Deleted Added
full compact
TargetInfo.cpp (261991) TargetInfo.cpp (262613)
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CGCXXABI.h"
18#include "CodeGenFunction.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/CodeGen/CGFunctionInfo.h"
21#include "clang/Frontend/CodeGenOptions.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/Type.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace clang;
27using namespace CodeGen;
28
29static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
30 llvm::Value *Array,
31 llvm::Value *Value,
32 unsigned FirstIndex,
33 unsigned LastIndex) {
34 // Alternatively, we could emit this as a loop in the source.
35 for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
36 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
37 Builder.CreateStore(Value, Cell);
38 }
39}
40
41static bool isAggregateTypeForABI(QualType T) {
42 return !CodeGenFunction::hasScalarEvaluationKind(T) ||
43 T->isMemberFunctionPointerType();
44}
45
46ABIInfo::~ABIInfo() {}
47
48static bool isRecordReturnIndirect(const RecordType *RT,
49 CGCXXABI &CXXABI) {
50 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
51 if (!RD)
52 return false;
53 return CXXABI.isReturnTypeIndirect(RD);
54}
55
56
57static bool isRecordReturnIndirect(QualType T, CGCXXABI &CXXABI) {
58 const RecordType *RT = T->getAs<RecordType>();
59 if (!RT)
60 return false;
61 return isRecordReturnIndirect(RT, CXXABI);
62}
63
64static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
65 CGCXXABI &CXXABI) {
66 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
67 if (!RD)
68 return CGCXXABI::RAA_Default;
69 return CXXABI.getRecordArgABI(RD);
70}
71
72static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
73 CGCXXABI &CXXABI) {
74 const RecordType *RT = T->getAs<RecordType>();
75 if (!RT)
76 return CGCXXABI::RAA_Default;
77 return getRecordArgABI(RT, CXXABI);
78}
79
80CGCXXABI &ABIInfo::getCXXABI() const {
81 return CGT.getCXXABI();
82}
83
84ASTContext &ABIInfo::getContext() const {
85 return CGT.getContext();
86}
87
88llvm::LLVMContext &ABIInfo::getVMContext() const {
89 return CGT.getLLVMContext();
90}
91
92const llvm::DataLayout &ABIInfo::getDataLayout() const {
93 return CGT.getDataLayout();
94}
95
96const TargetInfo &ABIInfo::getTarget() const {
97 return CGT.getTarget();
98}
99
100void ABIArgInfo::dump() const {
101 raw_ostream &OS = llvm::errs();
102 OS << "(ABIArgInfo Kind=";
103 switch (TheKind) {
104 case Direct:
105 OS << "Direct Type=";
106 if (llvm::Type *Ty = getCoerceToType())
107 Ty->print(OS);
108 else
109 OS << "null";
110 break;
111 case Extend:
112 OS << "Extend";
113 break;
114 case Ignore:
115 OS << "Ignore";
116 break;
117 case Indirect:
118 OS << "Indirect Align=" << getIndirectAlign()
119 << " ByVal=" << getIndirectByVal()
120 << " Realign=" << getIndirectRealign();
121 break;
122 case Expand:
123 OS << "Expand";
124 break;
125 }
126 OS << ")\n";
127}
128
129TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
130
131// If someone can figure out a general rule for this, that would be great.
132// It's probably just doomed to be platform-dependent, though.
133unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
134 // Verified for:
135 // x86-64 FreeBSD, Linux, Darwin
136 // x86-32 FreeBSD, Linux, Darwin
137 // PowerPC Linux, Darwin
138 // ARM Darwin (*not* EABI)
139 // AArch64 Linux
140 return 32;
141}
142
143bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
144 const FunctionNoProtoType *fnType) const {
145 // The following conventions are known to require this to be false:
146 // x86_stdcall
147 // MIPS
148 // For everything else, we just prefer false unless we opt out.
149 return false;
150}
151
152void
153TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
154 llvm::SmallString<24> &Opt) const {
155 // This assumes the user is passing a library name like "rt" instead of a
156 // filename like "librt.a/so", and that they don't care whether it's static or
157 // dynamic.
158 Opt = "-l";
159 Opt += Lib;
160}
161
162static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
163
164/// isEmptyField - Return true iff a the field is "empty", that is it
165/// is an unnamed bit-field or an (array of) empty record(s).
166static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
167 bool AllowArrays) {
168 if (FD->isUnnamedBitfield())
169 return true;
170
171 QualType FT = FD->getType();
172
173 // Constant arrays of empty records count as empty, strip them off.
174 // Constant arrays of zero length always count as empty.
175 if (AllowArrays)
176 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
177 if (AT->getSize() == 0)
178 return true;
179 FT = AT->getElementType();
180 }
181
182 const RecordType *RT = FT->getAs<RecordType>();
183 if (!RT)
184 return false;
185
186 // C++ record fields are never empty, at least in the Itanium ABI.
187 //
188 // FIXME: We should use a predicate for whether this behavior is true in the
189 // current ABI.
190 if (isa<CXXRecordDecl>(RT->getDecl()))
191 return false;
192
193 return isEmptyRecord(Context, FT, AllowArrays);
194}
195
196/// isEmptyRecord - Return true iff a structure contains only empty
197/// fields. Note that a structure with a flexible array member is not
198/// considered empty.
199static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
200 const RecordType *RT = T->getAs<RecordType>();
201 if (!RT)
202 return 0;
203 const RecordDecl *RD = RT->getDecl();
204 if (RD->hasFlexibleArrayMember())
205 return false;
206
207 // If this is a C++ record, check the bases first.
208 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
209 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
210 e = CXXRD->bases_end(); i != e; ++i)
211 if (!isEmptyRecord(Context, i->getType(), true))
212 return false;
213
214 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
215 i != e; ++i)
216 if (!isEmptyField(Context, *i, AllowArrays))
217 return false;
218 return true;
219}
220
221/// isSingleElementStruct - Determine if a structure is a "single
222/// element struct", i.e. it has exactly one non-empty field or
223/// exactly one field which is itself a single element
224/// struct. Structures with flexible array members are never
225/// considered single element structs.
226///
227/// \return The field declaration for the single non-empty field, if
228/// it exists.
229static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
230 const RecordType *RT = T->getAsStructureType();
231 if (!RT)
232 return 0;
233
234 const RecordDecl *RD = RT->getDecl();
235 if (RD->hasFlexibleArrayMember())
236 return 0;
237
238 const Type *Found = 0;
239
240 // If this is a C++ record, check the bases first.
241 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
242 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
243 e = CXXRD->bases_end(); i != e; ++i) {
244 // Ignore empty records.
245 if (isEmptyRecord(Context, i->getType(), true))
246 continue;
247
248 // If we already found an element then this isn't a single-element struct.
249 if (Found)
250 return 0;
251
252 // If this is non-empty and not a single element struct, the composite
253 // cannot be a single element struct.
254 Found = isSingleElementStruct(i->getType(), Context);
255 if (!Found)
256 return 0;
257 }
258 }
259
260 // Check for single element.
261 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
262 i != e; ++i) {
263 const FieldDecl *FD = *i;
264 QualType FT = FD->getType();
265
266 // Ignore empty fields.
267 if (isEmptyField(Context, FD, true))
268 continue;
269
270 // If we already found an element then this isn't a single-element
271 // struct.
272 if (Found)
273 return 0;
274
275 // Treat single element arrays as the element.
276 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
277 if (AT->getSize().getZExtValue() != 1)
278 break;
279 FT = AT->getElementType();
280 }
281
282 if (!isAggregateTypeForABI(FT)) {
283 Found = FT.getTypePtr();
284 } else {
285 Found = isSingleElementStruct(FT, Context);
286 if (!Found)
287 return 0;
288 }
289 }
290
291 // We don't consider a struct a single-element struct if it has
292 // padding beyond the element type.
293 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
294 return 0;
295
296 return Found;
297}
298
299static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
300 // Treat complex types as the element type.
301 if (const ComplexType *CTy = Ty->getAs<ComplexType>())
302 Ty = CTy->getElementType();
303
304 // Check for a type which we know has a simple scalar argument-passing
305 // convention without any padding. (We're specifically looking for 32
306 // and 64-bit integer and integer-equivalents, float, and double.)
307 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
308 !Ty->isEnumeralType() && !Ty->isBlockPointerType())
309 return false;
310
311 uint64_t Size = Context.getTypeSize(Ty);
312 return Size == 32 || Size == 64;
313}
314
315/// canExpandIndirectArgument - Test whether an argument type which is to be
316/// passed indirectly (on the stack) would have the equivalent layout if it was
317/// expanded into separate arguments. If so, we prefer to do the latter to avoid
318/// inhibiting optimizations.
319///
320// FIXME: This predicate is missing many cases, currently it just follows
321// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
322// should probably make this smarter, or better yet make the LLVM backend
323// capable of handling it.
324static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
325 // We can only expand structure types.
326 const RecordType *RT = Ty->getAs<RecordType>();
327 if (!RT)
328 return false;
329
330 // We can only expand (C) structures.
331 //
332 // FIXME: This needs to be generalized to handle classes as well.
333 const RecordDecl *RD = RT->getDecl();
334 if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
335 return false;
336
337 uint64_t Size = 0;
338
339 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
340 i != e; ++i) {
341 const FieldDecl *FD = *i;
342
343 if (!is32Or64BitBasicType(FD->getType(), Context))
344 return false;
345
346 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
347 // how to expand them yet, and the predicate for telling if a bitfield still
348 // counts as "basic" is more complicated than what we were doing previously.
349 if (FD->isBitField())
350 return false;
351
352 Size += Context.getTypeSize(FD->getType());
353 }
354
355 // Make sure there are not any holes in the struct.
356 if (Size != Context.getTypeSize(Ty))
357 return false;
358
359 return true;
360}
361
362namespace {
363/// DefaultABIInfo - The default implementation for ABI specific
364/// details. This implementation provides information which results in
365/// self-consistent and sensible LLVM IR generation, but does not
366/// conform to any particular ABI.
367class DefaultABIInfo : public ABIInfo {
368public:
369 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
370
371 ABIArgInfo classifyReturnType(QualType RetTy) const;
372 ABIArgInfo classifyArgumentType(QualType RetTy) const;
373
374 virtual void computeInfo(CGFunctionInfo &FI) const {
375 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
376 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
377 it != ie; ++it)
378 it->info = classifyArgumentType(it->type);
379 }
380
381 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
382 CodeGenFunction &CGF) const;
383};
384
385class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
386public:
387 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
388 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
389};
390
391llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
392 CodeGenFunction &CGF) const {
393 return 0;
394}
395
396ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
397 if (isAggregateTypeForABI(Ty)) {
398 // Records with non trivial destructors/constructors should not be passed
399 // by value.
400 if (isRecordReturnIndirect(Ty, getCXXABI()))
401 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
402
403 return ABIArgInfo::getIndirect(0);
404 }
405
406 // Treat an enum type as its underlying type.
407 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
408 Ty = EnumTy->getDecl()->getIntegerType();
409
410 return (Ty->isPromotableIntegerType() ?
411 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
412}
413
414ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
415 if (RetTy->isVoidType())
416 return ABIArgInfo::getIgnore();
417
418 if (isAggregateTypeForABI(RetTy))
419 return ABIArgInfo::getIndirect(0);
420
421 // Treat an enum type as its underlying type.
422 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
423 RetTy = EnumTy->getDecl()->getIntegerType();
424
425 return (RetTy->isPromotableIntegerType() ?
426 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
427}
428
429//===----------------------------------------------------------------------===//
430// le32/PNaCl bitcode ABI Implementation
431//
432// This is a simplified version of the x86_32 ABI. Arguments and return values
433// are always passed on the stack.
434//===----------------------------------------------------------------------===//
435
436class PNaClABIInfo : public ABIInfo {
437 public:
438 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
439
440 ABIArgInfo classifyReturnType(QualType RetTy) const;
441 ABIArgInfo classifyArgumentType(QualType RetTy) const;
442
443 virtual void computeInfo(CGFunctionInfo &FI) const;
444 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
445 CodeGenFunction &CGF) const;
446};
447
448class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
449 public:
450 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
451 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
452};
453
454void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
455 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
456
457 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
458 it != ie; ++it)
459 it->info = classifyArgumentType(it->type);
460 }
461
462llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
463 CodeGenFunction &CGF) const {
464 return 0;
465}
466
467/// \brief Classify argument of given type \p Ty.
468ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
469 if (isAggregateTypeForABI(Ty)) {
470 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
471 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
472 return ABIArgInfo::getIndirect(0);
473 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
474 // Treat an enum type as its underlying type.
475 Ty = EnumTy->getDecl()->getIntegerType();
476 } else if (Ty->isFloatingType()) {
477 // Floating-point types don't go inreg.
478 return ABIArgInfo::getDirect();
479 }
480
481 return (Ty->isPromotableIntegerType() ?
482 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
483}
484
485ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
486 if (RetTy->isVoidType())
487 return ABIArgInfo::getIgnore();
488
489 // In the PNaCl ABI we always return records/structures on the stack.
490 if (isAggregateTypeForABI(RetTy))
491 return ABIArgInfo::getIndirect(0);
492
493 // Treat an enum type as its underlying type.
494 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
495 RetTy = EnumTy->getDecl()->getIntegerType();
496
497 return (RetTy->isPromotableIntegerType() ?
498 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
499}
500
501/// IsX86_MMXType - Return true if this is an MMX type.
502bool IsX86_MMXType(llvm::Type *IRType) {
503 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
504 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
505 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
506 IRType->getScalarSizeInBits() != 64;
507}
508
509static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
510 StringRef Constraint,
511 llvm::Type* Ty) {
512 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
513 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
514 // Invalid MMX constraint
515 return 0;
516 }
517
518 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
519 }
520
521 // No operation needed
522 return Ty;
523}
524
525//===----------------------------------------------------------------------===//
526// X86-32 ABI Implementation
527//===----------------------------------------------------------------------===//
528
529/// X86_32ABIInfo - The X86-32 ABI information.
530class X86_32ABIInfo : public ABIInfo {
531 enum Class {
532 Integer,
533 Float
534 };
535
536 static const unsigned MinABIStackAlignInBytes = 4;
537
538 bool IsDarwinVectorABI;
539 bool IsSmallStructInRegABI;
540 bool IsWin32StructABI;
541 unsigned DefaultNumRegisterParameters;
542
543 static bool isRegisterSize(unsigned Size) {
544 return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
545 }
546
547 static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
548 unsigned callingConvention);
549
550 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
551 /// such that the argument will be passed in memory.
552 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal,
553 unsigned &FreeRegs) const;
554
555 /// \brief Return the alignment to use for the given type on the stack.
556 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
557
558 Class classify(QualType Ty) const;
559 ABIArgInfo classifyReturnType(QualType RetTy,
560 unsigned callingConvention) const;
561 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs,
562 bool IsFastCall) const;
563 bool shouldUseInReg(QualType Ty, unsigned &FreeRegs,
564 bool IsFastCall, bool &NeedsPadding) const;
565
566public:
567
568 virtual void computeInfo(CGFunctionInfo &FI) const;
569 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
570 CodeGenFunction &CGF) const;
571
572 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
573 unsigned r)
574 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
575 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
576};
577
578class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
579public:
580 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
581 bool d, bool p, bool w, unsigned r)
582 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
583
584 static bool isStructReturnInRegABI(
585 const llvm::Triple &Triple, const CodeGenOptions &Opts);
586
587 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
588 CodeGen::CodeGenModule &CGM) const;
589
590 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
591 // Darwin uses different dwarf register numbers for EH.
592 if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
593 return 4;
594 }
595
596 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
597 llvm::Value *Address) const;
598
599 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
600 StringRef Constraint,
601 llvm::Type* Ty) const {
602 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
603 }
604
605 llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const {
606 unsigned Sig = (0xeb << 0) | // jmp rel8
607 (0x06 << 8) | // .+0x08
608 ('F' << 16) |
609 ('T' << 24);
610 return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
611 }
612
613};
614
615}
616
617/// shouldReturnTypeInRegister - Determine if the given type should be
618/// passed in a register (for the Darwin ABI).
619bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
620 ASTContext &Context,
621 unsigned callingConvention) {
622 uint64_t Size = Context.getTypeSize(Ty);
623
624 // Type must be register sized.
625 if (!isRegisterSize(Size))
626 return false;
627
628 if (Ty->isVectorType()) {
629 // 64- and 128- bit vectors inside structures are not returned in
630 // registers.
631 if (Size == 64 || Size == 128)
632 return false;
633
634 return true;
635 }
636
637 // If this is a builtin, pointer, enum, complex type, member pointer, or
638 // member function pointer it is ok.
639 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
640 Ty->isAnyComplexType() || Ty->isEnumeralType() ||
641 Ty->isBlockPointerType() || Ty->isMemberPointerType())
642 return true;
643
644 // Arrays are treated like records.
645 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
646 return shouldReturnTypeInRegister(AT->getElementType(), Context,
647 callingConvention);
648
649 // Otherwise, it must be a record type.
650 const RecordType *RT = Ty->getAs<RecordType>();
651 if (!RT) return false;
652
653 // FIXME: Traverse bases here too.
654
655 // For thiscall conventions, structures will never be returned in
656 // a register. This is for compatibility with the MSVC ABI
657 if (callingConvention == llvm::CallingConv::X86_ThisCall &&
658 RT->isStructureType()) {
659 return false;
660 }
661
662 // Structure types are passed in register if all fields would be
663 // passed in a register.
664 for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
665 e = RT->getDecl()->field_end(); i != e; ++i) {
666 const FieldDecl *FD = *i;
667
668 // Empty fields are ignored.
669 if (isEmptyField(Context, FD, true))
670 continue;
671
672 // Check fields recursively.
673 if (!shouldReturnTypeInRegister(FD->getType(), Context,
674 callingConvention))
675 return false;
676 }
677 return true;
678}
679
680ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
681 unsigned callingConvention) const {
682 if (RetTy->isVoidType())
683 return ABIArgInfo::getIgnore();
684
685 if (const VectorType *VT = RetTy->getAs<VectorType>()) {
686 // On Darwin, some vectors are returned in registers.
687 if (IsDarwinVectorABI) {
688 uint64_t Size = getContext().getTypeSize(RetTy);
689
690 // 128-bit vectors are a special case; they are returned in
691 // registers and we need to make sure to pick a type the LLVM
692 // backend will like.
693 if (Size == 128)
694 return ABIArgInfo::getDirect(llvm::VectorType::get(
695 llvm::Type::getInt64Ty(getVMContext()), 2));
696
697 // Always return in register if it fits in a general purpose
698 // register, or if it is 64 bits and has a single element.
699 if ((Size == 8 || Size == 16 || Size == 32) ||
700 (Size == 64 && VT->getNumElements() == 1))
701 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
702 Size));
703
704 return ABIArgInfo::getIndirect(0);
705 }
706
707 return ABIArgInfo::getDirect();
708 }
709
710 if (isAggregateTypeForABI(RetTy)) {
711 if (const RecordType *RT = RetTy->getAs<RecordType>()) {
712 if (isRecordReturnIndirect(RT, getCXXABI()))
713 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
714
715 // Structures with flexible arrays are always indirect.
716 if (RT->getDecl()->hasFlexibleArrayMember())
717 return ABIArgInfo::getIndirect(0);
718 }
719
720 // If specified, structs and unions are always indirect.
721 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
722 return ABIArgInfo::getIndirect(0);
723
724 // Small structures which are register sized are generally returned
725 // in a register.
726 if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
727 callingConvention)) {
728 uint64_t Size = getContext().getTypeSize(RetTy);
729
730 // As a special-case, if the struct is a "single-element" struct, and
731 // the field is of type "float" or "double", return it in a
732 // floating-point register. (MSVC does not apply this special case.)
733 // We apply a similar transformation for pointer types to improve the
734 // quality of the generated IR.
735 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
736 if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
737 || SeltTy->hasPointerRepresentation())
738 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
739
740 // FIXME: We should be able to narrow this integer in cases with dead
741 // padding.
742 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
743 }
744
745 return ABIArgInfo::getIndirect(0);
746 }
747
748 // Treat an enum type as its underlying type.
749 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
750 RetTy = EnumTy->getDecl()->getIntegerType();
751
752 return (RetTy->isPromotableIntegerType() ?
753 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
754}
755
756static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
757 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
758}
759
760static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
761 const RecordType *RT = Ty->getAs<RecordType>();
762 if (!RT)
763 return 0;
764 const RecordDecl *RD = RT->getDecl();
765
766 // If this is a C++ record, check the bases first.
767 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
768 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
769 e = CXXRD->bases_end(); i != e; ++i)
770 if (!isRecordWithSSEVectorType(Context, i->getType()))
771 return false;
772
773 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
774 i != e; ++i) {
775 QualType FT = i->getType();
776
777 if (isSSEVectorType(Context, FT))
778 return true;
779
780 if (isRecordWithSSEVectorType(Context, FT))
781 return true;
782 }
783
784 return false;
785}
786
787unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
788 unsigned Align) const {
789 // Otherwise, if the alignment is less than or equal to the minimum ABI
790 // alignment, just use the default; the backend will handle this.
791 if (Align <= MinABIStackAlignInBytes)
792 return 0; // Use default alignment.
793
794 // On non-Darwin, the stack type alignment is always 4.
795 if (!IsDarwinVectorABI) {
796 // Set explicit alignment, since we may need to realign the top.
797 return MinABIStackAlignInBytes;
798 }
799
800 // Otherwise, if the type contains an SSE vector type, the alignment is 16.
801 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
802 isRecordWithSSEVectorType(getContext(), Ty)))
803 return 16;
804
805 return MinABIStackAlignInBytes;
806}
807
808ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
809 unsigned &FreeRegs) const {
810 if (!ByVal) {
811 if (FreeRegs) {
812 --FreeRegs; // Non byval indirects just use one pointer.
813 return ABIArgInfo::getIndirectInReg(0, false);
814 }
815 return ABIArgInfo::getIndirect(0, false);
816 }
817
818 // Compute the byval alignment.
819 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
820 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
821 if (StackAlign == 0)
822 return ABIArgInfo::getIndirect(4);
823
824 // If the stack alignment is less than the type alignment, realign the
825 // argument.
826 if (StackAlign < TypeAlign)
827 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
828 /*Realign=*/true);
829
830 return ABIArgInfo::getIndirect(StackAlign);
831}
832
833X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
834 const Type *T = isSingleElementStruct(Ty, getContext());
835 if (!T)
836 T = Ty.getTypePtr();
837
838 if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
839 BuiltinType::Kind K = BT->getKind();
840 if (K == BuiltinType::Float || K == BuiltinType::Double)
841 return Float;
842 }
843 return Integer;
844}
845
846bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs,
847 bool IsFastCall, bool &NeedsPadding) const {
848 NeedsPadding = false;
849 Class C = classify(Ty);
850 if (C == Float)
851 return false;
852
853 unsigned Size = getContext().getTypeSize(Ty);
854 unsigned SizeInRegs = (Size + 31) / 32;
855
856 if (SizeInRegs == 0)
857 return false;
858
859 if (SizeInRegs > FreeRegs) {
860 FreeRegs = 0;
861 return false;
862 }
863
864 FreeRegs -= SizeInRegs;
865
866 if (IsFastCall) {
867 if (Size > 32)
868 return false;
869
870 if (Ty->isIntegralOrEnumerationType())
871 return true;
872
873 if (Ty->isPointerType())
874 return true;
875
876 if (Ty->isReferenceType())
877 return true;
878
879 if (FreeRegs)
880 NeedsPadding = true;
881
882 return false;
883 }
884
885 return true;
886}
887
888ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
889 unsigned &FreeRegs,
890 bool IsFastCall) const {
891 // FIXME: Set alignment on indirect arguments.
892 if (isAggregateTypeForABI(Ty)) {
893 if (const RecordType *RT = Ty->getAs<RecordType>()) {
894 if (IsWin32StructABI)
895 return getIndirectResult(Ty, true, FreeRegs);
896
897 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
898 return getIndirectResult(Ty, RAA == CGCXXABI::RAA_DirectInMemory, FreeRegs);
899
900 // Structures with flexible arrays are always indirect.
901 if (RT->getDecl()->hasFlexibleArrayMember())
902 return getIndirectResult(Ty, true, FreeRegs);
903 }
904
905 // Ignore empty structs/unions.
906 if (isEmptyRecord(getContext(), Ty, true))
907 return ABIArgInfo::getIgnore();
908
909 llvm::LLVMContext &LLVMContext = getVMContext();
910 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
911 bool NeedsPadding;
912 if (shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding)) {
913 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
914 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
915 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
916 return ABIArgInfo::getDirectInReg(Result);
917 }
918 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0;
919
920 // Expand small (<= 128-bit) record types when we know that the stack layout
921 // of those arguments will match the struct. This is important because the
922 // LLVM backend isn't smart enough to remove byval, which inhibits many
923 // optimizations.
924 if (getContext().getTypeSize(Ty) <= 4*32 &&
925 canExpandIndirectArgument(Ty, getContext()))
926 return ABIArgInfo::getExpandWithPadding(IsFastCall, PaddingType);
927
928 return getIndirectResult(Ty, true, FreeRegs);
929 }
930
931 if (const VectorType *VT = Ty->getAs<VectorType>()) {
932 // On Darwin, some vectors are passed in memory, we handle this by passing
933 // it as an i8/i16/i32/i64.
934 if (IsDarwinVectorABI) {
935 uint64_t Size = getContext().getTypeSize(Ty);
936 if ((Size == 8 || Size == 16 || Size == 32) ||
937 (Size == 64 && VT->getNumElements() == 1))
938 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
939 Size));
940 }
941
942 if (IsX86_MMXType(CGT.ConvertType(Ty)))
943 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
944
945 return ABIArgInfo::getDirect();
946 }
947
948
949 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
950 Ty = EnumTy->getDecl()->getIntegerType();
951
952 bool NeedsPadding;
953 bool InReg = shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding);
954
955 if (Ty->isPromotableIntegerType()) {
956 if (InReg)
957 return ABIArgInfo::getExtendInReg();
958 return ABIArgInfo::getExtend();
959 }
960 if (InReg)
961 return ABIArgInfo::getDirectInReg();
962 return ABIArgInfo::getDirect();
963}
964
965void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
966 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
967 FI.getCallingConvention());
968
969 unsigned CC = FI.getCallingConvention();
970 bool IsFastCall = CC == llvm::CallingConv::X86_FastCall;
971 unsigned FreeRegs;
972 if (IsFastCall)
973 FreeRegs = 2;
974 else if (FI.getHasRegParm())
975 FreeRegs = FI.getRegParm();
976 else
977 FreeRegs = DefaultNumRegisterParameters;
978
979 // If the return value is indirect, then the hidden argument is consuming one
980 // integer register.
981 if (FI.getReturnInfo().isIndirect() && FreeRegs) {
982 --FreeRegs;
983 ABIArgInfo &Old = FI.getReturnInfo();
984 Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
985 Old.getIndirectByVal(),
986 Old.getIndirectRealign());
987 }
988
989 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
990 it != ie; ++it)
991 it->info = classifyArgumentType(it->type, FreeRegs, IsFastCall);
992}
993
994llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
995 CodeGenFunction &CGF) const {
996 llvm::Type *BPP = CGF.Int8PtrPtrTy;
997
998 CGBuilderTy &Builder = CGF.Builder;
999 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1000 "ap");
1001 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1002
1003 // Compute if the address needs to be aligned
1004 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1005 Align = getTypeStackAlignInBytes(Ty, Align);
1006 Align = std::max(Align, 4U);
1007 if (Align > 4) {
1008 // addr = (addr + align - 1) & -align;
1009 llvm::Value *Offset =
1010 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1011 Addr = CGF.Builder.CreateGEP(Addr, Offset);
1012 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1013 CGF.Int32Ty);
1014 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1015 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1016 Addr->getType(),
1017 "ap.cur.aligned");
1018 }
1019
1020 llvm::Type *PTy =
1021 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1022 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1023
1024 uint64_t Offset =
1025 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1026 llvm::Value *NextAddr =
1027 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1028 "ap.next");
1029 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1030
1031 return AddrTyped;
1032}
1033
1034void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1035 llvm::GlobalValue *GV,
1036 CodeGen::CodeGenModule &CGM) const {
1037 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1038 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1039 // Get the LLVM function.
1040 llvm::Function *Fn = cast<llvm::Function>(GV);
1041
1042 // Now add the 'alignstack' attribute with a value of 16.
1043 llvm::AttrBuilder B;
1044 B.addStackAlignmentAttr(16);
1045 Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1046 llvm::AttributeSet::get(CGM.getLLVMContext(),
1047 llvm::AttributeSet::FunctionIndex,
1048 B));
1049 }
1050 }
1051}
1052
1053bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1054 CodeGen::CodeGenFunction &CGF,
1055 llvm::Value *Address) const {
1056 CodeGen::CGBuilderTy &Builder = CGF.Builder;
1057
1058 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1059
1060 // 0-7 are the eight integer registers; the order is different
1061 // on Darwin (for EH), but the range is the same.
1062 // 8 is %eip.
1063 AssignToArrayRange(Builder, Address, Four8, 0, 8);
1064
1065 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1066 // 12-16 are st(0..4). Not sure why we stop at 4.
1067 // These have size 16, which is sizeof(long double) on
1068 // platforms with 8-byte alignment for that type.
1069 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1070 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1071
1072 } else {
1073 // 9 is %eflags, which doesn't get a size on Darwin for some
1074 // reason.
1075 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1076
1077 // 11-16 are st(0..5). Not sure why we stop at 5.
1078 // These have size 12, which is sizeof(long double) on
1079 // platforms with 4-byte alignment for that type.
1080 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1081 AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1082 }
1083
1084 return false;
1085}
1086
1087//===----------------------------------------------------------------------===//
1088// X86-64 ABI Implementation
1089//===----------------------------------------------------------------------===//
1090
1091
1092namespace {
1093/// X86_64ABIInfo - The X86_64 ABI information.
1094class X86_64ABIInfo : public ABIInfo {
1095 enum Class {
1096 Integer = 0,
1097 SSE,
1098 SSEUp,
1099 X87,
1100 X87Up,
1101 ComplexX87,
1102 NoClass,
1103 Memory
1104 };
1105
1106 /// merge - Implement the X86_64 ABI merging algorithm.
1107 ///
1108 /// Merge an accumulating classification \arg Accum with a field
1109 /// classification \arg Field.
1110 ///
1111 /// \param Accum - The accumulating classification. This should
1112 /// always be either NoClass or the result of a previous merge
1113 /// call. In addition, this should never be Memory (the caller
1114 /// should just return Memory for the aggregate).
1115 static Class merge(Class Accum, Class Field);
1116
1117 /// postMerge - Implement the X86_64 ABI post merging algorithm.
1118 ///
1119 /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1120 /// final MEMORY or SSE classes when necessary.
1121 ///
1122 /// \param AggregateSize - The size of the current aggregate in
1123 /// the classification process.
1124 ///
1125 /// \param Lo - The classification for the parts of the type
1126 /// residing in the low word of the containing object.
1127 ///
1128 /// \param Hi - The classification for the parts of the type
1129 /// residing in the higher words of the containing object.
1130 ///
1131 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1132
1133 /// classify - Determine the x86_64 register classes in which the
1134 /// given type T should be passed.
1135 ///
1136 /// \param Lo - The classification for the parts of the type
1137 /// residing in the low word of the containing object.
1138 ///
1139 /// \param Hi - The classification for the parts of the type
1140 /// residing in the high word of the containing object.
1141 ///
1142 /// \param OffsetBase - The bit offset of this type in the
1143 /// containing object. Some parameters are classified different
1144 /// depending on whether they straddle an eightbyte boundary.
1145 ///
1146 /// \param isNamedArg - Whether the argument in question is a "named"
1147 /// argument, as used in AMD64-ABI 3.5.7.
1148 ///
1149 /// If a word is unused its result will be NoClass; if a type should
1150 /// be passed in Memory then at least the classification of \arg Lo
1151 /// will be Memory.
1152 ///
1153 /// The \arg Lo class will be NoClass iff the argument is ignored.
1154 ///
1155 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1156 /// also be ComplexX87.
1157 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1158 bool isNamedArg) const;
1159
1160 llvm::Type *GetByteVectorType(QualType Ty) const;
1161 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1162 unsigned IROffset, QualType SourceTy,
1163 unsigned SourceOffset) const;
1164 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1165 unsigned IROffset, QualType SourceTy,
1166 unsigned SourceOffset) const;
1167
1168 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1169 /// such that the argument will be returned in memory.
1170 ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1171
1172 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1173 /// such that the argument will be passed in memory.
1174 ///
1175 /// \param freeIntRegs - The number of free integer registers remaining
1176 /// available.
1177 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1178
1179 ABIArgInfo classifyReturnType(QualType RetTy) const;
1180
1181 ABIArgInfo classifyArgumentType(QualType Ty,
1182 unsigned freeIntRegs,
1183 unsigned &neededInt,
1184 unsigned &neededSSE,
1185 bool isNamedArg) const;
1186
1187 bool IsIllegalVectorType(QualType Ty) const;
1188
1189 /// The 0.98 ABI revision clarified a lot of ambiguities,
1190 /// unfortunately in ways that were not always consistent with
1191 /// certain previous compilers. In particular, platforms which
1192 /// required strict binary compatibility with older versions of GCC
1193 /// may need to exempt themselves.
1194 bool honorsRevision0_98() const {
1195 return !getTarget().getTriple().isOSDarwin();
1196 }
1197
1198 bool HasAVX;
1199 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1200 // 64-bit hardware.
1201 bool Has64BitPointers;
1202
1203public:
1204 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1205 ABIInfo(CGT), HasAVX(hasavx),
1206 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1207 }
1208
1209 bool isPassedUsingAVXType(QualType type) const {
1210 unsigned neededInt, neededSSE;
1211 // The freeIntRegs argument doesn't matter here.
1212 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1213 /*isNamedArg*/true);
1214 if (info.isDirect()) {
1215 llvm::Type *ty = info.getCoerceToType();
1216 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1217 return (vectorTy->getBitWidth() > 128);
1218 }
1219 return false;
1220 }
1221
1222 virtual void computeInfo(CGFunctionInfo &FI) const;
1223
1224 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1225 CodeGenFunction &CGF) const;
1226};
1227
1228/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1229class WinX86_64ABIInfo : public ABIInfo {
1230
1231 ABIArgInfo classify(QualType Ty, bool IsReturnType) const;
1232
1233public:
1234 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1235
1236 virtual void computeInfo(CGFunctionInfo &FI) const;
1237
1238 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1239 CodeGenFunction &CGF) const;
1240};
1241
1242class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1243public:
1244 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1245 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1246
1247 const X86_64ABIInfo &getABIInfo() const {
1248 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1249 }
1250
1251 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1252 return 7;
1253 }
1254
1255 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1256 llvm::Value *Address) const {
1257 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1258
1259 // 0-15 are the 16 integer registers.
1260 // 16 is %rip.
1261 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1262 return false;
1263 }
1264
1265 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1266 StringRef Constraint,
1267 llvm::Type* Ty) const {
1268 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1269 }
1270
1271 bool isNoProtoCallVariadic(const CallArgList &args,
1272 const FunctionNoProtoType *fnType) const {
1273 // The default CC on x86-64 sets %al to the number of SSA
1274 // registers used, and GCC sets this when calling an unprototyped
1275 // function, so we override the default behavior. However, don't do
1276 // that when AVX types are involved: the ABI explicitly states it is
1277 // undefined, and it doesn't work in practice because of how the ABI
1278 // defines varargs anyway.
1279 if (fnType->getCallConv() == CC_C) {
1280 bool HasAVXType = false;
1281 for (CallArgList::const_iterator
1282 it = args.begin(), ie = args.end(); it != ie; ++it) {
1283 if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1284 HasAVXType = true;
1285 break;
1286 }
1287 }
1288
1289 if (!HasAVXType)
1290 return true;
1291 }
1292
1293 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1294 }
1295
1296 llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const {
1297 unsigned Sig = (0xeb << 0) | // jmp rel8
1298 (0x0a << 8) | // .+0x0c
1299 ('F' << 16) |
1300 ('T' << 24);
1301 return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1302 }
1303
1304};
1305
1306static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1307 // If the argument does not end in .lib, automatically add the suffix. This
1308 // matches the behavior of MSVC.
1309 std::string ArgStr = Lib;
1310 if (!Lib.endswith_lower(".lib"))
1311 ArgStr += ".lib";
1312 return ArgStr;
1313}
1314
1315class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1316public:
1317 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1318 bool d, bool p, bool w, unsigned RegParms)
1319 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1320
1321 void getDependentLibraryOption(llvm::StringRef Lib,
1322 llvm::SmallString<24> &Opt) const {
1323 Opt = "/DEFAULTLIB:";
1324 Opt += qualifyWindowsLibrary(Lib);
1325 }
1326
1327 void getDetectMismatchOption(llvm::StringRef Name,
1328 llvm::StringRef Value,
1329 llvm::SmallString<32> &Opt) const {
1330 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1331 }
1332};
1333
1334class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1335public:
1336 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1337 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1338
1339 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1340 return 7;
1341 }
1342
1343 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1344 llvm::Value *Address) const {
1345 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1346
1347 // 0-15 are the 16 integer registers.
1348 // 16 is %rip.
1349 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1350 return false;
1351 }
1352
1353 void getDependentLibraryOption(llvm::StringRef Lib,
1354 llvm::SmallString<24> &Opt) const {
1355 Opt = "/DEFAULTLIB:";
1356 Opt += qualifyWindowsLibrary(Lib);
1357 }
1358
1359 void getDetectMismatchOption(llvm::StringRef Name,
1360 llvm::StringRef Value,
1361 llvm::SmallString<32> &Opt) const {
1362 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1363 }
1364};
1365
1366}
1367
1368void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1369 Class &Hi) const {
1370 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1371 //
1372 // (a) If one of the classes is Memory, the whole argument is passed in
1373 // memory.
1374 //
1375 // (b) If X87UP is not preceded by X87, the whole argument is passed in
1376 // memory.
1377 //
1378 // (c) If the size of the aggregate exceeds two eightbytes and the first
1379 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1380 // argument is passed in memory. NOTE: This is necessary to keep the
1381 // ABI working for processors that don't support the __m256 type.
1382 //
1383 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1384 //
1385 // Some of these are enforced by the merging logic. Others can arise
1386 // only with unions; for example:
1387 // union { _Complex double; unsigned; }
1388 //
1389 // Note that clauses (b) and (c) were added in 0.98.
1390 //
1391 if (Hi == Memory)
1392 Lo = Memory;
1393 if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1394 Lo = Memory;
1395 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1396 Lo = Memory;
1397 if (Hi == SSEUp && Lo != SSE)
1398 Hi = SSE;
1399}
1400
1401X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1402 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1403 // classified recursively so that always two fields are
1404 // considered. The resulting class is calculated according to
1405 // the classes of the fields in the eightbyte:
1406 //
1407 // (a) If both classes are equal, this is the resulting class.
1408 //
1409 // (b) If one of the classes is NO_CLASS, the resulting class is
1410 // the other class.
1411 //
1412 // (c) If one of the classes is MEMORY, the result is the MEMORY
1413 // class.
1414 //
1415 // (d) If one of the classes is INTEGER, the result is the
1416 // INTEGER.
1417 //
1418 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1419 // MEMORY is used as class.
1420 //
1421 // (f) Otherwise class SSE is used.
1422
1423 // Accum should never be memory (we should have returned) or
1424 // ComplexX87 (because this cannot be passed in a structure).
1425 assert((Accum != Memory && Accum != ComplexX87) &&
1426 "Invalid accumulated classification during merge.");
1427 if (Accum == Field || Field == NoClass)
1428 return Accum;
1429 if (Field == Memory)
1430 return Memory;
1431 if (Accum == NoClass)
1432 return Field;
1433 if (Accum == Integer || Field == Integer)
1434 return Integer;
1435 if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1436 Accum == X87 || Accum == X87Up)
1437 return Memory;
1438 return SSE;
1439}
1440
1441void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1442 Class &Lo, Class &Hi, bool isNamedArg) const {
1443 // FIXME: This code can be simplified by introducing a simple value class for
1444 // Class pairs with appropriate constructor methods for the various
1445 // situations.
1446
1447 // FIXME: Some of the split computations are wrong; unaligned vectors
1448 // shouldn't be passed in registers for example, so there is no chance they
1449 // can straddle an eightbyte. Verify & simplify.
1450
1451 Lo = Hi = NoClass;
1452
1453 Class &Current = OffsetBase < 64 ? Lo : Hi;
1454 Current = Memory;
1455
1456 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1457 BuiltinType::Kind k = BT->getKind();
1458
1459 if (k == BuiltinType::Void) {
1460 Current = NoClass;
1461 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1462 Lo = Integer;
1463 Hi = Integer;
1464 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1465 Current = Integer;
1466 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1467 (k == BuiltinType::LongDouble &&
1468 getTarget().getTriple().isOSNaCl())) {
1469 Current = SSE;
1470 } else if (k == BuiltinType::LongDouble) {
1471 Lo = X87;
1472 Hi = X87Up;
1473 }
1474 // FIXME: _Decimal32 and _Decimal64 are SSE.
1475 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1476 return;
1477 }
1478
1479 if (const EnumType *ET = Ty->getAs<EnumType>()) {
1480 // Classify the underlying integer type.
1481 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1482 return;
1483 }
1484
1485 if (Ty->hasPointerRepresentation()) {
1486 Current = Integer;
1487 return;
1488 }
1489
1490 if (Ty->isMemberPointerType()) {
1491 if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
1492 Lo = Hi = Integer;
1493 else
1494 Current = Integer;
1495 return;
1496 }
1497
1498 if (const VectorType *VT = Ty->getAs<VectorType>()) {
1499 uint64_t Size = getContext().getTypeSize(VT);
1500 if (Size == 32) {
1501 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1502 // float> as integer.
1503 Current = Integer;
1504
1505 // If this type crosses an eightbyte boundary, it should be
1506 // split.
1507 uint64_t EB_Real = (OffsetBase) / 64;
1508 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1509 if (EB_Real != EB_Imag)
1510 Hi = Lo;
1511 } else if (Size == 64) {
1512 // gcc passes <1 x double> in memory. :(
1513 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1514 return;
1515
1516 // gcc passes <1 x long long> as INTEGER.
1517 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1518 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1519 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1520 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1521 Current = Integer;
1522 else
1523 Current = SSE;
1524
1525 // If this type crosses an eightbyte boundary, it should be
1526 // split.
1527 if (OffsetBase && OffsetBase != 64)
1528 Hi = Lo;
1529 } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1530 // Arguments of 256-bits are split into four eightbyte chunks. The
1531 // least significant one belongs to class SSE and all the others to class
1532 // SSEUP. The original Lo and Hi design considers that types can't be
1533 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1534 // This design isn't correct for 256-bits, but since there're no cases
1535 // where the upper parts would need to be inspected, avoid adding
1536 // complexity and just consider Hi to match the 64-256 part.
1537 //
1538 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1539 // registers if they are "named", i.e. not part of the "..." of a
1540 // variadic function.
