Deleted Added
full compact
ASTContext.cpp (280031) ASTContext.cpp (283526)
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/MangleNumberingContext.h"
29#include "clang/AST/RecordLayout.h"
30#include "clang/AST/RecursiveASTVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/AST/VTableBuilder.h"
33#include "clang/Basic/Builtins.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/Basic/TargetInfo.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/StringExtras.h"
38#include "llvm/ADT/Triple.h"
39#include "llvm/Support/Capacity.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include <map>
43
44using namespace clang;
45
46unsigned ASTContext::NumImplicitDefaultConstructors;
47unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyConstructors;
49unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
50unsigned ASTContext::NumImplicitMoveConstructors;
51unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
52unsigned ASTContext::NumImplicitCopyAssignmentOperators;
53unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
54unsigned ASTContext::NumImplicitMoveAssignmentOperators;
55unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
56unsigned ASTContext::NumImplicitDestructors;
57unsigned ASTContext::NumImplicitDestructorsDeclared;
58
59enum FloatingRank {
60 HalfRank, FloatRank, DoubleRank, LongDoubleRank
61};
62
63RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
64 if (!CommentsLoaded && ExternalSource) {
65 ExternalSource->ReadComments();
66
67#ifndef NDEBUG
68 ArrayRef<RawComment *> RawComments = Comments.getComments();
69 assert(std::is_sorted(RawComments.begin(), RawComments.end(),
70 BeforeThanCompare<RawComment>(SourceMgr)));
71#endif
72
73 CommentsLoaded = true;
74 }
75
76 assert(D);
77
78 // User can not attach documentation to implicit declarations.
79 if (D->isImplicit())
80 return nullptr;
81
82 // User can not attach documentation to implicit instantiations.
83 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
84 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85 return nullptr;
86 }
87
88 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
89 if (VD->isStaticDataMember() &&
90 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
91 return nullptr;
92 }
93
94 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
95 if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
96 return nullptr;
97 }
98
99 if (const ClassTemplateSpecializationDecl *CTSD =
100 dyn_cast<ClassTemplateSpecializationDecl>(D)) {
101 TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
102 if (TSK == TSK_ImplicitInstantiation ||
103 TSK == TSK_Undeclared)
104 return nullptr;
105 }
106
107 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
108 if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
109 return nullptr;
110 }
111 if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
112 // When tag declaration (but not definition!) is part of the
113 // decl-specifier-seq of some other declaration, it doesn't get comment
114 if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
115 return nullptr;
116 }
117 // TODO: handle comments for function parameters properly.
118 if (isa<ParmVarDecl>(D))
119 return nullptr;
120
121 // TODO: we could look up template parameter documentation in the template
122 // documentation.
123 if (isa<TemplateTypeParmDecl>(D) ||
124 isa<NonTypeTemplateParmDecl>(D) ||
125 isa<TemplateTemplateParmDecl>(D))
126 return nullptr;
127
128 ArrayRef<RawComment *> RawComments = Comments.getComments();
129
130 // If there are no comments anywhere, we won't find anything.
131 if (RawComments.empty())
132 return nullptr;
133
134 // Find declaration location.
135 // For Objective-C declarations we generally don't expect to have multiple
136 // declarators, thus use declaration starting location as the "declaration
137 // location".
138 // For all other declarations multiple declarators are used quite frequently,
139 // so we use the location of the identifier as the "declaration location".
140 SourceLocation DeclLoc;
141 if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
142 isa<ObjCPropertyDecl>(D) ||
143 isa<RedeclarableTemplateDecl>(D) ||
144 isa<ClassTemplateSpecializationDecl>(D))
145 DeclLoc = D->getLocStart();
146 else {
147 DeclLoc = D->getLocation();
148 if (DeclLoc.isMacroID()) {
149 if (isa<TypedefDecl>(D)) {
150 // If location of the typedef name is in a macro, it is because being
151 // declared via a macro. Try using declaration's starting location as
152 // the "declaration location".
153 DeclLoc = D->getLocStart();
154 } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
155 // If location of the tag decl is inside a macro, but the spelling of
156 // the tag name comes from a macro argument, it looks like a special
157 // macro like NS_ENUM is being used to define the tag decl. In that
158 // case, adjust the source location to the expansion loc so that we can
159 // attach the comment to the tag decl.
160 if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
161 TD->isCompleteDefinition())
162 DeclLoc = SourceMgr.getExpansionLoc(DeclLoc);
163 }
164 }
165 }
166
167 // If the declaration doesn't map directly to a location in a file, we
168 // can't find the comment.
169 if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
170 return nullptr;
171
172 // Find the comment that occurs just after this declaration.
173 ArrayRef<RawComment *>::iterator Comment;
174 {
175 // When searching for comments during parsing, the comment we are looking
176 // for is usually among the last two comments we parsed -- check them
177 // first.
178 RawComment CommentAtDeclLoc(
179 SourceMgr, SourceRange(DeclLoc), false,
180 LangOpts.CommentOpts.ParseAllComments);
181 BeforeThanCompare<RawComment> Compare(SourceMgr);
182 ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
183 bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
184 if (!Found && RawComments.size() >= 2) {
185 MaybeBeforeDecl--;
186 Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
187 }
188
189 if (Found) {
190 Comment = MaybeBeforeDecl + 1;
191 assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
192 &CommentAtDeclLoc, Compare));
193 } else {
194 // Slow path.
195 Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
196 &CommentAtDeclLoc, Compare);
197 }
198 }
199
200 // Decompose the location for the declaration and find the beginning of the
201 // file buffer.
202 std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
203
204 // First check whether we have a trailing comment.
205 if (Comment != RawComments.end() &&
206 (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
207 (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
208 isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
209 std::pair<FileID, unsigned> CommentBeginDecomp
210 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
211 // Check that Doxygen trailing comment comes after the declaration, starts
212 // on the same line and in the same file as the declaration.
213 if (DeclLocDecomp.first == CommentBeginDecomp.first &&
214 SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
215 == SourceMgr.getLineNumber(CommentBeginDecomp.first,
216 CommentBeginDecomp.second)) {
217 return *Comment;
218 }
219 }
220
221 // The comment just after the declaration was not a trailing comment.
222 // Let's look at the previous comment.
223 if (Comment == RawComments.begin())
224 return nullptr;
225 --Comment;
226
227 // Check that we actually have a non-member Doxygen comment.
228 if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
229 return nullptr;
230
231 // Decompose the end of the comment.
232 std::pair<FileID, unsigned> CommentEndDecomp
233 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
234
235 // If the comment and the declaration aren't in the same file, then they
236 // aren't related.
237 if (DeclLocDecomp.first != CommentEndDecomp.first)
238 return nullptr;
239
240 // Get the corresponding buffer.
241 bool Invalid = false;
242 const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
243 &Invalid).data();
244 if (Invalid)
245 return nullptr;
246
247 // Extract text between the comment and declaration.
248 StringRef Text(Buffer + CommentEndDecomp.second,
249 DeclLocDecomp.second - CommentEndDecomp.second);
250
251 // There should be no other declarations or preprocessor directives between
252 // comment and declaration.
253 if (Text.find_first_of(";{}#@") != StringRef::npos)
254 return nullptr;
255
256 return *Comment;
257}
258
259namespace {
260/// If we have a 'templated' declaration for a template, adjust 'D' to
261/// refer to the actual template.
262/// If we have an implicit instantiation, adjust 'D' to refer to template.
263const Decl *adjustDeclToTemplate(const Decl *D) {
264 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
265 // Is this function declaration part of a function template?
266 if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
267 return FTD;
268
269 // Nothing to do if function is not an implicit instantiation.
270 if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
271 return D;
272
273 // Function is an implicit instantiation of a function template?
274 if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
275 return FTD;
276
277 // Function is instantiated from a member definition of a class template?
278 if (const FunctionDecl *MemberDecl =
279 FD->getInstantiatedFromMemberFunction())
280 return MemberDecl;
281
282 return D;
283 }
284 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
285 // Static data member is instantiated from a member definition of a class
286 // template?
287 if (VD->isStaticDataMember())
288 if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
289 return MemberDecl;
290
291 return D;
292 }
293 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
294 // Is this class declaration part of a class template?
295 if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
296 return CTD;
297
298 // Class is an implicit instantiation of a class template or partial
299 // specialization?
300 if (const ClassTemplateSpecializationDecl *CTSD =
301 dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
302 if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
303 return D;
304 llvm::PointerUnion<ClassTemplateDecl *,
305 ClassTemplatePartialSpecializationDecl *>
306 PU = CTSD->getSpecializedTemplateOrPartial();
307 return PU.is<ClassTemplateDecl*>() ?
308 static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
309 static_cast<const Decl*>(
310 PU.get<ClassTemplatePartialSpecializationDecl *>());
311 }
312
313 // Class is instantiated from a member definition of a class template?
314 if (const MemberSpecializationInfo *Info =
315 CRD->getMemberSpecializationInfo())
316 return Info->getInstantiatedFrom();
317
318 return D;
319 }
320 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
321 // Enum is instantiated from a member definition of a class template?
322 if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
323 return MemberDecl;
324
325 return D;
326 }
327 // FIXME: Adjust alias templates?
328 return D;
329}
330} // unnamed namespace
331
332const RawComment *ASTContext::getRawCommentForAnyRedecl(
333 const Decl *D,
334 const Decl **OriginalDecl) const {
335 D = adjustDeclToTemplate(D);
336
337 // Check whether we have cached a comment for this declaration already.
338 {
339 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
340 RedeclComments.find(D);
341 if (Pos != RedeclComments.end()) {
342 const RawCommentAndCacheFlags &Raw = Pos->second;
343 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
344 if (OriginalDecl)
345 *OriginalDecl = Raw.getOriginalDecl();
346 return Raw.getRaw();
347 }
348 }
349 }
350
351 // Search for comments attached to declarations in the redeclaration chain.
352 const RawComment *RC = nullptr;
353 const Decl *OriginalDeclForRC = nullptr;
354 for (auto I : D->redecls()) {
355 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
356 RedeclComments.find(I);
357 if (Pos != RedeclComments.end()) {
358 const RawCommentAndCacheFlags &Raw = Pos->second;
359 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
360 RC = Raw.getRaw();
361 OriginalDeclForRC = Raw.getOriginalDecl();
362 break;
363 }
364 } else {
365 RC = getRawCommentForDeclNoCache(I);
366 OriginalDeclForRC = I;
367 RawCommentAndCacheFlags Raw;
368 if (RC) {
369 Raw.setRaw(RC);
370 Raw.setKind(RawCommentAndCacheFlags::FromDecl);
371 } else
372 Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
373 Raw.setOriginalDecl(I);
374 RedeclComments[I] = Raw;
375 if (RC)
376 break;
377 }
378 }
379
380 // If we found a comment, it should be a documentation comment.
381 assert(!RC || RC->isDocumentation());
382
383 if (OriginalDecl)
384 *OriginalDecl = OriginalDeclForRC;
385
386 // Update cache for every declaration in the redeclaration chain.
387 RawCommentAndCacheFlags Raw;
388 Raw.setRaw(RC);
389 Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
390 Raw.setOriginalDecl(OriginalDeclForRC);
391
392 for (auto I : D->redecls()) {
393 RawCommentAndCacheFlags &R = RedeclComments[I];
394 if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
395 R = Raw;
396 }
397
398 return RC;
399}
400
401static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
402 SmallVectorImpl<const NamedDecl *> &Redeclared) {
403 const DeclContext *DC = ObjCMethod->getDeclContext();
404 if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
405 const ObjCInterfaceDecl *ID = IMD->getClassInterface();
406 if (!ID)
407 return;
408 // Add redeclared method here.
409 for (const auto *Ext : ID->known_extensions()) {
410 if (ObjCMethodDecl *RedeclaredMethod =
411 Ext->getMethod(ObjCMethod->getSelector(),
412 ObjCMethod->isInstanceMethod()))
413 Redeclared.push_back(RedeclaredMethod);
414 }
415 }
416}
417
418comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
419 const Decl *D) const {
420 comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
421 ThisDeclInfo->CommentDecl = D;
422 ThisDeclInfo->IsFilled = false;
423 ThisDeclInfo->fill();
424 ThisDeclInfo->CommentDecl = FC->getDecl();
425 if (!ThisDeclInfo->TemplateParameters)
426 ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
427 comments::FullComment *CFC =
428 new (*this) comments::FullComment(FC->getBlocks(),
429 ThisDeclInfo);
430 return CFC;
431
432}
433
434comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
435 const RawComment *RC = getRawCommentForDeclNoCache(D);
436 return RC ? RC->parse(*this, nullptr, D) : nullptr;
437}
438
439comments::FullComment *ASTContext::getCommentForDecl(
440 const Decl *D,
441 const Preprocessor *PP) const {
442 if (D->isInvalidDecl())
443 return nullptr;
444 D = adjustDeclToTemplate(D);
445
446 const Decl *Canonical = D->getCanonicalDecl();
447 llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
448 ParsedComments.find(Canonical);
449
450 if (Pos != ParsedComments.end()) {
451 if (Canonical != D) {
452 comments::FullComment *FC = Pos->second;
453 comments::FullComment *CFC = cloneFullComment(FC, D);
454 return CFC;
455 }
456 return Pos->second;
457 }
458
459 const Decl *OriginalDecl;
460
461 const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
462 if (!RC) {
463 if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
464 SmallVector<const NamedDecl*, 8> Overridden;
465 const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
466 if (OMD && OMD->isPropertyAccessor())
467 if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
468 if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
469 return cloneFullComment(FC, D);
470 if (OMD)
471 addRedeclaredMethods(OMD, Overridden);
472 getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
473 for (unsigned i = 0, e = Overridden.size(); i < e; i++)
474 if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
475 return cloneFullComment(FC, D);
476 }
477 else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
478 // Attach any tag type's documentation to its typedef if latter
479 // does not have one of its own.
480 QualType QT = TD->getUnderlyingType();
481 if (const TagType *TT = QT->getAs<TagType>())
482 if (const Decl *TD = TT->getDecl())
483 if (comments::FullComment *FC = getCommentForDecl(TD, PP))
484 return cloneFullComment(FC, D);
485 }
486 else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
487 while (IC->getSuperClass()) {
488 IC = IC->getSuperClass();
489 if (comments::FullComment *FC = getCommentForDecl(IC, PP))
490 return cloneFullComment(FC, D);
491 }
492 }
493 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
494 if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
495 if (comments::FullComment *FC = getCommentForDecl(IC, PP))
496 return cloneFullComment(FC, D);
497 }
498 else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
499 if (!(RD = RD->getDefinition()))
500 return nullptr;
501 // Check non-virtual bases.
502 for (const auto &I : RD->bases()) {
503 if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
504 continue;
505 QualType Ty = I.getType();
506 if (Ty.isNull())
507 continue;
508 if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
509 if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
510 continue;
511
512 if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
513 return cloneFullComment(FC, D);
514 }
515 }
516 // Check virtual bases.
517 for (const auto &I : RD->vbases()) {
518 if (I.getAccessSpecifier() != AS_public)
519 continue;
520 QualType Ty = I.getType();
521 if (Ty.isNull())
522 continue;
523 if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
524 if (!(VirtualBase= VirtualBase->getDefinition()))
525 continue;
526 if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
527 return cloneFullComment(FC, D);
528 }
529 }
530 }
531 return nullptr;
532 }
533
534 // If the RawComment was attached to other redeclaration of this Decl, we
535 // should parse the comment in context of that other Decl. This is important
536 // because comments can contain references to parameter names which can be
537 // different across redeclarations.
538 if (D != OriginalDecl)
539 return getCommentForDecl(OriginalDecl, PP);
540
541 comments::FullComment *FC = RC->parse(*this, PP, D);
542 ParsedComments[Canonical] = FC;
543 return FC;
544}
545
546void
547ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
548 TemplateTemplateParmDecl *Parm) {
549 ID.AddInteger(Parm->getDepth());
550 ID.AddInteger(Parm->getPosition());
551 ID.AddBoolean(Parm->isParameterPack());
552
553 TemplateParameterList *Params = Parm->getTemplateParameters();
554 ID.AddInteger(Params->size());
555 for (TemplateParameterList::const_iterator P = Params->begin(),
556 PEnd = Params->end();
557 P != PEnd; ++P) {
558 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
559 ID.AddInteger(0);
560 ID.AddBoolean(TTP->isParameterPack());
561 continue;
562 }
563
564 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
565 ID.AddInteger(1);
566 ID.AddBoolean(NTTP->isParameterPack());
567 ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
568 if (NTTP->isExpandedParameterPack()) {
569 ID.AddBoolean(true);
570 ID.AddInteger(NTTP->getNumExpansionTypes());
571 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
572 QualType T = NTTP->getExpansionType(I);
573 ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
574 }
575 } else
576 ID.AddBoolean(false);
577 continue;
578 }
579
580 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
581 ID.AddInteger(2);
582 Profile(ID, TTP);
583 }
584}
585
586TemplateTemplateParmDecl *
587ASTContext::getCanonicalTemplateTemplateParmDecl(
588 TemplateTemplateParmDecl *TTP) const {
589 // Check if we already have a canonical template template parameter.
590 llvm::FoldingSetNodeID ID;
591 CanonicalTemplateTemplateParm::Profile(ID, TTP);
592 void *InsertPos = nullptr;
593 CanonicalTemplateTemplateParm *Canonical
594 = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
595 if (Canonical)
596 return Canonical->getParam();
597
598 // Build a canonical template parameter list.
599 TemplateParameterList *Params = TTP->getTemplateParameters();
600 SmallVector<NamedDecl *, 4> CanonParams;
601 CanonParams.reserve(Params->size());
602 for (TemplateParameterList::const_iterator P = Params->begin(),
603 PEnd = Params->end();
604 P != PEnd; ++P) {
605 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
606 CanonParams.push_back(
607 TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
608 SourceLocation(),
609 SourceLocation(),
610 TTP->getDepth(),
611 TTP->getIndex(), nullptr, false,
612 TTP->isParameterPack()));
613 else if (NonTypeTemplateParmDecl *NTTP
614 = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
615 QualType T = getCanonicalType(NTTP->getType());
616 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
617 NonTypeTemplateParmDecl *Param;
618 if (NTTP->isExpandedParameterPack()) {
619 SmallVector<QualType, 2> ExpandedTypes;
620 SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
621 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
622 ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
623 ExpandedTInfos.push_back(
624 getTrivialTypeSourceInfo(ExpandedTypes.back()));
625 }
626
627 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
628 SourceLocation(),
629 SourceLocation(),
630 NTTP->getDepth(),
631 NTTP->getPosition(), nullptr,
632 T,
633 TInfo,
634 ExpandedTypes.data(),
635 ExpandedTypes.size(),
636 ExpandedTInfos.data());
637 } else {
638 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
639 SourceLocation(),
640 SourceLocation(),
641 NTTP->getDepth(),
642 NTTP->getPosition(), nullptr,
643 T,
644 NTTP->isParameterPack(),
645 TInfo);
646 }
647 CanonParams.push_back(Param);
648
649 } else
650 CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
651 cast<TemplateTemplateParmDecl>(*P)));
652 }
653
654 TemplateTemplateParmDecl *CanonTTP
655 = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
656 SourceLocation(), TTP->getDepth(),
657 TTP->getPosition(),
658 TTP->isParameterPack(),
659 nullptr,
660 TemplateParameterList::Create(*this, SourceLocation(),
661 SourceLocation(),
662 CanonParams.data(),
663 CanonParams.size(),
664 SourceLocation()));
665
666 // Get the new insert position for the node we care about.
667 Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
668 assert(!Canonical && "Shouldn't be in the map!");
669 (void)Canonical;
670
671 // Create the canonical template template parameter entry.
672 Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
673 CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
674 return CanonTTP;
675}
676
677CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
678 if (!LangOpts.CPlusPlus) return nullptr;
679
680 switch (T.getCXXABI().getKind()) {
681 case TargetCXXABI::GenericARM: // Same as Itanium at this level
682 case TargetCXXABI::iOS:
683 case TargetCXXABI::iOS64:
684 case TargetCXXABI::GenericAArch64:
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/MangleNumberingContext.h"
29#include "clang/AST/RecordLayout.h"
30#include "clang/AST/RecursiveASTVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/AST/VTableBuilder.h"
33#include "clang/Basic/Builtins.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/Basic/TargetInfo.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/StringExtras.h"
38#include "llvm/ADT/Triple.h"
39#include "llvm/Support/Capacity.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include <map>
43
44using namespace clang;
45
46unsigned ASTContext::NumImplicitDefaultConstructors;
47unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyConstructors;
49unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
50unsigned ASTContext::NumImplicitMoveConstructors;
51unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
52unsigned ASTContext::NumImplicitCopyAssignmentOperators;
53unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
54unsigned ASTContext::NumImplicitMoveAssignmentOperators;
55unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
56unsigned ASTContext::NumImplicitDestructors;
57unsigned ASTContext::NumImplicitDestructorsDeclared;
58
59enum FloatingRank {
60 HalfRank, FloatRank, DoubleRank, LongDoubleRank
61};
62
63RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
64 if (!CommentsLoaded && ExternalSource) {
65 ExternalSource->ReadComments();
66
67#ifndef NDEBUG
68 ArrayRef<RawComment *> RawComments = Comments.getComments();
69 assert(std::is_sorted(RawComments.begin(), RawComments.end(),
70 BeforeThanCompare<RawComment>(SourceMgr)));
71#endif
72
73 CommentsLoaded = true;
74 }
75
76 assert(D);
77
78 // User can not attach documentation to implicit declarations.
79 if (D->isImplicit())
80 return nullptr;
81
82 // User can not attach documentation to implicit instantiations.
83 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
84 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85 return nullptr;
86 }
87
88 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
89 if (VD->isStaticDataMember() &&
90 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
91 return nullptr;
92 }
93
94 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
95 if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
96 return nullptr;
97 }
98
99 if (const ClassTemplateSpecializationDecl *CTSD =
100 dyn_cast<ClassTemplateSpecializationDecl>(D)) {
101 TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
102 if (TSK == TSK_ImplicitInstantiation ||
103 TSK == TSK_Undeclared)
104 return nullptr;
105 }
106
107 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
108 if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
109 return nullptr;
110 }
111 if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
112 // When tag declaration (but not definition!) is part of the
113 // decl-specifier-seq of some other declaration, it doesn't get comment
114 if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
115 return nullptr;
116 }
117 // TODO: handle comments for function parameters properly.
118 if (isa<ParmVarDecl>(D))
119 return nullptr;
120
121 // TODO: we could look up template parameter documentation in the template
122 // documentation.
123 if (isa<TemplateTypeParmDecl>(D) ||
124 isa<NonTypeTemplateParmDecl>(D) ||
125 isa<TemplateTemplateParmDecl>(D))
126 return nullptr;
127
128 ArrayRef<RawComment *> RawComments = Comments.getComments();
129
130 // If there are no comments anywhere, we won't find anything.
131 if (RawComments.empty())
132 return nullptr;
133
134 // Find declaration location.
135 // For Objective-C declarations we generally don't expect to have multiple
136 // declarators, thus use declaration starting location as the "declaration
137 // location".
138 // For all other declarations multiple declarators are used quite frequently,
139 // so we use the location of the identifier as the "declaration location".
140 SourceLocation DeclLoc;
141 if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
142 isa<ObjCPropertyDecl>(D) ||
143 isa<RedeclarableTemplateDecl>(D) ||
144 isa<ClassTemplateSpecializationDecl>(D))
145 DeclLoc = D->getLocStart();
146 else {
147 DeclLoc = D->getLocation();
148 if (DeclLoc.isMacroID()) {
149 if (isa<TypedefDecl>(D)) {
150 // If location of the typedef name is in a macro, it is because being
151 // declared via a macro. Try using declaration's starting location as
152 // the "declaration location".
153 DeclLoc = D->getLocStart();
154 } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
155 // If location of the tag decl is inside a macro, but the spelling of
156 // the tag name comes from a macro argument, it looks like a special
157 // macro like NS_ENUM is being used to define the tag decl. In that
158 // case, adjust the source location to the expansion loc so that we can
159 // attach the comment to the tag decl.
160 if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
161 TD->isCompleteDefinition())
162 DeclLoc = SourceMgr.getExpansionLoc(DeclLoc);
163 }
164 }
165 }
166
167 // If the declaration doesn't map directly to a location in a file, we
168 // can't find the comment.
169 if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
170 return nullptr;
171
172 // Find the comment that occurs just after this declaration.
173 ArrayRef<RawComment *>::iterator Comment;
174 {
175 // When searching for comments during parsing, the comment we are looking
176 // for is usually among the last two comments we parsed -- check them
177 // first.
178 RawComment CommentAtDeclLoc(
179 SourceMgr, SourceRange(DeclLoc), false,
180 LangOpts.CommentOpts.ParseAllComments);
181 BeforeThanCompare<RawComment> Compare(SourceMgr);
182 ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
183 bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
184 if (!Found && RawComments.size() >= 2) {
185 MaybeBeforeDecl--;
186 Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
187 }
188
189 if (Found) {
190 Comment = MaybeBeforeDecl + 1;
191 assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
192 &CommentAtDeclLoc, Compare));
193 } else {
194 // Slow path.
195 Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
196 &CommentAtDeclLoc, Compare);
197 }
198 }
199
200 // Decompose the location for the declaration and find the beginning of the
201 // file buffer.
202 std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
203
204 // First check whether we have a trailing comment.
205 if (Comment != RawComments.end() &&
206 (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
207 (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
208 isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
209 std::pair<FileID, unsigned> CommentBeginDecomp
210 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
211 // Check that Doxygen trailing comment comes after the declaration, starts
212 // on the same line and in the same file as the declaration.
213 if (DeclLocDecomp.first == CommentBeginDecomp.first &&
214 SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
215 == SourceMgr.getLineNumber(CommentBeginDecomp.first,
216 CommentBeginDecomp.second)) {
217 return *Comment;
218 }
219 }
220
221 // The comment just after the declaration was not a trailing comment.
222 // Let's look at the previous comment.
223 if (Comment == RawComments.begin())
224 return nullptr;
225 --Comment;
226
227 // Check that we actually have a non-member Doxygen comment.
228 if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
229 return nullptr;
230
231 // Decompose the end of the comment.
232 std::pair<FileID, unsigned> CommentEndDecomp
233 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
234
235 // If the comment and the declaration aren't in the same file, then they
236 // aren't related.
237 if (DeclLocDecomp.first != CommentEndDecomp.first)
238 return nullptr;
239
240 // Get the corresponding buffer.
241 bool Invalid = false;
242 const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
243 &Invalid).data();
244 if (Invalid)
245 return nullptr;
246
247 // Extract text between the comment and declaration.
248 StringRef Text(Buffer + CommentEndDecomp.second,
249 DeclLocDecomp.second - CommentEndDecomp.second);
250
251 // There should be no other declarations or preprocessor directives between
252 // comment and declaration.
253 if (Text.find_first_of(";{}#@") != StringRef::npos)
254 return nullptr;
255
256 return *Comment;
257}
258
259namespace {
260/// If we have a 'templated' declaration for a template, adjust 'D' to
261/// refer to the actual template.
262/// If we have an implicit instantiation, adjust 'D' to refer to template.
263const Decl *adjustDeclToTemplate(const Decl *D) {
264 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
265 // Is this function declaration part of a function template?
266 if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
267 return FTD;
268
269 // Nothing to do if function is not an implicit instantiation.
270 if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
271 return D;
272
273 // Function is an implicit instantiation of a function template?
274 if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
275 return FTD;
276
277 // Function is instantiated from a member definition of a class template?
278 if (const FunctionDecl *MemberDecl =
279 FD->getInstantiatedFromMemberFunction())
280 return MemberDecl;
281
282 return D;
283 }
284 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
285 // Static data member is instantiated from a member definition of a class
286 // template?
287 if (VD->isStaticDataMember())
288 if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
289 return MemberDecl;
290
291 return D;
292 }
293 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
294 // Is this class declaration part of a class template?
295 if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
296 return CTD;
297
298 // Class is an implicit instantiation of a class template or partial
299 // specialization?
300 if (const ClassTemplateSpecializationDecl *CTSD =
301 dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
302 if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
303 return D;
304 llvm::PointerUnion<ClassTemplateDecl *,
305 ClassTemplatePartialSpecializationDecl *>
306 PU = CTSD->getSpecializedTemplateOrPartial();
307 return PU.is<ClassTemplateDecl*>() ?
308 static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
309 static_cast<const Decl*>(
310 PU.get<ClassTemplatePartialSpecializationDecl *>());
311 }
312
313 // Class is instantiated from a member definition of a class template?
314 if (const MemberSpecializationInfo *Info =
315 CRD->getMemberSpecializationInfo())
316 return Info->getInstantiatedFrom();
317
318 return D;
319 }
320 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
321 // Enum is instantiated from a member definition of a class template?
322 if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
323 return MemberDecl;
324
325 return D;
326 }
327 // FIXME: Adjust alias templates?
328 return D;
329}
330} // unnamed namespace
331
332const RawComment *ASTContext::getRawCommentForAnyRedecl(
333 const Decl *D,
334 const Decl **OriginalDecl) const {
335 D = adjustDeclToTemplate(D);
336
337 // Check whether we have cached a comment for this declaration already.
338 {
339 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
340 RedeclComments.find(D);
341 if (Pos != RedeclComments.end()) {
342 const RawCommentAndCacheFlags &Raw = Pos->second;
343 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
344 if (OriginalDecl)
345 *OriginalDecl = Raw.getOriginalDecl();
346 return Raw.getRaw();
347 }
348 }
349 }
350
351 // Search for comments attached to declarations in the redeclaration chain.
352 const RawComment *RC = nullptr;
353 const Decl *OriginalDeclForRC = nullptr;
354 for (auto I : D->redecls()) {
355 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
356 RedeclComments.find(I);
357 if (Pos != RedeclComments.end()) {
358 const RawCommentAndCacheFlags &Raw = Pos->second;
359 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
360 RC = Raw.getRaw();
361 OriginalDeclForRC = Raw.getOriginalDecl();
362 break;
363 }
364 } else {
365 RC = getRawCommentForDeclNoCache(I);
366 OriginalDeclForRC = I;
367 RawCommentAndCacheFlags Raw;
368 if (RC) {
369 Raw.setRaw(RC);
370 Raw.setKind(RawCommentAndCacheFlags::FromDecl);
371 } else
372 Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
373 Raw.setOriginalDecl(I);
374 RedeclComments[I] = Raw;
375 if (RC)
376 break;
377 }
378 }
379
380 // If we found a comment, it should be a documentation comment.
381 assert(!RC || RC->isDocumentation());
382
383 if (OriginalDecl)
384 *OriginalDecl = OriginalDeclForRC;
385
386 // Update cache for every declaration in the redeclaration chain.
387 RawCommentAndCacheFlags Raw;
388 Raw.setRaw(RC);
389 Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
390 Raw.setOriginalDecl(OriginalDeclForRC);
391
392 for (auto I : D->redecls()) {
393 RawCommentAndCacheFlags &R = RedeclComments[I];
394 if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
395 R = Raw;
396 }
397
398 return RC;
399}
400
401static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
402 SmallVectorImpl<const NamedDecl *> &Redeclared) {
403 const DeclContext *DC = ObjCMethod->getDeclContext();
404 if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
405 const ObjCInterfaceDecl *ID = IMD->getClassInterface();
406 if (!ID)
407 return;
408 // Add redeclared method here.
409 for (const auto *Ext : ID->known_extensions()) {
410 if (ObjCMethodDecl *RedeclaredMethod =
411 Ext->getMethod(ObjCMethod->getSelector(),
412 ObjCMethod->isInstanceMethod()))
413 Redeclared.push_back(RedeclaredMethod);
414 }
415 }
416}
417
418comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
419 const Decl *D) const {
420 comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
421 ThisDeclInfo->CommentDecl = D;
422 ThisDeclInfo->IsFilled = false;
423 ThisDeclInfo->fill();
424 ThisDeclInfo->CommentDecl = FC->getDecl();
425 if (!ThisDeclInfo->TemplateParameters)
426 ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
427 comments::FullComment *CFC =
428 new (*this) comments::FullComment(FC->getBlocks(),
429 ThisDeclInfo);
430 return CFC;
431
432}
433
434comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
435 const RawComment *RC = getRawCommentForDeclNoCache(D);
436 return RC ? RC->parse(*this, nullptr, D) : nullptr;
437}
438
439comments::FullComment *ASTContext::getCommentForDecl(
440 const Decl *D,
441 const Preprocessor *PP) const {
442 if (D->isInvalidDecl())
443 return nullptr;
444 D = adjustDeclToTemplate(D);
445
446 const Decl *Canonical = D->getCanonicalDecl();
447 llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
448 ParsedComments.find(Canonical);
449
450 if (Pos != ParsedComments.end()) {
451 if (Canonical != D) {
452 comments::FullComment *FC = Pos->second;
453 comments::FullComment *CFC = cloneFullComment(FC, D);
454 return CFC;
455 }
456 return Pos->second;
457 }
458
459 const Decl *OriginalDecl;
460
461 const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
462 if (!RC) {
463 if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
464 SmallVector<const NamedDecl*, 8> Overridden;
465 const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
466 if (OMD && OMD->isPropertyAccessor())
467 if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
468 if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
469 return cloneFullComment(FC, D);
470 if (OMD)
471 addRedeclaredMethods(OMD, Overridden);
472 getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
473 for (unsigned i = 0, e = Overridden.size(); i < e; i++)
474 if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
475 return cloneFullComment(FC, D);
476 }
477 else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
478 // Attach any tag type's documentation to its typedef if latter
479 // does not have one of its own.
480 QualType QT = TD->getUnderlyingType();
481 if (const TagType *TT = QT->getAs<TagType>())
482 if (const Decl *TD = TT->getDecl())
483 if (comments::FullComment *FC = getCommentForDecl(TD, PP))
484 return cloneFullComment(FC, D);
485 }
486 else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
487 while (IC->getSuperClass()) {
488 IC = IC->getSuperClass();
489 if (comments::FullComment *FC = getCommentForDecl(IC, PP))
490 return cloneFullComment(FC, D);
491 }
492 }
493 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
494 if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
495 if (comments::FullComment *FC = getCommentForDecl(IC, PP))
496 return cloneFullComment(FC, D);
497 }
498 else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
499 if (!(RD = RD->getDefinition()))
500 return nullptr;
501 // Check non-virtual bases.
502 for (const auto &I : RD->bases()) {
503 if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
504 continue;
505 QualType Ty = I.getType();
506 if (Ty.isNull())
507 continue;
508 if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
509 if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
510 continue;
511
512 if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
513 return cloneFullComment(FC, D);
514 }
515 }
516 // Check virtual bases.
517 for (const auto &I : RD->vbases()) {
518 if (I.getAccessSpecifier() != AS_public)
519 continue;
520 QualType Ty = I.getType();
521 if (Ty.isNull())
522 continue;
523 if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
524 if (!(VirtualBase= VirtualBase->getDefinition()))
525 continue;
526 if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
527 return cloneFullComment(FC, D);
528 }
529 }
530 }
531 return nullptr;
532 }
533
534 // If the RawComment was attached to other redeclaration of this Decl, we
535 // should parse the comment in context of that other Decl. This is important
536 // because comments can contain references to parameter names which can be
537 // different across redeclarations.
538 if (D != OriginalDecl)
539 return getCommentForDecl(OriginalDecl, PP);
540
541 comments::FullComment *FC = RC->parse(*this, PP, D);
542 ParsedComments[Canonical] = FC;
543 return FC;
544}
545
546void
547ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
548 TemplateTemplateParmDecl *Parm) {
549 ID.AddInteger(Parm->getDepth());
550 ID.AddInteger(Parm->getPosition());
551 ID.AddBoolean(Parm->isParameterPack());
552
553 TemplateParameterList *Params = Parm->getTemplateParameters();
554 ID.AddInteger(Params->size());
555 for (TemplateParameterList::const_iterator P = Params->begin(),
556 PEnd = Params->end();
557 P != PEnd; ++P) {
558 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
559 ID.AddInteger(0);
560 ID.AddBoolean(TTP->isParameterPack());
561 continue;
562 }
563
564 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
565 ID.AddInteger(1);
566 ID.AddBoolean(NTTP->isParameterPack());
567 ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
568 if (NTTP->isExpandedParameterPack()) {
569 ID.AddBoolean(true);
570 ID.AddInteger(NTTP->getNumExpansionTypes());
571 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
572 QualType T = NTTP->getExpansionType(I);
573 ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
574 }
575 } else
576 ID.AddBoolean(false);
577 continue;
578 }
579
580 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
581 ID.AddInteger(2);
582 Profile(ID, TTP);
583 }
584}
585
586TemplateTemplateParmDecl *
587ASTContext::getCanonicalTemplateTemplateParmDecl(
588 TemplateTemplateParmDecl *TTP) const {
589 // Check if we already have a canonical template template parameter.
590 llvm::FoldingSetNodeID ID;
591 CanonicalTemplateTemplateParm::Profile(ID, TTP);
592 void *InsertPos = nullptr;
593 CanonicalTemplateTemplateParm *Canonical
594 = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
595 if (Canonical)
596 return Canonical->getParam();
597
598 // Build a canonical template parameter list.
599 TemplateParameterList *Params = TTP->getTemplateParameters();
600 SmallVector<NamedDecl *, 4> CanonParams;
601 CanonParams.reserve(Params->size());
602 for (TemplateParameterList::const_iterator P = Params->begin(),
603 PEnd = Params->end();
604 P != PEnd; ++P) {
605 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
606 CanonParams.push_back(
607 TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
608 SourceLocation(),
609 SourceLocation(),
610 TTP->getDepth(),
611 TTP->getIndex(), nullptr, false,
612 TTP->isParameterPack()));
613 else if (NonTypeTemplateParmDecl *NTTP
614 = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
615 QualType T = getCanonicalType(NTTP->getType());
616 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
617 NonTypeTemplateParmDecl *Param;
618 if (NTTP->isExpandedParameterPack()) {
619 SmallVector<QualType, 2> ExpandedTypes;
620 SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
621 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
622 ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
623 ExpandedTInfos.push_back(
624 getTrivialTypeSourceInfo(ExpandedTypes.back()));
625 }
626
627 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
628 SourceLocation(),
629 SourceLocation(),
630 NTTP->getDepth(),
631 NTTP->getPosition(), nullptr,
632 T,
633 TInfo,
634 ExpandedTypes.data(),
635 ExpandedTypes.size(),
636 ExpandedTInfos.data());
637 } else {
638 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
639 SourceLocation(),
640 SourceLocation(),
641 NTTP->getDepth(),
642 NTTP->getPosition(), nullptr,
643 T,
644 NTTP->isParameterPack(),
645 TInfo);
646 }
647 CanonParams.push_back(Param);
648
649 } else
650 CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
651 cast<TemplateTemplateParmDecl>(*P)));
652 }
653
654 TemplateTemplateParmDecl *CanonTTP
655 = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
656 SourceLocation(), TTP->getDepth(),
657 TTP->getPosition(),
658 TTP->isParameterPack(),
659 nullptr,
660 TemplateParameterList::Create(*this, SourceLocation(),
661 SourceLocation(),
662 CanonParams.data(),
663 CanonParams.size(),
664 SourceLocation()));
665
666 // Get the new insert position for the node we care about.
667 Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
668 assert(!Canonical && "Shouldn't be in the map!");
669 (void)Canonical;
670
671 // Create the canonical template template parameter entry.
672 Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
673 CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
674 return CanonTTP;
675}
676
677CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
678 if (!LangOpts.CPlusPlus) return nullptr;
679
680 switch (T.getCXXABI().getKind()) {
681 case TargetCXXABI::GenericARM: // Same as Itanium at this level
682 case TargetCXXABI::iOS:
683 case TargetCXXABI::iOS64:
684 case TargetCXXABI::GenericAArch64:
685 case TargetCXXABI::GenericMIPS:
685 case TargetCXXABI::GenericItanium:
686 return CreateItaniumCXXABI(*this);
687 case TargetCXXABI::Microsoft:
688 return CreateMicrosoftCXXABI(*this);
689 }
690 llvm_unreachable("Invalid CXXABI type!");
691}
692
693static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
694 const LangOptions &LOpts) {
695 if (LOpts.FakeAddressSpaceMap) {
696 // The fake address space map must have a distinct entry for each
697 // language-specific address space.
698 static const unsigned FakeAddrSpaceMap[] = {
699 1, // opencl_global
700 2, // opencl_local
701 3, // opencl_constant
702 4, // opencl_generic
703 5, // cuda_device
704 6, // cuda_constant
705 7 // cuda_shared
706 };
707 return &FakeAddrSpaceMap;
708 } else {
709 return &T.getAddressSpaceMap();
710 }
711}
712
713static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
714 const LangOptions &LangOpts) {
715 switch (LangOpts.getAddressSpaceMapMangling()) {
716 case LangOptions::ASMM_Target:
717 return TI.useAddressSpaceMapMangling();
718 case LangOptions::ASMM_On:
719 return true;
720 case LangOptions::ASMM_Off:
721 return false;
722 }
723 llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
724}
725
726ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
727 IdentifierTable &idents, SelectorTable &sels,
728 Builtin::Context &builtins)
729 : FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()),
730 DependentTemplateSpecializationTypes(this_()),
731 SubstTemplateTemplateParmPacks(this_()),
732 GlobalNestedNameSpecifier(nullptr), Int128Decl(nullptr),
733 UInt128Decl(nullptr), Float128StubDecl(nullptr),
734 BuiltinVaListDecl(nullptr), ObjCIdDecl(nullptr), ObjCSelDecl(nullptr),
735 ObjCClassDecl(nullptr), ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr),
736 CFConstantStringTypeDecl(nullptr), ObjCInstanceTypeDecl(nullptr),
737 FILEDecl(nullptr), jmp_bufDecl(nullptr), sigjmp_bufDecl(nullptr),
738 ucontext_tDecl(nullptr), BlockDescriptorType(nullptr),
739 BlockDescriptorExtendedType(nullptr), cudaConfigureCallDecl(nullptr),
740 FirstLocalImport(), LastLocalImport(),
741 SourceMgr(SM), LangOpts(LOpts),
742 SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFile, SM)),
743 AddrSpaceMap(nullptr), Target(nullptr), PrintingPolicy(LOpts),
744 Idents(idents), Selectors(sels), BuiltinInfo(builtins),
745 DeclarationNames(*this), ExternalSource(nullptr), Listener(nullptr),
746 Comments(SM), CommentsLoaded(false),
747 CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), LastSDM(nullptr, 0) {
748 TUDecl = TranslationUnitDecl::Create(*this);
749}
750
751ASTContext::~ASTContext() {
752 ReleaseParentMapEntries();
753
754 // Release the DenseMaps associated with DeclContext objects.
755 // FIXME: Is this the ideal solution?
756 ReleaseDeclContextMaps();
757
758 // Call all of the deallocation functions on all of their targets.
759 for (DeallocationMap::const_iterator I = Deallocations.begin(),
760 E = Deallocations.end(); I != E; ++I)
761 for (unsigned J = 0, N = I->second.size(); J != N; ++J)
762 (I->first)((I->second)[J]);
763
764 // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
765 // because they can contain DenseMaps.
766 for (llvm::DenseMap<const ObjCContainerDecl*,
767 const ASTRecordLayout*>::iterator
768 I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
769 // Increment in loop to prevent using deallocated memory.
770 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
771 R->Destroy(*this);
772
773 for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
774 I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
775 // Increment in loop to prevent using deallocated memory.
776 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
777 R->Destroy(*this);
778 }
779
780 for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
781 AEnd = DeclAttrs.end();
782 A != AEnd; ++A)
783 A->second->~AttrVec();
784
785 llvm::DeleteContainerSeconds(MangleNumberingContexts);
786}
787
788void ASTContext::ReleaseParentMapEntries() {
789 if (!AllParents) return;
790 for (const auto &Entry : *AllParents) {
791 if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
792 delete Entry.second.get<ast_type_traits::DynTypedNode *>();
793 } else {
794 assert(Entry.second.is<ParentVector *>());
795 delete Entry.second.get<ParentVector *>();
796 }
797 }
798}
799
800void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
801 Deallocations[Callback].push_back(Data);
802}
803
804void
805ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
806 ExternalSource = Source;
807}
808
809void ASTContext::PrintStats() const {
810 llvm::errs() << "\n*** AST Context Stats:\n";
811 llvm::errs() << " " << Types.size() << " types total.\n";
812
813 unsigned counts[] = {
814#define TYPE(Name, Parent) 0,
815#define ABSTRACT_TYPE(Name, Parent)
816#include "clang/AST/TypeNodes.def"
817 0 // Extra
818 };
819
820 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
821 Type *T = Types[i];
822 counts[(unsigned)T->getTypeClass()]++;
823 }
824
825 unsigned Idx = 0;
826 unsigned TotalBytes = 0;
827#define TYPE(Name, Parent) \
828 if (counts[Idx]) \
829 llvm::errs() << " " << counts[Idx] << " " << #Name \
830 << " types\n"; \
831 TotalBytes += counts[Idx] * sizeof(Name##Type); \
832 ++Idx;
833#define ABSTRACT_TYPE(Name, Parent)
834#include "clang/AST/TypeNodes.def"
835
836 llvm::errs() << "Total bytes = " << TotalBytes << "\n";
837
838 // Implicit special member functions.
839 llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
840 << NumImplicitDefaultConstructors
841 << " implicit default constructors created\n";
842 llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
843 << NumImplicitCopyConstructors
844 << " implicit copy constructors created\n";
845 if (getLangOpts().CPlusPlus)
846 llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
847 << NumImplicitMoveConstructors
848 << " implicit move constructors created\n";
849 llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
850 << NumImplicitCopyAssignmentOperators
851 << " implicit copy assignment operators created\n";
852 if (getLangOpts().CPlusPlus)
853 llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
854 << NumImplicitMoveAssignmentOperators
855 << " implicit move assignment operators created\n";
856 llvm::errs() << NumImplicitDestructorsDeclared << "/"
857 << NumImplicitDestructors
858 << " implicit destructors created\n";
859
860 if (ExternalSource) {
861 llvm::errs() << "\n";
862 ExternalSource->PrintStats();
863 }
864
865 BumpAlloc.PrintStats();
866}
867
868RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
869 RecordDecl::TagKind TK) const {
870 SourceLocation Loc;
871 RecordDecl *NewDecl;
872 if (getLangOpts().CPlusPlus)
873 NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
874 Loc, &Idents.get(Name));
875 else
876 NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
877 &Idents.get(Name));
878 NewDecl->setImplicit();
879 return NewDecl;
880}
881
882TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
883 StringRef Name) const {
884 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
885 TypedefDecl *NewDecl = TypedefDecl::Create(
886 const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
887 SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
888 NewDecl->setImplicit();
889 return NewDecl;
890}
891
892TypedefDecl *ASTContext::getInt128Decl() const {
893 if (!Int128Decl)
894 Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
895 return Int128Decl;
896}
897
898TypedefDecl *ASTContext::getUInt128Decl() const {
899 if (!UInt128Decl)
900 UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
901 return UInt128Decl;
902}
903
904TypeDecl *ASTContext::getFloat128StubType() const {
905 assert(LangOpts.CPlusPlus && "should only be called for c++");
906 if (!Float128StubDecl)
907 Float128StubDecl = buildImplicitRecord("__float128");
908
909 return Float128StubDecl;
910}
911
912void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
913 BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
914 R = CanQualType::CreateUnsafe(QualType(Ty, 0));
915 Types.push_back(Ty);
916}
917
918void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
919 assert((!this->Target || this->Target == &Target) &&
920 "Incorrect target reinitialization");
921 assert(VoidTy.isNull() && "Context reinitialized?");
922
923 this->Target = &Target;
924
925 ABI.reset(createCXXABI(Target));
926 AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
927 AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
928
929 // C99 6.2.5p19.
930 InitBuiltinType(VoidTy, BuiltinType::Void);
931
932 // C99 6.2.5p2.
933 InitBuiltinType(BoolTy, BuiltinType::Bool);
934 // C99 6.2.5p3.
935 if (LangOpts.CharIsSigned)
936 InitBuiltinType(CharTy, BuiltinType::Char_S);
937 else
938 InitBuiltinType(CharTy, BuiltinType::Char_U);
939 // C99 6.2.5p4.
940 InitBuiltinType(SignedCharTy, BuiltinType::SChar);
941 InitBuiltinType(ShortTy, BuiltinType::Short);
942 InitBuiltinType(IntTy, BuiltinType::Int);
943 InitBuiltinType(LongTy, BuiltinType::Long);
944 InitBuiltinType(LongLongTy, BuiltinType::LongLong);
945
946 // C99 6.2.5p6.
947 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
948 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
949 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
950 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
951 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
952
953 // C99 6.2.5p10.
954 InitBuiltinType(FloatTy, BuiltinType::Float);
955 InitBuiltinType(DoubleTy, BuiltinType::Double);
956 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
957
958 // GNU extension, 128-bit integers.
959 InitBuiltinType(Int128Ty, BuiltinType::Int128);
960 InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
961
962 // C++ 3.9.1p5
963 if (TargetInfo::isTypeSigned(Target.getWCharType()))
964 InitBuiltinType(WCharTy, BuiltinType::WChar_S);
965 else // -fshort-wchar makes wchar_t be unsigned.
966 InitBuiltinType(WCharTy, BuiltinType::WChar_U);
967 if (LangOpts.CPlusPlus && LangOpts.WChar)
968 WideCharTy = WCharTy;
969 else {
970 // C99 (or C++ using -fno-wchar).
971 WideCharTy = getFromTargetType(Target.getWCharType());
972 }
973
974 WIntTy = getFromTargetType(Target.getWIntType());
975
976 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
977 InitBuiltinType(Char16Ty, BuiltinType::Char16);
978 else // C99
979 Char16Ty = getFromTargetType(Target.getChar16Type());
980
981 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
982 InitBuiltinType(Char32Ty, BuiltinType::Char32);
983 else // C99
984 Char32Ty = getFromTargetType(Target.getChar32Type());
985
986 // Placeholder type for type-dependent expressions whose type is
987 // completely unknown. No code should ever check a type against
988 // DependentTy and users should never see it; however, it is here to
989 // help diagnose failures to properly check for type-dependent
990 // expressions.
991 InitBuiltinType(DependentTy, BuiltinType::Dependent);
992
993 // Placeholder type for functions.
994 InitBuiltinType(OverloadTy, BuiltinType::Overload);
995
996 // Placeholder type for bound members.
997 InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember);
998
999 // Placeholder type for pseudo-objects.
1000 InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject);
1001
1002 // "any" type; useful for debugger-like clients.
1003 InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny);
1004
1005 // Placeholder type for unbridged ARC casts.
1006 InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast);
1007
1008 // Placeholder type for builtin functions.
1009 InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn);
1010
1011 // C99 6.2.5p11.
1012 FloatComplexTy = getComplexType(FloatTy);
1013 DoubleComplexTy = getComplexType(DoubleTy);
1014 LongDoubleComplexTy = getComplexType(LongDoubleTy);
1015
1016 // Builtin types for 'id', 'Class', and 'SEL'.
1017 InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1018 InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1019 InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1020
1021 if (LangOpts.OpenCL) {
1022 InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
1023 InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
1024 InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
1025 InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
1026 InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
1027 InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
1028
1029 InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1030 InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1031 }
1032
1033 // Builtin type for __objc_yes and __objc_no
1034 ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1035 SignedCharTy : BoolTy);
1036
1037 ObjCConstantStringType = QualType();
1038
1039 ObjCSuperType = QualType();
1040
1041 // void * type
1042 VoidPtrTy = getPointerType(VoidTy);
1043
1044 // nullptr type (C++0x 2.14.7)
1045 InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
1046
1047 // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1048 InitBuiltinType(HalfTy, BuiltinType::Half);
1049
1050 // Builtin type used to help define __builtin_va_list.
1051 VaListTagTy = QualType();
1052}
1053
1054DiagnosticsEngine &ASTContext::getDiagnostics() const {
1055 return SourceMgr.getDiagnostics();
1056}
1057
1058AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1059 AttrVec *&Result = DeclAttrs[D];
1060 if (!Result) {
1061 void *Mem = Allocate(sizeof(AttrVec));
1062 Result = new (Mem) AttrVec;
1063 }
1064
1065 return *Result;
1066}
1067
1068/// \brief Erase the attributes corresponding to the given declaration.
1069void ASTContext::eraseDeclAttrs(const Decl *D) {
1070 llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1071 if (Pos != DeclAttrs.end()) {
1072 Pos->second->~AttrVec();
1073 DeclAttrs.erase(Pos);
1074 }
1075}
1076
1077// FIXME: Remove ?
