returns the related absolute value function that is larger, of 0 if one
4070// does not exist.
4071static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
4072 switch (AbsFunction) {
4073 default:
4074 return 0;
4075
4076 case Builtin::BI__builtin_abs:
4077 return Builtin::BI__builtin_labs;
4078 case Builtin::BI__builtin_labs:
4079 return Builtin::BI__builtin_llabs;
4080 case Builtin::BI__builtin_llabs:
4081 return 0;
4082
4083 case Builtin::BI__builtin_fabsf:
4084 return Builtin::BI__builtin_fabs;
4085 case Builtin::BI__builtin_fabs:
4086 return Builtin::BI__builtin_fabsl;
4087 case Builtin::BI__builtin_fabsl:
4088 return 0;
4089
4090 case Builtin::BI__builtin_cabsf:
4091 return Builtin::BI__builtin_cabs;
4092 case Builtin::BI__builtin_cabs:
4093 return Builtin::BI__builtin_cabsl;
4094 case Builtin::BI__builtin_cabsl:
4095 return 0;
4096
4097 case Builtin::BIabs:
4098 return Builtin::BIlabs;
4099 case Builtin::BIlabs:
4100 return Builtin::BIllabs;
4101 case Builtin::BIllabs:
4102 return 0;
4103
4104 case Builtin::BIfabsf:
4105 return Builtin::BIfabs;
4106 case Builtin::BIfabs:
4107 return Builtin::BIfabsl;
4108 case Builtin::BIfabsl:
4109 return 0;
4110
4111 case Builtin::BIcabsf:
4112 return Builtin::BIcabs;
4113 case Builtin::BIcabs:
4114 return Builtin::BIcabsl;
4115 case Builtin::BIcabsl:
4116 return 0;
4117 }
4118}
4119
4120// Returns the argument type of the absolute value function.
4121static QualType getAbsoluteValueArgumentType(ASTContext &Context,
4122 unsigned AbsType) {
4123 if (AbsType == 0)
4124 return QualType();
4125
4126 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
4127 QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
4128 if (Error != ASTContext::GE_None)
4129 return QualType();
4130
4131 const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
4132 if (!FT)
4133 return QualType();
4134
4135 if (FT->getNumParams() != 1)
4136 return QualType();
4137
4138 return FT->getParamType(0);
4139}
4140
4141// Returns the best absolute value function, or zero, based on type and
4142// current absolute value function.
4143static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
4144 unsigned AbsFunctionKind) {
4145 unsigned BestKind = 0;
4146 uint64_t ArgSize = Context.getTypeSize(ArgType);
4147 for (unsigned Kind = AbsFunctionKind; Kind != 0;
4148 Kind = getLargerAbsoluteValueFunction(Kind)) {
4149 QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
4150 if (Context.getTypeSize(ParamType) >= ArgSize) {
4151 if (BestKind == 0)
4152 BestKind = Kind;
4153 else if (Context.hasSameType(ParamType, ArgType)) {
4154 BestKind = Kind;
4155 break;
4156 }
4157 }
4158 }
4159 return BestKind;
4160}
4161
4162enum AbsoluteValueKind {
4163 AVK_Integer,
4164 AVK_Floating,
4165 AVK_Complex
4166};
4167
4168static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
4169 if (T->isIntegralOrEnumerationType())
4170 return AVK_Integer;
4171 if (T->isRealFloatingType())
4172 return AVK_Floating;
4173 if (T->isAnyComplexType())
4174 return AVK_Complex;
4175
4176 llvm_unreachable("Type not integer, floating, or complex");
4177}
4178
4179// Changes the absolute value function to a different type. Preserves whether
4180// the function is a builtin.
4181static unsigned changeAbsFunction(unsigned AbsKind,
4182 AbsoluteValueKind ValueKind) {
4183 switch (ValueKind) {
4184 case AVK_Integer:
4185 switch (AbsKind) {
4186 default:
4187 return 0;
4188 case Builtin::BI__builtin_fabsf:
4189 case Builtin::BI__builtin_fabs:
4190 case Builtin::BI__builtin_fabsl:
4191 case Builtin::BI__builtin_cabsf:
4192 case Builtin::BI__builtin_cabs:
4193 case Builtin::BI__builtin_cabsl:
4194 return Builtin::BI__builtin_abs;
4195 case Builtin::BIfabsf:
4196 case Builtin::BIfabs:
4197 case Builtin::BIfabsl:
4198 case Builtin::BIcabsf:
4199 case Builtin::BIcabs:
4200 case Builtin::BIcabsl:
4201 return Builtin::BIabs;
4202 }
4203 case AVK_Floating:
4204 switch (AbsKind) {
4205 default:
4206 return 0;
4207 case Builtin::BI__builtin_abs:
4208 case Builtin::BI__builtin_labs:
4209 case Builtin::BI__builtin_llabs:
4210 case Builtin::BI__builtin_cabsf:
4211 case Builtin::BI__builtin_cabs:
4212 case Builtin::BI__builtin_cabsl:
4213 return Builtin::BI__builtin_fabsf;
4214 case Builtin::BIabs:
4215 case Builtin::BIlabs:
4216 case Builtin::BIllabs:
4217 case Builtin::BIcabsf:
4218 case Builtin::BIcabs:
4219 case Builtin::BIcabsl:
4220 return Builtin::BIfabsf;
4221 }
4222 case AVK_Complex:
4223 switch (AbsKind) {
4224 default:
4225 return 0;
4226 case Builtin::BI__builtin_abs:
4227 case Builtin::BI__builtin_labs:
4228 case Builtin::BI__builtin_llabs:
4229 case Builtin::BI__builtin_fabsf:
4230 case Builtin::BI__builtin_fabs:
4231 case Builtin::BI__builtin_fabsl:
4232 return Builtin::BI__builtin_cabsf;
4233 case Builtin::BIabs:
4234 case Builtin::BIlabs:
4235 case Builtin::BIllabs:
4236 case Builtin::BIfabsf:
4237 case Builtin::BIfabs:
4238 case Builtin::BIfabsl:
4239 return Builtin::BIcabsf;
4240 }
4241 }
4242 llvm_unreachable("Unable to convert function");
4243}
4244
4245static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
4246 const IdentifierInfo *FnInfo = FDecl->getIdentifier();
4247 if (!FnInfo)
4248 return 0;
4249
4250 switch (FDecl->getBuiltinID()) {
4251 default:
4252 return 0;
4253 case Builtin::BI__builtin_abs:
4254 case Builtin::BI__builtin_fabs:
4255 case Builtin::BI__builtin_fabsf:
4256 case Builtin::BI__builtin_fabsl:
4257 case Builtin::BI__builtin_labs:
4258 case Builtin::BI__builtin_llabs:
4259 case Builtin::BI__builtin_cabs:
4260 case Builtin::BI__builtin_cabsf:
4261 case Builtin::BI__builtin_cabsl:
4262 case Builtin::BIabs:
4263 case Builtin::BIlabs:
4264 case Builtin::BIllabs:
4265 case Builtin::BIfabs:
4266 case Builtin::BIfabsf:
4267 case Builtin::BIfabsl:
4268 case Builtin::BIcabs:
4269 case Builtin::BIcabsf:
4270 case Builtin::BIcabsl:
4271 return FDecl->getBuiltinID();
4272 }
4273 llvm_unreachable("Unknown Builtin type");
4274}
4275
4276// If the replacement is valid, emit a note with replacement function.
4277// Additionally, suggest including the proper header if not already included.
4278static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
4279 unsigned AbsKind, QualType ArgType) {
4280 bool EmitHeaderHint = true;
4281 const char *HeaderName = nullptr;
4282 const char *FunctionName = nullptr;
4283 if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
4284 FunctionName = "std::abs";
4285 if (ArgType->isIntegralOrEnumerationType()) {
4286 HeaderName = "cstdlib";
4287 } else if (ArgType->isRealFloatingType()) {
4288 HeaderName = "cmath";
4289 } else {
4290 llvm_unreachable("Invalid Type");
4291 }
4292
4293 // Lookup all std::abs
4294 if (NamespaceDecl *Std = S.getStdNamespace()) {
4295 LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
4296 R.suppressDiagnostics();
4297 S.LookupQualifiedName(R, Std);
4298
4299 for (const auto *I : R) {
4300 const FunctionDecl *FDecl = nullptr;
4301 if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
4302 FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
4303 } else {
4304 FDecl = dyn_cast<FunctionDecl>(I);
4305 }
4306 if (!FDecl)
4307 continue;
4308
4309 // Found std::abs(), check that they are the right ones.
4310 if (FDecl->getNumParams() != 1)
4311 continue;
4312
4313 // Check that the parameter type can handle the argument.
4314 QualType ParamType = FDecl->getParamDecl(0)->getType();
4315 if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
4316 S.Context.getTypeSize(ArgType) <=
4317 S.Context.getTypeSize(ParamType)) {
4318 // Found a function, don't need the header hint.
4319 EmitHeaderHint = false;
4320 break;
4321 }
4322 }
4323 }
4324 } else {
4325 FunctionName = S.Context.BuiltinInfo.GetName(AbsKind);
4326 HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
4327
4328 if (HeaderName) {
4329 DeclarationName DN(&S.Context.Idents.get(FunctionName));
4330 LookupResult R(S, DN, Loc, Sema::LookupAnyName);
4331 R.suppressDiagnostics();
4332 S.LookupName(R, S.getCurScope());
4333
4334 if (R.isSingleResult()) {
4335 FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
4336 if (FD && FD->getBuiltinID() == AbsKind) {
4337 EmitHeaderHint = false;
4338 } else {
4339 return;
4340 }
4341 } else if (!R.empty()) {
4342 return;
4343 }
4344 }
4345 }
4346
4347 S.Diag(Loc, diag::note_replace_abs_function)
4348 << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
4349
4350 if (!HeaderName)
4351 return;
4352
4353 if (!EmitHeaderHint)
4354 return;
4355
4356 S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
4357 << FunctionName;
4358}
4359
4360static bool IsFunctionStdAbs(const FunctionDecl *FDecl) {
4361 if (!FDecl)
4362 return false;
4363
4364 if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr("abs"))
4365 return false;
4366
4367 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(FDecl->getDeclContext());
4368
4369 while (ND && ND->isInlineNamespace()) {
4370 ND = dyn_cast<NamespaceDecl>(ND->getDeclContext());
4371 }
4372
4373 if (!ND || !ND->getIdentifier() || !ND->getIdentifier()->isStr("std"))
4374 return false;
4375
4376 if (!isa<TranslationUnitDecl>(ND->getDeclContext()))
4377 return false;
4378
4379 return true;
4380}
4381
4382// Warn when using the wrong abs() function.
4383void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
4384 const FunctionDecl *FDecl,
4385 IdentifierInfo *FnInfo) {
4386 if (Call->getNumArgs() != 1)
4387 return;
4388
4389 unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
4390 bool IsStdAbs = IsFunctionStdAbs(FDecl);
4391 if (AbsKind == 0 && !IsStdAbs)
4392 return;
4393
4394 QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
4395 QualType ParamType = Call->getArg(0)->getType();
4396
4397 // Unsigned types cannot be negative. Suggest removing the absolute value
4398 // function call.
4399 if (ArgType->isUnsignedIntegerType()) {
4400 const char *FunctionName =
4401 IsStdAbs ? "std::abs" : Context.BuiltinInfo.GetName(AbsKind);
4402 Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
4403 Diag(Call->getExprLoc(), diag::note_remove_abs)
4404 << FunctionName
4405 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
4406 return;
4407 }
4408
4409 // std::abs has overloads which prevent most of the absolute value problems
4410 // from occurring.
4411 if (IsStdAbs)
4412 return;
4413
4414 AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
4415 AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
4416
4417 // The argument and parameter are the same kind. Check if they are the right
4418 // size.
4419 if (ArgValueKind == ParamValueKind) {
4420 if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
4421 return;
4422
4423 unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
4424 Diag(Call->getExprLoc(), diag::warn_abs_too_small)
4425 << FDecl << ArgType << ParamType;
4426
4427 if (NewAbsKind == 0)
4428 return;
4429
4430 emitReplacement(*this, Call->getExprLoc(),
4431 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
4432 return;
4433 }
4434
4435 // ArgValueKind != ParamValueKind
4436 // The wrong type of absolute value function was used. Attempt to find the
4437 // proper one.
4438 unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
4439 NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
4440 if (NewAbsKind == 0)
4441 return;
4442
4443 Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
4444 << FDecl << ParamValueKind << ArgValueKind;
4445
4446 emitReplacement(*this, Call->getExprLoc(),
4447 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
4448 return;
4449}
4450
4451//===--- CHECK: Standard memory functions ---------------------------------===//
4452
4453/// \brief Takes the expression passed to the size_t parameter of functions
4454/// such as memcmp, strncat, etc and warns if it's a comparison.
4455///
4456/// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
4457static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
4458 IdentifierInfo *FnName,
4459 SourceLocation FnLoc,
4460 SourceLocation RParenLoc) {
4461 const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
4462 if (!Size)
4463 return false;
4464
4465 // if E is binop and op is >, <, >=, <=, ==, &&, ||:
4466 if (!Size->isComparisonOp() && !Size->isEqualityOp() && !Size->isLogicalOp())
4467 return false;
4468
4469 SourceRange SizeRange = Size->getSourceRange();
4470 S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
4471 << SizeRange << FnName;
4472 S.Diag(FnLoc, diag::note_memsize_comparison_paren)
4473 << FnName << FixItHint::CreateInsertion(
4474 S.getLocForEndOfToken(Size->getLHS()->getLocEnd()), ")")
4475 << FixItHint::CreateRemoval(RParenLoc);
4476 S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
4477 << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
4478 << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
4479 ")");
4480
4481 return true;
4482}
4483
4484/// \brief Determine whether the given type is or contains a dynamic class type
4485/// (e.g., whether it has a vtable).
4486static const CXXRecordDecl *getContainedDynamicClass(QualType T,
4487 bool &IsContained) {
4488 // Look through array types while ignoring qualifiers.
4489 const Type *Ty = T->getBaseElementTypeUnsafe();
4490 IsContained = false;
4491
4492 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
4493 RD = RD ? RD->getDefinition() : nullptr;
4494 if (!RD)
4495 return nullptr;
4496
4497 if (RD->isDynamicClass())
4498 return RD;
4499
4500 // Check all the fields. If any bases were dynamic, the class is dynamic.
4501 // It's impossible for a class to transitively contain itself by value, so
4502 // infinite recursion is impossible.
4503 for (auto *FD : RD->fields()) {
4504 bool SubContained;
4505 if (const CXXRecordDecl *ContainedRD =
4506 getContainedDynamicClass(FD->getType(), SubContained)) {
4507 IsContained = true;
4508 return ContainedRD;
4509 }
4510 }
4511
4512 return nullptr;
4513}
4514
4515/// \brief If E is a sizeof expression, returns its argument expression,
4516/// otherwise returns NULL.
4517static const Expr *getSizeOfExprArg(const Expr* E) {
4518 if (const UnaryExprOrTypeTraitExpr *SizeOf =
4519 dyn_cast<UnaryExprOrTypeTraitExpr>(E))
4520 if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
4521 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
4522
4523 return nullptr;
4524}
4525
4526/// \brief If E is a sizeof expression, returns its argument type.
4527static QualType getSizeOfArgType(const Expr* E) {
4528 if (const UnaryExprOrTypeTraitExpr *SizeOf =
4529 dyn_cast<UnaryExprOrTypeTraitExpr>(E))
4530 if (SizeOf->getKind() == clang::UETT_SizeOf)
4531 return SizeOf->getTypeOfArgument();
4532
4533 return QualType();
4534}
4535
4536/// \brief Check for dangerous or invalid arguments to memset().
4537///
4538/// This issues warnings on known problematic, dangerous or unspecified
4539/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
4540/// function calls.
4541///
4542/// \param Call The call expression to diagnose.
4543void Sema::CheckMemaccessArguments(const CallExpr *Call,
4544 unsigned BId,
4545 IdentifierInfo *FnName) {
4546 assert(BId != 0);
4547
4548 // It is possible to have a non-standard definition of memset. Validate
4549 // we have enough arguments, and if not, abort further checking.
4550 unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
4551 if (Call->getNumArgs() < ExpectedNumArgs)
4552 return;
4553
4554 unsigned LastArg = (BId == Builtin::BImemset ||
4555 BId == Builtin::BIstrndup ? 1 : 2);
4556 unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
4557 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
4558
4559 if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
4560 Call->getLocStart(), Call->getRParenLoc()))
4561 return;
4562
4563 // We have special checking when the length is a sizeof expression.
4564 QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
4565 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
4566 llvm::FoldingSetNodeID SizeOfArgID;
4567
4568 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
4569 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
4570 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
4571
4572 QualType DestTy = Dest->getType();
4573 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
4574 QualType PointeeTy = DestPtrTy->getPointeeType();
4575
4576 // Never warn about void type pointers. This can be used to suppress
4577 // false positives.
4578 if (PointeeTy->isVoidType())
4579 continue;
4580
4581 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
4582 // actually comparing the expressions for equality. Because computing the
4583 // expression IDs can be expensive, we only do this if the diagnostic is
4584 // enabled.
4585 if (SizeOfArg &&
4586 !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
4587 SizeOfArg->getExprLoc())) {
4588 // We only compute IDs for expressions if the warning is enabled, and
4589 // cache the sizeof arg's ID.
4590 if (SizeOfArgID == llvm::FoldingSetNodeID())
4591 SizeOfArg->Profile(SizeOfArgID, Context, true);
4592 llvm::FoldingSetNodeID DestID;
4593 Dest->Profile(DestID, Context, true);
4594 if (DestID == SizeOfArgID) {
4595 // TODO: For strncpy() and friends, this could suggest sizeof(dst)
4596 // over sizeof(src) as well.
4597 unsigned ActionIdx = 0; // Default is to suggest dereferencing.
4598 StringRef ReadableName = FnName->getName();
4599
4600 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
4601 if (UnaryOp->getOpcode() == UO_AddrOf)
4602 ActionIdx = 1; // If its an address-of operator, just remove it.
4603 if (!PointeeTy->isIncompleteType() &&
4604 (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
4605 ActionIdx = 2; // If the pointee's size is sizeof(char),
4606 // suggest an explicit length.
4607
4608 // If the function is defined as a builtin macro, do not show macro
4609 // expansion.
4610 SourceLocation SL = SizeOfArg->getExprLoc();
4611 SourceRange DSR = Dest->getSourceRange();
4612 SourceRange SSR = SizeOfArg->getSourceRange();
4613 SourceManager &SM = getSourceManager();
4614
4615 if (SM.isMacroArgExpansion(SL)) {
4616 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
4617 SL = SM.getSpellingLoc(SL);
4618 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
4619 SM.getSpellingLoc(DSR.getEnd()));
4620 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
4621 SM.getSpellingLoc(SSR.getEnd()));
4622 }
4623
4624 DiagRuntimeBehavior(SL, SizeOfArg,
4625 PDiag(diag::warn_sizeof_pointer_expr_memaccess)
4626 << ReadableName
4627 << PointeeTy
4628 << DestTy
4629 << DSR
4630 << SSR);
4631 DiagRuntimeBehavior(SL, SizeOfArg,
4632 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
4633 << ActionIdx
4634 << SSR);
4635
4636 break;
4637 }
4638 }
4639
4640 // Also check for cases where the sizeof argument is the exact same
4641 // type as the memory argument, and where it points to a user-defined
4642 // record type.
4643 if (SizeOfArgTy != QualType()) {
4644 if (PointeeTy->isRecordType() &&
4645 Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
4646 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
4647 PDiag(diag::warn_sizeof_pointer_type_memaccess)
4648 << FnName << SizeOfArgTy << ArgIdx
4649 << PointeeTy << Dest->getSourceRange()
4650 << LenExpr->getSourceRange());
4651 break;
4652 }
4653 }
4654
4655 // Always complain about dynamic classes.
4656 bool IsContained;
4657 if (const CXXRecordDecl *ContainedRD =
4658 getContainedDynamicClass(PointeeTy, IsContained)) {
4659
4660 unsigned OperationType = 0;
4661 // "overwritten" if we're warning about the destination for any call
4662 // but memcmp; otherwise a verb appropriate to the call.
4663 if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
4664 if (BId == Builtin::BImemcpy)
4665 OperationType = 1;
4666 else if(BId == Builtin::BImemmove)
4667 OperationType = 2;
4668 else if (BId == Builtin::BImemcmp)
4669 OperationType = 3;
4670 }
4671
4672 DiagRuntimeBehavior(
4673 Dest->getExprLoc(), Dest,
4674 PDiag(diag::warn_dyn_class_memaccess)
4675 << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
4676 << FnName << IsContained << ContainedRD << OperationType
4677 << Call->getCallee()->getSourceRange());
4678 } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
4679 BId != Builtin::BImemset)
4680 DiagRuntimeBehavior(
4681 Dest->getExprLoc(), Dest,
4682 PDiag(diag::warn_arc_object_memaccess)
4683 << ArgIdx << FnName << PointeeTy
4684 << Call->getCallee()->getSourceRange());
4685 else
4686 continue;
4687
4688 DiagRuntimeBehavior(
4689 Dest->getExprLoc(), Dest,
4690 PDiag(diag::note_bad_memaccess_silence)
4691 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
4692 break;
4693 }
4694 }
4695}
4696
4697// A little helper routine: ignore addition and subtraction of integer literals.
4698// This intentionally does not ignore all integer constant expressions because
4699// we don't want to remove sizeof().
4700static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
4701 Ex = Ex->IgnoreParenCasts();
4702
4703 for (;;) {
4704 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
4705 if (!BO || !BO->isAdditiveOp())
4706 break;
4707
4708 const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
4709 const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
4710
4711 if (isa<IntegerLiteral>(RHS))
4712 Ex = LHS;
4713 else if (isa<IntegerLiteral>(LHS))
4714 Ex = RHS;
4715 else
4716 break;
4717 }
4718
4719 return Ex;
4720}
4721
4722static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
4723 ASTContext &Context) {
4724 // Only handle constant-sized or VLAs, but not flexible members.
4725 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
4726 // Only issue the FIXIT for arrays of size > 1.
4727 if (CAT->getSize().getSExtValue() <= 1)
4728 return false;
4729 } else if (!Ty->isVariableArrayType()) {
4730 return false;
4731 }
4732 return true;
4733}
4734
4735// Warn if the user has made the 'size' argument to strlcpy or strlcat
4736// be the size of the source, instead of the destination.
4737void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
4738 IdentifierInfo *FnName) {
4739
4740 // Don't crash if the user has the wrong number of arguments
4741 unsigned NumArgs = Call->getNumArgs();
4742 if ((NumArgs != 3) && (NumArgs != 4))
4743 return;
4744
4745 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
4746 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
4747 const Expr *CompareWithSrc = nullptr;
4748
4749 if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
4750 Call->getLocStart(), Call->getRParenLoc()))
4751 return;
4752
4753 // Look for 'strlcpy(dst, x, sizeof(x))'
4754 if (const Expr *Ex = getSizeOfExprArg(SizeArg))
4755 CompareWithSrc = Ex;
4756 else {
4757 // Look for 'strlcpy(dst, x, strlen(x))'
4758 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
4759 if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
4760 SizeCall->getNumArgs() == 1)
4761 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
4762 }
4763 }
4764
4765 if (!CompareWithSrc)
4766 return;
4767
4768 // Determine if the argument to sizeof/strlen is equal to the source
4769 // argument. In principle there's all kinds of things you could do
4770 // here, for instance creating an == expression and evaluating it with
4771 // EvaluateAsBooleanCondition, but this uses a more direct technique:
4772 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
4773 if (!SrcArgDRE)
4774 return;
4775
4776 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
4777 if (!CompareWithSrcDRE ||
4778 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
4779 return;
4780
4781 const Expr *OriginalSizeArg = Call->getArg(2);
4782 Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
4783 << OriginalSizeArg->getSourceRange() << FnName;
4784
4785 // Output a FIXIT hint if the destination is an array (rather than a
4786 // pointer to an array). This could be enhanced to handle some
4787 // pointers if we know the actual size, like if DstArg is 'array+2'
4788 // we could say 'sizeof(array)-2'.
4789 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
4790 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
4791 return;
4792
4793 SmallString<128> sizeString;
4794 llvm::raw_svector_ostream OS(sizeString);
4795 OS << "sizeof(";
4796 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
4797 OS << ")";
4798
4799 Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
4800 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
4801 OS.str());
4802}
4803
4804/// Check if two expressions refer to the same declaration.
4805static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
4806 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
4807 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
4808 return D1->getDecl() == D2->getDecl();
4809 return false;
4810}
4811
4812static const Expr *getStrlenExprArg(const Expr *E) {
4813 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
4814 const FunctionDecl *FD = CE->getDirectCallee();
4815 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
4816 return nullptr;
4817 return CE->getArg(0)->IgnoreParenCasts();
4818 }
4819 return nullptr;
4820}
4821
4822// Warn on anti-patterns as the 'size' argument to strncat.
4823// The correct size argument should look like following:
4824// strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
4825void Sema::CheckStrncatArguments(const CallExpr *CE,
4826 IdentifierInfo *FnName) {
4827 // Don't crash if the user has the wrong number of arguments.
4828 if (CE->getNumArgs() < 3)
4829 return;
4830 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
4831 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
4832 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
4833
4834 if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getLocStart(),
4835 CE->getRParenLoc()))
4836 return;
4837
4838 // Identify common expressions, which are wrongly used as the size argument
4839 // to strncat and may lead to buffer overflows.
4840 unsigned PatternType = 0;
4841 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
4842 // - sizeof(dst)
4843 if (referToTheSameDecl(SizeOfArg, DstArg))
4844 PatternType = 1;
4845 // - sizeof(src)
4846 else if (referToTheSameDecl(SizeOfArg, SrcArg))
4847 PatternType = 2;
4848 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
4849 if (BE->getOpcode() == BO_Sub) {
4850 const Expr *L = BE->getLHS()->IgnoreParenCasts();
4851 const Expr *R = BE->getRHS()->IgnoreParenCasts();
4852 // - sizeof(dst) - strlen(dst)
4853 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
4854 referToTheSameDecl(DstArg, getStrlenExprArg(R)))
4855 PatternType = 1;
4856 // - sizeof(src) - (anything)
4857 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
4858 PatternType = 2;
4859 }
4860 }
4861
4862 if (PatternType == 0)
4863 return;
4864
4865 // Generate the diagnostic.
4866 SourceLocation SL = LenArg->getLocStart();
4867 SourceRange SR = LenArg->getSourceRange();
4868 SourceManager &SM = getSourceManager();
4869
4870 // If the function is defined as a builtin macro, do not show macro expansion.
4871 if (SM.isMacroArgExpansion(SL)) {
4872 SL = SM.getSpellingLoc(SL);
4873 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
4874 SM.getSpellingLoc(SR.getEnd()));
4875 }
4876
4877 // Check if the destination is an array (rather than a pointer to an array).
4878 QualType DstTy = DstArg->getType();
4879 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
4880 Context);
4881 if (!isKnownSizeArray) {
4882 if (PatternType == 1)
4883 Diag(SL, diag::warn_strncat_wrong_size) << SR;
4884 else
4885 Diag(SL, diag::warn_strncat_src_size) << SR;
4886 return;
4887 }
4888
4889 if (PatternType == 1)
4890 Diag(SL, diag::warn_strncat_large_size) << SR;
4891 else
4892 Diag(SL, diag::warn_strncat_src_size) << SR;
4893
4894 SmallString<128> sizeString;
4895 llvm::raw_svector_ostream OS(sizeString);
4896 OS << "sizeof(";
4897 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
4898 OS << ") - ";
4899 OS << "strlen(";
4900 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
4901 OS << ") - 1";
4902
4903 Diag(SL, diag::note_strncat_wrong_size)
4904 << FixItHint::CreateReplacement(SR, OS.str());
4905}
4906
4907//===--- CHECK: Return Address of Stack Variable --------------------------===//
4908
4909static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
4910 Decl *ParentDecl);
4911static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
4912 Decl *ParentDecl);
4913
4914/// CheckReturnStackAddr - Check if a return statement returns the address
4915/// of a stack variable.
4916static void
4917CheckReturnStackAddr(Sema &S, Expr *RetValExp, QualType lhsType,
4918 SourceLocation ReturnLoc) {
4919
4920 Expr *stackE = nullptr;
4921 SmallVector<DeclRefExpr *, 8> refVars;
4922
4923 // Perform checking for returned stack addresses, local blocks,
4924 // label addresses or references to temporaries.
4925 if (lhsType->isPointerType() ||
4926 (!S.getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
4927 stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/nullptr);
4928 } else if (lhsType->isReferenceType()) {
4929 stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/nullptr);
4930 }
4931
4932 if (!stackE)
4933 return; // Nothing suspicious was found.
4934
4935 SourceLocation diagLoc;
4936 SourceRange diagRange;
4937 if (refVars.empty()) {
4938 diagLoc = stackE->getLocStart();
4939 diagRange = stackE->getSourceRange();
4940 } else {
4941 // We followed through a reference variable. 'stackE' contains the
4942 // problematic expression but we will warn at the return statement pointing
4943 // at the reference variable. We will later display the "trail" of
4944 // reference variables using notes.
4945 diagLoc = refVars[0]->getLocStart();
4946 diagRange = refVars[0]->getSourceRange();
4947 }
4948
4949 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
4950 S.Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
4951 : diag::warn_ret_stack_addr)
4952 << DR->getDecl()->getDeclName() << diagRange;
4953 } else if (isa<BlockExpr>(stackE)) { // local block.
4954 S.Diag(diagLoc, diag::err_ret_local_block) << diagRange;
4955 } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
4956 S.Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
4957 } else { // local temporary.
4958 S.Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
4959 : diag::warn_ret_local_temp_addr)
4960 << diagRange;
4961 }
4962
4963 // Display the "trail" of reference variables that we followed until we
4964 // found the problematic expression using notes.
4965 for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
4966 VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
4967 // If this var binds to another reference var, show the range of the next
4968 // var, otherwise the var binds to the problematic expression, in which case
4969 // show the range of the expression.
4970 SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
4971 : stackE->getSourceRange();
4972 S.Diag(VD->getLocation(), diag::note_ref_var_local_bind)
4973 << VD->getDeclName() << range;
4974 }
4975}
4976
4977/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
4978/// check if the expression in a return statement evaluates to an address
4979/// to a location on the stack, a local block, an address of a label, or a
4980/// reference to local temporary. The recursion is used to traverse the
4981/// AST of the return expression, with recursion backtracking when we
4982/// encounter a subexpression that (1) clearly does not lead to one of the
4983/// above problematic expressions (2) is something we cannot determine leads to
4984/// a problematic expression based on such local checking.
4985///
4986/// Both EvalAddr and EvalVal follow through reference variables to evaluate
4987/// the expression that they point to. Such variables are added to the
4988/// 'refVars' vector so that we know what the reference variable "trail" was.
4989///
4990/// EvalAddr processes expressions that are pointers that are used as
4991/// references (and not L-values). EvalVal handles all other values.
4992/// At the base case of the recursion is a check for the above problematic
4993/// expressions.
4994///
4995/// This implementation handles:
4996///
4997/// * pointer-to-pointer casts
4998/// * implicit conversions from array references to pointers
4999/// * taking the address of fields
5000/// * arbitrary interplay between "&" and "*" operators
5001/// * pointer arithmetic from an address of a stack variable
5002/// * taking the address of an array element where the array is on the stack
5003static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
5004 Decl *ParentDecl) {
5005 if (E->isTypeDependent())
5006 return nullptr;
5007
5008 // We should only be called for evaluating pointer expressions.
5009 assert((E->getType()->isAnyPointerType() ||
5010 E->getType()->isBlockPointerType() ||
5011 E->getType()->isObjCQualifiedIdType()) &&
5012 "EvalAddr only works on pointers");
5013
5014 E = E->IgnoreParens();
5015
5016 // Our "symbolic interpreter" is just a dispatch off the currently
5017 // viewed AST node. We then recursively traverse the AST by calling
5018 // EvalAddr and EvalVal appropriately.
5019 switch (E->getStmtClass()) {
5020 case Stmt::DeclRefExprClass: {
5021 DeclRefExpr *DR = cast<DeclRefExpr>(E);
5022
5023 // If we leave the immediate function, the lifetime isn't about to end.
5024 if (DR->refersToEnclosingVariableOrCapture())
5025 return nullptr;
5026
5027 if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
5028 // If this is a reference variable, follow through to the expression that
5029 // it points to.
5030 if (V->hasLocalStorage() &&
5031 V->getType()->isReferenceType() && V->hasInit()) {
5032 // Add the reference variable to the "trail".
5033 refVars.push_back(DR);
5034 return EvalAddr(V->getInit(), refVars, ParentDecl);
5035 }
5036
5037 return nullptr;
5038 }
5039
5040 case Stmt::UnaryOperatorClass: {
5041 // The only unary operator that make sense to handle here
5042 // is AddrOf. All others don't make sense as pointers.
5043 UnaryOperator *U = cast<UnaryOperator>(E);
5044
5045 if (U->getOpcode() == UO_AddrOf)
5046 return EvalVal(U->getSubExpr(), refVars, ParentDecl);
5047 else
5048 return nullptr;
5049 }
5050
5051 case Stmt::BinaryOperatorClass: {
5052 // Handle pointer arithmetic. All other binary operators are not valid
5053 // in this context.
5054 BinaryOperator *B = cast<BinaryOperator>(E);
5055 BinaryOperatorKind op = B->getOpcode();
5056
5057 if (op != BO_Add && op != BO_Sub)
5058 return nullptr;
5059
5060 Expr *Base = B->getLHS();
5061
5062 // Determine which argument is the real pointer base. It could be
5063 // the RHS argument instead of the LHS.
5064 if (!Base->getType()->isPointerType()) Base = B->getRHS();
5065
5066 assert (Base->getType()->isPointerType());
5067 return EvalAddr(Base, refVars, ParentDecl);
5068 }
5069
5070 // For conditional operators we need to see if either the LHS or RHS are
5071 // valid DeclRefExpr*s. If one of them is valid, we return it.
5072 case Stmt::ConditionalOperatorClass: {
5073 ConditionalOperator *C = cast<ConditionalOperator>(E);
5074
5075 // Handle the GNU extension for missing LHS.
5076 // FIXME: That isn't a ConditionalOperator, so doesn't get here.
5077 if (Expr *LHSExpr = C->getLHS()) {
5078 // In C++, we can have a throw-expression, which has 'void' type.
5079 if (!LHSExpr->getType()->isVoidType())
5080 if (Expr *LHS = EvalAddr(LHSExpr, refVars, ParentDecl))
5081 return LHS;
5082 }
5083
5084 // In C++, we can have a throw-expression, which has 'void' type.
5085 if (C->getRHS()->getType()->isVoidType())
5086 return nullptr;
5087
5088 return EvalAddr(C->getRHS(), refVars, ParentDecl);
5089 }
5090
5091 case Stmt::BlockExprClass:
5092 if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
5093 return E; // local block.
5094 return nullptr;
5095
5096 case Stmt::AddrLabelExprClass:
5097 return E; // address of label.
5098
5099 case Stmt::ExprWithCleanupsClass:
5100 return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
5101 ParentDecl);
5102
5103 // For casts, we need to handle conversions from arrays to
5104 // pointer values, and pointer-to-pointer conversions.
5105 case Stmt::ImplicitCastExprClass:
5106 case Stmt::CStyleCastExprClass:
5107 case Stmt::CXXFunctionalCastExprClass:
5108 case Stmt::ObjCBridgedCastExprClass:
5109 case Stmt::CXXStaticCastExprClass:
5110 case Stmt::CXXDynamicCastExprClass:
5111 case Stmt::CXXConstCastExprClass:
5112 case Stmt::CXXReinterpretCastExprClass: {
5113 Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
5114 switch (cast<CastExpr>(E)->getCastKind()) {
5115 case CK_LValueToRValue:
5116 case CK_NoOp:
5117 case CK_BaseToDerived:
5118 case CK_DerivedToBase:
5119 case CK_UncheckedDerivedToBase:
5120 case CK_Dynamic:
5121 case CK_CPointerToObjCPointerCast:
5122 case CK_BlockPointerToObjCPointerCast:
5123 case CK_AnyPointerToBlockPointerCast:
5124 return EvalAddr(SubExpr, refVars, ParentDecl);
5125
5126 case CK_ArrayToPointerDecay:
5127 return EvalVal(SubExpr, refVars, ParentDecl);
5128
5129 case CK_BitCast:
5130 if (SubExpr->getType()->isAnyPointerType() ||
5131 SubExpr->getType()->isBlockPointerType() ||
5132 SubExpr->getType()->isObjCQualifiedIdType())
5133 return EvalAddr(SubExpr, refVars, ParentDecl);
5134 else
5135 return nullptr;
5136
5137 default:
5138 return nullptr;
5139 }
5140 }
5141
5142 case Stmt::MaterializeTemporaryExprClass:
5143 if (Expr *Result = EvalAddr(
5144 cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
5145 refVars, ParentDecl))
5146 return Result;
5147
5148 return E;
5149
5150 // Everything else: we simply don't reason about them.
5151 default:
5152 return nullptr;
5153 }
5154}
5155
5156
5157/// EvalVal - This function is complements EvalAddr in the mutual recursion.
5158/// See the comments for EvalAddr for more details.
5159static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
5160 Decl *ParentDecl) {
5161do {
5162 // We should only be called for evaluating non-pointer expressions, or
5163 // expressions with a pointer type that are not used as references but instead
5164 // are l-values (e.g., DeclRefExpr with a pointer type).
5165
5166 // Our "symbolic interpreter" is just a dispatch off the currently
5167 // viewed AST node. We then recursively traverse the AST by calling
5168 // EvalAddr and EvalVal appropriately.
5169
5170 E = E->IgnoreParens();
5171 switch (E->getStmtClass()) {
5172 case Stmt::ImplicitCastExprClass: {
5173 ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
5174 if (IE->getValueKind() == VK_LValue) {
5175 E = IE->getSubExpr();
5176 continue;
5177 }
5178 return nullptr;
5179 }
5180
5181 case Stmt::ExprWithCleanupsClass:
5182 return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
5183
5184 case Stmt::DeclRefExprClass: {
5185 // When we hit a DeclRefExpr we are looking at code that refers to a
5186 // variable's name. If it's not a reference variable we check if it has
5187 // local storage within the function, and if so, return the expression.
5188 DeclRefExpr *DR = cast<DeclRefExpr>(E);
5189
5190 // If we leave the immediate function, the lifetime isn't about to end.
5191 if (DR->refersToEnclosingVariableOrCapture())
5192 return nullptr;
5193
5194 if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
5195 // Check if it refers to itself, e.g. "int& i = i;".
5196 if (V == ParentDecl)
5197 return DR;
5198
5199 if (V->hasLocalStorage()) {
5200 if (!V->getType()->isReferenceType())
5201 return DR;
5202
5203 // Reference variable, follow through to the expression that
5204 // it points to.
5205 if (V->hasInit()) {
5206 // Add the reference variable to the "trail".
5207 refVars.push_back(DR);
5208 return EvalVal(V->getInit(), refVars, V);
5209 }
5210 }
5211 }
5212
5213 return nullptr;
5214 }
5215
5216 case Stmt::UnaryOperatorClass: {
5217 // The only unary operator that make sense to handle here
5218 // is Deref. All others don't resolve to a "name." This includes
5219 // handling all sorts of rvalues passed to a unary operator.
5220 UnaryOperator *U = cast<UnaryOperator>(E);
5221
5222 if (U->getOpcode() == UO_Deref)
5223 return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
5224
5225 return nullptr;
5226 }
5227
5228 case Stmt::ArraySubscriptExprClass: {
5229 // Array subscripts are potential references to data on the stack. We
5230 // retrieve the DeclRefExpr* for the array variable if it indeed
5231 // has local storage.
5232 return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
5233 }
5234
5235 case Stmt::ConditionalOperatorClass: {
5236 // For conditional operators we need to see if either the LHS or RHS are
5237 // non-NULL Expr's. If one is non-NULL, we return it.
5238 ConditionalOperator *C = cast<ConditionalOperator>(E);
5239
5240 // Handle the GNU extension for missing LHS.
5241 if (Expr *LHSExpr = C->getLHS()) {
5242 // In C++, we can have a throw-expression, which has 'void' type.
5243 if (!LHSExpr->getType()->isVoidType())
5244 if (Expr *LHS = EvalVal(LHSExpr, refVars, ParentDecl))
5245 return LHS;
5246 }
5247
5248 // In C++, we can have a throw-expression, which has 'void' type.
5249 if (C->getRHS()->getType()->isVoidType())
5250 return nullptr;
5251
5252 return EvalVal(C->getRHS(), refVars, ParentDecl);
5253 }
5254
5255 // Accesses to members are potential references to data on the stack.
5256 case Stmt::MemberExprClass: {
5257 MemberExpr *M = cast<MemberExpr>(E);
5258
5259 // Check for indirect access. We only want direct field accesses.
5260 if (M->isArrow())
5261 return nullptr;
5262
5263 // Check whether the member type is itself a reference, in which case
5264 // we're not going to refer to the member, but to what the member refers to.
5265 if (M->getMemberDecl()->getType()->isReferenceType())
5266 return nullptr;
5267
5268 return EvalVal(M->getBase(), refVars, ParentDecl);
5269 }
5270
5271 case Stmt::MaterializeTemporaryExprClass:
5272 if (Expr *Result = EvalVal(
5273 cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
5274 refVars, ParentDecl))
5275 return Result;
5276
5277 return E;
5278
5279 default:
5280 // Check that we don't return or take the address of a reference to a
5281 // temporary. This is only useful in C++.
5282 if (!E->isTypeDependent() && E->isRValue())
5283 return E;
5284
5285 // Everything else: we simply don't reason about them.
5286 return nullptr;
5287 }
5288} while (true);
5289}
5290
5291void
5292Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
5293 SourceLocation ReturnLoc,
5294 bool isObjCMethod,
5295 const AttrVec *Attrs,
5296 const FunctionDecl *FD) {
5297 CheckReturnStackAddr(*this, RetValExp, lhsType, ReturnLoc);
5298
5299 // Check if the return value is null but should not be.
5300 if (Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs) &&
5301 CheckNonNullExpr(*this, RetValExp))
5302 Diag(ReturnLoc, diag::warn_null_ret)
5303 << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
5304
5305 // C++11 [basic.stc.dynamic.allocation]p4:
5306 // If an allocation function declared with a non-throwing
5307 // exception-specification fails to allocate storage, it shall return
5308 // a null pointer. Any other allocation function that fails to allocate
5309 // storage shall indicate failure only by throwing an exception [...]
5310 if (FD) {
5311 OverloadedOperatorKind Op = FD->getOverloadedOperator();
5312 if (Op == OO_New || Op == OO_Array_New) {
5313 const FunctionProtoType *Proto
5314 = FD->getType()->castAs<FunctionProtoType>();
5315 if (!Proto->isNothrow(Context, /*ResultIfDependent*/true) &&
5316 CheckNonNullExpr(*this, RetValExp))
5317 Diag(ReturnLoc, diag::warn_operator_new_returns_null)
5318 << FD << getLangOpts().CPlusPlus11;
5319 }
5320 }
5321}
5322
5323//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
5324
5325/// Check for comparisons of floating point operands using != and ==.
5326/// Issue a warning if these are no self-comparisons, as they are not likely
5327/// to do what the programmer intended.
5328void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
5329 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
5330 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
5331
5332 // Special case: check for x == x (which is OK).
5333 // Do not emit warnings for such cases.
5334 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
5335 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
5336 if (DRL->getDecl() == DRR->getDecl())
5337 return;
5338
5339
5340 // Special case: check for comparisons against literals that can be exactly
5341 // represented by APFloat. In such cases, do not emit a warning. This
5342 // is a heuristic: often comparison against such literals are used to
5343 // detect if a value in a variable has not changed. This clearly can
5344 // lead to false negatives.
5345 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
5346 if (FLL->isExact())
5347 return;
5348 } else
5349 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
5350 if (FLR->isExact())
5351 return;
5352
5353 // Check for comparisons with builtin types.
5354 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
5355 if (CL->getBuiltinCallee())
5356 return;
5357
5358 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
5359 if (CR->getBuiltinCallee())
5360 return;
5361
5362 // Emit the diagnostic.
5363 Diag(Loc, diag::warn_floatingpoint_eq)
5364 << LHS->getSourceRange() << RHS->getSourceRange();
5365}
5366
5367//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
5368//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
5369
5370namespace {
5371
5372/// Structure recording the 'active' range of an integer-valued
5373/// expression.
5374struct IntRange {
5375 /// The number of bits active in the int.
5376 unsigned Width;
5377
5378 /// True if the int is known not to have negative values.
5379 bool NonNegative;
5380
5381 IntRange(unsigned Width, bool NonNegative)
5382 : Width(Width), NonNegative(NonNegative)
5383 {}
5384
5385 /// Returns the range of the bool type.
5386 static IntRange forBoolType() {
5387 return IntRange(1, true);
5388 }
5389
5390 /// Returns the range of an opaque value of the given integral type.
5391 static IntRange forValueOfType(ASTContext &C, QualType T) {
5392 return forValueOfCanonicalType(C,
5393 T->getCanonicalTypeInternal().getTypePtr());
5394 }
5395
5396 /// Returns the range of an opaque value of a canonical integral type.
5397 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
5398 assert(T->isCanonicalUnqualified());
5399
5400 if (const VectorType *VT = dyn_cast<VectorType>(T))
5401 T = VT->getElementType().getTypePtr();
5402 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
5403 T = CT->getElementType().getTypePtr();
5404 if (const AtomicType *AT = dyn_cast<AtomicType>(T))
5405 T = AT->getValueType().getTypePtr();
5406
5407 // For enum types, use the known bit width of the enumerators.
5408 if (const EnumType *ET = dyn_cast<EnumType>(T)) {
5409 EnumDecl *Enum = ET->getDecl();
5410 if (!Enum->isCompleteDefinition())
5411 return IntRange(C.getIntWidth(QualType(T, 0)), false);
5412
5413 unsigned NumPositive = Enum->getNumPositiveBits();
5414 unsigned NumNegative = Enum->getNumNegativeBits();
5415
5416 if (NumNegative == 0)
5417 return IntRange(NumPositive, true/*NonNegative*/);
5418 else
5419 return IntRange(std::max(NumPositive + 1, NumNegative),
5420 false/*NonNegative*/);
5421 }
5422
5423 const BuiltinType *BT = cast<BuiltinType>(T);
5424 assert(BT->isInteger());
5425
5426 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
5427 }
5428
5429 /// Returns the "target" range of a canonical integral type, i.e.
5430 /// the range of values expressible in the type.
5431 ///
5432 /// This matches forValueOfCanonicalType except that enums have the
5433 /// full range of their type, not the range of their enumerators.
5434 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
5435 assert(T->isCanonicalUnqualified());
5436
5437 if (const VectorType *VT = dyn_cast<VectorType>(T))
5438 T = VT->getElementType().getTypePtr();
5439 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
5440 T = CT->getElementType().getTypePtr();
5441 if (const AtomicType *AT = dyn_cast<AtomicType>(T))
5442 T = AT->getValueType().getTypePtr();
5443 if (const EnumType *ET = dyn_cast<EnumType>(T))
5444 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
5445
5446 const BuiltinType *BT = cast<BuiltinType>(T);
5447 assert(BT->isInteger());
5448
5449 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
5450 }
5451
5452 /// Returns the supremum of two ranges: i.e. their conservative merge.