1541 Lo = SSE;
1542 Hi = SSEUp;
1543 }
1544 return;
1545 }
1546
1547 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1548 QualType ET = getContext().getCanonicalType(CT->getElementType());
1549
1550 uint64_t Size = getContext().getTypeSize(Ty);
1551 if (ET->isIntegralOrEnumerationType()) {
1552 if (Size <= 64)
1553 Current = Integer;
1554 else if (Size <= 128)
1555 Lo = Hi = Integer;
1556 } else if (ET == getContext().FloatTy)
1557 Current = SSE;
1558 else if (ET == getContext().DoubleTy ||
1559 (ET == getContext().LongDoubleTy &&
1560 getTarget().getTriple().isOSNaCl()))
1561 Lo = Hi = SSE;
1562 else if (ET == getContext().LongDoubleTy)
1563 Current = ComplexX87;
1564
1565 // If this complex type crosses an eightbyte boundary then it
1566 // should be split.
1567 uint64_t EB_Real = (OffsetBase) / 64;
1568 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1569 if (Hi == NoClass && EB_Real != EB_Imag)
1570 Hi = Lo;
1571
1572 return;
1573 }
1574
1575 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1576 // Arrays are treated like structures.
1577
1578 uint64_t Size = getContext().getTypeSize(Ty);
1579
1580 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1581 // than four eightbytes, ..., it has class MEMORY.
1582 if (Size > 256)
1583 return;
1584
1585 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1586 // fields, it has class MEMORY.
1587 //
1588 // Only need to check alignment of array base.
1589 if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1590 return;
1591
1592 // Otherwise implement simplified merge. We could be smarter about
1593 // this, but it isn't worth it and would be harder to verify.
1594 Current = NoClass;
1595 uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1596 uint64_t ArraySize = AT->getSize().getZExtValue();
1597
1598 // The only case a 256-bit wide vector could be used is when the array
1599 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1600 // to work for sizes wider than 128, early check and fallback to memory.
1601 if (Size > 128 && EltSize != 256)
1602 return;
1603
1604 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1605 Class FieldLo, FieldHi;
1606 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1607 Lo = merge(Lo, FieldLo);
1608 Hi = merge(Hi, FieldHi);
1609 if (Lo == Memory || Hi == Memory)
1610 break;
1611 }
1612
1613 postMerge(Size, Lo, Hi);
1614 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1615 return;
1616 }
1617
1618 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1619 uint64_t Size = getContext().getTypeSize(Ty);
1620
1621 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1622 // than four eightbytes, ..., it has class MEMORY.
1623 if (Size > 256)
1624 return;
1625
1626 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1627 // copy constructor or a non-trivial destructor, it is passed by invisible
1628 // reference.
1629 if (getRecordArgABI(RT, getCXXABI()))
1630 return;
1631
1632 const RecordDecl *RD = RT->getDecl();
1633
1634 // Assume variable sized types are passed in memory.
1635 if (RD->hasFlexibleArrayMember())
1636 return;
1637
1638 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1639
1640 // Reset Lo class, this will be recomputed.
1641 Current = NoClass;
1642
1643 // If this is a C++ record, classify the bases first.
1644 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1645 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1646 e = CXXRD->bases_end(); i != e; ++i) {
1647 assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1648 "Unexpected base class!");
1649 const CXXRecordDecl *Base =
1650 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1651
1652 // Classify this field.
1653 //
1654 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1655 // single eightbyte, each is classified separately. Each eightbyte gets
1656 // initialized to class NO_CLASS.
1657 Class FieldLo, FieldHi;
1658 uint64_t Offset =
1659 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1660 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1661 Lo = merge(Lo, FieldLo);
1662 Hi = merge(Hi, FieldHi);
1663 if (Lo == Memory || Hi == Memory)
1664 break;
1665 }
1666 }
1667
1668 // Classify the fields one at a time, merging the results.
1669 unsigned idx = 0;
1670 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1671 i != e; ++i, ++idx) {
1672 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1673 bool BitField = i->isBitField();
1674
1675 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1676 // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1677 //
1678 // The only case a 256-bit wide vector could be used is when the struct
1679 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1680 // to work for sizes wider than 128, early check and fallback to memory.
1681 //
1682 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1683 Lo = Memory;
1684 return;
1685 }
1686 // Note, skip this test for bit-fields, see below.
1687 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1688 Lo = Memory;
1689 return;
1690 }
1691
1692 // Classify this field.
1693 //
1694 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1695 // exceeds a single eightbyte, each is classified
1696 // separately. Each eightbyte gets initialized to class
1697 // NO_CLASS.
1698 Class FieldLo, FieldHi;
1699
1700 // Bit-fields require special handling, they do not force the
1701 // structure to be passed in memory even if unaligned, and
1702 // therefore they can straddle an eightbyte.
1703 if (BitField) {
1704 // Ignore padding bit-fields.
1705 if (i->isUnnamedBitfield())
1706 continue;
1707
1708 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1709 uint64_t Size = i->getBitWidthValue(getContext());
1710
1711 uint64_t EB_Lo = Offset / 64;
1712 uint64_t EB_Hi = (Offset + Size - 1) / 64;
1713
1714 if (EB_Lo) {
1715 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1716 FieldLo = NoClass;
1717 FieldHi = Integer;
1718 } else {
1719 FieldLo = Integer;
1720 FieldHi = EB_Hi ? Integer : NoClass;
1721 }
1722 } else
1723 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1724 Lo = merge(Lo, FieldLo);
1725 Hi = merge(Hi, FieldHi);
1726 if (Lo == Memory || Hi == Memory)
1727 break;
1728 }
1729
1730 postMerge(Size, Lo, Hi);
1731 }
1732}
1733
1734ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1735 // If this is a scalar LLVM value then assume LLVM will pass it in the right
1736 // place naturally.
1737 if (!isAggregateTypeForABI(Ty)) {
1738 // Treat an enum type as its underlying type.
1739 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1740 Ty = EnumTy->getDecl()->getIntegerType();
1741
1742 return (Ty->isPromotableIntegerType() ?
1743 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1744 }
1745
1746 return ABIArgInfo::getIndirect(0);
1747}
1748
1749bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1750 if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1751 uint64_t Size = getContext().getTypeSize(VecTy);
1752 unsigned LargestVector = HasAVX ? 256 : 128;
1753 if (Size <= 64 || Size > LargestVector)
1754 return true;
1755 }
1756
1757 return false;
1758}
1759
1760ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1761 unsigned freeIntRegs) const {
1762 // If this is a scalar LLVM value then assume LLVM will pass it in the right
1763 // place naturally.
1764 //
1765 // This assumption is optimistic, as there could be free registers available
1766 // when we need to pass this argument in memory, and LLVM could try to pass
1767 // the argument in the free register. This does not seem to happen currently,
1768 // but this code would be much safer if we could mark the argument with
1769 // 'onstack'. See PR12193.
1770 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1771 // Treat an enum type as its underlying type.
1772 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1773 Ty = EnumTy->getDecl()->getIntegerType();
1774
1775 return (Ty->isPromotableIntegerType() ?
1776 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1777 }
1778
1779 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
1780 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
1781
1782 // Compute the byval alignment. We specify the alignment of the byval in all
1783 // cases so that the mid-level optimizer knows the alignment of the byval.
1784 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1785
1786 // Attempt to avoid passing indirect results using byval when possible. This
1787 // is important for good codegen.
1788 //
1789 // We do this by coercing the value into a scalar type which the backend can
1790 // handle naturally (i.e., without using byval).
1791 //
1792 // For simplicity, we currently only do this when we have exhausted all of the
1793 // free integer registers. Doing this when there are free integer registers
1794 // would require more care, as we would have to ensure that the coerced value
1795 // did not claim the unused register. That would require either reording the
1796 // arguments to the function (so that any subsequent inreg values came first),
1797 // or only doing this optimization when there were no following arguments that
1798 // might be inreg.
1799 //
1800 // We currently expect it to be rare (particularly in well written code) for
1801 // arguments to be passed on the stack when there are still free integer
1802 // registers available (this would typically imply large structs being passed
1803 // by value), so this seems like a fair tradeoff for now.
1804 //
1805 // We can revisit this if the backend grows support for 'onstack' parameter
1806 // attributes. See PR12193.
1807 if (freeIntRegs == 0) {
1808 uint64_t Size = getContext().getTypeSize(Ty);
1809
1810 // If this type fits in an eightbyte, coerce it into the matching integral
1811 // type, which will end up on the stack (with alignment 8).
1812 if (Align == 8 && Size <= 64)
1813 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1814 Size));
1815 }
1816
1817 return ABIArgInfo::getIndirect(Align);
1818}
1819
1820/// GetByteVectorType - The ABI specifies that a value should be passed in an
1821/// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a
1822/// vector register.
1823llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1824 llvm::Type *IRType = CGT.ConvertType(Ty);
1825
1826 // Wrapper structs that just contain vectors are passed just like vectors,
1827 // strip them off if present.
1828 llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1829 while (STy && STy->getNumElements() == 1) {
1830 IRType = STy->getElementType(0);
1831 STy = dyn_cast<llvm::StructType>(IRType);
1832 }
1833
1834 // If the preferred type is a 16-byte vector, prefer to pass it.
1835 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1836 llvm::Type *EltTy = VT->getElementType();
1837 unsigned BitWidth = VT->getBitWidth();
1838 if ((BitWidth >= 128 && BitWidth <= 256) &&
1839 (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1840 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1841 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1842 EltTy->isIntegerTy(128)))
1843 return VT;
1844 }
1845
1846 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1847}
1848
1849/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1850/// is known to either be off the end of the specified type or being in
1851/// alignment padding. The user type specified is known to be at most 128 bits
1852/// in size, and have passed through X86_64ABIInfo::classify with a successful
1853/// classification that put one of the two halves in the INTEGER class.
1854///
1855/// It is conservatively correct to return false.
1856static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1857 unsigned EndBit, ASTContext &Context) {
1858 // If the bytes being queried are off the end of the type, there is no user
1859 // data hiding here. This handles analysis of builtins, vectors and other
1860 // types that don't contain interesting padding.
1861 unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1862 if (TySize <= StartBit)
1863 return true;
1864
1865 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1866 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1867 unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1868
1869 // Check each element to see if the element overlaps with the queried range.
1870 for (unsigned i = 0; i != NumElts; ++i) {
1871 // If the element is after the span we care about, then we're done..
1872 unsigned EltOffset = i*EltSize;
1873 if (EltOffset >= EndBit) break;
1874
1875 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1876 if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1877 EndBit-EltOffset, Context))
1878 return false;
1879 }
1880 // If it overlaps no elements, then it is safe to process as padding.
1881 return true;
1882 }
1883
1884 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1885 const RecordDecl *RD = RT->getDecl();
1886 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1887
1888 // If this is a C++ record, check the bases first.
1889 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1890 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1891 e = CXXRD->bases_end(); i != e; ++i) {
1892 assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1893 "Unexpected base class!");
1894 const CXXRecordDecl *Base =
1895 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1896
1897 // If the base is after the span we care about, ignore it.
1898 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1899 if (BaseOffset >= EndBit) continue;
1900
1901 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1902 if (!BitsContainNoUserData(i->getType(), BaseStart,
1903 EndBit-BaseOffset, Context))
1904 return false;
1905 }
1906 }
1907
1908 // Verify that no field has data that overlaps the region of interest. Yes
1909 // this could be sped up a lot by being smarter about queried fields,
1910 // however we're only looking at structs up to 16 bytes, so we don't care
1911 // much.
1912 unsigned idx = 0;
1913 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1914 i != e; ++i, ++idx) {
1915 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1916
1917 // If we found a field after the region we care about, then we're done.
1918 if (FieldOffset >= EndBit) break;
1919
1920 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1921 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1922 Context))
1923 return false;
1924 }
1925
1926 // If nothing in this record overlapped the area of interest, then we're
1927 // clean.
1928 return true;
1929 }
1930
1931 return false;
1932}
1933
1934/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1935/// float member at the specified offset. For example, {int,{float}} has a
1936/// float at offset 4. It is conservatively correct for this routine to return
1937/// false.
1938static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1939 const llvm::DataLayout &TD) {
1940 // Base case if we find a float.
1941 if (IROffset == 0 && IRType->isFloatTy())
1942 return true;
1943
1944 // If this is a struct, recurse into the field at the specified offset.
1945 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1946 const llvm::StructLayout *SL = TD.getStructLayout(STy);
1947 unsigned Elt = SL->getElementContainingOffset(IROffset);
1948 IROffset -= SL->getElementOffset(Elt);
1949 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1950 }
1951
1952 // If this is an array, recurse into the field at the specified offset.
1953 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1954 llvm::Type *EltTy = ATy->getElementType();
1955 unsigned EltSize = TD.getTypeAllocSize(EltTy);
1956 IROffset -= IROffset/EltSize*EltSize;
1957 return ContainsFloatAtOffset(EltTy, IROffset, TD);
1958 }
1959
1960 return false;
1961}
1962
1963
1964/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1965/// low 8 bytes of an XMM register, corresponding to the SSE class.
1966llvm::Type *X86_64ABIInfo::
1967GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1968 QualType SourceTy, unsigned SourceOffset) const {
1969 // The only three choices we have are either double, <2 x float>, or float. We
1970 // pass as float if the last 4 bytes is just padding. This happens for
1971 // structs that contain 3 floats.
1972 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1973 SourceOffset*8+64, getContext()))
1974 return llvm::Type::getFloatTy(getVMContext());
1975
1976 // We want to pass as <2 x float> if the LLVM IR type contains a float at
1977 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
1978 // case.
1979 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
1980 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
1981 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1982
1983 return llvm::Type::getDoubleTy(getVMContext());
1984}
1985
1986
1987/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1988/// an 8-byte GPR. This means that we either have a scalar or we are talking
1989/// about the high or low part of an up-to-16-byte struct. This routine picks
1990/// the best LLVM IR type to represent this, which may be i64 or may be anything
1991/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1992/// etc).
1993///
1994/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1995/// the source type. IROffset is an offset in bytes into the LLVM IR type that
1996/// the 8-byte value references. PrefType may be null.
1997///
1998/// SourceTy is the source level type for the entire argument. SourceOffset is
1999/// an offset into this that we're processing (which is always either 0 or 8).
2000///
2001llvm::Type *X86_64ABIInfo::
2002GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2003 QualType SourceTy, unsigned SourceOffset) const {
2004 // If we're dealing with an un-offset LLVM IR type, then it means that we're
2005 // returning an 8-byte unit starting with it. See if we can safely use it.
2006 if (IROffset == 0) {
2007 // Pointers and int64's always fill the 8-byte unit.
2008 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2009 IRType->isIntegerTy(64))
2010 return IRType;
2011
2012 // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2013 // goodness in the source type is just tail padding. This is allowed to
2014 // kick in for struct {double,int} on the int, but not on
2015 // struct{double,int,int} because we wouldn't return the second int. We
2016 // have to do this analysis on the source type because we can't depend on
2017 // unions being lowered a specific way etc.
2018 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2019 IRType->isIntegerTy(32) ||
2020 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2021 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2022 cast<llvm::IntegerType>(IRType)->getBitWidth();
2023
2024 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2025 SourceOffset*8+64, getContext()))
2026 return IRType;
2027 }
2028 }
2029
2030 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2031 // If this is a struct, recurse into the field at the specified offset.
2032 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2033 if (IROffset < SL->getSizeInBytes()) {
2034 unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2035 IROffset -= SL->getElementOffset(FieldIdx);
2036
2037 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2038 SourceTy, SourceOffset);
2039 }
2040 }
2041
2042 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2043 llvm::Type *EltTy = ATy->getElementType();
2044 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2045 unsigned EltOffset = IROffset/EltSize*EltSize;
2046 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2047 SourceOffset);
2048 }
2049
2050 // Okay, we don't have any better idea of what to pass, so we pass this in an
2051 // integer register that isn't too big to fit the rest of the struct.
2052 unsigned TySizeInBytes =
2053 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2054
2055 assert(TySizeInBytes != SourceOffset && "Empty field?");
2056
2057 // It is always safe to classify this as an integer type up to i64 that
2058 // isn't larger than the structure.
2059 return llvm::IntegerType::get(getVMContext(),
2060 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2061}
2062
2063
2064/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2065/// be used as elements of a two register pair to pass or return, return a
2066/// first class aggregate to represent them. For example, if the low part of
2067/// a by-value argument should be passed as i32* and the high part as float,
2068/// return {i32*, float}.
2069static llvm::Type *
2070GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2071 const llvm::DataLayout &TD) {
2072 // In order to correctly satisfy the ABI, we need to the high part to start
2073 // at offset 8. If the high and low parts we inferred are both 4-byte types
2074 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2075 // the second element at offset 8. Check for this:
2076 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2077 unsigned HiAlign = TD.getABITypeAlignment(Hi);
2078 unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
2079 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2080
2081 // To handle this, we have to increase the size of the low part so that the
2082 // second element will start at an 8 byte offset. We can't increase the size
2083 // of the second element because it might make us access off the end of the
2084 // struct.
2085 if (HiStart != 8) {
2086 // There are only two sorts of types the ABI generation code can produce for
2087 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2088 // Promote these to a larger type.
2089 if (Lo->isFloatTy())
2090 Lo = llvm::Type::getDoubleTy(Lo->getContext());
2091 else {
2092 assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2093 Lo = llvm::Type::getInt64Ty(Lo->getContext());
2094 }
2095 }
2096
2097 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
2098
2099
2100 // Verify that the second element is at an 8-byte offset.
2101 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2102 "Invalid x86-64 argument pair!");
2103 return Result;
2104}
2105
2106ABIArgInfo X86_64ABIInfo::
2107classifyReturnType(QualType RetTy) const {
2108 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2109 // classification algorithm.
2110 X86_64ABIInfo::Class Lo, Hi;
2111 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2112
2113 // Check some invariants.
2114 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2115 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2116
2117 llvm::Type *ResType = 0;
2118 switch (Lo) {
2119 case NoClass:
2120 if (Hi == NoClass)
2121 return ABIArgInfo::getIgnore();
2122 // If the low part is just padding, it takes no register, leave ResType
2123 // null.
2124 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2125 "Unknown missing lo part");
2126 break;
2127
2128 case SSEUp:
2129 case X87Up:
2130 llvm_unreachable("Invalid classification for lo word.");
2131
2132 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2133 // hidden argument.
2134 case Memory:
2135 return getIndirectReturnResult(RetTy);
2136
2137 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2138 // available register of the sequence %rax, %rdx is used.
2139 case Integer:
2140 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2141
2142 // If we have a sign or zero extended integer, make sure to return Extend
2143 // so that the parameter gets the right LLVM IR attributes.
2144 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2145 // Treat an enum type as its underlying type.
2146 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2147 RetTy = EnumTy->getDecl()->getIntegerType();
2148
2149 if (RetTy->isIntegralOrEnumerationType() &&
2150 RetTy->isPromotableIntegerType())
2151 return ABIArgInfo::getExtend();
2152 }
2153 break;
2154
2155 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2156 // available SSE register of the sequence %xmm0, %xmm1 is used.
2157 case SSE:
2158 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2159 break;
2160
2161 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2162 // returned on the X87 stack in %st0 as 80-bit x87 number.
2163 case X87:
2164 ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2165 break;
2166
2167 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2168 // part of the value is returned in %st0 and the imaginary part in
2169 // %st1.
2170 case ComplexX87:
2171 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2172 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2173 llvm::Type::getX86_FP80Ty(getVMContext()),
2174 NULL);
2175 break;
2176 }
2177
2178 llvm::Type *HighPart = 0;
2179 switch (Hi) {
2180 // Memory was handled previously and X87 should
2181 // never occur as a hi class.
2182 case Memory:
2183 case X87:
2184 llvm_unreachable("Invalid classification for hi word.");
2185
2186 case ComplexX87: // Previously handled.
2187 case NoClass:
2188 break;
2189
2190 case Integer:
2191 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2192 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2193 return ABIArgInfo::getDirect(HighPart, 8);
2194 break;
2195 case SSE:
2196 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2197 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2198 return ABIArgInfo::getDirect(HighPart, 8);
2199 break;
2200
2201 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2202 // is passed in the next available eightbyte chunk if the last used
2203 // vector register.
2204 //
2205 // SSEUP should always be preceded by SSE, just widen.
2206 case SSEUp:
2207 assert(Lo == SSE && "Unexpected SSEUp classification.");
2208 ResType = GetByteVectorType(RetTy);
2209 break;
2210
2211 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2212 // returned together with the previous X87 value in %st0.
2213 case X87Up:
2214 // If X87Up is preceded by X87, we don't need to do
2215 // anything. However, in some cases with unions it may not be
2216 // preceded by X87. In such situations we follow gcc and pass the
2217 // extra bits in an SSE reg.
2218 if (Lo != X87) {
2219 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2220 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2221 return ABIArgInfo::getDirect(HighPart, 8);
2222 }
2223 break;
2224 }
2225
2226 // If a high part was specified, merge it together with the low part. It is
2227 // known to pass in the high eightbyte of the result. We do this by forming a
2228 // first class struct aggregate with the high and low part: {low, high}
2229 if (HighPart)
2230 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2231
2232 return ABIArgInfo::getDirect(ResType);
2233}
2234
2235ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2236 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2237 bool isNamedArg)
2238 const
2239{
2240 X86_64ABIInfo::Class Lo, Hi;
2241 classify(Ty, 0, Lo, Hi, isNamedArg);
2242
2243 // Check some invariants.
2244 // FIXME: Enforce these by construction.
2245 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2246 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2247
2248 neededInt = 0;
2249 neededSSE = 0;
2250 llvm::Type *ResType = 0;
2251 switch (Lo) {
2252 case NoClass:
2253 if (Hi == NoClass)
2254 return ABIArgInfo::getIgnore();
2255 // If the low part is just padding, it takes no register, leave ResType
2256 // null.
2257 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2258 "Unknown missing lo part");
2259 break;
2260
2261 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2262 // on the stack.
2263 case Memory:
2264
2265 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2266 // COMPLEX_X87, it is passed in memory.
2267 case X87:
2268 case ComplexX87:
2269 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2270 ++neededInt;
2271 return getIndirectResult(Ty, freeIntRegs);
2272
2273 case SSEUp:
2274 case X87Up:
2275 llvm_unreachable("Invalid classification for lo word.");
2276
2277 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2278 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2279 // and %r9 is used.
2280 case Integer:
2281 ++neededInt;
2282
2283 // Pick an 8-byte type based on the preferred type.
2284 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2285
2286 // If we have a sign or zero extended integer, make sure to return Extend
2287 // so that the parameter gets the right LLVM IR attributes.
2288 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2289 // Treat an enum type as its underlying type.
2290 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2291 Ty = EnumTy->getDecl()->getIntegerType();
2292
2293 if (Ty->isIntegralOrEnumerationType() &&
2294 Ty->isPromotableIntegerType())
2295 return ABIArgInfo::getExtend();
2296 }
2297
2298 break;
2299
2300 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2301 // available SSE register is used, the registers are taken in the
2302 // order from %xmm0 to %xmm7.
2303 case SSE: {
2304 llvm::Type *IRType = CGT.ConvertType(Ty);
2305 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2306 ++neededSSE;
2307 break;
2308 }
2309 }
2310
2311 llvm::Type *HighPart = 0;
2312 switch (Hi) {
2313 // Memory was handled previously, ComplexX87 and X87 should
2314 // never occur as hi classes, and X87Up must be preceded by X87,
2315 // which is passed in memory.
2316 case Memory:
2317 case X87:
2318 case ComplexX87:
2319 llvm_unreachable("Invalid classification for hi word.");
2320
2321 case NoClass: break;
2322
2323 case Integer:
2324 ++neededInt;
2325 // Pick an 8-byte type based on the preferred type.
2326 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2327
2328 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2329 return ABIArgInfo::getDirect(HighPart, 8);
2330 break;
2331
2332 // X87Up generally doesn't occur here (long double is passed in
2333 // memory), except in situations involving unions.
2334 case X87Up:
2335 case SSE:
2336 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2337
2338 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2339 return ABIArgInfo::getDirect(HighPart, 8);
2340
2341 ++neededSSE;
2342 break;
2343
2344 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2345 // eightbyte is passed in the upper half of the last used SSE
2346 // register. This only happens when 128-bit vectors are passed.
2347 case SSEUp:
2348 assert(Lo == SSE && "Unexpected SSEUp classification");
2349 ResType = GetByteVectorType(Ty);
2350 break;
2351 }
2352
2353 // If a high part was specified, merge it together with the low part. It is
2354 // known to pass in the high eightbyte of the result. We do this by forming a
2355 // first class struct aggregate with the high and low part: {low, high}
2356 if (HighPart)
2357 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2358
2359 return ABIArgInfo::getDirect(ResType);
2360}
2361
2362void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2363
2364 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2365
2366 // Keep track of the number of assigned registers.
2367 unsigned freeIntRegs = 6, freeSSERegs = 8;
2368
2369 // If the return value is indirect, then the hidden argument is consuming one
2370 // integer register.
2371 if (FI.getReturnInfo().isIndirect())
2372 --freeIntRegs;
2373
2374 bool isVariadic = FI.isVariadic();
2375 unsigned numRequiredArgs = 0;
2376 if (isVariadic)
2377 numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs();
2378
2379 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2380 // get assigned (in left-to-right order) for passing as follows...
2381 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2382 it != ie; ++it) {
2383 bool isNamedArg = true;
2384 if (isVariadic)
2385 isNamedArg = (it - FI.arg_begin()) <
2386 static_cast<signed>(numRequiredArgs);
2387
2388 unsigned neededInt, neededSSE;
2389 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2390 neededSSE, isNamedArg);
2391
2392 // AMD64-ABI 3.2.3p3: If there are no registers available for any
2393 // eightbyte of an argument, the whole argument is passed on the
2394 // stack. If registers have already been assigned for some
2395 // eightbytes of such an argument, the assignments get reverted.
2396 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2397 freeIntRegs -= neededInt;
2398 freeSSERegs -= neededSSE;
2399 } else {
2400 it->info = getIndirectResult(it->type, freeIntRegs);
2401 }
2402 }
2403}
2404
2405static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2406 QualType Ty,
2407 CodeGenFunction &CGF) {
2408 llvm::Value *overflow_arg_area_p =
2409 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2410 llvm::Value *overflow_arg_area =
2411 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2412
2413 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2414 // byte boundary if alignment needed by type exceeds 8 byte boundary.
2415 // It isn't stated explicitly in the standard, but in practice we use
2416 // alignment greater than 16 where necessary.
2417 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2418 if (Align > 8) {
2419 // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2420 llvm::Value *Offset =
2421 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2422 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2423 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2424 CGF.Int64Ty);
2425 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2426 overflow_arg_area =
2427 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2428 overflow_arg_area->getType(),
2429 "overflow_arg_area.align");
2430 }
2431
2432 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2433 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2434 llvm::Value *Res =
2435 CGF.Builder.CreateBitCast(overflow_arg_area,
2436 llvm::PointerType::getUnqual(LTy));
2437
2438 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2439 // l->overflow_arg_area + sizeof(type).
2440 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2441 // an 8 byte boundary.
2442
2443 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2444 llvm::Value *Offset =
2445 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
2446 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2447 "overflow_arg_area.next");
2448 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2449
2450 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2451 return Res;
2452}
2453
2454llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2455 CodeGenFunction &CGF) const {
2456 // Assume that va_list type is correct; should be pointer to LLVM type:
2457 // struct {
2458 // i32 gp_offset;
2459 // i32 fp_offset;
2460 // i8* overflow_arg_area;
2461 // i8* reg_save_area;
2462 // };
2463 unsigned neededInt, neededSSE;
2464
2465 Ty = CGF.getContext().getCanonicalType(Ty);
2466 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2467 /*isNamedArg*/false);
2468
2469 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2470 // in the registers. If not go to step 7.
2471 if (!neededInt && !neededSSE)
2472 return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2473
2474 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2475 // general purpose registers needed to pass type and num_fp to hold
2476 // the number of floating point registers needed.
2477
2478 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2479 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2480 // l->fp_offset > 304 - num_fp * 16 go to step 7.
2481 //
2482 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2483 // register save space).
2484
2485 llvm::Value *InRegs = 0;
2486 llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2487 llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2488 if (neededInt) {
2489 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2490 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2491 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2492 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2493 }
2494
2495 if (neededSSE) {
2496 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2497 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2498 llvm::Value *FitsInFP =
2499 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2500 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2501 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2502 }
2503
2504 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2505 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2506 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2507 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2508
2509 // Emit code to load the value if it was passed in registers.
2510
2511 CGF.EmitBlock(InRegBlock);
2512
2513 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2514 // an offset of l->gp_offset and/or l->fp_offset. This may require
2515 // copying to a temporary location in case the parameter is passed
2516 // in different register classes or requires an alignment greater
2517 // than 8 for general purpose registers and 16 for XMM registers.
2518 //
2519 // FIXME: This really results in shameful code when we end up needing to
2520 // collect arguments from different places; often what should result in a
2521 // simple assembling of a structure from scattered addresses has many more
2522 // loads than necessary. Can we clean this up?
2523 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2524 llvm::Value *RegAddr =
2525 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2526 "reg_save_area");
2527 if (neededInt && neededSSE) {
2528 // FIXME: Cleanup.
2529 assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2530 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2531 llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2532 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2533 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2534 llvm::Type *TyLo = ST->getElementType(0);
2535 llvm::Type *TyHi = ST->getElementType(1);
2536 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2537 "Unexpected ABI info for mixed regs");
2538 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2539 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2540 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2541 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2542 llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2543 llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2544 llvm::Value *V =
2545 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2546 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2547 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2548 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2549
2550 RegAddr = CGF.Builder.CreateBitCast(Tmp,
2551 llvm::PointerType::getUnqual(LTy));
2552 } else if (neededInt) {
2553 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2554 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2555 llvm::PointerType::getUnqual(LTy));
2556
2557 // Copy to a temporary if necessary to ensure the appropriate alignment.
2558 std::pair<CharUnits, CharUnits> SizeAlign =
2559 CGF.getContext().getTypeInfoInChars(Ty);
2560 uint64_t TySize = SizeAlign.first.getQuantity();
2561 unsigned TyAlign = SizeAlign.second.getQuantity();
2562 if (TyAlign > 8) {
2563 llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2564 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2565 RegAddr = Tmp;
2566 }
2567 } else if (neededSSE == 1) {
2568 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2569 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2570 llvm::PointerType::getUnqual(LTy));
2571 } else {
2572 assert(neededSSE == 2 && "Invalid number of needed registers!");
2573 // SSE registers are spaced 16 bytes apart in the register save
2574 // area, we need to collect the two eightbytes together.
2575 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2576 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2577 llvm::Type *DoubleTy = CGF.DoubleTy;
2578 llvm::Type *DblPtrTy =
2579 llvm::PointerType::getUnqual(DoubleTy);
2580 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL);
2581 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2582 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2583 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2584 DblPtrTy));
2585 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2586 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2587 DblPtrTy));
2588 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2589 RegAddr = CGF.Builder.CreateBitCast(Tmp,
2590 llvm::PointerType::getUnqual(LTy));
2591 }
2592
2593 // AMD64-ABI 3.5.7p5: Step 5. Set:
2594 // l->gp_offset = l->gp_offset + num_gp * 8
2595 // l->fp_offset = l->fp_offset + num_fp * 16.
2596 if (neededInt) {
2597 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2598 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2599 gp_offset_p);
2600 }
2601 if (neededSSE) {
2602 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2603 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2604 fp_offset_p);
2605 }
2606 CGF.EmitBranch(ContBlock);
2607
2608 // Emit code to load the value if it was passed in memory.
2609
2610 CGF.EmitBlock(InMemBlock);
2611 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2612
2613 // Return the appropriate result.
2614
2615 CGF.EmitBlock(ContBlock);
2616 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2617 "vaarg.addr");
2618 ResAddr->addIncoming(RegAddr, InRegBlock);
2619 ResAddr->addIncoming(MemAddr, InMemBlock);
2620 return ResAddr;
2621}
2622
2623ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const {
2624
2625 if (Ty->isVoidType())
2626 return ABIArgInfo::getIgnore();
2627
2628 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2629 Ty = EnumTy->getDecl()->getIntegerType();
2630
2631 uint64_t Size = getContext().getTypeSize(Ty);
2632
2633 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2634 if (IsReturnType) {
2635 if (isRecordReturnIndirect(RT, getCXXABI()))
2636 return ABIArgInfo::getIndirect(0, false);
2637 } else {
2638 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
2639 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2640 }
2641
2642 if (RT->getDecl()->hasFlexibleArrayMember())
2643 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2644
2645 // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2646 if (Size == 128 && getTarget().getTriple().getOS() == llvm::Triple::MinGW32)
2647 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2648 Size));
2649
2650 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2651 // not 1, 2, 4, or 8 bytes, must be passed by reference."
2652 if (Size <= 64 &&
2653 (Size & (Size - 1)) == 0)
2654 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2655 Size));
2656
2657 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2658 }
2659
2660 if (Ty->isPromotableIntegerType())
2661 return ABIArgInfo::getExtend();
2662
2663 return ABIArgInfo::getDirect();
2664}
2665
2666void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2667
2668 QualType RetTy = FI.getReturnType();
2669 FI.getReturnInfo() = classify(RetTy, true);
2670
2671 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2672 it != ie; ++it)
2673 it->info = classify(it->type, false);
2674}
2675
2676llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2677 CodeGenFunction &CGF) const {
2678 llvm::Type *BPP = CGF.Int8PtrPtrTy;
2679
2680 CGBuilderTy &Builder = CGF.Builder;
2681 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2682 "ap");
2683 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2684 llvm::Type *PTy =
2685 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2686 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2687
2688 uint64_t Offset =
2689 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2690 llvm::Value *NextAddr =
2691 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2692 "ap.next");
2693 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2694
2695 return AddrTyped;
2696}
2697
2698namespace {
2699
2700class NaClX86_64ABIInfo : public ABIInfo {
2701 public:
2702 NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2703 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2704 virtual void computeInfo(CGFunctionInfo &FI) const;
2705 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2706 CodeGenFunction &CGF) const;
2707 private:
2708 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
2709 X86_64ABIInfo NInfo; // Used for everything else.
2710};
2711
2712class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2713 public:
2714 NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2715 : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
2716};
2717
2718}
2719
2720void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2721 if (FI.getASTCallingConvention() == CC_PnaclCall)
2722 PInfo.computeInfo(FI);
2723 else
2724 NInfo.computeInfo(FI);
2725}
2726
2727llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2728 CodeGenFunction &CGF) const {
2729 // Always use the native convention; calling pnacl-style varargs functions
2730 // is unuspported.
2731 return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2732}
2733
2734
2735// PowerPC-32
2736
2737namespace {
2738class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2739public:
2740 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2741
2742 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2743 // This is recovered from gcc output.
2744 return 1; // r1 is the dedicated stack pointer
2745 }
2746
2747 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2748 llvm::Value *Address) const;
2749};
2750
2751}
2752
2753bool
2754PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2755 llvm::Value *Address) const {
2756 // This is calculated from the LLVM and GCC tables and verified
2757 // against gcc output. AFAIK all ABIs use the same encoding.
2758
2759 CodeGen::CGBuilderTy &Builder = CGF.Builder;
2760
2761 llvm::IntegerType *i8 = CGF.Int8Ty;
2762 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2763 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2764 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2765
2766 // 0-31: r0-31, the 4-byte general-purpose registers
2767 AssignToArrayRange(Builder, Address, Four8, 0, 31);
2768
2769 // 32-63: fp0-31, the 8-byte floating-point registers
2770 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2771
2772 // 64-76 are various 4-byte special-purpose registers:
2773 // 64: mq
2774 // 65: lr
2775 // 66: ctr
2776 // 67: ap
2777 // 68-75 cr0-7
2778 // 76: xer
2779 AssignToArrayRange(Builder, Address, Four8, 64, 76);
2780
2781 // 77-108: v0-31, the 16-byte vector registers
2782 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2783
2784 // 109: vrsave
2785 // 110: vscr
2786 // 111: spe_acc
2787 // 112: spefscr
2788 // 113: sfp
2789 AssignToArrayRange(Builder, Address, Four8, 109, 113);
2790
2791 return false;
2792}
2793
2794// PowerPC-64
2795
2796namespace {
2797/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
2798class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
2799
2800public:
2801 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2802
2803 bool isPromotableTypeForABI(QualType Ty) const;
2804
2805 ABIArgInfo classifyReturnType(QualType RetTy) const;
2806 ABIArgInfo classifyArgumentType(QualType Ty) const;
2807
2808 // TODO: We can add more logic to computeInfo to improve performance.
2809 // Example: For aggregate arguments that fit in a register, we could
2810 // use getDirectInReg (as is done below for structs containing a single
2811 // floating-point value) to avoid pushing them to memory on function
2812 // entry. This would require changing the logic in PPCISelLowering
2813 // when lowering the parameters in the caller and args in the callee.
2814 virtual void computeInfo(CGFunctionInfo &FI) const {
2815 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2816 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2817 it != ie; ++it) {
2818 // We rely on the default argument classification for the most part.
2819 // One exception: An aggregate containing a single floating-point
2820 // or vector item must be passed in a register if one is available.
2821 const Type *T = isSingleElementStruct(it->type, getContext());
2822 if (T) {
2823 const BuiltinType *BT = T->getAs<BuiltinType>();
2824 if (T->isVectorType() || (BT && BT->isFloatingPoint())) {
2825 QualType QT(T, 0);
2826 it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
2827 continue;
2828 }
2829 }
2830 it->info = classifyArgumentType(it->type);
2831 }
2832 }
2833
2834 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr,
2835 QualType Ty,
2836 CodeGenFunction &CGF) const;
2837};
2838
2839class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
2840public:
2841 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
2842 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
2843
2844 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2845 // This is recovered from gcc output.
2846 return 1; // r1 is the dedicated stack pointer
2847 }
2848
2849 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2850 llvm::Value *Address) const;
2851};
2852
2853class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2854public:
2855 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2856
2857 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2858 // This is recovered from gcc output.
2859 return 1; // r1 is the dedicated stack pointer
2860 }
2861
2862 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2863 llvm::Value *Address) const;
2864};
2865
2866}
2867
2868// Return true if the ABI requires Ty to be passed sign- or zero-
2869// extended to 64 bits.
2870bool
2871PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
2872 // Treat an enum type as its underlying type.
2873 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2874 Ty = EnumTy->getDecl()->getIntegerType();
2875
2876 // Promotable integer types are required to be promoted by the ABI.
2877 if (Ty->isPromotableIntegerType())
2878 return true;
2879
2880 // In addition to the usual promotable integer types, we also need to
2881 // extend all 32-bit types, since the ABI requires promotion to 64 bits.
2882 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2883 switch (BT->getKind()) {
2884 case BuiltinType::Int:
2885 case BuiltinType::UInt:
2886 return true;
2887 default:
2888 break;
2889 }
2890
2891 return false;
2892}
2893
2894ABIArgInfo
2895PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
2896 if (Ty->isAnyComplexType())
2897 return ABIArgInfo::getDirect();
2898
2899 if (isAggregateTypeForABI(Ty)) {
2900 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2901 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2902
2903 return ABIArgInfo::getIndirect(0);
2904 }
2905
2906 return (isPromotableTypeForABI(Ty) ?
2907 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2908}
2909
2910ABIArgInfo
2911PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
2912 if (RetTy->isVoidType())
2913 return ABIArgInfo::getIgnore();
2914
2915 if (RetTy->isAnyComplexType())
2916 return ABIArgInfo::getDirect();
2917
2918 if (isAggregateTypeForABI(RetTy))
2919 return ABIArgInfo::getIndirect(0);
2920
2921 return (isPromotableTypeForABI(RetTy) ?
2922 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2923}
2924
2925// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
2926llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
2927 QualType Ty,
2928 CodeGenFunction &CGF) const {
2929 llvm::Type *BP = CGF.Int8PtrTy;
2930 llvm::Type *BPP = CGF.Int8PtrPtrTy;
2931
2932 CGBuilderTy &Builder = CGF.Builder;
2933 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
2934 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2935
2936 // Update the va_list pointer. The pointer should be bumped by the
2937 // size of the object. We can trust getTypeSize() except for a complex
2938 // type whose base type is smaller than a doubleword. For these, the
2939 // size of the object is 16 bytes; see below for further explanation.
2940 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
2941 QualType BaseTy;
2942 unsigned CplxBaseSize = 0;
2943
2944 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
2945 BaseTy = CTy->getElementType();
2946 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
2947 if (CplxBaseSize < 8)
2948 SizeInBytes = 16;
2949 }
2950
2951 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
2952 llvm::Value *NextAddr =
2953 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
2954 "ap.next");
2955 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2956
2957 // If we have a complex type and the base type is smaller than 8 bytes,
2958 // the ABI calls for the real and imaginary parts to be right-adjusted
2959 // in separate doublewords. However, Clang expects us to produce a
2960 // pointer to a structure with the two parts packed tightly. So generate
2961 // loads of the real and imaginary parts relative to the va_list pointer,
2962 // and store them to a temporary structure.
2963 if (CplxBaseSize && CplxBaseSize < 8) {
2964 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2965 llvm::Value *ImagAddr = RealAddr;
2966 RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
2967 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
2968 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
2969 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
2970 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
2971 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
2972 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
2973 llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
2974 "vacplx");
2975 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
2976 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
2977 Builder.CreateStore(Real, RealPtr, false);
2978 Builder.CreateStore(Imag, ImagPtr, false);
2979 return Ptr;
2980 }
2981
2982 // If the argument is smaller than 8 bytes, it is right-adjusted in
2983 // its doubleword slot. Adjust the pointer to pick it up from the
2984 // correct offset.
2985 if (SizeInBytes < 8) {
2986 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2987 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
2988 Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2989 }
2990
2991 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2992 return Builder.CreateBitCast(Addr, PTy);
2993}
2994
2995static bool
2996PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2997 llvm::Value *Address) {
2998 // This is calculated from the LLVM and GCC tables and verified
2999 // against gcc output. AFAIK all ABIs use the same encoding.