1078MemberSpecializationInfo *
1079ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1080 assert(Var->isStaticDataMember() && "Not a static data member");
1081 return getTemplateOrSpecializationInfo(Var)
1082 .dyn_cast<MemberSpecializationInfo *>();
1083}
1084
1085ASTContext::TemplateOrSpecializationInfo
1086ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1087 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1088 TemplateOrInstantiation.find(Var);
1089 if (Pos == TemplateOrInstantiation.end())
1090 return TemplateOrSpecializationInfo();
1091
1092 return Pos->second;
1093}
1094
1095void
1096ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1097 TemplateSpecializationKind TSK,
1098 SourceLocation PointOfInstantiation) {
1099 assert(Inst->isStaticDataMember() && "Not a static data member");
1100 assert(Tmpl->isStaticDataMember() && "Not a static data member");
1101 setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1102 Tmpl, TSK, PointOfInstantiation));
1103}
1104
1105void
1106ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1107 TemplateOrSpecializationInfo TSI) {
1108 assert(!TemplateOrInstantiation[Inst] &&
1109 "Already noted what the variable was instantiated from");
1110 TemplateOrInstantiation[Inst] = TSI;
1111}
1112
1113FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1114 const FunctionDecl *FD){
1115 assert(FD && "Specialization is 0");
1116 llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1117 = ClassScopeSpecializationPattern.find(FD);
1118 if (Pos == ClassScopeSpecializationPattern.end())
1119 return nullptr;
1120
1121 return Pos->second;
1122}
1123
1124void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1125 FunctionDecl *Pattern) {
1126 assert(FD && "Specialization is 0");
1127 assert(Pattern && "Class scope specialization pattern is 0");
1128 ClassScopeSpecializationPattern[FD] = Pattern;
1129}
1130
1131NamedDecl *
1132ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1133 llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1134 = InstantiatedFromUsingDecl.find(UUD);
1135 if (Pos == InstantiatedFromUsingDecl.end())
1136 return nullptr;
1137
1138 return Pos->second;
1139}
1140
1141void
1142ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1143 assert((isa<UsingDecl>(Pattern) ||
1144 isa<UnresolvedUsingValueDecl>(Pattern) ||
1145 isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1146 "pattern decl is not a using decl");
1147 assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1148 InstantiatedFromUsingDecl[Inst] = Pattern;
1149}
1150
1151UsingShadowDecl *
1152ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1153 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1154 = InstantiatedFromUsingShadowDecl.find(Inst);
1155 if (Pos == InstantiatedFromUsingShadowDecl.end())
1156 return nullptr;
1157
1158 return Pos->second;
1159}
1160
1161void
1162ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1163 UsingShadowDecl *Pattern) {
1164 assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1165 InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1166}
1167
1168FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1169 llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1170 = InstantiatedFromUnnamedFieldDecl.find(Field);
1171 if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1172 return nullptr;
1173
1174 return Pos->second;
1175}
1176
1177void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1178 FieldDecl *Tmpl) {
1179 assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1180 assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1181 assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1182 "Already noted what unnamed field was instantiated from");
1183
1184 InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1185}
1186
1187ASTContext::overridden_cxx_method_iterator
1188ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1189 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1190 = OverriddenMethods.find(Method->getCanonicalDecl());
1191 if (Pos == OverriddenMethods.end())
1192 return nullptr;
1193
1194 return Pos->second.begin();
1195}
1196
1197ASTContext::overridden_cxx_method_iterator
1198ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1199 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1200 = OverriddenMethods.find(Method->getCanonicalDecl());
1201 if (Pos == OverriddenMethods.end())
1202 return nullptr;
1203
1204 return Pos->second.end();
1205}
1206
1207unsigned
1208ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1209 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1210 = OverriddenMethods.find(Method->getCanonicalDecl());
1211 if (Pos == OverriddenMethods.end())
1212 return 0;
1213
1214 return Pos->second.size();
1215}
1216
1217void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1218 const CXXMethodDecl *Overridden) {
1219 assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1220 OverriddenMethods[Method].push_back(Overridden);
1221}
1222
1223void ASTContext::getOverriddenMethods(
1224 const NamedDecl *D,
1225 SmallVectorImpl<const NamedDecl *> &Overridden) const {
1226 assert(D);
1227
1228 if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1229 Overridden.append(overridden_methods_begin(CXXMethod),
1230 overridden_methods_end(CXXMethod));
1231 return;
1232 }
1233
1234 const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1235 if (!Method)
1236 return;
1237
1238 SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1239 Method->getOverriddenMethods(OverDecls);
1240 Overridden.append(OverDecls.begin(), OverDecls.end());
1241}
1242
1243void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1244 assert(!Import->NextLocalImport && "Import declaration already in the chain");
1245 assert(!Import->isFromASTFile() && "Non-local import declaration");
1246 if (!FirstLocalImport) {
1247 FirstLocalImport = Import;
1248 LastLocalImport = Import;
1249 return;
1250 }
1251
1252 LastLocalImport->NextLocalImport = Import;
1253 LastLocalImport = Import;
1254}
1255
1256//===----------------------------------------------------------------------===//
1257// Type Sizing and Analysis
1258//===----------------------------------------------------------------------===//
1259
1260/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1261/// scalar floating point type.
1262const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1263 const BuiltinType *BT = T->getAs<BuiltinType>();
1264 assert(BT && "Not a floating point type!");
1265 switch (BT->getKind()) {
1266 default: llvm_unreachable("Not a floating point type!");
1267 case BuiltinType::Half: return Target->getHalfFormat();
1268 case BuiltinType::Float: return Target->getFloatFormat();
1269 case BuiltinType::Double: return Target->getDoubleFormat();
1270 case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1271 }
1272}
1273
1274CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1275 unsigned Align = Target->getCharWidth();
1276
1277 bool UseAlignAttrOnly = false;
1278 if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1279 Align = AlignFromAttr;
1280
1281 // __attribute__((aligned)) can increase or decrease alignment
1282 // *except* on a struct or struct member, where it only increases
1283 // alignment unless 'packed' is also specified.
1284 //
1285 // It is an error for alignas to decrease alignment, so we can
1286 // ignore that possibility; Sema should diagnose it.
1287 if (isa<FieldDecl>(D)) {
1288 UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1289 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1290 } else {
1291 UseAlignAttrOnly = true;
1292 }
1293 }
1294 else if (isa<FieldDecl>(D))
1295 UseAlignAttrOnly =
1296 D->hasAttr<PackedAttr>() ||
1297 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1298
1299 // If we're using the align attribute only, just ignore everything
1300 // else about the declaration and its type.
1301 if (UseAlignAttrOnly) {
1302 // do nothing
1303
1304 } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1305 QualType T = VD->getType();
1306 if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
1307 if (ForAlignof)
1308 T = RT->getPointeeType();
1309 else
1310 T = getPointerType(RT->getPointeeType());
1311 }
1312 QualType BaseT = getBaseElementType(T);
1313 if (!BaseT->isIncompleteType() && !T->isFunctionType()) {
1314 // Adjust alignments of declarations with array type by the
1315 // large-array alignment on the target.
1316 if (const ArrayType *arrayType = getAsArrayType(T)) {
1317 unsigned MinWidth = Target->getLargeArrayMinWidth();
1318 if (!ForAlignof && MinWidth) {
1319 if (isa<VariableArrayType>(arrayType))
1320 Align = std::max(Align, Target->getLargeArrayAlign());
1321 else if (isa<ConstantArrayType>(arrayType) &&
1322 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1323 Align = std::max(Align, Target->getLargeArrayAlign());
1324 }
1325 }
1326 Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1327 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1328 if (VD->hasGlobalStorage())
1329 Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1330 }
1331 }
1332
1333 // Fields can be subject to extra alignment constraints, like if
1334 // the field is packed, the struct is packed, or the struct has a
1335 // a max-field-alignment constraint (#pragma pack). So calculate
1336 // the actual alignment of the field within the struct, and then
1337 // (as we're expected to) constrain that by the alignment of the type.
1338 if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
1339 const RecordDecl *Parent = Field->getParent();
1340 // We can only produce a sensible answer if the record is valid.
1341 if (!Parent->isInvalidDecl()) {
1342 const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1343
1344 // Start with the record's overall alignment.
1345 unsigned FieldAlign = toBits(Layout.getAlignment());
1346
1347 // Use the GCD of that and the offset within the record.
1348 uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1349 if (Offset > 0) {
1350 // Alignment is always a power of 2, so the GCD will be a power of 2,
1351 // which means we get to do this crazy thing instead of Euclid's.
1352 uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1353 if (LowBitOfOffset < FieldAlign)
1354 FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1355 }
1356
1357 Align = std::min(Align, FieldAlign);
1358 }
1359 }
1360 }
1361
1362 return toCharUnitsFromBits(Align);
1363}
1364
1365// getTypeInfoDataSizeInChars - Return the size of a type, in
1366// chars. If the type is a record, its data size is returned. This is
1367// the size of the memcpy that's performed when assigning this type
1368// using a trivial copy/move assignment operator.
1369std::pair<CharUnits, CharUnits>
1370ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1371 std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1372
1373 // In C++, objects can sometimes be allocated into the tail padding
1374 // of a base-class subobject. We decide whether that's possible
1375 // during class layout, so here we can just trust the layout results.
1376 if (getLangOpts().CPlusPlus) {
1377 if (const RecordType *RT = T->getAs<RecordType>()) {
1378 const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1379 sizeAndAlign.first = layout.getDataSize();
1380 }
1381 }
1382
1383 return sizeAndAlign;
1384}
1385
1386/// getConstantArrayInfoInChars - Performing the computation in CharUnits
1387/// instead of in bits prevents overflowing the uint64_t for some large arrays.
1388std::pair<CharUnits, CharUnits>
1389static getConstantArrayInfoInChars(const ASTContext &Context,
1390 const ConstantArrayType *CAT) {
1391 std::pair<CharUnits, CharUnits> EltInfo =
1392 Context.getTypeInfoInChars(CAT->getElementType());
1393 uint64_t Size = CAT->getSize().getZExtValue();
1394 assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1395 (uint64_t)(-1)/Size) &&
1396 "Overflow in array type char size evaluation");
1397 uint64_t Width = EltInfo.first.getQuantity() * Size;
1398 unsigned Align = EltInfo.second.getQuantity();
1399 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1400 Context.getTargetInfo().getPointerWidth(0) == 64)
1401 Width = llvm::RoundUpToAlignment(Width, Align);
1402 return std::make_pair(CharUnits::fromQuantity(Width),
1403 CharUnits::fromQuantity(Align));
1404}
1405
1406std::pair<CharUnits, CharUnits>
1407ASTContext::getTypeInfoInChars(const Type *T) const {
1408 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
1409 return getConstantArrayInfoInChars(*this, CAT);
1410 TypeInfo Info = getTypeInfo(T);
1411 return std::make_pair(toCharUnitsFromBits(Info.Width),
1412 toCharUnitsFromBits(Info.Align));
1413}
1414
1415std::pair<CharUnits, CharUnits>
1416ASTContext::getTypeInfoInChars(QualType T) const {
1417 return getTypeInfoInChars(T.getTypePtr());
1418}
1419
1420bool ASTContext::isAlignmentRequired(const Type *T) const {
1421 return getTypeInfo(T).AlignIsRequired;
1422}
1423
1424bool ASTContext::isAlignmentRequired(QualType T) const {
1425 return isAlignmentRequired(T.getTypePtr());
1426}
1427
1428TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1429 TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1430 if (I != MemoizedTypeInfo.end())
1431 return I->second;
1432
1433 // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1434 TypeInfo TI = getTypeInfoImpl(T);
1435 MemoizedTypeInfo[T] = TI;
1436 return TI;
1437}
1438
1439/// getTypeInfoImpl - Return the size of the specified type, in bits. This
1440/// method does not work on incomplete types.
1441///
1442/// FIXME: Pointers into different addr spaces could have different sizes and
1443/// alignment requirements: getPointerInfo should take an AddrSpace, this
1444/// should take a QualType, &c.
1445TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1446 uint64_t Width = 0;
1447 unsigned Align = 8;
1448 bool AlignIsRequired = false;
1449 switch (T->getTypeClass()) {
1450#define TYPE(Class, Base)
1451#define ABSTRACT_TYPE(Class, Base)
1452#define NON_CANONICAL_TYPE(Class, Base)
1453#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1454#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \
1455 case Type::Class: \
1456 assert(!T->isDependentType() && "should not see dependent types here"); \
1457 return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1458#include "clang/AST/TypeNodes.def"
1459 llvm_unreachable("Should not see dependent types");
1460
1461 case Type::FunctionNoProto:
1462 case Type::FunctionProto:
1463 // GCC extension: alignof(function) = 32 bits
1464 Width = 0;
1465 Align = 32;
1466 break;
1467
1468 case Type::IncompleteArray:
1469 case Type::VariableArray:
1470 Width = 0;
1471 Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1472 break;
1473
1474 case Type::ConstantArray: {
1475 const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1476
1477 TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
1478 uint64_t Size = CAT->getSize().getZExtValue();
1479 assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1480 "Overflow in array type bit size evaluation");
1481 Width = EltInfo.Width * Size;
1482 Align = EltInfo.Align;
1483 if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1484 getTargetInfo().getPointerWidth(0) == 64)
1485 Width = llvm::RoundUpToAlignment(Width, Align);
1486 break;
1487 }
1488 case Type::ExtVector:
1489 case Type::Vector: {
1490 const VectorType *VT = cast<VectorType>(T);
1491 TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1492 Width = EltInfo.Width * VT->getNumElements();
1493 Align = Width;
1494 // If the alignment is not a power of 2, round up to the next power of 2.
1495 // This happens for non-power-of-2 length vectors.
1496 if (Align & (Align-1)) {
1497 Align = llvm::NextPowerOf2(Align);
1498 Width = llvm::RoundUpToAlignment(Width, Align);
1499 }
1500 // Adjust the alignment based on the target max.
1501 uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1502 if (TargetVectorAlign && TargetVectorAlign < Align)
1503 Align = TargetVectorAlign;
1504 break;
1505 }
1506
1507 case Type::Builtin:
1508 switch (cast<BuiltinType>(T)->getKind()) {
1509 default: llvm_unreachable("Unknown builtin type!");
1510 case BuiltinType::Void:
1511 // GCC extension: alignof(void) = 8 bits.
1512 Width = 0;
1513 Align = 8;
1514 break;
1515
1516 case BuiltinType::Bool:
1517 Width = Target->getBoolWidth();
1518 Align = Target->getBoolAlign();
1519 break;
1520 case BuiltinType::Char_S:
1521 case BuiltinType::Char_U:
1522 case BuiltinType::UChar:
1523 case BuiltinType::SChar:
1524 Width = Target->getCharWidth();
1525 Align = Target->getCharAlign();
1526 break;
1527 case BuiltinType::WChar_S:
1528 case BuiltinType::WChar_U:
1529 Width = Target->getWCharWidth();
1530 Align = Target->getWCharAlign();
1531 break;
1532 case BuiltinType::Char16:
1533 Width = Target->getChar16Width();
1534 Align = Target->getChar16Align();
1535 break;
1536 case BuiltinType::Char32:
1537 Width = Target->getChar32Width();
1538 Align = Target->getChar32Align();
1539 break;
1540 case BuiltinType::UShort:
1541 case BuiltinType::Short:
1542 Width = Target->getShortWidth();
1543 Align = Target->getShortAlign();
1544 break;
1545 case BuiltinType::UInt:
1546 case BuiltinType::Int:
1547 Width = Target->getIntWidth();
1548 Align = Target->getIntAlign();
1549 break;
1550 case BuiltinType::ULong:
1551 case BuiltinType::Long:
1552 Width = Target->getLongWidth();
1553 Align = Target->getLongAlign();
1554 break;
1555 case BuiltinType::ULongLong:
1556 case BuiltinType::LongLong:
1557 Width = Target->getLongLongWidth();
1558 Align = Target->getLongLongAlign();
1559 break;
1560 case BuiltinType::Int128:
1561 case BuiltinType::UInt128:
1562 Width = 128;
1563 Align = 128; // int128_t is 128-bit aligned on all targets.
1564 break;
1565 case BuiltinType::Half:
1566 Width = Target->getHalfWidth();
1567 Align = Target->getHalfAlign();
1568 break;
1569 case BuiltinType::Float:
1570 Width = Target->getFloatWidth();
1571 Align = Target->getFloatAlign();
1572 break;
1573 case BuiltinType::Double:
1574 Width = Target->getDoubleWidth();
1575 Align = Target->getDoubleAlign();
1576 break;
1577 case BuiltinType::LongDouble:
1578 Width = Target->getLongDoubleWidth();
1579 Align = Target->getLongDoubleAlign();
1580 break;
1581 case BuiltinType::NullPtr:
1582 Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1583 Align = Target->getPointerAlign(0); // == sizeof(void*)
1584 break;
1585 case BuiltinType::ObjCId:
1586 case BuiltinType::ObjCClass:
1587 case BuiltinType::ObjCSel:
1588 Width = Target->getPointerWidth(0);
1589 Align = Target->getPointerAlign(0);
1590 break;
1591 case BuiltinType::OCLSampler:
1592 // Samplers are modeled as integers.
1593 Width = Target->getIntWidth();
1594 Align = Target->getIntAlign();
1595 break;
1596 case BuiltinType::OCLEvent:
1597 case BuiltinType::OCLImage1d:
1598 case BuiltinType::OCLImage1dArray:
1599 case BuiltinType::OCLImage1dBuffer:
1600 case BuiltinType::OCLImage2d:
1601 case BuiltinType::OCLImage2dArray:
1602 case BuiltinType::OCLImage3d:
1603 // Currently these types are pointers to opaque types.
1604 Width = Target->getPointerWidth(0);
1605 Align = Target->getPointerAlign(0);
1606 break;
1607 }
1608 break;
1609 case Type::ObjCObjectPointer:
1610 Width = Target->getPointerWidth(0);
1611 Align = Target->getPointerAlign(0);
1612 break;
1613 case Type::BlockPointer: {
1614 unsigned AS = getTargetAddressSpace(
1615 cast<BlockPointerType>(T)->getPointeeType());
1616 Width = Target->getPointerWidth(AS);
1617 Align = Target->getPointerAlign(AS);
1618 break;
1619 }
1620 case Type::LValueReference:
1621 case Type::RValueReference: {
1622 // alignof and sizeof should never enter this code path here, so we go
1623 // the pointer route.
1624 unsigned AS = getTargetAddressSpace(
1625 cast<ReferenceType>(T)->getPointeeType());
1626 Width = Target->getPointerWidth(AS);
1627 Align = Target->getPointerAlign(AS);
1628 break;
1629 }
1630 case Type::Pointer: {
1631 unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1632 Width = Target->getPointerWidth(AS);
1633 Align = Target->getPointerAlign(AS);
1634 break;
1635 }
1636 case Type::MemberPointer: {
1637 const MemberPointerType *MPT = cast<MemberPointerType>(T);
1638 std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1639 break;
1640 }
1641 case Type::Complex: {
1642 // Complex types have the same alignment as their elements, but twice the
1643 // size.
1644 TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
1645 Width = EltInfo.Width * 2;
1646 Align = EltInfo.Align;
1647 break;
1648 }
1649 case Type::ObjCObject:
1650 return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1651 case Type::Adjusted:
1652 case Type::Decayed:
1653 return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
1654 case Type::ObjCInterface: {
1655 const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1656 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1657 Width = toBits(Layout.getSize());
1658 Align = toBits(Layout.getAlignment());
1659 break;
1660 }
1661 case Type::Record:
1662 case Type::Enum: {
1663 const TagType *TT = cast<TagType>(T);
1664
1665 if (TT->getDecl()->isInvalidDecl()) {
1666 Width = 8;
1667 Align = 8;
1668 break;
1669 }
1670
1671 if (const EnumType *ET = dyn_cast<EnumType>(TT))
1672 return getTypeInfo(ET->getDecl()->getIntegerType());
1673
1674 const RecordType *RT = cast<RecordType>(TT);
1675 const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1676 Width = toBits(Layout.getSize());
1677 Align = toBits(Layout.getAlignment());
1678 break;
1679 }
1680
1681 case Type::SubstTemplateTypeParm:
1682 return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1683 getReplacementType().getTypePtr());
1684
1685 case Type::Auto: {
1686 const AutoType *A = cast<AutoType>(T);
1687 assert(!A->getDeducedType().isNull() &&
1688 "cannot request the size of an undeduced or dependent auto type");
1689 return getTypeInfo(A->getDeducedType().getTypePtr());
1690 }
1691
1692 case Type::Paren:
1693 return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1694
1695 case Type::Typedef: {
1696 const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1697 TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1698 // If the typedef has an aligned attribute on it, it overrides any computed
1699 // alignment we have. This violates the GCC documentation (which says that
1700 // attribute(aligned) can only round up) but matches its implementation.
1701 if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
1702 Align = AttrAlign;
1703 AlignIsRequired = true;
1704 } else {
1705 Align = Info.Align;
1706 AlignIsRequired = Info.AlignIsRequired;
1707 }
1708 Width = Info.Width;
1709 break;
1710 }
1711
1712 case Type::Elaborated:
1713 return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1714
1715 case Type::Attributed:
1716 return getTypeInfo(
1717 cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1718
1719 case Type::Atomic: {
1720 // Start with the base type information.
1721 TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
1722 Width = Info.Width;
1723 Align = Info.Align;
1724
1725 // If the size of the type doesn't exceed the platform's max
1726 // atomic promotion width, make the size and alignment more
1727 // favorable to atomic operations:
1728 if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1729 // Round the size up to a power of 2.
1730 if (!llvm::isPowerOf2_64(Width))
1731 Width = llvm::NextPowerOf2(Width);
1732
1733 // Set the alignment equal to the size.
1734 Align = static_cast<unsigned>(Width);
1735 }
1736 }
1737
1738 }
1739
1740 assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1741 return TypeInfo(Width, Align, AlignIsRequired);
1742}
1743
1744/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1745CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1746 return CharUnits::fromQuantity(BitSize / getCharWidth());
1747}
1748
1749/// toBits - Convert a size in characters to a size in characters.
1750int64_t ASTContext::toBits(CharUnits CharSize) const {
1751 return CharSize.getQuantity() * getCharWidth();
1752}
1753
1754/// getTypeSizeInChars - Return the size of the specified type, in characters.
1755/// This method does not work on incomplete types.
1756CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1757 return getTypeInfoInChars(T).first;
1758}
1759CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1760 return getTypeInfoInChars(T).first;
1761}
1762
1763/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1764/// characters. This method does not work on incomplete types.
1765CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1766 return toCharUnitsFromBits(getTypeAlign(T));
1767}
1768CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1769 return toCharUnitsFromBits(getTypeAlign(T));
1770}
1771
1772/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1773/// type for the current target in bits. This can be different than the ABI
1774/// alignment in cases where it is beneficial for performance to overalign
1775/// a data type.
1776unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1777 TypeInfo TI = getTypeInfo(T);
1778 unsigned ABIAlign = TI.Align;
1779
1780 if (Target->getTriple().getArch() == llvm::Triple::xcore)
1781 return ABIAlign; // Never overalign on XCore.
1782
1783 // Double and long long should be naturally aligned if possible.
1784 T = T->getBaseElementTypeUnsafe();
1785 if (const ComplexType *CT = T->getAs<ComplexType>())
1786 T = CT->getElementType().getTypePtr();
1787 if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1788 T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1789 T->isSpecificBuiltinType(BuiltinType::ULongLong))
1790 // Don't increase the alignment if an alignment attribute was specified on a
1791 // typedef declaration.
1792 if (!TI.AlignIsRequired)
1793 return std::max(ABIAlign, (unsigned)getTypeSize(T));
1794
1795 return ABIAlign;
1796}
1797
1798/// getAlignOfGlobalVar - Return the alignment in bits that should be given
1799/// to a global variable of the specified type.
1800unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
1801 return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
1802}
1803
1804/// getAlignOfGlobalVarInChars - Return the alignment in characters that
1805/// should be given to a global variable of the specified type.
1806CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
1807 return toCharUnitsFromBits(getAlignOfGlobalVar(T));
1808}
1809
1810/// DeepCollectObjCIvars -
1811/// This routine first collects all declared, but not synthesized, ivars in
1812/// super class and then collects all ivars, including those synthesized for
1813/// current class. This routine is used for implementation of current class
1814/// when all ivars, declared and synthesized are known.
1815///
1816void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1817 bool leafClass,
1818 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1819 if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1820 DeepCollectObjCIvars(SuperClass, false, Ivars);
1821 if (!leafClass) {
1822 for (const auto *I : OI->ivars())
1823 Ivars.push_back(I);
1824 } else {
1825 ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1826 for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1827 Iv= Iv->getNextIvar())
1828 Ivars.push_back(Iv);
1829 }
1830}
1831
1832/// CollectInheritedProtocols - Collect all protocols in current class and
1833/// those inherited by it.
1834void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1835 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1836 if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1837 // We can use protocol_iterator here instead of
1838 // all_referenced_protocol_iterator since we are walking all categories.
1839 for (auto *Proto : OI->all_referenced_protocols()) {
1840 Protocols.insert(Proto->getCanonicalDecl());
1841 for (auto *P : Proto->protocols()) {
1842 Protocols.insert(P->getCanonicalDecl());
1843 CollectInheritedProtocols(P, Protocols);
1844 }
1845 }
1846
1847 // Categories of this Interface.
1848 for (const auto *Cat : OI->visible_categories())
1849 CollectInheritedProtocols(Cat, Protocols);
1850
1851 if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1852 while (SD) {
1853 CollectInheritedProtocols(SD, Protocols);
1854 SD = SD->getSuperClass();
1855 }
1856 } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1857 for (auto *Proto : OC->protocols()) {
1858 Protocols.insert(Proto->getCanonicalDecl());
1859 for (const auto *P : Proto->protocols())
1860 CollectInheritedProtocols(P, Protocols);
1861 }
1862 } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1863 for (auto *Proto : OP->protocols()) {
1864 Protocols.insert(Proto->getCanonicalDecl());
1865 for (const auto *P : Proto->protocols())
1866 CollectInheritedProtocols(P, Protocols);
1867 }
1868 }
1869}
1870
1871unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1872 unsigned count = 0;
1873 // Count ivars declared in class extension.
1874 for (const auto *Ext : OI->known_extensions())
1875 count += Ext->ivar_size();
1876
1877 // Count ivar defined in this class's implementation. This
1878 // includes synthesized ivars.
1879 if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1880 count += ImplDecl->ivar_size();
1881
1882 return count;
1883}
1884
1885bool ASTContext::isSentinelNullExpr(const Expr *E) {
1886 if (!E)
1887 return false;
1888
1889 // nullptr_t is always treated as null.
1890 if (E->getType()->isNullPtrType()) return true;
1891
1892 if (E->getType()->isAnyPointerType() &&
1893 E->IgnoreParenCasts()->isNullPointerConstant(*this,
1894 Expr::NPC_ValueDependentIsNull))
1895 return true;
1896
1897 // Unfortunately, __null has type 'int'.
1898 if (isa<GNUNullExpr>(E)) return true;
1899
1900 return false;
1901}
1902
1903/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1904ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1905 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1906 I = ObjCImpls.find(D);
1907 if (I != ObjCImpls.end())
1908 return cast<ObjCImplementationDecl>(I->second);
1909 return nullptr;
1910}
1911/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1912ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1913 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1914 I = ObjCImpls.find(D);
1915 if (I != ObjCImpls.end())
1916 return cast<ObjCCategoryImplDecl>(I->second);
1917 return nullptr;
1918}
1919
1920/// \brief Set the implementation of ObjCInterfaceDecl.
1921void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1922 ObjCImplementationDecl *ImplD) {
1923 assert(IFaceD && ImplD && "Passed null params");
1924 ObjCImpls[IFaceD] = ImplD;
1925}
1926/// \brief Set the implementation of ObjCCategoryDecl.
1927void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1928 ObjCCategoryImplDecl *ImplD) {
1929 assert(CatD && ImplD && "Passed null params");
1930 ObjCImpls[CatD] = ImplD;
1931}
1932
1933const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1934 const NamedDecl *ND) const {
1935 if (const ObjCInterfaceDecl *ID =
1936 dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1937 return ID;
1938 if (const ObjCCategoryDecl *CD =
1939 dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1940 return CD->getClassInterface();
1941 if (const ObjCImplDecl *IMD =
1942 dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1943 return IMD->getClassInterface();
1944
1945 return nullptr;
1946}
1947
1948/// \brief Get the copy initialization expression of VarDecl,or NULL if
1949/// none exists.
1950Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1951 assert(VD && "Passed null params");
1952 assert(VD->hasAttr<BlocksAttr>() &&
1953 "getBlockVarCopyInits - not __block var");
1954 llvm::DenseMap<const VarDecl*, Expr*>::iterator
1955 I = BlockVarCopyInits.find(VD);
1956 return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr;
1957}
1958
1959/// \brief Set the copy inialization expression of a block var decl.
1960void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1961 assert(VD && Init && "Passed null params");
1962 assert(VD->hasAttr<BlocksAttr>() &&
1963 "setBlockVarCopyInits - not __block var");
1964 BlockVarCopyInits[VD] = Init;
1965}
1966
1967TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1968 unsigned DataSize) const {
1969 if (!DataSize)
1970 DataSize = TypeLoc::getFullDataSizeForType(T);
1971 else
1972 assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1973 "incorrect data size provided to CreateTypeSourceInfo!");
1974
1975 TypeSourceInfo *TInfo =
1976 (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1977 new (TInfo) TypeSourceInfo(T);
1978 return TInfo;
1979}
1980
1981TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1982 SourceLocation L) const {
1983 TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1984 DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1985 return DI;
1986}
1987
1988const ASTRecordLayout &
1989ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1990 return getObjCLayout(D, nullptr);
1991}
1992
1993const ASTRecordLayout &
1994ASTContext::getASTObjCImplementationLayout(
1995 const ObjCImplementationDecl *D) const {
1996 return getObjCLayout(D->getClassInterface(), D);
1997}
1998
1999//===----------------------------------------------------------------------===//
2000// Type creation/memoization methods
2001//===----------------------------------------------------------------------===//
2002
2003QualType
2004ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2005 unsigned fastQuals = quals.getFastQualifiers();
2006 quals.removeFastQualifiers();
2007
2008 // Check if we've already instantiated this type.
2009 llvm::FoldingSetNodeID ID;
2010 ExtQuals::Profile(ID, baseType, quals);
2011 void *insertPos = nullptr;
2012 if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2013 assert(eq->getQualifiers() == quals);
2014 return QualType(eq, fastQuals);
2015 }
2016
2017 // If the base type is not canonical, make the appropriate canonical type.
2018 QualType canon;
2019 if (!baseType->isCanonicalUnqualified()) {
2020 SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2021 canonSplit.Quals.addConsistentQualifiers(quals);
2022 canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2023
2024 // Re-find the insert position.
2025 (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2026 }
2027
2028 ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2029 ExtQualNodes.InsertNode(eq, insertPos);
2030 return QualType(eq, fastQuals);
2031}
2032
2033QualType
2034ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
2035 QualType CanT = getCanonicalType(T);
2036 if (CanT.getAddressSpace() == AddressSpace)
2037 return T;
2038
2039 // If we are composing extended qualifiers together, merge together
2040 // into one ExtQuals node.
2041 QualifierCollector Quals;
2042 const Type *TypeNode = Quals.strip(T);
2043
2044 // If this type already has an address space specified, it cannot get
2045 // another one.
2046 assert(!Quals.hasAddressSpace() &&
2047 "Type cannot be in multiple addr spaces!");
2048 Quals.addAddressSpace(AddressSpace);
2049
2050 return getExtQualType(TypeNode, Quals);
2051}
2052
2053QualType ASTContext::getObjCGCQualType(QualType T,
2054 Qualifiers::GC GCAttr) const {
2055 QualType CanT = getCanonicalType(T);
2056 if (CanT.getObjCGCAttr() == GCAttr)
2057 return T;
2058
2059 if (const PointerType *ptr = T->getAs<PointerType>()) {
2060 QualType Pointee = ptr->getPointeeType();
2061 if (Pointee->isAnyPointerType()) {
2062 QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2063 return getPointerType(ResultType);
2064 }
2065 }
2066
2067 // If we are composing extended qualifiers together, merge together
2068 // into one ExtQuals node.
2069 QualifierCollector Quals;
2070 const Type *TypeNode = Quals.strip(T);
2071
2072 // If this type already has an ObjCGC specified, it cannot get
2073 // another one.
2074 assert(!Quals.hasObjCGCAttr() &&
2075 "Type cannot have multiple ObjCGCs!");
2076 Quals.addObjCGCAttr(GCAttr);
2077
2078 return getExtQualType(TypeNode, Quals);
2079}
2080
2081const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2082 FunctionType::ExtInfo Info) {
2083 if (T->getExtInfo() == Info)
2084 return T;
2085
2086 QualType Result;
2087 if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2088 Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
2089 } else {
2090 const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2091 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2092 EPI.ExtInfo = Info;
2093 Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
2094 }
2095
2096 return cast<FunctionType>(Result.getTypePtr());
2097}
2098
2099void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2100 QualType ResultType) {
2101 FD = FD->getMostRecentDecl();
2102 while (true) {
2103 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2104 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2105 FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
2106 if (FunctionDecl *Next = FD->getPreviousDecl())
2107 FD = Next;
2108 else
2109 break;
2110 }
2111 if (ASTMutationListener *L = getASTMutationListener())
2112 L->DeducedReturnType(FD, ResultType);
2113}
2114
2115/// Get a function type and produce the equivalent function type with the
2116/// specified exception specification. Type sugar that can be present on a
2117/// declaration of a function with an exception specification is permitted
2118/// and preserved. Other type sugar (for instance, typedefs) is not.
2119static QualType getFunctionTypeWithExceptionSpec(
2120 ASTContext &Context, QualType Orig,
2121 const FunctionProtoType::ExceptionSpecInfo &ESI) {
2122 // Might have some parens.
2123 if (auto *PT = dyn_cast<ParenType>(Orig))
2124 return Context.getParenType(
2125 getFunctionTypeWithExceptionSpec(Context, PT->getInnerType(), ESI));
2126
2127 // Might have a calling-convention attribute.
2128 if (auto *AT = dyn_cast<AttributedType>(Orig))
2129 return Context.getAttributedType(
2130 AT->getAttrKind(),
2131 getFunctionTypeWithExceptionSpec(Context, AT->getModifiedType(), ESI),
2132 getFunctionTypeWithExceptionSpec(Context, AT->getEquivalentType(),
2133 ESI));
2134
2135 // Anything else must be a function type. Rebuild it with the new exception
2136 // specification.
2137 const FunctionProtoType *Proto = cast<FunctionProtoType>(Orig);
2138 return Context.getFunctionType(
2139 Proto->getReturnType(), Proto->getParamTypes(),
2140 Proto->getExtProtoInfo().withExceptionSpec(ESI));
2141}
2142
2143void ASTContext::adjustExceptionSpec(
2144 FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
2145 bool AsWritten) {
2146 // Update the type.
2147 QualType Updated =
2148 getFunctionTypeWithExceptionSpec(*this, FD->getType(), ESI);
2149 FD->setType(Updated);
2150
2151 if (!AsWritten)
2152 return;
2153
2154 // Update the type in the type source information too.
2155 if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
2156 // If the type and the type-as-written differ, we may need to update
2157 // the type-as-written too.
2158 if (TSInfo->getType() != FD->getType())
2159 Updated = getFunctionTypeWithExceptionSpec(*this, TSInfo->getType(), ESI);
2160
2161 // FIXME: When we get proper type location information for exceptions,
2162 // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
2163 // up the TypeSourceInfo;
2164 assert(TypeLoc::getFullDataSizeForType(Updated) ==
2165 TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
2166 "TypeLoc size mismatch from updating exception specification");
2167 TSInfo->overrideType(Updated);
2168 }
2169}
2170
2171/// getComplexType - Return the uniqued reference to the type for a complex
2172/// number with the specified element type.
2173QualType ASTContext::getComplexType(QualType T) const {
2174 // Unique pointers, to guarantee there is only one pointer of a particular
2175 // structure.
2176 llvm::FoldingSetNodeID ID;
2177 ComplexType::Profile(ID, T);
2178
2179 void *InsertPos = nullptr;
2180 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2181 return QualType(CT, 0);
2182
2183 // If the pointee type isn't canonical, this won't be a canonical type either,
2184 // so fill in the canonical type field.
2185 QualType Canonical;
2186 if (!T.isCanonical()) {
2187 Canonical = getComplexType(getCanonicalType(T));
2188
2189 // Get the new insert position for the node we care about.
2190 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2191 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2192 }
2193 ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2194 Types.push_back(New);
2195 ComplexTypes.InsertNode(New, InsertPos);
2196 return QualType(New, 0);
2197}
2198
2199/// getPointerType - Return the uniqued reference to the type for a pointer to
2200/// the specified type.
2201QualType ASTContext::getPointerType(QualType T) const {
2202 // Unique pointers, to guarantee there is only one pointer of a particular
2203 // structure.
2204 llvm::FoldingSetNodeID ID;
2205 PointerType::Profile(ID, T);
2206
2207 void *InsertPos = nullptr;
2208 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2209 return QualType(PT, 0);
2210
2211 // If the pointee type isn't canonical, this won't be a canonical type either,
2212 // so fill in the canonical type field.
2213 QualType Canonical;
2214 if (!T.isCanonical()) {
2215 Canonical = getPointerType(getCanonicalType(T));
2216
2217 // Get the new insert position for the node we care about.
2218 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2219 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2220 }
2221 PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2222 Types.push_back(New);
2223 PointerTypes.InsertNode(New, InsertPos);
2224 return QualType(New, 0);
2225}
2226
2227QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
2228 llvm::FoldingSetNodeID ID;
2229 AdjustedType::Profile(ID, Orig, New);
2230 void *InsertPos = nullptr;
2231 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2232 if (AT)
2233 return QualType(AT, 0);
2234
2235 QualType Canonical = getCanonicalType(New);
2236
2237 // Get the new insert position for the node we care about.
2238 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2239 assert(!AT && "Shouldn't be in the map!");
2240
2241 AT = new (*this, TypeAlignment)
2242 AdjustedType(Type::Adjusted, Orig, New, Canonical);
2243 Types.push_back(AT);
2244 AdjustedTypes.InsertNode(AT, InsertPos);
2245 return QualType(AT, 0);
2246}
2247
2248QualType ASTContext::getDecayedType(QualType T) const {
2249 assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
2250
2251 QualType Decayed;
2252
2253 // C99 6.7.5.3p7:
2254 // A declaration of a parameter as "array of type" shall be
2255 // adjusted to "qualified pointer to type", where the type
2256 // qualifiers (if any) are those specified within the [ and ] of
2257 // the array type derivation.
2258 if (T->isArrayType())
2259 Decayed = getArrayDecayedType(T);
2260
2261 // C99 6.7.5.3p8:
2262 // A declaration of a parameter as "function returning type"
2263 // shall be adjusted to "pointer to function returning type", as
2264 // in 6.3.2.1.
2265 if (T->isFunctionType())
2266 Decayed = getPointerType(T);
2267
2268 llvm::FoldingSetNodeID ID;
2269 AdjustedType::Profile(ID, T, Decayed);
2270 void *InsertPos = nullptr;
2271 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2272 if (AT)
2273 return QualType(AT, 0);
2274
2275 QualType Canonical = getCanonicalType(Decayed);
2276
2277 // Get the new insert position for the node we care about.
2278 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2279 assert(!AT && "Shouldn't be in the map!");
2280
2281 AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
2282 Types.push_back(AT);
2283 AdjustedTypes.InsertNode(AT, InsertPos);
2284 return QualType(AT, 0);
2285}
2286
2287/// getBlockPointerType - Return the uniqued reference to the type for
2288/// a pointer to the specified block.
2289QualType ASTContext::getBlockPointerType(QualType T) const {
2290 assert(T->isFunctionType() && "block of function types only");
2291 // Unique pointers, to guarantee there is only one block of a particular
2292 // structure.
2293 llvm::FoldingSetNodeID ID;
2294 BlockPointerType::Profile(ID, T);
2295
2296 void *InsertPos = nullptr;
2297 if (BlockPointerType *PT =
2298 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2299 return QualType(PT, 0);
2300
2301 // If the block pointee type isn't canonical, this won't be a canonical
2302 // type either so fill in the canonical type field.
2303 QualType Canonical;
2304 if (!T.isCanonical()) {
2305 Canonical = getBlockPointerType(getCanonicalType(T));
2306
2307 // Get the new insert position for the node we care about.
2308 BlockPointerType *NewIP =
2309 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2310 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2311 }
2312 BlockPointerType *New
2313 = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2314 Types.push_back(New);
2315 BlockPointerTypes.InsertNode(New, InsertPos);
2316 return QualType(New, 0);
2317}
2318
2319/// getLValueReferenceType - Return the uniqued reference to the type for an
2320/// lvalue reference to the specified type.
2321QualType
2322ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2323 assert(getCanonicalType(T) != OverloadTy &&
2324 "Unresolved overloaded function type");
2325
2326 // Unique pointers, to guarantee there is only one pointer of a particular
2327 // structure.
2328 llvm::FoldingSetNodeID ID;
2329 ReferenceType::Profile(ID, T, SpelledAsLValue);
2330
2331 void *InsertPos = nullptr;
2332 if (LValueReferenceType *RT =
2333 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2334 return QualType(RT, 0);
2335
2336 const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2337
2338 // If the referencee type isn't canonical, this won't be a canonical type
2339 // either, so fill in the canonical type field.
2340 QualType Canonical;
2341 if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2342 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2343 Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2344
2345 // Get the new insert position for the node we care about.
2346 LValueReferenceType *NewIP =
2347 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2348 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2349 }
2350
2351 LValueReferenceType *New
2352 = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2353 SpelledAsLValue);
2354 Types.push_back(New);
2355 LValueReferenceTypes.InsertNode(New, InsertPos);
2356
2357 return QualType(New, 0);
2358}
2359
2360/// getRValueReferenceType - Return the uniqued reference to the type for an
2361/// rvalue reference to the specified type.
2362QualType ASTContext::getRValueReferenceType(QualType T) const {
2363 // Unique pointers, to guarantee there is only one pointer of a particular
2364 // structure.
2365 llvm::FoldingSetNodeID ID;
2366 ReferenceType::Profile(ID, T, false);
2367
2368 void *InsertPos = nullptr;
2369 if (RValueReferenceType *RT =
2370 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2371 return QualType(RT, 0);
2372
2373 const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2374
2375 // If the referencee type isn't canonical, this won't be a canonical type
2376 // either, so fill in the canonical type field.
2377 QualType Canonical;
2378 if (InnerRef || !T.isCanonical()) {
2379 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2380 Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2381
2382 // Get the new insert position for the node we care about.
2383 RValueReferenceType *NewIP =
2384 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2385 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2386 }
2387
2388 RValueReferenceType *New
2389 = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2390 Types.push_back(New);
2391 RValueReferenceTypes.InsertNode(New, InsertPos);
2392 return QualType(New, 0);
2393}
2394
2395/// getMemberPointerType - Return the uniqued reference to the type for a
2396/// member pointer to the specified type, in the specified class.
2397QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2398 // Unique pointers, to guarantee there is only one pointer of a particular
2399 // structure.
2400 llvm::FoldingSetNodeID ID;
2401 MemberPointerType::Profile(ID, T, Cls);
2402
2403 void *InsertPos = nullptr;
2404 if (MemberPointerType *PT =
2405 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2406 return QualType(PT, 0);
2407
2408 // If the pointee or class type isn't canonical, this won't be a canonical
2409 // type either, so fill in the canonical type field.
2410 QualType Canonical;
2411 if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2412 Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2413
2414 // Get the new insert position for the node we care about.
2415 MemberPointerType *NewIP =
2416 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2417 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2418 }
2419 MemberPointerType *New
2420 = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2421 Types.push_back(New);
2422 MemberPointerTypes.InsertNode(New, InsertPos);
2423 return QualType(New, 0);
2424}
2425
2426/// getConstantArrayType - Return the unique reference to the type for an
2427/// array of the specified element type.
2428QualType ASTContext::getConstantArrayType(QualType EltTy,
2429 const llvm::APInt &ArySizeIn,
2430 ArrayType::ArraySizeModifier ASM,
2431 unsigned IndexTypeQuals) const {
2432 assert((EltTy->isDependentType() ||
2433 EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2434 "Constant array of VLAs is illegal!");
2435
2436 // Convert the array size into a canonical width matching the pointer size for
2437 // the target.
2438 llvm::APInt ArySize(ArySizeIn);
2439 ArySize =
2440 ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2441
2442 llvm::FoldingSetNodeID ID;
2443 ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2444
2445 void *InsertPos = nullptr;
2446 if (ConstantArrayType *ATP =
2447 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2448 return QualType(ATP, 0);
2449
2450 // If the element type isn't canonical or has qualifiers, this won't
2451 // be a canonical type either, so fill in the canonical type field.
2452 QualType Canon;
2453 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2454 SplitQualType canonSplit = getCanonicalType(EltTy).split();
2455 Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2456 ASM, IndexTypeQuals);
2457 Canon = getQualifiedType(Canon, canonSplit.Quals);
2458
2459 // Get the new insert position for the node we care about.
2460 ConstantArrayType *NewIP =
2461 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2462 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2463 }
2464
2465 ConstantArrayType *New = new(*this,TypeAlignment)
2466 ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2467 ConstantArrayTypes.InsertNode(New, InsertPos);
2468 Types.push_back(New);
2469 return QualType(New, 0);
2470}
2471
2472/// getVariableArrayDecayedType - Turns the given type, which may be
2473/// variably-modified, into the corresponding type with all the known
2474/// sizes replaced with [*].
2475QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2476 // Vastly most common case.
2477 if (!type->isVariablyModifiedType()) return type;
2478
2479 QualType result;
2480
2481 SplitQualType split = type.getSplitDesugaredType();
2482 const Type *ty = split.Ty;
2483 switch (ty->getTypeClass()) {
2484#define TYPE(Class, Base)
2485#define ABSTRACT_TYPE(Class, Base)
2486#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2487#include "clang/AST/TypeNodes.def"
2488 llvm_unreachable("didn't desugar past all non-canonical types?");
2489
2490 // These types should never be variably-modified.
2491 case Type::Builtin:
2492 case Type::Complex:
2493 case Type::Vector:
2494 case Type::ExtVector:
2495 case Type::DependentSizedExtVector:
2496 case Type::ObjCObject:
2497 case Type::ObjCInterface:
2498 case Type::ObjCObjectPointer:
2499 case Type::Record:
2500 case Type::Enum:
2501 case Type::UnresolvedUsing:
2502 case Type::TypeOfExpr:
2503 case Type::TypeOf:
2504 case Type::Decltype:
2505 case Type::UnaryTransform:
2506 case Type::DependentName:
2507 case Type::InjectedClassName:
2508 case Type::TemplateSpecialization:
2509 case Type::DependentTemplateSpecialization:
2510 case Type::TemplateTypeParm:
2511 case Type::SubstTemplateTypeParmPack:
2512 case Type::Auto:
2513 case Type::PackExpansion:
2514 llvm_unreachable("type should never be variably-modified");
2515
2516 // These types can be variably-modified but should never need to
2517 // further decay.
2518 case Type::FunctionNoProto:
2519 case Type::FunctionProto:
2520 case Type::BlockPointer:
2521 case Type::MemberPointer:
2522 return type;
2523
2524 // These types can be variably-modified. All these modifications
2525 // preserve structure except as noted by comments.
2526 // TODO: if we ever care about optimizing VLAs, there are no-op
2527 // optimizations available here.
2528 case Type::Pointer:
2529 result = getPointerType(getVariableArrayDecayedType(
2530 cast<PointerType>(ty)->getPointeeType()));
2531 break;
2532
2533 case Type::LValueReference: {
2534 const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2535 result = getLValueReferenceType(
2536 getVariableArrayDecayedType(lv->getPointeeType()),
2537 lv->isSpelledAsLValue());
2538 break;
2539 }
2540
2541 case Type::RValueReference: {
2542 const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2543 result = getRValueReferenceType(
2544 getVariableArrayDecayedType(lv->getPointeeType()));
2545 break;
2546 }
2547
2548 case Type::Atomic: {
2549 const AtomicType *at = cast<AtomicType>(ty);
2550 result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2551 break;
2552 }
2553
2554 case Type::ConstantArray: {
2555 const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2556 result = getConstantArrayType(
2557 getVariableArrayDecayedType(cat->getElementType()),
2558 cat->getSize(),
2559 cat->getSizeModifier(),
2560 cat->getIndexTypeCVRQualifiers());
2561 break;
2562 }
2563
2564 case Type::DependentSizedArray: {
2565 const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2566 result = getDependentSizedArrayType(
2567 getVariableArrayDecayedType(dat->getElementType()),
2568 dat->getSizeExpr(),
2569 dat->getSizeModifier(),
2570 dat->getIndexTypeCVRQualifiers(),
2571 dat->getBracketsRange());
2572 break;
2573 }
2574
2575 // Turn incomplete types into [*] types.
2576 case Type::IncompleteArray: {
2577 const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2578 result = getVariableArrayType(
2579 getVariableArrayDecayedType(iat->getElementType()),
2580 /*size*/ nullptr,
2581 ArrayType::Normal,
2582 iat->getIndexTypeCVRQualifiers(),
2583 SourceRange());
2584 break;
2585 }
2586
2587 // Turn VLA types into [*] types.
2588 case Type::VariableArray: {
2589 const VariableArrayType *vat = cast<VariableArrayType>(ty);
2590 result = getVariableArrayType(
2591 getVariableArrayDecayedType(vat->getElementType()),
2592 /*size*/ nullptr,
2593 ArrayType::Star,
2594 vat->getIndexTypeCVRQualifiers(),
2595 vat->getBracketsRange());
2596 break;
2597 }
2598 }
2599
2600 // Apply the top-level qualifiers from the original.
2601 return getQualifiedType(result, split.Quals);
2602}
2603
2604/// getVariableArrayType - Returns a non-unique reference to the type for a
2605/// variable array of the specified element type.
2606QualType ASTContext::getVariableArrayType(QualType EltTy,
2607 Expr *NumElts,
2608 ArrayType::ArraySizeModifier ASM,
2609 unsigned IndexTypeQuals,
2610 SourceRange Brackets) const {
2611 // Since we don't unique expressions, it isn't possible to unique VLA's
2612 // that have an expression provided for their size.
2613 QualType Canon;
2614
2615 // Be sure to pull qualifiers off the element type.
2616 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2617 SplitQualType canonSplit = getCanonicalType(EltTy).split();
2618 Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2619 IndexTypeQuals, Brackets);
2620 Canon = getQualifiedType(Canon, canonSplit.Quals);
2621 }
2622
2623 VariableArrayType *New = new(*this, TypeAlignment)
2624 VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2625
2626 VariableArrayTypes.push_back(New);
2627 Types.push_back(New);
2628 return QualType(New, 0);
2629}
2630
2631/// getDependentSizedArrayType - Returns a non-unique reference to
2632/// the type for a dependently-sized array of the specified element
2633/// type.
2634QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2635 Expr *numElements,
2636 ArrayType::ArraySizeModifier ASM,
2637 unsigned elementTypeQuals,
2638 SourceRange brackets) const {
2639 assert((!numElements || numElements->isTypeDependent() ||
2640 numElements->isValueDependent()) &&
2641 "Size must be type- or value-dependent!");
2642
2643 // Dependently-sized array types that do not have a specified number
2644 // of elements will have their sizes deduced from a dependent
2645 // initializer. We do no canonicalization here at all, which is okay
2646 // because they can't be used in most locations.
2647 if (!numElements) {
2648 DependentSizedArrayType *newType
2649 = new (*this, TypeAlignment)
2650 DependentSizedArrayType(*this, elementType, QualType(),
2651 numElements, ASM, elementTypeQuals,
2652 brackets);
2653 Types.push_back(newType);
2654 return QualType(newType, 0);
2655 }
2656
2657 // Otherwise, we actually build a new type every time, but we
2658 // also build a canonical type.
2659
2660 SplitQualType canonElementType = getCanonicalType(elementType).split();
2661
2662 void *insertPos = nullptr;
2663 llvm::FoldingSetNodeID ID;
2664 DependentSizedArrayType::Profile(ID, *this,
2665 QualType(canonElementType.Ty, 0),
2666 ASM, elementTypeQuals, numElements);
2667
2668 // Look for an existing type with these properties.
2669 DependentSizedArrayType *canonTy =
2670 DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2671
2672 // If we don't have one, build one.