5453 static IntRange join(IntRange L, IntRange R) {
5454 return IntRange(std::max(L.Width, R.Width),
5455 L.NonNegative && R.NonNegative);
5456 }
5457
5458 /// Returns the infinum of two ranges: i.e. their aggressive merge.
5459 static IntRange meet(IntRange L, IntRange R) {
5460 return IntRange(std::min(L.Width, R.Width),
5461 L.NonNegative || R.NonNegative);
5462 }
5463};
5464
5465static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
5466 unsigned MaxWidth) {
5467 if (value.isSigned() && value.isNegative())
5468 return IntRange(value.getMinSignedBits(), false);
5469
5470 if (value.getBitWidth() > MaxWidth)
5471 value = value.trunc(MaxWidth);
5472
5473 // isNonNegative() just checks the sign bit without considering
5474 // signedness.
5475 return IntRange(value.getActiveBits(), true);
5476}
5477
5478static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
5479 unsigned MaxWidth) {
5480 if (result.isInt())
5481 return GetValueRange(C, result.getInt(), MaxWidth);
5482
5483 if (result.isVector()) {
5484 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
5485 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
5486 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
5487 R = IntRange::join(R, El);
5488 }
5489 return R;
5490 }
5491
5492 if (result.isComplexInt()) {
5493 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
5494 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
5495 return IntRange::join(R, I);
5496 }
5497
5498 // This can happen with lossless casts to intptr_t of "based" lvalues.
5499 // Assume it might use arbitrary bits.
5500 // FIXME: The only reason we need to pass the type in here is to get
5501 // the sign right on this one case. It would be nice if APValue
5502 // preserved this.
5503 assert(result.isLValue() || result.isAddrLabelDiff());
5504 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
5505}
5506
5507static QualType GetExprType(Expr *E) {
5508 QualType Ty = E->getType();
5509 if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
5510 Ty = AtomicRHS->getValueType();
5511 return Ty;
5512}
5513
5514/// Pseudo-evaluate the given integer expression, estimating the
5515/// range of values it might take.
5516///
5517/// \param MaxWidth - the width to which the value will be truncated
5518static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
5519 E = E->IgnoreParens();
5520
5521 // Try a full evaluation first.
5522 Expr::EvalResult result;
5523 if (E->EvaluateAsRValue(result, C))
5524 return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
5525
5526 // I think we only want to look through implicit casts here; if the
5527 // user has an explicit widening cast, we should treat the value as
5528 // being of the new, wider type.
5529 if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
5530 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
5531 return GetExprRange(C, CE->getSubExpr(), MaxWidth);
5532
5533 IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
5534
5535 bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
5536
5537 // Assume that non-integer casts can span the full range of the type.
5538 if (!isIntegerCast)
5539 return OutputTypeRange;
5540
5541 IntRange SubRange
5542 = GetExprRange(C, CE->getSubExpr(),
5543 std::min(MaxWidth, OutputTypeRange.Width));
5544
5545 // Bail out if the subexpr's range is as wide as the cast type.
5546 if (SubRange.Width >= OutputTypeRange.Width)
5547 return OutputTypeRange;
5548
5549 // Otherwise, we take the smaller width, and we're non-negative if
5550 // either the output type or the subexpr is.
5551 return IntRange(SubRange.Width,
5552 SubRange.NonNegative || OutputTypeRange.NonNegative);
5553 }
5554
5555 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
5556 // If we can fold the condition, just take that operand.
5557 bool CondResult;
5558 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
5559 return GetExprRange(C, CondResult ? CO->getTrueExpr()
5560 : CO->getFalseExpr(),
5561 MaxWidth);
5562
5563 // Otherwise, conservatively merge.
5564 IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
5565 IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
5566 return IntRange::join(L, R);
5567 }
5568
5569 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5570 switch (BO->getOpcode()) {
5571
5572 // Boolean-valued operations are single-bit and positive.
5573 case BO_LAnd:
5574 case BO_LOr:
5575 case BO_LT:
5576 case BO_GT:
5577 case BO_LE:
5578 case BO_GE:
5579 case BO_EQ:
5580 case BO_NE:
5581 return IntRange::forBoolType();
5582
5583 // The type of the assignments is the type of the LHS, so the RHS
5584 // is not necessarily the same type.
5585 case BO_MulAssign:
5586 case BO_DivAssign:
5587 case BO_RemAssign:
5588 case BO_AddAssign:
5589 case BO_SubAssign:
5590 case BO_XorAssign:
5591 case BO_OrAssign:
5592 // TODO: bitfields?
5593 return IntRange::forValueOfType(C, GetExprType(E));
5594
5595 // Simple assignments just pass through the RHS, which will have
5596 // been coerced to the LHS type.
5597 case BO_Assign:
5598 // TODO: bitfields?
5599 return GetExprRange(C, BO->getRHS(), MaxWidth);
5600
5601 // Operations with opaque sources are black-listed.
5602 case BO_PtrMemD:
5603 case BO_PtrMemI:
5604 return IntRange::forValueOfType(C, GetExprType(E));
5605
5606 // Bitwise-and uses the *infinum* of the two source ranges.
5607 case BO_And:
5608 case BO_AndAssign:
5609 return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
5610 GetExprRange(C, BO->getRHS(), MaxWidth));
5611
5612 // Left shift gets black-listed based on a judgement call.
5613 case BO_Shl:
5614 // ...except that we want to treat '1 << (blah)' as logically
5615 // positive. It's an important idiom.
5616 if (IntegerLiteral *I
5617 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
5618 if (I->getValue() == 1) {
5619 IntRange R = IntRange::forValueOfType(C, GetExprType(E));
5620 return IntRange(R.Width, /*NonNegative*/ true);
5621 }
5622 }
5623 // fallthrough
5624
5625 case BO_ShlAssign:
5626 return IntRange::forValueOfType(C, GetExprType(E));
5627
5628 // Right shift by a constant can narrow its left argument.
5629 case BO_Shr:
5630 case BO_ShrAssign: {
5631 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
5632
5633 // If the shift amount is a positive constant, drop the width by
5634 // that much.
5635 llvm::APSInt shift;
5636 if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
5637 shift.isNonNegative()) {
5638 unsigned zext = shift.getZExtValue();
5639 if (zext >= L.Width)
5640 L.Width = (L.NonNegative ? 0 : 1);
5641 else
5642 L.Width -= zext;
5643 }
5644
5645 return L;
5646 }
5647
5648 // Comma acts as its right operand.
5649 case BO_Comma:
5650 return GetExprRange(C, BO->getRHS(), MaxWidth);
5651
5652 // Black-list pointer subtractions.
5653 case BO_Sub:
5654 if (BO->getLHS()->getType()->isPointerType())
5655 return IntRange::forValueOfType(C, GetExprType(E));
5656 break;
5657
5658 // The width of a division result is mostly determined by the size
5659 // of the LHS.
5660 case BO_Div: {
5661 // Don't 'pre-truncate' the operands.
5662 unsigned opWidth = C.getIntWidth(GetExprType(E));
5663 IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
5664
5665 // If the divisor is constant, use that.
5666 llvm::APSInt divisor;
5667 if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
5668 unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
5669 if (log2 >= L.Width)
5670 L.Width = (L.NonNegative ? 0 : 1);
5671 else
5672 L.Width = std::min(L.Width - log2, MaxWidth);
5673 return L;
5674 }
5675
5676 // Otherwise, just use the LHS's width.
5677 IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
5678 return IntRange(L.Width, L.NonNegative && R.NonNegative);
5679 }
5680
5681 // The result of a remainder can't be larger than the result of
5682 // either side.
5683 case BO_Rem: {
5684 // Don't 'pre-truncate' the operands.
5685 unsigned opWidth = C.getIntWidth(GetExprType(E));
5686 IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
5687 IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
5688
5689 IntRange meet = IntRange::meet(L, R);
5690 meet.Width = std::min(meet.Width, MaxWidth);
5691 return meet;
5692 }
5693
5694 // The default behavior is okay for these.
5695 case BO_Mul:
5696 case BO_Add:
5697 case BO_Xor:
5698 case BO_Or:
5699 break;
5700 }
5701
5702 // The default case is to treat the operation as if it were closed
5703 // on the narrowest type that encompasses both operands.
5704 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
5705 IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
5706 return IntRange::join(L, R);
5707 }
5708
5709 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
5710 switch (UO->getOpcode()) {
5711 // Boolean-valued operations are white-listed.
5712 case UO_LNot:
5713 return IntRange::forBoolType();
5714
5715 // Operations with opaque sources are black-listed.
5716 case UO_Deref:
5717 case UO_AddrOf: // should be impossible
5718 return IntRange::forValueOfType(C, GetExprType(E));
5719
5720 default:
5721 return GetExprRange(C, UO->getSubExpr(), MaxWidth);
5722 }
5723 }
5724
5725 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
5726 return GetExprRange(C, OVE->getSourceExpr(), MaxWidth);
5727
5728 if (FieldDecl *BitField = E->getSourceBitField())
5729 return IntRange(BitField->getBitWidthValue(C),
5730 BitField->getType()->isUnsignedIntegerOrEnumerationType());
5731
5732 return IntRange::forValueOfType(C, GetExprType(E));
5733}
5734
5735static IntRange GetExprRange(ASTContext &C, Expr *E) {
5736 return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
5737}
5738
5739/// Checks whether the given value, which currently has the given
5740/// source semantics, has the same value when coerced through the
5741/// target semantics.
5742static bool IsSameFloatAfterCast(const llvm::APFloat &value,
5743 const llvm::fltSemantics &Src,
5744 const llvm::fltSemantics &Tgt) {
5745 llvm::APFloat truncated = value;
5746
5747 bool ignored;
5748 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
5749 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
5750
5751 return truncated.bitwiseIsEqual(value);
5752}
5753
5754/// Checks whether the given value, which currently has the given
5755/// source semantics, has the same value when coerced through the
5756/// target semantics.
5757///
5758/// The value might be a vector of floats (or a complex number).
5759static bool IsSameFloatAfterCast(const APValue &value,
5760 const llvm::fltSemantics &Src,
5761 const llvm::fltSemantics &Tgt) {
5762 if (value.isFloat())
5763 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
5764
5765 if (value.isVector()) {
5766 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
5767 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
5768 return false;
5769 return true;
5770 }
5771
5772 assert(value.isComplexFloat());
5773 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
5774 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
5775}
5776
5777static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
5778
5779static bool IsZero(Sema &S, Expr *E) {
5780 // Suppress cases where we are comparing against an enum constant.
5781 if (const DeclRefExpr *DR =
5782 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
5783 if (isa<EnumConstantDecl>(DR->getDecl()))
5784 return false;
5785
5786 // Suppress cases where the '0' value is expanded from a macro.
5787 if (E->getLocStart().isMacroID())
5788 return false;
5789
5790 llvm::APSInt Value;
5791 return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
5792}
5793
5794static bool HasEnumType(Expr *E) {
5795 // Strip off implicit integral promotions.
5796 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5797 if (ICE->getCastKind() != CK_IntegralCast &&
5798 ICE->getCastKind() != CK_NoOp)
5799 break;
5800 E = ICE->getSubExpr();
5801 }
5802
5803 return E->getType()->isEnumeralType();
5804}
5805
5806static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
5807 // Disable warning in template instantiations.
5808 if (!S.ActiveTemplateInstantiations.empty())
5809 return;
5810
5811 BinaryOperatorKind op = E->getOpcode();
5812 if (E->isValueDependent())
5813 return;
5814
5815 if (op == BO_LT && IsZero(S, E->getRHS())) {
5816 S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
5817 << "< 0" << "false" << HasEnumType(E->getLHS())
5818 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
5819 } else if (op == BO_GE && IsZero(S, E->getRHS())) {
5820 S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
5821 << ">= 0" << "true" << HasEnumType(E->getLHS())
5822 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
5823 } else if (op == BO_GT && IsZero(S, E->getLHS())) {
5824 S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
5825 << "0 >" << "false" << HasEnumType(E->getRHS())
5826 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
5827 } else if (op == BO_LE && IsZero(S, E->getLHS())) {
5828 S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
5829 << "0 <=" << "true" << HasEnumType(E->getRHS())
5830 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
5831 }
5832}
5833
5834static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
5835 Expr *Constant, Expr *Other,
5836 llvm::APSInt Value,
5837 bool RhsConstant) {
5838 // Disable warning in template instantiations.
5839 if (!S.ActiveTemplateInstantiations.empty())
5840 return;
5841
5842 // TODO: Investigate using GetExprRange() to get tighter bounds
5843 // on the bit ranges.
5844 QualType OtherT = Other->getType();
5845 if (const AtomicType *AT = dyn_cast<AtomicType>(OtherT))
5846 OtherT = AT->getValueType();
5847 IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
5848 unsigned OtherWidth = OtherRange.Width;
5849
5850 bool OtherIsBooleanType = Other->isKnownToHaveBooleanValue();
5851
5852 // 0 values are handled later by CheckTrivialUnsignedComparison().
5853 if ((Value == 0) && (!OtherIsBooleanType))
5854 return;
5855
5856 BinaryOperatorKind op = E->getOpcode();
5857 bool IsTrue = true;
5858
5859 // Used for diagnostic printout.
5860 enum {
5861 LiteralConstant = 0,
5862 CXXBoolLiteralTrue,
5863 CXXBoolLiteralFalse
5864 } LiteralOrBoolConstant = LiteralConstant;
5865
5866 if (!OtherIsBooleanType) {
5867 QualType ConstantT = Constant->getType();
5868 QualType CommonT = E->getLHS()->getType();
5869
5870 if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
5871 return;
5872 assert((OtherT->isIntegerType() && ConstantT->isIntegerType()) &&
5873 "comparison with non-integer type");
5874
5875 bool ConstantSigned = ConstantT->isSignedIntegerType();
5876 bool CommonSigned = CommonT->isSignedIntegerType();
5877
5878 bool EqualityOnly = false;
5879
5880 if (CommonSigned) {
5881 // The common type is signed, therefore no signed to unsigned conversion.
5882 if (!OtherRange.NonNegative) {
5883 // Check that the constant is representable in type OtherT.
5884 if (ConstantSigned) {
5885 if (OtherWidth >= Value.getMinSignedBits())
5886 return;
5887 } else { // !ConstantSigned
5888 if (OtherWidth >= Value.getActiveBits() + 1)
5889 return;
5890 }
5891 } else { // !OtherSigned
5892 // Check that the constant is representable in type OtherT.
5893 // Negative values are out of range.
5894 if (ConstantSigned) {
5895 if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
5896 return;
5897 } else { // !ConstantSigned
5898 if (OtherWidth >= Value.getActiveBits())
5899 return;
5900 }
5901 }
5902 } else { // !CommonSigned
5903 if (OtherRange.NonNegative) {
5904 if (OtherWidth >= Value.getActiveBits())
5905 return;
5906 } else { // OtherSigned
5907 assert(!ConstantSigned &&
5908 "Two signed types converted to unsigned types.");
5909 // Check to see if the constant is representable in OtherT.
5910 if (OtherWidth > Value.getActiveBits())
5911 return;
5912 // Check to see if the constant is equivalent to a negative value
5913 // cast to CommonT.
5914 if (S.Context.getIntWidth(ConstantT) ==
5915 S.Context.getIntWidth(CommonT) &&
5916 Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
5917 return;
5918 // The constant value rests between values that OtherT can represent
5919 // after conversion. Relational comparison still works, but equality
5920 // comparisons will be tautological.
5921 EqualityOnly = true;
5922 }
5923 }
5924
5925 bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
5926
5927 if (op == BO_EQ || op == BO_NE) {
5928 IsTrue = op == BO_NE;
5929 } else if (EqualityOnly) {
5930 return;
5931 } else if (RhsConstant) {
5932 if (op == BO_GT || op == BO_GE)
5933 IsTrue = !PositiveConstant;
5934 else // op == BO_LT || op == BO_LE
5935 IsTrue = PositiveConstant;
5936 } else {
5937 if (op == BO_LT || op == BO_LE)
5938 IsTrue = !PositiveConstant;
5939 else // op == BO_GT || op == BO_GE
5940 IsTrue = PositiveConstant;
5941 }
5942 } else {
5943 // Other isKnownToHaveBooleanValue
5944 enum CompareBoolWithConstantResult { AFals, ATrue, Unkwn };
5945 enum ConstantValue { LT_Zero, Zero, One, GT_One, SizeOfConstVal };
5946 enum ConstantSide { Lhs, Rhs, SizeOfConstSides };
5947
5948 static const struct LinkedConditions {
5949 CompareBoolWithConstantResult BO_LT_OP[SizeOfConstSides][SizeOfConstVal];
5950 CompareBoolWithConstantResult BO_GT_OP[SizeOfConstSides][SizeOfConstVal];
5951 CompareBoolWithConstantResult BO_LE_OP[SizeOfConstSides][SizeOfConstVal];
5952 CompareBoolWithConstantResult BO_GE_OP[SizeOfConstSides][SizeOfConstVal];
5953 CompareBoolWithConstantResult BO_EQ_OP[SizeOfConstSides][SizeOfConstVal];
5954 CompareBoolWithConstantResult BO_NE_OP[SizeOfConstSides][SizeOfConstVal];
5955
5956 } TruthTable = {
5957 // Constant on LHS. | Constant on RHS. |
5958 // LT_Zero| Zero | One |GT_One| LT_Zero| Zero | One |GT_One|
5959 { { ATrue, Unkwn, AFals, AFals }, { AFals, AFals, Unkwn, ATrue } },
5960 { { AFals, AFals, Unkwn, ATrue }, { ATrue, Unkwn, AFals, AFals } },
5961 { { ATrue, ATrue, Unkwn, AFals }, { AFals, Unkwn, ATrue, ATrue } },
5962 { { AFals, Unkwn, ATrue, ATrue }, { ATrue, ATrue, Unkwn, AFals } },
5963 { { AFals, Unkwn, Unkwn, AFals }, { AFals, Unkwn, Unkwn, AFals } },
5964 { { ATrue, Unkwn, Unkwn, ATrue }, { ATrue, Unkwn, Unkwn, ATrue } }
5965 };
5966
5967 bool ConstantIsBoolLiteral = isa<CXXBoolLiteralExpr>(Constant);
5968
5969 enum ConstantValue ConstVal = Zero;
5970 if (Value.isUnsigned() || Value.isNonNegative()) {
5971 if (Value == 0) {
5972 LiteralOrBoolConstant =
5973 ConstantIsBoolLiteral ? CXXBoolLiteralFalse : LiteralConstant;
5974 ConstVal = Zero;
5975 } else if (Value == 1) {
5976 LiteralOrBoolConstant =
5977 ConstantIsBoolLiteral ? CXXBoolLiteralTrue : LiteralConstant;
5978 ConstVal = One;
5979 } else {
5980 LiteralOrBoolConstant = LiteralConstant;
5981 ConstVal = GT_One;
5982 }
5983 } else {
5984 ConstVal = LT_Zero;
5985 }
5986
5987 CompareBoolWithConstantResult CmpRes;
5988
5989 switch (op) {
5990 case BO_LT:
5991 CmpRes = TruthTable.BO_LT_OP[RhsConstant][ConstVal];
5992 break;
5993 case BO_GT:
5994 CmpRes = TruthTable.BO_GT_OP[RhsConstant][ConstVal];
5995 break;
5996 case BO_LE:
5997 CmpRes = TruthTable.BO_LE_OP[RhsConstant][ConstVal];
5998 break;
5999 case BO_GE:
6000 CmpRes = TruthTable.BO_GE_OP[RhsConstant][ConstVal];
6001 break;
6002 case BO_EQ:
6003 CmpRes = TruthTable.BO_EQ_OP[RhsConstant][ConstVal];
6004 break;
6005 case BO_NE:
6006 CmpRes = TruthTable.BO_NE_OP[RhsConstant][ConstVal];
6007 break;
6008 default:
6009 CmpRes = Unkwn;
6010 break;
6011 }
6012
6013 if (CmpRes == AFals) {
6014 IsTrue = false;
6015 } else if (CmpRes == ATrue) {
6016 IsTrue = true;
6017 } else {
6018 return;
6019 }
6020 }
6021
6022 // If this is a comparison to an enum constant, include that
6023 // constant in the diagnostic.
6024 const EnumConstantDecl *ED = nullptr;
6025 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
6026 ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
6027
6028 SmallString<64> PrettySourceValue;
6029 llvm::raw_svector_ostream OS(PrettySourceValue);
6030 if (ED)
6031 OS << '\'' << *ED << "' (" << Value << ")";
6032 else
6033 OS << Value;
6034
6035 S.DiagRuntimeBehavior(
6036 E->getOperatorLoc(), E,
6037 S.PDiag(diag::warn_out_of_range_compare)
6038 << OS.str() << LiteralOrBoolConstant
6039 << OtherT << (OtherIsBooleanType && !OtherT->isBooleanType()) << IsTrue
6040 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
6041}
6042
6043/// Analyze the operands of the given comparison. Implements the
6044/// fallback case from AnalyzeComparison.
6045static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
6046 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
6047 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
6048}
6049
6050/// \brief Implements -Wsign-compare.
6051///
6052/// \param E the binary operator to check for warnings
6053static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
6054 // The type the comparison is being performed in.
6055 QualType T = E->getLHS()->getType();
6056
6057 // Only analyze comparison operators where both sides have been converted to
6058 // the same type.
6059 if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
6060 return AnalyzeImpConvsInComparison(S, E);
6061
6062 // Don't analyze value-dependent comparisons directly.
6063 if (E->isValueDependent())
6064 return AnalyzeImpConvsInComparison(S, E);
6065
6066 Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
6067 Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
6068
6069 bool IsComparisonConstant = false;
6070
6071 // Check whether an integer constant comparison results in a value
6072 // of 'true' or 'false'.
6073 if (T->isIntegralType(S.Context)) {
6074 llvm::APSInt RHSValue;
6075 bool IsRHSIntegralLiteral =
6076 RHS->isIntegerConstantExpr(RHSValue, S.Context);
6077 llvm::APSInt LHSValue;
6078 bool IsLHSIntegralLiteral =
6079 LHS->isIntegerConstantExpr(LHSValue, S.Context);
6080 if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
6081 DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
6082 else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
6083 DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
6084 else
6085 IsComparisonConstant =
6086 (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
6087 } else if (!T->hasUnsignedIntegerRepresentation())
6088 IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
6089
6090 // We don't do anything special if this isn't an unsigned integral
6091 // comparison: we're only interested in integral comparisons, and
6092 // signed comparisons only happen in cases we don't care to warn about.
6093 //
6094 // We also don't care about value-dependent expressions or expressions
6095 // whose result is a constant.
6096 if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
6097 return AnalyzeImpConvsInComparison(S, E);
6098
6099 // Check to see if one of the (unmodified) operands is of different
6100 // signedness.
6101 Expr *signedOperand, *unsignedOperand;
6102 if (LHS->getType()->hasSignedIntegerRepresentation()) {
6103 assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
6104 "unsigned comparison between two signed integer expressions?");
6105 signedOperand = LHS;
6106 unsignedOperand = RHS;
6107 } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
6108 signedOperand = RHS;
6109 unsignedOperand = LHS;
6110 } else {
6111 CheckTrivialUnsignedComparison(S, E);
6112 return AnalyzeImpConvsInComparison(S, E);
6113 }
6114
6115 // Otherwise, calculate the effective range of the signed operand.
6116 IntRange signedRange = GetExprRange(S.Context, signedOperand);
6117
6118 // Go ahead and analyze implicit conversions in the operands. Note
6119 // that we skip the implicit conversions on both sides.
6120 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
6121 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
6122
6123 // If the signed range is non-negative, -Wsign-compare won't fire,
6124 // but we should still check for comparisons which are always true
6125 // or false.
6126 if (signedRange.NonNegative)
6127 return CheckTrivialUnsignedComparison(S, E);
6128
6129 // For (in)equality comparisons, if the unsigned operand is a
6130 // constant which cannot collide with a overflowed signed operand,
6131 // then reinterpreting the signed operand as unsigned will not
6132 // change the result of the comparison.
6133 if (E->isEqualityOp()) {
6134 unsigned comparisonWidth = S.Context.getIntWidth(T);
6135 IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
6136
6137 // We should never be unable to prove that the unsigned operand is
6138 // non-negative.
6139 assert(unsignedRange.NonNegative && "unsigned range includes negative?");
6140
6141 if (unsignedRange.Width < comparisonWidth)
6142 return;
6143 }
6144
6145 S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
6146 S.PDiag(diag::warn_mixed_sign_comparison)
6147 << LHS->getType() << RHS->getType()
6148 << LHS->getSourceRange() << RHS->getSourceRange());
6149}
6150
6151/// Analyzes an attempt to assign the given value to a bitfield.
6152///
6153/// Returns true if there was something fishy about the attempt.
6154static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
6155 SourceLocation InitLoc) {
6156 assert(Bitfield->isBitField());
6157 if (Bitfield->isInvalidDecl())
6158 return false;
6159
6160 // White-list bool bitfields.
6161 if (Bitfield->getType()->isBooleanType())
6162 return false;
6163
6164 // Ignore value- or type-dependent expressions.
6165 if (Bitfield->getBitWidth()->isValueDependent() ||
6166 Bitfield->getBitWidth()->isTypeDependent() ||
6167 Init->isValueDependent() ||
6168 Init->isTypeDependent())
6169 return false;
6170
6171 Expr *OriginalInit = Init->IgnoreParenImpCasts();
6172
6173 llvm::APSInt Value;
6174 if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
6175 return false;
6176
6177 unsigned OriginalWidth = Value.getBitWidth();
6178 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
6179
6180 if (OriginalWidth <= FieldWidth)
6181 return false;
6182
6183 // Compute the value which the bitfield will contain.
6184 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
6185 TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
6186
6187 // Check whether the stored value is equal to the original value.
6188 TruncatedValue = TruncatedValue.extend(OriginalWidth);
6189 if (llvm::APSInt::isSameValue(Value, TruncatedValue))
6190 return false;
6191
6192 // Special-case bitfields of width 1: booleans are naturally 0/1, and
6193 // therefore don't strictly fit into a signed bitfield of width 1.
6194 if (FieldWidth == 1 && Value == 1)
6195 return false;
6196
6197 std::string PrettyValue = Value.toString(10);
6198 std::string PrettyTrunc = TruncatedValue.toString(10);
6199
6200 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
6201 << PrettyValue << PrettyTrunc << OriginalInit->getType()
6202 << Init->getSourceRange();
6203
6204 return true;
6205}
6206
6207/// Analyze the given simple or compound assignment for warning-worthy
6208/// operations.
6209static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
6210 // Just recurse on the LHS.
6211 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
6212
6213 // We want to recurse on the RHS as normal unless we're assigning to
6214 // a bitfield.
6215 if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
6216 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
6217 E->getOperatorLoc())) {
6218 // Recurse, ignoring any implicit conversions on the RHS.
6219 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
6220 E->getOperatorLoc());
6221 }
6222 }
6223
6224 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
6225}
6226
6227/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
6228static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
6229 SourceLocation CContext, unsigned diag,
6230 bool pruneControlFlow = false) {
6231 if (pruneControlFlow) {
6232 S.DiagRuntimeBehavior(E->getExprLoc(), E,
6233 S.PDiag(diag)
6234 << SourceType << T << E->getSourceRange()
6235 << SourceRange(CContext));
6236 return;
6237 }
6238 S.Diag(E->getExprLoc(), diag)
6239 << SourceType << T << E->getSourceRange() << SourceRange(CContext);
6240}
6241
6242/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
6243static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
6244 SourceLocation CContext, unsigned diag,
6245 bool pruneControlFlow = false) {
6246 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
6247}
6248
6249/// Diagnose an implicit cast from a literal expression. Does not warn when the
6250/// cast wouldn't lose information.
6251void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
6252 SourceLocation CContext) {
6253 // Try to convert the literal exactly to an integer. If we can, don't warn.
6254 bool isExact = false;
6255 const llvm::APFloat &Value = FL->getValue();
6256 llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
6257 T->hasUnsignedIntegerRepresentation());
6258 if (Value.convertToInteger(IntegerValue,
6259 llvm::APFloat::rmTowardZero, &isExact)
6260 == llvm::APFloat::opOK && isExact)
6261 return;
6262
6263 // FIXME: Force the precision of the source value down so we don't print
6264 // digits which are usually useless (we don't really care here if we
6265 // truncate a digit by accident in edge cases). Ideally, APFloat::toString
6266 // would automatically print the shortest representation, but it's a bit
6267 // tricky to implement.
6268 SmallString<16> PrettySourceValue;
6269 unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
6270 precision = (precision * 59 + 195) / 196;
6271 Value.toString(PrettySourceValue, precision);
6272
6273 SmallString<16> PrettyTargetValue;
6274 if (T->isSpecificBuiltinType(BuiltinType::Bool))
6275 PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
6276 else
6277 IntegerValue.toString(PrettyTargetValue);
6278
6279 S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
6280 << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
6281 << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
6282}
6283
6284std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
6285 if (!Range.Width) return "0";
6286
6287 llvm::APSInt ValueInRange = Value;
6288 ValueInRange.setIsSigned(!Range.NonNegative);
6289 ValueInRange = ValueInRange.trunc(Range.Width);
6290 return ValueInRange.toString(10);
6291}
6292
6293static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
6294 if (!isa<ImplicitCastExpr>(Ex))
6295 return false;
6296
6297 Expr *InnerE = Ex->IgnoreParenImpCasts();
6298 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
6299 const Type *Source =
6300 S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
6301 if (Target->isDependentType())
6302 return false;
6303
6304 const BuiltinType *FloatCandidateBT =
6305 dyn_cast<BuiltinType>(ToBool ? Source : Target);
6306 const Type *BoolCandidateType = ToBool ? Target : Source;
6307
6308 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
6309 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
6310}
6311
6312void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
6313 SourceLocation CC) {
6314 unsigned NumArgs = TheCall->getNumArgs();
6315 for (unsigned i = 0; i < NumArgs; ++i) {
6316 Expr *CurrA = TheCall->getArg(i);
6317 if (!IsImplicitBoolFloatConversion(S, CurrA, true))
6318 continue;
6319
6320 bool IsSwapped = ((i > 0) &&
6321 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
6322 IsSwapped |= ((i < (NumArgs - 1)) &&
6323 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
6324 if (IsSwapped) {
6325 // Warn on this floating-point to bool conversion.
6326 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
6327 CurrA->getType(), CC,
6328 diag::warn_impcast_floating_point_to_bool);
6329 }
6330 }
6331}
6332
6333static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
6334 SourceLocation CC) {
6335 if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
6336 E->getExprLoc()))
6337 return;
6338
6339 // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
6340 const Expr::NullPointerConstantKind NullKind =
6341 E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
6342 if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
6343 return;
6344
6345 // Return if target type is a safe conversion.
6346 if (T->isAnyPointerType() || T->isBlockPointerType() ||
6347 T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
6348 return;
6349
6350 SourceLocation Loc = E->getSourceRange().getBegin();
6351
6352 // __null is usually wrapped in a macro. Go up a macro if that is the case.
6353 if (NullKind == Expr::NPCK_GNUNull) {
6354 if (Loc.isMacroID())
6355 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
6356 }
6357
6358 // Only warn if the null and context location are in the same macro expansion.
6359 if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
6360 return;
6361
6362 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
6363 << (NullKind == Expr::NPCK_CXX11_nullptr) << T << clang::SourceRange(CC)
6364 << FixItHint::CreateReplacement(Loc,
6365 S.getFixItZeroLiteralForType(T, Loc));
6366}
6367
6368void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
6369 SourceLocation CC, bool *ICContext = nullptr) {
6370 if (E->isTypeDependent() || E->isValueDependent()) return;
6371
6372 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
6373 const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
6374 if (Source == Target) return;
6375 if (Target->isDependentType()) return;
6376
6377 // If the conversion context location is invalid don't complain. We also
6378 // don't want to emit a warning if the issue occurs from the expansion of
6379 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
6380 // delay this check as long as possible. Once we detect we are in that
6381 // scenario, we just return.
6382 if (CC.isInvalid())
6383 return;
6384
6385 // Diagnose implicit casts to bool.
6386 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
6387 if (isa<StringLiteral>(E))
6388 // Warn on string literal to bool. Checks for string literals in logical
6389 // and expressions, for instance, assert(0 && "error here"), are
6390 // prevented by a check in AnalyzeImplicitConversions().
6391 return DiagnoseImpCast(S, E, T, CC,
6392 diag::warn_impcast_string_literal_to_bool);
6393 if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
6394 isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
6395 // This covers the literal expressions that evaluate to Objective-C
6396 // objects.
6397 return DiagnoseImpCast(S, E, T, CC,
6398 diag::warn_impcast_objective_c_literal_to_bool);
6399 }
6400 if (Source->isPointerType() || Source->canDecayToPointerType()) {
6401 // Warn on pointer to bool conversion that is always true.
6402 S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
6403 SourceRange(CC));
6404 }
6405 }
6406
6407 // Strip vector types.
6408 if (isa<VectorType>(Source)) {
6409 if (!isa<VectorType>(Target)) {
6410 if (S.SourceMgr.isInSystemMacro(CC))
6411 return;
6412 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
6413 }
6414
6415 // If the vector cast is cast between two vectors of the same size, it is
6416 // a bitcast, not a conversion.
6417 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
6418 return;
6419
6420 Source = cast<VectorType>(Source)->getElementType().getTypePtr();
6421 Target = cast<VectorType>(Target)->getElementType().getTypePtr();
6422 }
6423 if (auto VecTy = dyn_cast<VectorType>(Target))
6424 Target = VecTy->getElementType().getTypePtr();
6425
6426 // Strip complex types.
6427 if (isa<ComplexType>(Source)) {
6428 if (!isa<ComplexType>(Target)) {
6429 if (S.SourceMgr.isInSystemMacro(CC))
6430 return;
6431
6432 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
6433 }
6434
6435 Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
6436 Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
6437 }
6438
6439 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
6440 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
6441
6442 // If the source is floating point...
6443 if (SourceBT && SourceBT->isFloatingPoint()) {
6444 // ...and the target is floating point...
6445 if (TargetBT && TargetBT->isFloatingPoint()) {
6446 // ...then warn if we're dropping FP rank.
6447
6448 // Builtin FP kinds are ordered by increasing FP rank.
6449 if (SourceBT->getKind() > TargetBT->getKind()) {
6450 // Don't warn about float constants that are precisely
6451 // representable in the target type.
6452 Expr::EvalResult result;
6453 if (E->EvaluateAsRValue(result, S.Context)) {
6454 // Value might be a float, a float vector, or a float complex.
6455 if (IsSameFloatAfterCast(result.Val,
6456 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
6457 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
6458 return;
6459 }
6460
6461 if (S.SourceMgr.isInSystemMacro(CC))
6462 return;
6463
6464 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
6465 }
6466 return;
6467 }
6468
6469 // If the target is integral, always warn.
6470 if (TargetBT && TargetBT->isInteger()) {
6471 if (S.SourceMgr.isInSystemMacro(CC))
6472 return;
6473
6474 Expr *InnerE = E->IgnoreParenImpCasts();
6475 // We also want to warn on, e.g., "int i = -1.234"
6476 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
6477 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
6478 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
6479
6480 if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
6481 DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
6482 } else {
6483 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
6484 }
6485 }
6486
6487 // If the target is bool, warn if expr is a function or method call.
6488 if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
6489 isa<CallExpr>(E)) {
6490 // Check last argument of function call to see if it is an
6491 // implicit cast from a type matching the type the result
6492 // is being cast to.
6493 CallExpr *CEx = cast<CallExpr>(E);
6494 unsigned NumArgs = CEx->getNumArgs();
6495 if (NumArgs > 0) {
6496 Expr *LastA = CEx->getArg(NumArgs - 1);
6497 Expr *InnerE = LastA->IgnoreParenImpCasts();
6498 const Type *InnerType =
6499 S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
6500 if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
6501 // Warn on this floating-point to bool conversion
6502 DiagnoseImpCast(S, E, T, CC,
6503 diag::warn_impcast_floating_point_to_bool);
6504 }
6505 }
6506 }
6507 return;
6508 }
6509
6510 DiagnoseNullConversion(S, E, T, CC);
6511
6512 if (!Source->isIntegerType() || !Target->isIntegerType())
6513 return;
6514
6515 // TODO: remove this early return once the false positives for constant->bool
6516 // in templates, macros, etc, are reduced or removed.
6517 if (Target->isSpecificBuiltinType(BuiltinType::Bool))
6518 return;
6519
6520 IntRange SourceRange = GetExprRange(S.Context, E);
6521 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
6522
6523 if (SourceRange.Width > TargetRange.Width) {
6524 // If the source is a constant, use a default-on diagnostic.
6525 // TODO: this should happen for bitfield stores, too.
6526 llvm::APSInt Value(32);
6527 if (E->isIntegerConstantExpr(Value, S.Context)) {
6528 if (S.SourceMgr.isInSystemMacro(CC))
6529 return;
6530
6531 std::string PrettySourceValue = Value.toString(10);
6532 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
6533
6534 S.DiagRuntimeBehavior(E->getExprLoc(), E,
6535 S.PDiag(diag::warn_impcast_integer_precision_constant)
6536 << PrettySourceValue << PrettyTargetValue
6537 << E->getType() << T << E->getSourceRange()
6538 << clang::SourceRange(CC));
6539 return;
6540 }
6541
6542 // People want to build with -Wshorten-64-to-32 and not -Wconversion.
6543 if (S.SourceMgr.isInSystemMacro(CC))
6544 return;
6545
6546 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
6547 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
6548 /* pruneControlFlow */ true);
6549 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
6550 }
6551
6552 if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
6553 (!TargetRange.NonNegative && SourceRange.NonNegative &&
6554 SourceRange.Width == TargetRange.Width)) {
6555
6556 if (S.SourceMgr.isInSystemMacro(CC))
6557 return;
6558
6559 unsigned DiagID = diag::warn_impcast_integer_sign;
6560
6561 // Traditionally, gcc has warned about this under -Wsign-compare.
6562 // We also want to warn about it in -Wconversion.
6563 // So if -Wconversion is off, use a completely identical diagnostic
6564 // in the sign-compare group.
6565 // The conditional-checking code will
6566 if (ICContext) {
6567 DiagID = diag::warn_impcast_integer_sign_conditional;
6568 *ICContext = true;
6569 }
6570
6571 return DiagnoseImpCast(S, E, T, CC, DiagID);
6572 }
6573
6574 // Diagnose conversions between different enumeration types.
6575 // In C, we pretend that the type of an EnumConstantDecl is its enumeration
6576 // type, to give us better diagnostics.
6577 QualType SourceType = E->getType();
6578 if (!S.getLangOpts().CPlusPlus) {
6579 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6580 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
6581 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
6582 SourceType = S.Context.getTypeDeclType(Enum);
6583 Source = S.Context.getCanonicalType(SourceType).getTypePtr();
6584 }
6585 }
6586
6587 if (const EnumType *SourceEnum = Source->getAs<EnumType>())
6588 if (const EnumType *TargetEnum = Target->getAs<EnumType>())
6589 if (SourceEnum->getDecl()->hasNameForLinkage() &&
6590 TargetEnum->getDecl()->hasNameForLinkage() &&
6591 SourceEnum != TargetEnum) {
6592 if (S.SourceMgr.isInSystemMacro(CC))
6593 return;
6594
6595 return DiagnoseImpCast(S, E, SourceType, T, CC,
6596 diag::warn_impcast_different_enum_types);
6597 }
6598
6599 return;
6600}
6601
6602void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
6603 SourceLocation CC, QualType T);
6604
6605void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
6606 SourceLocation CC, bool &ICContext) {
6607 E = E->IgnoreParenImpCasts();
6608
6609 if (isa<ConditionalOperator>(E))
6610 return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
6611
6612 AnalyzeImplicitConversions(S, E, CC);
6613 if (E->getType() != T)
6614 return CheckImplicitConversion(S, E, T, CC, &ICContext);
6615 return;
6616}
6617
6618void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
6619 SourceLocation CC, QualType T) {
6620 AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
6621
6622 bool Suspicious = false;
6623 CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
6624 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
6625
6626 // If -Wconversion would have warned about either of the candidates
6627 // for a signedness conversion to the context type...
6628 if (!Suspicious) return;
6629
6630 // ...but it's currently ignored...
6631 if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
6632 return;
6633
6634 // ...then check whether it would have warned about either of the
6635 // candidates for a signedness conversion to the condition type.
6636 if (E->getType() == T) return;
6637
6638 Suspicious = false;
6639 CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
6640 E->getType(), CC, &Suspicious);
6641 if (!Suspicious)
6642 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
6643 E->getType(), CC, &Suspicious);
6644}
6645
6646/// CheckBoolLikeConversion - Check conversion of given expression to boolean.
6647/// Input argument E is a logical expression.
6648static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
6649 if (S.getLangOpts().Bool)
6650 return;
6651 CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
6652}
6653
6654/// AnalyzeImplicitConversions - Find and report any interesting
6655/// implicit conversions in the given expression. There are a couple
6656/// of competing diagnostics here, -Wconversion and -Wsign-compare.
6657void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
6658 QualType T = OrigE->getType();
6659 Expr *E = OrigE->IgnoreParenImpCasts();
6660
6661 if (E->isTypeDependent() || E->isValueDependent())
6662 return;
6663
6664 // For conditional operators, we analyze the arguments as if they
6665 // were being fed directly into the output.
6666 if (isa<ConditionalOperator>(E)) {
6667 ConditionalOperator *CO = cast<ConditionalOperator>(E);
6668 CheckConditionalOperator(S, CO, CC, T);
6669 return;
6670 }
6671
6672 // Check implicit argument conversions for function calls.
6673 if (CallExpr *Call = dyn_cast<CallExpr>(E))
6674 CheckImplicitArgumentConversions(S, Call, CC);
6675
6676 // Go ahead and check any implicit conversions we might have skipped.
6677 // The non-canonical typecheck is just an optimization;
6678 // CheckImplicitConversion will filter out dead implicit conversions.
6679 if (E->getType() != T)
6680 CheckImplicitConversion(S, E, T, CC);
6681
6682 // Now continue drilling into this expression.
6683
6684 if (PseudoObjectExpr * POE = dyn_cast<PseudoObjectExpr>(E)) {
6685 if (POE->getResultExpr())
6686 E = POE->getResultExpr();
6687 }
6688
6689 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
6690 return AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
6691
6692 // Skip past explicit casts.
6693 if (isa<ExplicitCastExpr>(E)) {
6694 E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
6695 return AnalyzeImplicitConversions(S, E, CC);
6696 }
6697
6698 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
6699 // Do a somewhat different check with comparison operators.
6700 if (BO->isComparisonOp())
6701 return AnalyzeComparison(S, BO);
6702
6703 // And with simple assignments.
6704 if (BO->getOpcode() == BO_Assign)
6705 return AnalyzeAssignment(S, BO);
6706 }
6707
6708 // These break the otherwise-useful invariant below. Fortunately,
6709 // we don't really need to recurse into them, because any internal
6710 // expressions should have been analyzed already when they were
6711 // built into statements.
6712 if (isa<StmtExpr>(E)) return;
6713
6714 // Don't descend into unevaluated contexts.
6715 if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
6716
6717 // Now just recurse over the expression's children.
6718 CC = E->getExprLoc();
6719 BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
6720 bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
6721 for (Stmt::child_range I = E->children(); I; ++I) {
6722 Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
6723 if (!ChildExpr)
6724 continue;
6725
6726 if (IsLogicalAndOperator &&
6727 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
6728 // Ignore checking string literals that are in logical and operators.
6729 // This is a common pattern for asserts.
6730 continue;
6731 AnalyzeImplicitConversions(S, ChildExpr, CC);
6732 }
6733
6734 if (BO && BO->isLogicalOp()) {
6735 Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
6736 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
6737 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
6738
6739 SubExpr = BO->getRHS()->IgnoreParenImpCasts();
6740 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
6741 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
6742 }
6743
6744 if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E))
6745 if (U->getOpcode() == UO_LNot)
6746 ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
6747}
6748
6749} // end anonymous namespace
6750
6751enum {
6752 AddressOf,
6753 FunctionPointer,
6754 ArrayPointer
6755};
6756
6757// Helper function for Sema::DiagnoseAlwaysNonNullPointer.
6758// Returns true when emitting a warning about taking the address of a reference.
6759static bool CheckForReference(Sema &SemaRef, const Expr *E,
6760 PartialDiagnostic PD) {
6761 E = E->IgnoreParenImpCasts();
6762
6763 const FunctionDecl *FD = nullptr;
6764
6765 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
6766 if (!DRE->getDecl()->getType()->isReferenceType())
6767 return false;
6768 } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
6769 if (!M->getMemberDecl()->getType()->isReferenceType())
6770 return false;
6771 } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
6772 if (!Call->getCallReturnType()->isReferenceType())
6773 return false;
6774 FD = Call->getDirectCallee();
6775 } else {
6776 return false;
6777 }
6778
6779 SemaRef.Diag(E->getExprLoc(), PD);
6780
6781 // If possible, point to location of function.
6782 if (FD) {
6783 SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
6784 }
6785
6786 return true;
6787}
6788
6789// Returns true if the SourceLocation is expanded from any macro body.
6790// Returns false if the SourceLocation is invalid, is from not in a macro
6791// expansion, or is from expanded from a top-level macro argument.
6792static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
6793 if (Loc.isInvalid())
6794 return false;
6795
6796 while (Loc.isMacroID()) {
6797 if (SM.isMacroBodyExpansion(Loc))
6798 return true;
6799 Loc = SM.getImmediateMacroCallerLoc(Loc);
6800 }
6801
6802 return false;
6803}
6804
6805/// \brief Diagnose pointers that are always non-null.
6806/// \param E the expression containing the pointer
6807/// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
6808/// compared to a null pointer
6809/// \param IsEqual True when the comparison is equal to a null pointer
6810/// \param Range Extra SourceRange to highlight in the diagnostic
6811void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
6812 Expr::NullPointerConstantKind NullKind,
6813 bool IsEqual, SourceRange Range) {
6814 if (!E)
6815 return;
6816
6817 // Don't warn inside macros.
6818 if (E->getExprLoc().isMacroID()) {
6819 const SourceManager &SM = getSourceManager();
6820 if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
6821 IsInAnyMacroBody(SM, Range.getBegin()))
6822 return;
6823 }
6824 E = E->IgnoreImpCasts();
6825
6826 const bool IsCompare = NullKind != Expr::NPCK_NotNull;
6827
6828 if (isa<CXXThisExpr>(E)) {
6829 unsigned DiagID = IsCompare ? diag::warn_this_null_compare
6830 : diag::warn_this_bool_conversion;
6831 Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
6832 return;
6833 }
6834
6835 bool IsAddressOf = false;
6836
6837 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
6838 if (UO->getOpcode() != UO_AddrOf)
6839 return;
6840 IsAddressOf = true;
6841 E = UO->getSubExpr();
6842 }
6843
6844 if (IsAddressOf) {
6845 unsigned DiagID = IsCompare
6846 ? diag::warn_address_of_reference_null_compare
6847 : diag::warn_address_of_reference_bool_conversion;
6848 PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
6849 << IsEqual;
6850 if (CheckForReference(*this, E, PD)) {
6851 return;
6852 }
6853 }
6854
6855 // Expect to find a single Decl. Skip anything more complicated.
6856 ValueDecl *D = nullptr;
6857 if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
6858 D = R->getDecl();
6859 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
6860 D = M->getMemberDecl();
6861 }
6862
6863 // Weak Decls can be null.