3000
3001 CodeGen::CGBuilderTy &Builder = CGF.Builder;
3002
3003 llvm::IntegerType *i8 = CGF.Int8Ty;
3004 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3005 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3006 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3007
3008 // 0-31: r0-31, the 8-byte general-purpose registers
3009 AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3010
3011 // 32-63: fp0-31, the 8-byte floating-point registers
3012 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3013
3014 // 64-76 are various 4-byte special-purpose registers:
3015 // 64: mq
3016 // 65: lr
3017 // 66: ctr
3018 // 67: ap
3019 // 68-75 cr0-7
3020 // 76: xer
3021 AssignToArrayRange(Builder, Address, Four8, 64, 76);
3022
3023 // 77-108: v0-31, the 16-byte vector registers
3024 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3025
3026 // 109: vrsave
3027 // 110: vscr
3028 // 111: spe_acc
3029 // 112: spefscr
3030 // 113: sfp
3031 AssignToArrayRange(Builder, Address, Four8, 109, 113);
3032
3033 return false;
3034}
3035
3036bool
3037PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3038 CodeGen::CodeGenFunction &CGF,
3039 llvm::Value *Address) const {
3040
3041 return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3042}
3043
3044bool
3045PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3046 llvm::Value *Address) const {
3047
3048 return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3049}
3050
3051//===----------------------------------------------------------------------===//
3052// ARM ABI Implementation
3053//===----------------------------------------------------------------------===//
3054
3055namespace {
3056
3057class ARMABIInfo : public ABIInfo {
3058public:
3059 enum ABIKind {
3060 APCS = 0,
3061 AAPCS = 1,
3062 AAPCS_VFP
3063 };
3064
3065private:
3066 ABIKind Kind;
3067
3068public:
3069 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
3070 setRuntimeCC();
3071 }
3072
3073 bool isEABI() const {
3074 StringRef Env = getTarget().getTriple().getEnvironmentName();
3075 return (Env == "gnueabi" || Env == "eabi" ||
3076 Env == "android" || Env == "androideabi");
3077 }
3078
3079 ABIKind getABIKind() const { return Kind; }
3080
3081private:
3082 ABIArgInfo classifyReturnType(QualType RetTy) const;
3083 ABIArgInfo classifyArgumentType(QualType RetTy, int *VFPRegs,
3084 unsigned &AllocatedVFP,
3085 bool &IsHA) const;
3086 bool isIllegalVectorType(QualType Ty) const;
3087
3088 virtual void computeInfo(CGFunctionInfo &FI) const;
3089
3090 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3091 CodeGenFunction &CGF) const;
3092
3093 llvm::CallingConv::ID getLLVMDefaultCC() const;
3094 llvm::CallingConv::ID getABIDefaultCC() const;
3095 void setRuntimeCC();
3096};
3097
3098class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
3099public:
3100 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
3101 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
3102
3103 const ARMABIInfo &getABIInfo() const {
3104 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
3105 }
3106
3107 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3108 return 13;
3109 }
3110
3111 StringRef getARCRetainAutoreleasedReturnValueMarker() const {
3112 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
3113 }
3114
3115 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3116 llvm::Value *Address) const {
3117 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3118
3119 // 0-15 are the 16 integer registers.
3120 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
3121 return false;
3122 }
3123
3124 unsigned getSizeOfUnwindException() const {
3125 if (getABIInfo().isEABI()) return 88;
3126 return TargetCodeGenInfo::getSizeOfUnwindException();
3127 }
3128
3129 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3130 CodeGen::CodeGenModule &CGM) const {
3131 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3132 if (!FD)
3133 return;
3134
3135 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
3136 if (!Attr)
3137 return;
3138
3139 const char *Kind;
3140 switch (Attr->getInterrupt()) {
3141 case ARMInterruptAttr::Generic: Kind = ""; break;
3142 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break;
3143 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break;
3144 case ARMInterruptAttr::SWI: Kind = "SWI"; break;
3145 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break;
3146 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break;
3147 }
3148
3149 llvm::Function *Fn = cast<llvm::Function>(GV);
3150
3151 Fn->addFnAttr("interrupt", Kind);
3152
3153 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
3154 return;
3155
3156 // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
3157 // however this is not necessarily true on taking any interrupt. Instruct
3158 // the backend to perform a realignment as part of the function prologue.
3159 llvm::AttrBuilder B;
3160 B.addStackAlignmentAttr(8);
3161 Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
3162 llvm::AttributeSet::get(CGM.getLLVMContext(),
3163 llvm::AttributeSet::FunctionIndex,
3164 B));
3165 }
3166
3167};
3168
3169}
3170
3171void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3172 // To correctly handle Homogeneous Aggregate, we need to keep track of the
3173 // VFP registers allocated so far.
3174 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3175 // VFP registers of the appropriate type unallocated then the argument is
3176 // allocated to the lowest-numbered sequence of such registers.
3177 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3178 // unallocated are marked as unavailable.
3179 unsigned AllocatedVFP = 0;
3180 int VFPRegs[16] = { 0 };
3181 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3182 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3183 it != ie; ++it) {
3184 unsigned PreAllocation = AllocatedVFP;
3185 bool IsHA = false;
3186 // 6.1.2.3 There is one VFP co-processor register class using registers
3187 // s0-s15 (d0-d7) for passing arguments.
3188 const unsigned NumVFPs = 16;
3189 it->info = classifyArgumentType(it->type, VFPRegs, AllocatedVFP, IsHA);
3190 // If we do not have enough VFP registers for the HA, any VFP registers
3191 // that are unallocated are marked as unavailable. To achieve this, we add
3192 // padding of (NumVFPs - PreAllocation) floats.
3193 if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) {
3194 llvm::Type *PaddingTy = llvm::ArrayType::get(
3195 llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation);
3196 it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy);
3197 }
3198 }
3199
3200 // Always honor user-specified calling convention.
3201 if (FI.getCallingConvention() != llvm::CallingConv::C)
3202 return;
3203
3204 llvm::CallingConv::ID cc = getRuntimeCC();
3205 if (cc != llvm::CallingConv::C)
3206 FI.setEffectiveCallingConvention(cc);
3207}
3208
3209/// Return the default calling convention that LLVM will use.
3210llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
3211 // The default calling convention that LLVM will infer.
3212 if (getTarget().getTriple().getEnvironmentName()=="gnueabihf")
3213 return llvm::CallingConv::ARM_AAPCS_VFP;
3214 else if (isEABI())
3215 return llvm::CallingConv::ARM_AAPCS;
3216 else
3217 return llvm::CallingConv::ARM_APCS;
3218}
3219
3220/// Return the calling convention that our ABI would like us to use
3221/// as the C calling convention.
3222llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
3223 switch (getABIKind()) {
3224 case APCS: return llvm::CallingConv::ARM_APCS;
3225 case AAPCS: return llvm::CallingConv::ARM_AAPCS;
3226 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
3227 }
3228 llvm_unreachable("bad ABI kind");
3229}
3230
3231void ARMABIInfo::setRuntimeCC() {
3232 assert(getRuntimeCC() == llvm::CallingConv::C);
3233
3234 // Don't muddy up the IR with a ton of explicit annotations if
3235 // they'd just match what LLVM will infer from the triple.
3236 llvm::CallingConv::ID abiCC = getABIDefaultCC();
3237 if (abiCC != getLLVMDefaultCC())
3238 RuntimeCC = abiCC;
3239}
3240
3241/// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
3242/// aggregate. If HAMembers is non-null, the number of base elements
3243/// contained in the type is returned through it; this is used for the
3244/// recursive calls that check aggregate component types.
3245static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
3246 ASTContext &Context,
3247 uint64_t *HAMembers = 0) {
3248 uint64_t Members = 0;
3249 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3250 if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
3251 return false;
3252 Members *= AT->getSize().getZExtValue();
3253 } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3254 const RecordDecl *RD = RT->getDecl();
3255 if (RD->hasFlexibleArrayMember())
3256 return false;
3257
3258 Members = 0;
3259 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3260 i != e; ++i) {
3261 const FieldDecl *FD = *i;
3262 uint64_t FldMembers;
3263 if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
3264 return false;
3265
3266 Members = (RD->isUnion() ?
3267 std::max(Members, FldMembers) : Members + FldMembers);
3268 }
3269 } else {
3270 Members = 1;
3271 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3272 Members = 2;
3273 Ty = CT->getElementType();
3274 }
3275
3276 // Homogeneous aggregates for AAPCS-VFP must have base types of float,
3277 // double, or 64-bit or 128-bit vectors.
3278 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3279 if (BT->getKind() != BuiltinType::Float &&
3280 BT->getKind() != BuiltinType::Double &&
3281 BT->getKind() != BuiltinType::LongDouble)
3282 return false;
3283 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
3284 unsigned VecSize = Context.getTypeSize(VT);
3285 if (VecSize != 64 && VecSize != 128)
3286 return false;
3287 } else {
3288 return false;
3289 }
3290
3291 // The base type must be the same for all members. Vector types of the
3292 // same total size are treated as being equivalent here.
3293 const Type *TyPtr = Ty.getTypePtr();
3294 if (!Base)
3295 Base = TyPtr;
3296 if (Base != TyPtr &&
3297 (!Base->isVectorType() || !TyPtr->isVectorType() ||
3298 Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
3299 return false;
3300 }
3301
3302 // Homogeneous Aggregates can have at most 4 members of the base type.
3303 if (HAMembers)
3304 *HAMembers = Members;
3305
3306 return (Members > 0 && Members <= 4);
3307}
3308
3309/// markAllocatedVFPs - update VFPRegs according to the alignment and
3310/// number of VFP registers (unit is S register) requested.
3311static void markAllocatedVFPs(int *VFPRegs, unsigned &AllocatedVFP,
3312 unsigned Alignment,
3313 unsigned NumRequired) {
3314 // Early Exit.
3315 if (AllocatedVFP >= 16)
3316 return;
3317 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3318 // VFP registers of the appropriate type unallocated then the argument is
3319 // allocated to the lowest-numbered sequence of such registers.
3320 for (unsigned I = 0; I < 16; I += Alignment) {
3321 bool FoundSlot = true;
3322 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3323 if (J >= 16 || VFPRegs[J]) {
3324 FoundSlot = false;
3325 break;
3326 }
3327 if (FoundSlot) {
3328 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3329 VFPRegs[J] = 1;
3330 AllocatedVFP += NumRequired;
3331 return;
3332 }
3333 }
3334 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3335 // unallocated are marked as unavailable.
3336 for (unsigned I = 0; I < 16; I++)
3337 VFPRegs[I] = 1;
3338 AllocatedVFP = 17; // We do not have enough VFP registers.
3339}
3340
3341ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, int *VFPRegs,
3342 unsigned &AllocatedVFP,
3343 bool &IsHA) const {
3344 // We update number of allocated VFPs according to
3345 // 6.1.2.1 The following argument types are VFP CPRCs:
3346 // A single-precision floating-point type (including promoted
3347 // half-precision types); A double-precision floating-point type;
3348 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
3349 // with a Base Type of a single- or double-precision floating-point type,
3350 // 64-bit containerized vectors or 128-bit containerized vectors with one
3351 // to four Elements.
3352
3353 // Handle illegal vector types here.
3354 if (isIllegalVectorType(Ty)) {
3355 uint64_t Size = getContext().getTypeSize(Ty);
3356 if (Size <= 32) {
3357 llvm::Type *ResType =
3358 llvm::Type::getInt32Ty(getVMContext());
3359 return ABIArgInfo::getDirect(ResType);
3360 }
3361 if (Size == 64) {
3362 llvm::Type *ResType = llvm::VectorType::get(
3363 llvm::Type::getInt32Ty(getVMContext()), 2);
3364 markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3365 return ABIArgInfo::getDirect(ResType);
3366 }
3367 if (Size == 128) {
3368 llvm::Type *ResType = llvm::VectorType::get(
3369 llvm::Type::getInt32Ty(getVMContext()), 4);
3370 markAllocatedVFPs(VFPRegs, AllocatedVFP, 4, 4);
3371 return ABIArgInfo::getDirect(ResType);
3372 }
3373 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3374 }
3375 // Update VFPRegs for legal vector types.
3376 if (const VectorType *VT = Ty->getAs<VectorType>()) {
3377 uint64_t Size = getContext().getTypeSize(VT);
3378 // Size of a legal vector should be power of 2 and above 64.
3379 markAllocatedVFPs(VFPRegs, AllocatedVFP, Size >= 128 ? 4 : 2, Size / 32);
3380 }
3381 // Update VFPRegs for floating point types.
3382 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3383 if (BT->getKind() == BuiltinType::Half ||
3384 BT->getKind() == BuiltinType::Float)
3385 markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, 1);
3386 if (BT->getKind() == BuiltinType::Double ||
3387 BT->getKind() == BuiltinType::LongDouble)
3388 markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3389 }
3390
3391 if (!isAggregateTypeForABI(Ty)) {
3392 // Treat an enum type as its underlying type.
3393 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3394 Ty = EnumTy->getDecl()->getIntegerType();
3395
3396 return (Ty->isPromotableIntegerType() ?
3397 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3398 }
3399
3400 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3401 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3402
3403 // Ignore empty records.
3404 if (isEmptyRecord(getContext(), Ty, true))
3405 return ABIArgInfo::getIgnore();
3406
3407 if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
3408 // Homogeneous Aggregates need to be expanded when we can fit the aggregate
3409 // into VFP registers.
3410 const Type *Base = 0;
3411 uint64_t Members = 0;
3412 if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
3413 assert(Base && "Base class should be set for homogeneous aggregate");
3414 // Base can be a floating-point or a vector.
3415 if (Base->isVectorType()) {
3416 // ElementSize is in number of floats.
3417 unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
3418 markAllocatedVFPs(VFPRegs, AllocatedVFP, ElementSize,
3419 Members * ElementSize);
3420 } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
3421 markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, Members);
3422 else {
3423 assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
3424 Base->isSpecificBuiltinType(BuiltinType::LongDouble));
3425 markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, Members * 2);
3426 }
3427 IsHA = true;
3428 return ABIArgInfo::getExpand();
3429 }
3430 }
3431
3432 // Support byval for ARM.
3433 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
3434 // most 8-byte. We realign the indirect argument if type alignment is bigger
3435 // than ABI alignment.
3436 uint64_t ABIAlign = 4;
3437 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3438 if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3439 getABIKind() == ARMABIInfo::AAPCS)
3440 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3441 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
3442 return ABIArgInfo::getIndirect(0, /*ByVal=*/true,
3443 /*Realign=*/TyAlign > ABIAlign);
3444 }
3445
3446 // Otherwise, pass by coercing to a structure of the appropriate size.
3447 llvm::Type* ElemTy;
3448 unsigned SizeRegs;
3449 // FIXME: Try to match the types of the arguments more accurately where
3450 // we can.
3451 if (getContext().getTypeAlign(Ty) <= 32) {
3452 ElemTy = llvm::Type::getInt32Ty(getVMContext());
3453 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
3454 } else {
3455 ElemTy = llvm::Type::getInt64Ty(getVMContext());
3456 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
3457 }
3458
3459 llvm::Type *STy =
3460 llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
3461 return ABIArgInfo::getDirect(STy);
3462}
3463
3464static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
3465 llvm::LLVMContext &VMContext) {
3466 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
3467 // is called integer-like if its size is less than or equal to one word, and
3468 // the offset of each of its addressable sub-fields is zero.
3469
3470 uint64_t Size = Context.getTypeSize(Ty);
3471
3472 // Check that the type fits in a word.
3473 if (Size > 32)
3474 return false;
3475
3476 // FIXME: Handle vector types!
3477 if (Ty->isVectorType())
3478 return false;
3479
3480 // Float types are never treated as "integer like".
3481 if (Ty->isRealFloatingType())
3482 return false;
3483
3484 // If this is a builtin or pointer type then it is ok.
3485 if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
3486 return true;
3487
3488 // Small complex integer types are "integer like".
3489 if (const ComplexType *CT = Ty->getAs<ComplexType>())
3490 return isIntegerLikeType(CT->getElementType(), Context, VMContext);
3491
3492 // Single element and zero sized arrays should be allowed, by the definition
3493 // above, but they are not.
3494
3495 // Otherwise, it must be a record type.
3496 const RecordType *RT = Ty->getAs<RecordType>();
3497 if (!RT) return false;
3498
3499 // Ignore records with flexible arrays.
3500 const RecordDecl *RD = RT->getDecl();
3501 if (RD->hasFlexibleArrayMember())
3502 return false;
3503
3504 // Check that all sub-fields are at offset 0, and are themselves "integer
3505 // like".
3506 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3507
3508 bool HadField = false;
3509 unsigned idx = 0;
3510 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3511 i != e; ++i, ++idx) {
3512 const FieldDecl *FD = *i;
3513
3514 // Bit-fields are not addressable, we only need to verify they are "integer
3515 // like". We still have to disallow a subsequent non-bitfield, for example:
3516 // struct { int : 0; int x }
3517 // is non-integer like according to gcc.
3518 if (FD->isBitField()) {
3519 if (!RD->isUnion())
3520 HadField = true;
3521
3522 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3523 return false;
3524
3525 continue;
3526 }
3527
3528 // Check if this field is at offset 0.
3529 if (Layout.getFieldOffset(idx) != 0)
3530 return false;
3531
3532 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3533 return false;
3534
3535 // Only allow at most one field in a structure. This doesn't match the
3536 // wording above, but follows gcc in situations with a field following an
3537 // empty structure.
3538 if (!RD->isUnion()) {
3539 if (HadField)
3540 return false;
3541
3542 HadField = true;
3543 }
3544 }
3545
3546 return true;
3547}
3548
3549ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
3550 if (RetTy->isVoidType())
3551 return ABIArgInfo::getIgnore();
3552
3553 // Large vector types should be returned via memory.
3554 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3555 return ABIArgInfo::getIndirect(0);
3556
3557 if (!isAggregateTypeForABI(RetTy)) {
3558 // Treat an enum type as its underlying type.
3559 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3560 RetTy = EnumTy->getDecl()->getIntegerType();
3561
3562 return (RetTy->isPromotableIntegerType() ?
3563 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3564 }
3565
3566 // Structures with either a non-trivial destructor or a non-trivial
3567 // copy constructor are always indirect.
3568 if (isRecordReturnIndirect(RetTy, getCXXABI()))
3569 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3570
3571 // Are we following APCS?
3572 if (getABIKind() == APCS) {
3573 if (isEmptyRecord(getContext(), RetTy, false))
3574 return ABIArgInfo::getIgnore();
3575
3576 // Complex types are all returned as packed integers.
3577 //
3578 // FIXME: Consider using 2 x vector types if the back end handles them
3579 // correctly.
3580 if (RetTy->isAnyComplexType())
3581 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3582 getContext().getTypeSize(RetTy)));
3583
3584 // Integer like structures are returned in r0.
3585 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
3586 // Return in the smallest viable integer type.
3587 uint64_t Size = getContext().getTypeSize(RetTy);
3588 if (Size <= 8)
3589 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3590 if (Size <= 16)
3591 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3592 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3593 }
3594
3595 // Otherwise return in memory.
3596 return ABIArgInfo::getIndirect(0);
3597 }
3598
3599 // Otherwise this is an AAPCS variant.
3600
3601 if (isEmptyRecord(getContext(), RetTy, true))
3602 return ABIArgInfo::getIgnore();
3603
3604 // Check for homogeneous aggregates with AAPCS-VFP.
3605 if (getABIKind() == AAPCS_VFP) {
3606 const Type *Base = 0;
3607 if (isHomogeneousAggregate(RetTy, Base, getContext())) {
3608 assert(Base && "Base class should be set for homogeneous aggregate");
3609 // Homogeneous Aggregates are returned directly.
3610 return ABIArgInfo::getDirect();
3611 }
3612 }
3613
3614 // Aggregates <= 4 bytes are returned in r0; other aggregates
3615 // are returned indirectly.
3616 uint64_t Size = getContext().getTypeSize(RetTy);
3617 if (Size <= 32) {
3618 // Return in the smallest viable integer type.
3619 if (Size <= 8)
3620 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3621 if (Size <= 16)
3622 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3623 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3624 }
3625
3626 return ABIArgInfo::getIndirect(0);
3627}
3628
3629/// isIllegalVector - check whether Ty is an illegal vector type.
3630bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
3631 if (const VectorType *VT = Ty->getAs<VectorType>()) {
3632 // Check whether VT is legal.
3633 unsigned NumElements = VT->getNumElements();
3634 uint64_t Size = getContext().getTypeSize(VT);
3635 // NumElements should be power of 2.
3636 if ((NumElements & (NumElements - 1)) != 0)
3637 return true;
3638 // Size should be greater than 32 bits.
3639 return Size <= 32;
3640 }
3641 return false;
3642}
3643
3644llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3645 CodeGenFunction &CGF) const {
3646 llvm::Type *BP = CGF.Int8PtrTy;
3647 llvm::Type *BPP = CGF.Int8PtrPtrTy;
3648
3649 CGBuilderTy &Builder = CGF.Builder;
3650 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3651 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3652
3653 if (isEmptyRecord(getContext(), Ty, true)) {
3654 // These are ignored for parameter passing purposes.
3655 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3656 return Builder.CreateBitCast(Addr, PTy);
3657 }
3658
3659 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
3660 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
3661 bool IsIndirect = false;
3662
3663 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
3664 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
3665 if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3666 getABIKind() == ARMABIInfo::AAPCS)
3667 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3668 else
3669 TyAlign = 4;
3670 // Use indirect if size of the illegal vector is bigger than 16 bytes.
3671 if (isIllegalVectorType(Ty) && Size > 16) {
3672 IsIndirect = true;
3673 Size = 4;
3674 TyAlign = 4;
3675 }
3676
3677 // Handle address alignment for ABI alignment > 4 bytes.
3678 if (TyAlign > 4) {
3679 assert((TyAlign & (TyAlign - 1)) == 0 &&
3680 "Alignment is not power of 2!");
3681 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3682 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
3683 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
3684 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3685 }
3686
3687 uint64_t Offset =
3688 llvm::RoundUpToAlignment(Size, 4);
3689 llvm::Value *NextAddr =
3690 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3691 "ap.next");
3692 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3693
3694 if (IsIndirect)
3695 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
3696 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
3697 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
3698 // may not be correctly aligned for the vector type. We create an aligned
3699 // temporary space and copy the content over from ap.cur to the temporary
3700 // space. This is necessary if the natural alignment of the type is greater
3701 // than the ABI alignment.
3702 llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
3703 CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
3704 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
3705 "var.align");
3706 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
3707 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
3708 Builder.CreateMemCpy(Dst, Src,
3709 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
3710 TyAlign, false);
3711 Addr = AlignedTemp; //The content is in aligned location.
3712 }
3713 llvm::Type *PTy =
3714 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3715 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3716
3717 return AddrTyped;
3718}
3719
3720namespace {
3721
3722class NaClARMABIInfo : public ABIInfo {
3723 public:
3724 NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3725 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
3726 virtual void computeInfo(CGFunctionInfo &FI) const;
3727 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3728 CodeGenFunction &CGF) const;
3729 private:
3730 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
3731 ARMABIInfo NInfo; // Used for everything else.
3732};
3733
3734class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo {
3735 public:
3736 NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3737 : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
3738};
3739
3740}
3741
3742void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3743 if (FI.getASTCallingConvention() == CC_PnaclCall)
3744 PInfo.computeInfo(FI);
3745 else
3746 static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
3747}
3748
3749llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3750 CodeGenFunction &CGF) const {
3751 // Always use the native convention; calling pnacl-style varargs functions
3752 // is unsupported.
3753 return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
3754}
3755
3756//===----------------------------------------------------------------------===//
3757// AArch64 ABI Implementation
3758//===----------------------------------------------------------------------===//
3759
3760namespace {
3761
3762class AArch64ABIInfo : public ABIInfo {
3763public:
3764 AArch64ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3765
3766private:
3767 // The AArch64 PCS is explicit about return types and argument types being
3768 // handled identically, so we don't need to draw a distinction between
3769 // Argument and Return classification.
3770 ABIArgInfo classifyGenericType(QualType Ty, int &FreeIntRegs,
3771 int &FreeVFPRegs) const;
3772
3773 ABIArgInfo tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, bool IsInt,
3774 llvm::Type *DirectTy = 0) const;
3775
3776 virtual void computeInfo(CGFunctionInfo &FI) const;
3777
3778 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3779 CodeGenFunction &CGF) const;
3780};
3781
3782class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3783public:
3784 AArch64TargetCodeGenInfo(CodeGenTypes &CGT)
3785 :TargetCodeGenInfo(new AArch64ABIInfo(CGT)) {}
3786
3787 const AArch64ABIInfo &getABIInfo() const {
3788 return static_cast<const AArch64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
3789 }
3790
3791 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3792 return 31;
3793 }
3794
3795 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3796 llvm::Value *Address) const {
3797 // 0-31 are x0-x30 and sp: 8 bytes each
3798 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
3799 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 31);
3800
3801 // 64-95 are v0-v31: 16 bytes each
3802 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
3803 AssignToArrayRange(CGF.Builder, Address, Sixteen8, 64, 95);
3804
3805 return false;
3806 }
3807
3808};
3809
3810}
3811
3812void AArch64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3813 int FreeIntRegs = 8, FreeVFPRegs = 8;
3814
3815 FI.getReturnInfo() = classifyGenericType(FI.getReturnType(),
3816 FreeIntRegs, FreeVFPRegs);
3817
3818 FreeIntRegs = FreeVFPRegs = 8;
3819 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3820 it != ie; ++it) {
3821 it->info = classifyGenericType(it->type, FreeIntRegs, FreeVFPRegs);
3822
3823 }
3824}
3825
3826ABIArgInfo
3827AArch64ABIInfo::tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded,
3828 bool IsInt, llvm::Type *DirectTy) const {
3829 if (FreeRegs >= RegsNeeded) {
3830 FreeRegs -= RegsNeeded;
3831 return ABIArgInfo::getDirect(DirectTy);
3832 }
3833
3834 llvm::Type *Padding = 0;
3835
3836 // We need padding so that later arguments don't get filled in anyway. That
3837 // wouldn't happen if only ByVal arguments followed in the same category, but
3838 // a large structure will simply seem to be a pointer as far as LLVM is
3839 // concerned.
3840 if (FreeRegs > 0) {
3841 if (IsInt)
3842 Padding = llvm::Type::getInt64Ty(getVMContext());
3843 else
3844 Padding = llvm::Type::getFloatTy(getVMContext());
3845
3846 // Either [N x i64] or [N x float].
3847 Padding = llvm::ArrayType::get(Padding, FreeRegs);
3848 FreeRegs = 0;
3849 }
3850
3851 return ABIArgInfo::getIndirect(getContext().getTypeAlign(Ty) / 8,
3852 /*IsByVal=*/ true, /*Realign=*/ false,
3853 Padding);
3854}
3855
3856
3857ABIArgInfo AArch64ABIInfo::classifyGenericType(QualType Ty,
3858 int &FreeIntRegs,
3859 int &FreeVFPRegs) const {
3860 // Can only occurs for return, but harmless otherwise.
3861 if (Ty->isVoidType())
3862 return ABIArgInfo::getIgnore();
3863
3864 // Large vector types should be returned via memory. There's no such concept
3865 // in the ABI, but they'd be over 16 bytes anyway so no matter how they're
3866 // classified they'd go into memory (see B.3).
3867 if (Ty->isVectorType() && getContext().getTypeSize(Ty) > 128) {
3868 if (FreeIntRegs > 0)
3869 --FreeIntRegs;
3870 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3871 }
3872
3873 // All non-aggregate LLVM types have a concrete ABI representation so they can
3874 // be passed directly. After this block we're guaranteed to be in a
3875 // complicated case.
3876 if (!isAggregateTypeForABI(Ty)) {
3877 // Treat an enum type as its underlying type.
3878 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3879 Ty = EnumTy->getDecl()->getIntegerType();
3880
3881 if (Ty->isFloatingType() || Ty->isVectorType())
3882 return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ false);
3883
3884 assert(getContext().getTypeSize(Ty) <= 128 &&
3885 "unexpectedly large scalar type");
3886
3887 int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1;
3888
3889 // If the type may need padding registers to ensure "alignment", we must be
3890 // careful when this is accounted for. Increasing the effective size covers
3891 // all cases.
3892 if (getContext().getTypeAlign(Ty) == 128)
3893 RegsNeeded += FreeIntRegs % 2 != 0;
3894
3895 return tryUseRegs(Ty, FreeIntRegs, RegsNeeded, /*IsInt=*/ true);
3896 }
3897
3898 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3899 if (FreeIntRegs > 0 && RAA == CGCXXABI::RAA_Indirect)
3900 --FreeIntRegs;
3901 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3902 }
3903
3904 if (isEmptyRecord(getContext(), Ty, true)) {
3905 if (!getContext().getLangOpts().CPlusPlus) {
3906 // Empty structs outside C++ mode are a GNU extension, so no ABI can
3907 // possibly tell us what to do. It turns out (I believe) that GCC ignores
3908 // the object for parameter-passsing purposes.
3909 return ABIArgInfo::getIgnore();
3910 }
3911
3912 // The combination of C++98 9p5 (sizeof(struct) != 0) and the pseudocode
3913 // description of va_arg in the PCS require that an empty struct does
3914 // actually occupy space for parameter-passing. I'm hoping for a
3915 // clarification giving an explicit paragraph to point to in future.
3916 return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ true,
3917 llvm::Type::getInt8Ty(getVMContext()));
3918 }
3919
3920 // Homogeneous vector aggregates get passed in registers or on the stack.
3921 const Type *Base = 0;
3922 uint64_t NumMembers = 0;
3923 if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)) {
3924 assert(Base && "Base class should be set for homogeneous aggregate");
3925 // Homogeneous aggregates are passed and returned directly.
3926 return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ NumMembers,
3927 /*IsInt=*/ false);
3928 }
3929
3930 uint64_t Size = getContext().getTypeSize(Ty);
3931 if (Size <= 128) {
3932 // Small structs can use the same direct type whether they're in registers
3933 // or on the stack.
3934 llvm::Type *BaseTy;
3935 unsigned NumBases;
3936 int SizeInRegs = (Size + 63) / 64;
3937
3938 if (getContext().getTypeAlign(Ty) == 128) {
3939 BaseTy = llvm::Type::getIntNTy(getVMContext(), 128);
3940 NumBases = 1;
3941
3942 // If the type may need padding registers to ensure "alignment", we must
3943 // be careful when this is accounted for. Increasing the effective size
3944 // covers all cases.
3945 SizeInRegs += FreeIntRegs % 2 != 0;
3946 } else {
3947 BaseTy = llvm::Type::getInt64Ty(getVMContext());
3948 NumBases = SizeInRegs;
3949 }
3950 llvm::Type *DirectTy = llvm::ArrayType::get(BaseTy, NumBases);
3951
3952 return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ SizeInRegs,
3953 /*IsInt=*/ true, DirectTy);
3954 }
3955
3956 // If the aggregate is > 16 bytes, it's passed and returned indirectly. In
3957 // LLVM terms the return uses an "sret" pointer, but that's handled elsewhere.
3958 --FreeIntRegs;
3959 return ABIArgInfo::getIndirect(0, /* byVal = */ false);
3960}
3961
3962llvm::Value *AArch64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3963 CodeGenFunction &CGF) const {
3964 // The AArch64 va_list type and handling is specified in the Procedure Call
3965 // Standard, section B.4:
3966 //
3967 // struct {
3968 // void *__stack;
3969 // void *__gr_top;
3970 // void *__vr_top;
3971 // int __gr_offs;
3972 // int __vr_offs;
3973 // };
3974
3975 assert(!CGF.CGM.getDataLayout().isBigEndian()
3976 && "va_arg not implemented for big-endian AArch64");
3977
3978 int FreeIntRegs = 8, FreeVFPRegs = 8;
3979 Ty = CGF.getContext().getCanonicalType(Ty);
3980 ABIArgInfo AI = classifyGenericType(Ty, FreeIntRegs, FreeVFPRegs);
3981
3982 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
3983 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3984 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
3985 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3986
3987 llvm::Value *reg_offs_p = 0, *reg_offs = 0;
3988 int reg_top_index;
3989 int RegSize;
3990 if (FreeIntRegs < 8) {
3991 assert(FreeVFPRegs == 8 && "Arguments never split between int & VFP regs");
3992 // 3 is the field number of __gr_offs
3993 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
3994 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
3995 reg_top_index = 1; // field number for __gr_top
3996 RegSize = 8 * (8 - FreeIntRegs);
3997 } else {
3998 assert(FreeVFPRegs < 8 && "Argument must go in VFP or int regs");
3999 // 4 is the field number of __vr_offs.
4000 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
4001 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4002 reg_top_index = 2; // field number for __vr_top
4003 RegSize = 16 * (8 - FreeVFPRegs);
4004 }
4005
4006 //=======================================
4007 // Find out where argument was passed
4008 //=======================================
4009
4010 // If reg_offs >= 0 we're already using the stack for this type of
4011 // argument. We don't want to keep updating reg_offs (in case it overflows,
4012 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4013 // whatever they get).
4014 llvm::Value *UsingStack = 0;
4015 UsingStack = CGF.Builder.CreateICmpSGE(reg_offs,
4016 llvm::ConstantInt::get(CGF.Int32Ty, 0));
4017
4018 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4019
4020 // Otherwise, at least some kind of argument could go in these registers, the
4021 // quesiton is whether this particular type is too big.
4022 CGF.EmitBlock(MaybeRegBlock);
4023
4024 // Integer arguments may need to correct register alignment (for example a
4025 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4026 // align __gr_offs to calculate the potential address.
4027 if (FreeIntRegs < 8 && AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
4028 int Align = getContext().getTypeAlign(Ty) / 8;
4029
4030 reg_offs = CGF.Builder.CreateAdd(reg_offs,
4031 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4032 "align_regoffs");
4033 reg_offs = CGF.Builder.CreateAnd(reg_offs,
4034 llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4035 "aligned_regoffs");
4036 }
4037
4038 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4039 llvm::Value *NewOffset = 0;
4040 NewOffset = CGF.Builder.CreateAdd(reg_offs,
4041 llvm::ConstantInt::get(CGF.Int32Ty, RegSize),
4042 "new_reg_offs");
4043 CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4044
4045 // Now we're in a position to decide whether this argument really was in
4046 // registers or not.
4047 llvm::Value *InRegs = 0;
4048 InRegs = CGF.Builder.CreateICmpSLE(NewOffset,
4049 llvm::ConstantInt::get(CGF.Int32Ty, 0),
4050 "inreg");
4051
4052 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4053
4054 //=======================================
4055 // Argument was in registers
4056 //=======================================
4057
4058 // Now we emit the code for if the argument was originally passed in
4059 // registers. First start the appropriate block:
4060 CGF.EmitBlock(InRegBlock);
4061
4062 llvm::Value *reg_top_p = 0, *reg_top = 0;
4063 reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
4064 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4065 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
4066 llvm::Value *RegAddr = 0;
4067 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4068
4069 if (!AI.isDirect()) {
4070 // If it's been passed indirectly (actually a struct), whatever we find from
4071 // stored registers or on the stack will actually be a struct **.
4072 MemTy = llvm::PointerType::getUnqual(MemTy);
4073 }
4074
4075 const Type *Base = 0;
4076 uint64_t NumMembers;
4077 if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)
4078 && NumMembers > 1) {
4079 // Homogeneous aggregates passed in registers will have their elements split
4080 // and stored 16-bytes apart regardless of size (they're notionally in qN,
4081 // qN+1, ...). We reload and store into a temporary local variable
4082 // contiguously.
4083 assert(AI.isDirect() && "Homogeneous aggregates should be passed directly");
4084 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4085 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4086 llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
4087
4088 for (unsigned i = 0; i < NumMembers; ++i) {
4089 llvm::Value *BaseOffset = llvm::ConstantInt::get(CGF.Int32Ty, 16 * i);
4090 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
4091 LoadAddr = CGF.Builder.CreateBitCast(LoadAddr,
4092 llvm::PointerType::getUnqual(BaseTy));
4093 llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
4094
4095 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4096 CGF.Builder.CreateStore(Elem, StoreAddr);
4097 }
4098
4099 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
4100 } else {
4101 // Otherwise the object is contiguous in memory
4102 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
4103 }
4104
4105 CGF.EmitBranch(ContBlock);
4106
4107 //=======================================
4108 // Argument was on the stack
4109 //=======================================
4110 CGF.EmitBlock(OnStackBlock);
4111
4112 llvm::Value *stack_p = 0, *OnStackAddr = 0;
4113 stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
4114 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4115
4116 // Again, stack arguments may need realigmnent. In this case both integer and
4117 // floating-point ones might be affected.
4118 if (AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
4119 int Align = getContext().getTypeAlign(Ty) / 8;
4120
4121 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4122
4123 OnStackAddr = CGF.Builder.CreateAdd(OnStackAddr,
4124 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4125 "align_stack");
4126 OnStackAddr = CGF.Builder.CreateAnd(OnStackAddr,
4127 llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4128 "align_stack");
4129
4130 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4131 }
4132
4133 uint64_t StackSize;
4134 if (AI.isDirect())
4135 StackSize = getContext().getTypeSize(Ty) / 8;
4136 else
4137 StackSize = 8;
4138
4139 // All stack slots are 8 bytes
4140 StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4141
4142 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4143 llvm::Value *NewStack = CGF.Builder.CreateGEP(OnStackAddr, StackSizeC,
4144 "new_stack");
4145
4146 // Write the new value of __stack for the next call to va_arg
4147 CGF.Builder.CreateStore(NewStack, stack_p);
4148
4149 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4150
4151 CGF.EmitBranch(ContBlock);
4152
4153 //=======================================
4154 // Tidy up
4155 //=======================================
4156 CGF.EmitBlock(ContBlock);
4157
4158 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4159 ResAddr->addIncoming(RegAddr, InRegBlock);
4160 ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4161
4162 if (AI.isDirect())
4163 return ResAddr;
4164
4165 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4166}
4167
4168//===----------------------------------------------------------------------===//
4169// NVPTX ABI Implementation
4170//===----------------------------------------------------------------------===//
4171
4172namespace {
4173
4174class NVPTXABIInfo : public ABIInfo {
4175public:
4176 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4177
4178 ABIArgInfo classifyReturnType(QualType RetTy) const;
4179 ABIArgInfo classifyArgumentType(QualType Ty) const;
4180
4181 virtual void computeInfo(CGFunctionInfo &FI) const;
4182 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4183 CodeGenFunction &CFG) const;
4184};
4185
4186class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
4187public:
4188 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
4189 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
4190
4191 virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4192 CodeGen::CodeGenModule &M) const;
4193private:
4194 static void addKernelMetadata(llvm::Function *F);
4195};
4196
4197ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
4198 if (RetTy->isVoidType())
4199 return ABIArgInfo::getIgnore();
4200
4201 // note: this is different from default ABI
4202 if (!RetTy->isScalarType())
4203 return ABIArgInfo::getDirect();
4204
4205 // Treat an enum type as its underlying type.
4206 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4207 RetTy = EnumTy->getDecl()->getIntegerType();
4208
4209 return (RetTy->isPromotableIntegerType() ?
4210 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4211}
4212
4213ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
4214 // Treat an enum type as its underlying type.
4215 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4216 Ty = EnumTy->getDecl()->getIntegerType();
4217
4218 return (Ty->isPromotableIntegerType() ?
4219 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4220}
4221
4222void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
4223 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4224 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4225 it != ie; ++it)
4226 it->info = classifyArgumentType(it->type);
4227
4228 // Always honor user-specified calling convention.
4229 if (FI.getCallingConvention() != llvm::CallingConv::C)
4230 return;
4231
4232 FI.setEffectiveCallingConvention(getRuntimeCC());
4233}
4234
4235llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4236 CodeGenFunction &CFG) const {
4237 llvm_unreachable("NVPTX does not support varargs");
4238}
4239
4240void NVPTXTargetCodeGenInfo::
4241SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4242 CodeGen::CodeGenModule &M) const{
4243 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4244 if (!FD) return;
4245
4246 llvm::Function *F = cast<llvm::Function>(GV);
4247
4248 // Perform special handling in OpenCL mode
4249 if (M.getLangOpts().OpenCL) {
4250 // Use OpenCL function attributes to check for kernel functions
4251 // By default, all functions are device functions
4252 if (FD->hasAttr<OpenCLKernelAttr>()) {
4253 // OpenCL __kernel functions get kernel metadata
4254 addKernelMetadata(F);
4255 // And kernel functions are not subject to inlining
4256 F->addFnAttr(llvm::Attribute::NoInline);
4257 }
4258 }
4259
4260 // Perform special handling in CUDA mode.
4261 if (M.getLangOpts().CUDA) {
4262 // CUDA __global__ functions get a kernel metadata entry. Since
4263 // __global__ functions cannot be called from the device, we do not
4264 // need to set the noinline attribute.
4265 if (FD->getAttr<CUDAGlobalAttr>())
4266 addKernelMetadata(F);
4267 }
4268}
4269
4270void NVPTXTargetCodeGenInfo::addKernelMetadata(llvm::Function *F) {
4271 llvm::Module *M = F->getParent();
4272 llvm::LLVMContext &Ctx = M->getContext();
4273
4274 // Get "nvvm.annotations" metadata node
4275 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
4276
4277 // Create !{<func-ref>, metadata !"kernel", i32 1} node
4278 llvm::SmallVector<llvm::Value *, 3> MDVals;
4279 MDVals.push_back(F);
4280 MDVals.push_back(llvm::MDString::get(Ctx, "kernel"));
4281 MDVals.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1));
4282
4283 // Append metadata to nvvm.annotations
4284 MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
4285}
4286
4287}
4288
4289//===----------------------------------------------------------------------===//
4290// SystemZ ABI Implementation
4291//===----------------------------------------------------------------------===//
4292
4293namespace {
4294
4295class SystemZABIInfo : public ABIInfo {
4296public:
4297 SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4298
4299 bool isPromotableIntegerType(QualType Ty) const;
4300 bool isCompoundType(QualType Ty) const;
4301 bool isFPArgumentType(QualType Ty) const;
4302
4303 ABIArgInfo classifyReturnType(QualType RetTy) const;
4304 ABIArgInfo classifyArgumentType(QualType ArgTy) const;
4305
4306 virtual void computeInfo(CGFunctionInfo &FI) const {
4307 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4308 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4309 it != ie; ++it)
4310 it->info = classifyArgumentType(it->type);
4311 }
4312
4313 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4314 CodeGenFunction &CGF) const;
4315};
4316
4317class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
4318public:
4319 SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
4320 : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
4321};
4322
4323}
4324
4325bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
4326 // Treat an enum type as its underlying type.
4327 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4328 Ty = EnumTy->getDecl()->getIntegerType();
4329
4330 // Promotable integer types are required to be promoted by the ABI.
4331 if (Ty->isPromotableIntegerType())
4332 return true;
4333
4334 // 32-bit values must also be promoted.
4335 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4336 switch (BT->getKind()) {
4337 case BuiltinType::Int:
4338 case BuiltinType::UInt:
4339 return true;
4340 default:
4341 return false;
4342 }
4343 return false;
4344}
4345
4346bool SystemZABIInfo::isCompoundType(QualType Ty) const {
4347 return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
4348}
4349
4350bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
4351 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4352 switch (BT->getKind()) {
4353 case BuiltinType::Float:
4354 case BuiltinType::Double:
4355 return true;
4356 default:
4357 return false;
4358 }
4359
4360 if (const RecordType *RT = Ty->getAsStructureType()) {
4361 const RecordDecl *RD = RT->getDecl();
4362 bool Found = false;
4363
4364 // If this is a C++ record, check the bases first.
4365 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
4366 for (CXXRecordDecl::base_class_const_iterator I = CXXRD->bases_begin(),
4367 E = CXXRD->bases_end(); I != E; ++I) {
4368 QualType Base = I->getType();
4369
4370 // Empty bases don't affect things either way.
4371 if (isEmptyRecord(getContext(), Base, true))
4372 continue;
4373
4374 if (Found)
4375 return false;
4376 Found = isFPArgumentType(Base);
4377 if (!Found)
4378 return false;
4379 }
4380
4381 // Check the fields.
4382 for (RecordDecl::field_iterator I = RD->field_begin(),
4383 E = RD->field_end(); I != E; ++I) {
4384 const FieldDecl *FD = *I;
4385
4386 // Empty bitfields don't affect things either way.