2673 if (!canonTy) {
2674 canonTy = new (*this, TypeAlignment)
2675 DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2676 QualType(), numElements, ASM, elementTypeQuals,
2677 brackets);
2678 DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2679 Types.push_back(canonTy);
2680 }
2681
2682 // Apply qualifiers from the element type to the array.
2683 QualType canon = getQualifiedType(QualType(canonTy,0),
2684 canonElementType.Quals);
2685
2686 // If we didn't need extra canonicalization for the element type,
2687 // then just use that as our result.
2688 if (QualType(canonElementType.Ty, 0) == elementType)
2689 return canon;
2690
2691 // Otherwise, we need to build a type which follows the spelling
2692 // of the element type.
2693 DependentSizedArrayType *sugaredType
2694 = new (*this, TypeAlignment)
2695 DependentSizedArrayType(*this, elementType, canon, numElements,
2696 ASM, elementTypeQuals, brackets);
2697 Types.push_back(sugaredType);
2698 return QualType(sugaredType, 0);
2699}
2700
2701QualType ASTContext::getIncompleteArrayType(QualType elementType,
2702 ArrayType::ArraySizeModifier ASM,
2703 unsigned elementTypeQuals) const {
2704 llvm::FoldingSetNodeID ID;
2705 IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2706
2707 void *insertPos = nullptr;
2708 if (IncompleteArrayType *iat =
2709 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2710 return QualType(iat, 0);
2711
2712 // If the element type isn't canonical, this won't be a canonical type
2713 // either, so fill in the canonical type field. We also have to pull
2714 // qualifiers off the element type.
2715 QualType canon;
2716
2717 if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2718 SplitQualType canonSplit = getCanonicalType(elementType).split();
2719 canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2720 ASM, elementTypeQuals);
2721 canon = getQualifiedType(canon, canonSplit.Quals);
2722
2723 // Get the new insert position for the node we care about.
2724 IncompleteArrayType *existing =
2725 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2726 assert(!existing && "Shouldn't be in the map!"); (void) existing;
2727 }
2728
2729 IncompleteArrayType *newType = new (*this, TypeAlignment)
2730 IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2731
2732 IncompleteArrayTypes.InsertNode(newType, insertPos);
2733 Types.push_back(newType);
2734 return QualType(newType, 0);
2735}
2736
2737/// getVectorType - Return the unique reference to a vector type of
2738/// the specified element type and size. VectorType must be a built-in type.
2739QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2740 VectorType::VectorKind VecKind) const {
2741 assert(vecType->isBuiltinType());
2742
2743 // Check if we've already instantiated a vector of this type.
2744 llvm::FoldingSetNodeID ID;
2745 VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2746
2747 void *InsertPos = nullptr;
2748 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2749 return QualType(VTP, 0);
2750
2751 // If the element type isn't canonical, this won't be a canonical type either,
2752 // so fill in the canonical type field.
2753 QualType Canonical;
2754 if (!vecType.isCanonical()) {
2755 Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2756
2757 // Get the new insert position for the node we care about.
2758 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2759 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2760 }
2761 VectorType *New = new (*this, TypeAlignment)
2762 VectorType(vecType, NumElts, Canonical, VecKind);
2763 VectorTypes.InsertNode(New, InsertPos);
2764 Types.push_back(New);
2765 return QualType(New, 0);
2766}
2767
2768/// getExtVectorType - Return the unique reference to an extended vector type of
2769/// the specified element type and size. VectorType must be a built-in type.
2770QualType
2771ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2772 assert(vecType->isBuiltinType() || vecType->isDependentType());
2773
2774 // Check if we've already instantiated a vector of this type.
2775 llvm::FoldingSetNodeID ID;
2776 VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2777 VectorType::GenericVector);
2778 void *InsertPos = nullptr;
2779 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2780 return QualType(VTP, 0);
2781
2782 // If the element type isn't canonical, this won't be a canonical type either,
2783 // so fill in the canonical type field.
2784 QualType Canonical;
2785 if (!vecType.isCanonical()) {
2786 Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2787
2788 // Get the new insert position for the node we care about.
2789 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2790 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2791 }
2792 ExtVectorType *New = new (*this, TypeAlignment)
2793 ExtVectorType(vecType, NumElts, Canonical);
2794 VectorTypes.InsertNode(New, InsertPos);
2795 Types.push_back(New);
2796 return QualType(New, 0);
2797}
2798
2799QualType
2800ASTContext::getDependentSizedExtVectorType(QualType vecType,
2801 Expr *SizeExpr,
2802 SourceLocation AttrLoc) const {
2803 llvm::FoldingSetNodeID ID;
2804 DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2805 SizeExpr);
2806
2807 void *InsertPos = nullptr;
2808 DependentSizedExtVectorType *Canon
2809 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2810 DependentSizedExtVectorType *New;
2811 if (Canon) {
2812 // We already have a canonical version of this array type; use it as
2813 // the canonical type for a newly-built type.
2814 New = new (*this, TypeAlignment)
2815 DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2816 SizeExpr, AttrLoc);
2817 } else {
2818 QualType CanonVecTy = getCanonicalType(vecType);
2819 if (CanonVecTy == vecType) {
2820 New = new (*this, TypeAlignment)
2821 DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2822 AttrLoc);
2823
2824 DependentSizedExtVectorType *CanonCheck
2825 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2826 assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2827 (void)CanonCheck;
2828 DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2829 } else {
2830 QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2831 SourceLocation());
2832 New = new (*this, TypeAlignment)
2833 DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2834 }
2835 }
2836
2837 Types.push_back(New);
2838 return QualType(New, 0);
2839}
2840
2841/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2842///
2843QualType
2844ASTContext::getFunctionNoProtoType(QualType ResultTy,
2845 const FunctionType::ExtInfo &Info) const {
2846 const CallingConv CallConv = Info.getCC();
2847
2848 // Unique functions, to guarantee there is only one function of a particular
2849 // structure.
2850 llvm::FoldingSetNodeID ID;
2851 FunctionNoProtoType::Profile(ID, ResultTy, Info);
2852
2853 void *InsertPos = nullptr;
2854 if (FunctionNoProtoType *FT =
2855 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2856 return QualType(FT, 0);
2857
2858 QualType Canonical;
2859 if (!ResultTy.isCanonical()) {
2860 Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), Info);
2861
2862 // Get the new insert position for the node we care about.
2863 FunctionNoProtoType *NewIP =
2864 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2865 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2866 }
2867
2868 FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2869 FunctionNoProtoType *New = new (*this, TypeAlignment)
2870 FunctionNoProtoType(ResultTy, Canonical, newInfo);
2871 Types.push_back(New);
2872 FunctionNoProtoTypes.InsertNode(New, InsertPos);
2873 return QualType(New, 0);
2874}
2875
2876/// \brief Determine whether \p T is canonical as the result type of a function.
2877static bool isCanonicalResultType(QualType T) {
2878 return T.isCanonical() &&
2879 (T.getObjCLifetime() == Qualifiers::OCL_None ||
2880 T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2881}
2882
2883QualType
2884ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2885 const FunctionProtoType::ExtProtoInfo &EPI) const {
2886 size_t NumArgs = ArgArray.size();
2887
2888 // Unique functions, to guarantee there is only one function of a particular
2889 // structure.
2890 llvm::FoldingSetNodeID ID;
2891 FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2892 *this);
2893
2894 void *InsertPos = nullptr;
2895 if (FunctionProtoType *FTP =
2896 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2897 return QualType(FTP, 0);
2898
2899 // Determine whether the type being created is already canonical or not.
2900 bool isCanonical =
2901 EPI.ExceptionSpec.Type == EST_None && isCanonicalResultType(ResultTy) &&
2902 !EPI.HasTrailingReturn;
2903 for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2904 if (!ArgArray[i].isCanonicalAsParam())
2905 isCanonical = false;
2906
2907 // If this type isn't canonical, get the canonical version of it.
2908 // The exception spec is not part of the canonical type.
2909 QualType Canonical;
2910 if (!isCanonical) {
2911 SmallVector<QualType, 16> CanonicalArgs;
2912 CanonicalArgs.reserve(NumArgs);
2913 for (unsigned i = 0; i != NumArgs; ++i)
2914 CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2915
2916 FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2917 CanonicalEPI.HasTrailingReturn = false;
2918 CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
2919
2920 // Result types do not have ARC lifetime qualifiers.
2921 QualType CanResultTy = getCanonicalType(ResultTy);
2922 if (ResultTy.getQualifiers().hasObjCLifetime()) {
2923 Qualifiers Qs = CanResultTy.getQualifiers();
2924 Qs.removeObjCLifetime();
2925 CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2926 }
2927
2928 Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2929
2930 // Get the new insert position for the node we care about.
2931 FunctionProtoType *NewIP =
2932 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2933 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2934 }
2935
2936 // FunctionProtoType objects are allocated with extra bytes after
2937 // them for three variable size arrays at the end:
2938 // - parameter types
2939 // - exception types
2940 // - consumed-arguments flags
2941 // Instead of the exception types, there could be a noexcept
2942 // expression, or information used to resolve the exception
2943 // specification.
2944 size_t Size = sizeof(FunctionProtoType) +
2945 NumArgs * sizeof(QualType);
2946 if (EPI.ExceptionSpec.Type == EST_Dynamic) {
2947 Size += EPI.ExceptionSpec.Exceptions.size() * sizeof(QualType);
2948 } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) {
2949 Size += sizeof(Expr*);
2950 } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
2951 Size += 2 * sizeof(FunctionDecl*);
2952 } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
2953 Size += sizeof(FunctionDecl*);
2954 }
2955 if (EPI.ConsumedParameters)
2956 Size += NumArgs * sizeof(bool);
2957
2958 FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2959 FunctionProtoType::ExtProtoInfo newEPI = EPI;
2960 new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2961 Types.push_back(FTP);
2962 FunctionProtoTypes.InsertNode(FTP, InsertPos);
2963 return QualType(FTP, 0);
2964}
2965
2966#ifndef NDEBUG
2967static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2968 if (!isa<CXXRecordDecl>(D)) return false;
2969 const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2970 if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2971 return true;
2972 if (RD->getDescribedClassTemplate() &&
2973 !isa<ClassTemplateSpecializationDecl>(RD))
2974 return true;
2975 return false;
2976}
2977#endif
2978
2979/// getInjectedClassNameType - Return the unique reference to the
2980/// injected class name type for the specified templated declaration.
2981QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2982 QualType TST) const {
2983 assert(NeedsInjectedClassNameType(Decl));
2984 if (Decl->TypeForDecl) {
2985 assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2986 } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2987 assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2988 Decl->TypeForDecl = PrevDecl->TypeForDecl;
2989 assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2990 } else {
2991 Type *newType =
2992 new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2993 Decl->TypeForDecl = newType;
2994 Types.push_back(newType);
2995 }
2996 return QualType(Decl->TypeForDecl, 0);
2997}
2998
2999/// getTypeDeclType - Return the unique reference to the type for the
3000/// specified type declaration.
3001QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
3002 assert(Decl && "Passed null for Decl param");
3003 assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
3004
3005 if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
3006 return getTypedefType(Typedef);
3007
3008 assert(!isa<TemplateTypeParmDecl>(Decl) &&
3009 "Template type parameter types are always available.");
3010
3011 if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
3012 assert(Record->isFirstDecl() && "struct/union has previous declaration");
3013 assert(!NeedsInjectedClassNameType(Record));
3014 return getRecordType(Record);
3015 } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
3016 assert(Enum->isFirstDecl() && "enum has previous declaration");
3017 return getEnumType(Enum);
3018 } else if (const UnresolvedUsingTypenameDecl *Using =
3019 dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
3020 Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
3021 Decl->TypeForDecl = newType;
3022 Types.push_back(newType);
3023 } else
3024 llvm_unreachable("TypeDecl without a type?");
3025
3026 return QualType(Decl->TypeForDecl, 0);
3027}
3028
3029/// getTypedefType - Return the unique reference to the type for the
3030/// specified typedef name decl.
3031QualType
3032ASTContext::getTypedefType(const TypedefNameDecl *Decl,
3033 QualType Canonical) const {
3034 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3035
3036 if (Canonical.isNull())
3037 Canonical = getCanonicalType(Decl->getUnderlyingType());
3038 TypedefType *newType = new(*this, TypeAlignment)
3039 TypedefType(Type::Typedef, Decl, Canonical);
3040 Decl->TypeForDecl = newType;
3041 Types.push_back(newType);
3042 return QualType(newType, 0);
3043}
3044
3045QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
3046 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3047
3048 if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
3049 if (PrevDecl->TypeForDecl)
3050 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3051
3052 RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
3053 Decl->TypeForDecl = newType;
3054 Types.push_back(newType);
3055 return QualType(newType, 0);
3056}
3057
3058QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
3059 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3060
3061 if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
3062 if (PrevDecl->TypeForDecl)
3063 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3064
3065 EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
3066 Decl->TypeForDecl = newType;
3067 Types.push_back(newType);
3068 return QualType(newType, 0);
3069}
3070
3071QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
3072 QualType modifiedType,
3073 QualType equivalentType) {
3074 llvm::FoldingSetNodeID id;
3075 AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
3076
3077 void *insertPos = nullptr;
3078 AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
3079 if (type) return QualType(type, 0);
3080
3081 QualType canon = getCanonicalType(equivalentType);
3082 type = new (*this, TypeAlignment)
3083 AttributedType(canon, attrKind, modifiedType, equivalentType);
3084
3085 Types.push_back(type);
3086 AttributedTypes.InsertNode(type, insertPos);
3087
3088 return QualType(type, 0);
3089}
3090
3091
3092/// \brief Retrieve a substitution-result type.
3093QualType
3094ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
3095 QualType Replacement) const {
3096 assert(Replacement.isCanonical()
3097 && "replacement types must always be canonical");
3098
3099 llvm::FoldingSetNodeID ID;
3100 SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
3101 void *InsertPos = nullptr;
3102 SubstTemplateTypeParmType *SubstParm
3103 = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3104
3105 if (!SubstParm) {
3106 SubstParm = new (*this, TypeAlignment)
3107 SubstTemplateTypeParmType(Parm, Replacement);
3108 Types.push_back(SubstParm);
3109 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3110 }
3111
3112 return QualType(SubstParm, 0);
3113}
3114
3115/// \brief Retrieve a
3116QualType ASTContext::getSubstTemplateTypeParmPackType(
3117 const TemplateTypeParmType *Parm,
3118 const TemplateArgument &ArgPack) {
3119#ifndef NDEBUG
3120 for (const auto &P : ArgPack.pack_elements()) {
3121 assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
3122 assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
3123 }
3124#endif
3125
3126 llvm::FoldingSetNodeID ID;
3127 SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
3128 void *InsertPos = nullptr;
3129 if (SubstTemplateTypeParmPackType *SubstParm
3130 = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
3131 return QualType(SubstParm, 0);
3132
3133 QualType Canon;
3134 if (!Parm->isCanonicalUnqualified()) {
3135 Canon = getCanonicalType(QualType(Parm, 0));
3136 Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3137 ArgPack);
3138 SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3139 }
3140
3141 SubstTemplateTypeParmPackType *SubstParm
3142 = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3143 ArgPack);
3144 Types.push_back(SubstParm);
3145 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3146 return QualType(SubstParm, 0);
3147}
3148
3149/// \brief Retrieve the template type parameter type for a template
3150/// parameter or parameter pack with the given depth, index, and (optionally)
3151/// name.
3152QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3153 bool ParameterPack,
3154 TemplateTypeParmDecl *TTPDecl) const {
3155 llvm::FoldingSetNodeID ID;
3156 TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3157 void *InsertPos = nullptr;
3158 TemplateTypeParmType *TypeParm
3159 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3160
3161 if (TypeParm)
3162 return QualType(TypeParm, 0);
3163
3164 if (TTPDecl) {
3165 QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3166 TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3167
3168 TemplateTypeParmType *TypeCheck
3169 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3170 assert(!TypeCheck && "Template type parameter canonical type broken");
3171 (void)TypeCheck;
3172 } else
3173 TypeParm = new (*this, TypeAlignment)
3174 TemplateTypeParmType(Depth, Index, ParameterPack);
3175
3176 Types.push_back(TypeParm);
3177 TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3178
3179 return QualType(TypeParm, 0);
3180}
3181
3182TypeSourceInfo *
3183ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3184 SourceLocation NameLoc,
3185 const TemplateArgumentListInfo &Args,
3186 QualType Underlying) const {
3187 assert(!Name.getAsDependentTemplateName() &&
3188 "No dependent template names here!");
3189 QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3190
3191 TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3192 TemplateSpecializationTypeLoc TL =
3193 DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3194 TL.setTemplateKeywordLoc(SourceLocation());
3195 TL.setTemplateNameLoc(NameLoc);
3196 TL.setLAngleLoc(Args.getLAngleLoc());
3197 TL.setRAngleLoc(Args.getRAngleLoc());
3198 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3199 TL.setArgLocInfo(i, Args[i].getLocInfo());
3200 return DI;
3201}
3202
3203QualType
3204ASTContext::getTemplateSpecializationType(TemplateName Template,
3205 const TemplateArgumentListInfo &Args,
3206 QualType Underlying) const {
3207 assert(!Template.getAsDependentTemplateName() &&
3208 "No dependent template names here!");
3209
3210 unsigned NumArgs = Args.size();
3211
3212 SmallVector<TemplateArgument, 4> ArgVec;
3213 ArgVec.reserve(NumArgs);
3214 for (unsigned i = 0; i != NumArgs; ++i)
3215 ArgVec.push_back(Args[i].getArgument());
3216
3217 return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3218 Underlying);
3219}
3220
3221#ifndef NDEBUG
3222static bool hasAnyPackExpansions(const TemplateArgument *Args,
3223 unsigned NumArgs) {
3224 for (unsigned I = 0; I != NumArgs; ++I)
3225 if (Args[I].isPackExpansion())
3226 return true;
3227
3228 return true;
3229}
3230#endif
3231
3232QualType
3233ASTContext::getTemplateSpecializationType(TemplateName Template,
3234 const TemplateArgument *Args,
3235 unsigned NumArgs,
3236 QualType Underlying) const {
3237 assert(!Template.getAsDependentTemplateName() &&
3238 "No dependent template names here!");
3239 // Look through qualified template names.
3240 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3241 Template = TemplateName(QTN->getTemplateDecl());
3242
3243 bool IsTypeAlias =
3244 Template.getAsTemplateDecl() &&
3245 isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3246 QualType CanonType;
3247 if (!Underlying.isNull())
3248 CanonType = getCanonicalType(Underlying);
3249 else {
3250 // We can get here with an alias template when the specialization contains
3251 // a pack expansion that does not match up with a parameter pack.
3252 assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3253 "Caller must compute aliased type");
3254 IsTypeAlias = false;
3255 CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3256 NumArgs);
3257 }
3258
3259 // Allocate the (non-canonical) template specialization type, but don't
3260 // try to unique it: these types typically have location information that
3261 // we don't unique and don't want to lose.
3262 void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3263 sizeof(TemplateArgument) * NumArgs +
3264 (IsTypeAlias? sizeof(QualType) : 0),
3265 TypeAlignment);
3266 TemplateSpecializationType *Spec
3267 = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3268 IsTypeAlias ? Underlying : QualType());
3269
3270 Types.push_back(Spec);
3271 return QualType(Spec, 0);
3272}
3273
3274QualType
3275ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3276 const TemplateArgument *Args,
3277 unsigned NumArgs) const {
3278 assert(!Template.getAsDependentTemplateName() &&
3279 "No dependent template names here!");
3280
3281 // Look through qualified template names.
3282 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3283 Template = TemplateName(QTN->getTemplateDecl());
3284
3285 // Build the canonical template specialization type.
3286 TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3287 SmallVector<TemplateArgument, 4> CanonArgs;
3288 CanonArgs.reserve(NumArgs);
3289 for (unsigned I = 0; I != NumArgs; ++I)
3290 CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3291
3292 // Determine whether this canonical template specialization type already
3293 // exists.
3294 llvm::FoldingSetNodeID ID;
3295 TemplateSpecializationType::Profile(ID, CanonTemplate,
3296 CanonArgs.data(), NumArgs, *this);
3297
3298 void *InsertPos = nullptr;
3299 TemplateSpecializationType *Spec
3300 = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3301
3302 if (!Spec) {
3303 // Allocate a new canonical template specialization type.
3304 void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3305 sizeof(TemplateArgument) * NumArgs),
3306 TypeAlignment);
3307 Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3308 CanonArgs.data(), NumArgs,
3309 QualType(), QualType());
3310 Types.push_back(Spec);
3311 TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3312 }
3313
3314 assert(Spec->isDependentType() &&
3315 "Non-dependent template-id type must have a canonical type");
3316 return QualType(Spec, 0);
3317}
3318
3319QualType
3320ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3321 NestedNameSpecifier *NNS,
3322 QualType NamedType) const {
3323 llvm::FoldingSetNodeID ID;
3324 ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3325
3326 void *InsertPos = nullptr;
3327 ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3328 if (T)
3329 return QualType(T, 0);
3330
3331 QualType Canon = NamedType;
3332 if (!Canon.isCanonical()) {
3333 Canon = getCanonicalType(NamedType);
3334 ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3335 assert(!CheckT && "Elaborated canonical type broken");
3336 (void)CheckT;
3337 }
3338
3339 T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3340 Types.push_back(T);
3341 ElaboratedTypes.InsertNode(T, InsertPos);
3342 return QualType(T, 0);
3343}
3344
3345QualType
3346ASTContext::getParenType(QualType InnerType) const {
3347 llvm::FoldingSetNodeID ID;
3348 ParenType::Profile(ID, InnerType);
3349
3350 void *InsertPos = nullptr;
3351 ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3352 if (T)
3353 return QualType(T, 0);
3354
3355 QualType Canon = InnerType;
3356 if (!Canon.isCanonical()) {
3357 Canon = getCanonicalType(InnerType);
3358 ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3359 assert(!CheckT && "Paren canonical type broken");
3360 (void)CheckT;
3361 }
3362
3363 T = new (*this) ParenType(InnerType, Canon);
3364 Types.push_back(T);
3365 ParenTypes.InsertNode(T, InsertPos);
3366 return QualType(T, 0);
3367}
3368
3369QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3370 NestedNameSpecifier *NNS,
3371 const IdentifierInfo *Name,
3372 QualType Canon) const {
3373 if (Canon.isNull()) {
3374 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3375 ElaboratedTypeKeyword CanonKeyword = Keyword;
3376 if (Keyword == ETK_None)
3377 CanonKeyword = ETK_Typename;
3378
3379 if (CanonNNS != NNS || CanonKeyword != Keyword)
3380 Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3381 }
3382
3383 llvm::FoldingSetNodeID ID;
3384 DependentNameType::Profile(ID, Keyword, NNS, Name);
3385
3386 void *InsertPos = nullptr;
3387 DependentNameType *T
3388 = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3389 if (T)
3390 return QualType(T, 0);
3391
3392 T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3393 Types.push_back(T);
3394 DependentNameTypes.InsertNode(T, InsertPos);
3395 return QualType(T, 0);
3396}
3397
3398QualType
3399ASTContext::getDependentTemplateSpecializationType(
3400 ElaboratedTypeKeyword Keyword,
3401 NestedNameSpecifier *NNS,
3402 const IdentifierInfo *Name,
3403 const TemplateArgumentListInfo &Args) const {
3404 // TODO: avoid this copy
3405 SmallVector<TemplateArgument, 16> ArgCopy;
3406 for (unsigned I = 0, E = Args.size(); I != E; ++I)
3407 ArgCopy.push_back(Args[I].getArgument());
3408 return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3409 ArgCopy.size(),
3410 ArgCopy.data());
3411}
3412
3413QualType
3414ASTContext::getDependentTemplateSpecializationType(
3415 ElaboratedTypeKeyword Keyword,
3416 NestedNameSpecifier *NNS,
3417 const IdentifierInfo *Name,
3418 unsigned NumArgs,
3419 const TemplateArgument *Args) const {
3420 assert((!NNS || NNS->isDependent()) &&
3421 "nested-name-specifier must be dependent");
3422
3423 llvm::FoldingSetNodeID ID;
3424 DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3425 Name, NumArgs, Args);
3426
3427 void *InsertPos = nullptr;
3428 DependentTemplateSpecializationType *T
3429 = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3430 if (T)
3431 return QualType(T, 0);
3432
3433 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3434
3435 ElaboratedTypeKeyword CanonKeyword = Keyword;
3436 if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3437
3438 bool AnyNonCanonArgs = false;
3439 SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3440 for (unsigned I = 0; I != NumArgs; ++I) {
3441 CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3442 if (!CanonArgs[I].structurallyEquals(Args[I]))
3443 AnyNonCanonArgs = true;
3444 }
3445
3446 QualType Canon;
3447 if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3448 Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3449 Name, NumArgs,
3450 CanonArgs.data());
3451
3452 // Find the insert position again.
3453 DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3454 }
3455
3456 void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3457 sizeof(TemplateArgument) * NumArgs),
3458 TypeAlignment);
3459 T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3460 Name, NumArgs, Args, Canon);
3461 Types.push_back(T);
3462 DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3463 return QualType(T, 0);
3464}
3465
3466QualType ASTContext::getPackExpansionType(QualType Pattern,
3467 Optional<unsigned> NumExpansions) {
3468 llvm::FoldingSetNodeID ID;
3469 PackExpansionType::Profile(ID, Pattern, NumExpansions);
3470
3471 assert(Pattern->containsUnexpandedParameterPack() &&
3472 "Pack expansions must expand one or more parameter packs");
3473 void *InsertPos = nullptr;
3474 PackExpansionType *T
3475 = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3476 if (T)
3477 return QualType(T, 0);
3478
3479 QualType Canon;
3480 if (!Pattern.isCanonical()) {
3481 Canon = getCanonicalType(Pattern);
3482 // The canonical type might not contain an unexpanded parameter pack, if it
3483 // contains an alias template specialization which ignores one of its
3484 // parameters.
3485 if (Canon->containsUnexpandedParameterPack()) {
3486 Canon = getPackExpansionType(Canon, NumExpansions);
3487
3488 // Find the insert position again, in case we inserted an element into
3489 // PackExpansionTypes and invalidated our insert position.
3490 PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3491 }
3492 }
3493
3494 T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3495 Types.push_back(T);
3496 PackExpansionTypes.InsertNode(T, InsertPos);
3497 return QualType(T, 0);
3498}
3499
3500/// CmpProtocolNames - Comparison predicate for sorting protocols
3501/// alphabetically.
3502static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3503 const ObjCProtocolDecl *RHS) {
3504 return LHS->getDeclName() < RHS->getDeclName();
3505}
3506
3507static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3508 unsigned NumProtocols) {
3509 if (NumProtocols == 0) return true;
3510
3511 if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3512 return false;
3513
3514 for (unsigned i = 1; i != NumProtocols; ++i)
3515 if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3516 Protocols[i]->getCanonicalDecl() != Protocols[i])
3517 return false;
3518 return true;
3519}
3520
3521static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3522 unsigned &NumProtocols) {
3523 ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3524
3525 // Sort protocols, keyed by name.
3526 std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3527
3528 // Canonicalize.
3529 for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3530 Protocols[I] = Protocols[I]->getCanonicalDecl();
3531
3532 // Remove duplicates.
3533 ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3534 NumProtocols = ProtocolsEnd-Protocols;
3535}
3536
3537QualType ASTContext::getObjCObjectType(QualType BaseType,
3538 ObjCProtocolDecl * const *Protocols,
3539 unsigned NumProtocols) const {
3540 // If the base type is an interface and there aren't any protocols
3541 // to add, then the interface type will do just fine.
3542 if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3543 return BaseType;
3544
3545 // Look in the folding set for an existing type.
3546 llvm::FoldingSetNodeID ID;
3547 ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3548 void *InsertPos = nullptr;
3549 if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3550 return QualType(QT, 0);
3551
3552 // Build the canonical type, which has the canonical base type and
3553 // a sorted-and-uniqued list of protocols.
3554 QualType Canonical;
3555 bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3556 if (!ProtocolsSorted || !BaseType.isCanonical()) {
3557 if (!ProtocolsSorted) {
3558 SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3559 Protocols + NumProtocols);
3560 unsigned UniqueCount = NumProtocols;
3561
3562 SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3563 Canonical = getObjCObjectType(getCanonicalType(BaseType),
3564 &Sorted[0], UniqueCount);
3565 } else {
3566 Canonical = getObjCObjectType(getCanonicalType(BaseType),
3567 Protocols, NumProtocols);
3568 }
3569
3570 // Regenerate InsertPos.
3571 ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3572 }
3573
3574 unsigned Size = sizeof(ObjCObjectTypeImpl);
3575 Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3576 void *Mem = Allocate(Size, TypeAlignment);
3577 ObjCObjectTypeImpl *T =
3578 new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3579
3580 Types.push_back(T);
3581 ObjCObjectTypes.InsertNode(T, InsertPos);
3582 return QualType(T, 0);
3583}
3584
3585/// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
3586/// protocol list adopt all protocols in QT's qualified-id protocol
3587/// list.
3588bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
3589 ObjCInterfaceDecl *IC) {
3590 if (!QT->isObjCQualifiedIdType())
3591 return false;
3592
3593 if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) {
3594 // If both the right and left sides have qualifiers.
3595 for (auto *Proto : OPT->quals()) {
3596 if (!IC->ClassImplementsProtocol(Proto, false))
3597 return false;
3598 }
3599 return true;
3600 }
3601 return false;
3602}
3603
3604/// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
3605/// QT's qualified-id protocol list adopt all protocols in IDecl's list
3606/// of protocols.
3607bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
3608 ObjCInterfaceDecl *IDecl) {
3609 if (!QT->isObjCQualifiedIdType())
3610 return false;
3611 const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
3612 if (!OPT)
3613 return false;
3614 if (!IDecl->hasDefinition())
3615 return false;
3616 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
3617 CollectInheritedProtocols(IDecl, InheritedProtocols);
3618 if (InheritedProtocols.empty())
3619 return false;
3620 // Check that if every protocol in list of id<plist> conforms to a protcol
3621 // of IDecl's, then bridge casting is ok.
3622 bool Conforms = false;
3623 for (auto *Proto : OPT->quals()) {
3624 Conforms = false;
3625 for (auto *PI : InheritedProtocols) {
3626 if (ProtocolCompatibleWithProtocol(Proto, PI)) {
3627 Conforms = true;
3628 break;
3629 }
3630 }
3631 if (!Conforms)
3632 break;
3633 }
3634 if (Conforms)
3635 return true;
3636
3637 for (auto *PI : InheritedProtocols) {
3638 // If both the right and left sides have qualifiers.
3639 bool Adopts = false;
3640 for (auto *Proto : OPT->quals()) {
3641 // return 'true' if 'PI' is in the inheritance hierarchy of Proto
3642 if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
3643 break;
3644 }
3645 if (!Adopts)
3646 return false;
3647 }
3648 return true;
3649}
3650
3651/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3652/// the given object type.
3653QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3654 llvm::FoldingSetNodeID ID;
3655 ObjCObjectPointerType::Profile(ID, ObjectT);
3656
3657 void *InsertPos = nullptr;
3658 if (ObjCObjectPointerType *QT =
3659 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3660 return QualType(QT, 0);
3661
3662 // Find the canonical object type.
3663 QualType Canonical;
3664 if (!ObjectT.isCanonical()) {
3665 Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3666
3667 // Regenerate InsertPos.
3668 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3669 }
3670
3671 // No match.
3672 void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3673 ObjCObjectPointerType *QType =
3674 new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3675
3676 Types.push_back(QType);
3677 ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3678 return QualType(QType, 0);
3679}
3680
3681/// getObjCInterfaceType - Return the unique reference to the type for the
3682/// specified ObjC interface decl. The list of protocols is optional.
3683QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3684 ObjCInterfaceDecl *PrevDecl) const {
3685 if (Decl->TypeForDecl)
3686 return QualType(Decl->TypeForDecl, 0);
3687
3688 if (PrevDecl) {
3689 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3690 Decl->TypeForDecl = PrevDecl->TypeForDecl;
3691 return QualType(PrevDecl->TypeForDecl, 0);
3692 }
3693
3694 // Prefer the definition, if there is one.
3695 if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3696 Decl = Def;
3697
3698 void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3699 ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3700 Decl->TypeForDecl = T;
3701 Types.push_back(T);
3702 return QualType(T, 0);
3703}
3704
3705/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3706/// TypeOfExprType AST's (since expression's are never shared). For example,
3707/// multiple declarations that refer to "typeof(x)" all contain different
3708/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3709/// on canonical type's (which are always unique).
3710QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3711 TypeOfExprType *toe;
3712 if (tofExpr->isTypeDependent()) {
3713 llvm::FoldingSetNodeID ID;
3714 DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3715
3716 void *InsertPos = nullptr;
3717 DependentTypeOfExprType *Canon
3718 = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3719 if (Canon) {
3720 // We already have a "canonical" version of an identical, dependent
3721 // typeof(expr) type. Use that as our canonical type.
3722 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3723 QualType((TypeOfExprType*)Canon, 0));
3724 } else {
3725 // Build a new, canonical typeof(expr) type.
3726 Canon
3727 = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3728 DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3729 toe = Canon;
3730 }
3731 } else {
3732 QualType Canonical = getCanonicalType(tofExpr->getType());
3733 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3734 }
3735 Types.push_back(toe);
3736 return QualType(toe, 0);
3737}
3738
3739/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
3740/// TypeOfType nodes. The only motivation to unique these nodes would be
3741/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3742/// an issue. This doesn't affect the type checker, since it operates
3743/// on canonical types (which are always unique).
3744QualType ASTContext::getTypeOfType(QualType tofType) const {
3745 QualType Canonical = getCanonicalType(tofType);
3746 TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3747 Types.push_back(tot);
3748 return QualType(tot, 0);
3749}
3750
3751
3752/// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType
3753/// nodes. This would never be helpful, since each such type has its own
3754/// expression, and would not give a significant memory saving, since there
3755/// is an Expr tree under each such type.
3756QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3757 DecltypeType *dt;
3758
3759 // C++11 [temp.type]p2:
3760 // If an expression e involves a template parameter, decltype(e) denotes a
3761 // unique dependent type. Two such decltype-specifiers refer to the same
3762 // type only if their expressions are equivalent (14.5.6.1).
3763 if (e->isInstantiationDependent()) {
3764 llvm::FoldingSetNodeID ID;
3765 DependentDecltypeType::Profile(ID, *this, e);
3766
3767 void *InsertPos = nullptr;
3768 DependentDecltypeType *Canon
3769 = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3770 if (!Canon) {
3771 // Build a new, canonical typeof(expr) type.
3772 Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3773 DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3774 }
3775 dt = new (*this, TypeAlignment)
3776 DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
3777 } else {
3778 dt = new (*this, TypeAlignment)
3779 DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
3780 }
3781 Types.push_back(dt);
3782 return QualType(dt, 0);
3783}
3784
3785/// getUnaryTransformationType - We don't unique these, since the memory
3786/// savings are minimal and these are rare.
3787QualType ASTContext::getUnaryTransformType(QualType BaseType,
3788 QualType UnderlyingType,
3789 UnaryTransformType::UTTKind Kind)
3790 const {
3791 UnaryTransformType *Ty =
3792 new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3793 Kind,
3794 UnderlyingType->isDependentType() ?
3795 QualType() : getCanonicalType(UnderlyingType));
3796 Types.push_back(Ty);
3797 return QualType(Ty, 0);
3798}
3799
3800/// getAutoType - Return the uniqued reference to the 'auto' type which has been
3801/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
3802/// canonical deduced-but-dependent 'auto' type.
3803QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
3804 bool IsDependent) const {
3805 if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
3806 return getAutoDeductType();
3807
3808 // Look in the folding set for an existing type.
3809 void *InsertPos = nullptr;
3810 llvm::FoldingSetNodeID ID;
3811 AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
3812 if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3813 return QualType(AT, 0);
3814
3815 AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
3816 IsDecltypeAuto,
3817 IsDependent);
3818 Types.push_back(AT);
3819 if (InsertPos)
3820 AutoTypes.InsertNode(AT, InsertPos);
3821 return QualType(AT, 0);
3822}
3823
3824/// getAtomicType - Return the uniqued reference to the atomic type for
3825/// the given value type.
3826QualType ASTContext::getAtomicType(QualType T) const {
3827 // Unique pointers, to guarantee there is only one pointer of a particular
3828 // structure.
3829 llvm::FoldingSetNodeID ID;
3830 AtomicType::Profile(ID, T);
3831
3832 void *InsertPos = nullptr;
3833 if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3834 return QualType(AT, 0);
3835
3836 // If the atomic value type isn't canonical, this won't be a canonical type
3837 // either, so fill in the canonical type field.
3838 QualType Canonical;
3839 if (!T.isCanonical()) {
3840 Canonical = getAtomicType(getCanonicalType(T));
3841
3842 // Get the new insert position for the node we care about.
3843 AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3844 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3845 }
3846 AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3847 Types.push_back(New);
3848 AtomicTypes.InsertNode(New, InsertPos);
3849 return QualType(New, 0);
3850}
3851
3852/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3853QualType ASTContext::getAutoDeductType() const {
3854 if (AutoDeductTy.isNull())
3855 AutoDeductTy = QualType(
3856 new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
3857 /*dependent*/false),
3858 0);
3859 return AutoDeductTy;
3860}
3861
3862/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3863QualType ASTContext::getAutoRRefDeductType() const {
3864 if (AutoRRefDeductTy.isNull())
3865 AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3866 assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3867 return AutoRRefDeductTy;
3868}
3869
3870/// getTagDeclType - Return the unique reference to the type for the
3871/// specified TagDecl (struct/union/class/enum) decl.
3872QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3873 assert (Decl);
3874 // FIXME: What is the design on getTagDeclType when it requires casting
3875 // away const? mutable?
3876 return getTypeDeclType(const_cast<TagDecl*>(Decl));
3877}
3878
3879/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3880/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3881/// needs to agree with the definition in <stddef.h>.
3882CanQualType ASTContext::getSizeType() const {
3883 return getFromTargetType(Target->getSizeType());
3884}
3885
3886/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3887CanQualType ASTContext::getIntMaxType() const {
3888 return getFromTargetType(Target->getIntMaxType());
3889}
3890
3891/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3892CanQualType ASTContext::getUIntMaxType() const {
3893 return getFromTargetType(Target->getUIntMaxType());
3894}
3895
3896/// getSignedWCharType - Return the type of "signed wchar_t".
3897/// Used when in C++, as a GCC extension.
3898QualType ASTContext::getSignedWCharType() const {
3899 // FIXME: derive from "Target" ?
3900 return WCharTy;
3901}
3902
3903/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3904/// Used when in C++, as a GCC extension.
3905QualType ASTContext::getUnsignedWCharType() const {
3906 // FIXME: derive from "Target" ?
3907 return UnsignedIntTy;
3908}
3909
3910QualType ASTContext::getIntPtrType() const {
3911 return getFromTargetType(Target->getIntPtrType());
3912}
3913
3914QualType ASTContext::getUIntPtrType() const {
3915 return getCorrespondingUnsignedType(getIntPtrType());
3916}
3917
3918/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3919/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3920QualType ASTContext::getPointerDiffType() const {
3921 return getFromTargetType(Target->getPtrDiffType(0));
3922}
3923
3924/// \brief Return the unique type for "pid_t" defined in
3925/// <sys/types.h>. We need this to compute the correct type for vfork().
3926QualType ASTContext::getProcessIDType() const {
3927 return getFromTargetType(Target->getProcessIDType());
3928}
3929
3930//===----------------------------------------------------------------------===//
3931// Type Operators
3932//===----------------------------------------------------------------------===//
3933
3934CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3935 // Push qualifiers into arrays, and then discard any remaining
3936 // qualifiers.
3937 T = getCanonicalType(T);
3938 T = getVariableArrayDecayedType(T);
3939 const Type *Ty = T.getTypePtr();
3940 QualType Result;
3941 if (isa<ArrayType>(Ty)) {
3942 Result = getArrayDecayedType(QualType(Ty,0));
3943 } else if (isa<FunctionType>(Ty)) {
3944 Result = getPointerType(QualType(Ty, 0));
3945 } else {
3946 Result = QualType(Ty, 0);
3947 }
3948
3949 return CanQualType::CreateUnsafe(Result);
3950}
3951
3952QualType ASTContext::getUnqualifiedArrayType(QualType type,
3953 Qualifiers &quals) {
3954 SplitQualType splitType = type.getSplitUnqualifiedType();
3955
3956 // FIXME: getSplitUnqualifiedType() actually walks all the way to
3957 // the unqualified desugared type and then drops it on the floor.
3958 // We then have to strip that sugar back off with
3959 // getUnqualifiedDesugaredType(), which is silly.
3960 const ArrayType *AT =
3961 dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3962
3963 // If we don't have an array, just use the results in splitType.
3964 if (!AT) {
3965 quals = splitType.Quals;
3966 return QualType(splitType.Ty, 0);
3967 }
3968
3969 // Otherwise, recurse on the array's element type.
3970 QualType elementType = AT->getElementType();
3971 QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3972
3973 // If that didn't change the element type, AT has no qualifiers, so we
3974 // can just use the results in splitType.
3975 if (elementType == unqualElementType) {
3976 assert(quals.empty()); // from the recursive call
3977 quals = splitType.Quals;
3978 return QualType(splitType.Ty, 0);
3979 }
3980
3981 // Otherwise, add in the qualifiers from the outermost type, then
3982 // build the type back up.
3983 quals.addConsistentQualifiers(splitType.Quals);
3984
3985 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3986 return getConstantArrayType(unqualElementType, CAT->getSize(),
3987 CAT->getSizeModifier(), 0);
3988 }
3989
3990 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3991 return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3992 }
3993
3994 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3995 return getVariableArrayType(unqualElementType,
3996 VAT->getSizeExpr(),
3997 VAT->getSizeModifier(),
3998 VAT->getIndexTypeCVRQualifiers(),
3999 VAT->getBracketsRange());
4000 }
4001
4002 const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
4003 return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
4004 DSAT->getSizeModifier(), 0,
4005 SourceRange());
4006}
4007
4008/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types that
4009/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
4010/// they point to and return true. If T1 and T2 aren't pointer types
4011/// or pointer-to-member types, or if they are not similar at this
4012/// level, returns false and leaves T1 and T2 unchanged. Top-level
4013/// qualifiers on T1 and T2 are ignored. This function will typically
4014/// be called in a loop that successively "unwraps" pointer and
4015/// pointer-to-member types to compare them at each level.
4016bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
4017 const PointerType *T1PtrType = T1->getAs<PointerType>(),
4018 *T2PtrType = T2->getAs<PointerType>();
4019 if (T1PtrType && T2PtrType) {
4020 T1 = T1PtrType->getPointeeType();
4021 T2 = T2PtrType->getPointeeType();
4022 return true;
4023 }
4024
4025 const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
4026 *T2MPType = T2->getAs<MemberPointerType>();
4027 if (T1MPType && T2MPType &&
4028 hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
4029 QualType(T2MPType->getClass(), 0))) {
4030 T1 = T1MPType->getPointeeType();
4031 T2 = T2MPType->getPointeeType();
4032 return true;
4033 }
4034
4035 if (getLangOpts().ObjC1) {
4036 const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
4037 *T2OPType = T2->getAs<ObjCObjectPointerType>();
4038 if (T1OPType && T2OPType) {
4039 T1 = T1OPType->getPointeeType();
4040 T2 = T2OPType->getPointeeType();
4041 return true;
4042 }
4043 }
4044
4045 // FIXME: Block pointers, too?
4046
4047 return false;
4048}
4049
4050DeclarationNameInfo
4051ASTContext::getNameForTemplate(TemplateName Name,
4052 SourceLocation NameLoc) const {
4053 switch (Name.getKind()) {
4054 case TemplateName::QualifiedTemplate:
4055 case TemplateName::Template:
4056 // DNInfo work in progress: CHECKME: what about DNLoc?
4057 return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
4058 NameLoc);
4059
4060 case TemplateName::OverloadedTemplate: {
4061 OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
4062 // DNInfo work in progress: CHECKME: what about DNLoc?
4063 return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
4064 }
4065
4066 case TemplateName::DependentTemplate: {
4067 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4068 DeclarationName DName;
4069 if (DTN->isIdentifier()) {
4070 DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
4071 return DeclarationNameInfo(DName, NameLoc);
4072 } else {
4073 DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
4074 // DNInfo work in progress: FIXME: source locations?
4075 DeclarationNameLoc DNLoc;
4076 DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
4077 DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
4078 return DeclarationNameInfo(DName, NameLoc, DNLoc);
4079 }
4080 }
4081
4082 case TemplateName::SubstTemplateTemplateParm: {
4083 SubstTemplateTemplateParmStorage *subst
4084 = Name.getAsSubstTemplateTemplateParm();
4085 return DeclarationNameInfo(subst->getParameter()->getDeclName(),
4086 NameLoc);
4087 }
4088
4089 case TemplateName::SubstTemplateTemplateParmPack: {
4090 SubstTemplateTemplateParmPackStorage *subst
4091 = Name.getAsSubstTemplateTemplateParmPack();
4092 return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
4093 NameLoc);
4094 }
4095 }
4096
4097 llvm_unreachable("bad template name kind!");
4098}
4099
4100TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
4101 switch (Name.getKind()) {
4102 case TemplateName::QualifiedTemplate:
4103 case TemplateName::Template: {
4104 TemplateDecl *Template = Name.getAsTemplateDecl();
4105 if (TemplateTemplateParmDecl *TTP
4106 = dyn_cast<TemplateTemplateParmDecl>(Template))
4107 Template = getCanonicalTemplateTemplateParmDecl(TTP);
4108
4109 // The canonical template name is the canonical template declaration.
4110 return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
4111 }
4112
4113 case TemplateName::OverloadedTemplate:
4114 llvm_unreachable("cannot canonicalize overloaded template");
4115
4116 case TemplateName::DependentTemplate: {
4117 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4118 assert(DTN && "Non-dependent template names must refer to template decls.");
4119 return DTN->CanonicalTemplateName;
4120 }
4121
4122 case TemplateName::SubstTemplateTemplateParm: {
4123 SubstTemplateTemplateParmStorage *subst
4124 = Name.getAsSubstTemplateTemplateParm();
4125 return getCanonicalTemplateName(subst->getReplacement());
4126 }
4127
4128 case TemplateName::SubstTemplateTemplateParmPack: {
4129 SubstTemplateTemplateParmPackStorage *subst
4130 = Name.getAsSubstTemplateTemplateParmPack();
4131 TemplateTemplateParmDecl *canonParameter
4132 = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
4133 TemplateArgument canonArgPack
4134 = getCanonicalTemplateArgument(subst->getArgumentPack());
4135 return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
4136 }
4137 }
4138
4139 llvm_unreachable("bad template name!");
4140}
4141
4142bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
4143 X = getCanonicalTemplateName(X);
4144 Y = getCanonicalTemplateName(Y);
4145 return X.getAsVoidPointer() == Y.getAsVoidPointer();
4146}
4147
4148TemplateArgument
4149ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
4150 switch (Arg.getKind()) {
4151 case TemplateArgument::Null:
4152 return Arg;
4153
4154 case TemplateArgument::Expression:
4155 return Arg;
4156
4157 case TemplateArgument::Declaration: {
4158 ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
4159 return TemplateArgument(D, Arg.getParamTypeForDecl());
4160 }
4161
4162 case TemplateArgument::NullPtr:
4163 return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
4164 /*isNullPtr*/true);
4165
4166 case TemplateArgument::Template:
4167 return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
4168
4169 case TemplateArgument::TemplateExpansion:
4170 return TemplateArgument(getCanonicalTemplateName(
4171 Arg.getAsTemplateOrTemplatePattern()),
4172 Arg.getNumTemplateExpansions());
4173
4174 case TemplateArgument::Integral:
4175 return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
4176
4177 case TemplateArgument::Type:
4178 return TemplateArgument(getCanonicalType(Arg.getAsType()));
4179
4180 case TemplateArgument::Pack: {
4181 if (Arg.pack_size() == 0)
4182 return Arg;
4183
4184 TemplateArgument *CanonArgs
4185 = new (*this) TemplateArgument[Arg.pack_size()];
4186 unsigned Idx = 0;
4187 for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
4188 AEnd = Arg.pack_end();
4189 A != AEnd; (void)++A, ++Idx)
4190 CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
4191
4192 return TemplateArgument(CanonArgs, Arg.pack_size());
4193 }
4194 }
4195
4196 // Silence GCC warning
4197 llvm_unreachable("Unhandled template argument kind");
4198}
4199
4200NestedNameSpecifier *
4201ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
4202 if (!NNS)
4203 return nullptr;
4204
4205 switch (NNS->getKind()) {
4206 case NestedNameSpecifier::Identifier:
4207 // Canonicalize the prefix but keep the identifier the same.
4208 return NestedNameSpecifier::Create(*this,
4209 getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4210 NNS->getAsIdentifier());
4211
4212 case NestedNameSpecifier::Namespace:
4213 // A namespace is canonical; build a nested-name-specifier with
4214 // this namespace and no prefix.
4215 return NestedNameSpecifier::Create(*this, nullptr,
4216 NNS->getAsNamespace()->getOriginalNamespace());
4217
4218 case NestedNameSpecifier::NamespaceAlias:
4219 // A namespace is canonical; build a nested-name-specifier with
4220 // this namespace and no prefix.
4221 return NestedNameSpecifier::Create(*this, nullptr,
4222 NNS->getAsNamespaceAlias()->getNamespace()
4223 ->getOriginalNamespace());
4224
4225 case NestedNameSpecifier::TypeSpec:
4226 case NestedNameSpecifier::TypeSpecWithTemplate: {
4227 QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4228
4229 // If we have some kind of dependent-named type (e.g., "typename T::type"),
4230 // break it apart into its prefix and identifier, then reconsititute those
4231 // as the canonical nested-name-specifier. This is required to canonicalize
4232 // a dependent nested-name-specifier involving typedefs of dependent-name
4233 // types, e.g.,
4234 // typedef typename T::type T1;
4235 // typedef typename T1::type T2;
4236 if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4237 return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4238 const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4239
4240 // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4241 // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4242 // first place?
4243 return NestedNameSpecifier::Create(*this, nullptr, false,
4244 const_cast<Type *>(T.getTypePtr()));
4245 }
4246
4247 case NestedNameSpecifier::Global:
4248 case NestedNameSpecifier::Super:
4249 // The global specifier and __super specifer are canonical and unique.
4250 return NNS;
4251 }
4252
4253 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4254}
4255
4256
4257const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4258 // Handle the non-qualified case efficiently.
4259 if (!T.hasLocalQualifiers()) {
4260 // Handle the common positive case fast.
4261 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4262 return AT;
4263 }
4264
4265 // Handle the common negative case fast.
4266 if (!isa<ArrayType>(T.getCanonicalType()))
4267 return nullptr;
4268
4269 // Apply any qualifiers from the array type to the element type. This
4270 // implements C99 6.7.3p8: "If the specification of an array type includes
4271 // any type qualifiers, the element type is so qualified, not the array type."
4272
4273 // If we get here, we either have type qualifiers on the type, or we have
4274 // sugar such as a typedef in the way. If we have type qualifiers on the type
4275 // we must propagate them down into the element type.
4276
4277 SplitQualType split = T.getSplitDesugaredType();
4278 Qualifiers qs = split.Quals;
4279
4280 // If we have a simple case, just return now.
4281 const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4282 if (!ATy || qs.empty())
4283 return ATy;
4284
4285 // Otherwise, we have an array and we have qualifiers on it. Push the
4286 // qualifiers into the array element type and return a new array type.
4287 QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4288
4289 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4290 return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4291 CAT->getSizeModifier(),
4292 CAT->getIndexTypeCVRQualifiers()));
4293 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4294 return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4295 IAT->getSizeModifier(),
4296 IAT->getIndexTypeCVRQualifiers()));
4297
4298 if (const DependentSizedArrayType *DSAT
4299 = dyn_cast<DependentSizedArrayType>(ATy))
4300 return cast<ArrayType>(
4301 getDependentSizedArrayType(NewEltTy,
4302 DSAT->getSizeExpr(),
4303 DSAT->getSizeModifier(),
4304 DSAT->getIndexTypeCVRQualifiers(),
4305 DSAT->getBracketsRange()));
4306
4307 const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4308 return cast<ArrayType>(getVariableArrayType(NewEltTy,
4309 VAT->getSizeExpr(),
4310 VAT->getSizeModifier(),
4311 VAT->getIndexTypeCVRQualifiers(),
4312 VAT->getBracketsRange()));
4313}
4314
4315QualType ASTContext::getAdjustedParameterType(QualType T) const {
4316 if (T->isArrayType() || T->isFunctionType())
4317 return getDecayedType(T);
4318 return T;
4319}
4320
4321QualType ASTContext::getSignatureParameterType(QualType T) const {
4322 T = getVariableArrayDecayedType(T);
4323 T = getAdjustedParameterType(T);
4324 return T.getUnqualifiedType();
4325}
4326
4327/// getArrayDecayedType - Return the properly qualified result of decaying the
4328/// specified array type to a pointer. This operation is non-trivial when
4329/// handling typedefs etc. The canonical type of "T" must be an array type,
4330/// this returns a pointer to a properly qualified element of the array.
