Deleted Added
full compact
TargetInfo.cpp (280031) TargetInfo.cpp (283526)
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CGCXXABI.h"
18#include "CGValue.h"
19#include "CodeGenFunction.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/CodeGen/CGFunctionInfo.h"
22#include "clang/Frontend/CodeGenOptions.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/ADT/Triple.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/Type.h"
27#include "llvm/Support/raw_ostream.h"
28#include <algorithm> // std::sort
29
30using namespace clang;
31using namespace CodeGen;
32
33static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
34 llvm::Value *Array,
35 llvm::Value *Value,
36 unsigned FirstIndex,
37 unsigned LastIndex) {
38 // Alternatively, we could emit this as a loop in the source.
39 for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
40 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
41 Builder.CreateStore(Value, Cell);
42 }
43}
44
45static bool isAggregateTypeForABI(QualType T) {
46 return !CodeGenFunction::hasScalarEvaluationKind(T) ||
47 T->isMemberFunctionPointerType();
48}
49
50ABIInfo::~ABIInfo() {}
51
52static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
53 CGCXXABI &CXXABI) {
54 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
55 if (!RD)
56 return CGCXXABI::RAA_Default;
57 return CXXABI.getRecordArgABI(RD);
58}
59
60static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
61 CGCXXABI &CXXABI) {
62 const RecordType *RT = T->getAs<RecordType>();
63 if (!RT)
64 return CGCXXABI::RAA_Default;
65 return getRecordArgABI(RT, CXXABI);
66}
67
68/// Pass transparent unions as if they were the type of the first element. Sema
69/// should ensure that all elements of the union have the same "machine type".
70static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
71 if (const RecordType *UT = Ty->getAsUnionType()) {
72 const RecordDecl *UD = UT->getDecl();
73 if (UD->hasAttr<TransparentUnionAttr>()) {
74 assert(!UD->field_empty() && "sema created an empty transparent union");
75 return UD->field_begin()->getType();
76 }
77 }
78 return Ty;
79}
80
81CGCXXABI &ABIInfo::getCXXABI() const {
82 return CGT.getCXXABI();
83}
84
85ASTContext &ABIInfo::getContext() const {
86 return CGT.getContext();
87}
88
89llvm::LLVMContext &ABIInfo::getVMContext() const {
90 return CGT.getLLVMContext();
91}
92
93const llvm::DataLayout &ABIInfo::getDataLayout() const {
94 return CGT.getDataLayout();
95}
96
97const TargetInfo &ABIInfo::getTarget() const {
98 return CGT.getTarget();
99}
100
101bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
102 return false;
103}
104
105bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
106 uint64_t Members) const {
107 return false;
108}
109
110void ABIArgInfo::dump() const {
111 raw_ostream &OS = llvm::errs();
112 OS << "(ABIArgInfo Kind=";
113 switch (TheKind) {
114 case Direct:
115 OS << "Direct Type=";
116 if (llvm::Type *Ty = getCoerceToType())
117 Ty->print(OS);
118 else
119 OS << "null";
120 break;
121 case Extend:
122 OS << "Extend";
123 break;
124 case Ignore:
125 OS << "Ignore";
126 break;
127 case InAlloca:
128 OS << "InAlloca Offset=" << getInAllocaFieldIndex();
129 break;
130 case Indirect:
131 OS << "Indirect Align=" << getIndirectAlign()
132 << " ByVal=" << getIndirectByVal()
133 << " Realign=" << getIndirectRealign();
134 break;
135 case Expand:
136 OS << "Expand";
137 break;
138 }
139 OS << ")\n";
140}
141
142TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
143
144// If someone can figure out a general rule for this, that would be great.
145// It's probably just doomed to be platform-dependent, though.
146unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
147 // Verified for:
148 // x86-64 FreeBSD, Linux, Darwin
149 // x86-32 FreeBSD, Linux, Darwin
150 // PowerPC Linux, Darwin
151 // ARM Darwin (*not* EABI)
152 // AArch64 Linux
153 return 32;
154}
155
156bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
157 const FunctionNoProtoType *fnType) const {
158 // The following conventions are known to require this to be false:
159 // x86_stdcall
160 // MIPS
161 // For everything else, we just prefer false unless we opt out.
162 return false;
163}
164
165void
166TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
167 llvm::SmallString<24> &Opt) const {
168 // This assumes the user is passing a library name like "rt" instead of a
169 // filename like "librt.a/so", and that they don't care whether it's static or
170 // dynamic.
171 Opt = "-l";
172 Opt += Lib;
173}
174
175static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
176
177/// isEmptyField - Return true iff a the field is "empty", that is it
178/// is an unnamed bit-field or an (array of) empty record(s).
179static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
180 bool AllowArrays) {
181 if (FD->isUnnamedBitfield())
182 return true;
183
184 QualType FT = FD->getType();
185
186 // Constant arrays of empty records count as empty, strip them off.
187 // Constant arrays of zero length always count as empty.
188 if (AllowArrays)
189 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
190 if (AT->getSize() == 0)
191 return true;
192 FT = AT->getElementType();
193 }
194
195 const RecordType *RT = FT->getAs<RecordType>();
196 if (!RT)
197 return false;
198
199 // C++ record fields are never empty, at least in the Itanium ABI.
200 //
201 // FIXME: We should use a predicate for whether this behavior is true in the
202 // current ABI.
203 if (isa<CXXRecordDecl>(RT->getDecl()))
204 return false;
205
206 return isEmptyRecord(Context, FT, AllowArrays);
207}
208
209/// isEmptyRecord - Return true iff a structure contains only empty
210/// fields. Note that a structure with a flexible array member is not
211/// considered empty.
212static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
213 const RecordType *RT = T->getAs<RecordType>();
214 if (!RT)
215 return 0;
216 const RecordDecl *RD = RT->getDecl();
217 if (RD->hasFlexibleArrayMember())
218 return false;
219
220 // If this is a C++ record, check the bases first.
221 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
222 for (const auto &I : CXXRD->bases())
223 if (!isEmptyRecord(Context, I.getType(), true))
224 return false;
225
226 for (const auto *I : RD->fields())
227 if (!isEmptyField(Context, I, AllowArrays))
228 return false;
229 return true;
230}
231
232/// isSingleElementStruct - Determine if a structure is a "single
233/// element struct", i.e. it has exactly one non-empty field or
234/// exactly one field which is itself a single element
235/// struct. Structures with flexible array members are never
236/// considered single element structs.
237///
238/// \return The field declaration for the single non-empty field, if
239/// it exists.
240static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
241 const RecordType *RT = T->getAsStructureType();
242 if (!RT)
243 return nullptr;
244
245 const RecordDecl *RD = RT->getDecl();
246 if (RD->hasFlexibleArrayMember())
247 return nullptr;
248
249 const Type *Found = nullptr;
250
251 // If this is a C++ record, check the bases first.
252 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
253 for (const auto &I : CXXRD->bases()) {
254 // Ignore empty records.
255 if (isEmptyRecord(Context, I.getType(), true))
256 continue;
257
258 // If we already found an element then this isn't a single-element struct.
259 if (Found)
260 return nullptr;
261
262 // If this is non-empty and not a single element struct, the composite
263 // cannot be a single element struct.
264 Found = isSingleElementStruct(I.getType(), Context);
265 if (!Found)
266 return nullptr;
267 }
268 }
269
270 // Check for single element.
271 for (const auto *FD : RD->fields()) {
272 QualType FT = FD->getType();
273
274 // Ignore empty fields.
275 if (isEmptyField(Context, FD, true))
276 continue;
277
278 // If we already found an element then this isn't a single-element
279 // struct.
280 if (Found)
281 return nullptr;
282
283 // Treat single element arrays as the element.
284 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
285 if (AT->getSize().getZExtValue() != 1)
286 break;
287 FT = AT->getElementType();
288 }
289
290 if (!isAggregateTypeForABI(FT)) {
291 Found = FT.getTypePtr();
292 } else {
293 Found = isSingleElementStruct(FT, Context);
294 if (!Found)
295 return nullptr;
296 }
297 }
298
299 // We don't consider a struct a single-element struct if it has
300 // padding beyond the element type.
301 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
302 return nullptr;
303
304 return Found;
305}
306
307static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
308 // Treat complex types as the element type.
309 if (const ComplexType *CTy = Ty->getAs<ComplexType>())
310 Ty = CTy->getElementType();
311
312 // Check for a type which we know has a simple scalar argument-passing
313 // convention without any padding. (We're specifically looking for 32
314 // and 64-bit integer and integer-equivalents, float, and double.)
315 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
316 !Ty->isEnumeralType() && !Ty->isBlockPointerType())
317 return false;
318
319 uint64_t Size = Context.getTypeSize(Ty);
320 return Size == 32 || Size == 64;
321}
322
323/// canExpandIndirectArgument - Test whether an argument type which is to be
324/// passed indirectly (on the stack) would have the equivalent layout if it was
325/// expanded into separate arguments. If so, we prefer to do the latter to avoid
326/// inhibiting optimizations.
327///
328// FIXME: This predicate is missing many cases, currently it just follows
329// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
330// should probably make this smarter, or better yet make the LLVM backend
331// capable of handling it.
332static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
333 // We can only expand structure types.
334 const RecordType *RT = Ty->getAs<RecordType>();
335 if (!RT)
336 return false;
337
338 // We can only expand (C) structures.
339 //
340 // FIXME: This needs to be generalized to handle classes as well.
341 const RecordDecl *RD = RT->getDecl();
342 if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
343 return false;
344
345 uint64_t Size = 0;
346
347 for (const auto *FD : RD->fields()) {
348 if (!is32Or64BitBasicType(FD->getType(), Context))
349 return false;
350
351 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
352 // how to expand them yet, and the predicate for telling if a bitfield still
353 // counts as "basic" is more complicated than what we were doing previously.
354 if (FD->isBitField())
355 return false;
356
357 Size += Context.getTypeSize(FD->getType());
358 }
359
360 // Make sure there are not any holes in the struct.
361 if (Size != Context.getTypeSize(Ty))
362 return false;
363
364 return true;
365}
366
367namespace {
368/// DefaultABIInfo - The default implementation for ABI specific
369/// details. This implementation provides information which results in
370/// self-consistent and sensible LLVM IR generation, but does not
371/// conform to any particular ABI.
372class DefaultABIInfo : public ABIInfo {
373public:
374 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
375
376 ABIArgInfo classifyReturnType(QualType RetTy) const;
377 ABIArgInfo classifyArgumentType(QualType RetTy) const;
378
379 void computeInfo(CGFunctionInfo &FI) const override {
380 if (!getCXXABI().classifyReturnType(FI))
381 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
382 for (auto &I : FI.arguments())
383 I.info = classifyArgumentType(I.type);
384 }
385
386 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
387 CodeGenFunction &CGF) const override;
388};
389
390class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
391public:
392 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
393 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
394};
395
396llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
397 CodeGenFunction &CGF) const {
398 return nullptr;
399}
400
401ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
402 if (isAggregateTypeForABI(Ty))
403 return ABIArgInfo::getIndirect(0);
404
405 // Treat an enum type as its underlying type.
406 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
407 Ty = EnumTy->getDecl()->getIntegerType();
408
409 return (Ty->isPromotableIntegerType() ?
410 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
411}
412
413ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
414 if (RetTy->isVoidType())
415 return ABIArgInfo::getIgnore();
416
417 if (isAggregateTypeForABI(RetTy))
418 return ABIArgInfo::getIndirect(0);
419
420 // Treat an enum type as its underlying type.
421 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
422 RetTy = EnumTy->getDecl()->getIntegerType();
423
424 return (RetTy->isPromotableIntegerType() ?
425 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
426}
427
428//===----------------------------------------------------------------------===//
429// le32/PNaCl bitcode ABI Implementation
430//
431// This is a simplified version of the x86_32 ABI. Arguments and return values
432// are always passed on the stack.
433//===----------------------------------------------------------------------===//
434
435class PNaClABIInfo : public ABIInfo {
436 public:
437 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
438
439 ABIArgInfo classifyReturnType(QualType RetTy) const;
440 ABIArgInfo classifyArgumentType(QualType RetTy) const;
441
442 void computeInfo(CGFunctionInfo &FI) const override;
443 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
444 CodeGenFunction &CGF) const override;
445};
446
447class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
448 public:
449 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
450 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
451};
452
453void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
454 if (!getCXXABI().classifyReturnType(FI))
455 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
456
457 for (auto &I : FI.arguments())
458 I.info = classifyArgumentType(I.type);
459}
460
461llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
462 CodeGenFunction &CGF) const {
463 return nullptr;
464}
465
466/// \brief Classify argument of given type \p Ty.
467ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
468 if (isAggregateTypeForABI(Ty)) {
469 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
470 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
471 return ABIArgInfo::getIndirect(0);
472 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
473 // Treat an enum type as its underlying type.
474 Ty = EnumTy->getDecl()->getIntegerType();
475 } else if (Ty->isFloatingType()) {
476 // Floating-point types don't go inreg.
477 return ABIArgInfo::getDirect();
478 }
479
480 return (Ty->isPromotableIntegerType() ?
481 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
482}
483
484ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
485 if (RetTy->isVoidType())
486 return ABIArgInfo::getIgnore();
487
488 // In the PNaCl ABI we always return records/structures on the stack.
489 if (isAggregateTypeForABI(RetTy))
490 return ABIArgInfo::getIndirect(0);
491
492 // Treat an enum type as its underlying type.
493 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
494 RetTy = EnumTy->getDecl()->getIntegerType();
495
496 return (RetTy->isPromotableIntegerType() ?
497 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
498}
499
500/// IsX86_MMXType - Return true if this is an MMX type.
501bool IsX86_MMXType(llvm::Type *IRType) {
502 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
503 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
504 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
505 IRType->getScalarSizeInBits() != 64;
506}
507
508static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
509 StringRef Constraint,
510 llvm::Type* Ty) {
511 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
512 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
513 // Invalid MMX constraint
514 return nullptr;
515 }
516
517 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
518 }
519
520 // No operation needed
521 return Ty;
522}
523
524/// Returns true if this type can be passed in SSE registers with the
525/// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
526static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
527 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
528 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
529 return true;
530 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
531 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
532 // registers specially.
533 unsigned VecSize = Context.getTypeSize(VT);
534 if (VecSize == 128 || VecSize == 256 || VecSize == 512)
535 return true;
536 }
537 return false;
538}
539
540/// Returns true if this aggregate is small enough to be passed in SSE registers
541/// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
542static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
543 return NumMembers <= 4;
544}
545
546//===----------------------------------------------------------------------===//
547// X86-32 ABI Implementation
548//===----------------------------------------------------------------------===//
549
550/// \brief Similar to llvm::CCState, but for Clang.
551struct CCState {
552 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
553
554 unsigned CC;
555 unsigned FreeRegs;
556 unsigned FreeSSERegs;
557};
558
559/// X86_32ABIInfo - The X86-32 ABI information.
560class X86_32ABIInfo : public ABIInfo {
561 enum Class {
562 Integer,
563 Float
564 };
565
566 static const unsigned MinABIStackAlignInBytes = 4;
567
568 bool IsDarwinVectorABI;
569 bool IsSmallStructInRegABI;
570 bool IsWin32StructABI;
571 unsigned DefaultNumRegisterParameters;
572
573 static bool isRegisterSize(unsigned Size) {
574 return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
575 }
576
577 bool isHomogeneousAggregateBaseType(QualType Ty) const override {
578 // FIXME: Assumes vectorcall is in use.
579 return isX86VectorTypeForVectorCall(getContext(), Ty);
580 }
581
582 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
583 uint64_t NumMembers) const override {
584 // FIXME: Assumes vectorcall is in use.
585 return isX86VectorCallAggregateSmallEnough(NumMembers);
586 }
587
588 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
589
590 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
591 /// such that the argument will be passed in memory.
592 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
593
594 ABIArgInfo getIndirectReturnResult(CCState &State) const;
595
596 /// \brief Return the alignment to use for the given type on the stack.
597 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
598
599 Class classify(QualType Ty) const;
600 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
601 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
602 bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
603
604 /// \brief Rewrite the function info so that all memory arguments use
605 /// inalloca.
606 void rewriteWithInAlloca(CGFunctionInfo &FI) const;
607
608 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
609 unsigned &StackOffset, ABIArgInfo &Info,
610 QualType Type) const;
611
612public:
613
614 void computeInfo(CGFunctionInfo &FI) const override;
615 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
616 CodeGenFunction &CGF) const override;
617
618 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
619 unsigned r)
620 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
621 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
622};
623
624class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
625public:
626 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
627 bool d, bool p, bool w, unsigned r)
628 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
629
630 static bool isStructReturnInRegABI(
631 const llvm::Triple &Triple, const CodeGenOptions &Opts);
632
633 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
634 CodeGen::CodeGenModule &CGM) const override;
635
636 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
637 // Darwin uses different dwarf register numbers for EH.
638 if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
639 return 4;
640 }
641
642 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
643 llvm::Value *Address) const override;
644
645 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
646 StringRef Constraint,
647 llvm::Type* Ty) const override {
648 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
649 }
650
651 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
652 std::string &Constraints,
653 std::vector<llvm::Type *> &ResultRegTypes,
654 std::vector<llvm::Type *> &ResultTruncRegTypes,
655 std::vector<LValue> &ResultRegDests,
656 std::string &AsmString,
657 unsigned NumOutputs) const override;
658
659 llvm::Constant *
660 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
661 unsigned Sig = (0xeb << 0) | // jmp rel8
662 (0x06 << 8) | // .+0x08
663 ('F' << 16) |
664 ('T' << 24);
665 return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
666 }
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CGCXXABI.h"
18#include "CGValue.h"
19#include "CodeGenFunction.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/CodeGen/CGFunctionInfo.h"
22#include "clang/Frontend/CodeGenOptions.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/ADT/Triple.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/Type.h"
27#include "llvm/Support/raw_ostream.h"
28#include <algorithm> // std::sort
29
30using namespace clang;
31using namespace CodeGen;
32
33static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
34 llvm::Value *Array,
35 llvm::Value *Value,
36 unsigned FirstIndex,
37 unsigned LastIndex) {
38 // Alternatively, we could emit this as a loop in the source.
39 for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
40 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
41 Builder.CreateStore(Value, Cell);
42 }
43}
44
45static bool isAggregateTypeForABI(QualType T) {
46 return !CodeGenFunction::hasScalarEvaluationKind(T) ||
47 T->isMemberFunctionPointerType();
48}
49
50ABIInfo::~ABIInfo() {}
51
52static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
53 CGCXXABI &CXXABI) {
54 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
55 if (!RD)
56 return CGCXXABI::RAA_Default;
57 return CXXABI.getRecordArgABI(RD);
58}
59
60static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
61 CGCXXABI &CXXABI) {
62 const RecordType *RT = T->getAs<RecordType>();
63 if (!RT)
64 return CGCXXABI::RAA_Default;
65 return getRecordArgABI(RT, CXXABI);
66}
67
68/// Pass transparent unions as if they were the type of the first element. Sema
69/// should ensure that all elements of the union have the same "machine type".
70static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
71 if (const RecordType *UT = Ty->getAsUnionType()) {
72 const RecordDecl *UD = UT->getDecl();
73 if (UD->hasAttr<TransparentUnionAttr>()) {
74 assert(!UD->field_empty() && "sema created an empty transparent union");
75 return UD->field_begin()->getType();
76 }
77 }
78 return Ty;
79}
80
81CGCXXABI &ABIInfo::getCXXABI() const {
82 return CGT.getCXXABI();
83}
84
85ASTContext &ABIInfo::getContext() const {
86 return CGT.getContext();
87}
88
89llvm::LLVMContext &ABIInfo::getVMContext() const {
90 return CGT.getLLVMContext();
91}
92
93const llvm::DataLayout &ABIInfo::getDataLayout() const {
94 return CGT.getDataLayout();
95}
96
97const TargetInfo &ABIInfo::getTarget() const {
98 return CGT.getTarget();
99}
100
101bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
102 return false;
103}
104
105bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
106 uint64_t Members) const {
107 return false;
108}
109
110void ABIArgInfo::dump() const {
111 raw_ostream &OS = llvm::errs();
112 OS << "(ABIArgInfo Kind=";
113 switch (TheKind) {
114 case Direct:
115 OS << "Direct Type=";
116 if (llvm::Type *Ty = getCoerceToType())
117 Ty->print(OS);
118 else
119 OS << "null";
120 break;
121 case Extend:
122 OS << "Extend";
123 break;
124 case Ignore:
125 OS << "Ignore";
126 break;
127 case InAlloca:
128 OS << "InAlloca Offset=" << getInAllocaFieldIndex();
129 break;
130 case Indirect:
131 OS << "Indirect Align=" << getIndirectAlign()
132 << " ByVal=" << getIndirectByVal()
133 << " Realign=" << getIndirectRealign();
134 break;
135 case Expand:
136 OS << "Expand";
137 break;
138 }
139 OS << ")\n";
140}
141
142TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
143
144// If someone can figure out a general rule for this, that would be great.
145// It's probably just doomed to be platform-dependent, though.
146unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
147 // Verified for:
148 // x86-64 FreeBSD, Linux, Darwin
149 // x86-32 FreeBSD, Linux, Darwin
150 // PowerPC Linux, Darwin
151 // ARM Darwin (*not* EABI)
152 // AArch64 Linux
153 return 32;
154}
155
156bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
157 const FunctionNoProtoType *fnType) const {
158 // The following conventions are known to require this to be false:
159 // x86_stdcall
160 // MIPS
161 // For everything else, we just prefer false unless we opt out.
162 return false;
163}
164
165void
166TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
167 llvm::SmallString<24> &Opt) const {
168 // This assumes the user is passing a library name like "rt" instead of a
169 // filename like "librt.a/so", and that they don't care whether it's static or
170 // dynamic.
171 Opt = "-l";
172 Opt += Lib;
173}
174
175static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
176
177/// isEmptyField - Return true iff a the field is "empty", that is it
178/// is an unnamed bit-field or an (array of) empty record(s).
179static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
180 bool AllowArrays) {
181 if (FD->isUnnamedBitfield())
182 return true;
183
184 QualType FT = FD->getType();
185
186 // Constant arrays of empty records count as empty, strip them off.
187 // Constant arrays of zero length always count as empty.
188 if (AllowArrays)
189 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
190 if (AT->getSize() == 0)
191 return true;
192 FT = AT->getElementType();
193 }
194
195 const RecordType *RT = FT->getAs<RecordType>();
196 if (!RT)
197 return false;
198
199 // C++ record fields are never empty, at least in the Itanium ABI.
200 //
201 // FIXME: We should use a predicate for whether this behavior is true in the
202 // current ABI.
203 if (isa<CXXRecordDecl>(RT->getDecl()))
204 return false;
205
206 return isEmptyRecord(Context, FT, AllowArrays);
207}
208
209/// isEmptyRecord - Return true iff a structure contains only empty
210/// fields. Note that a structure with a flexible array member is not
211/// considered empty.
212static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
213 const RecordType *RT = T->getAs<RecordType>();
214 if (!RT)
215 return 0;
216 const RecordDecl *RD = RT->getDecl();
217 if (RD->hasFlexibleArrayMember())
218 return false;
219
220 // If this is a C++ record, check the bases first.
221 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
222 for (const auto &I : CXXRD->bases())
223 if (!isEmptyRecord(Context, I.getType(), true))
224 return false;
225
226 for (const auto *I : RD->fields())
227 if (!isEmptyField(Context, I, AllowArrays))
228 return false;
229 return true;
230}
231
232/// isSingleElementStruct - Determine if a structure is a "single
233/// element struct", i.e. it has exactly one non-empty field or
234/// exactly one field which is itself a single element
235/// struct. Structures with flexible array members are never
236/// considered single element structs.
237///
238/// \return The field declaration for the single non-empty field, if
239/// it exists.
240static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
241 const RecordType *RT = T->getAsStructureType();
242 if (!RT)
243 return nullptr;
244
245 const RecordDecl *RD = RT->getDecl();
246 if (RD->hasFlexibleArrayMember())
247 return nullptr;
248
249 const Type *Found = nullptr;
250
251 // If this is a C++ record, check the bases first.
252 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
253 for (const auto &I : CXXRD->bases()) {
254 // Ignore empty records.
255 if (isEmptyRecord(Context, I.getType(), true))
256 continue;
257
258 // If we already found an element then this isn't a single-element struct.
259 if (Found)
260 return nullptr;
261
262 // If this is non-empty and not a single element struct, the composite
263 // cannot be a single element struct.
264 Found = isSingleElementStruct(I.getType(), Context);
265 if (!Found)
266 return nullptr;
267 }
268 }
269
270 // Check for single element.
271 for (const auto *FD : RD->fields()) {
272 QualType FT = FD->getType();
273
274 // Ignore empty fields.
275 if (isEmptyField(Context, FD, true))
276 continue;
277
278 // If we already found an element then this isn't a single-element
279 // struct.
280 if (Found)
281 return nullptr;
282
283 // Treat single element arrays as the element.
284 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
285 if (AT->getSize().getZExtValue() != 1)
286 break;
287 FT = AT->getElementType();
288 }
289
290 if (!isAggregateTypeForABI(FT)) {
291 Found = FT.getTypePtr();
292 } else {
293 Found = isSingleElementStruct(FT, Context);
294 if (!Found)
295 return nullptr;
296 }
297 }
298
299 // We don't consider a struct a single-element struct if it has
300 // padding beyond the element type.
301 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
302 return nullptr;
303
304 return Found;
305}
306
307static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
308 // Treat complex types as the element type.
309 if (const ComplexType *CTy = Ty->getAs<ComplexType>())
310 Ty = CTy->getElementType();
311
312 // Check for a type which we know has a simple scalar argument-passing
313 // convention without any padding. (We're specifically looking for 32
314 // and 64-bit integer and integer-equivalents, float, and double.)
315 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
316 !Ty->isEnumeralType() && !Ty->isBlockPointerType())
317 return false;
318
319 uint64_t Size = Context.getTypeSize(Ty);
320 return Size == 32 || Size == 64;
321}
322
323/// canExpandIndirectArgument - Test whether an argument type which is to be
324/// passed indirectly (on the stack) would have the equivalent layout if it was
325/// expanded into separate arguments. If so, we prefer to do the latter to avoid
326/// inhibiting optimizations.
327///
328// FIXME: This predicate is missing many cases, currently it just follows
329// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
330// should probably make this smarter, or better yet make the LLVM backend
331// capable of handling it.
332static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
333 // We can only expand structure types.
334 const RecordType *RT = Ty->getAs<RecordType>();
335 if (!RT)
336 return false;
337
338 // We can only expand (C) structures.
339 //
340 // FIXME: This needs to be generalized to handle classes as well.
341 const RecordDecl *RD = RT->getDecl();
342 if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
343 return false;
344
345 uint64_t Size = 0;
346
347 for (const auto *FD : RD->fields()) {
348 if (!is32Or64BitBasicType(FD->getType(), Context))
349 return false;
350
351 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
352 // how to expand them yet, and the predicate for telling if a bitfield still
353 // counts as "basic" is more complicated than what we were doing previously.
354 if (FD->isBitField())
355 return false;
356
357 Size += Context.getTypeSize(FD->getType());
358 }
359
360 // Make sure there are not any holes in the struct.
361 if (Size != Context.getTypeSize(Ty))
362 return false;
363
364 return true;
365}
366
367namespace {
368/// DefaultABIInfo - The default implementation for ABI specific
369/// details. This implementation provides information which results in
370/// self-consistent and sensible LLVM IR generation, but does not
371/// conform to any particular ABI.
372class DefaultABIInfo : public ABIInfo {
373public:
374 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
375
376 ABIArgInfo classifyReturnType(QualType RetTy) const;
377 ABIArgInfo classifyArgumentType(QualType RetTy) const;
378
379 void computeInfo(CGFunctionInfo &FI) const override {
380 if (!getCXXABI().classifyReturnType(FI))
381 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
382 for (auto &I : FI.arguments())
383 I.info = classifyArgumentType(I.type);
384 }
385
386 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
387 CodeGenFunction &CGF) const override;
388};
389
390class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
391public:
392 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
393 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
394};
395
396llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
397 CodeGenFunction &CGF) const {
398 return nullptr;
399}
400
401ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
402 if (isAggregateTypeForABI(Ty))
403 return ABIArgInfo::getIndirect(0);
404
405 // Treat an enum type as its underlying type.
406 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
407 Ty = EnumTy->getDecl()->getIntegerType();
408
409 return (Ty->isPromotableIntegerType() ?
410 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
411}
412
413ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
414 if (RetTy->isVoidType())
415 return ABIArgInfo::getIgnore();
416
417 if (isAggregateTypeForABI(RetTy))
418 return ABIArgInfo::getIndirect(0);
419
420 // Treat an enum type as its underlying type.
421 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
422 RetTy = EnumTy->getDecl()->getIntegerType();
423
424 return (RetTy->isPromotableIntegerType() ?
425 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
426}
427
428//===----------------------------------------------------------------------===//
429// le32/PNaCl bitcode ABI Implementation
430//
431// This is a simplified version of the x86_32 ABI. Arguments and return values
432// are always passed on the stack.
433//===----------------------------------------------------------------------===//
434
435class PNaClABIInfo : public ABIInfo {
436 public:
437 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
438
439 ABIArgInfo classifyReturnType(QualType RetTy) const;
440 ABIArgInfo classifyArgumentType(QualType RetTy) const;
441
442 void computeInfo(CGFunctionInfo &FI) const override;
443 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
444 CodeGenFunction &CGF) const override;
445};
446
447class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
448 public:
449 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
450 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
451};
452
453void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
454 if (!getCXXABI().classifyReturnType(FI))
455 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
456
457 for (auto &I : FI.arguments())
458 I.info = classifyArgumentType(I.type);
459}
460
461llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
462 CodeGenFunction &CGF) const {
463 return nullptr;
464}
465
466/// \brief Classify argument of given type \p Ty.
467ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
468 if (isAggregateTypeForABI(Ty)) {
469 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
470 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
471 return ABIArgInfo::getIndirect(0);
472 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
473 // Treat an enum type as its underlying type.
474 Ty = EnumTy->getDecl()->getIntegerType();
475 } else if (Ty->isFloatingType()) {
476 // Floating-point types don't go inreg.
477 return ABIArgInfo::getDirect();
478 }
479
480 return (Ty->isPromotableIntegerType() ?
481 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
482}
483
484ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
485 if (RetTy->isVoidType())
486 return ABIArgInfo::getIgnore();
487
488 // In the PNaCl ABI we always return records/structures on the stack.
489 if (isAggregateTypeForABI(RetTy))
490 return ABIArgInfo::getIndirect(0);
491
492 // Treat an enum type as its underlying type.
493 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
494 RetTy = EnumTy->getDecl()->getIntegerType();
495
496 return (RetTy->isPromotableIntegerType() ?
497 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
498}
499
500/// IsX86_MMXType - Return true if this is an MMX type.
501bool IsX86_MMXType(llvm::Type *IRType) {
502 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
503 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
504 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
505 IRType->getScalarSizeInBits() != 64;
506}
507
508static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
509 StringRef Constraint,
510 llvm::Type* Ty) {
511 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
512 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
513 // Invalid MMX constraint
514 return nullptr;
515 }
516
517 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
518 }
519
520 // No operation needed
521 return Ty;
522}
523
524/// Returns true if this type can be passed in SSE registers with the
525/// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
526static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
527 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
528 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half)
529 return true;
530 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
531 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
532 // registers specially.
533 unsigned VecSize = Context.getTypeSize(VT);
534 if (VecSize == 128 || VecSize == 256 || VecSize == 512)
535 return true;
536 }
537 return false;
538}
539
540/// Returns true if this aggregate is small enough to be passed in SSE registers
541/// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
542static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
543 return NumMembers <= 4;
544}
545
546//===----------------------------------------------------------------------===//
547// X86-32 ABI Implementation
548//===----------------------------------------------------------------------===//
549
550/// \brief Similar to llvm::CCState, but for Clang.
551struct CCState {
552 CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {}
553
554 unsigned CC;
555 unsigned FreeRegs;
556 unsigned FreeSSERegs;
557};
558
559/// X86_32ABIInfo - The X86-32 ABI information.
560class X86_32ABIInfo : public ABIInfo {
561 enum Class {
562 Integer,
563 Float
564 };
565
566 static const unsigned MinABIStackAlignInBytes = 4;
567
568 bool IsDarwinVectorABI;
569 bool IsSmallStructInRegABI;
570 bool IsWin32StructABI;
571 unsigned DefaultNumRegisterParameters;
572
573 static bool isRegisterSize(unsigned Size) {
574 return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
575 }
576
577 bool isHomogeneousAggregateBaseType(QualType Ty) const override {
578 // FIXME: Assumes vectorcall is in use.
579 return isX86VectorTypeForVectorCall(getContext(), Ty);
580 }
581
582 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
583 uint64_t NumMembers) const override {
584 // FIXME: Assumes vectorcall is in use.
585 return isX86VectorCallAggregateSmallEnough(NumMembers);
586 }
587
588 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
589
590 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
591 /// such that the argument will be passed in memory.
592 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
593
594 ABIArgInfo getIndirectReturnResult(CCState &State) const;
595
596 /// \brief Return the alignment to use for the given type on the stack.
597 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
598
599 Class classify(QualType Ty) const;
600 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
601 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
602 bool shouldUseInReg(QualType Ty, CCState &State, bool &NeedsPadding) const;
603
604 /// \brief Rewrite the function info so that all memory arguments use
605 /// inalloca.
606 void rewriteWithInAlloca(CGFunctionInfo &FI) const;
607
608 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
609 unsigned &StackOffset, ABIArgInfo &Info,
610 QualType Type) const;
611
612public:
613
614 void computeInfo(CGFunctionInfo &FI) const override;
615 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
616 CodeGenFunction &CGF) const override;
617
618 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
619 unsigned r)
620 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
621 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
622};
623
624class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
625public:
626 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
627 bool d, bool p, bool w, unsigned r)
628 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
629
630 static bool isStructReturnInRegABI(
631 const llvm::Triple &Triple, const CodeGenOptions &Opts);
632
633 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
634 CodeGen::CodeGenModule &CGM) const override;
635
636 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
637 // Darwin uses different dwarf register numbers for EH.
638 if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
639 return 4;
640 }
641
642 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
643 llvm::Value *Address) const override;
644
645 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
646 StringRef Constraint,
647 llvm::Type* Ty) const override {
648 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
649 }
650
651 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
652 std::string &Constraints,
653 std::vector<llvm::Type *> &ResultRegTypes,
654 std::vector<llvm::Type *> &ResultTruncRegTypes,
655 std::vector<LValue> &ResultRegDests,
656 std::string &AsmString,
657 unsigned NumOutputs) const override;
658
659 llvm::Constant *
660 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
661 unsigned Sig = (0xeb << 0) | // jmp rel8
662 (0x06 << 8) | // .+0x08
663 ('F' << 16) |
664 ('T' << 24);
665 return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
666 }
667
668};
669
670}
671
672/// Rewrite input constraint references after adding some output constraints.
673/// In the case where there is one output and one input and we add one output,
674/// we need to replace all operand references greater than or equal to 1:
675/// mov $0, $1
676/// mov eax, $1
677/// The result will be:
678/// mov $0, $2
679/// mov eax, $2
680static void rewriteInputConstraintReferences(unsigned FirstIn,
681 unsigned NumNewOuts,
682 std::string &AsmString) {
683 std::string Buf;
684 llvm::raw_string_ostream OS(Buf);
685 size_t Pos = 0;
686 while (Pos < AsmString.size()) {
687 size_t DollarStart = AsmString.find('$', Pos);
688 if (DollarStart == std::string::npos)
689 DollarStart = AsmString.size();
690 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
691 if (DollarEnd == std::string::npos)
692 DollarEnd = AsmString.size();
693 OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
694 Pos = DollarEnd;
695 size_t NumDollars = DollarEnd - DollarStart;
696 if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
697 // We have an operand reference.
698 size_t DigitStart = Pos;
699 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
700 if (DigitEnd == std::string::npos)
701 DigitEnd = AsmString.size();
702 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
703 unsigned OperandIndex;
704 if (!OperandStr.getAsInteger(10, OperandIndex)) {
705 if (OperandIndex >= FirstIn)
706 OperandIndex += NumNewOuts;
707 OS << OperandIndex;
708 } else {
709 OS << OperandStr;
710 }
711 Pos = DigitEnd;
712 }
713 }
714 AsmString = std::move(OS.str());
715}
716
717/// Add output constraints for EAX:EDX because they are return registers.
718void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
719 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
720 std::vector<llvm::Type *> &ResultRegTypes,
721 std::vector<llvm::Type *> &ResultTruncRegTypes,
722 std::vector<LValue> &ResultRegDests, std::string &AsmString,
723 unsigned NumOutputs) const {
724 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
725
726 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
727 // larger.
728 if (!Constraints.empty())
729 Constraints += ',';
730 if (RetWidth <= 32) {
731 Constraints += "={eax}";
732 ResultRegTypes.push_back(CGF.Int32Ty);
733 } else {
734 // Use the 'A' constraint for EAX:EDX.
735 Constraints += "=A";
736 ResultRegTypes.push_back(CGF.Int64Ty);
737 }
738
739 // Truncate EAX or EAX:EDX to an integer of the appropriate size.
740 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
741 ResultTruncRegTypes.push_back(CoerceTy);
742
743 // Coerce the integer by bitcasting the return slot pointer.
744 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
745 CoerceTy->getPointerTo()));
746 ResultRegDests.push_back(ReturnSlot);
747
748 rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
749}
750
751/// shouldReturnTypeInRegister - Determine if the given type should be
752/// passed in a register (for the Darwin ABI).
753bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
754 ASTContext &Context) const {
755 uint64_t Size = Context.getTypeSize(Ty);
756
757 // Type must be register sized.
758 if (!isRegisterSize(Size))
759 return false;
760
761 if (Ty->isVectorType()) {
762 // 64- and 128- bit vectors inside structures are not returned in
763 // registers.
764 if (Size == 64 || Size == 128)
765 return false;
766
767 return true;
768 }
769
770 // If this is a builtin, pointer, enum, complex type, member pointer, or
771 // member function pointer it is ok.
772 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
773 Ty->isAnyComplexType() || Ty->isEnumeralType() ||
774 Ty->isBlockPointerType() || Ty->isMemberPointerType())
775 return true;
776
777 // Arrays are treated like records.
778 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
779 return shouldReturnTypeInRegister(AT->getElementType(), Context);
780
781 // Otherwise, it must be a record type.
782 const RecordType *RT = Ty->getAs<RecordType>();
783 if (!RT) return false;
784
785 // FIXME: Traverse bases here too.
786
787 // Structure types are passed in register if all fields would be
788 // passed in a register.
789 for (const auto *FD : RT->getDecl()->fields()) {
790 // Empty fields are ignored.
791 if (isEmptyField(Context, FD, true))
792 continue;
793
794 // Check fields recursively.
795 if (!shouldReturnTypeInRegister(FD->getType(), Context))
796 return false;
797 }
798 return true;
799}
800
801ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const {
802 // If the return value is indirect, then the hidden argument is consuming one
803 // integer register.
804 if (State.FreeRegs) {
805 --State.FreeRegs;
806 return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false);
807 }
808 return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false);
809}
810
811ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const {
812 if (RetTy->isVoidType())
813 return ABIArgInfo::getIgnore();
814
815 const Type *Base = nullptr;
816 uint64_t NumElts = 0;
817 if (State.CC == llvm::CallingConv::X86_VectorCall &&
818 isHomogeneousAggregate(RetTy, Base, NumElts)) {
819 // The LLVM struct type for such an aggregate should lower properly.
820 return ABIArgInfo::getDirect();
821 }
822
823 if (const VectorType *VT = RetTy->getAs<VectorType>()) {
824 // On Darwin, some vectors are returned in registers.
825 if (IsDarwinVectorABI) {
826 uint64_t Size = getContext().getTypeSize(RetTy);
827
828 // 128-bit vectors are a special case; they are returned in
829 // registers and we need to make sure to pick a type the LLVM
830 // backend will like.
831 if (Size == 128)
832 return ABIArgInfo::getDirect(llvm::VectorType::get(
833 llvm::Type::getInt64Ty(getVMContext()), 2));
834
835 // Always return in register if it fits in a general purpose
836 // register, or if it is 64 bits and has a single element.
837 if ((Size == 8 || Size == 16 || Size == 32) ||
838 (Size == 64 && VT->getNumElements() == 1))
839 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
840 Size));
841
842 return getIndirectReturnResult(State);
843 }
844
845 return ABIArgInfo::getDirect();
846 }
847
848 if (isAggregateTypeForABI(RetTy)) {
849 if (const RecordType *RT = RetTy->getAs<RecordType>()) {
850 // Structures with flexible arrays are always indirect.
851 if (RT->getDecl()->hasFlexibleArrayMember())
852 return getIndirectReturnResult(State);
853 }
854
855 // If specified, structs and unions are always indirect.
856 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
857 return getIndirectReturnResult(State);
858
859 // Small structures which are register sized are generally returned
860 // in a register.
861 if (shouldReturnTypeInRegister(RetTy, getContext())) {
862 uint64_t Size = getContext().getTypeSize(RetTy);
863
864 // As a special-case, if the struct is a "single-element" struct, and
865 // the field is of type "float" or "double", return it in a
866 // floating-point register. (MSVC does not apply this special case.)
867 // We apply a similar transformation for pointer types to improve the
868 // quality of the generated IR.
869 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
870 if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
871 || SeltTy->hasPointerRepresentation())
872 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
873
874 // FIXME: We should be able to narrow this integer in cases with dead
875 // padding.
876 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
877 }
878
879 return getIndirectReturnResult(State);
880 }
881
882 // Treat an enum type as its underlying type.
883 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
884 RetTy = EnumTy->getDecl()->getIntegerType();
885
886 return (RetTy->isPromotableIntegerType() ?
887 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
888}
889
890static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
891 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
892}
893
894static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
895 const RecordType *RT = Ty->getAs<RecordType>();
896 if (!RT)
897 return 0;
898 const RecordDecl *RD = RT->getDecl();
899
900 // If this is a C++ record, check the bases first.
901 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
902 for (const auto &I : CXXRD->bases())
903 if (!isRecordWithSSEVectorType(Context, I.getType()))
904 return false;
905
906 for (const auto *i : RD->fields()) {
907 QualType FT = i->getType();
908
909 if (isSSEVectorType(Context, FT))
910 return true;
911
912 if (isRecordWithSSEVectorType(Context, FT))
913 return true;
914 }
915
916 return false;
917}
918
919unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
920 unsigned Align) const {
921 // Otherwise, if the alignment is less than or equal to the minimum ABI
922 // alignment, just use the default; the backend will handle this.
923 if (Align <= MinABIStackAlignInBytes)
924 return 0; // Use default alignment.
925
926 // On non-Darwin, the stack type alignment is always 4.
927 if (!IsDarwinVectorABI) {
928 // Set explicit alignment, since we may need to realign the top.
929 return MinABIStackAlignInBytes;
930 }
931
932 // Otherwise, if the type contains an SSE vector type, the alignment is 16.
933 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
934 isRecordWithSSEVectorType(getContext(), Ty)))
935 return 16;
936
937 return MinABIStackAlignInBytes;
938}
939
940ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
941 CCState &State) const {
942 if (!ByVal) {
943 if (State.FreeRegs) {
944 --State.FreeRegs; // Non-byval indirects just use one pointer.
945 return ABIArgInfo::getIndirectInReg(0, false);
946 }
947 return ABIArgInfo::getIndirect(0, false);
948 }
949
950 // Compute the byval alignment.
951 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
952 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
953 if (StackAlign == 0)
954 return ABIArgInfo::getIndirect(4, /*ByVal=*/true);
955
956 // If the stack alignment is less than the type alignment, realign the
957 // argument.
958 bool Realign = TypeAlign > StackAlign;
959 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign);
960}
961
962X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
963 const Type *T = isSingleElementStruct(Ty, getContext());
964 if (!T)
965 T = Ty.getTypePtr();
966
967 if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
968 BuiltinType::Kind K = BT->getKind();
969 if (K == BuiltinType::Float || K == BuiltinType::Double)
970 return Float;
971 }
972 return Integer;
973}
974
975bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
976 bool &NeedsPadding) const {
977 NeedsPadding = false;
978 Class C = classify(Ty);
979 if (C == Float)
980 return false;
981
982 unsigned Size = getContext().getTypeSize(Ty);
983 unsigned SizeInRegs = (Size + 31) / 32;
984
985 if (SizeInRegs == 0)
986 return false;
987
988 if (SizeInRegs > State.FreeRegs) {
989 State.FreeRegs = 0;
990 return false;
991 }
992
993 State.FreeRegs -= SizeInRegs;
994
995 if (State.CC == llvm::CallingConv::X86_FastCall ||
996 State.CC == llvm::CallingConv::X86_VectorCall) {
997 if (Size > 32)
998 return false;
999
1000 if (Ty->isIntegralOrEnumerationType())
1001 return true;
1002
1003 if (Ty->isPointerType())
1004 return true;
1005
1006 if (Ty->isReferenceType())
1007 return true;
1008
1009 if (State.FreeRegs)
1010 NeedsPadding = true;
1011
1012 return false;
1013 }
1014
1015 return true;
1016}
1017
1018ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1019 CCState &State) const {
1020 // FIXME: Set alignment on indirect arguments.
1021
1022 Ty = useFirstFieldIfTransparentUnion(Ty);
1023
1024 // Check with the C++ ABI first.
1025 const RecordType *RT = Ty->getAs<RecordType>();
1026 if (RT) {
1027 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1028 if (RAA == CGCXXABI::RAA_Indirect) {
1029 return getIndirectResult(Ty, false, State);
1030 } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1031 // The field index doesn't matter, we'll fix it up later.
1032 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1033 }
1034 }
1035
1036 // vectorcall adds the concept of a homogenous vector aggregate, similar
1037 // to other targets.
1038 const Type *Base = nullptr;
1039 uint64_t NumElts = 0;
1040 if (State.CC == llvm::CallingConv::X86_VectorCall &&
1041 isHomogeneousAggregate(Ty, Base, NumElts)) {
1042 if (State.FreeSSERegs >= NumElts) {
1043 State.FreeSSERegs -= NumElts;
1044 if (Ty->isBuiltinType() || Ty->isVectorType())
1045 return ABIArgInfo::getDirect();
1046 return ABIArgInfo::getExpand();
1047 }
1048 return getIndirectResult(Ty, /*ByVal=*/false, State);
1049 }
1050
1051 if (isAggregateTypeForABI(Ty)) {
1052 if (RT) {
1053 // Structs are always byval on win32, regardless of what they contain.
1054 if (IsWin32StructABI)
1055 return getIndirectResult(Ty, true, State);
1056
1057 // Structures with flexible arrays are always indirect.
1058 if (RT->getDecl()->hasFlexibleArrayMember())
1059 return getIndirectResult(Ty, true, State);
1060 }
1061
1062 // Ignore empty structs/unions.
1063 if (isEmptyRecord(getContext(), Ty, true))
1064 return ABIArgInfo::getIgnore();
1065
1066 llvm::LLVMContext &LLVMContext = getVMContext();
1067 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1068 bool NeedsPadding;
1069 if (shouldUseInReg(Ty, State, NeedsPadding)) {
1070 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1071 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1072 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1073 return ABIArgInfo::getDirectInReg(Result);
1074 }
1075 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1076
1077 // Expand small (<= 128-bit) record types when we know that the stack layout
1078 // of those arguments will match the struct. This is important because the
1079 // LLVM backend isn't smart enough to remove byval, which inhibits many
1080 // optimizations.
1081 if (getContext().getTypeSize(Ty) <= 4*32 &&
1082 canExpandIndirectArgument(Ty, getContext()))
1083 return ABIArgInfo::getExpandWithPadding(
1084 State.CC == llvm::CallingConv::X86_FastCall ||
1085 State.CC == llvm::CallingConv::X86_VectorCall,
1086 PaddingType);
1087
1088 return getIndirectResult(Ty, true, State);
1089 }
1090
1091 if (const VectorType *VT = Ty->getAs<VectorType>()) {
1092 // On Darwin, some vectors are passed in memory, we handle this by passing
1093 // it as an i8/i16/i32/i64.
1094 if (IsDarwinVectorABI) {
1095 uint64_t Size = getContext().getTypeSize(Ty);
1096 if ((Size == 8 || Size == 16 || Size == 32) ||
1097 (Size == 64 && VT->getNumElements() == 1))
1098 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1099 Size));
1100 }
1101
1102 if (IsX86_MMXType(CGT.ConvertType(Ty)))
1103 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1104
1105 return ABIArgInfo::getDirect();
1106 }
1107
1108
1109 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1110 Ty = EnumTy->getDecl()->getIntegerType();
1111
1112 bool NeedsPadding;
1113 bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
1114
1115 if (Ty->isPromotableIntegerType()) {
1116 if (InReg)
1117 return ABIArgInfo::getExtendInReg();
1118 return ABIArgInfo::getExtend();
1119 }
1120 if (InReg)
1121 return ABIArgInfo::getDirectInReg();
1122 return ABIArgInfo::getDirect();
1123}
1124
1125void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1126 CCState State(FI.getCallingConvention());
1127 if (State.CC == llvm::CallingConv::X86_FastCall)
1128 State.FreeRegs = 2;
1129 else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1130 State.FreeRegs = 2;
1131 State.FreeSSERegs = 6;
1132 } else if (FI.getHasRegParm())
1133 State.FreeRegs = FI.getRegParm();
1134 else
1135 State.FreeRegs = DefaultNumRegisterParameters;
1136
1137 if (!getCXXABI().classifyReturnType(FI)) {
1138 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1139 } else if (FI.getReturnInfo().isIndirect()) {
1140 // The C++ ABI is not aware of register usage, so we have to check if the
1141 // return value was sret and put it in a register ourselves if appropriate.
1142 if (State.FreeRegs) {
1143 --State.FreeRegs; // The sret parameter consumes a register.
1144 FI.getReturnInfo().setInReg(true);
1145 }
1146 }
1147
1148 // The chain argument effectively gives us another free register.
1149 if (FI.isChainCall())
1150 ++State.FreeRegs;
1151
1152 bool UsedInAlloca = false;
1153 for (auto &I : FI.arguments()) {
1154 I.info = classifyArgumentType(I.type, State);
1155 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1156 }
1157
1158 // If we needed to use inalloca for any argument, do a second pass and rewrite
1159 // all the memory arguments to use inalloca.
1160 if (UsedInAlloca)
1161 rewriteWithInAlloca(FI);
1162}
1163
1164void
1165X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1166 unsigned &StackOffset,
1167 ABIArgInfo &Info, QualType Type) const {
1168 assert(StackOffset % 4U == 0 && "unaligned inalloca struct");
1169 Info = ABIArgInfo::getInAlloca(FrameFields.size());
1170 FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1171 StackOffset += getContext().getTypeSizeInChars(Type).getQuantity();
1172
1173 // Insert padding bytes to respect alignment. For x86_32, each argument is 4
1174 // byte aligned.
1175 if (StackOffset % 4U) {
1176 unsigned OldOffset = StackOffset;
1177 StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U);
1178 unsigned NumBytes = StackOffset - OldOffset;
1179 assert(NumBytes);
1180 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1181 Ty = llvm::ArrayType::get(Ty, NumBytes);
1182 FrameFields.push_back(Ty);
1183 }
1184}
1185
1186static bool isArgInAlloca(const ABIArgInfo &Info) {
1187 // Leave ignored and inreg arguments alone.
1188 switch (Info.getKind()) {
1189 case ABIArgInfo::InAlloca:
1190 return true;
1191 case ABIArgInfo::Indirect:
1192 assert(Info.getIndirectByVal());
1193 return true;
1194 case ABIArgInfo::Ignore:
1195 return false;
1196 case ABIArgInfo::Direct:
1197 case ABIArgInfo::Extend:
1198 case ABIArgInfo::Expand:
1199 if (Info.getInReg())
1200 return false;
1201 return true;
1202 }
1203 llvm_unreachable("invalid enum");
1204}
1205
1206void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1207 assert(IsWin32StructABI && "inalloca only supported on win32");
1208
1209 // Build a packed struct type for all of the arguments in memory.
1210 SmallVector<llvm::Type *, 6> FrameFields;
1211
1212 unsigned StackOffset = 0;
1213 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1214
1215 // Put 'this' into the struct before 'sret', if necessary.
1216 bool IsThisCall =
1217 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1218 ABIArgInfo &Ret = FI.getReturnInfo();
1219 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1220 isArgInAlloca(I->info)) {
1221 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1222 ++I;
1223 }
1224
1225 // Put the sret parameter into the inalloca struct if it's in memory.
1226 if (Ret.isIndirect() && !Ret.getInReg()) {
1227 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1228 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1229 // On Windows, the hidden sret parameter is always returned in eax.
1230 Ret.setInAllocaSRet(IsWin32StructABI);
1231 }
1232
1233 // Skip the 'this' parameter in ecx.
1234 if (IsThisCall)
1235 ++I;
1236
1237 // Put arguments passed in memory into the struct.
1238 for (; I != E; ++I) {
1239 if (isArgInAlloca(I->info))
1240 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1241 }
1242
1243 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1244 /*isPacked=*/true));
1245}
1246
1247llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1248 CodeGenFunction &CGF) const {
1249 llvm::Type *BPP = CGF.Int8PtrPtrTy;
1250
1251 CGBuilderTy &Builder = CGF.Builder;
1252 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1253 "ap");
1254 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1255
1256 // Compute if the address needs to be aligned
1257 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1258 Align = getTypeStackAlignInBytes(Ty, Align);
1259 Align = std::max(Align, 4U);
1260 if (Align > 4) {
1261 // addr = (addr + align - 1) & -align;
1262 llvm::Value *Offset =
1263 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1264 Addr = CGF.Builder.CreateGEP(Addr, Offset);
1265 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1266 CGF.Int32Ty);
1267 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1268 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1269 Addr->getType(),
1270 "ap.cur.aligned");
1271 }
1272
1273 llvm::Type *PTy =
1274 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1275 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1276
1277 uint64_t Offset =
1278 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1279 llvm::Value *NextAddr =
1280 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1281 "ap.next");
1282 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1283
1284 return AddrTyped;
1285}
1286
1287bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1288 const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1289 assert(Triple.getArch() == llvm::Triple::x86);
1290
1291 switch (Opts.getStructReturnConvention()) {
1292 case CodeGenOptions::SRCK_Default:
1293 break;
1294 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
1295 return false;
1296 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
1297 return true;
1298 }
1299
1300 if (Triple.isOSDarwin())
1301 return true;
1302
1303 switch (Triple.getOS()) {
1304 case llvm::Triple::DragonFly:
1305 case llvm::Triple::FreeBSD:
1306 case llvm::Triple::OpenBSD:
1307 case llvm::Triple::Bitrig:
1308 case llvm::Triple::Win32:
1309 return true;
1310 default:
1311 return false;
1312 }
1313}
1314
1315void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1316 llvm::GlobalValue *GV,
1317 CodeGen::CodeGenModule &CGM) const {
1318 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1319 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1320 // Get the LLVM function.
1321 llvm::Function *Fn = cast<llvm::Function>(GV);
1322
1323 // Now add the 'alignstack' attribute with a value of 16.