6864 if (!D || D->isWeak())
6865 return;
6866
6867 // Check for parameter decl with nonnull attribute
6868 if (const ParmVarDecl* PV = dyn_cast<ParmVarDecl>(D)) {
6869 if (getCurFunction() && !getCurFunction()->ModifiedNonNullParams.count(PV))
6870 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
6871 unsigned NumArgs = FD->getNumParams();
6872 llvm::SmallBitVector AttrNonNull(NumArgs);
6873 for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
6874 if (!NonNull->args_size()) {
6875 AttrNonNull.set(0, NumArgs);
6876 break;
6877 }
6878 for (unsigned Val : NonNull->args()) {
6879 if (Val >= NumArgs)
6880 continue;
6881 AttrNonNull.set(Val);
6882 }
6883 }
6884 if (!AttrNonNull.empty())
6885 for (unsigned i = 0; i < NumArgs; ++i)
6886 if (FD->getParamDecl(i) == PV &&
6887 (AttrNonNull[i] || PV->hasAttr<NonNullAttr>())) {
6888 std::string Str;
6889 llvm::raw_string_ostream S(Str);
6890 E->printPretty(S, nullptr, getPrintingPolicy());
6891 unsigned DiagID = IsCompare ? diag::warn_nonnull_parameter_compare
6892 : diag::warn_cast_nonnull_to_bool;
6893 Diag(E->getExprLoc(), DiagID) << S.str() << E->getSourceRange()
6894 << Range << IsEqual;
6895 return;
6896 }
6897 }
6898 }
6899
6900 QualType T = D->getType();
6901 const bool IsArray = T->isArrayType();
6902 const bool IsFunction = T->isFunctionType();
6903
6904 // Address of function is used to silence the function warning.
6905 if (IsAddressOf && IsFunction) {
6906 return;
6907 }
6908
6909 // Found nothing.
6910 if (!IsAddressOf && !IsFunction && !IsArray)
6911 return;
6912
6913 // Pretty print the expression for the diagnostic.
6914 std::string Str;
6915 llvm::raw_string_ostream S(Str);
6916 E->printPretty(S, nullptr, getPrintingPolicy());
6917
6918 unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
6919 : diag::warn_impcast_pointer_to_bool;
6920 unsigned DiagType;
6921 if (IsAddressOf)
6922 DiagType = AddressOf;
6923 else if (IsFunction)
6924 DiagType = FunctionPointer;
6925 else if (IsArray)
6926 DiagType = ArrayPointer;
6927 else
6928 llvm_unreachable("Could not determine diagnostic.");
6929 Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
6930 << Range << IsEqual;
6931
6932 if (!IsFunction)
6933 return;
6934
6935 // Suggest '&' to silence the function warning.
6936 Diag(E->getExprLoc(), diag::note_function_warning_silence)
6937 << FixItHint::CreateInsertion(E->getLocStart(), "&");
6938
6939 // Check to see if '()' fixit should be emitted.
6940 QualType ReturnType;
6941 UnresolvedSet<4> NonTemplateOverloads;
6942 tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
6943 if (ReturnType.isNull())
6944 return;
6945
6946 if (IsCompare) {
6947 // There are two cases here. If there is null constant, the only suggest
6948 // for a pointer return type. If the null is 0, then suggest if the return
6949 // type is a pointer or an integer type.
6950 if (!ReturnType->isPointerType()) {
6951 if (NullKind == Expr::NPCK_ZeroExpression ||
6952 NullKind == Expr::NPCK_ZeroLiteral) {
6953 if (!ReturnType->isIntegerType())
6954 return;
6955 } else {
6956 return;
6957 }
6958 }
6959 } else { // !IsCompare
6960 // For function to bool, only suggest if the function pointer has bool
6961 // return type.
6962 if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
6963 return;
6964 }
6965 Diag(E->getExprLoc(), diag::note_function_to_function_call)
6966 << FixItHint::CreateInsertion(getLocForEndOfToken(E->getLocEnd()), "()");
6967}
6968
6969
6970/// Diagnoses "dangerous" implicit conversions within the given
6971/// expression (which is a full expression). Implements -Wconversion
6972/// and -Wsign-compare.
6973///
6974/// \param CC the "context" location of the implicit conversion, i.e.
6975/// the most location of the syntactic entity requiring the implicit
6976/// conversion
6977void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
6978 // Don't diagnose in unevaluated contexts.
6979 if (isUnevaluatedContext())
6980 return;
6981
6982 // Don't diagnose for value- or type-dependent expressions.
6983 if (E->isTypeDependent() || E->isValueDependent())
6984 return;
6985
6986 // Check for array bounds violations in cases where the check isn't triggered
6987 // elsewhere for other Expr types (like BinaryOperators), e.g. when an
6988 // ArraySubscriptExpr is on the RHS of a variable initialization.
6989 CheckArrayAccess(E);
6990
6991 // This is not the right CC for (e.g.) a variable initialization.
6992 AnalyzeImplicitConversions(*this, E, CC);
6993}
6994
6995/// CheckBoolLikeConversion - Check conversion of given expression to boolean.
6996/// Input argument E is a logical expression.
6997void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
6998 ::CheckBoolLikeConversion(*this, E, CC);
6999}
7000
7001/// Diagnose when expression is an integer constant expression and its evaluation
7002/// results in integer overflow
7003void Sema::CheckForIntOverflow (Expr *E) {
7004 if (isa<BinaryOperator>(E->IgnoreParenCasts()))
7005 E->IgnoreParenCasts()->EvaluateForOverflow(Context);
7006}
7007
7008namespace {
7009/// \brief Visitor for expressions which looks for unsequenced operations on the
7010/// same object.
7011class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
7012 typedef EvaluatedExprVisitor<SequenceChecker> Base;
7013
7014 /// \brief A tree of sequenced regions within an expression. Two regions are
7015 /// unsequenced if one is an ancestor or a descendent of the other. When we
7016 /// finish processing an expression with sequencing, such as a comma
7017 /// expression, we fold its tree nodes into its parent, since they are
7018 /// unsequenced with respect to nodes we will visit later.
7019 class SequenceTree {
7020 struct Value {
7021 explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
7022 unsigned Parent : 31;
7023 bool Merged : 1;
7024 };
7025 SmallVector<Value, 8> Values;
7026
7027 public:
7028 /// \brief A region within an expression which may be sequenced with respect
7029 /// to some other region.
7030 class Seq {
7031 explicit Seq(unsigned N) : Index(N) {}
7032 unsigned Index;
7033 friend class SequenceTree;
7034 public:
7035 Seq() : Index(0) {}
7036 };
7037
7038 SequenceTree() { Values.push_back(Value(0)); }
7039 Seq root() const { return Seq(0); }
7040
7041 /// \brief Create a new sequence of operations, which is an unsequenced
7042 /// subset of \p Parent. This sequence of operations is sequenced with
7043 /// respect to other children of \p Parent.
7044 Seq allocate(Seq Parent) {
7045 Values.push_back(Value(Parent.Index));
7046 return Seq(Values.size() - 1);
7047 }
7048
7049 /// \brief Merge a sequence of operations into its parent.
7050 void merge(Seq S) {
7051 Values[S.Index].Merged = true;
7052 }
7053
7054 /// \brief Determine whether two operations are unsequenced. This operation
7055 /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
7056 /// should have been merged into its parent as appropriate.
7057 bool isUnsequenced(Seq Cur, Seq Old) {
7058 unsigned C = representative(Cur.Index);
7059 unsigned Target = representative(Old.Index);
7060 while (C >= Target) {
7061 if (C == Target)
7062 return true;
7063 C = Values[C].Parent;
7064 }
7065 return false;
7066 }
7067
7068 private:
7069 /// \brief Pick a representative for a sequence.
7070 unsigned representative(unsigned K) {
7071 if (Values[K].Merged)
7072 // Perform path compression as we go.
7073 return Values[K].Parent = representative(Values[K].Parent);
7074 return K;
7075 }
7076 };
7077
7078 /// An object for which we can track unsequenced uses.
7079 typedef NamedDecl *Object;
7080
7081 /// Different flavors of object usage which we track. We only track the
7082 /// least-sequenced usage of each kind.
7083 enum UsageKind {
7084 /// A read of an object. Multiple unsequenced reads are OK.
7085 UK_Use,
7086 /// A modification of an object which is sequenced before the value
7087 /// computation of the expression, such as ++n in C++.
7088 UK_ModAsValue,
7089 /// A modification of an object which is not sequenced before the value
7090 /// computation of the expression, such as n++.
7091 UK_ModAsSideEffect,
7092
7093 UK_Count = UK_ModAsSideEffect + 1
7094 };
7095
7096 struct Usage {
7097 Usage() : Use(nullptr), Seq() {}
7098 Expr *Use;
7099 SequenceTree::Seq Seq;
7100 };
7101
7102 struct UsageInfo {
7103 UsageInfo() : Diagnosed(false) {}
7104 Usage Uses[UK_Count];
7105 /// Have we issued a diagnostic for this variable already?
7106 bool Diagnosed;
7107 };
7108 typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
7109
7110 Sema &SemaRef;
7111 /// Sequenced regions within the expression.
7112 SequenceTree Tree;
7113 /// Declaration modifications and references which we have seen.
7114 UsageInfoMap UsageMap;
7115 /// The region we are currently within.
7116 SequenceTree::Seq Region;
7117 /// Filled in with declarations which were modified as a side-effect
7118 /// (that is, post-increment operations).
7119 SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
7120 /// Expressions to check later. We defer checking these to reduce
7121 /// stack usage.
7122 SmallVectorImpl<Expr *> &WorkList;
7123
7124 /// RAII object wrapping the visitation of a sequenced subexpression of an
7125 /// expression. At the end of this process, the side-effects of the evaluation
7126 /// become sequenced with respect to the value computation of the result, so
7127 /// we downgrade any UK_ModAsSideEffect within the evaluation to
7128 /// UK_ModAsValue.
7129 struct SequencedSubexpression {
7130 SequencedSubexpression(SequenceChecker &Self)
7131 : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
7132 Self.ModAsSideEffect = &ModAsSideEffect;
7133 }
7134 ~SequencedSubexpression() {
7135 for (auto MI = ModAsSideEffect.rbegin(), ME = ModAsSideEffect.rend();
7136 MI != ME; ++MI) {
7137 UsageInfo &U = Self.UsageMap[MI->first];
7138 auto &SideEffectUsage = U.Uses[UK_ModAsSideEffect];
7139 Self.addUsage(U, MI->first, SideEffectUsage.Use, UK_ModAsValue);
7140 SideEffectUsage = MI->second;
7141 }
7142 Self.ModAsSideEffect = OldModAsSideEffect;
7143 }
7144
7145 SequenceChecker &Self;
7146 SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
7147 SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
7148 };
7149
7150 /// RAII object wrapping the visitation of a subexpression which we might
7151 /// choose to evaluate as a constant. If any subexpression is evaluated and
7152 /// found to be non-constant, this allows us to suppress the evaluation of
7153 /// the outer expression.
7154 class EvaluationTracker {
7155 public:
7156 EvaluationTracker(SequenceChecker &Self)
7157 : Self(Self), Prev(Self.EvalTracker), EvalOK(true) {
7158 Self.EvalTracker = this;
7159 }
7160 ~EvaluationTracker() {
7161 Self.EvalTracker = Prev;
7162 if (Prev)
7163 Prev->EvalOK &= EvalOK;
7164 }
7165
7166 bool evaluate(const Expr *E, bool &Result) {
7167 if (!EvalOK || E->isValueDependent())
7168 return false;
7169 EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
7170 return EvalOK;
7171 }
7172
7173 private:
7174 SequenceChecker &Self;
7175 EvaluationTracker *Prev;
7176 bool EvalOK;
7177 } *EvalTracker;
7178
7179 /// \brief Find the object which is produced by the specified expression,
7180 /// if any.
7181 Object getObject(Expr *E, bool Mod) const {
7182 E = E->IgnoreParenCasts();
7183 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
7184 if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
7185 return getObject(UO->getSubExpr(), Mod);
7186 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7187 if (BO->getOpcode() == BO_Comma)
7188 return getObject(BO->getRHS(), Mod);
7189 if (Mod && BO->isAssignmentOp())
7190 return getObject(BO->getLHS(), Mod);
7191 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
7192 // FIXME: Check for more interesting cases, like "x.n = ++x.n".
7193 if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
7194 return ME->getMemberDecl();
7195 } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
7196 // FIXME: If this is a reference, map through to its value.
7197 return DRE->getDecl();
7198 return nullptr;
7199 }
7200
7201 /// \brief Note that an object was modified or used by an expression.
7202 void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
7203 Usage &U = UI.Uses[UK];
7204 if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
7205 if (UK == UK_ModAsSideEffect && ModAsSideEffect)
7206 ModAsSideEffect->push_back(std::make_pair(O, U));
7207 U.Use = Ref;
7208 U.Seq = Region;
7209 }
7210 }
7211 /// \brief Check whether a modification or use conflicts with a prior usage.
7212 void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
7213 bool IsModMod) {
7214 if (UI.Diagnosed)
7215 return;
7216
7217 const Usage &U = UI.Uses[OtherKind];
7218 if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
7219 return;
7220
7221 Expr *Mod = U.Use;
7222 Expr *ModOrUse = Ref;
7223 if (OtherKind == UK_Use)
7224 std::swap(Mod, ModOrUse);
7225
7226 SemaRef.Diag(Mod->getExprLoc(),
7227 IsModMod ? diag::warn_unsequenced_mod_mod
7228 : diag::warn_unsequenced_mod_use)
7229 << O << SourceRange(ModOrUse->getExprLoc());
7230 UI.Diagnosed = true;
7231 }
7232
7233 void notePreUse(Object O, Expr *Use) {
7234 UsageInfo &U = UsageMap[O];
7235 // Uses conflict with other modifications.
7236 checkUsage(O, U, Use, UK_ModAsValue, false);
7237 }
7238 void notePostUse(Object O, Expr *Use) {
7239 UsageInfo &U = UsageMap[O];
7240 checkUsage(O, U, Use, UK_ModAsSideEffect, false);
7241 addUsage(U, O, Use, UK_Use);
7242 }
7243
7244 void notePreMod(Object O, Expr *Mod) {
7245 UsageInfo &U = UsageMap[O];
7246 // Modifications conflict with other modifications and with uses.
7247 checkUsage(O, U, Mod, UK_ModAsValue, true);
7248 checkUsage(O, U, Mod, UK_Use, false);
7249 }
7250 void notePostMod(Object O, Expr *Use, UsageKind UK) {
7251 UsageInfo &U = UsageMap[O];
7252 checkUsage(O, U, Use, UK_ModAsSideEffect, true);
7253 addUsage(U, O, Use, UK);
7254 }
7255
7256public:
7257 SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList)
7258 : Base(S.Context), SemaRef(S), Region(Tree.root()),
7259 ModAsSideEffect(nullptr), WorkList(WorkList), EvalTracker(nullptr) {
7260 Visit(E);
7261 }
7262
7263 void VisitStmt(Stmt *S) {
7264 // Skip all statements which aren't expressions for now.
7265 }
7266
7267 void VisitExpr(Expr *E) {
7268 // By default, just recurse to evaluated subexpressions.
7269 Base::VisitStmt(E);
7270 }
7271
7272 void VisitCastExpr(CastExpr *E) {
7273 Object O = Object();
7274 if (E->getCastKind() == CK_LValueToRValue)
7275 O = getObject(E->getSubExpr(), false);
7276
7277 if (O)
7278 notePreUse(O, E);
7279 VisitExpr(E);
7280 if (O)
7281 notePostUse(O, E);
7282 }
7283
7284 void VisitBinComma(BinaryOperator *BO) {
7285 // C++11 [expr.comma]p1:
7286 // Every value computation and side effect associated with the left
7287 // expression is sequenced before every value computation and side
7288 // effect associated with the right expression.
7289 SequenceTree::Seq LHS = Tree.allocate(Region);
7290 SequenceTree::Seq RHS = Tree.allocate(Region);
7291 SequenceTree::Seq OldRegion = Region;
7292
7293 {
7294 SequencedSubexpression SeqLHS(*this);
7295 Region = LHS;
7296 Visit(BO->getLHS());
7297 }
7298
7299 Region = RHS;
7300 Visit(BO->getRHS());
7301
7302 Region = OldRegion;
7303
7304 // Forget that LHS and RHS are sequenced. They are both unsequenced
7305 // with respect to other stuff.
7306 Tree.merge(LHS);
7307 Tree.merge(RHS);
7308 }
7309
7310 void VisitBinAssign(BinaryOperator *BO) {
7311 // The modification is sequenced after the value computation of the LHS
7312 // and RHS, so check it before inspecting the operands and update the
7313 // map afterwards.
7314 Object O = getObject(BO->getLHS(), true);
7315 if (!O)
7316 return VisitExpr(BO);
7317
7318 notePreMod(O, BO);
7319
7320 // C++11 [expr.ass]p7:
7321 // E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
7322 // only once.
7323 //
7324 // Therefore, for a compound assignment operator, O is considered used
7325 // everywhere except within the evaluation of E1 itself.
7326 if (isa<CompoundAssignOperator>(BO))
7327 notePreUse(O, BO);
7328
7329 Visit(BO->getLHS());
7330
7331 if (isa<CompoundAssignOperator>(BO))
7332 notePostUse(O, BO);
7333
7334 Visit(BO->getRHS());
7335
7336 // C++11 [expr.ass]p1:
7337 // the assignment is sequenced [...] before the value computation of the
7338 // assignment expression.
7339 // C11 6.5.16/3 has no such rule.
7340 notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
7341 : UK_ModAsSideEffect);
7342 }
7343 void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
7344 VisitBinAssign(CAO);
7345 }
7346
7347 void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
7348 void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
7349 void VisitUnaryPreIncDec(UnaryOperator *UO) {
7350 Object O = getObject(UO->getSubExpr(), true);
7351 if (!O)
7352 return VisitExpr(UO);
7353
7354 notePreMod(O, UO);
7355 Visit(UO->getSubExpr());
7356 // C++11 [expr.pre.incr]p1:
7357 // the expression ++x is equivalent to x+=1
7358 notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
7359 : UK_ModAsSideEffect);
7360 }
7361
7362 void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
7363 void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
7364 void VisitUnaryPostIncDec(UnaryOperator *UO) {
7365 Object O = getObject(UO->getSubExpr(), true);
7366 if (!O)
7367 return VisitExpr(UO);
7368
7369 notePreMod(O, UO);
7370 Visit(UO->getSubExpr());
7371 notePostMod(O, UO, UK_ModAsSideEffect);
7372 }
7373
7374 /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
7375 void VisitBinLOr(BinaryOperator *BO) {
7376 // The side-effects of the LHS of an '&&' are sequenced before the
7377 // value computation of the RHS, and hence before the value computation
7378 // of the '&&' itself, unless the LHS evaluates to zero. We treat them
7379 // as if they were unconditionally sequenced.
7380 EvaluationTracker Eval(*this);
7381 {
7382 SequencedSubexpression Sequenced(*this);
7383 Visit(BO->getLHS());
7384 }
7385
7386 bool Result;
7387 if (Eval.evaluate(BO->getLHS(), Result)) {
7388 if (!Result)
7389 Visit(BO->getRHS());
7390 } else {
7391 // Check for unsequenced operations in the RHS, treating it as an
7392 // entirely separate evaluation.
7393 //
7394 // FIXME: If there are operations in the RHS which are unsequenced
7395 // with respect to operations outside the RHS, and those operations
7396 // are unconditionally evaluated, diagnose them.
7397 WorkList.push_back(BO->getRHS());
7398 }
7399 }
7400 void VisitBinLAnd(BinaryOperator *BO) {
7401 EvaluationTracker Eval(*this);
7402 {
7403 SequencedSubexpression Sequenced(*this);
7404 Visit(BO->getLHS());
7405 }
7406
7407 bool Result;
7408 if (Eval.evaluate(BO->getLHS(), Result)) {
7409 if (Result)
7410 Visit(BO->getRHS());
7411 } else {
7412 WorkList.push_back(BO->getRHS());
7413 }
7414 }
7415
7416 // Only visit the condition, unless we can be sure which subexpression will
7417 // be chosen.
7418 void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
7419 EvaluationTracker Eval(*this);
7420 {
7421 SequencedSubexpression Sequenced(*this);
7422 Visit(CO->getCond());
7423 }
7424
7425 bool Result;
7426 if (Eval.evaluate(CO->getCond(), Result))
7427 Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
7428 else {
7429 WorkList.push_back(CO->getTrueExpr());
7430 WorkList.push_back(CO->getFalseExpr());
7431 }
7432 }
7433
7434 void VisitCallExpr(CallExpr *CE) {
7435 // C++11 [intro.execution]p15:
7436 // When calling a function [...], every value computation and side effect
7437 // associated with any argument expression, or with the postfix expression
7438 // designating the called function, is sequenced before execution of every
7439 // expression or statement in the body of the function [and thus before
7440 // the value computation of its result].
7441 SequencedSubexpression Sequenced(*this);
7442 Base::VisitCallExpr(CE);
7443
7444 // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
7445 }
7446
7447 void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
7448 // This is a call, so all subexpressions are sequenced before the result.
7449 SequencedSubexpression Sequenced(*this);
7450
7451 if (!CCE->isListInitialization())
7452 return VisitExpr(CCE);
7453
7454 // In C++11, list initializations are sequenced.
7455 SmallVector<SequenceTree::Seq, 32> Elts;
7456 SequenceTree::Seq Parent = Region;
7457 for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
7458 E = CCE->arg_end();
7459 I != E; ++I) {
7460 Region = Tree.allocate(Parent);
7461 Elts.push_back(Region);
7462 Visit(*I);
7463 }
7464
7465 // Forget that the initializers are sequenced.
7466 Region = Parent;
7467 for (unsigned I = 0; I < Elts.size(); ++I)
7468 Tree.merge(Elts[I]);
7469 }
7470
7471 void VisitInitListExpr(InitListExpr *ILE) {
7472 if (!SemaRef.getLangOpts().CPlusPlus11)
7473 return VisitExpr(ILE);
7474
7475 // In C++11, list initializations are sequenced.
7476 SmallVector<SequenceTree::Seq, 32> Elts;
7477 SequenceTree::Seq Parent = Region;
7478 for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
7479 Expr *E = ILE->getInit(I);
7480 if (!E) continue;
7481 Region = Tree.allocate(Parent);
7482 Elts.push_back(Region);
7483 Visit(E);
7484 }
7485
7486 // Forget that the initializers are sequenced.
7487 Region = Parent;
7488 for (unsigned I = 0; I < Elts.size(); ++I)
7489 Tree.merge(Elts[I]);
7490 }
7491};
7492}
7493
7494void Sema::CheckUnsequencedOperations(Expr *E) {
7495 SmallVector<Expr *, 8> WorkList;
7496 WorkList.push_back(E);
7497 while (!WorkList.empty()) {
7498 Expr *Item = WorkList.pop_back_val();
7499 SequenceChecker(*this, Item, WorkList);
7500 }
7501}
7502
7503void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
7504 bool IsConstexpr) {
7505 CheckImplicitConversions(E, CheckLoc);
7506 CheckUnsequencedOperations(E);
7507 if (!IsConstexpr && !E->isValueDependent())
7508 CheckForIntOverflow(E);
7509}
7510
7511void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
7512 FieldDecl *BitField,
7513 Expr *Init) {
7514 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
7515}
7516
7517/// CheckParmsForFunctionDef - Check that the parameters of the given
7518/// function are appropriate for the definition of a function. This
7519/// takes care of any checks that cannot be performed on the
7520/// declaration itself, e.g., that the types of each of the function
7521/// parameters are complete.
7522bool Sema::CheckParmsForFunctionDef(ParmVarDecl *const *P,
7523 ParmVarDecl *const *PEnd,
7524 bool CheckParameterNames) {
7525 bool HasInvalidParm = false;
7526 for (; P != PEnd; ++P) {
7527 ParmVarDecl *Param = *P;
7528
7529 // C99 6.7.5.3p4: the parameters in a parameter type list in a
7530 // function declarator that is part of a function definition of
7531 // that function shall not have incomplete type.
7532 //
7533 // This is also C++ [dcl.fct]p6.
7534 if (!Param->isInvalidDecl() &&
7535 RequireCompleteType(Param->getLocation(), Param->getType(),
7536 diag::err_typecheck_decl_incomplete_type)) {
7537 Param->setInvalidDecl();
7538 HasInvalidParm = true;
7539 }
7540
7541 // C99 6.9.1p5: If the declarator includes a parameter type list, the
7542 // declaration of each parameter shall include an identifier.
7543 if (CheckParameterNames &&
7544 Param->getIdentifier() == nullptr &&
7545 !Param->isImplicit() &&
7546 !getLangOpts().CPlusPlus)
7547 Diag(Param->getLocation(), diag::err_parameter_name_omitted);
7548
7549 // C99 6.7.5.3p12:
7550 // If the function declarator is not part of a definition of that
7551 // function, parameters may have incomplete type and may use the [*]
7552 // notation in their sequences of declarator specifiers to specify
7553 // variable length array types.
7554 QualType PType = Param->getOriginalType();
7555 while (const ArrayType *AT = Context.getAsArrayType(PType)) {
7556 if (AT->getSizeModifier() == ArrayType::Star) {
7557 // FIXME: This diagnostic should point the '[*]' if source-location
7558 // information is added for it.
7559 Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
7560 break;
7561 }
7562 PType= AT->getElementType();
7563 }
7564
7565 // MSVC destroys objects passed by value in the callee. Therefore a
7566 // function definition which takes such a parameter must be able to call the
7567 // object's destructor. However, we don't perform any direct access check
7568 // on the dtor.
7569 if (getLangOpts().CPlusPlus && Context.getTargetInfo()
7570 .getCXXABI()
7571 .areArgsDestroyedLeftToRightInCallee()) {
7572 if (!Param->isInvalidDecl()) {
7573 if (const RecordType *RT = Param->getType()->getAs<RecordType>()) {
7574 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
7575 if (!ClassDecl->isInvalidDecl() &&
7576 !ClassDecl->hasIrrelevantDestructor() &&
7577 !ClassDecl->isDependentContext()) {
7578 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
7579 MarkFunctionReferenced(Param->getLocation(), Destructor);
7580 DiagnoseUseOfDecl(Destructor, Param->getLocation());
7581 }
7582 }
7583 }
7584 }
7585 }
7586
7587 return HasInvalidParm;
7588}
7589
7590/// CheckCastAlign - Implements -Wcast-align, which warns when a
7591/// pointer cast increases the alignment requirements.
7592void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
7593 // This is actually a lot of work to potentially be doing on every
7594 // cast; don't do it if we're ignoring -Wcast_align (as is the default).
7595 if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
7596 return;
7597
7598 // Ignore dependent types.
7599 if (T->isDependentType() || Op->getType()->isDependentType())
7600 return;
7601
7602 // Require that the destination be a pointer type.
7603 const PointerType *DestPtr = T->getAs<PointerType>();
7604 if (!DestPtr) return;
7605
7606 // If the destination has alignment 1, we're done.
7607 QualType DestPointee = DestPtr->getPointeeType();
7608 if (DestPointee->isIncompleteType()) return;
7609 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
7610 if (DestAlign.isOne()) return;
7611
7612 // Require that the source be a pointer type.
7613 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
7614 if (!SrcPtr) return;
7615 QualType SrcPointee = SrcPtr->getPointeeType();
7616
7617 // Whitelist casts from cv void*. We already implicitly
7618 // whitelisted casts to cv void*, since they have alignment 1.
7619 // Also whitelist casts involving incomplete types, which implicitly
7620 // includes 'void'.
7621 if (SrcPointee->isIncompleteType()) return;
7622
7623 CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
7624 if (SrcAlign >= DestAlign) return;
7625
7626 Diag(TRange.getBegin(), diag::warn_cast_align)
7627 << Op->getType() << T
7628 << static_cast<unsigned>(SrcAlign.getQuantity())
7629 << static_cast<unsigned>(DestAlign.getQuantity())
7630 << TRange << Op->getSourceRange();
7631}
7632
7633static const Type* getElementType(const Expr *BaseExpr) {
7634 const Type* EltType = BaseExpr->getType().getTypePtr();
7635 if (EltType->isAnyPointerType())
7636 return EltType->getPointeeType().getTypePtr();
7637 else if (EltType->isArrayType())
7638 return EltType->getBaseElementTypeUnsafe();
7639 return EltType;
7640}
7641
7642/// \brief Check whether this array fits the idiom of a size-one tail padded
7643/// array member of a struct.
7644///
7645/// We avoid emitting out-of-bounds access warnings for such arrays as they are
7646/// commonly used to emulate flexible arrays in C89 code.
7647static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
7648 const NamedDecl *ND) {
7649 if (Size != 1 || !ND) return false;
7650
7651 const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
7652 if (!FD) return false;
7653
7654 // Don't consider sizes resulting from macro expansions or template argument
7655 // substitution to form C89 tail-padded arrays.
7656
7657 TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
7658 while (TInfo) {
7659 TypeLoc TL = TInfo->getTypeLoc();
7660 // Look through typedefs.
7661 if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
7662 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
7663 TInfo = TDL->getTypeSourceInfo();
7664 continue;
7665 }
7666 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
7667 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
7668 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
7669 return false;
7670 }
7671 break;
7672 }
7673
7674 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
7675 if (!RD) return false;
7676 if (RD->isUnion()) return false;
7677 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
7678 if (!CRD->isStandardLayout()) return false;
7679 }
7680
7681 // See if this is the last field decl in the record.
7682 const Decl *D = FD;
7683 while ((D = D->getNextDeclInContext()))
7684 if (isa<FieldDecl>(D))
7685 return false;
7686 return true;
7687}
7688
7689void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
7690 const ArraySubscriptExpr *ASE,
7691 bool AllowOnePastEnd, bool IndexNegated) {
7692 IndexExpr = IndexExpr->IgnoreParenImpCasts();
7693 if (IndexExpr->isValueDependent())
7694 return;
7695
7696 const Type *EffectiveType = getElementType(BaseExpr);
7697 BaseExpr = BaseExpr->IgnoreParenCasts();
7698 const ConstantArrayType *ArrayTy =
7699 Context.getAsConstantArrayType(BaseExpr->getType());
7700 if (!ArrayTy)
7701 return;
7702
7703 llvm::APSInt index;
7704 if (!IndexExpr->EvaluateAsInt(index, Context))
7705 return;
7706 if (IndexNegated)
7707 index = -index;
7708
7709 const NamedDecl *ND = nullptr;
7710 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
7711 ND = dyn_cast<NamedDecl>(DRE->getDecl());
7712 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
7713 ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
7714
7715 if (index.isUnsigned() || !index.isNegative()) {
7716 llvm::APInt size = ArrayTy->getSize();
7717 if (!size.isStrictlyPositive())
7718 return;
7719
7720 const Type* BaseType = getElementType(BaseExpr);
7721 if (BaseType != EffectiveType) {
7722 // Make sure we're comparing apples to apples when comparing index to size
7723 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
7724 uint64_t array_typesize = Context.getTypeSize(BaseType);
7725 // Handle ptrarith_typesize being zero, such as when casting to void*
7726 if (!ptrarith_typesize) ptrarith_typesize = 1;
7727 if (ptrarith_typesize != array_typesize) {
7728 // There's a cast to a different size type involved
7729 uint64_t ratio = array_typesize / ptrarith_typesize;
7730 // TODO: Be smarter about handling cases where array_typesize is not a
7731 // multiple of ptrarith_typesize
7732 if (ptrarith_typesize * ratio == array_typesize)
7733 size *= llvm::APInt(size.getBitWidth(), ratio);
7734 }
7735 }
7736
7737 if (size.getBitWidth() > index.getBitWidth())
7738 index = index.zext(size.getBitWidth());
7739 else if (size.getBitWidth() < index.getBitWidth())
7740 size = size.zext(index.getBitWidth());
7741
7742 // For array subscripting the index must be less than size, but for pointer
7743 // arithmetic also allow the index (offset) to be equal to size since
7744 // computing the next address after the end of the array is legal and
7745 // commonly done e.g. in C++ iterators and range-based for loops.
7746 if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
7747 return;
7748
7749 // Also don't warn for arrays of size 1 which are members of some
7750 // structure. These are often used to approximate flexible arrays in C89
7751 // code.
7752 if (IsTailPaddedMemberArray(*this, size, ND))
7753 return;
7754
7755 // Suppress the warning if the subscript expression (as identified by the
7756 // ']' location) and the index expression are both from macro expansions
7757 // within a system header.
7758 if (ASE) {
7759 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
7760 ASE->getRBracketLoc());
7761 if (SourceMgr.isInSystemHeader(RBracketLoc)) {
7762 SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
7763 IndexExpr->getLocStart());
7764 if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
7765 return;
7766 }
7767 }
7768
7769 unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
7770 if (ASE)
7771 DiagID = diag::warn_array_index_exceeds_bounds;
7772
7773 DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
7774 PDiag(DiagID) << index.toString(10, true)
7775 << size.toString(10, true)
7776 << (unsigned)size.getLimitedValue(~0U)
7777 << IndexExpr->getSourceRange());
7778 } else {
7779 unsigned DiagID = diag::warn_array_index_precedes_bounds;
7780 if (!ASE) {
7781 DiagID = diag::warn_ptr_arith_precedes_bounds;
7782 if (index.isNegative()) index = -index;
7783 }
7784
7785 DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
7786 PDiag(DiagID) << index.toString(10, true)
7787 << IndexExpr->getSourceRange());
7788 }
7789
7790 if (!ND) {
7791 // Try harder to find a NamedDecl to point at in the note.
7792 while (const ArraySubscriptExpr *ASE =
7793 dyn_cast<ArraySubscriptExpr>(BaseExpr))
7794 BaseExpr = ASE->getBase()->IgnoreParenCasts();
7795 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
7796 ND = dyn_cast<NamedDecl>(DRE->getDecl());
7797 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
7798 ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
7799 }
7800
7801 if (ND)
7802 DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
7803 PDiag(diag::note_array_index_out_of_bounds)
7804 << ND->getDeclName());
7805}
7806
7807void Sema::CheckArrayAccess(const Expr *expr) {
7808 int AllowOnePastEnd = 0;
7809 while (expr) {
7810 expr = expr->IgnoreParenImpCasts();
7811 switch (expr->getStmtClass()) {
7812 case Stmt::ArraySubscriptExprClass: {
7813 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
7814 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
7815 AllowOnePastEnd > 0);
7816 return;
7817 }
7818 case Stmt::UnaryOperatorClass: {
7819 // Only unwrap the * and & unary operators
7820 const UnaryOperator *UO = cast<UnaryOperator>(expr);
7821 expr = UO->getSubExpr();
7822 switch (UO->getOpcode()) {
7823 case UO_AddrOf:
7824 AllowOnePastEnd++;
7825 break;
7826 case UO_Deref:
7827 AllowOnePastEnd--;
7828 break;
7829 default:
7830 return;
7831 }
7832 break;
7833 }
7834 case Stmt::ConditionalOperatorClass: {
7835 const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
7836 if (const Expr *lhs = cond->getLHS())
7837 CheckArrayAccess(lhs);
7838 if (const Expr *rhs = cond->getRHS())
7839 CheckArrayAccess(rhs);
7840 return;
7841 }
7842 default:
7843 return;
7844 }
7845 }
7846}
7847
7848//===--- CHECK: Objective-C retain cycles ----------------------------------//
7849
7850namespace {
7851 struct RetainCycleOwner {
7852 RetainCycleOwner() : Variable(nullptr), Indirect(false) {}
7853 VarDecl *Variable;
7854 SourceRange Range;
7855 SourceLocation Loc;
7856 bool Indirect;
7857
7858 void setLocsFrom(Expr *e) {
7859 Loc = e->getExprLoc();
7860 Range = e->getSourceRange();
7861 }
7862 };
7863}
7864
7865/// Consider whether capturing the given variable can possibly lead to
7866/// a retain cycle.
7867static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
7868 // In ARC, it's captured strongly iff the variable has __strong
7869 // lifetime. In MRR, it's captured strongly if the variable is
7870 // __block and has an appropriate type.
7871 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
7872 return false;
7873
7874 owner.Variable = var;
7875 if (ref)
7876 owner.setLocsFrom(ref);
7877 return true;
7878}
7879
7880static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
7881 while (true) {
7882 e = e->IgnoreParens();
7883 if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
7884 switch (cast->getCastKind()) {
7885 case CK_BitCast:
7886 case CK_LValueBitCast:
7887 case CK_LValueToRValue:
7888 case CK_ARCReclaimReturnedObject:
7889 e = cast->getSubExpr();
7890 continue;
7891
7892 default:
7893 return false;
7894 }
7895 }
7896
7897 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
7898 ObjCIvarDecl *ivar = ref->getDecl();
7899 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
7900 return false;
7901
7902 // Try to find a retain cycle in the base.
7903 if (!findRetainCycleOwner(S, ref->getBase(), owner))
7904 return false;
7905
7906 if (ref->isFreeIvar()) owner.setLocsFrom(ref);
7907 owner.Indirect = true;
7908 return true;
7909 }
7910
7911 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
7912 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
7913 if (!var) return false;
7914 return considerVariable(var, ref, owner);
7915 }
7916
7917 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
7918 if (member->isArrow()) return false;
7919
7920 // Don't count this as an indirect ownership.
7921 e = member->getBase();
7922 continue;
7923 }
7924
7925 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
7926 // Only pay attention to pseudo-objects on property references.
7927 ObjCPropertyRefExpr *pre
7928 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
7929 ->IgnoreParens());
7930 if (!pre) return false;
7931 if (pre->isImplicitProperty()) return false;
7932 ObjCPropertyDecl *property = pre->getExplicitProperty();
7933 if (!property->isRetaining() &&
7934 !(property->getPropertyIvarDecl() &&
7935 property->getPropertyIvarDecl()->getType()
7936 .getObjCLifetime() == Qualifiers::OCL_Strong))
7937 return false;
7938
7939 owner.Indirect = true;
7940 if (pre->isSuperReceiver()) {
7941 owner.Variable = S.getCurMethodDecl()->getSelfDecl();
7942 if (!owner.Variable)
7943 return false;
7944 owner.Loc = pre->getLocation();
7945 owner.Range = pre->getSourceRange();
7946 return true;
7947 }
7948 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
7949 ->getSourceExpr());
7950 continue;
7951 }
7952
7953 // Array ivars?
7954
7955 return false;
7956 }
7957}
7958
7959namespace {
7960 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
7961 FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
7962 : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
7963 Context(Context), Variable(variable), Capturer(nullptr),
7964 VarWillBeReased(false) {}
7965 ASTContext &Context;
7966 VarDecl *Variable;
7967 Expr *Capturer;
7968 bool VarWillBeReased;
7969
7970 void VisitDeclRefExpr(DeclRefExpr *ref) {
7971 if (ref->getDecl() == Variable && !Capturer)
7972 Capturer = ref;
7973 }
7974
7975 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
7976 if (Capturer) return;
7977 Visit(ref->getBase());
7978 if (Capturer && ref->isFreeIvar())
7979 Capturer = ref;
7980 }
7981
7982 void VisitBlockExpr(BlockExpr *block) {
7983 // Look inside nested blocks
7984 if (block->getBlockDecl()->capturesVariable(Variable))
7985 Visit(block->getBlockDecl()->getBody());
7986 }
7987
7988 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
7989 if (Capturer) return;
7990 if (OVE->getSourceExpr())
7991 Visit(OVE->getSourceExpr());
7992 }
7993 void VisitBinaryOperator(BinaryOperator *BinOp) {
7994 if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
7995 return;
7996 Expr *LHS = BinOp->getLHS();
7997 if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
7998 if (DRE->getDecl() != Variable)
7999 return;
8000 if (Expr *RHS = BinOp->getRHS()) {
8001 RHS = RHS->IgnoreParenCasts();
8002 llvm::APSInt Value;
8003 VarWillBeReased =
8004 (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0);
8005 }
8006 }
8007 }
8008 };
8009}
8010
8011/// Check whether the given argument is a block which captures a
8012/// variable.
8013static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
8014 assert(owner.Variable && owner.Loc.isValid());
8015
8016 e = e->IgnoreParenCasts();
8017
8018 // Look through [^{...} copy] and Block_copy(^{...}).
8019 if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
8020 Selector Cmd = ME->getSelector();
8021 if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
8022 e = ME->getInstanceReceiver();
8023 if (!e)
8024 return nullptr;
8025 e = e->IgnoreParenCasts();
8026 }
8027 } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
8028 if (CE->getNumArgs() == 1) {
8029 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
8030 if (Fn) {
8031 const IdentifierInfo *FnI = Fn->getIdentifier();
8032 if (FnI && FnI->isStr("_Block_copy")) {
8033 e = CE->getArg(0)->IgnoreParenCasts();
8034 }
8035 }
8036 }
8037 }
8038
8039 BlockExpr *block = dyn_cast<BlockExpr>(e);
8040 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
8041 return nullptr;
8042
8043 FindCaptureVisitor visitor(S.Context, owner.Variable);
8044 visitor.Visit(block->getBlockDecl()->getBody());
8045 return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
8046}
8047
8048static void diagnoseRetainCycle(Sema &S, Expr *capturer,
8049 RetainCycleOwner &owner) {
8050 assert(capturer);
8051 assert(owner.Variable && owner.Loc.isValid());
8052
8053 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
8054 << owner.Variable << capturer->getSourceRange();
8055 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
8056 << owner.Indirect << owner.Range;
8057}
8058
8059/// Check for a keyword selector that starts with the word 'add' or
8060/// 'set'.
8061static bool isSetterLikeSelector(Selector sel) {
8062 if (sel.isUnarySelector()) return false;
8063
8064 StringRef str = sel.getNameForSlot(0);
8065 while (!str.empty() && str.front() == '_') str = str.substr(1);
8066 if (str.startswith("set"))
8067 str = str.substr(3);
8068 else if (str.startswith("add")) {
8069 // Specially whitelist 'addOperationWithBlock:'.
8070 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
8071 return false;
8072 str = str.substr(3);
8073 }
8074 else
8075 return false;
8076
8077 if (str.empty()) return true;
8078 return !isLowercase(str.front());
8079}
8080
8081/// Check a message send to see if it's likely to cause a retain cycle.
8082void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
8083 // Only check instance methods whose selector looks like a setter.
8084 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
8085 return;
8086
8087 // Try to find a variable that the receiver is strongly owned by.
8088 RetainCycleOwner owner;
8089 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
8090 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
8091 return;
8092 } else {
8093 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
8094 owner.Variable = getCurMethodDecl()->getSelfDecl();
8095 owner.Loc = msg->getSuperLoc();
8096 owner.Range = msg->getSuperLoc();
8097 }
8098
8099 // Check whether the receiver is captured by any of the arguments.
8100 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
8101 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
8102 return diagnoseRetainCycle(*this, capturer, owner);
8103}
8104
8105/// Check a property assign to see if it's likely to cause a retain cycle.
8106void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
8107 RetainCycleOwner owner;
8108 if (!findRetainCycleOwner(*this, receiver, owner))
8109 return;
8110
8111 if (Expr *capturer = findCapturingExpr(*this, argument, owner))
8112 diagnoseRetainCycle(*this, capturer, owner);
8113}
8114
8115void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
8116 RetainCycleOwner Owner;
8117 if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
8118 return;
8119
8120 // Because we don't have an expression for the variable, we have to set the
8121 // location explicitly here.
8122 Owner.Loc = Var->getLocation();
8123 Owner.Range = Var->getSourceRange();
8124
8125 if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
8126 diagnoseRetainCycle(*this, Capturer, Owner);
8127}
8128
8129static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
8130 Expr *RHS, bool isProperty) {
8131 // Check if RHS is an Objective-C object literal, which also can get
8132 // immediately zapped in a weak reference. Note that we explicitly
8133 // allow ObjCStringLiterals, since those are designed to never really die.
8134 RHS = RHS->IgnoreParenImpCasts();
8135
8136 // This enum needs to match with the 'select' in
8137 // warn_objc_arc_literal_assign (off-by-1).
8138 Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
8139 if (Kind == Sema::LK_String || Kind == Sema::LK_None)
8140 return false;
8141
8142 S.Diag(Loc, diag::warn_arc_literal_assign)
8143 << (unsigned) Kind
8144 << (isProperty ? 0 : 1)
8145 << RHS->getSourceRange();
8146
8147 return true;
8148}
8149
8150static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
8151 Qualifiers::ObjCLifetime LT,
8152 Expr *RHS, bool isProperty) {
8153 // Strip off any implicit cast added to get to the one ARC-specific.
8154 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
8155 if (cast->getCastKind() == CK_ARCConsumeObject) {
8156 S.Diag(Loc, diag::warn_arc_retained_assign)
8157 << (LT == Qualifiers::OCL_ExplicitNone)
8158 << (isProperty ? 0 : 1)
8159 << RHS->getSourceRange();
8160 return true;
8161 }
8162 RHS = cast->getSubExpr();
8163 }
8164
8165 if (LT == Qualifiers::OCL_Weak &&
8166 checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
8167 return true;
8168
8169 return false;
8170}
8171
8172bool Sema::checkUnsafeAssigns(SourceLocation Loc,
8173 QualType LHS, Expr *RHS) {
8174 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
8175
8176 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
8177 return false;
8178
8179 if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
8180 return true;
8181
8182 return false;
8183}
8184
8185void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
8186 Expr *LHS, Expr *RHS) {
8187 QualType LHSType;
8188 // PropertyRef on LHS type need be directly obtained from
8189 // its declaration as it has a PseudoType.
8190 ObjCPropertyRefExpr *PRE
8191 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
8192 if (PRE && !PRE->isImplicitProperty()) {
8193 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
8194 if (PD)
8195 LHSType = PD->getType();
8196 }
8197
8198 if (LHSType.isNull())
8199 LHSType = LHS->getType();
8200
8201 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
8202
8203 if (LT == Qualifiers::OCL_Weak) {
8204 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
8205 getCurFunction()->markSafeWeakUse(LHS);
8206 }
8207
8208 if (checkUnsafeAssigns(Loc, LHSType, RHS))
8209 return;
8210
8211 // FIXME. Check for other life times.
8212 if (LT != Qualifiers::OCL_None)
8213 return;
8214
8215 if (PRE) {
8216 if (PRE->isImplicitProperty())
8217 return;
8218 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
8219 if (!PD)
8220 return;
8221
8222 unsigned Attributes = PD->getPropertyAttributes();
8223 if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
8224 // when 'assign' attribute was not explicitly specified
8225 // by user, ignore it and rely on property type itself
8226 // for lifetime info.
8227 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
8228 if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
8229 LHSType->isObjCRetainableType())
8230 return;
8231
8232 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
8233 if (cast->getCastKind() == CK_ARCConsumeObject) {
8234 Diag(Loc, diag::warn_arc_retained_property_assign)
8235 << RHS->getSourceRange();
8236 return;
8237 }
8238 RHS = cast->getSubExpr();
8239 }
8240 }
8241 else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
8242 if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
8243 return;
8244 }
8245 }
8246}
8247
8248//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
8249
8250namespace {
8251bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
8252 SourceLocation StmtLoc,
8253 const NullStmt *Body) {
8254 // Do not warn if the body is a macro that expands to nothing, e.g:
8255 //
8256 // #define CALL(x)
8257 // if (condition)
8258 // CALL(0);
8259 //
8260 if (Body->hasLeadingEmptyMacro())
8261 return false;
8262
8263 // Get line numbers of statement and body.
8264 bool StmtLineInvalid;
8265 unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
8266 &StmtLineInvalid);
8267 if (StmtLineInvalid)
8268 return false;
8269
8270 bool BodyLineInvalid;
8271 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
8272 &BodyLineInvalid);
8273 if (BodyLineInvalid)
8274 return false;
8275
8276 // Warn if null statement and body are on the same line.