4331///
4332/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4333QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4334 // Get the element type with 'getAsArrayType' so that we don't lose any
4335 // typedefs in the element type of the array. This also handles propagation
4336 // of type qualifiers from the array type into the element type if present
4337 // (C99 6.7.3p8).
4338 const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4339 assert(PrettyArrayType && "Not an array type!");
4340
4341 QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4342
4343 // int x[restrict 4] -> int *restrict
4344 return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4345}
4346
4347QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4348 return getBaseElementType(array->getElementType());
4349}
4350
4351QualType ASTContext::getBaseElementType(QualType type) const {
4352 Qualifiers qs;
4353 while (true) {
4354 SplitQualType split = type.getSplitDesugaredType();
4355 const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4356 if (!array) break;
4357
4358 type = array->getElementType();
4359 qs.addConsistentQualifiers(split.Quals);
4360 }
4361
4362 return getQualifiedType(type, qs);
4363}
4364
4365/// getConstantArrayElementCount - Returns number of constant array elements.
4366uint64_t
4367ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const {
4368 uint64_t ElementCount = 1;
4369 do {
4370 ElementCount *= CA->getSize().getZExtValue();
4371 CA = dyn_cast_or_null<ConstantArrayType>(
4372 CA->getElementType()->getAsArrayTypeUnsafe());
4373 } while (CA);
4374 return ElementCount;
4375}
4376
4377/// getFloatingRank - Return a relative rank for floating point types.
4378/// This routine will assert if passed a built-in type that isn't a float.
4379static FloatingRank getFloatingRank(QualType T) {
4380 if (const ComplexType *CT = T->getAs<ComplexType>())
4381 return getFloatingRank(CT->getElementType());
4382
4383 assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4384 switch (T->getAs<BuiltinType>()->getKind()) {
4385 default: llvm_unreachable("getFloatingRank(): not a floating type");
4386 case BuiltinType::Half: return HalfRank;
4387 case BuiltinType::Float: return FloatRank;
4388 case BuiltinType::Double: return DoubleRank;
4389 case BuiltinType::LongDouble: return LongDoubleRank;
4390 }
4391}
4392
4393/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4394/// point or a complex type (based on typeDomain/typeSize).
4395/// 'typeDomain' is a real floating point or complex type.
4396/// 'typeSize' is a real floating point or complex type.
4397QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4398 QualType Domain) const {
4399 FloatingRank EltRank = getFloatingRank(Size);
4400 if (Domain->isComplexType()) {
4401 switch (EltRank) {
4402 case HalfRank: llvm_unreachable("Complex half is not supported");
4403 case FloatRank: return FloatComplexTy;
4404 case DoubleRank: return DoubleComplexTy;
4405 case LongDoubleRank: return LongDoubleComplexTy;
4406 }
4407 }
4408
4409 assert(Domain->isRealFloatingType() && "Unknown domain!");
4410 switch (EltRank) {
4411 case HalfRank: return HalfTy;
4412 case FloatRank: return FloatTy;
4413 case DoubleRank: return DoubleTy;
4414 case LongDoubleRank: return LongDoubleTy;
4415 }
4416 llvm_unreachable("getFloatingRank(): illegal value for rank");
4417}
4418
4419/// getFloatingTypeOrder - Compare the rank of the two specified floating
4420/// point types, ignoring the domain of the type (i.e. 'double' ==
4421/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
4422/// LHS < RHS, return -1.
4423int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4424 FloatingRank LHSR = getFloatingRank(LHS);
4425 FloatingRank RHSR = getFloatingRank(RHS);
4426
4427 if (LHSR == RHSR)
4428 return 0;
4429 if (LHSR > RHSR)
4430 return 1;
4431 return -1;
4432}
4433
4434/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4435/// routine will assert if passed a built-in type that isn't an integer or enum,
4436/// or if it is not canonicalized.
4437unsigned ASTContext::getIntegerRank(const Type *T) const {
4438 assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4439
4440 switch (cast<BuiltinType>(T)->getKind()) {
4441 default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4442 case BuiltinType::Bool:
4443 return 1 + (getIntWidth(BoolTy) << 3);
4444 case BuiltinType::Char_S:
4445 case BuiltinType::Char_U:
4446 case BuiltinType::SChar:
4447 case BuiltinType::UChar:
4448 return 2 + (getIntWidth(CharTy) << 3);
4449 case BuiltinType::Short:
4450 case BuiltinType::UShort:
4451 return 3 + (getIntWidth(ShortTy) << 3);
4452 case BuiltinType::Int:
4453 case BuiltinType::UInt:
4454 return 4 + (getIntWidth(IntTy) << 3);
4455 case BuiltinType::Long:
4456 case BuiltinType::ULong:
4457 return 5 + (getIntWidth(LongTy) << 3);
4458 case BuiltinType::LongLong:
4459 case BuiltinType::ULongLong:
4460 return 6 + (getIntWidth(LongLongTy) << 3);
4461 case BuiltinType::Int128:
4462 case BuiltinType::UInt128:
4463 return 7 + (getIntWidth(Int128Ty) << 3);
4464 }
4465}
4466
4467/// \brief Whether this is a promotable bitfield reference according
4468/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4469///
4470/// \returns the type this bit-field will promote to, or NULL if no
4471/// promotion occurs.
4472QualType ASTContext::isPromotableBitField(Expr *E) const {
4473 if (E->isTypeDependent() || E->isValueDependent())
4474 return QualType();
4475
4476 // FIXME: We should not do this unless E->refersToBitField() is true. This
4477 // matters in C where getSourceBitField() will find bit-fields for various
4478 // cases where the source expression is not a bit-field designator.
4479
4480 FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
4481 if (!Field)
4482 return QualType();
4483
4484 QualType FT = Field->getType();
4485
4486 uint64_t BitWidth = Field->getBitWidthValue(*this);
4487 uint64_t IntSize = getTypeSize(IntTy);
4488 // C++ [conv.prom]p5:
4489 // A prvalue for an integral bit-field can be converted to a prvalue of type
4490 // int if int can represent all the values of the bit-field; otherwise, it
4491 // can be converted to unsigned int if unsigned int can represent all the
4492 // values of the bit-field. If the bit-field is larger yet, no integral
4493 // promotion applies to it.
4494 // C11 6.3.1.1/2:
4495 // [For a bit-field of type _Bool, int, signed int, or unsigned int:]
4496 // If an int can represent all values of the original type (as restricted by
4497 // the width, for a bit-field), the value is converted to an int; otherwise,
4498 // it is converted to an unsigned int.
4499 //
4500 // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
4501 // We perform that promotion here to match GCC and C++.
4502 if (BitWidth < IntSize)
4503 return IntTy;
4504
4505 if (BitWidth == IntSize)
4506 return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4507
4508 // Types bigger than int are not subject to promotions, and therefore act
4509 // like the base type. GCC has some weird bugs in this area that we
4510 // deliberately do not follow (GCC follows a pre-standard resolution to
4511 // C's DR315 which treats bit-width as being part of the type, and this leaks
4512 // into their semantics in some cases).
4513 return QualType();
4514}
4515
4516/// getPromotedIntegerType - Returns the type that Promotable will
4517/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4518/// integer type.
4519QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4520 assert(!Promotable.isNull());
4521 assert(Promotable->isPromotableIntegerType());
4522 if (const EnumType *ET = Promotable->getAs<EnumType>())
4523 return ET->getDecl()->getPromotionType();
4524
4525 if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4526 // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4527 // (3.9.1) can be converted to a prvalue of the first of the following
4528 // types that can represent all the values of its underlying type:
4529 // int, unsigned int, long int, unsigned long int, long long int, or
4530 // unsigned long long int [...]
4531 // FIXME: Is there some better way to compute this?
4532 if (BT->getKind() == BuiltinType::WChar_S ||
4533 BT->getKind() == BuiltinType::WChar_U ||
4534 BT->getKind() == BuiltinType::Char16 ||
4535 BT->getKind() == BuiltinType::Char32) {
4536 bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4537 uint64_t FromSize = getTypeSize(BT);
4538 QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4539 LongLongTy, UnsignedLongLongTy };
4540 for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4541 uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4542 if (FromSize < ToSize ||
4543 (FromSize == ToSize &&
4544 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4545 return PromoteTypes[Idx];
4546 }
4547 llvm_unreachable("char type should fit into long long");
4548 }
4549 }
4550
4551 // At this point, we should have a signed or unsigned integer type.
4552 if (Promotable->isSignedIntegerType())
4553 return IntTy;
4554 uint64_t PromotableSize = getIntWidth(Promotable);
4555 uint64_t IntSize = getIntWidth(IntTy);
4556 assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4557 return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4558}
4559
4560/// \brief Recurses in pointer/array types until it finds an objc retainable
4561/// type and returns its ownership.
4562Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4563 while (!T.isNull()) {
4564 if (T.getObjCLifetime() != Qualifiers::OCL_None)
4565 return T.getObjCLifetime();
4566 if (T->isArrayType())
4567 T = getBaseElementType(T);
4568 else if (const PointerType *PT = T->getAs<PointerType>())
4569 T = PT->getPointeeType();
4570 else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4571 T = RT->getPointeeType();
4572 else
4573 break;
4574 }
4575
4576 return Qualifiers::OCL_None;
4577}
4578
4579static const Type *getIntegerTypeForEnum(const EnumType *ET) {
4580 // Incomplete enum types are not treated as integer types.
4581 // FIXME: In C++, enum types are never integer types.
4582 if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
4583 return ET->getDecl()->getIntegerType().getTypePtr();
4584 return nullptr;
4585}
4586
4587/// getIntegerTypeOrder - Returns the highest ranked integer type:
4588/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
4589/// LHS < RHS, return -1.
4590int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4591 const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4592 const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4593
4594 // Unwrap enums to their underlying type.
4595 if (const EnumType *ET = dyn_cast<EnumType>(LHSC))
4596 LHSC = getIntegerTypeForEnum(ET);
4597 if (const EnumType *ET = dyn_cast<EnumType>(RHSC))
4598 RHSC = getIntegerTypeForEnum(ET);
4599
4600 if (LHSC == RHSC) return 0;
4601
4602 bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4603 bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4604
4605 unsigned LHSRank = getIntegerRank(LHSC);
4606 unsigned RHSRank = getIntegerRank(RHSC);
4607
4608 if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
4609 if (LHSRank == RHSRank) return 0;
4610 return LHSRank > RHSRank ? 1 : -1;
4611 }
4612
4613 // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4614 if (LHSUnsigned) {
4615 // If the unsigned [LHS] type is larger, return it.
4616 if (LHSRank >= RHSRank)
4617 return 1;
4618
4619 // If the signed type can represent all values of the unsigned type, it
4620 // wins. Because we are dealing with 2's complement and types that are
4621 // powers of two larger than each other, this is always safe.
4622 return -1;
4623 }
4624
4625 // If the unsigned [RHS] type is larger, return it.
4626 if (RHSRank >= LHSRank)
4627 return -1;
4628
4629 // If the signed type can represent all values of the unsigned type, it
4630 // wins. Because we are dealing with 2's complement and types that are
4631 // powers of two larger than each other, this is always safe.
4632 return 1;
4633}
4634
4635// getCFConstantStringType - Return the type used for constant CFStrings.
4636QualType ASTContext::getCFConstantStringType() const {
4637 if (!CFConstantStringTypeDecl) {
4638 CFConstantStringTypeDecl = buildImplicitRecord("NSConstantString");
4639 CFConstantStringTypeDecl->startDefinition();
4640
4641 QualType FieldTypes[4];
4642
4643 // const int *isa;
4644 FieldTypes[0] = getPointerType(IntTy.withConst());
4645 // int flags;
4646 FieldTypes[1] = IntTy;
4647 // const char *str;
4648 FieldTypes[2] = getPointerType(CharTy.withConst());
4649 // long length;
4650 FieldTypes[3] = LongTy;
4651
4652 // Create fields
4653 for (unsigned i = 0; i < 4; ++i) {
4654 FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4655 SourceLocation(),
4656 SourceLocation(), nullptr,
4657 FieldTypes[i], /*TInfo=*/nullptr,
4658 /*BitWidth=*/nullptr,
4659 /*Mutable=*/false,
4660 ICIS_NoInit);
4661 Field->setAccess(AS_public);
4662 CFConstantStringTypeDecl->addDecl(Field);
4663 }
4664
4665 CFConstantStringTypeDecl->completeDefinition();
4666 }
4667
4668 return getTagDeclType(CFConstantStringTypeDecl);
4669}
4670
4671QualType ASTContext::getObjCSuperType() const {
4672 if (ObjCSuperType.isNull()) {
4673 RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
4674 TUDecl->addDecl(ObjCSuperTypeDecl);
4675 ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4676 }
4677 return ObjCSuperType;
4678}
4679
4680void ASTContext::setCFConstantStringType(QualType T) {
4681 const RecordType *Rec = T->getAs<RecordType>();
4682 assert(Rec && "Invalid CFConstantStringType");
4683 CFConstantStringTypeDecl = Rec->getDecl();
4684}
4685
4686QualType ASTContext::getBlockDescriptorType() const {
4687 if (BlockDescriptorType)
4688 return getTagDeclType(BlockDescriptorType);
4689
4690 RecordDecl *RD;
4691 // FIXME: Needs the FlagAppleBlock bit.
4692 RD = buildImplicitRecord("__block_descriptor");
4693 RD->startDefinition();
4694
4695 QualType FieldTypes[] = {
4696 UnsignedLongTy,
4697 UnsignedLongTy,
4698 };
4699
4700 static const char *const FieldNames[] = {
4701 "reserved",
4702 "Size"
4703 };
4704
4705 for (size_t i = 0; i < 2; ++i) {
4706 FieldDecl *Field = FieldDecl::Create(
4707 *this, RD, SourceLocation(), SourceLocation(),
4708 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4709 /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
4710 Field->setAccess(AS_public);
4711 RD->addDecl(Field);
4712 }
4713
4714 RD->completeDefinition();
4715
4716 BlockDescriptorType = RD;
4717
4718 return getTagDeclType(BlockDescriptorType);
4719}
4720
4721QualType ASTContext::getBlockDescriptorExtendedType() const {
4722 if (BlockDescriptorExtendedType)
4723 return getTagDeclType(BlockDescriptorExtendedType);
4724
4725 RecordDecl *RD;
4726 // FIXME: Needs the FlagAppleBlock bit.
4727 RD = buildImplicitRecord("__block_descriptor_withcopydispose");
4728 RD->startDefinition();
4729
4730 QualType FieldTypes[] = {
4731 UnsignedLongTy,
4732 UnsignedLongTy,
4733 getPointerType(VoidPtrTy),
4734 getPointerType(VoidPtrTy)
4735 };
4736
4737 static const char *const FieldNames[] = {
4738 "reserved",
4739 "Size",
4740 "CopyFuncPtr",
4741 "DestroyFuncPtr"
4742 };
4743
4744 for (size_t i = 0; i < 4; ++i) {
4745 FieldDecl *Field = FieldDecl::Create(
4746 *this, RD, SourceLocation(), SourceLocation(),
4747 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4748 /*BitWidth=*/nullptr,
4749 /*Mutable=*/false, ICIS_NoInit);
4750 Field->setAccess(AS_public);
4751 RD->addDecl(Field);
4752 }
4753
4754 RD->completeDefinition();
4755
4756 BlockDescriptorExtendedType = RD;
4757 return getTagDeclType(BlockDescriptorExtendedType);
4758}
4759
4760/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4761/// requires copy/dispose. Note that this must match the logic
4762/// in buildByrefHelpers.
4763bool ASTContext::BlockRequiresCopying(QualType Ty,
4764 const VarDecl *D) {
4765 if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4766 const Expr *copyExpr = getBlockVarCopyInits(D);
4767 if (!copyExpr && record->hasTrivialDestructor()) return false;
4768
4769 return true;
4770 }
4771
4772 if (!Ty->isObjCRetainableType()) return false;
4773
4774 Qualifiers qs = Ty.getQualifiers();
4775
4776 // If we have lifetime, that dominates.
4777 if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4778 assert(getLangOpts().ObjCAutoRefCount);
4779
4780 switch (lifetime) {
4781 case Qualifiers::OCL_None: llvm_unreachable("impossible");
4782
4783 // These are just bits as far as the runtime is concerned.
4784 case Qualifiers::OCL_ExplicitNone:
4785 case Qualifiers::OCL_Autoreleasing:
4786 return false;
4787
4788 // Tell the runtime that this is ARC __weak, called by the
4789 // byref routines.
4790 case Qualifiers::OCL_Weak:
4791 // ARC __strong __block variables need to be retained.
4792 case Qualifiers::OCL_Strong:
4793 return true;
4794 }
4795 llvm_unreachable("fell out of lifetime switch!");
4796 }
4797 return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4798 Ty->isObjCObjectPointerType());
4799}
4800
4801bool ASTContext::getByrefLifetime(QualType Ty,
4802 Qualifiers::ObjCLifetime &LifeTime,
4803 bool &HasByrefExtendedLayout) const {
4804
4805 if (!getLangOpts().ObjC1 ||
4806 getLangOpts().getGC() != LangOptions::NonGC)
4807 return false;
4808
4809 HasByrefExtendedLayout = false;
4810 if (Ty->isRecordType()) {
4811 HasByrefExtendedLayout = true;
4812 LifeTime = Qualifiers::OCL_None;
4813 }
4814 else if (getLangOpts().ObjCAutoRefCount)
4815 LifeTime = Ty.getObjCLifetime();
4816 // MRR.
4817 else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4818 LifeTime = Qualifiers::OCL_ExplicitNone;
4819 else
4820 LifeTime = Qualifiers::OCL_None;
4821 return true;
4822}
4823
4824TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4825 if (!ObjCInstanceTypeDecl)
4826 ObjCInstanceTypeDecl =
4827 buildImplicitTypedef(getObjCIdType(), "instancetype");
4828 return ObjCInstanceTypeDecl;
4829}
4830
4831// This returns true if a type has been typedefed to BOOL:
4832// typedef <type> BOOL;
4833static bool isTypeTypedefedAsBOOL(QualType T) {
4834 if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4835 if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4836 return II->isStr("BOOL");
4837
4838 return false;
4839}
4840
4841/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4842/// purpose.
4843CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4844 if (!type->isIncompleteArrayType() && type->isIncompleteType())
4845 return CharUnits::Zero();
4846
4847 CharUnits sz = getTypeSizeInChars(type);
4848
4849 // Make all integer and enum types at least as large as an int
4850 if (sz.isPositive() && type->isIntegralOrEnumerationType())
4851 sz = std::max(sz, getTypeSizeInChars(IntTy));
4852 // Treat arrays as pointers, since that's how they're passed in.
4853 else if (type->isArrayType())
4854 sz = getTypeSizeInChars(VoidPtrTy);
4855 return sz;
4856}
4857
4858bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
4859 return getLangOpts().MSVCCompat && VD->isStaticDataMember() &&
4860 VD->getType()->isIntegralOrEnumerationType() &&
4861 !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
4862}
4863
4864static inline
4865std::string charUnitsToString(const CharUnits &CU) {
4866 return llvm::itostr(CU.getQuantity());
4867}
4868
4869/// getObjCEncodingForBlock - Return the encoded type for this block
4870/// declaration.
4871std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4872 std::string S;
4873
4874 const BlockDecl *Decl = Expr->getBlockDecl();
4875 QualType BlockTy =
4876 Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4877 // Encode result type.
4878 if (getLangOpts().EncodeExtendedBlockSig)
4879 getObjCEncodingForMethodParameter(
4880 Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S,
4881 true /*Extended*/);
4882 else
4883 getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S);
4884 // Compute size of all parameters.
4885 // Start with computing size of a pointer in number of bytes.
4886 // FIXME: There might(should) be a better way of doing this computation!
4887 SourceLocation Loc;
4888 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4889 CharUnits ParmOffset = PtrSize;
4890 for (auto PI : Decl->params()) {
4891 QualType PType = PI->getType();
4892 CharUnits sz = getObjCEncodingTypeSize(PType);
4893 if (sz.isZero())
4894 continue;
4895 assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4896 ParmOffset += sz;
4897 }
4898 // Size of the argument frame
4899 S += charUnitsToString(ParmOffset);
4900 // Block pointer and offset.
4901 S += "@?0";
4902
4903 // Argument types.
4904 ParmOffset = PtrSize;
4905 for (auto PVDecl : Decl->params()) {
4906 QualType PType = PVDecl->getOriginalType();
4907 if (const ArrayType *AT =
4908 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4909 // Use array's original type only if it has known number of
4910 // elements.
4911 if (!isa<ConstantArrayType>(AT))
4912 PType = PVDecl->getType();
4913 } else if (PType->isFunctionType())
4914 PType = PVDecl->getType();
4915 if (getLangOpts().EncodeExtendedBlockSig)
4916 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4917 S, true /*Extended*/);
4918 else
4919 getObjCEncodingForType(PType, S);
4920 S += charUnitsToString(ParmOffset);
4921 ParmOffset += getObjCEncodingTypeSize(PType);
4922 }
4923
4924 return S;
4925}
4926
4927bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4928 std::string& S) {
4929 // Encode result type.
4930 getObjCEncodingForType(Decl->getReturnType(), S);
4931 CharUnits ParmOffset;
4932 // Compute size of all parameters.
4933 for (auto PI : Decl->params()) {
4934 QualType PType = PI->getType();
4935 CharUnits sz = getObjCEncodingTypeSize(PType);
4936 if (sz.isZero())
4937 continue;
4938
4939 assert (sz.isPositive() &&
4940 "getObjCEncodingForFunctionDecl - Incomplete param type");
4941 ParmOffset += sz;
4942 }
4943 S += charUnitsToString(ParmOffset);
4944 ParmOffset = CharUnits::Zero();
4945
4946 // Argument types.
4947 for (auto PVDecl : Decl->params()) {
4948 QualType PType = PVDecl->getOriginalType();
4949 if (const ArrayType *AT =
4950 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4951 // Use array's original type only if it has known number of
4952 // elements.
4953 if (!isa<ConstantArrayType>(AT))
4954 PType = PVDecl->getType();
4955 } else if (PType->isFunctionType())
4956 PType = PVDecl->getType();
4957 getObjCEncodingForType(PType, S);
4958 S += charUnitsToString(ParmOffset);
4959 ParmOffset += getObjCEncodingTypeSize(PType);
4960 }
4961
4962 return false;
4963}
4964
4965/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4966/// method parameter or return type. If Extended, include class names and
4967/// block object types.
4968void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4969 QualType T, std::string& S,
4970 bool Extended) const {
4971 // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4972 getObjCEncodingForTypeQualifier(QT, S);
4973 // Encode parameter type.
4974 getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
4975 true /*OutermostType*/,
4976 false /*EncodingProperty*/,
4977 false /*StructField*/,
4978 Extended /*EncodeBlockParameters*/,
4979 Extended /*EncodeClassNames*/);
4980}
4981
4982/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4983/// declaration.
4984bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4985 std::string& S,
4986 bool Extended) const {
4987 // FIXME: This is not very efficient.
4988 // Encode return type.
4989 getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4990 Decl->getReturnType(), S, Extended);
4991 // Compute size of all parameters.
4992 // Start with computing size of a pointer in number of bytes.
4993 // FIXME: There might(should) be a better way of doing this computation!
4994 SourceLocation Loc;
4995 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4996 // The first two arguments (self and _cmd) are pointers; account for
4997 // their size.
4998 CharUnits ParmOffset = 2 * PtrSize;
4999 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
5000 E = Decl->sel_param_end(); PI != E; ++PI) {
5001 QualType PType = (*PI)->getType();
5002 CharUnits sz = getObjCEncodingTypeSize(PType);
5003 if (sz.isZero())
5004 continue;
5005
5006 assert (sz.isPositive() &&
5007 "getObjCEncodingForMethodDecl - Incomplete param type");
5008 ParmOffset += sz;
5009 }
5010 S += charUnitsToString(ParmOffset);
5011 S += "@0:";
5012 S += charUnitsToString(PtrSize);
5013
5014 // Argument types.
5015 ParmOffset = 2 * PtrSize;
5016 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
5017 E = Decl->sel_param_end(); PI != E; ++PI) {
5018 const ParmVarDecl *PVDecl = *PI;
5019 QualType PType = PVDecl->getOriginalType();
5020 if (const ArrayType *AT =
5021 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
5022 // Use array's original type only if it has known number of
5023 // elements.
5024 if (!isa<ConstantArrayType>(AT))
5025 PType = PVDecl->getType();
5026 } else if (PType->isFunctionType())
5027 PType = PVDecl->getType();
5028 getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
5029 PType, S, Extended);
5030 S += charUnitsToString(ParmOffset);
5031 ParmOffset += getObjCEncodingTypeSize(PType);
5032 }
5033
5034 return false;
5035}
5036
5037ObjCPropertyImplDecl *
5038ASTContext::getObjCPropertyImplDeclForPropertyDecl(
5039 const ObjCPropertyDecl *PD,
5040 const Decl *Container) const {
5041 if (!Container)
5042 return nullptr;
5043 if (const ObjCCategoryImplDecl *CID =
5044 dyn_cast<ObjCCategoryImplDecl>(Container)) {
5045 for (auto *PID : CID->property_impls())
5046 if (PID->getPropertyDecl() == PD)
5047 return PID;
5048 } else {
5049 const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
5050 for (auto *PID : OID->property_impls())
5051 if (PID->getPropertyDecl() == PD)
5052 return PID;
5053 }
5054 return nullptr;
5055}
5056
5057/// getObjCEncodingForPropertyDecl - Return the encoded type for this
5058/// property declaration. If non-NULL, Container must be either an
5059/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
5060/// NULL when getting encodings for protocol properties.
5061/// Property attributes are stored as a comma-delimited C string. The simple
5062/// attributes readonly and bycopy are encoded as single characters. The
5063/// parametrized attributes, getter=name, setter=name, and ivar=name, are
5064/// encoded as single characters, followed by an identifier. Property types
5065/// are also encoded as a parametrized attribute. The characters used to encode
5066/// these attributes are defined by the following enumeration:
5067/// @code
5068/// enum PropertyAttributes {
5069/// kPropertyReadOnly = 'R', // property is read-only.
5070/// kPropertyBycopy = 'C', // property is a copy of the value last assigned
5071/// kPropertyByref = '&', // property is a reference to the value last assigned
5072/// kPropertyDynamic = 'D', // property is dynamic
5073/// kPropertyGetter = 'G', // followed by getter selector name
5074/// kPropertySetter = 'S', // followed by setter selector name
5075/// kPropertyInstanceVariable = 'V' // followed by instance variable name
5076/// kPropertyType = 'T' // followed by old-style type encoding.
5077/// kPropertyWeak = 'W' // 'weak' property
5078/// kPropertyStrong = 'P' // property GC'able
5079/// kPropertyNonAtomic = 'N' // property non-atomic
5080/// };
5081/// @endcode
5082void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
5083 const Decl *Container,
5084 std::string& S) const {
5085 // Collect information from the property implementation decl(s).
5086 bool Dynamic = false;
5087 ObjCPropertyImplDecl *SynthesizePID = nullptr;
5088
5089 if (ObjCPropertyImplDecl *PropertyImpDecl =
5090 getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
5091 if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
5092 Dynamic = true;
5093 else
5094 SynthesizePID = PropertyImpDecl;
5095 }
5096
5097 // FIXME: This is not very efficient.
5098 S = "T";
5099
5100 // Encode result type.
5101 // GCC has some special rules regarding encoding of properties which
5102 // closely resembles encoding of ivars.
5103 getObjCEncodingForPropertyType(PD->getType(), S);
5104
5105 if (PD->isReadOnly()) {
5106 S += ",R";
5107 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
5108 S += ",C";
5109 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
5110 S += ",&";
5111 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
5112 S += ",W";
5113 } else {
5114 switch (PD->getSetterKind()) {
5115 case ObjCPropertyDecl::Assign: break;
5116 case ObjCPropertyDecl::Copy: S += ",C"; break;
5117 case ObjCPropertyDecl::Retain: S += ",&"; break;
5118 case ObjCPropertyDecl::Weak: S += ",W"; break;
5119 }
5120 }
5121
5122 // It really isn't clear at all what this means, since properties
5123 // are "dynamic by default".
5124 if (Dynamic)
5125 S += ",D";
5126
5127 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
5128 S += ",N";
5129
5130 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
5131 S += ",G";
5132 S += PD->getGetterName().getAsString();
5133 }
5134
5135 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
5136 S += ",S";
5137 S += PD->getSetterName().getAsString();
5138 }
5139
5140 if (SynthesizePID) {
5141 const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
5142 S += ",V";
5143 S += OID->getNameAsString();
5144 }
5145
5146 // FIXME: OBJCGC: weak & strong
5147}
5148
5149/// getLegacyIntegralTypeEncoding -
5150/// Another legacy compatibility encoding: 32-bit longs are encoded as
5151/// 'l' or 'L' , but not always. For typedefs, we need to use
5152/// 'i' or 'I' instead if encoding a struct field, or a pointer!
5153///
5154void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
5155 if (isa<TypedefType>(PointeeTy.getTypePtr())) {
5156 if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
5157 if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
5158 PointeeTy = UnsignedIntTy;
5159 else
5160 if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
5161 PointeeTy = IntTy;
5162 }
5163 }
5164}
5165
5166void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
5167 const FieldDecl *Field,
5168 QualType *NotEncodedT) const {
5169 // We follow the behavior of gcc, expanding structures which are
5170 // directly pointed to, and expanding embedded structures. Note that
5171 // these rules are sufficient to prevent recursive encoding of the
5172 // same type.
5173 getObjCEncodingForTypeImpl(T, S, true, true, Field,
5174 true /* outermost type */, false, false,
5175 false, false, false, NotEncodedT);
5176}
5177
5178void ASTContext::getObjCEncodingForPropertyType(QualType T,
5179 std::string& S) const {
5180 // Encode result type.
5181 // GCC has some special rules regarding encoding of properties which
5182 // closely resembles encoding of ivars.
5183 getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
5184 true /* outermost type */,
5185 true /* encoding property */);
5186}
5187
5188static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
5189 BuiltinType::Kind kind) {
5190 switch (kind) {
5191 case BuiltinType::Void: return 'v';
5192 case BuiltinType::Bool: return 'B';
5193 case BuiltinType::Char_U:
5194 case BuiltinType::UChar: return 'C';
5195 case BuiltinType::Char16:
5196 case BuiltinType::UShort: return 'S';
5197 case BuiltinType::Char32:
5198 case BuiltinType::UInt: return 'I';
5199 case BuiltinType::ULong:
5200 return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
5201 case BuiltinType::UInt128: return 'T';
5202 case BuiltinType::ULongLong: return 'Q';
5203 case BuiltinType::Char_S:
5204 case BuiltinType::SChar: return 'c';
5205 case BuiltinType::Short: return 's';
5206 case BuiltinType::WChar_S:
5207 case BuiltinType::WChar_U:
5208 case BuiltinType::Int: return 'i';
5209 case BuiltinType::Long:
5210 return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
5211 case BuiltinType::LongLong: return 'q';
5212 case BuiltinType::Int128: return 't';
5213 case BuiltinType::Float: return 'f';
5214 case BuiltinType::Double: return 'd';
5215 case BuiltinType::LongDouble: return 'D';
5216 case BuiltinType::NullPtr: return '*'; // like char*
5217
5218 case BuiltinType::Half:
5219 // FIXME: potentially need @encodes for these!
5220 return ' ';
5221
5222 case BuiltinType::ObjCId:
5223 case BuiltinType::ObjCClass:
5224 case BuiltinType::ObjCSel:
5225 llvm_unreachable("@encoding ObjC primitive type");
5226
5227 // OpenCL and placeholder types don't need @encodings.
5228 case BuiltinType::OCLImage1d:
5229 case BuiltinType::OCLImage1dArray:
5230 case BuiltinType::OCLImage1dBuffer:
5231 case BuiltinType::OCLImage2d:
5232 case BuiltinType::OCLImage2dArray:
5233 case BuiltinType::OCLImage3d:
5234 case BuiltinType::OCLEvent:
5235 case BuiltinType::OCLSampler:
5236 case BuiltinType::Dependent:
5237#define BUILTIN_TYPE(KIND, ID)
5238#define PLACEHOLDER_TYPE(KIND, ID) \
5239 case BuiltinType::KIND:
5240#include "clang/AST/BuiltinTypes.def"
5241 llvm_unreachable("invalid builtin type for @encode");
5242 }
5243 llvm_unreachable("invalid BuiltinType::Kind value");
5244}
5245
5246static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
5247 EnumDecl *Enum = ET->getDecl();
5248
5249 // The encoding of an non-fixed enum type is always 'i', regardless of size.
5250 if (!Enum->isFixed())
5251 return 'i';
5252
5253 // The encoding of a fixed enum type matches its fixed underlying type.
5254 const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
5255 return getObjCEncodingForPrimitiveKind(C, BT->getKind());
5256}
5257
5258static void EncodeBitField(const ASTContext *Ctx, std::string& S,
5259 QualType T, const FieldDecl *FD) {
5260 assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
5261 S += 'b';
5262 // The NeXT runtime encodes bit fields as b followed by the number of bits.
5263 // The GNU runtime requires more information; bitfields are encoded as b,
5264 // then the offset (in bits) of the first element, then the type of the
5265 // bitfield, then the size in bits. For example, in this structure:
5266 //
5267 // struct
5268 // {
5269 // int integer;
5270 // int flags:2;
5271 // };
5272 // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5273 // runtime, but b32i2 for the GNU runtime. The reason for this extra
5274 // information is not especially sensible, but we're stuck with it for
5275 // compatibility with GCC, although providing it breaks anything that
5276 // actually uses runtime introspection and wants to work on both runtimes...
5277 if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5278 const RecordDecl *RD = FD->getParent();
5279 const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5280 S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5281 if (const EnumType *ET = T->getAs<EnumType>())
5282 S += ObjCEncodingForEnumType(Ctx, ET);
5283 else {
5284 const BuiltinType *BT = T->castAs<BuiltinType>();
5285 S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5286 }
5287 }
5288 S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5289}
5290
5291// FIXME: Use SmallString for accumulating string.
5292void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5293 bool ExpandPointedToStructures,
5294 bool ExpandStructures,
5295 const FieldDecl *FD,
5296 bool OutermostType,
5297 bool EncodingProperty,
5298 bool StructField,
5299 bool EncodeBlockParameters,
5300 bool EncodeClassNames,
5301 bool EncodePointerToObjCTypedef,
5302 QualType *NotEncodedT) const {
5303 CanQualType CT = getCanonicalType(T);
5304 switch (CT->getTypeClass()) {
5305 case Type::Builtin:
5306 case Type::Enum:
5307 if (FD && FD->isBitField())
5308 return EncodeBitField(this, S, T, FD);
5309 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5310 S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5311 else
5312 S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5313 return;
5314
5315 case Type::Complex: {
5316 const ComplexType *CT = T->castAs<ComplexType>();
5317 S += 'j';
5318 getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr);
5319 return;
5320 }
5321
5322 case Type::Atomic: {
5323 const AtomicType *AT = T->castAs<AtomicType>();
5324 S += 'A';
5325 getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr);
5326 return;
5327 }
5328
5329 // encoding for pointer or reference types.
5330 case Type::Pointer:
5331 case Type::LValueReference:
5332 case Type::RValueReference: {
5333 QualType PointeeTy;
5334 if (isa<PointerType>(CT)) {
5335 const PointerType *PT = T->castAs<PointerType>();
5336 if (PT->isObjCSelType()) {
5337 S += ':';
5338 return;
5339 }
5340 PointeeTy = PT->getPointeeType();
5341 } else {
5342 PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5343 }
5344
5345 bool isReadOnly = false;
5346 // For historical/compatibility reasons, the read-only qualifier of the
5347 // pointee gets emitted _before_ the '^'. The read-only qualifier of
5348 // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5349 // Also, do not emit the 'r' for anything but the outermost type!
5350 if (isa<TypedefType>(T.getTypePtr())) {
5351 if (OutermostType && T.isConstQualified()) {
5352 isReadOnly = true;
5353 S += 'r';
5354 }
5355 } else if (OutermostType) {
5356 QualType P = PointeeTy;
5357 while (P->getAs<PointerType>())
5358 P = P->getAs<PointerType>()->getPointeeType();
5359 if (P.isConstQualified()) {
5360 isReadOnly = true;
5361 S += 'r';
5362 }
5363 }
5364 if (isReadOnly) {
5365 // Another legacy compatibility encoding. Some ObjC qualifier and type
5366 // combinations need to be rearranged.
5367 // Rewrite "in const" from "nr" to "rn"
5368 if (StringRef(S).endswith("nr"))
5369 S.replace(S.end()-2, S.end(), "rn");
5370 }
5371
5372 if (PointeeTy->isCharType()) {
5373 // char pointer types should be encoded as '*' unless it is a
5374 // type that has been typedef'd to 'BOOL'.
5375 if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5376 S += '*';
5377 return;
5378 }
5379 } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5380 // GCC binary compat: Need to convert "struct objc_class *" to "#".
5381 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5382 S += '#';
5383 return;
5384 }
5385 // GCC binary compat: Need to convert "struct objc_object *" to "@".
5386 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5387 S += '@';
5388 return;
5389 }
5390 // fall through...
5391 }
5392 S += '^';
5393 getLegacyIntegralTypeEncoding(PointeeTy);
5394
5395 getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5396 nullptr, false, false, false, false, false, false,
5397 NotEncodedT);
5398 return;
5399 }
5400
5401 case Type::ConstantArray:
5402 case Type::IncompleteArray:
5403 case Type::VariableArray: {
5404 const ArrayType *AT = cast<ArrayType>(CT);
5405
5406 if (isa<IncompleteArrayType>(AT) && !StructField) {
5407 // Incomplete arrays are encoded as a pointer to the array element.
5408 S += '^';
5409
5410 getObjCEncodingForTypeImpl(AT->getElementType(), S,
5411 false, ExpandStructures, FD);
5412 } else {
5413 S += '[';
5414
5415 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
5416 S += llvm::utostr(CAT->getSize().getZExtValue());
5417 else {
5418 //Variable length arrays are encoded as a regular array with 0 elements.
5419 assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5420 "Unknown array type!");
5421 S += '0';
5422 }
5423
5424 getObjCEncodingForTypeImpl(AT->getElementType(), S,
5425 false, ExpandStructures, FD,
5426 false, false, false, false, false, false,
5427 NotEncodedT);
5428 S += ']';
5429 }
5430 return;
5431 }
5432
5433 case Type::FunctionNoProto:
5434 case Type::FunctionProto:
5435 S += '?';
5436 return;
5437
5438 case Type::Record: {
5439 RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5440 S += RDecl->isUnion() ? '(' : '{';
5441 // Anonymous structures print as '?'
5442 if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5443 S += II->getName();
5444 if (ClassTemplateSpecializationDecl *Spec
5445 = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5446 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5447 llvm::raw_string_ostream OS(S);
5448 TemplateSpecializationType::PrintTemplateArgumentList(OS,
5449 TemplateArgs.data(),
5450 TemplateArgs.size(),
5451 (*this).getPrintingPolicy());
5452 }
5453 } else {
5454 S += '?';
5455 }
5456 if (ExpandStructures) {
5457 S += '=';
5458 if (!RDecl->isUnion()) {
5459 getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
5460 } else {
5461 for (const auto *Field : RDecl->fields()) {
5462 if (FD) {
5463 S += '"';
5464 S += Field->getNameAsString();
5465 S += '"';
5466 }
5467
5468 // Special case bit-fields.
5469 if (Field->isBitField()) {
5470 getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5471 Field);
5472 } else {
5473 QualType qt = Field->getType();
5474 getLegacyIntegralTypeEncoding(qt);
5475 getObjCEncodingForTypeImpl(qt, S, false, true,
5476 FD, /*OutermostType*/false,
5477 /*EncodingProperty*/false,
5478 /*StructField*/true,
5479 false, false, false, NotEncodedT);
5480 }
5481 }
5482 }
5483 }
5484 S += RDecl->isUnion() ? ')' : '}';
5485 return;
5486 }
5487
5488 case Type::BlockPointer: {
5489 const BlockPointerType *BT = T->castAs<BlockPointerType>();
5490 S += "@?"; // Unlike a pointer-to-function, which is "^?".
5491 if (EncodeBlockParameters) {
5492 const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5493
5494 S += '<';
5495 // Block return type
5496 getObjCEncodingForTypeImpl(
5497 FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures,
5498 FD, false /* OutermostType */, EncodingProperty,
5499 false /* StructField */, EncodeBlockParameters, EncodeClassNames, false,
5500 NotEncodedT);
5501 // Block self
5502 S += "@?";
5503 // Block parameters
5504 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5505 for (const auto &I : FPT->param_types())
5506 getObjCEncodingForTypeImpl(
5507 I, S, ExpandPointedToStructures, ExpandStructures, FD,
5508 false /* OutermostType */, EncodingProperty,
5509 false /* StructField */, EncodeBlockParameters, EncodeClassNames,
5510 false, NotEncodedT);
5511 }
5512 S += '>';
5513 }
5514 return;
5515 }
5516
5517 case Type::ObjCObject: {
5518 // hack to match legacy encoding of *id and *Class
5519 QualType Ty = getObjCObjectPointerType(CT);
5520 if (Ty->isObjCIdType()) {
5521 S += "{objc_object=}";
5522 return;
5523 }
5524 else if (Ty->isObjCClassType()) {
5525 S += "{objc_class=}";
5526 return;
5527 }
5528 }
5529
5530 case Type::ObjCInterface: {
5531 // Ignore protocol qualifiers when mangling at this level.
5532 T = T->castAs<ObjCObjectType>()->getBaseType();
5533
5534 // The assumption seems to be that this assert will succeed
5535 // because nested levels will have filtered out 'id' and 'Class'.
5536 const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5537 // @encode(class_name)
5538 ObjCInterfaceDecl *OI = OIT->getDecl();
5539 S += '{';
5540 const IdentifierInfo *II = OI->getIdentifier();
5541 S += II->getName();
5542 S += '=';
5543 SmallVector<const ObjCIvarDecl*, 32> Ivars;
5544 DeepCollectObjCIvars(OI, true, Ivars);
5545 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5546 const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5547 if (Field->isBitField())
5548 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5549 else
5550 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5551 false, false, false, false, false,
5552 EncodePointerToObjCTypedef,
5553 NotEncodedT);
5554 }
5555 S += '}';
5556 return;
5557 }
5558
5559 case Type::ObjCObjectPointer: {
5560 const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5561 if (OPT->isObjCIdType()) {
5562 S += '@';
5563 return;
5564 }
5565
5566 if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5567 // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5568 // Since this is a binary compatibility issue, need to consult with runtime
5569 // folks. Fortunately, this is a *very* obsure construct.
5570 S += '#';
5571 return;
5572 }
5573
5574 if (OPT->isObjCQualifiedIdType()) {
5575 getObjCEncodingForTypeImpl(getObjCIdType(), S,
5576 ExpandPointedToStructures,
5577 ExpandStructures, FD);
5578 if (FD || EncodingProperty || EncodeClassNames) {
5579 // Note that we do extended encoding of protocol qualifer list
5580 // Only when doing ivar or property encoding.
5581 S += '"';
5582 for (const auto *I : OPT->quals()) {
5583 S += '<';
5584 S += I->getNameAsString();
5585 S += '>';
5586 }
5587 S += '"';
5588 }
5589 return;
5590 }
5591
5592 QualType PointeeTy = OPT->getPointeeType();
5593 if (!EncodingProperty &&
5594 isa<TypedefType>(PointeeTy.getTypePtr()) &&
5595 !EncodePointerToObjCTypedef) {
5596 // Another historical/compatibility reason.
5597 // We encode the underlying type which comes out as
5598 // {...};
5599 S += '^';
5600 if (FD && OPT->getInterfaceDecl()) {
5601 // Prevent recursive encoding of fields in some rare cases.
5602 ObjCInterfaceDecl *OI = OPT->getInterfaceDecl();
5603 SmallVector<const ObjCIvarDecl*, 32> Ivars;
5604 DeepCollectObjCIvars(OI, true, Ivars);
5605 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5606 if (cast<FieldDecl>(Ivars[i]) == FD) {
5607 S += '{';
5608 S += OI->getIdentifier()->getName();
5609 S += '}';
5610 return;
5611 }
5612 }
5613 }
5614 getObjCEncodingForTypeImpl(PointeeTy, S,
5615 false, ExpandPointedToStructures,
5616 nullptr,
5617 false, false, false, false, false,
5618 /*EncodePointerToObjCTypedef*/true);
5619 return;
5620 }
5621
5622 S += '@';
5623 if (OPT->getInterfaceDecl() &&
5624 (FD || EncodingProperty || EncodeClassNames)) {
5625 S += '"';
5626 S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5627 for (const auto *I : OPT->quals()) {
5628 S += '<';
5629 S += I->getNameAsString();
5630 S += '>';
5631 }
5632 S += '"';
5633 }
5634 return;
5635 }
5636
5637 // gcc just blithely ignores member pointers.
5638 // FIXME: we shoul do better than that. 'M' is available.
5639 case Type::MemberPointer:
5640 // This matches gcc's encoding, even though technically it is insufficient.
5641 //FIXME. We should do a better job than gcc.
5642 case Type::Vector:
5643 case Type::ExtVector:
5644 // Until we have a coherent encoding of these three types, issue warning.
5645 { if (NotEncodedT)
5646 *NotEncodedT = T;
5647 return;
5648 }
5649
5650 // We could see an undeduced auto type here during error recovery.
5651 // Just ignore it.
5652 case Type::Auto:
5653 return;
5654
5655
5656#define ABSTRACT_TYPE(KIND, BASE)
5657#define TYPE(KIND, BASE)
5658#define DEPENDENT_TYPE(KIND, BASE) \
5659 case Type::KIND:
5660#define NON_CANONICAL_TYPE(KIND, BASE) \
5661 case Type::KIND:
5662#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5663 case Type::KIND:
5664#include "clang/AST/TypeNodes.def"
5665 llvm_unreachable("@encode for dependent type!");
5666 }
5667 llvm_unreachable("bad type kind!");
5668}
5669
5670void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5671 std::string &S,
5672 const FieldDecl *FD,
5673 bool includeVBases,
5674 QualType *NotEncodedT) const {
5675 assert(RDecl && "Expected non-null RecordDecl");
5676 assert(!RDecl->isUnion() && "Should not be called for unions");
5677 if (!RDecl->getDefinition())
5678 return;
5679
5680 CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5681 std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5682 const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5683
5684 if (CXXRec) {
5685 for (const auto &BI : CXXRec->bases()) {
5686 if (!BI.isVirtual()) {
5687 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5688 if (base->isEmpty())
5689 continue;
5690 uint64_t offs = toBits(layout.getBaseClassOffset(base));
5691 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5692 std::make_pair(offs, base));
5693 }
5694 }
5695 }
5696
5697 unsigned i = 0;
5698 for (auto *Field : RDecl->fields()) {
5699 uint64_t offs = layout.getFieldOffset(i);
5700 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5701 std::make_pair(offs, Field));
5702 ++i;
5703 }
5704
5705 if (CXXRec && includeVBases) {
5706 for (const auto &BI : CXXRec->vbases()) {
5707 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5708 if (base->isEmpty())
5709 continue;
5710 uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5711 if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
5712 FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5713 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5714 std::make_pair(offs, base));
5715 }
5716 }
5717
5718 CharUnits size;
5719 if (CXXRec) {
5720 size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5721 } else {
5722 size = layout.getSize();
5723 }
5724
5725#ifndef NDEBUG
5726 uint64_t CurOffs = 0;
5727#endif
5728 std::multimap<uint64_t, NamedDecl *>::iterator
5729 CurLayObj = FieldOrBaseOffsets.begin();
5730
5731 if (CXXRec && CXXRec->isDynamicClass() &&
5732 (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5733 if (FD) {
5734 S += "\"_vptr$";
5735 std::string recname = CXXRec->getNameAsString();
5736 if (recname.empty()) recname = "?";
5737 S += recname;
5738 S += '"';
5739 }
5740 S += "^^?";
5741#ifndef NDEBUG
5742 CurOffs += getTypeSize(VoidPtrTy);
5743#endif
5744 }
5745
5746 if (!RDecl->hasFlexibleArrayMember()) {
5747 // Mark the end of the structure.
5748 uint64_t offs = toBits(size);
5749 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5750 std::make_pair(offs, nullptr));
5751 }
5752
5753 for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5754#ifndef NDEBUG
5755 assert(CurOffs <= CurLayObj->first);
5756 if (CurOffs < CurLayObj->first) {
5757 uint64_t padding = CurLayObj->first - CurOffs;
5758 // FIXME: There doesn't seem to be a way to indicate in the encoding that
5759 // packing/alignment of members is different that normal, in which case
5760 // the encoding will be out-of-sync with the real layout.
5761 // If the runtime switches to just consider the size of types without
5762 // taking into account alignment, we could make padding explicit in the
5763 // encoding (e.g. using arrays of chars). The encoding strings would be
5764 // longer then though.
5765 CurOffs += padding;
5766 }
5767#endif
5768
5769 NamedDecl *dcl = CurLayObj->second;
5770 if (!dcl)
5771 break; // reached end of structure.
5772
5773 if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5774 // We expand the bases without their virtual bases since those are going
5775 // in the initial structure. Note that this differs from gcc which
5776 // expands virtual bases each time one is encountered in the hierarchy,
5777 // making the encoding type bigger than it really is.