1324 llvm::AttrBuilder B;
1325 B.addStackAlignmentAttr(16);
1326 Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1327 llvm::AttributeSet::get(CGM.getLLVMContext(),
1328 llvm::AttributeSet::FunctionIndex,
1329 B));
1330 }
1331 }
1332}
1333
1334bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1335 CodeGen::CodeGenFunction &CGF,
1336 llvm::Value *Address) const {
1337 CodeGen::CGBuilderTy &Builder = CGF.Builder;
1338
1339 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1340
1341 // 0-7 are the eight integer registers; the order is different
1342 // on Darwin (for EH), but the range is the same.
1343 // 8 is %eip.
1344 AssignToArrayRange(Builder, Address, Four8, 0, 8);
1345
1346 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1347 // 12-16 are st(0..4). Not sure why we stop at 4.
1348 // These have size 16, which is sizeof(long double) on
1349 // platforms with 8-byte alignment for that type.
1350 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1351 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1352
1353 } else {
1354 // 9 is %eflags, which doesn't get a size on Darwin for some
1355 // reason.
1356 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1357
1358 // 11-16 are st(0..5). Not sure why we stop at 5.
1359 // These have size 12, which is sizeof(long double) on
1360 // platforms with 4-byte alignment for that type.
1361 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1362 AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1363 }
1364
1365 return false;
1366}
1367
1368//===----------------------------------------------------------------------===//
1369// X86-64 ABI Implementation
1370//===----------------------------------------------------------------------===//
1371
1372
1373namespace {
1374/// X86_64ABIInfo - The X86_64 ABI information.
1375class X86_64ABIInfo : public ABIInfo {
1376 enum Class {
1377 Integer = 0,
1378 SSE,
1379 SSEUp,
1380 X87,
1381 X87Up,
1382 ComplexX87,
1383 NoClass,
1384 Memory
1385 };
1386
1387 /// merge - Implement the X86_64 ABI merging algorithm.
1388 ///
1389 /// Merge an accumulating classification \arg Accum with a field
1390 /// classification \arg Field.
1391 ///
1392 /// \param Accum - The accumulating classification. This should
1393 /// always be either NoClass or the result of a previous merge
1394 /// call. In addition, this should never be Memory (the caller
1395 /// should just return Memory for the aggregate).
1396 static Class merge(Class Accum, Class Field);
1397
1398 /// postMerge - Implement the X86_64 ABI post merging algorithm.
1399 ///
1400 /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1401 /// final MEMORY or SSE classes when necessary.
1402 ///
1403 /// \param AggregateSize - The size of the current aggregate in
1404 /// the classification process.
1405 ///
1406 /// \param Lo - The classification for the parts of the type
1407 /// residing in the low word of the containing object.
1408 ///
1409 /// \param Hi - The classification for the parts of the type
1410 /// residing in the higher words of the containing object.
1411 ///
1412 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1413
1414 /// classify - Determine the x86_64 register classes in which the
1415 /// given type T should be passed.
1416 ///
1417 /// \param Lo - The classification for the parts of the type
1418 /// residing in the low word of the containing object.
1419 ///
1420 /// \param Hi - The classification for the parts of the type
1421 /// residing in the high word of the containing object.
1422 ///
1423 /// \param OffsetBase - The bit offset of this type in the
1424 /// containing object. Some parameters are classified different
1425 /// depending on whether they straddle an eightbyte boundary.
1426 ///
1427 /// \param isNamedArg - Whether the argument in question is a "named"
1428 /// argument, as used in AMD64-ABI 3.5.7.
1429 ///
1430 /// If a word is unused its result will be NoClass; if a type should
1431 /// be passed in Memory then at least the classification of \arg Lo
1432 /// will be Memory.
1433 ///
1434 /// The \arg Lo class will be NoClass iff the argument is ignored.
1435 ///
1436 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1437 /// also be ComplexX87.
1438 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1439 bool isNamedArg) const;
1440
1441 llvm::Type *GetByteVectorType(QualType Ty) const;
1442 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1443 unsigned IROffset, QualType SourceTy,
1444 unsigned SourceOffset) const;
1445 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1446 unsigned IROffset, QualType SourceTy,
1447 unsigned SourceOffset) const;
1448
1449 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1450 /// such that the argument will be returned in memory.
1451 ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1452
1453 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1454 /// such that the argument will be passed in memory.
1455 ///
1456 /// \param freeIntRegs - The number of free integer registers remaining
1457 /// available.
1458 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1459
1460 ABIArgInfo classifyReturnType(QualType RetTy) const;
1461
1462 ABIArgInfo classifyArgumentType(QualType Ty,
1463 unsigned freeIntRegs,
1464 unsigned &neededInt,
1465 unsigned &neededSSE,
1466 bool isNamedArg) const;
1467
1468 bool IsIllegalVectorType(QualType Ty) const;
1469
1470 /// The 0.98 ABI revision clarified a lot of ambiguities,
1471 /// unfortunately in ways that were not always consistent with
1472 /// certain previous compilers. In particular, platforms which
1473 /// required strict binary compatibility with older versions of GCC
1474 /// may need to exempt themselves.
1475 bool honorsRevision0_98() const {
1476 return !getTarget().getTriple().isOSDarwin();
1477 }
1478
1479 bool HasAVX;
1480 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1481 // 64-bit hardware.
1482 bool Has64BitPointers;
1483
1484public:
1485 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1486 ABIInfo(CGT), HasAVX(hasavx),
1487 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1488 }
1489
1490 bool isPassedUsingAVXType(QualType type) const {
1491 unsigned neededInt, neededSSE;
1492 // The freeIntRegs argument doesn't matter here.
1493 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1494 /*isNamedArg*/true);
1495 if (info.isDirect()) {
1496 llvm::Type *ty = info.getCoerceToType();
1497 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1498 return (vectorTy->getBitWidth() > 128);
1499 }
1500 return false;
1501 }
1502
1503 void computeInfo(CGFunctionInfo &FI) const override;
1504
1505 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1506 CodeGenFunction &CGF) const override;
1507};
1508
1509/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1510class WinX86_64ABIInfo : public ABIInfo {
1511
1512 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
1513 bool IsReturnType) const;
1514
1515public:
1516 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1517
1518 void computeInfo(CGFunctionInfo &FI) const override;
1519
1520 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1521 CodeGenFunction &CGF) const override;
1522
1523 bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1524 // FIXME: Assumes vectorcall is in use.
1525 return isX86VectorTypeForVectorCall(getContext(), Ty);
1526 }
1527
1528 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1529 uint64_t NumMembers) const override {
1530 // FIXME: Assumes vectorcall is in use.
1531 return isX86VectorCallAggregateSmallEnough(NumMembers);
1532 }
1533};
1534
1535class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1536 bool HasAVX;
1537public:
1538 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1539 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)), HasAVX(HasAVX) {}
1540
1541 const X86_64ABIInfo &getABIInfo() const {
1542 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1543 }
1544
1545 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1546 return 7;
1547 }
1548
1549 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1550 llvm::Value *Address) const override {
1551 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1552
1553 // 0-15 are the 16 integer registers.
1554 // 16 is %rip.
1555 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1556 return false;
1557 }
1558
1559 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1560 StringRef Constraint,
1561 llvm::Type* Ty) const override {
1562 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1563 }
1564
1565 bool isNoProtoCallVariadic(const CallArgList &args,
1566 const FunctionNoProtoType *fnType) const override {
1567 // The default CC on x86-64 sets %al to the number of SSA
1568 // registers used, and GCC sets this when calling an unprototyped
1569 // function, so we override the default behavior. However, don't do
1570 // that when AVX types are involved: the ABI explicitly states it is
1571 // undefined, and it doesn't work in practice because of how the ABI
1572 // defines varargs anyway.
1573 if (fnType->getCallConv() == CC_C) {
1574 bool HasAVXType = false;
1575 for (CallArgList::const_iterator
1576 it = args.begin(), ie = args.end(); it != ie; ++it) {
1577 if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1578 HasAVXType = true;
1579 break;
1580 }
1581 }
1582
1583 if (!HasAVXType)
1584 return true;
1585 }
1586
1587 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1588 }
1589
1590 llvm::Constant *
1591 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1592 unsigned Sig = (0xeb << 0) | // jmp rel8
1593 (0x0a << 8) | // .+0x0c
1594 ('F' << 16) |
1595 ('T' << 24);
1596 return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1597 }
1598
1599 unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
1600 return HasAVX ? 32 : 16;
1601 }
1602};
1603
1604static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1605 // If the argument does not end in .lib, automatically add the suffix. This
1606 // matches the behavior of MSVC.
1607 std::string ArgStr = Lib;
1608 if (!Lib.endswith_lower(".lib"))
1609 ArgStr += ".lib";
1610 return ArgStr;
1611}
1612
1613class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1614public:
1615 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1616 bool d, bool p, bool w, unsigned RegParms)
1617 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1618
1619 void getDependentLibraryOption(llvm::StringRef Lib,
1620 llvm::SmallString<24> &Opt) const override {
1621 Opt = "/DEFAULTLIB:";
1622 Opt += qualifyWindowsLibrary(Lib);
1623 }
1624
1625 void getDetectMismatchOption(llvm::StringRef Name,
1626 llvm::StringRef Value,
1627 llvm::SmallString<32> &Opt) const override {
1628 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1629 }
1630};
1631
1632class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1633 bool HasAVX;
1634public:
1635 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1636 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)), HasAVX(HasAVX) {}
1637
1638 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1639 return 7;
1640 }
1641
1642 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1643 llvm::Value *Address) const override {
1644 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1645
1646 // 0-15 are the 16 integer registers.
1647 // 16 is %rip.
1648 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1649 return false;
1650 }
1651
1652 void getDependentLibraryOption(llvm::StringRef Lib,
1653 llvm::SmallString<24> &Opt) const override {
1654 Opt = "/DEFAULTLIB:";
1655 Opt += qualifyWindowsLibrary(Lib);
1656 }
1657
1658 void getDetectMismatchOption(llvm::StringRef Name,
1659 llvm::StringRef Value,
1660 llvm::SmallString<32> &Opt) const override {
1661 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1662 }
1663
1664 unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
1665 return HasAVX ? 32 : 16;
1666 }
1667};
1668
1669}
1670
1671void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1672 Class &Hi) const {
1673 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1674 //
1675 // (a) If one of the classes is Memory, the whole argument is passed in
1676 // memory.
1677 //
1678 // (b) If X87UP is not preceded by X87, the whole argument is passed in
1679 // memory.
1680 //
1681 // (c) If the size of the aggregate exceeds two eightbytes and the first
1682 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1683 // argument is passed in memory. NOTE: This is necessary to keep the
1684 // ABI working for processors that don't support the __m256 type.
1685 //
1686 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1687 //
1688 // Some of these are enforced by the merging logic. Others can arise
1689 // only with unions; for example:
1690 // union { _Complex double; unsigned; }
1691 //
1692 // Note that clauses (b) and (c) were added in 0.98.
1693 //
1694 if (Hi == Memory)
1695 Lo = Memory;
1696 if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1697 Lo = Memory;
1698 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1699 Lo = Memory;
1700 if (Hi == SSEUp && Lo != SSE)
1701 Hi = SSE;
1702}
1703
1704X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1705 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1706 // classified recursively so that always two fields are
1707 // considered. The resulting class is calculated according to
1708 // the classes of the fields in the eightbyte:
1709 //
1710 // (a) If both classes are equal, this is the resulting class.
1711 //
1712 // (b) If one of the classes is NO_CLASS, the resulting class is
1713 // the other class.
1714 //
1715 // (c) If one of the classes is MEMORY, the result is the MEMORY
1716 // class.
1717 //
1718 // (d) If one of the classes is INTEGER, the result is the
1719 // INTEGER.
1720 //
1721 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1722 // MEMORY is used as class.
1723 //
1724 // (f) Otherwise class SSE is used.
1725
1726 // Accum should never be memory (we should have returned) or
1727 // ComplexX87 (because this cannot be passed in a structure).
1728 assert((Accum != Memory && Accum != ComplexX87) &&
1729 "Invalid accumulated classification during merge.");
1730 if (Accum == Field || Field == NoClass)
1731 return Accum;
1732 if (Field == Memory)
1733 return Memory;
1734 if (Accum == NoClass)
1735 return Field;
1736 if (Accum == Integer || Field == Integer)
1737 return Integer;
1738 if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1739 Accum == X87 || Accum == X87Up)
1740 return Memory;
1741 return SSE;
1742}
1743
1744void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1745 Class &Lo, Class &Hi, bool isNamedArg) const {
1746 // FIXME: This code can be simplified by introducing a simple value class for
1747 // Class pairs with appropriate constructor methods for the various
1748 // situations.
1749
1750 // FIXME: Some of the split computations are wrong; unaligned vectors
1751 // shouldn't be passed in registers for example, so there is no chance they
1752 // can straddle an eightbyte. Verify & simplify.
1753
1754 Lo = Hi = NoClass;
1755
1756 Class &Current = OffsetBase < 64 ? Lo : Hi;
1757 Current = Memory;
1758
1759 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1760 BuiltinType::Kind k = BT->getKind();
1761
1762 if (k == BuiltinType::Void) {
1763 Current = NoClass;
1764 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1765 Lo = Integer;
1766 Hi = Integer;
1767 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1768 Current = Integer;
1769 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1770 (k == BuiltinType::LongDouble &&
1771 getTarget().getTriple().isOSNaCl())) {
1772 Current = SSE;
1773 } else if (k == BuiltinType::LongDouble) {
1774 Lo = X87;
1775 Hi = X87Up;
1776 }
1777 // FIXME: _Decimal32 and _Decimal64 are SSE.
1778 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1779 return;
1780 }
1781
1782 if (const EnumType *ET = Ty->getAs<EnumType>()) {
1783 // Classify the underlying integer type.
1784 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1785 return;
1786 }
1787
1788 if (Ty->hasPointerRepresentation()) {
1789 Current = Integer;
1790 return;
1791 }
1792
1793 if (Ty->isMemberPointerType()) {
1794 if (Ty->isMemberFunctionPointerType()) {
1795 if (Has64BitPointers) {
1796 // If Has64BitPointers, this is an {i64, i64}, so classify both
1797 // Lo and Hi now.
1798 Lo = Hi = Integer;
1799 } else {
1800 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
1801 // straddles an eightbyte boundary, Hi should be classified as well.
1802 uint64_t EB_FuncPtr = (OffsetBase) / 64;
1803 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
1804 if (EB_FuncPtr != EB_ThisAdj) {
1805 Lo = Hi = Integer;
1806 } else {
1807 Current = Integer;
1808 }
1809 }
1810 } else {
1811 Current = Integer;
1812 }
1813 return;
1814 }
1815
1816 if (const VectorType *VT = Ty->getAs<VectorType>()) {
1817 uint64_t Size = getContext().getTypeSize(VT);
1818 if (Size == 32) {
1819 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1820 // float> as integer.
1821 Current = Integer;
1822
1823 // If this type crosses an eightbyte boundary, it should be
1824 // split.
1825 uint64_t EB_Real = (OffsetBase) / 64;
1826 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1827 if (EB_Real != EB_Imag)
1828 Hi = Lo;
1829 } else if (Size == 64) {
1830 // gcc passes <1 x double> in memory. :(
1831 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1832 return;
1833
1834 // gcc passes <1 x long long> as INTEGER.
1835 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1836 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1837 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1838 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1839 Current = Integer;
1840 else
1841 Current = SSE;
1842
1843 // If this type crosses an eightbyte boundary, it should be
1844 // split.
1845 if (OffsetBase && OffsetBase != 64)
1846 Hi = Lo;
1847 } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1848 // Arguments of 256-bits are split into four eightbyte chunks. The
1849 // least significant one belongs to class SSE and all the others to class
1850 // SSEUP. The original Lo and Hi design considers that types can't be
1851 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1852 // This design isn't correct for 256-bits, but since there're no cases
1853 // where the upper parts would need to be inspected, avoid adding
1854 // complexity and just consider Hi to match the 64-256 part.
1855 //
1856 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1857 // registers if they are "named", i.e. not part of the "..." of a
1858 // variadic function.
1859 Lo = SSE;
1860 Hi = SSEUp;
1861 }
1862 return;
1863 }
1864
1865 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1866 QualType ET = getContext().getCanonicalType(CT->getElementType());
1867
1868 uint64_t Size = getContext().getTypeSize(Ty);
1869 if (ET->isIntegralOrEnumerationType()) {
1870 if (Size <= 64)
1871 Current = Integer;
1872 else if (Size <= 128)
1873 Lo = Hi = Integer;
1874 } else if (ET == getContext().FloatTy)
1875 Current = SSE;
1876 else if (ET == getContext().DoubleTy ||
1877 (ET == getContext().LongDoubleTy &&
1878 getTarget().getTriple().isOSNaCl()))
1879 Lo = Hi = SSE;
1880 else if (ET == getContext().LongDoubleTy)
1881 Current = ComplexX87;
1882
1883 // If this complex type crosses an eightbyte boundary then it
1884 // should be split.
1885 uint64_t EB_Real = (OffsetBase) / 64;
1886 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1887 if (Hi == NoClass && EB_Real != EB_Imag)
1888 Hi = Lo;
1889
1890 return;
1891 }
1892
1893 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1894 // Arrays are treated like structures.
1895
1896 uint64_t Size = getContext().getTypeSize(Ty);
1897
1898 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1899 // than four eightbytes, ..., it has class MEMORY.
1900 if (Size > 256)
1901 return;
1902
1903 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1904 // fields, it has class MEMORY.
1905 //
1906 // Only need to check alignment of array base.
1907 if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1908 return;
1909
1910 // Otherwise implement simplified merge. We could be smarter about
1911 // this, but it isn't worth it and would be harder to verify.
1912 Current = NoClass;
1913 uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1914 uint64_t ArraySize = AT->getSize().getZExtValue();
1915
1916 // The only case a 256-bit wide vector could be used is when the array
1917 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1918 // to work for sizes wider than 128, early check and fallback to memory.
1919 if (Size > 128 && EltSize != 256)
1920 return;
1921
1922 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1923 Class FieldLo, FieldHi;
1924 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1925 Lo = merge(Lo, FieldLo);
1926 Hi = merge(Hi, FieldHi);
1927 if (Lo == Memory || Hi == Memory)
1928 break;
1929 }
1930
1931 postMerge(Size, Lo, Hi);
1932 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1933 return;
1934 }
1935
1936 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1937 uint64_t Size = getContext().getTypeSize(Ty);
1938
1939 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1940 // than four eightbytes, ..., it has class MEMORY.
1941 if (Size > 256)
1942 return;
1943
1944 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1945 // copy constructor or a non-trivial destructor, it is passed by invisible
1946 // reference.
1947 if (getRecordArgABI(RT, getCXXABI()))
1948 return;
1949
1950 const RecordDecl *RD = RT->getDecl();
1951
1952 // Assume variable sized types are passed in memory.
1953 if (RD->hasFlexibleArrayMember())
1954 return;
1955
1956 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1957
1958 // Reset Lo class, this will be recomputed.
1959 Current = NoClass;
1960
1961 // If this is a C++ record, classify the bases first.
1962 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1963 for (const auto &I : CXXRD->bases()) {
1964 assert(!I.isVirtual() && !I.getType()->isDependentType() &&
1965 "Unexpected base class!");
1966 const CXXRecordDecl *Base =
1967 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
1968
1969 // Classify this field.
1970 //
1971 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1972 // single eightbyte, each is classified separately. Each eightbyte gets
1973 // initialized to class NO_CLASS.
1974 Class FieldLo, FieldHi;
1975 uint64_t Offset =
1976 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1977 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
1978 Lo = merge(Lo, FieldLo);
1979 Hi = merge(Hi, FieldHi);
1980 if (Lo == Memory || Hi == Memory)
1981 break;
1982 }
1983 }
1984
1985 // Classify the fields one at a time, merging the results.
1986 unsigned idx = 0;
1987 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1988 i != e; ++i, ++idx) {
1989 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1990 bool BitField = i->isBitField();
1991
1992 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1993 // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1994 //
1995 // The only case a 256-bit wide vector could be used is when the struct
1996 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1997 // to work for sizes wider than 128, early check and fallback to memory.
1998 //
1999 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
2000 Lo = Memory;
2001 return;
2002 }
2003 // Note, skip this test for bit-fields, see below.
2004 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2005 Lo = Memory;
2006 return;
2007 }
2008
2009 // Classify this field.
2010 //
2011 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2012 // exceeds a single eightbyte, each is classified
2013 // separately. Each eightbyte gets initialized to class
2014 // NO_CLASS.
2015 Class FieldLo, FieldHi;
2016
2017 // Bit-fields require special handling, they do not force the
2018 // structure to be passed in memory even if unaligned, and
2019 // therefore they can straddle an eightbyte.
2020 if (BitField) {
2021 // Ignore padding bit-fields.
2022 if (i->isUnnamedBitfield())
2023 continue;
2024
2025 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2026 uint64_t Size = i->getBitWidthValue(getContext());
2027
2028 uint64_t EB_Lo = Offset / 64;
2029 uint64_t EB_Hi = (Offset + Size - 1) / 64;
2030
2031 if (EB_Lo) {
2032 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2033 FieldLo = NoClass;
2034 FieldHi = Integer;
2035 } else {
2036 FieldLo = Integer;
2037 FieldHi = EB_Hi ? Integer : NoClass;
2038 }
2039 } else
2040 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2041 Lo = merge(Lo, FieldLo);
2042 Hi = merge(Hi, FieldHi);
2043 if (Lo == Memory || Hi == Memory)
2044 break;
2045 }
2046
2047 postMerge(Size, Lo, Hi);
2048 }
2049}
2050
2051ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2052 // If this is a scalar LLVM value then assume LLVM will pass it in the right
2053 // place naturally.
2054 if (!isAggregateTypeForABI(Ty)) {
2055 // Treat an enum type as its underlying type.
2056 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2057 Ty = EnumTy->getDecl()->getIntegerType();
2058
2059 return (Ty->isPromotableIntegerType() ?
2060 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2061 }
2062
2063 return ABIArgInfo::getIndirect(0);
2064}
2065
2066bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2067 if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2068 uint64_t Size = getContext().getTypeSize(VecTy);
2069 unsigned LargestVector = HasAVX ? 256 : 128;
2070 if (Size <= 64 || Size > LargestVector)
2071 return true;
2072 }
2073
2074 return false;
2075}
2076
2077ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2078 unsigned freeIntRegs) const {
2079 // If this is a scalar LLVM value then assume LLVM will pass it in the right
2080 // place naturally.
2081 //
2082 // This assumption is optimistic, as there could be free registers available
2083 // when we need to pass this argument in memory, and LLVM could try to pass
2084 // the argument in the free register. This does not seem to happen currently,
2085 // but this code would be much safer if we could mark the argument with
2086 // 'onstack'. See PR12193.
2087 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2088 // Treat an enum type as its underlying type.
2089 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2090 Ty = EnumTy->getDecl()->getIntegerType();
2091
2092 return (Ty->isPromotableIntegerType() ?
2093 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2094 }
2095
2096 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2097 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2098
2099 // Compute the byval alignment. We specify the alignment of the byval in all
2100 // cases so that the mid-level optimizer knows the alignment of the byval.
2101 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2102
2103 // Attempt to avoid passing indirect results using byval when possible. This
2104 // is important for good codegen.
2105 //
2106 // We do this by coercing the value into a scalar type which the backend can
2107 // handle naturally (i.e., without using byval).
2108 //
2109 // For simplicity, we currently only do this when we have exhausted all of the
2110 // free integer registers. Doing this when there are free integer registers
2111 // would require more care, as we would have to ensure that the coerced value
2112 // did not claim the unused register. That would require either reording the
2113 // arguments to the function (so that any subsequent inreg values came first),
2114 // or only doing this optimization when there were no following arguments that
2115 // might be inreg.
2116 //
2117 // We currently expect it to be rare (particularly in well written code) for
2118 // arguments to be passed on the stack when there are still free integer
2119 // registers available (this would typically imply large structs being passed
2120 // by value), so this seems like a fair tradeoff for now.
2121 //
2122 // We can revisit this if the backend grows support for 'onstack' parameter
2123 // attributes. See PR12193.
2124 if (freeIntRegs == 0) {
2125 uint64_t Size = getContext().getTypeSize(Ty);
2126
2127 // If this type fits in an eightbyte, coerce it into the matching integral
2128 // type, which will end up on the stack (with alignment 8).
2129 if (Align == 8 && Size <= 64)
2130 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2131 Size));
2132 }
2133
2134 return ABIArgInfo::getIndirect(Align);
2135}
2136
2137/// The ABI specifies that a value should be passed in a full vector XMM/YMM
2138/// register. Pick an LLVM IR type that will be passed as a vector register.
2139llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2140 // Wrapper structs/arrays that only contain vectors are passed just like
2141 // vectors; strip them off if present.
2142 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2143 Ty = QualType(InnerTy, 0);
2144
2145 llvm::Type *IRType = CGT.ConvertType(Ty);
2146
2147 // If the preferred type is a 16-byte vector, prefer to pass it.
2148 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
2149 llvm::Type *EltTy = VT->getElementType();
2150 unsigned BitWidth = VT->getBitWidth();
2151 if ((BitWidth >= 128 && BitWidth <= 256) &&
2152 (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
2153 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
2154 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
2155 EltTy->isIntegerTy(128)))
2156 return VT;
2157 }
2158
2159 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
2160}
2161
2162/// BitsContainNoUserData - Return true if the specified [start,end) bit range
2163/// is known to either be off the end of the specified type or being in
2164/// alignment padding. The user type specified is known to be at most 128 bits
2165/// in size, and have passed through X86_64ABIInfo::classify with a successful
2166/// classification that put one of the two halves in the INTEGER class.
2167///
2168/// It is conservatively correct to return false.
2169static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2170 unsigned EndBit, ASTContext &Context) {
2171 // If the bytes being queried are off the end of the type, there is no user
2172 // data hiding here. This handles analysis of builtins, vectors and other
2173 // types that don't contain interesting padding.
2174 unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2175 if (TySize <= StartBit)
2176 return true;
2177
2178 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2179 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2180 unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2181
2182 // Check each element to see if the element overlaps with the queried range.
2183 for (unsigned i = 0; i != NumElts; ++i) {
2184 // If the element is after the span we care about, then we're done..
2185 unsigned EltOffset = i*EltSize;
2186 if (EltOffset >= EndBit) break;
2187
2188 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2189 if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2190 EndBit-EltOffset, Context))
2191 return false;
2192 }
2193 // If it overlaps no elements, then it is safe to process as padding.
2194 return true;
2195 }
2196
2197 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2198 const RecordDecl *RD = RT->getDecl();
2199 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2200
2201 // If this is a C++ record, check the bases first.
2202 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2203 for (const auto &I : CXXRD->bases()) {
2204 assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2205 "Unexpected base class!");
2206 const CXXRecordDecl *Base =
2207 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2208
2209 // If the base is after the span we care about, ignore it.
2210 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2211 if (BaseOffset >= EndBit) continue;
2212
2213 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2214 if (!BitsContainNoUserData(I.getType(), BaseStart,
2215 EndBit-BaseOffset, Context))
2216 return false;
2217 }
2218 }
2219
2220 // Verify that no field has data that overlaps the region of interest. Yes
2221 // this could be sped up a lot by being smarter about queried fields,
2222 // however we're only looking at structs up to 16 bytes, so we don't care
2223 // much.
2224 unsigned idx = 0;
2225 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2226 i != e; ++i, ++idx) {
2227 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2228
2229 // If we found a field after the region we care about, then we're done.
2230 if (FieldOffset >= EndBit) break;
2231
2232 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2233 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2234 Context))
2235 return false;
2236 }
2237
2238 // If nothing in this record overlapped the area of interest, then we're
2239 // clean.
2240 return true;
2241 }
2242
2243 return false;
2244}
2245
2246/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2247/// float member at the specified offset. For example, {int,{float}} has a
2248/// float at offset 4. It is conservatively correct for this routine to return
2249/// false.
2250static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2251 const llvm::DataLayout &TD) {
2252 // Base case if we find a float.
2253 if (IROffset == 0 && IRType->isFloatTy())
2254 return true;
2255
2256 // If this is a struct, recurse into the field at the specified offset.
2257 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2258 const llvm::StructLayout *SL = TD.getStructLayout(STy);
2259 unsigned Elt = SL->getElementContainingOffset(IROffset);
2260 IROffset -= SL->getElementOffset(Elt);
2261 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2262 }
2263
2264 // If this is an array, recurse into the field at the specified offset.
2265 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2266 llvm::Type *EltTy = ATy->getElementType();
2267 unsigned EltSize = TD.getTypeAllocSize(EltTy);
2268 IROffset -= IROffset/EltSize*EltSize;
2269 return ContainsFloatAtOffset(EltTy, IROffset, TD);
2270 }
2271
2272 return false;
2273}
2274
2275
2276/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2277/// low 8 bytes of an XMM register, corresponding to the SSE class.
2278llvm::Type *X86_64ABIInfo::
2279GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2280 QualType SourceTy, unsigned SourceOffset) const {
2281 // The only three choices we have are either double, <2 x float>, or float. We
2282 // pass as float if the last 4 bytes is just padding. This happens for
2283 // structs that contain 3 floats.
2284 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2285 SourceOffset*8+64, getContext()))
2286 return llvm::Type::getFloatTy(getVMContext());
2287
2288 // We want to pass as <2 x float> if the LLVM IR type contains a float at
2289 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
2290 // case.
2291 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2292 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2293 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2294
2295 return llvm::Type::getDoubleTy(getVMContext());
2296}
2297
2298
2299/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2300/// an 8-byte GPR. This means that we either have a scalar or we are talking
2301/// about the high or low part of an up-to-16-byte struct. This routine picks
2302/// the best LLVM IR type to represent this, which may be i64 or may be anything
2303/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2304/// etc).
2305///
2306/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2307/// the source type. IROffset is an offset in bytes into the LLVM IR type that
2308/// the 8-byte value references. PrefType may be null.
2309///
2310/// SourceTy is the source-level type for the entire argument. SourceOffset is
2311/// an offset into this that we're processing (which is always either 0 or 8).
2312///
2313llvm::Type *X86_64ABIInfo::
2314GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2315 QualType SourceTy, unsigned SourceOffset) const {
2316 // If we're dealing with an un-offset LLVM IR type, then it means that we're
2317 // returning an 8-byte unit starting with it. See if we can safely use it.
2318 if (IROffset == 0) {
2319 // Pointers and int64's always fill the 8-byte unit.
2320 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2321 IRType->isIntegerTy(64))
2322 return IRType;
2323
2324 // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2325 // goodness in the source type is just tail padding. This is allowed to
2326 // kick in for struct {double,int} on the int, but not on
2327 // struct{double,int,int} because we wouldn't return the second int. We
2328 // have to do this analysis on the source type because we can't depend on
2329 // unions being lowered a specific way etc.
2330 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2331 IRType->isIntegerTy(32) ||
2332 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2333 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2334 cast<llvm::IntegerType>(IRType)->getBitWidth();
2335
2336 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2337 SourceOffset*8+64, getContext()))
2338 return IRType;
2339 }
2340 }
2341
2342 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2343 // If this is a struct, recurse into the field at the specified offset.
2344 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2345 if (IROffset < SL->getSizeInBytes()) {
2346 unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2347 IROffset -= SL->getElementOffset(FieldIdx);
2348
2349 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2350 SourceTy, SourceOffset);
2351 }
2352 }
2353
2354 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2355 llvm::Type *EltTy = ATy->getElementType();
2356 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2357 unsigned EltOffset = IROffset/EltSize*EltSize;
2358 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2359 SourceOffset);
2360 }
2361
2362 // Okay, we don't have any better idea of what to pass, so we pass this in an
2363 // integer register that isn't too big to fit the rest of the struct.
2364 unsigned TySizeInBytes =
2365 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2366
2367 assert(TySizeInBytes != SourceOffset && "Empty field?");
2368
2369 // It is always safe to classify this as an integer type up to i64 that
2370 // isn't larger than the structure.
2371 return llvm::IntegerType::get(getVMContext(),
2372 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2373}
2374
2375
2376/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2377/// be used as elements of a two register pair to pass or return, return a
2378/// first class aggregate to represent them. For example, if the low part of
2379/// a by-value argument should be passed as i32* and the high part as float,
2380/// return {i32*, float}.
2381static llvm::Type *
2382GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2383 const llvm::DataLayout &TD) {
2384 // In order to correctly satisfy the ABI, we need to the high part to start
2385 // at offset 8. If the high and low parts we inferred are both 4-byte types
2386 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2387 // the second element at offset 8. Check for this:
2388 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2389 unsigned HiAlign = TD.getABITypeAlignment(Hi);
2390 unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign);
2391 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2392
2393 // To handle this, we have to increase the size of the low part so that the
2394 // second element will start at an 8 byte offset. We can't increase the size
2395 // of the second element because it might make us access off the end of the
2396 // struct.
2397 if (HiStart != 8) {
2398 // There are only two sorts of types the ABI generation code can produce for
2399 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2400 // Promote these to a larger type.
2401 if (Lo->isFloatTy())
2402 Lo = llvm::Type::getDoubleTy(Lo->getContext());
2403 else {
2404 assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2405 Lo = llvm::Type::getInt64Ty(Lo->getContext());
2406 }
2407 }
2408
2409 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
2410
2411
2412 // Verify that the second element is at an 8-byte offset.
2413 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2414 "Invalid x86-64 argument pair!");
2415 return Result;
2416}
2417
2418ABIArgInfo X86_64ABIInfo::
2419classifyReturnType(QualType RetTy) const {
2420 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2421 // classification algorithm.
2422 X86_64ABIInfo::Class Lo, Hi;
2423 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2424
2425 // Check some invariants.
2426 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2427 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2428
2429 llvm::Type *ResType = nullptr;
2430 switch (Lo) {
2431 case NoClass:
2432 if (Hi == NoClass)
2433 return ABIArgInfo::getIgnore();
2434 // If the low part is just padding, it takes no register, leave ResType
2435 // null.
2436 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2437 "Unknown missing lo part");
2438 break;
2439
2440 case SSEUp:
2441 case X87Up:
2442 llvm_unreachable("Invalid classification for lo word.");
2443
2444 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2445 // hidden argument.
2446 case Memory:
2447 return getIndirectReturnResult(RetTy);
2448
2449 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2450 // available register of the sequence %rax, %rdx is used.
2451 case Integer:
2452 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2453
2454 // If we have a sign or zero extended integer, make sure to return Extend
2455 // so that the parameter gets the right LLVM IR attributes.
2456 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2457 // Treat an enum type as its underlying type.
2458 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2459 RetTy = EnumTy->getDecl()->getIntegerType();
2460
2461 if (RetTy->isIntegralOrEnumerationType() &&
2462 RetTy->isPromotableIntegerType())
2463 return ABIArgInfo::getExtend();
2464 }
2465 break;
2466
2467 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2468 // available SSE register of the sequence %xmm0, %xmm1 is used.
2469 case SSE:
2470 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2471 break;
2472
2473 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2474 // returned on the X87 stack in %st0 as 80-bit x87 number.
2475 case X87:
2476 ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2477 break;
2478
2479 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2480 // part of the value is returned in %st0 and the imaginary part in
2481 // %st1.
2482 case ComplexX87:
2483 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2484 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2485 llvm::Type::getX86_FP80Ty(getVMContext()),
2486 nullptr);
2487 break;
2488 }
2489
2490 llvm::Type *HighPart = nullptr;
2491 switch (Hi) {
2492 // Memory was handled previously and X87 should
2493 // never occur as a hi class.
2494 case Memory:
2495 case X87:
2496 llvm_unreachable("Invalid classification for hi word.");
2497
2498 case ComplexX87: // Previously handled.
2499 case NoClass:
2500 break;
2501
2502 case Integer:
2503 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2504 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2505 return ABIArgInfo::getDirect(HighPart, 8);
2506 break;
2507 case SSE:
2508 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2509 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2510 return ABIArgInfo::getDirect(HighPart, 8);
2511 break;
2512
2513 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2514 // is passed in the next available eightbyte chunk if the last used
2515 // vector register.
2516 //
2517 // SSEUP should always be preceded by SSE, just widen.
2518 case SSEUp:
2519 assert(Lo == SSE && "Unexpected SSEUp classification.");
2520 ResType = GetByteVectorType(RetTy);
2521 break;
2522
2523 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2524 // returned together with the previous X87 value in %st0.
2525 case X87Up:
2526 // If X87Up is preceded by X87, we don't need to do
2527 // anything. However, in some cases with unions it may not be
2528 // preceded by X87. In such situations we follow gcc and pass the
2529 // extra bits in an SSE reg.
2530 if (Lo != X87) {
2531 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2532 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2533 return ABIArgInfo::getDirect(HighPart, 8);
2534 }
2535 break;
2536 }
2537
2538 // If a high part was specified, merge it together with the low part. It is
2539 // known to pass in the high eightbyte of the result. We do this by forming a
2540 // first class struct aggregate with the high and low part: {low, high}
2541 if (HighPart)
2542 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2543
2544 return ABIArgInfo::getDirect(ResType);
2545}
2546
2547ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2548 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2549 bool isNamedArg)
2550 const
2551{
2552 Ty = useFirstFieldIfTransparentUnion(Ty);
2553
2554 X86_64ABIInfo::Class Lo, Hi;
2555 classify(Ty, 0, Lo, Hi, isNamedArg);
2556
2557 // Check some invariants.
2558 // FIXME: Enforce these by construction.
2559 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2560 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2561
2562 neededInt = 0;
2563 neededSSE = 0;
2564 llvm::Type *ResType = nullptr;
2565 switch (Lo) {
2566 case NoClass:
2567 if (Hi == NoClass)
2568 return ABIArgInfo::getIgnore();
2569 // If the low part is just padding, it takes no register, leave ResType
2570 // null.
2571 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2572 "Unknown missing lo part");
2573 break;
2574
2575 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2576 // on the stack.
2577 case Memory:
2578
2579 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2580 // COMPLEX_X87, it is passed in memory.
2581 case X87:
2582 case ComplexX87:
2583 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2584 ++neededInt;
2585 return getIndirectResult(Ty, freeIntRegs);
2586
2587 case SSEUp:
2588 case X87Up:
2589 llvm_unreachable("Invalid classification for lo word.");
2590
2591 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2592 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2593 // and %r9 is used.
2594 case Integer:
2595 ++neededInt;
2596
2597 // Pick an 8-byte type based on the preferred type.
2598 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2599
2600 // If we have a sign or zero extended integer, make sure to return Extend
2601 // so that the parameter gets the right LLVM IR attributes.
2602 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2603 // Treat an enum type as its underlying type.
2604 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2605 Ty = EnumTy->getDecl()->getIntegerType();
2606
2607 if (Ty->isIntegralOrEnumerationType() &&
2608 Ty->isPromotableIntegerType())
2609 return ABIArgInfo::getExtend();
2610 }
2611
2612 break;
2613
2614 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2615 // available SSE register is used, the registers are taken in the
2616 // order from %xmm0 to %xmm7.
2617 case SSE: {
2618 llvm::Type *IRType = CGT.ConvertType(Ty);
2619 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2620 ++neededSSE;
2621 break;
2622 }
2623 }
2624
2625 llvm::Type *HighPart = nullptr;
2626 switch (Hi) {
2627 // Memory was handled previously, ComplexX87 and X87 should
2628 // never occur as hi classes, and X87Up must be preceded by X87,
2629 // which is passed in memory.
2630 case Memory:
2631 case X87:
2632 case ComplexX87:
2633 llvm_unreachable("Invalid classification for hi word.");
2634
2635 case NoClass: break;
2636
2637 case Integer:
2638 ++neededInt;
2639 // Pick an 8-byte type based on the preferred type.
2640 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2641
2642 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2643 return ABIArgInfo::getDirect(HighPart, 8);
2644 break;
2645
2646 // X87Up generally doesn't occur here (long double is passed in
2647 // memory), except in situations involving unions.
2648 case X87Up:
2649 case SSE:
2650 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2651
2652 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2653 return ABIArgInfo::getDirect(HighPart, 8);
2654
2655 ++neededSSE;
2656 break;
2657
2658 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2659 // eightbyte is passed in the upper half of the last used SSE
2660 // register. This only happens when 128-bit vectors are passed.
2661 case SSEUp:
2662 assert(Lo == SSE && "Unexpected SSEUp classification");
2663 ResType = GetByteVectorType(Ty);
2664 break;
2665 }
2666
2667 // If a high part was specified, merge it together with the low part. It is
2668 // known to pass in the high eightbyte of the result. We do this by forming a
2669 // first class struct aggregate with the high and low part: {low, high}
2670 if (HighPart)
2671 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2672
2673 return ABIArgInfo::getDirect(ResType);
2674}
2675
2676void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2677
2678 if (!getCXXABI().classifyReturnType(FI))
2679 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2680
2681 // Keep track of the number of assigned registers.
2682 unsigned freeIntRegs = 6, freeSSERegs = 8;
2683
2684 // If the return value is indirect, then the hidden argument is consuming one
2685 // integer register.
2686 if (FI.getReturnInfo().isIndirect())
2687 --freeIntRegs;
2688
2689 // The chain argument effectively gives us another free register.
2690 if (FI.isChainCall())
2691 ++freeIntRegs;
2692
2693 unsigned NumRequiredArgs = FI.getNumRequiredArgs();
2694 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2695 // get assigned (in left-to-right order) for passing as follows...
2696 unsigned ArgNo = 0;
2697 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2698 it != ie; ++it, ++ArgNo) {
2699 bool IsNamedArg = ArgNo < NumRequiredArgs;
2700
2701 unsigned neededInt, neededSSE;
2702 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2703 neededSSE, IsNamedArg);
2704
2705 // AMD64-ABI 3.2.3p3: If there are no registers available for any
2706 // eightbyte of an argument, the whole argument is passed on the
2707 // stack. If registers have already been assigned for some
2708 // eightbytes of such an argument, the assignments get reverted.
2709 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2710 freeIntRegs -= neededInt;
2711 freeSSERegs -= neededSSE;
2712 } else {
2713 it->info = getIndirectResult(it->type, freeIntRegs);
2714 }
2715 }
2716}
2717
2718static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2719 QualType Ty,
2720 CodeGenFunction &CGF) {
2721 llvm::Value *overflow_arg_area_p =
2722 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2723 llvm::Value *overflow_arg_area =
2724 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2725
2726 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2727 // byte boundary if alignment needed by type exceeds 8 byte boundary.
2728 // It isn't stated explicitly in the standard, but in practice we use
2729 // alignment greater than 16 where necessary.
2730 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2731 if (Align > 8) {
2732 // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2733 llvm::Value *Offset =
2734 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2735 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2736 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2737 CGF.Int64Ty);
2738 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2739 overflow_arg_area =
2740 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2741 overflow_arg_area->getType(),
2742 "overflow_arg_area.align");
2743 }
2744
2745 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2746 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2747 llvm::Value *Res =
2748 CGF.Builder.CreateBitCast(overflow_arg_area,
2749 llvm::PointerType::getUnqual(LTy));
2750
2751 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2752 // l->overflow_arg_area + sizeof(type).
2753 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2754 // an 8 byte boundary.
2755
2756 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2757 llvm::Value *Offset =
2758 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
2759 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2760 "overflow_arg_area.next");
2761 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2762
2763 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2764 return Res;
2765}
2766
2767llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2768 CodeGenFunction &CGF) const {
2769 // Assume that va_list type is correct; should be pointer to LLVM type:
2770 // struct {
2771 // i32 gp_offset;
2772 // i32 fp_offset;
2773 // i8* overflow_arg_area;
2774 // i8* reg_save_area;
2775 // };
2776 unsigned neededInt, neededSSE;
2777
2778 Ty = CGF.getContext().getCanonicalType(Ty);
2779 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2780 /*isNamedArg*/false);
2781
2782 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2783 // in the registers. If not go to step 7.
2784 if (!neededInt && !neededSSE)
2785 return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2786
2787 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2788 // general purpose registers needed to pass type and num_fp to hold
2789 // the number of floating point registers needed.
2790
2791 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2792 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2793 // l->fp_offset > 304 - num_fp * 16 go to step 7.
2794 //
2795 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2796 // register save space).
2797
2798 llvm::Value *InRegs = nullptr;
2799 llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr;
2800 llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr;
2801 if (neededInt) {
2802 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2803 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2804 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2805 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2806 }
2807
2808 if (neededSSE) {
2809 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2810 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2811 llvm::Value *FitsInFP =
2812 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2813 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2814 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2815 }
2816
2817 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2818 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2819 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2820 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2821
2822 // Emit code to load the value if it was passed in registers.
2823
2824 CGF.EmitBlock(InRegBlock);
2825
2826 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2827 // an offset of l->gp_offset and/or l->fp_offset. This may require
2828 // copying to a temporary location in case the parameter is passed
2829 // in different register classes or requires an alignment greater
2830 // than 8 for general purpose registers and 16 for XMM registers.
2831 //
2832 // FIXME: This really results in shameful code when we end up needing to
2833 // collect arguments from different places; often what should result in a
2834 // simple assembling of a structure from scattered addresses has many more
2835 // loads than necessary. Can we clean this up?
2836 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2837 llvm::Value *RegAddr =
2838 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2839 "reg_save_area");
2840 if (neededInt && neededSSE) {
2841 // FIXME: Cleanup.
2842 assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2843 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2844 llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2845 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2846 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2847 llvm::Type *TyLo = ST->getElementType(0);
2848 llvm::Type *TyHi = ST->getElementType(1);
2849 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2850 "Unexpected ABI info for mixed regs");
2851 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2852 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2853 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2854 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2855 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
2856 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
2857 llvm::Value *V =
2858 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2859 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2860 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2861 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2862
2863 RegAddr = CGF.Builder.CreateBitCast(Tmp,
2864 llvm::PointerType::getUnqual(LTy));
2865 } else if (neededInt) {
2866 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2867 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2868 llvm::PointerType::getUnqual(LTy));
2869
2870 // Copy to a temporary if necessary to ensure the appropriate alignment.
2871 std::pair<CharUnits, CharUnits> SizeAlign =
2872 CGF.getContext().getTypeInfoInChars(Ty);
2873 uint64_t TySize = SizeAlign.first.getQuantity();
2874 unsigned TyAlign = SizeAlign.second.getQuantity();
2875 if (TyAlign > 8) {
2876 llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2877 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2878 RegAddr = Tmp;
2879 }
2880 } else if (neededSSE == 1) {
2881 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2882 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2883 llvm::PointerType::getUnqual(LTy));
2884 } else {
2885 assert(neededSSE == 2 && "Invalid number of needed registers!");
2886 // SSE registers are spaced 16 bytes apart in the register save
2887 // area, we need to collect the two eightbytes together.
2888 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2889 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2890 llvm::Type *DoubleTy = CGF.DoubleTy;
2891 llvm::Type *DblPtrTy =
2892 llvm::PointerType::getUnqual(DoubleTy);
2893 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
2894 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2895 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2896 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2897 DblPtrTy));
2898 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2899 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2900 DblPtrTy));
2901 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2902 RegAddr = CGF.Builder.CreateBitCast(Tmp,
2903 llvm::PointerType::getUnqual(LTy));
2904 }
2905
2906 // AMD64-ABI 3.5.7p5: Step 5. Set:
2907 // l->gp_offset = l->gp_offset + num_gp * 8
2908 // l->fp_offset = l->fp_offset + num_fp * 16.
2909 if (neededInt) {
2910 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2911 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2912 gp_offset_p);
2913 }
2914 if (neededSSE) {
2915 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2916 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2917 fp_offset_p);
2918 }
2919 CGF.EmitBranch(ContBlock);
2920
2921 // Emit code to load the value if it was passed in memory.
2922
2923 CGF.EmitBlock(InMemBlock);
2924 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2925
2926 // Return the appropriate result.
2927
2928 CGF.EmitBlock(ContBlock);
2929 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2930 "vaarg.addr");
2931 ResAddr->addIncoming(RegAddr, InRegBlock);
2932 ResAddr->addIncoming(MemAddr, InMemBlock);
2933 return ResAddr;
2934}
2935
2936ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
2937 bool IsReturnType) const {
2938
2939 if (Ty->isVoidType())
2940 return ABIArgInfo::getIgnore();
2941
2942 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2943 Ty = EnumTy->getDecl()->getIntegerType();
2944
2945 TypeInfo Info = getContext().getTypeInfo(Ty);
2946 uint64_t Width = Info.Width;
2947 unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity();
2948
2949 const RecordType *RT = Ty->getAs<RecordType>();
2950 if (RT) {
2951 if (!IsReturnType) {
2952 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
2953 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2954 }
2955
2956 if (RT->getDecl()->hasFlexibleArrayMember())
2957 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2958
2959 // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2960 if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
2961 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2962 Width));
2963 }
2964
2965 // vectorcall adds the concept of a homogenous vector aggregate, similar to
2966 // other targets.
2967 const Type *Base = nullptr;
2968 uint64_t NumElts = 0;
2969 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
2970 if (FreeSSERegs >= NumElts) {
2971 FreeSSERegs -= NumElts;
2972 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
2973 return ABIArgInfo::getDirect();
2974 return ABIArgInfo::getExpand();
2975 }
2976 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
2977 }
2978
2979
2980 if (Ty->isMemberPointerType()) {
2981 // If the member pointer is represented by an LLVM int or ptr, pass it
2982 // directly.
2983 llvm::Type *LLTy = CGT.ConvertType(Ty);
2984 if (LLTy->isPointerTy() || LLTy->isIntegerTy())
2985 return ABIArgInfo::getDirect();
2986 }
2987
2988 if (RT || Ty->isMemberPointerType()) {
2989 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2990 // not 1, 2, 4, or 8 bytes, must be passed by reference."
2991 if (Width > 64 || !llvm::isPowerOf2_64(Width))
2992 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2993
2994 // Otherwise, coerce it to a small integer.
2995 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
2996 }
2997
2998 // Bool type is always extended to the ABI, other builtin types are not
2999 // extended.
3000 const BuiltinType *BT = Ty->getAs<BuiltinType>();
3001 if (BT && BT->getKind() == BuiltinType::Bool)
3002 return ABIArgInfo::getExtend();
3003
3004 return ABIArgInfo::getDirect();
3005}
3006
3007void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3008 bool IsVectorCall =
3009 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3010
3011 // We can use up to 4 SSE return registers with vectorcall.
3012 unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3013 if (!getCXXABI().classifyReturnType(FI))
3014 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3015
3016 // We can use up to 6 SSE register parameters with vectorcall.
3017 FreeSSERegs = IsVectorCall ? 6 : 0;
3018 for (auto &I : FI.arguments())
3019 I.info = classify(I.type, FreeSSERegs, false);
3020}
3021
3022llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3023 CodeGenFunction &CGF) const {
3024 llvm::Type *BPP = CGF.Int8PtrPtrTy;
3025
3026 CGBuilderTy &Builder = CGF.Builder;
3027 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
3028 "ap");
3029 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3030 llvm::Type *PTy =
3031 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3032 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3033
3034 uint64_t Offset =
3035 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
3036 llvm::Value *NextAddr =
3037 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3038 "ap.next");
3039 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3040
3041 return AddrTyped;
3042}
3043
3044namespace {
3045
3046class NaClX86_64ABIInfo : public ABIInfo {
3047 public:
3048 NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
3049 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
3050 void computeInfo(CGFunctionInfo &FI) const override;
3051 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3052 CodeGenFunction &CGF) const override;
3053 private:
3054 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
3055 X86_64ABIInfo NInfo; // Used for everything else.
3056};
3057
3058class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
3059 bool HasAVX;
3060 public:
3061 NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
3062 : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)), HasAVX(HasAVX) {
3063 }
3064 unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3065 return HasAVX ? 32 : 16;
3066 }
3067};
3068
3069}
3070
3071void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3072 if (FI.getASTCallingConvention() == CC_PnaclCall)
3073 PInfo.computeInfo(FI);
3074 else
3075 NInfo.computeInfo(FI);
3076}
3077
3078llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3079 CodeGenFunction &CGF) const {
3080 // Always use the native convention; calling pnacl-style varargs functions
3081 // is unuspported.
3082 return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
3083}
3084
3085
3086// PowerPC-32
3087namespace {
3088/// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3089class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3090public:
3091 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
3092
3093 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3094 CodeGenFunction &CGF) const override;
3095};
3096
3097class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3098public:
3099 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {}
3100
3101 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3102 // This is recovered from gcc output.
3103 return 1; // r1 is the dedicated stack pointer
3104 }
3105
3106 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3107 llvm::Value *Address) const override;
3108
3109 unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3110 return 16; // Natural alignment for Altivec vectors.
3111 }
3112};
3113
3114}
3115
3116llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3117 QualType Ty,
3118 CodeGenFunction &CGF) const {
3119 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3120 // TODO: Implement this. For now ignore.
3121 (void)CTy;
3122 return nullptr;
3123 }
3124
3125 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3126 bool isInt = Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3127 llvm::Type *CharPtr = CGF.Int8PtrTy;
3128 llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy;
3129
3130 CGBuilderTy &Builder = CGF.Builder;
3131 llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr");
3132 llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty);
3133 llvm::Value *FPRPtrAsInt = Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1));
3134 llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr);
3135 llvm::Value *OverflowAreaPtrAsInt = Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3));
3136 llvm::Value *OverflowAreaPtr = Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr);
3137 llvm::Value *RegsaveAreaPtrAsInt = Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4));
3138 llvm::Value *RegsaveAreaPtr = Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr);
3139 llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr");
3140 // Align GPR when TY is i64.
3141 if (isI64) {
3142 llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1));
3143 llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1));
3144 llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1));
3145 GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR);
3146 }
3147 llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr");
3148 llvm::Value *OverflowArea = Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area");
3149 llvm::Value *OverflowAreaAsInt = Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty);
3150 llvm::Value *RegsaveArea = Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area");
3151 llvm::Value *RegsaveAreaAsInt = Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty);
3152
3153 llvm::Value *CC = Builder.CreateICmpULT(isInt ? GPR : FPR,
3154 Builder.getInt8(8), "cond");
3155
3156 llvm::Value *RegConstant = Builder.CreateMul(isInt ? GPR : FPR,
3157 Builder.getInt8(isInt ? 4 : 8));
3158
3159 llvm::Value *OurReg = Builder.CreateAdd(RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty));
3160
3161 if (Ty->isFloatingType())
3162 OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32));
3163
3164 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3165 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3166 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3167
3168 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3169
3170 CGF.EmitBlock(UsingRegs);
3171
3172 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3173 llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy);
3174 // Increase the GPR/FPR indexes.
3175 if (isInt) {
3176 GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1));
3177 Builder.CreateStore(GPR, GPRPtr);
3178 } else {
3179 FPR = Builder.CreateAdd(FPR, Builder.getInt8(1));
3180 Builder.CreateStore(FPR, FPRPtr);
3181 }
3182 CGF.EmitBranch(Cont);
3183
3184 CGF.EmitBlock(UsingOverflow);
3185
3186 // Increase the overflow area.