4387 // Unlike isSingleElementStruct(), empty structure and array fields
4388 // do count. So do anonymous bitfields that aren't zero-sized.
4389 if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4390 return true;
4391
4392 // Unlike isSingleElementStruct(), arrays do not count.
4393 // Nested isFPArgumentType structures still do though.
4394 if (Found)
4395 return false;
4396 Found = isFPArgumentType(FD->getType());
4397 if (!Found)
4398 return false;
4399 }
4400
4401 // Unlike isSingleElementStruct(), trailing padding is allowed.
4402 // An 8-byte aligned struct s { float f; } is passed as a double.
4403 return Found;
4404 }
4405
4406 return false;
4407}
4408
4409llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4410 CodeGenFunction &CGF) const {
4411 // Assume that va_list type is correct; should be pointer to LLVM type:
4412 // struct {
4413 // i64 __gpr;
4414 // i64 __fpr;
4415 // i8 *__overflow_arg_area;
4416 // i8 *__reg_save_area;
4417 // };
4418
4419 // Every argument occupies 8 bytes and is passed by preference in either
4420 // GPRs or FPRs.
4421 Ty = CGF.getContext().getCanonicalType(Ty);
4422 ABIArgInfo AI = classifyArgumentType(Ty);
4423 bool InFPRs = isFPArgumentType(Ty);
4424
4425 llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4426 bool IsIndirect = AI.isIndirect();
4427 unsigned UnpaddedBitSize;
4428 if (IsIndirect) {
4429 APTy = llvm::PointerType::getUnqual(APTy);
4430 UnpaddedBitSize = 64;
4431 } else
4432 UnpaddedBitSize = getContext().getTypeSize(Ty);
4433 unsigned PaddedBitSize = 64;
4434 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
4435
4436 unsigned PaddedSize = PaddedBitSize / 8;
4437 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
4438
4439 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
4440 if (InFPRs) {
4441 MaxRegs = 4; // Maximum of 4 FPR arguments
4442 RegCountField = 1; // __fpr
4443 RegSaveIndex = 16; // save offset for f0
4444 RegPadding = 0; // floats are passed in the high bits of an FPR
4445 } else {
4446 MaxRegs = 5; // Maximum of 5 GPR arguments
4447 RegCountField = 0; // __gpr
4448 RegSaveIndex = 2; // save offset for r2
4449 RegPadding = Padding; // values are passed in the low bits of a GPR
4450 }
4451
4452 llvm::Value *RegCountPtr =
4453 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
4454 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
4455 llvm::Type *IndexTy = RegCount->getType();
4456 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
4457 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
4458 "fits_in_regs");
4459
4460 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4461 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4462 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4463 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4464
4465 // Emit code to load the value if it was passed in registers.
4466 CGF.EmitBlock(InRegBlock);
4467
4468 // Work out the address of an argument register.
4469 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
4470 llvm::Value *ScaledRegCount =
4471 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
4472 llvm::Value *RegBase =
4473 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
4474 llvm::Value *RegOffset =
4475 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
4476 llvm::Value *RegSaveAreaPtr =
4477 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
4478 llvm::Value *RegSaveArea =
4479 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
4480 llvm::Value *RawRegAddr =
4481 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
4482 llvm::Value *RegAddr =
4483 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
4484
4485 // Update the register count
4486 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
4487 llvm::Value *NewRegCount =
4488 CGF.Builder.CreateAdd(RegCount, One, "reg_count");
4489 CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
4490 CGF.EmitBranch(ContBlock);
4491
4492 // Emit code to load the value if it was passed in memory.
4493 CGF.EmitBlock(InMemBlock);
4494
4495 // Work out the address of a stack argument.
4496 llvm::Value *OverflowArgAreaPtr =
4497 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
4498 llvm::Value *OverflowArgArea =
4499 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
4500 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
4501 llvm::Value *RawMemAddr =
4502 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
4503 llvm::Value *MemAddr =
4504 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
4505
4506 // Update overflow_arg_area_ptr pointer
4507 llvm::Value *NewOverflowArgArea =
4508 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
4509 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
4510 CGF.EmitBranch(ContBlock);
4511
4512 // Return the appropriate result.
4513 CGF.EmitBlock(ContBlock);
4514 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
4515 ResAddr->addIncoming(RegAddr, InRegBlock);
4516 ResAddr->addIncoming(MemAddr, InMemBlock);
4517
4518 if (IsIndirect)
4519 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
4520
4521 return ResAddr;
4522}
4523
4524bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
4525 const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4526 assert(Triple.getArch() == llvm::Triple::x86);
4527
4528 switch (Opts.getStructReturnConvention()) {
4529 case CodeGenOptions::SRCK_Default:
4530 break;
4531 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
4532 return false;
4533 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
4534 return true;
4535 }
4536
4537 if (Triple.isOSDarwin())
4538 return true;
4539
4540 switch (Triple.getOS()) {
4541 case llvm::Triple::Cygwin:
4542 case llvm::Triple::MinGW32:
4543 case llvm::Triple::AuroraUX:
4544 case llvm::Triple::DragonFly:
4545 case llvm::Triple::FreeBSD:
4546 case llvm::Triple::OpenBSD:
4547 case llvm::Triple::Bitrig:
4548 case llvm::Triple::Win32:
4549 return true;
4550 default:
4551 return false;
4552 }
4553}
4554
4555ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
4556 if (RetTy->isVoidType())
4557 return ABIArgInfo::getIgnore();
4558 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
4559 return ABIArgInfo::getIndirect(0);
4560 return (isPromotableIntegerType(RetTy) ?
4561 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4562}
4563
4564ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
4565 // Handle the generic C++ ABI.
4566 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4567 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4568
4569 // Integers and enums are extended to full register width.
4570 if (isPromotableIntegerType(Ty))
4571 return ABIArgInfo::getExtend();
4572
4573 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
4574 uint64_t Size = getContext().getTypeSize(Ty);
4575 if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
4576 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4577
4578 // Handle small structures.
4579 if (const RecordType *RT = Ty->getAs<RecordType>()) {
4580 // Structures with flexible arrays have variable length, so really
4581 // fail the size test above.
4582 const RecordDecl *RD = RT->getDecl();
4583 if (RD->hasFlexibleArrayMember())
4584 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4585
4586 // The structure is passed as an unextended integer, a float, or a double.
4587 llvm::Type *PassTy;
4588 if (isFPArgumentType(Ty)) {
4589 assert(Size == 32 || Size == 64);
4590 if (Size == 32)
4591 PassTy = llvm::Type::getFloatTy(getVMContext());
4592 else
4593 PassTy = llvm::Type::getDoubleTy(getVMContext());
4594 } else
4595 PassTy = llvm::IntegerType::get(getVMContext(), Size);
4596 return ABIArgInfo::getDirect(PassTy);
4597 }
4598
4599 // Non-structure compounds are passed indirectly.
4600 if (isCompoundType(Ty))
4601 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4602
4603 return ABIArgInfo::getDirect(0);
4604}
4605
4606//===----------------------------------------------------------------------===//
4607// MSP430 ABI Implementation
4608//===----------------------------------------------------------------------===//
4609
4610namespace {
4611
4612class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
4613public:
4614 MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
4615 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
4616 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4617 CodeGen::CodeGenModule &M) const;
4618};
4619
4620}
4621
4622void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4623 llvm::GlobalValue *GV,
4624 CodeGen::CodeGenModule &M) const {
4625 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4626 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
4627 // Handle 'interrupt' attribute:
4628 llvm::Function *F = cast<llvm::Function>(GV);
4629
4630 // Step 1: Set ISR calling convention.
4631 F->setCallingConv(llvm::CallingConv::MSP430_INTR);
4632
4633 // Step 2: Add attributes goodness.
4634 F->addFnAttr(llvm::Attribute::NoInline);
4635
4636 // Step 3: Emit ISR vector alias.
4637 unsigned Num = attr->getNumber() / 2;
4638 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
4639 "__isr_" + Twine(Num),
4640 GV, &M.getModule());
4641 }
4642 }
4643}
4644
4645//===----------------------------------------------------------------------===//
4646// MIPS ABI Implementation. This works for both little-endian and
4647// big-endian variants.
4648//===----------------------------------------------------------------------===//
4649
4650namespace {
4651class MipsABIInfo : public ABIInfo {
4652 bool IsO32;
4653 unsigned MinABIStackAlignInBytes, StackAlignInBytes;
4654 void CoerceToIntArgs(uint64_t TySize,
4655 SmallVectorImpl<llvm::Type *> &ArgList) const;
4656 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
4657 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
4658 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
4659public:
4660 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
4661 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
4662 StackAlignInBytes(IsO32 ? 8 : 16) {}
4663
4664 ABIArgInfo classifyReturnType(QualType RetTy) const;
4665 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
4666 virtual void computeInfo(CGFunctionInfo &FI) const;
4667 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4668 CodeGenFunction &CGF) const;
4669};
4670
4671class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
4672 unsigned SizeOfUnwindException;
4673public:
4674 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
4675 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
4676 SizeOfUnwindException(IsO32 ? 24 : 32) {}
4677
4678 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
4679 return 29;
4680 }
4681
4682 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4683 CodeGen::CodeGenModule &CGM) const {
4684 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4685 if (!FD) return;
4686 llvm::Function *Fn = cast<llvm::Function>(GV);
4687 if (FD->hasAttr<Mips16Attr>()) {
4688 Fn->addFnAttr("mips16");
4689 }
4690 else if (FD->hasAttr<NoMips16Attr>()) {
4691 Fn->addFnAttr("nomips16");
4692 }
4693 }
4694
4695 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4696 llvm::Value *Address) const;
4697
4698 unsigned getSizeOfUnwindException() const {
4699 return SizeOfUnwindException;
4700 }
4701};
4702}
4703
4704void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
4705 SmallVectorImpl<llvm::Type *> &ArgList) const {
4706 llvm::IntegerType *IntTy =
4707 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
4708
4709 // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
4710 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
4711 ArgList.push_back(IntTy);
4712
4713 // If necessary, add one more integer type to ArgList.
4714 unsigned R = TySize % (MinABIStackAlignInBytes * 8);
4715
4716 if (R)
4717 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
4718}
4719
4720// In N32/64, an aligned double precision floating point field is passed in
4721// a register.
4722llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
4723 SmallVector<llvm::Type*, 8> ArgList, IntArgList;
4724
4725 if (IsO32) {
4726 CoerceToIntArgs(TySize, ArgList);
4727 return llvm::StructType::get(getVMContext(), ArgList);
4728 }
4729
4730 if (Ty->isComplexType())
4731 return CGT.ConvertType(Ty);
4732
4733 const RecordType *RT = Ty->getAs<RecordType>();
4734
4735 // Unions/vectors are passed in integer registers.
4736 if (!RT || !RT->isStructureOrClassType()) {
4737 CoerceToIntArgs(TySize, ArgList);
4738 return llvm::StructType::get(getVMContext(), ArgList);
4739 }
4740
4741 const RecordDecl *RD = RT->getDecl();
4742 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4743 assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
4744
4745 uint64_t LastOffset = 0;
4746 unsigned idx = 0;
4747 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
4748
4749 // Iterate over fields in the struct/class and check if there are any aligned
4750 // double fields.
4751 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4752 i != e; ++i, ++idx) {
4753 const QualType Ty = i->getType();
4754 const BuiltinType *BT = Ty->getAs<BuiltinType>();
4755
4756 if (!BT || BT->getKind() != BuiltinType::Double)
4757 continue;
4758
4759 uint64_t Offset = Layout.getFieldOffset(idx);
4760 if (Offset % 64) // Ignore doubles that are not aligned.
4761 continue;
4762
4763 // Add ((Offset - LastOffset) / 64) args of type i64.
4764 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
4765 ArgList.push_back(I64);
4766
4767 // Add double type.
4768 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
4769 LastOffset = Offset + 64;
4770 }
4771
4772 CoerceToIntArgs(TySize - LastOffset, IntArgList);
4773 ArgList.append(IntArgList.begin(), IntArgList.end());
4774
4775 return llvm::StructType::get(getVMContext(), ArgList);
4776}
4777
4778llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
4779 uint64_t Offset) const {
4780 if (OrigOffset + MinABIStackAlignInBytes > Offset)
4781 return 0;
4782
4783 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
4784}
4785
4786ABIArgInfo
4787MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
4788 uint64_t OrigOffset = Offset;
4789 uint64_t TySize = getContext().getTypeSize(Ty);
4790 uint64_t Align = getContext().getTypeAlign(Ty) / 8;
4791
4792 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
4793 (uint64_t)StackAlignInBytes);
4794 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
4795 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
4796
4797 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
4798 // Ignore empty aggregates.
4799 if (TySize == 0)
4800 return ABIArgInfo::getIgnore();
4801
4802 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4803 Offset = OrigOffset + MinABIStackAlignInBytes;
4804 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4805 }
4806
4807 // If we have reached here, aggregates are passed directly by coercing to
4808 // another structure type. Padding is inserted if the offset of the
4809 // aggregate is unaligned.
4810 return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
4811 getPaddingType(OrigOffset, CurrOffset));
4812 }
4813
4814 // Treat an enum type as its underlying type.
4815 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4816 Ty = EnumTy->getDecl()->getIntegerType();
4817
4818 if (Ty->isPromotableIntegerType())
4819 return ABIArgInfo::getExtend();
4820
4821 return ABIArgInfo::getDirect(
4822 0, 0, IsO32 ? 0 : getPaddingType(OrigOffset, CurrOffset));
4823}
4824
4825llvm::Type*
4826MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
4827 const RecordType *RT = RetTy->getAs<RecordType>();
4828 SmallVector<llvm::Type*, 8> RTList;
4829
4830 if (RT && RT->isStructureOrClassType()) {
4831 const RecordDecl *RD = RT->getDecl();
4832 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4833 unsigned FieldCnt = Layout.getFieldCount();
4834
4835 // N32/64 returns struct/classes in floating point registers if the
4836 // following conditions are met:
4837 // 1. The size of the struct/class is no larger than 128-bit.
4838 // 2. The struct/class has one or two fields all of which are floating
4839 // point types.
4840 // 3. The offset of the first field is zero (this follows what gcc does).
4841 //
4842 // Any other composite results are returned in integer registers.
4843 //
4844 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
4845 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
4846 for (; b != e; ++b) {
4847 const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
4848
4849 if (!BT || !BT->isFloatingPoint())
4850 break;
4851
4852 RTList.push_back(CGT.ConvertType(b->getType()));
4853 }
4854
4855 if (b == e)
4856 return llvm::StructType::get(getVMContext(), RTList,
4857 RD->hasAttr<PackedAttr>());
4858
4859 RTList.clear();
4860 }
4861 }
4862
4863 CoerceToIntArgs(Size, RTList);
4864 return llvm::StructType::get(getVMContext(), RTList);
4865}
4866
4867ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
4868 uint64_t Size = getContext().getTypeSize(RetTy);
4869
4870 if (RetTy->isVoidType() || Size == 0)
4871 return ABIArgInfo::getIgnore();
4872
4873 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
4874 if (isRecordReturnIndirect(RetTy, getCXXABI()))
4875 return ABIArgInfo::getIndirect(0);
4876
4877 if (Size <= 128) {
4878 if (RetTy->isAnyComplexType())
4879 return ABIArgInfo::getDirect();
4880
4881 // O32 returns integer vectors in registers.
4882 if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
4883 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4884
4885 if (!IsO32)
4886 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4887 }
4888
4889 return ABIArgInfo::getIndirect(0);
4890 }
4891
4892 // Treat an enum type as its underlying type.
4893 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4894 RetTy = EnumTy->getDecl()->getIntegerType();
4895
4896 return (RetTy->isPromotableIntegerType() ?
4897 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4898}
4899
4900void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
4901 ABIArgInfo &RetInfo = FI.getReturnInfo();
4902 RetInfo = classifyReturnType(FI.getReturnType());
4903
4904 // Check if a pointer to an aggregate is passed as a hidden argument.
4905 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
4906
4907 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4908 it != ie; ++it)
4909 it->info = classifyArgumentType(it->type, Offset);
4910}
4911
4912llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4913 CodeGenFunction &CGF) const {
4914 llvm::Type *BP = CGF.Int8PtrTy;
4915 llvm::Type *BPP = CGF.Int8PtrPtrTy;
4916
4917 CGBuilderTy &Builder = CGF.Builder;
4918 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4919 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4920 int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
4921 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4922 llvm::Value *AddrTyped;
4923 unsigned PtrWidth = getTarget().getPointerWidth(0);
4924 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
4925
4926 if (TypeAlign > MinABIStackAlignInBytes) {
4927 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
4928 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
4929 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
4930 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
4931 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
4932 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
4933 }
4934 else
4935 AddrTyped = Builder.CreateBitCast(Addr, PTy);
4936
4937 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
4938 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
4939 uint64_t Offset =
4940 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
4941 llvm::Value *NextAddr =
4942 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
4943 "ap.next");
4944 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4945
4946 return AddrTyped;
4947}
4948
4949bool
4950MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4951 llvm::Value *Address) const {
4952 // This information comes from gcc's implementation, which seems to
4953 // as canonical as it gets.
4954
4955 // Everything on MIPS is 4 bytes. Double-precision FP registers
4956 // are aliased to pairs of single-precision FP registers.
4957 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4958
4959 // 0-31 are the general purpose registers, $0 - $31.
4960 // 32-63 are the floating-point registers, $f0 - $f31.
4961 // 64 and 65 are the multiply/divide registers, $hi and $lo.
4962 // 66 is the (notional, I think) register for signal-handler return.
4963 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
4964
4965 // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
4966 // They are one bit wide and ignored here.
4967
4968 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
4969 // (coprocessor 1 is the FP unit)
4970 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
4971 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
4972 // 176-181 are the DSP accumulator registers.
4973 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
4974 return false;
4975}
4976
4977//===----------------------------------------------------------------------===//
4978// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
4979// Currently subclassed only to implement custom OpenCL C function attribute
4980// handling.
4981//===----------------------------------------------------------------------===//
4982
4983namespace {
4984
4985class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4986public:
4987 TCETargetCodeGenInfo(CodeGenTypes &CGT)
4988 : DefaultTargetCodeGenInfo(CGT) {}
4989
4990 virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4991 CodeGen::CodeGenModule &M) const;
4992};
4993
4994void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4995 llvm::GlobalValue *GV,
4996 CodeGen::CodeGenModule &M) const {
4997 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4998 if (!FD) return;
4999
5000 llvm::Function *F = cast<llvm::Function>(GV);
5001
5002 if (M.getLangOpts().OpenCL) {
5003 if (FD->hasAttr<OpenCLKernelAttr>()) {
5004 // OpenCL C Kernel functions are not subject to inlining
5005 F->addFnAttr(llvm::Attribute::NoInline);
5006
5007 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
5008
5009 // Convert the reqd_work_group_size() attributes to metadata.
5010 llvm::LLVMContext &Context = F->getContext();
5011 llvm::NamedMDNode *OpenCLMetadata =
5012 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5013
5014 SmallVector<llvm::Value*, 5> Operands;
5015 Operands.push_back(F);
5016
5017 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5018 llvm::APInt(32,
5019 FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
5020 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5021 llvm::APInt(32,
5022 FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
5023 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5024 llvm::APInt(32,
5025 FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
5026
5027 // Add a boolean constant operand for "required" (true) or "hint" (false)
5028 // for implementing the work_group_size_hint attr later. Currently
5029 // always true as the hint is not yet implemented.
5030 Operands.push_back(llvm::ConstantInt::getTrue(Context));
5031 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5032 }
5033 }
5034 }
5035}
5036
5037}
5038
5039//===----------------------------------------------------------------------===//
5040// Hexagon ABI Implementation
5041//===----------------------------------------------------------------------===//
5042
5043namespace {
5044
5045class HexagonABIInfo : public ABIInfo {
5046
5047
5048public:
5049 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5050
5051private:
5052
5053 ABIArgInfo classifyReturnType(QualType RetTy) const;
5054 ABIArgInfo classifyArgumentType(QualType RetTy) const;
5055
5056 virtual void computeInfo(CGFunctionInfo &FI) const;
5057
5058 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5059 CodeGenFunction &CGF) const;
5060};
5061
5062class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5063public:
5064 HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5065 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5066
5067 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
5068 return 29;
5069 }
5070};
5071
5072}
5073
5074void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5075 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5076 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
5077 it != ie; ++it)
5078 it->info = classifyArgumentType(it->type);
5079}
5080
5081ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
5082 if (!isAggregateTypeForABI(Ty)) {
5083 // Treat an enum type as its underlying type.
5084 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5085 Ty = EnumTy->getDecl()->getIntegerType();
5086
5087 return (Ty->isPromotableIntegerType() ?
5088 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5089 }
5090
5091 // Ignore empty records.
5092 if (isEmptyRecord(getContext(), Ty, true))
5093 return ABIArgInfo::getIgnore();
5094
5095 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5096 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5097
5098 uint64_t Size = getContext().getTypeSize(Ty);
5099 if (Size > 64)
5100 return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5101 // Pass in the smallest viable integer type.
5102 else if (Size > 32)
5103 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5104 else if (Size > 16)
5105 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5106 else if (Size > 8)
5107 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5108 else
5109 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5110}
5111
5112ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
5113 if (RetTy->isVoidType())
5114 return ABIArgInfo::getIgnore();
5115
5116 // Large vector types should be returned via memory.
5117 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
5118 return ABIArgInfo::getIndirect(0);
5119
5120 if (!isAggregateTypeForABI(RetTy)) {
5121 // Treat an enum type as its underlying type.
5122 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5123 RetTy = EnumTy->getDecl()->getIntegerType();
5124
5125 return (RetTy->isPromotableIntegerType() ?
5126 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5127 }
5128
5129 // Structures with either a non-trivial destructor or a non-trivial
5130 // copy constructor are always indirect.
5131 if (isRecordReturnIndirect(RetTy, getCXXABI()))
5132 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5133
5134 if (isEmptyRecord(getContext(), RetTy, true))
5135 return ABIArgInfo::getIgnore();
5136
5137 // Aggregates <= 8 bytes are returned in r0; other aggregates
5138 // are returned indirectly.
5139 uint64_t Size = getContext().getTypeSize(RetTy);
5140 if (Size <= 64) {
5141 // Return in the smallest viable integer type.
5142 if (Size <= 8)
5143 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5144 if (Size <= 16)
5145 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5146 if (Size <= 32)
5147 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5148 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5149 }
5150
5151 return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5152}
5153
5154llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5155 CodeGenFunction &CGF) const {
5156 // FIXME: Need to handle alignment
5157 llvm::Type *BPP = CGF.Int8PtrPtrTy;
5158
5159 CGBuilderTy &Builder = CGF.Builder;
5160 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
5161 "ap");
5162 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5163 llvm::Type *PTy =
5164 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5165 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5166
5167 uint64_t Offset =
5168 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
5169 llvm::Value *NextAddr =
5170 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5171 "ap.next");
5172 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5173
5174 return AddrTyped;
5175}
5176
5177
5178//===----------------------------------------------------------------------===//
5179// SPARC v9 ABI Implementation.
5180// Based on the SPARC Compliance Definition version 2.4.1.
5181//
5182// Function arguments a mapped to a nominal "parameter array" and promoted to
5183// registers depending on their type. Each argument occupies 8 or 16 bytes in
5184// the array, structs larger than 16 bytes are passed indirectly.
5185//
5186// One case requires special care:
5187//
5188// struct mixed {
5189// int i;
5190// float f;
5191// };
5192//
5193// When a struct mixed is passed by value, it only occupies 8 bytes in the
5194// parameter array, but the int is passed in an integer register, and the float
5195// is passed in a floating point register. This is represented as two arguments
5196// with the LLVM IR inreg attribute:
5197//
5198// declare void f(i32 inreg %i, float inreg %f)
5199//
5200// The code generator will only allocate 4 bytes from the parameter array for
5201// the inreg arguments. All other arguments are allocated a multiple of 8
5202// bytes.
5203//
5204namespace {
5205class SparcV9ABIInfo : public ABIInfo {
5206public:
5207 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5208
5209private:
5210 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
5211 virtual void computeInfo(CGFunctionInfo &FI) const;
5212 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5213 CodeGenFunction &CGF) const;
5214
5215 // Coercion type builder for structs passed in registers. The coercion type
5216 // serves two purposes:
5217 //
5218 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
5219 // in registers.
5220 // 2. Expose aligned floating point elements as first-level elements, so the
5221 // code generator knows to pass them in floating point registers.
5222 //
5223 // We also compute the InReg flag which indicates that the struct contains
5224 // aligned 32-bit floats.
5225 //
5226 struct CoerceBuilder {
5227 llvm::LLVMContext &Context;
5228 const llvm::DataLayout &DL;
5229 SmallVector<llvm::Type*, 8> Elems;
5230 uint64_t Size;
5231 bool InReg;
5232
5233 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
5234 : Context(c), DL(dl), Size(0), InReg(false) {}
5235
5236 // Pad Elems with integers until Size is ToSize.
5237 void pad(uint64_t ToSize) {
5238 assert(ToSize >= Size && "Cannot remove elements");
5239 if (ToSize == Size)
5240 return;
5241
5242 // Finish the current 64-bit word.
5243 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
5244 if (Aligned > Size && Aligned <= ToSize) {
5245 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
5246 Size = Aligned;
5247 }
5248
5249 // Add whole 64-bit words.
5250 while (Size + 64 <= ToSize) {
5251 Elems.push_back(llvm::Type::getInt64Ty(Context));
5252 Size += 64;
5253 }
5254
5255 // Final in-word padding.
5256 if (Size < ToSize) {
5257 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
5258 Size = ToSize;
5259 }
5260 }
5261
5262 // Add a floating point element at Offset.
5263 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
5264 // Unaligned floats are treated as integers.
5265 if (Offset % Bits)
5266 return;
5267 // The InReg flag is only required if there are any floats < 64 bits.
5268 if (Bits < 64)
5269 InReg = true;
5270 pad(Offset);
5271 Elems.push_back(Ty);
5272 Size = Offset + Bits;
5273 }
5274
5275 // Add a struct type to the coercion type, starting at Offset (in bits).
5276 void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
5277 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
5278 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
5279 llvm::Type *ElemTy = StrTy->getElementType(i);
5280 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
5281 switch (ElemTy->getTypeID()) {
5282 case llvm::Type::StructTyID:
5283 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
5284 break;
5285 case llvm::Type::FloatTyID:
5286 addFloat(ElemOffset, ElemTy, 32);
5287 break;
5288 case llvm::Type::DoubleTyID:
5289 addFloat(ElemOffset, ElemTy, 64);
5290 break;
5291 case llvm::Type::FP128TyID:
5292 addFloat(ElemOffset, ElemTy, 128);
5293 break;
5294 case llvm::Type::PointerTyID:
5295 if (ElemOffset % 64 == 0) {
5296 pad(ElemOffset);
5297 Elems.push_back(ElemTy);
5298 Size += 64;
5299 }
5300 break;
5301 default:
5302 break;
5303 }
5304 }
5305 }
5306
5307 // Check if Ty is a usable substitute for the coercion type.
5308 bool isUsableType(llvm::StructType *Ty) const {
5309 if (Ty->getNumElements() != Elems.size())
5310 return false;
5311 for (unsigned i = 0, e = Elems.size(); i != e; ++i)
5312 if (Elems[i] != Ty->getElementType(i))
5313 return false;
5314 return true;
5315 }
5316
5317 // Get the coercion type as a literal struct type.
5318 llvm::Type *getType() const {
5319 if (Elems.size() == 1)
5320 return Elems.front();
5321 else
5322 return llvm::StructType::get(Context, Elems);
5323 }
5324 };
5325};
5326} // end anonymous namespace
5327
5328ABIArgInfo
5329SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
5330 if (Ty->isVoidType())
5331 return ABIArgInfo::getIgnore();
5332
5333 uint64_t Size = getContext().getTypeSize(Ty);
5334
5335 // Anything too big to fit in registers is passed with an explicit indirect
5336 // pointer / sret pointer.
5337 if (Size > SizeLimit)
5338 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5339
5340 // Treat an enum type as its underlying type.
5341 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5342 Ty = EnumTy->getDecl()->getIntegerType();
5343
5344 // Integer types smaller than a register are extended.
5345 if (Size < 64 && Ty->isIntegerType())
5346 return ABIArgInfo::getExtend();
5347
5348 // Other non-aggregates go in registers.
5349 if (!isAggregateTypeForABI(Ty))
5350 return ABIArgInfo::getDirect();
5351
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CGCXXABI.h"
18#include "CodeGenFunction.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/CodeGen/CGFunctionInfo.h"
21#include "clang/Frontend/CodeGenOptions.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/Type.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace clang;
27using namespace CodeGen;
28
29static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
30 llvm::Value *Array,
31 llvm::Value *Value,
32 unsigned FirstIndex,
33 unsigned LastIndex) {
34 // Alternatively, we could emit this as a loop in the source.
35 for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
36 llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
37 Builder.CreateStore(Value, Cell);
38 }
39}
40
41static bool isAggregateTypeForABI(QualType T) {
42 return !CodeGenFunction::hasScalarEvaluationKind(T) ||
43 T->isMemberFunctionPointerType();
44}
45
46ABIInfo::~ABIInfo() {}
47
48static bool isRecordReturnIndirect(const RecordType *RT,
49 CGCXXABI &CXXABI) {
50 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
51 if (!RD)
52 return false;
53 return CXXABI.isReturnTypeIndirect(RD);
54}
55
56
57static bool isRecordReturnIndirect(QualType T, CGCXXABI &CXXABI) {
58 const RecordType *RT = T->getAs<RecordType>();
59 if (!RT)
60 return false;
61 return isRecordReturnIndirect(RT, CXXABI);
62}
63
64static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
65 CGCXXABI &CXXABI) {
66 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
67 if (!RD)
68 return CGCXXABI::RAA_Default;
69 return CXXABI.getRecordArgABI(RD);
70}
71
72static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
73 CGCXXABI &CXXABI) {
74 const RecordType *RT = T->getAs<RecordType>();
75 if (!RT)
76 return CGCXXABI::RAA_Default;
77 return getRecordArgABI(RT, CXXABI);
78}
79
80CGCXXABI &ABIInfo::getCXXABI() const {
81 return CGT.getCXXABI();
82}
83
84ASTContext &ABIInfo::getContext() const {
85 return CGT.getContext();
86}
87
88llvm::LLVMContext &ABIInfo::getVMContext() const {
89 return CGT.getLLVMContext();
90}
91
92const llvm::DataLayout &ABIInfo::getDataLayout() const {
93 return CGT.getDataLayout();
94}
95
96const TargetInfo &ABIInfo::getTarget() const {
97 return CGT.getTarget();
98}
99
100void ABIArgInfo::dump() const {
101 raw_ostream &OS = llvm::errs();
102 OS << "(ABIArgInfo Kind=";
103 switch (TheKind) {
104 case Direct:
105 OS << "Direct Type=";
106 if (llvm::Type *Ty = getCoerceToType())
107 Ty->print(OS);
108 else
109 OS << "null";
110 break;
111 case Extend:
112 OS << "Extend";
113 break;
114 case Ignore:
115 OS << "Ignore";
116 break;
117 case Indirect:
118 OS << "Indirect Align=" << getIndirectAlign()
119 << " ByVal=" << getIndirectByVal()
120 << " Realign=" << getIndirectRealign();
121 break;
122 case Expand:
123 OS << "Expand";
124 break;
125 }
126 OS << ")\n";
127}
128
129TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
130
131// If someone can figure out a general rule for this, that would be great.
132// It's probably just doomed to be platform-dependent, though.
133unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
134 // Verified for:
135 // x86-64 FreeBSD, Linux, Darwin
136 // x86-32 FreeBSD, Linux, Darwin
137 // PowerPC Linux, Darwin
138 // ARM Darwin (*not* EABI)
139 // AArch64 Linux
140 return 32;
141}
142
143bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
144 const FunctionNoProtoType *fnType) const {
145 // The following conventions are known to require this to be false:
146 // x86_stdcall
147 // MIPS
148 // For everything else, we just prefer false unless we opt out.
149 return false;
150}
151
152void
153TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
154 llvm::SmallString<24> &Opt) const {
155 // This assumes the user is passing a library name like "rt" instead of a
156 // filename like "librt.a/so", and that they don't care whether it's static or
157 // dynamic.
158 Opt = "-l";
159 Opt += Lib;
160}
161
162static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
163
164/// isEmptyField - Return true iff a the field is "empty", that is it
165/// is an unnamed bit-field or an (array of) empty record(s).
166static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
167 bool AllowArrays) {
168 if (FD->isUnnamedBitfield())
169 return true;
170
171 QualType FT = FD->getType();
172
173 // Constant arrays of empty records count as empty, strip them off.
174 // Constant arrays of zero length always count as empty.
175 if (AllowArrays)
176 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
177 if (AT->getSize() == 0)
178 return true;
179 FT = AT->getElementType();
180 }
181
182 const RecordType *RT = FT->getAs<RecordType>();
183 if (!RT)
184 return false;
185
186 // C++ record fields are never empty, at least in the Itanium ABI.
187 //
188 // FIXME: We should use a predicate for whether this behavior is true in the
189 // current ABI.
190 if (isa<CXXRecordDecl>(RT->getDecl()))
191 return false;
192
193 return isEmptyRecord(Context, FT, AllowArrays);
194}
195
196/// isEmptyRecord - Return true iff a structure contains only empty
197/// fields. Note that a structure with a flexible array member is not
198/// considered empty.
199static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
200 const RecordType *RT = T->getAs<RecordType>();
201 if (!RT)
202 return 0;
203 const RecordDecl *RD = RT->getDecl();
204 if (RD->hasFlexibleArrayMember())
205 return false;
206
207 // If this is a C++ record, check the bases first.
208 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
209 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
210 e = CXXRD->bases_end(); i != e; ++i)
211 if (!isEmptyRecord(Context, i->getType(), true))
212 return false;
213
214 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
215 i != e; ++i)
216 if (!isEmptyField(Context, *i, AllowArrays))
217 return false;
218 return true;
219}
220
221/// isSingleElementStruct - Determine if a structure is a "single
222/// element struct", i.e. it has exactly one non-empty field or
223/// exactly one field which is itself a single element
224/// struct. Structures with flexible array members are never
225/// considered single element structs.
226///
227/// \return The field declaration for the single non-empty field, if
228/// it exists.
229static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
230 const RecordType *RT = T->getAsStructureType();
231 if (!RT)
232 return 0;
233
234 const RecordDecl *RD = RT->getDecl();
235 if (RD->hasFlexibleArrayMember())
236 return 0;
237
238 const Type *Found = 0;
239
240 // If this is a C++ record, check the bases first.
241 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
242 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
243 e = CXXRD->bases_end(); i != e; ++i) {
244 // Ignore empty records.
245 if (isEmptyRecord(Context, i->getType(), true))
246 continue;
247
248 // If we already found an element then this isn't a single-element struct.
249 if (Found)
250 return 0;
251
252 // If this is non-empty and not a single element struct, the composite
253 // cannot be a single element struct.
254 Found = isSingleElementStruct(i->getType(), Context);
255 if (!Found)
256 return 0;
257 }
258 }
259
260 // Check for single element.
261 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
262 i != e; ++i) {
263 const FieldDecl *FD = *i;
264 QualType FT = FD->getType();
265
266 // Ignore empty fields.
267 if (isEmptyField(Context, FD, true))
268 continue;
269
270 // If we already found an element then this isn't a single-element
271 // struct.
272 if (Found)
273 return 0;
274
275 // Treat single element arrays as the element.
276 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
277 if (AT->getSize().getZExtValue() != 1)
278 break;
279 FT = AT->getElementType();
280 }
281
282 if (!isAggregateTypeForABI(FT)) {
283 Found = FT.getTypePtr();
284 } else {
285 Found = isSingleElementStruct(FT, Context);
286 if (!Found)
287 return 0;
288 }
289 }
290
291 // We don't consider a struct a single-element struct if it has
292 // padding beyond the element type.
293 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
294 return 0;
295
296 return Found;
297}
298
299static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
300 // Treat complex types as the element type.
301 if (const ComplexType *CTy = Ty->getAs<ComplexType>())
302 Ty = CTy->getElementType();
303
304 // Check for a type which we know has a simple scalar argument-passing
305 // convention without any padding. (We're specifically looking for 32
306 // and 64-bit integer and integer-equivalents, float, and double.)
307 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
308 !Ty->isEnumeralType() && !Ty->isBlockPointerType())
309 return false;
310
311 uint64_t Size = Context.getTypeSize(Ty);
312 return Size == 32 || Size == 64;
313}
314
315/// canExpandIndirectArgument - Test whether an argument type which is to be
316/// passed indirectly (on the stack) would have the equivalent layout if it was
317/// expanded into separate arguments. If so, we prefer to do the latter to avoid
318/// inhibiting optimizations.
319///
320// FIXME: This predicate is missing many cases, currently it just follows
321// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
322// should probably make this smarter, or better yet make the LLVM backend
323// capable of handling it.
324static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
325 // We can only expand structure types.
326 const RecordType *RT = Ty->getAs<RecordType>();
327 if (!RT)
328 return false;
329
330 // We can only expand (C) structures.
331 //
332 // FIXME: This needs to be generalized to handle classes as well.
333 const RecordDecl *RD = RT->getDecl();
334 if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
335 return false;
336
337 uint64_t Size = 0;
338
339 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
340 i != e; ++i) {
341 const FieldDecl *FD = *i;
342
343 if (!is32Or64BitBasicType(FD->getType(), Context))
344 return false;
345
346 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
347 // how to expand them yet, and the predicate for telling if a bitfield still
348 // counts as "basic" is more complicated than what we were doing previously.
349 if (FD->isBitField())
350 return false;
351
352 Size += Context.getTypeSize(FD->getType());
353 }
354
355 // Make sure there are not any holes in the struct.
356 if (Size != Context.getTypeSize(Ty))
357 return false;
358
359 return true;
360}
361
362namespace {
363/// DefaultABIInfo - The default implementation for ABI specific
364/// details. This implementation provides information which results in
365/// self-consistent and sensible LLVM IR generation, but does not
366/// conform to any particular ABI.
367class DefaultABIInfo : public ABIInfo {
368public:
369 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
370
371 ABIArgInfo classifyReturnType(QualType RetTy) const;
372 ABIArgInfo classifyArgumentType(QualType RetTy) const;
373
374 virtual void computeInfo(CGFunctionInfo &FI) const {
375 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
376 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
377 it != ie; ++it)
378 it->info = classifyArgumentType(it->type);
379 }
380
381 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
382 CodeGenFunction &CGF) const;
383};
384
385class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
386public:
387 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
388 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
389};
390
391llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
392 CodeGenFunction &CGF) const {
393 return 0;
394}
395
396ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
397 if (isAggregateTypeForABI(Ty)) {
398 // Records with non trivial destructors/constructors should not be passed
399 // by value.
400 if (isRecordReturnIndirect(Ty, getCXXABI()))
401 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
402
403 return ABIArgInfo::getIndirect(0);
404 }
405
406 // Treat an enum type as its underlying type.
407 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
408 Ty = EnumTy->getDecl()->getIntegerType();
409
410 return (Ty->isPromotableIntegerType() ?
411 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
412}
413
414ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
415 if (RetTy->isVoidType())
416 return ABIArgInfo::getIgnore();
417
418 if (isAggregateTypeForABI(RetTy))
419 return ABIArgInfo::getIndirect(0);
420
421 // Treat an enum type as its underlying type.
422 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
423 RetTy = EnumTy->getDecl()->getIntegerType();
424
425 return (RetTy->isPromotableIntegerType() ?
426 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
427}
428
429//===----------------------------------------------------------------------===//
430// le32/PNaCl bitcode ABI Implementation
431//
432// This is a simplified version of the x86_32 ABI. Arguments and return values
433// are always passed on the stack.
434//===----------------------------------------------------------------------===//
435
436class PNaClABIInfo : public ABIInfo {
437 public:
438 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
439
440 ABIArgInfo classifyReturnType(QualType RetTy) const;
441 ABIArgInfo classifyArgumentType(QualType RetTy) const;
442
443 virtual void computeInfo(CGFunctionInfo &FI) const;
444 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
445 CodeGenFunction &CGF) const;
446};
447
448class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
449 public:
450 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
451 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {}
452};
453
454void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
455 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
456
457 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
458 it != ie; ++it)
459 it->info = classifyArgumentType(it->type);
460 }
461
462llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
463 CodeGenFunction &CGF) const {
464 return 0;
465}
466
467/// \brief Classify argument of given type \p Ty.
468ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
469 if (isAggregateTypeForABI(Ty)) {
470 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
471 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
472 return ABIArgInfo::getIndirect(0);
473 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
474 // Treat an enum type as its underlying type.
475 Ty = EnumTy->getDecl()->getIntegerType();
476 } else if (Ty->isFloatingType()) {
477 // Floating-point types don't go inreg.
478 return ABIArgInfo::getDirect();
479 }
480
481 return (Ty->isPromotableIntegerType() ?
482 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
483}
484
485ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
486 if (RetTy->isVoidType())
487 return ABIArgInfo::getIgnore();
488
489 // In the PNaCl ABI we always return records/structures on the stack.
490 if (isAggregateTypeForABI(RetTy))
491 return ABIArgInfo::getIndirect(0);
492
493 // Treat an enum type as its underlying type.
494 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
495 RetTy = EnumTy->getDecl()->getIntegerType();
496
497 return (RetTy->isPromotableIntegerType() ?
498 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
499}
500
501/// IsX86_MMXType - Return true if this is an MMX type.
502bool IsX86_MMXType(llvm::Type *IRType) {
503 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
504 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
505 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
506 IRType->getScalarSizeInBits() != 64;
507}
508
509static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
510 StringRef Constraint,
511 llvm::Type* Ty) {
512 if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy()) {
513 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) {
514 // Invalid MMX constraint
515 return 0;
516 }
517
518 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
519 }
520
521 // No operation needed
522 return Ty;
523}
524
525//===----------------------------------------------------------------------===//
526// X86-32 ABI Implementation
527//===----------------------------------------------------------------------===//
528
529/// X86_32ABIInfo - The X86-32 ABI information.
530class X86_32ABIInfo : public ABIInfo {
531 enum Class {
532 Integer,
533 Float
534 };
535
536 static const unsigned MinABIStackAlignInBytes = 4;
537
538 bool IsDarwinVectorABI;
539 bool IsSmallStructInRegABI;
540 bool IsWin32StructABI;
541 unsigned DefaultNumRegisterParameters;
542
543 static bool isRegisterSize(unsigned Size) {
544 return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
545 }
546
547 static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context,
548 unsigned callingConvention);
549
550 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
551 /// such that the argument will be passed in memory.
552 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal,
553 unsigned &FreeRegs) const;
554
555 /// \brief Return the alignment to use for the given type on the stack.