5778 getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
5779 NotEncodedT);
5780 assert(!base->isEmpty());
5781#ifndef NDEBUG
5782 CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5783#endif
5784 } else {
5785 FieldDecl *field = cast<FieldDecl>(dcl);
5786 if (FD) {
5787 S += '"';
5788 S += field->getNameAsString();
5789 S += '"';
5790 }
5791
5792 if (field->isBitField()) {
5793 EncodeBitField(this, S, field->getType(), field);
5794#ifndef NDEBUG
5795 CurOffs += field->getBitWidthValue(*this);
5796#endif
5797 } else {
5798 QualType qt = field->getType();
5799 getLegacyIntegralTypeEncoding(qt);
5800 getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5801 /*OutermostType*/false,
5802 /*EncodingProperty*/false,
5803 /*StructField*/true,
5804 false, false, false, NotEncodedT);
5805#ifndef NDEBUG
5806 CurOffs += getTypeSize(field->getType());
5807#endif
5808 }
5809 }
5810 }
5811}
5812
5813void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5814 std::string& S) const {
5815 if (QT & Decl::OBJC_TQ_In)
5816 S += 'n';
5817 if (QT & Decl::OBJC_TQ_Inout)
5818 S += 'N';
5819 if (QT & Decl::OBJC_TQ_Out)
5820 S += 'o';
5821 if (QT & Decl::OBJC_TQ_Bycopy)
5822 S += 'O';
5823 if (QT & Decl::OBJC_TQ_Byref)
5824 S += 'R';
5825 if (QT & Decl::OBJC_TQ_Oneway)
5826 S += 'V';
5827}
5828
5829TypedefDecl *ASTContext::getObjCIdDecl() const {
5830 if (!ObjCIdDecl) {
5831 QualType T = getObjCObjectType(ObjCBuiltinIdTy, nullptr, 0);
5832 T = getObjCObjectPointerType(T);
5833 ObjCIdDecl = buildImplicitTypedef(T, "id");
5834 }
5835 return ObjCIdDecl;
5836}
5837
5838TypedefDecl *ASTContext::getObjCSelDecl() const {
5839 if (!ObjCSelDecl) {
5840 QualType T = getPointerType(ObjCBuiltinSelTy);
5841 ObjCSelDecl = buildImplicitTypedef(T, "SEL");
5842 }
5843 return ObjCSelDecl;
5844}
5845
5846TypedefDecl *ASTContext::getObjCClassDecl() const {
5847 if (!ObjCClassDecl) {
5848 QualType T = getObjCObjectType(ObjCBuiltinClassTy, nullptr, 0);
5849 T = getObjCObjectPointerType(T);
5850 ObjCClassDecl = buildImplicitTypedef(T, "Class");
5851 }
5852 return ObjCClassDecl;
5853}
5854
5855ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5856 if (!ObjCProtocolClassDecl) {
5857 ObjCProtocolClassDecl
5858 = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5859 SourceLocation(),
5860 &Idents.get("Protocol"),
5861 /*PrevDecl=*/nullptr,
5862 SourceLocation(), true);
5863 }
5864
5865 return ObjCProtocolClassDecl;
5866}
5867
5868//===----------------------------------------------------------------------===//
5869// __builtin_va_list Construction Functions
5870//===----------------------------------------------------------------------===//
5871
5872static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5873 // typedef char* __builtin_va_list;
5874 QualType T = Context->getPointerType(Context->CharTy);
5875 return Context->buildImplicitTypedef(T, "__builtin_va_list");
5876}
5877
5878static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5879 // typedef void* __builtin_va_list;
5880 QualType T = Context->getPointerType(Context->VoidTy);
5881 return Context->buildImplicitTypedef(T, "__builtin_va_list");
5882}
5883
5884static TypedefDecl *
5885CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5886 // struct __va_list
5887 RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
5888 if (Context->getLangOpts().CPlusPlus) {
5889 // namespace std { struct __va_list {
5890 NamespaceDecl *NS;
5891 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5892 Context->getTranslationUnitDecl(),
5893 /*Inline*/ false, SourceLocation(),
5894 SourceLocation(), &Context->Idents.get("std"),
5895 /*PrevDecl*/ nullptr);
5896 NS->setImplicit();
5897 VaListTagDecl->setDeclContext(NS);
5898 }
5899
5900 VaListTagDecl->startDefinition();
5901
5902 const size_t NumFields = 5;
5903 QualType FieldTypes[NumFields];
5904 const char *FieldNames[NumFields];
5905
5906 // void *__stack;
5907 FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5908 FieldNames[0] = "__stack";
5909
5910 // void *__gr_top;
5911 FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5912 FieldNames[1] = "__gr_top";
5913
5914 // void *__vr_top;
5915 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5916 FieldNames[2] = "__vr_top";
5917
5918 // int __gr_offs;
5919 FieldTypes[3] = Context->IntTy;
5920 FieldNames[3] = "__gr_offs";
5921
5922 // int __vr_offs;
5923 FieldTypes[4] = Context->IntTy;
5924 FieldNames[4] = "__vr_offs";
5925
5926 // Create fields
5927 for (unsigned i = 0; i < NumFields; ++i) {
5928 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5929 VaListTagDecl,
5930 SourceLocation(),
5931 SourceLocation(),
5932 &Context->Idents.get(FieldNames[i]),
5933 FieldTypes[i], /*TInfo=*/nullptr,
5934 /*BitWidth=*/nullptr,
5935 /*Mutable=*/false,
5936 ICIS_NoInit);
5937 Field->setAccess(AS_public);
5938 VaListTagDecl->addDecl(Field);
5939 }
5940 VaListTagDecl->completeDefinition();
5941 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5942 Context->VaListTagTy = VaListTagType;
5943
5944 // } __builtin_va_list;
5945 return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
5946}
5947
5948static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5949 // typedef struct __va_list_tag {
5950 RecordDecl *VaListTagDecl;
5951
5952 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
5953 VaListTagDecl->startDefinition();
5954
5955 const size_t NumFields = 5;
5956 QualType FieldTypes[NumFields];
5957 const char *FieldNames[NumFields];
5958
5959 // unsigned char gpr;
5960 FieldTypes[0] = Context->UnsignedCharTy;
5961 FieldNames[0] = "gpr";
5962
5963 // unsigned char fpr;
5964 FieldTypes[1] = Context->UnsignedCharTy;
5965 FieldNames[1] = "fpr";
5966
5967 // unsigned short reserved;
5968 FieldTypes[2] = Context->UnsignedShortTy;
5969 FieldNames[2] = "reserved";
5970
5971 // void* overflow_arg_area;
5972 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5973 FieldNames[3] = "overflow_arg_area";
5974
5975 // void* reg_save_area;
5976 FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5977 FieldNames[4] = "reg_save_area";
5978
5979 // Create fields
5980 for (unsigned i = 0; i < NumFields; ++i) {
5981 FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5982 SourceLocation(),
5983 SourceLocation(),
5984 &Context->Idents.get(FieldNames[i]),
5985 FieldTypes[i], /*TInfo=*/nullptr,
5986 /*BitWidth=*/nullptr,
5987 /*Mutable=*/false,
5988 ICIS_NoInit);
5989 Field->setAccess(AS_public);
5990 VaListTagDecl->addDecl(Field);
5991 }
5992 VaListTagDecl->completeDefinition();
5993 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5994 Context->VaListTagTy = VaListTagType;
5995
5996 // } __va_list_tag;
5997 TypedefDecl *VaListTagTypedefDecl =
5998 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
5999
6000 QualType VaListTagTypedefType =
6001 Context->getTypedefType(VaListTagTypedefDecl);
6002
6003 // typedef __va_list_tag __builtin_va_list[1];
6004 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6005 QualType VaListTagArrayType
6006 = Context->getConstantArrayType(VaListTagTypedefType,
6007 Size, ArrayType::Normal, 0);
6008 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6009}
6010
6011static TypedefDecl *
6012CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
6013 // typedef struct __va_list_tag {
6014 RecordDecl *VaListTagDecl;
6015 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6016 VaListTagDecl->startDefinition();
6017
6018 const size_t NumFields = 4;
6019 QualType FieldTypes[NumFields];
6020 const char *FieldNames[NumFields];
6021
6022 // unsigned gp_offset;
6023 FieldTypes[0] = Context->UnsignedIntTy;
6024 FieldNames[0] = "gp_offset";
6025
6026 // unsigned fp_offset;
6027 FieldTypes[1] = Context->UnsignedIntTy;
6028 FieldNames[1] = "fp_offset";
6029
6030 // void* overflow_arg_area;
6031 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6032 FieldNames[2] = "overflow_arg_area";
6033
6034 // void* reg_save_area;
6035 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6036 FieldNames[3] = "reg_save_area";
6037
6038 // Create fields
6039 for (unsigned i = 0; i < NumFields; ++i) {
6040 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6041 VaListTagDecl,
6042 SourceLocation(),
6043 SourceLocation(),
6044 &Context->Idents.get(FieldNames[i]),
6045 FieldTypes[i], /*TInfo=*/nullptr,
6046 /*BitWidth=*/nullptr,
6047 /*Mutable=*/false,
6048 ICIS_NoInit);
6049 Field->setAccess(AS_public);
6050 VaListTagDecl->addDecl(Field);
6051 }
6052 VaListTagDecl->completeDefinition();
6053 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6054 Context->VaListTagTy = VaListTagType;
6055
6056 // } __va_list_tag;
6057 TypedefDecl *VaListTagTypedefDecl =
6058 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6059
6060 QualType VaListTagTypedefType =
6061 Context->getTypedefType(VaListTagTypedefDecl);
6062
6063 // typedef __va_list_tag __builtin_va_list[1];
6064 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6065 QualType VaListTagArrayType
6066 = Context->getConstantArrayType(VaListTagTypedefType,
6067 Size, ArrayType::Normal,0);
6068 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6069}
6070
6071static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
6072 // typedef int __builtin_va_list[4];
6073 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
6074 QualType IntArrayType
6075 = Context->getConstantArrayType(Context->IntTy,
6076 Size, ArrayType::Normal, 0);
6077 return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
6078}
6079
6080static TypedefDecl *
6081CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
6082 // struct __va_list
6083 RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
6084 if (Context->getLangOpts().CPlusPlus) {
6085 // namespace std { struct __va_list {
6086 NamespaceDecl *NS;
6087 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
6088 Context->getTranslationUnitDecl(),
6089 /*Inline*/false, SourceLocation(),
6090 SourceLocation(), &Context->Idents.get("std"),
6091 /*PrevDecl*/ nullptr);
6092 NS->setImplicit();
6093 VaListDecl->setDeclContext(NS);
6094 }
6095
6096 VaListDecl->startDefinition();
6097
6098 // void * __ap;
6099 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6100 VaListDecl,
6101 SourceLocation(),
6102 SourceLocation(),
6103 &Context->Idents.get("__ap"),
6104 Context->getPointerType(Context->VoidTy),
6105 /*TInfo=*/nullptr,
6106 /*BitWidth=*/nullptr,
6107 /*Mutable=*/false,
6108 ICIS_NoInit);
6109 Field->setAccess(AS_public);
6110 VaListDecl->addDecl(Field);
6111
6112 // };
6113 VaListDecl->completeDefinition();
6114
6115 // typedef struct __va_list __builtin_va_list;
6116 QualType T = Context->getRecordType(VaListDecl);
6117 return Context->buildImplicitTypedef(T, "__builtin_va_list");
6118}
6119
6120static TypedefDecl *
6121CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
6122 // typedef struct __va_list_tag {
6123 RecordDecl *VaListTagDecl;
6124 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6125 VaListTagDecl->startDefinition();
6126
6127 const size_t NumFields = 4;
6128 QualType FieldTypes[NumFields];
6129 const char *FieldNames[NumFields];
6130
6131 // long __gpr;
6132 FieldTypes[0] = Context->LongTy;
6133 FieldNames[0] = "__gpr";
6134
6135 // long __fpr;
6136 FieldTypes[1] = Context->LongTy;
6137 FieldNames[1] = "__fpr";
6138
6139 // void *__overflow_arg_area;
6140 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6141 FieldNames[2] = "__overflow_arg_area";
6142
6143 // void *__reg_save_area;
6144 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6145 FieldNames[3] = "__reg_save_area";
6146
6147 // Create fields
6148 for (unsigned i = 0; i < NumFields; ++i) {
6149 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6150 VaListTagDecl,
6151 SourceLocation(),
6152 SourceLocation(),
6153 &Context->Idents.get(FieldNames[i]),
6154 FieldTypes[i], /*TInfo=*/nullptr,
6155 /*BitWidth=*/nullptr,
6156 /*Mutable=*/false,
6157 ICIS_NoInit);
6158 Field->setAccess(AS_public);
6159 VaListTagDecl->addDecl(Field);
6160 }
6161 VaListTagDecl->completeDefinition();
6162 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6163 Context->VaListTagTy = VaListTagType;
6164
6165 // } __va_list_tag;
6166 TypedefDecl *VaListTagTypedefDecl =
6167 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6168 QualType VaListTagTypedefType =
6169 Context->getTypedefType(VaListTagTypedefDecl);
6170
6171 // typedef __va_list_tag __builtin_va_list[1];
6172 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6173 QualType VaListTagArrayType
6174 = Context->getConstantArrayType(VaListTagTypedefType,
6175 Size, ArrayType::Normal,0);
6176
6177 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6178}
6179
6180static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6181 TargetInfo::BuiltinVaListKind Kind) {
6182 switch (Kind) {
6183 case TargetInfo::CharPtrBuiltinVaList:
6184 return CreateCharPtrBuiltinVaListDecl(Context);
6185 case TargetInfo::VoidPtrBuiltinVaList:
6186 return CreateVoidPtrBuiltinVaListDecl(Context);
6187 case TargetInfo::AArch64ABIBuiltinVaList:
6188 return CreateAArch64ABIBuiltinVaListDecl(Context);
6189 case TargetInfo::PowerABIBuiltinVaList:
6190 return CreatePowerABIBuiltinVaListDecl(Context);
6191 case TargetInfo::X86_64ABIBuiltinVaList:
6192 return CreateX86_64ABIBuiltinVaListDecl(Context);
6193 case TargetInfo::PNaClABIBuiltinVaList:
6194 return CreatePNaClABIBuiltinVaListDecl(Context);
6195 case TargetInfo::AAPCSABIBuiltinVaList:
6196 return CreateAAPCSABIBuiltinVaListDecl(Context);
6197 case TargetInfo::SystemZBuiltinVaList:
6198 return CreateSystemZBuiltinVaListDecl(Context);
6199 }
6200
6201 llvm_unreachable("Unhandled __builtin_va_list type kind");
6202}
6203
6204TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
6205 if (!BuiltinVaListDecl) {
6206 BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
6207 assert(BuiltinVaListDecl->isImplicit());
6208 }
6209
6210 return BuiltinVaListDecl;
6211}
6212
6213QualType ASTContext::getVaListTagType() const {
6214 // Force the creation of VaListTagTy by building the __builtin_va_list
6215 // declaration.
6216 if (VaListTagTy.isNull())
6217 (void) getBuiltinVaListDecl();
6218
6219 return VaListTagTy;
6220}
6221
6222void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
6223 assert(ObjCConstantStringType.isNull() &&
6224 "'NSConstantString' type already set!");
6225
6226 ObjCConstantStringType = getObjCInterfaceType(Decl);
6227}
6228
6229/// \brief Retrieve the template name that corresponds to a non-empty
6230/// lookup.
6231TemplateName
6232ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
6233 UnresolvedSetIterator End) const {
6234 unsigned size = End - Begin;
6235 assert(size > 1 && "set is not overloaded!");
6236
6237 void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
6238 size * sizeof(FunctionTemplateDecl*));
6239 OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
6240
6241 NamedDecl **Storage = OT->getStorage();
6242 for (UnresolvedSetIterator I = Begin; I != End; ++I) {
6243 NamedDecl *D = *I;
6244 assert(isa<FunctionTemplateDecl>(D) ||
6245 (isa<UsingShadowDecl>(D) &&
6246 isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
6247 *Storage++ = D;
6248 }
6249
6250 return TemplateName(OT);
6251}
6252
6253/// \brief Retrieve the template name that represents a qualified
6254/// template name such as \c std::vector.
6255TemplateName
6256ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
6257 bool TemplateKeyword,
6258 TemplateDecl *Template) const {
6259 assert(NNS && "Missing nested-name-specifier in qualified template name");
6260
6261 // FIXME: Canonicalization?
6262 llvm::FoldingSetNodeID ID;
6263 QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6264
6265 void *InsertPos = nullptr;
6266 QualifiedTemplateName *QTN =
6267 QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6268 if (!QTN) {
6269 QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6270 QualifiedTemplateName(NNS, TemplateKeyword, Template);
6271 QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6272 }
6273
6274 return TemplateName(QTN);
6275}
6276
6277/// \brief Retrieve the template name that represents a dependent
6278/// template name such as \c MetaFun::template apply.
6279TemplateName
6280ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6281 const IdentifierInfo *Name) const {
6282 assert((!NNS || NNS->isDependent()) &&
6283 "Nested name specifier must be dependent");
6284
6285 llvm::FoldingSetNodeID ID;
6286 DependentTemplateName::Profile(ID, NNS, Name);
6287
6288 void *InsertPos = nullptr;
6289 DependentTemplateName *QTN =
6290 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6291
6292 if (QTN)
6293 return TemplateName(QTN);
6294
6295 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6296 if (CanonNNS == NNS) {
6297 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6298 DependentTemplateName(NNS, Name);
6299 } else {
6300 TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6301 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6302 DependentTemplateName(NNS, Name, Canon);
6303 DependentTemplateName *CheckQTN =
6304 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6305 assert(!CheckQTN && "Dependent type name canonicalization broken");
6306 (void)CheckQTN;
6307 }
6308
6309 DependentTemplateNames.InsertNode(QTN, InsertPos);
6310 return TemplateName(QTN);
6311}
6312
6313/// \brief Retrieve the template name that represents a dependent
6314/// template name such as \c MetaFun::template operator+.
6315TemplateName
6316ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6317 OverloadedOperatorKind Operator) const {
6318 assert((!NNS || NNS->isDependent()) &&
6319 "Nested name specifier must be dependent");
6320
6321 llvm::FoldingSetNodeID ID;
6322 DependentTemplateName::Profile(ID, NNS, Operator);
6323
6324 void *InsertPos = nullptr;
6325 DependentTemplateName *QTN
6326 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6327
6328 if (QTN)
6329 return TemplateName(QTN);
6330
6331 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6332 if (CanonNNS == NNS) {
6333 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6334 DependentTemplateName(NNS, Operator);
6335 } else {
6336 TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6337 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6338 DependentTemplateName(NNS, Operator, Canon);
6339
6340 DependentTemplateName *CheckQTN
6341 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6342 assert(!CheckQTN && "Dependent template name canonicalization broken");
6343 (void)CheckQTN;
6344 }
6345
6346 DependentTemplateNames.InsertNode(QTN, InsertPos);
6347 return TemplateName(QTN);
6348}
6349
6350TemplateName
6351ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6352 TemplateName replacement) const {
6353 llvm::FoldingSetNodeID ID;
6354 SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6355
6356 void *insertPos = nullptr;
6357 SubstTemplateTemplateParmStorage *subst
6358 = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6359
6360 if (!subst) {
6361 subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6362 SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6363 }
6364
6365 return TemplateName(subst);
6366}
6367
6368TemplateName
6369ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6370 const TemplateArgument &ArgPack) const {
6371 ASTContext &Self = const_cast<ASTContext &>(*this);
6372 llvm::FoldingSetNodeID ID;
6373 SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6374
6375 void *InsertPos = nullptr;
6376 SubstTemplateTemplateParmPackStorage *Subst
6377 = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6378
6379 if (!Subst) {
6380 Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6381 ArgPack.pack_size(),
6382 ArgPack.pack_begin());
6383 SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6384 }
6385
6386 return TemplateName(Subst);
6387}
6388
6389/// getFromTargetType - Given one of the integer types provided by
6390/// TargetInfo, produce the corresponding type. The unsigned @p Type
6391/// is actually a value of type @c TargetInfo::IntType.
6392CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6393 switch (Type) {
6394 case TargetInfo::NoInt: return CanQualType();
6395 case TargetInfo::SignedChar: return SignedCharTy;
6396 case TargetInfo::UnsignedChar: return UnsignedCharTy;
6397 case TargetInfo::SignedShort: return ShortTy;
6398 case TargetInfo::UnsignedShort: return UnsignedShortTy;
6399 case TargetInfo::SignedInt: return IntTy;
6400 case TargetInfo::UnsignedInt: return UnsignedIntTy;
6401 case TargetInfo::SignedLong: return LongTy;
6402 case TargetInfo::UnsignedLong: return UnsignedLongTy;
6403 case TargetInfo::SignedLongLong: return LongLongTy;
6404 case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6405 }
6406
6407 llvm_unreachable("Unhandled TargetInfo::IntType value");
6408}
6409
6410//===----------------------------------------------------------------------===//
6411// Type Predicates.
6412//===----------------------------------------------------------------------===//
6413
6414/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6415/// garbage collection attribute.
6416///
6417Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6418 if (getLangOpts().getGC() == LangOptions::NonGC)
6419 return Qualifiers::GCNone;
6420
6421 assert(getLangOpts().ObjC1);
6422 Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6423
6424 // Default behaviour under objective-C's gc is for ObjC pointers
6425 // (or pointers to them) be treated as though they were declared
6426 // as __strong.
6427 if (GCAttrs == Qualifiers::GCNone) {
6428 if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6429 return Qualifiers::Strong;
6430 else if (Ty->isPointerType())
6431 return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6432 } else {
6433 // It's not valid to set GC attributes on anything that isn't a
6434 // pointer.
6435#ifndef NDEBUG
6436 QualType CT = Ty->getCanonicalTypeInternal();
6437 while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6438 CT = AT->getElementType();
6439 assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6440#endif
6441 }
6442 return GCAttrs;
6443}
6444
6445//===----------------------------------------------------------------------===//
6446// Type Compatibility Testing
6447//===----------------------------------------------------------------------===//
6448
6449/// areCompatVectorTypes - Return true if the two specified vector types are
6450/// compatible.
6451static bool areCompatVectorTypes(const VectorType *LHS,
6452 const VectorType *RHS) {
6453 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6454 return LHS->getElementType() == RHS->getElementType() &&
6455 LHS->getNumElements() == RHS->getNumElements();
6456}
6457
6458bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6459 QualType SecondVec) {
6460 assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6461 assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6462
6463 if (hasSameUnqualifiedType(FirstVec, SecondVec))
6464 return true;
6465
6466 // Treat Neon vector types and most AltiVec vector types as if they are the
6467 // equivalent GCC vector types.
6468 const VectorType *First = FirstVec->getAs<VectorType>();
6469 const VectorType *Second = SecondVec->getAs<VectorType>();
6470 if (First->getNumElements() == Second->getNumElements() &&
6471 hasSameType(First->getElementType(), Second->getElementType()) &&
6472 First->getVectorKind() != VectorType::AltiVecPixel &&
6473 First->getVectorKind() != VectorType::AltiVecBool &&
6474 Second->getVectorKind() != VectorType::AltiVecPixel &&
6475 Second->getVectorKind() != VectorType::AltiVecBool)
6476 return true;
6477
6478 return false;
6479}
6480
6481//===----------------------------------------------------------------------===//
6482// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6483//===----------------------------------------------------------------------===//
6484
6485/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6486/// inheritance hierarchy of 'rProto'.
6487bool
6488ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6489 ObjCProtocolDecl *rProto) const {
6490 if (declaresSameEntity(lProto, rProto))
6491 return true;
6492 for (auto *PI : rProto->protocols())
6493 if (ProtocolCompatibleWithProtocol(lProto, PI))
6494 return true;
6495 return false;
6496}
6497
6498/// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and
6499/// Class<pr1, ...>.
6500bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6501 QualType rhs) {
6502 const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6503 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6504 assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6505
6506 for (auto *lhsProto : lhsQID->quals()) {
6507 bool match = false;
6508 for (auto *rhsProto : rhsOPT->quals()) {
6509 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6510 match = true;
6511 break;
6512 }
6513 }
6514 if (!match)
6515 return false;
6516 }
6517 return true;
6518}
6519
6520/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6521/// ObjCQualifiedIDType.
6522bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6523 bool compare) {
6524 // Allow id<P..> and an 'id' or void* type in all cases.
6525 if (lhs->isVoidPointerType() ||
6526 lhs->isObjCIdType() || lhs->isObjCClassType())
6527 return true;
6528 else if (rhs->isVoidPointerType() ||
6529 rhs->isObjCIdType() || rhs->isObjCClassType())
6530 return true;
6531
6532 if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6533 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6534
6535 if (!rhsOPT) return false;
6536
6537 if (rhsOPT->qual_empty()) {
6538 // If the RHS is a unqualified interface pointer "NSString*",
6539 // make sure we check the class hierarchy.
6540 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6541 for (auto *I : lhsQID->quals()) {
6542 // when comparing an id<P> on lhs with a static type on rhs,
6543 // see if static class implements all of id's protocols, directly or
6544 // through its super class and categories.
6545 if (!rhsID->ClassImplementsProtocol(I, true))
6546 return false;
6547 }
6548 }
6549 // If there are no qualifiers and no interface, we have an 'id'.
6550 return true;
6551 }
6552 // Both the right and left sides have qualifiers.
6553 for (auto *lhsProto : lhsQID->quals()) {
6554 bool match = false;
6555
6556 // when comparing an id<P> on lhs with a static type on rhs,
6557 // see if static class implements all of id's protocols, directly or
6558 // through its super class and categories.
6559 for (auto *rhsProto : rhsOPT->quals()) {
6560 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6561 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6562 match = true;
6563 break;
6564 }
6565 }
6566 // If the RHS is a qualified interface pointer "NSString<P>*",
6567 // make sure we check the class hierarchy.
6568 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6569 for (auto *I : lhsQID->quals()) {
6570 // when comparing an id<P> on lhs with a static type on rhs,
6571 // see if static class implements all of id's protocols, directly or
6572 // through its super class and categories.
6573 if (rhsID->ClassImplementsProtocol(I, true)) {
6574 match = true;
6575 break;
6576 }
6577 }
6578 }
6579 if (!match)
6580 return false;
6581 }
6582
6583 return true;
6584 }
6585
6586 const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6587 assert(rhsQID && "One of the LHS/RHS should be id<x>");
6588
6589 if (const ObjCObjectPointerType *lhsOPT =
6590 lhs->getAsObjCInterfacePointerType()) {
6591 // If both the right and left sides have qualifiers.
6592 for (auto *lhsProto : lhsOPT->quals()) {
6593 bool match = false;
6594
6595 // when comparing an id<P> on rhs with a static type on lhs,
6596 // see if static class implements all of id's protocols, directly or
6597 // through its super class and categories.
6598 // First, lhs protocols in the qualifier list must be found, direct
6599 // or indirect in rhs's qualifier list or it is a mismatch.
6600 for (auto *rhsProto : rhsQID->quals()) {
6601 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6602 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6603 match = true;
6604 break;
6605 }
6606 }
6607 if (!match)
6608 return false;
6609 }
6610
6611 // Static class's protocols, or its super class or category protocols
6612 // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6613 if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6614 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6615 CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6616 // This is rather dubious but matches gcc's behavior. If lhs has
6617 // no type qualifier and its class has no static protocol(s)
6618 // assume that it is mismatch.
6619 if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6620 return false;
6621 for (auto *lhsProto : LHSInheritedProtocols) {
6622 bool match = false;
6623 for (auto *rhsProto : rhsQID->quals()) {
6624 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6625 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6626 match = true;
6627 break;
6628 }
6629 }
6630 if (!match)
6631 return false;
6632 }
6633 }
6634 return true;
6635 }
6636 return false;
6637}
6638
6639/// canAssignObjCInterfaces - Return true if the two interface types are
6640/// compatible for assignment from RHS to LHS. This handles validation of any
6641/// protocol qualifiers on the LHS or RHS.
6642///
6643bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6644 const ObjCObjectPointerType *RHSOPT) {
6645 const ObjCObjectType* LHS = LHSOPT->getObjectType();
6646 const ObjCObjectType* RHS = RHSOPT->getObjectType();
6647
6648 // If either type represents the built-in 'id' or 'Class' types, return true.
6649 if (LHS->isObjCUnqualifiedIdOrClass() ||
6650 RHS->isObjCUnqualifiedIdOrClass())
6651 return true;
6652
6653 if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6654 return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6655 QualType(RHSOPT,0),
6656 false);
6657
6658 if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6659 return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6660 QualType(RHSOPT,0));
6661
6662 // If we have 2 user-defined types, fall into that path.
6663 if (LHS->getInterface() && RHS->getInterface())
6664 return canAssignObjCInterfaces(LHS, RHS);
6665
6666 return false;
6667}
6668
6669/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6670/// for providing type-safety for objective-c pointers used to pass/return
6671/// arguments in block literals. When passed as arguments, passing 'A*' where
6672/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6673/// not OK. For the return type, the opposite is not OK.
6674bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6675 const ObjCObjectPointerType *LHSOPT,
6676 const ObjCObjectPointerType *RHSOPT,
6677 bool BlockReturnType) {
6678 if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6679 return true;
6680
6681 if (LHSOPT->isObjCBuiltinType()) {
6682 return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6683 }
6684
6685 if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6686 return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6687 QualType(RHSOPT,0),
6688 false);
6689
6690 const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6691 const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6692 if (LHS && RHS) { // We have 2 user-defined types.
6693 if (LHS != RHS) {
6694 if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6695 return BlockReturnType;
6696 if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6697 return !BlockReturnType;
6698 }
6699 else
6700 return true;
6701 }
6702 return false;
6703}
6704
6705/// getIntersectionOfProtocols - This routine finds the intersection of set
6706/// of protocols inherited from two distinct objective-c pointer objects.
6707/// It is used to build composite qualifier list of the composite type of
6708/// the conditional expression involving two objective-c pointer objects.
6709static
6710void getIntersectionOfProtocols(ASTContext &Context,
6711 const ObjCObjectPointerType *LHSOPT,
6712 const ObjCObjectPointerType *RHSOPT,
6713 SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6714
6715 const ObjCObjectType* LHS = LHSOPT->getObjectType();
6716 const ObjCObjectType* RHS = RHSOPT->getObjectType();
6717 assert(LHS->getInterface() && "LHS must have an interface base");
6718 assert(RHS->getInterface() && "RHS must have an interface base");
6719
6720 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6721 unsigned LHSNumProtocols = LHS->getNumProtocols();
6722 if (LHSNumProtocols > 0)
6723 InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6724 else {
6725 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6726 Context.CollectInheritedProtocols(LHS->getInterface(),
6727 LHSInheritedProtocols);
6728 InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6729 LHSInheritedProtocols.end());
6730 }
6731
6732 unsigned RHSNumProtocols = RHS->getNumProtocols();
6733 if (RHSNumProtocols > 0) {
6734 ObjCProtocolDecl **RHSProtocols =
6735 const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6736 for (unsigned i = 0; i < RHSNumProtocols; ++i)
6737 if (InheritedProtocolSet.count(RHSProtocols[i]))
6738 IntersectionOfProtocols.push_back(RHSProtocols[i]);
6739 } else {
6740 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6741 Context.CollectInheritedProtocols(RHS->getInterface(),
6742 RHSInheritedProtocols);
6743 for (ObjCProtocolDecl *ProtDecl : RHSInheritedProtocols)
6744 if (InheritedProtocolSet.count(ProtDecl))
6745 IntersectionOfProtocols.push_back(ProtDecl);
6746 }
6747}
6748
6749/// areCommonBaseCompatible - Returns common base class of the two classes if
6750/// one found. Note that this is O'2 algorithm. But it will be called as the
6751/// last type comparison in a ?-exp of ObjC pointer types before a
6752/// warning is issued. So, its invokation is extremely rare.
6753QualType ASTContext::areCommonBaseCompatible(
6754 const ObjCObjectPointerType *Lptr,
6755 const ObjCObjectPointerType *Rptr) {
6756 const ObjCObjectType *LHS = Lptr->getObjectType();
6757 const ObjCObjectType *RHS = Rptr->getObjectType();
6758 const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6759 const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6760 if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6761 return QualType();
6762
6763 do {
6764 LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6765 if (canAssignObjCInterfaces(LHS, RHS)) {
6766 SmallVector<ObjCProtocolDecl *, 8> Protocols;
6767 getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6768
6769 QualType Result = QualType(LHS, 0);
6770 if (!Protocols.empty())
6771 Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6772 Result = getObjCObjectPointerType(Result);
6773 return Result;
6774 }
6775 } while ((LDecl = LDecl->getSuperClass()));
6776
6777 return QualType();
6778}
6779
6780bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6781 const ObjCObjectType *RHS) {
6782 assert(LHS->getInterface() && "LHS is not an interface type");
6783 assert(RHS->getInterface() && "RHS is not an interface type");
6784
6785 // Verify that the base decls are compatible: the RHS must be a subclass of
6786 // the LHS.
6787 if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6788 return false;
6789
6790 // RHS must have a superset of the protocols in the LHS. If the LHS is not
6791 // protocol qualified at all, then we are good.
6792 if (LHS->getNumProtocols() == 0)
6793 return true;
6794
6795 // Okay, we know the LHS has protocol qualifiers. But RHS may or may not.
6796 // More detailed analysis is required.
6797 // OK, if LHS is same or a superclass of RHS *and*
6798 // this LHS, or as RHS's super class is assignment compatible with LHS.
6799 bool IsSuperClass =
6800 LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6801 if (IsSuperClass) {
6802 // OK if conversion of LHS to SuperClass results in narrowing of types
6803 // ; i.e., SuperClass may implement at least one of the protocols
6804 // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6805 // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6806 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6807 CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6808 // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
6809 // qualifiers.
6810 for (auto *RHSPI : RHS->quals())
6811 SuperClassInheritedProtocols.insert(RHSPI->getCanonicalDecl());
6812 // If there is no protocols associated with RHS, it is not a match.
6813 if (SuperClassInheritedProtocols.empty())
6814 return false;
6815
6816 for (const auto *LHSProto : LHS->quals()) {
6817 bool SuperImplementsProtocol = false;
6818 for (auto *SuperClassProto : SuperClassInheritedProtocols)
6819 if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6820 SuperImplementsProtocol = true;
6821 break;
6822 }
6823 if (!SuperImplementsProtocol)
6824 return false;
6825 }
6826 return true;
6827 }
6828 return false;
6829}
6830
6831bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6832 // get the "pointed to" types
6833 const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6834 const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6835
6836 if (!LHSOPT || !RHSOPT)
6837 return false;
6838
6839 return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6840 canAssignObjCInterfaces(RHSOPT, LHSOPT);
6841}
6842
6843bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6844 return canAssignObjCInterfaces(
6845 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6846 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6847}
6848
6849/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6850/// both shall have the identically qualified version of a compatible type.
6851/// C99 6.2.7p1: Two types have compatible types if their types are the
6852/// same. See 6.7.[2,3,5] for additional rules.
6853bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6854 bool CompareUnqualified) {
6855 if (getLangOpts().CPlusPlus)
6856 return hasSameType(LHS, RHS);
6857
6858 return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6859}
6860
6861bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6862 return typesAreCompatible(LHS, RHS);
6863}
6864
6865bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6866 return !mergeTypes(LHS, RHS, true).isNull();
6867}
6868
6869/// mergeTransparentUnionType - if T is a transparent union type and a member
6870/// of T is compatible with SubType, return the merged type, else return
6871/// QualType()
6872QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6873 bool OfBlockPointer,
6874 bool Unqualified) {
6875 if (const RecordType *UT = T->getAsUnionType()) {
6876 RecordDecl *UD = UT->getDecl();
6877 if (UD->hasAttr<TransparentUnionAttr>()) {
6878 for (const auto *I : UD->fields()) {
6879 QualType ET = I->getType().getUnqualifiedType();
6880 QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6881 if (!MT.isNull())
6882 return MT;
6883 }
6884 }
6885 }
6886
6887 return QualType();
6888}
6889
6890/// mergeFunctionParameterTypes - merge two types which appear as function
6891/// parameter types
6892QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
6893 bool OfBlockPointer,
6894 bool Unqualified) {
6895 // GNU extension: two types are compatible if they appear as a function
6896 // argument, one of the types is a transparent union type and the other
6897 // type is compatible with a union member
6898 QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6899 Unqualified);
6900 if (!lmerge.isNull())
6901 return lmerge;
6902
6903 QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6904 Unqualified);
6905 if (!rmerge.isNull())
6906 return rmerge;
6907
6908 return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6909}
6910
6911QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6912 bool OfBlockPointer,
6913 bool Unqualified) {
6914 const FunctionType *lbase = lhs->getAs<FunctionType>();
6915 const FunctionType *rbase = rhs->getAs<FunctionType>();
6916 const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6917 const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6918 bool allLTypes = true;
6919 bool allRTypes = true;
6920
6921 // Check return type
6922 QualType retType;
6923 if (OfBlockPointer) {
6924 QualType RHS = rbase->getReturnType();
6925 QualType LHS = lbase->getReturnType();
6926 bool UnqualifiedResult = Unqualified;
6927 if (!UnqualifiedResult)
6928 UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6929 retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6930 }
6931 else
6932 retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
6933 Unqualified);
6934 if (retType.isNull()) return QualType();
6935
6936 if (Unqualified)
6937 retType = retType.getUnqualifiedType();
6938
6939 CanQualType LRetType = getCanonicalType(lbase->getReturnType());
6940 CanQualType RRetType = getCanonicalType(rbase->getReturnType());
6941 if (Unqualified) {
6942 LRetType = LRetType.getUnqualifiedType();
6943 RRetType = RRetType.getUnqualifiedType();
6944 }
6945
6946 if (getCanonicalType(retType) != LRetType)
6947 allLTypes = false;
6948 if (getCanonicalType(retType) != RRetType)
6949 allRTypes = false;
6950
6951 // FIXME: double check this
6952 // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6953 // rbase->getRegParmAttr() != 0 &&
6954 // lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6955 FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6956 FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6957
6958 // Compatible functions must have compatible calling conventions
6959 if (lbaseInfo.getCC() != rbaseInfo.getCC())
6960 return QualType();
6961
6962 // Regparm is part of the calling convention.
6963 if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6964 return QualType();
6965 if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6966 return QualType();
6967
6968 if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6969 return QualType();
6970
6971 // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6972 bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6973
6974 if (lbaseInfo.getNoReturn() != NoReturn)
6975 allLTypes = false;
6976 if (rbaseInfo.getNoReturn() != NoReturn)
6977 allRTypes = false;
6978
6979 FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6980
6981 if (lproto && rproto) { // two C99 style function prototypes
6982 assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6983 "C++ shouldn't be here");
6984 // Compatible functions must have the same number of parameters
6985 if (lproto->getNumParams() != rproto->getNumParams())
6986 return QualType();
6987
6988 // Variadic and non-variadic functions aren't compatible
6989 if (lproto->isVariadic() != rproto->isVariadic())
6990 return QualType();
6991
6992 if (lproto->getTypeQuals() != rproto->getTypeQuals())
6993 return QualType();
6994
6995 if (LangOpts.ObjCAutoRefCount &&
6996 !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6997 return QualType();
6998
6999 // Check parameter type compatibility
7000 SmallVector<QualType, 10> types;
7001 for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
7002 QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
7003 QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
7004 QualType paramType = mergeFunctionParameterTypes(
7005 lParamType, rParamType, OfBlockPointer, Unqualified);
7006 if (paramType.isNull())
7007 return QualType();
7008
7009 if (Unqualified)
7010 paramType = paramType.getUnqualifiedType();
7011
7012 types.push_back(paramType);
7013 if (Unqualified) {
7014 lParamType = lParamType.getUnqualifiedType();
7015 rParamType = rParamType.getUnqualifiedType();
7016 }
7017
7018 if (getCanonicalType(paramType) != getCanonicalType(lParamType))
7019 allLTypes = false;
7020 if (getCanonicalType(paramType) != getCanonicalType(rParamType))
7021 allRTypes = false;
7022 }
7023
7024 if (allLTypes) return lhs;
7025 if (allRTypes) return rhs;
7026
7027 FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
7028 EPI.ExtInfo = einfo;
7029 return getFunctionType(retType, types, EPI);
7030 }
7031
7032 if (lproto) allRTypes = false;
7033 if (rproto) allLTypes = false;
7034
7035 const FunctionProtoType *proto = lproto ? lproto : rproto;
7036 if (proto) {
7037 assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
7038 if (proto->isVariadic()) return QualType();
7039 // Check that the types are compatible with the types that
7040 // would result from default argument promotions (C99 6.7.5.3p15).
7041 // The only types actually affected are promotable integer
7042 // types and floats, which would be passed as a different
7043 // type depending on whether the prototype is visible.
7044 for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
7045 QualType paramTy = proto->getParamType(i);
7046
7047 // Look at the converted type of enum types, since that is the type used
7048 // to pass enum values.
7049 if (const EnumType *Enum = paramTy->getAs<EnumType>()) {
7050 paramTy = Enum->getDecl()->getIntegerType();
7051 if (paramTy.isNull())
7052 return QualType();
7053 }
7054
7055 if (paramTy->isPromotableIntegerType() ||
7056 getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
7057 return QualType();
7058 }
7059
7060 if (allLTypes) return lhs;
7061 if (allRTypes) return rhs;
7062
7063 FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
7064 EPI.ExtInfo = einfo;
7065 return getFunctionType(retType, proto->getParamTypes(), EPI);
7066 }
7067
7068 if (allLTypes) return lhs;
7069 if (allRTypes) return rhs;
7070 return getFunctionNoProtoType(retType, einfo);
7071}
7072
7073/// Given that we have an enum type and a non-enum type, try to merge them.
7074static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
7075 QualType other, bool isBlockReturnType) {
7076 // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
7077 // a signed integer type, or an unsigned integer type.
7078 // Compatibility is based on the underlying type, not the promotion
7079 // type.
7080 QualType underlyingType = ET->getDecl()->getIntegerType();
7081 if (underlyingType.isNull()) return QualType();
7082 if (Context.hasSameType(underlyingType, other))
7083 return other;
7084
7085 // In block return types, we're more permissive and accept any
7086 // integral type of the same size.
7087 if (isBlockReturnType && other->isIntegerType() &&
7088 Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
7089 return other;
7090
7091 return QualType();
7092}
7093
7094QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
7095 bool OfBlockPointer,
7096 bool Unqualified, bool BlockReturnType) {
7097 // C++ [expr]: If an expression initially has the type "reference to T", the
7098 // type is adjusted to "T" prior to any further analysis, the expression
7099 // designates the object or function denoted by the reference, and the
7100 // expression is an lvalue unless the reference is an rvalue reference and
7101 // the expression is a function call (possibly inside parentheses).
7102 assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
7103 assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
7104
7105 if (Unqualified) {
7106 LHS = LHS.getUnqualifiedType();
7107 RHS = RHS.getUnqualifiedType();
7108 }
7109
7110 QualType LHSCan = getCanonicalType(LHS),
7111 RHSCan = getCanonicalType(RHS);
7112
7113 // If two types are identical, they are compatible.
7114 if (LHSCan == RHSCan)
7115 return LHS;
7116
7117 // If the qualifiers are different, the types aren't compatible... mostly.
7118 Qualifiers LQuals = LHSCan.getLocalQualifiers();
7119 Qualifiers RQuals = RHSCan.getLocalQualifiers();
7120 if (LQuals != RQuals) {
7121 // If any of these qualifiers are different, we have a type
7122 // mismatch.
7123 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7124 LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
7125 LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
7126 return QualType();
7127
7128 // Exactly one GC qualifier difference is allowed: __strong is
7129 // okay if the other type has no GC qualifier but is an Objective
7130 // C object pointer (i.e. implicitly strong by default). We fix
7131 // this by pretending that the unqualified type was actually
7132 // qualified __strong.
7133 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7134 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7135 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7136
7137 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7138 return QualType();
7139
7140 if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
7141 return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
7142 }
7143 if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
7144 return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
7145 }
7146 return QualType();
7147 }
7148
7149 // Okay, qualifiers are equal.
7150
7151 Type::TypeClass LHSClass = LHSCan->getTypeClass();
7152 Type::TypeClass RHSClass = RHSCan->getTypeClass();
7153
7154 // We want to consider the two function types to be the same for these
7155 // comparisons, just force one to the other.
7156 if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
7157 if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
7158
7159 // Same as above for arrays
7160 if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
7161 LHSClass = Type::ConstantArray;
7162 if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
7163 RHSClass = Type::ConstantArray;
7164
7165 // ObjCInterfaces are just specialized ObjCObjects.
7166 if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
7167 if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
7168
7169 // Canonicalize ExtVector -> Vector.
7170 if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
7171 if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
7172
7173 // If the canonical type classes don't match.
7174 if (LHSClass != RHSClass) {
7175 // Note that we only have special rules for turning block enum
7176 // returns into block int returns, not vice-versa.
7177 if (const EnumType* ETy = LHS->getAs<EnumType>()) {
7178 return mergeEnumWithInteger(*this, ETy, RHS, false);
7179 }
7180 if (const EnumType* ETy = RHS->getAs<EnumType>()) {
7181 return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
7182 }
7183 // allow block pointer type to match an 'id' type.
7184 if (OfBlockPointer && !BlockReturnType) {
7185 if (LHS->isObjCIdType() && RHS->isBlockPointerType())
7186 return LHS;
7187 if (RHS->isObjCIdType() && LHS->isBlockPointerType())
7188 return RHS;
7189 }
7190
7191 return QualType();
7192 }
7193
7194 // The canonical type classes match.
7195 switch (LHSClass) {
7196#define TYPE(Class, Base)
7197#define ABSTRACT_TYPE(Class, Base)
7198#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7199#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7200#define DEPENDENT_TYPE(Class, Base) case Type::Class:
7201#include "clang/AST/TypeNodes.def"
7202 llvm_unreachable("Non-canonical and dependent types shouldn't get here");
7203
7204 case Type::Auto:
7205 case Type::LValueReference:
7206 case Type::RValueReference:
7207 case Type::MemberPointer:
7208 llvm_unreachable("C++ should never be in mergeTypes");
7209
7210 case Type::ObjCInterface:
7211 case Type::IncompleteArray:
7212 case Type::VariableArray:
7213 case Type::FunctionProto:
7214 case Type::ExtVector:
7215 llvm_unreachable("Types are eliminated above");
7216
7217 case Type::Pointer:
7218 {
7219 // Merge two pointer types, while trying to preserve typedef info
7220 QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7221 QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7222 if (Unqualified) {
7223 LHSPointee = LHSPointee.getUnqualifiedType();
7224 RHSPointee = RHSPointee.getUnqualifiedType();
7225 }
7226 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7227 Unqualified);
7228 if (ResultType.isNull()) return QualType();
7229 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7230 return LHS;
7231 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7232 return RHS;
7233 return getPointerType(ResultType);
7234 }
7235 case Type::BlockPointer:
7236 {
7237 // Merge two block pointer types, while trying to preserve typedef info
7238 QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7239 QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7240 if (Unqualified) {
7241 LHSPointee = LHSPointee.getUnqualifiedType();
7242 RHSPointee = RHSPointee.getUnqualifiedType();
7243 }
7244 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7245 Unqualified);
7246 if (ResultType.isNull()) return QualType();
7247 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7248 return LHS;
7249 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7250 return RHS;
7251 return getBlockPointerType(ResultType);
7252 }
7253 case Type::Atomic:
7254 {
7255 // Merge two pointer types, while trying to preserve typedef info
7256 QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7257 QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7258 if (Unqualified) {
7259 LHSValue = LHSValue.getUnqualifiedType();
7260 RHSValue = RHSValue.getUnqualifiedType();
7261 }
7262 QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7263 Unqualified);
7264 if (ResultType.isNull()) return QualType();
7265 if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7266 return LHS;
7267 if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7268 return RHS;
7269 return getAtomicType(ResultType);
7270 }
7271 case Type::ConstantArray:
7272 {
7273 const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7274 const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7275 if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7276 return QualType();
7277
7278 QualType LHSElem = getAsArrayType(LHS)->getElementType();
7279 QualType RHSElem = getAsArrayType(RHS)->getElementType();
7280 if (Unqualified) {
7281 LHSElem = LHSElem.getUnqualifiedType();
7282 RHSElem = RHSElem.getUnqualifiedType();
7283 }
7284
7285 QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7286 if (ResultType.isNull()) return QualType();
7287 if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7288 return LHS;
7289 if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7290 return RHS;
7291 if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7292 ArrayType::ArraySizeModifier(), 0);
7293 if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7294 ArrayType::ArraySizeModifier(), 0);
7295 const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7296 const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7297 if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7298 return LHS;
7299 if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7300 return RHS;
7301 if (LVAT) {
7302 // FIXME: This isn't correct! But tricky to implement because
7303 // the array's size has to be the size of LHS, but the type
7304 // has to be different.
7305 return LHS;
7306 }
7307 if (RVAT) {
7308 // FIXME: This isn't correct! But tricky to implement because
7309 // the array's size has to be the size of RHS, but the type
7310 // has to be different.
7311 return RHS;
7312 }
7313 if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7314 if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7315 return getIncompleteArrayType(ResultType,
7316 ArrayType::ArraySizeModifier(), 0);
7317 }
7318 case Type::FunctionNoProto:
7319 return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7320 case Type::Record:
7321 case Type::Enum:
7322 return QualType();
7323 case Type::Builtin:
7324 // Only exactly equal builtin types are compatible, which is tested above.
7325 return QualType();
7326 case Type::Complex:
7327 // Distinct complex types are incompatible.
7328 return QualType();
7329 case Type::Vector:
7330 // FIXME: The merged type should be an ExtVector!
7331 if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7332 RHSCan->getAs<VectorType>()))
7333 return LHS;
7334 return QualType();
7335 case Type::ObjCObject: {
7336 // Check if the types are assignment compatible.
7337 // FIXME: This should be type compatibility, e.g. whether
7338 // "LHS x; RHS x;" at global scope is legal.
7339 const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7340 const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7341 if (canAssignObjCInterfaces(LHSIface, RHSIface))
7342 return LHS;
7343
7344 return QualType();
7345 }
7346 case Type::ObjCObjectPointer: {
7347 if (OfBlockPointer) {
7348 if (canAssignObjCInterfacesInBlockPointer(
7349 LHS->getAs<ObjCObjectPointerType>(),
7350 RHS->getAs<ObjCObjectPointerType>(),
7351 BlockReturnType))
7352 return LHS;
7353 return QualType();
7354 }
7355 if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7356 RHS->getAs<ObjCObjectPointerType>()))
7357 return LHS;
7358
7359 return QualType();
7360 }
7361 }
7362
7363 llvm_unreachable("Invalid Type::Class!");
7364}
7365
7366bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7367 const FunctionProtoType *FromFunctionType,
7368 const FunctionProtoType *ToFunctionType) {
7369 if (FromFunctionType->hasAnyConsumedParams() !=
7370 ToFunctionType->hasAnyConsumedParams())
7371 return false;
7372 FunctionProtoType::ExtProtoInfo FromEPI =
7373 FromFunctionType->getExtProtoInfo();
7374 FunctionProtoType::ExtProtoInfo ToEPI =
7375 ToFunctionType->getExtProtoInfo();
7376 if (FromEPI.ConsumedParameters && ToEPI.ConsumedParameters)
7377 for (unsigned i = 0, n = FromFunctionType->getNumParams(); i != n; ++i) {
7378 if (FromEPI.ConsumedParameters[i] != ToEPI.ConsumedParameters[i])
7379 return false;
7380 }
7381 return true;
7382}
7383
7384/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7385/// 'RHS' attributes and returns the merged version; including for function
7386/// return types.
7387QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7388 QualType LHSCan = getCanonicalType(LHS),
7389 RHSCan = getCanonicalType(RHS);
7390 // If two types are identical, they are compatible.
7391 if (LHSCan == RHSCan)
7392 return LHS;
7393 if (RHSCan->isFunctionType()) {
7394 if (!LHSCan->isFunctionType())
7395 return QualType();
7396 QualType OldReturnType =
7397 cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
7398 QualType NewReturnType =
7399 cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
7400 QualType ResReturnType =
7401 mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7402 if (ResReturnType.isNull())
7403 return QualType();
7404 if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7405 // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7406 // In either case, use OldReturnType to build the new function type.
7407 const FunctionType *F = LHS->getAs<FunctionType>();
7408 if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7409 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7410 EPI.ExtInfo = getFunctionExtInfo(LHS);
7411 QualType ResultType =
7412 getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
7413 return ResultType;
7414 }
7415 }
7416 return QualType();
7417 }
7418
7419 // If the qualifiers are different, the types can still be merged.
7420 Qualifiers LQuals = LHSCan.getLocalQualifiers();
7421 Qualifiers RQuals = RHSCan.getLocalQualifiers();
7422 if (LQuals != RQuals) {
7423 // If any of these qualifiers are different, we have a type mismatch.
7424 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7425 LQuals.getAddressSpace() != RQuals.getAddressSpace())
7426 return QualType();
7427
7428 // Exactly one GC qualifier difference is allowed: __strong is
7429 // okay if the other type has no GC qualifier but is an Objective
7430 // C object pointer (i.e. implicitly strong by default). We fix
7431 // this by pretending that the unqualified type was actually
7432 // qualified __strong.
7433 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7434 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7435 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7436
7437 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7438 return QualType();
7439
7440 if (GC_L == Qualifiers::Strong)
7441 return LHS;
7442 if (GC_R == Qualifiers::Strong)
7443 return RHS;
7444 return QualType();
7445 }
7446
7447 if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7448 QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7449 QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7450 QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7451 if (ResQT == LHSBaseQT)
7452 return LHS;
7453 if (ResQT == RHSBaseQT)
7454 return RHS;
7455 }
7456 return QualType();
7457}
7458
7459//===----------------------------------------------------------------------===//
7460// Integer Predicates
7461//===----------------------------------------------------------------------===//
7462
7463unsigned ASTContext::getIntWidth(QualType T) const {
7464 if (const EnumType *ET = T->getAs<EnumType>())
7465 T = ET->getDecl()->getIntegerType();
7466 if (T->isBooleanType())
7467 return 1;
7468 // For builtin types, just use the standard type sizing method
7469 return (unsigned)getTypeSize(T);
7470}
7471
7472QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7473 assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7474
7475 // Turn <4 x signed int> -> <4 x unsigned int>
7476 if (const VectorType *VTy = T->getAs<VectorType>())
7477 return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7478 VTy->getNumElements(), VTy->getVectorKind());
7479
7480 // For enums, we return the unsigned version of the base type.