3187 llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy);
3188 OverflowAreaAsInt = Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8));
3189 Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr), OverflowAreaPtr);
3190 CGF.EmitBranch(Cont);
3191
3192 CGF.EmitBlock(Cont);
3193
3194 llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr");
3195 Result->addIncoming(Result1, UsingRegs);
3196 Result->addIncoming(Result2, UsingOverflow);
3197
3198 if (Ty->isAggregateType()) {
3199 llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr") ;
3200 return Builder.CreateLoad(AGGPtr, false, "aggr");
3201 }
3202
3203 return Result;
3204}
3205
3206bool
3207PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3208 llvm::Value *Address) const {
3209 // This is calculated from the LLVM and GCC tables and verified
3210 // against gcc output. AFAIK all ABIs use the same encoding.
3211
3212 CodeGen::CGBuilderTy &Builder = CGF.Builder;
3213
3214 llvm::IntegerType *i8 = CGF.Int8Ty;
3215 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3216 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3217 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3218
3219 // 0-31: r0-31, the 4-byte general-purpose registers
3220 AssignToArrayRange(Builder, Address, Four8, 0, 31);
3221
3222 // 32-63: fp0-31, the 8-byte floating-point registers
3223 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3224
3225 // 64-76 are various 4-byte special-purpose registers:
3226 // 64: mq
3227 // 65: lr
3228 // 66: ctr
3229 // 67: ap
3230 // 68-75 cr0-7
3231 // 76: xer
3232 AssignToArrayRange(Builder, Address, Four8, 64, 76);
3233
3234 // 77-108: v0-31, the 16-byte vector registers
3235 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3236
3237 // 109: vrsave
3238 // 110: vscr
3239 // 111: spe_acc
3240 // 112: spefscr
3241 // 113: sfp
3242 AssignToArrayRange(Builder, Address, Four8, 109, 113);
3243
3244 return false;
3245}
3246
3247// PowerPC-64
3248
3249namespace {
3250/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3251class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
3252public:
3253 enum ABIKind {
3254 ELFv1 = 0,
3255 ELFv2
3256 };
3257
3258private:
3259 static const unsigned GPRBits = 64;
3260 ABIKind Kind;
3261
3262public:
3263 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
3264 : DefaultABIInfo(CGT), Kind(Kind) {}
3265
3266 bool isPromotableTypeForABI(QualType Ty) const;
3267 bool isAlignedParamType(QualType Ty) const;
3268
3269 ABIArgInfo classifyReturnType(QualType RetTy) const;
3270 ABIArgInfo classifyArgumentType(QualType Ty) const;
3271
3272 bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3273 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3274 uint64_t Members) const override;
3275
3276 // TODO: We can add more logic to computeInfo to improve performance.
3277 // Example: For aggregate arguments that fit in a register, we could
3278 // use getDirectInReg (as is done below for structs containing a single
3279 // floating-point value) to avoid pushing them to memory on function
3280 // entry. This would require changing the logic in PPCISelLowering
3281 // when lowering the parameters in the caller and args in the callee.
3282 void computeInfo(CGFunctionInfo &FI) const override {
3283 if (!getCXXABI().classifyReturnType(FI))
3284 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3285 for (auto &I : FI.arguments()) {
3286 // We rely on the default argument classification for the most part.
3287 // One exception: An aggregate containing a single floating-point
3288 // or vector item must be passed in a register if one is available.
3289 const Type *T = isSingleElementStruct(I.type, getContext());
3290 if (T) {
3291 const BuiltinType *BT = T->getAs<BuiltinType>();
3292 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3293 (BT && BT->isFloatingPoint())) {
3294 QualType QT(T, 0);
3295 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3296 continue;
3297 }
3298 }
3299 I.info = classifyArgumentType(I.type);
3300 }
3301 }
3302
3303 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3304 CodeGenFunction &CGF) const override;
3305};
3306
3307class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3308public:
3309 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3310 PPC64_SVR4_ABIInfo::ABIKind Kind)
3311 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind)) {}
3312
3313 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3314 // This is recovered from gcc output.
3315 return 1; // r1 is the dedicated stack pointer
3316 }
3317
3318 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3319 llvm::Value *Address) const override;
3320
3321 unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3322 return 16; // Natural alignment for Altivec and VSX vectors.
3323 }
3324};
3325
3326class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3327public:
3328 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3329
3330 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3331 // This is recovered from gcc output.
3332 return 1; // r1 is the dedicated stack pointer
3333 }
3334
3335 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3336 llvm::Value *Address) const override;
3337
3338 unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3339 return 16; // Natural alignment for Altivec vectors.
3340 }
3341};
3342
3343}
3344
3345// Return true if the ABI requires Ty to be passed sign- or zero-
3346// extended to 64 bits.
3347bool
3348PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3349 // Treat an enum type as its underlying type.
3350 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3351 Ty = EnumTy->getDecl()->getIntegerType();
3352
3353 // Promotable integer types are required to be promoted by the ABI.
3354 if (Ty->isPromotableIntegerType())
3355 return true;
3356
3357 // In addition to the usual promotable integer types, we also need to
3358 // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3359 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3360 switch (BT->getKind()) {
3361 case BuiltinType::Int:
3362 case BuiltinType::UInt:
3363 return true;
3364 default:
3365 break;
3366 }
3367
3368 return false;
3369}
3370
3371/// isAlignedParamType - Determine whether a type requires 16-byte
3372/// alignment in the parameter area.
3373bool
3374PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty) const {
3375 // Complex types are passed just like their elements.
3376 if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3377 Ty = CTy->getElementType();
3378
3379 // Only vector types of size 16 bytes need alignment (larger types are
3380 // passed via reference, smaller types are not aligned).
3381 if (Ty->isVectorType())
3382 return getContext().getTypeSize(Ty) == 128;
3383
3384 // For single-element float/vector structs, we consider the whole type
3385 // to have the same alignment requirements as its single element.
3386 const Type *AlignAsType = nullptr;
3387 const Type *EltType = isSingleElementStruct(Ty, getContext());
3388 if (EltType) {
3389 const BuiltinType *BT = EltType->getAs<BuiltinType>();
3390 if ((EltType->isVectorType() &&
3391 getContext().getTypeSize(EltType) == 128) ||
3392 (BT && BT->isFloatingPoint()))
3393 AlignAsType = EltType;
3394 }
3395
3396 // Likewise for ELFv2 homogeneous aggregates.
3397 const Type *Base = nullptr;
3398 uint64_t Members = 0;
3399 if (!AlignAsType && Kind == ELFv2 &&
3400 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
3401 AlignAsType = Base;
3402
3403 // With special case aggregates, only vector base types need alignment.
3404 if (AlignAsType)
3405 return AlignAsType->isVectorType();
3406
3407 // Otherwise, we only need alignment for any aggregate type that
3408 // has an alignment requirement of >= 16 bytes.
3409 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128)
3410 return true;
3411
3412 return false;
3413}
3414
3415/// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
3416/// aggregate. Base is set to the base element type, and Members is set
3417/// to the number of base elements.
3418bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
3419 uint64_t &Members) const {
3420 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3421 uint64_t NElements = AT->getSize().getZExtValue();
3422 if (NElements == 0)
3423 return false;
3424 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
3425 return false;
3426 Members *= NElements;
3427 } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3428 const RecordDecl *RD = RT->getDecl();
3429 if (RD->hasFlexibleArrayMember())
3430 return false;
3431
3432 Members = 0;
3433
3434 // If this is a C++ record, check the bases first.
3435 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3436 for (const auto &I : CXXRD->bases()) {
3437 // Ignore empty records.
3438 if (isEmptyRecord(getContext(), I.getType(), true))
3439 continue;
3440
3441 uint64_t FldMembers;
3442 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
3443 return false;
3444
3445 Members += FldMembers;
3446 }
3447 }
3448
3449 for (const auto *FD : RD->fields()) {
3450 // Ignore (non-zero arrays of) empty records.
3451 QualType FT = FD->getType();
3452 while (const ConstantArrayType *AT =
3453 getContext().getAsConstantArrayType(FT)) {
3454 if (AT->getSize().getZExtValue() == 0)
3455 return false;
3456 FT = AT->getElementType();
3457 }
3458 if (isEmptyRecord(getContext(), FT, true))
3459 continue;
3460
3461 // For compatibility with GCC, ignore empty bitfields in C++ mode.
3462 if (getContext().getLangOpts().CPlusPlus &&
3463 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
3464 continue;
3465
3466 uint64_t FldMembers;
3467 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
3468 return false;
3469
3470 Members = (RD->isUnion() ?
3471 std::max(Members, FldMembers) : Members + FldMembers);
3472 }
3473
3474 if (!Base)
3475 return false;
3476
3477 // Ensure there is no padding.
3478 if (getContext().getTypeSize(Base) * Members !=
3479 getContext().getTypeSize(Ty))
3480 return false;
3481 } else {
3482 Members = 1;
3483 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3484 Members = 2;
3485 Ty = CT->getElementType();
3486 }
3487
3488 // Most ABIs only support float, double, and some vector type widths.
3489 if (!isHomogeneousAggregateBaseType(Ty))
3490 return false;
3491
3492 // The base type must be the same for all members. Types that
3493 // agree in both total size and mode (float vs. vector) are
3494 // treated as being equivalent here.
3495 const Type *TyPtr = Ty.getTypePtr();
3496 if (!Base)
3497 Base = TyPtr;
3498
3499 if (Base->isVectorType() != TyPtr->isVectorType() ||
3500 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
3501 return false;
3502 }
3503 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
3504}
3505
3506bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
3507 // Homogeneous aggregates for ELFv2 must have base types of float,
3508 // double, long double, or 128-bit vectors.
3509 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3510 if (BT->getKind() == BuiltinType::Float ||
3511 BT->getKind() == BuiltinType::Double ||
3512 BT->getKind() == BuiltinType::LongDouble)
3513 return true;
3514 }
3515 if (const VectorType *VT = Ty->getAs<VectorType>()) {
3516 if (getContext().getTypeSize(VT) == 128)
3517 return true;
3518 }
3519 return false;
3520}
3521
3522bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
3523 const Type *Base, uint64_t Members) const {
3524 // Vector types require one register, floating point types require one
3525 // or two registers depending on their size.
3526 uint32_t NumRegs =
3527 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
3528
3529 // Homogeneous Aggregates may occupy at most 8 registers.
3530 return Members * NumRegs <= 8;
3531}
3532
3533ABIArgInfo
3534PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
3535 Ty = useFirstFieldIfTransparentUnion(Ty);
3536
3537 if (Ty->isAnyComplexType())
3538 return ABIArgInfo::getDirect();
3539
3540 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
3541 // or via reference (larger than 16 bytes).
3542 if (Ty->isVectorType()) {
3543 uint64_t Size = getContext().getTypeSize(Ty);
3544 if (Size > 128)
3545 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3546 else if (Size < 128) {
3547 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3548 return ABIArgInfo::getDirect(CoerceTy);
3549 }
3550 }
3551
3552 if (isAggregateTypeForABI(Ty)) {
3553 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3554 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3555
3556 uint64_t ABIAlign = isAlignedParamType(Ty)? 16 : 8;
3557 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3558
3559 // ELFv2 homogeneous aggregates are passed as array types.
3560 const Type *Base = nullptr;
3561 uint64_t Members = 0;
3562 if (Kind == ELFv2 &&
3563 isHomogeneousAggregate(Ty, Base, Members)) {
3564 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3565 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3566 return ABIArgInfo::getDirect(CoerceTy);
3567 }
3568
3569 // If an aggregate may end up fully in registers, we do not
3570 // use the ByVal method, but pass the aggregate as array.
3571 // This is usually beneficial since we avoid forcing the
3572 // back-end to store the argument to memory.
3573 uint64_t Bits = getContext().getTypeSize(Ty);
3574 if (Bits > 0 && Bits <= 8 * GPRBits) {
3575 llvm::Type *CoerceTy;
3576
3577 // Types up to 8 bytes are passed as integer type (which will be
3578 // properly aligned in the argument save area doubleword).
3579 if (Bits <= GPRBits)
3580 CoerceTy = llvm::IntegerType::get(getVMContext(),
3581 llvm::RoundUpToAlignment(Bits, 8));
3582 // Larger types are passed as arrays, with the base type selected
3583 // according to the required alignment in the save area.
3584 else {
3585 uint64_t RegBits = ABIAlign * 8;
3586 uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
3587 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
3588 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
3589 }
3590
3591 return ABIArgInfo::getDirect(CoerceTy);
3592 }
3593
3594 // All other aggregates are passed ByVal.
3595 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
3596 /*Realign=*/TyAlign > ABIAlign);
3597 }
3598
3599 return (isPromotableTypeForABI(Ty) ?
3600 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3601}
3602
3603ABIArgInfo
3604PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
3605 if (RetTy->isVoidType())
3606 return ABIArgInfo::getIgnore();
3607
3608 if (RetTy->isAnyComplexType())
3609 return ABIArgInfo::getDirect();
3610
3611 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
3612 // or via reference (larger than 16 bytes).
3613 if (RetTy->isVectorType()) {
3614 uint64_t Size = getContext().getTypeSize(RetTy);
3615 if (Size > 128)
3616 return ABIArgInfo::getIndirect(0);
3617 else if (Size < 128) {
3618 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3619 return ABIArgInfo::getDirect(CoerceTy);
3620 }
3621 }
3622
3623 if (isAggregateTypeForABI(RetTy)) {
3624 // ELFv2 homogeneous aggregates are returned as array types.
3625 const Type *Base = nullptr;
3626 uint64_t Members = 0;
3627 if (Kind == ELFv2 &&
3628 isHomogeneousAggregate(RetTy, Base, Members)) {
3629 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3630 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3631 return ABIArgInfo::getDirect(CoerceTy);
3632 }
3633
3634 // ELFv2 small aggregates are returned in up to two registers.
3635 uint64_t Bits = getContext().getTypeSize(RetTy);
3636 if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
3637 if (Bits == 0)
3638 return ABIArgInfo::getIgnore();
3639
3640 llvm::Type *CoerceTy;
3641 if (Bits > GPRBits) {
3642 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
3643 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
3644 } else
3645 CoerceTy = llvm::IntegerType::get(getVMContext(),
3646 llvm::RoundUpToAlignment(Bits, 8));
3647 return ABIArgInfo::getDirect(CoerceTy);
3648 }
3649
3650 // All other aggregates are returned indirectly.
3651 return ABIArgInfo::getIndirect(0);
3652 }
3653
3654 return (isPromotableTypeForABI(RetTy) ?
3655 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3656}
3657
3658// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
3659llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3660 QualType Ty,
3661 CodeGenFunction &CGF) const {
3662 llvm::Type *BP = CGF.Int8PtrTy;
3663 llvm::Type *BPP = CGF.Int8PtrPtrTy;
3664
3665 CGBuilderTy &Builder = CGF.Builder;
3666 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3667 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3668
3669 // Handle types that require 16-byte alignment in the parameter save area.
3670 if (isAlignedParamType(Ty)) {
3671 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3672 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(15));
3673 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(-16));
3674 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3675 }
3676
3677 // Update the va_list pointer. The pointer should be bumped by the
3678 // size of the object. We can trust getTypeSize() except for a complex
3679 // type whose base type is smaller than a doubleword. For these, the
3680 // size of the object is 16 bytes; see below for further explanation.
3681 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
3682 QualType BaseTy;
3683 unsigned CplxBaseSize = 0;
3684
3685 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3686 BaseTy = CTy->getElementType();
3687 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
3688 if (CplxBaseSize < 8)
3689 SizeInBytes = 16;
3690 }
3691
3692 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
3693 llvm::Value *NextAddr =
3694 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
3695 "ap.next");
3696 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3697
3698 // If we have a complex type and the base type is smaller than 8 bytes,
3699 // the ABI calls for the real and imaginary parts to be right-adjusted
3700 // in separate doublewords. However, Clang expects us to produce a
3701 // pointer to a structure with the two parts packed tightly. So generate
3702 // loads of the real and imaginary parts relative to the va_list pointer,
3703 // and store them to a temporary structure.
3704 if (CplxBaseSize && CplxBaseSize < 8) {
3705 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3706 llvm::Value *ImagAddr = RealAddr;
3707 if (CGF.CGM.getDataLayout().isBigEndian()) {
3708 RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
3709 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
3710 } else {
3711 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8));
3712 }
3713 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
3714 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
3715 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
3716 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
3717 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
3718 llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
3719 "vacplx");
3720 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
3721 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
3722 Builder.CreateStore(Real, RealPtr, false);
3723 Builder.CreateStore(Imag, ImagPtr, false);
3724 return Ptr;
3725 }
3726
3727 // If the argument is smaller than 8 bytes, it is right-adjusted in
3728 // its doubleword slot. Adjust the pointer to pick it up from the
3729 // correct offset.
3730 if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) {
3731 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3732 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
3733 Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
3734 }
3735
3736 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3737 return Builder.CreateBitCast(Addr, PTy);
3738}
3739
3740static bool
3741PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3742 llvm::Value *Address) {
3743 // This is calculated from the LLVM and GCC tables and verified
3744 // against gcc output. AFAIK all ABIs use the same encoding.
3745
3746 CodeGen::CGBuilderTy &Builder = CGF.Builder;
3747
3748 llvm::IntegerType *i8 = CGF.Int8Ty;
3749 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3750 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3751 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3752
3753 // 0-31: r0-31, the 8-byte general-purpose registers
3754 AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3755
3756 // 32-63: fp0-31, the 8-byte floating-point registers
3757 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3758
3759 // 64-76 are various 4-byte special-purpose registers:
3760 // 64: mq
3761 // 65: lr
3762 // 66: ctr
3763 // 67: ap
3764 // 68-75 cr0-7
3765 // 76: xer
3766 AssignToArrayRange(Builder, Address, Four8, 64, 76);
3767
3768 // 77-108: v0-31, the 16-byte vector registers
3769 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3770
3771 // 109: vrsave
3772 // 110: vscr
3773 // 111: spe_acc
3774 // 112: spefscr
3775 // 113: sfp
3776 AssignToArrayRange(Builder, Address, Four8, 109, 113);
3777
3778 return false;
3779}
3780
3781bool
3782PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3783 CodeGen::CodeGenFunction &CGF,
3784 llvm::Value *Address) const {
3785
3786 return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3787}
3788
3789bool
3790PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3791 llvm::Value *Address) const {
3792
3793 return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3794}
3795
3796//===----------------------------------------------------------------------===//
3797// AArch64 ABI Implementation
3798//===----------------------------------------------------------------------===//
3799
3800namespace {
3801
3802class AArch64ABIInfo : public ABIInfo {
3803public:
3804 enum ABIKind {
3805 AAPCS = 0,
3806 DarwinPCS
3807 };
3808
3809private:
3810 ABIKind Kind;
3811
3812public:
3813 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
3814
3815private:
3816 ABIKind getABIKind() const { return Kind; }
3817 bool isDarwinPCS() const { return Kind == DarwinPCS; }
3818
3819 ABIArgInfo classifyReturnType(QualType RetTy) const;
3820 ABIArgInfo classifyArgumentType(QualType RetTy) const;
3821 bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3822 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3823 uint64_t Members) const override;
3824
3825 bool isIllegalVectorType(QualType Ty) const;
3826
3827 void computeInfo(CGFunctionInfo &FI) const override {
3828 if (!getCXXABI().classifyReturnType(FI))
3829 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3830
3831 for (auto &it : FI.arguments())
3832 it.info = classifyArgumentType(it.type);
3833 }
3834
3835 llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
3836 CodeGenFunction &CGF) const;
3837
3838 llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
3839 CodeGenFunction &CGF) const;
3840
3841 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3842 CodeGenFunction &CGF) const override {
3843 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
3844 : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
3845 }
3846};
3847
3848class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3849public:
3850 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
3851 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
3852
3853 StringRef getARCRetainAutoreleasedReturnValueMarker() const {
3854 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
3855 }
3856
3857 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; }
3858
3859 virtual bool doesReturnSlotInterfereWithArgs() const { return false; }
3860};
3861}
3862
3863ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
3864 Ty = useFirstFieldIfTransparentUnion(Ty);
3865
3866 // Handle illegal vector types here.
3867 if (isIllegalVectorType(Ty)) {
3868 uint64_t Size = getContext().getTypeSize(Ty);
3869 if (Size <= 32) {
3870 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
3871 return ABIArgInfo::getDirect(ResType);
3872 }
3873 if (Size == 64) {
3874 llvm::Type *ResType =
3875 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
3876 return ABIArgInfo::getDirect(ResType);
3877 }
3878 if (Size == 128) {
3879 llvm::Type *ResType =
3880 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
3881 return ABIArgInfo::getDirect(ResType);
3882 }
3883 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3884 }
3885
3886 if (!isAggregateTypeForABI(Ty)) {
3887 // Treat an enum type as its underlying type.
3888 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3889 Ty = EnumTy->getDecl()->getIntegerType();
3890
3891 return (Ty->isPromotableIntegerType() && isDarwinPCS()
3892 ? ABIArgInfo::getExtend()
3893 : ABIArgInfo::getDirect());
3894 }
3895
3896 // Structures with either a non-trivial destructor or a non-trivial
3897 // copy constructor are always indirect.
3898 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3899 return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA ==
3900 CGCXXABI::RAA_DirectInMemory);
3901 }
3902
3903 // Empty records are always ignored on Darwin, but actually passed in C++ mode
3904 // elsewhere for GNU compatibility.
3905 if (isEmptyRecord(getContext(), Ty, true)) {
3906 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
3907 return ABIArgInfo::getIgnore();
3908
3909 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3910 }
3911
3912 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
3913 const Type *Base = nullptr;
3914 uint64_t Members = 0;
3915 if (isHomogeneousAggregate(Ty, Base, Members)) {
3916 return ABIArgInfo::getDirect(
3917 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
3918 }
3919
3920 // Aggregates <= 16 bytes are passed directly in registers or on the stack.
3921 uint64_t Size = getContext().getTypeSize(Ty);
3922 if (Size <= 128) {
3923 unsigned Alignment = getContext().getTypeAlign(Ty);
3924 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
3925
3926 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
3927 // For aggregates with 16-byte alignment, we use i128.
3928 if (Alignment < 128 && Size == 128) {
3929 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
3930 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
3931 }
3932 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
3933 }
3934
3935 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3936}
3937
3938ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
3939 if (RetTy->isVoidType())
3940 return ABIArgInfo::getIgnore();
3941
3942 // Large vector types should be returned via memory.
3943 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3944 return ABIArgInfo::getIndirect(0);
3945
3946 if (!isAggregateTypeForABI(RetTy)) {
3947 // Treat an enum type as its underlying type.
3948 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3949 RetTy = EnumTy->getDecl()->getIntegerType();
3950
3951 return (RetTy->isPromotableIntegerType() && isDarwinPCS()
3952 ? ABIArgInfo::getExtend()
3953 : ABIArgInfo::getDirect());
3954 }
3955
3956 if (isEmptyRecord(getContext(), RetTy, true))
3957 return ABIArgInfo::getIgnore();
3958
3959 const Type *Base = nullptr;
3960 uint64_t Members = 0;
3961 if (isHomogeneousAggregate(RetTy, Base, Members))
3962 // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
3963 return ABIArgInfo::getDirect();
3964
3965 // Aggregates <= 16 bytes are returned directly in registers or on the stack.
3966 uint64_t Size = getContext().getTypeSize(RetTy);
3967 if (Size <= 128) {
3968 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
3969 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
3970 }
3971
3972 return ABIArgInfo::getIndirect(0);
3973}
3974
3975/// isIllegalVectorType - check whether the vector type is legal for AArch64.
3976bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
3977 if (const VectorType *VT = Ty->getAs<VectorType>()) {
3978 // Check whether VT is legal.
3979 unsigned NumElements = VT->getNumElements();
3980 uint64_t Size = getContext().getTypeSize(VT);
3981 // NumElements should be power of 2 between 1 and 16.
3982 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
3983 return true;
3984 return Size != 64 && (Size != 128 || NumElements == 1);
3985 }
3986 return false;
3987}
3988
3989bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
3990 // Homogeneous aggregates for AAPCS64 must have base types of a floating
3991 // point type or a short-vector type. This is the same as the 32-bit ABI,
3992 // but with the difference that any floating-point type is allowed,
3993 // including __fp16.
3994 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3995 if (BT->isFloatingPoint())
3996 return true;
3997 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
3998 unsigned VecSize = getContext().getTypeSize(VT);
3999 if (VecSize == 64 || VecSize == 128)
4000 return true;
4001 }
4002 return false;
4003}
4004
4005bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4006 uint64_t Members) const {
4007 return Members <= 4;
4008}
4009
4010llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr,
4011 QualType Ty,
4012 CodeGenFunction &CGF) const {
4013 ABIArgInfo AI = classifyArgumentType(Ty);
4014 bool IsIndirect = AI.isIndirect();
4015
4016 llvm::Type *BaseTy = CGF.ConvertType(Ty);
4017 if (IsIndirect)
4018 BaseTy = llvm::PointerType::getUnqual(BaseTy);
4019 else if (AI.getCoerceToType())
4020 BaseTy = AI.getCoerceToType();
4021
4022 unsigned NumRegs = 1;
4023 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4024 BaseTy = ArrTy->getElementType();
4025 NumRegs = ArrTy->getNumElements();
4026 }
4027 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4028
4029 // The AArch64 va_list type and handling is specified in the Procedure Call
4030 // Standard, section B.4:
4031 //
4032 // struct {
4033 // void *__stack;
4034 // void *__gr_top;
4035 // void *__vr_top;
4036 // int __gr_offs;
4037 // int __vr_offs;
4038 // };
4039
4040 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4041 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4042 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4043 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4044 auto &Ctx = CGF.getContext();
4045
4046 llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr;
4047 int reg_top_index;
4048 int RegSize = IsIndirect ? 8 : getContext().getTypeSize(Ty) / 8;
4049 if (!IsFPR) {
4050 // 3 is the field number of __gr_offs
4051 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
4052 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4053 reg_top_index = 1; // field number for __gr_top
4054 RegSize = llvm::RoundUpToAlignment(RegSize, 8);
4055 } else {
4056 // 4 is the field number of __vr_offs.
4057 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
4058 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4059 reg_top_index = 2; // field number for __vr_top
4060 RegSize = 16 * NumRegs;
4061 }
4062
4063 //=======================================
4064 // Find out where argument was passed
4065 //=======================================
4066
4067 // If reg_offs >= 0 we're already using the stack for this type of
4068 // argument. We don't want to keep updating reg_offs (in case it overflows,
4069 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4070 // whatever they get).
4071 llvm::Value *UsingStack = nullptr;
4072 UsingStack = CGF.Builder.CreateICmpSGE(
4073 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4074
4075 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4076
4077 // Otherwise, at least some kind of argument could go in these registers, the
4078 // question is whether this particular type is too big.
4079 CGF.EmitBlock(MaybeRegBlock);
4080
4081 // Integer arguments may need to correct register alignment (for example a
4082 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4083 // align __gr_offs to calculate the potential address.
4084 if (!IsFPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4085 int Align = Ctx.getTypeAlign(Ty) / 8;
4086
4087 reg_offs = CGF.Builder.CreateAdd(
4088 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4089 "align_regoffs");
4090 reg_offs = CGF.Builder.CreateAnd(
4091 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4092 "aligned_regoffs");
4093 }
4094
4095 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4096 llvm::Value *NewOffset = nullptr;
4097 NewOffset = CGF.Builder.CreateAdd(
4098 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4099 CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4100
4101 // Now we're in a position to decide whether this argument really was in
4102 // registers or not.
4103 llvm::Value *InRegs = nullptr;
4104 InRegs = CGF.Builder.CreateICmpSLE(
4105 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4106
4107 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4108
4109 //=======================================
4110 // Argument was in registers
4111 //=======================================
4112
4113 // Now we emit the code for if the argument was originally passed in
4114 // registers. First start the appropriate block:
4115 CGF.EmitBlock(InRegBlock);
4116
4117 llvm::Value *reg_top_p = nullptr, *reg_top = nullptr;
4118 reg_top_p =
4119 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
4120 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4121 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
4122 llvm::Value *RegAddr = nullptr;
4123 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4124
4125 if (IsIndirect) {
4126 // If it's been passed indirectly (actually a struct), whatever we find from
4127 // stored registers or on the stack will actually be a struct **.
4128 MemTy = llvm::PointerType::getUnqual(MemTy);
4129 }
4130
4131 const Type *Base = nullptr;
4132 uint64_t NumMembers = 0;
4133 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4134 if (IsHFA && NumMembers > 1) {
4135 // Homogeneous aggregates passed in registers will have their elements split
4136 // and stored 16-bytes apart regardless of size (they're notionally in qN,
4137 // qN+1, ...). We reload and store into a temporary local variable
4138 // contiguously.
4139 assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4140 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4141 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4142 llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
4143 int Offset = 0;
4144
4145 if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128)
4146 Offset = 16 - Ctx.getTypeSize(Base) / 8;
4147 for (unsigned i = 0; i < NumMembers; ++i) {
4148 llvm::Value *BaseOffset =
4149 llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset);
4150 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
4151 LoadAddr = CGF.Builder.CreateBitCast(
4152 LoadAddr, llvm::PointerType::getUnqual(BaseTy));
4153 llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
4154
4155 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4156 CGF.Builder.CreateStore(Elem, StoreAddr);
4157 }
4158
4159 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
4160 } else {
4161 // Otherwise the object is contiguous in memory
4162 unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
4163 if (CGF.CGM.getDataLayout().isBigEndian() &&
4164 (IsHFA || !isAggregateTypeForABI(Ty)) &&
4165 Ctx.getTypeSize(Ty) < (BeAlign * 8)) {
4166 int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8;
4167 BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
4168
4169 BaseAddr = CGF.Builder.CreateAdd(
4170 BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4171
4172 BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
4173 }
4174
4175 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
4176 }
4177
4178 CGF.EmitBranch(ContBlock);
4179
4180 //=======================================
4181 // Argument was on the stack
4182 //=======================================
4183 CGF.EmitBlock(OnStackBlock);
4184
4185 llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr;
4186 stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
4187 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4188
4189 // Again, stack arguments may need realigmnent. In this case both integer and
4190 // floating-point ones might be affected.
4191 if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4192 int Align = Ctx.getTypeAlign(Ty) / 8;
4193
4194 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4195
4196 OnStackAddr = CGF.Builder.CreateAdd(
4197 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4198 "align_stack");
4199 OnStackAddr = CGF.Builder.CreateAnd(
4200 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4201 "align_stack");
4202
4203 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4204 }
4205
4206 uint64_t StackSize;
4207 if (IsIndirect)
4208 StackSize = 8;
4209 else
4210 StackSize = Ctx.getTypeSize(Ty) / 8;
4211
4212 // All stack slots are 8 bytes
4213 StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4214
4215 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4216 llvm::Value *NewStack =
4217 CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack");
4218
4219 // Write the new value of __stack for the next call to va_arg
4220 CGF.Builder.CreateStore(NewStack, stack_p);
4221
4222 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4223 Ctx.getTypeSize(Ty) < 64) {
4224 int Offset = 8 - Ctx.getTypeSize(Ty) / 8;
4225 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4226
4227 OnStackAddr = CGF.Builder.CreateAdd(
4228 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4229
4230 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4231 }
4232
4233 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4234
4235 CGF.EmitBranch(ContBlock);
4236
4237 //=======================================
4238 // Tidy up
4239 //=======================================
4240 CGF.EmitBlock(ContBlock);
4241
4242 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4243 ResAddr->addIncoming(RegAddr, InRegBlock);
4244 ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4245
4246 if (IsIndirect)
4247 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4248
4249 return ResAddr;
4250}
4251
4252llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
4253 CodeGenFunction &CGF) const {
4254 // We do not support va_arg for aggregates or illegal vector types.
4255 // Lower VAArg here for these cases and use the LLVM va_arg instruction for
4256 // other cases.
4257 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4258 return nullptr;
4259
4260 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4261 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
4262
4263 const Type *Base = nullptr;
4264 uint64_t Members = 0;
4265 bool isHA = isHomogeneousAggregate(Ty, Base, Members);
4266
4267 bool isIndirect = false;
4268 // Arguments bigger than 16 bytes which aren't homogeneous aggregates should
4269 // be passed indirectly.
4270 if (Size > 16 && !isHA) {
4271 isIndirect = true;
4272 Size = 8;
4273 Align = 8;
4274 }
4275
4276 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
4277 llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
4278
4279 CGBuilderTy &Builder = CGF.Builder;
4280 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4281 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4282
4283 if (isEmptyRecord(getContext(), Ty, true)) {
4284 // These are ignored for parameter passing purposes.
4285 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4286 return Builder.CreateBitCast(Addr, PTy);
4287 }
4288
4289 const uint64_t MinABIAlign = 8;
4290 if (Align > MinABIAlign) {
4291 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
4292 Addr = Builder.CreateGEP(Addr, Offset);
4293 llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
4294 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1));
4295 llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask);
4296 Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align");
4297 }
4298
4299 uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign);
4300 llvm::Value *NextAddr = Builder.CreateGEP(
4301 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
4302 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4303
4304 if (isIndirect)
4305 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
4306 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4307 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4308
4309 return AddrTyped;
4310}
4311
4312//===----------------------------------------------------------------------===//
4313// ARM ABI Implementation
4314//===----------------------------------------------------------------------===//
4315
4316namespace {
4317
4318class ARMABIInfo : public ABIInfo {
4319public:
4320 enum ABIKind {
4321 APCS = 0,
4322 AAPCS = 1,
4323 AAPCS_VFP
4324 };
4325
4326private:
4327 ABIKind Kind;
4328 mutable int VFPRegs[16];
4329 const unsigned NumVFPs;
4330 const unsigned NumGPRs;
4331 mutable unsigned AllocatedGPRs;
4332 mutable unsigned AllocatedVFPs;
4333
4334public:
4335 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind),
4336 NumVFPs(16), NumGPRs(4) {
4337 setCCs();
4338 resetAllocatedRegs();
4339 }
4340
4341 bool isEABI() const {
4342 switch (getTarget().getTriple().getEnvironment()) {
4343 case llvm::Triple::Android:
4344 case llvm::Triple::EABI:
4345 case llvm::Triple::EABIHF:
4346 case llvm::Triple::GNUEABI:
4347 case llvm::Triple::GNUEABIHF:
4348 return true;
4349 default:
4350 return false;
4351 }
4352 }
4353
4354 bool isEABIHF() const {
4355 switch (getTarget().getTriple().getEnvironment()) {
4356 case llvm::Triple::EABIHF:
4357 case llvm::Triple::GNUEABIHF:
4358 return true;
4359 default:
4360 return false;
4361 }
4362 }
4363
4364 ABIKind getABIKind() const { return Kind; }
4365
4366private:
4367 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4368 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
4369 bool &IsCPRC) const;
4370 bool isIllegalVectorType(QualType Ty) const;
4371
4372 bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4373 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4374 uint64_t Members) const override;
4375
4376 void computeInfo(CGFunctionInfo &FI) const override;
4377
4378 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4379 CodeGenFunction &CGF) const override;
4380
4381 llvm::CallingConv::ID getLLVMDefaultCC() const;
4382 llvm::CallingConv::ID getABIDefaultCC() const;
4383 void setCCs();
4384
4385 void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const;
4386 void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const;
4387 void resetAllocatedRegs(void) const;
4388};
4389
4390class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
4391public:
4392 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4393 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
4394
4395 const ARMABIInfo &getABIInfo() const {
4396 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
4397 }
4398
4399 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4400 return 13;
4401 }
4402
4403 StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4404 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
4405 }
4406
4407 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4408 llvm::Value *Address) const override {
4409 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4410
4411 // 0-15 are the 16 integer registers.
4412 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
4413 return false;
4414 }
4415
4416 unsigned getSizeOfUnwindException() const override {
4417 if (getABIInfo().isEABI()) return 88;
4418 return TargetCodeGenInfo::getSizeOfUnwindException();
4419 }
4420
4421 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4422 CodeGen::CodeGenModule &CGM) const override {
4423 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4424 if (!FD)
4425 return;
4426
4427 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
4428 if (!Attr)
4429 return;
4430
4431 const char *Kind;
4432 switch (Attr->getInterrupt()) {
4433 case ARMInterruptAttr::Generic: Kind = ""; break;
4434 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break;
4435 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break;
4436 case ARMInterruptAttr::SWI: Kind = "SWI"; break;
4437 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break;
4438 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break;
4439 }
4440
4441 llvm::Function *Fn = cast<llvm::Function>(GV);
4442
4443 Fn->addFnAttr("interrupt", Kind);
4444
4445 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
4446 return;
4447
4448 // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
4449 // however this is not necessarily true on taking any interrupt. Instruct
4450 // the backend to perform a realignment as part of the function prologue.
4451 llvm::AttrBuilder B;
4452 B.addStackAlignmentAttr(8);
4453 Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
4454 llvm::AttributeSet::get(CGM.getLLVMContext(),
4455 llvm::AttributeSet::FunctionIndex,
4456 B));
4457 }
667};
668
669}
670
671/// Rewrite input constraint references after adding some output constraints.
672/// In the case where there is one output and one input and we add one output,
673/// we need to replace all operand references greater than or equal to 1:
674/// mov $0, $1
675/// mov eax, $1
676/// The result will be:
677/// mov $0, $2
678/// mov eax, $2
679static void rewriteInputConstraintReferences(unsigned FirstIn,
680 unsigned NumNewOuts,
681 std::string &AsmString) {
682 std::string Buf;
683 llvm::raw_string_ostream OS(Buf);
684 size_t Pos = 0;
685 while (Pos < AsmString.size()) {
686 size_t DollarStart = AsmString.find('$', Pos);
687 if (DollarStart == std::string::npos)
688 DollarStart = AsmString.size();
689 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
690 if (DollarEnd == std::string::npos)
691 DollarEnd = AsmString.size();
692 OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
693 Pos = DollarEnd;
694 size_t NumDollars = DollarEnd - DollarStart;
695 if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
696 // We have an operand reference.
697 size_t DigitStart = Pos;
698 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
699 if (DigitEnd == std::string::npos)
700 DigitEnd = AsmString.size();
701 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
702 unsigned OperandIndex;
703 if (!OperandStr.getAsInteger(10, OperandIndex)) {
704 if (OperandIndex >= FirstIn)
705 OperandIndex += NumNewOuts;
706 OS << OperandIndex;
707 } else {
708 OS << OperandStr;
709 }
710 Pos = DigitEnd;
711 }
712 }
713 AsmString = std::move(OS.str());
714}
715
716/// Add output constraints for EAX:EDX because they are return registers.
717void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
718 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
719 std::vector<llvm::Type *> &ResultRegTypes,
720 std::vector<llvm::Type *> &ResultTruncRegTypes,
721 std::vector<LValue> &ResultRegDests, std::string &AsmString,
722 unsigned NumOutputs) const {
723 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
724
725 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
726 // larger.
727 if (!Constraints.empty())
728 Constraints += ',';
729 if (RetWidth <= 32) {
730 Constraints += "={eax}";
731 ResultRegTypes.push_back(CGF.Int32Ty);
732 } else {
733 // Use the 'A' constraint for EAX:EDX.
734 Constraints += "=A";
735 ResultRegTypes.push_back(CGF.Int64Ty);
736 }
737
738 // Truncate EAX or EAX:EDX to an integer of the appropriate size.
739 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
740 ResultTruncRegTypes.push_back(CoerceTy);
741
742 // Coerce the integer by bitcasting the return slot pointer.
743 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(),
744 CoerceTy->getPointerTo()));
745 ResultRegDests.push_back(ReturnSlot);
746
747 rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
748}
749
750/// shouldReturnTypeInRegister - Determine if the given type should be
751/// passed in a register (for the Darwin ABI).
752bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
753 ASTContext &Context) const {
754 uint64_t Size = Context.getTypeSize(Ty);
755
756 // Type must be register sized.
757 if (!isRegisterSize(Size))
758 return false;
759
760 if (Ty->isVectorType()) {
761 // 64- and 128- bit vectors inside structures are not returned in
762 // registers.
763 if (Size == 64 || Size == 128)
764 return false;
765
766 return true;
767 }
768
769 // If this is a builtin, pointer, enum, complex type, member pointer, or
770 // member function pointer it is ok.
771 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
772 Ty->isAnyComplexType() || Ty->isEnumeralType() ||
773 Ty->isBlockPointerType() || Ty->isMemberPointerType())
774 return true;
775
776 // Arrays are treated like records.
777 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
778 return shouldReturnTypeInRegister(AT->getElementType(), Context);
779
780 // Otherwise, it must be a record type.
781 const RecordType *RT = Ty->getAs<RecordType>();
782 if (!RT) return false;
783
784 // FIXME: Traverse bases here too.
785
786 // Structure types are passed in register if all fields would be
787 // passed in a register.
788 for (const auto *FD : RT->getDecl()->fields()) {
789 // Empty fields are ignored.
790 if (isEmptyField(Context, FD, true))
791 continue;
792
793 // Check fields recursively.
794 if (!shouldReturnTypeInRegister(FD->getType(), Context))
795 return false;
796 }
797 return true;
798}
799
800ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(CCState &State) const {
801 // If the return value is indirect, then the hidden argument is consuming one
802 // integer register.
803 if (State.FreeRegs) {
804 --State.FreeRegs;
805 return ABIArgInfo::getIndirectInReg(/*Align=*/0, /*ByVal=*/false);
806 }
807 return ABIArgInfo::getIndirect(/*Align=*/0, /*ByVal=*/false);
808}
809
810ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const {
811 if (RetTy->isVoidType())
812 return ABIArgInfo::getIgnore();
813
814 const Type *Base = nullptr;
815 uint64_t NumElts = 0;
816 if (State.CC == llvm::CallingConv::X86_VectorCall &&
817 isHomogeneousAggregate(RetTy, Base, NumElts)) {
818 // The LLVM struct type for such an aggregate should lower properly.
819 return ABIArgInfo::getDirect();
820 }
821
822 if (const VectorType *VT = RetTy->getAs<VectorType>()) {
823 // On Darwin, some vectors are returned in registers.
824 if (IsDarwinVectorABI) {
825 uint64_t Size = getContext().getTypeSize(RetTy);
826
827 // 128-bit vectors are a special case; they are returned in
828 // registers and we need to make sure to pick a type the LLVM
829 // backend will like.
830 if (Size == 128)
831 return ABIArgInfo::getDirect(llvm::VectorType::get(
832 llvm::Type::getInt64Ty(getVMContext()), 2));
833
834 // Always return in register if it fits in a general purpose
835 // register, or if it is 64 bits and has a single element.
836 if ((Size == 8 || Size == 16 || Size == 32) ||
837 (Size == 64 && VT->getNumElements() == 1))
838 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
839 Size));
840
841 return getIndirectReturnResult(State);
842 }
843
844 return ABIArgInfo::getDirect();
845 }
846
847 if (isAggregateTypeForABI(RetTy)) {
848 if (const RecordType *RT = RetTy->getAs<RecordType>()) {
849 // Structures with flexible arrays are always indirect.
850 if (RT->getDecl()->hasFlexibleArrayMember())
851 return getIndirectReturnResult(State);
852 }
853
854 // If specified, structs and unions are always indirect.
855 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
856 return getIndirectReturnResult(State);
857
858 // Small structures which are register sized are generally returned
859 // in a register.
860 if (shouldReturnTypeInRegister(RetTy, getContext())) {
861 uint64_t Size = getContext().getTypeSize(RetTy);
862
863 // As a special-case, if the struct is a "single-element" struct, and
864 // the field is of type "float" or "double", return it in a
865 // floating-point register. (MSVC does not apply this special case.)
866 // We apply a similar transformation for pointer types to improve the
867 // quality of the generated IR.
868 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
869 if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
870 || SeltTy->hasPointerRepresentation())
871 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
872
873 // FIXME: We should be able to narrow this integer in cases with dead
874 // padding.
875 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
876 }
877
878 return getIndirectReturnResult(State);
879 }
880
881 // Treat an enum type as its underlying type.
882 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
883 RetTy = EnumTy->getDecl()->getIntegerType();
884
885 return (RetTy->isPromotableIntegerType() ?
886 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
887}
888
889static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
890 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
891}
892
893static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
894 const RecordType *RT = Ty->getAs<RecordType>();
895 if (!RT)
896 return 0;
897 const RecordDecl *RD = RT->getDecl();
898
899 // If this is a C++ record, check the bases first.
900 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
901 for (const auto &I : CXXRD->bases())
902 if (!isRecordWithSSEVectorType(Context, I.getType()))
903 return false;
904
905 for (const auto *i : RD->fields()) {
906 QualType FT = i->getType();
907
908 if (isSSEVectorType(Context, FT))
909 return true;
910
911 if (isRecordWithSSEVectorType(Context, FT))
912 return true;
913 }
914
915 return false;
916}
917
918unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
919 unsigned Align) const {
920 // Otherwise, if the alignment is less than or equal to the minimum ABI
921 // alignment, just use the default; the backend will handle this.
922 if (Align <= MinABIStackAlignInBytes)
923 return 0; // Use default alignment.
924
925 // On non-Darwin, the stack type alignment is always 4.
926 if (!IsDarwinVectorABI) {
927 // Set explicit alignment, since we may need to realign the top.
928 return MinABIStackAlignInBytes;
929 }
930
931 // Otherwise, if the type contains an SSE vector type, the alignment is 16.
932 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
933 isRecordWithSSEVectorType(getContext(), Ty)))
934 return 16;
935
936 return MinABIStackAlignInBytes;
937}
938
939ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
940 CCState &State) const {
941 if (!ByVal) {
942 if (State.FreeRegs) {
943 --State.FreeRegs; // Non-byval indirects just use one pointer.
944 return ABIArgInfo::getIndirectInReg(0, false);
945 }
946 return ABIArgInfo::getIndirect(0, false);
947 }
948
949 // Compute the byval alignment.
950 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
951 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
952 if (StackAlign == 0)
953 return ABIArgInfo::getIndirect(4, /*ByVal=*/true);
954
955 // If the stack alignment is less than the type alignment, realign the
956 // argument.
957 bool Realign = TypeAlign > StackAlign;
958 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true, Realign);
959}
960
961X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
962 const Type *T = isSingleElementStruct(Ty, getContext());
963 if (!T)
964 T = Ty.getTypePtr();
965
966 if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
967 BuiltinType::Kind K = BT->getKind();
968 if (K == BuiltinType::Float || K == BuiltinType::Double)
969 return Float;
970 }
971 return Integer;
972}
973
974bool X86_32ABIInfo::shouldUseInReg(QualType Ty, CCState &State,
975 bool &NeedsPadding) const {
976 NeedsPadding = false;
977 Class C = classify(Ty);
978 if (C == Float)
979 return false;
980
981 unsigned Size = getContext().getTypeSize(Ty);
982 unsigned SizeInRegs = (Size + 31) / 32;
983
984 if (SizeInRegs == 0)
985 return false;
986
987 if (SizeInRegs > State.FreeRegs) {
988 State.FreeRegs = 0;
989 return false;
990 }
991
992 State.FreeRegs -= SizeInRegs;
993
994 if (State.CC == llvm::CallingConv::X86_FastCall ||
995 State.CC == llvm::CallingConv::X86_VectorCall) {
996 if (Size > 32)
997 return false;
998
999 if (Ty->isIntegralOrEnumerationType())
1000 return true;
1001
1002 if (Ty->isPointerType())
1003 return true;
1004
1005 if (Ty->isReferenceType())
1006 return true;
1007
1008 if (State.FreeRegs)
1009 NeedsPadding = true;
1010
1011 return false;
1012 }
1013
1014 return true;
1015}
1016
1017ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1018 CCState &State) const {
1019 // FIXME: Set alignment on indirect arguments.
1020
1021 Ty = useFirstFieldIfTransparentUnion(Ty);
1022
1023 // Check with the C++ ABI first.
1024 const RecordType *RT = Ty->getAs<RecordType>();
1025 if (RT) {
1026 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1027 if (RAA == CGCXXABI::RAA_Indirect) {
1028 return getIndirectResult(Ty, false, State);
1029 } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1030 // The field index doesn't matter, we'll fix it up later.
1031 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1032 }
1033 }
1034
1035 // vectorcall adds the concept of a homogenous vector aggregate, similar
1036 // to other targets.
1037 const Type *Base = nullptr;
1038 uint64_t NumElts = 0;
1039 if (State.CC == llvm::CallingConv::X86_VectorCall &&
1040 isHomogeneousAggregate(Ty, Base, NumElts)) {
1041 if (State.FreeSSERegs >= NumElts) {
1042 State.FreeSSERegs -= NumElts;
1043 if (Ty->isBuiltinType() || Ty->isVectorType())
1044 return ABIArgInfo::getDirect();
1045 return ABIArgInfo::getExpand();
1046 }
1047 return getIndirectResult(Ty, /*ByVal=*/false, State);
1048 }
1049
1050 if (isAggregateTypeForABI(Ty)) {
1051 if (RT) {
1052 // Structs are always byval on win32, regardless of what they contain.
1053 if (IsWin32StructABI)
1054 return getIndirectResult(Ty, true, State);
1055
1056 // Structures with flexible arrays are always indirect.
1057 if (RT->getDecl()->hasFlexibleArrayMember())
1058 return getIndirectResult(Ty, true, State);
1059 }
1060
1061 // Ignore empty structs/unions.
1062 if (isEmptyRecord(getContext(), Ty, true))
1063 return ABIArgInfo::getIgnore();
1064
1065 llvm::LLVMContext &LLVMContext = getVMContext();
1066 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1067 bool NeedsPadding;
1068 if (shouldUseInReg(Ty, State, NeedsPadding)) {
1069 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
1070 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1071 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1072 return ABIArgInfo::getDirectInReg(Result);
1073 }
1074 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1075
1076 // Expand small (<= 128-bit) record types when we know that the stack layout
1077 // of those arguments will match the struct. This is important because the
1078 // LLVM backend isn't smart enough to remove byval, which inhibits many
1079 // optimizations.
1080 if (getContext().getTypeSize(Ty) <= 4*32 &&
1081 canExpandIndirectArgument(Ty, getContext()))
1082 return ABIArgInfo::getExpandWithPadding(
1083 State.CC == llvm::CallingConv::X86_FastCall ||
1084 State.CC == llvm::CallingConv::X86_VectorCall,
1085 PaddingType);
1086
1087 return getIndirectResult(Ty, true, State);
1088 }
1089
1090 if (const VectorType *VT = Ty->getAs<VectorType>()) {
1091 // On Darwin, some vectors are passed in memory, we handle this by passing
1092 // it as an i8/i16/i32/i64.
1093 if (IsDarwinVectorABI) {
1094 uint64_t Size = getContext().getTypeSize(Ty);
1095 if ((Size == 8 || Size == 16 || Size == 32) ||
1096 (Size == 64 && VT->getNumElements() == 1))
1097 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1098 Size));
1099 }
1100
1101 if (IsX86_MMXType(CGT.ConvertType(Ty)))
1102 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1103
1104 return ABIArgInfo::getDirect();
1105 }
1106
1107
1108 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1109 Ty = EnumTy->getDecl()->getIntegerType();
1110
1111 bool NeedsPadding;
1112 bool InReg = shouldUseInReg(Ty, State, NeedsPadding);
1113
1114 if (Ty->isPromotableIntegerType()) {
1115 if (InReg)
1116 return ABIArgInfo::getExtendInReg();
1117 return ABIArgInfo::getExtend();
1118 }
1119 if (InReg)
1120 return ABIArgInfo::getDirectInReg();
1121 return ABIArgInfo::getDirect();
1122}
1123
1124void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1125 CCState State(FI.getCallingConvention());
1126 if (State.CC == llvm::CallingConv::X86_FastCall)
1127 State.FreeRegs = 2;
1128 else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1129 State.FreeRegs = 2;
1130 State.FreeSSERegs = 6;
1131 } else if (FI.getHasRegParm())
1132 State.FreeRegs = FI.getRegParm();
1133 else
1134 State.FreeRegs = DefaultNumRegisterParameters;
1135
1136 if (!getCXXABI().classifyReturnType(FI)) {
1137 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1138 } else if (FI.getReturnInfo().isIndirect()) {
1139 // The C++ ABI is not aware of register usage, so we have to check if the
1140 // return value was sret and put it in a register ourselves if appropriate.
1141 if (State.FreeRegs) {
1142 --State.FreeRegs; // The sret parameter consumes a register.
1143 FI.getReturnInfo().setInReg(true);
1144 }
1145 }
1146
1147 // The chain argument effectively gives us another free register.
1148 if (FI.isChainCall())
1149 ++State.FreeRegs;
1150
1151 bool UsedInAlloca = false;
1152 for (auto &I : FI.arguments()) {
1153 I.info = classifyArgumentType(I.type, State);
1154 UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca);
1155 }
1156
1157 // If we needed to use inalloca for any argument, do a second pass and rewrite
1158 // all the memory arguments to use inalloca.
1159 if (UsedInAlloca)
1160 rewriteWithInAlloca(FI);
1161}
1162
1163void
1164X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1165 unsigned &StackOffset,
1166 ABIArgInfo &Info, QualType Type) const {
1167 assert(StackOffset % 4U == 0 && "unaligned inalloca struct");
1168 Info = ABIArgInfo::getInAlloca(FrameFields.size());
1169 FrameFields.push_back(CGT.ConvertTypeForMem(Type));
1170 StackOffset += getContext().getTypeSizeInChars(Type).getQuantity();
1171
1172 // Insert padding bytes to respect alignment. For x86_32, each argument is 4
1173 // byte aligned.
1174 if (StackOffset % 4U) {
1175 unsigned OldOffset = StackOffset;
1176 StackOffset = llvm::RoundUpToAlignment(StackOffset, 4U);
1177 unsigned NumBytes = StackOffset - OldOffset;
1178 assert(NumBytes);
1179 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1180 Ty = llvm::ArrayType::get(Ty, NumBytes);
1181 FrameFields.push_back(Ty);
1182 }
1183}
1184
1185static bool isArgInAlloca(const ABIArgInfo &Info) {
1186 // Leave ignored and inreg arguments alone.
1187 switch (Info.getKind()) {
1188 case ABIArgInfo::InAlloca:
1189 return true;
1190 case ABIArgInfo::Indirect:
1191 assert(Info.getIndirectByVal());
1192 return true;
1193 case ABIArgInfo::Ignore:
1194 return false;
1195 case ABIArgInfo::Direct:
1196 case ABIArgInfo::Extend:
1197 case ABIArgInfo::Expand:
1198 if (Info.getInReg())
1199 return false;
1200 return true;
1201 }
1202 llvm_unreachable("invalid enum");
1203}
1204
1205void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1206 assert(IsWin32StructABI && "inalloca only supported on win32");
1207
1208 // Build a packed struct type for all of the arguments in memory.
1209 SmallVector<llvm::Type *, 6> FrameFields;
1210
1211 unsigned StackOffset = 0;
1212 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1213
1214 // Put 'this' into the struct before 'sret', if necessary.
1215 bool IsThisCall =
1216 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1217 ABIArgInfo &Ret = FI.getReturnInfo();
1218 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1219 isArgInAlloca(I->info)) {
1220 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1221 ++I;
1222 }
1223
1224 // Put the sret parameter into the inalloca struct if it's in memory.
1225 if (Ret.isIndirect() && !Ret.getInReg()) {
1226 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType());
1227 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy);
1228 // On Windows, the hidden sret parameter is always returned in eax.