556 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
557
558 Class classify(QualType Ty) const;
559 ABIArgInfo classifyReturnType(QualType RetTy,
560 unsigned callingConvention) const;
561 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs,
562 bool IsFastCall) const;
563 bool shouldUseInReg(QualType Ty, unsigned &FreeRegs,
564 bool IsFastCall, bool &NeedsPadding) const;
565
566public:
567
568 virtual void computeInfo(CGFunctionInfo &FI) const;
569 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
570 CodeGenFunction &CGF) const;
571
572 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool w,
573 unsigned r)
574 : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
575 IsWin32StructABI(w), DefaultNumRegisterParameters(r) {}
576};
577
578class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
579public:
580 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
581 bool d, bool p, bool w, unsigned r)
582 :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, w, r)) {}
583
584 static bool isStructReturnInRegABI(
585 const llvm::Triple &Triple, const CodeGenOptions &Opts);
586
587 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
588 CodeGen::CodeGenModule &CGM) const;
589
590 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
591 // Darwin uses different dwarf register numbers for EH.
592 if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
593 return 4;
594 }
595
596 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
597 llvm::Value *Address) const;
598
599 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
600 StringRef Constraint,
601 llvm::Type* Ty) const {
602 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
603 }
604
605 llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const {
606 unsigned Sig = (0xeb << 0) | // jmp rel8
607 (0x06 << 8) | // .+0x08
608 ('F' << 16) |
609 ('T' << 24);
610 return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
611 }
612
613};
614
615}
616
617/// shouldReturnTypeInRegister - Determine if the given type should be
618/// passed in a register (for the Darwin ABI).
619bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
620 ASTContext &Context,
621 unsigned callingConvention) {
622 uint64_t Size = Context.getTypeSize(Ty);
623
624 // Type must be register sized.
625 if (!isRegisterSize(Size))
626 return false;
627
628 if (Ty->isVectorType()) {
629 // 64- and 128- bit vectors inside structures are not returned in
630 // registers.
631 if (Size == 64 || Size == 128)
632 return false;
633
634 return true;
635 }
636
637 // If this is a builtin, pointer, enum, complex type, member pointer, or
638 // member function pointer it is ok.
639 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
640 Ty->isAnyComplexType() || Ty->isEnumeralType() ||
641 Ty->isBlockPointerType() || Ty->isMemberPointerType())
642 return true;
643
644 // Arrays are treated like records.
645 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
646 return shouldReturnTypeInRegister(AT->getElementType(), Context,
647 callingConvention);
648
649 // Otherwise, it must be a record type.
650 const RecordType *RT = Ty->getAs<RecordType>();
651 if (!RT) return false;
652
653 // FIXME: Traverse bases here too.
654
655 // For thiscall conventions, structures will never be returned in
656 // a register. This is for compatibility with the MSVC ABI
657 if (callingConvention == llvm::CallingConv::X86_ThisCall &&
658 RT->isStructureType()) {
659 return false;
660 }
661
662 // Structure types are passed in register if all fields would be
663 // passed in a register.
664 for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
665 e = RT->getDecl()->field_end(); i != e; ++i) {
666 const FieldDecl *FD = *i;
667
668 // Empty fields are ignored.
669 if (isEmptyField(Context, FD, true))
670 continue;
671
672 // Check fields recursively.
673 if (!shouldReturnTypeInRegister(FD->getType(), Context,
674 callingConvention))
675 return false;
676 }
677 return true;
678}
679
680ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
681 unsigned callingConvention) const {
682 if (RetTy->isVoidType())
683 return ABIArgInfo::getIgnore();
684
685 if (const VectorType *VT = RetTy->getAs<VectorType>()) {
686 // On Darwin, some vectors are returned in registers.
687 if (IsDarwinVectorABI) {
688 uint64_t Size = getContext().getTypeSize(RetTy);
689
690 // 128-bit vectors are a special case; they are returned in
691 // registers and we need to make sure to pick a type the LLVM
692 // backend will like.
693 if (Size == 128)
694 return ABIArgInfo::getDirect(llvm::VectorType::get(
695 llvm::Type::getInt64Ty(getVMContext()), 2));
696
697 // Always return in register if it fits in a general purpose
698 // register, or if it is 64 bits and has a single element.
699 if ((Size == 8 || Size == 16 || Size == 32) ||
700 (Size == 64 && VT->getNumElements() == 1))
701 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
702 Size));
703
704 return ABIArgInfo::getIndirect(0);
705 }
706
707 return ABIArgInfo::getDirect();
708 }
709
710 if (isAggregateTypeForABI(RetTy)) {
711 if (const RecordType *RT = RetTy->getAs<RecordType>()) {
712 if (isRecordReturnIndirect(RT, getCXXABI()))
713 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
714
715 // Structures with flexible arrays are always indirect.
716 if (RT->getDecl()->hasFlexibleArrayMember())
717 return ABIArgInfo::getIndirect(0);
718 }
719
720 // If specified, structs and unions are always indirect.
721 if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
722 return ABIArgInfo::getIndirect(0);
723
724 // Small structures which are register sized are generally returned
725 // in a register.
726 if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext(),
727 callingConvention)) {
728 uint64_t Size = getContext().getTypeSize(RetTy);
729
730 // As a special-case, if the struct is a "single-element" struct, and
731 // the field is of type "float" or "double", return it in a
732 // floating-point register. (MSVC does not apply this special case.)
733 // We apply a similar transformation for pointer types to improve the
734 // quality of the generated IR.
735 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
736 if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
737 || SeltTy->hasPointerRepresentation())
738 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
739
740 // FIXME: We should be able to narrow this integer in cases with dead
741 // padding.
742 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
743 }
744
745 return ABIArgInfo::getIndirect(0);
746 }
747
748 // Treat an enum type as its underlying type.
749 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
750 RetTy = EnumTy->getDecl()->getIntegerType();
751
752 return (RetTy->isPromotableIntegerType() ?
753 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
754}
755
756static bool isSSEVectorType(ASTContext &Context, QualType Ty) {
757 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
758}
759
760static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
761 const RecordType *RT = Ty->getAs<RecordType>();
762 if (!RT)
763 return 0;
764 const RecordDecl *RD = RT->getDecl();
765
766 // If this is a C++ record, check the bases first.
767 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
768 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
769 e = CXXRD->bases_end(); i != e; ++i)
770 if (!isRecordWithSSEVectorType(Context, i->getType()))
771 return false;
772
773 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
774 i != e; ++i) {
775 QualType FT = i->getType();
776
777 if (isSSEVectorType(Context, FT))
778 return true;
779
780 if (isRecordWithSSEVectorType(Context, FT))
781 return true;
782 }
783
784 return false;
785}
786
787unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
788 unsigned Align) const {
789 // Otherwise, if the alignment is less than or equal to the minimum ABI
790 // alignment, just use the default; the backend will handle this.
791 if (Align <= MinABIStackAlignInBytes)
792 return 0; // Use default alignment.
793
794 // On non-Darwin, the stack type alignment is always 4.
795 if (!IsDarwinVectorABI) {
796 // Set explicit alignment, since we may need to realign the top.
797 return MinABIStackAlignInBytes;
798 }
799
800 // Otherwise, if the type contains an SSE vector type, the alignment is 16.
801 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) ||
802 isRecordWithSSEVectorType(getContext(), Ty)))
803 return 16;
804
805 return MinABIStackAlignInBytes;
806}
807
808ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
809 unsigned &FreeRegs) const {
810 if (!ByVal) {
811 if (FreeRegs) {
812 --FreeRegs; // Non byval indirects just use one pointer.
813 return ABIArgInfo::getIndirectInReg(0, false);
814 }
815 return ABIArgInfo::getIndirect(0, false);
816 }
817
818 // Compute the byval alignment.
819 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
820 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
821 if (StackAlign == 0)
822 return ABIArgInfo::getIndirect(4);
823
824 // If the stack alignment is less than the type alignment, realign the
825 // argument.
826 if (StackAlign < TypeAlign)
827 return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
828 /*Realign=*/true);
829
830 return ABIArgInfo::getIndirect(StackAlign);
831}
832
833X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
834 const Type *T = isSingleElementStruct(Ty, getContext());
835 if (!T)
836 T = Ty.getTypePtr();
837
838 if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
839 BuiltinType::Kind K = BT->getKind();
840 if (K == BuiltinType::Float || K == BuiltinType::Double)
841 return Float;
842 }
843 return Integer;
844}
845
846bool X86_32ABIInfo::shouldUseInReg(QualType Ty, unsigned &FreeRegs,
847 bool IsFastCall, bool &NeedsPadding) const {
848 NeedsPadding = false;
849 Class C = classify(Ty);
850 if (C == Float)
851 return false;
852
853 unsigned Size = getContext().getTypeSize(Ty);
854 unsigned SizeInRegs = (Size + 31) / 32;
855
856 if (SizeInRegs == 0)
857 return false;
858
859 if (SizeInRegs > FreeRegs) {
860 FreeRegs = 0;
861 return false;
862 }
863
864 FreeRegs -= SizeInRegs;
865
866 if (IsFastCall) {
867 if (Size > 32)
868 return false;
869
870 if (Ty->isIntegralOrEnumerationType())
871 return true;
872
873 if (Ty->isPointerType())
874 return true;
875
876 if (Ty->isReferenceType())
877 return true;
878
879 if (FreeRegs)
880 NeedsPadding = true;
881
882 return false;
883 }
884
885 return true;
886}
887
888ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
889 unsigned &FreeRegs,
890 bool IsFastCall) const {
891 // FIXME: Set alignment on indirect arguments.
892 if (isAggregateTypeForABI(Ty)) {
893 if (const RecordType *RT = Ty->getAs<RecordType>()) {
894 if (IsWin32StructABI)
895 return getIndirectResult(Ty, true, FreeRegs);
896
897 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
898 return getIndirectResult(Ty, RAA == CGCXXABI::RAA_DirectInMemory, FreeRegs);
899
900 // Structures with flexible arrays are always indirect.
901 if (RT->getDecl()->hasFlexibleArrayMember())
902 return getIndirectResult(Ty, true, FreeRegs);
903 }
904
905 // Ignore empty structs/unions.
906 if (isEmptyRecord(getContext(), Ty, true))
907 return ABIArgInfo::getIgnore();
908
909 llvm::LLVMContext &LLVMContext = getVMContext();
910 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
911 bool NeedsPadding;
912 if (shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding)) {
913 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
914 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
915 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
916 return ABIArgInfo::getDirectInReg(Result);
917 }
918 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : 0;
919
920 // Expand small (<= 128-bit) record types when we know that the stack layout
921 // of those arguments will match the struct. This is important because the
922 // LLVM backend isn't smart enough to remove byval, which inhibits many
923 // optimizations.
924 if (getContext().getTypeSize(Ty) <= 4*32 &&
925 canExpandIndirectArgument(Ty, getContext()))
926 return ABIArgInfo::getExpandWithPadding(IsFastCall, PaddingType);
927
928 return getIndirectResult(Ty, true, FreeRegs);
929 }
930
931 if (const VectorType *VT = Ty->getAs<VectorType>()) {
932 // On Darwin, some vectors are passed in memory, we handle this by passing
933 // it as an i8/i16/i32/i64.
934 if (IsDarwinVectorABI) {
935 uint64_t Size = getContext().getTypeSize(Ty);
936 if ((Size == 8 || Size == 16 || Size == 32) ||
937 (Size == 64 && VT->getNumElements() == 1))
938 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
939 Size));
940 }
941
942 if (IsX86_MMXType(CGT.ConvertType(Ty)))
943 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
944
945 return ABIArgInfo::getDirect();
946 }
947
948
949 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
950 Ty = EnumTy->getDecl()->getIntegerType();
951
952 bool NeedsPadding;
953 bool InReg = shouldUseInReg(Ty, FreeRegs, IsFastCall, NeedsPadding);
954
955 if (Ty->isPromotableIntegerType()) {
956 if (InReg)
957 return ABIArgInfo::getExtendInReg();
958 return ABIArgInfo::getExtend();
959 }
960 if (InReg)
961 return ABIArgInfo::getDirectInReg();
962 return ABIArgInfo::getDirect();
963}
964
965void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
966 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
967 FI.getCallingConvention());
968
969 unsigned CC = FI.getCallingConvention();
970 bool IsFastCall = CC == llvm::CallingConv::X86_FastCall;
971 unsigned FreeRegs;
972 if (IsFastCall)
973 FreeRegs = 2;
974 else if (FI.getHasRegParm())
975 FreeRegs = FI.getRegParm();
976 else
977 FreeRegs = DefaultNumRegisterParameters;
978
979 // If the return value is indirect, then the hidden argument is consuming one
980 // integer register.
981 if (FI.getReturnInfo().isIndirect() && FreeRegs) {
982 --FreeRegs;
983 ABIArgInfo &Old = FI.getReturnInfo();
984 Old = ABIArgInfo::getIndirectInReg(Old.getIndirectAlign(),
985 Old.getIndirectByVal(),
986 Old.getIndirectRealign());
987 }
988
989 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
990 it != ie; ++it)
991 it->info = classifyArgumentType(it->type, FreeRegs, IsFastCall);
992}
993
994llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
995 CodeGenFunction &CGF) const {
996 llvm::Type *BPP = CGF.Int8PtrPtrTy;
997
998 CGBuilderTy &Builder = CGF.Builder;
999 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1000 "ap");
1001 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1002
1003 // Compute if the address needs to be aligned
1004 unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
1005 Align = getTypeStackAlignInBytes(Ty, Align);
1006 Align = std::max(Align, 4U);
1007 if (Align > 4) {
1008 // addr = (addr + align - 1) & -align;
1009 llvm::Value *Offset =
1010 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
1011 Addr = CGF.Builder.CreateGEP(Addr, Offset);
1012 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
1013 CGF.Int32Ty);
1014 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
1015 Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1016 Addr->getType(),
1017 "ap.cur.aligned");
1018 }
1019
1020 llvm::Type *PTy =
1021 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1022 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1023
1024 uint64_t Offset =
1025 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
1026 llvm::Value *NextAddr =
1027 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1028 "ap.next");
1029 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1030
1031 return AddrTyped;
1032}
1033
1034void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1035 llvm::GlobalValue *GV,
1036 CodeGen::CodeGenModule &CGM) const {
1037 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1038 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1039 // Get the LLVM function.
1040 llvm::Function *Fn = cast<llvm::Function>(GV);
1041
1042 // Now add the 'alignstack' attribute with a value of 16.
1043 llvm::AttrBuilder B;
1044 B.addStackAlignmentAttr(16);
1045 Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
1046 llvm::AttributeSet::get(CGM.getLLVMContext(),
1047 llvm::AttributeSet::FunctionIndex,
1048 B));
1049 }
1050 }
1051}
1052
1053bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1054 CodeGen::CodeGenFunction &CGF,
1055 llvm::Value *Address) const {
1056 CodeGen::CGBuilderTy &Builder = CGF.Builder;
1057
1058 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1059
1060 // 0-7 are the eight integer registers; the order is different
1061 // on Darwin (for EH), but the range is the same.
1062 // 8 is %eip.
1063 AssignToArrayRange(Builder, Address, Four8, 0, 8);
1064
1065 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1066 // 12-16 are st(0..4). Not sure why we stop at 4.
1067 // These have size 16, which is sizeof(long double) on
1068 // platforms with 8-byte alignment for that type.
1069 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1070 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1071
1072 } else {
1073 // 9 is %eflags, which doesn't get a size on Darwin for some
1074 // reason.
1075 Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
1076
1077 // 11-16 are st(0..5). Not sure why we stop at 5.
1078 // These have size 12, which is sizeof(long double) on
1079 // platforms with 4-byte alignment for that type.
1080 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1081 AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1082 }
1083
1084 return false;
1085}
1086
1087//===----------------------------------------------------------------------===//
1088// X86-64 ABI Implementation
1089//===----------------------------------------------------------------------===//
1090
1091
1092namespace {
1093/// X86_64ABIInfo - The X86_64 ABI information.
1094class X86_64ABIInfo : public ABIInfo {
1095 enum Class {
1096 Integer = 0,
1097 SSE,
1098 SSEUp,
1099 X87,
1100 X87Up,
1101 ComplexX87,
1102 NoClass,
1103 Memory
1104 };
1105
1106 /// merge - Implement the X86_64 ABI merging algorithm.
1107 ///
1108 /// Merge an accumulating classification \arg Accum with a field
1109 /// classification \arg Field.
1110 ///
1111 /// \param Accum - The accumulating classification. This should
1112 /// always be either NoClass or the result of a previous merge
1113 /// call. In addition, this should never be Memory (the caller
1114 /// should just return Memory for the aggregate).
1115 static Class merge(Class Accum, Class Field);
1116
1117 /// postMerge - Implement the X86_64 ABI post merging algorithm.
1118 ///
1119 /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1120 /// final MEMORY or SSE classes when necessary.
1121 ///
1122 /// \param AggregateSize - The size of the current aggregate in
1123 /// the classification process.
1124 ///
1125 /// \param Lo - The classification for the parts of the type
1126 /// residing in the low word of the containing object.
1127 ///
1128 /// \param Hi - The classification for the parts of the type
1129 /// residing in the higher words of the containing object.
1130 ///
1131 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1132
1133 /// classify - Determine the x86_64 register classes in which the
1134 /// given type T should be passed.
1135 ///
1136 /// \param Lo - The classification for the parts of the type
1137 /// residing in the low word of the containing object.
1138 ///
1139 /// \param Hi - The classification for the parts of the type
1140 /// residing in the high word of the containing object.
1141 ///
1142 /// \param OffsetBase - The bit offset of this type in the
1143 /// containing object. Some parameters are classified different
1144 /// depending on whether they straddle an eightbyte boundary.
1145 ///
1146 /// \param isNamedArg - Whether the argument in question is a "named"
1147 /// argument, as used in AMD64-ABI 3.5.7.
1148 ///
1149 /// If a word is unused its result will be NoClass; if a type should
1150 /// be passed in Memory then at least the classification of \arg Lo
1151 /// will be Memory.
1152 ///
1153 /// The \arg Lo class will be NoClass iff the argument is ignored.
1154 ///
1155 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1156 /// also be ComplexX87.
1157 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1158 bool isNamedArg) const;
1159
1160 llvm::Type *GetByteVectorType(QualType Ty) const;
1161 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1162 unsigned IROffset, QualType SourceTy,
1163 unsigned SourceOffset) const;
1164 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1165 unsigned IROffset, QualType SourceTy,
1166 unsigned SourceOffset) const;
1167
1168 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1169 /// such that the argument will be returned in memory.
1170 ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1171
1172 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1173 /// such that the argument will be passed in memory.
1174 ///
1175 /// \param freeIntRegs - The number of free integer registers remaining
1176 /// available.
1177 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1178
1179 ABIArgInfo classifyReturnType(QualType RetTy) const;
1180
1181 ABIArgInfo classifyArgumentType(QualType Ty,
1182 unsigned freeIntRegs,
1183 unsigned &neededInt,
1184 unsigned &neededSSE,
1185 bool isNamedArg) const;
1186
1187 bool IsIllegalVectorType(QualType Ty) const;
1188
1189 /// The 0.98 ABI revision clarified a lot of ambiguities,
1190 /// unfortunately in ways that were not always consistent with
1191 /// certain previous compilers. In particular, platforms which
1192 /// required strict binary compatibility with older versions of GCC
1193 /// may need to exempt themselves.
1194 bool honorsRevision0_98() const {
1195 return !getTarget().getTriple().isOSDarwin();
1196 }
1197
1198 bool HasAVX;
1199 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1200 // 64-bit hardware.
1201 bool Has64BitPointers;
1202
1203public:
1204 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
1205 ABIInfo(CGT), HasAVX(hasavx),
1206 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
1207 }
1208
1209 bool isPassedUsingAVXType(QualType type) const {
1210 unsigned neededInt, neededSSE;
1211 // The freeIntRegs argument doesn't matter here.
1212 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1213 /*isNamedArg*/true);
1214 if (info.isDirect()) {
1215 llvm::Type *ty = info.getCoerceToType();
1216 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1217 return (vectorTy->getBitWidth() > 128);
1218 }
1219 return false;
1220 }
1221
1222 virtual void computeInfo(CGFunctionInfo &FI) const;
1223
1224 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1225 CodeGenFunction &CGF) const;
1226};
1227
1228/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1229class WinX86_64ABIInfo : public ABIInfo {
1230
1231 ABIArgInfo classify(QualType Ty, bool IsReturnType) const;
1232
1233public:
1234 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
1235
1236 virtual void computeInfo(CGFunctionInfo &FI) const;
1237
1238 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1239 CodeGenFunction &CGF) const;
1240};
1241
1242class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1243public:
1244 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
1245 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
1246
1247 const X86_64ABIInfo &getABIInfo() const {
1248 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
1249 }
1250
1251 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1252 return 7;
1253 }
1254
1255 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1256 llvm::Value *Address) const {
1257 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1258
1259 // 0-15 are the 16 integer registers.
1260 // 16 is %rip.
1261 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1262 return false;
1263 }
1264
1265 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1266 StringRef Constraint,
1267 llvm::Type* Ty) const {
1268 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1269 }
1270
1271 bool isNoProtoCallVariadic(const CallArgList &args,
1272 const FunctionNoProtoType *fnType) const {
1273 // The default CC on x86-64 sets %al to the number of SSA
1274 // registers used, and GCC sets this when calling an unprototyped
1275 // function, so we override the default behavior. However, don't do
1276 // that when AVX types are involved: the ABI explicitly states it is
1277 // undefined, and it doesn't work in practice because of how the ABI
1278 // defines varargs anyway.
1279 if (fnType->getCallConv() == CC_C) {
1280 bool HasAVXType = false;
1281 for (CallArgList::const_iterator
1282 it = args.begin(), ie = args.end(); it != ie; ++it) {
1283 if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
1284 HasAVXType = true;
1285 break;
1286 }
1287 }
1288
1289 if (!HasAVXType)
1290 return true;
1291 }
1292
1293 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1294 }
1295
1296 llvm::Constant *getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const {
1297 unsigned Sig = (0xeb << 0) | // jmp rel8
1298 (0x0a << 8) | // .+0x0c
1299 ('F' << 16) |
1300 ('T' << 24);
1301 return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1302 }
1303
1304};
1305
1306static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
1307 // If the argument does not end in .lib, automatically add the suffix. This
1308 // matches the behavior of MSVC.
1309 std::string ArgStr = Lib;
1310 if (!Lib.endswith_lower(".lib"))
1311 ArgStr += ".lib";
1312 return ArgStr;
1313}
1314
1315class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1316public:
1317 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1318 bool d, bool p, bool w, unsigned RegParms)
1319 : X86_32TargetCodeGenInfo(CGT, d, p, w, RegParms) {}
1320
1321 void getDependentLibraryOption(llvm::StringRef Lib,
1322 llvm::SmallString<24> &Opt) const {
1323 Opt = "/DEFAULTLIB:";
1324 Opt += qualifyWindowsLibrary(Lib);
1325 }
1326
1327 void getDetectMismatchOption(llvm::StringRef Name,
1328 llvm::StringRef Value,
1329 llvm::SmallString<32> &Opt) const {
1330 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1331 }
1332};
1333
1334class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1335public:
1336 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
1337 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
1338
1339 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
1340 return 7;
1341 }
1342
1343 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1344 llvm::Value *Address) const {
1345 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1346
1347 // 0-15 are the 16 integer registers.
1348 // 16 is %rip.
1349 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1350 return false;
1351 }
1352
1353 void getDependentLibraryOption(llvm::StringRef Lib,
1354 llvm::SmallString<24> &Opt) const {
1355 Opt = "/DEFAULTLIB:";
1356 Opt += qualifyWindowsLibrary(Lib);
1357 }
1358
1359 void getDetectMismatchOption(llvm::StringRef Name,
1360 llvm::StringRef Value,
1361 llvm::SmallString<32> &Opt) const {
1362 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1363 }
1364};
1365
1366}
1367
1368void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1369 Class &Hi) const {
1370 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1371 //
1372 // (a) If one of the classes is Memory, the whole argument is passed in
1373 // memory.
1374 //
1375 // (b) If X87UP is not preceded by X87, the whole argument is passed in
1376 // memory.
1377 //
1378 // (c) If the size of the aggregate exceeds two eightbytes and the first
1379 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1380 // argument is passed in memory. NOTE: This is necessary to keep the
1381 // ABI working for processors that don't support the __m256 type.
1382 //
1383 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1384 //
1385 // Some of these are enforced by the merging logic. Others can arise
1386 // only with unions; for example:
1387 // union { _Complex double; unsigned; }
1388 //
1389 // Note that clauses (b) and (c) were added in 0.98.
1390 //
1391 if (Hi == Memory)
1392 Lo = Memory;
1393 if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1394 Lo = Memory;
1395 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1396 Lo = Memory;
1397 if (Hi == SSEUp && Lo != SSE)
1398 Hi = SSE;
1399}
1400
1401X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1402 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1403 // classified recursively so that always two fields are
1404 // considered. The resulting class is calculated according to
1405 // the classes of the fields in the eightbyte:
1406 //
1407 // (a) If both classes are equal, this is the resulting class.
1408 //
1409 // (b) If one of the classes is NO_CLASS, the resulting class is
1410 // the other class.
1411 //
1412 // (c) If one of the classes is MEMORY, the result is the MEMORY
1413 // class.
1414 //
1415 // (d) If one of the classes is INTEGER, the result is the
1416 // INTEGER.
1417 //
1418 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1419 // MEMORY is used as class.
1420 //
1421 // (f) Otherwise class SSE is used.
1422
1423 // Accum should never be memory (we should have returned) or
1424 // ComplexX87 (because this cannot be passed in a structure).
1425 assert((Accum != Memory && Accum != ComplexX87) &&
1426 "Invalid accumulated classification during merge.");
1427 if (Accum == Field || Field == NoClass)
1428 return Accum;
1429 if (Field == Memory)
1430 return Memory;
1431 if (Accum == NoClass)
1432 return Field;
1433 if (Accum == Integer || Field == Integer)
1434 return Integer;
1435 if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1436 Accum == X87 || Accum == X87Up)
1437 return Memory;
1438 return SSE;
1439}
1440
1441void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1442 Class &Lo, Class &Hi, bool isNamedArg) const {
1443 // FIXME: This code can be simplified by introducing a simple value class for
1444 // Class pairs with appropriate constructor methods for the various
1445 // situations.
1446
1447 // FIXME: Some of the split computations are wrong; unaligned vectors
1448 // shouldn't be passed in registers for example, so there is no chance they
1449 // can straddle an eightbyte. Verify & simplify.
1450
1451 Lo = Hi = NoClass;
1452
1453 Class &Current = OffsetBase < 64 ? Lo : Hi;
1454 Current = Memory;
1455
1456 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1457 BuiltinType::Kind k = BT->getKind();
1458
1459 if (k == BuiltinType::Void) {
1460 Current = NoClass;
1461 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1462 Lo = Integer;
1463 Hi = Integer;
1464 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1465 Current = Integer;
1466 } else if ((k == BuiltinType::Float || k == BuiltinType::Double) ||
1467 (k == BuiltinType::LongDouble &&
1468 getTarget().getTriple().isOSNaCl())) {
1469 Current = SSE;
1470 } else if (k == BuiltinType::LongDouble) {
1471 Lo = X87;
1472 Hi = X87Up;
1473 }
1474 // FIXME: _Decimal32 and _Decimal64 are SSE.
1475 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1476 return;
1477 }
1478
1479 if (const EnumType *ET = Ty->getAs<EnumType>()) {
1480 // Classify the underlying integer type.
1481 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1482 return;
1483 }
1484
1485 if (Ty->hasPointerRepresentation()) {
1486 Current = Integer;
1487 return;
1488 }
1489
1490 if (Ty->isMemberPointerType()) {
1491 if (Ty->isMemberFunctionPointerType() && Has64BitPointers)
1492 Lo = Hi = Integer;
1493 else
1494 Current = Integer;
1495 return;
1496 }
1497
1498 if (const VectorType *VT = Ty->getAs<VectorType>()) {
1499 uint64_t Size = getContext().getTypeSize(VT);
1500 if (Size == 32) {
1501 // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1502 // float> as integer.
1503 Current = Integer;
1504
1505 // If this type crosses an eightbyte boundary, it should be
1506 // split.
1507 uint64_t EB_Real = (OffsetBase) / 64;
1508 uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1509 if (EB_Real != EB_Imag)
1510 Hi = Lo;
1511 } else if (Size == 64) {
1512 // gcc passes <1 x double> in memory. :(
1513 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1514 return;
1515
1516 // gcc passes <1 x long long> as INTEGER.
1517 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1518 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1519 VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1520 VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1521 Current = Integer;
1522 else
1523 Current = SSE;
1524
1525 // If this type crosses an eightbyte boundary, it should be
1526 // split.
1527 if (OffsetBase && OffsetBase != 64)
1528 Hi = Lo;
1529 } else if (Size == 128 || (HasAVX && isNamedArg && Size == 256)) {
1530 // Arguments of 256-bits are split into four eightbyte chunks. The
1531 // least significant one belongs to class SSE and all the others to class
1532 // SSEUP. The original Lo and Hi design considers that types can't be
1533 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1534 // This design isn't correct for 256-bits, but since there're no cases
1535 // where the upper parts would need to be inspected, avoid adding
1536 // complexity and just consider Hi to match the 64-256 part.
1537 //
1538 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1539 // registers if they are "named", i.e. not part of the "..." of a
1540 // variadic function.
1541 Lo = SSE;
1542 Hi = SSEUp;
1543 }
1544 return;
1545 }
1546
1547 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1548 QualType ET = getContext().getCanonicalType(CT->getElementType());
1549
1550 uint64_t Size = getContext().getTypeSize(Ty);
1551 if (ET->isIntegralOrEnumerationType()) {
1552 if (Size <= 64)
1553 Current = Integer;
1554 else if (Size <= 128)
1555 Lo = Hi = Integer;
1556 } else if (ET == getContext().FloatTy)
1557 Current = SSE;
1558 else if (ET == getContext().DoubleTy ||
1559 (ET == getContext().LongDoubleTy &&
1560 getTarget().getTriple().isOSNaCl()))
1561 Lo = Hi = SSE;
1562 else if (ET == getContext().LongDoubleTy)
1563 Current = ComplexX87;
1564
1565 // If this complex type crosses an eightbyte boundary then it
1566 // should be split.
1567 uint64_t EB_Real = (OffsetBase) / 64;
1568 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1569 if (Hi == NoClass && EB_Real != EB_Imag)
1570 Hi = Lo;
1571
1572 return;
1573 }
1574
1575 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1576 // Arrays are treated like structures.
1577
1578 uint64_t Size = getContext().getTypeSize(Ty);
1579
1580 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1581 // than four eightbytes, ..., it has class MEMORY.
1582 if (Size > 256)
1583 return;
1584
1585 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1586 // fields, it has class MEMORY.
1587 //
1588 // Only need to check alignment of array base.
1589 if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1590 return;
1591
1592 // Otherwise implement simplified merge. We could be smarter about
1593 // this, but it isn't worth it and would be harder to verify.
1594 Current = NoClass;
1595 uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1596 uint64_t ArraySize = AT->getSize().getZExtValue();
1597
1598 // The only case a 256-bit wide vector could be used is when the array
1599 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1600 // to work for sizes wider than 128, early check and fallback to memory.
1601 if (Size > 128 && EltSize != 256)
1602 return;
1603
1604 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1605 Class FieldLo, FieldHi;
1606 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1607 Lo = merge(Lo, FieldLo);
1608 Hi = merge(Hi, FieldHi);
1609 if (Lo == Memory || Hi == Memory)
1610 break;
1611 }
1612
1613 postMerge(Size, Lo, Hi);
1614 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1615 return;
1616 }
1617
1618 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1619 uint64_t Size = getContext().getTypeSize(Ty);
1620
1621 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1622 // than four eightbytes, ..., it has class MEMORY.
1623 if (Size > 256)
1624 return;
1625
1626 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1627 // copy constructor or a non-trivial destructor, it is passed by invisible
1628 // reference.
1629 if (getRecordArgABI(RT, getCXXABI()))
1630 return;
1631
1632 const RecordDecl *RD = RT->getDecl();
1633
1634 // Assume variable sized types are passed in memory.
1635 if (RD->hasFlexibleArrayMember())
1636 return;
1637
1638 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1639
1640 // Reset Lo class, this will be recomputed.
1641 Current = NoClass;
1642
1643 // If this is a C++ record, classify the bases first.
1644 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1645 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1646 e = CXXRD->bases_end(); i != e; ++i) {
1647 assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1648 "Unexpected base class!");
1649 const CXXRecordDecl *Base =
1650 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1651
1652 // Classify this field.
1653 //
1654 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1655 // single eightbyte, each is classified separately. Each eightbyte gets
1656 // initialized to class NO_CLASS.
1657 Class FieldLo, FieldHi;
1658 uint64_t Offset =
1659 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
1660 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1661 Lo = merge(Lo, FieldLo);
1662 Hi = merge(Hi, FieldHi);
1663 if (Lo == Memory || Hi == Memory)
1664 break;
1665 }
1666 }
1667
1668 // Classify the fields one at a time, merging the results.
1669 unsigned idx = 0;
1670 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1671 i != e; ++i, ++idx) {
1672 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1673 bool BitField = i->isBitField();
1674
1675 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
1676 // four eightbytes, or it contains unaligned fields, it has class MEMORY.
1677 //
1678 // The only case a 256-bit wide vector could be used is when the struct
1679 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1680 // to work for sizes wider than 128, early check and fallback to memory.
1681 //
1682 if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
1683 Lo = Memory;
1684 return;
1685 }
1686 // Note, skip this test for bit-fields, see below.
1687 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1688 Lo = Memory;
1689 return;
1690 }
1691
1692 // Classify this field.
1693 //
1694 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1695 // exceeds a single eightbyte, each is classified
1696 // separately. Each eightbyte gets initialized to class
1697 // NO_CLASS.
1698 Class FieldLo, FieldHi;
1699
1700 // Bit-fields require special handling, they do not force the
1701 // structure to be passed in memory even if unaligned, and
1702 // therefore they can straddle an eightbyte.
1703 if (BitField) {
1704 // Ignore padding bit-fields.
1705 if (i->isUnnamedBitfield())
1706 continue;
1707
1708 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1709 uint64_t Size = i->getBitWidthValue(getContext());
1710
1711 uint64_t EB_Lo = Offset / 64;
1712 uint64_t EB_Hi = (Offset + Size - 1) / 64;
1713
1714 if (EB_Lo) {
1715 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1716 FieldLo = NoClass;
1717 FieldHi = Integer;
1718 } else {
1719 FieldLo = Integer;
1720 FieldHi = EB_Hi ? Integer : NoClass;
1721 }
1722 } else
1723 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
1724 Lo = merge(Lo, FieldLo);
1725 Hi = merge(Hi, FieldHi);
1726 if (Lo == Memory || Hi == Memory)
1727 break;
1728 }
1729
1730 postMerge(Size, Lo, Hi);
1731 }
1732}
1733
1734ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1735 // If this is a scalar LLVM value then assume LLVM will pass it in the right
1736 // place naturally.
1737 if (!isAggregateTypeForABI(Ty)) {
1738 // Treat an enum type as its underlying type.
1739 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1740 Ty = EnumTy->getDecl()->getIntegerType();
1741
1742 return (Ty->isPromotableIntegerType() ?
1743 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1744 }
1745
1746 return ABIArgInfo::getIndirect(0);
1747}
1748
1749bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
1750 if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
1751 uint64_t Size = getContext().getTypeSize(VecTy);
1752 unsigned LargestVector = HasAVX ? 256 : 128;
1753 if (Size <= 64 || Size > LargestVector)
1754 return true;
1755 }
1756
1757 return false;
1758}
1759
1760ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1761 unsigned freeIntRegs) const {
1762 // If this is a scalar LLVM value then assume LLVM will pass it in the right
1763 // place naturally.
1764 //
1765 // This assumption is optimistic, as there could be free registers available
1766 // when we need to pass this argument in memory, and LLVM could try to pass
1767 // the argument in the free register. This does not seem to happen currently,
1768 // but this code would be much safer if we could mark the argument with
1769 // 'onstack'. See PR12193.
1770 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
1771 // Treat an enum type as its underlying type.
1772 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1773 Ty = EnumTy->getDecl()->getIntegerType();
1774
1775 return (Ty->isPromotableIntegerType() ?
1776 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1777 }
1778
1779 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
1780 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
1781
1782 // Compute the byval alignment. We specify the alignment of the byval in all
1783 // cases so that the mid-level optimizer knows the alignment of the byval.
1784 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
1785
1786 // Attempt to avoid passing indirect results using byval when possible. This
1787 // is important for good codegen.
1788 //
1789 // We do this by coercing the value into a scalar type which the backend can
1790 // handle naturally (i.e., without using byval).
1791 //
1792 // For simplicity, we currently only do this when we have exhausted all of the
1793 // free integer registers. Doing this when there are free integer registers
1794 // would require more care, as we would have to ensure that the coerced value
1795 // did not claim the unused register. That would require either reording the
1796 // arguments to the function (so that any subsequent inreg values came first),
1797 // or only doing this optimization when there were no following arguments that
1798 // might be inreg.
1799 //
1800 // We currently expect it to be rare (particularly in well written code) for
1801 // arguments to be passed on the stack when there are still free integer
1802 // registers available (this would typically imply large structs being passed
1803 // by value), so this seems like a fair tradeoff for now.
1804 //
1805 // We can revisit this if the backend grows support for 'onstack' parameter
1806 // attributes. See PR12193.
1807 if (freeIntRegs == 0) {
1808 uint64_t Size = getContext().getTypeSize(Ty);
1809
1810 // If this type fits in an eightbyte, coerce it into the matching integral
1811 // type, which will end up on the stack (with alignment 8).
1812 if (Align == 8 && Size <= 64)
1813 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1814 Size));
1815 }
1816
1817 return ABIArgInfo::getIndirect(Align);
1818}
1819
1820/// GetByteVectorType - The ABI specifies that a value should be passed in an
1821/// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a
1822/// vector register.
1823llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
1824 llvm::Type *IRType = CGT.ConvertType(Ty);
1825
1826 // Wrapper structs that just contain vectors are passed just like vectors,
1827 // strip them off if present.
1828 llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1829 while (STy && STy->getNumElements() == 1) {
1830 IRType = STy->getElementType(0);
1831 STy = dyn_cast<llvm::StructType>(IRType);
1832 }
1833
1834 // If the preferred type is a 16-byte vector, prefer to pass it.
1835 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1836 llvm::Type *EltTy = VT->getElementType();
1837 unsigned BitWidth = VT->getBitWidth();
1838 if ((BitWidth >= 128 && BitWidth <= 256) &&
1839 (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1840 EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1841 EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1842 EltTy->isIntegerTy(128)))
1843 return VT;
1844 }
1845
1846 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1847}
1848
1849/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1850/// is known to either be off the end of the specified type or being in
1851/// alignment padding. The user type specified is known to be at most 128 bits
1852/// in size, and have passed through X86_64ABIInfo::classify with a successful
1853/// classification that put one of the two halves in the INTEGER class.
1854///
1855/// It is conservatively correct to return false.
1856static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1857 unsigned EndBit, ASTContext &Context) {
1858 // If the bytes being queried are off the end of the type, there is no user
1859 // data hiding here. This handles analysis of builtins, vectors and other
1860 // types that don't contain interesting padding.
1861 unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1862 if (TySize <= StartBit)
1863 return true;
1864
1865 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1866 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1867 unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1868
1869 // Check each element to see if the element overlaps with the queried range.
1870 for (unsigned i = 0; i != NumElts; ++i) {
1871 // If the element is after the span we care about, then we're done..
1872 unsigned EltOffset = i*EltSize;
1873 if (EltOffset >= EndBit) break;
1874
1875 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1876 if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1877 EndBit-EltOffset, Context))
1878 return false;
1879 }
1880 // If it overlaps no elements, then it is safe to process as padding.
1881 return true;
1882 }
1883
1884 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1885 const RecordDecl *RD = RT->getDecl();
1886 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1887
1888 // If this is a C++ record, check the bases first.
1889 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1890 for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1891 e = CXXRD->bases_end(); i != e; ++i) {
1892 assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1893 "Unexpected base class!");
1894 const CXXRecordDecl *Base =
1895 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1896
1897 // If the base is after the span we care about, ignore it.
1898 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
1899 if (BaseOffset >= EndBit) continue;
1900
1901 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1902 if (!BitsContainNoUserData(i->getType(), BaseStart,
1903 EndBit-BaseOffset, Context))
1904 return false;
1905 }
1906 }
1907
1908 // Verify that no field has data that overlaps the region of interest. Yes
1909 // this could be sped up a lot by being smarter about queried fields,
1910 // however we're only looking at structs up to 16 bytes, so we don't care
1911 // much.
1912 unsigned idx = 0;
1913 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1914 i != e; ++i, ++idx) {
1915 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1916
1917 // If we found a field after the region we care about, then we're done.
1918 if (FieldOffset >= EndBit) break;
1919
1920 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1921 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1922 Context))
1923 return false;
1924 }
1925
1926 // If nothing in this record overlapped the area of interest, then we're
1927 // clean.
1928 return true;
1929 }
1930
1931 return false;
1932}
1933
1934/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1935/// float member at the specified offset. For example, {int,{float}} has a
1936/// float at offset 4. It is conservatively correct for this routine to return
1937/// false.
1938static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
1939 const llvm::DataLayout &TD) {
1940 // Base case if we find a float.
1941 if (IROffset == 0 && IRType->isFloatTy())
1942 return true;
1943
1944 // If this is a struct, recurse into the field at the specified offset.
1945 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1946 const llvm::StructLayout *SL = TD.getStructLayout(STy);
1947 unsigned Elt = SL->getElementContainingOffset(IROffset);
1948 IROffset -= SL->getElementOffset(Elt);
1949 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1950 }
1951
1952 // If this is an array, recurse into the field at the specified offset.
1953 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1954 llvm::Type *EltTy = ATy->getElementType();
1955 unsigned EltSize = TD.getTypeAllocSize(EltTy);
1956 IROffset -= IROffset/EltSize*EltSize;
1957 return ContainsFloatAtOffset(EltTy, IROffset, TD);
1958 }
1959
1960 return false;
1961}
1962
1963
1964/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1965/// low 8 bytes of an XMM register, corresponding to the SSE class.
1966llvm::Type *X86_64ABIInfo::
1967GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
1968 QualType SourceTy, unsigned SourceOffset) const {
1969 // The only three choices we have are either double, <2 x float>, or float. We
1970 // pass as float if the last 4 bytes is just padding. This happens for
1971 // structs that contain 3 floats.
1972 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1973 SourceOffset*8+64, getContext()))
1974 return llvm::Type::getFloatTy(getVMContext());
1975
1976 // We want to pass as <2 x float> if the LLVM IR type contains a float at
1977 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
1978 // case.
1979 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
1980 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
1981 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1982
1983 return llvm::Type::getDoubleTy(getVMContext());
1984}
1985
1986
1987/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1988/// an 8-byte GPR. This means that we either have a scalar or we are talking
1989/// about the high or low part of an up-to-16-byte struct. This routine picks
1990/// the best LLVM IR type to represent this, which may be i64 or may be anything
1991/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1992/// etc).
1993///
1994/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1995/// the source type. IROffset is an offset in bytes into the LLVM IR type that
1996/// the 8-byte value references. PrefType may be null.