7481 if (const EnumType *ETy = T->getAs<EnumType>())
7482 T = ETy->getDecl()->getIntegerType();
7483
7484 const BuiltinType *BTy = T->getAs<BuiltinType>();
7485 assert(BTy && "Unexpected signed integer type");
7486 switch (BTy->getKind()) {
7487 case BuiltinType::Char_S:
7488 case BuiltinType::SChar:
7489 return UnsignedCharTy;
7490 case BuiltinType::Short:
7491 return UnsignedShortTy;
7492 case BuiltinType::Int:
7493 return UnsignedIntTy;
7494 case BuiltinType::Long:
7495 return UnsignedLongTy;
7496 case BuiltinType::LongLong:
7497 return UnsignedLongLongTy;
7498 case BuiltinType::Int128:
7499 return UnsignedInt128Ty;
7500 default:
7501 llvm_unreachable("Unexpected signed integer type");
7502 }
7503}
7504
7505ASTMutationListener::~ASTMutationListener() { }
7506
7507void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
7508 QualType ReturnType) {}
7509
7510//===----------------------------------------------------------------------===//
7511// Builtin Type Computation
7512//===----------------------------------------------------------------------===//
7513
7514/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7515/// pointer over the consumed characters. This returns the resultant type. If
7516/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7517/// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of
7518/// a vector of "i*".
7519///
7520/// RequiresICE is filled in on return to indicate whether the value is required
7521/// to be an Integer Constant Expression.
7522static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7523 ASTContext::GetBuiltinTypeError &Error,
7524 bool &RequiresICE,
7525 bool AllowTypeModifiers) {
7526 // Modifiers.
7527 int HowLong = 0;
7528 bool Signed = false, Unsigned = false;
7529 RequiresICE = false;
7530
7531 // Read the prefixed modifiers first.
7532 bool Done = false;
7533 while (!Done) {
7534 switch (*Str++) {
7535 default: Done = true; --Str; break;
7536 case 'I':
7537 RequiresICE = true;
7538 break;
7539 case 'S':
7540 assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7541 assert(!Signed && "Can't use 'S' modifier multiple times!");
7542 Signed = true;
7543 break;
7544 case 'U':
7545 assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7546 assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7547 Unsigned = true;
7548 break;
7549 case 'L':
7550 assert(HowLong <= 2 && "Can't have LLLL modifier");
7551 ++HowLong;
7552 break;
7553 case 'W':
7554 // This modifier represents int64 type.
7555 assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
7556 switch (Context.getTargetInfo().getInt64Type()) {
7557 default:
7558 llvm_unreachable("Unexpected integer type");
7559 case TargetInfo::SignedLong:
7560 HowLong = 1;
7561 break;
7562 case TargetInfo::SignedLongLong:
7563 HowLong = 2;
7564 break;
7565 }
7566 }
7567 }
7568
7569 QualType Type;
7570
7571 // Read the base type.
7572 switch (*Str++) {
7573 default: llvm_unreachable("Unknown builtin type letter!");
7574 case 'v':
7575 assert(HowLong == 0 && !Signed && !Unsigned &&
7576 "Bad modifiers used with 'v'!");
7577 Type = Context.VoidTy;
7578 break;
7579 case 'h':
7580 assert(HowLong == 0 && !Signed && !Unsigned &&
7581 "Bad modifiers used with 'f'!");
7582 Type = Context.HalfTy;
7583 break;
7584 case 'f':
7585 assert(HowLong == 0 && !Signed && !Unsigned &&
7586 "Bad modifiers used with 'f'!");
7587 Type = Context.FloatTy;
7588 break;
7589 case 'd':
7590 assert(HowLong < 2 && !Signed && !Unsigned &&
7591 "Bad modifiers used with 'd'!");
7592 if (HowLong)
7593 Type = Context.LongDoubleTy;
7594 else
7595 Type = Context.DoubleTy;
7596 break;
7597 case 's':
7598 assert(HowLong == 0 && "Bad modifiers used with 's'!");
7599 if (Unsigned)
7600 Type = Context.UnsignedShortTy;
7601 else
7602 Type = Context.ShortTy;
7603 break;
7604 case 'i':
7605 if (HowLong == 3)
7606 Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7607 else if (HowLong == 2)
7608 Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7609 else if (HowLong == 1)
7610 Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7611 else
7612 Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7613 break;
7614 case 'c':
7615 assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7616 if (Signed)
7617 Type = Context.SignedCharTy;
7618 else if (Unsigned)
7619 Type = Context.UnsignedCharTy;
7620 else
7621 Type = Context.CharTy;
7622 break;
7623 case 'b': // boolean
7624 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7625 Type = Context.BoolTy;
7626 break;
7627 case 'z': // size_t.
7628 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7629 Type = Context.getSizeType();
7630 break;
7631 case 'F':
7632 Type = Context.getCFConstantStringType();
7633 break;
7634 case 'G':
7635 Type = Context.getObjCIdType();
7636 break;
7637 case 'H':
7638 Type = Context.getObjCSelType();
7639 break;
7640 case 'M':
7641 Type = Context.getObjCSuperType();
7642 break;
7643 case 'a':
7644 Type = Context.getBuiltinVaListType();
7645 assert(!Type.isNull() && "builtin va list type not initialized!");
7646 break;
7647 case 'A':
7648 // This is a "reference" to a va_list; however, what exactly
7649 // this means depends on how va_list is defined. There are two
7650 // different kinds of va_list: ones passed by value, and ones
7651 // passed by reference. An example of a by-value va_list is
7652 // x86, where va_list is a char*. An example of by-ref va_list
7653 // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7654 // we want this argument to be a char*&; for x86-64, we want
7655 // it to be a __va_list_tag*.
7656 Type = Context.getBuiltinVaListType();
7657 assert(!Type.isNull() && "builtin va list type not initialized!");
7658 if (Type->isArrayType())
7659 Type = Context.getArrayDecayedType(Type);
7660 else
7661 Type = Context.getLValueReferenceType(Type);
7662 break;
7663 case 'V': {
7664 char *End;
7665 unsigned NumElements = strtoul(Str, &End, 10);
7666 assert(End != Str && "Missing vector size");
7667 Str = End;
7668
7669 QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7670 RequiresICE, false);
7671 assert(!RequiresICE && "Can't require vector ICE");
7672
7673 // TODO: No way to make AltiVec vectors in builtins yet.
7674 Type = Context.getVectorType(ElementType, NumElements,
7675 VectorType::GenericVector);
7676 break;
7677 }
7678 case 'E': {
7679 char *End;
7680
7681 unsigned NumElements = strtoul(Str, &End, 10);
7682 assert(End != Str && "Missing vector size");
7683
7684 Str = End;
7685
7686 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7687 false);
7688 Type = Context.getExtVectorType(ElementType, NumElements);
7689 break;
7690 }
7691 case 'X': {
7692 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7693 false);
7694 assert(!RequiresICE && "Can't require complex ICE");
7695 Type = Context.getComplexType(ElementType);
7696 break;
7697 }
7698 case 'Y' : {
7699 Type = Context.getPointerDiffType();
7700 break;
7701 }
7702 case 'P':
7703 Type = Context.getFILEType();
7704 if (Type.isNull()) {
7705 Error = ASTContext::GE_Missing_stdio;
7706 return QualType();
7707 }
7708 break;
7709 case 'J':
7710 if (Signed)
7711 Type = Context.getsigjmp_bufType();
7712 else
7713 Type = Context.getjmp_bufType();
7714
7715 if (Type.isNull()) {
7716 Error = ASTContext::GE_Missing_setjmp;
7717 return QualType();
7718 }
7719 break;
7720 case 'K':
7721 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7722 Type = Context.getucontext_tType();
7723
7724 if (Type.isNull()) {
7725 Error = ASTContext::GE_Missing_ucontext;
7726 return QualType();
7727 }
7728 break;
7729 case 'p':
7730 Type = Context.getProcessIDType();
7731 break;
7732 }
7733
7734 // If there are modifiers and if we're allowed to parse them, go for it.
7735 Done = !AllowTypeModifiers;
7736 while (!Done) {
7737 switch (char c = *Str++) {
7738 default: Done = true; --Str; break;
7739 case '*':
7740 case '&': {
7741 // Both pointers and references can have their pointee types
7742 // qualified with an address space.
7743 char *End;
7744 unsigned AddrSpace = strtoul(Str, &End, 10);
7745 if (End != Str && AddrSpace != 0) {
7746 Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7747 Str = End;
7748 }
7749 if (c == '*')
7750 Type = Context.getPointerType(Type);
7751 else
7752 Type = Context.getLValueReferenceType(Type);
7753 break;
7754 }
7755 // FIXME: There's no way to have a built-in with an rvalue ref arg.
7756 case 'C':
7757 Type = Type.withConst();
7758 break;
7759 case 'D':
7760 Type = Context.getVolatileType(Type);
7761 break;
7762 case 'R':
7763 Type = Type.withRestrict();
7764 break;
7765 }
7766 }
7767
7768 assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7769 "Integer constant 'I' type must be an integer");
7770
7771 return Type;
7772}
7773
7774/// GetBuiltinType - Return the type for the specified builtin.
7775QualType ASTContext::GetBuiltinType(unsigned Id,
7776 GetBuiltinTypeError &Error,
7777 unsigned *IntegerConstantArgs) const {
7778 const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7779
7780 SmallVector<QualType, 8> ArgTypes;
7781
7782 bool RequiresICE = false;
7783 Error = GE_None;
7784 QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7785 RequiresICE, true);
7786 if (Error != GE_None)
7787 return QualType();
7788
7789 assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7790
7791 while (TypeStr[0] && TypeStr[0] != '.') {
7792 QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7793 if (Error != GE_None)
7794 return QualType();
7795
7796 // If this argument is required to be an IntegerConstantExpression and the
7797 // caller cares, fill in the bitmask we return.
7798 if (RequiresICE && IntegerConstantArgs)
7799 *IntegerConstantArgs |= 1 << ArgTypes.size();
7800
7801 // Do array -> pointer decay. The builtin should use the decayed type.
7802 if (Ty->isArrayType())
7803 Ty = getArrayDecayedType(Ty);
7804
7805 ArgTypes.push_back(Ty);
7806 }
7807
7808 assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7809 "'.' should only occur at end of builtin type list!");
7810
7811 FunctionType::ExtInfo EI(CC_C);
7812 if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7813
7814 bool Variadic = (TypeStr[0] == '.');
7815
7816 // We really shouldn't be making a no-proto type here, especially in C++.
7817 if (ArgTypes.empty() && Variadic)
7818 return getFunctionNoProtoType(ResType, EI);
7819
7820 FunctionProtoType::ExtProtoInfo EPI;
7821 EPI.ExtInfo = EI;
7822 EPI.Variadic = Variadic;
7823
7824 return getFunctionType(ResType, ArgTypes, EPI);
7825}
7826
7827static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
7828 const FunctionDecl *FD) {
7829 if (!FD->isExternallyVisible())
7830 return GVA_Internal;
7831
7832 GVALinkage External = GVA_StrongExternal;
7833 switch (FD->getTemplateSpecializationKind()) {
7834 case TSK_Undeclared:
7835 case TSK_ExplicitSpecialization:
7836 External = GVA_StrongExternal;
7837 break;
7838
7839 case TSK_ExplicitInstantiationDefinition:
7840 return GVA_StrongODR;
7841
7842 // C++11 [temp.explicit]p10:
7843 // [ Note: The intent is that an inline function that is the subject of
7844 // an explicit instantiation declaration will still be implicitly
7845 // instantiated when used so that the body can be considered for
7846 // inlining, but that no out-of-line copy of the inline function would be
7847 // generated in the translation unit. -- end note ]
7848 case TSK_ExplicitInstantiationDeclaration:
7849 return GVA_AvailableExternally;
7850
7851 case TSK_ImplicitInstantiation:
7852 External = GVA_DiscardableODR;
7853 break;
7854 }
7855
7856 if (!FD->isInlined())
7857 return External;
7858
7859 if ((!Context.getLangOpts().CPlusPlus && !Context.getLangOpts().MSVCCompat &&
7860 !FD->hasAttr<DLLExportAttr>()) ||
7861 FD->hasAttr<GNUInlineAttr>()) {
7862 // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
7863
7864 // GNU or C99 inline semantics. Determine whether this symbol should be
7865 // externally visible.
7866 if (FD->isInlineDefinitionExternallyVisible())
7867 return External;
7868
7869 // C99 inline semantics, where the symbol is not externally visible.
7870 return GVA_AvailableExternally;
7871 }
7872
7873 // Functions specified with extern and inline in -fms-compatibility mode
7874 // forcibly get emitted. While the body of the function cannot be later
7875 // replaced, the function definition cannot be discarded.
686 case TargetCXXABI::GenericItanium:
687 return CreateItaniumCXXABI(*this);
688 case TargetCXXABI::Microsoft:
689 return CreateMicrosoftCXXABI(*this);
690 }
691 llvm_unreachable("Invalid CXXABI type!");
692}
693
694static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
695 const LangOptions &LOpts) {
696 if (LOpts.FakeAddressSpaceMap) {
697 // The fake address space map must have a distinct entry for each
698 // language-specific address space.
699 static const unsigned FakeAddrSpaceMap[] = {
700 1, // opencl_global
701 2, // opencl_local
702 3, // opencl_constant
703 4, // opencl_generic
704 5, // cuda_device
705 6, // cuda_constant
706 7 // cuda_shared
707 };
708 return &FakeAddrSpaceMap;
709 } else {
710 return &T.getAddressSpaceMap();
711 }
712}
713
714static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
715 const LangOptions &LangOpts) {
716 switch (LangOpts.getAddressSpaceMapMangling()) {
717 case LangOptions::ASMM_Target:
718 return TI.useAddressSpaceMapMangling();
719 case LangOptions::ASMM_On:
720 return true;
721 case LangOptions::ASMM_Off:
722 return false;
723 }
724 llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
725}
726
727ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
728 IdentifierTable &idents, SelectorTable &sels,
729 Builtin::Context &builtins)
730 : FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()),
731 DependentTemplateSpecializationTypes(this_()),
732 SubstTemplateTemplateParmPacks(this_()),
733 GlobalNestedNameSpecifier(nullptr), Int128Decl(nullptr),
734 UInt128Decl(nullptr), Float128StubDecl(nullptr),
735 BuiltinVaListDecl(nullptr), ObjCIdDecl(nullptr), ObjCSelDecl(nullptr),
736 ObjCClassDecl(nullptr), ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr),
737 CFConstantStringTypeDecl(nullptr), ObjCInstanceTypeDecl(nullptr),
738 FILEDecl(nullptr), jmp_bufDecl(nullptr), sigjmp_bufDecl(nullptr),
739 ucontext_tDecl(nullptr), BlockDescriptorType(nullptr),
740 BlockDescriptorExtendedType(nullptr), cudaConfigureCallDecl(nullptr),
741 FirstLocalImport(), LastLocalImport(),
742 SourceMgr(SM), LangOpts(LOpts),
743 SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFile, SM)),
744 AddrSpaceMap(nullptr), Target(nullptr), PrintingPolicy(LOpts),
745 Idents(idents), Selectors(sels), BuiltinInfo(builtins),
746 DeclarationNames(*this), ExternalSource(nullptr), Listener(nullptr),
747 Comments(SM), CommentsLoaded(false),
748 CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), LastSDM(nullptr, 0) {
749 TUDecl = TranslationUnitDecl::Create(*this);
750}
751
752ASTContext::~ASTContext() {
753 ReleaseParentMapEntries();
754
755 // Release the DenseMaps associated with DeclContext objects.
756 // FIXME: Is this the ideal solution?
757 ReleaseDeclContextMaps();
758
759 // Call all of the deallocation functions on all of their targets.
760 for (DeallocationMap::const_iterator I = Deallocations.begin(),
761 E = Deallocations.end(); I != E; ++I)
762 for (unsigned J = 0, N = I->second.size(); J != N; ++J)
763 (I->first)((I->second)[J]);
764
765 // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
766 // because they can contain DenseMaps.
767 for (llvm::DenseMap<const ObjCContainerDecl*,
768 const ASTRecordLayout*>::iterator
769 I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
770 // Increment in loop to prevent using deallocated memory.
771 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
772 R->Destroy(*this);
773
774 for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
775 I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
776 // Increment in loop to prevent using deallocated memory.
777 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
778 R->Destroy(*this);
779 }
780
781 for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
782 AEnd = DeclAttrs.end();
783 A != AEnd; ++A)
784 A->second->~AttrVec();
785
786 llvm::DeleteContainerSeconds(MangleNumberingContexts);
787}
788
789void ASTContext::ReleaseParentMapEntries() {
790 if (!AllParents) return;
791 for (const auto &Entry : *AllParents) {
792 if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
793 delete Entry.second.get<ast_type_traits::DynTypedNode *>();
794 } else {
795 assert(Entry.second.is<ParentVector *>());
796 delete Entry.second.get<ParentVector *>();
797 }
798 }
799}
800
801void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
802 Deallocations[Callback].push_back(Data);
803}
804
805void
806ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
807 ExternalSource = Source;
808}
809
810void ASTContext::PrintStats() const {
811 llvm::errs() << "\n*** AST Context Stats:\n";
812 llvm::errs() << " " << Types.size() << " types total.\n";
813
814 unsigned counts[] = {
815#define TYPE(Name, Parent) 0,
816#define ABSTRACT_TYPE(Name, Parent)
817#include "clang/AST/TypeNodes.def"
818 0 // Extra
819 };
820
821 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
822 Type *T = Types[i];
823 counts[(unsigned)T->getTypeClass()]++;
824 }
825
826 unsigned Idx = 0;
827 unsigned TotalBytes = 0;
828#define TYPE(Name, Parent) \
829 if (counts[Idx]) \
830 llvm::errs() << " " << counts[Idx] << " " << #Name \
831 << " types\n"; \
832 TotalBytes += counts[Idx] * sizeof(Name##Type); \
833 ++Idx;
834#define ABSTRACT_TYPE(Name, Parent)
835#include "clang/AST/TypeNodes.def"
836
837 llvm::errs() << "Total bytes = " << TotalBytes << "\n";
838
839 // Implicit special member functions.
840 llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
841 << NumImplicitDefaultConstructors
842 << " implicit default constructors created\n";
843 llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
844 << NumImplicitCopyConstructors
845 << " implicit copy constructors created\n";
846 if (getLangOpts().CPlusPlus)
847 llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
848 << NumImplicitMoveConstructors
849 << " implicit move constructors created\n";
850 llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
851 << NumImplicitCopyAssignmentOperators
852 << " implicit copy assignment operators created\n";
853 if (getLangOpts().CPlusPlus)
854 llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
855 << NumImplicitMoveAssignmentOperators
856 << " implicit move assignment operators created\n";
857 llvm::errs() << NumImplicitDestructorsDeclared << "/"
858 << NumImplicitDestructors
859 << " implicit destructors created\n";
860
861 if (ExternalSource) {
862 llvm::errs() << "\n";
863 ExternalSource->PrintStats();
864 }
865
866 BumpAlloc.PrintStats();
867}
868
869RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
870 RecordDecl::TagKind TK) const {
871 SourceLocation Loc;
872 RecordDecl *NewDecl;
873 if (getLangOpts().CPlusPlus)
874 NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
875 Loc, &Idents.get(Name));
876 else
877 NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
878 &Idents.get(Name));
879 NewDecl->setImplicit();
880 return NewDecl;
881}
882
883TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
884 StringRef Name) const {
885 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
886 TypedefDecl *NewDecl = TypedefDecl::Create(
887 const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
888 SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
889 NewDecl->setImplicit();
890 return NewDecl;
891}
892
893TypedefDecl *ASTContext::getInt128Decl() const {
894 if (!Int128Decl)
895 Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
896 return Int128Decl;
897}
898
899TypedefDecl *ASTContext::getUInt128Decl() const {
900 if (!UInt128Decl)
901 UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
902 return UInt128Decl;
903}
904
905TypeDecl *ASTContext::getFloat128StubType() const {
906 assert(LangOpts.CPlusPlus && "should only be called for c++");
907 if (!Float128StubDecl)
908 Float128StubDecl = buildImplicitRecord("__float128");
909
910 return Float128StubDecl;
911}
912
913void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
914 BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
915 R = CanQualType::CreateUnsafe(QualType(Ty, 0));
916 Types.push_back(Ty);
917}
918
919void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
920 assert((!this->Target || this->Target == &Target) &&
921 "Incorrect target reinitialization");
922 assert(VoidTy.isNull() && "Context reinitialized?");
923
924 this->Target = &Target;
925
926 ABI.reset(createCXXABI(Target));
927 AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
928 AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
929
930 // C99 6.2.5p19.
931 InitBuiltinType(VoidTy, BuiltinType::Void);
932
933 // C99 6.2.5p2.
934 InitBuiltinType(BoolTy, BuiltinType::Bool);
935 // C99 6.2.5p3.
936 if (LangOpts.CharIsSigned)
937 InitBuiltinType(CharTy, BuiltinType::Char_S);
938 else
939 InitBuiltinType(CharTy, BuiltinType::Char_U);
940 // C99 6.2.5p4.
941 InitBuiltinType(SignedCharTy, BuiltinType::SChar);
942 InitBuiltinType(ShortTy, BuiltinType::Short);
943 InitBuiltinType(IntTy, BuiltinType::Int);
944 InitBuiltinType(LongTy, BuiltinType::Long);
945 InitBuiltinType(LongLongTy, BuiltinType::LongLong);
946
947 // C99 6.2.5p6.
948 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
949 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
950 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
951 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
952 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
953
954 // C99 6.2.5p10.
955 InitBuiltinType(FloatTy, BuiltinType::Float);
956 InitBuiltinType(DoubleTy, BuiltinType::Double);
957 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
958
959 // GNU extension, 128-bit integers.
960 InitBuiltinType(Int128Ty, BuiltinType::Int128);
961 InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
962
963 // C++ 3.9.1p5
964 if (TargetInfo::isTypeSigned(Target.getWCharType()))
965 InitBuiltinType(WCharTy, BuiltinType::WChar_S);
966 else // -fshort-wchar makes wchar_t be unsigned.
967 InitBuiltinType(WCharTy, BuiltinType::WChar_U);
968 if (LangOpts.CPlusPlus && LangOpts.WChar)
969 WideCharTy = WCharTy;
970 else {
971 // C99 (or C++ using -fno-wchar).
972 WideCharTy = getFromTargetType(Target.getWCharType());
973 }
974
975 WIntTy = getFromTargetType(Target.getWIntType());
976
977 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
978 InitBuiltinType(Char16Ty, BuiltinType::Char16);
979 else // C99
980 Char16Ty = getFromTargetType(Target.getChar16Type());
981
982 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
983 InitBuiltinType(Char32Ty, BuiltinType::Char32);
984 else // C99
985 Char32Ty = getFromTargetType(Target.getChar32Type());
986
987 // Placeholder type for type-dependent expressions whose type is
988 // completely unknown. No code should ever check a type against
989 // DependentTy and users should never see it; however, it is here to
990 // help diagnose failures to properly check for type-dependent
991 // expressions.
992 InitBuiltinType(DependentTy, BuiltinType::Dependent);
993
994 // Placeholder type for functions.
995 InitBuiltinType(OverloadTy, BuiltinType::Overload);
996
997 // Placeholder type for bound members.
998 InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember);
999
1000 // Placeholder type for pseudo-objects.
1001 InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject);
1002
1003 // "any" type; useful for debugger-like clients.
1004 InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny);
1005
1006 // Placeholder type for unbridged ARC casts.
1007 InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast);
1008
1009 // Placeholder type for builtin functions.
1010 InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn);
1011
1012 // C99 6.2.5p11.
1013 FloatComplexTy = getComplexType(FloatTy);
1014 DoubleComplexTy = getComplexType(DoubleTy);
1015 LongDoubleComplexTy = getComplexType(LongDoubleTy);
1016
1017 // Builtin types for 'id', 'Class', and 'SEL'.
1018 InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1019 InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1020 InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1021
1022 if (LangOpts.OpenCL) {
1023 InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
1024 InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
1025 InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
1026 InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
1027 InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
1028 InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
1029
1030 InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1031 InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1032 }
1033
1034 // Builtin type for __objc_yes and __objc_no
1035 ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1036 SignedCharTy : BoolTy);
1037
1038 ObjCConstantStringType = QualType();
1039
1040 ObjCSuperType = QualType();
1041
1042 // void * type
1043 VoidPtrTy = getPointerType(VoidTy);
1044
1045 // nullptr type (C++0x 2.14.7)
1046 InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
1047
1048 // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1049 InitBuiltinType(HalfTy, BuiltinType::Half);
1050
1051 // Builtin type used to help define __builtin_va_list.
1052 VaListTagTy = QualType();
1053}
1054
1055DiagnosticsEngine &ASTContext::getDiagnostics() const {
1056 return SourceMgr.getDiagnostics();
1057}
1058
1059AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1060 AttrVec *&Result = DeclAttrs[D];
1061 if (!Result) {
1062 void *Mem = Allocate(sizeof(AttrVec));
1063 Result = new (Mem) AttrVec;
1064 }
1065
1066 return *Result;
1067}
1068
1069/// \brief Erase the attributes corresponding to the given declaration.
1070void ASTContext::eraseDeclAttrs(const Decl *D) {
1071 llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1072 if (Pos != DeclAttrs.end()) {
1073 Pos->second->~AttrVec();
1074 DeclAttrs.erase(Pos);
1075 }
1076}
1077
1078// FIXME: Remove ?
1079MemberSpecializationInfo *
1080ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1081 assert(Var->isStaticDataMember() && "Not a static data member");
1082 return getTemplateOrSpecializationInfo(Var)
1083 .dyn_cast<MemberSpecializationInfo *>();
1084}
1085
1086ASTContext::TemplateOrSpecializationInfo
1087ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1088 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1089 TemplateOrInstantiation.find(Var);
1090 if (Pos == TemplateOrInstantiation.end())
1091 return TemplateOrSpecializationInfo();
1092
1093 return Pos->second;
1094}
1095
1096void
1097ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1098 TemplateSpecializationKind TSK,
1099 SourceLocation PointOfInstantiation) {
1100 assert(Inst->isStaticDataMember() && "Not a static data member");
1101 assert(Tmpl->isStaticDataMember() && "Not a static data member");
1102 setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1103 Tmpl, TSK, PointOfInstantiation));
1104}
1105
1106void
1107ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1108 TemplateOrSpecializationInfo TSI) {
1109 assert(!TemplateOrInstantiation[Inst] &&
1110 "Already noted what the variable was instantiated from");
1111 TemplateOrInstantiation[Inst] = TSI;
1112}
1113
1114FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1115 const FunctionDecl *FD){
1116 assert(FD && "Specialization is 0");
1117 llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1118 = ClassScopeSpecializationPattern.find(FD);
1119 if (Pos == ClassScopeSpecializationPattern.end())
1120 return nullptr;
1121
1122 return Pos->second;
1123}
1124
1125void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1126 FunctionDecl *Pattern) {
1127 assert(FD && "Specialization is 0");
1128 assert(Pattern && "Class scope specialization pattern is 0");
1129 ClassScopeSpecializationPattern[FD] = Pattern;
1130}
1131
1132NamedDecl *
1133ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1134 llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1135 = InstantiatedFromUsingDecl.find(UUD);
1136 if (Pos == InstantiatedFromUsingDecl.end())
1137 return nullptr;
1138
1139 return Pos->second;
1140}
1141
1142void
1143ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1144 assert((isa<UsingDecl>(Pattern) ||
1145 isa<UnresolvedUsingValueDecl>(Pattern) ||
1146 isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1147 "pattern decl is not a using decl");
1148 assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1149 InstantiatedFromUsingDecl[Inst] = Pattern;
1150}
1151
1152UsingShadowDecl *
1153ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1154 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1155 = InstantiatedFromUsingShadowDecl.find(Inst);
1156 if (Pos == InstantiatedFromUsingShadowDecl.end())
1157 return nullptr;
1158
1159 return Pos->second;
1160}
1161
1162void
1163ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1164 UsingShadowDecl *Pattern) {
1165 assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1166 InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1167}
1168
1169FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1170 llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1171 = InstantiatedFromUnnamedFieldDecl.find(Field);
1172 if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1173 return nullptr;
1174
1175 return Pos->second;
1176}
1177
1178void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1179 FieldDecl *Tmpl) {
1180 assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1181 assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1182 assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1183 "Already noted what unnamed field was instantiated from");
1184
1185 InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1186}
1187
1188ASTContext::overridden_cxx_method_iterator
1189ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1190 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1191 = OverriddenMethods.find(Method->getCanonicalDecl());
1192 if (Pos == OverriddenMethods.end())
1193 return nullptr;
1194
1195 return Pos->second.begin();
1196}
1197
1198ASTContext::overridden_cxx_method_iterator
1199ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1200 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1201 = OverriddenMethods.find(Method->getCanonicalDecl());
1202 if (Pos == OverriddenMethods.end())
1203 return nullptr;
1204
1205 return Pos->second.end();
1206}
1207
1208unsigned
1209ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1210 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1211 = OverriddenMethods.find(Method->getCanonicalDecl());
1212 if (Pos == OverriddenMethods.end())
1213 return 0;
1214
1215 return Pos->second.size();
1216}
1217
1218void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1219 const CXXMethodDecl *Overridden) {
1220 assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1221 OverriddenMethods[Method].push_back(Overridden);
1222}
1223
1224void ASTContext::getOverriddenMethods(
1225 const NamedDecl *D,
1226 SmallVectorImpl<const NamedDecl *> &Overridden) const {
1227 assert(D);
1228
1229 if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1230 Overridden.append(overridden_methods_begin(CXXMethod),
1231 overridden_methods_end(CXXMethod));
1232 return;
1233 }
1234
1235 const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1236 if (!Method)
1237 return;
1238
1239 SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1240 Method->getOverriddenMethods(OverDecls);
1241 Overridden.append(OverDecls.begin(), OverDecls.end());
1242}
1243
1244void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1245 assert(!Import->NextLocalImport && "Import declaration already in the chain");
1246 assert(!Import->isFromASTFile() && "Non-local import declaration");
1247 if (!FirstLocalImport) {
1248 FirstLocalImport = Import;
1249 LastLocalImport = Import;
1250 return;
1251 }
1252
1253 LastLocalImport->NextLocalImport = Import;
1254 LastLocalImport = Import;
1255}
1256
1257//===----------------------------------------------------------------------===//
1258// Type Sizing and Analysis
1259//===----------------------------------------------------------------------===//
1260
1261/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1262/// scalar floating point type.
1263const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1264 const BuiltinType *BT = T->getAs<BuiltinType>();
1265 assert(BT && "Not a floating point type!");
1266 switch (BT->getKind()) {
1267 default: llvm_unreachable("Not a floating point type!");
1268 case BuiltinType::Half: return Target->getHalfFormat();
1269 case BuiltinType::Float: return Target->getFloatFormat();
1270 case BuiltinType::Double: return Target->getDoubleFormat();
1271 case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1272 }
1273}
1274
1275CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1276 unsigned Align = Target->getCharWidth();
1277
1278 bool UseAlignAttrOnly = false;
1279 if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1280 Align = AlignFromAttr;
1281
1282 // __attribute__((aligned)) can increase or decrease alignment
1283 // *except* on a struct or struct member, where it only increases
1284 // alignment unless 'packed' is also specified.
1285 //
1286 // It is an error for alignas to decrease alignment, so we can
1287 // ignore that possibility; Sema should diagnose it.
1288 if (isa<FieldDecl>(D)) {
1289 UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1290 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1291 } else {
1292 UseAlignAttrOnly = true;
1293 }
1294 }
1295 else if (isa<FieldDecl>(D))
1296 UseAlignAttrOnly =
1297 D->hasAttr<PackedAttr>() ||
1298 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1299
1300 // If we're using the align attribute only, just ignore everything
1301 // else about the declaration and its type.
1302 if (UseAlignAttrOnly) {
1303 // do nothing
1304
1305 } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1306 QualType T = VD->getType();
1307 if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
1308 if (ForAlignof)
1309 T = RT->getPointeeType();
1310 else
1311 T = getPointerType(RT->getPointeeType());
1312 }
1313 QualType BaseT = getBaseElementType(T);
1314 if (!BaseT->isIncompleteType() && !T->isFunctionType()) {
1315 // Adjust alignments of declarations with array type by the
1316 // large-array alignment on the target.
1317 if (const ArrayType *arrayType = getAsArrayType(T)) {
1318 unsigned MinWidth = Target->getLargeArrayMinWidth();
1319 if (!ForAlignof && MinWidth) {
1320 if (isa<VariableArrayType>(arrayType))
1321 Align = std::max(Align, Target->getLargeArrayAlign());
1322 else if (isa<ConstantArrayType>(arrayType) &&
1323 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1324 Align = std::max(Align, Target->getLargeArrayAlign());
1325 }
1326 }
1327 Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1328 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1329 if (VD->hasGlobalStorage())
1330 Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1331 }
1332 }
1333
1334 // Fields can be subject to extra alignment constraints, like if
1335 // the field is packed, the struct is packed, or the struct has a
1336 // a max-field-alignment constraint (#pragma pack). So calculate
1337 // the actual alignment of the field within the struct, and then
1338 // (as we're expected to) constrain that by the alignment of the type.
1339 if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
1340 const RecordDecl *Parent = Field->getParent();
1341 // We can only produce a sensible answer if the record is valid.
1342 if (!Parent->isInvalidDecl()) {
1343 const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1344
1345 // Start with the record's overall alignment.
1346 unsigned FieldAlign = toBits(Layout.getAlignment());
1347
1348 // Use the GCD of that and the offset within the record.
1349 uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1350 if (Offset > 0) {
1351 // Alignment is always a power of 2, so the GCD will be a power of 2,
1352 // which means we get to do this crazy thing instead of Euclid's.
1353 uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1354 if (LowBitOfOffset < FieldAlign)
1355 FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1356 }
1357
1358 Align = std::min(Align, FieldAlign);
1359 }
1360 }
1361 }
1362
1363 return toCharUnitsFromBits(Align);
1364}
1365
1366// getTypeInfoDataSizeInChars - Return the size of a type, in
1367// chars. If the type is a record, its data size is returned. This is
1368// the size of the memcpy that's performed when assigning this type
1369// using a trivial copy/move assignment operator.
1370std::pair<CharUnits, CharUnits>
1371ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1372 std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1373
1374 // In C++, objects can sometimes be allocated into the tail padding
1375 // of a base-class subobject. We decide whether that's possible
1376 // during class layout, so here we can just trust the layout results.
1377 if (getLangOpts().CPlusPlus) {
1378 if (const RecordType *RT = T->getAs<RecordType>()) {
1379 const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1380 sizeAndAlign.first = layout.getDataSize();
1381 }
1382 }
1383
1384 return sizeAndAlign;
1385}
1386
1387/// getConstantArrayInfoInChars - Performing the computation in CharUnits
1388/// instead of in bits prevents overflowing the uint64_t for some large arrays.
1389std::pair<CharUnits, CharUnits>
1390static getConstantArrayInfoInChars(const ASTContext &Context,
1391 const ConstantArrayType *CAT) {
1392 std::pair<CharUnits, CharUnits> EltInfo =
1393 Context.getTypeInfoInChars(CAT->getElementType());
1394 uint64_t Size = CAT->getSize().getZExtValue();
1395 assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1396 (uint64_t)(-1)/Size) &&
1397 "Overflow in array type char size evaluation");
1398 uint64_t Width = EltInfo.first.getQuantity() * Size;
1399 unsigned Align = EltInfo.second.getQuantity();
1400 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1401 Context.getTargetInfo().getPointerWidth(0) == 64)
1402 Width = llvm::RoundUpToAlignment(Width, Align);
1403 return std::make_pair(CharUnits::fromQuantity(Width),
1404 CharUnits::fromQuantity(Align));
1405}
1406
1407std::pair<CharUnits, CharUnits>
1408ASTContext::getTypeInfoInChars(const Type *T) const {
1409 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
1410 return getConstantArrayInfoInChars(*this, CAT);
1411 TypeInfo Info = getTypeInfo(T);
1412 return std::make_pair(toCharUnitsFromBits(Info.Width),
1413 toCharUnitsFromBits(Info.Align));
1414}
1415
1416std::pair<CharUnits, CharUnits>
1417ASTContext::getTypeInfoInChars(QualType T) const {
1418 return getTypeInfoInChars(T.getTypePtr());
1419}
1420
1421bool ASTContext::isAlignmentRequired(const Type *T) const {
1422 return getTypeInfo(T).AlignIsRequired;
1423}
1424
1425bool ASTContext::isAlignmentRequired(QualType T) const {
1426 return isAlignmentRequired(T.getTypePtr());
1427}
1428
1429TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1430 TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1431 if (I != MemoizedTypeInfo.end())
1432 return I->second;
1433
1434 // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1435 TypeInfo TI = getTypeInfoImpl(T);
1436 MemoizedTypeInfo[T] = TI;
1437 return TI;
1438}
1439
1440/// getTypeInfoImpl - Return the size of the specified type, in bits. This
1441/// method does not work on incomplete types.
1442///
1443/// FIXME: Pointers into different addr spaces could have different sizes and
1444/// alignment requirements: getPointerInfo should take an AddrSpace, this
1445/// should take a QualType, &c.
1446TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1447 uint64_t Width = 0;
1448 unsigned Align = 8;
1449 bool AlignIsRequired = false;
1450 switch (T->getTypeClass()) {
1451#define TYPE(Class, Base)
1452#define ABSTRACT_TYPE(Class, Base)
1453#define NON_CANONICAL_TYPE(Class, Base)
1454#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1455#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \
1456 case Type::Class: \
1457 assert(!T->isDependentType() && "should not see dependent types here"); \
1458 return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1459#include "clang/AST/TypeNodes.def"
1460 llvm_unreachable("Should not see dependent types");
1461
1462 case Type::FunctionNoProto:
1463 case Type::FunctionProto:
1464 // GCC extension: alignof(function) = 32 bits
1465 Width = 0;
1466 Align = 32;
1467 break;
1468
1469 case Type::IncompleteArray:
1470 case Type::VariableArray:
1471 Width = 0;
1472 Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1473 break;
1474
1475 case Type::ConstantArray: {
1476 const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1477
1478 TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
1479 uint64_t Size = CAT->getSize().getZExtValue();
1480 assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1481 "Overflow in array type bit size evaluation");
1482 Width = EltInfo.Width * Size;
1483 Align = EltInfo.Align;
1484 if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1485 getTargetInfo().getPointerWidth(0) == 64)
1486 Width = llvm::RoundUpToAlignment(Width, Align);
1487 break;
1488 }
1489 case Type::ExtVector:
1490 case Type::Vector: {
1491 const VectorType *VT = cast<VectorType>(T);
1492 TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1493 Width = EltInfo.Width * VT->getNumElements();
1494 Align = Width;
1495 // If the alignment is not a power of 2, round up to the next power of 2.
1496 // This happens for non-power-of-2 length vectors.
1497 if (Align & (Align-1)) {
1498 Align = llvm::NextPowerOf2(Align);
1499 Width = llvm::RoundUpToAlignment(Width, Align);
1500 }
1501 // Adjust the alignment based on the target max.
1502 uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1503 if (TargetVectorAlign && TargetVectorAlign < Align)
1504 Align = TargetVectorAlign;
1505 break;
1506 }
1507
1508 case Type::Builtin:
1509 switch (cast<BuiltinType>(T)->getKind()) {
1510 default: llvm_unreachable("Unknown builtin type!");
1511 case BuiltinType::Void:
1512 // GCC extension: alignof(void) = 8 bits.
1513 Width = 0;
1514 Align = 8;
1515 break;
1516
1517 case BuiltinType::Bool:
1518 Width = Target->getBoolWidth();
1519 Align = Target->getBoolAlign();
1520 break;
1521 case BuiltinType::Char_S:
1522 case BuiltinType::Char_U:
1523 case BuiltinType::UChar:
1524 case BuiltinType::SChar:
1525 Width = Target->getCharWidth();
1526 Align = Target->getCharAlign();
1527 break;
1528 case BuiltinType::WChar_S:
1529 case BuiltinType::WChar_U:
1530 Width = Target->getWCharWidth();
1531 Align = Target->getWCharAlign();
1532 break;
1533 case BuiltinType::Char16:
1534 Width = Target->getChar16Width();
1535 Align = Target->getChar16Align();
1536 break;
1537 case BuiltinType::Char32:
1538 Width = Target->getChar32Width();
1539 Align = Target->getChar32Align();
1540 break;
1541 case BuiltinType::UShort:
1542 case BuiltinType::Short:
1543 Width = Target->getShortWidth();
1544 Align = Target->getShortAlign();
1545 break;
1546 case BuiltinType::UInt:
1547 case BuiltinType::Int:
1548 Width = Target->getIntWidth();
1549 Align = Target->getIntAlign();
1550 break;
1551 case BuiltinType::ULong:
1552 case BuiltinType::Long:
1553 Width = Target->getLongWidth();
1554 Align = Target->getLongAlign();
1555 break;
1556 case BuiltinType::ULongLong:
1557 case BuiltinType::LongLong:
1558 Width = Target->getLongLongWidth();
1559 Align = Target->getLongLongAlign();
1560 break;
1561 case BuiltinType::Int128:
1562 case BuiltinType::UInt128:
1563 Width = 128;
1564 Align = 128; // int128_t is 128-bit aligned on all targets.
1565 break;
1566 case BuiltinType::Half:
1567 Width = Target->getHalfWidth();
1568 Align = Target->getHalfAlign();
1569 break;
1570 case BuiltinType::Float:
1571 Width = Target->getFloatWidth();
1572 Align = Target->getFloatAlign();
1573 break;
1574 case BuiltinType::Double:
1575 Width = Target->getDoubleWidth();
1576 Align = Target->getDoubleAlign();
1577 break;
1578 case BuiltinType::LongDouble:
1579 Width = Target->getLongDoubleWidth();
1580 Align = Target->getLongDoubleAlign();
1581 break;
1582 case BuiltinType::NullPtr:
1583 Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1584 Align = Target->getPointerAlign(0); // == sizeof(void*)
1585 break;
1586 case BuiltinType::ObjCId:
1587 case BuiltinType::ObjCClass:
1588 case BuiltinType::ObjCSel:
1589 Width = Target->getPointerWidth(0);
1590 Align = Target->getPointerAlign(0);
1591 break;
1592 case BuiltinType::OCLSampler:
1593 // Samplers are modeled as integers.
1594 Width = Target->getIntWidth();
1595 Align = Target->getIntAlign();
1596 break;
1597 case BuiltinType::OCLEvent:
1598 case BuiltinType::OCLImage1d:
1599 case BuiltinType::OCLImage1dArray:
1600 case BuiltinType::OCLImage1dBuffer:
1601 case BuiltinType::OCLImage2d:
1602 case BuiltinType::OCLImage2dArray:
1603 case BuiltinType::OCLImage3d:
1604 // Currently these types are pointers to opaque types.
1605 Width = Target->getPointerWidth(0);
1606 Align = Target->getPointerAlign(0);
1607 break;
1608 }
1609 break;
1610 case Type::ObjCObjectPointer:
1611 Width = Target->getPointerWidth(0);
1612 Align = Target->getPointerAlign(0);
1613 break;
1614 case Type::BlockPointer: {
1615 unsigned AS = getTargetAddressSpace(
1616 cast<BlockPointerType>(T)->getPointeeType());
1617 Width = Target->getPointerWidth(AS);
1618 Align = Target->getPointerAlign(AS);
1619 break;
1620 }
1621 case Type::LValueReference:
1622 case Type::RValueReference: {
1623 // alignof and sizeof should never enter this code path here, so we go
1624 // the pointer route.
1625 unsigned AS = getTargetAddressSpace(
1626 cast<ReferenceType>(T)->getPointeeType());
1627 Width = Target->getPointerWidth(AS);
1628 Align = Target->getPointerAlign(AS);
1629 break;
1630 }
1631 case Type::Pointer: {
1632 unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1633 Width = Target->getPointerWidth(AS);
1634 Align = Target->getPointerAlign(AS);
1635 break;
1636 }
1637 case Type::MemberPointer: {
1638 const MemberPointerType *MPT = cast<MemberPointerType>(T);
1639 std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1640 break;
1641 }
1642 case Type::Complex: {
1643 // Complex types have the same alignment as their elements, but twice the
1644 // size.
1645 TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
1646 Width = EltInfo.Width * 2;
1647 Align = EltInfo.Align;
1648 break;
1649 }
1650 case Type::ObjCObject:
1651 return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1652 case Type::Adjusted:
1653 case Type::Decayed:
1654 return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
1655 case Type::ObjCInterface: {
1656 const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1657 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1658 Width = toBits(Layout.getSize());
1659 Align = toBits(Layout.getAlignment());
1660 break;
1661 }
1662 case Type::Record:
1663 case Type::Enum: {
1664 const TagType *TT = cast<TagType>(T);
1665
1666 if (TT->getDecl()->isInvalidDecl()) {
1667 Width = 8;
1668 Align = 8;
1669 break;
1670 }
1671
1672 if (const EnumType *ET = dyn_cast<EnumType>(TT))
1673 return getTypeInfo(ET->getDecl()->getIntegerType());
1674
1675 const RecordType *RT = cast<RecordType>(TT);
1676 const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1677 Width = toBits(Layout.getSize());
1678 Align = toBits(Layout.getAlignment());
1679 break;
1680 }
1681
1682 case Type::SubstTemplateTypeParm:
1683 return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1684 getReplacementType().getTypePtr());
1685
1686 case Type::Auto: {
1687 const AutoType *A = cast<AutoType>(T);
1688 assert(!A->getDeducedType().isNull() &&
1689 "cannot request the size of an undeduced or dependent auto type");
1690 return getTypeInfo(A->getDeducedType().getTypePtr());
1691 }
1692
1693 case Type::Paren:
1694 return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1695
1696 case Type::Typedef: {
1697 const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1698 TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1699 // If the typedef has an aligned attribute on it, it overrides any computed
1700 // alignment we have. This violates the GCC documentation (which says that
1701 // attribute(aligned) can only round up) but matches its implementation.
1702 if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
1703 Align = AttrAlign;
1704 AlignIsRequired = true;
1705 } else {
1706 Align = Info.Align;
1707 AlignIsRequired = Info.AlignIsRequired;
1708 }
1709 Width = Info.Width;
1710 break;
1711 }
1712
1713 case Type::Elaborated:
1714 return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1715
1716 case Type::Attributed:
1717 return getTypeInfo(
1718 cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1719
1720 case Type::Atomic: {
1721 // Start with the base type information.
1722 TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
1723 Width = Info.Width;
1724 Align = Info.Align;
1725
1726 // If the size of the type doesn't exceed the platform's max
1727 // atomic promotion width, make the size and alignment more
1728 // favorable to atomic operations:
1729 if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1730 // Round the size up to a power of 2.
1731 if (!llvm::isPowerOf2_64(Width))
1732 Width = llvm::NextPowerOf2(Width);
1733
1734 // Set the alignment equal to the size.
1735 Align = static_cast<unsigned>(Width);
1736 }
1737 }
1738
1739 }
1740
1741 assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1742 return TypeInfo(Width, Align, AlignIsRequired);
1743}
1744
1745/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1746CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1747 return CharUnits::fromQuantity(BitSize / getCharWidth());
1748}
1749
1750/// toBits - Convert a size in characters to a size in characters.
1751int64_t ASTContext::toBits(CharUnits CharSize) const {
1752 return CharSize.getQuantity() * getCharWidth();
1753}
1754
1755/// getTypeSizeInChars - Return the size of the specified type, in characters.
1756/// This method does not work on incomplete types.
1757CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1758 return getTypeInfoInChars(T).first;
1759}
1760CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1761 return getTypeInfoInChars(T).first;
1762}
1763
1764/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1765/// characters. This method does not work on incomplete types.
1766CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1767 return toCharUnitsFromBits(getTypeAlign(T));
1768}
1769CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1770 return toCharUnitsFromBits(getTypeAlign(T));
1771}
1772
1773/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1774/// type for the current target in bits. This can be different than the ABI
1775/// alignment in cases where it is beneficial for performance to overalign
1776/// a data type.
1777unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1778 TypeInfo TI = getTypeInfo(T);
1779 unsigned ABIAlign = TI.Align;
1780
1781 if (Target->getTriple().getArch() == llvm::Triple::xcore)
1782 return ABIAlign; // Never overalign on XCore.
1783
1784 // Double and long long should be naturally aligned if possible.
1785 T = T->getBaseElementTypeUnsafe();
1786 if (const ComplexType *CT = T->getAs<ComplexType>())
1787 T = CT->getElementType().getTypePtr();
1788 if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1789 T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1790 T->isSpecificBuiltinType(BuiltinType::ULongLong))
1791 // Don't increase the alignment if an alignment attribute was specified on a
1792 // typedef declaration.
1793 if (!TI.AlignIsRequired)
1794 return std::max(ABIAlign, (unsigned)getTypeSize(T));
1795
1796 return ABIAlign;
1797}
1798
1799/// getAlignOfGlobalVar - Return the alignment in bits that should be given
1800/// to a global variable of the specified type.
1801unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
1802 return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
1803}
1804
1805/// getAlignOfGlobalVarInChars - Return the alignment in characters that
1806/// should be given to a global variable of the specified type.
1807CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
1808 return toCharUnitsFromBits(getAlignOfGlobalVar(T));
1809}
1810
1811/// DeepCollectObjCIvars -
1812/// This routine first collects all declared, but not synthesized, ivars in
1813/// super class and then collects all ivars, including those synthesized for
1814/// current class. This routine is used for implementation of current class
1815/// when all ivars, declared and synthesized are known.
1816///
1817void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1818 bool leafClass,
1819 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1820 if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1821 DeepCollectObjCIvars(SuperClass, false, Ivars);
1822 if (!leafClass) {
1823 for (const auto *I : OI->ivars())
1824 Ivars.push_back(I);
1825 } else {
1826 ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1827 for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1828 Iv= Iv->getNextIvar())
1829 Ivars.push_back(Iv);
1830 }
1831}
1832
1833/// CollectInheritedProtocols - Collect all protocols in current class and
1834/// those inherited by it.
1835void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1836 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1837 if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1838 // We can use protocol_iterator here instead of
1839 // all_referenced_protocol_iterator since we are walking all categories.
1840 for (auto *Proto : OI->all_referenced_protocols()) {
1841 Protocols.insert(Proto->getCanonicalDecl());
1842 for (auto *P : Proto->protocols()) {
1843 Protocols.insert(P->getCanonicalDecl());
1844 CollectInheritedProtocols(P, Protocols);
1845 }
1846 }
1847
1848 // Categories of this Interface.
1849 for (const auto *Cat : OI->visible_categories())
1850 CollectInheritedProtocols(Cat, Protocols);
1851
1852 if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1853 while (SD) {
1854 CollectInheritedProtocols(SD, Protocols);
1855 SD = SD->getSuperClass();
1856 }
1857 } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1858 for (auto *Proto : OC->protocols()) {
1859 Protocols.insert(Proto->getCanonicalDecl());
1860 for (const auto *P : Proto->protocols())
1861 CollectInheritedProtocols(P, Protocols);
1862 }
1863 } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1864 for (auto *Proto : OP->protocols()) {
1865 Protocols.insert(Proto->getCanonicalDecl());
1866 for (const auto *P : Proto->protocols())
1867 CollectInheritedProtocols(P, Protocols);
1868 }
1869 }
1870}
1871
1872unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1873 unsigned count = 0;
1874 // Count ivars declared in class extension.
1875 for (const auto *Ext : OI->known_extensions())
1876 count += Ext->ivar_size();
1877
1878 // Count ivar defined in this class's implementation. This
1879 // includes synthesized ivars.
1880 if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1881 count += ImplDecl->ivar_size();
1882
1883 return count;
1884}
1885
1886bool ASTContext::isSentinelNullExpr(const Expr *E) {
1887 if (!E)
1888 return false;
1889
1890 // nullptr_t is always treated as null.
1891 if (E->getType()->isNullPtrType()) return true;
1892
1893 if (E->getType()->isAnyPointerType() &&
1894 E->IgnoreParenCasts()->isNullPointerConstant(*this,
1895 Expr::NPC_ValueDependentIsNull))
1896 return true;
1897
1898 // Unfortunately, __null has type 'int'.
1899 if (isa<GNUNullExpr>(E)) return true;
1900
1901 return false;
1902}
1903
1904/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1905ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1906 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1907 I = ObjCImpls.find(D);
1908 if (I != ObjCImpls.end())
1909 return cast<ObjCImplementationDecl>(I->second);
1910 return nullptr;
1911}
1912/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1913ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1914 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1915 I = ObjCImpls.find(D);
1916 if (I != ObjCImpls.end())
1917 return cast<ObjCCategoryImplDecl>(I->second);
1918 return nullptr;
1919}
1920
1921/// \brief Set the implementation of ObjCInterfaceDecl.