1229 Ret.setInAllocaSRet(IsWin32StructABI);
1230 }
1231
1232 // Skip the 'this' parameter in ecx.
1233 if (IsThisCall)
1234 ++I;
1235
1236 // Put arguments passed in memory into the struct.
1237 for (; I != E; ++I) {
1238 if (isArgInAlloca(I->info))
1239 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1240 }
1241
1242 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1243 /*isPacked=*/true));
1244}
1245
1246llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1247 CodeGenFunction &CGF) const {
1248 llvm::Type *BPP = CGF.Int8PtrPtrTy;
1249
1250 CGBuilderTy &Builder = CGF.Builder;
1251 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1252 "ap");
1253 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1254
1255 // Compute if the address needs to be aligned
1256 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1257 Align = getTypeStackAlignInBytes(Ty, Align);
1258 Align = std::max(Align, 4U);
1259 if (Align > 4) {
1260 // addr = (addr + align - 1) & -align;
1261 llvm::Value *Offset =
1262 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1263 Addr = CGF.Builder.CreateGEP(Addr, Offset);
1264 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1265 CGF.Int32Ty);
1266 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1267 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1268 Addr->getType(),
1269 "ap.cur.aligned");
1270 }
1271
1272 llvm::Type *PTy =
1273 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1274 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1275
1276 uint64_t Offset =
1277 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1278 llvm::Value *NextAddr =
1279 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1280 "ap.next");
1281 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1282
1283 return AddrTyped;
1284}
1285
1286bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1287 const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1288 assert(Triple.getArch() == llvm::Triple::x86);
1289
1290 switch (Opts.getStructReturnConvention()) {
1291 case CodeGenOptions::SRCK_Default:
1292 break;
1293 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
1294 return false;
1295 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
1296 return true;
1297 }
1298
1299 if (Triple.isOSDarwin())
1300 return true;
1301
1302 switch (Triple.getOS()) {
1303 case llvm::Triple::DragonFly:
1304 case llvm::Triple::FreeBSD:
1305 case llvm::Triple::OpenBSD:
1306 case llvm::Triple::Bitrig:
1307 case llvm::Triple::Win32:
1308 return true;
1309 default:
1310 return false;
1311 }
1312}
1313
1314void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1315 llvm::GlobalValue *GV,
1316 CodeGen::CodeGenModule &CGM) const {
1317 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1318 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1319 // Get the LLVM function.
1320 llvm::Function *Fn = cast<llvm::Function>(GV);
1321
1322 // Now add the 'alignstack' attribute with a value of 16.
1323 llvm::AttrBuilder B;
1324 B.addStackAlignmentAttr(16);
1325 Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1326 llvm::AttributeSet::get(CGM.getLLVMContext(),
1327 llvm::AttributeSet::FunctionIndex,
1328 B));
1329 }
1330 }
1331}
1332
1333bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1334 CodeGen::CodeGenFunction &CGF,
1335 llvm::Value *Address) const {
1336 CodeGen::CGBuilderTy &Builder = CGF.Builder;
1337
1338 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1339
1340 // 0-7 are the eight integer registers; the order is different
1341 // on Darwin (for EH), but the range is the same.
1342 // 8 is %eip.
1343 AssignToArrayRange(Builder, Address, Four8, 0, 8);
1344
1345 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1346 // 12-16 are st(0..4). Not sure why we stop at 4.
1347 // These have size 16, which is sizeof(long double) on
1348 // platforms with 8-byte alignment for that type.
1349 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1350 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1351
1352 } else {
1353 // 9 is %eflags, which doesn't get a size on Darwin for some
1354 // reason.
1355 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1356
1357 // 11-16 are st(0..5). Not sure why we stop at 5.
1358 // These have size 12, which is sizeof(long double) on
1359 // platforms with 4-byte alignment for that type.
1360 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1361 AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1362 }
1363
1364 return false;
1365}
1366
1367//===----------------------------------------------------------------------===//
1368// X86-64 ABI Implementation
1369//===----------------------------------------------------------------------===//
1370
1371
1372namespace {
1373/// X86_64ABIInfo - The X86_64 ABI information.
1374class X86_64ABIInfo : public ABIInfo {
1375 enum Class {
1376 Integer = 0,
1377 SSE,
1378 SSEUp,
1379 X87,
1380 X87Up,
1381 ComplexX87,
1382 NoClass,
1383 Memory
1384 };
1385
1386 /// merge - Implement the X86_64 ABI merging algorithm.
1387 ///
1388 /// Merge an accumulating classification \arg Accum with a field
1389 /// classification \arg Field.
1390 ///
1391 /// \param Accum - The accumulating classification. This should
1392 /// always be either NoClass or the result of a previous merge
1393 /// call. In addition, this should never be Memory (the caller
1394 /// should just return Memory for the aggregate).
1395 static Class merge(Class Accum, Class Field);
1396
1397 /// postMerge - Implement the X86_64 ABI post merging algorithm.
1398 ///
1399 /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1400 /// final MEMORY or SSE classes when necessary.
1401 ///
1402 /// \param AggregateSize - The size of the current aggregate in
1403 /// the classification process.
1404 ///
1405 /// \param Lo - The classification for the parts of the type
1406 /// residing in the low word of the containing object.
1407 ///
1408 /// \param Hi - The classification for the parts of the type
1409 /// residing in the higher words of the containing object.
1410 ///
1411 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1412
1413 /// classify - Determine the x86_64 register classes in which the
1414 /// given type T should be passed.
1415 ///
1416 /// \param Lo - The classification for the parts of the type
1417 /// residing in the low word of the containing object.
1418 ///
1419 /// \param Hi - The classification for the parts of the type
1420 /// residing in the high word of the containing object.
1421 ///
1422 /// \param OffsetBase - The bit offset of this type in the
1423 /// containing object. Some parameters are classified different
1424 /// depending on whether they straddle an eightbyte boundary.
1425 ///
1426 /// \param isNamedArg - Whether the argument in question is a "named"
1427 /// argument, as used in AMD64-ABI 3.5.7.
1428 ///
1429 /// If a word is unused its result will be NoClass; if a type should
1430 /// be passed in Memory then at least the classification of \arg Lo
1431 /// will be Memory.
1432 ///
1433 /// The \arg Lo class will be NoClass iff the argument is ignored.
1434 ///
1435 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1436 /// also be ComplexX87.
1437 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1438 bool isNamedArg) const;
1439
1440 llvm::Type *GetByteVectorType(QualType Ty) const;
1441 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1442 unsigned IROffset, QualType SourceTy,
1443 unsigned SourceOffset) const;
1444 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1445 unsigned IROffset, QualType SourceTy,
1446 unsigned SourceOffset) const;
1447
1448 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1449 /// such that the argument will be returned in memory.
1450 ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1451
1452 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1453 /// such that the argument will be passed in memory.
1454 ///
1455 /// \param freeIntRegs - The number of free integer registers remaining
1456 /// available.
1457 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1458
1459 ABIArgInfo classifyReturnType(QualType RetTy) const;
1460
1461 ABIArgInfo classifyArgumentType(QualType Ty,
1462 unsigned freeIntRegs,
1463 unsigned &neededInt,
1464 unsigned &neededSSE,
1465 bool isNamedArg) const;
1466
1467 bool IsIllegalVectorType(QualType Ty) const;
1468
1469 /// The 0.98 ABI revision clarified a lot of ambiguities,
1470 /// unfortunately in ways that were not always consistent with
1471 /// certain previous compilers. In particular, platforms which
1472 /// required strict binary compatibility with older versions of GCC
1473 /// may need to exempt themselves.
1474 bool honorsRevision0_98() const {
1475 return !getTarget().getTriple().isOSDarwin();
1476 }
1477
1478 bool HasAVX;
1479 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1480 // 64-bit hardware.
1481 bool Has64BitPointers;
1482
1483public:
1484 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1485 ABIInfo(CGT), HasAVX(hasavx),
1486 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1487 }
1488
1489 bool isPassedUsingAVXType(QualType type) const {
1490 unsigned neededInt, neededSSE;
1491 // The freeIntRegs argument doesn't matter here.
1492 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1493 /*isNamedArg*/true);
1494 if (info.isDirect()) {
1495 llvm::Type *ty = info.getCoerceToType();
1496 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1497 return (vectorTy->getBitWidth() > 128);
1498 }
1499 return false;
1500 }
1501
1502 void computeInfo(CGFunctionInfo &FI) const override;
1503
1504 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1505 CodeGenFunction &CGF) const override;
1506};
1507
1508/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1509class WinX86_64ABIInfo : public ABIInfo {
1510
1511 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs,
1512 bool IsReturnType) const;
1513
1514public:
1515 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1516
1517 void computeInfo(CGFunctionInfo &FI) const override;
1518
1519 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1520 CodeGenFunction &CGF) const override;
1521
1522 bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1523 // FIXME: Assumes vectorcall is in use.
1524 return isX86VectorTypeForVectorCall(getContext(), Ty);
1525 }
1526
1527 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1528 uint64_t NumMembers) const override {
1529 // FIXME: Assumes vectorcall is in use.
1530 return isX86VectorCallAggregateSmallEnough(NumMembers);
1531 }
1532};
1533
1534class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1535 bool HasAVX;
1536public:
1537 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1538 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)), HasAVX(HasAVX) {}
1539
1540 const X86_64ABIInfo &getABIInfo() const {
1541 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1542 }
1543
1544 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1545 return 7;
1546 }
1547
1548 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1549 llvm::Value *Address) const override {
1550 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1551
1552 // 0-15 are the 16 integer registers.
1553 // 16 is %rip.
1554 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1555 return false;
1556 }
1557
1558 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1559 StringRef Constraint,
1560 llvm::Type* Ty) const override {
1561 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1562 }
1563
1564 bool isNoProtoCallVariadic(const CallArgList &args,
1565 const FunctionNoProtoType *fnType) const override {
1566 // The default CC on x86-64 sets %al to the number of SSA
1567 // registers used, and GCC sets this when calling an unprototyped
1568 // function, so we override the default behavior. However, don't do
1569 // that when AVX types are involved: the ABI explicitly states it is
1570 // undefined, and it doesn't work in practice because of how the ABI
1571 // defines varargs anyway.
1572 if (fnType->getCallConv() == CC_C) {
1573 bool HasAVXType = false;
1574 for (CallArgList::const_iterator
1575 it = args.begin(), ie = args.end(); it != ie; ++it) {
1576 if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1577 HasAVXType = true;
1578 break;
1579 }
1580 }
1581
1582 if (!HasAVXType)
1583 return true;
1584 }
1585
1586 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1587 }
1588
1589 llvm::Constant *
1590 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1591 unsigned Sig = (0xeb << 0) | // jmp rel8
1592 (0x0a << 8) | // .+0x0c
1593 ('F' << 16) |
1594 ('T' << 24);
1595 return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1596 }
1597
1598 unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
1599 return HasAVX ? 32 : 16;
1600 }
1601};
1602
1603static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1604 // If the argument does not end in .lib, automatically add the suffix. This
1605 // matches the behavior of MSVC.
1606 std::string ArgStr = Lib;
1607 if (!Lib.endswith_lower(".lib"))
1608 ArgStr += ".lib";
1609 return ArgStr;
1610}
1611
1612class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1613public:
1614 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1615 bool d, bool p, bool w, unsigned RegParms)
1616 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1617
1618 void getDependentLibraryOption(llvm::StringRef Lib,
1619 llvm::SmallString<24> &Opt) const override {
1620 Opt = "/DEFAULTLIB:";
1621 Opt += qualifyWindowsLibrary(Lib);
1622 }
1623
1624 void getDetectMismatchOption(llvm::StringRef Name,
1625 llvm::StringRef Value,
1626 llvm::SmallString<32> &Opt) const override {
1627 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1628 }
1629};
1630
1631class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1632 bool HasAVX;
1633public:
1634 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1635 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)), HasAVX(HasAVX) {}
1636
1637 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1638 return 7;
1639 }
1640
1641 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1642 llvm::Value *Address) const override {
1643 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1644
1645 // 0-15 are the 16 integer registers.
1646 // 16 is %rip.
1647 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1648 return false;
1649 }
1650
1651 void getDependentLibraryOption(llvm::StringRef Lib,
1652 llvm::SmallString<24> &Opt) const override {
1653 Opt = "/DEFAULTLIB:";
1654 Opt += qualifyWindowsLibrary(Lib);
1655 }
1656
1657 void getDetectMismatchOption(llvm::StringRef Name,
1658 llvm::StringRef Value,
1659 llvm::SmallString<32> &Opt) const override {
1660 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1661 }
1662
1663 unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
1664 return HasAVX ? 32 : 16;
1665 }
1666};
1667
1668}
1669
1670void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1671 Class &Hi) const {
1672 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1673 //
1674 // (a) If one of the classes is Memory, the whole argument is passed in
1675 // memory.
1676 //
1677 // (b) If X87UP is not preceded by X87, the whole argument is passed in
1678 // memory.
1679 //
1680 // (c) If the size of the aggregate exceeds two eightbytes and the first
1681 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1682 // argument is passed in memory. NOTE: This is necessary to keep the
1683 // ABI working for processors that don't support the __m256 type.
1684 //
1685 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1686 //
1687 // Some of these are enforced by the merging logic. Others can arise
1688 // only with unions; for example:
1689 // union { _Complex double; unsigned; }
1690 //
1691 // Note that clauses (b) and (c) were added in 0.98.
1692 //
1693 if (Hi == Memory)
1694 Lo = Memory;
1695 if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1696 Lo = Memory;
1697 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1698 Lo = Memory;
1699 if (Hi == SSEUp && Lo != SSE)
1700 Hi = SSE;
1701}
1702
1703X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1704 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1705 // classified recursively so that always two fields are
1706 // considered. The resulting class is calculated according to
1707 // the classes of the fields in the eightbyte:
1708 //
1709 // (a) If both classes are equal, this is the resulting class.
1710 //
1711 // (b) If one of the classes is NO_CLASS, the resulting class is
1712 // the other class.
1713 //
1714 // (c) If one of the classes is MEMORY, the result is the MEMORY
1715 // class.
1716 //
1717 // (d) If one of the classes is INTEGER, the result is the
1718 // INTEGER.
1719 //
1720 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1721 // MEMORY is used as class.
1722 //
1723 // (f) Otherwise class SSE is used.
1724
1725 // Accum should never be memory (we should have returned) or
1726 // ComplexX87 (because this cannot be passed in a structure).
1727 assert((Accum != Memory && Accum != ComplexX87) &&
1728 "Invalid accumulated classification during merge.");
1729 if (Accum == Field || Field == NoClass)
1730 return Accum;
1731 if (Field == Memory)
1732 return Memory;
1733 if (Accum == NoClass)
1734 return Field;
1735 if (Accum == Integer || Field == Integer)
1736 return Integer;
1737 if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1738 Accum == X87 || Accum == X87Up)
1739 return Memory;
1740 return SSE;
1741}
1742
1743void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1744 Class &Lo, Class &Hi, bool isNamedArg) const {
1745 // FIXME: This code can be simplified by introducing a simple value class for
1746 // Class pairs with appropriate constructor methods for the various
1747 // situations.
1748
1749 // FIXME: Some of the split computations are wrong; unaligned vectors
1750 // shouldn't be passed in registers for example, so there is no chance they
1751 // can straddle an eightbyte. Verify & simplify.
1752
1753 Lo = Hi = NoClass;
1754
1755 Class &Current = OffsetBase < 64 ? Lo : Hi;
1756 Current = Memory;
1757
1758 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1759 BuiltinType::Kind k = BT->getKind();
1760
1761 if (k == BuiltinType::Void) {
1762 Current = NoClass;
1763 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1764 Lo = Integer;
1765 Hi = Integer;
1766 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1767 Current = Integer;
1768 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1769 (k == BuiltinType::LongDouble &&
1770 getTarget().getTriple().isOSNaCl())) {
1771 Current = SSE;
1772 } else if (k == BuiltinType::LongDouble) {
1773 Lo = X87;
1774 Hi = X87Up;
1775 }
1776 // FIXME: _Decimal32 and _Decimal64 are SSE.
1777 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1778 return;
1779 }
1780
1781 if (const EnumType *ET = Ty->getAs<EnumType>()) {
1782 // Classify the underlying integer type.
1783 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1784 return;
1785 }
1786
1787 if (Ty->hasPointerRepresentation()) {
1788 Current = Integer;
1789 return;
1790 }
1791
1792 if (Ty->isMemberPointerType()) {
1793 if (Ty->isMemberFunctionPointerType()) {
1794 if (Has64BitPointers) {
1795 // If Has64BitPointers, this is an {i64, i64}, so classify both
1796 // Lo and Hi now.
1797 Lo = Hi = Integer;
1798 } else {
1799 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
1800 // straddles an eightbyte boundary, Hi should be classified as well.
1801 uint64_t EB_FuncPtr = (OffsetBase) / 64;
1802 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
1803 if (EB_FuncPtr != EB_ThisAdj) {
1804 Lo = Hi = Integer;
1805 } else {
1806 Current = Integer;
1807 }
1808 }
1809 } else {
1810 Current = Integer;
1811 }
1812 return;
1813 }
1814
1815 if (const VectorType *VT = Ty->getAs<VectorType>()) {
1816 uint64_t Size = getContext().getTypeSize(VT);
1817 if (Size == 32) {
1818 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1819 // float> as integer.
1820 Current = Integer;
1821
1822 // If this type crosses an eightbyte boundary, it should be
1823 // split.
1824 uint64_t EB_Real = (OffsetBase) / 64;
1825 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1826 if (EB_Real != EB_Imag)
1827 Hi = Lo;
1828 } else if (Size == 64) {
1829 // gcc passes <1 x double> in memory. :(
1830 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1831 return;
1832
1833 // gcc passes <1 x long long> as INTEGER.
1834 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1835 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1836 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1837 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1838 Current = Integer;
1839 else
1840 Current = SSE;
1841
1842 // If this type crosses an eightbyte boundary, it should be
1843 // split.
1844 if (OffsetBase && OffsetBase != 64)
1845 Hi = Lo;
1846 } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1847 // Arguments of 256-bits are split into four eightbyte chunks. The
1848 // least significant one belongs to class SSE and all the others to class
1849 // SSEUP. The original Lo and Hi design considers that types can't be
1850 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1851 // This design isn't correct for 256-bits, but since there're no cases
1852 // where the upper parts would need to be inspected, avoid adding
1853 // complexity and just consider Hi to match the 64-256 part.
1854 //
1855 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1856 // registers if they are "named", i.e. not part of the "..." of a
1857 // variadic function.
1858 Lo = SSE;
1859 Hi = SSEUp;
1860 }
1861 return;
1862 }
1863
1864 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1865 QualType ET = getContext().getCanonicalType(CT->getElementType());
1866
1867 uint64_t Size = getContext().getTypeSize(Ty);
1868 if (ET->isIntegralOrEnumerationType()) {
1869 if (Size <= 64)
1870 Current = Integer;
1871 else if (Size <= 128)
1872 Lo = Hi = Integer;
1873 } else if (ET == getContext().FloatTy)
1874 Current = SSE;
1875 else if (ET == getContext().DoubleTy ||
1876 (ET == getContext().LongDoubleTy &&
1877 getTarget().getTriple().isOSNaCl()))
1878 Lo = Hi = SSE;
1879 else if (ET == getContext().LongDoubleTy)
1880 Current = ComplexX87;
1881
1882 // If this complex type crosses an eightbyte boundary then it
1883 // should be split.
1884 uint64_t EB_Real = (OffsetBase) / 64;
1885 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1886 if (Hi == NoClass && EB_Real != EB_Imag)
1887 Hi = Lo;
1888
1889 return;
1890 }
1891
1892 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1893 // Arrays are treated like structures.
1894
1895 uint64_t Size = getContext().getTypeSize(Ty);
1896
1897 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1898 // than four eightbytes, ..., it has class MEMORY.
1899 if (Size > 256)
1900 return;
1901
1902 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1903 // fields, it has class MEMORY.
1904 //
1905 // Only need to check alignment of array base.
1906 if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1907 return;
1908
1909 // Otherwise implement simplified merge. We could be smarter about
1910 // this, but it isn't worth it and would be harder to verify.
1911 Current = NoClass;
1912 uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1913 uint64_t ArraySize = AT->getSize().getZExtValue();
1914
1915 // The only case a 256-bit wide vector could be used is when the array
1916 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1917 // to work for sizes wider than 128, early check and fallback to memory.
1918 if (Size > 128 && EltSize != 256)
1919 return;
1920
1921 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1922 Class FieldLo, FieldHi;
1923 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1924 Lo = merge(Lo, FieldLo);
1925 Hi = merge(Hi, FieldHi);
1926 if (Lo == Memory || Hi == Memory)
1927 break;
1928 }
1929
1930 postMerge(Size, Lo, Hi);
1931 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1932 return;
1933 }
1934
1935 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1936 uint64_t Size = getContext().getTypeSize(Ty);
1937
1938 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1939 // than four eightbytes, ..., it has class MEMORY.
1940 if (Size > 256)
1941 return;
1942
1943 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1944 // copy constructor or a non-trivial destructor, it is passed by invisible
1945 // reference.
1946 if (getRecordArgABI(RT, getCXXABI()))
1947 return;
1948
1949 const RecordDecl *RD = RT->getDecl();
1950
1951 // Assume variable sized types are passed in memory.
1952 if (RD->hasFlexibleArrayMember())
1953 return;
1954
1955 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1956
1957 // Reset Lo class, this will be recomputed.
1958 Current = NoClass;
1959
1960 // If this is a C++ record, classify the bases first.
1961 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1962 for (const auto &I : CXXRD->bases()) {
1963 assert(!I.isVirtual() && !I.getType()->isDependentType() &&
1964 "Unexpected base class!");
1965 const CXXRecordDecl *Base =
1966 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
1967
1968 // Classify this field.
1969 //
1970 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1971 // single eightbyte, each is classified separately. Each eightbyte gets
1972 // initialized to class NO_CLASS.
1973 Class FieldLo, FieldHi;
1974 uint64_t Offset =
1975 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1976 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
1977 Lo = merge(Lo, FieldLo);
1978 Hi = merge(Hi, FieldHi);
1979 if (Lo == Memory || Hi == Memory)
1980 break;
1981 }
1982 }
1983
1984 // Classify the fields one at a time, merging the results.
1985 unsigned idx = 0;
1986 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1987 i != e; ++i, ++idx) {
1988 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1989 bool BitField = i->isBitField();
1990
1991 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1992 // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1993 //
1994 // The only case a 256-bit wide vector could be used is when the struct
1995 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1996 // to work for sizes wider than 128, early check and fallback to memory.
1997 //
1998 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1999 Lo = Memory;
2000 return;
2001 }
2002 // Note, skip this test for bit-fields, see below.
2003 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2004 Lo = Memory;
2005 return;
2006 }
2007
2008 // Classify this field.
2009 //
2010 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2011 // exceeds a single eightbyte, each is classified
2012 // separately. Each eightbyte gets initialized to class
2013 // NO_CLASS.
2014 Class FieldLo, FieldHi;
2015
2016 // Bit-fields require special handling, they do not force the
2017 // structure to be passed in memory even if unaligned, and
2018 // therefore they can straddle an eightbyte.
2019 if (BitField) {
2020 // Ignore padding bit-fields.
2021 if (i->isUnnamedBitfield())
2022 continue;
2023
2024 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2025 uint64_t Size = i->getBitWidthValue(getContext());
2026
2027 uint64_t EB_Lo = Offset / 64;
2028 uint64_t EB_Hi = (Offset + Size - 1) / 64;
2029
2030 if (EB_Lo) {
2031 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2032 FieldLo = NoClass;
2033 FieldHi = Integer;
2034 } else {
2035 FieldLo = Integer;
2036 FieldHi = EB_Hi ? Integer : NoClass;
2037 }
2038 } else
2039 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2040 Lo = merge(Lo, FieldLo);
2041 Hi = merge(Hi, FieldHi);
2042 if (Lo == Memory || Hi == Memory)
2043 break;
2044 }
2045
2046 postMerge(Size, Lo, Hi);
2047 }
2048}
2049
2050ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2051 // If this is a scalar LLVM value then assume LLVM will pass it in the right
2052 // place naturally.
2053 if (!isAggregateTypeForABI(Ty)) {
2054 // Treat an enum type as its underlying type.
2055 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2056 Ty = EnumTy->getDecl()->getIntegerType();
2057
2058 return (Ty->isPromotableIntegerType() ?
2059 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2060 }
2061
2062 return ABIArgInfo::getIndirect(0);
2063}
2064
2065bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2066 if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2067 uint64_t Size = getContext().getTypeSize(VecTy);
2068 unsigned LargestVector = HasAVX ? 256 : 128;
2069 if (Size <= 64 || Size > LargestVector)
2070 return true;
2071 }
2072
2073 return false;
2074}
2075
2076ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2077 unsigned freeIntRegs) const {
2078 // If this is a scalar LLVM value then assume LLVM will pass it in the right
2079 // place naturally.
2080 //
2081 // This assumption is optimistic, as there could be free registers available
2082 // when we need to pass this argument in memory, and LLVM could try to pass
2083 // the argument in the free register. This does not seem to happen currently,
2084 // but this code would be much safer if we could mark the argument with
2085 // 'onstack'. See PR12193.
2086 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
2087 // Treat an enum type as its underlying type.
2088 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2089 Ty = EnumTy->getDecl()->getIntegerType();
2090
2091 return (Ty->isPromotableIntegerType() ?
2092 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2093 }
2094
2095 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2096 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2097
2098 // Compute the byval alignment. We specify the alignment of the byval in all
2099 // cases so that the mid-level optimizer knows the alignment of the byval.
2100 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2101
2102 // Attempt to avoid passing indirect results using byval when possible. This
2103 // is important for good codegen.
2104 //
2105 // We do this by coercing the value into a scalar type which the backend can
2106 // handle naturally (i.e., without using byval).
2107 //
2108 // For simplicity, we currently only do this when we have exhausted all of the
2109 // free integer registers. Doing this when there are free integer registers
2110 // would require more care, as we would have to ensure that the coerced value
2111 // did not claim the unused register. That would require either reording the
2112 // arguments to the function (so that any subsequent inreg values came first),
2113 // or only doing this optimization when there were no following arguments that
2114 // might be inreg.
2115 //
2116 // We currently expect it to be rare (particularly in well written code) for
2117 // arguments to be passed on the stack when there are still free integer
2118 // registers available (this would typically imply large structs being passed
2119 // by value), so this seems like a fair tradeoff for now.
2120 //
2121 // We can revisit this if the backend grows support for 'onstack' parameter
2122 // attributes. See PR12193.
2123 if (freeIntRegs == 0) {
2124 uint64_t Size = getContext().getTypeSize(Ty);
2125
2126 // If this type fits in an eightbyte, coerce it into the matching integral
2127 // type, which will end up on the stack (with alignment 8).
2128 if (Align == 8 && Size <= 64)
2129 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2130 Size));
2131 }
2132
2133 return ABIArgInfo::getIndirect(Align);
2134}
2135
2136/// The ABI specifies that a value should be passed in a full vector XMM/YMM
2137/// register. Pick an LLVM IR type that will be passed as a vector register.
2138llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2139 // Wrapper structs/arrays that only contain vectors are passed just like
2140 // vectors; strip them off if present.
2141 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2142 Ty = QualType(InnerTy, 0);
2143
2144 llvm::Type *IRType = CGT.ConvertType(Ty);
2145
2146 // If the preferred type is a 16-byte vector, prefer to pass it.
2147 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
2148 llvm::Type *EltTy = VT->getElementType();
2149 unsigned BitWidth = VT->getBitWidth();
2150 if ((BitWidth >= 128 && BitWidth <= 256) &&
2151 (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
2152 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
2153 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
2154 EltTy->isIntegerTy(128)))
2155 return VT;
2156 }
2157
2158 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
2159}
2160
2161/// BitsContainNoUserData - Return true if the specified [start,end) bit range
2162/// is known to either be off the end of the specified type or being in
2163/// alignment padding. The user type specified is known to be at most 128 bits
2164/// in size, and have passed through X86_64ABIInfo::classify with a successful
2165/// classification that put one of the two halves in the INTEGER class.
2166///
2167/// It is conservatively correct to return false.
2168static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2169 unsigned EndBit, ASTContext &Context) {
2170 // If the bytes being queried are off the end of the type, there is no user
2171 // data hiding here. This handles analysis of builtins, vectors and other
2172 // types that don't contain interesting padding.
2173 unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2174 if (TySize <= StartBit)
2175 return true;
2176
2177 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2178 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2179 unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2180
2181 // Check each element to see if the element overlaps with the queried range.
2182 for (unsigned i = 0; i != NumElts; ++i) {
2183 // If the element is after the span we care about, then we're done..
2184 unsigned EltOffset = i*EltSize;
2185 if (EltOffset >= EndBit) break;
2186
2187 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2188 if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2189 EndBit-EltOffset, Context))
2190 return false;
2191 }
2192 // If it overlaps no elements, then it is safe to process as padding.
2193 return true;
2194 }
2195
2196 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2197 const RecordDecl *RD = RT->getDecl();
2198 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2199
2200 // If this is a C++ record, check the bases first.
2201 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2202 for (const auto &I : CXXRD->bases()) {
2203 assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2204 "Unexpected base class!");
2205 const CXXRecordDecl *Base =
2206 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2207
2208 // If the base is after the span we care about, ignore it.
2209 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2210 if (BaseOffset >= EndBit) continue;
2211
2212 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2213 if (!BitsContainNoUserData(I.getType(), BaseStart,
2214 EndBit-BaseOffset, Context))
2215 return false;
2216 }
2217 }
2218
2219 // Verify that no field has data that overlaps the region of interest. Yes
2220 // this could be sped up a lot by being smarter about queried fields,
2221 // however we're only looking at structs up to 16 bytes, so we don't care
2222 // much.
2223 unsigned idx = 0;
2224 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2225 i != e; ++i, ++idx) {
2226 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2227
2228 // If we found a field after the region we care about, then we're done.
2229 if (FieldOffset >= EndBit) break;
2230
2231 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2232 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2233 Context))
2234 return false;
2235 }
2236
2237 // If nothing in this record overlapped the area of interest, then we're
2238 // clean.
2239 return true;
2240 }
2241
2242 return false;
2243}
2244
2245/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
2246/// float member at the specified offset. For example, {int,{float}} has a
2247/// float at offset 4. It is conservatively correct for this routine to return
2248/// false.
2249static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
2250 const llvm::DataLayout &TD) {
2251 // Base case if we find a float.
2252 if (IROffset == 0 && IRType->isFloatTy())
2253 return true;
2254
2255 // If this is a struct, recurse into the field at the specified offset.
2256 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2257 const llvm::StructLayout *SL = TD.getStructLayout(STy);
2258 unsigned Elt = SL->getElementContainingOffset(IROffset);
2259 IROffset -= SL->getElementOffset(Elt);
2260 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
2261 }
2262
2263 // If this is an array, recurse into the field at the specified offset.
2264 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2265 llvm::Type *EltTy = ATy->getElementType();
2266 unsigned EltSize = TD.getTypeAllocSize(EltTy);
2267 IROffset -= IROffset/EltSize*EltSize;
2268 return ContainsFloatAtOffset(EltTy, IROffset, TD);
2269 }
2270
2271 return false;
2272}
2273
2274
2275/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2276/// low 8 bytes of an XMM register, corresponding to the SSE class.
2277llvm::Type *X86_64ABIInfo::
2278GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2279 QualType SourceTy, unsigned SourceOffset) const {
2280 // The only three choices we have are either double, <2 x float>, or float. We
2281 // pass as float if the last 4 bytes is just padding. This happens for
2282 // structs that contain 3 floats.
2283 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
2284 SourceOffset*8+64, getContext()))
2285 return llvm::Type::getFloatTy(getVMContext());
2286
2287 // We want to pass as <2 x float> if the LLVM IR type contains a float at
2288 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
2289 // case.
2290 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
2291 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
2292 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
2293
2294 return llvm::Type::getDoubleTy(getVMContext());
2295}
2296
2297
2298/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2299/// an 8-byte GPR. This means that we either have a scalar or we are talking
2300/// about the high or low part of an up-to-16-byte struct. This routine picks
2301/// the best LLVM IR type to represent this, which may be i64 or may be anything
2302/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2303/// etc).
2304///
2305/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2306/// the source type. IROffset is an offset in bytes into the LLVM IR type that
2307/// the 8-byte value references. PrefType may be null.
2308///
2309/// SourceTy is the source-level type for the entire argument. SourceOffset is
2310/// an offset into this that we're processing (which is always either 0 or 8).
2311///
2312llvm::Type *X86_64ABIInfo::
2313GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2314 QualType SourceTy, unsigned SourceOffset) const {
2315 // If we're dealing with an un-offset LLVM IR type, then it means that we're
2316 // returning an 8-byte unit starting with it. See if we can safely use it.
2317 if (IROffset == 0) {
2318 // Pointers and int64's always fill the 8-byte unit.
2319 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2320 IRType->isIntegerTy(64))
2321 return IRType;
2322
2323 // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2324 // goodness in the source type is just tail padding. This is allowed to
2325 // kick in for struct {double,int} on the int, but not on
2326 // struct{double,int,int} because we wouldn't return the second int. We
2327 // have to do this analysis on the source type because we can't depend on
2328 // unions being lowered a specific way etc.
2329 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2330 IRType->isIntegerTy(32) ||
2331 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2332 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2333 cast<llvm::IntegerType>(IRType)->getBitWidth();
2334
2335 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2336 SourceOffset*8+64, getContext()))
2337 return IRType;
2338 }
2339 }
2340
2341 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2342 // If this is a struct, recurse into the field at the specified offset.
2343 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2344 if (IROffset < SL->getSizeInBytes()) {
2345 unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2346 IROffset -= SL->getElementOffset(FieldIdx);
2347
2348 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2349 SourceTy, SourceOffset);
2350 }
2351 }
2352
2353 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2354 llvm::Type *EltTy = ATy->getElementType();
2355 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2356 unsigned EltOffset = IROffset/EltSize*EltSize;
2357 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2358 SourceOffset);
2359 }
2360
2361 // Okay, we don't have any better idea of what to pass, so we pass this in an
2362 // integer register that isn't too big to fit the rest of the struct.
2363 unsigned TySizeInBytes =
2364 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2365
2366 assert(TySizeInBytes != SourceOffset && "Empty field?");
2367
2368 // It is always safe to classify this as an integer type up to i64 that
2369 // isn't larger than the structure.
2370 return llvm::IntegerType::get(getVMContext(),
2371 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2372}
2373
2374
2375/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2376/// be used as elements of a two register pair to pass or return, return a
2377/// first class aggregate to represent them. For example, if the low part of
2378/// a by-value argument should be passed as i32* and the high part as float,
2379/// return {i32*, float}.
2380static llvm::Type *
2381GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2382 const llvm::DataLayout &TD) {
2383 // In order to correctly satisfy the ABI, we need to the high part to start
2384 // at offset 8. If the high and low parts we inferred are both 4-byte types
2385 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2386 // the second element at offset 8. Check for this:
2387 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2388 unsigned HiAlign = TD.getABITypeAlignment(Hi);
2389 unsigned HiStart = llvm::RoundUpToAlignment(LoSize, HiAlign);
2390 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2391
2392 // To handle this, we have to increase the size of the low part so that the
2393 // second element will start at an 8 byte offset. We can't increase the size
2394 // of the second element because it might make us access off the end of the
2395 // struct.
2396 if (HiStart != 8) {
2397 // There are only two sorts of types the ABI generation code can produce for
2398 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2399 // Promote these to a larger type.
2400 if (Lo->isFloatTy())
2401 Lo = llvm::Type::getDoubleTy(Lo->getContext());
2402 else {
2403 assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2404 Lo = llvm::Type::getInt64Ty(Lo->getContext());
2405 }
2406 }
2407
2408 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, nullptr);
2409
2410
2411 // Verify that the second element is at an 8-byte offset.
2412 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2413 "Invalid x86-64 argument pair!");
2414 return Result;
2415}
2416
2417ABIArgInfo X86_64ABIInfo::
2418classifyReturnType(QualType RetTy) const {
2419 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2420 // classification algorithm.
2421 X86_64ABIInfo::Class Lo, Hi;
2422 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2423
2424 // Check some invariants.
2425 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2426 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2427
2428 llvm::Type *ResType = nullptr;
2429 switch (Lo) {
2430 case NoClass:
2431 if (Hi == NoClass)
2432 return ABIArgInfo::getIgnore();
2433 // If the low part is just padding, it takes no register, leave ResType
2434 // null.
2435 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2436 "Unknown missing lo part");
2437 break;
2438
2439 case SSEUp:
2440 case X87Up:
2441 llvm_unreachable("Invalid classification for lo word.");
2442
2443 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2444 // hidden argument.
2445 case Memory:
2446 return getIndirectReturnResult(RetTy);
2447
2448 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2449 // available register of the sequence %rax, %rdx is used.
2450 case Integer:
2451 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2452
2453 // If we have a sign or zero extended integer, make sure to return Extend
2454 // so that the parameter gets the right LLVM IR attributes.
2455 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2456 // Treat an enum type as its underlying type.
2457 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2458 RetTy = EnumTy->getDecl()->getIntegerType();
2459
2460 if (RetTy->isIntegralOrEnumerationType() &&
2461 RetTy->isPromotableIntegerType())
2462 return ABIArgInfo::getExtend();
2463 }
2464 break;
2465
2466 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2467 // available SSE register of the sequence %xmm0, %xmm1 is used.
2468 case SSE:
2469 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2470 break;
2471
2472 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2473 // returned on the X87 stack in %st0 as 80-bit x87 number.
2474 case X87:
2475 ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2476 break;
2477
2478 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2479 // part of the value is returned in %st0 and the imaginary part in
2480 // %st1.
2481 case ComplexX87:
2482 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2483 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2484 llvm::Type::getX86_FP80Ty(getVMContext()),
2485 nullptr);
2486 break;
2487 }
2488
2489 llvm::Type *HighPart = nullptr;
2490 switch (Hi) {
2491 // Memory was handled previously and X87 should
2492 // never occur as a hi class.
2493 case Memory:
2494 case X87:
2495 llvm_unreachable("Invalid classification for hi word.");
2496
2497 case ComplexX87: // Previously handled.
2498 case NoClass:
2499 break;
2500
2501 case Integer:
2502 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2503 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2504 return ABIArgInfo::getDirect(HighPart, 8);
2505 break;
2506 case SSE:
2507 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2508 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2509 return ABIArgInfo::getDirect(HighPart, 8);
2510 break;
2511
2512 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2513 // is passed in the next available eightbyte chunk if the last used
2514 // vector register.
2515 //
2516 // SSEUP should always be preceded by SSE, just widen.
2517 case SSEUp:
2518 assert(Lo == SSE && "Unexpected SSEUp classification.");
2519 ResType = GetByteVectorType(RetTy);
2520 break;
2521
2522 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2523 // returned together with the previous X87 value in %st0.
2524 case X87Up:
2525 // If X87Up is preceded by X87, we don't need to do
2526 // anything. However, in some cases with unions it may not be
2527 // preceded by X87. In such situations we follow gcc and pass the
2528 // extra bits in an SSE reg.
2529 if (Lo != X87) {
2530 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2531 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2532 return ABIArgInfo::getDirect(HighPart, 8);
2533 }
2534 break;
2535 }
2536
2537 // If a high part was specified, merge it together with the low part. It is
2538 // known to pass in the high eightbyte of the result. We do this by forming a
2539 // first class struct aggregate with the high and low part: {low, high}
2540 if (HighPart)
2541 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2542
2543 return ABIArgInfo::getDirect(ResType);
2544}
2545
2546ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2547 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2548 bool isNamedArg)
2549 const
2550{
2551 Ty = useFirstFieldIfTransparentUnion(Ty);
2552
2553 X86_64ABIInfo::Class Lo, Hi;
2554 classify(Ty, 0, Lo, Hi, isNamedArg);
2555
2556 // Check some invariants.
2557 // FIXME: Enforce these by construction.
2558 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2559 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2560
2561 neededInt = 0;
2562 neededSSE = 0;
2563 llvm::Type *ResType = nullptr;
2564 switch (Lo) {
2565 case NoClass:
2566 if (Hi == NoClass)
2567 return ABIArgInfo::getIgnore();
2568 // If the low part is just padding, it takes no register, leave ResType
2569 // null.
2570 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2571 "Unknown missing lo part");
2572 break;
2573
2574 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2575 // on the stack.
2576 case Memory:
2577
2578 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2579 // COMPLEX_X87, it is passed in memory.
2580 case X87:
2581 case ComplexX87:
2582 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2583 ++neededInt;
2584 return getIndirectResult(Ty, freeIntRegs);
2585
2586 case SSEUp:
2587 case X87Up:
2588 llvm_unreachable("Invalid classification for lo word.");
2589
2590 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2591 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2592 // and %r9 is used.
2593 case Integer:
2594 ++neededInt;
2595
2596 // Pick an 8-byte type based on the preferred type.
2597 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2598
2599 // If we have a sign or zero extended integer, make sure to return Extend
2600 // so that the parameter gets the right LLVM IR attributes.
2601 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2602 // Treat an enum type as its underlying type.
2603 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2604 Ty = EnumTy->getDecl()->getIntegerType();
2605
2606 if (Ty->isIntegralOrEnumerationType() &&
2607 Ty->isPromotableIntegerType())
2608 return ABIArgInfo::getExtend();
2609 }
2610
2611 break;
2612
2613 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2614 // available SSE register is used, the registers are taken in the
2615 // order from %xmm0 to %xmm7.
2616 case SSE: {
2617 llvm::Type *IRType = CGT.ConvertType(Ty);
2618 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2619 ++neededSSE;
2620 break;
2621 }
2622 }
2623
2624 llvm::Type *HighPart = nullptr;
2625 switch (Hi) {
2626 // Memory was handled previously, ComplexX87 and X87 should
2627 // never occur as hi classes, and X87Up must be preceded by X87,
2628 // which is passed in memory.
2629 case Memory:
2630 case X87:
2631 case ComplexX87:
2632 llvm_unreachable("Invalid classification for hi word.");
2633
2634 case NoClass: break;
2635
2636 case Integer:
2637 ++neededInt;
2638 // Pick an 8-byte type based on the preferred type.
2639 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2640
2641 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2642 return ABIArgInfo::getDirect(HighPart, 8);
2643 break;
2644
2645 // X87Up generally doesn't occur here (long double is passed in
2646 // memory), except in situations involving unions.
2647 case X87Up:
2648 case SSE:
2649 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2650
2651 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2652 return ABIArgInfo::getDirect(HighPart, 8);
2653
2654 ++neededSSE;
2655 break;
2656
2657 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2658 // eightbyte is passed in the upper half of the last used SSE
2659 // register. This only happens when 128-bit vectors are passed.
2660 case SSEUp:
2661 assert(Lo == SSE && "Unexpected SSEUp classification");
2662 ResType = GetByteVectorType(Ty);
2663 break;
2664 }
2665
2666 // If a high part was specified, merge it together with the low part. It is
2667 // known to pass in the high eightbyte of the result. We do this by forming a
2668 // first class struct aggregate with the high and low part: {low, high}
2669 if (HighPart)
2670 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2671
2672 return ABIArgInfo::getDirect(ResType);
2673}
2674
2675void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2676
2677 if (!getCXXABI().classifyReturnType(FI))
2678 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2679
2680 // Keep track of the number of assigned registers.
2681 unsigned freeIntRegs = 6, freeSSERegs = 8;
2682
2683 // If the return value is indirect, then the hidden argument is consuming one
2684 // integer register.
2685 if (FI.getReturnInfo().isIndirect())
2686 --freeIntRegs;
2687
2688 // The chain argument effectively gives us another free register.
2689 if (FI.isChainCall())
2690 ++freeIntRegs;
2691
2692 unsigned NumRequiredArgs = FI.getNumRequiredArgs();
2693 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2694 // get assigned (in left-to-right order) for passing as follows...
2695 unsigned ArgNo = 0;
2696 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2697 it != ie; ++it, ++ArgNo) {
2698 bool IsNamedArg = ArgNo < NumRequiredArgs;
2699
2700 unsigned neededInt, neededSSE;
2701 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2702 neededSSE, IsNamedArg);
2703
2704 // AMD64-ABI 3.2.3p3: If there are no registers available for any
2705 // eightbyte of an argument, the whole argument is passed on the
2706 // stack. If registers have already been assigned for some
2707 // eightbytes of such an argument, the assignments get reverted.
2708 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2709 freeIntRegs -= neededInt;
2710 freeSSERegs -= neededSSE;
2711 } else {
2712 it->info = getIndirectResult(it->type, freeIntRegs);
2713 }
2714 }
2715}
2716
2717static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2718 QualType Ty,
2719 CodeGenFunction &CGF) {
2720 llvm::Value *overflow_arg_area_p =
2721 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2722 llvm::Value *overflow_arg_area =
2723 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2724
2725 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2726 // byte boundary if alignment needed by type exceeds 8 byte boundary.
2727 // It isn't stated explicitly in the standard, but in practice we use
2728 // alignment greater than 16 where necessary.
2729 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2730 if (Align > 8) {
2731 // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2732 llvm::Value *Offset =
2733 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2734 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2735 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2736 CGF.Int64Ty);
2737 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2738 overflow_arg_area =
2739 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2740 overflow_arg_area->getType(),
2741 "overflow_arg_area.align");
2742 }
2743
2744 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2745 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2746 llvm::Value *Res =
2747 CGF.Builder.CreateBitCast(overflow_arg_area,
2748 llvm::PointerType::getUnqual(LTy));
2749
2750 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2751 // l->overflow_arg_area + sizeof(type).
2752 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2753 // an 8 byte boundary.
2754
2755 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2756 llvm::Value *Offset =
2757 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
2758 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2759 "overflow_arg_area.next");
2760 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2761
2762 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2763 return Res;
2764}
2765
2766llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2767 CodeGenFunction &CGF) const {
2768 // Assume that va_list type is correct; should be pointer to LLVM type:
2769 // struct {
2770 // i32 gp_offset;
2771 // i32 fp_offset;
2772 // i8* overflow_arg_area;
2773 // i8* reg_save_area;
2774 // };
2775 unsigned neededInt, neededSSE;
2776
2777 Ty = CGF.getContext().getCanonicalType(Ty);
2778 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2779 /*isNamedArg*/false);
2780
2781 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2782 // in the registers. If not go to step 7.
2783 if (!neededInt && !neededSSE)
2784 return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2785
2786 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2787 // general purpose registers needed to pass type and num_fp to hold
2788 // the number of floating point registers needed.
2789
2790 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2791 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2792 // l->fp_offset > 304 - num_fp * 16 go to step 7.
2793 //
2794 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2795 // register save space).
2796
2797 llvm::Value *InRegs = nullptr;
2798 llvm::Value *gp_offset_p = nullptr, *gp_offset = nullptr;
2799 llvm::Value *fp_offset_p = nullptr, *fp_offset = nullptr;
2800 if (neededInt) {
2801 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2802 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2803 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2804 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2805 }
2806
2807 if (neededSSE) {
2808 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2809 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2810 llvm::Value *FitsInFP =
2811 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2812 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2813 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2814 }
2815
2816 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2817 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2818 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2819 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2820
2821 // Emit code to load the value if it was passed in registers.
2822
2823 CGF.EmitBlock(InRegBlock);
2824
2825 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2826 // an offset of l->gp_offset and/or l->fp_offset. This may require
2827 // copying to a temporary location in case the parameter is passed
2828 // in different register classes or requires an alignment greater
2829 // than 8 for general purpose registers and 16 for XMM registers.
2830 //
2831 // FIXME: This really results in shameful code when we end up needing to
2832 // collect arguments from different places; often what should result in a
2833 // simple assembling of a structure from scattered addresses has many more
2834 // loads than necessary. Can we clean this up?
2835 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2836 llvm::Value *RegAddr =
2837 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2838 "reg_save_area");
2839 if (neededInt && neededSSE) {
2840 // FIXME: Cleanup.
2841 assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2842 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2843 llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2844 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2845 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2846 llvm::Type *TyLo = ST->getElementType(0);
2847 llvm::Type *TyHi = ST->getElementType(1);
2848 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2849 "Unexpected ABI info for mixed regs");
2850 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2851 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2852 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2853 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2854 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
2855 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
2856 llvm::Value *V =
2857 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2858 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2859 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2860 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2861
2862 RegAddr = CGF.Builder.CreateBitCast(Tmp,
2863 llvm::PointerType::getUnqual(LTy));
2864 } else if (neededInt) {
2865 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2866 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2867 llvm::PointerType::getUnqual(LTy));
2868
2869 // Copy to a temporary if necessary to ensure the appropriate alignment.
2870 std::pair<CharUnits, CharUnits> SizeAlign =
2871 CGF.getContext().getTypeInfoInChars(Ty);
2872 uint64_t TySize = SizeAlign.first.getQuantity();
2873 unsigned TyAlign = SizeAlign.second.getQuantity();
2874 if (TyAlign > 8) {
2875 llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2876 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2877 RegAddr = Tmp;
2878 }
2879 } else if (neededSSE == 1) {
2880 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2881 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2882 llvm::PointerType::getUnqual(LTy));
2883 } else {
2884 assert(neededSSE == 2 && "Invalid number of needed registers!");
2885 // SSE registers are spaced 16 bytes apart in the register save
2886 // area, we need to collect the two eightbytes together.
2887 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2888 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2889 llvm::Type *DoubleTy = CGF.DoubleTy;
2890 llvm::Type *DblPtrTy =
2891 llvm::PointerType::getUnqual(DoubleTy);
2892 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, nullptr);
2893 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2894 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2895 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2896 DblPtrTy));
2897 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2898 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2899 DblPtrTy));
2900 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2901 RegAddr = CGF.Builder.CreateBitCast(Tmp,
2902 llvm::PointerType::getUnqual(LTy));
2903 }
2904
2905 // AMD64-ABI 3.5.7p5: Step 5. Set:
2906 // l->gp_offset = l->gp_offset + num_gp * 8
2907 // l->fp_offset = l->fp_offset + num_fp * 16.
2908 if (neededInt) {
2909 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2910 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2911 gp_offset_p);
2912 }
2913 if (neededSSE) {
2914 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2915 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2916 fp_offset_p);
2917 }
2918 CGF.EmitBranch(ContBlock);
2919
2920 // Emit code to load the value if it was passed in memory.
2921
2922 CGF.EmitBlock(InMemBlock);
2923 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2924
2925 // Return the appropriate result.
2926
2927 CGF.EmitBlock(ContBlock);
2928 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2929 "vaarg.addr");
2930 ResAddr->addIncoming(RegAddr, InRegBlock);
2931 ResAddr->addIncoming(MemAddr, InMemBlock);
2932 return ResAddr;
2933}
2934
2935ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
2936 bool IsReturnType) const {
2937
2938 if (Ty->isVoidType())
2939 return ABIArgInfo::getIgnore();
2940
2941 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2942 Ty = EnumTy->getDecl()->getIntegerType();
2943
2944 TypeInfo Info = getContext().getTypeInfo(Ty);
2945 uint64_t Width = Info.Width;
2946 unsigned Align = getContext().toCharUnitsFromBits(Info.Align).getQuantity();
2947
2948 const RecordType *RT = Ty->getAs<RecordType>();
2949 if (RT) {
2950 if (!IsReturnType) {
2951 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
2952 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2953 }
2954
2955 if (RT->getDecl()->hasFlexibleArrayMember())
2956 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2957
2958 // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2959 if (Width == 128 && getTarget().getTriple().isWindowsGNUEnvironment())
2960 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2961 Width));
2962 }
2963
2964 // vectorcall adds the concept of a homogenous vector aggregate, similar to
2965 // other targets.
2966 const Type *Base = nullptr;
2967 uint64_t NumElts = 0;
2968 if (FreeSSERegs && isHomogeneousAggregate(Ty, Base, NumElts)) {
2969 if (FreeSSERegs >= NumElts) {
2970 FreeSSERegs -= NumElts;
2971 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
2972 return ABIArgInfo::getDirect();
2973 return ABIArgInfo::getExpand();
2974 }
2975 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
2976 }
2977
2978
2979 if (Ty->isMemberPointerType()) {
2980 // If the member pointer is represented by an LLVM int or ptr, pass it
2981 // directly.
2982 llvm::Type *LLTy = CGT.ConvertType(Ty);
2983 if (LLTy->isPointerTy() || LLTy->isIntegerTy())
2984 return ABIArgInfo::getDirect();
2985 }
2986
2987 if (RT || Ty->isMemberPointerType()) {
2988 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2989 // not 1, 2, 4, or 8 bytes, must be passed by reference."
2990 if (Width > 64 || !llvm::isPowerOf2_64(Width))
2991 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2992
2993 // Otherwise, coerce it to a small integer.
2994 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
2995 }
2996
2997 // Bool type is always extended to the ABI, other builtin types are not
2998 // extended.
2999 const BuiltinType *BT = Ty->getAs<BuiltinType>();
3000 if (BT && BT->getKind() == BuiltinType::Bool)
3001 return ABIArgInfo::getExtend();
3002
3003 return ABIArgInfo::getDirect();
3004}
3005
3006void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3007 bool IsVectorCall =
3008 FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall;
3009
3010 // We can use up to 4 SSE return registers with vectorcall.
3011 unsigned FreeSSERegs = IsVectorCall ? 4 : 0;
3012 if (!getCXXABI().classifyReturnType(FI))
3013 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true);
3014
3015 // We can use up to 6 SSE register parameters with vectorcall.
3016 FreeSSERegs = IsVectorCall ? 6 : 0;
3017 for (auto &I : FI.arguments())
3018 I.info = classify(I.type, FreeSSERegs, false);
3019}
3020
3021llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3022 CodeGenFunction &CGF) const {
3023 llvm::Type *BPP = CGF.Int8PtrPtrTy;
3024
3025 CGBuilderTy &Builder = CGF.Builder;
3026 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
3027 "ap");
3028 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3029 llvm::Type *PTy =
3030 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3031 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3032
3033 uint64_t Offset =
3034 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
3035 llvm::Value *NextAddr =
3036 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3037 "ap.next");
3038 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3039
3040 return AddrTyped;
3041}
3042
3043namespace {
3044
3045class NaClX86_64ABIInfo : public ABIInfo {
3046 public:
3047 NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
3048 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
3049 void computeInfo(CGFunctionInfo &FI) const override;
3050 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3051 CodeGenFunction &CGF) const override;
3052 private:
3053 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
3054 X86_64ABIInfo NInfo; // Used for everything else.
3055};
3056
3057class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
3058 bool HasAVX;
3059 public:
3060 NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
3061 : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)), HasAVX(HasAVX) {
3062 }
3063 unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3064 return HasAVX ? 32 : 16;
3065 }
3066};
3067
3068}
3069
3070void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3071 if (FI.getASTCallingConvention() == CC_PnaclCall)
3072 PInfo.computeInfo(FI);
3073 else
3074 NInfo.computeInfo(FI);
3075}
3076
3077llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3078 CodeGenFunction &CGF) const {
3079 // Always use the native convention; calling pnacl-style varargs functions
3080 // is unuspported.