1997///
1998/// SourceTy is the source level type for the entire argument. SourceOffset is
1999/// an offset into this that we're processing (which is always either 0 or 8).
2000///
2001llvm::Type *X86_64ABIInfo::
2002GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2003 QualType SourceTy, unsigned SourceOffset) const {
2004 // If we're dealing with an un-offset LLVM IR type, then it means that we're
2005 // returning an 8-byte unit starting with it. See if we can safely use it.
2006 if (IROffset == 0) {
2007 // Pointers and int64's always fill the 8-byte unit.
2008 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2009 IRType->isIntegerTy(64))
2010 return IRType;
2011
2012 // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2013 // goodness in the source type is just tail padding. This is allowed to
2014 // kick in for struct {double,int} on the int, but not on
2015 // struct{double,int,int} because we wouldn't return the second int. We
2016 // have to do this analysis on the source type because we can't depend on
2017 // unions being lowered a specific way etc.
2018 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2019 IRType->isIntegerTy(32) ||
2020 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2021 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2022 cast<llvm::IntegerType>(IRType)->getBitWidth();
2023
2024 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2025 SourceOffset*8+64, getContext()))
2026 return IRType;
2027 }
2028 }
2029
2030 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2031 // If this is a struct, recurse into the field at the specified offset.
2032 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2033 if (IROffset < SL->getSizeInBytes()) {
2034 unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2035 IROffset -= SL->getElementOffset(FieldIdx);
2036
2037 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2038 SourceTy, SourceOffset);
2039 }
2040 }
2041
2042 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2043 llvm::Type *EltTy = ATy->getElementType();
2044 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2045 unsigned EltOffset = IROffset/EltSize*EltSize;
2046 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2047 SourceOffset);
2048 }
2049
2050 // Okay, we don't have any better idea of what to pass, so we pass this in an
2051 // integer register that isn't too big to fit the rest of the struct.
2052 unsigned TySizeInBytes =
2053 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2054
2055 assert(TySizeInBytes != SourceOffset && "Empty field?");
2056
2057 // It is always safe to classify this as an integer type up to i64 that
2058 // isn't larger than the structure.
2059 return llvm::IntegerType::get(getVMContext(),
2060 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2061}
2062
2063
2064/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2065/// be used as elements of a two register pair to pass or return, return a
2066/// first class aggregate to represent them. For example, if the low part of
2067/// a by-value argument should be passed as i32* and the high part as float,
2068/// return {i32*, float}.
2069static llvm::Type *
2070GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2071 const llvm::DataLayout &TD) {
2072 // In order to correctly satisfy the ABI, we need to the high part to start
2073 // at offset 8. If the high and low parts we inferred are both 4-byte types
2074 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2075 // the second element at offset 8. Check for this:
2076 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2077 unsigned HiAlign = TD.getABITypeAlignment(Hi);
2078 unsigned HiStart = llvm::DataLayout::RoundUpAlignment(LoSize, HiAlign);
2079 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2080
2081 // To handle this, we have to increase the size of the low part so that the
2082 // second element will start at an 8 byte offset. We can't increase the size
2083 // of the second element because it might make us access off the end of the
2084 // struct.
2085 if (HiStart != 8) {
2086 // There are only two sorts of types the ABI generation code can produce for
2087 // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
2088 // Promote these to a larger type.
2089 if (Lo->isFloatTy())
2090 Lo = llvm::Type::getDoubleTy(Lo->getContext());
2091 else {
2092 assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
2093 Lo = llvm::Type::getInt64Ty(Lo->getContext());
2094 }
2095 }
2096
2097 llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
2098
2099
2100 // Verify that the second element is at an 8-byte offset.
2101 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2102 "Invalid x86-64 argument pair!");
2103 return Result;
2104}
2105
2106ABIArgInfo X86_64ABIInfo::
2107classifyReturnType(QualType RetTy) const {
2108 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2109 // classification algorithm.
2110 X86_64ABIInfo::Class Lo, Hi;
2111 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2112
2113 // Check some invariants.
2114 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2115 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2116
2117 llvm::Type *ResType = 0;
2118 switch (Lo) {
2119 case NoClass:
2120 if (Hi == NoClass)
2121 return ABIArgInfo::getIgnore();
2122 // If the low part is just padding, it takes no register, leave ResType
2123 // null.
2124 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2125 "Unknown missing lo part");
2126 break;
2127
2128 case SSEUp:
2129 case X87Up:
2130 llvm_unreachable("Invalid classification for lo word.");
2131
2132 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2133 // hidden argument.
2134 case Memory:
2135 return getIndirectReturnResult(RetTy);
2136
2137 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2138 // available register of the sequence %rax, %rdx is used.
2139 case Integer:
2140 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2141
2142 // If we have a sign or zero extended integer, make sure to return Extend
2143 // so that the parameter gets the right LLVM IR attributes.
2144 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2145 // Treat an enum type as its underlying type.
2146 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2147 RetTy = EnumTy->getDecl()->getIntegerType();
2148
2149 if (RetTy->isIntegralOrEnumerationType() &&
2150 RetTy->isPromotableIntegerType())
2151 return ABIArgInfo::getExtend();
2152 }
2153 break;
2154
2155 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2156 // available SSE register of the sequence %xmm0, %xmm1 is used.
2157 case SSE:
2158 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2159 break;
2160
2161 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2162 // returned on the X87 stack in %st0 as 80-bit x87 number.
2163 case X87:
2164 ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2165 break;
2166
2167 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2168 // part of the value is returned in %st0 and the imaginary part in
2169 // %st1.
2170 case ComplexX87:
2171 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2172 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2173 llvm::Type::getX86_FP80Ty(getVMContext()),
2174 NULL);
2175 break;
2176 }
2177
2178 llvm::Type *HighPart = 0;
2179 switch (Hi) {
2180 // Memory was handled previously and X87 should
2181 // never occur as a hi class.
2182 case Memory:
2183 case X87:
2184 llvm_unreachable("Invalid classification for hi word.");
2185
2186 case ComplexX87: // Previously handled.
2187 case NoClass:
2188 break;
2189
2190 case Integer:
2191 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2192 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2193 return ABIArgInfo::getDirect(HighPart, 8);
2194 break;
2195 case SSE:
2196 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2197 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2198 return ABIArgInfo::getDirect(HighPart, 8);
2199 break;
2200
2201 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2202 // is passed in the next available eightbyte chunk if the last used
2203 // vector register.
2204 //
2205 // SSEUP should always be preceded by SSE, just widen.
2206 case SSEUp:
2207 assert(Lo == SSE && "Unexpected SSEUp classification.");
2208 ResType = GetByteVectorType(RetTy);
2209 break;
2210
2211 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2212 // returned together with the previous X87 value in %st0.
2213 case X87Up:
2214 // If X87Up is preceded by X87, we don't need to do
2215 // anything. However, in some cases with unions it may not be
2216 // preceded by X87. In such situations we follow gcc and pass the
2217 // extra bits in an SSE reg.
2218 if (Lo != X87) {
2219 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2220 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2221 return ABIArgInfo::getDirect(HighPart, 8);
2222 }
2223 break;
2224 }
2225
2226 // If a high part was specified, merge it together with the low part. It is
2227 // known to pass in the high eightbyte of the result. We do this by forming a
2228 // first class struct aggregate with the high and low part: {low, high}
2229 if (HighPart)
2230 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2231
2232 return ABIArgInfo::getDirect(ResType);
2233}
2234
2235ABIArgInfo X86_64ABIInfo::classifyArgumentType(
2236 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
2237 bool isNamedArg)
2238 const
2239{
2240 X86_64ABIInfo::Class Lo, Hi;
2241 classify(Ty, 0, Lo, Hi, isNamedArg);
2242
2243 // Check some invariants.
2244 // FIXME: Enforce these by construction.
2245 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2246 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2247
2248 neededInt = 0;
2249 neededSSE = 0;
2250 llvm::Type *ResType = 0;
2251 switch (Lo) {
2252 case NoClass:
2253 if (Hi == NoClass)
2254 return ABIArgInfo::getIgnore();
2255 // If the low part is just padding, it takes no register, leave ResType
2256 // null.
2257 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2258 "Unknown missing lo part");
2259 break;
2260
2261 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2262 // on the stack.
2263 case Memory:
2264
2265 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2266 // COMPLEX_X87, it is passed in memory.
2267 case X87:
2268 case ComplexX87:
2269 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2270 ++neededInt;
2271 return getIndirectResult(Ty, freeIntRegs);
2272
2273 case SSEUp:
2274 case X87Up:
2275 llvm_unreachable("Invalid classification for lo word.");
2276
2277 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2278 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2279 // and %r9 is used.
2280 case Integer:
2281 ++neededInt;
2282
2283 // Pick an 8-byte type based on the preferred type.
2284 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2285
2286 // If we have a sign or zero extended integer, make sure to return Extend
2287 // so that the parameter gets the right LLVM IR attributes.
2288 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2289 // Treat an enum type as its underlying type.
2290 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2291 Ty = EnumTy->getDecl()->getIntegerType();
2292
2293 if (Ty->isIntegralOrEnumerationType() &&
2294 Ty->isPromotableIntegerType())
2295 return ABIArgInfo::getExtend();
2296 }
2297
2298 break;
2299
2300 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2301 // available SSE register is used, the registers are taken in the
2302 // order from %xmm0 to %xmm7.
2303 case SSE: {
2304 llvm::Type *IRType = CGT.ConvertType(Ty);
2305 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2306 ++neededSSE;
2307 break;
2308 }
2309 }
2310
2311 llvm::Type *HighPart = 0;
2312 switch (Hi) {
2313 // Memory was handled previously, ComplexX87 and X87 should
2314 // never occur as hi classes, and X87Up must be preceded by X87,
2315 // which is passed in memory.
2316 case Memory:
2317 case X87:
2318 case ComplexX87:
2319 llvm_unreachable("Invalid classification for hi word.");
2320
2321 case NoClass: break;
2322
2323 case Integer:
2324 ++neededInt;
2325 // Pick an 8-byte type based on the preferred type.
2326 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2327
2328 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2329 return ABIArgInfo::getDirect(HighPart, 8);
2330 break;
2331
2332 // X87Up generally doesn't occur here (long double is passed in
2333 // memory), except in situations involving unions.
2334 case X87Up:
2335 case SSE:
2336 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2337
2338 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2339 return ABIArgInfo::getDirect(HighPart, 8);
2340
2341 ++neededSSE;
2342 break;
2343
2344 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2345 // eightbyte is passed in the upper half of the last used SSE
2346 // register. This only happens when 128-bit vectors are passed.
2347 case SSEUp:
2348 assert(Lo == SSE && "Unexpected SSEUp classification");
2349 ResType = GetByteVectorType(Ty);
2350 break;
2351 }
2352
2353 // If a high part was specified, merge it together with the low part. It is
2354 // known to pass in the high eightbyte of the result. We do this by forming a
2355 // first class struct aggregate with the high and low part: {low, high}
2356 if (HighPart)
2357 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2358
2359 return ABIArgInfo::getDirect(ResType);
2360}
2361
2362void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2363
2364 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2365
2366 // Keep track of the number of assigned registers.
2367 unsigned freeIntRegs = 6, freeSSERegs = 8;
2368
2369 // If the return value is indirect, then the hidden argument is consuming one
2370 // integer register.
2371 if (FI.getReturnInfo().isIndirect())
2372 --freeIntRegs;
2373
2374 bool isVariadic = FI.isVariadic();
2375 unsigned numRequiredArgs = 0;
2376 if (isVariadic)
2377 numRequiredArgs = FI.getRequiredArgs().getNumRequiredArgs();
2378
2379 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2380 // get assigned (in left-to-right order) for passing as follows...
2381 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2382 it != ie; ++it) {
2383 bool isNamedArg = true;
2384 if (isVariadic)
2385 isNamedArg = (it - FI.arg_begin()) <
2386 static_cast<signed>(numRequiredArgs);
2387
2388 unsigned neededInt, neededSSE;
2389 it->info = classifyArgumentType(it->type, freeIntRegs, neededInt,
2390 neededSSE, isNamedArg);
2391
2392 // AMD64-ABI 3.2.3p3: If there are no registers available for any
2393 // eightbyte of an argument, the whole argument is passed on the
2394 // stack. If registers have already been assigned for some
2395 // eightbytes of such an argument, the assignments get reverted.
2396 if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
2397 freeIntRegs -= neededInt;
2398 freeSSERegs -= neededSSE;
2399 } else {
2400 it->info = getIndirectResult(it->type, freeIntRegs);
2401 }
2402 }
2403}
2404
2405static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
2406 QualType Ty,
2407 CodeGenFunction &CGF) {
2408 llvm::Value *overflow_arg_area_p =
2409 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2410 llvm::Value *overflow_arg_area =
2411 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2412
2413 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2414 // byte boundary if alignment needed by type exceeds 8 byte boundary.
2415 // It isn't stated explicitly in the standard, but in practice we use
2416 // alignment greater than 16 where necessary.
2417 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
2418 if (Align > 8) {
2419 // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
2420 llvm::Value *Offset =
2421 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
2422 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
2423 llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
2424 CGF.Int64Ty);
2425 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
2426 overflow_arg_area =
2427 CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
2428 overflow_arg_area->getType(),
2429 "overflow_arg_area.align");
2430 }
2431
2432 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2433 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2434 llvm::Value *Res =
2435 CGF.Builder.CreateBitCast(overflow_arg_area,
2436 llvm::PointerType::getUnqual(LTy));
2437
2438 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2439 // l->overflow_arg_area + sizeof(type).
2440 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2441 // an 8 byte boundary.
2442
2443 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2444 llvm::Value *Offset =
2445 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
2446 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
2447 "overflow_arg_area.next");
2448 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2449
2450 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2451 return Res;
2452}
2453
2454llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2455 CodeGenFunction &CGF) const {
2456 // Assume that va_list type is correct; should be pointer to LLVM type:
2457 // struct {
2458 // i32 gp_offset;
2459 // i32 fp_offset;
2460 // i8* overflow_arg_area;
2461 // i8* reg_save_area;
2462 // };
2463 unsigned neededInt, neededSSE;
2464
2465 Ty = CGF.getContext().getCanonicalType(Ty);
2466 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2467 /*isNamedArg*/false);
2468
2469 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2470 // in the registers. If not go to step 7.
2471 if (!neededInt && !neededSSE)
2472 return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2473
2474 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2475 // general purpose registers needed to pass type and num_fp to hold
2476 // the number of floating point registers needed.
2477
2478 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2479 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2480 // l->fp_offset > 304 - num_fp * 16 go to step 7.
2481 //
2482 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
2483 // register save space).
2484
2485 llvm::Value *InRegs = 0;
2486 llvm::Value *gp_offset_p = 0, *gp_offset = 0;
2487 llvm::Value *fp_offset_p = 0, *fp_offset = 0;
2488 if (neededInt) {
2489 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
2490 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
2491 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
2492 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
2493 }
2494
2495 if (neededSSE) {
2496 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
2497 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
2498 llvm::Value *FitsInFP =
2499 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2500 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2501 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2502 }
2503
2504 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2505 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2506 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2507 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2508
2509 // Emit code to load the value if it was passed in registers.
2510
2511 CGF.EmitBlock(InRegBlock);
2512
2513 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2514 // an offset of l->gp_offset and/or l->fp_offset. This may require
2515 // copying to a temporary location in case the parameter is passed
2516 // in different register classes or requires an alignment greater
2517 // than 8 for general purpose registers and 16 for XMM registers.
2518 //
2519 // FIXME: This really results in shameful code when we end up needing to
2520 // collect arguments from different places; often what should result in a
2521 // simple assembling of a structure from scattered addresses has many more
2522 // loads than necessary. Can we clean this up?
2523 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2524 llvm::Value *RegAddr =
2525 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2526 "reg_save_area");
2527 if (neededInt && neededSSE) {
2528 // FIXME: Cleanup.
2529 assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2530 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2531 llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2532 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2533 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2534 llvm::Type *TyLo = ST->getElementType(0);
2535 llvm::Type *TyHi = ST->getElementType(1);
2536 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2537 "Unexpected ABI info for mixed regs");
2538 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2539 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2540 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2541 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2542 llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2543 llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2544 llvm::Value *V =
2545 CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2546 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2547 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2548 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2549
2550 RegAddr = CGF.Builder.CreateBitCast(Tmp,
2551 llvm::PointerType::getUnqual(LTy));
2552 } else if (neededInt) {
2553 RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2554 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2555 llvm::PointerType::getUnqual(LTy));
2556
2557 // Copy to a temporary if necessary to ensure the appropriate alignment.
2558 std::pair<CharUnits, CharUnits> SizeAlign =
2559 CGF.getContext().getTypeInfoInChars(Ty);
2560 uint64_t TySize = SizeAlign.first.getQuantity();
2561 unsigned TyAlign = SizeAlign.second.getQuantity();
2562 if (TyAlign > 8) {
2563 llvm::Value *Tmp = CGF.CreateMemTemp(Ty);
2564 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, 8, false);
2565 RegAddr = Tmp;
2566 }
2567 } else if (neededSSE == 1) {
2568 RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2569 RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2570 llvm::PointerType::getUnqual(LTy));
2571 } else {
2572 assert(neededSSE == 2 && "Invalid number of needed registers!");
2573 // SSE registers are spaced 16 bytes apart in the register save
2574 // area, we need to collect the two eightbytes together.
2575 llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2576 llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2577 llvm::Type *DoubleTy = CGF.DoubleTy;
2578 llvm::Type *DblPtrTy =
2579 llvm::PointerType::getUnqual(DoubleTy);
2580 llvm::StructType *ST = llvm::StructType::get(DoubleTy, DoubleTy, NULL);
2581 llvm::Value *V, *Tmp = CGF.CreateMemTemp(Ty);
2582 Tmp = CGF.Builder.CreateBitCast(Tmp, ST->getPointerTo());
2583 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2584 DblPtrTy));
2585 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2586 V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2587 DblPtrTy));
2588 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2589 RegAddr = CGF.Builder.CreateBitCast(Tmp,
2590 llvm::PointerType::getUnqual(LTy));
2591 }
2592
2593 // AMD64-ABI 3.5.7p5: Step 5. Set:
2594 // l->gp_offset = l->gp_offset + num_gp * 8
2595 // l->fp_offset = l->fp_offset + num_fp * 16.
2596 if (neededInt) {
2597 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2598 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2599 gp_offset_p);
2600 }
2601 if (neededSSE) {
2602 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2603 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2604 fp_offset_p);
2605 }
2606 CGF.EmitBranch(ContBlock);
2607
2608 // Emit code to load the value if it was passed in memory.
2609
2610 CGF.EmitBlock(InMemBlock);
2611 llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2612
2613 // Return the appropriate result.
2614
2615 CGF.EmitBlock(ContBlock);
2616 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2617 "vaarg.addr");
2618 ResAddr->addIncoming(RegAddr, InRegBlock);
2619 ResAddr->addIncoming(MemAddr, InMemBlock);
2620 return ResAddr;
2621}
2622
2623ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, bool IsReturnType) const {
2624
2625 if (Ty->isVoidType())
2626 return ABIArgInfo::getIgnore();
2627
2628 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2629 Ty = EnumTy->getDecl()->getIntegerType();
2630
2631 uint64_t Size = getContext().getTypeSize(Ty);
2632
2633 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2634 if (IsReturnType) {
2635 if (isRecordReturnIndirect(RT, getCXXABI()))
2636 return ABIArgInfo::getIndirect(0, false);
2637 } else {
2638 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
2639 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2640 }
2641
2642 if (RT->getDecl()->hasFlexibleArrayMember())
2643 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2644
2645 // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2646 if (Size == 128 && getTarget().getTriple().getOS() == llvm::Triple::MinGW32)
2647 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2648 Size));
2649
2650 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2651 // not 1, 2, 4, or 8 bytes, must be passed by reference."
2652 if (Size <= 64 &&
2653 (Size & (Size - 1)) == 0)
2654 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2655 Size));
2656
2657 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2658 }
2659
2660 if (Ty->isPromotableIntegerType())
2661 return ABIArgInfo::getExtend();
2662
2663 return ABIArgInfo::getDirect();
2664}
2665
2666void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2667
2668 QualType RetTy = FI.getReturnType();
2669 FI.getReturnInfo() = classify(RetTy, true);
2670
2671 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2672 it != ie; ++it)
2673 it->info = classify(it->type, false);
2674}
2675
2676llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2677 CodeGenFunction &CGF) const {
2678 llvm::Type *BPP = CGF.Int8PtrPtrTy;
2679
2680 CGBuilderTy &Builder = CGF.Builder;
2681 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2682 "ap");
2683 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2684 llvm::Type *PTy =
2685 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2686 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2687
2688 uint64_t Offset =
2689 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2690 llvm::Value *NextAddr =
2691 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2692 "ap.next");
2693 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2694
2695 return AddrTyped;
2696}
2697
2698namespace {
2699
2700class NaClX86_64ABIInfo : public ABIInfo {
2701 public:
2702 NaClX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2703 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, HasAVX) {}
2704 virtual void computeInfo(CGFunctionInfo &FI) const;
2705 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2706 CodeGenFunction &CGF) const;
2707 private:
2708 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
2709 X86_64ABIInfo NInfo; // Used for everything else.
2710};
2711
2712class NaClX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2713 public:
2714 NaClX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
2715 : TargetCodeGenInfo(new NaClX86_64ABIInfo(CGT, HasAVX)) {}
2716};
2717
2718}
2719
2720void NaClX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2721 if (FI.getASTCallingConvention() == CC_PnaclCall)
2722 PInfo.computeInfo(FI);
2723 else
2724 NInfo.computeInfo(FI);
2725}
2726
2727llvm::Value *NaClX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2728 CodeGenFunction &CGF) const {
2729 // Always use the native convention; calling pnacl-style varargs functions
2730 // is unuspported.
2731 return NInfo.EmitVAArg(VAListAddr, Ty, CGF);
2732}
2733
2734
2735// PowerPC-32
2736
2737namespace {
2738class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2739public:
2740 PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2741
2742 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2743 // This is recovered from gcc output.
2744 return 1; // r1 is the dedicated stack pointer
2745 }
2746
2747 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2748 llvm::Value *Address) const;
2749};
2750
2751}
2752
2753bool
2754PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2755 llvm::Value *Address) const {
2756 // This is calculated from the LLVM and GCC tables and verified
2757 // against gcc output. AFAIK all ABIs use the same encoding.
2758
2759 CodeGen::CGBuilderTy &Builder = CGF.Builder;
2760
2761 llvm::IntegerType *i8 = CGF.Int8Ty;
2762 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2763 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2764 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2765
2766 // 0-31: r0-31, the 4-byte general-purpose registers
2767 AssignToArrayRange(Builder, Address, Four8, 0, 31);
2768
2769 // 32-63: fp0-31, the 8-byte floating-point registers
2770 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2771
2772 // 64-76 are various 4-byte special-purpose registers:
2773 // 64: mq
2774 // 65: lr
2775 // 66: ctr
2776 // 67: ap
2777 // 68-75 cr0-7
2778 // 76: xer
2779 AssignToArrayRange(Builder, Address, Four8, 64, 76);
2780
2781 // 77-108: v0-31, the 16-byte vector registers
2782 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2783
2784 // 109: vrsave
2785 // 110: vscr
2786 // 111: spe_acc
2787 // 112: spefscr
2788 // 113: sfp
2789 AssignToArrayRange(Builder, Address, Four8, 109, 113);
2790
2791 return false;
2792}
2793
2794// PowerPC-64
2795
2796namespace {
2797/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
2798class PPC64_SVR4_ABIInfo : public DefaultABIInfo {
2799
2800public:
2801 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
2802
2803 bool isPromotableTypeForABI(QualType Ty) const;
2804
2805 ABIArgInfo classifyReturnType(QualType RetTy) const;
2806 ABIArgInfo classifyArgumentType(QualType Ty) const;
2807
2808 // TODO: We can add more logic to computeInfo to improve performance.
2809 // Example: For aggregate arguments that fit in a register, we could
2810 // use getDirectInReg (as is done below for structs containing a single
2811 // floating-point value) to avoid pushing them to memory on function
2812 // entry. This would require changing the logic in PPCISelLowering
2813 // when lowering the parameters in the caller and args in the callee.
2814 virtual void computeInfo(CGFunctionInfo &FI) const {
2815 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2816 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2817 it != ie; ++it) {
2818 // We rely on the default argument classification for the most part.
2819 // One exception: An aggregate containing a single floating-point
2820 // or vector item must be passed in a register if one is available.
2821 const Type *T = isSingleElementStruct(it->type, getContext());
2822 if (T) {
2823 const BuiltinType *BT = T->getAs<BuiltinType>();
2824 if (T->isVectorType() || (BT && BT->isFloatingPoint())) {
2825 QualType QT(T, 0);
2826 it->info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
2827 continue;
2828 }
2829 }
2830 it->info = classifyArgumentType(it->type);
2831 }
2832 }
2833
2834 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr,
2835 QualType Ty,
2836 CodeGenFunction &CGF) const;
2837};
2838
2839class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
2840public:
2841 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT)
2842 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT)) {}
2843
2844 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2845 // This is recovered from gcc output.
2846 return 1; // r1 is the dedicated stack pointer
2847 }
2848
2849 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2850 llvm::Value *Address) const;
2851};
2852
2853class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2854public:
2855 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2856
2857 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2858 // This is recovered from gcc output.
2859 return 1; // r1 is the dedicated stack pointer
2860 }
2861
2862 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2863 llvm::Value *Address) const;
2864};
2865
2866}
2867
2868// Return true if the ABI requires Ty to be passed sign- or zero-
2869// extended to 64 bits.
2870bool
2871PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
2872 // Treat an enum type as its underlying type.
2873 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2874 Ty = EnumTy->getDecl()->getIntegerType();
2875
2876 // Promotable integer types are required to be promoted by the ABI.
2877 if (Ty->isPromotableIntegerType())
2878 return true;
2879
2880 // In addition to the usual promotable integer types, we also need to
2881 // extend all 32-bit types, since the ABI requires promotion to 64 bits.
2882 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2883 switch (BT->getKind()) {
2884 case BuiltinType::Int:
2885 case BuiltinType::UInt:
2886 return true;
2887 default:
2888 break;
2889 }
2890
2891 return false;
2892}
2893
2894ABIArgInfo
2895PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
2896 if (Ty->isAnyComplexType())
2897 return ABIArgInfo::getDirect();
2898
2899 if (isAggregateTypeForABI(Ty)) {
2900 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2901 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
2902
2903 return ABIArgInfo::getIndirect(0);
2904 }
2905
2906 return (isPromotableTypeForABI(Ty) ?
2907 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2908}
2909
2910ABIArgInfo
2911PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
2912 if (RetTy->isVoidType())
2913 return ABIArgInfo::getIgnore();
2914
2915 if (RetTy->isAnyComplexType())
2916 return ABIArgInfo::getDirect();
2917
2918 if (isAggregateTypeForABI(RetTy))
2919 return ABIArgInfo::getIndirect(0);
2920
2921 return (isPromotableTypeForABI(RetTy) ?
2922 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2923}
2924
2925// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
2926llvm::Value *PPC64_SVR4_ABIInfo::EmitVAArg(llvm::Value *VAListAddr,
2927 QualType Ty,
2928 CodeGenFunction &CGF) const {
2929 llvm::Type *BP = CGF.Int8PtrTy;
2930 llvm::Type *BPP = CGF.Int8PtrPtrTy;
2931
2932 CGBuilderTy &Builder = CGF.Builder;
2933 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
2934 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2935
2936 // Update the va_list pointer. The pointer should be bumped by the
2937 // size of the object. We can trust getTypeSize() except for a complex
2938 // type whose base type is smaller than a doubleword. For these, the
2939 // size of the object is 16 bytes; see below for further explanation.
2940 unsigned SizeInBytes = CGF.getContext().getTypeSize(Ty) / 8;
2941 QualType BaseTy;
2942 unsigned CplxBaseSize = 0;
2943
2944 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
2945 BaseTy = CTy->getElementType();
2946 CplxBaseSize = CGF.getContext().getTypeSize(BaseTy) / 8;
2947 if (CplxBaseSize < 8)
2948 SizeInBytes = 16;
2949 }
2950
2951 unsigned Offset = llvm::RoundUpToAlignment(SizeInBytes, 8);
2952 llvm::Value *NextAddr =
2953 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int64Ty, Offset),
2954 "ap.next");
2955 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2956
2957 // If we have a complex type and the base type is smaller than 8 bytes,
2958 // the ABI calls for the real and imaginary parts to be right-adjusted
2959 // in separate doublewords. However, Clang expects us to produce a
2960 // pointer to a structure with the two parts packed tightly. So generate
2961 // loads of the real and imaginary parts relative to the va_list pointer,
2962 // and store them to a temporary structure.
2963 if (CplxBaseSize && CplxBaseSize < 8) {
2964 llvm::Value *RealAddr = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2965 llvm::Value *ImagAddr = RealAddr;
2966 RealAddr = Builder.CreateAdd(RealAddr, Builder.getInt64(8 - CplxBaseSize));
2967 ImagAddr = Builder.CreateAdd(ImagAddr, Builder.getInt64(16 - CplxBaseSize));
2968 llvm::Type *PBaseTy = llvm::PointerType::getUnqual(CGF.ConvertType(BaseTy));
2969 RealAddr = Builder.CreateIntToPtr(RealAddr, PBaseTy);
2970 ImagAddr = Builder.CreateIntToPtr(ImagAddr, PBaseTy);
2971 llvm::Value *Real = Builder.CreateLoad(RealAddr, false, ".vareal");
2972 llvm::Value *Imag = Builder.CreateLoad(ImagAddr, false, ".vaimag");
2973 llvm::Value *Ptr = CGF.CreateTempAlloca(CGT.ConvertTypeForMem(Ty),
2974 "vacplx");
2975 llvm::Value *RealPtr = Builder.CreateStructGEP(Ptr, 0, ".real");
2976 llvm::Value *ImagPtr = Builder.CreateStructGEP(Ptr, 1, ".imag");
2977 Builder.CreateStore(Real, RealPtr, false);
2978 Builder.CreateStore(Imag, ImagPtr, false);
2979 return Ptr;
2980 }
2981
2982 // If the argument is smaller than 8 bytes, it is right-adjusted in
2983 // its doubleword slot. Adjust the pointer to pick it up from the
2984 // correct offset.
2985 if (SizeInBytes < 8) {
2986 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int64Ty);
2987 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt64(8 - SizeInBytes));
2988 Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
2989 }
2990
2991 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2992 return Builder.CreateBitCast(Addr, PTy);
2993}
2994
2995static bool
2996PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2997 llvm::Value *Address) {
2998 // This is calculated from the LLVM and GCC tables and verified
2999 // against gcc output. AFAIK all ABIs use the same encoding.
3000
3001 CodeGen::CGBuilderTy &Builder = CGF.Builder;
3002
3003 llvm::IntegerType *i8 = CGF.Int8Ty;
3004 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
3005 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
3006 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
3007
3008 // 0-31: r0-31, the 8-byte general-purpose registers
3009 AssignToArrayRange(Builder, Address, Eight8, 0, 31);
3010
3011 // 32-63: fp0-31, the 8-byte floating-point registers
3012 AssignToArrayRange(Builder, Address, Eight8, 32, 63);
3013
3014 // 64-76 are various 4-byte special-purpose registers:
3015 // 64: mq
3016 // 65: lr
3017 // 66: ctr
3018 // 67: ap
3019 // 68-75 cr0-7
3020 // 76: xer
3021 AssignToArrayRange(Builder, Address, Four8, 64, 76);
3022
3023 // 77-108: v0-31, the 16-byte vector registers
3024 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
3025
3026 // 109: vrsave
3027 // 110: vscr
3028 // 111: spe_acc
3029 // 112: spefscr
3030 // 113: sfp
3031 AssignToArrayRange(Builder, Address, Four8, 109, 113);
3032
3033 return false;
3034}
3035
3036bool
3037PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
3038 CodeGen::CodeGenFunction &CGF,
3039 llvm::Value *Address) const {
3040
3041 return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3042}
3043
3044bool
3045PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3046 llvm::Value *Address) const {
3047
3048 return PPC64_initDwarfEHRegSizeTable(CGF, Address);
3049}
3050
3051//===----------------------------------------------------------------------===//
3052// ARM ABI Implementation
3053//===----------------------------------------------------------------------===//
3054
3055namespace {
3056
3057class ARMABIInfo : public ABIInfo {
3058public:
3059 enum ABIKind {
3060 APCS = 0,
3061 AAPCS = 1,
3062 AAPCS_VFP
3063 };
3064
3065private:
3066 ABIKind Kind;
3067
3068public:
3069 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {
3070 setRuntimeCC();
3071 }
3072
3073 bool isEABI() const {
3074 StringRef Env = getTarget().getTriple().getEnvironmentName();
3075 return (Env == "gnueabi" || Env == "eabi" ||
3076 Env == "android" || Env == "androideabi");
3077 }
3078
3079 ABIKind getABIKind() const { return Kind; }
3080
3081private:
3082 ABIArgInfo classifyReturnType(QualType RetTy) const;
3083 ABIArgInfo classifyArgumentType(QualType RetTy, int *VFPRegs,
3084 unsigned &AllocatedVFP,
3085 bool &IsHA) const;
3086 bool isIllegalVectorType(QualType Ty) const;
3087
3088 virtual void computeInfo(CGFunctionInfo &FI) const;
3089
3090 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3091 CodeGenFunction &CGF) const;
3092
3093 llvm::CallingConv::ID getLLVMDefaultCC() const;
3094 llvm::CallingConv::ID getABIDefaultCC() const;
3095 void setRuntimeCC();
3096};
3097
3098class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
3099public:
3100 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
3101 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
3102
3103 const ARMABIInfo &getABIInfo() const {
3104 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
3105 }
3106
3107 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3108 return 13;
3109 }
3110
3111 StringRef getARCRetainAutoreleasedReturnValueMarker() const {
3112 return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
3113 }
3114
3115 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3116 llvm::Value *Address) const {
3117 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
3118
3119 // 0-15 are the 16 integer registers.
3120 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
3121 return false;
3122 }
3123
3124 unsigned getSizeOfUnwindException() const {
3125 if (getABIInfo().isEABI()) return 88;
3126 return TargetCodeGenInfo::getSizeOfUnwindException();
3127 }
3128
3129 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
3130 CodeGen::CodeGenModule &CGM) const {
3131 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3132 if (!FD)
3133 return;
3134
3135 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
3136 if (!Attr)
3137 return;
3138
3139 const char *Kind;
3140 switch (Attr->getInterrupt()) {
3141 case ARMInterruptAttr::Generic: Kind = ""; break;
3142 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break;
3143 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break;
3144 case ARMInterruptAttr::SWI: Kind = "SWI"; break;
3145 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break;
3146 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break;
3147 }
3148
3149 llvm::Function *Fn = cast<llvm::Function>(GV);
3150
3151 Fn->addFnAttr("interrupt", Kind);
3152
3153 if (cast<ARMABIInfo>(getABIInfo()).getABIKind() == ARMABIInfo::APCS)
3154 return;
3155
3156 // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
3157 // however this is not necessarily true on taking any interrupt. Instruct
3158 // the backend to perform a realignment as part of the function prologue.
3159 llvm::AttrBuilder B;
3160 B.addStackAlignmentAttr(8);
3161 Fn->addAttributes(llvm::AttributeSet::FunctionIndex,
3162 llvm::AttributeSet::get(CGM.getLLVMContext(),
3163 llvm::AttributeSet::FunctionIndex,
3164 B));
3165 }
3166
3167};
3168
3169}
3170
3171void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3172 // To correctly handle Homogeneous Aggregate, we need to keep track of the
3173 // VFP registers allocated so far.
3174 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3175 // VFP registers of the appropriate type unallocated then the argument is
3176 // allocated to the lowest-numbered sequence of such registers.
3177 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3178 // unallocated are marked as unavailable.
3179 unsigned AllocatedVFP = 0;
3180 int VFPRegs[16] = { 0 };
3181 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3182 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3183 it != ie; ++it) {
3184 unsigned PreAllocation = AllocatedVFP;
3185 bool IsHA = false;
3186 // 6.1.2.3 There is one VFP co-processor register class using registers
3187 // s0-s15 (d0-d7) for passing arguments.
3188 const unsigned NumVFPs = 16;
3189 it->info = classifyArgumentType(it->type, VFPRegs, AllocatedVFP, IsHA);
3190 // If we do not have enough VFP registers for the HA, any VFP registers
3191 // that are unallocated are marked as unavailable. To achieve this, we add
3192 // padding of (NumVFPs - PreAllocation) floats.
3193 if (IsHA && AllocatedVFP > NumVFPs && PreAllocation < NumVFPs) {
3194 llvm::Type *PaddingTy = llvm::ArrayType::get(
3195 llvm::Type::getFloatTy(getVMContext()), NumVFPs - PreAllocation);
3196 it->info = ABIArgInfo::getExpandWithPadding(false, PaddingTy);
3197 }
3198 }
3199
3200 // Always honor user-specified calling convention.
3201 if (FI.getCallingConvention() != llvm::CallingConv::C)
3202 return;
3203
3204 llvm::CallingConv::ID cc = getRuntimeCC();
3205 if (cc != llvm::CallingConv::C)
3206 FI.setEffectiveCallingConvention(cc);
3207}
3208
3209/// Return the default calling convention that LLVM will use.
3210llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
3211 // The default calling convention that LLVM will infer.
3212 if (getTarget().getTriple().getEnvironmentName()=="gnueabihf")
3213 return llvm::CallingConv::ARM_AAPCS_VFP;
3214 else if (isEABI())
3215 return llvm::CallingConv::ARM_AAPCS;
3216 else
3217 return llvm::CallingConv::ARM_APCS;
3218}
3219
3220/// Return the calling convention that our ABI would like us to use
3221/// as the C calling convention.
3222llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
3223 switch (getABIKind()) {
3224 case APCS: return llvm::CallingConv::ARM_APCS;
3225 case AAPCS: return llvm::CallingConv::ARM_AAPCS;
3226 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
3227 }
3228 llvm_unreachable("bad ABI kind");
3229}
3230
3231void ARMABIInfo::setRuntimeCC() {
3232 assert(getRuntimeCC() == llvm::CallingConv::C);
3233
3234 // Don't muddy up the IR with a ton of explicit annotations if
3235 // they'd just match what LLVM will infer from the triple.
3236 llvm::CallingConv::ID abiCC = getABIDefaultCC();
3237 if (abiCC != getLLVMDefaultCC())
3238 RuntimeCC = abiCC;
3239}
3240
3241/// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
3242/// aggregate. If HAMembers is non-null, the number of base elements
3243/// contained in the type is returned through it; this is used for the
3244/// recursive calls that check aggregate component types.
3245static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
3246 ASTContext &Context,
3247 uint64_t *HAMembers = 0) {
3248 uint64_t Members = 0;
3249 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3250 if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
3251 return false;
3252 Members *= AT->getSize().getZExtValue();
3253 } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
3254 const RecordDecl *RD = RT->getDecl();
3255 if (RD->hasFlexibleArrayMember())
3256 return false;
3257
3258 Members = 0;
3259 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3260 i != e; ++i) {
3261 const FieldDecl *FD = *i;
3262 uint64_t FldMembers;
3263 if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
3264 return false;
3265
3266 Members = (RD->isUnion() ?
3267 std::max(Members, FldMembers) : Members + FldMembers);
3268 }
3269 } else {
3270 Members = 1;
3271 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
3272 Members = 2;
3273 Ty = CT->getElementType();
3274 }
3275
3276 // Homogeneous aggregates for AAPCS-VFP must have base types of float,
3277 // double, or 64-bit or 128-bit vectors.
3278 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3279 if (BT->getKind() != BuiltinType::Float &&
3280 BT->getKind() != BuiltinType::Double &&
3281 BT->getKind() != BuiltinType::LongDouble)
3282 return false;
3283 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
3284 unsigned VecSize = Context.getTypeSize(VT);
3285 if (VecSize != 64 && VecSize != 128)
3286 return false;
3287 } else {
3288 return false;
3289 }
3290
3291 // The base type must be the same for all members. Vector types of the
3292 // same total size are treated as being equivalent here.
3293 const Type *TyPtr = Ty.getTypePtr();
3294 if (!Base)
3295 Base = TyPtr;
3296 if (Base != TyPtr &&
3297 (!Base->isVectorType() || !TyPtr->isVectorType() ||
3298 Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
3299 return false;
3300 }
3301
3302 // Homogeneous Aggregates can have at most 4 members of the base type.
3303 if (HAMembers)
3304 *HAMembers = Members;
3305
3306 return (Members > 0 && Members <= 4);
3307}
3308
3309/// markAllocatedVFPs - update VFPRegs according to the alignment and
3310/// number of VFP registers (unit is S register) requested.
3311static void markAllocatedVFPs(int *VFPRegs, unsigned &AllocatedVFP,
3312 unsigned Alignment,
3313 unsigned NumRequired) {
3314 // Early Exit.
3315 if (AllocatedVFP >= 16)
3316 return;
3317 // C.1.vfp If the argument is a VFP CPRC and there are sufficient consecutive
3318 // VFP registers of the appropriate type unallocated then the argument is
3319 // allocated to the lowest-numbered sequence of such registers.
3320 for (unsigned I = 0; I < 16; I += Alignment) {
3321 bool FoundSlot = true;
3322 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3323 if (J >= 16 || VFPRegs[J]) {
3324 FoundSlot = false;
3325 break;
3326 }
3327 if (FoundSlot) {
3328 for (unsigned J = I, JEnd = I + NumRequired; J < JEnd; J++)
3329 VFPRegs[J] = 1;
3330 AllocatedVFP += NumRequired;
3331 return;
3332 }
3333 }
3334 // C.2.vfp If the argument is a VFP CPRC then any VFP registers that are
3335 // unallocated are marked as unavailable.
3336 for (unsigned I = 0; I < 16; I++)
3337 VFPRegs[I] = 1;
3338 AllocatedVFP = 17; // We do not have enough VFP registers.
3339}
3340
3341ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, int *VFPRegs,
3342 unsigned &AllocatedVFP,
3343 bool &IsHA) const {
3344 // We update number of allocated VFPs according to
3345 // 6.1.2.1 The following argument types are VFP CPRCs:
3346 // A single-precision floating-point type (including promoted
3347 // half-precision types); A double-precision floating-point type;
3348 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
3349 // with a Base Type of a single- or double-precision floating-point type,
3350 // 64-bit containerized vectors or 128-bit containerized vectors with one
3351 // to four Elements.
3352
3353 // Handle illegal vector types here.
3354 if (isIllegalVectorType(Ty)) {
3355 uint64_t Size = getContext().getTypeSize(Ty);
3356 if (Size <= 32) {
3357 llvm::Type *ResType =
3358 llvm::Type::getInt32Ty(getVMContext());
3359 return ABIArgInfo::getDirect(ResType);
3360 }
3361 if (Size == 64) {
3362 llvm::Type *ResType = llvm::VectorType::get(
3363 llvm::Type::getInt32Ty(getVMContext()), 2);
3364 markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3365 return ABIArgInfo::getDirect(ResType);
3366 }
3367 if (Size == 128) {
3368 llvm::Type *ResType = llvm::VectorType::get(
3369 llvm::Type::getInt32Ty(getVMContext()), 4);
3370 markAllocatedVFPs(VFPRegs, AllocatedVFP, 4, 4);
3371 return ABIArgInfo::getDirect(ResType);
3372 }
3373 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3374 }
3375 // Update VFPRegs for legal vector types.