1922void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1923 ObjCImplementationDecl *ImplD) {
1924 assert(IFaceD && ImplD && "Passed null params");
1925 ObjCImpls[IFaceD] = ImplD;
1926}
1927/// \brief Set the implementation of ObjCCategoryDecl.
1928void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1929 ObjCCategoryImplDecl *ImplD) {
1930 assert(CatD && ImplD && "Passed null params");
1931 ObjCImpls[CatD] = ImplD;
1932}
1933
1934const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1935 const NamedDecl *ND) const {
1936 if (const ObjCInterfaceDecl *ID =
1937 dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1938 return ID;
1939 if (const ObjCCategoryDecl *CD =
1940 dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1941 return CD->getClassInterface();
1942 if (const ObjCImplDecl *IMD =
1943 dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1944 return IMD->getClassInterface();
1945
1946 return nullptr;
1947}
1948
1949/// \brief Get the copy initialization expression of VarDecl,or NULL if
1950/// none exists.
1951Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1952 assert(VD && "Passed null params");
1953 assert(VD->hasAttr<BlocksAttr>() &&
1954 "getBlockVarCopyInits - not __block var");
1955 llvm::DenseMap<const VarDecl*, Expr*>::iterator
1956 I = BlockVarCopyInits.find(VD);
1957 return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr;
1958}
1959
1960/// \brief Set the copy inialization expression of a block var decl.
1961void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1962 assert(VD && Init && "Passed null params");
1963 assert(VD->hasAttr<BlocksAttr>() &&
1964 "setBlockVarCopyInits - not __block var");
1965 BlockVarCopyInits[VD] = Init;
1966}
1967
1968TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1969 unsigned DataSize) const {
1970 if (!DataSize)
1971 DataSize = TypeLoc::getFullDataSizeForType(T);
1972 else
1973 assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1974 "incorrect data size provided to CreateTypeSourceInfo!");
1975
1976 TypeSourceInfo *TInfo =
1977 (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1978 new (TInfo) TypeSourceInfo(T);
1979 return TInfo;
1980}
1981
1982TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1983 SourceLocation L) const {
1984 TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1985 DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1986 return DI;
1987}
1988
1989const ASTRecordLayout &
1990ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1991 return getObjCLayout(D, nullptr);
1992}
1993
1994const ASTRecordLayout &
1995ASTContext::getASTObjCImplementationLayout(
1996 const ObjCImplementationDecl *D) const {
1997 return getObjCLayout(D->getClassInterface(), D);
1998}
1999
2000//===----------------------------------------------------------------------===//
2001// Type creation/memoization methods
2002//===----------------------------------------------------------------------===//
2003
2004QualType
2005ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2006 unsigned fastQuals = quals.getFastQualifiers();
2007 quals.removeFastQualifiers();
2008
2009 // Check if we've already instantiated this type.
2010 llvm::FoldingSetNodeID ID;
2011 ExtQuals::Profile(ID, baseType, quals);
2012 void *insertPos = nullptr;
2013 if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2014 assert(eq->getQualifiers() == quals);
2015 return QualType(eq, fastQuals);
2016 }
2017
2018 // If the base type is not canonical, make the appropriate canonical type.
2019 QualType canon;
2020 if (!baseType->isCanonicalUnqualified()) {
2021 SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2022 canonSplit.Quals.addConsistentQualifiers(quals);
2023 canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2024
2025 // Re-find the insert position.
2026 (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2027 }
2028
2029 ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2030 ExtQualNodes.InsertNode(eq, insertPos);
2031 return QualType(eq, fastQuals);
2032}
2033
2034QualType
2035ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
2036 QualType CanT = getCanonicalType(T);
2037 if (CanT.getAddressSpace() == AddressSpace)
2038 return T;
2039
2040 // If we are composing extended qualifiers together, merge together
2041 // into one ExtQuals node.
2042 QualifierCollector Quals;
2043 const Type *TypeNode = Quals.strip(T);
2044
2045 // If this type already has an address space specified, it cannot get
2046 // another one.
2047 assert(!Quals.hasAddressSpace() &&
2048 "Type cannot be in multiple addr spaces!");
2049 Quals.addAddressSpace(AddressSpace);
2050
2051 return getExtQualType(TypeNode, Quals);
2052}
2053
2054QualType ASTContext::getObjCGCQualType(QualType T,
2055 Qualifiers::GC GCAttr) const {
2056 QualType CanT = getCanonicalType(T);
2057 if (CanT.getObjCGCAttr() == GCAttr)
2058 return T;
2059
2060 if (const PointerType *ptr = T->getAs<PointerType>()) {
2061 QualType Pointee = ptr->getPointeeType();
2062 if (Pointee->isAnyPointerType()) {
2063 QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2064 return getPointerType(ResultType);
2065 }
2066 }
2067
2068 // If we are composing extended qualifiers together, merge together
2069 // into one ExtQuals node.
2070 QualifierCollector Quals;
2071 const Type *TypeNode = Quals.strip(T);
2072
2073 // If this type already has an ObjCGC specified, it cannot get
2074 // another one.
2075 assert(!Quals.hasObjCGCAttr() &&
2076 "Type cannot have multiple ObjCGCs!");
2077 Quals.addObjCGCAttr(GCAttr);
2078
2079 return getExtQualType(TypeNode, Quals);
2080}
2081
2082const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2083 FunctionType::ExtInfo Info) {
2084 if (T->getExtInfo() == Info)
2085 return T;
2086
2087 QualType Result;
2088 if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2089 Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
2090 } else {
2091 const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2092 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2093 EPI.ExtInfo = Info;
2094 Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
2095 }
2096
2097 return cast<FunctionType>(Result.getTypePtr());
2098}
2099
2100void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2101 QualType ResultType) {
2102 FD = FD->getMostRecentDecl();
2103 while (true) {
2104 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2105 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2106 FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
2107 if (FunctionDecl *Next = FD->getPreviousDecl())
2108 FD = Next;
2109 else
2110 break;
2111 }
2112 if (ASTMutationListener *L = getASTMutationListener())
2113 L->DeducedReturnType(FD, ResultType);
2114}
2115
2116/// Get a function type and produce the equivalent function type with the
2117/// specified exception specification. Type sugar that can be present on a
2118/// declaration of a function with an exception specification is permitted
2119/// and preserved. Other type sugar (for instance, typedefs) is not.
2120static QualType getFunctionTypeWithExceptionSpec(
2121 ASTContext &Context, QualType Orig,
2122 const FunctionProtoType::ExceptionSpecInfo &ESI) {
2123 // Might have some parens.
2124 if (auto *PT = dyn_cast<ParenType>(Orig))
2125 return Context.getParenType(
2126 getFunctionTypeWithExceptionSpec(Context, PT->getInnerType(), ESI));
2127
2128 // Might have a calling-convention attribute.
2129 if (auto *AT = dyn_cast<AttributedType>(Orig))
2130 return Context.getAttributedType(
2131 AT->getAttrKind(),
2132 getFunctionTypeWithExceptionSpec(Context, AT->getModifiedType(), ESI),
2133 getFunctionTypeWithExceptionSpec(Context, AT->getEquivalentType(),
2134 ESI));
2135
2136 // Anything else must be a function type. Rebuild it with the new exception
2137 // specification.
2138 const FunctionProtoType *Proto = cast<FunctionProtoType>(Orig);
2139 return Context.getFunctionType(
2140 Proto->getReturnType(), Proto->getParamTypes(),
2141 Proto->getExtProtoInfo().withExceptionSpec(ESI));
2142}
2143
2144void ASTContext::adjustExceptionSpec(
2145 FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
2146 bool AsWritten) {
2147 // Update the type.
2148 QualType Updated =
2149 getFunctionTypeWithExceptionSpec(*this, FD->getType(), ESI);
2150 FD->setType(Updated);
2151
2152 if (!AsWritten)
2153 return;
2154
2155 // Update the type in the type source information too.
2156 if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
2157 // If the type and the type-as-written differ, we may need to update
2158 // the type-as-written too.
2159 if (TSInfo->getType() != FD->getType())
2160 Updated = getFunctionTypeWithExceptionSpec(*this, TSInfo->getType(), ESI);
2161
2162 // FIXME: When we get proper type location information for exceptions,
2163 // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
2164 // up the TypeSourceInfo;
2165 assert(TypeLoc::getFullDataSizeForType(Updated) ==
2166 TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
2167 "TypeLoc size mismatch from updating exception specification");
2168 TSInfo->overrideType(Updated);
2169 }
2170}
2171
2172/// getComplexType - Return the uniqued reference to the type for a complex
2173/// number with the specified element type.
2174QualType ASTContext::getComplexType(QualType T) const {
2175 // Unique pointers, to guarantee there is only one pointer of a particular
2176 // structure.
2177 llvm::FoldingSetNodeID ID;
2178 ComplexType::Profile(ID, T);
2179
2180 void *InsertPos = nullptr;
2181 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2182 return QualType(CT, 0);
2183
2184 // If the pointee type isn't canonical, this won't be a canonical type either,
2185 // so fill in the canonical type field.
2186 QualType Canonical;
2187 if (!T.isCanonical()) {
2188 Canonical = getComplexType(getCanonicalType(T));
2189
2190 // Get the new insert position for the node we care about.
2191 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2192 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2193 }
2194 ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2195 Types.push_back(New);
2196 ComplexTypes.InsertNode(New, InsertPos);
2197 return QualType(New, 0);
2198}
2199
2200/// getPointerType - Return the uniqued reference to the type for a pointer to
2201/// the specified type.
2202QualType ASTContext::getPointerType(QualType T) const {
2203 // Unique pointers, to guarantee there is only one pointer of a particular
2204 // structure.
2205 llvm::FoldingSetNodeID ID;
2206 PointerType::Profile(ID, T);
2207
2208 void *InsertPos = nullptr;
2209 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2210 return QualType(PT, 0);
2211
2212 // If the pointee type isn't canonical, this won't be a canonical type either,
2213 // so fill in the canonical type field.
2214 QualType Canonical;
2215 if (!T.isCanonical()) {
2216 Canonical = getPointerType(getCanonicalType(T));
2217
2218 // Get the new insert position for the node we care about.
2219 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2220 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2221 }
2222 PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2223 Types.push_back(New);
2224 PointerTypes.InsertNode(New, InsertPos);
2225 return QualType(New, 0);
2226}
2227
2228QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
2229 llvm::FoldingSetNodeID ID;
2230 AdjustedType::Profile(ID, Orig, New);
2231 void *InsertPos = nullptr;
2232 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2233 if (AT)
2234 return QualType(AT, 0);
2235
2236 QualType Canonical = getCanonicalType(New);
2237
2238 // Get the new insert position for the node we care about.
2239 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2240 assert(!AT && "Shouldn't be in the map!");
2241
2242 AT = new (*this, TypeAlignment)
2243 AdjustedType(Type::Adjusted, Orig, New, Canonical);
2244 Types.push_back(AT);
2245 AdjustedTypes.InsertNode(AT, InsertPos);
2246 return QualType(AT, 0);
2247}
2248
2249QualType ASTContext::getDecayedType(QualType T) const {
2250 assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
2251
2252 QualType Decayed;
2253
2254 // C99 6.7.5.3p7:
2255 // A declaration of a parameter as "array of type" shall be
2256 // adjusted to "qualified pointer to type", where the type
2257 // qualifiers (if any) are those specified within the [ and ] of
2258 // the array type derivation.
2259 if (T->isArrayType())
2260 Decayed = getArrayDecayedType(T);
2261
2262 // C99 6.7.5.3p8:
2263 // A declaration of a parameter as "function returning type"
2264 // shall be adjusted to "pointer to function returning type", as
2265 // in 6.3.2.1.
2266 if (T->isFunctionType())
2267 Decayed = getPointerType(T);
2268
2269 llvm::FoldingSetNodeID ID;
2270 AdjustedType::Profile(ID, T, Decayed);
2271 void *InsertPos = nullptr;
2272 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2273 if (AT)
2274 return QualType(AT, 0);
2275
2276 QualType Canonical = getCanonicalType(Decayed);
2277
2278 // Get the new insert position for the node we care about.
2279 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2280 assert(!AT && "Shouldn't be in the map!");
2281
2282 AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
2283 Types.push_back(AT);
2284 AdjustedTypes.InsertNode(AT, InsertPos);
2285 return QualType(AT, 0);
2286}
2287
2288/// getBlockPointerType - Return the uniqued reference to the type for
2289/// a pointer to the specified block.
2290QualType ASTContext::getBlockPointerType(QualType T) const {
2291 assert(T->isFunctionType() && "block of function types only");
2292 // Unique pointers, to guarantee there is only one block of a particular
2293 // structure.
2294 llvm::FoldingSetNodeID ID;
2295 BlockPointerType::Profile(ID, T);
2296
2297 void *InsertPos = nullptr;
2298 if (BlockPointerType *PT =
2299 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2300 return QualType(PT, 0);
2301
2302 // If the block pointee type isn't canonical, this won't be a canonical
2303 // type either so fill in the canonical type field.
2304 QualType Canonical;
2305 if (!T.isCanonical()) {
2306 Canonical = getBlockPointerType(getCanonicalType(T));
2307
2308 // Get the new insert position for the node we care about.
2309 BlockPointerType *NewIP =
2310 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2311 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2312 }
2313 BlockPointerType *New
2314 = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2315 Types.push_back(New);
2316 BlockPointerTypes.InsertNode(New, InsertPos);
2317 return QualType(New, 0);
2318}
2319
2320/// getLValueReferenceType - Return the uniqued reference to the type for an
2321/// lvalue reference to the specified type.
2322QualType
2323ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2324 assert(getCanonicalType(T) != OverloadTy &&
2325 "Unresolved overloaded function type");
2326
2327 // Unique pointers, to guarantee there is only one pointer of a particular
2328 // structure.
2329 llvm::FoldingSetNodeID ID;
2330 ReferenceType::Profile(ID, T, SpelledAsLValue);
2331
2332 void *InsertPos = nullptr;
2333 if (LValueReferenceType *RT =
2334 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2335 return QualType(RT, 0);
2336
2337 const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2338
2339 // If the referencee type isn't canonical, this won't be a canonical type
2340 // either, so fill in the canonical type field.
2341 QualType Canonical;
2342 if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2343 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2344 Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2345
2346 // Get the new insert position for the node we care about.
2347 LValueReferenceType *NewIP =
2348 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2349 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2350 }
2351
2352 LValueReferenceType *New
2353 = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2354 SpelledAsLValue);
2355 Types.push_back(New);
2356 LValueReferenceTypes.InsertNode(New, InsertPos);
2357
2358 return QualType(New, 0);
2359}
2360
2361/// getRValueReferenceType - Return the uniqued reference to the type for an
2362/// rvalue reference to the specified type.
2363QualType ASTContext::getRValueReferenceType(QualType T) const {
2364 // Unique pointers, to guarantee there is only one pointer of a particular
2365 // structure.
2366 llvm::FoldingSetNodeID ID;
2367 ReferenceType::Profile(ID, T, false);
2368
2369 void *InsertPos = nullptr;
2370 if (RValueReferenceType *RT =
2371 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2372 return QualType(RT, 0);
2373
2374 const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2375
2376 // If the referencee type isn't canonical, this won't be a canonical type
2377 // either, so fill in the canonical type field.
2378 QualType Canonical;
2379 if (InnerRef || !T.isCanonical()) {
2380 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2381 Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2382
2383 // Get the new insert position for the node we care about.
2384 RValueReferenceType *NewIP =
2385 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2386 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2387 }
2388
2389 RValueReferenceType *New
2390 = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2391 Types.push_back(New);
2392 RValueReferenceTypes.InsertNode(New, InsertPos);
2393 return QualType(New, 0);
2394}
2395
2396/// getMemberPointerType - Return the uniqued reference to the type for a
2397/// member pointer to the specified type, in the specified class.
2398QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2399 // Unique pointers, to guarantee there is only one pointer of a particular
2400 // structure.
2401 llvm::FoldingSetNodeID ID;
2402 MemberPointerType::Profile(ID, T, Cls);
2403
2404 void *InsertPos = nullptr;
2405 if (MemberPointerType *PT =
2406 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2407 return QualType(PT, 0);
2408
2409 // If the pointee or class type isn't canonical, this won't be a canonical
2410 // type either, so fill in the canonical type field.
2411 QualType Canonical;
2412 if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2413 Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2414
2415 // Get the new insert position for the node we care about.
2416 MemberPointerType *NewIP =
2417 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2418 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2419 }
2420 MemberPointerType *New
2421 = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2422 Types.push_back(New);
2423 MemberPointerTypes.InsertNode(New, InsertPos);
2424 return QualType(New, 0);
2425}
2426
2427/// getConstantArrayType - Return the unique reference to the type for an
2428/// array of the specified element type.
2429QualType ASTContext::getConstantArrayType(QualType EltTy,
2430 const llvm::APInt &ArySizeIn,
2431 ArrayType::ArraySizeModifier ASM,
2432 unsigned IndexTypeQuals) const {
2433 assert((EltTy->isDependentType() ||
2434 EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2435 "Constant array of VLAs is illegal!");
2436
2437 // Convert the array size into a canonical width matching the pointer size for
2438 // the target.
2439 llvm::APInt ArySize(ArySizeIn);
2440 ArySize =
2441 ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2442
2443 llvm::FoldingSetNodeID ID;
2444 ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2445
2446 void *InsertPos = nullptr;
2447 if (ConstantArrayType *ATP =
2448 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2449 return QualType(ATP, 0);
2450
2451 // If the element type isn't canonical or has qualifiers, this won't
2452 // be a canonical type either, so fill in the canonical type field.
2453 QualType Canon;
2454 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2455 SplitQualType canonSplit = getCanonicalType(EltTy).split();
2456 Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2457 ASM, IndexTypeQuals);
2458 Canon = getQualifiedType(Canon, canonSplit.Quals);
2459
2460 // Get the new insert position for the node we care about.
2461 ConstantArrayType *NewIP =
2462 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2463 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2464 }
2465
2466 ConstantArrayType *New = new(*this,TypeAlignment)
2467 ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2468 ConstantArrayTypes.InsertNode(New, InsertPos);
2469 Types.push_back(New);
2470 return QualType(New, 0);
2471}
2472
2473/// getVariableArrayDecayedType - Turns the given type, which may be
2474/// variably-modified, into the corresponding type with all the known
2475/// sizes replaced with [*].
2476QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2477 // Vastly most common case.
2478 if (!type->isVariablyModifiedType()) return type;
2479
2480 QualType result;
2481
2482 SplitQualType split = type.getSplitDesugaredType();
2483 const Type *ty = split.Ty;
2484 switch (ty->getTypeClass()) {
2485#define TYPE(Class, Base)
2486#define ABSTRACT_TYPE(Class, Base)
2487#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2488#include "clang/AST/TypeNodes.def"
2489 llvm_unreachable("didn't desugar past all non-canonical types?");
2490
2491 // These types should never be variably-modified.
2492 case Type::Builtin:
2493 case Type::Complex:
2494 case Type::Vector:
2495 case Type::ExtVector:
2496 case Type::DependentSizedExtVector:
2497 case Type::ObjCObject:
2498 case Type::ObjCInterface:
2499 case Type::ObjCObjectPointer:
2500 case Type::Record:
2501 case Type::Enum:
2502 case Type::UnresolvedUsing:
2503 case Type::TypeOfExpr:
2504 case Type::TypeOf:
2505 case Type::Decltype:
2506 case Type::UnaryTransform:
2507 case Type::DependentName:
2508 case Type::InjectedClassName:
2509 case Type::TemplateSpecialization:
2510 case Type::DependentTemplateSpecialization:
2511 case Type::TemplateTypeParm:
2512 case Type::SubstTemplateTypeParmPack:
2513 case Type::Auto:
2514 case Type::PackExpansion:
2515 llvm_unreachable("type should never be variably-modified");
2516
2517 // These types can be variably-modified but should never need to
2518 // further decay.
2519 case Type::FunctionNoProto:
2520 case Type::FunctionProto:
2521 case Type::BlockPointer:
2522 case Type::MemberPointer:
2523 return type;
2524
2525 // These types can be variably-modified. All these modifications
2526 // preserve structure except as noted by comments.
2527 // TODO: if we ever care about optimizing VLAs, there are no-op
2528 // optimizations available here.
2529 case Type::Pointer:
2530 result = getPointerType(getVariableArrayDecayedType(
2531 cast<PointerType>(ty)->getPointeeType()));
2532 break;
2533
2534 case Type::LValueReference: {
2535 const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2536 result = getLValueReferenceType(
2537 getVariableArrayDecayedType(lv->getPointeeType()),
2538 lv->isSpelledAsLValue());
2539 break;
2540 }
2541
2542 case Type::RValueReference: {
2543 const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2544 result = getRValueReferenceType(
2545 getVariableArrayDecayedType(lv->getPointeeType()));
2546 break;
2547 }
2548
2549 case Type::Atomic: {
2550 const AtomicType *at = cast<AtomicType>(ty);
2551 result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2552 break;
2553 }
2554
2555 case Type::ConstantArray: {
2556 const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2557 result = getConstantArrayType(
2558 getVariableArrayDecayedType(cat->getElementType()),
2559 cat->getSize(),
2560 cat->getSizeModifier(),
2561 cat->getIndexTypeCVRQualifiers());
2562 break;
2563 }
2564
2565 case Type::DependentSizedArray: {
2566 const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2567 result = getDependentSizedArrayType(
2568 getVariableArrayDecayedType(dat->getElementType()),
2569 dat->getSizeExpr(),
2570 dat->getSizeModifier(),
2571 dat->getIndexTypeCVRQualifiers(),
2572 dat->getBracketsRange());
2573 break;
2574 }
2575
2576 // Turn incomplete types into [*] types.
2577 case Type::IncompleteArray: {
2578 const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2579 result = getVariableArrayType(
2580 getVariableArrayDecayedType(iat->getElementType()),
2581 /*size*/ nullptr,
2582 ArrayType::Normal,
2583 iat->getIndexTypeCVRQualifiers(),
2584 SourceRange());
2585 break;
2586 }
2587
2588 // Turn VLA types into [*] types.
2589 case Type::VariableArray: {
2590 const VariableArrayType *vat = cast<VariableArrayType>(ty);
2591 result = getVariableArrayType(
2592 getVariableArrayDecayedType(vat->getElementType()),
2593 /*size*/ nullptr,
2594 ArrayType::Star,
2595 vat->getIndexTypeCVRQualifiers(),
2596 vat->getBracketsRange());
2597 break;
2598 }
2599 }
2600
2601 // Apply the top-level qualifiers from the original.
2602 return getQualifiedType(result, split.Quals);
2603}
2604
2605/// getVariableArrayType - Returns a non-unique reference to the type for a
2606/// variable array of the specified element type.
2607QualType ASTContext::getVariableArrayType(QualType EltTy,
2608 Expr *NumElts,
2609 ArrayType::ArraySizeModifier ASM,
2610 unsigned IndexTypeQuals,
2611 SourceRange Brackets) const {
2612 // Since we don't unique expressions, it isn't possible to unique VLA's
2613 // that have an expression provided for their size.
2614 QualType Canon;
2615
2616 // Be sure to pull qualifiers off the element type.
2617 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2618 SplitQualType canonSplit = getCanonicalType(EltTy).split();
2619 Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2620 IndexTypeQuals, Brackets);
2621 Canon = getQualifiedType(Canon, canonSplit.Quals);
2622 }
2623
2624 VariableArrayType *New = new(*this, TypeAlignment)
2625 VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2626
2627 VariableArrayTypes.push_back(New);
2628 Types.push_back(New);
2629 return QualType(New, 0);
2630}
2631
2632/// getDependentSizedArrayType - Returns a non-unique reference to
2633/// the type for a dependently-sized array of the specified element
2634/// type.
2635QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2636 Expr *numElements,
2637 ArrayType::ArraySizeModifier ASM,
2638 unsigned elementTypeQuals,
2639 SourceRange brackets) const {
2640 assert((!numElements || numElements->isTypeDependent() ||
2641 numElements->isValueDependent()) &&
2642 "Size must be type- or value-dependent!");
2643
2644 // Dependently-sized array types that do not have a specified number
2645 // of elements will have their sizes deduced from a dependent
2646 // initializer. We do no canonicalization here at all, which is okay
2647 // because they can't be used in most locations.
2648 if (!numElements) {
2649 DependentSizedArrayType *newType
2650 = new (*this, TypeAlignment)
2651 DependentSizedArrayType(*this, elementType, QualType(),
2652 numElements, ASM, elementTypeQuals,
2653 brackets);
2654 Types.push_back(newType);
2655 return QualType(newType, 0);
2656 }
2657
2658 // Otherwise, we actually build a new type every time, but we
2659 // also build a canonical type.
2660
2661 SplitQualType canonElementType = getCanonicalType(elementType).split();
2662
2663 void *insertPos = nullptr;
2664 llvm::FoldingSetNodeID ID;
2665 DependentSizedArrayType::Profile(ID, *this,
2666 QualType(canonElementType.Ty, 0),
2667 ASM, elementTypeQuals, numElements);
2668
2669 // Look for an existing type with these properties.
2670 DependentSizedArrayType *canonTy =
2671 DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2672
2673 // If we don't have one, build one.
2674 if (!canonTy) {
2675 canonTy = new (*this, TypeAlignment)
2676 DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2677 QualType(), numElements, ASM, elementTypeQuals,
2678 brackets);
2679 DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2680 Types.push_back(canonTy);
2681 }
2682
2683 // Apply qualifiers from the element type to the array.
2684 QualType canon = getQualifiedType(QualType(canonTy,0),
2685 canonElementType.Quals);
2686
2687 // If we didn't need extra canonicalization for the element type,
2688 // then just use that as our result.
2689 if (QualType(canonElementType.Ty, 0) == elementType)
2690 return canon;
2691
2692 // Otherwise, we need to build a type which follows the spelling
2693 // of the element type.
2694 DependentSizedArrayType *sugaredType
2695 = new (*this, TypeAlignment)
2696 DependentSizedArrayType(*this, elementType, canon, numElements,
2697 ASM, elementTypeQuals, brackets);
2698 Types.push_back(sugaredType);
2699 return QualType(sugaredType, 0);
2700}
2701
2702QualType ASTContext::getIncompleteArrayType(QualType elementType,
2703 ArrayType::ArraySizeModifier ASM,
2704 unsigned elementTypeQuals) const {
2705 llvm::FoldingSetNodeID ID;
2706 IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2707
2708 void *insertPos = nullptr;
2709 if (IncompleteArrayType *iat =
2710 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2711 return QualType(iat, 0);
2712
2713 // If the element type isn't canonical, this won't be a canonical type
2714 // either, so fill in the canonical type field. We also have to pull
2715 // qualifiers off the element type.
2716 QualType canon;
2717
2718 if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2719 SplitQualType canonSplit = getCanonicalType(elementType).split();
2720 canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2721 ASM, elementTypeQuals);
2722 canon = getQualifiedType(canon, canonSplit.Quals);
2723
2724 // Get the new insert position for the node we care about.
2725 IncompleteArrayType *existing =
2726 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2727 assert(!existing && "Shouldn't be in the map!"); (void) existing;
2728 }
2729
2730 IncompleteArrayType *newType = new (*this, TypeAlignment)
2731 IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2732
2733 IncompleteArrayTypes.InsertNode(newType, insertPos);
2734 Types.push_back(newType);
2735 return QualType(newType, 0);
2736}
2737
2738/// getVectorType - Return the unique reference to a vector type of
2739/// the specified element type and size. VectorType must be a built-in type.
2740QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2741 VectorType::VectorKind VecKind) const {
2742 assert(vecType->isBuiltinType());
2743
2744 // Check if we've already instantiated a vector of this type.
2745 llvm::FoldingSetNodeID ID;
2746 VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2747
2748 void *InsertPos = nullptr;
2749 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2750 return QualType(VTP, 0);
2751
2752 // If the element type isn't canonical, this won't be a canonical type either,
2753 // so fill in the canonical type field.
2754 QualType Canonical;
2755 if (!vecType.isCanonical()) {
2756 Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2757
2758 // Get the new insert position for the node we care about.
2759 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2760 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2761 }
2762 VectorType *New = new (*this, TypeAlignment)
2763 VectorType(vecType, NumElts, Canonical, VecKind);
2764 VectorTypes.InsertNode(New, InsertPos);
2765 Types.push_back(New);
2766 return QualType(New, 0);
2767}
2768
2769/// getExtVectorType - Return the unique reference to an extended vector type of
2770/// the specified element type and size. VectorType must be a built-in type.
2771QualType
2772ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2773 assert(vecType->isBuiltinType() || vecType->isDependentType());
2774
2775 // Check if we've already instantiated a vector of this type.
2776 llvm::FoldingSetNodeID ID;
2777 VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2778 VectorType::GenericVector);
2779 void *InsertPos = nullptr;
2780 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2781 return QualType(VTP, 0);
2782
2783 // If the element type isn't canonical, this won't be a canonical type either,
2784 // so fill in the canonical type field.
2785 QualType Canonical;
2786 if (!vecType.isCanonical()) {
2787 Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2788
2789 // Get the new insert position for the node we care about.
2790 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2791 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2792 }
2793 ExtVectorType *New = new (*this, TypeAlignment)
2794 ExtVectorType(vecType, NumElts, Canonical);
2795 VectorTypes.InsertNode(New, InsertPos);
2796 Types.push_back(New);
2797 return QualType(New, 0);
2798}
2799
2800QualType
2801ASTContext::getDependentSizedExtVectorType(QualType vecType,
2802 Expr *SizeExpr,
2803 SourceLocation AttrLoc) const {
2804 llvm::FoldingSetNodeID ID;
2805 DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2806 SizeExpr);
2807
2808 void *InsertPos = nullptr;
2809 DependentSizedExtVectorType *Canon
2810 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2811 DependentSizedExtVectorType *New;
2812 if (Canon) {
2813 // We already have a canonical version of this array type; use it as
2814 // the canonical type for a newly-built type.
2815 New = new (*this, TypeAlignment)
2816 DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2817 SizeExpr, AttrLoc);
2818 } else {
2819 QualType CanonVecTy = getCanonicalType(vecType);
2820 if (CanonVecTy == vecType) {
2821 New = new (*this, TypeAlignment)
2822 DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2823 AttrLoc);
2824
2825 DependentSizedExtVectorType *CanonCheck
2826 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2827 assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2828 (void)CanonCheck;
2829 DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2830 } else {
2831 QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2832 SourceLocation());
2833 New = new (*this, TypeAlignment)
2834 DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2835 }
2836 }
2837
2838 Types.push_back(New);
2839 return QualType(New, 0);
2840}
2841
2842/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2843///
2844QualType
2845ASTContext::getFunctionNoProtoType(QualType ResultTy,
2846 const FunctionType::ExtInfo &Info) const {
2847 const CallingConv CallConv = Info.getCC();
2848
2849 // Unique functions, to guarantee there is only one function of a particular
2850 // structure.
2851 llvm::FoldingSetNodeID ID;
2852 FunctionNoProtoType::Profile(ID, ResultTy, Info);
2853
2854 void *InsertPos = nullptr;
2855 if (FunctionNoProtoType *FT =
2856 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2857 return QualType(FT, 0);
2858
2859 QualType Canonical;
2860 if (!ResultTy.isCanonical()) {
2861 Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), Info);
2862
2863 // Get the new insert position for the node we care about.
2864 FunctionNoProtoType *NewIP =
2865 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2866 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2867 }
2868
2869 FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2870 FunctionNoProtoType *New = new (*this, TypeAlignment)
2871 FunctionNoProtoType(ResultTy, Canonical, newInfo);
2872 Types.push_back(New);
2873 FunctionNoProtoTypes.InsertNode(New, InsertPos);
2874 return QualType(New, 0);
2875}
2876
2877/// \brief Determine whether \p T is canonical as the result type of a function.
2878static bool isCanonicalResultType(QualType T) {
2879 return T.isCanonical() &&
2880 (T.getObjCLifetime() == Qualifiers::OCL_None ||
2881 T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2882}
2883
2884QualType
2885ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2886 const FunctionProtoType::ExtProtoInfo &EPI) const {
2887 size_t NumArgs = ArgArray.size();
2888
2889 // Unique functions, to guarantee there is only one function of a particular
2890 // structure.
2891 llvm::FoldingSetNodeID ID;
2892 FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2893 *this);
2894
2895 void *InsertPos = nullptr;
2896 if (FunctionProtoType *FTP =
2897 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2898 return QualType(FTP, 0);
2899
2900 // Determine whether the type being created is already canonical or not.
2901 bool isCanonical =
2902 EPI.ExceptionSpec.Type == EST_None && isCanonicalResultType(ResultTy) &&
2903 !EPI.HasTrailingReturn;
2904 for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2905 if (!ArgArray[i].isCanonicalAsParam())
2906 isCanonical = false;
2907
2908 // If this type isn't canonical, get the canonical version of it.
2909 // The exception spec is not part of the canonical type.
2910 QualType Canonical;
2911 if (!isCanonical) {
2912 SmallVector<QualType, 16> CanonicalArgs;
2913 CanonicalArgs.reserve(NumArgs);
2914 for (unsigned i = 0; i != NumArgs; ++i)
2915 CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2916
2917 FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2918 CanonicalEPI.HasTrailingReturn = false;
2919 CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
2920
2921 // Result types do not have ARC lifetime qualifiers.
2922 QualType CanResultTy = getCanonicalType(ResultTy);
2923 if (ResultTy.getQualifiers().hasObjCLifetime()) {
2924 Qualifiers Qs = CanResultTy.getQualifiers();
2925 Qs.removeObjCLifetime();
2926 CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2927 }
2928
2929 Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2930
2931 // Get the new insert position for the node we care about.
2932 FunctionProtoType *NewIP =
2933 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2934 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2935 }
2936
2937 // FunctionProtoType objects are allocated with extra bytes after
2938 // them for three variable size arrays at the end:
2939 // - parameter types
2940 // - exception types
2941 // - consumed-arguments flags
2942 // Instead of the exception types, there could be a noexcept
2943 // expression, or information used to resolve the exception
2944 // specification.
2945 size_t Size = sizeof(FunctionProtoType) +
2946 NumArgs * sizeof(QualType);
2947 if (EPI.ExceptionSpec.Type == EST_Dynamic) {
2948 Size += EPI.ExceptionSpec.Exceptions.size() * sizeof(QualType);
2949 } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) {
2950 Size += sizeof(Expr*);
2951 } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
2952 Size += 2 * sizeof(FunctionDecl*);
2953 } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
2954 Size += sizeof(FunctionDecl*);
2955 }
2956 if (EPI.ConsumedParameters)
2957 Size += NumArgs * sizeof(bool);
2958
2959 FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2960 FunctionProtoType::ExtProtoInfo newEPI = EPI;
2961 new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2962 Types.push_back(FTP);
2963 FunctionProtoTypes.InsertNode(FTP, InsertPos);
2964 return QualType(FTP, 0);
2965}
2966
2967#ifndef NDEBUG
2968static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2969 if (!isa<CXXRecordDecl>(D)) return false;
2970 const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2971 if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2972 return true;
2973 if (RD->getDescribedClassTemplate() &&
2974 !isa<ClassTemplateSpecializationDecl>(RD))
2975 return true;
2976 return false;
2977}
2978#endif
2979
2980/// getInjectedClassNameType - Return the unique reference to the
2981/// injected class name type for the specified templated declaration.
2982QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2983 QualType TST) const {
2984 assert(NeedsInjectedClassNameType(Decl));
2985 if (Decl->TypeForDecl) {
2986 assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2987 } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2988 assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2989 Decl->TypeForDecl = PrevDecl->TypeForDecl;
2990 assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2991 } else {
2992 Type *newType =
2993 new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2994 Decl->TypeForDecl = newType;
2995 Types.push_back(newType);
2996 }
2997 return QualType(Decl->TypeForDecl, 0);
2998}
2999
3000/// getTypeDeclType - Return the unique reference to the type for the
3001/// specified type declaration.
3002QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
3003 assert(Decl && "Passed null for Decl param");
3004 assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
3005
3006 if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
3007 return getTypedefType(Typedef);
3008
3009 assert(!isa<TemplateTypeParmDecl>(Decl) &&
3010 "Template type parameter types are always available.");
3011
3012 if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
3013 assert(Record->isFirstDecl() && "struct/union has previous declaration");
3014 assert(!NeedsInjectedClassNameType(Record));
3015 return getRecordType(Record);
3016 } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
3017 assert(Enum->isFirstDecl() && "enum has previous declaration");
3018 return getEnumType(Enum);
3019 } else if (const UnresolvedUsingTypenameDecl *Using =
3020 dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
3021 Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
3022 Decl->TypeForDecl = newType;
3023 Types.push_back(newType);
3024 } else
3025 llvm_unreachable("TypeDecl without a type?");
3026
3027 return QualType(Decl->TypeForDecl, 0);
3028}
3029
3030/// getTypedefType - Return the unique reference to the type for the
3031/// specified typedef name decl.
3032QualType
3033ASTContext::getTypedefType(const TypedefNameDecl *Decl,
3034 QualType Canonical) const {
3035 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3036
3037 if (Canonical.isNull())
3038 Canonical = getCanonicalType(Decl->getUnderlyingType());
3039 TypedefType *newType = new(*this, TypeAlignment)
3040 TypedefType(Type::Typedef, Decl, Canonical);
3041 Decl->TypeForDecl = newType;
3042 Types.push_back(newType);
3043 return QualType(newType, 0);
3044}
3045
3046QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
3047 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3048
3049 if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
3050 if (PrevDecl->TypeForDecl)
3051 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3052
3053 RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
3054 Decl->TypeForDecl = newType;
3055 Types.push_back(newType);
3056 return QualType(newType, 0);
3057}
3058
3059QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
3060 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3061
3062 if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
3063 if (PrevDecl->TypeForDecl)
3064 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3065
3066 EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
3067 Decl->TypeForDecl = newType;
3068 Types.push_back(newType);
3069 return QualType(newType, 0);
3070}
3071
3072QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
3073 QualType modifiedType,
3074 QualType equivalentType) {
3075 llvm::FoldingSetNodeID id;
3076 AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
3077
3078 void *insertPos = nullptr;
3079 AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
3080 if (type) return QualType(type, 0);
3081
3082 QualType canon = getCanonicalType(equivalentType);
3083 type = new (*this, TypeAlignment)
3084 AttributedType(canon, attrKind, modifiedType, equivalentType);
3085
3086 Types.push_back(type);
3087 AttributedTypes.InsertNode(type, insertPos);
3088
3089 return QualType(type, 0);
3090}
3091
3092
3093/// \brief Retrieve a substitution-result type.
3094QualType
3095ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
3096 QualType Replacement) const {
3097 assert(Replacement.isCanonical()
3098 && "replacement types must always be canonical");
3099
3100 llvm::FoldingSetNodeID ID;
3101 SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
3102 void *InsertPos = nullptr;
3103 SubstTemplateTypeParmType *SubstParm
3104 = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3105
3106 if (!SubstParm) {
3107 SubstParm = new (*this, TypeAlignment)
3108 SubstTemplateTypeParmType(Parm, Replacement);
3109 Types.push_back(SubstParm);
3110 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3111 }
3112
3113 return QualType(SubstParm, 0);
3114}
3115
3116/// \brief Retrieve a
3117QualType ASTContext::getSubstTemplateTypeParmPackType(
3118 const TemplateTypeParmType *Parm,
3119 const TemplateArgument &ArgPack) {
3120#ifndef NDEBUG
3121 for (const auto &P : ArgPack.pack_elements()) {
3122 assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
3123 assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
3124 }
3125#endif
3126
3127 llvm::FoldingSetNodeID ID;
3128 SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
3129 void *InsertPos = nullptr;
3130 if (SubstTemplateTypeParmPackType *SubstParm
3131 = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
3132 return QualType(SubstParm, 0);
3133
3134 QualType Canon;
3135 if (!Parm->isCanonicalUnqualified()) {
3136 Canon = getCanonicalType(QualType(Parm, 0));
3137 Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3138 ArgPack);
3139 SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3140 }
3141
3142 SubstTemplateTypeParmPackType *SubstParm
3143 = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3144 ArgPack);
3145 Types.push_back(SubstParm);
3146 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3147 return QualType(SubstParm, 0);
3148}
3149
3150/// \brief Retrieve the template type parameter type for a template
3151/// parameter or parameter pack with the given depth, index, and (optionally)
3152/// name.
3153QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3154 bool ParameterPack,
3155 TemplateTypeParmDecl *TTPDecl) const {
3156 llvm::FoldingSetNodeID ID;
3157 TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3158 void *InsertPos = nullptr;
3159 TemplateTypeParmType *TypeParm
3160 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3161
3162 if (TypeParm)
3163 return QualType(TypeParm, 0);
3164
3165 if (TTPDecl) {
3166 QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3167 TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3168
3169 TemplateTypeParmType *TypeCheck
3170 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3171 assert(!TypeCheck && "Template type parameter canonical type broken");
3172 (void)TypeCheck;
3173 } else
3174 TypeParm = new (*this, TypeAlignment)
3175 TemplateTypeParmType(Depth, Index, ParameterPack);
3176
3177 Types.push_back(TypeParm);
3178 TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3179
3180 return QualType(TypeParm, 0);
3181}
3182
3183TypeSourceInfo *
3184ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3185 SourceLocation NameLoc,
3186 const TemplateArgumentListInfo &Args,
3187 QualType Underlying) const {
3188 assert(!Name.getAsDependentTemplateName() &&
3189 "No dependent template names here!");
3190 QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3191
3192 TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3193 TemplateSpecializationTypeLoc TL =
3194 DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3195 TL.setTemplateKeywordLoc(SourceLocation());
3196 TL.setTemplateNameLoc(NameLoc);
3197 TL.setLAngleLoc(Args.getLAngleLoc());
3198 TL.setRAngleLoc(Args.getRAngleLoc());
3199 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3200 TL.setArgLocInfo(i, Args[i].getLocInfo());
3201 return DI;
3202}
3203
3204QualType
3205ASTContext::getTemplateSpecializationType(TemplateName Template,
3206 const TemplateArgumentListInfo &Args,
3207 QualType Underlying) const {
3208 assert(!Template.getAsDependentTemplateName() &&
3209 "No dependent template names here!");
3210
3211 unsigned NumArgs = Args.size();
3212
3213 SmallVector<TemplateArgument, 4> ArgVec;
3214 ArgVec.reserve(NumArgs);
3215 for (unsigned i = 0; i != NumArgs; ++i)
3216 ArgVec.push_back(Args[i].getArgument());
3217
3218 return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3219 Underlying);
3220}
3221
3222#ifndef NDEBUG
3223static bool hasAnyPackExpansions(const TemplateArgument *Args,
3224 unsigned NumArgs) {
3225 for (unsigned I = 0; I != NumArgs; ++I)
3226 if (Args[I].isPackExpansion())
3227 return true;
3228
3229 return true;
3230}
3231#endif
3232
3233QualType
3234ASTContext::getTemplateSpecializationType(TemplateName Template,
3235 const TemplateArgument *Args,
3236 unsigned NumArgs,
3237 QualType Underlying) const {
3238 assert(!Template.getAsDependentTemplateName() &&
3239 "No dependent template names here!");
3240 // Look through qualified template names.
3241 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3242 Template = TemplateName(QTN->getTemplateDecl());
3243
3244 bool IsTypeAlias =
3245 Template.getAsTemplateDecl() &&
3246 isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3247 QualType CanonType;
3248 if (!Underlying.isNull())
3249 CanonType = getCanonicalType(Underlying);
3250 else {
3251 // We can get here with an alias template when the specialization contains
3252 // a pack expansion that does not match up with a parameter pack.
3253 assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3254 "Caller must compute aliased type");
3255 IsTypeAlias = false;
3256 CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3257 NumArgs);
3258 }
3259
3260 // Allocate the (non-canonical) template specialization type, but don't
3261 // try to unique it: these types typically have location information that
3262 // we don't unique and don't want to lose.
3263 void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3264 sizeof(TemplateArgument) * NumArgs +
3265 (IsTypeAlias? sizeof(QualType) : 0),
3266 TypeAlignment);
3267 TemplateSpecializationType *Spec
3268 = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3269 IsTypeAlias ? Underlying : QualType());
3270
3271 Types.push_back(Spec);
3272 return QualType(Spec, 0);
3273}
3274
3275QualType
3276ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3277 const TemplateArgument *Args,
3278 unsigned NumArgs) const {
3279 assert(!Template.getAsDependentTemplateName() &&
3280 "No dependent template names here!");
3281
3282 // Look through qualified template names.
3283 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3284 Template = TemplateName(QTN->getTemplateDecl());
3285
3286 // Build the canonical template specialization type.
3287 TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3288 SmallVector<TemplateArgument, 4> CanonArgs;
3289 CanonArgs.reserve(NumArgs);
3290 for (unsigned I = 0; I != NumArgs; ++I)
3291 CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3292
3293 // Determine whether this canonical template specialization type already
3294 // exists.
3295 llvm::FoldingSetNodeID ID;
3296 TemplateSpecializationType::Profile(ID, CanonTemplate,
3297 CanonArgs.data(), NumArgs, *this);
3298
3299 void *InsertPos = nullptr;
3300 TemplateSpecializationType *Spec
3301 = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3302
3303 if (!Spec) {
3304 // Allocate a new canonical template specialization type.
3305 void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3306 sizeof(TemplateArgument) * NumArgs),
3307 TypeAlignment);
3308 Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3309 CanonArgs.data(), NumArgs,
3310 QualType(), QualType());
3311 Types.push_back(Spec);
3312 TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3313 }
3314
3315 assert(Spec->isDependentType() &&
3316 "Non-dependent template-id type must have a canonical type");
3317 return QualType(Spec, 0);
3318}
3319
3320QualType
3321ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3322 NestedNameSpecifier *NNS,
3323 QualType NamedType) const {
3324 llvm::FoldingSetNodeID ID;
3325 ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3326
3327 void *InsertPos = nullptr;
3328 ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3329 if (T)
3330 return QualType(T, 0);
3331
3332 QualType Canon = NamedType;
3333 if (!Canon.isCanonical()) {
3334 Canon = getCanonicalType(NamedType);
3335 ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3336 assert(!CheckT && "Elaborated canonical type broken");
3337 (void)CheckT;
3338 }
3339
3340 T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3341 Types.push_back(T);
3342 ElaboratedTypes.InsertNode(T, InsertPos);
3343 return QualType(T, 0);
3344}
3345
3346QualType
3347ASTContext::getParenType(QualType InnerType) const {
3348 llvm::FoldingSetNodeID ID;
3349 ParenType::Profile(ID, InnerType);
3350
3351 void *InsertPos = nullptr;
3352 ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3353 if (T)
3354 return QualType(T, 0);
3355
3356 QualType Canon = InnerType;
3357 if (!Canon.isCanonical()) {
3358 Canon = getCanonicalType(InnerType);
3359 ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3360 assert(!CheckT && "Paren canonical type broken");
3361 (void)CheckT;
3362 }
3363
3364 T = new (*this) ParenType(InnerType, Canon);
3365 Types.push_back(T);
3366 ParenTypes.InsertNode(T, InsertPos);
3367 return QualType(T, 0);
3368}
3369
3370QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3371 NestedNameSpecifier *NNS,
3372 const IdentifierInfo *Name,
3373 QualType Canon) const {
3374 if (Canon.isNull()) {
3375 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3376 ElaboratedTypeKeyword CanonKeyword = Keyword;
3377 if (Keyword == ETK_None)
3378 CanonKeyword = ETK_Typename;
3379
3380 if (CanonNNS != NNS || CanonKeyword != Keyword)
3381 Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3382 }
3383
3384 llvm::FoldingSetNodeID ID;
3385 DependentNameType::Profile(ID, Keyword, NNS, Name);
3386
3387 void *InsertPos = nullptr;
3388 DependentNameType *T
3389 = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3390 if (T)
3391 return QualType(T, 0);
3392
3393 T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3394 Types.push_back(T);
3395 DependentNameTypes.InsertNode(T, InsertPos);
3396 return QualType(T, 0);
3397}
3398
3399QualType
3400ASTContext::getDependentTemplateSpecializationType(
3401 ElaboratedTypeKeyword Keyword,
3402 NestedNameSpecifier *NNS,
3403 const IdentifierInfo *Name,
3404 const TemplateArgumentListInfo &Args) const {
3405 // TODO: avoid this copy
3406 SmallVector<TemplateArgument, 16> ArgCopy;
3407 for (unsigned I = 0, E = Args.size(); I != E; ++I)
3408 ArgCopy.push_back(Args[I].getArgument());
3409 return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3410 ArgCopy.size(),
3411 ArgCopy.data());
3412}
3413
3414QualType
3415ASTContext::getDependentTemplateSpecializationType(
3416 ElaboratedTypeKeyword Keyword,
3417 NestedNameSpecifier *NNS,
3418 const IdentifierInfo *Name,
3419 unsigned NumArgs,
3420 const TemplateArgument *Args) const {
3421 assert((!NNS || NNS->isDependent()) &&
3422 "nested-name-specifier must be dependent");
3423
3424 llvm::FoldingSetNodeID ID;
3425 DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3426 Name, NumArgs, Args);
3427
3428 void *InsertPos = nullptr;
3429 DependentTemplateSpecializationType *T
3430 = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3431 if (T)
3432 return QualType(T, 0);
3433
3434 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3435
3436 ElaboratedTypeKeyword CanonKeyword = Keyword;
3437 if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3438
3439 bool AnyNonCanonArgs = false;
3440 SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3441 for (unsigned I = 0; I != NumArgs; ++I) {
3442 CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3443 if (!CanonArgs[I].structurallyEquals(Args[I]))
3444 AnyNonCanonArgs = true;
3445 }
3446
3447 QualType Canon;
3448 if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3449 Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3450 Name, NumArgs,
3451 CanonArgs.data());
3452
3453 // Find the insert position again.
3454 DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3455 }
3456
3457 void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3458 sizeof(TemplateArgument) * NumArgs),
3459 TypeAlignment);
3460 T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3461 Name, NumArgs, Args, Canon);
3462 Types.push_back(T);
3463 DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3464 return QualType(T, 0);
3465}
3466
3467QualType ASTContext::getPackExpansionType(QualType Pattern,
3468 Optional<unsigned> NumExpansions) {
3469 llvm::FoldingSetNodeID ID;
3470 PackExpansionType::Profile(ID, Pattern, NumExpansions);
3471
3472 assert(Pattern->containsUnexpandedParameterPack() &&
3473 "Pack expansions must expand one or more parameter packs");
3474 void *InsertPos = nullptr;
3475 PackExpansionType *T
3476 = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3477 if (T)
3478 return QualType(T, 0);
3479
3480 QualType Canon;
3481 if (!Pattern.isCanonical()) {
3482 Canon = getCanonicalType(Pattern);
3483 // The canonical type might not contain an unexpanded parameter pack, if it
3484 // contains an alias template specialization which ignores one of its
3485 // parameters.
3486 if (Canon->containsUnexpandedParameterPack()) {
3487 Canon = getPackExpansionType(Canon, NumExpansions);
3488
3489 // Find the insert position again, in case we inserted an element into
3490 // PackExpansionTypes and invalidated our insert position.
3491 PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3492 }
3493 }
3494
3495 T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3496 Types.push_back(T);
3497 PackExpansionTypes.InsertNode(T, InsertPos);
3498 return QualType(T, 0);
3499}
3500
3501/// CmpProtocolNames - Comparison predicate for sorting protocols
3502/// alphabetically.
3503static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3504 const ObjCProtocolDecl *RHS) {
3505 return LHS->getDeclName() < RHS->getDeclName();
3506}
3507
3508static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3509 unsigned NumProtocols) {
3510 if (NumProtocols == 0) return true;
3511
3512 if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3513 return false;
3514
3515 for (unsigned i = 1; i != NumProtocols; ++i)
3516 if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3517 Protocols[i]->getCanonicalDecl() != Protocols[i])
3518 return false;
3519 return true;
3520}
3521
3522static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3523 unsigned &NumProtocols) {
3524 ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3525
3526 // Sort protocols, keyed by name.
3527 std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3528
3529 // Canonicalize.
3530 for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3531 Protocols[I] = Protocols[I]->getCanonicalDecl();
3532
3533 // Remove duplicates.
3534 ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3535 NumProtocols = ProtocolsEnd-Protocols;
3536}
3537
3538QualType ASTContext::getObjCObjectType(QualType BaseType,
3539 ObjCProtocolDecl * const *Protocols,
3540 unsigned NumProtocols) const {
3541 // If the base type is an interface and there aren't any protocols
3542 // to add, then the interface type will do just fine.