3081 return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
3082}
3083
3084
3085// PowerPC-32
3086namespace {
3087/// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
3088class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
3089public:
3090 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
3091
3092 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3093 CodeGenFunction &CGF) const override;
3094};
3095
3096class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
3097public:
3098 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT)) {}
3099
3100 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3101 // This is recovered from gcc output.
3102 return 1; // r1 is the dedicated stack pointer
3103 }
3104
3105 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3106 llvm::Value *Address) const override;
3107
3108 unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3109 return 16; // Natural alignment for Altivec vectors.
3110 }
3111};
3112
3113}
3114
3115llvm::Value *PPC32_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3116 QualType Ty,
3117 CodeGenFunction &CGF) const {
3118 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3119 // TODO: Implement this. For now ignore.
3120 (void)CTy;
3121 return nullptr;
3122 }
3123
3124 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
3125 bool isInt = Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
3126 llvm::Type *CharPtr = CGF.Int8PtrTy;
3127 llvm::Type *CharPtrPtr = CGF.Int8PtrPtrTy;
3128
3129 CGBuilderTy &Builder = CGF.Builder;
3130 llvm::Value *GPRPtr = Builder.CreateBitCast(VAListAddr, CharPtr, "gprptr");
3131 llvm::Value *GPRPtrAsInt = Builder.CreatePtrToInt(GPRPtr, CGF.Int32Ty);
3132 llvm::Value *FPRPtrAsInt = Builder.CreateAdd(GPRPtrAsInt, Builder.getInt32(1));
3133 llvm::Value *FPRPtr = Builder.CreateIntToPtr(FPRPtrAsInt, CharPtr);
3134 llvm::Value *OverflowAreaPtrAsInt = Builder.CreateAdd(FPRPtrAsInt, Builder.getInt32(3));
3135 llvm::Value *OverflowAreaPtr = Builder.CreateIntToPtr(OverflowAreaPtrAsInt, CharPtrPtr);
3136 llvm::Value *RegsaveAreaPtrAsInt = Builder.CreateAdd(OverflowAreaPtrAsInt, Builder.getInt32(4));
3137 llvm::Value *RegsaveAreaPtr = Builder.CreateIntToPtr(RegsaveAreaPtrAsInt, CharPtrPtr);
3138 llvm::Value *GPR = Builder.CreateLoad(GPRPtr, false, "gpr");
3139 // Align GPR when TY is i64.
3140 if (isI64) {
3141 llvm::Value *GPRAnd = Builder.CreateAnd(GPR, Builder.getInt8(1));
3142 llvm::Value *CC64 = Builder.CreateICmpEQ(GPRAnd, Builder.getInt8(1));
3143 llvm::Value *GPRPlusOne = Builder.CreateAdd(GPR, Builder.getInt8(1));
3144 GPR = Builder.CreateSelect(CC64, GPRPlusOne, GPR);
3145 }
3146 llvm::Value *FPR = Builder.CreateLoad(FPRPtr, false, "fpr");
3147 llvm::Value *OverflowArea = Builder.CreateLoad(OverflowAreaPtr, false, "overflow_area");
3148 llvm::Value *OverflowAreaAsInt = Builder.CreatePtrToInt(OverflowArea, CGF.Int32Ty);
3149 llvm::Value *RegsaveArea = Builder.CreateLoad(RegsaveAreaPtr, false, "regsave_area");
3150 llvm::Value *RegsaveAreaAsInt = Builder.CreatePtrToInt(RegsaveArea, CGF.Int32Ty);
3151
3152 llvm::Value *CC = Builder.CreateICmpULT(isInt ? GPR : FPR,
3153 Builder.getInt8(8), "cond");
3154
3155 llvm::Value *RegConstant = Builder.CreateMul(isInt ? GPR : FPR,
3156 Builder.getInt8(isInt ? 4 : 8));
3157
3158 llvm::Value *OurReg = Builder.CreateAdd(RegsaveAreaAsInt, Builder.CreateSExt(RegConstant, CGF.Int32Ty));
3159
3160 if (Ty->isFloatingType())
3161 OurReg = Builder.CreateAdd(OurReg, Builder.getInt32(32));
3162
3163 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
3164 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
3165 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3166
3167 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
3168
3169 CGF.EmitBlock(UsingRegs);
3170
3171 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3172 llvm::Value *Result1 = Builder.CreateIntToPtr(OurReg, PTy);
3173 // Increase the GPR/FPR indexes.
3174 if (isInt) {
3175 GPR = Builder.CreateAdd(GPR, Builder.getInt8(isI64 ? 2 : 1));
3176 Builder.CreateStore(GPR, GPRPtr);
3177 } else {
3178 FPR = Builder.CreateAdd(FPR, Builder.getInt8(1));
3179 Builder.CreateStore(FPR, FPRPtr);
3180 }
3181 CGF.EmitBranch(Cont);
3182
3183 CGF.EmitBlock(UsingOverflow);
3184
3185 // Increase the overflow area.
3186 llvm::Value *Result2 = Builder.CreateIntToPtr(OverflowAreaAsInt, PTy);
3187 OverflowAreaAsInt = Builder.CreateAdd(OverflowAreaAsInt, Builder.getInt32(isInt ? 4 : 8));
3188 Builder.CreateStore(Builder.CreateIntToPtr(OverflowAreaAsInt, CharPtr), OverflowAreaPtr);
3189 CGF.EmitBranch(Cont);
3190
3191 CGF.EmitBlock(Cont);
3192
3193 llvm::PHINode *Result = CGF.Builder.CreatePHI(PTy, 2, "vaarg.addr");
3194 Result->addIncoming(Result1, UsingRegs);
3195 Result->addIncoming(Result2, UsingOverflow);
3196
3197 if (Ty->isAggregateType()) {
3198 llvm::Value *AGGPtr = Builder.CreateBitCast(Result, CharPtrPtr, "aggrptr") ;
3199 return Builder.CreateLoad(AGGPtr, false, "aggr");
3200 }
3201
3202 return Result;
3203}
3204
3205bool
3206PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3207 llvm::Value *Address) const {
3208 // This is calculated from the LLVM and GCC tables and verified
3209 // against gcc output. AFAIK all ABIs use the same encoding.
3210
3211 CodeGen::CGBuilderTy &Builder = CGF.Builder;
3212
3213 llvm::IntegerType *i8 = CGF.Int8Ty;
3214 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3215 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3216 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3217
3218 // 0-31: r0-31, the 4-byte general-purpose registers
3219 AssignToArrayRange(Builder, Address, Four8, 0, 31);
3220
3221 // 32-63: fp0-31, the 8-byte floating-point registers
3222 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3223
3224 // 64-76 are various 4-byte special-purpose registers:
3225 // 64: mq
3226 // 65: lr
3227 // 66: ctr
3228 // 67: ap
3229 // 68-75 cr0-7
3230 // 76: xer
3231 AssignToArrayRange(Builder, Address, Four8, 64, 76);
3232
3233 // 77-108: v0-31, the 16-byte vector registers
3234 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3235
3236 // 109: vrsave
3237 // 110: vscr
3238 // 111: spe_acc
3239 // 112: spefscr
3240 // 113: sfp
3241 AssignToArrayRange(Builder, Address, Four8, 109, 113);
3242
3243 return false;
3244}
3245
3246// PowerPC-64
3247
3248namespace {
3249/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
3250class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
3251public:
3252 enum ABIKind {
3253 ELFv1 = 0,
3254 ELFv2
3255 };
3256
3257private:
3258 static const unsigned GPRBits = 64;
3259 ABIKind Kind;
3260
3261public:
3262 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
3263 : DefaultABIInfo(CGT), Kind(Kind) {}
3264
3265 bool isPromotableTypeForABI(QualType Ty) const;
3266 bool isAlignedParamType(QualType Ty) const;
3267
3268 ABIArgInfo classifyReturnType(QualType RetTy) const;
3269 ABIArgInfo classifyArgumentType(QualType Ty) const;
3270
3271 bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3272 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3273 uint64_t Members) const override;
3274
3275 // TODO: We can add more logic to computeInfo to improve performance.
3276 // Example: For aggregate arguments that fit in a register, we could
3277 // use getDirectInReg (as is done below for structs containing a single
3278 // floating-point value) to avoid pushing them to memory on function
3279 // entry. This would require changing the logic in PPCISelLowering
3280 // when lowering the parameters in the caller and args in the callee.
3281 void computeInfo(CGFunctionInfo &FI) const override {
3282 if (!getCXXABI().classifyReturnType(FI))
3283 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3284 for (auto &I : FI.arguments()) {
3285 // We rely on the default argument classification for the most part.
3286 // One exception: An aggregate containing a single floating-point
3287 // or vector item must be passed in a register if one is available.
3288 const Type *T = isSingleElementStruct(I.type, getContext());
3289 if (T) {
3290 const BuiltinType *BT = T->getAs<BuiltinType>();
3291 if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
3292 (BT && BT->isFloatingPoint())) {
3293 QualType QT(T, 0);
3294 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
3295 continue;
3296 }
3297 }
3298 I.info = classifyArgumentType(I.type);
3299 }
3300 }
3301
3302 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3303 CodeGenFunction &CGF) const override;
3304};
3305
3306class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
3307public:
3308 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
3309 PPC64_SVR4_ABIInfo::ABIKind Kind)
3310 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind)) {}
3311
3312 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3313 // This is recovered from gcc output.
3314 return 1; // r1 is the dedicated stack pointer
3315 }
3316
3317 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3318 llvm::Value *Address) const override;
3319
3320 unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3321 return 16; // Natural alignment for Altivec and VSX vectors.
3322 }
3323};
3324
3325class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
3326public:
3327 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
3328
3329 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
3330 // This is recovered from gcc output.
3331 return 1; // r1 is the dedicated stack pointer
3332 }
3333
3334 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3335 llvm::Value *Address) const override;
3336
3337 unsigned getOpenMPSimdDefaultAlignment(QualType) const override {
3338 return 16; // Natural alignment for Altivec vectors.
3339 }
3340};
3341
3342}
3343
3344// Return true if the ABI requires Ty to be passed sign- or zero-
3345// extended to 64 bits.
3346bool
3347PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
3348 // Treat an enum type as its underlying type.
3349 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3350 Ty = EnumTy->getDecl()->getIntegerType();
3351
3352 // Promotable integer types are required to be promoted by the ABI.
3353 if (Ty->isPromotableIntegerType())
3354 return true;
3355
3356 // In addition to the usual promotable integer types, we also need to
3357 // extend all 32-bit types, since the ABI requires promotion to 64 bits.
3358 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
3359 switch (BT->getKind()) {
3360 case BuiltinType::Int:
3361 case BuiltinType::UInt:
3362 return true;
3363 default:
3364 break;
3365 }
3366
3367 return false;
3368}
3369
3370/// isAlignedParamType - Determine whether a type requires 16-byte
3371/// alignment in the parameter area.
3372bool
3373PPC64_SVR4_ABIInfo::isAlignedParamType(QualType Ty) const {
3374 // Complex types are passed just like their elements.
3375 if (const ComplexType *CTy = Ty->getAs<ComplexType>())
3376 Ty = CTy->getElementType();
3377
3378 // Only vector types of size 16 bytes need alignment (larger types are
3379 // passed via reference, smaller types are not aligned).
3380 if (Ty->isVectorType())
3381 return getContext().getTypeSize(Ty) == 128;
3382
3383 // For single-element float/vector structs, we consider the whole type
3384 // to have the same alignment requirements as its single element.
3385 const Type *AlignAsType = nullptr;
3386 const Type *EltType = isSingleElementStruct(Ty, getContext());
3387 if (EltType) {
3388 const BuiltinType *BT = EltType->getAs<BuiltinType>();
3389 if ((EltType->isVectorType() &&
3390 getContext().getTypeSize(EltType) == 128) ||
3391 (BT && BT->isFloatingPoint()))
3392 AlignAsType = EltType;
3393 }
3394
3395 // Likewise for ELFv2 homogeneous aggregates.
3396 const Type *Base = nullptr;
3397 uint64_t Members = 0;
3398 if (!AlignAsType && Kind == ELFv2 &&
3399 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
3400 AlignAsType = Base;
3401
3402 // With special case aggregates, only vector base types need alignment.
3403 if (AlignAsType)
3404 return AlignAsType->isVectorType();
3405
3406 // Otherwise, we only need alignment for any aggregate type that
3407 // has an alignment requirement of >= 16 bytes.
3408 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128)
3409 return true;
3410
3411 return false;
3412}
3413
3414/// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
3415/// aggregate. Base is set to the base element type, and Members is set
3416/// to the number of base elements.
3417bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
3418 uint64_t &Members) const {
3419 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
3420 uint64_t NElements = AT->getSize().getZExtValue();
3421 if (NElements == 0)
3422 return false;
3423 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
3424 return false;
3425 Members *= NElements;
3426 } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3427 const RecordDecl *RD = RT->getDecl();
3428 if (RD->hasFlexibleArrayMember())
3429 return false;
3430
3431 Members = 0;
3432
3433 // If this is a C++ record, check the bases first.
3434 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3435 for (const auto &I : CXXRD->bases()) {
3436 // Ignore empty records.
3437 if (isEmptyRecord(getContext(), I.getType(), true))
3438 continue;
3439
3440 uint64_t FldMembers;
3441 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
3442 return false;
3443
3444 Members += FldMembers;
3445 }
3446 }
3447
3448 for (const auto *FD : RD->fields()) {
3449 // Ignore (non-zero arrays of) empty records.
3450 QualType FT = FD->getType();
3451 while (const ConstantArrayType *AT =
3452 getContext().getAsConstantArrayType(FT)) {
3453 if (AT->getSize().getZExtValue() == 0)
3454 return false;
3455 FT = AT->getElementType();
3456 }
3457 if (isEmptyRecord(getContext(), FT, true))
3458 continue;
3459
3460 // For compatibility with GCC, ignore empty bitfields in C++ mode.
3461 if (getContext().getLangOpts().CPlusPlus &&
3462 FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
3463 continue;
3464
3465 uint64_t FldMembers;
3466 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
3467 return false;
3468
3469 Members = (RD->isUnion() ?
3470 std::max(Members, FldMembers) : Members + FldMembers);
3471 }
3472
3473 if (!Base)
3474 return false;
3475
3476 // Ensure there is no padding.
3477 if (getContext().getTypeSize(Base) * Members !=
3478 getContext().getTypeSize(Ty))
3479 return false;
3480 } else {
3481 Members = 1;
3482 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3483 Members = 2;
3484 Ty = CT->getElementType();
3485 }
3486
3487 // Most ABIs only support float, double, and some vector type widths.
3488 if (!isHomogeneousAggregateBaseType(Ty))
3489 return false;
3490
3491 // The base type must be the same for all members. Types that
3492 // agree in both total size and mode (float vs. vector) are
3493 // treated as being equivalent here.
3494 const Type *TyPtr = Ty.getTypePtr();
3495 if (!Base)
3496 Base = TyPtr;
3497
3498 if (Base->isVectorType() != TyPtr->isVectorType() ||
3499 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
3500 return false;
3501 }
3502 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
3503}
3504
3505bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
3506 // Homogeneous aggregates for ELFv2 must have base types of float,
3507 // double, long double, or 128-bit vectors.
3508 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3509 if (BT->getKind() == BuiltinType::Float ||
3510 BT->getKind() == BuiltinType::Double ||
3511 BT->getKind() == BuiltinType::LongDouble)
3512 return true;
3513 }
3514 if (const VectorType *VT = Ty->getAs<VectorType>()) {
3515 if (getContext().getTypeSize(VT) == 128)
3516 return true;
3517 }
3518 return false;
3519}
3520
3521bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
3522 const Type *Base, uint64_t Members) const {
3523 // Vector types require one register, floating point types require one
3524 // or two registers depending on their size.
3525 uint32_t NumRegs =
3526 Base->isVectorType() ? 1 : (getContext().getTypeSize(Base) + 63) / 64;
3527
3528 // Homogeneous Aggregates may occupy at most 8 registers.
3529 return Members * NumRegs <= 8;
3530}
3531
3532ABIArgInfo
3533PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
3534 Ty = useFirstFieldIfTransparentUnion(Ty);
3535
3536 if (Ty->isAnyComplexType())
3537 return ABIArgInfo::getDirect();
3538
3539 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
3540 // or via reference (larger than 16 bytes).
3541 if (Ty->isVectorType()) {
3542 uint64_t Size = getContext().getTypeSize(Ty);
3543 if (Size > 128)
3544 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3545 else if (Size < 128) {
3546 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3547 return ABIArgInfo::getDirect(CoerceTy);
3548 }
3549 }
3550
3551 if (isAggregateTypeForABI(Ty)) {
3552 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3553 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3554
3555 uint64_t ABIAlign = isAlignedParamType(Ty)? 16 : 8;
3556 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3557
3558 // ELFv2 homogeneous aggregates are passed as array types.
3559 const Type *Base = nullptr;
3560 uint64_t Members = 0;
3561 if (Kind == ELFv2 &&
3562 isHomogeneousAggregate(Ty, Base, Members)) {
3563 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3564 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3565 return ABIArgInfo::getDirect(CoerceTy);
3566 }
3567
3568 // If an aggregate may end up fully in registers, we do not
3569 // use the ByVal method, but pass the aggregate as array.
3570 // This is usually beneficial since we avoid forcing the
3571 // back-end to store the argument to memory.
3572 uint64_t Bits = getContext().getTypeSize(Ty);
3573 if (Bits > 0 && Bits <= 8 * GPRBits) {
3574 llvm::Type *CoerceTy;
3575
3576 // Types up to 8 bytes are passed as integer type (which will be
3577 // properly aligned in the argument save area doubleword).
3578 if (Bits <= GPRBits)
3579 CoerceTy = llvm::IntegerType::get(getVMContext(),
3580 llvm::RoundUpToAlignment(Bits, 8));
3581 // Larger types are passed as arrays, with the base type selected
3582 // according to the required alignment in the save area.
3583 else {
3584 uint64_t RegBits = ABIAlign * 8;
3585 uint64_t NumRegs = llvm::RoundUpToAlignment(Bits, RegBits) / RegBits;
3586 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
3587 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
3588 }
3589
3590 return ABIArgInfo::getDirect(CoerceTy);
3591 }
3592
3593 // All other aggregates are passed ByVal.
3594 return ABIArgInfo::getIndirect(ABIAlign, /*ByVal=*/true,
3595 /*Realign=*/TyAlign > ABIAlign);
3596 }
3597
3598 return (isPromotableTypeForABI(Ty) ?
3599 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3600}
3601
3602ABIArgInfo
3603PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
3604 if (RetTy->isVoidType())
3605 return ABIArgInfo::getIgnore();
3606
3607 if (RetTy->isAnyComplexType())
3608 return ABIArgInfo::getDirect();
3609
3610 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
3611 // or via reference (larger than 16 bytes).
3612 if (RetTy->isVectorType()) {
3613 uint64_t Size = getContext().getTypeSize(RetTy);
3614 if (Size > 128)
3615 return ABIArgInfo::getIndirect(0);
3616 else if (Size < 128) {
3617 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
3618 return ABIArgInfo::getDirect(CoerceTy);
3619 }
3620 }
3621
3622 if (isAggregateTypeForABI(RetTy)) {
3623 // ELFv2 homogeneous aggregates are returned as array types.
3624 const Type *Base = nullptr;
3625 uint64_t Members = 0;
3626 if (Kind == ELFv2 &&
3627 isHomogeneousAggregate(RetTy, Base, Members)) {
3628 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
3629 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
3630 return ABIArgInfo::getDirect(CoerceTy);
3631 }
3632
3633 // ELFv2 small aggregates are returned in up to two registers.
3634 uint64_t Bits = getContext().getTypeSize(RetTy);
3635 if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
3636 if (Bits == 0)
3637 return ABIArgInfo::getIgnore();
3638
3639 llvm::Type *CoerceTy;
3640 if (Bits > GPRBits) {
3641 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
3642 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy, nullptr);
3643 } else
3644 CoerceTy = llvm::IntegerType::get(getVMContext(),
3645 llvm::RoundUpToAlignment(Bits, 8));
3646 return ABIArgInfo::getDirect(CoerceTy);
3647 }
3648
3649 // All other aggregates are returned indirectly.
3650 return ABIArgInfo::getIndirect(0);
3651 }
3652
3653 return (isPromotableTypeForABI(RetTy) ?
3654 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3655}
3656
3657// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
3658llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
3659 QualType Ty,
3660 CodeGenFunction &CGF) const {
3661 llvm::Type *BP = CGF.Int8PtrTy;
3662 llvm::Type *BPP = CGF.Int8PtrPtrTy;
3663
3664 CGBuilderTy &Builder = CGF.Builder;
3665 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3666 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3667
3668 // Handle types that require 16-byte alignment in the parameter save area.
3669 if (isAlignedParamType(Ty)) {
3670 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3671 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(15));
3672 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt64(-16));
3673 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3674 }
3675
3676 // Update the va_list pointer. The pointer should be bumped by the
3677 // size of the object. We can trust getTypeSize() except for a complex
3678 // type whose base type is smaller than a doubleword. For these, the
3679 // size of the object is 16 bytes; see below for further explanation.
3680 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
3681 QualType BaseTy;
3682 unsigned CplxBaseSize = 0;
3683
3684 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
3685 BaseTy = CTy->getElementType();
3686 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
3687 if (CplxBaseSize < 8)
3688 SizeInBytes = 16;
3689 }
3690
3691 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
3692 llvm::Value *NextAddr =
3693 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
3694 "ap.next");
3695 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3696
3697 // If we have a complex type and the base type is smaller than 8 bytes,
3698 // the ABI calls for the real and imaginary parts to be right-adjusted
3699 // in separate doublewords. However, Clang expects us to produce a
3700 // pointer to a structure with the two parts packed tightly. So generate
3701 // loads of the real and imaginary parts relative to the va_list pointer,
3702 // and store them to a temporary structure.
3703 if (CplxBaseSize && CplxBaseSize < 8) {
3704 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3705 llvm::Value *ImagAddr = RealAddr;
3706 if (CGF.CGM.getDataLayout().isBigEndian()) {
3707 RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
3708 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
3709 } else {
3710 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(8));
3711 }
3712 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
3713 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
3714 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
3715 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
3716 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
3717 llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
3718 "vacplx");
3719 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
3720 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
3721 Builder.CreateStore(Real, RealPtr, false);
3722 Builder.CreateStore(Imag, ImagPtr, false);
3723 return Ptr;
3724 }
3725
3726 // If the argument is smaller than 8 bytes, it is right-adjusted in
3727 // its doubleword slot. Adjust the pointer to pick it up from the
3728 // correct offset.
3729 if (SizeInBytes < 8 && CGF.CGM.getDataLayout().isBigEndian()) {
3730 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
3731 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
3732 Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
3733 }
3734
3735 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3736 return Builder.CreateBitCast(Addr, PTy);
3737}
3738
3739static bool
3740PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3741 llvm::Value *Address) {
3742 // This is calculated from the LLVM and GCC tables and verified
3743 // against gcc output. AFAIK all ABIs use the same encoding.
3744
3745 CodeGen::CGBuilderTy &Builder = CGF.Builder;
3746
3747 llvm::IntegerType *i8 = CGF.Int8Ty;
3748 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3749 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3750 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3751
3752 // 0-31: r0-31, the 8-byte general-purpose registers
3753 AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3754
3755 // 32-63: fp0-31, the 8-byte floating-point registers
3756 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3757
3758 // 64-76 are various 4-byte special-purpose registers:
3759 // 64: mq
3760 // 65: lr
3761 // 66: ctr
3762 // 67: ap
3763 // 68-75 cr0-7
3764 // 76: xer
3765 AssignToArrayRange(Builder, Address, Four8, 64, 76);
3766
3767 // 77-108: v0-31, the 16-byte vector registers
3768 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3769
3770 // 109: vrsave
3771 // 110: vscr
3772 // 111: spe_acc
3773 // 112: spefscr
3774 // 113: sfp
3775 AssignToArrayRange(Builder, Address, Four8, 109, 113);
3776
3777 return false;
3778}
3779
3780bool
3781PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3782 CodeGen::CodeGenFunction &CGF,
3783 llvm::Value *Address) const {
3784
3785 return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3786}
3787
3788bool
3789PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3790 llvm::Value *Address) const {
3791
3792 return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3793}
3794
3795//===----------------------------------------------------------------------===//
3796// AArch64 ABI Implementation
3797//===----------------------------------------------------------------------===//
3798
3799namespace {
3800
3801class AArch64ABIInfo : public ABIInfo {
3802public:
3803 enum ABIKind {
3804 AAPCS = 0,
3805 DarwinPCS
3806 };
3807
3808private:
3809 ABIKind Kind;
3810
3811public:
3812 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) : ABIInfo(CGT), Kind(Kind) {}
3813
3814private:
3815 ABIKind getABIKind() const { return Kind; }
3816 bool isDarwinPCS() const { return Kind == DarwinPCS; }
3817
3818 ABIArgInfo classifyReturnType(QualType RetTy) const;
3819 ABIArgInfo classifyArgumentType(QualType RetTy) const;
3820 bool isHomogeneousAggregateBaseType(QualType Ty) const override;
3821 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
3822 uint64_t Members) const override;
3823
3824 bool isIllegalVectorType(QualType Ty) const;
3825
3826 void computeInfo(CGFunctionInfo &FI) const override {
3827 if (!getCXXABI().classifyReturnType(FI))
3828 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3829
3830 for (auto &it : FI.arguments())
3831 it.info = classifyArgumentType(it.type);
3832 }
3833
3834 llvm::Value *EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
3835 CodeGenFunction &CGF) const;
3836
3837 llvm::Value *EmitAAPCSVAArg(llvm::Value *VAListAddr, QualType Ty,
3838 CodeGenFunction &CGF) const;
3839
3840 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3841 CodeGenFunction &CGF) const override {
3842 return isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
3843 : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
3844 }
3845};
3846
3847class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3848public:
3849 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
3850 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {}
3851
3852 StringRef getARCRetainAutoreleasedReturnValueMarker() const {
3853 return "mov\tfp, fp\t\t; marker for objc_retainAutoreleaseReturnValue";
3854 }
3855
3856 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return 31; }
3857
3858 virtual bool doesReturnSlotInterfereWithArgs() const { return false; }
3859};
3860}
3861
3862ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
3863 Ty = useFirstFieldIfTransparentUnion(Ty);
3864
3865 // Handle illegal vector types here.
3866 if (isIllegalVectorType(Ty)) {
3867 uint64_t Size = getContext().getTypeSize(Ty);
3868 if (Size <= 32) {
3869 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
3870 return ABIArgInfo::getDirect(ResType);
3871 }
3872 if (Size == 64) {
3873 llvm::Type *ResType =
3874 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
3875 return ABIArgInfo::getDirect(ResType);
3876 }
3877 if (Size == 128) {
3878 llvm::Type *ResType =
3879 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
3880 return ABIArgInfo::getDirect(ResType);
3881 }
3882 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3883 }
3884
3885 if (!isAggregateTypeForABI(Ty)) {
3886 // Treat an enum type as its underlying type.
3887 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3888 Ty = EnumTy->getDecl()->getIntegerType();
3889
3890 return (Ty->isPromotableIntegerType() && isDarwinPCS()
3891 ? ABIArgInfo::getExtend()
3892 : ABIArgInfo::getDirect());
3893 }
3894
3895 // Structures with either a non-trivial destructor or a non-trivial
3896 // copy constructor are always indirect.
3897 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3898 return ABIArgInfo::getIndirect(0, /*ByVal=*/RAA ==
3899 CGCXXABI::RAA_DirectInMemory);
3900 }
3901
3902 // Empty records are always ignored on Darwin, but actually passed in C++ mode
3903 // elsewhere for GNU compatibility.
3904 if (isEmptyRecord(getContext(), Ty, true)) {
3905 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
3906 return ABIArgInfo::getIgnore();
3907
3908 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3909 }
3910
3911 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
3912 const Type *Base = nullptr;
3913 uint64_t Members = 0;
3914 if (isHomogeneousAggregate(Ty, Base, Members)) {
3915 return ABIArgInfo::getDirect(
3916 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
3917 }
3918
3919 // Aggregates <= 16 bytes are passed directly in registers or on the stack.
3920 uint64_t Size = getContext().getTypeSize(Ty);
3921 if (Size <= 128) {
3922 unsigned Alignment = getContext().getTypeAlign(Ty);
3923 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
3924
3925 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
3926 // For aggregates with 16-byte alignment, we use i128.
3927 if (Alignment < 128 && Size == 128) {
3928 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
3929 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
3930 }
3931 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
3932 }
3933
3934 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3935}
3936
3937ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const {
3938 if (RetTy->isVoidType())
3939 return ABIArgInfo::getIgnore();
3940
3941 // Large vector types should be returned via memory.
3942 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3943 return ABIArgInfo::getIndirect(0);
3944
3945 if (!isAggregateTypeForABI(RetTy)) {
3946 // Treat an enum type as its underlying type.
3947 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3948 RetTy = EnumTy->getDecl()->getIntegerType();
3949
3950 return (RetTy->isPromotableIntegerType() && isDarwinPCS()
3951 ? ABIArgInfo::getExtend()
3952 : ABIArgInfo::getDirect());
3953 }
3954
3955 if (isEmptyRecord(getContext(), RetTy, true))
3956 return ABIArgInfo::getIgnore();
3957
3958 const Type *Base = nullptr;
3959 uint64_t Members = 0;
3960 if (isHomogeneousAggregate(RetTy, Base, Members))
3961 // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
3962 return ABIArgInfo::getDirect();
3963
3964 // Aggregates <= 16 bytes are returned directly in registers or on the stack.
3965 uint64_t Size = getContext().getTypeSize(RetTy);
3966 if (Size <= 128) {
3967 Size = 64 * ((Size + 63) / 64); // round up to multiple of 8 bytes
3968 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
3969 }
3970
3971 return ABIArgInfo::getIndirect(0);
3972}
3973
3974/// isIllegalVectorType - check whether the vector type is legal for AArch64.
3975bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
3976 if (const VectorType *VT = Ty->getAs<VectorType>()) {
3977 // Check whether VT is legal.
3978 unsigned NumElements = VT->getNumElements();
3979 uint64_t Size = getContext().getTypeSize(VT);
3980 // NumElements should be power of 2 between 1 and 16.
3981 if ((NumElements & (NumElements - 1)) != 0 || NumElements > 16)
3982 return true;
3983 return Size != 64 && (Size != 128 || NumElements == 1);
3984 }
3985 return false;
3986}
3987
3988bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
3989 // Homogeneous aggregates for AAPCS64 must have base types of a floating
3990 // point type or a short-vector type. This is the same as the 32-bit ABI,
3991 // but with the difference that any floating-point type is allowed,
3992 // including __fp16.
3993 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3994 if (BT->isFloatingPoint())
3995 return true;
3996 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
3997 unsigned VecSize = getContext().getTypeSize(VT);
3998 if (VecSize == 64 || VecSize == 128)
3999 return true;
4000 }
4001 return false;
4002}
4003
4004bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4005 uint64_t Members) const {
4006 return Members <= 4;
4007}
4008
4009llvm::Value *AArch64ABIInfo::EmitAAPCSVAArg(llvm::Value *VAListAddr,
4010 QualType Ty,
4011 CodeGenFunction &CGF) const {
4012 ABIArgInfo AI = classifyArgumentType(Ty);
4013 bool IsIndirect = AI.isIndirect();
4014
4015 llvm::Type *BaseTy = CGF.ConvertType(Ty);
4016 if (IsIndirect)
4017 BaseTy = llvm::PointerType::getUnqual(BaseTy);
4018 else if (AI.getCoerceToType())
4019 BaseTy = AI.getCoerceToType();
4020
4021 unsigned NumRegs = 1;
4022 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
4023 BaseTy = ArrTy->getElementType();
4024 NumRegs = ArrTy->getNumElements();
4025 }
4026 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
4027
4028 // The AArch64 va_list type and handling is specified in the Procedure Call
4029 // Standard, section B.4:
4030 //
4031 // struct {
4032 // void *__stack;
4033 // void *__gr_top;
4034 // void *__vr_top;
4035 // int __gr_offs;
4036 // int __vr_offs;
4037 // };
4038
4039 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
4040 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4041 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
4042 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4043 auto &Ctx = CGF.getContext();
4044
4045 llvm::Value *reg_offs_p = nullptr, *reg_offs = nullptr;
4046 int reg_top_index;
4047 int RegSize = IsIndirect ? 8 : getContext().getTypeSize(Ty) / 8;
4048 if (!IsFPR) {
4049 // 3 is the field number of __gr_offs
4050 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
4051 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
4052 reg_top_index = 1; // field number for __gr_top
4053 RegSize = llvm::RoundUpToAlignment(RegSize, 8);
4054 } else {
4055 // 4 is the field number of __vr_offs.
4056 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
4057 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4058 reg_top_index = 2; // field number for __vr_top
4059 RegSize = 16 * NumRegs;
4060 }
4061
4062 //=======================================
4063 // Find out where argument was passed
4064 //=======================================
4065
4066 // If reg_offs >= 0 we're already using the stack for this type of
4067 // argument. We don't want to keep updating reg_offs (in case it overflows,
4068 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4069 // whatever they get).
4070 llvm::Value *UsingStack = nullptr;
4071 UsingStack = CGF.Builder.CreateICmpSGE(
4072 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
4073
4074 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4075
4076 // Otherwise, at least some kind of argument could go in these registers, the
4077 // question is whether this particular type is too big.
4078 CGF.EmitBlock(MaybeRegBlock);
4079
4080 // Integer arguments may need to correct register alignment (for example a
4081 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4082 // align __gr_offs to calculate the potential address.
4083 if (!IsFPR && !IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4084 int Align = Ctx.getTypeAlign(Ty) / 8;
4085
4086 reg_offs = CGF.Builder.CreateAdd(
4087 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4088 "align_regoffs");
4089 reg_offs = CGF.Builder.CreateAnd(
4090 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4091 "aligned_regoffs");
4092 }
4093
4094 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4095 llvm::Value *NewOffset = nullptr;
4096 NewOffset = CGF.Builder.CreateAdd(
4097 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
4098 CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4099
4100 // Now we're in a position to decide whether this argument really was in
4101 // registers or not.
4102 llvm::Value *InRegs = nullptr;
4103 InRegs = CGF.Builder.CreateICmpSLE(
4104 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
4105
4106 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4107
4108 //=======================================
4109 // Argument was in registers
4110 //=======================================
4111
4112 // Now we emit the code for if the argument was originally passed in
4113 // registers. First start the appropriate block:
4114 CGF.EmitBlock(InRegBlock);
4115
4116 llvm::Value *reg_top_p = nullptr, *reg_top = nullptr;
4117 reg_top_p =
4118 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
4119 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4120 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
4121 llvm::Value *RegAddr = nullptr;
4122 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4123
4124 if (IsIndirect) {
4125 // If it's been passed indirectly (actually a struct), whatever we find from
4126 // stored registers or on the stack will actually be a struct **.
4127 MemTy = llvm::PointerType::getUnqual(MemTy);
4128 }
4129
4130 const Type *Base = nullptr;
4131 uint64_t NumMembers = 0;
4132 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
4133 if (IsHFA && NumMembers > 1) {
4134 // Homogeneous aggregates passed in registers will have their elements split
4135 // and stored 16-bytes apart regardless of size (they're notionally in qN,
4136 // qN+1, ...). We reload and store into a temporary local variable
4137 // contiguously.
4138 assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
4139 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4140 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4141 llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
4142 int Offset = 0;
4143
4144 if (CGF.CGM.getDataLayout().isBigEndian() && Ctx.getTypeSize(Base) < 128)
4145 Offset = 16 - Ctx.getTypeSize(Base) / 8;
4146 for (unsigned i = 0; i < NumMembers; ++i) {
4147 llvm::Value *BaseOffset =
4148 llvm::ConstantInt::get(CGF.Int32Ty, 16 * i + Offset);
4149 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
4150 LoadAddr = CGF.Builder.CreateBitCast(
4151 LoadAddr, llvm::PointerType::getUnqual(BaseTy));
4152 llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
4153
4154 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4155 CGF.Builder.CreateStore(Elem, StoreAddr);
4156 }
4157
4158 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
4159 } else {
4160 // Otherwise the object is contiguous in memory
4161 unsigned BeAlign = reg_top_index == 2 ? 16 : 8;
4162 if (CGF.CGM.getDataLayout().isBigEndian() &&
4163 (IsHFA || !isAggregateTypeForABI(Ty)) &&
4164 Ctx.getTypeSize(Ty) < (BeAlign * 8)) {
4165 int Offset = BeAlign - Ctx.getTypeSize(Ty) / 8;
4166 BaseAddr = CGF.Builder.CreatePtrToInt(BaseAddr, CGF.Int64Ty);
4167
4168 BaseAddr = CGF.Builder.CreateAdd(
4169 BaseAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4170
4171 BaseAddr = CGF.Builder.CreateIntToPtr(BaseAddr, CGF.Int8PtrTy);
4172 }
4173
4174 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
4175 }
4176
4177 CGF.EmitBranch(ContBlock);
4178
4179 //=======================================
4180 // Argument was on the stack
4181 //=======================================
4182 CGF.EmitBlock(OnStackBlock);
4183
4184 llvm::Value *stack_p = nullptr, *OnStackAddr = nullptr;
4185 stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
4186 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4187
4188 // Again, stack arguments may need realigmnent. In this case both integer and
4189 // floating-point ones might be affected.
4190 if (!IsIndirect && Ctx.getTypeAlign(Ty) > 64) {
4191 int Align = Ctx.getTypeAlign(Ty) / 8;
4192
4193 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4194
4195 OnStackAddr = CGF.Builder.CreateAdd(
4196 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4197 "align_stack");
4198 OnStackAddr = CGF.Builder.CreateAnd(
4199 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4200 "align_stack");
4201
4202 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4203 }
4204
4205 uint64_t StackSize;
4206 if (IsIndirect)
4207 StackSize = 8;
4208 else
4209 StackSize = Ctx.getTypeSize(Ty) / 8;
4210
4211 // All stack slots are 8 bytes
4212 StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4213
4214 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4215 llvm::Value *NewStack =
4216 CGF.Builder.CreateGEP(OnStackAddr, StackSizeC, "new_stack");
4217
4218 // Write the new value of __stack for the next call to va_arg
4219 CGF.Builder.CreateStore(NewStack, stack_p);
4220
4221 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
4222 Ctx.getTypeSize(Ty) < 64) {
4223 int Offset = 8 - Ctx.getTypeSize(Ty) / 8;
4224 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4225
4226 OnStackAddr = CGF.Builder.CreateAdd(
4227 OnStackAddr, llvm::ConstantInt::get(CGF.Int64Ty, Offset), "align_be");
4228
4229 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4230 }
4231
4232 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4233
4234 CGF.EmitBranch(ContBlock);
4235
4236 //=======================================
4237 // Tidy up
4238 //=======================================
4239 CGF.EmitBlock(ContBlock);
4240
4241 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4242 ResAddr->addIncoming(RegAddr, InRegBlock);
4243 ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4244
4245 if (IsIndirect)
4246 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4247
4248 return ResAddr;
4249}
4250
4251llvm::Value *AArch64ABIInfo::EmitDarwinVAArg(llvm::Value *VAListAddr, QualType Ty,
4252 CodeGenFunction &CGF) const {
4253 // We do not support va_arg for aggregates or illegal vector types.
4254 // Lower VAArg here for these cases and use the LLVM va_arg instruction for
4255 // other cases.
4256 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
4257 return nullptr;
4258
4259 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4260 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
4261
4262 const Type *Base = nullptr;
4263 uint64_t Members = 0;
4264 bool isHA = isHomogeneousAggregate(Ty, Base, Members);
4265
4266 bool isIndirect = false;
4267 // Arguments bigger than 16 bytes which aren't homogeneous aggregates should
4268 // be passed indirectly.
4269 if (Size > 16 && !isHA) {
4270 isIndirect = true;
4271 Size = 8;
4272 Align = 8;
4273 }
4274
4275 llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
4276 llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
4277
4278 CGBuilderTy &Builder = CGF.Builder;
4279 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4280 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4281
4282 if (isEmptyRecord(getContext(), Ty, true)) {
4283 // These are ignored for parameter passing purposes.
4284 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4285 return Builder.CreateBitCast(Addr, PTy);
4286 }
4287
4288 const uint64_t MinABIAlign = 8;
4289 if (Align > MinABIAlign) {
4290 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
4291 Addr = Builder.CreateGEP(Addr, Offset);
4292 llvm::Value *AsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
4293 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~(Align - 1));
4294 llvm::Value *Aligned = Builder.CreateAnd(AsInt, Mask);
4295 Addr = Builder.CreateIntToPtr(Aligned, BP, "ap.align");
4296 }
4297
4298 uint64_t Offset = llvm::RoundUpToAlignment(Size, MinABIAlign);
4299 llvm::Value *NextAddr = Builder.CreateGEP(
4300 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
4301 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4302
4303 if (isIndirect)
4304 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
4305 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4306 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
4307
4308 return AddrTyped;
4309}
4310
4311//===----------------------------------------------------------------------===//
4312// ARM ABI Implementation
4313//===----------------------------------------------------------------------===//
4314
4315namespace {
4316
4317class ARMABIInfo : public ABIInfo {
4318public:
4319 enum ABIKind {
4320 APCS = 0,
4321 AAPCS = 1,
4322 AAPCS_VFP
4323 };
4324
4325private:
4326 ABIKind Kind;
4327 mutable int VFPRegs[16];
4328 const unsigned NumVFPs;
4329 const unsigned NumGPRs;
4330 mutable unsigned AllocatedGPRs;
4331 mutable unsigned AllocatedVFPs;
4332
4333public:
4334 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind),
4335 NumVFPs(16), NumGPRs(4) {
4336 setCCs();
4337 resetAllocatedRegs();
4338 }
4339
4340 bool isEABI() const {
4341 switch (getTarget().getTriple().getEnvironment()) {
4342 case llvm::Triple::Android:
4343 case llvm::Triple::EABI:
4344 case llvm::Triple::EABIHF:
4345 case llvm::Triple::GNUEABI:
4346 case llvm::Triple::GNUEABIHF:
4347 return true;
4348 default:
4349 return false;
4350 }
4351 }
4352
4353 bool isEABIHF() const {
4354 switch (getTarget().getTriple().getEnvironment()) {
4355 case llvm::Triple::EABIHF:
4356 case llvm::Triple::GNUEABIHF:
4357 return true;
4358 default:
4359 return false;
4360 }
4361 }
4362
4363 ABIKind getABIKind() const { return Kind; }
4364
4365private:
4366 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const;
4367 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
4368 bool &IsCPRC) const;
4369 bool isIllegalVectorType(QualType Ty) const;
4370
4371 bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4372 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4373 uint64_t Members) const override;
4374
4375 void computeInfo(CGFunctionInfo &FI) const override;
4376
4377 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4378 CodeGenFunction &CGF) const override;
4379
4380 llvm::CallingConv::ID getLLVMDefaultCC() const;
4381 llvm::CallingConv::ID getABIDefaultCC() const;
4382 void setCCs();
4383
4384 void markAllocatedGPRs(unsigned Alignment, unsigned NumRequired) const;
4385 void markAllocatedVFPs(unsigned Alignment, unsigned NumRequired) const;
4386 void resetAllocatedRegs(void) const;
4387};
4388
4389class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
4390public:
4391 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
4392 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
4393
4394 const ARMABIInfo &getABIInfo() const {
4395 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
4396 }
4397
4398 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4399 return 13;
4400 }
4401
4402 StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
4403 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
4404 }
4405
4406 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4407 llvm::Value *Address) const override {
4408 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4409
4410 // 0-15 are the 16 integer registers.
4411 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
4412 return false;
4413 }
4414
4415 unsigned getSizeOfUnwindException() const override {
4416 if (getABIInfo().isEABI()) return 88;
4417 return TargetCodeGenInfo::getSizeOfUnwindException();
4418 }
4419
4420 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4421 CodeGen::CodeGenModule &CGM) const override {
4422 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4423 if (!FD)
4424 return;
4425
4426 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
4427 if (!Attr)
4428 return;
4429
4430 const char *Kind;
4431 switch (Attr->getInterrupt()) {
4432 case ARMInterruptAttr::Generic: Kind = ""; break;
4433 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break;
4434 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break;
4435 case ARMInterruptAttr::SWI: Kind = "SWI"; break;
4436 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break;
4437 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break;
4438 }
4439
4440 llvm::Function *Fn = cast<llvm::Function>(GV);
4441
4442 Fn->addFnAttr("interrupt", Kind);
4443
4444 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
4445 return;
4446
4447 // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
4448 // however this is not necessarily true on taking any interrupt. Instruct
4449 // the backend to perform a realignment as part of the function prologue.
4450 llvm::AttrBuilder B;
4451 B.addStackAlignmentAttr(8);
4452 Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
4453 llvm::AttributeSet::get(CGM.getLLVMContext(),
4454 llvm::AttributeSet::FunctionIndex,
4455 B));
4456 }
4458
4459};
4460
4461}
4462
4463void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4464 // To correctly handle Homogeneous Aggregate, we need to keep track of the
4465 // VFP registers allocated so far.
4466 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
4467 // VFP registers of the appropriate type unallocated then the argument is
4468 // allocated to the lowest-numbered sequence of such registers.
4469 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
4470 // unallocated are marked as unavailable.
4471 resetAllocatedRegs();
4472
4473 if (getCXXABI().classifyReturnType(FI)) {
4474 if (FI.getReturnInfo().isIndirect())
4475 markAllocatedGPRs(1, 1);
4476 } else {
4477 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic());
4478 }
4479 for (auto &I : FI.arguments()) {
4480 unsigned PreAllocationVFPs = AllocatedVFPs;
4481 unsigned PreAllocationGPRs = AllocatedGPRs;
4482 bool IsCPRC = false;
4483 // 6.1.2.3 There is one VFP co-processor register class using registers
4484 // s0-s15 (d0-d7) for passing arguments.
4485 I.info = classifyArgumentType(I.type, FI.isVariadic(), IsCPRC);
4486
4487 // If we have allocated some arguments onto the stack (due to running
4488 // out of VFP registers), we cannot split an argument between GPRs and
4489 // the stack. If this situation occurs, we add padding to prevent the
4490 // GPRs from being used. In this situation, the current argument could
4491 // only be allocated by rule C.8, so rule C.6 would mark these GPRs as
4492 // unusable anyway.
4493 // We do not have to do this if the argument is being passed ByVal, as the
4494 // backend can handle that situation correctly.
4495 const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs;
4496 const bool IsByVal = I.info.isIndirect() && I.info.getIndirectByVal();
4497 if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs &&
4498 StackUsed && !IsByVal) {
4499 llvm::Type *PaddingTy = llvm::ArrayType::get(
4500 llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs);
4501 if (I.info.canHaveCoerceToType()) {
4502 I.info = ABIArgInfo::getDirect(I.info.getCoerceToType() /* type */,
4503 0 /* offset */, PaddingTy, true);
4504 } else {
4505 I.info = ABIArgInfo::getDirect(nullptr /* type */, 0 /* offset */,
4506 PaddingTy, true);
4507 }
4508 }
4509 }
4510
4511 // Always honor user-specified calling convention.
4512 if (FI.getCallingConvention() != llvm::CallingConv::C)
4513 return;
4514
4515 llvm::CallingConv::ID cc = getRuntimeCC();
4516 if (cc != llvm::CallingConv::C)
4517 FI.setEffectiveCallingConvention(cc);
4518}
4519
4520/// Return the default calling convention that LLVM will use.
4521llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4522 // The default calling convention that LLVM will infer.
4523 if (isEABIHF())
4524 return llvm::CallingConv::ARM_AAPCS_VFP;
4525 else if (isEABI())
4526 return llvm::CallingConv::ARM_AAPCS;
4527 else
4528 return llvm::CallingConv::ARM_APCS;
4529}
4530
4531/// Return the calling convention that our ABI would like us to use
4532/// as the C calling convention.
4533llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4534 switch (getABIKind()) {
4535 case APCS: return llvm::CallingConv::ARM_APCS;
4536 case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4537 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4538 }
4539 llvm_unreachable("bad ABI kind");
4540}
4541
4542void ARMABIInfo::setCCs() {
4543 assert(getRuntimeCC() == llvm::CallingConv::C);
4544
4545 // Don't muddy up the IR with a ton of explicit annotations if
4546 // they'd just match what LLVM will infer from the triple.
4547 llvm::CallingConv::ID abiCC = getABIDefaultCC();
4548 if (abiCC != getLLVMDefaultCC())
4549 RuntimeCC = abiCC;
4550
4551 BuiltinCC = (getABIKind() == APCS ?
4552 llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS);
4553}
4554
4555/// markAllocatedVFPs - update VFPRegs according to the alignment and
4556/// number of VFP registers (unit is S register) requested.
4557void ARMABIInfo::markAllocatedVFPs(unsigned Alignment,
4558 unsigned NumRequired) const {
4559 // Early Exit.
4560 if (AllocatedVFPs >= 16) {
4561 // We use AllocatedVFP > 16 to signal that some CPRCs were allocated on
4562 // the stack.
4563 AllocatedVFPs = 17;
4564 return;
4565 }
4566 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
4567 // VFP registers of the appropriate type unallocated then the argument is
4568 // allocated to the lowest-numbered sequence of such registers.
4569 for (unsigned I = 0; I < 16; I += Alignment) {
4570 bool FoundSlot = true;
4571 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
4572 if (J >= 16 || VFPRegs[J]) {
4573 FoundSlot = false;
4574 break;
4575 }
4576 if (FoundSlot) {
4577 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
4578 VFPRegs[J] = 1;
4579 AllocatedVFPs += NumRequired;
4580 return;
4581 }
4582 }
4583 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
4584 // unallocated are marked as unavailable.
4585 for (unsigned I = 0; I < 16; I++)
4586 VFPRegs[I] = 1;
4587 AllocatedVFPs = 17; // We do not have enough VFP registers.
4588}
4589
4590/// Update AllocatedGPRs to record the number of general purpose registers
4591/// which have been allocated. It is valid for AllocatedGPRs to go above 4,
4592/// this represents arguments being stored on the stack.
4593void ARMABIInfo::markAllocatedGPRs(unsigned Alignment,
4594 unsigned NumRequired) const {
4595 assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes");
4596
4597 if (Alignment == 2 && AllocatedGPRs & 0x1)
4598 AllocatedGPRs += 1;
4599
4600 AllocatedGPRs += NumRequired;
4601}
4602
4603void ARMABIInfo::resetAllocatedRegs(void) const {
4604 AllocatedGPRs = 0;
4605 AllocatedVFPs = 0;
4606 for (unsigned i = 0; i < NumVFPs; ++i)
4607 VFPRegs[i] = 0;
4608}
4609
4610ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
4611 bool &IsCPRC) const {
4612 // We update number of allocated VFPs according to
4613 // 6.1.2.1 The following argument types are VFP CPRCs:
4614 // A single-precision floating-point type (including promoted
4615 // half-precision types); A double-precision floating-point type;
4616 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4617 // with a Base Type of a single- or double-precision floating-point type,
4618 // 64-bit containerized vectors or 128-bit containerized vectors with one
4619 // to four Elements.
4620 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4621
4622 Ty = useFirstFieldIfTransparentUnion(Ty);
4623
4624 // Handle illegal vector types here.
4625 if (isIllegalVectorType(Ty)) {
4626 uint64_t Size = getContext().getTypeSize(Ty);
4627 if (Size <= 32) {
4628 llvm::Type *ResType =
4629 llvm::Type::getInt32Ty(getVMContext());
4630 markAllocatedGPRs(1, 1);
4631 return ABIArgInfo::getDirect(ResType);
4632 }
4633 if (Size == 64) {
4634 llvm::Type *ResType = llvm::VectorType::get(
4635 llvm::Type::getInt32Ty(getVMContext()), 2);
4636 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){
4637 markAllocatedGPRs(2, 2);
4638 } else {
4639 markAllocatedVFPs(2, 2);
4640 IsCPRC = true;
4641 }
4642 return ABIArgInfo::getDirect(ResType);
4643 }
4644 if (Size == 128) {
4645 llvm::Type *ResType = llvm::VectorType::get(
4646 llvm::Type::getInt32Ty(getVMContext()), 4);
4647 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) {
4648 markAllocatedGPRs(2, 4);
4649 } else {
4650 markAllocatedVFPs(4, 4);
4651 IsCPRC = true;
4652 }
4653 return ABIArgInfo::getDirect(ResType);
4654 }
4655 markAllocatedGPRs(1, 1);
4656 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4657 }
4658 // Update VFPRegs for legal vector types.
4659 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
4660 if (const VectorType *VT = Ty->getAs<VectorType>()) {
4661 uint64_t Size = getContext().getTypeSize(VT);
4662 // Size of a legal vector should be power of 2 and above 64.
4663 markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32);
4664 IsCPRC = true;
4665 }
4666 }
4667 // Update VFPRegs for floating point types.
4668 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
4669 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4670 if (BT->getKind() == BuiltinType::Half ||
4671 BT->getKind() == BuiltinType::Float) {
4672 markAllocatedVFPs(1, 1);
4673 IsCPRC = true;
4674 }
4675 if (BT->getKind() == BuiltinType::Double ||
4676 BT->getKind() == BuiltinType::LongDouble) {
4677 markAllocatedVFPs(2, 2);
4678 IsCPRC = true;
4679 }
4680 }
4681 }
4682
4683 if (!isAggregateTypeForABI(Ty)) {
4684 // Treat an enum type as its underlying type.
4685 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
4686 Ty = EnumTy->getDecl()->getIntegerType();
4687 }
4688
4689 unsigned Size = getContext().getTypeSize(Ty);
4690 if (!IsCPRC)
4691 markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32);
4692 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4693 : ABIArgInfo::getDirect());
4694 }
4695
4696 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4697 markAllocatedGPRs(1, 1);
4698 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4699 }
4700
4701 // Ignore empty records.
4702 if (isEmptyRecord(getContext(), Ty, true))
4703 return ABIArgInfo::getIgnore();
4704
4705 if (IsEffectivelyAAPCS_VFP) {
4706 // Homogeneous Aggregates need to be expanded when we can fit the aggregate
4707 // into VFP registers.
4708 const Type *Base = nullptr;
4709 uint64_t Members = 0;
4710 if (isHomogeneousAggregate(Ty, Base, Members)) {
4711 assert(Base && "Base class should be set for homogeneous aggregate");
4712 // Base can be a floating-point or a vector.
4713 if (Base->isVectorType()) {
4714 // ElementSize is in number of floats.
4715 unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
4716 markAllocatedVFPs(ElementSize,
4717 Members * ElementSize);
4718 } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
4719 markAllocatedVFPs(1, Members);
4720 else {
4721 assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
4722 Base->isSpecificBuiltinType(BuiltinType::LongDouble));
4723 markAllocatedVFPs(2, Members * 2);
4724 }
4725 IsCPRC = true;
4726 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4727 }
4728 }
4729
4730 // Support byval for ARM.
4731 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
4732 // most 8-byte. We realign the indirect argument if type alignment is bigger
4733 // than ABI alignment.