3376 if (const VectorType *VT = Ty->getAs<VectorType>()) {
3377 uint64_t Size = getContext().getTypeSize(VT);
3378 // Size of a legal vector should be power of 2 and above 64.
3379 markAllocatedVFPs(VFPRegs, AllocatedVFP, Size >= 128 ? 4 : 2, Size / 32);
3380 }
3381 // Update VFPRegs for floating point types.
3382 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3383 if (BT->getKind() == BuiltinType::Half ||
3384 BT->getKind() == BuiltinType::Float)
3385 markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, 1);
3386 if (BT->getKind() == BuiltinType::Double ||
3387 BT->getKind() == BuiltinType::LongDouble)
3388 markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, 2);
3389 }
3390
3391 if (!isAggregateTypeForABI(Ty)) {
3392 // Treat an enum type as its underlying type.
3393 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3394 Ty = EnumTy->getDecl()->getIntegerType();
3395
3396 return (Ty->isPromotableIntegerType() ?
3397 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3398 }
3399
3400 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3401 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3402
3403 // Ignore empty records.
3404 if (isEmptyRecord(getContext(), Ty, true))
3405 return ABIArgInfo::getIgnore();
3406
3407 if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
3408 // Homogeneous Aggregates need to be expanded when we can fit the aggregate
3409 // into VFP registers.
3410 const Type *Base = 0;
3411 uint64_t Members = 0;
3412 if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
3413 assert(Base && "Base class should be set for homogeneous aggregate");
3414 // Base can be a floating-point or a vector.
3415 if (Base->isVectorType()) {
3416 // ElementSize is in number of floats.
3417 unsigned ElementSize = getContext().getTypeSize(Base) == 64 ? 2 : 4;
3418 markAllocatedVFPs(VFPRegs, AllocatedVFP, ElementSize,
3419 Members * ElementSize);
3420 } else if (Base->isSpecificBuiltinType(BuiltinType::Float))
3421 markAllocatedVFPs(VFPRegs, AllocatedVFP, 1, Members);
3422 else {
3423 assert(Base->isSpecificBuiltinType(BuiltinType::Double) ||
3424 Base->isSpecificBuiltinType(BuiltinType::LongDouble));
3425 markAllocatedVFPs(VFPRegs, AllocatedVFP, 2, Members * 2);
3426 }
3427 IsHA = true;
3428 return ABIArgInfo::getExpand();
3429 }
3430 }
3431
3432 // Support byval for ARM.
3433 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
3434 // most 8-byte. We realign the indirect argument if type alignment is bigger
3435 // than ABI alignment.
3436 uint64_t ABIAlign = 4;
3437 uint64_t TyAlign = getContext().getTypeAlign(Ty) / 8;
3438 if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3439 getABIKind() == ARMABIInfo::AAPCS)
3440 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3441 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
3442 return ABIArgInfo::getIndirect(0, /*ByVal=*/true,
3443 /*Realign=*/TyAlign > ABIAlign);
3444 }
3445
3446 // Otherwise, pass by coercing to a structure of the appropriate size.
3447 llvm::Type* ElemTy;
3448 unsigned SizeRegs;
3449 // FIXME: Try to match the types of the arguments more accurately where
3450 // we can.
3451 if (getContext().getTypeAlign(Ty) <= 32) {
3452 ElemTy = llvm::Type::getInt32Ty(getVMContext());
3453 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
3454 } else {
3455 ElemTy = llvm::Type::getInt64Ty(getVMContext());
3456 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
3457 }
3458
3459 llvm::Type *STy =
3460 llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
3461 return ABIArgInfo::getDirect(STy);
3462}
3463
3464static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
3465 llvm::LLVMContext &VMContext) {
3466 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
3467 // is called integer-like if its size is less than or equal to one word, and
3468 // the offset of each of its addressable sub-fields is zero.
3469
3470 uint64_t Size = Context.getTypeSize(Ty);
3471
3472 // Check that the type fits in a word.
3473 if (Size > 32)
3474 return false;
3475
3476 // FIXME: Handle vector types!
3477 if (Ty->isVectorType())
3478 return false;
3479
3480 // Float types are never treated as "integer like".
3481 if (Ty->isRealFloatingType())
3482 return false;
3483
3484 // If this is a builtin or pointer type then it is ok.
3485 if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
3486 return true;
3487
3488 // Small complex integer types are "integer like".
3489 if (const ComplexType *CT = Ty->getAs<ComplexType>())
3490 return isIntegerLikeType(CT->getElementType(), Context, VMContext);
3491
3492 // Single element and zero sized arrays should be allowed, by the definition
3493 // above, but they are not.
3494
3495 // Otherwise, it must be a record type.
3496 const RecordType *RT = Ty->getAs<RecordType>();
3497 if (!RT) return false;
3498
3499 // Ignore records with flexible arrays.
3500 const RecordDecl *RD = RT->getDecl();
3501 if (RD->hasFlexibleArrayMember())
3502 return false;
3503
3504 // Check that all sub-fields are at offset 0, and are themselves "integer
3505 // like".
3506 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3507
3508 bool HadField = false;
3509 unsigned idx = 0;
3510 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3511 i != e; ++i, ++idx) {
3512 const FieldDecl *FD = *i;
3513
3514 // Bit-fields are not addressable, we only need to verify they are "integer
3515 // like". We still have to disallow a subsequent non-bitfield, for example:
3516 // struct { int : 0; int x }
3517 // is non-integer like according to gcc.
3518 if (FD->isBitField()) {
3519 if (!RD->isUnion())
3520 HadField = true;
3521
3522 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3523 return false;
3524
3525 continue;
3526 }
3527
3528 // Check if this field is at offset 0.
3529 if (Layout.getFieldOffset(idx) != 0)
3530 return false;
3531
3532 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
3533 return false;
3534
3535 // Only allow at most one field in a structure. This doesn't match the
3536 // wording above, but follows gcc in situations with a field following an
3537 // empty structure.
3538 if (!RD->isUnion()) {
3539 if (HadField)
3540 return false;
3541
3542 HadField = true;
3543 }
3544 }
3545
3546 return true;
3547}
3548
3549ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
3550 if (RetTy->isVoidType())
3551 return ABIArgInfo::getIgnore();
3552
3553 // Large vector types should be returned via memory.
3554 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
3555 return ABIArgInfo::getIndirect(0);
3556
3557 if (!isAggregateTypeForABI(RetTy)) {
3558 // Treat an enum type as its underlying type.
3559 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3560 RetTy = EnumTy->getDecl()->getIntegerType();
3561
3562 return (RetTy->isPromotableIntegerType() ?
3563 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
3564 }
3565
3566 // Structures with either a non-trivial destructor or a non-trivial
3567 // copy constructor are always indirect.
3568 if (isRecordReturnIndirect(RetTy, getCXXABI()))
3569 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3570
3571 // Are we following APCS?
3572 if (getABIKind() == APCS) {
3573 if (isEmptyRecord(getContext(), RetTy, false))
3574 return ABIArgInfo::getIgnore();
3575
3576 // Complex types are all returned as packed integers.
3577 //
3578 // FIXME: Consider using 2 x vector types if the back end handles them
3579 // correctly.
3580 if (RetTy->isAnyComplexType())
3581 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3582 getContext().getTypeSize(RetTy)));
3583
3584 // Integer like structures are returned in r0.
3585 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
3586 // Return in the smallest viable integer type.
3587 uint64_t Size = getContext().getTypeSize(RetTy);
3588 if (Size <= 8)
3589 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3590 if (Size <= 16)
3591 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3592 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3593 }
3594
3595 // Otherwise return in memory.
3596 return ABIArgInfo::getIndirect(0);
3597 }
3598
3599 // Otherwise this is an AAPCS variant.
3600
3601 if (isEmptyRecord(getContext(), RetTy, true))
3602 return ABIArgInfo::getIgnore();
3603
3604 // Check for homogeneous aggregates with AAPCS-VFP.
3605 if (getABIKind() == AAPCS_VFP) {
3606 const Type *Base = 0;
3607 if (isHomogeneousAggregate(RetTy, Base, getContext())) {
3608 assert(Base && "Base class should be set for homogeneous aggregate");
3609 // Homogeneous Aggregates are returned directly.
3610 return ABIArgInfo::getDirect();
3611 }
3612 }
3613
3614 // Aggregates <= 4 bytes are returned in r0; other aggregates
3615 // are returned indirectly.
3616 uint64_t Size = getContext().getTypeSize(RetTy);
3617 if (Size <= 32) {
3618 // Return in the smallest viable integer type.
3619 if (Size <= 8)
3620 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
3621 if (Size <= 16)
3622 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
3623 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
3624 }
3625
3626 return ABIArgInfo::getIndirect(0);
3627}
3628
3629/// isIllegalVector - check whether Ty is an illegal vector type.
3630bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
3631 if (const VectorType *VT = Ty->getAs<VectorType>()) {
3632 // Check whether VT is legal.
3633 unsigned NumElements = VT->getNumElements();
3634 uint64_t Size = getContext().getTypeSize(VT);
3635 // NumElements should be power of 2.
3636 if ((NumElements & (NumElements - 1)) != 0)
3637 return true;
3638 // Size should be greater than 32 bits.
3639 return Size <= 32;
3640 }
3641 return false;
3642}
3643
3644llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3645 CodeGenFunction &CGF) const {
3646 llvm::Type *BP = CGF.Int8PtrTy;
3647 llvm::Type *BPP = CGF.Int8PtrPtrTy;
3648
3649 CGBuilderTy &Builder = CGF.Builder;
3650 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
3651 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
3652
3653 if (isEmptyRecord(getContext(), Ty, true)) {
3654 // These are ignored for parameter passing purposes.
3655 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3656 return Builder.CreateBitCast(Addr, PTy);
3657 }
3658
3659 uint64_t Size = CGF.getContext().getTypeSize(Ty) / 8;
3660 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
3661 bool IsIndirect = false;
3662
3663 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
3664 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
3665 if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
3666 getABIKind() == ARMABIInfo::AAPCS)
3667 TyAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
3668 else
3669 TyAlign = 4;
3670 // Use indirect if size of the illegal vector is bigger than 16 bytes.
3671 if (isIllegalVectorType(Ty) && Size > 16) {
3672 IsIndirect = true;
3673 Size = 4;
3674 TyAlign = 4;
3675 }
3676
3677 // Handle address alignment for ABI alignment > 4 bytes.
3678 if (TyAlign > 4) {
3679 assert((TyAlign & (TyAlign - 1)) == 0 &&
3680 "Alignment is not power of 2!");
3681 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
3682 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
3683 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
3684 Addr = Builder.CreateIntToPtr(AddrAsInt, BP, "ap.align");
3685 }
3686
3687 uint64_t Offset =
3688 llvm::RoundUpToAlignment(Size, 4);
3689 llvm::Value *NextAddr =
3690 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
3691 "ap.next");
3692 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
3693
3694 if (IsIndirect)
3695 Addr = Builder.CreateLoad(Builder.CreateBitCast(Addr, BPP));
3696 else if (TyAlign < CGF.getContext().getTypeAlign(Ty) / 8) {
3697 // We can't directly cast ap.cur to pointer to a vector type, since ap.cur
3698 // may not be correctly aligned for the vector type. We create an aligned
3699 // temporary space and copy the content over from ap.cur to the temporary
3700 // space. This is necessary if the natural alignment of the type is greater
3701 // than the ABI alignment.
3702 llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
3703 CharUnits CharSize = getContext().getTypeSizeInChars(Ty);
3704 llvm::Value *AlignedTemp = CGF.CreateTempAlloca(CGF.ConvertType(Ty),
3705 "var.align");
3706 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
3707 llvm::Value *Src = Builder.CreateBitCast(Addr, I8PtrTy);
3708 Builder.CreateMemCpy(Dst, Src,
3709 llvm::ConstantInt::get(CGF.IntPtrTy, CharSize.getQuantity()),
3710 TyAlign, false);
3711 Addr = AlignedTemp; //The content is in aligned location.
3712 }
3713 llvm::Type *PTy =
3714 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
3715 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
3716
3717 return AddrTyped;
3718}
3719
3720namespace {
3721
3722class NaClARMABIInfo : public ABIInfo {
3723 public:
3724 NaClARMABIInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3725 : ABIInfo(CGT), PInfo(CGT), NInfo(CGT, Kind) {}
3726 virtual void computeInfo(CGFunctionInfo &FI) const;
3727 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3728 CodeGenFunction &CGF) const;
3729 private:
3730 PNaClABIInfo PInfo; // Used for generating calls with pnaclcall callingconv.
3731 ARMABIInfo NInfo; // Used for everything else.
3732};
3733
3734class NaClARMTargetCodeGenInfo : public TargetCodeGenInfo {
3735 public:
3736 NaClARMTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, ARMABIInfo::ABIKind Kind)
3737 : TargetCodeGenInfo(new NaClARMABIInfo(CGT, Kind)) {}
3738};
3739
3740}
3741
3742void NaClARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
3743 if (FI.getASTCallingConvention() == CC_PnaclCall)
3744 PInfo.computeInfo(FI);
3745 else
3746 static_cast<const ABIInfo&>(NInfo).computeInfo(FI);
3747}
3748
3749llvm::Value *NaClARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3750 CodeGenFunction &CGF) const {
3751 // Always use the native convention; calling pnacl-style varargs functions
3752 // is unsupported.
3753 return static_cast<const ABIInfo&>(NInfo).EmitVAArg(VAListAddr, Ty, CGF);
3754}
3755
3756//===----------------------------------------------------------------------===//
3757// AArch64 ABI Implementation
3758//===----------------------------------------------------------------------===//
3759
3760namespace {
3761
3762class AArch64ABIInfo : public ABIInfo {
3763public:
3764 AArch64ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
3765
3766private:
3767 // The AArch64 PCS is explicit about return types and argument types being
3768 // handled identically, so we don't need to draw a distinction between
3769 // Argument and Return classification.
3770 ABIArgInfo classifyGenericType(QualType Ty, int &FreeIntRegs,
3771 int &FreeVFPRegs) const;
3772
3773 ABIArgInfo tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded, bool IsInt,
3774 llvm::Type *DirectTy = 0) const;
3775
3776 virtual void computeInfo(CGFunctionInfo &FI) const;
3777
3778 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3779 CodeGenFunction &CGF) const;
3780};
3781
3782class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
3783public:
3784 AArch64TargetCodeGenInfo(CodeGenTypes &CGT)
3785 :TargetCodeGenInfo(new AArch64ABIInfo(CGT)) {}
3786
3787 const AArch64ABIInfo &getABIInfo() const {
3788 return static_cast<const AArch64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
3789 }
3790
3791 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
3792 return 31;
3793 }
3794
3795 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
3796 llvm::Value *Address) const {
3797 // 0-31 are x0-x30 and sp: 8 bytes each
3798 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
3799 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 31);
3800
3801 // 64-95 are v0-v31: 16 bytes each
3802 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
3803 AssignToArrayRange(CGF.Builder, Address, Sixteen8, 64, 95);
3804
3805 return false;
3806 }
3807
3808};
3809
3810}
3811
3812void AArch64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3813 int FreeIntRegs = 8, FreeVFPRegs = 8;
3814
3815 FI.getReturnInfo() = classifyGenericType(FI.getReturnType(),
3816 FreeIntRegs, FreeVFPRegs);
3817
3818 FreeIntRegs = FreeVFPRegs = 8;
3819 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3820 it != ie; ++it) {
3821 it->info = classifyGenericType(it->type, FreeIntRegs, FreeVFPRegs);
3822
3823 }
3824}
3825
3826ABIArgInfo
3827AArch64ABIInfo::tryUseRegs(QualType Ty, int &FreeRegs, int RegsNeeded,
3828 bool IsInt, llvm::Type *DirectTy) const {
3829 if (FreeRegs >= RegsNeeded) {
3830 FreeRegs -= RegsNeeded;
3831 return ABIArgInfo::getDirect(DirectTy);
3832 }
3833
3834 llvm::Type *Padding = 0;
3835
3836 // We need padding so that later arguments don't get filled in anyway. That
3837 // wouldn't happen if only ByVal arguments followed in the same category, but
3838 // a large structure will simply seem to be a pointer as far as LLVM is
3839 // concerned.
3840 if (FreeRegs > 0) {
3841 if (IsInt)
3842 Padding = llvm::Type::getInt64Ty(getVMContext());
3843 else
3844 Padding = llvm::Type::getFloatTy(getVMContext());
3845
3846 // Either [N x i64] or [N x float].
3847 Padding = llvm::ArrayType::get(Padding, FreeRegs);
3848 FreeRegs = 0;
3849 }
3850
3851 return ABIArgInfo::getIndirect(getContext().getTypeAlign(Ty) / 8,
3852 /*IsByVal=*/ true, /*Realign=*/ false,
3853 Padding);
3854}
3855
3856
3857ABIArgInfo AArch64ABIInfo::classifyGenericType(QualType Ty,
3858 int &FreeIntRegs,
3859 int &FreeVFPRegs) const {
3860 // Can only occurs for return, but harmless otherwise.
3861 if (Ty->isVoidType())
3862 return ABIArgInfo::getIgnore();
3863
3864 // Large vector types should be returned via memory. There's no such concept
3865 // in the ABI, but they'd be over 16 bytes anyway so no matter how they're
3866 // classified they'd go into memory (see B.3).
3867 if (Ty->isVectorType() && getContext().getTypeSize(Ty) > 128) {
3868 if (FreeIntRegs > 0)
3869 --FreeIntRegs;
3870 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
3871 }
3872
3873 // All non-aggregate LLVM types have a concrete ABI representation so they can
3874 // be passed directly. After this block we're guaranteed to be in a
3875 // complicated case.
3876 if (!isAggregateTypeForABI(Ty)) {
3877 // Treat an enum type as its underlying type.
3878 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3879 Ty = EnumTy->getDecl()->getIntegerType();
3880
3881 if (Ty->isFloatingType() || Ty->isVectorType())
3882 return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ false);
3883
3884 assert(getContext().getTypeSize(Ty) <= 128 &&
3885 "unexpectedly large scalar type");
3886
3887 int RegsNeeded = getContext().getTypeSize(Ty) > 64 ? 2 : 1;
3888
3889 // If the type may need padding registers to ensure "alignment", we must be
3890 // careful when this is accounted for. Increasing the effective size covers
3891 // all cases.
3892 if (getContext().getTypeAlign(Ty) == 128)
3893 RegsNeeded += FreeIntRegs % 2 != 0;
3894
3895 return tryUseRegs(Ty, FreeIntRegs, RegsNeeded, /*IsInt=*/ true);
3896 }
3897
3898 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
3899 if (FreeIntRegs > 0 && RAA == CGCXXABI::RAA_Indirect)
3900 --FreeIntRegs;
3901 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
3902 }
3903
3904 if (isEmptyRecord(getContext(), Ty, true)) {
3905 if (!getContext().getLangOpts().CPlusPlus) {
3906 // Empty structs outside C++ mode are a GNU extension, so no ABI can
3907 // possibly tell us what to do. It turns out (I believe) that GCC ignores
3908 // the object for parameter-passsing purposes.
3909 return ABIArgInfo::getIgnore();
3910 }
3911
3912 // The combination of C++98 9p5 (sizeof(struct) != 0) and the pseudocode
3913 // description of va_arg in the PCS require that an empty struct does
3914 // actually occupy space for parameter-passing. I'm hoping for a
3915 // clarification giving an explicit paragraph to point to in future.
3916 return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ 1, /*IsInt=*/ true,
3917 llvm::Type::getInt8Ty(getVMContext()));
3918 }
3919
3920 // Homogeneous vector aggregates get passed in registers or on the stack.
3921 const Type *Base = 0;
3922 uint64_t NumMembers = 0;
3923 if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)) {
3924 assert(Base && "Base class should be set for homogeneous aggregate");
3925 // Homogeneous aggregates are passed and returned directly.
3926 return tryUseRegs(Ty, FreeVFPRegs, /*RegsNeeded=*/ NumMembers,
3927 /*IsInt=*/ false);
3928 }
3929
3930 uint64_t Size = getContext().getTypeSize(Ty);
3931 if (Size <= 128) {
3932 // Small structs can use the same direct type whether they're in registers
3933 // or on the stack.
3934 llvm::Type *BaseTy;
3935 unsigned NumBases;
3936 int SizeInRegs = (Size + 63) / 64;
3937
3938 if (getContext().getTypeAlign(Ty) == 128) {
3939 BaseTy = llvm::Type::getIntNTy(getVMContext(), 128);
3940 NumBases = 1;
3941
3942 // If the type may need padding registers to ensure "alignment", we must
3943 // be careful when this is accounted for. Increasing the effective size
3944 // covers all cases.
3945 SizeInRegs += FreeIntRegs % 2 != 0;
3946 } else {
3947 BaseTy = llvm::Type::getInt64Ty(getVMContext());
3948 NumBases = SizeInRegs;
3949 }
3950 llvm::Type *DirectTy = llvm::ArrayType::get(BaseTy, NumBases);
3951
3952 return tryUseRegs(Ty, FreeIntRegs, /*RegsNeeded=*/ SizeInRegs,
3953 /*IsInt=*/ true, DirectTy);
3954 }
3955
3956 // If the aggregate is > 16 bytes, it's passed and returned indirectly. In
3957 // LLVM terms the return uses an "sret" pointer, but that's handled elsewhere.
3958 --FreeIntRegs;
3959 return ABIArgInfo::getIndirect(0, /* byVal = */ false);
3960}
3961
3962llvm::Value *AArch64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
3963 CodeGenFunction &CGF) const {
3964 // The AArch64 va_list type and handling is specified in the Procedure Call
3965 // Standard, section B.4:
3966 //
3967 // struct {
3968 // void *__stack;
3969 // void *__gr_top;
3970 // void *__vr_top;
3971 // int __gr_offs;
3972 // int __vr_offs;
3973 // };
3974
3975 assert(!CGF.CGM.getDataLayout().isBigEndian()
3976 && "va_arg not implemented for big-endian AArch64");
3977
3978 int FreeIntRegs = 8, FreeVFPRegs = 8;
3979 Ty = CGF.getContext().getCanonicalType(Ty);
3980 ABIArgInfo AI = classifyGenericType(Ty, FreeIntRegs, FreeVFPRegs);
3981
3982 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
3983 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3984 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
3985 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3986
3987 llvm::Value *reg_offs_p = 0, *reg_offs = 0;
3988 int reg_top_index;
3989 int RegSize;
3990 if (FreeIntRegs < 8) {
3991 assert(FreeVFPRegs == 8 && "Arguments never split between int & VFP regs");
3992 // 3 is the field number of __gr_offs
3993 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
3994 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
3995 reg_top_index = 1; // field number for __gr_top
3996 RegSize = 8 * (8 - FreeIntRegs);
3997 } else {
3998 assert(FreeVFPRegs < 8 && "Argument must go in VFP or int regs");
3999 // 4 is the field number of __vr_offs.
4000 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
4001 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
4002 reg_top_index = 2; // field number for __vr_top
4003 RegSize = 16 * (8 - FreeVFPRegs);
4004 }
4005
4006 //=======================================
4007 // Find out where argument was passed
4008 //=======================================
4009
4010 // If reg_offs >= 0 we're already using the stack for this type of
4011 // argument. We don't want to keep updating reg_offs (in case it overflows,
4012 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
4013 // whatever they get).
4014 llvm::Value *UsingStack = 0;
4015 UsingStack = CGF.Builder.CreateICmpSGE(reg_offs,
4016 llvm::ConstantInt::get(CGF.Int32Ty, 0));
4017
4018 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
4019
4020 // Otherwise, at least some kind of argument could go in these registers, the
4021 // quesiton is whether this particular type is too big.
4022 CGF.EmitBlock(MaybeRegBlock);
4023
4024 // Integer arguments may need to correct register alignment (for example a
4025 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
4026 // align __gr_offs to calculate the potential address.
4027 if (FreeIntRegs < 8 && AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
4028 int Align = getContext().getTypeAlign(Ty) / 8;
4029
4030 reg_offs = CGF.Builder.CreateAdd(reg_offs,
4031 llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
4032 "align_regoffs");
4033 reg_offs = CGF.Builder.CreateAnd(reg_offs,
4034 llvm::ConstantInt::get(CGF.Int32Ty, -Align),
4035 "aligned_regoffs");
4036 }
4037
4038 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
4039 llvm::Value *NewOffset = 0;
4040 NewOffset = CGF.Builder.CreateAdd(reg_offs,
4041 llvm::ConstantInt::get(CGF.Int32Ty, RegSize),
4042 "new_reg_offs");
4043 CGF.Builder.CreateStore(NewOffset, reg_offs_p);
4044
4045 // Now we're in a position to decide whether this argument really was in
4046 // registers or not.
4047 llvm::Value *InRegs = 0;
4048 InRegs = CGF.Builder.CreateICmpSLE(NewOffset,
4049 llvm::ConstantInt::get(CGF.Int32Ty, 0),
4050 "inreg");
4051
4052 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
4053
4054 //=======================================
4055 // Argument was in registers
4056 //=======================================
4057
4058 // Now we emit the code for if the argument was originally passed in
4059 // registers. First start the appropriate block:
4060 CGF.EmitBlock(InRegBlock);
4061
4062 llvm::Value *reg_top_p = 0, *reg_top = 0;
4063 reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
4064 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
4065 llvm::Value *BaseAddr = CGF.Builder.CreateGEP(reg_top, reg_offs);
4066 llvm::Value *RegAddr = 0;
4067 llvm::Type *MemTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4068
4069 if (!AI.isDirect()) {
4070 // If it's been passed indirectly (actually a struct), whatever we find from
4071 // stored registers or on the stack will actually be a struct **.
4072 MemTy = llvm::PointerType::getUnqual(MemTy);
4073 }
4074
4075 const Type *Base = 0;
4076 uint64_t NumMembers;
4077 if (isHomogeneousAggregate(Ty, Base, getContext(), &NumMembers)
4078 && NumMembers > 1) {
4079 // Homogeneous aggregates passed in registers will have their elements split
4080 // and stored 16-bytes apart regardless of size (they're notionally in qN,
4081 // qN+1, ...). We reload and store into a temporary local variable
4082 // contiguously.
4083 assert(AI.isDirect() && "Homogeneous aggregates should be passed directly");
4084 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
4085 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
4086 llvm::Value *Tmp = CGF.CreateTempAlloca(HFATy);
4087
4088 for (unsigned i = 0; i < NumMembers; ++i) {
4089 llvm::Value *BaseOffset = llvm::ConstantInt::get(CGF.Int32Ty, 16 * i);
4090 llvm::Value *LoadAddr = CGF.Builder.CreateGEP(BaseAddr, BaseOffset);
4091 LoadAddr = CGF.Builder.CreateBitCast(LoadAddr,
4092 llvm::PointerType::getUnqual(BaseTy));
4093 llvm::Value *StoreAddr = CGF.Builder.CreateStructGEP(Tmp, i);
4094
4095 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
4096 CGF.Builder.CreateStore(Elem, StoreAddr);
4097 }
4098
4099 RegAddr = CGF.Builder.CreateBitCast(Tmp, MemTy);
4100 } else {
4101 // Otherwise the object is contiguous in memory
4102 RegAddr = CGF.Builder.CreateBitCast(BaseAddr, MemTy);
4103 }
4104
4105 CGF.EmitBranch(ContBlock);
4106
4107 //=======================================
4108 // Argument was on the stack
4109 //=======================================
4110 CGF.EmitBlock(OnStackBlock);
4111
4112 llvm::Value *stack_p = 0, *OnStackAddr = 0;
4113 stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
4114 OnStackAddr = CGF.Builder.CreateLoad(stack_p, "stack");
4115
4116 // Again, stack arguments may need realigmnent. In this case both integer and
4117 // floating-point ones might be affected.
4118 if (AI.isDirect() && getContext().getTypeAlign(Ty) > 64) {
4119 int Align = getContext().getTypeAlign(Ty) / 8;
4120
4121 OnStackAddr = CGF.Builder.CreatePtrToInt(OnStackAddr, CGF.Int64Ty);
4122
4123 OnStackAddr = CGF.Builder.CreateAdd(OnStackAddr,
4124 llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
4125 "align_stack");
4126 OnStackAddr = CGF.Builder.CreateAnd(OnStackAddr,
4127 llvm::ConstantInt::get(CGF.Int64Ty, -Align),
4128 "align_stack");
4129
4130 OnStackAddr = CGF.Builder.CreateIntToPtr(OnStackAddr, CGF.Int8PtrTy);
4131 }
4132
4133 uint64_t StackSize;
4134 if (AI.isDirect())
4135 StackSize = getContext().getTypeSize(Ty) / 8;
4136 else
4137 StackSize = 8;
4138
4139 // All stack slots are 8 bytes
4140 StackSize = llvm::RoundUpToAlignment(StackSize, 8);
4141
4142 llvm::Value *StackSizeC = llvm::ConstantInt::get(CGF.Int32Ty, StackSize);
4143 llvm::Value *NewStack = CGF.Builder.CreateGEP(OnStackAddr, StackSizeC,
4144 "new_stack");
4145
4146 // Write the new value of __stack for the next call to va_arg
4147 CGF.Builder.CreateStore(NewStack, stack_p);
4148
4149 OnStackAddr = CGF.Builder.CreateBitCast(OnStackAddr, MemTy);
4150
4151 CGF.EmitBranch(ContBlock);
4152
4153 //=======================================
4154 // Tidy up
4155 //=======================================
4156 CGF.EmitBlock(ContBlock);
4157
4158 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(MemTy, 2, "vaarg.addr");
4159 ResAddr->addIncoming(RegAddr, InRegBlock);
4160 ResAddr->addIncoming(OnStackAddr, OnStackBlock);
4161
4162 if (AI.isDirect())
4163 return ResAddr;
4164
4165 return CGF.Builder.CreateLoad(ResAddr, "vaarg.addr");
4166}
4167
4168//===----------------------------------------------------------------------===//
4169// NVPTX ABI Implementation
4170//===----------------------------------------------------------------------===//
4171
4172namespace {
4173
4174class NVPTXABIInfo : public ABIInfo {
4175public:
4176 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4177
4178 ABIArgInfo classifyReturnType(QualType RetTy) const;
4179 ABIArgInfo classifyArgumentType(QualType Ty) const;
4180
4181 virtual void computeInfo(CGFunctionInfo &FI) const;
4182 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4183 CodeGenFunction &CFG) const;
4184};
4185
4186class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
4187public:
4188 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
4189 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {}
4190
4191 virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4192 CodeGen::CodeGenModule &M) const;
4193private:
4194 static void addKernelMetadata(llvm::Function *F);
4195};
4196
4197ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
4198 if (RetTy->isVoidType())
4199 return ABIArgInfo::getIgnore();
4200
4201 // note: this is different from default ABI
4202 if (!RetTy->isScalarType())
4203 return ABIArgInfo::getDirect();
4204
4205 // Treat an enum type as its underlying type.
4206 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4207 RetTy = EnumTy->getDecl()->getIntegerType();
4208
4209 return (RetTy->isPromotableIntegerType() ?
4210 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4211}
4212
4213ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
4214 // Treat an enum type as its underlying type.
4215 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4216 Ty = EnumTy->getDecl()->getIntegerType();
4217
4218 return (Ty->isPromotableIntegerType() ?
4219 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4220}
4221
4222void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
4223 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4224 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4225 it != ie; ++it)
4226 it->info = classifyArgumentType(it->type);
4227
4228 // Always honor user-specified calling convention.
4229 if (FI.getCallingConvention() != llvm::CallingConv::C)
4230 return;
4231
4232 FI.setEffectiveCallingConvention(getRuntimeCC());
4233}
4234
4235llvm::Value *NVPTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4236 CodeGenFunction &CFG) const {
4237 llvm_unreachable("NVPTX does not support varargs");
4238}
4239
4240void NVPTXTargetCodeGenInfo::
4241SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4242 CodeGen::CodeGenModule &M) const{
4243 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4244 if (!FD) return;
4245
4246 llvm::Function *F = cast<llvm::Function>(GV);
4247
4248 // Perform special handling in OpenCL mode
4249 if (M.getLangOpts().OpenCL) {
4250 // Use OpenCL function attributes to check for kernel functions
4251 // By default, all functions are device functions
4252 if (FD->hasAttr<OpenCLKernelAttr>()) {
4253 // OpenCL __kernel functions get kernel metadata
4254 addKernelMetadata(F);
4255 // And kernel functions are not subject to inlining
4256 F->addFnAttr(llvm::Attribute::NoInline);
4257 }
4258 }
4259
4260 // Perform special handling in CUDA mode.
4261 if (M.getLangOpts().CUDA) {
4262 // CUDA __global__ functions get a kernel metadata entry. Since
4263 // __global__ functions cannot be called from the device, we do not
4264 // need to set the noinline attribute.
4265 if (FD->getAttr<CUDAGlobalAttr>())
4266 addKernelMetadata(F);
4267 }
4268}
4269
4270void NVPTXTargetCodeGenInfo::addKernelMetadata(llvm::Function *F) {
4271 llvm::Module *M = F->getParent();
4272 llvm::LLVMContext &Ctx = M->getContext();
4273
4274 // Get "nvvm.annotations" metadata node
4275 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
4276
4277 // Create !{<func-ref>, metadata !"kernel", i32 1} node
4278 llvm::SmallVector<llvm::Value *, 3> MDVals;
4279 MDVals.push_back(F);
4280 MDVals.push_back(llvm::MDString::get(Ctx, "kernel"));
4281 MDVals.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1));
4282
4283 // Append metadata to nvvm.annotations
4284 MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
4285}
4286
4287}
4288
4289//===----------------------------------------------------------------------===//
4290// SystemZ ABI Implementation
4291//===----------------------------------------------------------------------===//
4292
4293namespace {
4294
4295class SystemZABIInfo : public ABIInfo {
4296public:
4297 SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
4298
4299 bool isPromotableIntegerType(QualType Ty) const;
4300 bool isCompoundType(QualType Ty) const;
4301 bool isFPArgumentType(QualType Ty) const;
4302
4303 ABIArgInfo classifyReturnType(QualType RetTy) const;
4304 ABIArgInfo classifyArgumentType(QualType ArgTy) const;
4305
4306 virtual void computeInfo(CGFunctionInfo &FI) const {
4307 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4308 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4309 it != ie; ++it)
4310 it->info = classifyArgumentType(it->type);
4311 }
4312
4313 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4314 CodeGenFunction &CGF) const;
4315};
4316
4317class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
4318public:
4319 SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
4320 : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
4321};
4322
4323}
4324
4325bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
4326 // Treat an enum type as its underlying type.
4327 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4328 Ty = EnumTy->getDecl()->getIntegerType();
4329
4330 // Promotable integer types are required to be promoted by the ABI.
4331 if (Ty->isPromotableIntegerType())
4332 return true;
4333
4334 // 32-bit values must also be promoted.
4335 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4336 switch (BT->getKind()) {
4337 case BuiltinType::Int:
4338 case BuiltinType::UInt:
4339 return true;
4340 default:
4341 return false;
4342 }
4343 return false;
4344}
4345
4346bool SystemZABIInfo::isCompoundType(QualType Ty) const {
4347 return Ty->isAnyComplexType() || isAggregateTypeForABI(Ty);
4348}
4349
4350bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
4351 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4352 switch (BT->getKind()) {
4353 case BuiltinType::Float:
4354 case BuiltinType::Double:
4355 return true;
4356 default:
4357 return false;
4358 }
4359
4360 if (const RecordType *RT = Ty->getAsStructureType()) {
4361 const RecordDecl *RD = RT->getDecl();
4362 bool Found = false;
4363
4364 // If this is a C++ record, check the bases first.
4365 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
4366 for (CXXRecordDecl::base_class_const_iterator I = CXXRD->bases_begin(),
4367 E = CXXRD->bases_end(); I != E; ++I) {
4368 QualType Base = I->getType();
4369
4370 // Empty bases don't affect things either way.
4371 if (isEmptyRecord(getContext(), Base, true))
4372 continue;
4373
4374 if (Found)
4375 return false;
4376 Found = isFPArgumentType(Base);
4377 if (!Found)
4378 return false;
4379 }
4380
4381 // Check the fields.
4382 for (RecordDecl::field_iterator I = RD->field_begin(),
4383 E = RD->field_end(); I != E; ++I) {
4384 const FieldDecl *FD = *I;
4385
4386 // Empty bitfields don't affect things either way.
4387 // Unlike isSingleElementStruct(), empty structure and array fields
4388 // do count. So do anonymous bitfields that aren't zero-sized.
4389 if (FD->isBitField() && FD->getBitWidthValue(getContext()) == 0)
4390 return true;
4391
4392 // Unlike isSingleElementStruct(), arrays do not count.
4393 // Nested isFPArgumentType structures still do though.
4394 if (Found)
4395 return false;
4396 Found = isFPArgumentType(FD->getType());
4397 if (!Found)
4398 return false;
4399 }
4400
4401 // Unlike isSingleElementStruct(), trailing padding is allowed.
4402 // An 8-byte aligned struct s { float f; } is passed as a double.
4403 return Found;
4404 }
4405
4406 return false;
4407}
4408
4409llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4410 CodeGenFunction &CGF) const {
4411 // Assume that va_list type is correct; should be pointer to LLVM type:
4412 // struct {
4413 // i64 __gpr;
4414 // i64 __fpr;
4415 // i8 *__overflow_arg_area;
4416 // i8 *__reg_save_area;
4417 // };
4418
4419 // Every argument occupies 8 bytes and is passed by preference in either
4420 // GPRs or FPRs.
4421 Ty = CGF.getContext().getCanonicalType(Ty);
4422 ABIArgInfo AI = classifyArgumentType(Ty);
4423 bool InFPRs = isFPArgumentType(Ty);
4424
4425 llvm::Type *APTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
4426 bool IsIndirect = AI.isIndirect();
4427 unsigned UnpaddedBitSize;
4428 if (IsIndirect) {
4429 APTy = llvm::PointerType::getUnqual(APTy);
4430 UnpaddedBitSize = 64;
4431 } else
4432 UnpaddedBitSize = getContext().getTypeSize(Ty);
4433 unsigned PaddedBitSize = 64;
4434 assert((UnpaddedBitSize <= PaddedBitSize) && "Invalid argument size.");
4435
4436 unsigned PaddedSize = PaddedBitSize / 8;
4437 unsigned Padding = (PaddedBitSize - UnpaddedBitSize) / 8;
4438
4439 unsigned MaxRegs, RegCountField, RegSaveIndex, RegPadding;
4440 if (InFPRs) {
4441 MaxRegs = 4; // Maximum of 4 FPR arguments
4442 RegCountField = 1; // __fpr
4443 RegSaveIndex = 16; // save offset for f0
4444 RegPadding = 0; // floats are passed in the high bits of an FPR
4445 } else {
4446 MaxRegs = 5; // Maximum of 5 GPR arguments
4447 RegCountField = 0; // __gpr
4448 RegSaveIndex = 2; // save offset for r2
4449 RegPadding = Padding; // values are passed in the low bits of a GPR
4450 }
4451
4452 llvm::Value *RegCountPtr =
4453 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
4454 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
4455 llvm::Type *IndexTy = RegCount->getType();
4456 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
4457 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
4458 "fits_in_regs");
4459
4460 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4461 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4462 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4463 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4464
4465 // Emit code to load the value if it was passed in registers.
4466 CGF.EmitBlock(InRegBlock);
4467
4468 // Work out the address of an argument register.
4469 llvm::Value *PaddedSizeV = llvm::ConstantInt::get(IndexTy, PaddedSize);
4470 llvm::Value *ScaledRegCount =
4471 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
4472 llvm::Value *RegBase =
4473 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize + RegPadding);
4474 llvm::Value *RegOffset =
4475 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
4476 llvm::Value *RegSaveAreaPtr =
4477 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
4478 llvm::Value *RegSaveArea =
4479 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
4480 llvm::Value *RawRegAddr =
4481 CGF.Builder.CreateGEP(RegSaveArea, RegOffset, "raw_reg_addr");
4482 llvm::Value *RegAddr =
4483 CGF.Builder.CreateBitCast(RawRegAddr, APTy, "reg_addr");
4484
4485 // Update the register count
4486 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
4487 llvm::Value *NewRegCount =
4488 CGF.Builder.CreateAdd(RegCount, One, "reg_count");
4489 CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
4490 CGF.EmitBranch(ContBlock);
4491
4492 // Emit code to load the value if it was passed in memory.
4493 CGF.EmitBlock(InMemBlock);
4494
4495 // Work out the address of a stack argument.
4496 llvm::Value *OverflowArgAreaPtr =
4497 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
4498 llvm::Value *OverflowArgArea =
4499 CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area");
4500 llvm::Value *PaddingV = llvm::ConstantInt::get(IndexTy, Padding);
4501 llvm::Value *RawMemAddr =
4502 CGF.Builder.CreateGEP(OverflowArgArea, PaddingV, "raw_mem_addr");
4503 llvm::Value *MemAddr =
4504 CGF.Builder.CreateBitCast(RawMemAddr, APTy, "mem_addr");
4505
4506 // Update overflow_arg_area_ptr pointer
4507 llvm::Value *NewOverflowArgArea =
4508 CGF.Builder.CreateGEP(OverflowArgArea, PaddedSizeV, "overflow_arg_area");
4509 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
4510 CGF.EmitBranch(ContBlock);
4511
4512 // Return the appropriate result.
4513 CGF.EmitBlock(ContBlock);
4514 llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(APTy, 2, "va_arg.addr");
4515 ResAddr->addIncoming(RegAddr, InRegBlock);
4516 ResAddr->addIncoming(MemAddr, InMemBlock);
4517
4518 if (IsIndirect)
4519 return CGF.Builder.CreateLoad(ResAddr, "indirect_arg");
4520
4521 return ResAddr;
4522}
4523
4524bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
4525 const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4526 assert(Triple.getArch() == llvm::Triple::x86);
4527
4528 switch (Opts.getStructReturnConvention()) {
4529 case CodeGenOptions::SRCK_Default:
4530 break;
4531 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
4532 return false;
4533 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
4534 return true;
4535 }
4536
4537 if (Triple.isOSDarwin())
4538 return true;
4539
4540 switch (Triple.getOS()) {
4541 case llvm::Triple::Cygwin:
4542 case llvm::Triple::MinGW32:
4543 case llvm::Triple::AuroraUX:
4544 case llvm::Triple::DragonFly:
4545 case llvm::Triple::FreeBSD:
4546 case llvm::Triple::OpenBSD:
4547 case llvm::Triple::Bitrig:
4548 case llvm::Triple::Win32:
4549 return true;
4550 default:
4551 return false;
4552 }
4553}
4554
4555ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
4556 if (RetTy->isVoidType())
4557 return ABIArgInfo::getIgnore();
4558 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
4559 return ABIArgInfo::getIndirect(0);
4560 return (isPromotableIntegerType(RetTy) ?