8277 if (StmtLine != BodyLine)
8278 return false;
8279
8280 return true;
8281}
8282} // Unnamed namespace
8283
8284void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
8285 const Stmt *Body,
8286 unsigned DiagID) {
8287 // Since this is a syntactic check, don't emit diagnostic for template
8288 // instantiations, this just adds noise.
8289 if (CurrentInstantiationScope)
8290 return;
8291
8292 // The body should be a null statement.
8293 const NullStmt *NBody = dyn_cast<NullStmt>(Body);
8294 if (!NBody)
8295 return;
8296
8297 // Do the usual checks.
8298 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
8299 return;
8300
8301 Diag(NBody->getSemiLoc(), DiagID);
8302 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
8303}
8304
8305void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
8306 const Stmt *PossibleBody) {
8307 assert(!CurrentInstantiationScope); // Ensured by caller
8308
8309 SourceLocation StmtLoc;
8310 const Stmt *Body;
8311 unsigned DiagID;
8312 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
8313 StmtLoc = FS->getRParenLoc();
8314 Body = FS->getBody();
8315 DiagID = diag::warn_empty_for_body;
8316 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
8317 StmtLoc = WS->getCond()->getSourceRange().getEnd();
8318 Body = WS->getBody();
8319 DiagID = diag::warn_empty_while_body;
8320 } else
8321 return; // Neither `for' nor `while'.
8322
8323 // The body should be a null statement.
8324 const NullStmt *NBody = dyn_cast<NullStmt>(Body);
8325 if (!NBody)
8326 return;
8327
8328 // Skip expensive checks if diagnostic is disabled.
8329 if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
8330 return;
8331
8332 // Do the usual checks.
8333 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
8334 return;
8335
8336 // `for(...);' and `while(...);' are popular idioms, so in order to keep
8337 // noise level low, emit diagnostics only if for/while is followed by a
8338 // CompoundStmt, e.g.:
8339 // for (int i = 0; i < n; i++);
8340 // {
8341 // a(i);
8342 // }
8343 // or if for/while is followed by a statement with more indentation
8344 // than for/while itself:
8345 // for (int i = 0; i < n; i++);
8346 // a(i);
8347 bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
8348 if (!ProbableTypo) {
8349 bool BodyColInvalid;
8350 unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
8351 PossibleBody->getLocStart(),
8352 &BodyColInvalid);
8353 if (BodyColInvalid)
8354 return;
8355
8356 bool StmtColInvalid;
8357 unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
8358 S->getLocStart(),
8359 &StmtColInvalid);
8360 if (StmtColInvalid)
8361 return;
8362
8363 if (BodyCol > StmtCol)
8364 ProbableTypo = true;
8365 }
8366
8367 if (ProbableTypo) {
8368 Diag(NBody->getSemiLoc(), DiagID);
8369 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
8370 }
8371}
8372
8373//===--- CHECK: Warn on self move with std::move. -------------------------===//
8374
8375/// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
8376void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
8377 SourceLocation OpLoc) {
8378
8379 if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
8380 return;
8381
8382 if (!ActiveTemplateInstantiations.empty())
8383 return;
8384
8385 // Strip parens and casts away.
8386 LHSExpr = LHSExpr->IgnoreParenImpCasts();
8387 RHSExpr = RHSExpr->IgnoreParenImpCasts();
8388
8389 // Check for a call expression
8390 const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
8391 if (!CE || CE->getNumArgs() != 1)
8392 return;
8393
8394 // Check for a call to std::move
8395 const FunctionDecl *FD = CE->getDirectCallee();
8396 if (!FD || !FD->isInStdNamespace() || !FD->getIdentifier() ||
8397 !FD->getIdentifier()->isStr("move"))
8398 return;
8399
8400 // Get argument from std::move
8401 RHSExpr = CE->getArg(0);
8402
8403 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
8404 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
8405
8406 // Two DeclRefExpr's, check that the decls are the same.
8407 if (LHSDeclRef && RHSDeclRef) {
8408 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
8409 return;
8410 if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
8411 RHSDeclRef->getDecl()->getCanonicalDecl())
8412 return;
8413
8414 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
8415 << LHSExpr->getSourceRange()
8416 << RHSExpr->getSourceRange();
8417 return;
8418 }
8419
8420 // Member variables require a different approach to check for self moves.
8421 // MemberExpr's are the same if every nested MemberExpr refers to the same
8422 // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
8423 // the base Expr's are CXXThisExpr's.
8424 const Expr *LHSBase = LHSExpr;
8425 const Expr *RHSBase = RHSExpr;
8426 const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
8427 const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
8428 if (!LHSME || !RHSME)
8429 return;
8430
8431 while (LHSME && RHSME) {
8432 if (LHSME->getMemberDecl()->getCanonicalDecl() !=
8433 RHSME->getMemberDecl()->getCanonicalDecl())
8434 return;
8435
8436 LHSBase = LHSME->getBase();
8437 RHSBase = RHSME->getBase();
8438 LHSME = dyn_cast<MemberExpr>(LHSBase);
8439 RHSME = dyn_cast<MemberExpr>(RHSBase);
8440 }
8441
8442 LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
8443 RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
8444 if (LHSDeclRef && RHSDeclRef) {
8445 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
8446 return;
8447 if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
8448 RHSDeclRef->getDecl()->getCanonicalDecl())
8449 return;
8450
8451 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
8452 << LHSExpr->getSourceRange()
8453 << RHSExpr->getSourceRange();
8454 return;
8455 }
8456
8457 if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
8458 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
8459 << LHSExpr->getSourceRange()
8460 << RHSExpr->getSourceRange();
8461}
8462
8463//===--- Layout compatibility ----------------------------------------------//
8464
8465namespace {
8466
8467bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
8468
8469/// \brief Check if two enumeration types are layout-compatible.
8470bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
8471 // C++11 [dcl.enum] p8:
8472 // Two enumeration types are layout-compatible if they have the same
8473 // underlying type.
8474 return ED1->isComplete() && ED2->isComplete() &&
8475 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
8476}
8477
8478/// \brief Check if two fields are layout-compatible.
8479bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
8480 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
8481 return false;
8482
8483 if (Field1->isBitField() != Field2->isBitField())
8484 return false;
8485
8486 if (Field1->isBitField()) {
8487 // Make sure that the bit-fields are the same length.
8488 unsigned Bits1 = Field1->getBitWidthValue(C);
8489 unsigned Bits2 = Field2->getBitWidthValue(C);
8490
8491 if (Bits1 != Bits2)
8492 return false;
8493 }
8494
8495 return true;
8496}
8497
8498/// \brief Check if two standard-layout structs are layout-compatible.
8499/// (C++11 [class.mem] p17)
8500bool isLayoutCompatibleStruct(ASTContext &C,
8501 RecordDecl *RD1,
8502 RecordDecl *RD2) {
8503 // If both records are C++ classes, check that base classes match.
8504 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
8505 // If one of records is a CXXRecordDecl we are in C++ mode,
8506 // thus the other one is a CXXRecordDecl, too.
8507 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
8508 // Check number of base classes.
8509 if (D1CXX->getNumBases() != D2CXX->getNumBases())
8510 return false;
8511
8512 // Check the base classes.
8513 for (CXXRecordDecl::base_class_const_iterator
8514 Base1 = D1CXX->bases_begin(),
8515 BaseEnd1 = D1CXX->bases_end(),
8516 Base2 = D2CXX->bases_begin();
8517 Base1 != BaseEnd1;
8518 ++Base1, ++Base2) {
8519 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
8520 return false;
8521 }
8522 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
8523 // If only RD2 is a C++ class, it should have zero base classes.
8524 if (D2CXX->getNumBases() > 0)
8525 return false;
8526 }
8527
8528 // Check the fields.
8529 RecordDecl::field_iterator Field2 = RD2->field_begin(),
8530 Field2End = RD2->field_end(),
8531 Field1 = RD1->field_begin(),
8532 Field1End = RD1->field_end();
8533 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
8534 if (!isLayoutCompatible(C, *Field1, *Field2))
8535 return false;
8536 }
8537 if (Field1 != Field1End || Field2 != Field2End)
8538 return false;
8539
8540 return true;
8541}
8542
8543/// \brief Check if two standard-layout unions are layout-compatible.
8544/// (C++11 [class.mem] p18)
8545bool isLayoutCompatibleUnion(ASTContext &C,
8546 RecordDecl *RD1,
8547 RecordDecl *RD2) {
8548 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
8549 for (auto *Field2 : RD2->fields())
8550 UnmatchedFields.insert(Field2);
8551
8552 for (auto *Field1 : RD1->fields()) {
8553 llvm::SmallPtrSet<FieldDecl *, 8>::iterator
8554 I = UnmatchedFields.begin(),
8555 E = UnmatchedFields.end();
8556
8557 for ( ; I != E; ++I) {
8558 if (isLayoutCompatible(C, Field1, *I)) {
8559 bool Result = UnmatchedFields.erase(*I);
8560 (void) Result;
8561 assert(Result);
8562 break;
8563 }
8564 }
8565 if (I == E)
8566 return false;
8567 }
8568
8569 return UnmatchedFields.empty();
8570}
8571
8572bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
8573 if (RD1->isUnion() != RD2->isUnion())
8574 return false;
8575
8576 if (RD1->isUnion())
8577 return isLayoutCompatibleUnion(C, RD1, RD2);
8578 else
8579 return isLayoutCompatibleStruct(C, RD1, RD2);
8580}
8581
8582/// \brief Check if two types are layout-compatible in C++11 sense.
8583bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
8584 if (T1.isNull() || T2.isNull())
8585 return false;
8586
8587 // C++11 [basic.types] p11:
8588 // If two types T1 and T2 are the same type, then T1 and T2 are
8589 // layout-compatible types.
8590 if (C.hasSameType(T1, T2))
8591 return true;
8592
8593 T1 = T1.getCanonicalType().getUnqualifiedType();
8594 T2 = T2.getCanonicalType().getUnqualifiedType();
8595
8596 const Type::TypeClass TC1 = T1->getTypeClass();
8597 const Type::TypeClass TC2 = T2->getTypeClass();
8598
8599 if (TC1 != TC2)
8600 return false;
8601
8602 if (TC1 == Type::Enum) {
8603 return isLayoutCompatible(C,
8604 cast<EnumType>(T1)->getDecl(),
8605 cast<EnumType>(T2)->getDecl());
8606 } else if (TC1 == Type::Record) {
8607 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
8608 return false;
8609
8610 return isLayoutCompatible(C,
8611 cast<RecordType>(T1)->getDecl(),
8612 cast<RecordType>(T2)->getDecl());
8613 }
8614
8615 return false;
8616}
8617}
8618
8619//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
8620
8621namespace {
8622/// \brief Given a type tag expression find the type tag itself.
8623///
8624/// \param TypeExpr Type tag expression, as it appears in user's code.
8625///
8626/// \param VD Declaration of an identifier that appears in a type tag.
8627///
8628/// \param MagicValue Type tag magic value.
8629bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
8630 const ValueDecl **VD, uint64_t *MagicValue) {
8631 while(true) {
8632 if (!TypeExpr)
8633 return false;
8634
8635 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
8636
8637 switch (TypeExpr->getStmtClass()) {
8638 case Stmt::UnaryOperatorClass: {
8639 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
8640 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
8641 TypeExpr = UO->getSubExpr();
8642 continue;
8643 }
8644 return false;
8645 }
8646
8647 case Stmt::DeclRefExprClass: {
8648 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
8649 *VD = DRE->getDecl();
8650 return true;
8651 }
8652
8653 case Stmt::IntegerLiteralClass: {
8654 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
8655 llvm::APInt MagicValueAPInt = IL->getValue();
8656 if (MagicValueAPInt.getActiveBits() <= 64) {
8657 *MagicValue = MagicValueAPInt.getZExtValue();
8658 return true;
8659 } else
8660 return false;
8661 }
8662
8663 case Stmt::BinaryConditionalOperatorClass:
8664 case Stmt::ConditionalOperatorClass: {
8665 const AbstractConditionalOperator *ACO =
8666 cast<AbstractConditionalOperator>(TypeExpr);
8667 bool Result;
8668 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
8669 if (Result)
8670 TypeExpr = ACO->getTrueExpr();
8671 else
8672 TypeExpr = ACO->getFalseExpr();
8673 continue;
8674 }
8675 return false;
8676 }
8677
8678 case Stmt::BinaryOperatorClass: {
8679 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
8680 if (BO->getOpcode() == BO_Comma) {
8681 TypeExpr = BO->getRHS();
8682 continue;
8683 }
8684 return false;
8685 }
8686
8687 default:
8688 return false;
8689 }
8690 }
8691}
8692
8693/// \brief Retrieve the C type corresponding to type tag TypeExpr.
8694///
8695/// \param TypeExpr Expression that specifies a type tag.
8696///
8697/// \param MagicValues Registered magic values.
8698///
8699/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
8700/// kind.
8701///
8702/// \param TypeInfo Information about the corresponding C type.
8703///
8704/// \returns true if the corresponding C type was found.
8705bool GetMatchingCType(
8706 const IdentifierInfo *ArgumentKind,
8707 const Expr *TypeExpr, const ASTContext &Ctx,
8708 const llvm::DenseMap<Sema::TypeTagMagicValue,
8709 Sema::TypeTagData> *MagicValues,
8710 bool &FoundWrongKind,
8711 Sema::TypeTagData &TypeInfo) {
8712 FoundWrongKind = false;
8713
8714 // Variable declaration that has type_tag_for_datatype attribute.
8715 const ValueDecl *VD = nullptr;
8716
8717 uint64_t MagicValue;
8718
8719 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
8720 return false;
8721
8722 if (VD) {
8723 if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
8724 if (I->getArgumentKind() != ArgumentKind) {
8725 FoundWrongKind = true;
8726 return false;
8727 }
8728 TypeInfo.Type = I->getMatchingCType();
8729 TypeInfo.LayoutCompatible = I->getLayoutCompatible();
8730 TypeInfo.MustBeNull = I->getMustBeNull();
8731 return true;
8732 }
8733 return false;
8734 }
8735
8736 if (!MagicValues)
8737 return false;
8738
8739 llvm::DenseMap<Sema::TypeTagMagicValue,
8740 Sema::TypeTagData>::const_iterator I =
8741 MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
8742 if (I == MagicValues->end())
8743 return false;
8744
8745 TypeInfo = I->second;
8746 return true;
8747}
8748} // unnamed namespace
8749
8750void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
8751 uint64_t MagicValue, QualType Type,
8752 bool LayoutCompatible,
8753 bool MustBeNull) {
8754 if (!TypeTagForDatatypeMagicValues)
8755 TypeTagForDatatypeMagicValues.reset(
8756 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
8757
8758 TypeTagMagicValue Magic(ArgumentKind, MagicValue);
8759 (*TypeTagForDatatypeMagicValues)[Magic] =
8760 TypeTagData(Type, LayoutCompatible, MustBeNull);
8761}
8762
8763namespace {
8764bool IsSameCharType(QualType T1, QualType T2) {
8765 const BuiltinType *BT1 = T1->getAs<BuiltinType>();
8766 if (!BT1)
8767 return false;
8768
8769 const BuiltinType *BT2 = T2->getAs<BuiltinType>();
8770 if (!BT2)
8771 return false;
8772
8773 BuiltinType::Kind T1Kind = BT1->getKind();
8774 BuiltinType::Kind T2Kind = BT2->getKind();
8775
8776 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) ||
8777 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) ||
8778 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
8779 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
8780}
8781} // unnamed namespace
8782
8783void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
8784 const Expr * const *ExprArgs) {
8785 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
8786 bool IsPointerAttr = Attr->getIsPointer();
8787
8788 const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
8789 bool FoundWrongKind;
8790 TypeTagData TypeInfo;
8791 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
8792 TypeTagForDatatypeMagicValues.get(),
8793 FoundWrongKind, TypeInfo)) {
8794 if (FoundWrongKind)
8795 Diag(TypeTagExpr->getExprLoc(),
8796 diag::warn_type_tag_for_datatype_wrong_kind)
8797 << TypeTagExpr->getSourceRange();
8798 return;
8799 }
8800
8801 const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
8802 if (IsPointerAttr) {
8803 // Skip implicit cast of pointer to `void *' (as a function argument).
8804 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
8805 if (ICE->getType()->isVoidPointerType() &&
8806 ICE->getCastKind() == CK_BitCast)
8807 ArgumentExpr = ICE->getSubExpr();
8808 }
8809 QualType ArgumentType = ArgumentExpr->getType();
8810
8811 // Passing a `void*' pointer shouldn't trigger a warning.
8812 if (IsPointerAttr && ArgumentType->isVoidPointerType())
8813 return;
8814
8815 if (TypeInfo.MustBeNull) {
8816 // Type tag with matching void type requires a null pointer.
8817 if (!ArgumentExpr->isNullPointerConstant(Context,
8818 Expr::NPC_ValueDependentIsNotNull)) {
8819 Diag(ArgumentExpr->getExprLoc(),
8820 diag::warn_type_safety_null_pointer_required)
8821 << ArgumentKind->getName()
8822 << ArgumentExpr->getSourceRange()
8823 << TypeTagExpr->getSourceRange();
8824 }
8825 return;
8826 }
8827
8828 QualType RequiredType = TypeInfo.Type;
8829 if (IsPointerAttr)
8830 RequiredType = Context.getPointerType(RequiredType);
8831
8832 bool mismatch = false;
8833 if (!TypeInfo.LayoutCompatible) {
8834 mismatch = !Context.hasSameType(ArgumentType, RequiredType);
8835
8836 // C++11 [basic.fundamental] p1:
8837 // Plain char, signed char, and unsigned char are three distinct types.
8838 //
8839 // But we treat plain `char' as equivalent to `signed char' or `unsigned
8840 // char' depending on the current char signedness mode.
8841 if (mismatch)
8842 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
8843 RequiredType->getPointeeType())) ||
8844 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
8845 mismatch = false;
8846 } else
8847 if (IsPointerAttr)
8848 mismatch = !isLayoutCompatible(Context,
8849 ArgumentType->getPointeeType(),
8850 RequiredType->getPointeeType());
8851 else
8852 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
8853
8854 if (mismatch)
8855 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
8856 << ArgumentType << ArgumentKind
8857 << TypeInfo.LayoutCompatible << RequiredType
8858 << ArgumentExpr->getSourceRange()
8859 << TypeTagExpr->getSourceRange();
8860}
8861
2405namespace {
2406enum StringLiteralCheckType {
2407 SLCT_NotALiteral,
2408 SLCT_UncheckedLiteral,
2409 SLCT_CheckedLiteral
2410};
2411}
2412
2413// Determine if an expression is a string literal or constant string.
2414// If this function returns false on the arguments to a function expecting a
2415// format string, we will usually need to emit a warning.
2416// True string literals are then checked by CheckFormatString.
2417static StringLiteralCheckType
2418checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
2419 bool HasVAListArg, unsigned format_idx,
2420 unsigned firstDataArg, Sema::FormatStringType Type,
2421 Sema::VariadicCallType CallType, bool InFunctionCall,
2422 llvm::SmallBitVector &CheckedVarArgs) {
2423 tryAgain:
2424 if (E->isTypeDependent() || E->isValueDependent())
2425 return SLCT_NotALiteral;
2426
2427 E = E->IgnoreParenCasts();
2428
2429 if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
2430 // Technically -Wformat-nonliteral does not warn about this case.
2431 // The behavior of printf and friends in this case is implementation
2432 // dependent. Ideally if the format string cannot be null then
2433 // it should have a 'nonnull' attribute in the function prototype.
2434 return SLCT_UncheckedLiteral;
2435
2436 switch (E->getStmtClass()) {
2437 case Stmt::BinaryConditionalOperatorClass:
2438 case Stmt::ConditionalOperatorClass: {
2439 // The expression is a literal if both sub-expressions were, and it was
2440 // completely checked only if both sub-expressions were checked.
2441 const AbstractConditionalOperator *C =
2442 cast<AbstractConditionalOperator>(E);
2443 StringLiteralCheckType Left =
2444 checkFormatStringExpr(S, C->getTrueExpr(), Args,
2445 HasVAListArg, format_idx, firstDataArg,
2446 Type, CallType, InFunctionCall, CheckedVarArgs);
2447 if (Left == SLCT_NotALiteral)
2448 return SLCT_NotALiteral;
2449 StringLiteralCheckType Right =
2450 checkFormatStringExpr(S, C->getFalseExpr(), Args,
2451 HasVAListArg, format_idx, firstDataArg,
2452 Type, CallType, InFunctionCall, CheckedVarArgs);
2453 return Left < Right ? Left : Right;
2454 }
2455
2456 case Stmt::ImplicitCastExprClass: {
2457 E = cast<ImplicitCastExpr>(E)->getSubExpr();
2458 goto tryAgain;
2459 }
2460
2461 case Stmt::OpaqueValueExprClass:
2462 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
2463 E = src;
2464 goto tryAgain;
2465 }
2466 return SLCT_NotALiteral;
2467
2468 case Stmt::PredefinedExprClass:
2469 // While __func__, etc., are technically not string literals, they
2470 // cannot contain format specifiers and thus are not a security
2471 // liability.
2472 return SLCT_UncheckedLiteral;
2473
2474 case Stmt::DeclRefExprClass: {
2475 const DeclRefExpr *DR = cast<DeclRefExpr>(E);
2476
2477 // As an exception, do not flag errors for variables binding to
2478 // const string literals.
2479 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
2480 bool isConstant = false;
2481 QualType T = DR->getType();
2482
2483 if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
2484 isConstant = AT->getElementType().isConstant(S.Context);
2485 } else if (const PointerType *PT = T->getAs<PointerType>()) {
2486 isConstant = T.isConstant(S.Context) &&
2487 PT->getPointeeType().isConstant(S.Context);
2488 } else if (T->isObjCObjectPointerType()) {
2489 // In ObjC, there is usually no "const ObjectPointer" type,
2490 // so don't check if the pointee type is constant.
2491 isConstant = T.isConstant(S.Context);
2492 }
2493
2494 if (isConstant) {
2495 if (const Expr *Init = VD->getAnyInitializer()) {
2496 // Look through initializers like const char c[] = { "foo" }
2497 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2498 if (InitList->isStringLiteralInit())
2499 Init = InitList->getInit(0)->IgnoreParenImpCasts();
2500 }
2501 return checkFormatStringExpr(S, Init, Args,
2502 HasVAListArg, format_idx,
2503 firstDataArg, Type, CallType,
2504 /*InFunctionCall*/false, CheckedVarArgs);
2505 }
2506 }
2507
2508 // For vprintf* functions (i.e., HasVAListArg==true), we add a
2509 // special check to see if the format string is a function parameter
2510 // of the function calling the printf function. If the function
2511 // has an attribute indicating it is a printf-like function, then we
2512 // should suppress warnings concerning non-literals being used in a call
2513 // to a vprintf function. For example:
2514 //
2515 // void
2516 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
2517 // va_list ap;
2518 // va_start(ap, fmt);
2519 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
2520 // ...
2521 // }
2522 if (HasVAListArg) {
2523 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
2524 if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
2525 int PVIndex = PV->getFunctionScopeIndex() + 1;
2526 for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
2527 // adjust for implicit parameter
2528 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2529 if (MD->isInstance())
2530 ++PVIndex;
2531 // We also check if the formats are compatible.
2532 // We can't pass a 'scanf' string to a 'printf' function.
2533 if (PVIndex == PVFormat->getFormatIdx() &&
2534 Type == S.GetFormatStringType(PVFormat))
2535 return SLCT_UncheckedLiteral;
2536 }
2537 }
2538 }
2539 }
2540 }
2541
2542 return SLCT_NotALiteral;
2543 }
2544
2545 case Stmt::CallExprClass:
2546 case Stmt::CXXMemberCallExprClass: {
2547 const CallExpr *CE = cast<CallExpr>(E);
2548 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
2549 if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
2550 unsigned ArgIndex = FA->getFormatIdx();
2551 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2552 if (MD->isInstance())
2553 --ArgIndex;
2554 const Expr *Arg = CE->getArg(ArgIndex - 1);
2555
2556 return checkFormatStringExpr(S, Arg, Args,
2557 HasVAListArg, format_idx, firstDataArg,
2558 Type, CallType, InFunctionCall,
2559 CheckedVarArgs);
2560 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
2561 unsigned BuiltinID = FD->getBuiltinID();
2562 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
2563 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
2564 const Expr *Arg = CE->getArg(0);
2565 return checkFormatStringExpr(S, Arg, Args,
2566 HasVAListArg, format_idx,
2567 firstDataArg, Type, CallType,
2568 InFunctionCall, CheckedVarArgs);
2569 }
2570 }
2571 }
2572
2573 return SLCT_NotALiteral;
2574 }
2575 case Stmt::ObjCStringLiteralClass:
2576 case Stmt::StringLiteralClass: {
2577 const StringLiteral *StrE = nullptr;
2578
2579 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
2580 StrE = ObjCFExpr->getString();
2581 else
2582 StrE = cast<StringLiteral>(E);
2583
2584 if (StrE) {
2585 S.CheckFormatString(StrE, E, Args, HasVAListArg, format_idx, firstDataArg,
2586 Type, InFunctionCall, CallType, CheckedVarArgs);
2587 return SLCT_CheckedLiteral;
2588 }
2589
2590 return SLCT_NotALiteral;
2591 }
2592
2593 default:
2594 return SLCT_NotALiteral;
2595 }
2596}
2597
2598Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
2599 return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
2600 .Case("scanf", FST_Scanf)
2601 .Cases("printf", "printf0", FST_Printf)
2602 .Cases("NSString", "CFString", FST_NSString)
2603 .Case("strftime", FST_Strftime)
2604 .Case("strfmon", FST_Strfmon)
2605 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
2606 .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
2607 .Default(FST_Unknown);
2608}
2609
2610/// CheckFormatArguments - Check calls to printf and scanf (and similar
2611/// functions) for correct use of format strings.
2612/// Returns true if a format string has been fully checked.
2613bool Sema::CheckFormatArguments(const FormatAttr *Format,
2614 ArrayRef<const Expr *> Args,
2615 bool IsCXXMember,
2616 VariadicCallType CallType,
2617 SourceLocation Loc, SourceRange Range,
2618 llvm::SmallBitVector &CheckedVarArgs) {
2619 FormatStringInfo FSI;
2620 if (getFormatStringInfo(Format, IsCXXMember, &FSI))
2621 return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
2622 FSI.FirstDataArg, GetFormatStringType(Format),
2623 CallType, Loc, Range, CheckedVarArgs);
2624 return false;
2625}
2626
2627bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
2628 bool HasVAListArg, unsigned format_idx,
2629 unsigned firstDataArg, FormatStringType Type,
2630 VariadicCallType CallType,
2631 SourceLocation Loc, SourceRange Range,
2632 llvm::SmallBitVector &CheckedVarArgs) {
2633 // CHECK: printf/scanf-like function is called with no format string.
2634 if (format_idx >= Args.size()) {
2635 Diag(Loc, diag::warn_missing_format_string) << Range;
2636 return false;
2637 }
2638
2639 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
2640
2641 // CHECK: format string is not a string literal.
2642 //
2643 // Dynamically generated format strings are difficult to
2644 // automatically vet at compile time. Requiring that format strings
2645 // are string literals: (1) permits the checking of format strings by
2646 // the compiler and thereby (2) can practically remove the source of
2647 // many format string exploits.
2648
2649 // Format string can be either ObjC string (e.g. @"%d") or
2650 // C string (e.g. "%d")
2651 // ObjC string uses the same format specifiers as C string, so we can use
2652 // the same format string checking logic for both ObjC and C strings.
2653 StringLiteralCheckType CT =
2654 checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
2655 format_idx, firstDataArg, Type, CallType,
2656 /*IsFunctionCall*/true, CheckedVarArgs);
2657 if (CT != SLCT_NotALiteral)
2658 // Literal format string found, check done!
2659 return CT == SLCT_CheckedLiteral;
2660
2661 // Strftime is particular as it always uses a single 'time' argument,
2662 // so it is safe to pass a non-literal string.
2663 if (Type == FST_Strftime)
2664 return false;
2665
2666 // Do not emit diag when the string param is a macro expansion and the
2667 // format is either NSString or CFString. This is a hack to prevent
2668 // diag when using the NSLocalizedString and CFCopyLocalizedString macros
2669 // which are usually used in place of NS and CF string literals.
2670 if (Type == FST_NSString &&
2671 SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
2672 return false;
2673
2674 // If there are no arguments specified, warn with -Wformat-security, otherwise
2675 // warn only with -Wformat-nonliteral.
2676 if (Args.size() == firstDataArg)
2677 Diag(Args[format_idx]->getLocStart(),
2678 diag::warn_format_nonliteral_noargs)
2679 << OrigFormatExpr->getSourceRange();
2680 else
2681 Diag(Args[format_idx]->getLocStart(),
2682 diag::warn_format_nonliteral)
2683 << OrigFormatExpr->getSourceRange();
2684 return false;
2685}
2686
2687namespace {
2688class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
2689protected:
2690 Sema &S;
2691 const StringLiteral *FExpr;
2692 const Expr *OrigFormatExpr;
2693 const unsigned FirstDataArg;
2694 const unsigned NumDataArgs;
2695 const char *Beg; // Start of format string.
2696 const bool HasVAListArg;
2697 ArrayRef<const Expr *> Args;
2698 unsigned FormatIdx;
2699 llvm::SmallBitVector CoveredArgs;
2700 bool usesPositionalArgs;
2701 bool atFirstArg;
2702 bool inFunctionCall;
2703 Sema::VariadicCallType CallType;
2704 llvm::SmallBitVector &CheckedVarArgs;
2705public:
2706 CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
2707 const Expr *origFormatExpr, unsigned firstDataArg,
2708 unsigned numDataArgs, const char *beg, bool hasVAListArg,
2709 ArrayRef<const Expr *> Args,
2710 unsigned formatIdx, bool inFunctionCall,
2711 Sema::VariadicCallType callType,
2712 llvm::SmallBitVector &CheckedVarArgs)
2713 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
2714 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
2715 Beg(beg), HasVAListArg(hasVAListArg),
2716 Args(Args), FormatIdx(formatIdx),
2717 usesPositionalArgs(false), atFirstArg(true),
2718 inFunctionCall(inFunctionCall), CallType(callType),
2719 CheckedVarArgs(CheckedVarArgs) {
2720 CoveredArgs.resize(numDataArgs);
2721 CoveredArgs.reset();
2722 }
2723
2724 void DoneProcessing();
2725
2726 void HandleIncompleteSpecifier(const char *startSpecifier,
2727 unsigned specifierLen) override;
2728
2729 void HandleInvalidLengthModifier(
2730 const analyze_format_string::FormatSpecifier &FS,
2731 const analyze_format_string::ConversionSpecifier &CS,
2732 const char *startSpecifier, unsigned specifierLen,
2733 unsigned DiagID);
2734
2735 void HandleNonStandardLengthModifier(
2736 const analyze_format_string::FormatSpecifier &FS,
2737 const char *startSpecifier, unsigned specifierLen);
2738
2739 void HandleNonStandardConversionSpecifier(
2740 const analyze_format_string::ConversionSpecifier &CS,
2741 const char *startSpecifier, unsigned specifierLen);
2742
2743 void HandlePosition(const char *startPos, unsigned posLen) override;
2744
2745 void HandleInvalidPosition(const char *startSpecifier,
2746 unsigned specifierLen,
2747 analyze_format_string::PositionContext p) override;
2748
2749 void HandleZeroPosition(const char *startPos, unsigned posLen) override;
2750
2751 void HandleNullChar(const char *nullCharacter) override;
2752
2753 template <typename Range>
2754 static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
2755 const Expr *ArgumentExpr,
2756 PartialDiagnostic PDiag,
2757 SourceLocation StringLoc,
2758 bool IsStringLocation, Range StringRange,
2759 ArrayRef<FixItHint> Fixit = None);
2760
2761protected:
2762 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
2763 const char *startSpec,
2764 unsigned specifierLen,
2765 const char *csStart, unsigned csLen);
2766
2767 void HandlePositionalNonpositionalArgs(SourceLocation Loc,
2768 const char *startSpec,
2769 unsigned specifierLen);
2770
2771 SourceRange getFormatStringRange();
2772 CharSourceRange getSpecifierRange(const char *startSpecifier,
2773 unsigned specifierLen);
2774 SourceLocation getLocationOfByte(const char *x);
2775
2776 const Expr *getDataArg(unsigned i) const;
2777
2778 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
2779 const analyze_format_string::ConversionSpecifier &CS,
2780 const char *startSpecifier, unsigned specifierLen,
2781 unsigned argIndex);
2782
2783 template <typename Range>
2784 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
2785 bool IsStringLocation, Range StringRange,
2786 ArrayRef<FixItHint> Fixit = None);
2787};
2788}
2789
2790SourceRange CheckFormatHandler::getFormatStringRange() {
2791 return OrigFormatExpr->getSourceRange();
2792}
2793
2794CharSourceRange CheckFormatHandler::
2795getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2796 SourceLocation Start = getLocationOfByte(startSpecifier);
2797 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1);
2798
2799 // Advance the end SourceLocation by one due to half-open ranges.
2800 End = End.getLocWithOffset(1);
2801
2802 return CharSourceRange::getCharRange(Start, End);
2803}
2804
2805SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2806 return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2807}
2808
2809void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2810 unsigned specifierLen){
2811 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2812 getLocationOfByte(startSpecifier),
2813 /*IsStringLocation*/true,
2814 getSpecifierRange(startSpecifier, specifierLen));
2815}
2816
2817void CheckFormatHandler::HandleInvalidLengthModifier(
2818 const analyze_format_string::FormatSpecifier &FS,
2819 const analyze_format_string::ConversionSpecifier &CS,
2820 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
2821 using namespace analyze_format_string;
2822
2823 const LengthModifier &LM = FS.getLengthModifier();
2824 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2825
2826 // See if we know how to fix this length modifier.
2827 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2828 if (FixedLM) {
2829 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2830 getLocationOfByte(LM.getStart()),
2831 /*IsStringLocation*/true,
2832 getSpecifierRange(startSpecifier, specifierLen));
2833
2834 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2835 << FixedLM->toString()
2836 << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2837
2838 } else {
2839 FixItHint Hint;
2840 if (DiagID == diag::warn_format_nonsensical_length)
2841 Hint = FixItHint::CreateRemoval(LMRange);
2842
2843 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
2844 getLocationOfByte(LM.getStart()),
2845 /*IsStringLocation*/true,
2846 getSpecifierRange(startSpecifier, specifierLen),
2847 Hint);
2848 }
2849}
2850
2851void CheckFormatHandler::HandleNonStandardLengthModifier(
2852 const analyze_format_string::FormatSpecifier &FS,
2853 const char *startSpecifier, unsigned specifierLen) {
2854 using namespace analyze_format_string;
2855
2856 const LengthModifier &LM = FS.getLengthModifier();
2857 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2858
2859 // See if we know how to fix this length modifier.
2860 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
2861 if (FixedLM) {
2862 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2863 << LM.toString() << 0,
2864 getLocationOfByte(LM.getStart()),
2865 /*IsStringLocation*/true,
2866 getSpecifierRange(startSpecifier, specifierLen));
2867
2868 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
2869 << FixedLM->toString()
2870 << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
2871
2872 } else {
2873 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2874 << LM.toString() << 0,
2875 getLocationOfByte(LM.getStart()),
2876 /*IsStringLocation*/true,
2877 getSpecifierRange(startSpecifier, specifierLen));
2878 }
2879}
2880
2881void CheckFormatHandler::HandleNonStandardConversionSpecifier(
2882 const analyze_format_string::ConversionSpecifier &CS,
2883 const char *startSpecifier, unsigned specifierLen) {
2884 using namespace analyze_format_string;
2885
2886 // See if we know how to fix this conversion specifier.
2887 Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
2888 if (FixedCS) {
2889 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2890 << CS.toString() << /*conversion specifier*/1,
2891 getLocationOfByte(CS.getStart()),
2892 /*IsStringLocation*/true,
2893 getSpecifierRange(startSpecifier, specifierLen));
2894
2895 CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
2896 S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
2897 << FixedCS->toString()
2898 << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
2899 } else {
2900 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
2901 << CS.toString() << /*conversion specifier*/1,
2902 getLocationOfByte(CS.getStart()),
2903 /*IsStringLocation*/true,
2904 getSpecifierRange(startSpecifier, specifierLen));
2905 }
2906}
2907
2908void CheckFormatHandler::HandlePosition(const char *startPos,
2909 unsigned posLen) {
2910 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
2911 getLocationOfByte(startPos),
2912 /*IsStringLocation*/true,
2913 getSpecifierRange(startPos, posLen));
2914}
2915
2916void
2917CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
2918 analyze_format_string::PositionContext p) {
2919 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
2920 << (unsigned) p,
2921 getLocationOfByte(startPos), /*IsStringLocation*/true,
2922 getSpecifierRange(startPos, posLen));
2923}
2924
2925void CheckFormatHandler::HandleZeroPosition(const char *startPos,
2926 unsigned posLen) {
2927 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
2928 getLocationOfByte(startPos),
2929 /*IsStringLocation*/true,
2930 getSpecifierRange(startPos, posLen));
2931}
2932
2933void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
2934 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
2935 // The presence of a null character is likely an error.
2936 EmitFormatDiagnostic(
2937 S.PDiag(diag::warn_printf_format_string_contains_null_char),
2938 getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
2939 getFormatStringRange());
2940 }
2941}
2942
2943// Note that this may return NULL if there was an error parsing or building
2944// one of the argument expressions.
2945const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
2946 return Args[FirstDataArg + i];
2947}
2948
2949void CheckFormatHandler::DoneProcessing() {
2950 // Does the number of data arguments exceed the number of
2951 // format conversions in the format string?
2952 if (!HasVAListArg) {
2953 // Find any arguments that weren't covered.
2954 CoveredArgs.flip();
2955 signed notCoveredArg = CoveredArgs.find_first();
2956 if (notCoveredArg >= 0) {
2957 assert((unsigned)notCoveredArg < NumDataArgs);
2958 if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
2959 SourceLocation Loc = E->getLocStart();
2960 if (!S.getSourceManager().isInSystemMacro(Loc)) {
2961 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
2962 Loc, /*IsStringLocation*/false,
2963 getFormatStringRange());
2964 }
2965 }
2966 }
2967 }
2968}
2969
2970bool
2971CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
2972 SourceLocation Loc,
2973 const char *startSpec,
2974 unsigned specifierLen,
2975 const char *csStart,
2976 unsigned csLen) {
2977
2978 bool keepGoing = true;
2979 if (argIndex < NumDataArgs) {
2980 // Consider the argument coverered, even though the specifier doesn't
2981 // make sense.
2982 CoveredArgs.set(argIndex);
2983 }
2984 else {
2985 // If argIndex exceeds the number of data arguments we
2986 // don't issue a warning because that is just a cascade of warnings (and
2987 // they may have intended '%%' anyway). We don't want to continue processing
2988 // the format string after this point, however, as we will like just get
2989 // gibberish when trying to match arguments.
2990 keepGoing = false;
2991 }
2992
2993 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
2994 << StringRef(csStart, csLen),
2995 Loc, /*IsStringLocation*/true,
2996 getSpecifierRange(startSpec, specifierLen));
2997
2998 return keepGoing;
2999}
3000
3001void
3002CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
3003 const char *startSpec,
3004 unsigned specifierLen) {
3005 EmitFormatDiagnostic(
3006 S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
3007 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
3008}
3009
3010bool
3011CheckFormatHandler::CheckNumArgs(
3012 const analyze_format_string::FormatSpecifier &FS,
3013 const analyze_format_string::ConversionSpecifier &CS,
3014 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
3015
3016 if (argIndex >= NumDataArgs) {
3017 PartialDiagnostic PDiag = FS.usesPositionalArg()
3018 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
3019 << (argIndex+1) << NumDataArgs)
3020 : S.PDiag(diag::warn_printf_insufficient_data_args);
3021 EmitFormatDiagnostic(
3022 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
3023 getSpecifierRange(startSpecifier, specifierLen));
3024 return false;
3025 }
3026 return true;
3027}
3028
3029template<typename Range>
3030void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
3031 SourceLocation Loc,
3032 bool IsStringLocation,
3033 Range StringRange,
3034 ArrayRef<FixItHint> FixIt) {
3035 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
3036 Loc, IsStringLocation, StringRange, FixIt);
3037}
3038
3039/// \brief If the format string is not within the funcion call, emit a note
3040/// so that the function call and string are in diagnostic messages.
3041///
3042/// \param InFunctionCall if true, the format string is within the function
3043/// call and only one diagnostic message will be produced. Otherwise, an
3044/// extra note will be emitted pointing to location of the format string.
3045///
3046/// \param ArgumentExpr the expression that is passed as the format string
3047/// argument in the function call. Used for getting locations when two
3048/// diagnostics are emitted.
3049///
3050/// \param PDiag the callee should already have provided any strings for the
3051/// diagnostic message. This function only adds locations and fixits
3052/// to diagnostics.
3053///
3054/// \param Loc primary location for diagnostic. If two diagnostics are
3055/// required, one will be at Loc and a new SourceLocation will be created for
3056/// the other one.
3057///
3058/// \param IsStringLocation if true, Loc points to the format string should be
3059/// used for the note. Otherwise, Loc points to the argument list and will
3060/// be used with PDiag.
3061///
3062/// \param StringRange some or all of the string to highlight. This is
3063/// templated so it can accept either a CharSourceRange or a SourceRange.
3064///
3065/// \param FixIt optional fix it hint for the format string.
3066template<typename Range>
3067void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
3068 const Expr *ArgumentExpr,
3069 PartialDiagnostic PDiag,
3070 SourceLocation Loc,
3071 bool IsStringLocation,
3072 Range StringRange,
3073 ArrayRef<FixItHint> FixIt) {
3074 if (InFunctionCall) {
3075 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
3076 D << StringRange;
3077 for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
3078 I != E; ++I) {
3079 D << *I;
3080 }
3081 } else {
3082 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
3083 << ArgumentExpr->getSourceRange();
3084
3085 const Sema::SemaDiagnosticBuilder &Note =
3086 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
3087 diag::note_format_string_defined);
3088
3089 Note << StringRange;
3090 for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
3091 I != E; ++I) {
3092 Note << *I;
3093 }
3094 }
3095}
3096
3097//===--- CHECK: Printf format string checking ------------------------------===//
3098
3099namespace {
3100class CheckPrintfHandler : public CheckFormatHandler {
3101 bool ObjCContext;
3102public:
3103 CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
3104 const Expr *origFormatExpr, unsigned firstDataArg,
3105 unsigned numDataArgs, bool isObjC,
3106 const char *beg, bool hasVAListArg,
3107 ArrayRef<const Expr *> Args,
3108 unsigned formatIdx, bool inFunctionCall,
3109 Sema::VariadicCallType CallType,
3110 llvm::SmallBitVector &CheckedVarArgs)
3111 : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
3112 numDataArgs, beg, hasVAListArg, Args,
3113 formatIdx, inFunctionCall, CallType, CheckedVarArgs),
3114 ObjCContext(isObjC)
3115 {}
3116
3117
3118 bool HandleInvalidPrintfConversionSpecifier(
3119 const analyze_printf::PrintfSpecifier &FS,
3120 const char *startSpecifier,
3121 unsigned specifierLen) override;
3122
3123 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
3124 const char *startSpecifier,
3125 unsigned specifierLen) override;
3126 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
3127 const char *StartSpecifier,
3128 unsigned SpecifierLen,
3129 const Expr *E);
3130
3131 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
3132 const char *startSpecifier, unsigned specifierLen);
3133 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
3134 const analyze_printf::OptionalAmount &Amt,
3135 unsigned type,
3136 const char *startSpecifier, unsigned specifierLen);
3137 void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
3138 const analyze_printf::OptionalFlag &flag,
3139 const char *startSpecifier, unsigned specifierLen);
3140 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
3141 const analyze_printf::OptionalFlag &ignoredFlag,
3142 const analyze_printf::OptionalFlag &flag,
3143 const char *startSpecifier, unsigned specifierLen);
3144 bool checkForCStrMembers(const analyze_printf::ArgType &AT,
3145 const Expr *E);
3146
3147};
3148}
3149
3150bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
3151 const analyze_printf::PrintfSpecifier &FS,
3152 const char *startSpecifier,
3153 unsigned specifierLen) {
3154 const analyze_printf::PrintfConversionSpecifier &CS =
3155 FS.getConversionSpecifier();
3156
3157 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
3158 getLocationOfByte(CS.getStart()),
3159 startSpecifier, specifierLen,
3160 CS.getStart(), CS.getLength());
3161}
3162
3163bool CheckPrintfHandler::HandleAmount(
3164 const analyze_format_string::OptionalAmount &Amt,
3165 unsigned k, const char *startSpecifier,
3166 unsigned specifierLen) {
3167
3168 if (Amt.hasDataArgument()) {
3169 if (!HasVAListArg) {
3170 unsigned argIndex = Amt.getArgIndex();
3171 if (argIndex >= NumDataArgs) {
3172 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
3173 << k,
3174 getLocationOfByte(Amt.getStart()),
3175 /*IsStringLocation*/true,
3176 getSpecifierRange(startSpecifier, specifierLen));
3177 // Don't do any more checking. We will just emit
3178 // spurious errors.
3179 return false;
3180 }
3181
3182 // Type check the data argument. It should be an 'int'.
3183 // Although not in conformance with C99, we also allow the argument to be
3184 // an 'unsigned int' as that is a reasonably safe case. GCC also
3185 // doesn't emit a warning for that case.
3186 CoveredArgs.set(argIndex);
3187 const Expr *Arg = getDataArg(argIndex);
3188 if (!Arg)
3189 return false;
3190
3191 QualType T = Arg->getType();
3192
3193 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
3194 assert(AT.isValid());
3195
3196 if (!AT.matchesType(S.Context, T)) {
3197 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
3198 << k << AT.getRepresentativeTypeName(S.Context)
3199 << T << Arg->getSourceRange(),
3200 getLocationOfByte(Amt.getStart()),
3201 /*IsStringLocation*/true,
3202 getSpecifierRange(startSpecifier, specifierLen));
3203 // Don't do any more checking. We will just emit
3204 // spurious errors.
3205 return false;
3206 }
3207 }
3208 }
3209 return true;
3210}
3211
3212void CheckPrintfHandler::HandleInvalidAmount(
3213 const analyze_printf::PrintfSpecifier &FS,
3214 const analyze_printf::OptionalAmount &Amt,
3215 unsigned type,
3216 const char *startSpecifier,
3217 unsigned specifierLen) {
3218 const analyze_printf::PrintfConversionSpecifier &CS =
3219 FS.getConversionSpecifier();
3220
3221 FixItHint fixit =
3222 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
3223 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
3224 Amt.getConstantLength()))
3225 : FixItHint();
3226
3227 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
3228 << type << CS.toString(),
3229 getLocationOfByte(Amt.getStart()),
3230 /*IsStringLocation*/true,
3231 getSpecifierRange(startSpecifier, specifierLen),
3232 fixit);
3233}
3234
3235void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
3236 const analyze_printf::OptionalFlag &flag,
3237 const char *startSpecifier,
3238 unsigned specifierLen) {
3239 // Warn about pointless flag with a fixit removal.