4734 uint64_t ABIAlign = 4;
4735 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
4736 if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4737 getABIKind() == ARMABIInfo::AAPCS)
4738 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4739 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
4740 // Update Allocated GPRs. Since this is only used when the size of the
4741 // argument is greater than 64 bytes, this will always use up any available
4742 // registers (of which there are 4). We also don't care about getting the
4743 // alignment right, because general-purpose registers cannot be back-filled.
4744 markAllocatedGPRs(1, 4);
4745 return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true,
4746 /*Realign=*/TyAlign > ABIAlign);
4747 }
4748
4749 // Otherwise, pass by coercing to a structure of the appropriate size.
4750 llvm::Type* ElemTy;
4751 unsigned SizeRegs;
4752 // FIXME: Try to match the types of the arguments more accurately where
4753 // we can.
4754 if (getContext().getTypeAlign(Ty) <= 32) {
4755 ElemTy = llvm::Type::getInt32Ty(getVMContext());
4756 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
4757 markAllocatedGPRs(1, SizeRegs);
4758 } else {
4759 ElemTy = llvm::Type::getInt64Ty(getVMContext());
4760 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
4761 markAllocatedGPRs(2, SizeRegs * 2);
4762 }
4763
4764 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
4765}
4766
4767static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
4768 llvm::LLVMContext &VMContext) {
4769 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
4770 // is called integer-like if its size is less than or equal to one word, and
4771 // the offset of each of its addressable sub-fields is zero.
4772
4773 uint64_t Size = Context.getTypeSize(Ty);
4774
4775 // Check that the type fits in a word.
4776 if (Size > 32)
4777 return false;
4778
4779 // FIXME: Handle vector types!
4780 if (Ty->isVectorType())
4781 return false;
4782
4783 // Float types are never treated as "integer like".
4784 if (Ty->isRealFloatingType())
4785 return false;
4786
4787 // If this is a builtin or pointer type then it is ok.
4788 if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
4789 return true;
4790
4791 // Small complex integer types are "integer like".
4792 if (const ComplexType *CT = Ty->getAs<ComplexType>())
4793 return isIntegerLikeType(CT->getElementType(), Context, VMContext);
4794
4795 // Single element and zero sized arrays should be allowed, by the definition
4796 // above, but they are not.
4797
4798 // Otherwise, it must be a record type.
4799 const RecordType *RT = Ty->getAs<RecordType>();
4800 if (!RT) return false;
4801
4802 // Ignore records with flexible arrays.
4803 const RecordDecl *RD = RT->getDecl();
4804 if (RD->hasFlexibleArrayMember())
4805 return false;
4806
4807 // Check that all sub-fields are at offset 0, and are themselves "integer
4808 // like".
4809 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
4810
4811 bool HadField = false;
4812 unsigned idx = 0;
4813 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4814 i != e; ++i, ++idx) {
4815 const FieldDecl *FD = *i;
4816
4817 // Bit-fields are not addressable, we only need to verify they are "integer
4818 // like". We still have to disallow a subsequent non-bitfield, for example:
4819 // struct { int : 0; int x }
4820 // is non-integer like according to gcc.
4821 if (FD->isBitField()) {
4822 if (!RD->isUnion())
4823 HadField = true;
4824
4825 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4826 return false;
4827
4828 continue;
4829 }
4830
4831 // Check if this field is at offset 0.
4832 if (Layout.getFieldOffset(idx) != 0)
4833 return false;
4834
4835 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4836 return false;
4837
4838 // Only allow at most one field in a structure. This doesn't match the
4839 // wording above, but follows gcc in situations with a field following an
4840 // empty structure.
4841 if (!RD->isUnion()) {
4842 if (HadField)
4843 return false;
4844
4845 HadField = true;
4846 }
4847 }
4848
4849 return true;
4850}
4851
4852ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
4853 bool isVariadic) const {
4854 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4855
4856 if (RetTy->isVoidType())
4857 return ABIArgInfo::getIgnore();
4858
4859 // Large vector types should be returned via memory.
4860 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
4861 markAllocatedGPRs(1, 1);
4862 return ABIArgInfo::getIndirect(0);
4863 }
4864
4865 if (!isAggregateTypeForABI(RetTy)) {
4866 // Treat an enum type as its underlying type.
4867 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4868 RetTy = EnumTy->getDecl()->getIntegerType();
4869
4870 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4871 : ABIArgInfo::getDirect();
4872 }
4873
4874 // Are we following APCS?
4875 if (getABIKind() == APCS) {
4876 if (isEmptyRecord(getContext(), RetTy, false))
4877 return ABIArgInfo::getIgnore();
4878
4879 // Complex types are all returned as packed integers.
4880 //
4881 // FIXME: Consider using 2 x vector types if the back end handles them
4882 // correctly.
4883 if (RetTy->isAnyComplexType())
4884 return ABIArgInfo::getDirect(llvm::IntegerType::get(
4885 getVMContext(), getContext().getTypeSize(RetTy)));
4886
4887 // Integer like structures are returned in r0.
4888 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
4889 // Return in the smallest viable integer type.
4890 uint64_t Size = getContext().getTypeSize(RetTy);
4891 if (Size <= 8)
4892 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4893 if (Size <= 16)
4894 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4895 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4896 }
4897
4898 // Otherwise return in memory.
4899 markAllocatedGPRs(1, 1);
4900 return ABIArgInfo::getIndirect(0);
4901 }
4902
4903 // Otherwise this is an AAPCS variant.
4904
4905 if (isEmptyRecord(getContext(), RetTy, true))
4906 return ABIArgInfo::getIgnore();
4907
4908 // Check for homogeneous aggregates with AAPCS-VFP.
4909 if (IsEffectivelyAAPCS_VFP) {
4910 const Type *Base = nullptr;
4911 uint64_t Members;
4912 if (isHomogeneousAggregate(RetTy, Base, Members)) {
4913 assert(Base && "Base class should be set for homogeneous aggregate");
4914 // Homogeneous Aggregates are returned directly.
4915 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4916 }
4917 }
4918
4919 // Aggregates <= 4 bytes are returned in r0; other aggregates
4920 // are returned indirectly.
4921 uint64_t Size = getContext().getTypeSize(RetTy);
4922 if (Size <= 32) {
4923 if (getDataLayout().isBigEndian())
4924 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
4925 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4926
4927 // Return in the smallest viable integer type.
4928 if (Size <= 8)
4929 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4930 if (Size <= 16)
4931 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4932 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4933 }
4934
4935 markAllocatedGPRs(1, 1);
4936 return ABIArgInfo::getIndirect(0);
4937}
4938
4939/// isIllegalVector - check whether Ty is an illegal vector type.
4940bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
4941 if (const VectorType *VT = Ty->getAs<VectorType>()) {
4942 // Check whether VT is legal.
4943 unsigned NumElements = VT->getNumElements();
4944 uint64_t Size = getContext().getTypeSize(VT);
4945 // NumElements should be power of 2.
4946 if ((NumElements & (NumElements - 1)) != 0)
4947 return true;
4948 // Size should be greater than 32 bits.
4949 return Size <= 32;
4950 }
4951 return false;
4952}
4953
4954bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4955 // Homogeneous aggregates for AAPCS-VFP must have base types of float,
4956 // double, or 64-bit or 128-bit vectors.
4957 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4958 if (BT->getKind() == BuiltinType::Float ||
4959 BT->getKind() == BuiltinType::Double ||
4960 BT->getKind() == BuiltinType::LongDouble)
4961 return true;
4962 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4963 unsigned VecSize = getContext().getTypeSize(VT);
4964 if (VecSize == 64 || VecSize == 128)
4965 return true;
4966 }
4967 return false;
4968}
4969
4970bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4971 uint64_t Members) const {
4972 return Members <= 4;
4973}
4974
4975llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4976 CodeGenFunction &CGF) const {
4977 llvm::Type *BP = CGF.Int8PtrTy;
4978 llvm::Type *BPP = CGF.Int8PtrPtrTy;
4979
4980 CGBuilderTy &Builder = CGF.Builder;
4981 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4982 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4983
4984 if (isEmptyRecord(getContext(), Ty, true)) {
4985 // These are ignored for parameter passing purposes.
4986 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4987 return Builder.CreateBitCast(Addr, PTy);
4988 }
4989
4990 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4991 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
4992 bool IsIndirect = false;
4993
4994 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
4995 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
4996 if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4997 getABIKind() == ARMABIInfo::AAPCS)
4998 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4999 else
5000 TyAlign = 4;
5001 // Use indirect if size of the illegal vector is bigger than 16 bytes.
5002 if (isIllegalVectorType(Ty) && Size > 16) {
5003 IsIndirect = true;
5004 Size = 4;
5005 TyAlign = 4;
5006 }
5007
5008 // Handle address alignment for ABI alignment > 4 bytes.
5009 if (TyAlign > 4) {
5010 assert((TyAlign & (TyAlign - 1)) == 0 &&
5011 "Alignment is not power of 2!");
5012 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
5013 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
5014 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
5015 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
5016 }
5017
5018 uint64_t Offset =
5019 llvm::RoundUpToAlignment(Size, 4);
5020 llvm::Value *NextAddr =
5021 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5022 "ap.next");
5023 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5024
5025 if (IsIndirect)
5026 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
5027 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
5028 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
5029 // may not be correctly aligned for the vector type. We create an aligned
5030 // temporary space and copy the content over from ap.cur to the temporary
5031 // space. This is necessary if the natural alignment of the type is greater
5032 // than the ABI alignment.
5033 llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
5034 CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
5035 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
5036 "var.align");
5037 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
5038 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
5039 Builder.CreateMemCpy(Dst, Src,
5040 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
5041 TyAlign, false);
5042 Addr = AlignedTemp; //The content is in aligned location.
5043 }
5044 llvm::Type *PTy =
5045 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5046 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5047
5048 return AddrTyped;
5049}
5050
5051namespace {
5052
5053class NaClARMABIInfo : public ABIInfo {
5054 public:
5055 NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
5056 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
5057 void computeInfo(CGFunctionInfo &FI) const override;
5058 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5059 CodeGenFunction &CGF) const override;
5060 private:
5061 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
5062 ARMABIInfo NInfo; // Used for everything else.
5063};
5064
5065class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo {
5066 public:
5067 NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
5068 : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
5069};
5070
5071}
5072
5073void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5074 if (FI.getASTCallingConvention() == CC_PnaclCall)
5075 PInfo.computeInfo(FI);
5076 else
5077 static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
5078}
5079
5080llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5081 CodeGenFunction &CGF) const {
5082 // Always use the native convention; calling pnacl-style varargs functions
5083 // is unsupported.
5084 return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
5085}
5086
5087//===----------------------------------------------------------------------===//
5088// NVPTX ABI Implementation
5089//===----------------------------------------------------------------------===//
5090
5091namespace {
5092
5093class NVPTXABIInfo : public ABIInfo {
5094public:
5095 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5096
5097 ABIArgInfo classifyReturnType(QualType RetTy) const;
5098 ABIArgInfo classifyArgumentType(QualType Ty) const;
5099
5100 void computeInfo(CGFunctionInfo &FI) const override;
5101 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5102 CodeGenFunction &CFG) const override;
5103};
5104
5105class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5106public:
5107 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5108 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5109
5110 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5111 CodeGen::CodeGenModule &M) const override;
5112private:
5113 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5114 // resulting MDNode to the nvvm.annotations MDNode.
5115 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5116};
5117
5118ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5119 if (RetTy->isVoidType())
5120 return ABIArgInfo::getIgnore();
5121
5122 // note: this is different from default ABI
5123 if (!RetTy->isScalarType())
5124 return ABIArgInfo::getDirect();
5125
5126 // Treat an enum type as its underlying type.
5127 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5128 RetTy = EnumTy->getDecl()->getIntegerType();
5129
5130 return (RetTy->isPromotableIntegerType() ?
5131 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5132}
5133
5134ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5135 // Treat an enum type as its underlying type.
5136 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5137 Ty = EnumTy->getDecl()->getIntegerType();
5138
5139 // Return aggregates type as indirect by value
5140 if (isAggregateTypeForABI(Ty))
5141 return ABIArgInfo::getIndirect(0, /* byval */ true);
5142
5143 return (Ty->isPromotableIntegerType() ?
5144 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5145}
5146
5147void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5148 if (!getCXXABI().classifyReturnType(FI))
5149 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5150 for (auto &I : FI.arguments())
5151 I.info = classifyArgumentType(I.type);
5152
5153 // Always honor user-specified calling convention.
5154 if (FI.getCallingConvention() != llvm::CallingConv::C)
5155 return;
5156
5157 FI.setEffectiveCallingConvention(getRuntimeCC());
5158}
5159
5160llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5161 CodeGenFunction &CFG) const {
5162 llvm_unreachable("NVPTX does not support varargs");
5163}
5164
5165void NVPTXTargetCodeGenInfo::
5166SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5167 CodeGen::CodeGenModule &M) const{
5168 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5169 if (!FD) return;
5170
5171 llvm::Function *F = cast<llvm::Function>(GV);
5172
5173 // Perform special handling in OpenCL mode
5174 if (M.getLangOpts().OpenCL) {
5175 // Use OpenCL function attributes to check for kernel functions
5176 // By default, all functions are device functions
5177 if (FD->hasAttr<OpenCLKernelAttr>()) {
5178 // OpenCL __kernel functions get kernel metadata
5179 // Create !{<func-ref>, metadata !"kernel", i32 1} node
5180 addNVVMMetadata(F, "kernel", 1);
5181 // And kernel functions are not subject to inlining
5182 F->addFnAttr(llvm::Attribute::NoInline);
5183 }
5184 }
5185
5186 // Perform special handling in CUDA mode.
5187 if (M.getLangOpts().CUDA) {
5188 // CUDA __global__ functions get a kernel metadata entry. Since
5189 // __global__ functions cannot be called from the device, we do not
5190 // need to set the noinline attribute.
5191 if (FD->hasAttr<CUDAGlobalAttr>()) {
5192 // Create !{<func-ref>, metadata !"kernel", i32 1} node
5193 addNVVMMetadata(F, "kernel", 1);
5194 }
5195 if (FD->hasAttr<CUDALaunchBoundsAttr>()) {
5196 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5197 addNVVMMetadata(F, "maxntidx",
5198 FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads());
5199 // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a
5200 // zero value from getMinBlocks either means it was not specified in
5201 // __launch_bounds__ or the user specified a 0 value. In both cases, we
5202 // don't have to add a PTX directive.
5203 int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks();
5204 if (MinCTASM > 0) {
5205 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5206 addNVVMMetadata(F, "minctasm", MinCTASM);
5207 }
5208 }
5209 }
5210}
5211
5212void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5213 int Operand) {
5214 llvm::Module *M = F->getParent();
5215 llvm::LLVMContext &Ctx = M->getContext();
5216
5217 // Get "nvvm.annotations" metadata node
5218 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5219
5220 llvm::Metadata *MDVals[] = {
5221 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5222 llvm::ConstantAsMetadata::get(
5223 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5224 // Append metadata to nvvm.annotations
5225 MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5226}
5227}
5228
5229//===----------------------------------------------------------------------===//
5230// SystemZ ABI Implementation
5231//===----------------------------------------------------------------------===//
5232
5233namespace {
5234
5235class SystemZABIInfo : public ABIInfo {
5236public:
5237 SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5238
5239 bool isPromotableIntegerType(QualType Ty) const;
5240 bool isCompoundType(QualType Ty) const;
5241 bool isFPArgumentType(QualType Ty) const;
5242
5243 ABIArgInfo classifyReturnType(QualType RetTy) const;
5244 ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5245
5246 void computeInfo(CGFunctionInfo &FI) const override {
5247 if (!getCXXABI().classifyReturnType(FI))
5248 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5249 for (auto &I : FI.arguments())
5250 I.info = classifyArgumentType(I.type);
5251 }
5252
5253 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5254 CodeGenFunction &CGF) const override;
5255};
5256
5257class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5258public:
5259 SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
5260 : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
5261};
5262
5263}
5264
5265bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5266 // Treat an enum type as its underlying type.
5267 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5268 Ty = EnumTy->getDecl()->getIntegerType();
5269
5270 // Promotable integer types are required to be promoted by the ABI.
5271 if (Ty->isPromotableIntegerType())
5272 return true;
5273
5274 // 32-bit values must also be promoted.
5275 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5276 switch (BT->getKind()) {
5277 case BuiltinType::Int:
5278 case BuiltinType::UInt:
5279 return true;
5280 default:
5281 return false;
5282 }
5283 return false;
5284}
5285
5286bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5287 return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
5288}
5289
5290bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5291 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5292 switch (BT->getKind()) {
5293 case BuiltinType::Float:
5294 case BuiltinType::Double:
5295 return true;
5296 default:
5297 return false;
5298 }
5299
5300 if (const RecordType *RT = Ty->getAsStructureType()) {
5301 const RecordDecl *RD = RT->getDecl();
5302 bool Found = false;
5303
5304 // If this is a C++ record, check the bases first.
5305 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5306 for (const auto &I : CXXRD->bases()) {
5307 QualType Base = I.getType();
5308
5309 // Empty bases don't affect things either way.
5310 if (isEmptyRecord(getContext(), Base, true))
5311 continue;
5312
5313 if (Found)
5314 return false;
5315 Found = isFPArgumentType(Base);
5316 if (!Found)
5317 return false;
5318 }
5319
5320 // Check the fields.
5321 for (const auto *FD : RD->fields()) {
5322 // Empty bitfields don't affect things either way.
5323 // Unlike isSingleElementStruct(), empty structure and array fields
5324 // do count. So do anonymous bitfields that aren't zero-sized.
5325 if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5326 return true;
5327
5328 // Unlike isSingleElementStruct(), arrays do not count.
5329 // Nested isFPArgumentType structures still do though.
5330 if (Found)
5331 return false;
5332 Found = isFPArgumentType(FD->getType());
5333 if (!Found)
5334 return false;
5335 }
5336
5337 // Unlike isSingleElementStruct(), trailing padding is allowed.
5338 // An 8-byte aligned struct s { float f; } is passed as a double.
5339 return Found;
5340 }
5341
5342 return false;
5343}
5344
5345llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5346 CodeGenFunction &CGF) const {
5347 // Assume that va_list type is correct; should be pointer to LLVM type:
5348 // struct {
5349 // i64 __gpr;
5350 // i64 __fpr;
5351 // i8 *__overflow_arg_area;
5352 // i8 *__reg_save_area;
5353 // };
5354
5355 // Every argument occupies 8 bytes and is passed by preference in either
5356 // GPRs or FPRs.
5357 Ty = CGF.getContext().getCanonicalType(Ty);
5358 ABIArgInfo AI = classifyArgumentType(Ty);
5359 bool InFPRs = isFPArgumentType(Ty);
5360
5361 llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
5362 bool IsIndirect = AI.isIndirect();
5363 unsigned UnpaddedBitSize;
5364 if (IsIndirect) {
5365 APTy = llvm::PointerType::getUnqual(APTy);
5366 UnpaddedBitSize = 64;
5367 } else
5368 UnpaddedBitSize = getContext().getTypeSize(Ty);
5369 unsigned PaddedBitSize = 64;
5370 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
5371
5372 unsigned PaddedSize = PaddedBitSize / 8;
5373 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
5374
5375 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
5376 if (InFPRs) {
5377 MaxRegs = 4; // Maximum of 4 FPR arguments
5378 RegCountField = 1; // __fpr
5379 RegSaveIndex = 16; // save offset for f0
5380 RegPadding = 0; // floats are passed in the high bits of an FPR
5381 } else {
5382 MaxRegs = 5; // Maximum of 5 GPR arguments
5383 RegCountField = 0; // __gpr
5384 RegSaveIndex = 2; // save offset for r2
5385 RegPadding = Padding; // values are passed in the low bits of a GPR
5386 }
5387
5388 llvm::Value *RegCountPtr =
5389 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
5390 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5391 llvm::Type *IndexTy = RegCount->getType();
5392 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5393 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5394 "fits_in_regs");
5395
5396 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5397 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5398 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5399 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5400
5401 // Emit code to load the value if it was passed in registers.
5402 CGF.EmitBlock(InRegBlock);
5403
5404 // Work out the address of an argument register.
5405 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
5406 llvm::Value *ScaledRegCount =
5407 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5408 llvm::Value *RegBase =
5409 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
5410 llvm::Value *RegOffset =
5411 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5412 llvm::Value *RegSaveAreaPtr =
5413 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
5414 llvm::Value *RegSaveArea =
5415 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5416 llvm::Value *RawRegAddr =
5417 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
5418 llvm::Value *RegAddr =
5419 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
5420
5421 // Update the register count
5422 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5423 llvm::Value *NewRegCount =
5424 CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5425 CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5426 CGF.EmitBranch(ContBlock);
5427
5428 // Emit code to load the value if it was passed in memory.
5429 CGF.EmitBlock(InMemBlock);
5430
5431 // Work out the address of a stack argument.
5432 llvm::Value *OverflowArgAreaPtr =
5433 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
5434 llvm::Value *OverflowArgArea =
5435 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
5436 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
5437 llvm::Value *RawMemAddr =
5438 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
5439 llvm::Value *MemAddr =
5440 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
5441
5442 // Update overflow_arg_area_ptr pointer
5443 llvm::Value *NewOverflowArgArea =
5444 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
5445 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5446 CGF.EmitBranch(ContBlock);
5447
5448 // Return the appropriate result.
5449 CGF.EmitBlock(ContBlock);
5450 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
5451 ResAddr->addIncoming(RegAddr, InRegBlock);
5452 ResAddr->addIncoming(MemAddr, InMemBlock);
5453
5454 if (IsIndirect)
5455 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
5456
5457 return ResAddr;
5458}
5459
5460ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5461 if (RetTy->isVoidType())
5462 return ABIArgInfo::getIgnore();
5463 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5464 return ABIArgInfo::getIndirect(0);
5465 return (isPromotableIntegerType(RetTy) ?
5466 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5467}
5468
5469ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5470 // Handle the generic C++ ABI.
5471 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5472 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5473
5474 // Integers and enums are extended to full register width.
5475 if (isPromotableIntegerType(Ty))
5476 return ABIArgInfo::getExtend();
5477
5478 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5479 uint64_t Size = getContext().getTypeSize(Ty);
5480 if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5481 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5482
5483 // Handle small structures.
5484 if (const RecordType *RT = Ty->getAs<RecordType>()) {
5485 // Structures with flexible arrays have variable length, so really
5486 // fail the size test above.
5487 const RecordDecl *RD = RT->getDecl();
5488 if (RD->hasFlexibleArrayMember())
5489 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5490
5491 // The structure is passed as an unextended integer, a float, or a double.
5492 llvm::Type *PassTy;
5493 if (isFPArgumentType(Ty)) {
5494 assert(Size == 32 || Size == 64);
5495 if (Size == 32)
5496 PassTy = llvm::Type::getFloatTy(getVMContext());
5497 else
5498 PassTy = llvm::Type::getDoubleTy(getVMContext());
5499 } else
5500 PassTy = llvm::IntegerType::get(getVMContext(), Size);
5501 return ABIArgInfo::getDirect(PassTy);
5502 }
5503
5504 // Non-structure compounds are passed indirectly.
5505 if (isCompoundType(Ty))
5506 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5507
5508 return ABIArgInfo::getDirect(nullptr);
5509}
5510
5511//===----------------------------------------------------------------------===//
5512// MSP430 ABI Implementation
5513//===----------------------------------------------------------------------===//
5514
5515namespace {
5516
5517class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5518public:
5519 MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5520 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5521 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5522 CodeGen::CodeGenModule &M) const override;
5523};
5524
5525}
5526
5527void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5528 llvm::GlobalValue *GV,
5529 CodeGen::CodeGenModule &M) const {
5530 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5531 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5532 // Handle 'interrupt' attribute:
5533 llvm::Function *F = cast<llvm::Function>(GV);
5534
5535 // Step 1: Set ISR calling convention.
5536 F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5537
5538 // Step 2: Add attributes goodness.
5539 F->addFnAttr(llvm::Attribute::NoInline);
5540
5541 // Step 3: Emit ISR vector alias.
5542 unsigned Num = attr->getNumber() / 2;
5543 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5544 "__isr_" + Twine(Num), F);
5545 }
5546 }
5547}
5548
5549//===----------------------------------------------------------------------===//
5550// MIPS ABI Implementation. This works for both little-endian and
5551// big-endian variants.
5552//===----------------------------------------------------------------------===//
5553
5554namespace {
5555class MipsABIInfo : public ABIInfo {
5556 bool IsO32;
5557 unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5558 void CoerceToIntArgs(uint64_t TySize,
5559 SmallVectorImpl<llvm::Type *> &ArgList) const;
5560 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5561 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5562 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5563public:
5564 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5565 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5566 StackAlignInBytes(IsO32 ? 8 : 16) {}
5567
5568 ABIArgInfo classifyReturnType(QualType RetTy) const;
5569 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5570 void computeInfo(CGFunctionInfo &FI) const override;
5571 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5572 CodeGenFunction &CGF) const override;
5573};
5574
5575class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5576 unsigned SizeOfUnwindException;
5577public:
5578 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5579 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5580 SizeOfUnwindException(IsO32 ? 24 : 32) {}
5581
5582 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5583 return 29;
5584 }
5585
5586 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5587 CodeGen::CodeGenModule &CGM) const override {
5588 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5589 if (!FD) return;
5590 llvm::Function *Fn = cast<llvm::Function>(GV);
5591 if (FD->hasAttr<Mips16Attr>()) {
5592 Fn->addFnAttr("mips16");
5593 }
5594 else if (FD->hasAttr<NoMips16Attr>()) {
5595 Fn->addFnAttr("nomips16");
5596 }
5597 }
5598
5599 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5600 llvm::Value *Address) const override;
5601
5602 unsigned getSizeOfUnwindException() const override {
5603 return SizeOfUnwindException;
5604 }
5605};
5606}
5607
5608void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
5609 SmallVectorImpl<llvm::Type *> &ArgList) const {
5610 llvm::IntegerType *IntTy =
5611 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
5612
5613 // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
5614 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
5615 ArgList.push_back(IntTy);
5616
5617 // If necessary, add one more integer type to ArgList.
5618 unsigned R = TySize % (MinABIStackAlignInBytes * 8);
5619
5620 if (R)
5621 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
5622}
5623
5624// In N32/64, an aligned double precision floating point field is passed in
5625// a register.
5626llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
5627 SmallVector<llvm::Type*, 8> ArgList, IntArgList;
5628
5629 if (IsO32) {
5630 CoerceToIntArgs(TySize, ArgList);
5631 return llvm::StructType::get(getVMContext(), ArgList);
5632 }
5633
5634 if (Ty->isComplexType())
5635 return CGT.ConvertType(Ty);
5636
5637 const RecordType *RT = Ty->getAs<RecordType>();
5638
5639 // Unions/vectors are passed in integer registers.
5640 if (!RT || !RT->isStructureOrClassType()) {
5641 CoerceToIntArgs(TySize, ArgList);
5642 return llvm::StructType::get(getVMContext(), ArgList);
5643 }
5644
5645 const RecordDecl *RD = RT->getDecl();
5646 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5647 assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
5648
5649 uint64_t LastOffset = 0;
5650 unsigned idx = 0;
5651 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
5652
5653 // Iterate over fields in the struct/class and check if there are any aligned
5654 // double fields.
5655 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5656 i != e; ++i, ++idx) {
5657 const QualType Ty = i->getType();
5658 const BuiltinType *BT = Ty->getAs<BuiltinType>();
5659
5660 if (!BT || BT->getKind() != BuiltinType::Double)
5661 continue;
5662
5663 uint64_t Offset = Layout.getFieldOffset(idx);
5664 if (Offset % 64) // Ignore doubles that are not aligned.
5665 continue;
5666
5667 // Add ((Offset - LastOffset) / 64) args of type i64.
5668 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
5669 ArgList.push_back(I64);
5670
5671 // Add double type.
5672 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
5673 LastOffset = Offset + 64;
5674 }
5675
5676 CoerceToIntArgs(TySize - LastOffset, IntArgList);
5677 ArgList.append(IntArgList.begin(), IntArgList.end());
5678
5679 return llvm::StructType::get(getVMContext(), ArgList);
5680}
5681
5682llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
5683 uint64_t Offset) const {
5684 if (OrigOffset + MinABIStackAlignInBytes > Offset)
5685 return nullptr;
5686
5687 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
5688}
5689
5690ABIArgInfo
5691MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
5692 Ty = useFirstFieldIfTransparentUnion(Ty);
5693
5694 uint64_t OrigOffset = Offset;
5695 uint64_t TySize = getContext().getTypeSize(Ty);
5696 uint64_t Align = getContext().getTypeAlign(Ty) / 8;
5697
5698 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
5699 (uint64_t)StackAlignInBytes);
5700 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
5701 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
5702
5703 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
5704 // Ignore empty aggregates.
5705 if (TySize == 0)
5706 return ABIArgInfo::getIgnore();
5707
5708 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5709 Offset = OrigOffset + MinABIStackAlignInBytes;
5710 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5711 }
5712
5713 // If we have reached here, aggregates are passed directly by coercing to
5714 // another structure type. Padding is inserted if the offset of the
5715 // aggregate is unaligned.
5716 ABIArgInfo ArgInfo =
5717 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
5718 getPaddingType(OrigOffset, CurrOffset));
5719 ArgInfo.setInReg(true);
5720 return ArgInfo;
5721 }
5722
5723 // Treat an enum type as its underlying type.
5724 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5725 Ty = EnumTy->getDecl()->getIntegerType();
5726
5727 // All integral types are promoted to the GPR width.
5728 if (Ty->isIntegralOrEnumerationType())
5729 return ABIArgInfo::getExtend();
5730
5731 return ABIArgInfo::getDirect(
5732 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
5733}
5734
5735llvm::Type*
5736MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
5737 const RecordType *RT = RetTy->getAs<RecordType>();
5738 SmallVector<llvm::Type*, 8> RTList;
5739
5740 if (RT && RT->isStructureOrClassType()) {
5741 const RecordDecl *RD = RT->getDecl();
5742 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5743 unsigned FieldCnt = Layout.getFieldCount();
5744
5745 // N32/64 returns struct/classes in floating point registers if the
5746 // following conditions are met:
5747 // 1. The size of the struct/class is no larger than 128-bit.
5748 // 2. The struct/class has one or two fields all of which are floating
5749 // point types.
5750 // 3. The offset of the first field is zero (this follows what gcc does).
5751 //
5752 // Any other composite results are returned in integer registers.
5753 //
5754 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
5755 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
5756 for (; b != e; ++b) {
5757 const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
5758
5759 if (!BT || !BT->isFloatingPoint())
5760 break;
5761
5762 RTList.push_back(CGT.ConvertType(b->getType()));
5763 }
5764
5765 if (b == e)
5766 return llvm::StructType::get(getVMContext(), RTList,
5767 RD->hasAttr<PackedAttr>());
5768
5769 RTList.clear();
5770 }
5771 }
5772
5773 CoerceToIntArgs(Size, RTList);
5774 return llvm::StructType::get(getVMContext(), RTList);
5775}
5776
5777ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
5778 uint64_t Size = getContext().getTypeSize(RetTy);
5779
5780 if (RetTy->isVoidType())
5781 return ABIArgInfo::getIgnore();
5782
5783 // O32 doesn't treat zero-sized structs differently from other structs.
5784 // However, N32/N64 ignores zero sized return values.
5785 if (!IsO32 && Size == 0)
5786 return ABIArgInfo::getIgnore();
5787
5788 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
5789 if (Size <= 128) {
5790 if (RetTy->isAnyComplexType())
5791 return ABIArgInfo::getDirect();
5792
5793 // O32 returns integer vectors in registers and N32/N64 returns all small
5794 // aggregates in registers.
5795 if (!IsO32 ||
5796 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
5797 ABIArgInfo ArgInfo =
5798 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
5799 ArgInfo.setInReg(true);
5800 return ArgInfo;
5801 }
5802 }
5803
5804 return ABIArgInfo::getIndirect(0);
5805 }
5806
5807 // Treat an enum type as its underlying type.
5808 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5809 RetTy = EnumTy->getDecl()->getIntegerType();
5810
5811 return (RetTy->isPromotableIntegerType() ?
5812 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5813}
5814
5815void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
5816 ABIArgInfo &RetInfo = FI.getReturnInfo();
5817 if (!getCXXABI().classifyReturnType(FI))
5818 RetInfo = classifyReturnType(FI.getReturnType());
5819
5820 // Check if a pointer to an aggregate is passed as a hidden argument.
5821 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
5822
5823 for (auto &I : FI.arguments())
5824 I.info = classifyArgumentType(I.type, Offset);
5825}
5826
5827llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5828 CodeGenFunction &CGF) const {
5829 llvm::Type *BP = CGF.Int8PtrTy;
5830 llvm::Type *BPP = CGF.Int8PtrPtrTy;
5831
5832 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
5833 // Pointers are also promoted in the same way but this only matters for N32.
5834 unsigned SlotSizeInBits = IsO32 ? 32 : 64;
5835 unsigned PtrWidth = getTarget().getPointerWidth(0);
5836 if ((Ty->isIntegerType() &&
5837 CGF.getContext().getIntWidth(Ty) < SlotSizeInBits) ||
5838 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
5839 Ty = CGF.getContext().getIntTypeForBitwidth(SlotSizeInBits,
5840 Ty->isSignedIntegerType());
5841 }
5842
5843 CGBuilderTy &Builder = CGF.Builder;
5844 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5845 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5846 int64_t TypeAlign =
5847 std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes);
5848 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5849 llvm::Value *AddrTyped;
5850 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
5851
5852 if (TypeAlign > MinABIStackAlignInBytes) {
5853 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
5854 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
5855 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
5856 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
5857 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
5858 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
5859 }
5860 else
5861 AddrTyped = Builder.CreateBitCast(Addr, PTy);
5862
5863 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
5864 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
5865 unsigned ArgSizeInBits = CGF.getContext().getTypeSize(Ty);
5866 uint64_t Offset = llvm::RoundUpToAlignment(ArgSizeInBits / 8, TypeAlign);
5867 llvm::Value *NextAddr =
5868 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
5869 "ap.next");
5870 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5871
5872 return AddrTyped;
5873}
5874
5875bool
5876MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5877 llvm::Value *Address) const {
5878 // This information comes from gcc's implementation, which seems to
5879 // as canonical as it gets.
5880
5881 // Everything on MIPS is 4 bytes. Double-precision FP registers
5882 // are aliased to pairs of single-precision FP registers.
5883 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5884
5885 // 0-31 are the general purpose registers, $0 - $31.
5886 // 32-63 are the floating-point registers, $f0 - $f31.
5887 // 64 and 65 are the multiply/divide registers, $hi and $lo.
5888 // 66 is the (notional, I think) register for signal-handler return.
5889 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
5890
5891 // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
5892 // They are one bit wide and ignored here.
5893
5894 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
5895 // (coprocessor 1 is the FP unit)
5896 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
5897 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
5898 // 176-181 are the DSP accumulator registers.
5899 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
5900 return false;
5901}
5902
5903//===----------------------------------------------------------------------===//
5904// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
5905// Currently subclassed only to implement custom OpenCL C function attribute
5906// handling.
5907//===----------------------------------------------------------------------===//
5908
5909namespace {
5910
5911class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5912public:
5913 TCETargetCodeGenInfo(CodeGenTypes &CGT)
5914 : DefaultTargetCodeGenInfo(CGT) {}
5915
5916 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5917 CodeGen::CodeGenModule &M) const override;
5918};
5919
5920void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5921 llvm::GlobalValue *GV,
5922 CodeGen::CodeGenModule &M) const {
5923 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5924 if (!FD) return;
5925
5926 llvm::Function *F = cast<llvm::Function>(GV);
5927
5928 if (M.getLangOpts().OpenCL) {
5929 if (FD->hasAttr<OpenCLKernelAttr>()) {
5930 // OpenCL C Kernel functions are not subject to inlining
5931 F->addFnAttr(llvm::Attribute::NoInline);
5932 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
5933 if (Attr) {
5934 // Convert the reqd_work_group_size() attributes to metadata.
5935 llvm::LLVMContext &Context = F->getContext();
5936 llvm::NamedMDNode *OpenCLMetadata =
5937 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5938
5939 SmallVector<llvm::Metadata *, 5> Operands;
5940 Operands.push_back(llvm::ConstantAsMetadata::get(F));
5941
5942 Operands.push_back(
5943 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5944 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
5945 Operands.push_back(
5946 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5947 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
5948 Operands.push_back(
5949 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5950 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
5951
5952 // Add a boolean constant operand for "required" (true) or "hint" (false)
5953 // for implementing the work_group_size_hint attr later. Currently
5954 // always true as the hint is not yet implemented.
5955 Operands.push_back(
5956 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
5957 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5958 }
5959 }
5960 }
5961}
5962
5963}
5964
5965//===----------------------------------------------------------------------===//
5966// Hexagon ABI Implementation
5967//===----------------------------------------------------------------------===//
5968
5969namespace {
5970
5971class HexagonABIInfo : public ABIInfo {
5972
5973
5974public:
5975 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5976
5977private:
5978
5979 ABIArgInfo classifyReturnType(QualType RetTy) const;
5980 ABIArgInfo classifyArgumentType(QualType RetTy) const;
5981
5982 void computeInfo(CGFunctionInfo &FI) const override;
5983
5984 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5985 CodeGenFunction &CGF) const override;
5986};
5987
5988class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5989public:
5990 HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5991 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5992
5993 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5994 return 29;
5995 }
5996};
5997
5998}
5999
6000void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
6001 if (!getCXXABI().classifyReturnType(FI))
6002 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6003 for (auto &I : FI.arguments())
6004 I.info = classifyArgumentType(I.type);
6005}
6006
6007ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
6008 if (!isAggregateTypeForABI(Ty)) {
6009 // Treat an enum type as its underlying type.
6010 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6011 Ty = EnumTy->getDecl()->getIntegerType();
6012
6013 return (Ty->isPromotableIntegerType() ?
6014 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6015 }
6016
6017 // Ignore empty records.
6018 if (isEmptyRecord(getContext(), Ty, true))
6019 return ABIArgInfo::getIgnore();
6020
6021 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6022 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
6023
6024 uint64_t Size = getContext().getTypeSize(Ty);
6025 if (Size > 64)
6026 return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
6027 // Pass in the smallest viable integer type.
6028 else if (Size > 32)
6029 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6030 else if (Size > 16)
6031 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6032 else if (Size > 8)
6033 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6034 else
6035 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6036}
6037
6038ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
6039 if (RetTy->isVoidType())
6040 return ABIArgInfo::getIgnore();
6041
6042 // Large vector types should be returned via memory.
6043 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
6044 return ABIArgInfo::getIndirect(0);
6045
6046 if (!isAggregateTypeForABI(RetTy)) {
6047 // Treat an enum type as its underlying type.
6048 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6049 RetTy = EnumTy->getDecl()->getIntegerType();
6050
6051 return (RetTy->isPromotableIntegerType() ?
6052 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6053 }
6054
6055 if (isEmptyRecord(getContext(), RetTy, true))
6056 return ABIArgInfo::getIgnore();
6057
6058 // Aggregates <= 8 bytes are returned in r0; other aggregates
6059 // are returned indirectly.
6060 uint64_t Size = getContext().getTypeSize(RetTy);
6061 if (Size <= 64) {
6062 // Return in the smallest viable integer type.
6063 if (Size <= 8)
6064 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6065 if (Size <= 16)
6066 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6067 if (Size <= 32)
6068 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6069 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6070 }
6071
6072 return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
6073}
6074
6075llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6076 CodeGenFunction &CGF) const {
6077 // FIXME: Need to handle alignment
6078 llvm::Type *BPP = CGF.Int8PtrPtrTy;
6079
6080 CGBuilderTy &Builder = CGF.Builder;
6081 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
6082 "ap");
6083 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
6084 llvm::Type *PTy =
6085 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
6086 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
6087
6088 uint64_t Offset =
6089 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
6090 llvm::Value *NextAddr =
6091 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
6092 "ap.next");
6093 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
6094
6095 return AddrTyped;
6096}
6097
6098//===----------------------------------------------------------------------===//
6099// AMDGPU ABI Implementation
6100//===----------------------------------------------------------------------===//
6101
6102namespace {
6103
6104class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6105public:
6106 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6107 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6108 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6109 CodeGen::CodeGenModule &M) const override;
6110};
6111
6112}
6113
6114void AMDGPUTargetCodeGenInfo::SetTargetAttributes(
6115 const Decl *D,
6116 llvm::GlobalValue *GV,
6117 CodeGen::CodeGenModule &M) const {
6118 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
6119 if (!FD)
6120 return;
6121
6122 if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6123 llvm::Function *F = cast<llvm::Function>(GV);
6124 uint32_t NumVGPR = Attr->getNumVGPR();
6125 if (NumVGPR != 0)
6126 F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6127 }
6128
6129 if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6130 llvm::Function *F = cast<llvm::Function>(GV);
6131 unsigned NumSGPR = Attr->getNumSGPR();
6132 if (NumSGPR != 0)
6133 F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6134 }
6135}
6136
6137
6138//===----------------------------------------------------------------------===//
6139// SPARC v9 ABI Implementation.
6140// Based on the SPARC Compliance Definition version 2.4.1.
6141//
6142// Function arguments a mapped to a nominal "parameter array" and promoted to
6143// registers depending on their type. Each argument occupies 8 or 16 bytes in
6144// the array, structs larger than 16 bytes are passed indirectly.
6145//
6146// One case requires special care:
6147//
6148// struct mixed {
6149// int i;
6150// float f;
6151// };
6152//
6153// When a struct mixed is passed by value, it only occupies 8 bytes in the
6154// parameter array, but the int is passed in an integer register, and the float
6155// is passed in a floating point register. This is represented as two arguments
6156// with the LLVM IR inreg attribute:
6157//
6158// declare void f(i32 inreg %i, float inreg %f)
6159//
6160// The code generator will only allocate 4 bytes from the parameter array for
6161// the inreg arguments. All other arguments are allocated a multiple of 8
6162// bytes.
6163//
6164namespace {
6165class SparcV9ABIInfo : public ABIInfo {
6166public:
6167 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6168
6169private:
6170 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6171 void computeInfo(CGFunctionInfo &FI) const override;
6172 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6173 CodeGenFunction &CGF) const override;
6174
6175 // Coercion type builder for structs passed in registers. The coercion type
6176 // serves two purposes:
6177 //
6178 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6179 // in registers.
6180 // 2. Expose aligned floating point elements as first-level elements, so the
6181 // code generator knows to pass them in floating point registers.
6182 //
6183 // We also compute the InReg flag which indicates that the struct contains
6184 // aligned 32-bit floats.
6185 //
6186 struct CoerceBuilder {
6187 llvm::LLVMContext &Context;
6188 const llvm::DataLayout &DL;
6189 SmallVector<llvm::Type*, 8> Elems;
6190 uint64_t Size;
6191 bool InReg;
6192
6193 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6194 : Context(c), DL(dl), Size(0), InReg(false) {}
6195
6196 // Pad Elems with integers until Size is ToSize.
6197 void pad(uint64_t ToSize) {
6198 assert(ToSize >= Size && "Cannot remove elements");
6199 if (ToSize == Size)
6200 return;
6201
6202 // Finish the current 64-bit word.
6203 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
6204 if (Aligned > Size && Aligned <= ToSize) {
6205 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6206 Size = Aligned;
6207 }
6208
6209 // Add whole 64-bit words.
6210 while (Size + 64 <= ToSize) {
6211 Elems.push_back(llvm::Type::getInt64Ty(Context));
6212 Size += 64;
6213 }
6214
6215 // Final in-word padding.
6216 if (Size < ToSize) {
6217 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6218 Size = ToSize;
6219 }
6220 }
6221
6222 // Add a floating point element at Offset.
6223 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6224 // Unaligned floats are treated as integers.
6225 if (Offset % Bits)
6226 return;
6227 // The InReg flag is only required if there are any floats < 64 bits.
6228 if (Bits < 64)
6229 InReg = true;
6230 pad(Offset);
6231 Elems.push_back(Ty);
6232 Size = Offset + Bits;
6233 }
6234
6235 // Add a struct type to the coercion type, starting at Offset (in bits).
6236 void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
6237 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
6238 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
6239 llvm::Type *ElemTy = StrTy->getElementType(i);
6240 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
6241 switch (ElemTy->getTypeID()) {
6242 case llvm::Type::StructTyID:
6243 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
6244 break;
6245 case llvm::Type::FloatTyID:
6246 addFloat(ElemOffset, ElemTy, 32);
6247 break;
6248 case llvm::Type::DoubleTyID:
6249 addFloat(ElemOffset, ElemTy, 64);
6250 break;
6251 case llvm::Type::FP128TyID:
6252 addFloat(ElemOffset, ElemTy, 128);
6253 break;
6254 case llvm::Type::PointerTyID:
6255 if (ElemOffset % 64 == 0) {
6256 pad(ElemOffset);
6257 Elems.push_back(ElemTy);
6258 Size += 64;
6259 }
6260 break;
6261 default:
6262 break;
6263 }
6264 }
6265 }
6266
6267 // Check if Ty is a usable substitute for the coercion type.
6268 bool isUsableType(llvm::StructType *Ty) const {
6269 if (Ty->getNumElements() != Elems.size())
6270 return false;
6271 for (unsigned i = 0, e = Elems.size(); i != e; ++i)
6272 if (Elems[i] != Ty->getElementType(i))
6273 return false;
6274 return true;
6275 }
6276
6277 // Get the coercion type as a literal struct type.
6278 llvm::Type *getType() const {
6279 if (Elems.size() == 1)
6280 return Elems.front();
6281 else
6282 return llvm::StructType::get(Context, Elems);
6283 }
6284 };
6285};
6286} // end anonymous namespace
6287
6288ABIArgInfo
6289SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
6290 if (Ty->isVoidType())
6291 return ABIArgInfo::getIgnore();
6292
6293 uint64_t Size = getContext().getTypeSize(Ty);
6294
6295 // Anything too big to fit in registers is passed with an explicit indirect
6296 // pointer / sret pointer.
6297 if (Size > SizeLimit)
6298 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
6299
6300 // Treat an enum type as its underlying type.
6301 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6302 Ty = EnumTy->getDecl()->getIntegerType();
6303
6304 // Integer types smaller than a register are extended.
6305 if (Size < 64 && Ty->isIntegerType())
6306 return ABIArgInfo::getExtend();
6307
6308 // Other non-aggregates go in registers.
6309 if (!isAggregateTypeForABI(Ty))
6310 return ABIArgInfo::getDirect();
6311
6312 // If a C++ object has either a non-trivial copy constructor or a non-trivial
6313 // destructor, it is passed with an explicit indirect pointer / sret pointer.
6314 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6315 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
6316
6317 // This is a small aggregate type that should be passed in registers.
6318 // Build a coercion type from the LLVM struct type.
6319 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6320 if (!StrTy)
6321 return ABIArgInfo::getDirect();
6322
6323 CoerceBuilder CB(getVMContext(), getDataLayout());
6324 CB.addStruct(0, StrTy);
6325 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
6326
6327 // Try to use the original type for coercion.
6328 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
6329
6330 if (CB.InReg)
6331 return ABIArgInfo::getDirectInReg(CoerceTy);
6332 else
6333 return ABIArgInfo::getDirect(CoerceTy);
6334}
6335
6336llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6337 CodeGenFunction &CGF) const {
6338 ABIArgInfo AI = classifyType(Ty, 16 * 8);
6339 llvm::Type *ArgTy = CGT.ConvertType(Ty);
6340 if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6341 AI.setCoerceToType(ArgTy);
6342
6343 llvm::Type *BPP = CGF.Int8PtrPtrTy;
6344 CGBuilderTy &Builder = CGF.Builder;
6345 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
6346 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
6347 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6348 llvm::Value *ArgAddr;
6349 unsigned Stride;
6350
6351 switch (AI.getKind()) {
6352 case ABIArgInfo::Expand:
6353 case ABIArgInfo::InAlloca:
6354 llvm_unreachable("Unsupported ABI kind for va_arg");
6355
6356 case ABIArgInfo::Extend:
6357 Stride = 8;
6358 ArgAddr = Builder
6359 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
6360 "extend");
6361 break;
6362
6363 case ABIArgInfo::Direct:
6364 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6365 ArgAddr = Addr;
6366 break;
6367
6368 case ABIArgInfo::Indirect:
6369 Stride = 8;
6370 ArgAddr = Builder.CreateBitCast(Addr,
6371 llvm::PointerType::getUnqual(ArgPtrTy),
6372 "indirect");
6373 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
6374 break;
6375
6376 case ABIArgInfo::Ignore:
6377 return llvm::UndefValue::get(ArgPtrTy);
6378 }
6379
6380 // Update VAList.
6381 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
6382 Builder.CreateStore(Addr, VAListAddrAsBPP);
6383
6384 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
6385}
6386
6387void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6388 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
6389 for (auto &I : FI.arguments())
6390 I.info = classifyType(I.type, 16 * 8);
6391}
6392
6393namespace {
6394class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
6395public:
6396 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
6397 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
6398
6399 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6400 return 14;
6401 }
6402
6403 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6404 llvm::Value *Address) const override;
6405};
6406} // end anonymous namespace
6407
6408bool
6409SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6410 llvm::Value *Address) const {
6411 // This is calculated from the LLVM and GCC tables and verified
6412 // against gcc output. AFAIK all ABIs use the same encoding.
6413
6414 CodeGen::CGBuilderTy &Builder = CGF.Builder;
6415
6416 llvm::IntegerType *i8 = CGF.Int8Ty;
6417 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
6418 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
6419
6420 // 0-31: the 8-byte general-purpose registers
6421 AssignToArrayRange(Builder, Address, Eight8, 0, 31);
6422
6423 // 32-63: f0-31, the 4-byte floating-point registers
6424 AssignToArrayRange(Builder, Address, Four8, 32, 63);
6425
6426 // Y = 64
6427 // PSR = 65
6428 // WIM = 66
6429 // TBR = 67
6430 // PC = 68
6431 // NPC = 69
6432 // FSR = 70
6433 // CSR = 71
6434 AssignToArrayRange(Builder, Address, Eight8, 64, 71);
6435
6436 // 72-87: d0-15, the 8-byte floating-point registers
6437 AssignToArrayRange(Builder, Address, Eight8, 72, 87);
6438
6439 return false;
6440}
6441
6442
6443//===----------------------------------------------------------------------===//
6444// XCore ABI Implementation
6445//===----------------------------------------------------------------------===//
6446
6447namespace {
6448
6449/// A SmallStringEnc instance is used to build up the TypeString by passing
6450/// it by reference between functions that append to it.
6451typedef llvm::SmallString<128> SmallStringEnc;
6452
6453/// TypeStringCache caches the meta encodings of Types.
6454///
6455/// The reason for caching TypeStrings is two fold:
6456/// 1. To cache a type's encoding for later uses;
6457/// 2. As a means to break recursive member type inclusion.
6458///
6459/// A cache Entry can have a Status of:
6460/// NonRecursive: The type encoding is not recursive;
6461/// Recursive: The type encoding is recursive;
6462/// Incomplete: An incomplete TypeString;
6463/// IncompleteUsed: An incomplete TypeString that has been used in a
6464/// Recursive type encoding.
6465///
6466/// A NonRecursive entry will have all of its sub-members expanded as fully
6467/// as possible. Whilst it may contain types which are recursive, the type
6468/// itself is not recursive and thus its encoding may be safely used whenever
6469/// the type is encountered.
6470///
6471/// A Recursive entry will have all of its sub-members expanded as fully as
6472/// possible. The type itself is recursive and it may contain other types which
6473/// are recursive. The Recursive encoding must not be used during the expansion
6474/// of a recursive type's recursive branch. For simplicity the code uses
6475/// IncompleteCount to reject all usage of Recursive encodings for member types.
6476///
6477/// An Incomplete entry is always a RecordType and only encodes its
6478/// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
6479/// are placed into the cache during type expansion as a means to identify and
6480/// handle recursive inclusion of types as sub-members. If there is recursion
6481/// the entry becomes IncompleteUsed.
6482///
6483/// During the expansion of a RecordType's members:
6484///
6485/// If the cache contains a NonRecursive encoding for the member type, the
6486/// cached encoding is used;
6487///
6488/// If the cache contains a Recursive encoding for the member type, the
6489/// cached encoding is 'Swapped' out, as it may be incorrect, and...
6490///
6491/// If the member is a RecordType, an Incomplete encoding is placed into the
6492/// cache to break potential recursive inclusion of itself as a sub-member;
6493///
6494/// Once a member RecordType has been expanded, its temporary incomplete
6495/// entry is removed from the cache. If a Recursive encoding was swapped out
6496/// it is swapped back in;
6497///
6498/// If an incomplete entry is used to expand a sub-member, the incomplete
6499/// entry is marked as IncompleteUsed. The cache keeps count of how many
6500/// IncompleteUsed entries it currently contains in IncompleteUsedCount;
6501///
6502/// If a member's encoding is found to be a NonRecursive or Recursive viz:
6503/// IncompleteUsedCount==0, the member's encoding is added to the cache.
6504/// Else the member is part of a recursive type and thus the recursion has
6505/// been exited too soon for the encoding to be correct for the member.
6506///
6507class TypeStringCache {
6508 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
6509 struct Entry {
6510 std::string Str; // The encoded TypeString for the type.
6511 enum Status State; // Information about the encoding in 'Str'.
6512 std::string Swapped; // A temporary place holder for a Recursive encoding
6513 // during the expansion of RecordType's members.
6514 };
6515 std::map<const IdentifierInfo *, struct Entry> Map;
6516 unsigned IncompleteCount; // Number of Incomplete entries in the Map.
6517 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6518public:
6519 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {};
6520 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6521 bool removeIncomplete(const IdentifierInfo *ID);
6522 void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6523 bool IsRecursive);
6524 StringRef lookupStr(const IdentifierInfo *ID);
6525};
6526
6527/// TypeString encodings for enum & union fields must be order.
6528/// FieldEncoding is a helper for this ordering process.
6529class FieldEncoding {
6530 bool HasName;
6531 std::string Enc;
6532public:
6533 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {};
6534 StringRef str() {return Enc.c_str();};
6535 bool operator<(const FieldEncoding &rhs) const {
6536 if (HasName != rhs.HasName) return HasName;
6537 return Enc < rhs.Enc;
6538 }
6539};
6540
6541class XCoreABIInfo : public DefaultABIInfo {
6542public:
6543 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6544 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6545 CodeGenFunction &CGF) const override;
6546};
6547
6548class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6549 mutable TypeStringCache TSC;
6550public:
6551 XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6552 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6553 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6554 CodeGen::CodeGenModule &M) const override;
6555};
6556
6557} // End anonymous namespace.
6558
6559llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6560 CodeGenFunction &CGF) const {
6561 CGBuilderTy &Builder = CGF.Builder;
6562
6563 // Get the VAList.
6564 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
6565 CGF.Int8PtrPtrTy);
6566 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
6567
6568 // Handle the argument.