4561 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4562}
4563
4564ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
4565 // Handle the generic C++ ABI.
4566 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4567 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4568
4569 // Integers and enums are extended to full register width.
4570 if (isPromotableIntegerType(Ty))
4571 return ABIArgInfo::getExtend();
4572
4573 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
4574 uint64_t Size = getContext().getTypeSize(Ty);
4575 if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
4576 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4577
4578 // Handle small structures.
4579 if (const RecordType *RT = Ty->getAs<RecordType>()) {
4580 // Structures with flexible arrays have variable length, so really
4581 // fail the size test above.
4582 const RecordDecl *RD = RT->getDecl();
4583 if (RD->hasFlexibleArrayMember())
4584 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4585
4586 // The structure is passed as an unextended integer, a float, or a double.
4587 llvm::Type *PassTy;
4588 if (isFPArgumentType(Ty)) {
4589 assert(Size == 32 || Size == 64);
4590 if (Size == 32)
4591 PassTy = llvm::Type::getFloatTy(getVMContext());
4592 else
4593 PassTy = llvm::Type::getDoubleTy(getVMContext());
4594 } else
4595 PassTy = llvm::IntegerType::get(getVMContext(), Size);
4596 return ABIArgInfo::getDirect(PassTy);
4597 }
4598
4599 // Non-structure compounds are passed indirectly.
4600 if (isCompoundType(Ty))
4601 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
4602
4603 return ABIArgInfo::getDirect(0);
4604}
4605
4606//===----------------------------------------------------------------------===//
4607// MSP430 ABI Implementation
4608//===----------------------------------------------------------------------===//
4609
4610namespace {
4611
4612class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
4613public:
4614 MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
4615 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
4616 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4617 CodeGen::CodeGenModule &M) const;
4618};
4619
4620}
4621
4622void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4623 llvm::GlobalValue *GV,
4624 CodeGen::CodeGenModule &M) const {
4625 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4626 if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
4627 // Handle 'interrupt' attribute:
4628 llvm::Function *F = cast<llvm::Function>(GV);
4629
4630 // Step 1: Set ISR calling convention.
4631 F->setCallingConv(llvm::CallingConv::MSP430_INTR);
4632
4633 // Step 2: Add attributes goodness.
4634 F->addFnAttr(llvm::Attribute::NoInline);
4635
4636 // Step 3: Emit ISR vector alias.
4637 unsigned Num = attr->getNumber() / 2;
4638 new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
4639 "__isr_" + Twine(Num),
4640 GV, &M.getModule());
4641 }
4642 }
4643}
4644
4645//===----------------------------------------------------------------------===//
4646// MIPS ABI Implementation. This works for both little-endian and
4647// big-endian variants.
4648//===----------------------------------------------------------------------===//
4649
4650namespace {
4651class MipsABIInfo : public ABIInfo {
4652 bool IsO32;
4653 unsigned MinABIStackAlignInBytes, StackAlignInBytes;
4654 void CoerceToIntArgs(uint64_t TySize,
4655 SmallVectorImpl<llvm::Type *> &ArgList) const;
4656 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
4657 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
4658 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
4659public:
4660 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
4661 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
4662 StackAlignInBytes(IsO32 ? 8 : 16) {}
4663
4664 ABIArgInfo classifyReturnType(QualType RetTy) const;
4665 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
4666 virtual void computeInfo(CGFunctionInfo &FI) const;
4667 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4668 CodeGenFunction &CGF) const;
4669};
4670
4671class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
4672 unsigned SizeOfUnwindException;
4673public:
4674 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
4675 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
4676 SizeOfUnwindException(IsO32 ? 24 : 32) {}
4677
4678 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
4679 return 29;
4680 }
4681
4682 void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4683 CodeGen::CodeGenModule &CGM) const {
4684 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4685 if (!FD) return;
4686 llvm::Function *Fn = cast<llvm::Function>(GV);
4687 if (FD->hasAttr<Mips16Attr>()) {
4688 Fn->addFnAttr("mips16");
4689 }
4690 else if (FD->hasAttr<NoMips16Attr>()) {
4691 Fn->addFnAttr("nomips16");
4692 }
4693 }
4694
4695 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4696 llvm::Value *Address) const;
4697
4698 unsigned getSizeOfUnwindException() const {
4699 return SizeOfUnwindException;
4700 }
4701};
4702}
4703
4704void MipsABIInfo::CoerceToIntArgs(uint64_t TySize,
4705 SmallVectorImpl<llvm::Type *> &ArgList) const {
4706 llvm::IntegerType *IntTy =
4707 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
4708
4709 // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
4710 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
4711 ArgList.push_back(IntTy);
4712
4713 // If necessary, add one more integer type to ArgList.
4714 unsigned R = TySize % (MinABIStackAlignInBytes * 8);
4715
4716 if (R)
4717 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
4718}
4719
4720// In N32/64, an aligned double precision floating point field is passed in
4721// a register.
4722llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
4723 SmallVector<llvm::Type*, 8> ArgList, IntArgList;
4724
4725 if (IsO32) {
4726 CoerceToIntArgs(TySize, ArgList);
4727 return llvm::StructType::get(getVMContext(), ArgList);
4728 }
4729
4730 if (Ty->isComplexType())
4731 return CGT.ConvertType(Ty);
4732
4733 const RecordType *RT = Ty->getAs<RecordType>();
4734
4735 // Unions/vectors are passed in integer registers.
4736 if (!RT || !RT->isStructureOrClassType()) {
4737 CoerceToIntArgs(TySize, ArgList);
4738 return llvm::StructType::get(getVMContext(), ArgList);
4739 }
4740
4741 const RecordDecl *RD = RT->getDecl();
4742 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4743 assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
4744
4745 uint64_t LastOffset = 0;
4746 unsigned idx = 0;
4747 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
4748
4749 // Iterate over fields in the struct/class and check if there are any aligned
4750 // double fields.
4751 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
4752 i != e; ++i, ++idx) {
4753 const QualType Ty = i->getType();
4754 const BuiltinType *BT = Ty->getAs<BuiltinType>();
4755
4756 if (!BT || BT->getKind() != BuiltinType::Double)
4757 continue;
4758
4759 uint64_t Offset = Layout.getFieldOffset(idx);
4760 if (Offset % 64) // Ignore doubles that are not aligned.
4761 continue;
4762
4763 // Add ((Offset - LastOffset) / 64) args of type i64.
4764 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
4765 ArgList.push_back(I64);
4766
4767 // Add double type.
4768 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
4769 LastOffset = Offset + 64;
4770 }
4771
4772 CoerceToIntArgs(TySize - LastOffset, IntArgList);
4773 ArgList.append(IntArgList.begin(), IntArgList.end());
4774
4775 return llvm::StructType::get(getVMContext(), ArgList);
4776}
4777
4778llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
4779 uint64_t Offset) const {
4780 if (OrigOffset + MinABIStackAlignInBytes > Offset)
4781 return 0;
4782
4783 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
4784}
4785
4786ABIArgInfo
4787MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
4788 uint64_t OrigOffset = Offset;
4789 uint64_t TySize = getContext().getTypeSize(Ty);
4790 uint64_t Align = getContext().getTypeAlign(Ty) / 8;
4791
4792 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
4793 (uint64_t)StackAlignInBytes);
4794 unsigned CurrOffset = llvm::RoundUpToAlignment(Offset, Align);
4795 Offset = CurrOffset + llvm::RoundUpToAlignment(TySize, Align * 8) / 8;
4796
4797 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
4798 // Ignore empty aggregates.
4799 if (TySize == 0)
4800 return ABIArgInfo::getIgnore();
4801
4802 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
4803 Offset = OrigOffset + MinABIStackAlignInBytes;
4804 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
4805 }
4806
4807 // If we have reached here, aggregates are passed directly by coercing to
4808 // another structure type. Padding is inserted if the offset of the
4809 // aggregate is unaligned.
4810 return ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
4811 getPaddingType(OrigOffset, CurrOffset));
4812 }
4813
4814 // Treat an enum type as its underlying type.
4815 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4816 Ty = EnumTy->getDecl()->getIntegerType();
4817
4818 if (Ty->isPromotableIntegerType())
4819 return ABIArgInfo::getExtend();
4820
4821 return ABIArgInfo::getDirect(
4822 0, 0, IsO32 ? 0 : getPaddingType(OrigOffset, CurrOffset));
4823}
4824
4825llvm::Type*
4826MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
4827 const RecordType *RT = RetTy->getAs<RecordType>();
4828 SmallVector<llvm::Type*, 8> RTList;
4829
4830 if (RT && RT->isStructureOrClassType()) {
4831 const RecordDecl *RD = RT->getDecl();
4832 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
4833 unsigned FieldCnt = Layout.getFieldCount();
4834
4835 // N32/64 returns struct/classes in floating point registers if the
4836 // following conditions are met:
4837 // 1. The size of the struct/class is no larger than 128-bit.
4838 // 2. The struct/class has one or two fields all of which are floating
4839 // point types.
4840 // 3. The offset of the first field is zero (this follows what gcc does).
4841 //
4842 // Any other composite results are returned in integer registers.
4843 //
4844 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
4845 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
4846 for (; b != e; ++b) {
4847 const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
4848
4849 if (!BT || !BT->isFloatingPoint())
4850 break;
4851
4852 RTList.push_back(CGT.ConvertType(b->getType()));
4853 }
4854
4855 if (b == e)
4856 return llvm::StructType::get(getVMContext(), RTList,
4857 RD->hasAttr<PackedAttr>());
4858
4859 RTList.clear();
4860 }
4861 }
4862
4863 CoerceToIntArgs(Size, RTList);
4864 return llvm::StructType::get(getVMContext(), RTList);
4865}
4866
4867ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
4868 uint64_t Size = getContext().getTypeSize(RetTy);
4869
4870 if (RetTy->isVoidType() || Size == 0)
4871 return ABIArgInfo::getIgnore();
4872
4873 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
4874 if (isRecordReturnIndirect(RetTy, getCXXABI()))
4875 return ABIArgInfo::getIndirect(0);
4876
4877 if (Size <= 128) {
4878 if (RetTy->isAnyComplexType())
4879 return ABIArgInfo::getDirect();
4880
4881 // O32 returns integer vectors in registers.
4882 if (IsO32 && RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())
4883 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4884
4885 if (!IsO32)
4886 return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
4887 }
4888
4889 return ABIArgInfo::getIndirect(0);
4890 }
4891
4892 // Treat an enum type as its underlying type.
4893 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
4894 RetTy = EnumTy->getDecl()->getIntegerType();
4895
4896 return (RetTy->isPromotableIntegerType() ?
4897 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
4898}
4899
4900void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
4901 ABIArgInfo &RetInfo = FI.getReturnInfo();
4902 RetInfo = classifyReturnType(FI.getReturnType());
4903
4904 // Check if a pointer to an aggregate is passed as a hidden argument.
4905 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
4906
4907 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
4908 it != ie; ++it)
4909 it->info = classifyArgumentType(it->type, Offset);
4910}
4911
4912llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
4913 CodeGenFunction &CGF) const {
4914 llvm::Type *BP = CGF.Int8PtrTy;
4915 llvm::Type *BPP = CGF.Int8PtrPtrTy;
4916
4917 CGBuilderTy &Builder = CGF.Builder;
4918 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
4919 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
4920 int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
4921 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
4922 llvm::Value *AddrTyped;
4923 unsigned PtrWidth = getTarget().getPointerWidth(0);
4924 llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
4925
4926 if (TypeAlign > MinABIStackAlignInBytes) {
4927 llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
4928 llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
4929 llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
4930 llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
4931 llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
4932 AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
4933 }
4934 else
4935 AddrTyped = Builder.CreateBitCast(Addr, PTy);
4936
4937 llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
4938 TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
4939 uint64_t Offset =
4940 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
4941 llvm::Value *NextAddr =
4942 Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
4943 "ap.next");
4944 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
4945
4946 return AddrTyped;
4947}
4948
4949bool
4950MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4951 llvm::Value *Address) const {
4952 // This information comes from gcc's implementation, which seems to
4953 // as canonical as it gets.
4954
4955 // Everything on MIPS is 4 bytes. Double-precision FP registers
4956 // are aliased to pairs of single-precision FP registers.
4957 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
4958
4959 // 0-31 are the general purpose registers, $0 - $31.
4960 // 32-63 are the floating-point registers, $f0 - $f31.
4961 // 64 and 65 are the multiply/divide registers, $hi and $lo.
4962 // 66 is the (notional, I think) register for signal-handler return.
4963 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
4964
4965 // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
4966 // They are one bit wide and ignored here.
4967
4968 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
4969 // (coprocessor 1 is the FP unit)
4970 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
4971 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
4972 // 176-181 are the DSP accumulator registers.
4973 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
4974 return false;
4975}
4976
4977//===----------------------------------------------------------------------===//
4978// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
4979// Currently subclassed only to implement custom OpenCL C function attribute
4980// handling.
4981//===----------------------------------------------------------------------===//
4982
4983namespace {
4984
4985class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4986public:
4987 TCETargetCodeGenInfo(CodeGenTypes &CGT)
4988 : DefaultTargetCodeGenInfo(CGT) {}
4989
4990 virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
4991 CodeGen::CodeGenModule &M) const;
4992};
4993
4994void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
4995 llvm::GlobalValue *GV,
4996 CodeGen::CodeGenModule &M) const {
4997 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
4998 if (!FD) return;
4999
5000 llvm::Function *F = cast<llvm::Function>(GV);
5001
5002 if (M.getLangOpts().OpenCL) {
5003 if (FD->hasAttr<OpenCLKernelAttr>()) {
5004 // OpenCL C Kernel functions are not subject to inlining
5005 F->addFnAttr(llvm::Attribute::NoInline);
5006
5007 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
5008
5009 // Convert the reqd_work_group_size() attributes to metadata.
5010 llvm::LLVMContext &Context = F->getContext();
5011 llvm::NamedMDNode *OpenCLMetadata =
5012 M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
5013
5014 SmallVector<llvm::Value*, 5> Operands;
5015 Operands.push_back(F);
5016
5017 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5018 llvm::APInt(32,
5019 FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
5020 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5021 llvm::APInt(32,
5022 FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
5023 Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
5024 llvm::APInt(32,
5025 FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
5026
5027 // Add a boolean constant operand for "required" (true) or "hint" (false)
5028 // for implementing the work_group_size_hint attr later. Currently
5029 // always true as the hint is not yet implemented.
5030 Operands.push_back(llvm::ConstantInt::getTrue(Context));
5031 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
5032 }
5033 }
5034 }
5035}
5036
5037}
5038
5039//===----------------------------------------------------------------------===//
5040// Hexagon ABI Implementation
5041//===----------------------------------------------------------------------===//
5042
5043namespace {
5044
5045class HexagonABIInfo : public ABIInfo {
5046
5047
5048public:
5049 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5050
5051private:
5052
5053 ABIArgInfo classifyReturnType(QualType RetTy) const;
5054 ABIArgInfo classifyArgumentType(QualType RetTy) const;
5055
5056 virtual void computeInfo(CGFunctionInfo &FI) const;
5057
5058 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5059 CodeGenFunction &CGF) const;
5060};
5061
5062class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
5063public:
5064 HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
5065 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
5066
5067 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
5068 return 29;
5069 }
5070};
5071
5072}
5073
5074void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
5075 FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
5076 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
5077 it != ie; ++it)
5078 it->info = classifyArgumentType(it->type);
5079}
5080
5081ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
5082 if (!isAggregateTypeForABI(Ty)) {
5083 // Treat an enum type as its underlying type.
5084 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5085 Ty = EnumTy->getDecl()->getIntegerType();
5086
5087 return (Ty->isPromotableIntegerType() ?
5088 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5089 }
5090
5091 // Ignore empty records.
5092 if (isEmptyRecord(getContext(), Ty, true))
5093 return ABIArgInfo::getIgnore();
5094
5095 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5096 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5097
5098 uint64_t Size = getContext().getTypeSize(Ty);
5099 if (Size > 64)
5100 return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5101 // Pass in the smallest viable integer type.
5102 else if (Size > 32)
5103 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5104 else if (Size > 16)
5105 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5106 else if (Size > 8)
5107 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5108 else
5109 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5110}
5111
5112ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
5113 if (RetTy->isVoidType())
5114 return ABIArgInfo::getIgnore();
5115
5116 // Large vector types should be returned via memory.
5117 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
5118 return ABIArgInfo::getIndirect(0);
5119
5120 if (!isAggregateTypeForABI(RetTy)) {
5121 // Treat an enum type as its underlying type.
5122 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5123 RetTy = EnumTy->getDecl()->getIntegerType();
5124
5125 return (RetTy->isPromotableIntegerType() ?
5126 ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
5127 }
5128
5129 // Structures with either a non-trivial destructor or a non-trivial
5130 // copy constructor are always indirect.
5131 if (isRecordReturnIndirect(RetTy, getCXXABI()))
5132 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5133
5134 if (isEmptyRecord(getContext(), RetTy, true))
5135 return ABIArgInfo::getIgnore();
5136
5137 // Aggregates <= 8 bytes are returned in r0; other aggregates
5138 // are returned indirectly.
5139 uint64_t Size = getContext().getTypeSize(RetTy);
5140 if (Size <= 64) {
5141 // Return in the smallest viable integer type.
5142 if (Size <= 8)
5143 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5144 if (Size <= 16)
5145 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
5146 if (Size <= 32)
5147 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
5148 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
5149 }
5150
5151 return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
5152}
5153
5154llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5155 CodeGenFunction &CGF) const {
5156 // FIXME: Need to handle alignment
5157 llvm::Type *BPP = CGF.Int8PtrPtrTy;
5158
5159 CGBuilderTy &Builder = CGF.Builder;
5160 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
5161 "ap");
5162 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5163 llvm::Type *PTy =
5164 llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
5165 llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
5166
5167 uint64_t Offset =
5168 llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
5169 llvm::Value *NextAddr =
5170 Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
5171 "ap.next");
5172 Builder.CreateStore(NextAddr, VAListAddrAsBPP);
5173
5174 return AddrTyped;
5175}
5176
5177
5178//===----------------------------------------------------------------------===//
5179// SPARC v9 ABI Implementation.
5180// Based on the SPARC Compliance Definition version 2.4.1.
5181//
5182// Function arguments a mapped to a nominal "parameter array" and promoted to
5183// registers depending on their type. Each argument occupies 8 or 16 bytes in
5184// the array, structs larger than 16 bytes are passed indirectly.
5185//
5186// One case requires special care:
5187//
5188// struct mixed {
5189// int i;
5190// float f;
5191// };
5192//
5193// When a struct mixed is passed by value, it only occupies 8 bytes in the
5194// parameter array, but the int is passed in an integer register, and the float
5195// is passed in a floating point register. This is represented as two arguments
5196// with the LLVM IR inreg attribute:
5197//
5198// declare void f(i32 inreg %i, float inreg %f)
5199//
5200// The code generator will only allocate 4 bytes from the parameter array for
5201// the inreg arguments. All other arguments are allocated a multiple of 8
5202// bytes.
5203//
5204namespace {
5205class SparcV9ABIInfo : public ABIInfo {
5206public:
5207 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
5208
5209private:
5210 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
5211 virtual void computeInfo(CGFunctionInfo &FI) const;
5212 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5213 CodeGenFunction &CGF) const;
5214
5215 // Coercion type builder for structs passed in registers. The coercion type
5216 // serves two purposes:
5217 //
5218 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
5219 // in registers.
5220 // 2. Expose aligned floating point elements as first-level elements, so the
5221 // code generator knows to pass them in floating point registers.
5222 //
5223 // We also compute the InReg flag which indicates that the struct contains
5224 // aligned 32-bit floats.
5225 //
5226 struct CoerceBuilder {
5227 llvm::LLVMContext &Context;
5228 const llvm::DataLayout &DL;
5229 SmallVector<llvm::Type*, 8> Elems;
5230 uint64_t Size;
5231 bool InReg;
5232
5233 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
5234 : Context(c), DL(dl), Size(0), InReg(false) {}
5235
5236 // Pad Elems with integers until Size is ToSize.
5237 void pad(uint64_t ToSize) {
5238 assert(ToSize >= Size && "Cannot remove elements");
5239 if (ToSize == Size)
5240 return;
5241
5242 // Finish the current 64-bit word.
5243 uint64_t Aligned = llvm::RoundUpToAlignment(Size, 64);
5244 if (Aligned > Size && Aligned <= ToSize) {
5245 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
5246 Size = Aligned;
5247 }
5248
5249 // Add whole 64-bit words.
5250 while (Size + 64 <= ToSize) {
5251 Elems.push_back(llvm::Type::getInt64Ty(Context));
5252 Size += 64;
5253 }
5254
5255 // Final in-word padding.
5256 if (Size < ToSize) {
5257 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
5258 Size = ToSize;
5259 }
5260 }
5261
5262 // Add a floating point element at Offset.
5263 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
5264 // Unaligned floats are treated as integers.
5265 if (Offset % Bits)
5266 return;
5267 // The InReg flag is only required if there are any floats < 64 bits.
5268 if (Bits < 64)
5269 InReg = true;
5270 pad(Offset);
5271 Elems.push_back(Ty);
5272 Size = Offset + Bits;
5273 }
5274
5275 // Add a struct type to the coercion type, starting at Offset (in bits).
5276 void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
5277 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
5278 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
5279 llvm::Type *ElemTy = StrTy->getElementType(i);
5280 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
5281 switch (ElemTy->getTypeID()) {
5282 case llvm::Type::StructTyID:
5283 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
5284 break;
5285 case llvm::Type::FloatTyID:
5286 addFloat(ElemOffset, ElemTy, 32);
5287 break;
5288 case llvm::Type::DoubleTyID:
5289 addFloat(ElemOffset, ElemTy, 64);
5290 break;
5291 case llvm::Type::FP128TyID:
5292 addFloat(ElemOffset, ElemTy, 128);
5293 break;
5294 case llvm::Type::PointerTyID:
5295 if (ElemOffset % 64 == 0) {
5296 pad(ElemOffset);
5297 Elems.push_back(ElemTy);
5298 Size += 64;
5299 }
5300 break;
5301 default:
5302 break;
5303 }
5304 }
5305 }
5306
5307 // Check if Ty is a usable substitute for the coercion type.
5308 bool isUsableType(llvm::StructType *Ty) const {
5309 if (Ty->getNumElements() != Elems.size())
5310 return false;
5311 for (unsigned i = 0, e = Elems.size(); i != e; ++i)
5312 if (Elems[i] != Ty->getElementType(i))
5313 return false;
5314 return true;
5315 }
5316
5317 // Get the coercion type as a literal struct type.
5318 llvm::Type *getType() const {
5319 if (Elems.size() == 1)
5320 return Elems.front();
5321 else
5322 return llvm::StructType::get(Context, Elems);
5323 }
5324 };
5325};
5326} // end anonymous namespace
5327
5328ABIArgInfo
5329SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
5330 if (Ty->isVoidType())
5331 return ABIArgInfo::getIgnore();
5332
5333 uint64_t Size = getContext().getTypeSize(Ty);
5334
5335 // Anything too big to fit in registers is passed with an explicit indirect
5336 // pointer / sret pointer.
5337 if (Size > SizeLimit)
5338 return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
5339
5340 // Treat an enum type as its underlying type.
5341 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5342 Ty = EnumTy->getDecl()->getIntegerType();
5343
5344 // Integer types smaller than a register are extended.
5345 if (Size < 64 && Ty->isIntegerType())
5346 return ABIArgInfo::getExtend();
5347
5348 // Other non-aggregates go in registers.
5349 if (!isAggregateTypeForABI(Ty))
5350 return ABIArgInfo::getDirect();
5351
5352 // If a C++ object has either a non-trivial copy constructor or a non-trivial
5353 // destructor, it is passed with an explicit indirect pointer / sret pointer.
5354 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5355 return ABIArgInfo::getIndirect(0, RAA == CGCXXABI::RAA_DirectInMemory);
5356
5352 // This is a small aggregate type that should be passed in registers.
5353 // Build a coercion type from the LLVM struct type.
5354 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
5355 if (!StrTy)
5356 return ABIArgInfo::getDirect();
5357
5358 CoerceBuilder CB(getVMContext(), getDataLayout());
5359 CB.addStruct(0, StrTy);
5360 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
5361
5362 // Try to use the original type for coercion.
5363 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
5364
5365 if (CB.InReg)
5366 return ABIArgInfo::getDirectInReg(CoerceTy);
5367 else
5368 return ABIArgInfo::getDirect(CoerceTy);
5369}
5370
5371llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5372 CodeGenFunction &CGF) const {
5373 ABIArgInfo AI = classifyType(Ty, 16 * 8);
5374 llvm::Type *ArgTy = CGT.ConvertType(Ty);
5375 if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5376 AI.setCoerceToType(ArgTy);
5377
5378 llvm::Type *BPP = CGF.Int8PtrPtrTy;
5379 CGBuilderTy &Builder = CGF.Builder;
5380 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5381 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5382 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5383 llvm::Value *ArgAddr;
5384 unsigned Stride;
5385
5386 switch (AI.getKind()) {
5387 case ABIArgInfo::Expand:
5388 llvm_unreachable("Unsupported ABI kind for va_arg");
5389
5390 case ABIArgInfo::Extend:
5391 Stride = 8;
5392 ArgAddr = Builder
5393 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
5394 "extend");
5395 break;
5396
5397 case ABIArgInfo::Direct:
5398 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5399 ArgAddr = Addr;
5400 break;
5401
5402 case ABIArgInfo::Indirect:
5403 Stride = 8;
5404 ArgAddr = Builder.CreateBitCast(Addr,
5405 llvm::PointerType::getUnqual(ArgPtrTy),
5406 "indirect");
5407 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
5408 break;
5409
5410 case ABIArgInfo::Ignore:
5411 return llvm::UndefValue::get(ArgPtrTy);
5412 }
5413
5414 // Update VAList.
5415 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
5416 Builder.CreateStore(Addr, VAListAddrAsBPP);
5417
5418 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
5419}
5420
5421void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
5422 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
5423 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
5424 it != ie; ++it)
5425 it->info = classifyType(it->type, 16 * 8);
5426}
5427
5428namespace {
5429class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
5430public:
5431 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
5432 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
5357 // This is a small aggregate type that should be passed in registers.
5358 // Build a coercion type from the LLVM struct type.
5359 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
5360 if (!StrTy)
5361 return ABIArgInfo::getDirect();
5362
5363 CoerceBuilder CB(getVMContext(), getDataLayout());
5364 CB.addStruct(0, StrTy);
5365 CB.pad(llvm::RoundUpToAlignment(CB.DL.getTypeSizeInBits(StrTy), 64));
5366
5367 // Try to use the original type for coercion.
5368 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
5369
5370 if (CB.InReg)
5371 return ABIArgInfo::getDirectInReg(CoerceTy);
5372 else
5373 return ABIArgInfo::getDirect(CoerceTy);
5374}
5375
5376llvm::Value *SparcV9ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5377 CodeGenFunction &CGF) const {
5378 ABIArgInfo AI = classifyType(Ty, 16 * 8);
5379 llvm::Type *ArgTy = CGT.ConvertType(Ty);
5380 if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5381 AI.setCoerceToType(ArgTy);
5382
5383 llvm::Type *BPP = CGF.Int8PtrPtrTy;
5384 CGBuilderTy &Builder = CGF.Builder;
5385 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
5386 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
5387 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5388 llvm::Value *ArgAddr;
5389 unsigned Stride;
5390
5391 switch (AI.getKind()) {
5392 case ABIArgInfo::Expand:
5393 llvm_unreachable("Unsupported ABI kind for va_arg");
5394
5395 case ABIArgInfo::Extend:
5396 Stride = 8;
5397 ArgAddr = Builder
5398 .CreateConstGEP1_32(Addr, 8 - getDataLayout().getTypeAllocSize(ArgTy),
5399 "extend");
5400 break;
5401
5402 case ABIArgInfo::Direct:
5403 Stride = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5404 ArgAddr = Addr;
5405 break;
5406
5407 case ABIArgInfo::Indirect:
5408 Stride = 8;
5409 ArgAddr = Builder.CreateBitCast(Addr,
5410 llvm::PointerType::getUnqual(ArgPtrTy),
5411 "indirect");
5412 ArgAddr = Builder.CreateLoad(ArgAddr, "indirect.arg");
5413 break;
5414
5415 case ABIArgInfo::Ignore:
5416 return llvm::UndefValue::get(ArgPtrTy);
5417 }
5418
5419 // Update VAList.
5420 Addr = Builder.CreateConstGEP1_32(Addr, Stride, "ap.next");
5421 Builder.CreateStore(Addr, VAListAddrAsBPP);
5422
5423 return Builder.CreatePointerCast(ArgAddr, ArgPtrTy, "arg.addr");
5424}
5425
5426void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
5427 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
5428 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
5429 it != ie; ++it)
5430 it->info = classifyType(it->type, 16 * 8);
5431}
5432
5433namespace {
5434class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
5435public:
5436 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
5437 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {}
5438
5439 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
5440 return 14;
5441 }
5442
5443 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5444 llvm::Value *Address) const;
5433};
5434} // end anonymous namespace
5435
5445};
5446} // end anonymous namespace
5447
5448bool
5449SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5450 llvm::Value *Address) const {
5451 // This is calculated from the LLVM and GCC tables and verified
5452 // against gcc output. AFAIK all ABIs use the same encoding.
5436
5453
5454 CodeGen::CGBuilderTy &Builder = CGF.Builder;
5455
5456 llvm::IntegerType *i8 = CGF.Int8Ty;
5457 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
5458 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
5459
5460 // 0-31: the 8-byte general-purpose registers
5461 AssignToArrayRange(Builder, Address, Eight8, 0, 31);
5462
5463 // 32-63: f0-31, the 4-byte floating-point registers
5464 AssignToArrayRange(Builder, Address, Four8, 32, 63);
5465
5466 // Y = 64
5467 // PSR = 65
5468 // WIM = 66
5469 // TBR = 67
5470 // PC = 68
5471 // NPC = 69
5472 // FSR = 70
5473 // CSR = 71
5474 AssignToArrayRange(Builder, Address, Eight8, 64, 71);
5475
5476 // 72-87: d0-15, the 8-byte floating-point registers
5477 AssignToArrayRange(Builder, Address, Eight8, 72, 87);
5478
5479 return false;
5480}
5481
5482
5437//===----------------------------------------------------------------------===//
5438// Xcore ABI Implementation
5439//===----------------------------------------------------------------------===//
5440namespace {
5441class XCoreABIInfo : public DefaultABIInfo {
5442public:
5443 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
5444 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5445 CodeGenFunction &CGF) const;
5446};
5447
5448class XcoreTargetCodeGenInfo : public TargetCodeGenInfo {
5449public:
5450 XcoreTargetCodeGenInfo(CodeGenTypes &CGT)
5451 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
5452};
5453} // End anonymous namespace.
5454
5455llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5456 CodeGenFunction &CGF) const {
5457 CGBuilderTy &Builder = CGF.Builder;
5458
5459 // Get the VAList.
5460 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
5461 CGF.Int8PtrPtrTy);
5462 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
5463
5464 // Handle the argument.
5465 ABIArgInfo AI = classifyArgumentType(Ty);
5466 llvm::Type *ArgTy = CGT.ConvertType(Ty);
5467 if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5468 AI.setCoerceToType(ArgTy);
5469 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5470 llvm::Value *Val;
5471 uint64_t ArgSize = 0;
5472 switch (AI.getKind()) {
5473 case ABIArgInfo::Expand:
5474 llvm_unreachable("Unsupported ABI kind for va_arg");
5475 case ABIArgInfo::Ignore:
5476 Val = llvm::UndefValue::get(ArgPtrTy);
5477 ArgSize = 0;
5478 break;
5479 case ABIArgInfo::Extend:
5480 case ABIArgInfo::Direct:
5481 Val = Builder.CreatePointerCast(AP, ArgPtrTy);
5482 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5483 if (ArgSize < 4)
5484 ArgSize = 4;
5485 break;
5486 case ABIArgInfo::Indirect:
5487 llvm::Value *ArgAddr;
5488 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
5489 ArgAddr = Builder.CreateLoad(ArgAddr);
5490 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
5491 ArgSize = 4;
5492 break;
5493 }
5494
5495 // Increment the VAList.
5496 if (ArgSize) {
5497 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
5498 Builder.CreateStore(APN, VAListAddrAsBPP);
5499 }
5500 return Val;
5501}
5502
5503//===----------------------------------------------------------------------===//
5504// Driver code
5505//===----------------------------------------------------------------------===//
5506
5507const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
5508 if (TheTargetCodeGenInfo)
5509 return *TheTargetCodeGenInfo;
5510
5511 const llvm::Triple &Triple = getTarget().getTriple();
5512 switch (Triple.getArch()) {
5513 default:
5514 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
5515
5516 case llvm::Triple::le32:
5517 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
5518 case llvm::Triple::mips:
5519 case llvm::Triple::mipsel:
5520 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
5521
5522 case llvm::Triple::mips64:
5523 case llvm::Triple::mips64el:
5524 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
5525
5526 case llvm::Triple::aarch64:
5527 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types));
5528
5529 case llvm::Triple::arm:
5530 case llvm::Triple::thumb:
5531 {
5532 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
5533 if (strcmp(getTarget().getABI(), "apcs-gnu") == 0)
5534 Kind = ARMABIInfo::APCS;
5535 else if (CodeGenOpts.FloatABI == "hard" ||
5536 (CodeGenOpts.FloatABI != "soft" &&
5537 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
5538 Kind = ARMABIInfo::AAPCS_VFP;
5539
5540 switch (Triple.getOS()) {
5541 case llvm::Triple::NaCl:
5542 return *(TheTargetCodeGenInfo =
5543 new NaClARMTargetCodeGenInfo(Types, Kind));
5544 default:
5545 return *(TheTargetCodeGenInfo =
5546 new ARMTargetCodeGenInfo(Types, Kind));
5547 }
5548 }
5549
5550 case llvm::Triple::ppc:
5551 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
5552 case llvm::Triple::ppc64:
5553 if (Triple.isOSBinFormatELF())
5554 return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
5555 else
5556 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
5557 case llvm::Triple::ppc64le:
5558 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
5559 return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
5560
5561 case llvm::Triple::nvptx:
5562 case llvm::Triple::nvptx64:
5563 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
5564
5565 case llvm::Triple::msp430:
5566 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
5567
5568 case llvm::Triple::systemz:
5569 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
5570
5571 case llvm::Triple::tce:
5572 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
5573
5574 case llvm::Triple::x86: {
5575 bool IsDarwinVectorABI = Triple.isOSDarwin();
5576 bool IsSmallStructInRegABI =
5577 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
5578 bool IsWin32FloatStructABI = (Triple.getOS() == llvm::Triple::Win32);
5579
5580 if (Triple.getOS() == llvm::Triple::Win32) {
5581 return *(TheTargetCodeGenInfo =
5582 new WinX86_32TargetCodeGenInfo(Types,
5583 IsDarwinVectorABI, IsSmallStructInRegABI,
5584 IsWin32FloatStructABI,
5585 CodeGenOpts.NumRegisterParameters));
5586 } else {
5587 return *(TheTargetCodeGenInfo =
5588 new X86_32TargetCodeGenInfo(Types,
5589 IsDarwinVectorABI, IsSmallStructInRegABI,
5590 IsWin32FloatStructABI,
5591 CodeGenOpts.NumRegisterParameters));
5592 }
5593 }
5594
5595 case llvm::Triple::x86_64: {
5596 bool HasAVX = strcmp(getTarget().getABI(), "avx") == 0;
5597
5598 switch (Triple.getOS()) {
5599 case llvm::Triple::Win32:
5600 case llvm::Triple::MinGW32:
5601 case llvm::Triple::Cygwin:
5602 return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
5603 case llvm::Triple::NaCl:
5604 return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types,
5605 HasAVX));
5606 default:
5607 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
5608 HasAVX));
5609 }
5610 }
5611 case llvm::Triple::hexagon:
5612 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
5613 case llvm::Triple::sparcv9:
5614 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
5615 case llvm::Triple::xcore:
5616 return *(TheTargetCodeGenInfo = new XcoreTargetCodeGenInfo(Types));
5617
5618 }
5619}
5483//===----------------------------------------------------------------------===//
5484// Xcore ABI Implementation
5485//===----------------------------------------------------------------------===//
5486namespace {
5487class XCoreABIInfo : public DefaultABIInfo {
5488public:
5489 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
5490 virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5491 CodeGenFunction &CGF) const;
5492};
5493
5494class XcoreTargetCodeGenInfo : public TargetCodeGenInfo {
5495public:
5496 XcoreTargetCodeGenInfo(CodeGenTypes &CGT)
5497 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {}
5498};
5499} // End anonymous namespace.
5500
5501llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
5502 CodeGenFunction &CGF) const {
5503 CGBuilderTy &Builder = CGF.Builder;
5504
5505 // Get the VAList.
5506 llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr,
5507 CGF.Int8PtrPtrTy);
5508 llvm::Value *AP = Builder.CreateLoad(VAListAddrAsBPP);
5509
5510 // Handle the argument.
5511 ABIArgInfo AI = classifyArgumentType(Ty);
5512 llvm::Type *ArgTy = CGT.ConvertType(Ty);
5513 if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
5514 AI.setCoerceToType(ArgTy);
5515 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
5516 llvm::Value *Val;
5517 uint64_t ArgSize = 0;
5518 switch (AI.getKind()) {
5519 case ABIArgInfo::Expand:
5520 llvm_unreachable("Unsupported ABI kind for va_arg");
5521 case ABIArgInfo::Ignore:
5522 Val = llvm::UndefValue::get(ArgPtrTy);
5523 ArgSize = 0;
5524 break;
5525 case ABIArgInfo::Extend:
5526 case ABIArgInfo::Direct:
5527 Val = Builder.CreatePointerCast(AP, ArgPtrTy);
5528 ArgSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
5529 if (ArgSize < 4)
5530 ArgSize = 4;
5531 break;
5532 case ABIArgInfo::Indirect:
5533 llvm::Value *ArgAddr;
5534 ArgAddr = Builder.CreateBitCast(AP, llvm::PointerType::getUnqual(ArgPtrTy));
5535 ArgAddr = Builder.CreateLoad(ArgAddr);
5536 Val = Builder.CreatePointerCast(ArgAddr, ArgPtrTy);
5537 ArgSize = 4;
5538 break;
5539 }
5540
5541 // Increment the VAList.
5542 if (ArgSize) {
5543 llvm::Value *APN = Builder.CreateConstGEP1_32(AP, ArgSize);
5544 Builder.CreateStore(APN, VAListAddrAsBPP);
5545 }
5546 return Val;
5547}
5548
5549//===----------------------------------------------------------------------===//
5550// Driver code
5551//===----------------------------------------------------------------------===//
5552
5553const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
5554 if (TheTargetCodeGenInfo)
5555 return *TheTargetCodeGenInfo;
5556
5557 const llvm::Triple &Triple = getTarget().getTriple();
5558 switch (Triple.getArch()) {
5559 default:
5560 return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
5561
5562 case llvm::Triple::le32:
5563 return *(TheTargetCodeGenInfo = new PNaClTargetCodeGenInfo(Types));
5564 case llvm::Triple::mips:
5565 case llvm::Triple::mipsel:
5566 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
5567
5568 case llvm::Triple::mips64:
5569 case llvm::Triple::mips64el:
5570 return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
5571
5572 case llvm::Triple::aarch64:
5573 return *(TheTargetCodeGenInfo = new AArch64TargetCodeGenInfo(Types));
5574
5575 case llvm::Triple::arm:
5576 case llvm::Triple::thumb:
5577 {
5578 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
5579 if (strcmp(getTarget().getABI(), "apcs-gnu") == 0)
5580 Kind = ARMABIInfo::APCS;
5581 else if (CodeGenOpts.FloatABI == "hard" ||
5582 (CodeGenOpts.FloatABI != "soft" &&
5583 Triple.getEnvironment() == llvm::Triple::GNUEABIHF))
5584 Kind = ARMABIInfo::AAPCS_VFP;
5585
5586 switch (Triple.getOS()) {
5587 case llvm::Triple::NaCl:
5588 return *(TheTargetCodeGenInfo =
5589 new NaClARMTargetCodeGenInfo(Types, Kind));
5590 default:
5591 return *(TheTargetCodeGenInfo =
5592 new ARMTargetCodeGenInfo(Types, Kind));
5593 }
5594 }
5595
5596 case llvm::Triple::ppc:
5597 return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
5598 case llvm::Triple::ppc64:
5599 if (Triple.isOSBinFormatELF())
5600 return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
5601 else
5602 return *(TheTargetCodeGenInfo = new PPC64TargetCodeGenInfo(Types));
5603 case llvm::Triple::ppc64le:
5604 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
5605 return *(TheTargetCodeGenInfo = new PPC64_SVR4_TargetCodeGenInfo(Types));
5606
5607 case llvm::Triple::nvptx:
5608 case llvm::Triple::nvptx64:
5609 return *(TheTargetCodeGenInfo = new NVPTXTargetCodeGenInfo(Types));
5610
5611 case llvm::Triple::msp430:
5612 return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
5613
5614 case llvm::Triple::systemz:
5615 return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
5616
5617 case llvm::Triple::tce:
5618 return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
5619
5620 case llvm::Triple::x86: {
5621 bool IsDarwinVectorABI = Triple.isOSDarwin();
5622 bool IsSmallStructInRegABI =
5623 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
5624 bool IsWin32FloatStructABI = (Triple.getOS() == llvm::Triple::Win32);
5625
5626 if (Triple.getOS() == llvm::Triple::Win32) {
5627 return *(TheTargetCodeGenInfo =
5628 new WinX86_32TargetCodeGenInfo(Types,
5629 IsDarwinVectorABI, IsSmallStructInRegABI,
5630 IsWin32FloatStructABI,
5631 CodeGenOpts.NumRegisterParameters));
5632 } else {
5633 return *(TheTargetCodeGenInfo =
5634 new X86_32TargetCodeGenInfo(Types,
5635 IsDarwinVectorABI, IsSmallStructInRegABI,
5636 IsWin32FloatStructABI,
5637 CodeGenOpts.NumRegisterParameters));
5638 }
5639 }
5640
5641 case llvm::Triple::x86_64: {
5642 bool HasAVX = strcmp(getTarget().getABI(), "avx") == 0;
5643
5644 switch (Triple.getOS()) {
5645 case llvm::Triple::Win32:
5646 case llvm::Triple::MinGW32:
5647 case llvm::Triple::Cygwin:
5648 return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
5649 case llvm::Triple::NaCl:
5650 return *(TheTargetCodeGenInfo = new NaClX86_64TargetCodeGenInfo(Types,
5651 HasAVX));
5652 default:
5653 return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
5654 HasAVX));
5655 }
5656 }
5657 case llvm::Triple::hexagon:
5658 return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
5659 case llvm::Triple::sparcv9:
5660 return *(TheTargetCodeGenInfo = new SparcV9TargetCodeGenInfo(Types));
5661 case llvm::Triple::xcore:
5662 return *(TheTargetCodeGenInfo = new XcoreTargetCodeGenInfo(Types));
5663
5664 }
5665}