3240 const analyze_printf::PrintfConversionSpecifier &CS =
3241 FS.getConversionSpecifier();
3242 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
3243 << flag.toString() << CS.toString(),
3244 getLocationOfByte(flag.getPosition()),
3245 /*IsStringLocation*/true,
3246 getSpecifierRange(startSpecifier, specifierLen),
3247 FixItHint::CreateRemoval(
3248 getSpecifierRange(flag.getPosition(), 1)));
3249}
3250
3251void CheckPrintfHandler::HandleIgnoredFlag(
3252 const analyze_printf::PrintfSpecifier &FS,
3253 const analyze_printf::OptionalFlag &ignoredFlag,
3254 const analyze_printf::OptionalFlag &flag,
3255 const char *startSpecifier,
3256 unsigned specifierLen) {
3257 // Warn about ignored flag with a fixit removal.
3258 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
3259 << ignoredFlag.toString() << flag.toString(),
3260 getLocationOfByte(ignoredFlag.getPosition()),
3261 /*IsStringLocation*/true,
3262 getSpecifierRange(startSpecifier, specifierLen),
3263 FixItHint::CreateRemoval(
3264 getSpecifierRange(ignoredFlag.getPosition(), 1)));
3265}
3266
3267// Determines if the specified is a C++ class or struct containing
3268// a member with the specified name and kind (e.g. a CXXMethodDecl named
3269// "c_str()").
3270template<typename MemberKind>
3271static llvm::SmallPtrSet<MemberKind*, 1>
3272CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
3273 const RecordType *RT = Ty->getAs<RecordType>();
3274 llvm::SmallPtrSet<MemberKind*, 1> Results;
3275
3276 if (!RT)
3277 return Results;
3278 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
3279 if (!RD || !RD->getDefinition())
3280 return Results;
3281
3282 LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
3283 Sema::LookupMemberName);
3284 R.suppressDiagnostics();
3285
3286 // We just need to include all members of the right kind turned up by the
3287 // filter, at this point.
3288 if (S.LookupQualifiedName(R, RT->getDecl()))
3289 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3290 NamedDecl *decl = (*I)->getUnderlyingDecl();
3291 if (MemberKind *FK = dyn_cast<MemberKind>(decl))
3292 Results.insert(FK);
3293 }
3294 return Results;
3295}
3296
3297/// Check if we could call '.c_str()' on an object.
3298///
3299/// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
3300/// allow the call, or if it would be ambiguous).
3301bool Sema::hasCStrMethod(const Expr *E) {
3302 typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
3303 MethodSet Results =
3304 CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
3305 for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
3306 MI != ME; ++MI)
3307 if ((*MI)->getMinRequiredArguments() == 0)
3308 return true;
3309 return false;
3310}
3311
3312// Check if a (w)string was passed when a (w)char* was needed, and offer a
3313// better diagnostic if so. AT is assumed to be valid.
3314// Returns true when a c_str() conversion method is found.
3315bool CheckPrintfHandler::checkForCStrMembers(
3316 const analyze_printf::ArgType &AT, const Expr *E) {
3317 typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
3318
3319 MethodSet Results =
3320 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
3321
3322 for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
3323 MI != ME; ++MI) {
3324 const CXXMethodDecl *Method = *MI;
3325 if (Method->getMinRequiredArguments() == 0 &&
3326 AT.matchesType(S.Context, Method->getReturnType())) {
3327 // FIXME: Suggest parens if the expression needs them.
3328 SourceLocation EndLoc = S.getLocForEndOfToken(E->getLocEnd());
3329 S.Diag(E->getLocStart(), diag::note_printf_c_str)
3330 << "c_str()"
3331 << FixItHint::CreateInsertion(EndLoc, ".c_str()");
3332 return true;
3333 }
3334 }
3335
3336 return false;
3337}
3338
3339bool
3340CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
3341 &FS,
3342 const char *startSpecifier,
3343 unsigned specifierLen) {
3344
3345 using namespace analyze_format_string;
3346 using namespace analyze_printf;
3347 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
3348
3349 if (FS.consumesDataArgument()) {
3350 if (atFirstArg) {
3351 atFirstArg = false;
3352 usesPositionalArgs = FS.usesPositionalArg();
3353 }
3354 else if (usesPositionalArgs != FS.usesPositionalArg()) {
3355 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3356 startSpecifier, specifierLen);
3357 return false;
3358 }
3359 }
3360
3361 // First check if the field width, precision, and conversion specifier
3362 // have matching data arguments.
3363 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
3364 startSpecifier, specifierLen)) {
3365 return false;
3366 }
3367
3368 if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
3369 startSpecifier, specifierLen)) {
3370 return false;
3371 }
3372
3373 if (!CS.consumesDataArgument()) {
3374 // FIXME: Technically specifying a precision or field width here
3375 // makes no sense. Worth issuing a warning at some point.
3376 return true;
3377 }
3378
3379 // Consume the argument.
3380 unsigned argIndex = FS.getArgIndex();
3381 if (argIndex < NumDataArgs) {
3382 // The check to see if the argIndex is valid will come later.
3383 // We set the bit here because we may exit early from this
3384 // function if we encounter some other error.
3385 CoveredArgs.set(argIndex);
3386 }
3387
3388 // FreeBSD kernel extensions.
3389 if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
3390 CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
3391 // We need at least two arguments.
3392 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
3393 return false;
3394
3395 // Claim the second argument.
3396 CoveredArgs.set(argIndex + 1);
3397
3398 // Type check the first argument (int for %b, pointer for %D)
3399 const Expr *Ex = getDataArg(argIndex);
3400 const analyze_printf::ArgType &AT =
3401 (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
3402 ArgType(S.Context.IntTy) : ArgType::CPointerTy;
3403 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
3404 EmitFormatDiagnostic(
3405 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3406 << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3407 << false << Ex->getSourceRange(),
3408 Ex->getLocStart(), /*IsStringLocation*/false,
3409 getSpecifierRange(startSpecifier, specifierLen));
3410
3411 // Type check the second argument (char * for both %b and %D)
3412 Ex = getDataArg(argIndex + 1);
3413 const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
3414 if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
3415 EmitFormatDiagnostic(
3416 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3417 << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
3418 << false << Ex->getSourceRange(),
3419 Ex->getLocStart(), /*IsStringLocation*/false,
3420 getSpecifierRange(startSpecifier, specifierLen));
3421
3422 return true;
3423 }
3424
3425 // Check for using an Objective-C specific conversion specifier
3426 // in a non-ObjC literal.
3427 if (!ObjCContext && CS.isObjCArg()) {
3428 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
3429 specifierLen);
3430 }
3431
3432 // Check for invalid use of field width
3433 if (!FS.hasValidFieldWidth()) {
3434 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
3435 startSpecifier, specifierLen);
3436 }
3437
3438 // Check for invalid use of precision
3439 if (!FS.hasValidPrecision()) {
3440 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
3441 startSpecifier, specifierLen);
3442 }
3443
3444 // Check each flag does not conflict with any other component.
3445 if (!FS.hasValidThousandsGroupingPrefix())
3446 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
3447 if (!FS.hasValidLeadingZeros())
3448 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
3449 if (!FS.hasValidPlusPrefix())
3450 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
3451 if (!FS.hasValidSpacePrefix())
3452 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
3453 if (!FS.hasValidAlternativeForm())
3454 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
3455 if (!FS.hasValidLeftJustified())
3456 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
3457
3458 // Check that flags are not ignored by another flag
3459 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
3460 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
3461 startSpecifier, specifierLen);
3462 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
3463 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
3464 startSpecifier, specifierLen);
3465
3466 // Check the length modifier is valid with the given conversion specifier.
3467 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3468 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3469 diag::warn_format_nonsensical_length);
3470 else if (!FS.hasStandardLengthModifier())
3471 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3472 else if (!FS.hasStandardLengthConversionCombination())
3473 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3474 diag::warn_format_non_standard_conversion_spec);
3475
3476 if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3477 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3478
3479 // The remaining checks depend on the data arguments.
3480 if (HasVAListArg)
3481 return true;
3482
3483 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3484 return false;
3485
3486 const Expr *Arg = getDataArg(argIndex);
3487 if (!Arg)
3488 return true;
3489
3490 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
3491}
3492
3493static bool requiresParensToAddCast(const Expr *E) {
3494 // FIXME: We should have a general way to reason about operator
3495 // precedence and whether parens are actually needed here.
3496 // Take care of a few common cases where they aren't.
3497 const Expr *Inside = E->IgnoreImpCasts();
3498 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
3499 Inside = POE->getSyntacticForm()->IgnoreImpCasts();
3500
3501 switch (Inside->getStmtClass()) {
3502 case Stmt::ArraySubscriptExprClass:
3503 case Stmt::CallExprClass:
3504 case Stmt::CharacterLiteralClass:
3505 case Stmt::CXXBoolLiteralExprClass:
3506 case Stmt::DeclRefExprClass:
3507 case Stmt::FloatingLiteralClass:
3508 case Stmt::IntegerLiteralClass:
3509 case Stmt::MemberExprClass:
3510 case Stmt::ObjCArrayLiteralClass:
3511 case Stmt::ObjCBoolLiteralExprClass:
3512 case Stmt::ObjCBoxedExprClass:
3513 case Stmt::ObjCDictionaryLiteralClass:
3514 case Stmt::ObjCEncodeExprClass:
3515 case Stmt::ObjCIvarRefExprClass:
3516 case Stmt::ObjCMessageExprClass:
3517 case Stmt::ObjCPropertyRefExprClass:
3518 case Stmt::ObjCStringLiteralClass:
3519 case Stmt::ObjCSubscriptRefExprClass:
3520 case Stmt::ParenExprClass:
3521 case Stmt::StringLiteralClass:
3522 case Stmt::UnaryOperatorClass:
3523 return false;
3524 default:
3525 return true;
3526 }
3527}
3528
3529static std::pair<QualType, StringRef>
3530shouldNotPrintDirectly(const ASTContext &Context,
3531 QualType IntendedTy,
3532 const Expr *E) {
3533 // Use a 'while' to peel off layers of typedefs.
3534 QualType TyTy = IntendedTy;
3535 while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
3536 StringRef Name = UserTy->getDecl()->getName();
3537 QualType CastTy = llvm::StringSwitch<QualType>(Name)
3538 .Case("NSInteger", Context.LongTy)
3539 .Case("NSUInteger", Context.UnsignedLongTy)
3540 .Case("SInt32", Context.IntTy)
3541 .Case("UInt32", Context.UnsignedIntTy)
3542 .Default(QualType());
3543
3544 if (!CastTy.isNull())
3545 return std::make_pair(CastTy, Name);
3546
3547 TyTy = UserTy->desugar();
3548 }
3549
3550 // Strip parens if necessary.
3551 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
3552 return shouldNotPrintDirectly(Context,
3553 PE->getSubExpr()->getType(),
3554 PE->getSubExpr());
3555
3556 // If this is a conditional expression, then its result type is constructed
3557 // via usual arithmetic conversions and thus there might be no necessary
3558 // typedef sugar there. Recurse to operands to check for NSInteger &
3559 // Co. usage condition.
3560 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3561 QualType TrueTy, FalseTy;
3562 StringRef TrueName, FalseName;
3563
3564 std::tie(TrueTy, TrueName) =
3565 shouldNotPrintDirectly(Context,
3566 CO->getTrueExpr()->getType(),
3567 CO->getTrueExpr());
3568 std::tie(FalseTy, FalseName) =
3569 shouldNotPrintDirectly(Context,
3570 CO->getFalseExpr()->getType(),
3571 CO->getFalseExpr());
3572
3573 if (TrueTy == FalseTy)
3574 return std::make_pair(TrueTy, TrueName);
3575 else if (TrueTy.isNull())
3576 return std::make_pair(FalseTy, FalseName);
3577 else if (FalseTy.isNull())
3578 return std::make_pair(TrueTy, TrueName);
3579 }
3580
3581 return std::make_pair(QualType(), StringRef());
3582}
3583
3584bool
3585CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
3586 const char *StartSpecifier,
3587 unsigned SpecifierLen,
3588 const Expr *E) {
3589 using namespace analyze_format_string;
3590 using namespace analyze_printf;
3591 // Now type check the data expression that matches the
3592 // format specifier.
3593 const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
3594 ObjCContext);
3595 if (!AT.isValid())
3596 return true;
3597
3598 QualType ExprTy = E->getType();
3599 while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
3600 ExprTy = TET->getUnderlyingExpr()->getType();
3601 }
3602
3603 if (AT.matchesType(S.Context, ExprTy))
3604 return true;
3605
3606 // Look through argument promotions for our error message's reported type.
3607 // This includes the integral and floating promotions, but excludes array
3608 // and function pointer decay; seeing that an argument intended to be a
3609 // string has type 'char [6]' is probably more confusing than 'char *'.
3610 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3611 if (ICE->getCastKind() == CK_IntegralCast ||
3612 ICE->getCastKind() == CK_FloatingCast) {
3613 E = ICE->getSubExpr();
3614 ExprTy = E->getType();
3615
3616 // Check if we didn't match because of an implicit cast from a 'char'
3617 // or 'short' to an 'int'. This is done because printf is a varargs
3618 // function.
3619 if (ICE->getType() == S.Context.IntTy ||
3620 ICE->getType() == S.Context.UnsignedIntTy) {
3621 // All further checking is done on the subexpression.
3622 if (AT.matchesType(S.Context, ExprTy))
3623 return true;
3624 }
3625 }
3626 } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
3627 // Special case for 'a', which has type 'int' in C.
3628 // Note, however, that we do /not/ want to treat multibyte constants like
3629 // 'MooV' as characters! This form is deprecated but still exists.
3630 if (ExprTy == S.Context.IntTy)
3631 if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
3632 ExprTy = S.Context.CharTy;
3633 }
3634
3635 // Look through enums to their underlying type.
3636 bool IsEnum = false;
3637 if (auto EnumTy = ExprTy->getAs<EnumType>()) {
3638 ExprTy = EnumTy->getDecl()->getIntegerType();
3639 IsEnum = true;
3640 }
3641
3642 // %C in an Objective-C context prints a unichar, not a wchar_t.
3643 // If the argument is an integer of some kind, believe the %C and suggest
3644 // a cast instead of changing the conversion specifier.
3645 QualType IntendedTy = ExprTy;
3646 if (ObjCContext &&
3647 FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
3648 if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
3649 !ExprTy->isCharType()) {
3650 // 'unichar' is defined as a typedef of unsigned short, but we should
3651 // prefer using the typedef if it is visible.
3652 IntendedTy = S.Context.UnsignedShortTy;
3653
3654 // While we are here, check if the value is an IntegerLiteral that happens
3655 // to be within the valid range.
3656 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
3657 const llvm::APInt &V = IL->getValue();
3658 if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
3659 return true;
3660 }
3661
3662 LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
3663 Sema::LookupOrdinaryName);
3664 if (S.LookupName(Result, S.getCurScope())) {
3665 NamedDecl *ND = Result.getFoundDecl();
3666 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
3667 if (TD->getUnderlyingType() == IntendedTy)
3668 IntendedTy = S.Context.getTypedefType(TD);
3669 }
3670 }
3671 }
3672
3673 // Special-case some of Darwin's platform-independence types by suggesting
3674 // casts to primitive types that are known to be large enough.
3675 bool ShouldNotPrintDirectly = false; StringRef CastTyName;
3676 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
3677 QualType CastTy;
3678 std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
3679 if (!CastTy.isNull()) {
3680 IntendedTy = CastTy;
3681 ShouldNotPrintDirectly = true;
3682 }
3683 }
3684
3685 // We may be able to offer a FixItHint if it is a supported type.
3686 PrintfSpecifier fixedFS = FS;
3687 bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
3688 S.Context, ObjCContext);
3689
3690 if (success) {
3691 // Get the fix string from the fixed format specifier
3692 SmallString<16> buf;
3693 llvm::raw_svector_ostream os(buf);
3694 fixedFS.toString(os);
3695
3696 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
3697
3698 if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
3699 // In this case, the specifier is wrong and should be changed to match
3700 // the argument.
3701 EmitFormatDiagnostic(
3702 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3703 << AT.getRepresentativeTypeName(S.Context) << IntendedTy << IsEnum
3704 << E->getSourceRange(),
3705 E->getLocStart(),
3706 /*IsStringLocation*/false,
3707 SpecRange,
3708 FixItHint::CreateReplacement(SpecRange, os.str()));
3709
3710 } else {
3711 // The canonical type for formatting this value is different from the
3712 // actual type of the expression. (This occurs, for example, with Darwin's
3713 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
3714 // should be printed as 'long' for 64-bit compatibility.)
3715 // Rather than emitting a normal format/argument mismatch, we want to
3716 // add a cast to the recommended type (and correct the format string
3717 // if necessary).
3718 SmallString<16> CastBuf;
3719 llvm::raw_svector_ostream CastFix(CastBuf);
3720 CastFix << "(";
3721 IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
3722 CastFix << ")";
3723
3724 SmallVector<FixItHint,4> Hints;
3725 if (!AT.matchesType(S.Context, IntendedTy))
3726 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
3727
3728 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
3729 // If there's already a cast present, just replace it.
3730 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
3731 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
3732
3733 } else if (!requiresParensToAddCast(E)) {
3734 // If the expression has high enough precedence,
3735 // just write the C-style cast.
3736 Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3737 CastFix.str()));
3738 } else {
3739 // Otherwise, add parens around the expression as well as the cast.
3740 CastFix << "(";
3741 Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3742 CastFix.str()));
3743
3744 SourceLocation After = S.getLocForEndOfToken(E->getLocEnd());
3745 Hints.push_back(FixItHint::CreateInsertion(After, ")"));
3746 }
3747
3748 if (ShouldNotPrintDirectly) {
3749 // The expression has a type that should not be printed directly.
3750 // We extract the name from the typedef because we don't want to show
3751 // the underlying type in the diagnostic.
3752 StringRef Name;
3753 if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
3754 Name = TypedefTy->getDecl()->getName();
3755 else
3756 Name = CastTyName;
3757 EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
3758 << Name << IntendedTy << IsEnum
3759 << E->getSourceRange(),
3760 E->getLocStart(), /*IsStringLocation=*/false,
3761 SpecRange, Hints);
3762 } else {
3763 // In this case, the expression could be printed using a different
3764 // specifier, but we've decided that the specifier is probably correct
3765 // and we should cast instead. Just use the normal warning message.
3766 EmitFormatDiagnostic(
3767 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3768 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
3769 << E->getSourceRange(),
3770 E->getLocStart(), /*IsStringLocation*/false,
3771 SpecRange, Hints);
3772 }
3773 }
3774 } else {
3775 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
3776 SpecifierLen);
3777 // Since the warning for passing non-POD types to variadic functions
3778 // was deferred until now, we emit a warning for non-POD
3779 // arguments here.
3780 switch (S.isValidVarArgType(ExprTy)) {
3781 case Sema::VAK_Valid:
3782 case Sema::VAK_ValidInCXX11:
3783 EmitFormatDiagnostic(
3784 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3785 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
3786 << CSR
3787 << E->getSourceRange(),
3788 E->getLocStart(), /*IsStringLocation*/false, CSR);
3789 break;
3790
3791 case Sema::VAK_Undefined:
3792 case Sema::VAK_MSVCUndefined:
3793 EmitFormatDiagnostic(
3794 S.PDiag(diag::warn_non_pod_vararg_with_format_string)
3795 << S.getLangOpts().CPlusPlus11
3796 << ExprTy
3797 << CallType
3798 << AT.getRepresentativeTypeName(S.Context)
3799 << CSR
3800 << E->getSourceRange(),
3801 E->getLocStart(), /*IsStringLocation*/false, CSR);
3802 checkForCStrMembers(AT, E);
3803 break;
3804
3805 case Sema::VAK_Invalid:
3806 if (ExprTy->isObjCObjectType())
3807 EmitFormatDiagnostic(
3808 S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
3809 << S.getLangOpts().CPlusPlus11
3810 << ExprTy
3811 << CallType
3812 << AT.getRepresentativeTypeName(S.Context)
3813 << CSR
3814 << E->getSourceRange(),
3815 E->getLocStart(), /*IsStringLocation*/false, CSR);
3816 else
3817 // FIXME: If this is an initializer list, suggest removing the braces
3818 // or inserting a cast to the target type.
3819 S.Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg_format)
3820 << isa<InitListExpr>(E) << ExprTy << CallType
3821 << AT.getRepresentativeTypeName(S.Context)
3822 << E->getSourceRange();
3823 break;
3824 }
3825
3826 assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
3827 "format string specifier index out of range");
3828 CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
3829 }
3830
3831 return true;
3832}
3833
3834//===--- CHECK: Scanf format string checking ------------------------------===//
3835
3836namespace {
3837class CheckScanfHandler : public CheckFormatHandler {
3838public:
3839 CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
3840 const Expr *origFormatExpr, unsigned firstDataArg,
3841 unsigned numDataArgs, const char *beg, bool hasVAListArg,
3842 ArrayRef<const Expr *> Args,
3843 unsigned formatIdx, bool inFunctionCall,
3844 Sema::VariadicCallType CallType,
3845 llvm::SmallBitVector &CheckedVarArgs)
3846 : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
3847 numDataArgs, beg, hasVAListArg,
3848 Args, formatIdx, inFunctionCall, CallType,
3849 CheckedVarArgs)
3850 {}
3851
3852 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
3853 const char *startSpecifier,
3854 unsigned specifierLen) override;
3855
3856 bool HandleInvalidScanfConversionSpecifier(
3857 const analyze_scanf::ScanfSpecifier &FS,
3858 const char *startSpecifier,
3859 unsigned specifierLen) override;
3860
3861 void HandleIncompleteScanList(const char *start, const char *end) override;
3862};
3863}
3864
3865void CheckScanfHandler::HandleIncompleteScanList(const char *start,
3866 const char *end) {
3867 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
3868 getLocationOfByte(end), /*IsStringLocation*/true,
3869 getSpecifierRange(start, end - start));
3870}
3871
3872bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
3873 const analyze_scanf::ScanfSpecifier &FS,
3874 const char *startSpecifier,
3875 unsigned specifierLen) {
3876
3877 const analyze_scanf::ScanfConversionSpecifier &CS =
3878 FS.getConversionSpecifier();
3879
3880 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
3881 getLocationOfByte(CS.getStart()),
3882 startSpecifier, specifierLen,
3883 CS.getStart(), CS.getLength());
3884}
3885
3886bool CheckScanfHandler::HandleScanfSpecifier(
3887 const analyze_scanf::ScanfSpecifier &FS,
3888 const char *startSpecifier,
3889 unsigned specifierLen) {
3890
3891 using namespace analyze_scanf;
3892 using namespace analyze_format_string;
3893
3894 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
3895
3896 // Handle case where '%' and '*' don't consume an argument. These shouldn't
3897 // be used to decide if we are using positional arguments consistently.
3898 if (FS.consumesDataArgument()) {
3899 if (atFirstArg) {
3900 atFirstArg = false;
3901 usesPositionalArgs = FS.usesPositionalArg();
3902 }
3903 else if (usesPositionalArgs != FS.usesPositionalArg()) {
3904 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3905 startSpecifier, specifierLen);
3906 return false;
3907 }
3908 }
3909
3910 // Check if the field with is non-zero.
3911 const OptionalAmount &Amt = FS.getFieldWidth();
3912 if (Amt.getHowSpecified() == OptionalAmount::Constant) {
3913 if (Amt.getConstantAmount() == 0) {
3914 const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
3915 Amt.getConstantLength());
3916 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
3917 getLocationOfByte(Amt.getStart()),
3918 /*IsStringLocation*/true, R,
3919 FixItHint::CreateRemoval(R));
3920 }
3921 }
3922
3923 if (!FS.consumesDataArgument()) {
3924 // FIXME: Technically specifying a precision or field width here
3925 // makes no sense. Worth issuing a warning at some point.
3926 return true;
3927 }
3928
3929 // Consume the argument.
3930 unsigned argIndex = FS.getArgIndex();
3931 if (argIndex < NumDataArgs) {
3932 // The check to see if the argIndex is valid will come later.
3933 // We set the bit here because we may exit early from this
3934 // function if we encounter some other error.
3935 CoveredArgs.set(argIndex);
3936 }
3937
3938 // Check the length modifier is valid with the given conversion specifier.
3939 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3940 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3941 diag::warn_format_nonsensical_length);
3942 else if (!FS.hasStandardLengthModifier())
3943 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3944 else if (!FS.hasStandardLengthConversionCombination())
3945 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3946 diag::warn_format_non_standard_conversion_spec);
3947
3948 if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3949 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3950
3951 // The remaining checks depend on the data arguments.
3952 if (HasVAListArg)
3953 return true;
3954
3955 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3956 return false;
3957
3958 // Check that the argument type matches the format specifier.
3959 const Expr *Ex = getDataArg(argIndex);
3960 if (!Ex)
3961 return true;
3962
3963 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
3964 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
3965 ScanfSpecifier fixedFS = FS;
3966 bool success = fixedFS.fixType(Ex->getType(),
3967 Ex->IgnoreImpCasts()->getType(),
3968 S.getLangOpts(), S.Context);
3969
3970 if (success) {
3971 // Get the fix string from the fixed format specifier.
3972 SmallString<128> buf;
3973 llvm::raw_svector_ostream os(buf);
3974 fixedFS.toString(os);
3975
3976 EmitFormatDiagnostic(
3977 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3978 << AT.getRepresentativeTypeName(S.Context) << Ex->getType() << false
3979 << Ex->getSourceRange(),
3980 Ex->getLocStart(),
3981 /*IsStringLocation*/false,
3982 getSpecifierRange(startSpecifier, specifierLen),
3983 FixItHint::CreateReplacement(
3984 getSpecifierRange(startSpecifier, specifierLen),
3985 os.str()));
3986 } else {
3987 EmitFormatDiagnostic(
3988 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3989 << AT.getRepresentativeTypeName(S.Context) << Ex->getType() << false
3990 << Ex->getSourceRange(),
3991 Ex->getLocStart(),
3992 /*IsStringLocation*/false,
3993 getSpecifierRange(startSpecifier, specifierLen));
3994 }
3995 }
3996
3997 return true;
3998}
3999
4000void Sema::CheckFormatString(const StringLiteral *FExpr,
4001 const Expr *OrigFormatExpr,
4002 ArrayRef<const Expr *> Args,
4003 bool HasVAListArg, unsigned format_idx,
4004 unsigned firstDataArg, FormatStringType Type,
4005 bool inFunctionCall, VariadicCallType CallType,
4006 llvm::SmallBitVector &CheckedVarArgs) {
4007
4008 // CHECK: is the format string a wide literal?
4009 if (!FExpr->isAscii() && !FExpr->isUTF8()) {
4010 CheckFormatHandler::EmitFormatDiagnostic(
4011 *this, inFunctionCall, Args[format_idx],
4012 PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
4013 /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
4014 return;
4015 }
4016
4017 // Str - The format string. NOTE: this is NOT null-terminated!
4018 StringRef StrRef = FExpr->getString();
4019 const char *Str = StrRef.data();
4020 // Account for cases where the string literal is truncated in a declaration.
4021 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
4022 assert(T && "String literal not of constant array type!");
4023 size_t TypeSize = T->getSize().getZExtValue();
4024 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
4025 const unsigned numDataArgs = Args.size() - firstDataArg;
4026
4027 // Emit a warning if the string literal is truncated and does not contain an
4028 // embedded null character.
4029 if (TypeSize <= StrRef.size() &&
4030 StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
4031 CheckFormatHandler::EmitFormatDiagnostic(
4032 *this, inFunctionCall, Args[format_idx],
4033 PDiag(diag::warn_printf_format_string_not_null_terminated),
4034 FExpr->getLocStart(),
4035 /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
4036 return;
4037 }
4038
4039 // CHECK: empty format string?
4040 if (StrLen == 0 && numDataArgs > 0) {
4041 CheckFormatHandler::EmitFormatDiagnostic(
4042 *this, inFunctionCall, Args[format_idx],
4043 PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
4044 /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
4045 return;
4046 }
4047
4048 if (Type == FST_Printf || Type == FST_NSString ||
4049 Type == FST_FreeBSDKPrintf) {
4050 CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
4051 numDataArgs, (Type == FST_NSString),
4052 Str, HasVAListArg, Args, format_idx,
4053 inFunctionCall, CallType, CheckedVarArgs);
4054
4055 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
4056 getLangOpts(),
4057 Context.getTargetInfo(),
4058 Type == FST_FreeBSDKPrintf))
4059 H.DoneProcessing();
4060 } else if (Type == FST_Scanf) {
4061 CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
4062 Str, HasVAListArg, Args, format_idx,
4063 inFunctionCall, CallType, CheckedVarArgs);
4064
4065 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
4066 getLangOpts(),
4067 Context.getTargetInfo()))
4068 H.DoneProcessing();
4069 } // TODO: handle other formats
4070}
4071
4072bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
4073 // Str - The format string. NOTE: this is NOT null-terminated!
4074 StringRef StrRef = FExpr->getString();
4075 const char *Str = StrRef.data();
4076 // Account for cases where the string literal is truncated in a declaration.
4077 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
4078 assert(T && "String literal not of constant array type!");
4079 size_t TypeSize = T->getSize().getZExtValue();
4080 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
4081 return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
4082 getLangOpts(),
4083 Context.getTargetInfo());
4084}
4085
4086//===--- CHECK: Warn on use of wrong absolute value function. -------------===//
4087
4088// Returns the related absolute value function that is larger, of 0 if one
4089// does not exist.
4090static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
4091 switch (AbsFunction) {
4092 default:
4093 return 0;
4094
4095 case Builtin::BI__builtin_abs:
4096 return Builtin::BI__builtin_labs;
4097 case Builtin::BI__builtin_labs:
4098 return Builtin::BI__builtin_llabs;
4099 case Builtin::BI__builtin_llabs:
4100 return 0;
4101
4102 case Builtin::BI__builtin_fabsf:
4103 return Builtin::BI__builtin_fabs;
4104 case Builtin::BI__builtin_fabs:
4105 return Builtin::BI__builtin_fabsl;
4106 case Builtin::BI__builtin_fabsl:
4107 return 0;
4108
4109 case Builtin::BI__builtin_cabsf:
4110 return Builtin::BI__builtin_cabs;
4111 case Builtin::BI__builtin_cabs:
4112 return Builtin::BI__builtin_cabsl;
4113 case Builtin::BI__builtin_cabsl:
4114 return 0;
4115
4116 case Builtin::BIabs:
4117 return Builtin::BIlabs;
4118 case Builtin::BIlabs:
4119 return Builtin::BIllabs;
4120 case Builtin::BIllabs:
4121 return 0;
4122
4123 case Builtin::BIfabsf:
4124 return Builtin::BIfabs;
4125 case Builtin::BIfabs:
4126 return Builtin::BIfabsl;
4127 case Builtin::BIfabsl:
4128 return 0;
4129
4130 case Builtin::BIcabsf:
4131 return Builtin::BIcabs;
4132 case Builtin::BIcabs:
4133 return Builtin::BIcabsl;
4134 case Builtin::BIcabsl:
4135 return 0;
4136 }
4137}
4138
4139// Returns the argument type of the absolute value function.
4140static QualType getAbsoluteValueArgumentType(ASTContext &Context,
4141 unsigned AbsType) {
4142 if (AbsType == 0)
4143 return QualType();
4144
4145 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
4146 QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
4147 if (Error != ASTContext::GE_None)
4148 return QualType();
4149
4150 const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
4151 if (!FT)
4152 return QualType();
4153
4154 if (FT->getNumParams() != 1)
4155 return QualType();
4156
4157 return FT->getParamType(0);
4158}
4159
4160// Returns the best absolute value function, or zero, based on type and
4161// current absolute value function.
4162static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
4163 unsigned AbsFunctionKind) {
4164 unsigned BestKind = 0;
4165 uint64_t ArgSize = Context.getTypeSize(ArgType);
4166 for (unsigned Kind = AbsFunctionKind; Kind != 0;
4167 Kind = getLargerAbsoluteValueFunction(Kind)) {
4168 QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
4169 if (Context.getTypeSize(ParamType) >= ArgSize) {
4170 if (BestKind == 0)
4171 BestKind = Kind;
4172 else if (Context.hasSameType(ParamType, ArgType)) {
4173 BestKind = Kind;
4174 break;
4175 }
4176 }
4177 }
4178 return BestKind;
4179}
4180
4181enum AbsoluteValueKind {
4182 AVK_Integer,
4183 AVK_Floating,
4184 AVK_Complex
4185};
4186
4187static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
4188 if (T->isIntegralOrEnumerationType())
4189 return AVK_Integer;
4190 if (T->isRealFloatingType())
4191 return AVK_Floating;
4192 if (T->isAnyComplexType())
4193 return AVK_Complex;
4194
4195 llvm_unreachable("Type not integer, floating, or complex");
4196}
4197
4198// Changes the absolute value function to a different type. Preserves whether
4199// the function is a builtin.
4200static unsigned changeAbsFunction(unsigned AbsKind,
4201 AbsoluteValueKind ValueKind) {
4202 switch (ValueKind) {
4203 case AVK_Integer:
4204 switch (AbsKind) {
4205 default:
4206 return 0;
4207 case Builtin::BI__builtin_fabsf:
4208 case Builtin::BI__builtin_fabs:
4209 case Builtin::BI__builtin_fabsl:
4210 case Builtin::BI__builtin_cabsf:
4211 case Builtin::BI__builtin_cabs:
4212 case Builtin::BI__builtin_cabsl:
4213 return Builtin::BI__builtin_abs;
4214 case Builtin::BIfabsf:
4215 case Builtin::BIfabs:
4216 case Builtin::BIfabsl:
4217 case Builtin::BIcabsf:
4218 case Builtin::BIcabs:
4219 case Builtin::BIcabsl:
4220 return Builtin::BIabs;
4221 }
4222 case AVK_Floating:
4223 switch (AbsKind) {
4224 default:
4225 return 0;
4226 case Builtin::BI__builtin_abs:
4227 case Builtin::BI__builtin_labs:
4228 case Builtin::BI__builtin_llabs:
4229 case Builtin::BI__builtin_cabsf:
4230 case Builtin::BI__builtin_cabs:
4231 case Builtin::BI__builtin_cabsl:
4232 return Builtin::BI__builtin_fabsf;
4233 case Builtin::BIabs:
4234 case Builtin::BIlabs:
4235 case Builtin::BIllabs:
4236 case Builtin::BIcabsf:
4237 case Builtin::BIcabs:
4238 case Builtin::BIcabsl:
4239 return Builtin::BIfabsf;
4240 }
4241 case AVK_Complex:
4242 switch (AbsKind) {
4243 default:
4244 return 0;
4245 case Builtin::BI__builtin_abs:
4246 case Builtin::BI__builtin_labs:
4247 case Builtin::BI__builtin_llabs:
4248 case Builtin::BI__builtin_fabsf:
4249 case Builtin::BI__builtin_fabs:
4250 case Builtin::BI__builtin_fabsl:
4251 return Builtin::BI__builtin_cabsf;
4252 case Builtin::BIabs:
4253 case Builtin::BIlabs:
4254 case Builtin::BIllabs:
4255 case Builtin::BIfabsf:
4256 case Builtin::BIfabs:
4257 case Builtin::BIfabsl:
4258 return Builtin::BIcabsf;
4259 }
4260 }
4261 llvm_unreachable("Unable to convert function");
4262}
4263
4264static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
4265 const IdentifierInfo *FnInfo = FDecl->getIdentifier();
4266 if (!FnInfo)
4267 return 0;
4268
4269 switch (FDecl->getBuiltinID()) {
4270 default:
4271 return 0;
4272 case Builtin::BI__builtin_abs:
4273 case Builtin::BI__builtin_fabs:
4274 case Builtin::BI__builtin_fabsf:
4275 case Builtin::BI__builtin_fabsl:
4276 case Builtin::BI__builtin_labs:
4277 case Builtin::BI__builtin_llabs:
4278 case Builtin::BI__builtin_cabs:
4279 case Builtin::BI__builtin_cabsf:
4280 case Builtin::BI__builtin_cabsl:
4281 case Builtin::BIabs:
4282 case Builtin::BIlabs:
4283 case Builtin::BIllabs:
4284 case Builtin::BIfabs:
4285 case Builtin::BIfabsf:
4286 case Builtin::BIfabsl:
4287 case Builtin::BIcabs:
4288 case Builtin::BIcabsf:
4289 case Builtin::BIcabsl:
4290 return FDecl->getBuiltinID();
4291 }
4292 llvm_unreachable("Unknown Builtin type");
4293}
4294
4295// If the replacement is valid, emit a note with replacement function.
4296// Additionally, suggest including the proper header if not already included.
4297static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
4298 unsigned AbsKind, QualType ArgType) {
4299 bool EmitHeaderHint = true;
4300 const char *HeaderName = nullptr;
4301 const char *FunctionName = nullptr;
4302 if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
4303 FunctionName = "std::abs";
4304 if (ArgType->isIntegralOrEnumerationType()) {
4305 HeaderName = "cstdlib";
4306 } else if (ArgType->isRealFloatingType()) {
4307 HeaderName = "cmath";
4308 } else {
4309 llvm_unreachable("Invalid Type");
4310 }
4311
4312 // Lookup all std::abs
4313 if (NamespaceDecl *Std = S.getStdNamespace()) {
4314 LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
4315 R.suppressDiagnostics();
4316 S.LookupQualifiedName(R, Std);
4317
4318 for (const auto *I : R) {
4319 const FunctionDecl *FDecl = nullptr;
4320 if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
4321 FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
4322 } else {
4323 FDecl = dyn_cast<FunctionDecl>(I);
4324 }
4325 if (!FDecl)
4326 continue;
4327
4328 // Found std::abs(), check that they are the right ones.
4329 if (FDecl->getNumParams() != 1)
4330 continue;
4331
4332 // Check that the parameter type can handle the argument.
4333 QualType ParamType = FDecl->getParamDecl(0)->getType();
4334 if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
4335 S.Context.getTypeSize(ArgType) <=
4336 S.Context.getTypeSize(ParamType)) {
4337 // Found a function, don't need the header hint.
4338 EmitHeaderHint = false;
4339 break;
4340 }
4341 }
4342 }
4343 } else {
4344 FunctionName = S.Context.BuiltinInfo.GetName(AbsKind);
4345 HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
4346
4347 if (HeaderName) {
4348 DeclarationName DN(&S.Context.Idents.get(FunctionName));
4349 LookupResult R(S, DN, Loc, Sema::LookupAnyName);
4350 R.suppressDiagnostics();
4351 S.LookupName(R, S.getCurScope());
4352
4353 if (R.isSingleResult()) {
4354 FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
4355 if (FD && FD->getBuiltinID() == AbsKind) {
4356 EmitHeaderHint = false;
4357 } else {
4358 return;
4359 }
4360 } else if (!R.empty()) {
4361 return;
4362 }
4363 }
4364 }
4365
4366 S.Diag(Loc, diag::note_replace_abs_function)
4367 << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
4368
4369 if (!HeaderName)
4370 return;
4371
4372 if (!EmitHeaderHint)
4373 return;
4374
4375 S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
4376 << FunctionName;
4377}
4378
4379static bool IsFunctionStdAbs(const FunctionDecl *FDecl) {
4380 if (!FDecl)
4381 return false;
4382
4383 if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr("abs"))
4384 return false;
4385
4386 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(FDecl->getDeclContext());
4387
4388 while (ND && ND->isInlineNamespace()) {
4389 ND = dyn_cast<NamespaceDecl>(ND->getDeclContext());
4390 }
4391
4392 if (!ND || !ND->getIdentifier() || !ND->getIdentifier()->isStr("std"))
4393 return false;
4394
4395 if (!isa<TranslationUnitDecl>(ND->getDeclContext()))
4396 return false;
4397
4398 return true;
4399}
4400
4401// Warn when using the wrong abs() function.
4402void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
4403 const FunctionDecl *FDecl,
4404 IdentifierInfo *FnInfo) {
4405 if (Call->getNumArgs() != 1)
4406 return;
4407
4408 unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
4409 bool IsStdAbs = IsFunctionStdAbs(FDecl);
4410 if (AbsKind == 0 && !IsStdAbs)
4411 return;
4412
4413 QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
4414 QualType ParamType = Call->getArg(0)->getType();
4415
4416 // Unsigned types cannot be negative. Suggest removing the absolute value
4417 // function call.
4418 if (ArgType->isUnsignedIntegerType()) {
4419 const char *FunctionName =
4420 IsStdAbs ? "std::abs" : Context.BuiltinInfo.GetName(AbsKind);
4421 Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
4422 Diag(Call->getExprLoc(), diag::note_remove_abs)
4423 << FunctionName
4424 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
4425 return;
4426 }
4427
4428 // std::abs has overloads which prevent most of the absolute value problems
4429 // from occurring.
4430 if (IsStdAbs)
4431 return;
4432
4433 AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
4434 AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
4435
4436 // The argument and parameter are the same kind. Check if they are the right
4437 // size.
4438 if (ArgValueKind == ParamValueKind) {
4439 if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
4440 return;
4441
4442 unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
4443 Diag(Call->getExprLoc(), diag::warn_abs_too_small)
4444 << FDecl << ArgType << ParamType;
4445
4446 if (NewAbsKind == 0)
4447 return;
4448
4449 emitReplacement(*this, Call->getExprLoc(),
4450 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
4451 return;
4452 }
4453
4454 // ArgValueKind != ParamValueKind
4455 // The wrong type of absolute value function was used. Attempt to find the
4456 // proper one.
4457 unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
4458 NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
4459 if (NewAbsKind == 0)
4460 return;
4461
4462 Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
4463 << FDecl << ParamValueKind << ArgValueKind;
4464
4465 emitReplacement(*this, Call->getExprLoc(),
4466 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
4467 return;
4468}
4469
4470//===--- CHECK: Standard memory functions ---------------------------------===//
4471
4472/// \brief Takes the expression passed to the size_t parameter of functions
4473/// such as memcmp, strncat, etc and warns if it's a comparison.
4474///
4475/// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
4476static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
4477 IdentifierInfo *FnName,
4478 SourceLocation FnLoc,
4479 SourceLocation RParenLoc) {
4480 const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
4481 if (!Size)
4482 return false;
4483
4484 // if E is binop and op is >, <, >=, <=, ==, &&, ||:
4485 if (!Size->isComparisonOp() && !Size->isEqualityOp() && !Size->isLogicalOp())
4486 return false;
4487
4488 SourceRange SizeRange = Size->getSourceRange();
4489 S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
4490 << SizeRange << FnName;
4491 S.Diag(FnLoc, diag::note_memsize_comparison_paren)
4492 << FnName << FixItHint::CreateInsertion(
4493 S.getLocForEndOfToken(Size->getLHS()->getLocEnd()), ")")
4494 << FixItHint::CreateRemoval(RParenLoc);
4495 S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
4496 << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
4497 << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
4498 ")");
4499
4500 return true;
4501}
4502
4503/// \brief Determine whether the given type is or contains a dynamic class type
4504/// (e.g., whether it has a vtable).
4505static const CXXRecordDecl *getContainedDynamicClass(QualType T,
4506 bool &IsContained) {
4507 // Look through array types while ignoring qualifiers.
4508 const Type *Ty = T->getBaseElementTypeUnsafe();
4509 IsContained = false;
4510
4511 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
4512 RD = RD ? RD->getDefinition() : nullptr;
4513 if (!RD)
4514 return nullptr;
4515
4516 if (RD->isDynamicClass())
4517 return RD;
4518
4519 // Check all the fields. If any bases were dynamic, the class is dynamic.
4520 // It's impossible for a class to transitively contain itself by value, so
4521 // infinite recursion is impossible.
4522 for (auto *FD : RD->fields()) {
4523 bool SubContained;
4524 if (const CXXRecordDecl *ContainedRD =
4525 getContainedDynamicClass(FD->getType(), SubContained)) {
4526 IsContained = true;
4527 return ContainedRD;
4528 }
4529 }
4530
4531 return nullptr;
4532}
4533
4534/// \brief If E is a sizeof expression, returns its argument expression,
4535/// otherwise returns NULL.
4536static const Expr *getSizeOfExprArg(const Expr* E) {
4537 if (const UnaryExprOrTypeTraitExpr *SizeOf =
4538 dyn_cast<UnaryExprOrTypeTraitExpr>(E))
4539 if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
4540 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
4541
4542 return nullptr;
4543}
4544
4545/// \brief If E is a sizeof expression, returns its argument type.
4546static QualType getSizeOfArgType(const Expr* E) {
4547 if (const UnaryExprOrTypeTraitExpr *SizeOf =
4548 dyn_cast<UnaryExprOrTypeTraitExpr>(E))
4549 if (SizeOf->getKind() == clang::UETT_SizeOf)
4550 return SizeOf->getTypeOfArgument();
4551
4552 return QualType();
4553}
4554
4555/// \brief Check for dangerous or invalid arguments to memset().
4556///
4557/// This issues warnings on known problematic, dangerous or unspecified
4558/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
4559/// function calls.
4560///
4561/// \param Call The call expression to diagnose.
4562void Sema::CheckMemaccessArguments(const CallExpr *Call,
4563 unsigned BId,
4564 IdentifierInfo *FnName) {
4565 assert(BId != 0);
4566
4567 // It is possible to have a non-standard definition of memset. Validate
4568 // we have enough arguments, and if not, abort further checking.
4569 unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
4570 if (Call->getNumArgs() < ExpectedNumArgs)
4571 return;
4572
4573 unsigned LastArg = (BId == Builtin::BImemset ||
4574 BId == Builtin::BIstrndup ? 1 : 2);
4575 unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
4576 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
4577
4578 if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
4579 Call->getLocStart(), Call->getRParenLoc()))
4580 return;
4581
4582 // We have special checking when the length is a sizeof expression.
4583 QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
4584 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
4585 llvm::FoldingSetNodeID SizeOfArgID;
4586
4587 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
4588 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
4589 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
4590
4591 QualType DestTy = Dest->getType();
4592 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
4593 QualType PointeeTy = DestPtrTy->getPointeeType();
4594
4595 // Never warn about void type pointers. This can be used to suppress
4596 // false positives.
4597 if (PointeeTy->isVoidType())
4598 continue;
4599
4600 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
4601 // actually comparing the expressions for equality. Because computing the
4602 // expression IDs can be expensive, we only do this if the diagnostic is
4603 // enabled.
4604 if (SizeOfArg &&
4605 !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
4606 SizeOfArg->getExprLoc())) {
4607 // We only compute IDs for expressions if the warning is enabled, and
4608 // cache the sizeof arg's ID.
4609 if (SizeOfArgID == llvm::FoldingSetNodeID())
4610 SizeOfArg->Profile(SizeOfArgID, Context, true);
4611 llvm::FoldingSetNodeID DestID;
4612 Dest->Profile(DestID, Context, true);
4613 if (DestID == SizeOfArgID) {
4614 // TODO: For strncpy() and friends, this could suggest sizeof(dst)
4615 // over sizeof(src) as well.
4616 unsigned ActionIdx = 0; // Default is to suggest dereferencing.
4617 StringRef ReadableName = FnName->getName();
4618
4619 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
4620 if (UnaryOp->getOpcode() == UO_AddrOf)
4621 ActionIdx = 1; // If its an address-of operator, just remove it.
4622 if (!PointeeTy->isIncompleteType() &&
4623 (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
4624 ActionIdx = 2; // If the pointee's size is sizeof(char),
4625 // suggest an explicit length.
4626
4627 // If the function is defined as a builtin macro, do not show macro
4628 // expansion.