6569 ABIArgInfo AI = classifyArgumentType(Ty);
6570 llvm::Type *ArgTy = CGT.ConvertType(Ty);
6571 if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6572 AI.setCoerceToType(ArgTy);
6573 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6574 llvm::Value *Val;
6575 uint64_t ArgSize = 0;
6576 switch (AI.getKind()) {
6577 case ABIArgInfo::Expand:
6578 case ABIArgInfo::InAlloca:
6579 llvm_unreachable("Unsupported ABI kind for va_arg");
6580 case ABIArgInfo::Ignore:
6581 Val = llvm::UndefValue::get(ArgPtrTy);
6582 ArgSize = 0;
6583 break;
6584 case ABIArgInfo::Extend:
6585 case ABIArgInfo::Direct:
6586 Val = Builder.CreatePointerCast(AP, ArgPtrTy);
6587 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6588 if (ArgSize < 4)
6589 ArgSize = 4;
6590 break;
6591 case ABIArgInfo::Indirect:
6592 llvm::Value *ArgAddr;
6593 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
6594 ArgAddr = Builder.CreateLoad(ArgAddr);
6595 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
6596 ArgSize = 4;
6597 break;
6598 }
6599
6600 // Increment the VAList.
6601 if (ArgSize) {
6602 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
6603 Builder.CreateStore(APN, VAListAddrAsBPP);
6604 }
6605 return Val;
6606}
6607
6608/// During the expansion of a RecordType, an incomplete TypeString is placed
6609/// into the cache as a means to identify and break recursion.
6610/// If there is a Recursive encoding in the cache, it is swapped out and will
6611/// be reinserted by removeIncomplete().
6612/// All other types of encoding should have been used rather than arriving here.
6613void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
6614 std::string StubEnc) {
6615 if (!ID)
6616 return;
6617 Entry &E = Map[ID];
6618 assert( (E.Str.empty() || E.State == Recursive) &&
6619 "Incorrectly use of addIncomplete");
6620 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
6621 E.Swapped.swap(E.Str); // swap out the Recursive
6622 E.Str.swap(StubEnc);
6623 E.State = Incomplete;
6624 ++IncompleteCount;
6625}
6626
6627/// Once the RecordType has been expanded, the temporary incomplete TypeString
6628/// must be removed from the cache.
6629/// If a Recursive was swapped out by addIncomplete(), it will be replaced.
6630/// Returns true if the RecordType was defined recursively.
6631bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
6632 if (!ID)
6633 return false;
6634 auto I = Map.find(ID);
6635 assert(I != Map.end() && "Entry not present");
6636 Entry &E = I->second;
6637 assert( (E.State == Incomplete ||
6638 E.State == IncompleteUsed) &&
6639 "Entry must be an incomplete type");
6640 bool IsRecursive = false;
6641 if (E.State == IncompleteUsed) {
6642 // We made use of our Incomplete encoding, thus we are recursive.
6643 IsRecursive = true;
6644 --IncompleteUsedCount;
6645 }
6646 if (E.Swapped.empty())
6647 Map.erase(I);
6648 else {
6649 // Swap the Recursive back.
6650 E.Swapped.swap(E.Str);
6651 E.Swapped.clear();
6652 E.State = Recursive;
6653 }
6654 --IncompleteCount;
6655 return IsRecursive;
6656}
6657
6658/// Add the encoded TypeString to the cache only if it is NonRecursive or
6659/// Recursive (viz: all sub-members were expanded as fully as possible).
6660void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
6661 bool IsRecursive) {
6662 if (!ID || IncompleteUsedCount)
6663 return; // No key or it is is an incomplete sub-type so don't add.
6664 Entry &E = Map[ID];
6665 if (IsRecursive && !E.Str.empty()) {
6666 assert(E.State==Recursive && E.Str.size() == Str.size() &&
6667 "This is not the same Recursive entry");
6668 // The parent container was not recursive after all, so we could have used
6669 // this Recursive sub-member entry after all, but we assumed the worse when
6670 // we started viz: IncompleteCount!=0.
6671 return;
6672 }
6673 assert(E.Str.empty() && "Entry already present");
6674 E.Str = Str.str();
6675 E.State = IsRecursive? Recursive : NonRecursive;
6676}
6677
6678/// Return a cached TypeString encoding for the ID. If there isn't one, or we
6679/// are recursively expanding a type (IncompleteCount != 0) and the cached
6680/// encoding is Recursive, return an empty StringRef.
6681StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
6682 if (!ID)
6683 return StringRef(); // We have no key.
6684 auto I = Map.find(ID);
6685 if (I == Map.end())
6686 return StringRef(); // We have no encoding.
6687 Entry &E = I->second;
6688 if (E.State == Recursive && IncompleteCount)
6689 return StringRef(); // We don't use Recursive encodings for member types.
6690
6691 if (E.State == Incomplete) {
6692 // The incomplete type is being used to break out of recursion.
6693 E.State = IncompleteUsed;
6694 ++IncompleteUsedCount;
6695 }
6696 return E.Str.c_str();
6697}
6698
6699/// The XCore ABI includes a type information section that communicates symbol
6700/// type information to the linker. The linker uses this information to verify
6701/// safety/correctness of things such as array bound and pointers et al.
6702/// The ABI only requires C (and XC) language modules to emit TypeStrings.
6703/// This type information (TypeString) is emitted into meta data for all global
6704/// symbols: definitions, declarations, functions & variables.
6705///
6706/// The TypeString carries type, qualifier, name, size & value details.
6707/// Please see 'Tools Development Guide' section 2.16.2 for format details:
6708/// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
6709/// The output is tested by test/CodeGen/xcore-stringtype.c.
6710///
6711static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6712 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
6713
6714/// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
6715void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6716 CodeGen::CodeGenModule &CGM) const {
6717 SmallStringEnc Enc;
6718 if (getTypeString(Enc, D, CGM, TSC)) {
6719 llvm::LLVMContext &Ctx = CGM.getModule().getContext();
6720 llvm::SmallVector<llvm::Metadata *, 2> MDVals;
6721 MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
6722 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
6723 llvm::NamedMDNode *MD =
6724 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
6725 MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6726 }
6727}
6728
6729static bool appendType(SmallStringEnc &Enc, QualType QType,
6730 const CodeGen::CodeGenModule &CGM,
6731 TypeStringCache &TSC);
6732
6733/// Helper function for appendRecordType().
6734/// Builds a SmallVector containing the encoded field types in declaration order.
6735static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
6736 const RecordDecl *RD,
6737 const CodeGen::CodeGenModule &CGM,
6738 TypeStringCache &TSC) {
6739 for (const auto *Field : RD->fields()) {
6740 SmallStringEnc Enc;
6741 Enc += "m(";
6742 Enc += Field->getName();
6743 Enc += "){";
6744 if (Field->isBitField()) {
6745 Enc += "b(";
6746 llvm::raw_svector_ostream OS(Enc);
6747 OS.resync();
6748 OS << Field->getBitWidthValue(CGM.getContext());
6749 OS.flush();
6750 Enc += ':';
6751 }
6752 if (!appendType(Enc, Field->getType(), CGM, TSC))
6753 return false;
6754 if (Field->isBitField())
6755 Enc += ')';
6756 Enc += '}';
6757 FE.push_back(FieldEncoding(!Field->getName().empty(), Enc));
6758 }
6759 return true;
6760}
6761
6762/// Appends structure and union types to Enc and adds encoding to cache.
6763/// Recursively calls appendType (via extractFieldType) for each field.
6764/// Union types have their fields ordered according to the ABI.
6765static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
6766 const CodeGen::CodeGenModule &CGM,
6767 TypeStringCache &TSC, const IdentifierInfo *ID) {
6768 // Append the cached TypeString if we have one.
6769 StringRef TypeString = TSC.lookupStr(ID);
6770 if (!TypeString.empty()) {
6771 Enc += TypeString;
6772 return true;
6773 }
6774
6775 // Start to emit an incomplete TypeString.
6776 size_t Start = Enc.size();
6777 Enc += (RT->isUnionType()? 'u' : 's');
6778 Enc += '(';
6779 if (ID)
6780 Enc += ID->getName();
6781 Enc += "){";
6782
6783 // We collect all encoded fields and order as necessary.
6784 bool IsRecursive = false;
6785 const RecordDecl *RD = RT->getDecl()->getDefinition();
6786 if (RD && !RD->field_empty()) {
6787 // An incomplete TypeString stub is placed in the cache for this RecordType
6788 // so that recursive calls to this RecordType will use it whilst building a
6789 // complete TypeString for this RecordType.
6790 SmallVector<FieldEncoding, 16> FE;
6791 std::string StubEnc(Enc.substr(Start).str());
6792 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString.
6793 TSC.addIncomplete(ID, std::move(StubEnc));
6794 if (!extractFieldType(FE, RD, CGM, TSC)) {
6795 (void) TSC.removeIncomplete(ID);
6796 return false;
6797 }
6798 IsRecursive = TSC.removeIncomplete(ID);
6799 // The ABI requires unions to be sorted but not structures.
6800 // See FieldEncoding::operator< for sort algorithm.
6801 if (RT->isUnionType())
6802 std::sort(FE.begin(), FE.end());
6803 // We can now complete the TypeString.
6804 unsigned E = FE.size();
6805 for (unsigned I = 0; I != E; ++I) {
6806 if (I)
6807 Enc += ',';
6808 Enc += FE[I].str();
6809 }
6810 }
6811 Enc += '}';
6812 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
6813 return true;
6814}
6815
6816/// Appends enum types to Enc and adds the encoding to the cache.
6817static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
6818 TypeStringCache &TSC,
6819 const IdentifierInfo *ID) {
6820 // Append the cached TypeString if we have one.
6821 StringRef TypeString = TSC.lookupStr(ID);
6822 if (!TypeString.empty()) {
6823 Enc += TypeString;
6824 return true;
6825 }
6826
6827 size_t Start = Enc.size();
6828 Enc += "e(";
6829 if (ID)
6830 Enc += ID->getName();
6831 Enc += "){";
6832
6833 // We collect all encoded enumerations and order them alphanumerically.
6834 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
6835 SmallVector<FieldEncoding, 16> FE;
6836 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
6837 ++I) {
6838 SmallStringEnc EnumEnc;
6839 EnumEnc += "m(";
6840 EnumEnc += I->getName();
6841 EnumEnc += "){";
6842 I->getInitVal().toString(EnumEnc);
6843 EnumEnc += '}';
6844 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
6845 }
6846 std::sort(FE.begin(), FE.end());
6847 unsigned E = FE.size();
6848 for (unsigned I = 0; I != E; ++I) {
6849 if (I)
6850 Enc += ',';
6851 Enc += FE[I].str();
6852 }
6853 }
6854 Enc += '}';
6855 TSC.addIfComplete(ID, Enc.substr(Start), false);
6856 return true;
6857}
6858
6859/// Appends type's qualifier to Enc.
6860/// This is done prior to appending the type's encoding.
6861static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
6862 // Qualifiers are emitted in alphabetical order.
6863 static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
6864 int Lookup = 0;
6865 if (QT.isConstQualified())
6866 Lookup += 1<<0;
6867 if (QT.isRestrictQualified())
6868 Lookup += 1<<1;
6869 if (QT.isVolatileQualified())
6870 Lookup += 1<<2;
6871 Enc += Table[Lookup];
6872}
6873
6874/// Appends built-in types to Enc.
6875static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
6876 const char *EncType;
6877 switch (BT->getKind()) {
6878 case BuiltinType::Void:
6879 EncType = "0";
6880 break;
6881 case BuiltinType::Bool:
6882 EncType = "b";
6883 break;
6884 case BuiltinType::Char_U:
6885 EncType = "uc";
6886 break;
6887 case BuiltinType::UChar:
6888 EncType = "uc";
6889 break;
6890 case BuiltinType::SChar:
6891 EncType = "sc";
6892 break;
6893 case BuiltinType::UShort:
6894 EncType = "us";
6895 break;
6896 case BuiltinType::Short:
6897 EncType = "ss";
6898 break;
6899 case BuiltinType::UInt:
6900 EncType = "ui";
6901 break;
6902 case BuiltinType::Int:
6903 EncType = "si";
6904 break;
6905 case BuiltinType::ULong:
6906 EncType = "ul";
6907 break;
6908 case BuiltinType::Long:
6909 EncType = "sl";
6910 break;
6911 case BuiltinType::ULongLong:
6912 EncType = "ull";
6913 break;
6914 case BuiltinType::LongLong:
6915 EncType = "sll";
6916 break;
6917 case BuiltinType::Float:
6918 EncType = "ft";
6919 break;
6920 case BuiltinType::Double:
6921 EncType = "d";
6922 break;
6923 case BuiltinType::LongDouble:
6924 EncType = "ld";
6925 break;
6926 default:
6927 return false;
6928 }
6929 Enc += EncType;
6930 return true;
6931}
6932
6933/// Appends a pointer encoding to Enc before calling appendType for the pointee.
6934static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
6935 const CodeGen::CodeGenModule &CGM,
6936 TypeStringCache &TSC) {
6937 Enc += "p(";
6938 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
6939 return false;
6940 Enc += ')';
6941 return true;
6942}
6943
6944/// Appends array encoding to Enc before calling appendType for the element.
6945static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
6946 const ArrayType *AT,
6947 const CodeGen::CodeGenModule &CGM,
6948 TypeStringCache &TSC, StringRef NoSizeEnc) {
6949 if (AT->getSizeModifier() != ArrayType::Normal)
6950 return false;
6951 Enc += "a(";
6952 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
6953 CAT->getSize().toStringUnsigned(Enc);
6954 else
6955 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
6956 Enc += ':';
6957 // The Qualifiers should be attached to the type rather than the array.
6958 appendQualifier(Enc, QT);
6959 if (!appendType(Enc, AT->getElementType(), CGM, TSC))
6960 return false;
6961 Enc += ')';
6962 return true;
6963}
6964
6965/// Appends a function encoding to Enc, calling appendType for the return type
6966/// and the arguments.
6967static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
6968 const CodeGen::CodeGenModule &CGM,
6969 TypeStringCache &TSC) {
6970 Enc += "f{";
6971 if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
6972 return false;
6973 Enc += "}(";
6974 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
6975 // N.B. we are only interested in the adjusted param types.
6976 auto I = FPT->param_type_begin();
6977 auto E = FPT->param_type_end();
6978 if (I != E) {
6979 do {
6980 if (!appendType(Enc, *I, CGM, TSC))
6981 return false;
6982 ++I;
6983 if (I != E)
6984 Enc += ',';
6985 } while (I != E);
6986 if (FPT->isVariadic())
6987 Enc += ",va";
6988 } else {
6989 if (FPT->isVariadic())
6990 Enc += "va";
6991 else
6992 Enc += '0';
6993 }
6994 }
6995 Enc += ')';
6996 return true;
6997}
6998
6999/// Handles the type's qualifier before dispatching a call to handle specific
7000/// type encodings.
7001static bool appendType(SmallStringEnc &Enc, QualType QType,
7002 const CodeGen::CodeGenModule &CGM,
7003 TypeStringCache &TSC) {
7004
7005 QualType QT = QType.getCanonicalType();
7006
7007 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
7008 // The Qualifiers should be attached to the type rather than the array.
7009 // Thus we don't call appendQualifier() here.
7010 return appendArrayType(Enc, QT, AT, CGM, TSC, "");
7011
7012 appendQualifier(Enc, QT);
7013
7014 if (const BuiltinType *BT = QT->getAs<BuiltinType>())
7015 return appendBuiltinType(Enc, BT);
7016
7017 if (const PointerType *PT = QT->getAs<PointerType>())
7018 return appendPointerType(Enc, PT, CGM, TSC);
7019
7020 if (const EnumType *ET = QT->getAs<EnumType>())
7021 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
7022
7023 if (const RecordType *RT = QT->getAsStructureType())
7024 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7025
7026 if (const RecordType *RT = QT->getAsUnionType())
7027 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7028
7029 if (const FunctionType *FT = QT->getAs<FunctionType>())
7030 return appendFunctionType(Enc, FT, CGM, TSC);
7031
7032 return false;
7033}
7034
7035static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7036 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
7037 if (!D)
7038 return false;
7039
7040 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7041 if (FD->getLanguageLinkage() != CLanguageLinkage)
7042 return false;
7043 return appendType(Enc, FD->getType(), CGM, TSC);
7044 }
7045
7046 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7047 if (VD->getLanguageLinkage() != CLanguageLinkage)
7048 return false;
7049 QualType QT = VD->getType().getCanonicalType();
7050 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
7051 // Global ArrayTypes are given a size of '*' if the size is unknown.
7052 // The Qualifiers should be attached to the type rather than the array.
7053 // Thus we don't call appendQualifier() here.
7054 return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
7055 }
7056 return appendType(Enc, QT, CGM, TSC);
7057 }
7058 return false;
7059}
7060
7061
7062//===----------------------------------------------------------------------===//
7063// Driver code
7064//===----------------------------------------------------------------------===//
7065
7066const llvm::Triple &CodeGenModule::getTriple() const {
7067 return getTarget().getTriple();
7068}
7069
7070bool CodeGenModule::supportsCOMDAT() const {
7071 return !getTriple().isOSBinFormatMachO();
7072}
7073
7074const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
7075 if (TheTargetCodeGenInfo)
7076 return *TheTargetCodeGenInfo;
7077
7078 const llvm::Triple &Triple = getTarget().getTriple();
7079 switch (Triple.getArch()) {
7080 default:
7081 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
7082
7083 case llvm::Triple::le32:
7084 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7085 case llvm::Triple::mips:
7086 case llvm::Triple::mipsel:
7087 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
7088
7089 case llvm::Triple::mips64:
7090 case llvm::Triple::mips64el:
7091 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
7092
7093 case llvm::Triple::aarch64:
7094 case llvm::Triple::aarch64_be: {
7095 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
7096 if (getTarget().getABI() == "darwinpcs")
7097 Kind = AArch64ABIInfo::DarwinPCS;
7098
7099 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
7100 }
7101
7102 case llvm::Triple::arm:
7103 case llvm::Triple::armeb:
7104 case llvm::Triple::thumb:
7105 case llvm::Triple::thumbeb:
7106 {
7107 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
7108 if (getTarget().getABI() == "apcs-gnu")
7109 Kind = ARMABIInfo::APCS;
7110 else if (CodeGenOpts.FloatABI == "hard" ||
7111 (CodeGenOpts.FloatABI != "soft" &&
7112 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
7113 Kind = ARMABIInfo::AAPCS_VFP;
7114
7115 switch (Triple.getOS()) {
7116 case llvm::Triple::NaCl:
7117 return *(TheTargetCodeGenInfo =
7118 new NaClARMTargetCodeGenInfo(Types, Kind));
7119 default:
7120 return *(TheTargetCodeGenInfo =
7121 new ARMTargetCodeGenInfo(Types, Kind));
7122 }
7123 }
7124
7125 case llvm::Triple::ppc:
7126 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
7127 case llvm::Triple::ppc64:
7128 if (Triple.isOSBinFormatELF()) {
7129 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
7130 if (getTarget().getABI() == "elfv2")
7131 Kind = PPC64_SVR4_ABIInfo::ELFv2;
7132
7133 return *(TheTargetCodeGenInfo =
7134 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind));
7135 } else
7136 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
7137 case llvm::Triple::ppc64le: {
7138 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
7139 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
7140 if (getTarget().getABI() == "elfv1")
7141 Kind = PPC64_SVR4_ABIInfo::ELFv1;
7142
7143 return *(TheTargetCodeGenInfo =
7144 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind));
7145 }
7146
7147 case llvm::Triple::nvptx:
7148 case llvm::Triple::nvptx64:
7149 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
7150
7151 case llvm::Triple::msp430:
7152 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
7153
7154 case llvm::Triple::systemz:
7155 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
7156
7157 case llvm::Triple::tce:
7158 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
7159
7160 case llvm::Triple::x86: {
7161 bool IsDarwinVectorABI = Triple.isOSDarwin();
7162 bool IsSmallStructInRegABI =
7163 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7164 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
7165
7166 if (Triple.getOS() == llvm::Triple::Win32) {
7167 return *(TheTargetCodeGenInfo =
7168 new WinX86_32TargetCodeGenInfo(Types,
7169 IsDarwinVectorABI, IsSmallStructInRegABI,
7170 IsWin32FloatStructABI,
7171 CodeGenOpts.NumRegisterParameters));
7172 } else {
7173 return *(TheTargetCodeGenInfo =
7174 new X86_32TargetCodeGenInfo(Types,
7175 IsDarwinVectorABI, IsSmallStructInRegABI,
7176 IsWin32FloatStructABI,
7177 CodeGenOpts.NumRegisterParameters));
7178 }
7179 }
7180
7181 case llvm::Triple::x86_64: {
7182 bool HasAVX = getTarget().getABI() == "avx";
7183
7184 switch (Triple.getOS()) {
7185 case llvm::Triple::Win32:
7186 return *(TheTargetCodeGenInfo =
7187 new WinX86_64TargetCodeGenInfo(Types, HasAVX));
7188 case llvm::Triple::NaCl:
7189 return *(TheTargetCodeGenInfo =
7190 new NaClX86_64TargetCodeGenInfo(Types, HasAVX));
7191 default:
7192 return *(TheTargetCodeGenInfo =
7193 new X86_64TargetCodeGenInfo(Types, HasAVX));
7194 }
7195 }
7196 case llvm::Triple::hexagon:
7197 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
7198 case llvm::Triple::r600:
7199 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7200 case llvm::Triple::amdgcn:
7201 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7202 case llvm::Triple::sparcv9:
7203 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
7204 case llvm::Triple::xcore:
7205 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
7206 }
7207}
4457};
4458
4459}
4460
4461void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
4462 // To correctly handle Homogeneous Aggregate, we need to keep track of the
4463 // VFP registers allocated so far.
4464 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
4465 // VFP registers of the appropriate type unallocated then the argument is
4466 // allocated to the lowest-numbered sequence of such registers.
4467 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
4468 // unallocated are marked as unavailable.
4469 resetAllocatedRegs();
4470
4471 if (getCXXABI().classifyReturnType(FI)) {
4472 if (FI.getReturnInfo().isIndirect())
4473 markAllocatedGPRs(1, 1);
4474 } else {
4475 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic());
4476 }
4477 for (auto &I : FI.arguments()) {
4478 unsigned PreAllocationVFPs = AllocatedVFPs;
4479 unsigned PreAllocationGPRs = AllocatedGPRs;
4480 bool IsCPRC = false;
4481 // 6.1.2.3 There is one VFP co-processor register class using registers
4482 // s0-s15 (d0-d7) for passing arguments.
4483 I.info = classifyArgumentType(I.type, FI.isVariadic(), IsCPRC);
4484
4485 // If we have allocated some arguments onto the stack (due to running
4486 // out of VFP registers), we cannot split an argument between GPRs and
4487 // the stack. If this situation occurs, we add padding to prevent the
4488 // GPRs from being used. In this situation, the current argument could
4489 // only be allocated by rule C.8, so rule C.6 would mark these GPRs as
4490 // unusable anyway.
4491 // We do not have to do this if the argument is being passed ByVal, as the
4492 // backend can handle that situation correctly.
4493 const bool StackUsed = PreAllocationGPRs > NumGPRs || PreAllocationVFPs > NumVFPs;
4494 const bool IsByVal = I.info.isIndirect() && I.info.getIndirectByVal();
4495 if (!IsCPRC && PreAllocationGPRs < NumGPRs && AllocatedGPRs > NumGPRs &&
4496 StackUsed && !IsByVal) {
4497 llvm::Type *PaddingTy = llvm::ArrayType::get(
4498 llvm::Type::getInt32Ty(getVMContext()), NumGPRs - PreAllocationGPRs);
4499 if (I.info.canHaveCoerceToType()) {
4500 I.info = ABIArgInfo::getDirect(I.info.getCoerceToType() /* type */,
4501 0 /* offset */, PaddingTy, true);
4502 } else {
4503 I.info = ABIArgInfo::getDirect(nullptr /* type */, 0 /* offset */,
4504 PaddingTy, true);
4505 }
4506 }
4507 }
4508
4509 // Always honor user-specified calling convention.
4510 if (FI.getCallingConvention() != llvm::CallingConv::C)
4511 return;
4512
4513 llvm::CallingConv::ID cc = getRuntimeCC();
4514 if (cc != llvm::CallingConv::C)
4515 FI.setEffectiveCallingConvention(cc);
4516}
4517
4518/// Return the default calling convention that LLVM will use.
4519llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
4520 // The default calling convention that LLVM will infer.
4521 if (isEABIHF())
4522 return llvm::CallingConv::ARM_AAPCS_VFP;
4523 else if (isEABI())
4524 return llvm::CallingConv::ARM_AAPCS;
4525 else
4526 return llvm::CallingConv::ARM_APCS;
4527}
4528
4529/// Return the calling convention that our ABI would like us to use
4530/// as the C calling convention.
4531llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
4532 switch (getABIKind()) {
4533 case APCS: return llvm::CallingConv::ARM_APCS;
4534 case AAPCS: return llvm::CallingConv::ARM_AAPCS;
4535 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
4536 }
4537 llvm_unreachable("bad ABI kind");
4538}
4539
4540void ARMABIInfo::setCCs() {
4541 assert(getRuntimeCC() == llvm::CallingConv::C);
4542
4543 // Don't muddy up the IR with a ton of explicit annotations if
4544 // they'd just match what LLVM will infer from the triple.
4545 llvm::CallingConv::ID abiCC = getABIDefaultCC();
4546 if (abiCC != getLLVMDefaultCC())
4547 RuntimeCC = abiCC;
4548
4549 BuiltinCC = (getABIKind() == APCS ?
4550 llvm::CallingConv::ARM_APCS : llvm::CallingConv::ARM_AAPCS);
4551}
4552
4553/// markAllocatedVFPs - update VFPRegs according to the alignment and
4554/// number of VFP registers (unit is S register) requested.
4555void ARMABIInfo::markAllocatedVFPs(unsigned Alignment,
4556 unsigned NumRequired) const {
4557 // Early Exit.
4558 if (AllocatedVFPs >= 16) {
4559 // We use AllocatedVFP > 16 to signal that some CPRCs were allocated on
4560 // the stack.
4561 AllocatedVFPs = 17;
4562 return;
4563 }
4564 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
4565 // VFP registers of the appropriate type unallocated then the argument is
4566 // allocated to the lowest-numbered sequence of such registers.
4567 for (unsigned I = 0; I < 16; I += Alignment) {
4568 bool FoundSlot = true;
4569 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
4570 if (J >= 16 || VFPRegs[J]) {
4571 FoundSlot = false;
4572 break;
4573 }
4574 if (FoundSlot) {
4575 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
4576 VFPRegs[J] = 1;
4577 AllocatedVFPs += NumRequired;
4578 return;
4579 }
4580 }
4581 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
4582 // unallocated are marked as unavailable.
4583 for (unsigned I = 0; I < 16; I++)
4584 VFPRegs[I] = 1;
4585 AllocatedVFPs = 17; // We do not have enough VFP registers.
4586}
4587
4588/// Update AllocatedGPRs to record the number of general purpose registers
4589/// which have been allocated. It is valid for AllocatedGPRs to go above 4,
4590/// this represents arguments being stored on the stack.
4591void ARMABIInfo::markAllocatedGPRs(unsigned Alignment,
4592 unsigned NumRequired) const {
4593 assert((Alignment == 1 || Alignment == 2) && "Alignment must be 4 or 8 bytes");
4594
4595 if (Alignment == 2 && AllocatedGPRs & 0x1)
4596 AllocatedGPRs += 1;
4597
4598 AllocatedGPRs += NumRequired;
4599}
4600
4601void ARMABIInfo::resetAllocatedRegs(void) const {
4602 AllocatedGPRs = 0;
4603 AllocatedVFPs = 0;
4604 for (unsigned i = 0; i < NumVFPs; ++i)
4605 VFPRegs[i] = 0;
4606}
4607
4608ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
4609 bool &IsCPRC) const {
4610 // We update number of allocated VFPs according to
4611 // 6.1.2.1 The following argument types are VFP CPRCs:
4612 // A single-precision floating-point type (including promoted
4613 // half-precision types); A double-precision floating-point type;
4614 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
4615 // with a Base Type of a single- or double-precision floating-point type,
4616 // 64-bit containerized vectors or 128-bit containerized vectors with one
4617 // to four Elements.
4618 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4619
4620 Ty = useFirstFieldIfTransparentUnion(Ty);
4621
4622 // Handle illegal vector types here.
4623 if (isIllegalVectorType(Ty)) {
4624 uint64_t Size = getContext().getTypeSize(Ty);
4625 if (Size <= 32) {
4626 llvm::Type *ResType =
4627 llvm::Type::getInt32Ty(getVMContext());
4628 markAllocatedGPRs(1, 1);
4629 return ABIArgInfo::getDirect(ResType);
4630 }
4631 if (Size == 64) {
4632 llvm::Type *ResType = llvm::VectorType::get(
4633 llvm::Type::getInt32Ty(getVMContext()), 2);
4634 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic){
4635 markAllocatedGPRs(2, 2);
4636 } else {
4637 markAllocatedVFPs(2, 2);
4638 IsCPRC = true;
4639 }
4640 return ABIArgInfo::getDirect(ResType);
4641 }
4642 if (Size == 128) {
4643 llvm::Type *ResType = llvm::VectorType::get(
4644 llvm::Type::getInt32Ty(getVMContext()), 4);
4645 if (getABIKind() == ARMABIInfo::AAPCS || isVariadic) {
4646 markAllocatedGPRs(2, 4);
4647 } else {
4648 markAllocatedVFPs(4, 4);
4649 IsCPRC = true;
4650 }
4651 return ABIArgInfo::getDirect(ResType);
4652 }
4653 markAllocatedGPRs(1, 1);
4654 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4655 }
4656 // Update VFPRegs for legal vector types.
4657 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
4658 if (const VectorType *VT = Ty->getAs<VectorType>()) {
4659 uint64_t Size = getContext().getTypeSize(VT);
4660 // Size of a legal vector should be power of 2 and above 64.
4661 markAllocatedVFPs(Size >= 128 ? 4 : 2, Size / 32);
4662 IsCPRC = true;
4663 }
4664 }
4665 // Update VFPRegs for floating point types.
4666 if (getABIKind() == ARMABIInfo::AAPCS_VFP && !isVariadic) {
4667 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4668 if (BT->getKind() == BuiltinType::Half ||
4669 BT->getKind() == BuiltinType::Float) {
4670 markAllocatedVFPs(1, 1);
4671 IsCPRC = true;
4672 }
4673 if (BT->getKind() == BuiltinType::Double ||
4674 BT->getKind() == BuiltinType::LongDouble) {
4675 markAllocatedVFPs(2, 2);
4676 IsCPRC = true;
4677 }
4678 }
4679 }
4680
4681 if (!isAggregateTypeForABI(Ty)) {
4682 // Treat an enum type as its underlying type.
4683 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
4684 Ty = EnumTy->getDecl()->getIntegerType();
4685 }
4686
4687 unsigned Size = getContext().getTypeSize(Ty);
4688 if (!IsCPRC)
4689 markAllocatedGPRs(Size > 32 ? 2 : 1, (Size + 31) / 32);
4690 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4691 : ABIArgInfo::getDirect());
4692 }
4693
4694 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4695 markAllocatedGPRs(1, 1);
4696 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4697 }
4698
4699 // Ignore empty records.
4700 if (isEmptyRecord(getContext(), Ty, true))
4701 return ABIArgInfo::getIgnore();
4702
4703 if (IsEffectivelyAAPCS_VFP) {
4704 // Homogeneous Aggregates need to be expanded when we can fit the aggregate
4705 // into VFP registers.
4706 const Type *Base = nullptr;
4707 uint64_t Members = 0;
4708 if (isHomogeneousAggregate(Ty, Base, Members)) {
4709 assert(Base && "Base class should be set for homogeneous aggregate");
4710 // Base can be a floating-point or a vector.
4711 if (Base->isVectorType()) {
4712 // ElementSize is in number of floats.
4713 unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
4714 markAllocatedVFPs(ElementSize,
4715 Members * ElementSize);
4716 } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
4717 markAllocatedVFPs(1, Members);
4718 else {
4719 assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
4720 Base->isSpecificBuiltinType(BuiltinType::LongDouble));
4721 markAllocatedVFPs(2, Members * 2);
4722 }
4723 IsCPRC = true;
4724 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4725 }
4726 }
4727
4728 // Support byval for ARM.
4729 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
4730 // most 8-byte. We realign the indirect argument if type alignment is bigger
4731 // than ABI alignment.
4732 uint64_t ABIAlign = 4;
4733 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
4734 if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4735 getABIKind() == ARMABIInfo::AAPCS)
4736 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4737 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
4738 // Update Allocated GPRs. Since this is only used when the size of the
4739 // argument is greater than 64 bytes, this will always use up any available
4740 // registers (of which there are 4). We also don't care about getting the
4741 // alignment right, because general-purpose registers cannot be back-filled.
4742 markAllocatedGPRs(1, 4);
4743 return ABIArgInfo::getIndirect(TyAlign, /*ByVal=*/true,
4744 /*Realign=*/TyAlign > ABIAlign);
4745 }
4746
4747 // Otherwise, pass by coercing to a structure of the appropriate size.
4748 llvm::Type* ElemTy;
4749 unsigned SizeRegs;
4750 // FIXME: Try to match the types of the arguments more accurately where
4751 // we can.
4752 if (getContext().getTypeAlign(Ty) <= 32) {
4753 ElemTy = llvm::Type::getInt32Ty(getVMContext());
4754 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
4755 markAllocatedGPRs(1, SizeRegs);
4756 } else {
4757 ElemTy = llvm::Type::getInt64Ty(getVMContext());
4758 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
4759 markAllocatedGPRs(2, SizeRegs * 2);
4760 }
4761
4762 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
4763}
4764
4765static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
4766 llvm::LLVMContext &VMContext) {
4767 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
4768 // is called integer-like if its size is less than or equal to one word, and
4769 // the offset of each of its addressable sub-fields is zero.
4770
4771 uint64_t Size = Context.getTypeSize(Ty);
4772
4773 // Check that the type fits in a word.
4774 if (Size > 32)
4775 return false;
4776
4777 // FIXME: Handle vector types!
4778 if (Ty->isVectorType())
4779 return false;
4780
4781 // Float types are never treated as "integer like".
4782 if (Ty->isRealFloatingType())
4783 return false;
4784
4785 // If this is a builtin or pointer type then it is ok.
4786 if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
4787 return true;
4788
4789 // Small complex integer types are "integer like".
4790 if (const ComplexType *CT = Ty->getAs<ComplexType>())
4791 return isIntegerLikeType(CT->getElementType(), Context, VMContext);
4792
4793 // Single element and zero sized arrays should be allowed, by the definition
4794 // above, but they are not.
4795
4796 // Otherwise, it must be a record type.
4797 const RecordType *RT = Ty->getAs<RecordType>();
4798 if (!RT) return false;
4799
4800 // Ignore records with flexible arrays.
4801 const RecordDecl *RD = RT->getDecl();
4802 if (RD->hasFlexibleArrayMember())
4803 return false;
4804
4805 // Check that all sub-fields are at offset 0, and are themselves "integer
4806 // like".
4807 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
4808
4809 bool HadField = false;
4810 unsigned idx = 0;
4811 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4812 i != e; ++i, ++idx) {
4813 const FieldDecl *FD = *i;
4814
4815 // Bit-fields are not addressable, we only need to verify they are "integer
4816 // like". We still have to disallow a subsequent non-bitfield, for example:
4817 // struct { int : 0; int x }
4818 // is non-integer like according to gcc.
4819 if (FD->isBitField()) {
4820 if (!RD->isUnion())
4821 HadField = true;
4822
4823 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4824 return false;
4825
4826 continue;
4827 }
4828
4829 // Check if this field is at offset 0.
4830 if (Layout.getFieldOffset(idx) != 0)
4831 return false;
4832
4833 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
4834 return false;
4835
4836 // Only allow at most one field in a structure. This doesn't match the
4837 // wording above, but follows gcc in situations with a field following an
4838 // empty structure.
4839 if (!RD->isUnion()) {
4840 if (HadField)
4841 return false;
4842
4843 HadField = true;
4844 }
4845 }
4846
4847 return true;
4848}
4849
4850ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
4851 bool isVariadic) const {
4852 bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic;
4853
4854 if (RetTy->isVoidType())
4855 return ABIArgInfo::getIgnore();
4856
4857 // Large vector types should be returned via memory.
4858 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) {
4859 markAllocatedGPRs(1, 1);
4860 return ABIArgInfo::getIndirect(0);
4861 }
4862
4863 if (!isAggregateTypeForABI(RetTy)) {
4864 // Treat an enum type as its underlying type.
4865 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4866 RetTy = EnumTy->getDecl()->getIntegerType();
4867
4868 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend()
4869 : ABIArgInfo::getDirect();
4870 }
4871
4872 // Are we following APCS?
4873 if (getABIKind() == APCS) {
4874 if (isEmptyRecord(getContext(), RetTy, false))
4875 return ABIArgInfo::getIgnore();
4876
4877 // Complex types are all returned as packed integers.
4878 //
4879 // FIXME: Consider using 2 x vector types if the back end handles them
4880 // correctly.
4881 if (RetTy->isAnyComplexType())
4882 return ABIArgInfo::getDirect(llvm::IntegerType::get(
4883 getVMContext(), getContext().getTypeSize(RetTy)));
4884
4885 // Integer like structures are returned in r0.
4886 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
4887 // Return in the smallest viable integer type.
4888 uint64_t Size = getContext().getTypeSize(RetTy);
4889 if (Size <= 8)
4890 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4891 if (Size <= 16)
4892 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4893 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4894 }
4895
4896 // Otherwise return in memory.
4897 markAllocatedGPRs(1, 1);
4898 return ABIArgInfo::getIndirect(0);
4899 }
4900
4901 // Otherwise this is an AAPCS variant.
4902
4903 if (isEmptyRecord(getContext(), RetTy, true))
4904 return ABIArgInfo::getIgnore();
4905
4906 // Check for homogeneous aggregates with AAPCS-VFP.
4907 if (IsEffectivelyAAPCS_VFP) {
4908 const Type *Base = nullptr;
4909 uint64_t Members;
4910 if (isHomogeneousAggregate(RetTy, Base, Members)) {
4911 assert(Base && "Base class should be set for homogeneous aggregate");
4912 // Homogeneous Aggregates are returned directly.
4913 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
4914 }
4915 }
4916
4917 // Aggregates <= 4 bytes are returned in r0; other aggregates
4918 // are returned indirectly.
4919 uint64_t Size = getContext().getTypeSize(RetTy);
4920 if (Size <= 32) {
4921 if (getDataLayout().isBigEndian())
4922 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
4923 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4924
4925 // Return in the smallest viable integer type.
4926 if (Size <= 8)
4927 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
4928 if (Size <= 16)
4929 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
4930 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
4931 }
4932
4933 markAllocatedGPRs(1, 1);
4934 return ABIArgInfo::getIndirect(0);
4935}
4936
4937/// isIllegalVector - check whether Ty is an illegal vector type.
4938bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
4939 if (const VectorType *VT = Ty->getAs<VectorType>()) {
4940 // Check whether VT is legal.
4941 unsigned NumElements = VT->getNumElements();
4942 uint64_t Size = getContext().getTypeSize(VT);
4943 // NumElements should be power of 2.
4944 if ((NumElements & (NumElements - 1)) != 0)
4945 return true;
4946 // Size should be greater than 32 bits.
4947 return Size <= 32;
4948 }
4949 return false;
4950}
4951
4952bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
4953 // Homogeneous aggregates for AAPCS-VFP must have base types of float,
4954 // double, or 64-bit or 128-bit vectors.
4955 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4956 if (BT->getKind() == BuiltinType::Float ||
4957 BT->getKind() == BuiltinType::Double ||
4958 BT->getKind() == BuiltinType::LongDouble)
4959 return true;
4960 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
4961 unsigned VecSize = getContext().getTypeSize(VT);
4962 if (VecSize == 64 || VecSize == 128)
4963 return true;
4964 }
4965 return false;
4966}
4967
4968bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
4969 uint64_t Members) const {
4970 return Members <= 4;
4971}
4972
4973llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4974 CodeGenFunction &CGF) const {
4975 llvm::Type *BP = CGF.Int8PtrTy;
4976 llvm::Type *BPP = CGF.Int8PtrPtrTy;
4977
4978 CGBuilderTy &Builder = CGF.Builder;
4979 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4980 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4981
4982 if (isEmptyRecord(getContext(), Ty, true)) {
4983 // These are ignored for parameter passing purposes.
4984 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4985 return Builder.CreateBitCast(Addr, PTy);
4986 }
4987
4988 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
4989 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
4990 bool IsIndirect = false;
4991
4992 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
4993 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
4994 if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
4995 getABIKind() == ARMABIInfo::AAPCS)
4996 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
4997 else
4998 TyAlign = 4;
4999 // Use indirect if size of the illegal vector is bigger than 16 bytes.
5000 if (isIllegalVectorType(Ty) && Size > 16) {
5001 IsIndirect = true;
5002 Size = 4;
5003 TyAlign = 4;
5004 }
5005
5006 // Handle address alignment for ABI alignment > 4 bytes.
5007 if (TyAlign > 4) {
5008 assert((TyAlign & (TyAlign - 1)) == 0 &&
5009 "Alignment is not power of 2!");
5010 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
5011 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
5012 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
5013 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
5014 }
5015
5016 uint64_t Offset =
5017 llvm::RoundUpToAlignment(Size, 4);
5018 llvm::Value *NextAddr =
5019 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5020 "ap.next");
5021 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5022
5023 if (IsIndirect)
5024 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
5025 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
5026 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
5027 // may not be correctly aligned for the vector type. We create an aligned
5028 // temporary space and copy the content over from ap.cur to the temporary
5029 // space. This is necessary if the natural alignment of the type is greater
5030 // than the ABI alignment.
5031 llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
5032 CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
5033 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
5034 "var.align");
5035 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
5036 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
5037 Builder.CreateMemCpy(Dst, Src,
5038 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
5039 TyAlign, false);
5040 Addr = AlignedTemp; //The content is in aligned location.
5041 }
5042 llvm::Type *PTy =
5043 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5044 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5045
5046 return AddrTyped;
5047}
5048
5049namespace {
5050
5051class NaClARMABIInfo : public ABIInfo {
5052 public:
5053 NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
5054 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
5055 void computeInfo(CGFunctionInfo &FI) const override;
5056 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5057 CodeGenFunction &CGF) const override;
5058 private:
5059 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
5060 ARMABIInfo NInfo; // Used for everything else.
5061};
5062
5063class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo {
5064 public:
5065 NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
5066 : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
5067};
5068
5069}
5070
5071void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
5072 if (FI.getASTCallingConvention() == CC_PnaclCall)
5073 PInfo.computeInfo(FI);
5074 else
5075 static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
5076}
5077
5078llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5079 CodeGenFunction &CGF) const {
5080 // Always use the native convention; calling pnacl-style varargs functions
5081 // is unsupported.
5082 return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
5083}
5084
5085//===----------------------------------------------------------------------===//
5086// NVPTX ABI Implementation
5087//===----------------------------------------------------------------------===//
5088
5089namespace {
5090
5091class NVPTXABIInfo : public ABIInfo {
5092public:
5093 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5094
5095 ABIArgInfo classifyReturnType(QualType RetTy) const;
5096 ABIArgInfo classifyArgumentType(QualType Ty) const;
5097
5098 void computeInfo(CGFunctionInfo &FI) const override;
5099 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5100 CodeGenFunction &CFG) const override;
5101};
5102
5103class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
5104public:
5105 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
5106 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
5107
5108 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5109 CodeGen::CodeGenModule &M) const override;
5110private:
5111 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the
5112 // resulting MDNode to the nvvm.annotations MDNode.
5113 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand);
5114};
5115
5116ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
5117 if (RetTy->isVoidType())
5118 return ABIArgInfo::getIgnore();
5119
5120 // note: this is different from default ABI
5121 if (!RetTy->isScalarType())
5122 return ABIArgInfo::getDirect();
5123
5124 // Treat an enum type as its underlying type.
5125 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5126 RetTy = EnumTy->getDecl()->getIntegerType();
5127
5128 return (RetTy->isPromotableIntegerType() ?
5129 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5130}
5131
5132ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
5133 // Treat an enum type as its underlying type.
5134 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5135 Ty = EnumTy->getDecl()->getIntegerType();
5136
5137 // Return aggregates type as indirect by value
5138 if (isAggregateTypeForABI(Ty))
5139 return ABIArgInfo::getIndirect(0, /* byval */ true);
5140
5141 return (Ty->isPromotableIntegerType() ?
5142 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5143}
5144
5145void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
5146 if (!getCXXABI().classifyReturnType(FI))
5147 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5148 for (auto &I : FI.arguments())
5149 I.info = classifyArgumentType(I.type);
5150
5151 // Always honor user-specified calling convention.
5152 if (FI.getCallingConvention() != llvm::CallingConv::C)
5153 return;
5154
5155 FI.setEffectiveCallingConvention(getRuntimeCC());
5156}
5157
5158llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5159 CodeGenFunction &CFG) const {
5160 llvm_unreachable("NVPTX does not support varargs");
5161}
5162
5163void NVPTXTargetCodeGenInfo::
5164SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5165 CodeGen::CodeGenModule &M) const{
5166 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5167 if (!FD) return;
5168
5169 llvm::Function *F = cast<llvm::Function>(GV);
5170
5171 // Perform special handling in OpenCL mode
5172 if (M.getLangOpts().OpenCL) {
5173 // Use OpenCL function attributes to check for kernel functions
5174 // By default, all functions are device functions
5175 if (FD->hasAttr<OpenCLKernelAttr>()) {
5176 // OpenCL __kernel functions get kernel metadata
5177 // Create !{<func-ref>, metadata !"kernel", i32 1} node
5178 addNVVMMetadata(F, "kernel", 1);
5179 // And kernel functions are not subject to inlining
5180 F->addFnAttr(llvm::Attribute::NoInline);
5181 }
5182 }
5183
5184 // Perform special handling in CUDA mode.
5185 if (M.getLangOpts().CUDA) {
5186 // CUDA __global__ functions get a kernel metadata entry. Since
5187 // __global__ functions cannot be called from the device, we do not
5188 // need to set the noinline attribute.
5189 if (FD->hasAttr<CUDAGlobalAttr>()) {
5190 // Create !{<func-ref>, metadata !"kernel", i32 1} node
5191 addNVVMMetadata(F, "kernel", 1);
5192 }
5193 if (FD->hasAttr<CUDALaunchBoundsAttr>()) {
5194 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
5195 addNVVMMetadata(F, "maxntidx",
5196 FD->getAttr<CUDALaunchBoundsAttr>()->getMaxThreads());
5197 // min blocks is a default argument for CUDALaunchBoundsAttr, so getting a
5198 // zero value from getMinBlocks either means it was not specified in
5199 // __launch_bounds__ or the user specified a 0 value. In both cases, we
5200 // don't have to add a PTX directive.
5201 int MinCTASM = FD->getAttr<CUDALaunchBoundsAttr>()->getMinBlocks();
5202 if (MinCTASM > 0) {
5203 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
5204 addNVVMMetadata(F, "minctasm", MinCTASM);
5205 }
5206 }
5207 }
5208}
5209
5210void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name,
5211 int Operand) {
5212 llvm::Module *M = F->getParent();
5213 llvm::LLVMContext &Ctx = M->getContext();
5214
5215 // Get "nvvm.annotations" metadata node
5216 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
5217
5218 llvm::Metadata *MDVals[] = {
5219 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name),
5220 llvm::ConstantAsMetadata::get(
5221 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
5222 // Append metadata to nvvm.annotations
5223 MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
5224}
5225}
5226
5227//===----------------------------------------------------------------------===//
5228// SystemZ ABI Implementation
5229//===----------------------------------------------------------------------===//
5230
5231namespace {
5232
5233class SystemZABIInfo : public ABIInfo {
5234public:
5235 SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5236
5237 bool isPromotableIntegerType(QualType Ty) const;
5238 bool isCompoundType(QualType Ty) const;
5239 bool isFPArgumentType(QualType Ty) const;
5240
5241 ABIArgInfo classifyReturnType(QualType RetTy) const;
5242 ABIArgInfo classifyArgumentType(QualType ArgTy) const;
5243
5244 void computeInfo(CGFunctionInfo &FI) const override {
5245 if (!getCXXABI().classifyReturnType(FI))
5246 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5247 for (auto &I : FI.arguments())
5248 I.info = classifyArgumentType(I.type);
5249 }
5250
5251 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5252 CodeGenFunction &CGF) const override;
5253};
5254
5255class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
5256public:
5257 SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
5258 : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
5259};
5260
5261}
5262
5263bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
5264 // Treat an enum type as its underlying type.
5265 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5266 Ty = EnumTy->getDecl()->getIntegerType();
5267
5268 // Promotable integer types are required to be promoted by the ABI.
5269 if (Ty->isPromotableIntegerType())
5270 return true;
5271
5272 // 32-bit values must also be promoted.
5273 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5274 switch (BT->getKind()) {
5275 case BuiltinType::Int:
5276 case BuiltinType::UInt:
5277 return true;
5278 default:
5279 return false;
5280 }
5281 return false;
5282}
5283
5284bool SystemZABIInfo::isCompoundType(QualType Ty) const {
5285 return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
5286}
5287
5288bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
5289 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5290 switch (BT->getKind()) {
5291 case BuiltinType::Float:
5292 case BuiltinType::Double:
5293 return true;
5294 default:
5295 return false;
5296 }
5297
5298 if (const RecordType *RT = Ty->getAsStructureType()) {
5299 const RecordDecl *RD = RT->getDecl();
5300 bool Found = false;
5301
5302 // If this is a C++ record, check the bases first.
5303 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
5304 for (const auto &I : CXXRD->bases()) {
5305 QualType Base = I.getType();
5306
5307 // Empty bases don't affect things either way.
5308 if (isEmptyRecord(getContext(), Base, true))
5309 continue;
5310
5311 if (Found)
5312 return false;
5313 Found = isFPArgumentType(Base);
5314 if (!Found)
5315 return false;
5316 }
5317
5318 // Check the fields.
5319 for (const auto *FD : RD->fields()) {
5320 // Empty bitfields don't affect things either way.
5321 // Unlike isSingleElementStruct(), empty structure and array fields
5322 // do count. So do anonymous bitfields that aren't zero-sized.
5323 if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
5324 return true;
5325
5326 // Unlike isSingleElementStruct(), arrays do not count.
5327 // Nested isFPArgumentType structures still do though.
5328 if (Found)
5329 return false;
5330 Found = isFPArgumentType(FD->getType());
5331 if (!Found)
5332 return false;
5333 }
5334
5335 // Unlike isSingleElementStruct(), trailing padding is allowed.
5336 // An 8-byte aligned struct s { float f; } is passed as a double.
5337 return Found;
5338 }
5339
5340 return false;
5341}
5342
5343llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5344 CodeGenFunction &CGF) const {
5345 // Assume that va_list type is correct; should be pointer to LLVM type:
5346 // struct {
5347 // i64 __gpr;
5348 // i64 __fpr;
5349 // i8 *__overflow_arg_area;
5350 // i8 *__reg_save_area;
5351 // };
5352
5353 // Every argument occupies 8 bytes and is passed by preference in either
5354 // GPRs or FPRs.
5355 Ty = CGF.getContext().getCanonicalType(Ty);
5356 ABIArgInfo AI = classifyArgumentType(Ty);
5357 bool InFPRs = isFPArgumentType(Ty);
5358
5359 llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
5360 bool IsIndirect = AI.isIndirect();
5361 unsigned UnpaddedBitSize;
5362 if (IsIndirect) {
5363 APTy = llvm::PointerType::getUnqual(APTy);
5364 UnpaddedBitSize = 64;
5365 } else
5366 UnpaddedBitSize = getContext().getTypeSize(Ty);
5367 unsigned PaddedBitSize = 64;
5368 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
5369
5370 unsigned PaddedSize = PaddedBitSize / 8;
5371 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
5372
5373 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
5374 if (InFPRs) {
5375 MaxRegs = 4; // Maximum of 4 FPR arguments
5376 RegCountField = 1; // __fpr
5377 RegSaveIndex = 16; // save offset for f0
5378 RegPadding = 0; // floats are passed in the high bits of an FPR
5379 } else {
5380 MaxRegs = 5; // Maximum of 5 GPR arguments
5381 RegCountField = 0; // __gpr
5382 RegSaveIndex = 2; // save offset for r2
5383 RegPadding = Padding; // values are passed in the low bits of a GPR
5384 }
5385
5386 llvm::Value *RegCountPtr =
5387 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
5388 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
5389 llvm::Type *IndexTy = RegCount->getType();
5390 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
5391 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
5392 "fits_in_regs");
5393
5394 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5395 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
5396 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5397 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
5398
5399 // Emit code to load the value if it was passed in registers.
5400 CGF.EmitBlock(InRegBlock);
5401
5402 // Work out the address of an argument register.
5403 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
5404 llvm::Value *ScaledRegCount =
5405 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
5406 llvm::Value *RegBase =
5407 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
5408 llvm::Value *RegOffset =
5409 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
5410 llvm::Value *RegSaveAreaPtr =
5411 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
5412 llvm::Value *RegSaveArea =
5413 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
5414 llvm::Value *RawRegAddr =
5415 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
5416 llvm::Value *RegAddr =
5417 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
5418
5419 // Update the register count
5420 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
5421 llvm::Value *NewRegCount =
5422 CGF.Builder.CreateAdd(RegCount, One, "reg_count");
5423 CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
5424 CGF.EmitBranch(ContBlock);
5425
5426 // Emit code to load the value if it was passed in memory.
5427 CGF.EmitBlock(InMemBlock);
5428
5429 // Work out the address of a stack argument.
5430 llvm::Value *OverflowArgAreaPtr =
5431 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
5432 llvm::Value *OverflowArgArea =
5433 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
5434 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
5435 llvm::Value *RawMemAddr =
5436 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
5437 llvm::Value *MemAddr =
5438 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
5439
5440 // Update overflow_arg_area_ptr pointer
5441 llvm::Value *NewOverflowArgArea =
5442 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
5443 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
5444 CGF.EmitBranch(ContBlock);
5445
5446 // Return the appropriate result.
5447 CGF.EmitBlock(ContBlock);
5448 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
5449 ResAddr->addIncoming(RegAddr, InRegBlock);
5450 ResAddr->addIncoming(MemAddr, InMemBlock);
5451
5452 if (IsIndirect)
5453 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
5454
5455 return ResAddr;
5456}
5457
5458ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
5459 if (RetTy->isVoidType())
5460 return ABIArgInfo::getIgnore();
5461 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
5462 return ABIArgInfo::getIndirect(0);
5463 return (isPromotableIntegerType(RetTy) ?
5464 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5465}
5466
5467ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
5468 // Handle the generic C++ ABI.
5469 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5470 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5471
5472 // Integers and enums are extended to full register width.
5473 if (isPromotableIntegerType(Ty))
5474 return ABIArgInfo::getExtend();
5475
5476 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
5477 uint64_t Size = getContext().getTypeSize(Ty);
5478 if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
5479 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5480
5481 // Handle small structures.
5482 if (const RecordType *RT = Ty->getAs<RecordType>()) {
5483 // Structures with flexible arrays have variable length, so really
5484 // fail the size test above.