4629 SourceLocation SL = SizeOfArg->getExprLoc();
4630 SourceRange DSR = Dest->getSourceRange();
4631 SourceRange SSR = SizeOfArg->getSourceRange();
4632 SourceManager &SM = getSourceManager();
4633
4634 if (SM.isMacroArgExpansion(SL)) {
4635 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
4636 SL = SM.getSpellingLoc(SL);
4637 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
4638 SM.getSpellingLoc(DSR.getEnd()));
4639 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
4640 SM.getSpellingLoc(SSR.getEnd()));
4641 }
4642
4643 DiagRuntimeBehavior(SL, SizeOfArg,
4644 PDiag(diag::warn_sizeof_pointer_expr_memaccess)
4645 << ReadableName
4646 << PointeeTy
4647 << DestTy
4648 << DSR
4649 << SSR);
4650 DiagRuntimeBehavior(SL, SizeOfArg,
4651 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
4652 << ActionIdx
4653 << SSR);
4654
4655 break;
4656 }
4657 }
4658
4659 // Also check for cases where the sizeof argument is the exact same
4660 // type as the memory argument, and where it points to a user-defined
4661 // record type.
4662 if (SizeOfArgTy != QualType()) {
4663 if (PointeeTy->isRecordType() &&
4664 Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
4665 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
4666 PDiag(diag::warn_sizeof_pointer_type_memaccess)
4667 << FnName << SizeOfArgTy << ArgIdx
4668 << PointeeTy << Dest->getSourceRange()
4669 << LenExpr->getSourceRange());
4670 break;
4671 }
4672 }
4673
4674 // Always complain about dynamic classes.
4675 bool IsContained;
4676 if (const CXXRecordDecl *ContainedRD =
4677 getContainedDynamicClass(PointeeTy, IsContained)) {
4678
4679 unsigned OperationType = 0;
4680 // "overwritten" if we're warning about the destination for any call
4681 // but memcmp; otherwise a verb appropriate to the call.
4682 if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
4683 if (BId == Builtin::BImemcpy)
4684 OperationType = 1;
4685 else if(BId == Builtin::BImemmove)
4686 OperationType = 2;
4687 else if (BId == Builtin::BImemcmp)
4688 OperationType = 3;
4689 }
4690
4691 DiagRuntimeBehavior(
4692 Dest->getExprLoc(), Dest,
4693 PDiag(diag::warn_dyn_class_memaccess)
4694 << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
4695 << FnName << IsContained << ContainedRD << OperationType
4696 << Call->getCallee()->getSourceRange());
4697 } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
4698 BId != Builtin::BImemset)
4699 DiagRuntimeBehavior(
4700 Dest->getExprLoc(), Dest,
4701 PDiag(diag::warn_arc_object_memaccess)
4702 << ArgIdx << FnName << PointeeTy
4703 << Call->getCallee()->getSourceRange());
4704 else
4705 continue;
4706
4707 DiagRuntimeBehavior(
4708 Dest->getExprLoc(), Dest,
4709 PDiag(diag::note_bad_memaccess_silence)
4710 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
4711 break;
4712 }
4713 }
4714}
4715
4716// A little helper routine: ignore addition and subtraction of integer literals.
4717// This intentionally does not ignore all integer constant expressions because
4718// we don't want to remove sizeof().
4719static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
4720 Ex = Ex->IgnoreParenCasts();
4721
4722 for (;;) {
4723 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
4724 if (!BO || !BO->isAdditiveOp())
4725 break;
4726
4727 const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
4728 const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
4729
4730 if (isa<IntegerLiteral>(RHS))
4731 Ex = LHS;
4732 else if (isa<IntegerLiteral>(LHS))
4733 Ex = RHS;
4734 else
4735 break;
4736 }
4737
4738 return Ex;
4739}
4740
4741static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
4742 ASTContext &Context) {
4743 // Only handle constant-sized or VLAs, but not flexible members.
4744 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
4745 // Only issue the FIXIT for arrays of size > 1.
4746 if (CAT->getSize().getSExtValue() <= 1)
4747 return false;
4748 } else if (!Ty->isVariableArrayType()) {
4749 return false;
4750 }
4751 return true;
4752}
4753
4754// Warn if the user has made the 'size' argument to strlcpy or strlcat
4755// be the size of the source, instead of the destination.
4756void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
4757 IdentifierInfo *FnName) {
4758
4759 // Don't crash if the user has the wrong number of arguments
4760 unsigned NumArgs = Call->getNumArgs();
4761 if ((NumArgs != 3) && (NumArgs != 4))
4762 return;
4763
4764 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
4765 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
4766 const Expr *CompareWithSrc = nullptr;
4767
4768 if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
4769 Call->getLocStart(), Call->getRParenLoc()))
4770 return;
4771
4772 // Look for 'strlcpy(dst, x, sizeof(x))'
4773 if (const Expr *Ex = getSizeOfExprArg(SizeArg))
4774 CompareWithSrc = Ex;
4775 else {
4776 // Look for 'strlcpy(dst, x, strlen(x))'
4777 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
4778 if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
4779 SizeCall->getNumArgs() == 1)
4780 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
4781 }
4782 }
4783
4784 if (!CompareWithSrc)
4785 return;
4786
4787 // Determine if the argument to sizeof/strlen is equal to the source
4788 // argument. In principle there's all kinds of things you could do
4789 // here, for instance creating an == expression and evaluating it with
4790 // EvaluateAsBooleanCondition, but this uses a more direct technique:
4791 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
4792 if (!SrcArgDRE)
4793 return;
4794
4795 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
4796 if (!CompareWithSrcDRE ||
4797 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
4798 return;
4799
4800 const Expr *OriginalSizeArg = Call->getArg(2);
4801 Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
4802 << OriginalSizeArg->getSourceRange() << FnName;
4803
4804 // Output a FIXIT hint if the destination is an array (rather than a
4805 // pointer to an array). This could be enhanced to handle some
4806 // pointers if we know the actual size, like if DstArg is 'array+2'
4807 // we could say 'sizeof(array)-2'.
4808 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
4809 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
4810 return;
4811
4812 SmallString<128> sizeString;
4813 llvm::raw_svector_ostream OS(sizeString);
4814 OS << "sizeof(";
4815 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
4816 OS << ")";
4817
4818 Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
4819 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
4820 OS.str());
4821}
4822
4823/// Check if two expressions refer to the same declaration.
4824static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
4825 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
4826 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
4827 return D1->getDecl() == D2->getDecl();
4828 return false;
4829}
4830
4831static const Expr *getStrlenExprArg(const Expr *E) {
4832 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
4833 const FunctionDecl *FD = CE->getDirectCallee();
4834 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
4835 return nullptr;
4836 return CE->getArg(0)->IgnoreParenCasts();
4837 }
4838 return nullptr;
4839}
4840
4841// Warn on anti-patterns as the 'size' argument to strncat.
4842// The correct size argument should look like following:
4843// strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
4844void Sema::CheckStrncatArguments(const CallExpr *CE,
4845 IdentifierInfo *FnName) {
4846 // Don't crash if the user has the wrong number of arguments.
4847 if (CE->getNumArgs() < 3)
4848 return;
4849 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
4850 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
4851 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
4852
4853 if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getLocStart(),
4854 CE->getRParenLoc()))
4855 return;
4856
4857 // Identify common expressions, which are wrongly used as the size argument
4858 // to strncat and may lead to buffer overflows.
4859 unsigned PatternType = 0;
4860 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
4861 // - sizeof(dst)
4862 if (referToTheSameDecl(SizeOfArg, DstArg))
4863 PatternType = 1;
4864 // - sizeof(src)
4865 else if (referToTheSameDecl(SizeOfArg, SrcArg))
4866 PatternType = 2;
4867 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
4868 if (BE->getOpcode() == BO_Sub) {
4869 const Expr *L = BE->getLHS()->IgnoreParenCasts();
4870 const Expr *R = BE->getRHS()->IgnoreParenCasts();
4871 // - sizeof(dst) - strlen(dst)
4872 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
4873 referToTheSameDecl(DstArg, getStrlenExprArg(R)))
4874 PatternType = 1;
4875 // - sizeof(src) - (anything)
4876 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
4877 PatternType = 2;
4878 }
4879 }
4880
4881 if (PatternType == 0)
4882 return;
4883
4884 // Generate the diagnostic.
4885 SourceLocation SL = LenArg->getLocStart();
4886 SourceRange SR = LenArg->getSourceRange();
4887 SourceManager &SM = getSourceManager();
4888
4889 // If the function is defined as a builtin macro, do not show macro expansion.
4890 if (SM.isMacroArgExpansion(SL)) {
4891 SL = SM.getSpellingLoc(SL);
4892 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
4893 SM.getSpellingLoc(SR.getEnd()));
4894 }
4895
4896 // Check if the destination is an array (rather than a pointer to an array).
4897 QualType DstTy = DstArg->getType();
4898 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
4899 Context);
4900 if (!isKnownSizeArray) {
4901 if (PatternType == 1)
4902 Diag(SL, diag::warn_strncat_wrong_size) << SR;
4903 else
4904 Diag(SL, diag::warn_strncat_src_size) << SR;
4905 return;
4906 }
4907
4908 if (PatternType == 1)
4909 Diag(SL, diag::warn_strncat_large_size) << SR;
4910 else
4911 Diag(SL, diag::warn_strncat_src_size) << SR;
4912
4913 SmallString<128> sizeString;
4914 llvm::raw_svector_ostream OS(sizeString);
4915 OS << "sizeof(";
4916 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
4917 OS << ") - ";
4918 OS << "strlen(";
4919 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
4920 OS << ") - 1";
4921
4922 Diag(SL, diag::note_strncat_wrong_size)
4923 << FixItHint::CreateReplacement(SR, OS.str());
4924}
4925
4926//===--- CHECK: Return Address of Stack Variable --------------------------===//
4927
4928static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
4929 Decl *ParentDecl);
4930static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
4931 Decl *ParentDecl);
4932
4933/// CheckReturnStackAddr - Check if a return statement returns the address
4934/// of a stack variable.
4935static void
4936CheckReturnStackAddr(Sema &S, Expr *RetValExp, QualType lhsType,
4937 SourceLocation ReturnLoc) {
4938
4939 Expr *stackE = nullptr;
4940 SmallVector<DeclRefExpr *, 8> refVars;
4941
4942 // Perform checking for returned stack addresses, local blocks,
4943 // label addresses or references to temporaries.
4944 if (lhsType->isPointerType() ||
4945 (!S.getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
4946 stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/nullptr);
4947 } else if (lhsType->isReferenceType()) {
4948 stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/nullptr);
4949 }
4950
4951 if (!stackE)
4952 return; // Nothing suspicious was found.
4953
4954 SourceLocation diagLoc;
4955 SourceRange diagRange;
4956 if (refVars.empty()) {
4957 diagLoc = stackE->getLocStart();
4958 diagRange = stackE->getSourceRange();
4959 } else {
4960 // We followed through a reference variable. 'stackE' contains the
4961 // problematic expression but we will warn at the return statement pointing
4962 // at the reference variable. We will later display the "trail" of
4963 // reference variables using notes.
4964 diagLoc = refVars[0]->getLocStart();
4965 diagRange = refVars[0]->getSourceRange();
4966 }
4967
4968 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
4969 S.Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
4970 : diag::warn_ret_stack_addr)
4971 << DR->getDecl()->getDeclName() << diagRange;
4972 } else if (isa<BlockExpr>(stackE)) { // local block.
4973 S.Diag(diagLoc, diag::err_ret_local_block) << diagRange;
4974 } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
4975 S.Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
4976 } else { // local temporary.
4977 S.Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
4978 : diag::warn_ret_local_temp_addr)
4979 << diagRange;
4980 }
4981
4982 // Display the "trail" of reference variables that we followed until we
4983 // found the problematic expression using notes.
4984 for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
4985 VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
4986 // If this var binds to another reference var, show the range of the next
4987 // var, otherwise the var binds to the problematic expression, in which case
4988 // show the range of the expression.
4989 SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
4990 : stackE->getSourceRange();
4991 S.Diag(VD->getLocation(), diag::note_ref_var_local_bind)
4992 << VD->getDeclName() << range;
4993 }
4994}
4995
4996/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
4997/// check if the expression in a return statement evaluates to an address
4998/// to a location on the stack, a local block, an address of a label, or a
4999/// reference to local temporary. The recursion is used to traverse the
5000/// AST of the return expression, with recursion backtracking when we
5001/// encounter a subexpression that (1) clearly does not lead to one of the
5002/// above problematic expressions (2) is something we cannot determine leads to
5003/// a problematic expression based on such local checking.
5004///
5005/// Both EvalAddr and EvalVal follow through reference variables to evaluate
5006/// the expression that they point to. Such variables are added to the
5007/// 'refVars' vector so that we know what the reference variable "trail" was.
5008///
5009/// EvalAddr processes expressions that are pointers that are used as
5010/// references (and not L-values). EvalVal handles all other values.
5011/// At the base case of the recursion is a check for the above problematic
5012/// expressions.
5013///
5014/// This implementation handles:
5015///
5016/// * pointer-to-pointer casts
5017/// * implicit conversions from array references to pointers
5018/// * taking the address of fields
5019/// * arbitrary interplay between "&" and "*" operators
5020/// * pointer arithmetic from an address of a stack variable
5021/// * taking the address of an array element where the array is on the stack
5022static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
5023 Decl *ParentDecl) {
5024 if (E->isTypeDependent())
5025 return nullptr;
5026
5027 // We should only be called for evaluating pointer expressions.
5028 assert((E->getType()->isAnyPointerType() ||
5029 E->getType()->isBlockPointerType() ||
5030 E->getType()->isObjCQualifiedIdType()) &&
5031 "EvalAddr only works on pointers");
5032
5033 E = E->IgnoreParens();
5034
5035 // Our "symbolic interpreter" is just a dispatch off the currently
5036 // viewed AST node. We then recursively traverse the AST by calling
5037 // EvalAddr and EvalVal appropriately.
5038 switch (E->getStmtClass()) {
5039 case Stmt::DeclRefExprClass: {
5040 DeclRefExpr *DR = cast<DeclRefExpr>(E);
5041
5042 // If we leave the immediate function, the lifetime isn't about to end.
5043 if (DR->refersToEnclosingVariableOrCapture())
5044 return nullptr;
5045
5046 if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
5047 // If this is a reference variable, follow through to the expression that
5048 // it points to.
5049 if (V->hasLocalStorage() &&
5050 V->getType()->isReferenceType() && V->hasInit()) {
5051 // Add the reference variable to the "trail".
5052 refVars.push_back(DR);
5053 return EvalAddr(V->getInit(), refVars, ParentDecl);
5054 }
5055
5056 return nullptr;
5057 }
5058
5059 case Stmt::UnaryOperatorClass: {
5060 // The only unary operator that make sense to handle here
5061 // is AddrOf. All others don't make sense as pointers.
5062 UnaryOperator *U = cast<UnaryOperator>(E);
5063
5064 if (U->getOpcode() == UO_AddrOf)
5065 return EvalVal(U->getSubExpr(), refVars, ParentDecl);
5066 else
5067 return nullptr;
5068 }
5069
5070 case Stmt::BinaryOperatorClass: {
5071 // Handle pointer arithmetic. All other binary operators are not valid
5072 // in this context.
5073 BinaryOperator *B = cast<BinaryOperator>(E);
5074 BinaryOperatorKind op = B->getOpcode();
5075
5076 if (op != BO_Add && op != BO_Sub)
5077 return nullptr;
5078
5079 Expr *Base = B->getLHS();
5080
5081 // Determine which argument is the real pointer base. It could be
5082 // the RHS argument instead of the LHS.
5083 if (!Base->getType()->isPointerType()) Base = B->getRHS();
5084
5085 assert (Base->getType()->isPointerType());
5086 return EvalAddr(Base, refVars, ParentDecl);
5087 }
5088
5089 // For conditional operators we need to see if either the LHS or RHS are
5090 // valid DeclRefExpr*s. If one of them is valid, we return it.
5091 case Stmt::ConditionalOperatorClass: {
5092 ConditionalOperator *C = cast<ConditionalOperator>(E);
5093
5094 // Handle the GNU extension for missing LHS.
5095 // FIXME: That isn't a ConditionalOperator, so doesn't get here.
5096 if (Expr *LHSExpr = C->getLHS()) {
5097 // In C++, we can have a throw-expression, which has 'void' type.
5098 if (!LHSExpr->getType()->isVoidType())
5099 if (Expr *LHS = EvalAddr(LHSExpr, refVars, ParentDecl))
5100 return LHS;
5101 }
5102
5103 // In C++, we can have a throw-expression, which has 'void' type.
5104 if (C->getRHS()->getType()->isVoidType())
5105 return nullptr;
5106
5107 return EvalAddr(C->getRHS(), refVars, ParentDecl);
5108 }
5109
5110 case Stmt::BlockExprClass:
5111 if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
5112 return E; // local block.
5113 return nullptr;
5114
5115 case Stmt::AddrLabelExprClass:
5116 return E; // address of label.
5117
5118 case Stmt::ExprWithCleanupsClass:
5119 return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
5120 ParentDecl);
5121
5122 // For casts, we need to handle conversions from arrays to
5123 // pointer values, and pointer-to-pointer conversions.
5124 case Stmt::ImplicitCastExprClass:
5125 case Stmt::CStyleCastExprClass:
5126 case Stmt::CXXFunctionalCastExprClass:
5127 case Stmt::ObjCBridgedCastExprClass:
5128 case Stmt::CXXStaticCastExprClass:
5129 case Stmt::CXXDynamicCastExprClass:
5130 case Stmt::CXXConstCastExprClass:
5131 case Stmt::CXXReinterpretCastExprClass: {
5132 Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
5133 switch (cast<CastExpr>(E)->getCastKind()) {
5134 case CK_LValueToRValue:
5135 case CK_NoOp:
5136 case CK_BaseToDerived:
5137 case CK_DerivedToBase:
5138 case CK_UncheckedDerivedToBase:
5139 case CK_Dynamic:
5140 case CK_CPointerToObjCPointerCast:
5141 case CK_BlockPointerToObjCPointerCast:
5142 case CK_AnyPointerToBlockPointerCast:
5143 return EvalAddr(SubExpr, refVars, ParentDecl);
5144
5145 case CK_ArrayToPointerDecay:
5146 return EvalVal(SubExpr, refVars, ParentDecl);
5147
5148 case CK_BitCast:
5149 if (SubExpr->getType()->isAnyPointerType() ||
5150 SubExpr->getType()->isBlockPointerType() ||
5151 SubExpr->getType()->isObjCQualifiedIdType())
5152 return EvalAddr(SubExpr, refVars, ParentDecl);
5153 else
5154 return nullptr;
5155
5156 default:
5157 return nullptr;
5158 }
5159 }
5160
5161 case Stmt::MaterializeTemporaryExprClass:
5162 if (Expr *Result = EvalAddr(
5163 cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
5164 refVars, ParentDecl))
5165 return Result;
5166
5167 return E;
5168
5169 // Everything else: we simply don't reason about them.
5170 default:
5171 return nullptr;
5172 }
5173}
5174
5175
5176/// EvalVal - This function is complements EvalAddr in the mutual recursion.
5177/// See the comments for EvalAddr for more details.
5178static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
5179 Decl *ParentDecl) {
5180do {
5181 // We should only be called for evaluating non-pointer expressions, or
5182 // expressions with a pointer type that are not used as references but instead
5183 // are l-values (e.g., DeclRefExpr with a pointer type).
5184
5185 // Our "symbolic interpreter" is just a dispatch off the currently
5186 // viewed AST node. We then recursively traverse the AST by calling
5187 // EvalAddr and EvalVal appropriately.
5188
5189 E = E->IgnoreParens();
5190 switch (E->getStmtClass()) {
5191 case Stmt::ImplicitCastExprClass: {
5192 ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
5193 if (IE->getValueKind() == VK_LValue) {
5194 E = IE->getSubExpr();
5195 continue;
5196 }
5197 return nullptr;
5198 }
5199
5200 case Stmt::ExprWithCleanupsClass:
5201 return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
5202
5203 case Stmt::DeclRefExprClass: {
5204 // When we hit a DeclRefExpr we are looking at code that refers to a
5205 // variable's name. If it's not a reference variable we check if it has
5206 // local storage within the function, and if so, return the expression.
5207 DeclRefExpr *DR = cast<DeclRefExpr>(E);
5208
5209 // If we leave the immediate function, the lifetime isn't about to end.
5210 if (DR->refersToEnclosingVariableOrCapture())
5211 return nullptr;
5212
5213 if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
5214 // Check if it refers to itself, e.g. "int& i = i;".
5215 if (V == ParentDecl)
5216 return DR;
5217
5218 if (V->hasLocalStorage()) {
5219 if (!V->getType()->isReferenceType())
5220 return DR;
5221
5222 // Reference variable, follow through to the expression that
5223 // it points to.
5224 if (V->hasInit()) {
5225 // Add the reference variable to the "trail".
5226 refVars.push_back(DR);
5227 return EvalVal(V->getInit(), refVars, V);
5228 }
5229 }
5230 }
5231
5232 return nullptr;
5233 }
5234
5235 case Stmt::UnaryOperatorClass: {
5236 // The only unary operator that make sense to handle here
5237 // is Deref. All others don't resolve to a "name." This includes
5238 // handling all sorts of rvalues passed to a unary operator.
5239 UnaryOperator *U = cast<UnaryOperator>(E);
5240
5241 if (U->getOpcode() == UO_Deref)
5242 return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
5243
5244 return nullptr;
5245 }
5246
5247 case Stmt::ArraySubscriptExprClass: {
5248 // Array subscripts are potential references to data on the stack. We
5249 // retrieve the DeclRefExpr* for the array variable if it indeed
5250 // has local storage.
5251 return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
5252 }
5253
5254 case Stmt::ConditionalOperatorClass: {
5255 // For conditional operators we need to see if either the LHS or RHS are
5256 // non-NULL Expr's. If one is non-NULL, we return it.
5257 ConditionalOperator *C = cast<ConditionalOperator>(E);
5258
5259 // Handle the GNU extension for missing LHS.
5260 if (Expr *LHSExpr = C->getLHS()) {
5261 // In C++, we can have a throw-expression, which has 'void' type.
5262 if (!LHSExpr->getType()->isVoidType())
5263 if (Expr *LHS = EvalVal(LHSExpr, refVars, ParentDecl))
5264 return LHS;
5265 }
5266
5267 // In C++, we can have a throw-expression, which has 'void' type.
5268 if (C->getRHS()->getType()->isVoidType())
5269 return nullptr;
5270
5271 return EvalVal(C->getRHS(), refVars, ParentDecl);
5272 }
5273
5274 // Accesses to members are potential references to data on the stack.
5275 case Stmt::MemberExprClass: {
5276 MemberExpr *M = cast<MemberExpr>(E);
5277
5278 // Check for indirect access. We only want direct field accesses.
5279 if (M->isArrow())
5280 return nullptr;
5281
5282 // Check whether the member type is itself a reference, in which case
5283 // we're not going to refer to the member, but to what the member refers to.
5284 if (M->getMemberDecl()->getType()->isReferenceType())
5285 return nullptr;
5286
5287 return EvalVal(M->getBase(), refVars, ParentDecl);
5288 }
5289
5290 case Stmt::MaterializeTemporaryExprClass:
5291 if (Expr *Result = EvalVal(
5292 cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
5293 refVars, ParentDecl))
5294 return Result;
5295
5296 return E;
5297
5298 default:
5299 // Check that we don't return or take the address of a reference to a
5300 // temporary. This is only useful in C++.
5301 if (!E->isTypeDependent() && E->isRValue())
5302 return E;
5303
5304 // Everything else: we simply don't reason about them.
5305 return nullptr;
5306 }
5307} while (true);
5308}
5309
5310void
5311Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
5312 SourceLocation ReturnLoc,
5313 bool isObjCMethod,
5314 const AttrVec *Attrs,
5315 const FunctionDecl *FD) {
5316 CheckReturnStackAddr(*this, RetValExp, lhsType, ReturnLoc);
5317
5318 // Check if the return value is null but should not be.
5319 if (Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs) &&
5320 CheckNonNullExpr(*this, RetValExp))
5321 Diag(ReturnLoc, diag::warn_null_ret)
5322 << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
5323
5324 // C++11 [basic.stc.dynamic.allocation]p4:
5325 // If an allocation function declared with a non-throwing
5326 // exception-specification fails to allocate storage, it shall return
5327 // a null pointer. Any other allocation function that fails to allocate
5328 // storage shall indicate failure only by throwing an exception [...]
5329 if (FD) {
5330 OverloadedOperatorKind Op = FD->getOverloadedOperator();
5331 if (Op == OO_New || Op == OO_Array_New) {
5332 const FunctionProtoType *Proto
5333 = FD->getType()->castAs<FunctionProtoType>();
5334 if (!Proto->isNothrow(Context, /*ResultIfDependent*/true) &&
5335 CheckNonNullExpr(*this, RetValExp))
5336 Diag(ReturnLoc, diag::warn_operator_new_returns_null)
5337 << FD << getLangOpts().CPlusPlus11;
5338 }
5339 }
5340}
5341
5342//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
5343
5344/// Check for comparisons of floating point operands using != and ==.
5345/// Issue a warning if these are no self-comparisons, as they are not likely
5346/// to do what the programmer intended.
5347void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
5348 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
5349 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
5350
5351 // Special case: check for x == x (which is OK).
5352 // Do not emit warnings for such cases.
5353 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
5354 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
5355 if (DRL->getDecl() == DRR->getDecl())
5356 return;
5357
5358
5359 // Special case: check for comparisons against literals that can be exactly
5360 // represented by APFloat. In such cases, do not emit a warning. This
5361 // is a heuristic: often comparison against such literals are used to
5362 // detect if a value in a variable has not changed. This clearly can
5363 // lead to false negatives.
5364 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
5365 if (FLL->isExact())
5366 return;
5367 } else
5368 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
5369 if (FLR->isExact())
5370 return;
5371
5372 // Check for comparisons with builtin types.
5373 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
5374 if (CL->getBuiltinCallee())
5375 return;
5376
5377 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
5378 if (CR->getBuiltinCallee())
5379 return;
5380
5381 // Emit the diagnostic.
5382 Diag(Loc, diag::warn_floatingpoint_eq)
5383 << LHS->getSourceRange() << RHS->getSourceRange();
5384}
5385
5386//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
5387//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
5388
5389namespace {
5390
5391/// Structure recording the 'active' range of an integer-valued
5392/// expression.
5393struct IntRange {
5394 /// The number of bits active in the int.
5395 unsigned Width;
5396
5397 /// True if the int is known not to have negative values.
5398 bool NonNegative;
5399
5400 IntRange(unsigned Width, bool NonNegative)
5401 : Width(Width), NonNegative(NonNegative)
5402 {}
5403
5404 /// Returns the range of the bool type.
5405 static IntRange forBoolType() {
5406 return IntRange(1, true);
5407 }
5408
5409 /// Returns the range of an opaque value of the given integral type.
5410 static IntRange forValueOfType(ASTContext &C, QualType T) {
5411 return forValueOfCanonicalType(C,
5412 T->getCanonicalTypeInternal().getTypePtr());
5413 }
5414
5415 /// Returns the range of an opaque value of a canonical integral type.
5416 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
5417 assert(T->isCanonicalUnqualified());
5418
5419 if (const VectorType *VT = dyn_cast<VectorType>(T))
5420 T = VT->getElementType().getTypePtr();
5421 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
5422 T = CT->getElementType().getTypePtr();
5423 if (const AtomicType *AT = dyn_cast<AtomicType>(T))
5424 T = AT->getValueType().getTypePtr();
5425
5426 // For enum types, use the known bit width of the enumerators.
5427 if (const EnumType *ET = dyn_cast<EnumType>(T)) {
5428 EnumDecl *Enum = ET->getDecl();
5429 if (!Enum->isCompleteDefinition())
5430 return IntRange(C.getIntWidth(QualType(T, 0)), false);
5431
5432 unsigned NumPositive = Enum->getNumPositiveBits();
5433 unsigned NumNegative = Enum->getNumNegativeBits();
5434
5435 if (NumNegative == 0)
5436 return IntRange(NumPositive, true/*NonNegative*/);
5437 else
5438 return IntRange(std::max(NumPositive + 1, NumNegative),
5439 false/*NonNegative*/);
5440 }
5441
5442 const BuiltinType *BT = cast<BuiltinType>(T);
5443 assert(BT->isInteger());
5444
5445 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
5446 }
5447
5448 /// Returns the "target" range of a canonical integral type, i.e.
5449 /// the range of values expressible in the type.
5450 ///
5451 /// This matches forValueOfCanonicalType except that enums have the
5452 /// full range of their type, not the range of their enumerators.
5453 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
5454 assert(T->isCanonicalUnqualified());
5455
5456 if (const VectorType *VT = dyn_cast<VectorType>(T))
5457 T = VT->getElementType().getTypePtr();
5458 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
5459 T = CT->getElementType().getTypePtr();
5460 if (const AtomicType *AT = dyn_cast<AtomicType>(T))
5461 T = AT->getValueType().getTypePtr();
5462 if (const EnumType *ET = dyn_cast<EnumType>(T))
5463 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
5464
5465 const BuiltinType *BT = cast<BuiltinType>(T);
5466 assert(BT->isInteger());
5467
5468 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
5469 }
5470
5471 /// Returns the supremum of two ranges: i.e. their conservative merge.
5472 static IntRange join(IntRange L, IntRange R) {
5473 return IntRange(std::max(L.Width, R.Width),
5474 L.NonNegative && R.NonNegative);
5475 }
5476
5477 /// Returns the infinum of two ranges: i.e. their aggressive merge.
5478 static IntRange meet(IntRange L, IntRange R) {
5479 return IntRange(std::min(L.Width, R.Width),
5480 L.NonNegative || R.NonNegative);
5481 }
5482};
5483
5484static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
5485 unsigned MaxWidth) {
5486 if (value.isSigned() && value.isNegative())
5487 return IntRange(value.getMinSignedBits(), false);
5488
5489 if (value.getBitWidth() > MaxWidth)
5490 value = value.trunc(MaxWidth);
5491
5492 // isNonNegative() just checks the sign bit without considering
5493 // signedness.
5494 return IntRange(value.getActiveBits(), true);
5495}
5496
5497static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
5498 unsigned MaxWidth) {
5499 if (result.isInt())
5500 return GetValueRange(C, result.getInt(), MaxWidth);
5501
5502 if (result.isVector()) {
5503 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
5504 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
5505 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
5506 R = IntRange::join(R, El);
5507 }
5508 return R;
5509 }
5510
5511 if (result.isComplexInt()) {
5512 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
5513 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
5514 return IntRange::join(R, I);
5515 }
5516
5517 // This can happen with lossless casts to intptr_t of "based" lvalues.
5518 // Assume it might use arbitrary bits.
5519 // FIXME: The only reason we need to pass the type in here is to get
5520 // the sign right on this one case. It would be nice if APValue
5521 // preserved this.
5522 assert(result.isLValue() || result.isAddrLabelDiff());
5523 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
5524}
5525
5526static QualType GetExprType(Expr *E) {
5527 QualType Ty = E->getType();
5528 if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
5529 Ty = AtomicRHS->getValueType();
5530 return Ty;
5531}
5532
5533/// Pseudo-evaluate the given integer expression, estimating the
5534/// range of values it might take.
5535///
5536/// \param MaxWidth - the width to which the value will be truncated
5537static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
5538 E = E->IgnoreParens();
5539
5540 // Try a full evaluation first.
5541 Expr::EvalResult result;
5542 if (E->EvaluateAsRValue(result, C))
5543 return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
5544
5545 // I think we only want to look through implicit casts here; if the
5546 // user has an explicit widening cast, we should treat the value as
5547 // being of the new, wider type.
5548 if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
5549 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
5550 return GetExprRange(C, CE->getSubExpr(), MaxWidth);
5551
5552 IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
5553
5554 bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
5555
5556 // Assume that non-integer casts can span the full range of the type.
5557 if (!isIntegerCast)
5558 return OutputTypeRange;
5559
5560 IntRange SubRange
5561 = GetExprRange(C, CE->getSubExpr(),
5562 std::min(MaxWidth, OutputTypeRange.Width));
5563
5564 // Bail out if the subexpr's range is as wide as the cast type.
5565 if (SubRange.Width >= OutputTypeRange.Width)
5566 return OutputTypeRange;
5567
5568 // Otherwise, we take the smaller width, and we're non-negative if
5569 // either the output type or the subexpr is.
5570 return IntRange(SubRange.Width,
5571 SubRange.NonNegative || OutputTypeRange.NonNegative);
5572 }
5573
5574 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
5575 // If we can fold the condition, just take that operand.
5576 bool CondResult;
5577 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
5578 return GetExprRange(C, CondResult ? CO->getTrueExpr()
5579 : CO->getFalseExpr(),
5580 MaxWidth);
5581
5582 // Otherwise, conservatively merge.
5583 IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
5584 IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
5585 return IntRange::join(L, R);
5586 }
5587
5588 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5589 switch (BO->getOpcode()) {
5590
5591 // Boolean-valued operations are single-bit and positive.
5592 case BO_LAnd:
5593 case BO_LOr:
5594 case BO_LT:
5595 case BO_GT:
5596 case BO_LE:
5597 case BO_GE:
5598 case BO_EQ:
5599 case BO_NE:
5600 return IntRange::forBoolType();
5601
5602 // The type of the assignments is the type of the LHS, so the RHS
5603 // is not necessarily the same type.
5604 case BO_MulAssign:
5605 case BO_DivAssign:
5606 case BO_RemAssign:
5607 case BO_AddAssign:
5608 case BO_SubAssign:
5609 case BO_XorAssign:
5610 case BO_OrAssign:
5611 // TODO: bitfields?
5612 return IntRange::forValueOfType(C, GetExprType(E));
5613
5614 // Simple assignments just pass through the RHS, which will have
5615 // been coerced to the LHS type.
5616 case BO_Assign:
5617 // TODO: bitfields?
5618 return GetExprRange(C, BO->getRHS(), MaxWidth);
5619
5620 // Operations with opaque sources are black-listed.
5621 case BO_PtrMemD:
5622 case BO_PtrMemI:
5623 return IntRange::forValueOfType(C, GetExprType(E));
5624
5625 // Bitwise-and uses the *infinum* of the two source ranges.
5626 case BO_And:
5627 case BO_AndAssign:
5628 return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
5629 GetExprRange(C, BO->getRHS(), MaxWidth));
5630
5631 // Left shift gets black-listed based on a judgement call.
5632 case BO_Shl:
5633 // ...except that we want to treat '1 << (blah)' as logically
5634 // positive. It's an important idiom.
5635 if (IntegerLiteral *I
5636 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
5637 if (I->getValue() == 1) {
5638 IntRange R = IntRange::forValueOfType(C, GetExprType(E));
5639 return IntRange(R.Width, /*NonNegative*/ true);
5640 }
5641 }
5642 // fallthrough
5643
5644 case BO_ShlAssign:
5645 return IntRange::forValueOfType(C, GetExprType(E));
5646
5647 // Right shift by a constant can narrow its left argument.
5648 case BO_Shr:
5649 case BO_ShrAssign: {
5650 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
5651
5652 // If the shift amount is a positive constant, drop the width by
5653 // that much.
5654 llvm::APSInt shift;
5655 if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
5656 shift.isNonNegative()) {
5657 unsigned zext = shift.getZExtValue();
5658 if (zext >= L.Width)
5659 L.Width = (L.NonNegative ? 0 : 1);
5660 else
5661 L.Width -= zext;
5662 }
5663
5664 return L;
5665 }
5666
5667 // Comma acts as its right operand.
5668 case BO_Comma:
5669 return GetExprRange(C, BO->getRHS(), MaxWidth);
5670
5671 // Black-list pointer subtractions.
5672 case BO_Sub:
5673 if (BO->getLHS()->getType()->isPointerType())
5674 return IntRange::forValueOfType(C, GetExprType(E));
5675 break;
5676
5677 // The width of a division result is mostly determined by the size
5678 // of the LHS.
5679 case BO_Div: {
5680 // Don't 'pre-truncate' the operands.
5681 unsigned opWidth = C.getIntWidth(GetExprType(E));
5682 IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
5683
5684 // If the divisor is constant, use that.
5685 llvm::APSInt divisor;
5686 if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
5687 unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
5688 if (log2 >= L.Width)
5689 L.Width = (L.NonNegative ? 0 : 1);
5690 else
5691 L.Width = std::min(L.Width - log2, MaxWidth);
5692 return L;
5693 }
5694
5695 // Otherwise, just use the LHS's width.
5696 IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
5697 return IntRange(L.Width, L.NonNegative && R.NonNegative);
5698 }
5699
5700 // The result of a remainder can't be larger than the result of
5701 // either side.
5702 case BO_Rem: {
5703 // Don't 'pre-truncate' the operands.
5704 unsigned opWidth = C.getIntWidth(GetExprType(E));
5705 IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
5706 IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
5707
5708 IntRange meet = IntRange::meet(L, R);
5709 meet.Width = std::min(meet.Width, MaxWidth);
5710 return meet;
5711 }
5712
5713 // The default behavior is okay for these.
5714 case BO_Mul:
5715 case BO_Add:
5716 case BO_Xor:
5717 case BO_Or:
5718 break;
5719 }
5720
5721 // The default case is to treat the operation as if it were closed
5722 // on the narrowest type that encompasses both operands.
5723 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
5724 IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
5725 return IntRange::join(L, R);
5726 }
5727
5728 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
5729 switch (UO->getOpcode()) {
5730 // Boolean-valued operations are white-listed.
5731 case UO_LNot:
5732 return IntRange::forBoolType();
5733
5734 // Operations with opaque sources are black-listed.
5735 case UO_Deref:
5736 case UO_AddrOf: // should be impossible
5737 return IntRange::forValueOfType(C, GetExprType(E));
5738
5739 default:
5740 return GetExprRange(C, UO->getSubExpr(), MaxWidth);
5741 }
5742 }
5743
5744 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
5745 return GetExprRange(C, OVE->getSourceExpr(), MaxWidth);
5746
5747 if (FieldDecl *BitField = E->getSourceBitField())
5748 return IntRange(BitField->getBitWidthValue(C),
5749 BitField->getType()->isUnsignedIntegerOrEnumerationType());
5750
5751 return IntRange::forValueOfType(C, GetExprType(E));
5752}
5753
5754static IntRange GetExprRange(ASTContext &C, Expr *E) {
5755 return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
5756}
5757
5758/// Checks whether the given value, which currently has the given
5759/// source semantics, has the same value when coerced through the
5760/// target semantics.
5761static bool IsSameFloatAfterCast(const llvm::APFloat &value,
5762 const llvm::fltSemantics &Src,
5763 const llvm::fltSemantics &Tgt) {
5764 llvm::APFloat truncated = value;
5765
5766 bool ignored;
5767 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
5768 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
5769
5770 return truncated.bitwiseIsEqual(value);
5771}
5772
5773/// Checks whether the given value, which currently has the given
5774/// source semantics, has the same value when coerced through the
5775/// target semantics.
5776///
5777/// The value might be a vector of floats (or a complex number).
5778static bool IsSameFloatAfterCast(const APValue &value,
5779 const llvm::fltSemantics &Src,
5780 const llvm::fltSemantics &Tgt) {
5781 if (value.isFloat())
5782 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
5783
5784 if (value.isVector()) {
5785 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
5786 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
5787 return false;
5788 return true;
5789 }
5790
5791 assert(value.isComplexFloat());
5792 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
5793 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
5794}
5795
5796static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
5797
5798static bool IsZero(Sema &S, Expr *E) {
5799 // Suppress cases where we are comparing against an enum constant.
5800 if (const DeclRefExpr *DR =
5801 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
5802 if (isa<EnumConstantDecl>(DR->getDecl()))
5803 return false;
5804
5805 // Suppress cases where the '0' value is expanded from a macro.
5806 if (E->getLocStart().isMacroID())
5807 return false;
5808
5809 llvm::APSInt Value;
5810 return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
5811}
5812
5813static bool HasEnumType(Expr *E) {
5814 // Strip off implicit integral promotions.
5815 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5816 if (ICE->getCastKind() != CK_IntegralCast &&
5817 ICE->getCastKind() != CK_NoOp)
5818 break;
5819 E = ICE->getSubExpr();
5820 }
5821
5822 return E->getType()->isEnumeralType();
5823}
5824
5825static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
5826 // Disable warning in template instantiations.
5827 if (!S.ActiveTemplateInstantiations.empty())
5828 return;
5829
5830 BinaryOperatorKind op = E->getOpcode();
5831 if (E->isValueDependent())
5832 return;
5833
5834 if (op == BO_LT && IsZero(S, E->getRHS())) {
5835 S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
5836 << "< 0" << "false" << HasEnumType(E->getLHS())
5837 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
5838 } else if (op == BO_GE && IsZero(S, E->getRHS())) {
5839 S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
5840 << ">= 0" << "true" << HasEnumType(E->getLHS())
5841 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
5842 } else if (op == BO_GT && IsZero(S, E->getLHS())) {
5843 S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
5844 << "0 >" << "false" << HasEnumType(E->getRHS())
5845 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
5846 } else if (op == BO_LE && IsZero(S, E->getLHS())) {
5847 S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
5848 << "0 <=" << "true" << HasEnumType(E->getRHS())
5849 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
5850 }
5851}
5852
5853static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
5854 Expr *Constant, Expr *Other,
5855 llvm::APSInt Value,
5856 bool RhsConstant) {
5857 // Disable warning in template instantiations.
5858 if (!S.ActiveTemplateInstantiations.empty())
5859 return;
5860
5861 // TODO: Investigate using GetExprRange() to get tighter bounds
5862 // on the bit ranges.
5863 QualType OtherT = Other->getType();
5864 if (const AtomicType *AT = dyn_cast<AtomicType>(OtherT))
5865 OtherT = AT->getValueType();
5866 IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
5867 unsigned OtherWidth = OtherRange.Width;
5868
5869 bool OtherIsBooleanType = Other->isKnownToHaveBooleanValue();
5870
5871 // 0 values are handled later by CheckTrivialUnsignedComparison().
5872 if ((Value == 0) && (!OtherIsBooleanType))
5873 return;
5874
5875 BinaryOperatorKind op = E->getOpcode();
5876 bool IsTrue = true;
5877
5878 // Used for diagnostic printout.
5879 enum {
5880 LiteralConstant = 0,
5881 CXXBoolLiteralTrue,
5882 CXXBoolLiteralFalse
5883 } LiteralOrBoolConstant = LiteralConstant;
5884
5885 if (!OtherIsBooleanType) {
5886 QualType ConstantT = Constant->getType();
5887 QualType CommonT = E->getLHS()->getType();
5888
5889 if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
5890 return;
5891 assert((OtherT->isIntegerType() && ConstantT->isIntegerType()) &&
5892 "comparison with non-integer type");
5893
5894 bool ConstantSigned = ConstantT->isSignedIntegerType();
5895 bool CommonSigned = CommonT->isSignedIntegerType();
5896
5897 bool EqualityOnly = false;
5898
5899 if (CommonSigned) {
5900 // The common type is signed, therefore no signed to unsigned conversion.
5901 if (!OtherRange.NonNegative) {
5902 // Check that the constant is representable in type OtherT.
5903 if (ConstantSigned) {
5904 if (OtherWidth >= Value.getMinSignedBits())
5905 return;
5906 } else { // !ConstantSigned
5907 if (OtherWidth >= Value.getActiveBits() + 1)
5908 return;
5909 }
5910 } else { // !OtherSigned
5911 // Check that the constant is representable in type OtherT.
5912 // Negative values are out of range.
5913 if (ConstantSigned) {
5914 if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
5915 return;
5916 } else { // !ConstantSigned
5917 if (OtherWidth >= Value.getActiveBits())
5918 return;
5919 }
5920 }
5921 } else { // !CommonSigned
5922 if (OtherRange.NonNegative) {
5923 if (OtherWidth >= Value.getActiveBits())
5924 return;
5925 } else { // OtherSigned
5926 assert(!ConstantSigned &&
5927 "Two signed types converted to unsigned types.");
5928 // Check to see if the constant is representable in OtherT.
5929 if (OtherWidth > Value.getActiveBits())
5930 return;
5931 // Check to see if the constant is equivalent to a negative value
5932 // cast to CommonT.
5933 if (S.Context.getIntWidth(ConstantT) ==
5934 S.Context.getIntWidth(CommonT) &&
5935 Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
5936 return;
5937 // The constant value rests between values that OtherT can represent
5938 // after conversion. Relational comparison still works, but equality
5939 // comparisons will be tautological.
5940 EqualityOnly = true;
5941 }
5942 }
5943
5944 bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
5945
5946 if (op == BO_EQ || op == BO_NE) {
5947 IsTrue = op == BO_NE;
5948 } else if (EqualityOnly) {
5949 return;
5950 } else if (RhsConstant) {
5951 if (op == BO_GT || op == BO_GE)
5952 IsTrue = !PositiveConstant;
5953 else // op == BO_LT || op == BO_LE
5954 IsTrue = PositiveConstant;
5955 } else {
5956 if (op == BO_LT || op == BO_LE)
5957 IsTrue = !PositiveConstant;
5958 else // op == BO_GT || op == BO_GE
5959 IsTrue = PositiveConstant;
5960 }
5961 } else {
5962 // Other isKnownToHaveBooleanValue
5963 enum CompareBoolWithConstantResult { AFals, ATrue, Unkwn };
5964 enum ConstantValue { LT_Zero, Zero, One, GT_One, SizeOfConstVal };
5965 enum ConstantSide { Lhs, Rhs, SizeOfConstSides };
5966
5967 static const struct LinkedConditions {
5968 CompareBoolWithConstantResult BO_LT_OP[SizeOfConstSides][SizeOfConstVal];
5969 CompareBoolWithConstantResult BO_GT_OP[SizeOfConstSides][SizeOfConstVal];
5970 CompareBoolWithConstantResult BO_LE_OP[SizeOfConstSides][SizeOfConstVal];
5971 CompareBoolWithConstantResult BO_GE_OP[SizeOfConstSides][SizeOfConstVal];
5972 CompareBoolWithConstantResult BO_EQ_OP[SizeOfConstSides][SizeOfConstVal];
5973 CompareBoolWithConstantResult BO_NE_OP[SizeOfConstSides][SizeOfConstVal];
5974
5975 } TruthTable = {
5976 // Constant on LHS. | Constant on RHS. |
5977 // LT_Zero| Zero | One |GT_One| LT_Zero| Zero | One |GT_One|
5978 { { ATrue, Unkwn, AFals, AFals }, { AFals, AFals, Unkwn, ATrue } },
5979 { { AFals, AFals, Unkwn, ATrue }, { ATrue, Unkwn, AFals, AFals } },
5980 { { ATrue, ATrue, Unkwn, AFals }, { AFals, Unkwn, ATrue, ATrue } },
5981 { { AFals, Unkwn, ATrue, ATrue }, { ATrue, ATrue, Unkwn, AFals } },
5982 { { AFals, Unkwn, Unkwn, AFals }, { AFals, Unkwn, Unkwn, AFals } },
5983 { { ATrue, Unkwn, Unkwn, ATrue }, { ATrue, Unkwn, Unkwn, ATrue } }
5984 };
5985
5986 bool ConstantIsBoolLiteral = isa<CXXBoolLiteralExpr>(Constant);
5987
5988 enum ConstantValue ConstVal = Zero;
5989 if (Value.isUnsigned() || Value.isNonNegative()) {
5990 if (Value == 0) {
5991 LiteralOrBoolConstant =
5992 ConstantIsBoolLiteral ? CXXBoolLiteralFalse : LiteralConstant;
5993 ConstVal = Zero;
5994 } else if (Value == 1) {
5995 LiteralOrBoolConstant =
5996 ConstantIsBoolLiteral ? CXXBoolLiteralTrue : LiteralConstant;
5997 ConstVal = One;
5998 } else {
5999 LiteralOrBoolConstant = LiteralConstant;
6000 ConstVal = GT_One;
6001 }
6002 } else {
6003 ConstVal = LT_Zero;
6004 }
6005
6006 CompareBoolWithConstantResult CmpRes;
6007
6008 switch (op) {
6009 case BO_LT:
6010 CmpRes = TruthTable.BO_LT_OP[RhsConstant][ConstVal];
6011 break;
6012 case BO_GT:
6013 CmpRes = TruthTable.BO_GT_OP[RhsConstant][ConstVal];
6014 break;
6015 case BO_LE:
6016 CmpRes = TruthTable.BO_LE_OP[RhsConstant][ConstVal];
6017 break;
6018 case BO_GE:
6019 CmpRes = TruthTable.BO_GE_OP[RhsConstant][ConstVal];
6020 break;
6021 case BO_EQ:
6022 CmpRes = TruthTable.BO_EQ_OP[RhsConstant][ConstVal];
6023 break;
6024 case BO_NE:
6025 CmpRes = TruthTable.BO_NE_OP[RhsConstant][ConstVal];
6026 break;
6027 default:
6028 CmpRes = Unkwn;
6029 break;
6030 }
6031
6032 if (CmpRes == AFals) {
6033 IsTrue = false;
6034 } else if (CmpRes == ATrue) {
6035 IsTrue = true;
6036 } else {
6037 return;
6038 }
6039 }
6040
6041 // If this is a comparison to an enum constant, include that
6042 // constant in the diagnostic.
6043 const EnumConstantDecl *ED = nullptr;
6044 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
6045 ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
6046
6047 SmallString<64> PrettySourceValue;
6048 llvm::raw_svector_ostream OS(PrettySourceValue);
6049 if (ED)
6050 OS << '\'' << *ED << "' (" << Value << ")";
6051 else
6052 OS << Value;
6053
6054 S.DiagRuntimeBehavior(
6055 E->getOperatorLoc(), E,
6056 S.PDiag(diag::warn_out_of_range_compare)
6057 << OS.str() << LiteralOrBoolConstant
6058 << OtherT << (OtherIsBooleanType && !OtherT->isBooleanType()) << IsTrue
6059 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
6060}
6061
6062/// Analyze the operands of the given comparison. Implements the
6063/// fallback case from AnalyzeComparison.
6064static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
6065 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
6066 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
6067}
6068
6069/// \brief Implements -Wsign-compare.
6070///
6071/// \param E the binary operator to check for warnings
6072static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
6073 // The type the comparison is being performed in.
6074 QualType T = E->getLHS()->getType();
6075
6076 // Only analyze comparison operators where both sides have been converted to
6077 // the same type.
6078 if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
6079 return AnalyzeImpConvsInComparison(S, E);
6080
6081 // Don't analyze value-dependent comparisons directly.
6082 if (E->isValueDependent())
6083 return AnalyzeImpConvsInComparison(S, E);
6084
6085 Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
6086 Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
6087
6088 bool IsComparisonConstant = false;
6089
6090 // Check whether an integer constant comparison results in a value
6091 // of 'true' or 'false'.
6092 if (T->isIntegralType(S.Context)) {
6093 llvm::APSInt RHSValue;
6094 bool IsRHSIntegralLiteral =
6095 RHS->isIntegerConstantExpr(RHSValue, S.Context);
6096 llvm::APSInt LHSValue;
6097 bool IsLHSIntegralLiteral =
6098 LHS->isIntegerConstantExpr(LHSValue, S.Context);
6099 if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
6100 DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
6101 else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
6102 DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
6103 else
6104 IsComparisonConstant =
6105 (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
6106 } else if (!T->hasUnsignedIntegerRepresentation())
6107 IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
6108
6109 // We don't do anything special if this isn't an unsigned integral
6110 // comparison: we're only interested in integral comparisons, and
6111 // signed comparisons only happen in cases we don't care to warn about.
6112 //
6113 // We also don't care about value-dependent expressions or expressions
6114 // whose result is a constant.
6115 if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
6116 return AnalyzeImpConvsInComparison(S, E);
6117
6118 // Check to see if one of the (unmodified) operands is of different
6119 // signedness.
6120 Expr *signedOperand, *unsignedOperand;
6121 if (LHS->getType()->hasSignedIntegerRepresentation()) {
6122 assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
6123 "unsigned comparison between two signed integer expressions?");
6124 signedOperand = LHS;
6125 unsignedOperand = RHS;
6126 } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
6127 signedOperand = RHS;
6128 unsignedOperand = LHS;
6129 } else {
6130 CheckTrivialUnsignedComparison(S, E);
6131 return AnalyzeImpConvsInComparison(S, E);
6132 }
6133
6134 // Otherwise, calculate the effective range of the signed operand.
6135 IntRange signedRange = GetExprRange(S.Context, signedOperand);
6136
6137 // Go ahead and analyze implicit conversions in the operands. Note
6138 // that we skip the implicit conversions on both sides.
6139 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
6140 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
6141
6142 // If the signed range is non-negative, -Wsign-compare won't fire,
6143 // but we should still check for comparisons which are always true
6144 // or false.
6145 if (signedRange.NonNegative)
6146 return CheckTrivialUnsignedComparison(S, E);
6147
6148 // For (in)equality comparisons, if the unsigned operand is a
6149 // constant which cannot collide with a overflowed signed operand,
6150 // then reinterpreting the signed operand as unsigned will not
6151 // change the result of the comparison.
6152 if (E->isEqualityOp()) {
6153 unsigned comparisonWidth = S.Context.getIntWidth(T);
6154 IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
6155
6156 // We should never be unable to prove that the unsigned operand is
6157 // non-negative.
6158 assert(unsignedRange.NonNegative && "unsigned range includes negative?");
6159
6160 if (unsignedRange.Width < comparisonWidth)
6161 return;
6162 }
6163
6164 S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
6165 S.PDiag(diag::warn_mixed_sign_comparison)
6166 << LHS->getType() << RHS->getType()
6167 << LHS->getSourceRange() << RHS->getSourceRange());
6168}
6169
6170/// Analyzes an attempt to assign the given value to a bitfield.
6171///
6172/// Returns true if there was something fishy about the attempt.
6173static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
6174 SourceLocation InitLoc) {
6175 assert(Bitfield->isBitField());
6176 if (Bitfield->isInvalidDecl())
6177 return false;
6178
6179 // White-list bool bitfields.
6180 if (Bitfield->getType()->isBooleanType())
6181 return false;
6182
6183 // Ignore value- or type-dependent expressions.
6184 if (Bitfield->getBitWidth()->isValueDependent() ||
6185 Bitfield->getBitWidth()->isTypeDependent() ||
6186 Init->isValueDependent() ||
6187 Init->isTypeDependent())
6188 return false;
6189
6190 Expr *OriginalInit = Init->IgnoreParenImpCasts();
6191
6192 llvm::APSInt Value;
6193 if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
6194 return false;
6195
6196 unsigned OriginalWidth = Value.getBitWidth();
6197 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
6198
6199 if (OriginalWidth <= FieldWidth)
6200 return false;
6201
6202 // Compute the value which the bitfield will contain.
6203 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
6204 TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
6205
6206 // Check whether the stored value is equal to the original value.
6207 TruncatedValue = TruncatedValue.extend(OriginalWidth);
6208 if (llvm::APSInt::isSameValue(Value, TruncatedValue))
6209 return false;
6210
6211 // Special-case bitfields of width 1: booleans are naturally 0/1, and
6212 // therefore don't strictly fit into a signed bitfield of width 1.
6213 if (FieldWidth == 1 && Value == 1)
6214 return false;
6215
6216 std::string PrettyValue = Value.toString(10);
6217 std::string PrettyTrunc = TruncatedValue.toString(10);
6218
6219 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
6220 << PrettyValue << PrettyTrunc << OriginalInit->getType()
6221 << Init->getSourceRange();
6222
6223 return true;
6224}
6225
6226/// Analyze the given simple or compound assignment for warning-worthy
6227/// operations.
6228static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
6229 // Just recurse on the LHS.
6230 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
6231
6232 // We want to recurse on the RHS as normal unless we're assigning to
6233 // a bitfield.
6234 if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
6235 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
6236 E->getOperatorLoc())) {
6237 // Recurse, ignoring any implicit conversions on the RHS.
6238 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
6239 E->getOperatorLoc());
6240 }
6241 }
6242
6243 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
6244}
6245
6246/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
6247static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
6248 SourceLocation CContext, unsigned diag,
6249 bool pruneControlFlow = false) {
6250 if (pruneControlFlow) {
6251 S.DiagRuntimeBehavior(E->getExprLoc(), E,
6252 S.PDiag(diag)
6253 << SourceType << T << E->getSourceRange()
6254 << SourceRange(CContext));
6255 return;
6256 }
6257 S.Diag(E->getExprLoc(), diag)
6258 << SourceType << T << E->getSourceRange() << SourceRange(CContext);
6259}
6260
6261/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
6262static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
6263 SourceLocation CContext, unsigned diag,
6264 bool pruneControlFlow = false) {
6265 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
6266}
6267
6268/// Diagnose an implicit cast from a literal expression. Does not warn when the
6269/// cast wouldn't lose information.
6270void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
6271 SourceLocation CContext) {
6272 // Try to convert the literal exactly to an integer. If we can, don't warn.
6273 bool isExact = false;
6274 const llvm::APFloat &Value = FL->getValue();
6275 llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
6276 T->hasUnsignedIntegerRepresentation());
6277 if (Value.convertToInteger(IntegerValue,
6278 llvm::APFloat::rmTowardZero, &isExact)
6279 == llvm::APFloat::opOK && isExact)
6280 return;
6281
6282 // FIXME: Force the precision of the source value down so we don't print
6283 // digits which are usually useless (we don't really care here if we
6284 // truncate a digit by accident in edge cases). Ideally, APFloat::toString
6285 // would automatically print the shortest representation, but it's a bit
6286 // tricky to implement.
6287 SmallString<16> PrettySourceValue;
6288 unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
6289 precision = (precision * 59 + 195) / 196;
6290 Value.toString(PrettySourceValue, precision);
6291
6292 SmallString<16> PrettyTargetValue;
6293 if (T->isSpecificBuiltinType(BuiltinType::Bool))
6294 PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
6295 else
6296 IntegerValue.toString(PrettyTargetValue);
6297
6298 S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
6299 << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
6300 << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
6301}
6302
6303std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
6304 if (!Range.Width) return "0";
6305
6306 llvm::APSInt ValueInRange = Value;
6307 ValueInRange.setIsSigned(!Range.NonNegative);
6308 ValueInRange = ValueInRange.trunc(Range.Width);
6309 return ValueInRange.toString(10);
6310}
6311
6312static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
6313 if (!isa<ImplicitCastExpr>(Ex))
6314 return false;
6315
6316 Expr *InnerE = Ex->IgnoreParenImpCasts();
6317 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
6318 const Type *Source =
6319 S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
6320 if (Target->isDependentType())
6321 return false;
6322
6323 const BuiltinType *FloatCandidateBT =
6324 dyn_cast<BuiltinType>(ToBool ? Source : Target);
6325 const Type *BoolCandidateType = ToBool ? Target : Source;
6326
6327 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
6328 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
6329}
6330
6331void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
6332 SourceLocation CC) {
6333 unsigned NumArgs = TheCall->getNumArgs();
6334 for (unsigned i = 0; i < NumArgs; ++i) {
6335 Expr *CurrA = TheCall->getArg(i);
6336 if (!IsImplicitBoolFloatConversion(S, CurrA, true))
6337 continue;
6338
6339 bool IsSwapped = ((i > 0) &&
6340 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
6341 IsSwapped |= ((i < (NumArgs - 1)) &&
6342 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
6343 if (IsSwapped) {
6344 // Warn on this floating-point to bool conversion.
6345 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
6346 CurrA->getType(), CC,
6347 diag::warn_impcast_floating_point_to_bool);
6348 }
6349 }
6350}
6351
6352static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
6353 SourceLocation CC) {
6354 if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
6355 E->getExprLoc()))
6356 return;
6357
6358 // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
6359 const Expr::NullPointerConstantKind NullKind =
6360 E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
6361 if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
6362 return;
6363
6364 // Return if target type is a safe conversion.
6365 if (T->isAnyPointerType() || T->isBlockPointerType() ||
6366 T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
6367 return;
6368
6369 SourceLocation Loc = E->getSourceRange().getBegin();
6370
6371 // __null is usually wrapped in a macro. Go up a macro if that is the case.
6372 if (NullKind == Expr::NPCK_GNUNull) {
6373 if (Loc.isMacroID())
6374 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
6375 }
6376
6377 // Only warn if the null and context location are in the same macro expansion.
6378 if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
6379 return;
6380
6381 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
6382 << (NullKind == Expr::NPCK_CXX11_nullptr) << T << clang::SourceRange(CC)
6383 << FixItHint::CreateReplacement(Loc,
6384 S.getFixItZeroLiteralForType(T, Loc));
6385}
6386
6387void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
6388 SourceLocation CC, bool *ICContext = nullptr) {
6389 if (E->isTypeDependent() || E->isValueDependent()) return;
6390
6391 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
6392 const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
6393 if (Source == Target) return;
6394 if (Target->isDependentType()) return;
6395
6396 // If the conversion context location is invalid don't complain. We also
6397 // don't want to emit a warning if the issue occurs from the expansion of
6398 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
6399 // delay this check as long as possible. Once we detect we are in that
6400 // scenario, we just return.
6401 if (CC.isInvalid())
6402 return;
6403
6404 // Diagnose implicit casts to bool.
6405 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
6406 if (isa<StringLiteral>(E))
6407 // Warn on string literal to bool. Checks for string literals in logical
6408 // and expressions, for instance, assert(0 && "error here"), are
6409 // prevented by a check in AnalyzeImplicitConversions().
6410 return DiagnoseImpCast(S, E, T, CC,
6411 diag::warn_impcast_string_literal_to_bool);
6412 if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
6413 isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
6414 // This covers the literal expressions that evaluate to Objective-C
6415 // objects.
6416 return DiagnoseImpCast(S, E, T, CC,
6417 diag::warn_impcast_objective_c_literal_to_bool);
6418 }
6419 if (Source->isPointerType() || Source->canDecayToPointerType()) {
6420 // Warn on pointer to bool conversion that is always true.
6421 S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
6422 SourceRange(CC));
6423 }
6424 }
6425
6426 // Strip vector types.
6427 if (isa<VectorType>(Source)) {
6428 if (!isa<VectorType>(Target)) {
6429 if (S.SourceMgr.isInSystemMacro(CC))
6430 return;
6431 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
6432 }
6433
6434 // If the vector cast is cast between two vectors of the same size, it is
6435 // a bitcast, not a conversion.
6436 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
6437 return;
6438
6439 Source = cast<VectorType>(Source)->getElementType().getTypePtr();
6440 Target = cast<VectorType>(Target)->getElementType().getTypePtr();
6441 }
6442 if (auto VecTy = dyn_cast<VectorType>(Target))
6443 Target = VecTy->getElementType().getTypePtr();
6444
6445 // Strip complex types.
6446 if (isa<ComplexType>(Source)) {
6447 if (!isa<ComplexType>(Target)) {
6448 if (S.SourceMgr.isInSystemMacro(CC))
6449 return;
6450
6451 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
6452 }
6453
6454 Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
6455 Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
6456 }
6457
6458 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
6459 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
6460
6461 // If the source is floating point...
6462 if (SourceBT && SourceBT->isFloatingPoint()) {
6463 // ...and the target is floating point...
6464 if (TargetBT && TargetBT->isFloatingPoint()) {
6465 // ...then warn if we're dropping FP rank.
6466
6467 // Builtin FP kinds are ordered by increasing FP rank.
6468 if (SourceBT->getKind() > TargetBT->getKind()) {
6469 // Don't warn about float constants that are precisely
6470 // representable in the target type.
6471 Expr::EvalResult result;
6472 if (E->EvaluateAsRValue(result, S.Context)) {
6473 // Value might be a float, a float vector, or a float complex.
6474 if (IsSameFloatAfterCast(result.Val,
6475 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
6476 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
6477 return;
6478 }
6479
6480 if (S.SourceMgr.isInSystemMacro(CC))
6481 return;
6482
6483 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
6484 }
6485 return;
6486 }
6487
6488 // If the target is integral, always warn.
6489 if (TargetBT && TargetBT->isInteger()) {
6490 if (S.SourceMgr.isInSystemMacro(CC))
6491 return;
6492
6493 Expr *InnerE = E->IgnoreParenImpCasts();
6494 // We also want to warn on, e.g., "int i = -1.234"
6495 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
6496 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
6497 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
6498
6499 if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
6500 DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
6501 } else {
6502 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
6503 }
6504 }
6505
6506 // If the target is bool, warn if expr is a function or method call.
6507 if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
6508 isa<CallExpr>(E)) {
6509 // Check last argument of function call to see if it is an
6510 // implicit cast from a type matching the type the result
6511 // is being cast to.
6512 CallExpr *CEx = cast<CallExpr>(E);
6513 unsigned NumArgs = CEx->getNumArgs();
6514 if (NumArgs > 0) {
6515 Expr *LastA = CEx->getArg(NumArgs - 1);
6516 Expr *InnerE = LastA->IgnoreParenImpCasts();
6517 const Type *InnerType =
6518 S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
6519 if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
6520 // Warn on this floating-point to bool conversion
6521 DiagnoseImpCast(S, E, T, CC,
6522 diag::warn_impcast_floating_point_to_bool);
6523 }
6524 }
6525 }
6526 return;
6527 }
6528
6529 DiagnoseNullConversion(S, E, T, CC);
6530
6531 if (!Source->isIntegerType() || !Target->isIntegerType())
6532 return;
6533
6534 // TODO: remove this early return once the false positives for constant->bool
6535 // in templates, macros, etc, are reduced or removed.
6536 if (Target->isSpecificBuiltinType(BuiltinType::Bool))
6537 return;
6538
6539 IntRange SourceRange = GetExprRange(S.Context, E);
6540 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
6541
6542 if (SourceRange.Width > TargetRange.Width) {
6543 // If the source is a constant, use a default-on diagnostic.
6544 // TODO: this should happen for bitfield stores, too.
6545 llvm::APSInt Value(32);
6546 if (E->isIntegerConstantExpr(Value, S.Context)) {
6547 if (S.SourceMgr.isInSystemMacro(CC))
6548 return;
6549
6550 std::string PrettySourceValue = Value.toString(10);
6551 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
6552
6553 S.DiagRuntimeBehavior(E->getExprLoc(), E,
6554 S.PDiag(diag::warn_impcast_integer_precision_constant)
6555 << PrettySourceValue << PrettyTargetValue
6556 << E->getType() << T << E->getSourceRange()
6557 << clang::SourceRange(CC));
6558 return;
6559 }
6560
6561 // People want to build with -Wshorten-64-to-32 and not -Wconversion.
6562 if (S.SourceMgr.isInSystemMacro(CC))
6563 return;
6564
6565 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
6566 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
6567 /* pruneControlFlow */ true);
6568 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
6569 }
6570
6571 if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
6572 (!TargetRange.NonNegative && SourceRange.NonNegative &&
6573 SourceRange.Width == TargetRange.Width)) {
6574
6575 if (S.SourceMgr.isInSystemMacro(CC))
6576 return;
6577
6578 unsigned DiagID = diag::warn_impcast_integer_sign;
6579
6580 // Traditionally, gcc has warned about this under -Wsign-compare.
6581 // We also want to warn about it in -Wconversion.
6582 // So if -Wconversion is off, use a completely identical diagnostic
6583 // in the sign-compare group.
6584 // The conditional-checking code will
6585 if (ICContext) {
6586 DiagID = diag::warn_impcast_integer_sign_conditional;
6587 *ICContext = true;
6588 }
6589
6590 return DiagnoseImpCast(S, E, T, CC, DiagID);
6591 }
6592
6593 // Diagnose conversions between different enumeration types.
6594 // In C, we pretend that the type of an EnumConstantDecl is its enumeration
6595 // type, to give us better diagnostics.
6596 QualType SourceType = E->getType();
6597 if (!S.getLangOpts().CPlusPlus) {
6598 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6599 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
6600 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
6601 SourceType = S.Context.getTypeDeclType(Enum);
6602 Source = S.Context.getCanonicalType(SourceType).getTypePtr();
6603 }
6604 }
6605
6606 if (const EnumType *SourceEnum = Source->getAs<EnumType>())
6607 if (const EnumType *TargetEnum = Target->getAs<EnumType>())
6608 if (SourceEnum->getDecl()->hasNameForLinkage() &&
6609 TargetEnum->getDecl()->hasNameForLinkage() &&
6610 SourceEnum != TargetEnum) {
6611 if (S.SourceMgr.isInSystemMacro(CC))
6612 return;
6613
6614 return DiagnoseImpCast(S, E, SourceType, T, CC,
6615 diag::warn_impcast_different_enum_types);
6616 }
6617
6618 return;
6619}
6620
6621void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
6622 SourceLocation CC, QualType T);
6623
6624void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
6625 SourceLocation CC, bool &ICContext) {
6626 E = E->IgnoreParenImpCasts();
6627
6628 if (isa<ConditionalOperator>(E))
6629 return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
6630
6631 AnalyzeImplicitConversions(S, E, CC);
6632 if (E->getType() != T)
6633 return CheckImplicitConversion(S, E, T, CC, &ICContext);
6634 return;
6635}
6636
6637void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
6638 SourceLocation CC, QualType T) {
6639 AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
6640
6641 bool Suspicious = false;
6642 CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
6643 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
6644
6645 // If -Wconversion would have warned about either of the candidates
6646 // for a signedness conversion to the context type...
6647 if (!Suspicious) return;
6648
6649 // ...but it's currently ignored...
6650 if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
6651 return;
6652
6653 // ...then check whether it would have warned about either of the
6654 // candidates for a signedness conversion to the condition type.
6655 if (E->getType() == T) return;
6656
6657 Suspicious = false;
6658 CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
6659 E->getType(), CC, &Suspicious);
6660 if (!Suspicious)
6661 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
6662 E->getType(), CC, &Suspicious);
6663}
6664
6665/// CheckBoolLikeConversion - Check conversion of given expression to boolean.
6666/// Input argument E is a logical expression.
6667static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
6668 if (S.getLangOpts().Bool)
6669 return;
6670 CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
6671}
6672
6673/// AnalyzeImplicitConversions - Find and report any interesting
6674/// implicit conversions in the given expression. There are a couple
6675/// of competing diagnostics here, -Wconversion and -Wsign-compare.
6676void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
6677 QualType T = OrigE->getType();
6678 Expr *E = OrigE->IgnoreParenImpCasts();
6679
6680 if (E->isTypeDependent() || E->isValueDependent())
6681 return;
6682
6683 // For conditional operators, we analyze the arguments as if they
6684 // were being fed directly into the output.
6685 if (isa<ConditionalOperator>(E)) {
6686 ConditionalOperator *CO = cast<ConditionalOperator>(E);
6687 CheckConditionalOperator(S, CO, CC, T);
6688 return;
6689 }
6690
6691 // Check implicit argument conversions for function calls.
6692 if (CallExpr *Call = dyn_cast<CallExpr>(E))
6693 CheckImplicitArgumentConversions(S, Call, CC);
6694
6695 // Go ahead and check any implicit conversions we might have skipped.
6696 // The non-canonical typecheck is just an optimization;
6697 // CheckImplicitConversion will filter out dead implicit conversions.
6698 if (E->getType() != T)
6699 CheckImplicitConversion(S, E, T, CC);
6700
6701 // Now continue drilling into this expression.
6702
6703 if (PseudoObjectExpr * POE = dyn_cast<PseudoObjectExpr>(E)) {
6704 if (POE->getResultExpr())
6705 E = POE->getResultExpr();
6706 }
6707
6708 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
6709 return AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
6710
6711 // Skip past explicit casts.
6712 if (isa<ExplicitCastExpr>(E)) {
6713 E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
6714 return AnalyzeImplicitConversions(S, E, CC);
6715 }
6716
6717 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
6718 // Do a somewhat different check with comparison operators.
6719 if (BO->isComparisonOp())
6720 return AnalyzeComparison(S, BO);
6721
6722 // And with simple assignments.
6723 if (BO->getOpcode() == BO_Assign)
6724 return AnalyzeAssignment(S, BO);
6725 }
6726
6727 // These break the otherwise-useful invariant below. Fortunately,
6728 // we don't really need to recurse into them, because any internal
6729 // expressions should have been analyzed already when they were
6730 // built into statements.
6731 if (isa<StmtExpr>(E)) return;
6732
6733 // Don't descend into unevaluated contexts.
6734 if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
6735
6736 // Now just recurse over the expression's children.
6737 CC = E->getExprLoc();
6738 BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
6739 bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
6740 for (Stmt::child_range I = E->children(); I; ++I) {
6741 Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
6742 if (!ChildExpr)
6743 continue;
6744
6745 if (IsLogicalAndOperator &&
6746 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
6747 // Ignore checking string literals that are in logical and operators.
6748 // This is a common pattern for asserts.
6749 continue;
6750 AnalyzeImplicitConversions(S, ChildExpr, CC);
6751 }
6752
6753 if (BO && BO->isLogicalOp()) {
6754 Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
6755 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
6756 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
6757
6758 SubExpr = BO->getRHS()->IgnoreParenImpCasts();
6759 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
6760 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
6761 }
6762
6763 if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E))
6764 if (U->getOpcode() == UO_LNot)
6765 ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
6766}
6767
6768} // end anonymous namespace
6769
6770enum {
6771 AddressOf,
6772 FunctionPointer,
6773 ArrayPointer
6774};
6775
6776// Helper function for Sema::DiagnoseAlwaysNonNullPointer.
6777// Returns true when emitting a warning about taking the address of a reference.
6778static bool CheckForReference(Sema &SemaRef, const Expr *E,
6779 PartialDiagnostic PD) {
6780 E = E->IgnoreParenImpCasts();
6781
6782 const FunctionDecl *FD = nullptr;
6783
6784 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
6785 if (!DRE->getDecl()->getType()->isReferenceType())
6786 return false;
6787 } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
6788 if (!M->getMemberDecl()->getType()->isReferenceType())
6789 return false;
6790 } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
6791 if (!Call->getCallReturnType()->isReferenceType())
6792 return false;
6793 FD = Call->getDirectCallee();
6794 } else {
6795 return false;
6796 }
6797
6798 SemaRef.Diag(E->getExprLoc(), PD);
6799
6800 // If possible, point to location of function.
6801 if (FD) {
6802 SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
6803 }
6804
6805 return true;
6806}
6807
6808// Returns true if the SourceLocation is expanded from any macro body.
6809// Returns false if the SourceLocation is invalid, is from not in a macro
6810// expansion, or is from expanded from a top-level macro argument.
6811static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
6812 if (Loc.isInvalid())
6813 return false;
6814
6815 while (Loc.isMacroID()) {
6816 if (SM.isMacroBodyExpansion(Loc))
6817 return true;
6818 Loc = SM.getImmediateMacroCallerLoc(Loc);
6819 }
6820
6821 return false;
6822}
6823
6824/// \brief Diagnose pointers that are always non-null.
6825/// \param E the expression containing the pointer
6826/// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
6827/// compared to a null pointer
6828/// \param IsEqual True when the comparison is equal to a null pointer
6829/// \param Range Extra SourceRange to highlight in the diagnostic
6830void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
6831 Expr::NullPointerConstantKind NullKind,
6832 bool IsEqual, SourceRange Range) {
6833 if (!E)
6834 return;
6835
6836 // Don't warn inside macros.
6837 if (E->getExprLoc().isMacroID()) {
6838 const SourceManager &SM = getSourceManager();
6839 if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
6840 IsInAnyMacroBody(SM, Range.getBegin()))
6841 return;
6842 }
6843 E = E->IgnoreImpCasts();
6844
6845 const bool IsCompare = NullKind != Expr::NPCK_NotNull;
6846
6847 if (isa<CXXThisExpr>(E)) {
6848 unsigned DiagID = IsCompare ? diag::warn_this_null_compare
6849 : diag::warn_this_bool_conversion;
6850 Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
6851 return;
6852 }
6853
6854 bool IsAddressOf = false;
6855
6856 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
6857 if (UO->getOpcode() != UO_AddrOf)
6858 return;
6859 IsAddressOf = true;
6860 E = UO->getSubExpr();
6861 }
6862
6863 if (IsAddressOf) {
6864 unsigned DiagID = IsCompare
6865 ? diag::warn_address_of_reference_null_compare
6866 : diag::warn_address_of_reference_bool_conversion;
6867 PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
6868 << IsEqual;
6869 if (CheckForReference(*this, E, PD)) {
6870 return;
6871 }
6872 }
6873
6874 // Expect to find a single Decl. Skip anything more complicated.
6875 ValueDecl *D = nullptr;
6876 if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
6877 D = R->getDecl();
6878 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
6879 D = M->getMemberDecl();
6880 }
6881
6882 // Weak Decls can be null.
6883 if (!D || D->isWeak())
6884 return;
6885
6886 // Check for parameter decl with nonnull attribute
6887 if (const ParmVarDecl* PV = dyn_cast<ParmVarDecl>(D)) {
6888 if (getCurFunction() && !getCurFunction()->ModifiedNonNullParams.count(PV))
6889 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
6890 unsigned NumArgs = FD->getNumParams();
6891 llvm::SmallBitVector AttrNonNull(NumArgs);
6892 for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
6893 if (!NonNull->args_size()) {
6894 AttrNonNull.set(0, NumArgs);
6895 break;
6896 }
6897 for (unsigned Val : NonNull->args()) {
6898 if (Val >= NumArgs)
6899 continue;
6900 AttrNonNull.set(Val);
6901 }
6902 }
6903 if (!AttrNonNull.empty())
6904 for (unsigned i = 0; i < NumArgs; ++i)
6905 if (FD->getParamDecl(i) == PV &&
6906 (AttrNonNull[i] || PV->hasAttr<NonNullAttr>())) {
6907 std::string Str;
6908 llvm::raw_string_ostream S(Str);
6909 E->printPretty(S, nullptr, getPrintingPolicy());
6910 unsigned DiagID = IsCompare ? diag::warn_nonnull_parameter_compare
6911 : diag::warn_cast_nonnull_to_bool;
6912 Diag(E->getExprLoc(), DiagID) << S.str() << E->getSourceRange()
6913 << Range << IsEqual;
6914 return;
6915 }
6916 }
6917 }
6918
6919 QualType T = D->getType();
6920 const bool IsArray = T->isArrayType();
6921 const bool IsFunction = T->isFunctionType();
6922
6923 // Address of function is used to silence the function warning.
6924 if (IsAddressOf && IsFunction) {
6925 return;
6926 }
6927
6928 // Found nothing.
6929 if (!IsAddressOf && !IsFunction && !IsArray)
6930 return;
6931
6932 // Pretty print the expression for the diagnostic.
6933 std::string Str;
6934 llvm::raw_string_ostream S(Str);
6935 E->printPretty(S, nullptr, getPrintingPolicy());
6936
6937 unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
6938 : diag::warn_impcast_pointer_to_bool;
6939 unsigned DiagType;
6940 if (IsAddressOf)
6941 DiagType = AddressOf;
6942 else if (IsFunction)
6943 DiagType = FunctionPointer;
6944 else if (IsArray)
6945 DiagType = ArrayPointer;
6946 else
6947 llvm_unreachable("Could not determine diagnostic.");
6948 Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
6949 << Range << IsEqual;
6950
6951 if (!IsFunction)
6952 return;
6953
6954 // Suggest '&' to silence the function warning.
6955 Diag(E->getExprLoc(), diag::note_function_warning_silence)
6956 << FixItHint::CreateInsertion(E->getLocStart(), "&");
6957
6958 // Check to see if '()' fixit should be emitted.
6959 QualType ReturnType;
6960 UnresolvedSet<4> NonTemplateOverloads;
6961 tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
6962 if (ReturnType.isNull())
6963 return;
6964
6965 if (IsCompare) {
6966 // There are two cases here. If there is null constant, the only suggest
6967 // for a pointer return type. If the null is 0, then suggest if the return
6968 // type is a pointer or an integer type.
6969 if (!ReturnType->isPointerType()) {
6970 if (NullKind == Expr::NPCK_ZeroExpression ||
6971 NullKind == Expr::NPCK_ZeroLiteral) {
6972 if (!ReturnType->isIntegerType())
6973 return;
6974 } else {
6975 return;
6976 }
6977 }
6978 } else { // !IsCompare
6979 // For function to bool, only suggest if the function pointer has bool
6980 // return type.
6981 if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
6982 return;
6983 }
6984 Diag(E->getExprLoc(), diag::note_function_to_function_call)
6985 << FixItHint::CreateInsertion(getLocForEndOfToken(E->getLocEnd()), "()");
6986}
6987
6988
6989/// Diagnoses "dangerous" implicit conversions within the given
6990/// expression (which is a full expression). Implements -Wconversion
6991/// and -Wsign-compare.
6992///
6993/// \param CC the "context" location of the implicit conversion, i.e.
6994/// the most location of the syntactic entity requiring the implicit
6995/// conversion
6996void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
6997 // Don't diagnose in unevaluated contexts.
6998 if (isUnevaluatedContext())
6999 return;
7000
7001 // Don't diagnose for value- or type-dependent expressions.
7002 if (E->isTypeDependent() || E->isValueDependent())
7003 return;
7004
7005 // Check for array bounds violations in cases where the check isn't triggered
7006 // elsewhere for other Expr types (like BinaryOperators), e.g. when an
7007 // ArraySubscriptExpr is on the RHS of a variable initialization.
7008 CheckArrayAccess(E);
7009
7010 // This is not the right CC for (e.g.) a variable initialization.
7011 AnalyzeImplicitConversions(*this, E, CC);
7012}
7013
7014/// CheckBoolLikeConversion - Check conversion of given expression to boolean.
7015/// Input argument E is a logical expression.
7016void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
7017 ::CheckBoolLikeConversion(*this, E, CC);
7018}
7019
7020/// Diagnose when expression is an integer constant expression and its evaluation
7021/// results in integer overflow
7022void Sema::CheckForIntOverflow (Expr *E) {
7023 if (isa<BinaryOperator>(E->IgnoreParenCasts()))
7024 E->IgnoreParenCasts()->EvaluateForOverflow(Context);
7025}
7026
7027namespace {
7028/// \brief Visitor for expressions which looks for unsequenced operations on the
7029/// same object.
7030class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
7031 typedef EvaluatedExprVisitor<SequenceChecker> Base;
7032
7033 /// \brief A tree of sequenced regions within an expression. Two regions are
7034 /// unsequenced if one is an ancestor or a descendent of the other. When we
7035 /// finish processing an expression with sequencing, such as a comma
7036 /// expression, we fold its tree nodes into its parent, since they are
7037 /// unsequenced with respect to nodes we will visit later.
7038 class SequenceTree {
7039 struct Value {
7040 explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
7041 unsigned Parent : 31;
7042 bool Merged : 1;
7043 };
7044 SmallVector<Value, 8> Values;
7045
7046 public:
7047 /// \brief A region within an expression which may be sequenced with respect
7048 /// to some other region.
7049 class Seq {
7050 explicit Seq(unsigned N) : Index(N) {}
7051 unsigned Index;
7052 friend class SequenceTree;
7053 public:
7054 Seq() : Index(0) {}
7055 };
7056
7057 SequenceTree() { Values.push_back(Value(0)); }
7058 Seq root() const { return Seq(0); }
7059
7060 /// \brief Create a new sequence of operations, which is an unsequenced
7061 /// subset of \p Parent. This sequence of operations is sequenced with
7062 /// respect to other children of \p Parent.
7063 Seq allocate(Seq Parent) {
7064 Values.push_back(Value(Parent.Index));
7065 return Seq(Values.size() - 1);
7066 }
7067
7068 /// \brief Merge a sequence of operations into its parent.
7069 void merge(Seq S) {
7070 Values[S.Index].Merged = true;
7071 }
7072
7073 /// \brief Determine whether two operations are unsequenced. This operation
7074 /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
7075 /// should have been merged into its parent as appropriate.
7076 bool isUnsequenced(Seq Cur, Seq Old) {
7077 unsigned C = representative(Cur.Index);
7078 unsigned Target = representative(Old.Index);
7079 while (C >= Target) {
7080 if (C == Target)
7081 return true;
7082 C = Values[C].Parent;
7083 }
7084 return false;
7085 }
7086
7087 private:
7088 /// \brief Pick a representative for a sequence.
7089 unsigned representative(unsigned K) {
7090 if (Values[K].Merged)
7091 // Perform path compression as we go.
7092 return Values[K].Parent = representative(Values[K].Parent);
7093 return K;
7094 }
7095 };
7096
7097 /// An object for which we can track unsequenced uses.
7098 typedef NamedDecl *Object;
7099
7100 /// Different flavors of object usage which we track. We only track the
7101 /// least-sequenced usage of each kind.
7102 enum UsageKind {
7103 /// A read of an object. Multiple unsequenced reads are OK.
7104 UK_Use,
7105 /// A modification of an object which is sequenced before the value
7106 /// computation of the expression, such as ++n in C++.
7107 UK_ModAsValue,
7108 /// A modification of an object which is not sequenced before the value
7109 /// computation of the expression, such as n++.
7110 UK_ModAsSideEffect,
7111
7112 UK_Count = UK_ModAsSideEffect + 1
7113 };
7114
7115 struct Usage {
7116 Usage() : Use(nullptr), Seq() {}
7117 Expr *Use;
7118 SequenceTree::Seq Seq;
7119 };
7120
7121 struct UsageInfo {
7122 UsageInfo() : Diagnosed(false) {}
7123 Usage Uses[UK_Count];
7124 /// Have we issued a diagnostic for this variable already?
7125 bool Diagnosed;
7126 };
7127 typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
7128
7129 Sema &SemaRef;
7130 /// Sequenced regions within the expression.
7131 SequenceTree Tree;
7132 /// Declaration modifications and references which we have seen.
7133 UsageInfoMap UsageMap;
7134 /// The region we are currently within.
7135 SequenceTree::Seq Region;
7136 /// Filled in with declarations which were modified as a side-effect
7137 /// (that is, post-increment operations).
7138 SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
7139 /// Expressions to check later. We defer checking these to reduce
7140 /// stack usage.
7141 SmallVectorImpl<Expr *> &WorkList;
7142
7143 /// RAII object wrapping the visitation of a sequenced subexpression of an
7144 /// expression. At the end of this process, the side-effects of the evaluation
7145 /// become sequenced with respect to the value computation of the result, so
7146 /// we downgrade any UK_ModAsSideEffect within the evaluation to
7147 /// UK_ModAsValue.
7148 struct SequencedSubexpression {
7149 SequencedSubexpression(SequenceChecker &Self)
7150 : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
7151 Self.ModAsSideEffect = &ModAsSideEffect;
7152 }
7153 ~SequencedSubexpression() {
7154 for (auto MI = ModAsSideEffect.rbegin(), ME = ModAsSideEffect.rend();
7155 MI != ME; ++MI) {
7156 UsageInfo &U = Self.UsageMap[MI->first];
7157 auto &SideEffectUsage = U.Uses[UK_ModAsSideEffect];
7158 Self.addUsage(U, MI->first, SideEffectUsage.Use, UK_ModAsValue);
7159 SideEffectUsage = MI->second;
7160 }
7161 Self.ModAsSideEffect = OldModAsSideEffect;
7162 }
7163
7164 SequenceChecker &Self;
7165 SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
7166 SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
7167 };
7168
7169 /// RAII object wrapping the visitation of a subexpression which we might
7170 /// choose to evaluate as a constant. If any subexpression is evaluated and
7171 /// found to be non-constant, this allows us to suppress the evaluation of
7172 /// the outer expression.
7173 class EvaluationTracker {
7174 public:
7175 EvaluationTracker(SequenceChecker &Self)
7176 : Self(Self), Prev(Self.EvalTracker), EvalOK(true) {
7177 Self.EvalTracker = this;
7178 }
7179 ~EvaluationTracker() {
7180 Self.EvalTracker = Prev;
7181 if (Prev)
7182 Prev->EvalOK &= EvalOK;
7183 }
7184
7185 bool evaluate(const Expr *E, bool &Result) {
7186 if (!EvalOK || E->isValueDependent())
7187 return false;
7188 EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
7189 return EvalOK;
7190 }
7191
7192 private:
7193 SequenceChecker &Self;
7194 EvaluationTracker *Prev;
7195 bool EvalOK;
7196 } *EvalTracker;
7197
7198 /// \brief Find the object which is produced by the specified expression,
7199 /// if any.
7200 Object getObject(Expr *E, bool Mod) const {
7201 E = E->IgnoreParenCasts();
7202 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
7203 if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
7204 return getObject(UO->getSubExpr(), Mod);
7205 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7206 if (BO->getOpcode() == BO_Comma)
7207 return getObject(BO->getRHS(), Mod);
7208 if (Mod && BO->isAssignmentOp())
7209 return getObject(BO->getLHS(), Mod);
7210 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
7211 // FIXME: Check for more interesting cases, like "x.n = ++x.n".
7212 if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
7213 return ME->getMemberDecl();
7214 } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
7215 // FIXME: If this is a reference, map through to its value.
7216 return DRE->getDecl();
7217 return nullptr;
7218 }
7219
7220 /// \brief Note that an object was modified or used by an expression.
7221 void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
7222 Usage &U = UI.Uses[UK];
7223 if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
7224 if (UK == UK_ModAsSideEffect && ModAsSideEffect)
7225 ModAsSideEffect->push_back(std::make_pair(O, U));
7226 U.Use = Ref;
7227 U.Seq = Region;
7228 }
7229 }
7230 /// \brief Check whether a modification or use conflicts with a prior usage.
7231 void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
7232 bool IsModMod) {
7233 if (UI.Diagnosed)
7234 return;
7235
7236 const Usage &U = UI.Uses[OtherKind];
7237 if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
7238 return;
7239
7240 Expr *Mod = U.Use;
7241 Expr *ModOrUse = Ref;
7242 if (OtherKind == UK_Use)
7243 std::swap(Mod, ModOrUse);
7244
7245 SemaRef.Diag(Mod->getExprLoc(),
7246 IsModMod ? diag::warn_unsequenced_mod_mod
7247 : diag::warn_unsequenced_mod_use)
7248 << O << SourceRange(ModOrUse->getExprLoc());
7249 UI.Diagnosed = true;
7250 }
7251
7252 void notePreUse(Object O, Expr *Use) {
7253 UsageInfo &U = UsageMap[O];
7254 // Uses conflict with other modifications.
7255 checkUsage(O, U, Use, UK_ModAsValue, false);
7256 }
7257 void notePostUse(Object O, Expr *Use) {
7258 UsageInfo &U = UsageMap[O];
7259 checkUsage(O, U, Use, UK_ModAsSideEffect, false);
7260 addUsage(U, O, Use, UK_Use);
7261 }
7262
7263 void notePreMod(Object O, Expr *Mod) {
7264 UsageInfo &U = UsageMap[O];
7265 // Modifications conflict with other modifications and with uses.
7266 checkUsage(O, U, Mod, UK_ModAsValue, true);
7267 checkUsage(O, U, Mod, UK_Use, false);
7268 }
7269 void notePostMod(Object O, Expr *Use, UsageKind UK) {
7270 UsageInfo &U = UsageMap[O];
7271 checkUsage(O, U, Use, UK_ModAsSideEffect, true);
7272 addUsage(U, O, Use, UK);
7273 }
7274
7275public:
7276 SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList)
7277 : Base(S.Context), SemaRef(S), Region(Tree.root()),
7278 ModAsSideEffect(nullptr), WorkList(WorkList), EvalTracker(nullptr) {
7279 Visit(E);
7280 }
7281
7282 void VisitStmt(Stmt *S) {
7283 // Skip all statements which aren't expressions for now.
7284 }
7285
7286 void VisitExpr(Expr *E) {
7287 // By default, just recurse to evaluated subexpressions.
7288 Base::VisitStmt(E);
7289 }
7290
7291 void VisitCastExpr(CastExpr *E) {
7292 Object O = Object();
7293 if (E->getCastKind() == CK_LValueToRValue)
7294 O = getObject(E->getSubExpr(), false);
7295
7296 if (O)
7297 notePreUse(O, E);
7298 VisitExpr(E);
7299 if (O)
7300 notePostUse(O, E);
7301 }
7302
7303 void VisitBinComma(BinaryOperator *BO) {
7304 // C++11 [expr.comma]p1:
7305 // Every value computation and side effect associated with the left
7306 // expression is sequenced before every value computation and side
7307 // effect associated with the right expression.
7308 SequenceTree::Seq LHS = Tree.allocate(Region);
7309 SequenceTree::Seq RHS = Tree.allocate(Region);
7310 SequenceTree::Seq OldRegion = Region;
7311
7312 {
7313 SequencedSubexpression SeqLHS(*this);
7314 Region = LHS;
7315 Visit(BO->getLHS());
7316 }
7317
7318 Region = RHS;
7319 Visit(BO->getRHS());
7320
7321 Region = OldRegion;
7322
7323 // Forget that LHS and RHS are sequenced. They are both unsequenced
7324 // with respect to other stuff.
7325 Tree.merge(LHS);
7326 Tree.merge(RHS);
7327 }
7328
7329 void VisitBinAssign(BinaryOperator *BO) {
7330 // The modification is sequenced after the value computation of the LHS
7331 // and RHS, so check it before inspecting the operands and update the
7332 // map afterwards.
7333 Object O = getObject(BO->getLHS(), true);
7334 if (!O)
7335 return VisitExpr(BO);
7336
7337 notePreMod(O, BO);
7338
7339 // C++11 [expr.ass]p7:
7340 // E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
7341 // only once.
7342 //
7343 // Therefore, for a compound assignment operator, O is considered used
7344 // everywhere except within the evaluation of E1 itself.
7345 if (isa<CompoundAssignOperator>(BO))
7346 notePreUse(O, BO);
7347
7348 Visit(BO->getLHS());
7349
7350 if (isa<CompoundAssignOperator>(BO))
7351 notePostUse(O, BO);
7352
7353 Visit(BO->getRHS());
7354
7355 // C++11 [expr.ass]p1:
7356 // the assignment is sequenced [...] before the value computation of the
7357 // assignment expression.
7358 // C11 6.5.16/3 has no such rule.
7359 notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
7360 : UK_ModAsSideEffect);
7361 }
7362 void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
7363 VisitBinAssign(CAO);
7364 }
7365
7366 void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
7367 void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
7368 void VisitUnaryPreIncDec(UnaryOperator *UO) {
7369 Object O = getObject(UO->getSubExpr(), true);
7370 if (!O)
7371 return VisitExpr(UO);
7372
7373 notePreMod(O, UO);
7374 Visit(UO->getSubExpr());
7375 // C++11 [expr.pre.incr]p1:
7376 // the expression ++x is equivalent to x+=1
7377 notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
7378 : UK_ModAsSideEffect);
7379 }
7380
7381 void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
7382 void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
7383 void VisitUnaryPostIncDec(UnaryOperator *UO) {
7384 Object O = getObject(UO->getSubExpr(), true);
7385 if (!O)
7386 return VisitExpr(UO);
7387
7388 notePreMod(O, UO);
7389 Visit(UO->getSubExpr());
7390 notePostMod(O, UO, UK_ModAsSideEffect);
7391 }
7392
7393 /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
7394 void VisitBinLOr(BinaryOperator *BO) {
7395 // The side-effects of the LHS of an '&&' are sequenced before the
7396 // value computation of the RHS, and hence before the value computation
7397 // of the '&&' itself, unless the LHS evaluates to zero. We treat them
7398 // as if they were unconditionally sequenced.