5485 const RecordDecl *RD = RT->getDecl();
5486 if (RD->hasFlexibleArrayMember())
5487 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5488
5489 // The structure is passed as an unextended integer, a float, or a double.
5490 llvm::Type *PassTy;
5491 if (isFPArgumentType(Ty)) {
5492 assert(Size == 32 || Size == 64);
5493 if (Size == 32)
5494 PassTy = llvm::Type::getFloatTy(getVMContext());
5495 else
5496 PassTy = llvm::Type::getDoubleTy(getVMContext());
5497 } else
5498 PassTy = llvm::IntegerType::get(getVMContext(), Size);
5499 return ABIArgInfo::getDirect(PassTy);
5500 }
5501
5502 // Non-structure compounds are passed indirectly.
5503 if (isCompoundType(Ty))
5504 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5505
5506 return ABIArgInfo::getDirect(nullptr);
5507}
5508
5509//===----------------------------------------------------------------------===//
5510// MSP430 ABI Implementation
5511//===----------------------------------------------------------------------===//
5512
5513namespace {
5514
5515class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
5516public:
5517 MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
5518 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
5519 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5520 CodeGen::CodeGenModule &M) const override;
5521};
5522
5523}
5524
5525void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5526 llvm::GlobalValue *GV,
5527 CodeGen::CodeGenModule &M) const {
5528 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5529 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
5530 // Handle 'interrupt' attribute:
5531 llvm::Function *F = cast<llvm::Function>(GV);
5532
5533 // Step 1: Set ISR calling convention.
5534 F->setCallingConv(llvm::CallingConv::MSP430_INTR);
5535
5536 // Step 2: Add attributes goodness.
5537 F->addFnAttr(llvm::Attribute::NoInline);
5538
5539 // Step 3: Emit ISR vector alias.
5540 unsigned Num = attr->getNumber() / 2;
5541 llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
5542 "__isr_" + Twine(Num), F);
5543 }
5544 }
5545}
5546
5547//===----------------------------------------------------------------------===//
5548// MIPS ABI Implementation. This works for both little-endian and
5549// big-endian variants.
5550//===----------------------------------------------------------------------===//
5551
5552namespace {
5553class MipsABIInfo : public ABIInfo {
5554 bool IsO32;
5555 unsigned MinABIStackAlignInBytes, StackAlignInBytes;
5556 void CoerceToIntArgs(uint64_t TySize,
5557 SmallVectorImpl<llvm::Type *> &ArgList) const;
5558 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
5559 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
5560 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
5561public:
5562 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
5563 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
5564 StackAlignInBytes(IsO32 ? 8 : 16) {}
5565
5566 ABIArgInfo classifyReturnType(QualType RetTy) const;
5567 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
5568 void computeInfo(CGFunctionInfo &FI) const override;
5569 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5570 CodeGenFunction &CGF) const override;
5571};
5572
5573class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
5574 unsigned SizeOfUnwindException;
5575public:
5576 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
5577 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
5578 SizeOfUnwindException(IsO32 ? 24 : 32) {}
5579
5580 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
5581 return 29;
5582 }
5583
5584 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5585 CodeGen::CodeGenModule &CGM) const override {
5586 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5587 if (!FD) return;
5588 llvm::Function *Fn = cast<llvm::Function>(GV);
5589 if (FD->hasAttr<Mips16Attr>()) {
5590 Fn->addFnAttr("mips16");
5591 }
5592 else if (FD->hasAttr<NoMips16Attr>()) {
5593 Fn->addFnAttr("nomips16");
5594 }
5595 }
5596
5597 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5598 llvm::Value *Address) const override;
5599
5600 unsigned getSizeOfUnwindException() const override {
5601 return SizeOfUnwindException;
5602 }
5603};
5604}
5605
5606void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
5607 SmallVectorImpl<llvm::Type *> &ArgList) const {
5608 llvm::IntegerType *IntTy =
5609 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
5610
5611 // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
5612 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
5613 ArgList.push_back(IntTy);
5614
5615 // If necessary, add one more integer type to ArgList.
5616 unsigned R = TySize % (MinABIStackAlignInBytes * 8);
5617
5618 if (R)
5619 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
5620}
5621
5622// In N32/64, an aligned double precision floating point field is passed in
5623// a register.
5624llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
5625 SmallVector<llvm::Type*, 8> ArgList, IntArgList;
5626
5627 if (IsO32) {
5628 CoerceToIntArgs(TySize, ArgList);
5629 return llvm::StructType::get(getVMContext(), ArgList);
5630 }
5631
5632 if (Ty->isComplexType())
5633 return CGT.ConvertType(Ty);
5634
5635 const RecordType *RT = Ty->getAs<RecordType>();
5636
5637 // Unions/vectors are passed in integer registers.
5638 if (!RT || !RT->isStructureOrClassType()) {
5639 CoerceToIntArgs(TySize, ArgList);
5640 return llvm::StructType::get(getVMContext(), ArgList);
5641 }
5642
5643 const RecordDecl *RD = RT->getDecl();
5644 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5645 assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
5646
5647 uint64_t LastOffset = 0;
5648 unsigned idx = 0;
5649 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
5650
5651 // Iterate over fields in the struct/class and check if there are any aligned
5652 // double fields.
5653 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
5654 i != e; ++i, ++idx) {
5655 const QualType Ty = i->getType();
5656 const BuiltinType *BT = Ty->getAs<BuiltinType>();
5657
5658 if (!BT || BT->getKind() != BuiltinType::Double)
5659 continue;
5660
5661 uint64_t Offset = Layout.getFieldOffset(idx);
5662 if (Offset % 64) // Ignore doubles that are not aligned.
5663 continue;
5664
5665 // Add ((Offset - LastOffset) / 64) args of type i64.
5666 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
5667 ArgList.push_back(I64);
5668
5669 // Add double type.
5670 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
5671 LastOffset = Offset + 64;
5672 }
5673
5674 CoerceToIntArgs(TySize - LastOffset, IntArgList);
5675 ArgList.append(IntArgList.begin(), IntArgList.end());
5676
5677 return llvm::StructType::get(getVMContext(), ArgList);
5678}
5679
5680llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
5681 uint64_t Offset) const {
5682 if (OrigOffset + MinABIStackAlignInBytes > Offset)
5683 return nullptr;
5684
5685 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
5686}
5687
5688ABIArgInfo
5689MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
5690 Ty = useFirstFieldIfTransparentUnion(Ty);
5691
5692 uint64_t OrigOffset = Offset;
5693 uint64_t TySize = getContext().getTypeSize(Ty);
5694 uint64_t Align = getContext().getTypeAlign(Ty) / 8;
5695
5696 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
5697 (uint64_t)StackAlignInBytes);
5698 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
5699 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
5700
5701 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
5702 // Ignore empty aggregates.
5703 if (TySize == 0)
5704 return ABIArgInfo::getIgnore();
5705
5706 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5707 Offset = OrigOffset + MinABIStackAlignInBytes;
5708 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5709 }
5710
5711 // If we have reached here, aggregates are passed directly by coercing to
5712 // another structure type. Padding is inserted if the offset of the
5713 // aggregate is unaligned.
5714 ABIArgInfo ArgInfo =
5715 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
5716 getPaddingType(OrigOffset, CurrOffset));
5717 ArgInfo.setInReg(true);
5718 return ArgInfo;
5719 }
5720
5721 // Treat an enum type as its underlying type.
5722 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5723 Ty = EnumTy->getDecl()->getIntegerType();
5724
5725 // All integral types are promoted to the GPR width.
5726 if (Ty->isIntegralOrEnumerationType())
5727 return ABIArgInfo::getExtend();
5728
5729 return ABIArgInfo::getDirect(
5730 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
5731}
5732
5733llvm::Type*
5734MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
5735 const RecordType *RT = RetTy->getAs<RecordType>();
5736 SmallVector<llvm::Type*, 8> RTList;
5737
5738 if (RT && RT->isStructureOrClassType()) {
5739 const RecordDecl *RD = RT->getDecl();
5740 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
5741 unsigned FieldCnt = Layout.getFieldCount();
5742
5743 // N32/64 returns struct/classes in floating point registers if the
5744 // following conditions are met:
5745 // 1. The size of the struct/class is no larger than 128-bit.
5746 // 2. The struct/class has one or two fields all of which are floating
5747 // point types.
5748 // 3. The offset of the first field is zero (this follows what gcc does).
5749 //
5750 // Any other composite results are returned in integer registers.
5751 //
5752 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
5753 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
5754 for (; b != e; ++b) {
5755 const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
5756
5757 if (!BT || !BT->isFloatingPoint())
5758 break;
5759
5760 RTList.push_back(CGT.ConvertType(b->getType()));
5761 }
5762
5763 if (b == e)
5764 return llvm::StructType::get(getVMContext(), RTList,
5765 RD->hasAttr<PackedAttr>());
5766
5767 RTList.clear();
5768 }
5769 }
5770
5771 CoerceToIntArgs(Size, RTList);
5772 return llvm::StructType::get(getVMContext(), RTList);
5773}
5774
5775ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
5776 uint64_t Size = getContext().getTypeSize(RetTy);
5777
5778 if (RetTy->isVoidType())
5779 return ABIArgInfo::getIgnore();
5780
5781 // O32 doesn't treat zero-sized structs differently from other structs.
5782 // However, N32/N64 ignores zero sized return values.
5783 if (!IsO32 && Size == 0)
5784 return ABIArgInfo::getIgnore();
5785
5786 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
5787 if (Size <= 128) {
5788 if (RetTy->isAnyComplexType())
5789 return ABIArgInfo::getDirect();
5790
5791 // O32 returns integer vectors in registers and N32/N64 returns all small
5792 // aggregates in registers.
5793 if (!IsO32 ||
5794 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
5795 ABIArgInfo ArgInfo =
5796 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
5797 ArgInfo.setInReg(true);
5798 return ArgInfo;
5799 }
5800 }
5801
5802 return ABIArgInfo::getIndirect(0);
5803 }
5804
5805 // Treat an enum type as its underlying type.
5806 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5807 RetTy = EnumTy->getDecl()->getIntegerType();
5808
5809 return (RetTy->isPromotableIntegerType() ?
5810 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5811}
5812
5813void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
5814 ABIArgInfo &RetInfo = FI.getReturnInfo();
5815 if (!getCXXABI().classifyReturnType(FI))
5816 RetInfo = classifyReturnType(FI.getReturnType());
5817
5818 // Check if a pointer to an aggregate is passed as a hidden argument.
5819 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
5820
5821 for (auto &I : FI.arguments())
5822 I.info = classifyArgumentType(I.type, Offset);
5823}
5824
5825llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5826 CodeGenFunction &CGF) const {
5827 llvm::Type *BP = CGF.Int8PtrTy;
5828 llvm::Type *BPP = CGF.Int8PtrPtrTy;
5829
5830 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
5831 // Pointers are also promoted in the same way but this only matters for N32.
5832 unsigned SlotSizeInBits = IsO32 ? 32 : 64;
5833 unsigned PtrWidth = getTarget().getPointerWidth(0);
5834 if ((Ty->isIntegerType() &&
5835 CGF.getContext().getIntWidth(Ty) < SlotSizeInBits) ||
5836 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
5837 Ty = CGF.getContext().getIntTypeForBitwidth(SlotSizeInBits,
5838 Ty->isSignedIntegerType());
5839 }
5840
5841 CGBuilderTy &Builder = CGF.Builder;
5842 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5843 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5844 int64_t TypeAlign =
5845 std::min(getContext().getTypeAlign(Ty) / 8, StackAlignInBytes);
5846 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5847 llvm::Value *AddrTyped;
5848 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
5849
5850 if (TypeAlign > MinABIStackAlignInBytes) {
5851 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
5852 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
5853 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
5854 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
5855 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
5856 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
5857 }
5858 else
5859 AddrTyped = Builder.CreateBitCast(Addr, PTy);
5860
5861 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
5862 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
5863 unsigned ArgSizeInBits = CGF.getContext().getTypeSize(Ty);
5864 uint64_t Offset = llvm::RoundUpToAlignment(ArgSizeInBits / 8, TypeAlign);
5865 llvm::Value *NextAddr =
5866 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
5867 "ap.next");
5868 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5869
5870 return AddrTyped;
5871}
5872
5873bool
5874MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5875 llvm::Value *Address) const {
5876 // This information comes from gcc's implementation, which seems to
5877 // as canonical as it gets.
5878
5879 // Everything on MIPS is 4 bytes. Double-precision FP registers
5880 // are aliased to pairs of single-precision FP registers.
5881 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
5882
5883 // 0-31 are the general purpose registers, $0 - $31.
5884 // 32-63 are the floating-point registers, $f0 - $f31.
5885 // 64 and 65 are the multiply/divide registers, $hi and $lo.
5886 // 66 is the (notional, I think) register for signal-handler return.
5887 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
5888
5889 // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
5890 // They are one bit wide and ignored here.
5891
5892 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
5893 // (coprocessor 1 is the FP unit)
5894 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
5895 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
5896 // 176-181 are the DSP accumulator registers.
5897 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
5898 return false;
5899}
5900
5901//===----------------------------------------------------------------------===//
5902// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
5903// Currently subclassed only to implement custom OpenCL C function attribute
5904// handling.
5905//===----------------------------------------------------------------------===//
5906
5907namespace {
5908
5909class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
5910public:
5911 TCETargetCodeGenInfo(CodeGenTypes &CGT)
5912 : DefaultTargetCodeGenInfo(CGT) {}
5913
5914 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5915 CodeGen::CodeGenModule &M) const override;
5916};
5917
5918void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
5919 llvm::GlobalValue *GV,
5920 CodeGen::CodeGenModule &M) const {
5921 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
5922 if (!FD) return;
5923
5924 llvm::Function *F = cast<llvm::Function>(GV);
5925
5926 if (M.getLangOpts().OpenCL) {
5927 if (FD->hasAttr<OpenCLKernelAttr>()) {
5928 // OpenCL C Kernel functions are not subject to inlining
5929 F->addFnAttr(llvm::Attribute::NoInline);
5930 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
5931 if (Attr) {
5932 // Convert the reqd_work_group_size() attributes to metadata.
5933 llvm::LLVMContext &Context = F->getContext();
5934 llvm::NamedMDNode *OpenCLMetadata =
5935 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5936
5937 SmallVector<llvm::Metadata *, 5> Operands;
5938 Operands.push_back(llvm::ConstantAsMetadata::get(F));
5939
5940 Operands.push_back(
5941 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5942 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
5943 Operands.push_back(
5944 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5945 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
5946 Operands.push_back(
5947 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
5948 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
5949
5950 // Add a boolean constant operand for "required" (true) or "hint" (false)
5951 // for implementing the work_group_size_hint attr later. Currently
5952 // always true as the hint is not yet implemented.
5953 Operands.push_back(
5954 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
5955 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5956 }
5957 }
5958 }
5959}
5960
5961}
5962
5963//===----------------------------------------------------------------------===//
5964// Hexagon ABI Implementation
5965//===----------------------------------------------------------------------===//
5966
5967namespace {
5968
5969class HexagonABIInfo : public ABIInfo {
5970
5971
5972public:
5973 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5974
5975private:
5976
5977 ABIArgInfo classifyReturnType(QualType RetTy) const;
5978 ABIArgInfo classifyArgumentType(QualType RetTy) const;
5979
5980 void computeInfo(CGFunctionInfo &FI) const override;
5981
5982 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5983 CodeGenFunction &CGF) const override;
5984};
5985
5986class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5987public:
5988 HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5989 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5990
5991 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5992 return 29;
5993 }
5994};
5995
5996}
5997
5998void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5999 if (!getCXXABI().classifyReturnType(FI))
6000 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
6001 for (auto &I : FI.arguments())
6002 I.info = classifyArgumentType(I.type);
6003}
6004
6005ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
6006 if (!isAggregateTypeForABI(Ty)) {
6007 // Treat an enum type as its underlying type.
6008 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6009 Ty = EnumTy->getDecl()->getIntegerType();
6010
6011 return (Ty->isPromotableIntegerType() ?
6012 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6013 }
6014
6015 // Ignore empty records.
6016 if (isEmptyRecord(getContext(), Ty, true))
6017 return ABIArgInfo::getIgnore();
6018
6019 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6020 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
6021
6022 uint64_t Size = getContext().getTypeSize(Ty);
6023 if (Size > 64)
6024 return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
6025 // Pass in the smallest viable integer type.
6026 else if (Size > 32)
6027 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6028 else if (Size > 16)
6029 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6030 else if (Size > 8)
6031 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6032 else
6033 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6034}
6035
6036ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
6037 if (RetTy->isVoidType())
6038 return ABIArgInfo::getIgnore();
6039
6040 // Large vector types should be returned via memory.
6041 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
6042 return ABIArgInfo::getIndirect(0);
6043
6044 if (!isAggregateTypeForABI(RetTy)) {
6045 // Treat an enum type as its underlying type.
6046 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6047 RetTy = EnumTy->getDecl()->getIntegerType();
6048
6049 return (RetTy->isPromotableIntegerType() ?
6050 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
6051 }
6052
6053 if (isEmptyRecord(getContext(), RetTy, true))
6054 return ABIArgInfo::getIgnore();
6055
6056 // Aggregates <= 8 bytes are returned in r0; other aggregates
6057 // are returned indirectly.
6058 uint64_t Size = getContext().getTypeSize(RetTy);
6059 if (Size <= 64) {
6060 // Return in the smallest viable integer type.
6061 if (Size <= 8)
6062 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6063 if (Size <= 16)
6064 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6065 if (Size <= 32)
6066 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6067 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
6068 }
6069
6070 return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
6071}
6072
6073llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6074 CodeGenFunction &CGF) const {
6075 // FIXME: Need to handle alignment
6076 llvm::Type *BPP = CGF.Int8PtrPtrTy;
6077
6078 CGBuilderTy &Builder = CGF.Builder;
6079 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
6080 "ap");
6081 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
6082 llvm::Type *PTy =
6083 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
6084 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
6085
6086 uint64_t Offset =
6087 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
6088 llvm::Value *NextAddr =
6089 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
6090 "ap.next");
6091 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
6092
6093 return AddrTyped;
6094}
6095
6096//===----------------------------------------------------------------------===//
6097// AMDGPU ABI Implementation
6098//===----------------------------------------------------------------------===//
6099
6100namespace {
6101
6102class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
6103public:
6104 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
6105 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
6106 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6107 CodeGen::CodeGenModule &M) const override;
6108};
6109
6110}
6111
6112void AMDGPUTargetCodeGenInfo::SetTargetAttributes(
6113 const Decl *D,
6114 llvm::GlobalValue *GV,
6115 CodeGen::CodeGenModule &M) const {
6116 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
6117 if (!FD)
6118 return;
6119
6120 if (const auto Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
6121 llvm::Function *F = cast<llvm::Function>(GV);
6122 uint32_t NumVGPR = Attr->getNumVGPR();
6123 if (NumVGPR != 0)
6124 F->addFnAttr("amdgpu_num_vgpr", llvm::utostr(NumVGPR));
6125 }
6126
6127 if (const auto Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
6128 llvm::Function *F = cast<llvm::Function>(GV);
6129 unsigned NumSGPR = Attr->getNumSGPR();
6130 if (NumSGPR != 0)
6131 F->addFnAttr("amdgpu_num_sgpr", llvm::utostr(NumSGPR));
6132 }
6133}
6134
6135
6136//===----------------------------------------------------------------------===//
6137// SPARC v9 ABI Implementation.
6138// Based on the SPARC Compliance Definition version 2.4.1.
6139//
6140// Function arguments a mapped to a nominal "parameter array" and promoted to
6141// registers depending on their type. Each argument occupies 8 or 16 bytes in
6142// the array, structs larger than 16 bytes are passed indirectly.
6143//
6144// One case requires special care:
6145//
6146// struct mixed {
6147// int i;
6148// float f;
6149// };
6150//
6151// When a struct mixed is passed by value, it only occupies 8 bytes in the
6152// parameter array, but the int is passed in an integer register, and the float
6153// is passed in a floating point register. This is represented as two arguments
6154// with the LLVM IR inreg attribute:
6155//
6156// declare void f(i32 inreg %i, float inreg %f)
6157//
6158// The code generator will only allocate 4 bytes from the parameter array for
6159// the inreg arguments. All other arguments are allocated a multiple of 8
6160// bytes.
6161//
6162namespace {
6163class SparcV9ABIInfo : public ABIInfo {
6164public:
6165 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
6166
6167private:
6168 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
6169 void computeInfo(CGFunctionInfo &FI) const override;
6170 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6171 CodeGenFunction &CGF) const override;
6172
6173 // Coercion type builder for structs passed in registers. The coercion type
6174 // serves two purposes:
6175 //
6176 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
6177 // in registers.
6178 // 2. Expose aligned floating point elements as first-level elements, so the
6179 // code generator knows to pass them in floating point registers.
6180 //
6181 // We also compute the InReg flag which indicates that the struct contains
6182 // aligned 32-bit floats.
6183 //
6184 struct CoerceBuilder {
6185 llvm::LLVMContext &Context;
6186 const llvm::DataLayout &DL;
6187 SmallVector<llvm::Type*, 8> Elems;
6188 uint64_t Size;
6189 bool InReg;
6190
6191 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
6192 : Context(c), DL(dl), Size(0), InReg(false) {}
6193
6194 // Pad Elems with integers until Size is ToSize.
6195 void pad(uint64_t ToSize) {
6196 assert(ToSize >= Size && "Cannot remove elements");
6197 if (ToSize == Size)
6198 return;
6199
6200 // Finish the current 64-bit word.
6201 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
6202 if (Aligned > Size && Aligned <= ToSize) {
6203 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
6204 Size = Aligned;
6205 }
6206
6207 // Add whole 64-bit words.
6208 while (Size + 64 <= ToSize) {
6209 Elems.push_back(llvm::Type::getInt64Ty(Context));
6210 Size += 64;
6211 }
6212
6213 // Final in-word padding.
6214 if (Size < ToSize) {
6215 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
6216 Size = ToSize;
6217 }
6218 }
6219
6220 // Add a floating point element at Offset.
6221 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
6222 // Unaligned floats are treated as integers.
6223 if (Offset % Bits)
6224 return;
6225 // The InReg flag is only required if there are any floats < 64 bits.
6226 if (Bits < 64)
6227 InReg = true;
6228 pad(Offset);
6229 Elems.push_back(Ty);
6230 Size = Offset + Bits;
6231 }
6232
6233 // Add a struct type to the coercion type, starting at Offset (in bits).
6234 void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
6235 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
6236 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
6237 llvm::Type *ElemTy = StrTy->getElementType(i);
6238 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
6239 switch (ElemTy->getTypeID()) {
6240 case llvm::Type::StructTyID:
6241 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
6242 break;
6243 case llvm::Type::FloatTyID:
6244 addFloat(ElemOffset, ElemTy, 32);
6245 break;
6246 case llvm::Type::DoubleTyID:
6247 addFloat(ElemOffset, ElemTy, 64);
6248 break;
6249 case llvm::Type::FP128TyID:
6250 addFloat(ElemOffset, ElemTy, 128);
6251 break;
6252 case llvm::Type::PointerTyID:
6253 if (ElemOffset % 64 == 0) {
6254 pad(ElemOffset);
6255 Elems.push_back(ElemTy);
6256 Size += 64;
6257 }
6258 break;
6259 default:
6260 break;
6261 }
6262 }
6263 }
6264
6265 // Check if Ty is a usable substitute for the coercion type.
6266 bool isUsableType(llvm::StructType *Ty) const {
6267 if (Ty->getNumElements() != Elems.size())
6268 return false;
6269 for (unsigned i = 0, e = Elems.size(); i != e; ++i)
6270 if (Elems[i] != Ty->getElementType(i))
6271 return false;
6272 return true;
6273 }
6274
6275 // Get the coercion type as a literal struct type.
6276 llvm::Type *getType() const {
6277 if (Elems.size() == 1)
6278 return Elems.front();
6279 else
6280 return llvm::StructType::get(Context, Elems);
6281 }
6282 };
6283};
6284} // end anonymous namespace
6285
6286ABIArgInfo
6287SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
6288 if (Ty->isVoidType())
6289 return ABIArgInfo::getIgnore();
6290
6291 uint64_t Size = getContext().getTypeSize(Ty);
6292
6293 // Anything too big to fit in registers is passed with an explicit indirect
6294 // pointer / sret pointer.
6295 if (Size > SizeLimit)
6296 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
6297
6298 // Treat an enum type as its underlying type.
6299 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6300 Ty = EnumTy->getDecl()->getIntegerType();
6301
6302 // Integer types smaller than a register are extended.
6303 if (Size < 64 && Ty->isIntegerType())
6304 return ABIArgInfo::getExtend();
6305
6306 // Other non-aggregates go in registers.
6307 if (!isAggregateTypeForABI(Ty))
6308 return ABIArgInfo::getDirect();
6309
6310 // If a C++ object has either a non-trivial copy constructor or a non-trivial
6311 // destructor, it is passed with an explicit indirect pointer / sret pointer.
6312 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
6313 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
6314
6315 // This is a small aggregate type that should be passed in registers.
6316 // Build a coercion type from the LLVM struct type.
6317 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
6318 if (!StrTy)
6319 return ABIArgInfo::getDirect();
6320
6321 CoerceBuilder CB(getVMContext(), getDataLayout());
6322 CB.addStruct(0, StrTy);
6323 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
6324
6325 // Try to use the original type for coercion.
6326 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
6327
6328 if (CB.InReg)
6329 return ABIArgInfo::getDirectInReg(CoerceTy);
6330 else
6331 return ABIArgInfo::getDirect(CoerceTy);
6332}
6333
6334llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6335 CodeGenFunction &CGF) const {
6336 ABIArgInfo AI = classifyType(Ty, 16 * 8);
6337 llvm::Type *ArgTy = CGT.ConvertType(Ty);
6338 if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6339 AI.setCoerceToType(ArgTy);
6340
6341 llvm::Type *BPP = CGF.Int8PtrPtrTy;
6342 CGBuilderTy &Builder = CGF.Builder;
6343 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
6344 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
6345 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6346 llvm::Value *ArgAddr;
6347 unsigned Stride;
6348
6349 switch (AI.getKind()) {
6350 case ABIArgInfo::Expand:
6351 case ABIArgInfo::InAlloca:
6352 llvm_unreachable("Unsupported ABI kind for va_arg");
6353
6354 case ABIArgInfo::Extend:
6355 Stride = 8;
6356 ArgAddr = Builder
6357 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
6358 "extend");
6359 break;
6360
6361 case ABIArgInfo::Direct:
6362 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6363 ArgAddr = Addr;
6364 break;
6365
6366 case ABIArgInfo::Indirect:
6367 Stride = 8;
6368 ArgAddr = Builder.CreateBitCast(Addr,
6369 llvm::PointerType::getUnqual(ArgPtrTy),
6370 "indirect");
6371 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
6372 break;
6373
6374 case ABIArgInfo::Ignore:
6375 return llvm::UndefValue::get(ArgPtrTy);
6376 }
6377
6378 // Update VAList.
6379 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
6380 Builder.CreateStore(Addr, VAListAddrAsBPP);
6381
6382 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
6383}
6384
6385void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
6386 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
6387 for (auto &I : FI.arguments())
6388 I.info = classifyType(I.type, 16 * 8);
6389}
6390
6391namespace {
6392class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
6393public:
6394 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
6395 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
6396
6397 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6398 return 14;
6399 }
6400
6401 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6402 llvm::Value *Address) const override;
6403};
6404} // end anonymous namespace
6405
6406bool
6407SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6408 llvm::Value *Address) const {
6409 // This is calculated from the LLVM and GCC tables and verified
6410 // against gcc output. AFAIK all ABIs use the same encoding.
6411
6412 CodeGen::CGBuilderTy &Builder = CGF.Builder;
6413
6414 llvm::IntegerType *i8 = CGF.Int8Ty;
6415 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
6416 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
6417
6418 // 0-31: the 8-byte general-purpose registers
6419 AssignToArrayRange(Builder, Address, Eight8, 0, 31);
6420
6421 // 32-63: f0-31, the 4-byte floating-point registers
6422 AssignToArrayRange(Builder, Address, Four8, 32, 63);
6423
6424 // Y = 64
6425 // PSR = 65
6426 // WIM = 66
6427 // TBR = 67
6428 // PC = 68
6429 // NPC = 69
6430 // FSR = 70
6431 // CSR = 71
6432 AssignToArrayRange(Builder, Address, Eight8, 64, 71);
6433
6434 // 72-87: d0-15, the 8-byte floating-point registers
6435 AssignToArrayRange(Builder, Address, Eight8, 72, 87);
6436
6437 return false;
6438}
6439
6440
6441//===----------------------------------------------------------------------===//
6442// XCore ABI Implementation
6443//===----------------------------------------------------------------------===//
6444
6445namespace {
6446
6447/// A SmallStringEnc instance is used to build up the TypeString by passing
6448/// it by reference between functions that append to it.
6449typedef llvm::SmallString<128> SmallStringEnc;
6450
6451/// TypeStringCache caches the meta encodings of Types.
6452///
6453/// The reason for caching TypeStrings is two fold:
6454/// 1. To cache a type's encoding for later uses;
6455/// 2. As a means to break recursive member type inclusion.
6456///
6457/// A cache Entry can have a Status of:
6458/// NonRecursive: The type encoding is not recursive;
6459/// Recursive: The type encoding is recursive;
6460/// Incomplete: An incomplete TypeString;
6461/// IncompleteUsed: An incomplete TypeString that has been used in a
6462/// Recursive type encoding.
6463///
6464/// A NonRecursive entry will have all of its sub-members expanded as fully
6465/// as possible. Whilst it may contain types which are recursive, the type
6466/// itself is not recursive and thus its encoding may be safely used whenever
6467/// the type is encountered.
6468///
6469/// A Recursive entry will have all of its sub-members expanded as fully as
6470/// possible. The type itself is recursive and it may contain other types which
6471/// are recursive. The Recursive encoding must not be used during the expansion
6472/// of a recursive type's recursive branch. For simplicity the code uses
6473/// IncompleteCount to reject all usage of Recursive encodings for member types.
6474///
6475/// An Incomplete entry is always a RecordType and only encodes its
6476/// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
6477/// are placed into the cache during type expansion as a means to identify and
6478/// handle recursive inclusion of types as sub-members. If there is recursion
6479/// the entry becomes IncompleteUsed.
6480///
6481/// During the expansion of a RecordType's members:
6482///
6483/// If the cache contains a NonRecursive encoding for the member type, the
6484/// cached encoding is used;
6485///
6486/// If the cache contains a Recursive encoding for the member type, the
6487/// cached encoding is 'Swapped' out, as it may be incorrect, and...
6488///
6489/// If the member is a RecordType, an Incomplete encoding is placed into the
6490/// cache to break potential recursive inclusion of itself as a sub-member;
6491///
6492/// Once a member RecordType has been expanded, its temporary incomplete
6493/// entry is removed from the cache. If a Recursive encoding was swapped out
6494/// it is swapped back in;
6495///
6496/// If an incomplete entry is used to expand a sub-member, the incomplete
6497/// entry is marked as IncompleteUsed. The cache keeps count of how many
6498/// IncompleteUsed entries it currently contains in IncompleteUsedCount;
6499///
6500/// If a member's encoding is found to be a NonRecursive or Recursive viz:
6501/// IncompleteUsedCount==0, the member's encoding is added to the cache.
6502/// Else the member is part of a recursive type and thus the recursion has
6503/// been exited too soon for the encoding to be correct for the member.
6504///
6505class TypeStringCache {
6506 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
6507 struct Entry {
6508 std::string Str; // The encoded TypeString for the type.
6509 enum Status State; // Information about the encoding in 'Str'.
6510 std::string Swapped; // A temporary place holder for a Recursive encoding
6511 // during the expansion of RecordType's members.
6512 };
6513 std::map<const IdentifierInfo *, struct Entry> Map;
6514 unsigned IncompleteCount; // Number of Incomplete entries in the Map.
6515 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
6516public:
6517 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {};
6518 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
6519 bool removeIncomplete(const IdentifierInfo *ID);
6520 void addIfComplete(const IdentifierInfo *ID, StringRef Str,
6521 bool IsRecursive);
6522 StringRef lookupStr(const IdentifierInfo *ID);
6523};
6524
6525/// TypeString encodings for enum & union fields must be order.
6526/// FieldEncoding is a helper for this ordering process.
6527class FieldEncoding {
6528 bool HasName;
6529 std::string Enc;
6530public:
6531 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {};
6532 StringRef str() {return Enc.c_str();};
6533 bool operator<(const FieldEncoding &rhs) const {
6534 if (HasName != rhs.HasName) return HasName;
6535 return Enc < rhs.Enc;
6536 }
6537};
6538
6539class XCoreABIInfo : public DefaultABIInfo {
6540public:
6541 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
6542 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6543 CodeGenFunction &CGF) const override;
6544};
6545
6546class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
6547 mutable TypeStringCache TSC;
6548public:
6549 XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
6550 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
6551 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6552 CodeGen::CodeGenModule &M) const override;
6553};
6554
6555} // End anonymous namespace.
6556
6557llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
6558 CodeGenFunction &CGF) const {
6559 CGBuilderTy &Builder = CGF.Builder;
6560
6561 // Get the VAList.
6562 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
6563 CGF.Int8PtrPtrTy);
6564 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
6565
6566 // Handle the argument.
6567 ABIArgInfo AI = classifyArgumentType(Ty);
6568 llvm::Type *ArgTy = CGT.ConvertType(Ty);
6569 if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
6570 AI.setCoerceToType(ArgTy);
6571 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
6572 llvm::Value *Val;
6573 uint64_t ArgSize = 0;
6574 switch (AI.getKind()) {
6575 case ABIArgInfo::Expand:
6576 case ABIArgInfo::InAlloca:
6577 llvm_unreachable("Unsupported ABI kind for va_arg");
6578 case ABIArgInfo::Ignore:
6579 Val = llvm::UndefValue::get(ArgPtrTy);
6580 ArgSize = 0;
6581 break;
6582 case ABIArgInfo::Extend:
6583 case ABIArgInfo::Direct:
6584 Val = Builder.CreatePointerCast(AP, ArgPtrTy);
6585 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
6586 if (ArgSize < 4)
6587 ArgSize = 4;
6588 break;
6589 case ABIArgInfo::Indirect:
6590 llvm::Value *ArgAddr;
6591 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
6592 ArgAddr = Builder.CreateLoad(ArgAddr);
6593 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
6594 ArgSize = 4;
6595 break;
6596 }
6597
6598 // Increment the VAList.
6599 if (ArgSize) {
6600 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
6601 Builder.CreateStore(APN, VAListAddrAsBPP);
6602 }
6603 return Val;
6604}
6605
6606/// During the expansion of a RecordType, an incomplete TypeString is placed
6607/// into the cache as a means to identify and break recursion.
6608/// If there is a Recursive encoding in the cache, it is swapped out and will
6609/// be reinserted by removeIncomplete().
6610/// All other types of encoding should have been used rather than arriving here.
6611void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
6612 std::string StubEnc) {
6613 if (!ID)
6614 return;
6615 Entry &E = Map[ID];
6616 assert( (E.Str.empty() || E.State == Recursive) &&
6617 "Incorrectly use of addIncomplete");
6618 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
6619 E.Swapped.swap(E.Str); // swap out the Recursive
6620 E.Str.swap(StubEnc);
6621 E.State = Incomplete;
6622 ++IncompleteCount;
6623}
6624
6625/// Once the RecordType has been expanded, the temporary incomplete TypeString
6626/// must be removed from the cache.
6627/// If a Recursive was swapped out by addIncomplete(), it will be replaced.
6628/// Returns true if the RecordType was defined recursively.
6629bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
6630 if (!ID)
6631 return false;
6632 auto I = Map.find(ID);
6633 assert(I != Map.end() && "Entry not present");
6634 Entry &E = I->second;
6635 assert( (E.State == Incomplete ||
6636 E.State == IncompleteUsed) &&
6637 "Entry must be an incomplete type");
6638 bool IsRecursive = false;
6639 if (E.State == IncompleteUsed) {
6640 // We made use of our Incomplete encoding, thus we are recursive.
6641 IsRecursive = true;
6642 --IncompleteUsedCount;
6643 }
6644 if (E.Swapped.empty())
6645 Map.erase(I);
6646 else {
6647 // Swap the Recursive back.
6648 E.Swapped.swap(E.Str);
6649 E.Swapped.clear();
6650 E.State = Recursive;
6651 }
6652 --IncompleteCount;
6653 return IsRecursive;
6654}
6655
6656/// Add the encoded TypeString to the cache only if it is NonRecursive or
6657/// Recursive (viz: all sub-members were expanded as fully as possible).
6658void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
6659 bool IsRecursive) {
6660 if (!ID || IncompleteUsedCount)
6661 return; // No key or it is is an incomplete sub-type so don't add.
6662 Entry &E = Map[ID];
6663 if (IsRecursive && !E.Str.empty()) {
6664 assert(E.State==Recursive && E.Str.size() == Str.size() &&
6665 "This is not the same Recursive entry");
6666 // The parent container was not recursive after all, so we could have used
6667 // this Recursive sub-member entry after all, but we assumed the worse when
6668 // we started viz: IncompleteCount!=0.
6669 return;
6670 }
6671 assert(E.Str.empty() && "Entry already present");
6672 E.Str = Str.str();
6673 E.State = IsRecursive? Recursive : NonRecursive;
6674}
6675
6676/// Return a cached TypeString encoding for the ID. If there isn't one, or we
6677/// are recursively expanding a type (IncompleteCount != 0) and the cached
6678/// encoding is Recursive, return an empty StringRef.
6679StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
6680 if (!ID)
6681 return StringRef(); // We have no key.
6682 auto I = Map.find(ID);
6683 if (I == Map.end())
6684 return StringRef(); // We have no encoding.
6685 Entry &E = I->second;
6686 if (E.State == Recursive && IncompleteCount)
6687 return StringRef(); // We don't use Recursive encodings for member types.
6688
6689 if (E.State == Incomplete) {
6690 // The incomplete type is being used to break out of recursion.
6691 E.State = IncompleteUsed;
6692 ++IncompleteUsedCount;
6693 }
6694 return E.Str.c_str();
6695}
6696
6697/// The XCore ABI includes a type information section that communicates symbol
6698/// type information to the linker. The linker uses this information to verify
6699/// safety/correctness of things such as array bound and pointers et al.
6700/// The ABI only requires C (and XC) language modules to emit TypeStrings.
6701/// This type information (TypeString) is emitted into meta data for all global
6702/// symbols: definitions, declarations, functions & variables.
6703///
6704/// The TypeString carries type, qualifier, name, size & value details.
6705/// Please see 'Tools Development Guide' section 2.16.2 for format details:
6706/// <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>
6707/// The output is tested by test/CodeGen/xcore-stringtype.c.
6708///
6709static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
6710 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC);
6711
6712/// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
6713void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
6714 CodeGen::CodeGenModule &CGM) const {
6715 SmallStringEnc Enc;
6716 if (getTypeString(Enc, D, CGM, TSC)) {
6717 llvm::LLVMContext &Ctx = CGM.getModule().getContext();
6718 llvm::SmallVector<llvm::Metadata *, 2> MDVals;
6719 MDVals.push_back(llvm::ConstantAsMetadata::get(GV));
6720 MDVals.push_back(llvm::MDString::get(Ctx, Enc.str()));
6721 llvm::NamedMDNode *MD =
6722 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
6723 MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
6724 }
6725}
6726
6727static bool appendType(SmallStringEnc &Enc, QualType QType,
6728 const CodeGen::CodeGenModule &CGM,
6729 TypeStringCache &TSC);
6730
6731/// Helper function for appendRecordType().
6732/// Builds a SmallVector containing the encoded field types in declaration order.
6733static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
6734 const RecordDecl *RD,
6735 const CodeGen::CodeGenModule &CGM,
6736 TypeStringCache &TSC) {
6737 for (const auto *Field : RD->fields()) {
6738 SmallStringEnc Enc;
6739 Enc += "m(";
6740 Enc += Field->getName();
6741 Enc += "){";
6742 if (Field->isBitField()) {
6743 Enc += "b(";
6744 llvm::raw_svector_ostream OS(Enc);
6745 OS.resync();
6746 OS << Field->getBitWidthValue(CGM.getContext());
6747 OS.flush();
6748 Enc += ':';
6749 }
6750 if (!appendType(Enc, Field->getType(), CGM, TSC))
6751 return false;
6752 if (Field->isBitField())
6753 Enc += ')';
6754 Enc += '}';
6755 FE.push_back(FieldEncoding(!Field->getName().empty(), Enc));
6756 }
6757 return true;
6758}
6759
6760/// Appends structure and union types to Enc and adds encoding to cache.
6761/// Recursively calls appendType (via extractFieldType) for each field.
6762/// Union types have their fields ordered according to the ABI.
6763static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
6764 const CodeGen::CodeGenModule &CGM,
6765 TypeStringCache &TSC, const IdentifierInfo *ID) {
6766 // Append the cached TypeString if we have one.
6767 StringRef TypeString = TSC.lookupStr(ID);
6768 if (!TypeString.empty()) {
6769 Enc += TypeString;
6770 return true;
6771 }
6772
6773 // Start to emit an incomplete TypeString.
6774 size_t Start = Enc.size();
6775 Enc += (RT->isUnionType()? 'u' : 's');
6776 Enc += '(';
6777 if (ID)
6778 Enc += ID->getName();
6779 Enc += "){";
6780
6781 // We collect all encoded fields and order as necessary.
6782 bool IsRecursive = false;
6783 const RecordDecl *RD = RT->getDecl()->getDefinition();
6784 if (RD && !RD->field_empty()) {
6785 // An incomplete TypeString stub is placed in the cache for this RecordType
6786 // so that recursive calls to this RecordType will use it whilst building a
6787 // complete TypeString for this RecordType.
6788 SmallVector<FieldEncoding, 16> FE;
6789 std::string StubEnc(Enc.substr(Start).str());
6790 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString.
6791 TSC.addIncomplete(ID, std::move(StubEnc));
6792 if (!extractFieldType(FE, RD, CGM, TSC)) {
6793 (void) TSC.removeIncomplete(ID);
6794 return false;
6795 }
6796 IsRecursive = TSC.removeIncomplete(ID);
6797 // The ABI requires unions to be sorted but not structures.
6798 // See FieldEncoding::operator< for sort algorithm.
6799 if (RT->isUnionType())
6800 std::sort(FE.begin(), FE.end());
6801 // We can now complete the TypeString.
6802 unsigned E = FE.size();
6803 for (unsigned I = 0; I != E; ++I) {
6804 if (I)
6805 Enc += ',';
6806 Enc += FE[I].str();
6807 }
6808 }
6809 Enc += '}';
6810 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
6811 return true;
6812}
6813
6814/// Appends enum types to Enc and adds the encoding to the cache.
6815static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
6816 TypeStringCache &TSC,
6817 const IdentifierInfo *ID) {
6818 // Append the cached TypeString if we have one.
6819 StringRef TypeString = TSC.lookupStr(ID);
6820 if (!TypeString.empty()) {
6821 Enc += TypeString;
6822 return true;
6823 }
6824
6825 size_t Start = Enc.size();
6826 Enc += "e(";
6827 if (ID)
6828 Enc += ID->getName();
6829 Enc += "){";
6830
6831 // We collect all encoded enumerations and order them alphanumerically.
6832 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
6833 SmallVector<FieldEncoding, 16> FE;
6834 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
6835 ++I) {
6836 SmallStringEnc EnumEnc;
6837 EnumEnc += "m(";
6838 EnumEnc += I->getName();
6839 EnumEnc += "){";
6840 I->getInitVal().toString(EnumEnc);
6841 EnumEnc += '}';
6842 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
6843 }
6844 std::sort(FE.begin(), FE.end());
6845 unsigned E = FE.size();
6846 for (unsigned I = 0; I != E; ++I) {
6847 if (I)
6848 Enc += ',';
6849 Enc += FE[I].str();
6850 }
6851 }
6852 Enc += '}';
6853 TSC.addIfComplete(ID, Enc.substr(Start), false);
6854 return true;
6855}
6856
6857/// Appends type's qualifier to Enc.
6858/// This is done prior to appending the type's encoding.
6859static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
6860 // Qualifiers are emitted in alphabetical order.
6861 static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"};
6862 int Lookup = 0;
6863 if (QT.isConstQualified())
6864 Lookup += 1<<0;
6865 if (QT.isRestrictQualified())
6866 Lookup += 1<<1;
6867 if (QT.isVolatileQualified())
6868 Lookup += 1<<2;
6869 Enc += Table[Lookup];
6870}
6871
6872/// Appends built-in types to Enc.
6873static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
6874 const char *EncType;
6875 switch (BT->getKind()) {
6876 case BuiltinType::Void:
6877 EncType = "0";
6878 break;
6879 case BuiltinType::Bool:
6880 EncType = "b";
6881 break;
6882 case BuiltinType::Char_U:
6883 EncType = "uc";
6884 break;
6885 case BuiltinType::UChar:
6886 EncType = "uc";
6887 break;
6888 case BuiltinType::SChar:
6889 EncType = "sc";
6890 break;
6891 case BuiltinType::UShort:
6892 EncType = "us";
6893 break;
6894 case BuiltinType::Short:
6895 EncType = "ss";
6896 break;
6897 case BuiltinType::UInt:
6898 EncType = "ui";
6899 break;
6900 case BuiltinType::Int:
6901 EncType = "si";
6902 break;
6903 case BuiltinType::ULong:
6904 EncType = "ul";
6905 break;
6906 case BuiltinType::Long:
6907 EncType = "sl";
6908 break;
6909 case BuiltinType::ULongLong:
6910 EncType = "ull";
6911 break;
6912 case BuiltinType::LongLong:
6913 EncType = "sll";
6914 break;
6915 case BuiltinType::Float:
6916 EncType = "ft";
6917 break;
6918 case BuiltinType::Double:
6919 EncType = "d";
6920 break;
6921 case BuiltinType::LongDouble:
6922 EncType = "ld";
6923 break;
6924 default:
6925 return false;
6926 }
6927 Enc += EncType;
6928 return true;
6929}
6930
6931/// Appends a pointer encoding to Enc before calling appendType for the pointee.
6932static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
6933 const CodeGen::CodeGenModule &CGM,
6934 TypeStringCache &TSC) {
6935 Enc += "p(";
6936 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
6937 return false;
6938 Enc += ')';
6939 return true;
6940}
6941
6942/// Appends array encoding to Enc before calling appendType for the element.
6943static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
6944 const ArrayType *AT,
6945 const CodeGen::CodeGenModule &CGM,
6946 TypeStringCache &TSC, StringRef NoSizeEnc) {
6947 if (AT->getSizeModifier() != ArrayType::Normal)
6948 return false;
6949 Enc += "a(";
6950 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
6951 CAT->getSize().toStringUnsigned(Enc);
6952 else
6953 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
6954 Enc += ':';
6955 // The Qualifiers should be attached to the type rather than the array.
6956 appendQualifier(Enc, QT);
6957 if (!appendType(Enc, AT->getElementType(), CGM, TSC))
6958 return false;
6959 Enc += ')';
6960 return true;
6961}
6962
6963/// Appends a function encoding to Enc, calling appendType for the return type
6964/// and the arguments.
6965static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
6966 const CodeGen::CodeGenModule &CGM,
6967 TypeStringCache &TSC) {
6968 Enc += "f{";
6969 if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
6970 return false;
6971 Enc += "}(";
6972 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
6973 // N.B. we are only interested in the adjusted param types.
6974 auto I = FPT->param_type_begin();
6975 auto E = FPT->param_type_end();
6976 if (I != E) {
6977 do {
6978 if (!appendType(Enc, *I, CGM, TSC))
6979 return false;
6980 ++I;
6981 if (I != E)
6982 Enc += ',';
6983 } while (I != E);
6984 if (FPT->isVariadic())
6985 Enc += ",va";
6986 } else {
6987 if (FPT->isVariadic())
6988 Enc += "va";
6989 else
6990 Enc += '0';
6991 }
6992 }
6993 Enc += ')';
6994 return true;
6995}
6996
6997/// Handles the type's qualifier before dispatching a call to handle specific
6998/// type encodings.
6999static bool appendType(SmallStringEnc &Enc, QualType QType,
7000 const CodeGen::CodeGenModule &CGM,
7001 TypeStringCache &TSC) {
7002
7003 QualType QT = QType.getCanonicalType();
7004
7005 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
7006 // The Qualifiers should be attached to the type rather than the array.
7007 // Thus we don't call appendQualifier() here.
7008 return appendArrayType(Enc, QT, AT, CGM, TSC, "");
7009
7010 appendQualifier(Enc, QT);
7011
7012 if (const BuiltinType *BT = QT->getAs<BuiltinType>())
7013 return appendBuiltinType(Enc, BT);
7014
7015 if (const PointerType *PT = QT->getAs<PointerType>())
7016 return appendPointerType(Enc, PT, CGM, TSC);
7017
7018 if (const EnumType *ET = QT->getAs<EnumType>())
7019 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
7020
7021 if (const RecordType *RT = QT->getAsStructureType())
7022 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7023
7024 if (const RecordType *RT = QT->getAsUnionType())
7025 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
7026
7027 if (const FunctionType *FT = QT->getAs<FunctionType>())
7028 return appendFunctionType(Enc, FT, CGM, TSC);
7029
7030 return false;
7031}
7032
7033static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
7034 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) {
7035 if (!D)
7036 return false;
7037
7038 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7039 if (FD->getLanguageLinkage() != CLanguageLinkage)
7040 return false;
7041 return appendType(Enc, FD->getType(), CGM, TSC);
7042 }
7043
7044 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7045 if (VD->getLanguageLinkage() != CLanguageLinkage)
7046 return false;
7047 QualType QT = VD->getType().getCanonicalType();
7048 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
7049 // Global ArrayTypes are given a size of '*' if the size is unknown.
7050 // The Qualifiers should be attached to the type rather than the array.
7051 // Thus we don't call appendQualifier() here.
7052 return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
7053 }
7054 return appendType(Enc, QT, CGM, TSC);
7055 }
7056 return false;
7057}
7058
7059
7060//===----------------------------------------------------------------------===//
7061// Driver code
7062//===----------------------------------------------------------------------===//
7063
7064const llvm::Triple &CodeGenModule::getTriple() const {
7065 return getTarget().getTriple();
7066}
7067
7068bool CodeGenModule::supportsCOMDAT() const {
7069 return !getTriple().isOSBinFormatMachO();
7070}
7071
7072const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
7073 if (TheTargetCodeGenInfo)
7074 return *TheTargetCodeGenInfo;
7075
7076 const llvm::Triple &Triple = getTarget().getTriple();
7077 switch (Triple.getArch()) {
7078 default:
7079 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
7080
7081 case llvm::Triple::le32:
7082 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
7083 case llvm::Triple::mips:
7084 case llvm::Triple::mipsel:
7085 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
7086
7087 case llvm::Triple::mips64:
7088 case llvm::Triple::mips64el:
7089 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
7090
7091 case llvm::Triple::aarch64:
7092 case llvm::Triple::aarch64_be: {
7093 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
7094 if (getTarget().getABI() == "darwinpcs")
7095 Kind = AArch64ABIInfo::DarwinPCS;
7096
7097 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types, Kind));
7098 }
7099
7100 case llvm::Triple::arm:
7101 case llvm::Triple::armeb:
7102 case llvm::Triple::thumb:
7103 case llvm::Triple::thumbeb:
7104 {
7105 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
7106 if (getTarget().getABI() == "apcs-gnu")
7107 Kind = ARMABIInfo::APCS;
7108 else if (CodeGenOpts.FloatABI == "hard" ||
7109 (CodeGenOpts.FloatABI != "soft" &&
7110 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
7111 Kind = ARMABIInfo::AAPCS_VFP;
7112
7113 switch (Triple.getOS()) {
7114 case llvm::Triple::NaCl:
7115 return *(TheTargetCodeGenInfo =
7116 new NaClARMTargetCodeGenInfo(Types, Kind));
7117 default:
7118 return *(TheTargetCodeGenInfo =
7119 new ARMTargetCodeGenInfo(Types, Kind));
7120 }
7121 }
7122
7123 case llvm::Triple::ppc:
7124 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
7125 case llvm::Triple::ppc64:
7126 if (Triple.isOSBinFormatELF()) {
7127 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
7128 if (getTarget().getABI() == "elfv2")
7129 Kind = PPC64_SVR4_ABIInfo::ELFv2;
7130
7131 return *(TheTargetCodeGenInfo =
7132 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind));
7133 } else
7134 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
7135 case llvm::Triple::ppc64le: {
7136 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
7137 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
7138 if (getTarget().getABI() == "elfv1")
7139 Kind = PPC64_SVR4_ABIInfo::ELFv1;
7140
7141 return *(TheTargetCodeGenInfo =
7142 new PPC64_SVR4_TargetCodeGenInfo(Types, Kind));
7143 }
7144
7145 case llvm::Triple::nvptx:
7146 case llvm::Triple::nvptx64:
7147 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
7148
7149 case llvm::Triple::msp430:
7150 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
7151
7152 case llvm::Triple::systemz:
7153 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
7154
7155 case llvm::Triple::tce:
7156 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
7157
7158 case llvm::Triple::x86: {
7159 bool IsDarwinVectorABI = Triple.isOSDarwin();
7160 bool IsSmallStructInRegABI =
7161 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
7162 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
7163
7164 if (Triple.getOS() == llvm::Triple::Win32) {
7165 return *(TheTargetCodeGenInfo =
7166 new WinX86_32TargetCodeGenInfo(Types,
7167 IsDarwinVectorABI, IsSmallStructInRegABI,
7168 IsWin32FloatStructABI,
7169 CodeGenOpts.NumRegisterParameters));
7170 } else {
7171 return *(TheTargetCodeGenInfo =
7172 new X86_32TargetCodeGenInfo(Types,
7173 IsDarwinVectorABI, IsSmallStructInRegABI,
7174 IsWin32FloatStructABI,
7175 CodeGenOpts.NumRegisterParameters));
7176 }
7177 }
7178
7179 case llvm::Triple::x86_64: {
7180 bool HasAVX = getTarget().getABI() == "avx";
7181
7182 switch (Triple.getOS()) {
7183 case llvm::Triple::Win32:
7184 return *(TheTargetCodeGenInfo =
7185 new WinX86_64TargetCodeGenInfo(Types, HasAVX));
7186 case llvm::Triple::NaCl:
7187 return *(TheTargetCodeGenInfo =
7188 new NaClX86_64TargetCodeGenInfo(Types, HasAVX));
7189 default:
7190 return *(TheTargetCodeGenInfo =
7191 new X86_64TargetCodeGenInfo(Types, HasAVX));
7192 }
7193 }
7194 case llvm::Triple::hexagon:
7195 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
7196 case llvm::Triple::r600:
7197 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7198 case llvm::Triple::amdgcn:
7199 return *(TheTargetCodeGenInfo = new AMDGPUTargetCodeGenInfo(Types));
7200 case llvm::Triple::sparcv9:
7201 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
7202 case llvm::Triple::xcore:
7203 return *(TheTargetCodeGenInfo = new XCoreTargetCodeGenInfo(Types));
7204 }
7205}