7399 EvaluationTracker Eval(*this);
7400 {
7401 SequencedSubexpression Sequenced(*this);
7402 Visit(BO->getLHS());
7403 }
7404
7405 bool Result;
7406 if (Eval.evaluate(BO->getLHS(), Result)) {
7407 if (!Result)
7408 Visit(BO->getRHS());
7409 } else {
7410 // Check for unsequenced operations in the RHS, treating it as an
7411 // entirely separate evaluation.
7412 //
7413 // FIXME: If there are operations in the RHS which are unsequenced
7414 // with respect to operations outside the RHS, and those operations
7415 // are unconditionally evaluated, diagnose them.
7416 WorkList.push_back(BO->getRHS());
7417 }
7418 }
7419 void VisitBinLAnd(BinaryOperator *BO) {
7420 EvaluationTracker Eval(*this);
7421 {
7422 SequencedSubexpression Sequenced(*this);
7423 Visit(BO->getLHS());
7424 }
7425
7426 bool Result;
7427 if (Eval.evaluate(BO->getLHS(), Result)) {
7428 if (Result)
7429 Visit(BO->getRHS());
7430 } else {
7431 WorkList.push_back(BO->getRHS());
7432 }
7433 }
7434
7435 // Only visit the condition, unless we can be sure which subexpression will
7436 // be chosen.
7437 void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
7438 EvaluationTracker Eval(*this);
7439 {
7440 SequencedSubexpression Sequenced(*this);
7441 Visit(CO->getCond());
7442 }
7443
7444 bool Result;
7445 if (Eval.evaluate(CO->getCond(), Result))
7446 Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
7447 else {
7448 WorkList.push_back(CO->getTrueExpr());
7449 WorkList.push_back(CO->getFalseExpr());
7450 }
7451 }
7452
7453 void VisitCallExpr(CallExpr *CE) {
7454 // C++11 [intro.execution]p15:
7455 // When calling a function [...], every value computation and side effect
7456 // associated with any argument expression, or with the postfix expression
7457 // designating the called function, is sequenced before execution of every
7458 // expression or statement in the body of the function [and thus before
7459 // the value computation of its result].
7460 SequencedSubexpression Sequenced(*this);
7461 Base::VisitCallExpr(CE);
7462
7463 // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
7464 }
7465
7466 void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
7467 // This is a call, so all subexpressions are sequenced before the result.
7468 SequencedSubexpression Sequenced(*this);
7469
7470 if (!CCE->isListInitialization())
7471 return VisitExpr(CCE);
7472
7473 // In C++11, list initializations are sequenced.
7474 SmallVector<SequenceTree::Seq, 32> Elts;
7475 SequenceTree::Seq Parent = Region;
7476 for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
7477 E = CCE->arg_end();
7478 I != E; ++I) {
7479 Region = Tree.allocate(Parent);
7480 Elts.push_back(Region);
7481 Visit(*I);
7482 }
7483
7484 // Forget that the initializers are sequenced.
7485 Region = Parent;
7486 for (unsigned I = 0; I < Elts.size(); ++I)
7487 Tree.merge(Elts[I]);
7488 }
7489
7490 void VisitInitListExpr(InitListExpr *ILE) {
7491 if (!SemaRef.getLangOpts().CPlusPlus11)
7492 return VisitExpr(ILE);
7493
7494 // In C++11, list initializations are sequenced.
7495 SmallVector<SequenceTree::Seq, 32> Elts;
7496 SequenceTree::Seq Parent = Region;
7497 for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
7498 Expr *E = ILE->getInit(I);
7499 if (!E) continue;
7500 Region = Tree.allocate(Parent);
7501 Elts.push_back(Region);
7502 Visit(E);
7503 }
7504
7505 // Forget that the initializers are sequenced.
7506 Region = Parent;
7507 for (unsigned I = 0; I < Elts.size(); ++I)
7508 Tree.merge(Elts[I]);
7509 }
7510};
7511}
7512
7513void Sema::CheckUnsequencedOperations(Expr *E) {
7514 SmallVector<Expr *, 8> WorkList;
7515 WorkList.push_back(E);
7516 while (!WorkList.empty()) {
7517 Expr *Item = WorkList.pop_back_val();
7518 SequenceChecker(*this, Item, WorkList);
7519 }
7520}
7521
7522void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
7523 bool IsConstexpr) {
7524 CheckImplicitConversions(E, CheckLoc);
7525 CheckUnsequencedOperations(E);
7526 if (!IsConstexpr && !E->isValueDependent())
7527 CheckForIntOverflow(E);
7528}
7529
7530void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
7531 FieldDecl *BitField,
7532 Expr *Init) {
7533 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
7534}
7535
7536/// CheckParmsForFunctionDef - Check that the parameters of the given
7537/// function are appropriate for the definition of a function. This
7538/// takes care of any checks that cannot be performed on the
7539/// declaration itself, e.g., that the types of each of the function
7540/// parameters are complete.
7541bool Sema::CheckParmsForFunctionDef(ParmVarDecl *const *P,
7542 ParmVarDecl *const *PEnd,
7543 bool CheckParameterNames) {
7544 bool HasInvalidParm = false;
7545 for (; P != PEnd; ++P) {
7546 ParmVarDecl *Param = *P;
7547
7548 // C99 6.7.5.3p4: the parameters in a parameter type list in a
7549 // function declarator that is part of a function definition of
7550 // that function shall not have incomplete type.
7551 //
7552 // This is also C++ [dcl.fct]p6.
7553 if (!Param->isInvalidDecl() &&
7554 RequireCompleteType(Param->getLocation(), Param->getType(),
7555 diag::err_typecheck_decl_incomplete_type)) {
7556 Param->setInvalidDecl();
7557 HasInvalidParm = true;
7558 }
7559
7560 // C99 6.9.1p5: If the declarator includes a parameter type list, the
7561 // declaration of each parameter shall include an identifier.
7562 if (CheckParameterNames &&
7563 Param->getIdentifier() == nullptr &&
7564 !Param->isImplicit() &&
7565 !getLangOpts().CPlusPlus)
7566 Diag(Param->getLocation(), diag::err_parameter_name_omitted);
7567
7568 // C99 6.7.5.3p12:
7569 // If the function declarator is not part of a definition of that
7570 // function, parameters may have incomplete type and may use the [*]
7571 // notation in their sequences of declarator specifiers to specify
7572 // variable length array types.
7573 QualType PType = Param->getOriginalType();
7574 while (const ArrayType *AT = Context.getAsArrayType(PType)) {
7575 if (AT->getSizeModifier() == ArrayType::Star) {
7576 // FIXME: This diagnostic should point the '[*]' if source-location
7577 // information is added for it.
7578 Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
7579 break;
7580 }
7581 PType= AT->getElementType();
7582 }
7583
7584 // MSVC destroys objects passed by value in the callee. Therefore a
7585 // function definition which takes such a parameter must be able to call the
7586 // object's destructor. However, we don't perform any direct access check
7587 // on the dtor.
7588 if (getLangOpts().CPlusPlus && Context.getTargetInfo()
7589 .getCXXABI()
7590 .areArgsDestroyedLeftToRightInCallee()) {
7591 if (!Param->isInvalidDecl()) {
7592 if (const RecordType *RT = Param->getType()->getAs<RecordType>()) {
7593 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
7594 if (!ClassDecl->isInvalidDecl() &&
7595 !ClassDecl->hasIrrelevantDestructor() &&
7596 !ClassDecl->isDependentContext()) {
7597 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
7598 MarkFunctionReferenced(Param->getLocation(), Destructor);
7599 DiagnoseUseOfDecl(Destructor, Param->getLocation());
7600 }
7601 }
7602 }
7603 }
7604 }
7605
7606 return HasInvalidParm;
7607}
7608
7609/// CheckCastAlign - Implements -Wcast-align, which warns when a
7610/// pointer cast increases the alignment requirements.
7611void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
7612 // This is actually a lot of work to potentially be doing on every
7613 // cast; don't do it if we're ignoring -Wcast_align (as is the default).
7614 if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
7615 return;
7616
7617 // Ignore dependent types.
7618 if (T->isDependentType() || Op->getType()->isDependentType())
7619 return;
7620
7621 // Require that the destination be a pointer type.
7622 const PointerType *DestPtr = T->getAs<PointerType>();
7623 if (!DestPtr) return;
7624
7625 // If the destination has alignment 1, we're done.
7626 QualType DestPointee = DestPtr->getPointeeType();
7627 if (DestPointee->isIncompleteType()) return;
7628 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
7629 if (DestAlign.isOne()) return;
7630
7631 // Require that the source be a pointer type.
7632 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
7633 if (!SrcPtr) return;
7634 QualType SrcPointee = SrcPtr->getPointeeType();
7635
7636 // Whitelist casts from cv void*. We already implicitly
7637 // whitelisted casts to cv void*, since they have alignment 1.
7638 // Also whitelist casts involving incomplete types, which implicitly
7639 // includes 'void'.
7640 if (SrcPointee->isIncompleteType()) return;
7641
7642 CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
7643 if (SrcAlign >= DestAlign) return;
7644
7645 Diag(TRange.getBegin(), diag::warn_cast_align)
7646 << Op->getType() << T
7647 << static_cast<unsigned>(SrcAlign.getQuantity())
7648 << static_cast<unsigned>(DestAlign.getQuantity())
7649 << TRange << Op->getSourceRange();
7650}
7651
7652static const Type* getElementType(const Expr *BaseExpr) {
7653 const Type* EltType = BaseExpr->getType().getTypePtr();
7654 if (EltType->isAnyPointerType())
7655 return EltType->getPointeeType().getTypePtr();
7656 else if (EltType->isArrayType())
7657 return EltType->getBaseElementTypeUnsafe();
7658 return EltType;
7659}
7660
7661/// \brief Check whether this array fits the idiom of a size-one tail padded
7662/// array member of a struct.
7663///
7664/// We avoid emitting out-of-bounds access warnings for such arrays as they are
7665/// commonly used to emulate flexible arrays in C89 code.
7666static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
7667 const NamedDecl *ND) {
7668 if (Size != 1 || !ND) return false;
7669
7670 const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
7671 if (!FD) return false;
7672
7673 // Don't consider sizes resulting from macro expansions or template argument
7674 // substitution to form C89 tail-padded arrays.
7675
7676 TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
7677 while (TInfo) {
7678 TypeLoc TL = TInfo->getTypeLoc();
7679 // Look through typedefs.
7680 if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
7681 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
7682 TInfo = TDL->getTypeSourceInfo();
7683 continue;
7684 }
7685 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
7686 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
7687 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
7688 return false;
7689 }
7690 break;
7691 }
7692
7693 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
7694 if (!RD) return false;
7695 if (RD->isUnion()) return false;
7696 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
7697 if (!CRD->isStandardLayout()) return false;
7698 }
7699
7700 // See if this is the last field decl in the record.
7701 const Decl *D = FD;
7702 while ((D = D->getNextDeclInContext()))
7703 if (isa<FieldDecl>(D))
7704 return false;
7705 return true;
7706}
7707
7708void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
7709 const ArraySubscriptExpr *ASE,
7710 bool AllowOnePastEnd, bool IndexNegated) {
7711 IndexExpr = IndexExpr->IgnoreParenImpCasts();
7712 if (IndexExpr->isValueDependent())
7713 return;
7714
7715 const Type *EffectiveType = getElementType(BaseExpr);
7716 BaseExpr = BaseExpr->IgnoreParenCasts();
7717 const ConstantArrayType *ArrayTy =
7718 Context.getAsConstantArrayType(BaseExpr->getType());
7719 if (!ArrayTy)
7720 return;
7721
7722 llvm::APSInt index;
7723 if (!IndexExpr->EvaluateAsInt(index, Context))
7724 return;
7725 if (IndexNegated)
7726 index = -index;
7727
7728 const NamedDecl *ND = nullptr;
7729 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
7730 ND = dyn_cast<NamedDecl>(DRE->getDecl());
7731 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
7732 ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
7733
7734 if (index.isUnsigned() || !index.isNegative()) {
7735 llvm::APInt size = ArrayTy->getSize();
7736 if (!size.isStrictlyPositive())
7737 return;
7738
7739 const Type* BaseType = getElementType(BaseExpr);
7740 if (BaseType != EffectiveType) {
7741 // Make sure we're comparing apples to apples when comparing index to size
7742 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
7743 uint64_t array_typesize = Context.getTypeSize(BaseType);
7744 // Handle ptrarith_typesize being zero, such as when casting to void*
7745 if (!ptrarith_typesize) ptrarith_typesize = 1;
7746 if (ptrarith_typesize != array_typesize) {
7747 // There's a cast to a different size type involved
7748 uint64_t ratio = array_typesize / ptrarith_typesize;
7749 // TODO: Be smarter about handling cases where array_typesize is not a
7750 // multiple of ptrarith_typesize
7751 if (ptrarith_typesize * ratio == array_typesize)
7752 size *= llvm::APInt(size.getBitWidth(), ratio);
7753 }
7754 }
7755
7756 if (size.getBitWidth() > index.getBitWidth())
7757 index = index.zext(size.getBitWidth());
7758 else if (size.getBitWidth() < index.getBitWidth())
7759 size = size.zext(index.getBitWidth());
7760
7761 // For array subscripting the index must be less than size, but for pointer
7762 // arithmetic also allow the index (offset) to be equal to size since
7763 // computing the next address after the end of the array is legal and
7764 // commonly done e.g. in C++ iterators and range-based for loops.
7765 if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
7766 return;
7767
7768 // Also don't warn for arrays of size 1 which are members of some
7769 // structure. These are often used to approximate flexible arrays in C89
7770 // code.
7771 if (IsTailPaddedMemberArray(*this, size, ND))
7772 return;
7773
7774 // Suppress the warning if the subscript expression (as identified by the
7775 // ']' location) and the index expression are both from macro expansions
7776 // within a system header.
7777 if (ASE) {
7778 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
7779 ASE->getRBracketLoc());
7780 if (SourceMgr.isInSystemHeader(RBracketLoc)) {
7781 SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
7782 IndexExpr->getLocStart());
7783 if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
7784 return;
7785 }
7786 }
7787
7788 unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
7789 if (ASE)
7790 DiagID = diag::warn_array_index_exceeds_bounds;
7791
7792 DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
7793 PDiag(DiagID) << index.toString(10, true)
7794 << size.toString(10, true)
7795 << (unsigned)size.getLimitedValue(~0U)
7796 << IndexExpr->getSourceRange());
7797 } else {
7798 unsigned DiagID = diag::warn_array_index_precedes_bounds;
7799 if (!ASE) {
7800 DiagID = diag::warn_ptr_arith_precedes_bounds;
7801 if (index.isNegative()) index = -index;
7802 }
7803
7804 DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
7805 PDiag(DiagID) << index.toString(10, true)
7806 << IndexExpr->getSourceRange());
7807 }
7808
7809 if (!ND) {
7810 // Try harder to find a NamedDecl to point at in the note.
7811 while (const ArraySubscriptExpr *ASE =
7812 dyn_cast<ArraySubscriptExpr>(BaseExpr))
7813 BaseExpr = ASE->getBase()->IgnoreParenCasts();
7814 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
7815 ND = dyn_cast<NamedDecl>(DRE->getDecl());
7816 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
7817 ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
7818 }
7819
7820 if (ND)
7821 DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
7822 PDiag(diag::note_array_index_out_of_bounds)
7823 << ND->getDeclName());
7824}
7825
7826void Sema::CheckArrayAccess(const Expr *expr) {
7827 int AllowOnePastEnd = 0;
7828 while (expr) {
7829 expr = expr->IgnoreParenImpCasts();
7830 switch (expr->getStmtClass()) {
7831 case Stmt::ArraySubscriptExprClass: {
7832 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
7833 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
7834 AllowOnePastEnd > 0);
7835 return;
7836 }
7837 case Stmt::UnaryOperatorClass: {
7838 // Only unwrap the * and & unary operators
7839 const UnaryOperator *UO = cast<UnaryOperator>(expr);
7840 expr = UO->getSubExpr();
7841 switch (UO->getOpcode()) {
7842 case UO_AddrOf:
7843 AllowOnePastEnd++;
7844 break;
7845 case UO_Deref:
7846 AllowOnePastEnd--;
7847 break;
7848 default:
7849 return;
7850 }
7851 break;
7852 }
7853 case Stmt::ConditionalOperatorClass: {
7854 const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
7855 if (const Expr *lhs = cond->getLHS())
7856 CheckArrayAccess(lhs);
7857 if (const Expr *rhs = cond->getRHS())
7858 CheckArrayAccess(rhs);
7859 return;
7860 }
7861 default:
7862 return;
7863 }
7864 }
7865}
7866
7867//===--- CHECK: Objective-C retain cycles ----------------------------------//
7868
7869namespace {
7870 struct RetainCycleOwner {
7871 RetainCycleOwner() : Variable(nullptr), Indirect(false) {}
7872 VarDecl *Variable;
7873 SourceRange Range;
7874 SourceLocation Loc;
7875 bool Indirect;
7876
7877 void setLocsFrom(Expr *e) {
7878 Loc = e->getExprLoc();
7879 Range = e->getSourceRange();
7880 }
7881 };
7882}
7883
7884/// Consider whether capturing the given variable can possibly lead to
7885/// a retain cycle.
7886static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
7887 // In ARC, it's captured strongly iff the variable has __strong
7888 // lifetime. In MRR, it's captured strongly if the variable is
7889 // __block and has an appropriate type.
7890 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
7891 return false;
7892
7893 owner.Variable = var;
7894 if (ref)
7895 owner.setLocsFrom(ref);
7896 return true;
7897}
7898
7899static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
7900 while (true) {
7901 e = e->IgnoreParens();
7902 if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
7903 switch (cast->getCastKind()) {
7904 case CK_BitCast:
7905 case CK_LValueBitCast:
7906 case CK_LValueToRValue:
7907 case CK_ARCReclaimReturnedObject:
7908 e = cast->getSubExpr();
7909 continue;
7910
7911 default:
7912 return false;
7913 }
7914 }
7915
7916 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
7917 ObjCIvarDecl *ivar = ref->getDecl();
7918 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
7919 return false;
7920
7921 // Try to find a retain cycle in the base.
7922 if (!findRetainCycleOwner(S, ref->getBase(), owner))
7923 return false;
7924
7925 if (ref->isFreeIvar()) owner.setLocsFrom(ref);
7926 owner.Indirect = true;
7927 return true;
7928 }
7929
7930 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
7931 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
7932 if (!var) return false;
7933 return considerVariable(var, ref, owner);
7934 }
7935
7936 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
7937 if (member->isArrow()) return false;
7938
7939 // Don't count this as an indirect ownership.
7940 e = member->getBase();
7941 continue;
7942 }
7943
7944 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
7945 // Only pay attention to pseudo-objects on property references.
7946 ObjCPropertyRefExpr *pre
7947 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
7948 ->IgnoreParens());
7949 if (!pre) return false;
7950 if (pre->isImplicitProperty()) return false;
7951 ObjCPropertyDecl *property = pre->getExplicitProperty();
7952 if (!property->isRetaining() &&
7953 !(property->getPropertyIvarDecl() &&
7954 property->getPropertyIvarDecl()->getType()
7955 .getObjCLifetime() == Qualifiers::OCL_Strong))
7956 return false;
7957
7958 owner.Indirect = true;
7959 if (pre->isSuperReceiver()) {
7960 owner.Variable = S.getCurMethodDecl()->getSelfDecl();
7961 if (!owner.Variable)
7962 return false;
7963 owner.Loc = pre->getLocation();
7964 owner.Range = pre->getSourceRange();
7965 return true;
7966 }
7967 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
7968 ->getSourceExpr());
7969 continue;
7970 }
7971
7972 // Array ivars?
7973
7974 return false;
7975 }
7976}
7977
7978namespace {
7979 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
7980 FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
7981 : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
7982 Context(Context), Variable(variable), Capturer(nullptr),
7983 VarWillBeReased(false) {}
7984 ASTContext &Context;
7985 VarDecl *Variable;
7986 Expr *Capturer;
7987 bool VarWillBeReased;
7988
7989 void VisitDeclRefExpr(DeclRefExpr *ref) {
7990 if (ref->getDecl() == Variable && !Capturer)
7991 Capturer = ref;
7992 }
7993
7994 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
7995 if (Capturer) return;
7996 Visit(ref->getBase());
7997 if (Capturer && ref->isFreeIvar())
7998 Capturer = ref;
7999 }
8000
8001 void VisitBlockExpr(BlockExpr *block) {
8002 // Look inside nested blocks
8003 if (block->getBlockDecl()->capturesVariable(Variable))
8004 Visit(block->getBlockDecl()->getBody());
8005 }
8006
8007 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
8008 if (Capturer) return;
8009 if (OVE->getSourceExpr())
8010 Visit(OVE->getSourceExpr());
8011 }
8012 void VisitBinaryOperator(BinaryOperator *BinOp) {
8013 if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
8014 return;
8015 Expr *LHS = BinOp->getLHS();
8016 if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
8017 if (DRE->getDecl() != Variable)
8018 return;
8019 if (Expr *RHS = BinOp->getRHS()) {
8020 RHS = RHS->IgnoreParenCasts();
8021 llvm::APSInt Value;
8022 VarWillBeReased =
8023 (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0);
8024 }
8025 }
8026 }
8027 };
8028}
8029
8030/// Check whether the given argument is a block which captures a
8031/// variable.
8032static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
8033 assert(owner.Variable && owner.Loc.isValid());
8034
8035 e = e->IgnoreParenCasts();
8036
8037 // Look through [^{...} copy] and Block_copy(^{...}).
8038 if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
8039 Selector Cmd = ME->getSelector();
8040 if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
8041 e = ME->getInstanceReceiver();
8042 if (!e)
8043 return nullptr;
8044 e = e->IgnoreParenCasts();
8045 }
8046 } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
8047 if (CE->getNumArgs() == 1) {
8048 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
8049 if (Fn) {
8050 const IdentifierInfo *FnI = Fn->getIdentifier();
8051 if (FnI && FnI->isStr("_Block_copy")) {
8052 e = CE->getArg(0)->IgnoreParenCasts();
8053 }
8054 }
8055 }
8056 }
8057
8058 BlockExpr *block = dyn_cast<BlockExpr>(e);
8059 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
8060 return nullptr;
8061
8062 FindCaptureVisitor visitor(S.Context, owner.Variable);
8063 visitor.Visit(block->getBlockDecl()->getBody());
8064 return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
8065}
8066
8067static void diagnoseRetainCycle(Sema &S, Expr *capturer,
8068 RetainCycleOwner &owner) {
8069 assert(capturer);
8070 assert(owner.Variable && owner.Loc.isValid());
8071
8072 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
8073 << owner.Variable << capturer->getSourceRange();
8074 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
8075 << owner.Indirect << owner.Range;
8076}
8077
8078/// Check for a keyword selector that starts with the word 'add' or
8079/// 'set'.
8080static bool isSetterLikeSelector(Selector sel) {
8081 if (sel.isUnarySelector()) return false;
8082
8083 StringRef str = sel.getNameForSlot(0);
8084 while (!str.empty() && str.front() == '_') str = str.substr(1);
8085 if (str.startswith("set"))
8086 str = str.substr(3);
8087 else if (str.startswith("add")) {
8088 // Specially whitelist 'addOperationWithBlock:'.
8089 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
8090 return false;
8091 str = str.substr(3);
8092 }
8093 else
8094 return false;
8095
8096 if (str.empty()) return true;
8097 return !isLowercase(str.front());
8098}
8099
8100/// Check a message send to see if it's likely to cause a retain cycle.
8101void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
8102 // Only check instance methods whose selector looks like a setter.
8103 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
8104 return;
8105
8106 // Try to find a variable that the receiver is strongly owned by.
8107 RetainCycleOwner owner;
8108 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
8109 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
8110 return;
8111 } else {
8112 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
8113 owner.Variable = getCurMethodDecl()->getSelfDecl();
8114 owner.Loc = msg->getSuperLoc();
8115 owner.Range = msg->getSuperLoc();
8116 }
8117
8118 // Check whether the receiver is captured by any of the arguments.
8119 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
8120 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
8121 return diagnoseRetainCycle(*this, capturer, owner);
8122}
8123
8124/// Check a property assign to see if it's likely to cause a retain cycle.
8125void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
8126 RetainCycleOwner owner;
8127 if (!findRetainCycleOwner(*this, receiver, owner))
8128 return;
8129
8130 if (Expr *capturer = findCapturingExpr(*this, argument, owner))
8131 diagnoseRetainCycle(*this, capturer, owner);
8132}
8133
8134void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
8135 RetainCycleOwner Owner;
8136 if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
8137 return;
8138
8139 // Because we don't have an expression for the variable, we have to set the
8140 // location explicitly here.
8141 Owner.Loc = Var->getLocation();
8142 Owner.Range = Var->getSourceRange();
8143
8144 if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
8145 diagnoseRetainCycle(*this, Capturer, Owner);
8146}
8147
8148static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
8149 Expr *RHS, bool isProperty) {
8150 // Check if RHS is an Objective-C object literal, which also can get
8151 // immediately zapped in a weak reference. Note that we explicitly
8152 // allow ObjCStringLiterals, since those are designed to never really die.
8153 RHS = RHS->IgnoreParenImpCasts();
8154
8155 // This enum needs to match with the 'select' in
8156 // warn_objc_arc_literal_assign (off-by-1).
8157 Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
8158 if (Kind == Sema::LK_String || Kind == Sema::LK_None)
8159 return false;
8160
8161 S.Diag(Loc, diag::warn_arc_literal_assign)
8162 << (unsigned) Kind
8163 << (isProperty ? 0 : 1)
8164 << RHS->getSourceRange();
8165
8166 return true;
8167}
8168
8169static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
8170 Qualifiers::ObjCLifetime LT,
8171 Expr *RHS, bool isProperty) {
8172 // Strip off any implicit cast added to get to the one ARC-specific.
8173 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
8174 if (cast->getCastKind() == CK_ARCConsumeObject) {
8175 S.Diag(Loc, diag::warn_arc_retained_assign)
8176 << (LT == Qualifiers::OCL_ExplicitNone)
8177 << (isProperty ? 0 : 1)
8178 << RHS->getSourceRange();
8179 return true;
8180 }
8181 RHS = cast->getSubExpr();
8182 }
8183
8184 if (LT == Qualifiers::OCL_Weak &&
8185 checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
8186 return true;
8187
8188 return false;
8189}
8190
8191bool Sema::checkUnsafeAssigns(SourceLocation Loc,
8192 QualType LHS, Expr *RHS) {
8193 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
8194
8195 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
8196 return false;
8197
8198 if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
8199 return true;
8200
8201 return false;
8202}
8203
8204void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
8205 Expr *LHS, Expr *RHS) {
8206 QualType LHSType;
8207 // PropertyRef on LHS type need be directly obtained from
8208 // its declaration as it has a PseudoType.
8209 ObjCPropertyRefExpr *PRE
8210 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
8211 if (PRE && !PRE->isImplicitProperty()) {
8212 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
8213 if (PD)
8214 LHSType = PD->getType();
8215 }
8216
8217 if (LHSType.isNull())
8218 LHSType = LHS->getType();
8219
8220 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
8221
8222 if (LT == Qualifiers::OCL_Weak) {
8223 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
8224 getCurFunction()->markSafeWeakUse(LHS);
8225 }
8226
8227 if (checkUnsafeAssigns(Loc, LHSType, RHS))
8228 return;
8229
8230 // FIXME. Check for other life times.
8231 if (LT != Qualifiers::OCL_None)
8232 return;
8233
8234 if (PRE) {
8235 if (PRE->isImplicitProperty())
8236 return;
8237 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
8238 if (!PD)
8239 return;
8240
8241 unsigned Attributes = PD->getPropertyAttributes();
8242 if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
8243 // when 'assign' attribute was not explicitly specified
8244 // by user, ignore it and rely on property type itself
8245 // for lifetime info.
8246 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
8247 if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
8248 LHSType->isObjCRetainableType())
8249 return;
8250
8251 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
8252 if (cast->getCastKind() == CK_ARCConsumeObject) {
8253 Diag(Loc, diag::warn_arc_retained_property_assign)
8254 << RHS->getSourceRange();
8255 return;
8256 }
8257 RHS = cast->getSubExpr();
8258 }
8259 }
8260 else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
8261 if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
8262 return;
8263 }
8264 }
8265}
8266
8267//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
8268
8269namespace {
8270bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
8271 SourceLocation StmtLoc,
8272 const NullStmt *Body) {
8273 // Do not warn if the body is a macro that expands to nothing, e.g:
8274 //
8275 // #define CALL(x)
8276 // if (condition)
8277 // CALL(0);
8278 //
8279 if (Body->hasLeadingEmptyMacro())
8280 return false;
8281
8282 // Get line numbers of statement and body.
8283 bool StmtLineInvalid;
8284 unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
8285 &StmtLineInvalid);
8286 if (StmtLineInvalid)
8287 return false;
8288
8289 bool BodyLineInvalid;
8290 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
8291 &BodyLineInvalid);
8292 if (BodyLineInvalid)
8293 return false;
8294
8295 // Warn if null statement and body are on the same line.
8296 if (StmtLine != BodyLine)
8297 return false;
8298
8299 return true;
8300}
8301} // Unnamed namespace
8302
8303void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
8304 const Stmt *Body,
8305 unsigned DiagID) {
8306 // Since this is a syntactic check, don't emit diagnostic for template
8307 // instantiations, this just adds noise.
8308 if (CurrentInstantiationScope)
8309 return;
8310
8311 // The body should be a null statement.
8312 const NullStmt *NBody = dyn_cast<NullStmt>(Body);
8313 if (!NBody)
8314 return;
8315
8316 // Do the usual checks.
8317 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
8318 return;
8319
8320 Diag(NBody->getSemiLoc(), DiagID);
8321 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
8322}
8323
8324void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
8325 const Stmt *PossibleBody) {
8326 assert(!CurrentInstantiationScope); // Ensured by caller
8327
8328 SourceLocation StmtLoc;
8329 const Stmt *Body;
8330 unsigned DiagID;
8331 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
8332 StmtLoc = FS->getRParenLoc();
8333 Body = FS->getBody();
8334 DiagID = diag::warn_empty_for_body;
8335 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
8336 StmtLoc = WS->getCond()->getSourceRange().getEnd();
8337 Body = WS->getBody();
8338 DiagID = diag::warn_empty_while_body;
8339 } else
8340 return; // Neither `for' nor `while'.
8341
8342 // The body should be a null statement.
8343 const NullStmt *NBody = dyn_cast<NullStmt>(Body);
8344 if (!NBody)
8345 return;
8346
8347 // Skip expensive checks if diagnostic is disabled.
8348 if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
8349 return;
8350
8351 // Do the usual checks.
8352 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
8353 return;
8354
8355 // `for(...);' and `while(...);' are popular idioms, so in order to keep
8356 // noise level low, emit diagnostics only if for/while is followed by a
8357 // CompoundStmt, e.g.:
8358 // for (int i = 0; i < n; i++);
8359 // {
8360 // a(i);
8361 // }
8362 // or if for/while is followed by a statement with more indentation
8363 // than for/while itself:
8364 // for (int i = 0; i < n; i++);
8365 // a(i);
8366 bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
8367 if (!ProbableTypo) {
8368 bool BodyColInvalid;
8369 unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
8370 PossibleBody->getLocStart(),
8371 &BodyColInvalid);
8372 if (BodyColInvalid)
8373 return;
8374
8375 bool StmtColInvalid;
8376 unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
8377 S->getLocStart(),
8378 &StmtColInvalid);
8379 if (StmtColInvalid)
8380 return;
8381
8382 if (BodyCol > StmtCol)
8383 ProbableTypo = true;
8384 }
8385
8386 if (ProbableTypo) {
8387 Diag(NBody->getSemiLoc(), DiagID);
8388 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
8389 }
8390}
8391
8392//===--- CHECK: Warn on self move with std::move. -------------------------===//
8393
8394/// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
8395void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
8396 SourceLocation OpLoc) {
8397
8398 if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
8399 return;
8400
8401 if (!ActiveTemplateInstantiations.empty())
8402 return;
8403
8404 // Strip parens and casts away.
8405 LHSExpr = LHSExpr->IgnoreParenImpCasts();
8406 RHSExpr = RHSExpr->IgnoreParenImpCasts();
8407
8408 // Check for a call expression
8409 const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
8410 if (!CE || CE->getNumArgs() != 1)
8411 return;
8412
8413 // Check for a call to std::move
8414 const FunctionDecl *FD = CE->getDirectCallee();
8415 if (!FD || !FD->isInStdNamespace() || !FD->getIdentifier() ||
8416 !FD->getIdentifier()->isStr("move"))
8417 return;
8418
8419 // Get argument from std::move
8420 RHSExpr = CE->getArg(0);
8421
8422 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
8423 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
8424
8425 // Two DeclRefExpr's, check that the decls are the same.
8426 if (LHSDeclRef && RHSDeclRef) {
8427 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
8428 return;
8429 if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
8430 RHSDeclRef->getDecl()->getCanonicalDecl())
8431 return;
8432
8433 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
8434 << LHSExpr->getSourceRange()
8435 << RHSExpr->getSourceRange();
8436 return;
8437 }
8438
8439 // Member variables require a different approach to check for self moves.
8440 // MemberExpr's are the same if every nested MemberExpr refers to the same
8441 // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
8442 // the base Expr's are CXXThisExpr's.
8443 const Expr *LHSBase = LHSExpr;
8444 const Expr *RHSBase = RHSExpr;
8445 const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
8446 const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
8447 if (!LHSME || !RHSME)
8448 return;
8449
8450 while (LHSME && RHSME) {
8451 if (LHSME->getMemberDecl()->getCanonicalDecl() !=
8452 RHSME->getMemberDecl()->getCanonicalDecl())
8453 return;
8454
8455 LHSBase = LHSME->getBase();
8456 RHSBase = RHSME->getBase();
8457 LHSME = dyn_cast<MemberExpr>(LHSBase);
8458 RHSME = dyn_cast<MemberExpr>(RHSBase);
8459 }
8460
8461 LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
8462 RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
8463 if (LHSDeclRef && RHSDeclRef) {
8464 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
8465 return;
8466 if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
8467 RHSDeclRef->getDecl()->getCanonicalDecl())
8468 return;
8469
8470 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
8471 << LHSExpr->getSourceRange()
8472 << RHSExpr->getSourceRange();
8473 return;
8474 }
8475
8476 if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
8477 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
8478 << LHSExpr->getSourceRange()
8479 << RHSExpr->getSourceRange();
8480}
8481
8482//===--- Layout compatibility ----------------------------------------------//
8483
8484namespace {
8485
8486bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
8487
8488/// \brief Check if two enumeration types are layout-compatible.
8489bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
8490 // C++11 [dcl.enum] p8:
8491 // Two enumeration types are layout-compatible if they have the same
8492 // underlying type.
8493 return ED1->isComplete() && ED2->isComplete() &&
8494 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
8495}
8496
8497/// \brief Check if two fields are layout-compatible.
8498bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
8499 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
8500 return false;
8501
8502 if (Field1->isBitField() != Field2->isBitField())
8503 return false;
8504
8505 if (Field1->isBitField()) {
8506 // Make sure that the bit-fields are the same length.
8507 unsigned Bits1 = Field1->getBitWidthValue(C);
8508 unsigned Bits2 = Field2->getBitWidthValue(C);
8509
8510 if (Bits1 != Bits2)
8511 return false;
8512 }
8513
8514 return true;
8515}
8516
8517/// \brief Check if two standard-layout structs are layout-compatible.
8518/// (C++11 [class.mem] p17)
8519bool isLayoutCompatibleStruct(ASTContext &C,
8520 RecordDecl *RD1,
8521 RecordDecl *RD2) {
8522 // If both records are C++ classes, check that base classes match.
8523 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
8524 // If one of records is a CXXRecordDecl we are in C++ mode,
8525 // thus the other one is a CXXRecordDecl, too.
8526 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
8527 // Check number of base classes.
8528 if (D1CXX->getNumBases() != D2CXX->getNumBases())
8529 return false;
8530
8531 // Check the base classes.
8532 for (CXXRecordDecl::base_class_const_iterator
8533 Base1 = D1CXX->bases_begin(),
8534 BaseEnd1 = D1CXX->bases_end(),
8535 Base2 = D2CXX->bases_begin();
8536 Base1 != BaseEnd1;
8537 ++Base1, ++Base2) {
8538 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
8539 return false;
8540 }
8541 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
8542 // If only RD2 is a C++ class, it should have zero base classes.
8543 if (D2CXX->getNumBases() > 0)
8544 return false;
8545 }
8546
8547 // Check the fields.
8548 RecordDecl::field_iterator Field2 = RD2->field_begin(),
8549 Field2End = RD2->field_end(),
8550 Field1 = RD1->field_begin(),
8551 Field1End = RD1->field_end();
8552 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
8553 if (!isLayoutCompatible(C, *Field1, *Field2))
8554 return false;
8555 }
8556 if (Field1 != Field1End || Field2 != Field2End)
8557 return false;
8558
8559 return true;
8560}
8561
8562/// \brief Check if two standard-layout unions are layout-compatible.
8563/// (C++11 [class.mem] p18)
8564bool isLayoutCompatibleUnion(ASTContext &C,
8565 RecordDecl *RD1,
8566 RecordDecl *RD2) {
8567 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
8568 for (auto *Field2 : RD2->fields())
8569 UnmatchedFields.insert(Field2);
8570
8571 for (auto *Field1 : RD1->fields()) {
8572 llvm::SmallPtrSet<FieldDecl *, 8>::iterator
8573 I = UnmatchedFields.begin(),
8574 E = UnmatchedFields.end();
8575
8576 for ( ; I != E; ++I) {
8577 if (isLayoutCompatible(C, Field1, *I)) {
8578 bool Result = UnmatchedFields.erase(*I);
8579 (void) Result;
8580 assert(Result);
8581 break;
8582 }
8583 }
8584 if (I == E)
8585 return false;
8586 }
8587
8588 return UnmatchedFields.empty();
8589}
8590
8591bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
8592 if (RD1->isUnion() != RD2->isUnion())
8593 return false;
8594
8595 if (RD1->isUnion())
8596 return isLayoutCompatibleUnion(C, RD1, RD2);
8597 else
8598 return isLayoutCompatibleStruct(C, RD1, RD2);
8599}
8600
8601/// \brief Check if two types are layout-compatible in C++11 sense.
8602bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
8603 if (T1.isNull() || T2.isNull())
8604 return false;
8605
8606 // C++11 [basic.types] p11:
8607 // If two types T1 and T2 are the same type, then T1 and T2 are
8608 // layout-compatible types.
8609 if (C.hasSameType(T1, T2))
8610 return true;
8611
8612 T1 = T1.getCanonicalType().getUnqualifiedType();
8613 T2 = T2.getCanonicalType().getUnqualifiedType();
8614
8615 const Type::TypeClass TC1 = T1->getTypeClass();
8616 const Type::TypeClass TC2 = T2->getTypeClass();
8617
8618 if (TC1 != TC2)
8619 return false;
8620
8621 if (TC1 == Type::Enum) {
8622 return isLayoutCompatible(C,
8623 cast<EnumType>(T1)->getDecl(),
8624 cast<EnumType>(T2)->getDecl());
8625 } else if (TC1 == Type::Record) {
8626 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
8627 return false;
8628
8629 return isLayoutCompatible(C,
8630 cast<RecordType>(T1)->getDecl(),
8631 cast<RecordType>(T2)->getDecl());
8632 }
8633
8634 return false;
8635}
8636}
8637
8638//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
8639
8640namespace {
8641/// \brief Given a type tag expression find the type tag itself.
8642///
8643/// \param TypeExpr Type tag expression, as it appears in user's code.
8644///
8645/// \param VD Declaration of an identifier that appears in a type tag.
8646///
8647/// \param MagicValue Type tag magic value.
8648bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
8649 const ValueDecl **VD, uint64_t *MagicValue) {
8650 while(true) {
8651 if (!TypeExpr)
8652 return false;
8653
8654 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
8655
8656 switch (TypeExpr->getStmtClass()) {
8657 case Stmt::UnaryOperatorClass: {
8658 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
8659 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
8660 TypeExpr = UO->getSubExpr();
8661 continue;
8662 }
8663 return false;
8664 }
8665
8666 case Stmt::DeclRefExprClass: {
8667 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
8668 *VD = DRE->getDecl();
8669 return true;
8670 }
8671
8672 case Stmt::IntegerLiteralClass: {
8673 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
8674 llvm::APInt MagicValueAPInt = IL->getValue();
8675 if (MagicValueAPInt.getActiveBits() <= 64) {
8676 *MagicValue = MagicValueAPInt.getZExtValue();
8677 return true;
8678 } else
8679 return false;
8680 }
8681
8682 case Stmt::BinaryConditionalOperatorClass:
8683 case Stmt::ConditionalOperatorClass: {
8684 const AbstractConditionalOperator *ACO =
8685 cast<AbstractConditionalOperator>(TypeExpr);
8686 bool Result;
8687 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
8688 if (Result)
8689 TypeExpr = ACO->getTrueExpr();
8690 else
8691 TypeExpr = ACO->getFalseExpr();
8692 continue;
8693 }
8694 return false;
8695 }
8696
8697 case Stmt::BinaryOperatorClass: {
8698 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
8699 if (BO->getOpcode() == BO_Comma) {
8700 TypeExpr = BO->getRHS();
8701 continue;
8702 }
8703 return false;
8704 }
8705
8706 default:
8707 return false;
8708 }
8709 }
8710}
8711
8712/// \brief Retrieve the C type corresponding to type tag TypeExpr.
8713///
8714/// \param TypeExpr Expression that specifies a type tag.
8715///
8716/// \param MagicValues Registered magic values.
8717///
8718/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
8719/// kind.
8720///
8721/// \param TypeInfo Information about the corresponding C type.
8722///
8723/// \returns true if the corresponding C type was found.
8724bool GetMatchingCType(
8725 const IdentifierInfo *ArgumentKind,
8726 const Expr *TypeExpr, const ASTContext &Ctx,
8727 const llvm::DenseMap<Sema::TypeTagMagicValue,
8728 Sema::TypeTagData> *MagicValues,
8729 bool &FoundWrongKind,
8730 Sema::TypeTagData &TypeInfo) {
8731 FoundWrongKind = false;
8732
8733 // Variable declaration that has type_tag_for_datatype attribute.
8734 const ValueDecl *VD = nullptr;
8735
8736 uint64_t MagicValue;
8737
8738 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
8739 return false;
8740
8741 if (VD) {
8742 if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
8743 if (I->getArgumentKind() != ArgumentKind) {
8744 FoundWrongKind = true;
8745 return false;
8746 }
8747 TypeInfo.Type = I->getMatchingCType();
8748 TypeInfo.LayoutCompatible = I->getLayoutCompatible();
8749 TypeInfo.MustBeNull = I->getMustBeNull();
8750 return true;
8751 }
8752 return false;
8753 }
8754
8755 if (!MagicValues)
8756 return false;
8757
8758 llvm::DenseMap<Sema::TypeTagMagicValue,
8759 Sema::TypeTagData>::const_iterator I =
8760 MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
8761 if (I == MagicValues->end())
8762 return false;
8763
8764 TypeInfo = I->second;
8765 return true;
8766}
8767} // unnamed namespace
8768
8769void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
8770 uint64_t MagicValue, QualType Type,
8771 bool LayoutCompatible,
8772 bool MustBeNull) {
8773 if (!TypeTagForDatatypeMagicValues)
8774 TypeTagForDatatypeMagicValues.reset(
8775 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
8776
8777 TypeTagMagicValue Magic(ArgumentKind, MagicValue);
8778 (*TypeTagForDatatypeMagicValues)[Magic] =
8779 TypeTagData(Type, LayoutCompatible, MustBeNull);
8780}
8781
8782namespace {
8783bool IsSameCharType(QualType T1, QualType T2) {
8784 const BuiltinType *BT1 = T1->getAs<BuiltinType>();
8785 if (!BT1)
8786 return false;
8787
8788 const BuiltinType *BT2 = T2->getAs<BuiltinType>();
8789 if (!BT2)
8790 return false;
8791
8792 BuiltinType::Kind T1Kind = BT1->getKind();
8793 BuiltinType::Kind T2Kind = BT2->getKind();
8794
8795 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) ||
8796 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) ||
8797 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
8798 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
8799}
8800} // unnamed namespace
8801
8802void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
8803 const Expr * const *ExprArgs) {
8804 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
8805 bool IsPointerAttr = Attr->getIsPointer();
8806
8807 const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
8808 bool FoundWrongKind;
8809 TypeTagData TypeInfo;
8810 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
8811 TypeTagForDatatypeMagicValues.get(),
8812 FoundWrongKind, TypeInfo)) {
8813 if (FoundWrongKind)
8814 Diag(TypeTagExpr->getExprLoc(),
8815 diag::warn_type_tag_for_datatype_wrong_kind)
8816 << TypeTagExpr->getSourceRange();
8817 return;
8818 }
8819
8820 const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
8821 if (IsPointerAttr) {
8822 // Skip implicit cast of pointer to `void *' (as a function argument).
8823 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
8824 if (ICE->getType()->isVoidPointerType() &&
8825 ICE->getCastKind() == CK_BitCast)
8826 ArgumentExpr = ICE->getSubExpr();
8827 }
8828 QualType ArgumentType = ArgumentExpr->getType();
8829
8830 // Passing a `void*' pointer shouldn't trigger a warning.
8831 if (IsPointerAttr && ArgumentType->isVoidPointerType())
8832 return;
8833
8834 if (TypeInfo.MustBeNull) {
8835 // Type tag with matching void type requires a null pointer.
8836 if (!ArgumentExpr->isNullPointerConstant(Context,
8837 Expr::NPC_ValueDependentIsNotNull)) {
8838 Diag(ArgumentExpr->getExprLoc(),
8839 diag::warn_type_safety_null_pointer_required)
8840 << ArgumentKind->getName()
8841 << ArgumentExpr->getSourceRange()
8842 << TypeTagExpr->getSourceRange();
8843 }
8844 return;
8845 }
8846
8847 QualType RequiredType = TypeInfo.Type;
8848 if (IsPointerAttr)
8849 RequiredType = Context.getPointerType(RequiredType);
8850
8851 bool mismatch = false;
8852 if (!TypeInfo.LayoutCompatible) {
8853 mismatch = !Context.hasSameType(ArgumentType, RequiredType);
8854
8855 // C++11 [basic.fundamental] p1:
8856 // Plain char, signed char, and unsigned char are three distinct types.
8857 //
8858 // But we treat plain `char' as equivalent to `signed char' or `unsigned
8859 // char' depending on the current char signedness mode.
8860 if (mismatch)
8861 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
8862 RequiredType->getPointeeType())) ||
8863 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
8864 mismatch = false;
8865 } else
8866 if (IsPointerAttr)
8867 mismatch = !isLayoutCompatible(Context,
8868 ArgumentType->getPointeeType(),
8869 RequiredType->getPointeeType());
8870 else
8871 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
8872
8873 if (mismatch)
8874 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
8875 << ArgumentType << ArgumentKind
8876 << TypeInfo.LayoutCompatible << RequiredType
8877 << ArgumentExpr->getSourceRange()
8878 << TypeTagExpr->getSourceRange();
8879}
8880