3543 if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3544 return BaseType;
3545
3546 // Look in the folding set for an existing type.
3547 llvm::FoldingSetNodeID ID;
3548 ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3549 void *InsertPos = nullptr;
3550 if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3551 return QualType(QT, 0);
3552
3553 // Build the canonical type, which has the canonical base type and
3554 // a sorted-and-uniqued list of protocols.
3555 QualType Canonical;
3556 bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3557 if (!ProtocolsSorted || !BaseType.isCanonical()) {
3558 if (!ProtocolsSorted) {
3559 SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3560 Protocols + NumProtocols);
3561 unsigned UniqueCount = NumProtocols;
3562
3563 SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3564 Canonical = getObjCObjectType(getCanonicalType(BaseType),
3565 &Sorted[0], UniqueCount);
3566 } else {
3567 Canonical = getObjCObjectType(getCanonicalType(BaseType),
3568 Protocols, NumProtocols);
3569 }
3570
3571 // Regenerate InsertPos.
3572 ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3573 }
3574
3575 unsigned Size = sizeof(ObjCObjectTypeImpl);
3576 Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3577 void *Mem = Allocate(Size, TypeAlignment);
3578 ObjCObjectTypeImpl *T =
3579 new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3580
3581 Types.push_back(T);
3582 ObjCObjectTypes.InsertNode(T, InsertPos);
3583 return QualType(T, 0);
3584}
3585
3586/// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
3587/// protocol list adopt all protocols in QT's qualified-id protocol
3588/// list.
3589bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
3590 ObjCInterfaceDecl *IC) {
3591 if (!QT->isObjCQualifiedIdType())
3592 return false;
3593
3594 if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) {
3595 // If both the right and left sides have qualifiers.
3596 for (auto *Proto : OPT->quals()) {
3597 if (!IC->ClassImplementsProtocol(Proto, false))
3598 return false;
3599 }
3600 return true;
3601 }
3602 return false;
3603}
3604
3605/// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
3606/// QT's qualified-id protocol list adopt all protocols in IDecl's list
3607/// of protocols.
3608bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
3609 ObjCInterfaceDecl *IDecl) {
3610 if (!QT->isObjCQualifiedIdType())
3611 return false;
3612 const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>();
3613 if (!OPT)
3614 return false;
3615 if (!IDecl->hasDefinition())
3616 return false;
3617 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
3618 CollectInheritedProtocols(IDecl, InheritedProtocols);
3619 if (InheritedProtocols.empty())
3620 return false;
3621 // Check that if every protocol in list of id<plist> conforms to a protcol
3622 // of IDecl's, then bridge casting is ok.
3623 bool Conforms = false;
3624 for (auto *Proto : OPT->quals()) {
3625 Conforms = false;
3626 for (auto *PI : InheritedProtocols) {
3627 if (ProtocolCompatibleWithProtocol(Proto, PI)) {
3628 Conforms = true;
3629 break;
3630 }
3631 }
3632 if (!Conforms)
3633 break;
3634 }
3635 if (Conforms)
3636 return true;
3637
3638 for (auto *PI : InheritedProtocols) {
3639 // If both the right and left sides have qualifiers.
3640 bool Adopts = false;
3641 for (auto *Proto : OPT->quals()) {
3642 // return 'true' if 'PI' is in the inheritance hierarchy of Proto
3643 if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
3644 break;
3645 }
3646 if (!Adopts)
3647 return false;
3648 }
3649 return true;
3650}
3651
3652/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3653/// the given object type.
3654QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3655 llvm::FoldingSetNodeID ID;
3656 ObjCObjectPointerType::Profile(ID, ObjectT);
3657
3658 void *InsertPos = nullptr;
3659 if (ObjCObjectPointerType *QT =
3660 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3661 return QualType(QT, 0);
3662
3663 // Find the canonical object type.
3664 QualType Canonical;
3665 if (!ObjectT.isCanonical()) {
3666 Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3667
3668 // Regenerate InsertPos.
3669 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3670 }
3671
3672 // No match.
3673 void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3674 ObjCObjectPointerType *QType =
3675 new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3676
3677 Types.push_back(QType);
3678 ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3679 return QualType(QType, 0);
3680}
3681
3682/// getObjCInterfaceType - Return the unique reference to the type for the
3683/// specified ObjC interface decl. The list of protocols is optional.
3684QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3685 ObjCInterfaceDecl *PrevDecl) const {
3686 if (Decl->TypeForDecl)
3687 return QualType(Decl->TypeForDecl, 0);
3688
3689 if (PrevDecl) {
3690 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3691 Decl->TypeForDecl = PrevDecl->TypeForDecl;
3692 return QualType(PrevDecl->TypeForDecl, 0);
3693 }
3694
3695 // Prefer the definition, if there is one.
3696 if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3697 Decl = Def;
3698
3699 void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3700 ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3701 Decl->TypeForDecl = T;
3702 Types.push_back(T);
3703 return QualType(T, 0);
3704}
3705
3706/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3707/// TypeOfExprType AST's (since expression's are never shared). For example,
3708/// multiple declarations that refer to "typeof(x)" all contain different
3709/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3710/// on canonical type's (which are always unique).
3711QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3712 TypeOfExprType *toe;
3713 if (tofExpr->isTypeDependent()) {
3714 llvm::FoldingSetNodeID ID;
3715 DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3716
3717 void *InsertPos = nullptr;
3718 DependentTypeOfExprType *Canon
3719 = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3720 if (Canon) {
3721 // We already have a "canonical" version of an identical, dependent
3722 // typeof(expr) type. Use that as our canonical type.
3723 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3724 QualType((TypeOfExprType*)Canon, 0));
3725 } else {
3726 // Build a new, canonical typeof(expr) type.
3727 Canon
3728 = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3729 DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3730 toe = Canon;
3731 }
3732 } else {
3733 QualType Canonical = getCanonicalType(tofExpr->getType());
3734 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3735 }
3736 Types.push_back(toe);
3737 return QualType(toe, 0);
3738}
3739
3740/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
3741/// TypeOfType nodes. The only motivation to unique these nodes would be
3742/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3743/// an issue. This doesn't affect the type checker, since it operates
3744/// on canonical types (which are always unique).
3745QualType ASTContext::getTypeOfType(QualType tofType) const {
3746 QualType Canonical = getCanonicalType(tofType);
3747 TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3748 Types.push_back(tot);
3749 return QualType(tot, 0);
3750}
3751
3752
3753/// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType
3754/// nodes. This would never be helpful, since each such type has its own
3755/// expression, and would not give a significant memory saving, since there
3756/// is an Expr tree under each such type.
3757QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3758 DecltypeType *dt;
3759
3760 // C++11 [temp.type]p2:
3761 // If an expression e involves a template parameter, decltype(e) denotes a
3762 // unique dependent type. Two such decltype-specifiers refer to the same
3763 // type only if their expressions are equivalent (14.5.6.1).
3764 if (e->isInstantiationDependent()) {
3765 llvm::FoldingSetNodeID ID;
3766 DependentDecltypeType::Profile(ID, *this, e);
3767
3768 void *InsertPos = nullptr;
3769 DependentDecltypeType *Canon
3770 = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3771 if (!Canon) {
3772 // Build a new, canonical typeof(expr) type.
3773 Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3774 DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3775 }
3776 dt = new (*this, TypeAlignment)
3777 DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
3778 } else {
3779 dt = new (*this, TypeAlignment)
3780 DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
3781 }
3782 Types.push_back(dt);
3783 return QualType(dt, 0);
3784}
3785
3786/// getUnaryTransformationType - We don't unique these, since the memory
3787/// savings are minimal and these are rare.
3788QualType ASTContext::getUnaryTransformType(QualType BaseType,
3789 QualType UnderlyingType,
3790 UnaryTransformType::UTTKind Kind)
3791 const {
3792 UnaryTransformType *Ty =
3793 new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3794 Kind,
3795 UnderlyingType->isDependentType() ?
3796 QualType() : getCanonicalType(UnderlyingType));
3797 Types.push_back(Ty);
3798 return QualType(Ty, 0);
3799}
3800
3801/// getAutoType - Return the uniqued reference to the 'auto' type which has been
3802/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
3803/// canonical deduced-but-dependent 'auto' type.
3804QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
3805 bool IsDependent) const {
3806 if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
3807 return getAutoDeductType();
3808
3809 // Look in the folding set for an existing type.
3810 void *InsertPos = nullptr;
3811 llvm::FoldingSetNodeID ID;
3812 AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
3813 if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3814 return QualType(AT, 0);
3815
3816 AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
3817 IsDecltypeAuto,
3818 IsDependent);
3819 Types.push_back(AT);
3820 if (InsertPos)
3821 AutoTypes.InsertNode(AT, InsertPos);
3822 return QualType(AT, 0);
3823}
3824
3825/// getAtomicType - Return the uniqued reference to the atomic type for
3826/// the given value type.
3827QualType ASTContext::getAtomicType(QualType T) const {
3828 // Unique pointers, to guarantee there is only one pointer of a particular
3829 // structure.
3830 llvm::FoldingSetNodeID ID;
3831 AtomicType::Profile(ID, T);
3832
3833 void *InsertPos = nullptr;
3834 if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3835 return QualType(AT, 0);
3836
3837 // If the atomic value type isn't canonical, this won't be a canonical type
3838 // either, so fill in the canonical type field.
3839 QualType Canonical;
3840 if (!T.isCanonical()) {
3841 Canonical = getAtomicType(getCanonicalType(T));
3842
3843 // Get the new insert position for the node we care about.
3844 AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3845 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3846 }
3847 AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3848 Types.push_back(New);
3849 AtomicTypes.InsertNode(New, InsertPos);
3850 return QualType(New, 0);
3851}
3852
3853/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3854QualType ASTContext::getAutoDeductType() const {
3855 if (AutoDeductTy.isNull())
3856 AutoDeductTy = QualType(
3857 new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
3858 /*dependent*/false),
3859 0);
3860 return AutoDeductTy;
3861}
3862
3863/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3864QualType ASTContext::getAutoRRefDeductType() const {
3865 if (AutoRRefDeductTy.isNull())
3866 AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3867 assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3868 return AutoRRefDeductTy;
3869}
3870
3871/// getTagDeclType - Return the unique reference to the type for the
3872/// specified TagDecl (struct/union/class/enum) decl.
3873QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3874 assert (Decl);
3875 // FIXME: What is the design on getTagDeclType when it requires casting
3876 // away const? mutable?
3877 return getTypeDeclType(const_cast<TagDecl*>(Decl));
3878}
3879
3880/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3881/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3882/// needs to agree with the definition in <stddef.h>.
3883CanQualType ASTContext::getSizeType() const {
3884 return getFromTargetType(Target->getSizeType());
3885}
3886
3887/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3888CanQualType ASTContext::getIntMaxType() const {
3889 return getFromTargetType(Target->getIntMaxType());
3890}
3891
3892/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3893CanQualType ASTContext::getUIntMaxType() const {
3894 return getFromTargetType(Target->getUIntMaxType());
3895}
3896
3897/// getSignedWCharType - Return the type of "signed wchar_t".
3898/// Used when in C++, as a GCC extension.
3899QualType ASTContext::getSignedWCharType() const {
3900 // FIXME: derive from "Target" ?
3901 return WCharTy;
3902}
3903
3904/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3905/// Used when in C++, as a GCC extension.
3906QualType ASTContext::getUnsignedWCharType() const {
3907 // FIXME: derive from "Target" ?
3908 return UnsignedIntTy;
3909}
3910
3911QualType ASTContext::getIntPtrType() const {
3912 return getFromTargetType(Target->getIntPtrType());
3913}
3914
3915QualType ASTContext::getUIntPtrType() const {
3916 return getCorrespondingUnsignedType(getIntPtrType());
3917}
3918
3919/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3920/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3921QualType ASTContext::getPointerDiffType() const {
3922 return getFromTargetType(Target->getPtrDiffType(0));
3923}
3924
3925/// \brief Return the unique type for "pid_t" defined in
3926/// <sys/types.h>. We need this to compute the correct type for vfork().
3927QualType ASTContext::getProcessIDType() const {
3928 return getFromTargetType(Target->getProcessIDType());
3929}
3930
3931//===----------------------------------------------------------------------===//
3932// Type Operators
3933//===----------------------------------------------------------------------===//
3934
3935CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3936 // Push qualifiers into arrays, and then discard any remaining
3937 // qualifiers.
3938 T = getCanonicalType(T);
3939 T = getVariableArrayDecayedType(T);
3940 const Type *Ty = T.getTypePtr();
3941 QualType Result;
3942 if (isa<ArrayType>(Ty)) {
3943 Result = getArrayDecayedType(QualType(Ty,0));
3944 } else if (isa<FunctionType>(Ty)) {
3945 Result = getPointerType(QualType(Ty, 0));
3946 } else {
3947 Result = QualType(Ty, 0);
3948 }
3949
3950 return CanQualType::CreateUnsafe(Result);
3951}
3952
3953QualType ASTContext::getUnqualifiedArrayType(QualType type,
3954 Qualifiers &quals) {
3955 SplitQualType splitType = type.getSplitUnqualifiedType();
3956
3957 // FIXME: getSplitUnqualifiedType() actually walks all the way to
3958 // the unqualified desugared type and then drops it on the floor.
3959 // We then have to strip that sugar back off with
3960 // getUnqualifiedDesugaredType(), which is silly.
3961 const ArrayType *AT =
3962 dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3963
3964 // If we don't have an array, just use the results in splitType.
3965 if (!AT) {
3966 quals = splitType.Quals;
3967 return QualType(splitType.Ty, 0);
3968 }
3969
3970 // Otherwise, recurse on the array's element type.
3971 QualType elementType = AT->getElementType();
3972 QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3973
3974 // If that didn't change the element type, AT has no qualifiers, so we
3975 // can just use the results in splitType.
3976 if (elementType == unqualElementType) {
3977 assert(quals.empty()); // from the recursive call
3978 quals = splitType.Quals;
3979 return QualType(splitType.Ty, 0);
3980 }
3981
3982 // Otherwise, add in the qualifiers from the outermost type, then
3983 // build the type back up.
3984 quals.addConsistentQualifiers(splitType.Quals);
3985
3986 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3987 return getConstantArrayType(unqualElementType, CAT->getSize(),
3988 CAT->getSizeModifier(), 0);
3989 }
3990
3991 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3992 return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3993 }
3994
3995 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3996 return getVariableArrayType(unqualElementType,
3997 VAT->getSizeExpr(),
3998 VAT->getSizeModifier(),
3999 VAT->getIndexTypeCVRQualifiers(),
4000 VAT->getBracketsRange());
4001 }
4002
4003 const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
4004 return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
4005 DSAT->getSizeModifier(), 0,
4006 SourceRange());
4007}
4008
4009/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types that
4010/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
4011/// they point to and return true. If T1 and T2 aren't pointer types
4012/// or pointer-to-member types, or if they are not similar at this
4013/// level, returns false and leaves T1 and T2 unchanged. Top-level
4014/// qualifiers on T1 and T2 are ignored. This function will typically
4015/// be called in a loop that successively "unwraps" pointer and
4016/// pointer-to-member types to compare them at each level.
4017bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
4018 const PointerType *T1PtrType = T1->getAs<PointerType>(),
4019 *T2PtrType = T2->getAs<PointerType>();
4020 if (T1PtrType && T2PtrType) {
4021 T1 = T1PtrType->getPointeeType();
4022 T2 = T2PtrType->getPointeeType();
4023 return true;
4024 }
4025
4026 const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
4027 *T2MPType = T2->getAs<MemberPointerType>();
4028 if (T1MPType && T2MPType &&
4029 hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
4030 QualType(T2MPType->getClass(), 0))) {
4031 T1 = T1MPType->getPointeeType();
4032 T2 = T2MPType->getPointeeType();
4033 return true;
4034 }
4035
4036 if (getLangOpts().ObjC1) {
4037 const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
4038 *T2OPType = T2->getAs<ObjCObjectPointerType>();
4039 if (T1OPType && T2OPType) {
4040 T1 = T1OPType->getPointeeType();
4041 T2 = T2OPType->getPointeeType();
4042 return true;
4043 }
4044 }
4045
4046 // FIXME: Block pointers, too?
4047
4048 return false;
4049}
4050
4051DeclarationNameInfo
4052ASTContext::getNameForTemplate(TemplateName Name,
4053 SourceLocation NameLoc) const {
4054 switch (Name.getKind()) {
4055 case TemplateName::QualifiedTemplate:
4056 case TemplateName::Template:
4057 // DNInfo work in progress: CHECKME: what about DNLoc?
4058 return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
4059 NameLoc);
4060
4061 case TemplateName::OverloadedTemplate: {
4062 OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
4063 // DNInfo work in progress: CHECKME: what about DNLoc?
4064 return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
4065 }
4066
4067 case TemplateName::DependentTemplate: {
4068 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4069 DeclarationName DName;
4070 if (DTN->isIdentifier()) {
4071 DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
4072 return DeclarationNameInfo(DName, NameLoc);
4073 } else {
4074 DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
4075 // DNInfo work in progress: FIXME: source locations?
4076 DeclarationNameLoc DNLoc;
4077 DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
4078 DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
4079 return DeclarationNameInfo(DName, NameLoc, DNLoc);
4080 }
4081 }
4082
4083 case TemplateName::SubstTemplateTemplateParm: {
4084 SubstTemplateTemplateParmStorage *subst
4085 = Name.getAsSubstTemplateTemplateParm();
4086 return DeclarationNameInfo(subst->getParameter()->getDeclName(),
4087 NameLoc);
4088 }
4089
4090 case TemplateName::SubstTemplateTemplateParmPack: {
4091 SubstTemplateTemplateParmPackStorage *subst
4092 = Name.getAsSubstTemplateTemplateParmPack();
4093 return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
4094 NameLoc);
4095 }
4096 }
4097
4098 llvm_unreachable("bad template name kind!");
4099}
4100
4101TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
4102 switch (Name.getKind()) {
4103 case TemplateName::QualifiedTemplate:
4104 case TemplateName::Template: {
4105 TemplateDecl *Template = Name.getAsTemplateDecl();
4106 if (TemplateTemplateParmDecl *TTP
4107 = dyn_cast<TemplateTemplateParmDecl>(Template))
4108 Template = getCanonicalTemplateTemplateParmDecl(TTP);
4109
4110 // The canonical template name is the canonical template declaration.
4111 return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
4112 }
4113
4114 case TemplateName::OverloadedTemplate:
4115 llvm_unreachable("cannot canonicalize overloaded template");
4116
4117 case TemplateName::DependentTemplate: {
4118 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
4119 assert(DTN && "Non-dependent template names must refer to template decls.");
4120 return DTN->CanonicalTemplateName;
4121 }
4122
4123 case TemplateName::SubstTemplateTemplateParm: {
4124 SubstTemplateTemplateParmStorage *subst
4125 = Name.getAsSubstTemplateTemplateParm();
4126 return getCanonicalTemplateName(subst->getReplacement());
4127 }
4128
4129 case TemplateName::SubstTemplateTemplateParmPack: {
4130 SubstTemplateTemplateParmPackStorage *subst
4131 = Name.getAsSubstTemplateTemplateParmPack();
4132 TemplateTemplateParmDecl *canonParameter
4133 = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
4134 TemplateArgument canonArgPack
4135 = getCanonicalTemplateArgument(subst->getArgumentPack());
4136 return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
4137 }
4138 }
4139
4140 llvm_unreachable("bad template name!");
4141}
4142
4143bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
4144 X = getCanonicalTemplateName(X);
4145 Y = getCanonicalTemplateName(Y);
4146 return X.getAsVoidPointer() == Y.getAsVoidPointer();
4147}
4148
4149TemplateArgument
4150ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
4151 switch (Arg.getKind()) {
4152 case TemplateArgument::Null:
4153 return Arg;
4154
4155 case TemplateArgument::Expression:
4156 return Arg;
4157
4158 case TemplateArgument::Declaration: {
4159 ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
4160 return TemplateArgument(D, Arg.getParamTypeForDecl());
4161 }
4162
4163 case TemplateArgument::NullPtr:
4164 return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
4165 /*isNullPtr*/true);
4166
4167 case TemplateArgument::Template:
4168 return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
4169
4170 case TemplateArgument::TemplateExpansion:
4171 return TemplateArgument(getCanonicalTemplateName(
4172 Arg.getAsTemplateOrTemplatePattern()),
4173 Arg.getNumTemplateExpansions());
4174
4175 case TemplateArgument::Integral:
4176 return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
4177
4178 case TemplateArgument::Type:
4179 return TemplateArgument(getCanonicalType(Arg.getAsType()));
4180
4181 case TemplateArgument::Pack: {
4182 if (Arg.pack_size() == 0)
4183 return Arg;
4184
4185 TemplateArgument *CanonArgs
4186 = new (*this) TemplateArgument[Arg.pack_size()];
4187 unsigned Idx = 0;
4188 for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
4189 AEnd = Arg.pack_end();
4190 A != AEnd; (void)++A, ++Idx)
4191 CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
4192
4193 return TemplateArgument(CanonArgs, Arg.pack_size());
4194 }
4195 }
4196
4197 // Silence GCC warning
4198 llvm_unreachable("Unhandled template argument kind");
4199}
4200
4201NestedNameSpecifier *
4202ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
4203 if (!NNS)
4204 return nullptr;
4205
4206 switch (NNS->getKind()) {
4207 case NestedNameSpecifier::Identifier:
4208 // Canonicalize the prefix but keep the identifier the same.
4209 return NestedNameSpecifier::Create(*this,
4210 getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4211 NNS->getAsIdentifier());
4212
4213 case NestedNameSpecifier::Namespace:
4214 // A namespace is canonical; build a nested-name-specifier with
4215 // this namespace and no prefix.
4216 return NestedNameSpecifier::Create(*this, nullptr,
4217 NNS->getAsNamespace()->getOriginalNamespace());
4218
4219 case NestedNameSpecifier::NamespaceAlias:
4220 // A namespace is canonical; build a nested-name-specifier with
4221 // this namespace and no prefix.
4222 return NestedNameSpecifier::Create(*this, nullptr,
4223 NNS->getAsNamespaceAlias()->getNamespace()
4224 ->getOriginalNamespace());
4225
4226 case NestedNameSpecifier::TypeSpec:
4227 case NestedNameSpecifier::TypeSpecWithTemplate: {
4228 QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4229
4230 // If we have some kind of dependent-named type (e.g., "typename T::type"),
4231 // break it apart into its prefix and identifier, then reconsititute those
4232 // as the canonical nested-name-specifier. This is required to canonicalize
4233 // a dependent nested-name-specifier involving typedefs of dependent-name
4234 // types, e.g.,
4235 // typedef typename T::type T1;
4236 // typedef typename T1::type T2;
4237 if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4238 return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4239 const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4240
4241 // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4242 // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4243 // first place?
4244 return NestedNameSpecifier::Create(*this, nullptr, false,
4245 const_cast<Type *>(T.getTypePtr()));
4246 }
4247
4248 case NestedNameSpecifier::Global:
4249 case NestedNameSpecifier::Super:
4250 // The global specifier and __super specifer are canonical and unique.
4251 return NNS;
4252 }
4253
4254 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4255}
4256
4257
4258const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4259 // Handle the non-qualified case efficiently.
4260 if (!T.hasLocalQualifiers()) {
4261 // Handle the common positive case fast.
4262 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4263 return AT;
4264 }
4265
4266 // Handle the common negative case fast.
4267 if (!isa<ArrayType>(T.getCanonicalType()))
4268 return nullptr;
4269
4270 // Apply any qualifiers from the array type to the element type. This
4271 // implements C99 6.7.3p8: "If the specification of an array type includes
4272 // any type qualifiers, the element type is so qualified, not the array type."
4273
4274 // If we get here, we either have type qualifiers on the type, or we have
4275 // sugar such as a typedef in the way. If we have type qualifiers on the type
4276 // we must propagate them down into the element type.
4277
4278 SplitQualType split = T.getSplitDesugaredType();
4279 Qualifiers qs = split.Quals;
4280
4281 // If we have a simple case, just return now.
4282 const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4283 if (!ATy || qs.empty())
4284 return ATy;
4285
4286 // Otherwise, we have an array and we have qualifiers on it. Push the
4287 // qualifiers into the array element type and return a new array type.
4288 QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4289
4290 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4291 return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4292 CAT->getSizeModifier(),
4293 CAT->getIndexTypeCVRQualifiers()));
4294 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4295 return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4296 IAT->getSizeModifier(),
4297 IAT->getIndexTypeCVRQualifiers()));
4298
4299 if (const DependentSizedArrayType *DSAT
4300 = dyn_cast<DependentSizedArrayType>(ATy))
4301 return cast<ArrayType>(
4302 getDependentSizedArrayType(NewEltTy,
4303 DSAT->getSizeExpr(),
4304 DSAT->getSizeModifier(),
4305 DSAT->getIndexTypeCVRQualifiers(),
4306 DSAT->getBracketsRange()));
4307
4308 const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4309 return cast<ArrayType>(getVariableArrayType(NewEltTy,
4310 VAT->getSizeExpr(),
4311 VAT->getSizeModifier(),
4312 VAT->getIndexTypeCVRQualifiers(),
4313 VAT->getBracketsRange()));
4314}
4315
4316QualType ASTContext::getAdjustedParameterType(QualType T) const {
4317 if (T->isArrayType() || T->isFunctionType())
4318 return getDecayedType(T);
4319 return T;
4320}
4321
4322QualType ASTContext::getSignatureParameterType(QualType T) const {
4323 T = getVariableArrayDecayedType(T);
4324 T = getAdjustedParameterType(T);
4325 return T.getUnqualifiedType();
4326}
4327
4328/// getArrayDecayedType - Return the properly qualified result of decaying the
4329/// specified array type to a pointer. This operation is non-trivial when
4330/// handling typedefs etc. The canonical type of "T" must be an array type,
4331/// this returns a pointer to a properly qualified element of the array.
4332///
4333/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4334QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4335 // Get the element type with 'getAsArrayType' so that we don't lose any
4336 // typedefs in the element type of the array. This also handles propagation
4337 // of type qualifiers from the array type into the element type if present
4338 // (C99 6.7.3p8).
4339 const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4340 assert(PrettyArrayType && "Not an array type!");
4341
4342 QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4343
4344 // int x[restrict 4] -> int *restrict
4345 return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4346}
4347
4348QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4349 return getBaseElementType(array->getElementType());
4350}
4351
4352QualType ASTContext::getBaseElementType(QualType type) const {
4353 Qualifiers qs;
4354 while (true) {
4355 SplitQualType split = type.getSplitDesugaredType();
4356 const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4357 if (!array) break;
4358
4359 type = array->getElementType();
4360 qs.addConsistentQualifiers(split.Quals);
4361 }
4362
4363 return getQualifiedType(type, qs);
4364}
4365
4366/// getConstantArrayElementCount - Returns number of constant array elements.
4367uint64_t
4368ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const {
4369 uint64_t ElementCount = 1;
4370 do {
4371 ElementCount *= CA->getSize().getZExtValue();
4372 CA = dyn_cast_or_null<ConstantArrayType>(
4373 CA->getElementType()->getAsArrayTypeUnsafe());
4374 } while (CA);
4375 return ElementCount;
4376}
4377
4378/// getFloatingRank - Return a relative rank for floating point types.
4379/// This routine will assert if passed a built-in type that isn't a float.
4380static FloatingRank getFloatingRank(QualType T) {
4381 if (const ComplexType *CT = T->getAs<ComplexType>())
4382 return getFloatingRank(CT->getElementType());
4383
4384 assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4385 switch (T->getAs<BuiltinType>()->getKind()) {
4386 default: llvm_unreachable("getFloatingRank(): not a floating type");
4387 case BuiltinType::Half: return HalfRank;
4388 case BuiltinType::Float: return FloatRank;
4389 case BuiltinType::Double: return DoubleRank;
4390 case BuiltinType::LongDouble: return LongDoubleRank;
4391 }
4392}
4393
4394/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4395/// point or a complex type (based on typeDomain/typeSize).
4396/// 'typeDomain' is a real floating point or complex type.
4397/// 'typeSize' is a real floating point or complex type.
4398QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4399 QualType Domain) const {
4400 FloatingRank EltRank = getFloatingRank(Size);
4401 if (Domain->isComplexType()) {
4402 switch (EltRank) {
4403 case HalfRank: llvm_unreachable("Complex half is not supported");
4404 case FloatRank: return FloatComplexTy;
4405 case DoubleRank: return DoubleComplexTy;
4406 case LongDoubleRank: return LongDoubleComplexTy;
4407 }
4408 }
4409
4410 assert(Domain->isRealFloatingType() && "Unknown domain!");
4411 switch (EltRank) {
4412 case HalfRank: return HalfTy;
4413 case FloatRank: return FloatTy;
4414 case DoubleRank: return DoubleTy;
4415 case LongDoubleRank: return LongDoubleTy;
4416 }
4417 llvm_unreachable("getFloatingRank(): illegal value for rank");
4418}
4419
4420/// getFloatingTypeOrder - Compare the rank of the two specified floating
4421/// point types, ignoring the domain of the type (i.e. 'double' ==
4422/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
4423/// LHS < RHS, return -1.
4424int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4425 FloatingRank LHSR = getFloatingRank(LHS);
4426 FloatingRank RHSR = getFloatingRank(RHS);
4427
4428 if (LHSR == RHSR)
4429 return 0;
4430 if (LHSR > RHSR)
4431 return 1;
4432 return -1;
4433}
4434
4435/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4436/// routine will assert if passed a built-in type that isn't an integer or enum,
4437/// or if it is not canonicalized.
4438unsigned ASTContext::getIntegerRank(const Type *T) const {
4439 assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4440
4441 switch (cast<BuiltinType>(T)->getKind()) {
4442 default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4443 case BuiltinType::Bool:
4444 return 1 + (getIntWidth(BoolTy) << 3);
4445 case BuiltinType::Char_S:
4446 case BuiltinType::Char_U:
4447 case BuiltinType::SChar:
4448 case BuiltinType::UChar:
4449 return 2 + (getIntWidth(CharTy) << 3);
4450 case BuiltinType::Short:
4451 case BuiltinType::UShort:
4452 return 3 + (getIntWidth(ShortTy) << 3);
4453 case BuiltinType::Int:
4454 case BuiltinType::UInt:
4455 return 4 + (getIntWidth(IntTy) << 3);
4456 case BuiltinType::Long:
4457 case BuiltinType::ULong:
4458 return 5 + (getIntWidth(LongTy) << 3);
4459 case BuiltinType::LongLong:
4460 case BuiltinType::ULongLong:
4461 return 6 + (getIntWidth(LongLongTy) << 3);
4462 case BuiltinType::Int128:
4463 case BuiltinType::UInt128:
4464 return 7 + (getIntWidth(Int128Ty) << 3);
4465 }
4466}
4467
4468/// \brief Whether this is a promotable bitfield reference according
4469/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4470///
4471/// \returns the type this bit-field will promote to, or NULL if no
4472/// promotion occurs.
4473QualType ASTContext::isPromotableBitField(Expr *E) const {
4474 if (E->isTypeDependent() || E->isValueDependent())
4475 return QualType();
4476
4477 // FIXME: We should not do this unless E->refersToBitField() is true. This
4478 // matters in C where getSourceBitField() will find bit-fields for various
4479 // cases where the source expression is not a bit-field designator.
4480
4481 FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
4482 if (!Field)
4483 return QualType();
4484
4485 QualType FT = Field->getType();
4486
4487 uint64_t BitWidth = Field->getBitWidthValue(*this);
4488 uint64_t IntSize = getTypeSize(IntTy);
4489 // C++ [conv.prom]p5:
4490 // A prvalue for an integral bit-field can be converted to a prvalue of type
4491 // int if int can represent all the values of the bit-field; otherwise, it
4492 // can be converted to unsigned int if unsigned int can represent all the
4493 // values of the bit-field. If the bit-field is larger yet, no integral
4494 // promotion applies to it.
4495 // C11 6.3.1.1/2:
4496 // [For a bit-field of type _Bool, int, signed int, or unsigned int:]
4497 // If an int can represent all values of the original type (as restricted by
4498 // the width, for a bit-field), the value is converted to an int; otherwise,
4499 // it is converted to an unsigned int.
4500 //
4501 // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
4502 // We perform that promotion here to match GCC and C++.
4503 if (BitWidth < IntSize)
4504 return IntTy;
4505
4506 if (BitWidth == IntSize)
4507 return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4508
4509 // Types bigger than int are not subject to promotions, and therefore act
4510 // like the base type. GCC has some weird bugs in this area that we
4511 // deliberately do not follow (GCC follows a pre-standard resolution to
4512 // C's DR315 which treats bit-width as being part of the type, and this leaks
4513 // into their semantics in some cases).
4514 return QualType();
4515}
4516
4517/// getPromotedIntegerType - Returns the type that Promotable will
4518/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4519/// integer type.
4520QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4521 assert(!Promotable.isNull());
4522 assert(Promotable->isPromotableIntegerType());
4523 if (const EnumType *ET = Promotable->getAs<EnumType>())
4524 return ET->getDecl()->getPromotionType();
4525
4526 if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4527 // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4528 // (3.9.1) can be converted to a prvalue of the first of the following
4529 // types that can represent all the values of its underlying type:
4530 // int, unsigned int, long int, unsigned long int, long long int, or
4531 // unsigned long long int [...]
4532 // FIXME: Is there some better way to compute this?
4533 if (BT->getKind() == BuiltinType::WChar_S ||
4534 BT->getKind() == BuiltinType::WChar_U ||
4535 BT->getKind() == BuiltinType::Char16 ||
4536 BT->getKind() == BuiltinType::Char32) {
4537 bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4538 uint64_t FromSize = getTypeSize(BT);
4539 QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4540 LongLongTy, UnsignedLongLongTy };
4541 for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4542 uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4543 if (FromSize < ToSize ||
4544 (FromSize == ToSize &&
4545 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4546 return PromoteTypes[Idx];
4547 }
4548 llvm_unreachable("char type should fit into long long");
4549 }
4550 }
4551
4552 // At this point, we should have a signed or unsigned integer type.
4553 if (Promotable->isSignedIntegerType())
4554 return IntTy;
4555 uint64_t PromotableSize = getIntWidth(Promotable);
4556 uint64_t IntSize = getIntWidth(IntTy);
4557 assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4558 return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4559}
4560
4561/// \brief Recurses in pointer/array types until it finds an objc retainable
4562/// type and returns its ownership.
4563Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4564 while (!T.isNull()) {
4565 if (T.getObjCLifetime() != Qualifiers::OCL_None)
4566 return T.getObjCLifetime();
4567 if (T->isArrayType())
4568 T = getBaseElementType(T);
4569 else if (const PointerType *PT = T->getAs<PointerType>())
4570 T = PT->getPointeeType();
4571 else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4572 T = RT->getPointeeType();
4573 else
4574 break;
4575 }
4576
4577 return Qualifiers::OCL_None;
4578}
4579
4580static const Type *getIntegerTypeForEnum(const EnumType *ET) {
4581 // Incomplete enum types are not treated as integer types.
4582 // FIXME: In C++, enum types are never integer types.
4583 if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
4584 return ET->getDecl()->getIntegerType().getTypePtr();
4585 return nullptr;
4586}
4587
4588/// getIntegerTypeOrder - Returns the highest ranked integer type:
4589/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
4590/// LHS < RHS, return -1.
4591int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4592 const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4593 const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4594
4595 // Unwrap enums to their underlying type.
4596 if (const EnumType *ET = dyn_cast<EnumType>(LHSC))
4597 LHSC = getIntegerTypeForEnum(ET);
4598 if (const EnumType *ET = dyn_cast<EnumType>(RHSC))
4599 RHSC = getIntegerTypeForEnum(ET);
4600
4601 if (LHSC == RHSC) return 0;
4602
4603 bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4604 bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4605
4606 unsigned LHSRank = getIntegerRank(LHSC);
4607 unsigned RHSRank = getIntegerRank(RHSC);
4608
4609 if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
4610 if (LHSRank == RHSRank) return 0;
4611 return LHSRank > RHSRank ? 1 : -1;
4612 }
4613
4614 // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4615 if (LHSUnsigned) {
4616 // If the unsigned [LHS] type is larger, return it.
4617 if (LHSRank >= RHSRank)
4618 return 1;
4619
4620 // If the signed type can represent all values of the unsigned type, it
4621 // wins. Because we are dealing with 2's complement and types that are
4622 // powers of two larger than each other, this is always safe.
4623 return -1;
4624 }
4625
4626 // If the unsigned [RHS] type is larger, return it.
4627 if (RHSRank >= LHSRank)
4628 return -1;
4629
4630 // If the signed type can represent all values of the unsigned type, it
4631 // wins. Because we are dealing with 2's complement and types that are
4632 // powers of two larger than each other, this is always safe.
4633 return 1;
4634}
4635
4636// getCFConstantStringType - Return the type used for constant CFStrings.
4637QualType ASTContext::getCFConstantStringType() const {
4638 if (!CFConstantStringTypeDecl) {
4639 CFConstantStringTypeDecl = buildImplicitRecord("NSConstantString");
4640 CFConstantStringTypeDecl->startDefinition();
4641
4642 QualType FieldTypes[4];
4643
4644 // const int *isa;
4645 FieldTypes[0] = getPointerType(IntTy.withConst());
4646 // int flags;
4647 FieldTypes[1] = IntTy;
4648 // const char *str;
4649 FieldTypes[2] = getPointerType(CharTy.withConst());
4650 // long length;
4651 FieldTypes[3] = LongTy;
4652
4653 // Create fields
4654 for (unsigned i = 0; i < 4; ++i) {
4655 FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4656 SourceLocation(),
4657 SourceLocation(), nullptr,
4658 FieldTypes[i], /*TInfo=*/nullptr,
4659 /*BitWidth=*/nullptr,
4660 /*Mutable=*/false,
4661 ICIS_NoInit);
4662 Field->setAccess(AS_public);
4663 CFConstantStringTypeDecl->addDecl(Field);
4664 }
4665
4666 CFConstantStringTypeDecl->completeDefinition();
4667 }
4668
4669 return getTagDeclType(CFConstantStringTypeDecl);
4670}
4671
4672QualType ASTContext::getObjCSuperType() const {
4673 if (ObjCSuperType.isNull()) {
4674 RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
4675 TUDecl->addDecl(ObjCSuperTypeDecl);
4676 ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4677 }
4678 return ObjCSuperType;
4679}
4680
4681void ASTContext::setCFConstantStringType(QualType T) {
4682 const RecordType *Rec = T->getAs<RecordType>();
4683 assert(Rec && "Invalid CFConstantStringType");
4684 CFConstantStringTypeDecl = Rec->getDecl();
4685}
4686
4687QualType ASTContext::getBlockDescriptorType() const {
4688 if (BlockDescriptorType)
4689 return getTagDeclType(BlockDescriptorType);
4690
4691 RecordDecl *RD;
4692 // FIXME: Needs the FlagAppleBlock bit.
4693 RD = buildImplicitRecord("__block_descriptor");
4694 RD->startDefinition();
4695
4696 QualType FieldTypes[] = {
4697 UnsignedLongTy,
4698 UnsignedLongTy,
4699 };
4700
4701 static const char *const FieldNames[] = {
4702 "reserved",
4703 "Size"
4704 };
4705
4706 for (size_t i = 0; i < 2; ++i) {
4707 FieldDecl *Field = FieldDecl::Create(
4708 *this, RD, SourceLocation(), SourceLocation(),
4709 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4710 /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
4711 Field->setAccess(AS_public);
4712 RD->addDecl(Field);
4713 }
4714
4715 RD->completeDefinition();
4716
4717 BlockDescriptorType = RD;
4718
4719 return getTagDeclType(BlockDescriptorType);
4720}
4721
4722QualType ASTContext::getBlockDescriptorExtendedType() const {
4723 if (BlockDescriptorExtendedType)
4724 return getTagDeclType(BlockDescriptorExtendedType);
4725
4726 RecordDecl *RD;
4727 // FIXME: Needs the FlagAppleBlock bit.
4728 RD = buildImplicitRecord("__block_descriptor_withcopydispose");
4729 RD->startDefinition();
4730
4731 QualType FieldTypes[] = {
4732 UnsignedLongTy,
4733 UnsignedLongTy,
4734 getPointerType(VoidPtrTy),
4735 getPointerType(VoidPtrTy)
4736 };
4737
4738 static const char *const FieldNames[] = {
4739 "reserved",
4740 "Size",
4741 "CopyFuncPtr",
4742 "DestroyFuncPtr"
4743 };
4744
4745 for (size_t i = 0; i < 4; ++i) {
4746 FieldDecl *Field = FieldDecl::Create(
4747 *this, RD, SourceLocation(), SourceLocation(),
4748 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
4749 /*BitWidth=*/nullptr,
4750 /*Mutable=*/false, ICIS_NoInit);
4751 Field->setAccess(AS_public);
4752 RD->addDecl(Field);
4753 }
4754
4755 RD->completeDefinition();
4756
4757 BlockDescriptorExtendedType = RD;
4758 return getTagDeclType(BlockDescriptorExtendedType);
4759}
4760
4761/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4762/// requires copy/dispose. Note that this must match the logic
4763/// in buildByrefHelpers.
4764bool ASTContext::BlockRequiresCopying(QualType Ty,
4765 const VarDecl *D) {
4766 if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4767 const Expr *copyExpr = getBlockVarCopyInits(D);
4768 if (!copyExpr && record->hasTrivialDestructor()) return false;
4769
4770 return true;
4771 }
4772
4773 if (!Ty->isObjCRetainableType()) return false;
4774
4775 Qualifiers qs = Ty.getQualifiers();
4776
4777 // If we have lifetime, that dominates.
4778 if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4779 assert(getLangOpts().ObjCAutoRefCount);
4780
4781 switch (lifetime) {
4782 case Qualifiers::OCL_None: llvm_unreachable("impossible");
4783
4784 // These are just bits as far as the runtime is concerned.
4785 case Qualifiers::OCL_ExplicitNone:
4786 case Qualifiers::OCL_Autoreleasing:
4787 return false;
4788
4789 // Tell the runtime that this is ARC __weak, called by the
4790 // byref routines.
4791 case Qualifiers::OCL_Weak:
4792 // ARC __strong __block variables need to be retained.
4793 case Qualifiers::OCL_Strong:
4794 return true;
4795 }
4796 llvm_unreachable("fell out of lifetime switch!");
4797 }
4798 return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4799 Ty->isObjCObjectPointerType());
4800}
4801
4802bool ASTContext::getByrefLifetime(QualType Ty,
4803 Qualifiers::ObjCLifetime &LifeTime,
4804 bool &HasByrefExtendedLayout) const {
4805
4806 if (!getLangOpts().ObjC1 ||
4807 getLangOpts().getGC() != LangOptions::NonGC)
4808 return false;
4809
4810 HasByrefExtendedLayout = false;
4811 if (Ty->isRecordType()) {
4812 HasByrefExtendedLayout = true;
4813 LifeTime = Qualifiers::OCL_None;
4814 }
4815 else if (getLangOpts().ObjCAutoRefCount)
4816 LifeTime = Ty.getObjCLifetime();
4817 // MRR.
4818 else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4819 LifeTime = Qualifiers::OCL_ExplicitNone;
4820 else
4821 LifeTime = Qualifiers::OCL_None;
4822 return true;
4823}
4824
4825TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4826 if (!ObjCInstanceTypeDecl)
4827 ObjCInstanceTypeDecl =
4828 buildImplicitTypedef(getObjCIdType(), "instancetype");
4829 return ObjCInstanceTypeDecl;
4830}
4831
4832// This returns true if a type has been typedefed to BOOL:
4833// typedef <type> BOOL;
4834static bool isTypeTypedefedAsBOOL(QualType T) {
4835 if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4836 if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4837 return II->isStr("BOOL");
4838
4839 return false;
4840}
4841
4842/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4843/// purpose.
4844CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4845 if (!type->isIncompleteArrayType() && type->isIncompleteType())
4846 return CharUnits::Zero();
4847
4848 CharUnits sz = getTypeSizeInChars(type);
4849
4850 // Make all integer and enum types at least as large as an int
4851 if (sz.isPositive() && type->isIntegralOrEnumerationType())
4852 sz = std::max(sz, getTypeSizeInChars(IntTy));
4853 // Treat arrays as pointers, since that's how they're passed in.
4854 else if (type->isArrayType())
4855 sz = getTypeSizeInChars(VoidPtrTy);
4856 return sz;
4857}
4858
4859bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
4860 return getLangOpts().MSVCCompat && VD->isStaticDataMember() &&
4861 VD->getType()->isIntegralOrEnumerationType() &&
4862 !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
4863}
4864
4865static inline
4866std::string charUnitsToString(const CharUnits &CU) {
4867 return llvm::itostr(CU.getQuantity());
4868}
4869
4870/// getObjCEncodingForBlock - Return the encoded type for this block
4871/// declaration.
4872std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4873 std::string S;
4874
4875 const BlockDecl *Decl = Expr->getBlockDecl();
4876 QualType BlockTy =
4877 Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4878 // Encode result type.
4879 if (getLangOpts().EncodeExtendedBlockSig)
4880 getObjCEncodingForMethodParameter(
4881 Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S,
4882 true /*Extended*/);
4883 else
4884 getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S);
4885 // Compute size of all parameters.
4886 // Start with computing size of a pointer in number of bytes.
4887 // FIXME: There might(should) be a better way of doing this computation!
4888 SourceLocation Loc;
4889 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4890 CharUnits ParmOffset = PtrSize;
4891 for (auto PI : Decl->params()) {
4892 QualType PType = PI->getType();
4893 CharUnits sz = getObjCEncodingTypeSize(PType);
4894 if (sz.isZero())
4895 continue;
4896 assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4897 ParmOffset += sz;
4898 }
4899 // Size of the argument frame
4900 S += charUnitsToString(ParmOffset);
4901 // Block pointer and offset.
4902 S += "@?0";
4903
4904 // Argument types.
4905 ParmOffset = PtrSize;
4906 for (auto PVDecl : Decl->params()) {
4907 QualType PType = PVDecl->getOriginalType();
4908 if (const ArrayType *AT =
4909 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4910 // Use array's original type only if it has known number of
4911 // elements.
4912 if (!isa<ConstantArrayType>(AT))
4913 PType = PVDecl->getType();
4914 } else if (PType->isFunctionType())
4915 PType = PVDecl->getType();
4916 if (getLangOpts().EncodeExtendedBlockSig)
4917 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4918 S, true /*Extended*/);
4919 else
4920 getObjCEncodingForType(PType, S);
4921 S += charUnitsToString(ParmOffset);
4922 ParmOffset += getObjCEncodingTypeSize(PType);
4923 }
4924
4925 return S;
4926}
4927
4928bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4929 std::string& S) {
4930 // Encode result type.
4931 getObjCEncodingForType(Decl->getReturnType(), S);
4932 CharUnits ParmOffset;
4933 // Compute size of all parameters.
4934 for (auto PI : Decl->params()) {
4935 QualType PType = PI->getType();
4936 CharUnits sz = getObjCEncodingTypeSize(PType);
4937 if (sz.isZero())
4938 continue;
4939
4940 assert (sz.isPositive() &&
4941 "getObjCEncodingForFunctionDecl - Incomplete param type");
4942 ParmOffset += sz;
4943 }
4944 S += charUnitsToString(ParmOffset);
4945 ParmOffset = CharUnits::Zero();
4946
4947 // Argument types.
4948 for (auto PVDecl : Decl->params()) {
4949 QualType PType = PVDecl->getOriginalType();
4950 if (const ArrayType *AT =
4951 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4952 // Use array's original type only if it has known number of
4953 // elements.
4954 if (!isa<ConstantArrayType>(AT))
4955 PType = PVDecl->getType();
4956 } else if (PType->isFunctionType())
4957 PType = PVDecl->getType();
4958 getObjCEncodingForType(PType, S);
4959 S += charUnitsToString(ParmOffset);
4960 ParmOffset += getObjCEncodingTypeSize(PType);
4961 }
4962
4963 return false;
4964}
4965
4966/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4967/// method parameter or return type. If Extended, include class names and
4968/// block object types.
4969void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4970 QualType T, std::string& S,
4971 bool Extended) const {
4972 // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4973 getObjCEncodingForTypeQualifier(QT, S);
4974 // Encode parameter type.
4975 getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
4976 true /*OutermostType*/,
4977 false /*EncodingProperty*/,
4978 false /*StructField*/,
4979 Extended /*EncodeBlockParameters*/,
4980 Extended /*EncodeClassNames*/);
4981}
4982
4983/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4984/// declaration.
4985bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4986 std::string& S,
4987 bool Extended) const {
4988 // FIXME: This is not very efficient.
4989 // Encode return type.
4990 getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4991 Decl->getReturnType(), S, Extended);
4992 // Compute size of all parameters.
4993 // Start with computing size of a pointer in number of bytes.
4994 // FIXME: There might(should) be a better way of doing this computation!
4995 SourceLocation Loc;
4996 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4997 // The first two arguments (self and _cmd) are pointers; account for
4998 // their size.
4999 CharUnits ParmOffset = 2 * PtrSize;
5000 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
5001 E = Decl->sel_param_end(); PI != E; ++PI) {
5002 QualType PType = (*PI)->getType();
5003 CharUnits sz = getObjCEncodingTypeSize(PType);
5004 if (sz.isZero())
5005 continue;
5006
5007 assert (sz.isPositive() &&
5008 "getObjCEncodingForMethodDecl - Incomplete param type");
5009 ParmOffset += sz;
5010 }
5011 S += charUnitsToString(ParmOffset);
5012 S += "@0:";
5013 S += charUnitsToString(PtrSize);
5014
5015 // Argument types.
5016 ParmOffset = 2 * PtrSize;
5017 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
5018 E = Decl->sel_param_end(); PI != E; ++PI) {
5019 const ParmVarDecl *PVDecl = *PI;
5020 QualType PType = PVDecl->getOriginalType();
5021 if (const ArrayType *AT =
5022 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
5023 // Use array's original type only if it has known number of
5024 // elements.
5025 if (!isa<ConstantArrayType>(AT))
5026 PType = PVDecl->getType();
5027 } else if (PType->isFunctionType())
5028 PType = PVDecl->getType();
5029 getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
5030 PType, S, Extended);
5031 S += charUnitsToString(ParmOffset);
5032 ParmOffset += getObjCEncodingTypeSize(PType);
5033 }
5034
5035 return false;
5036}
5037
5038ObjCPropertyImplDecl *
5039ASTContext::getObjCPropertyImplDeclForPropertyDecl(
5040 const ObjCPropertyDecl *PD,
5041 const Decl *Container) const {
5042 if (!Container)
5043 return nullptr;
5044 if (const ObjCCategoryImplDecl *CID =
5045 dyn_cast<ObjCCategoryImplDecl>(Container)) {
5046 for (auto *PID : CID->property_impls())
5047 if (PID->getPropertyDecl() == PD)
5048 return PID;
5049 } else {
5050 const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
5051 for (auto *PID : OID->property_impls())
5052 if (PID->getPropertyDecl() == PD)
5053 return PID;
5054 }
5055 return nullptr;
5056}
5057
5058/// getObjCEncodingForPropertyDecl - Return the encoded type for this
5059/// property declaration. If non-NULL, Container must be either an
5060/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
5061/// NULL when getting encodings for protocol properties.
5062/// Property attributes are stored as a comma-delimited C string. The simple
5063/// attributes readonly and bycopy are encoded as single characters. The
5064/// parametrized attributes, getter=name, setter=name, and ivar=name, are
5065/// encoded as single characters, followed by an identifier. Property types
5066/// are also encoded as a parametrized attribute. The characters used to encode
5067/// these attributes are defined by the following enumeration:
5068/// @code
5069/// enum PropertyAttributes {
5070/// kPropertyReadOnly = 'R', // property is read-only.
5071/// kPropertyBycopy = 'C', // property is a copy of the value last assigned
5072/// kPropertyByref = '&', // property is a reference to the value last assigned
5073/// kPropertyDynamic = 'D', // property is dynamic
5074/// kPropertyGetter = 'G', // followed by getter selector name
5075/// kPropertySetter = 'S', // followed by setter selector name
5076/// kPropertyInstanceVariable = 'V' // followed by instance variable name
5077/// kPropertyType = 'T' // followed by old-style type encoding.
5078/// kPropertyWeak = 'W' // 'weak' property
5079/// kPropertyStrong = 'P' // property GC'able
5080/// kPropertyNonAtomic = 'N' // property non-atomic
5081/// };
5082/// @endcode
5083void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
5084 const Decl *Container,
5085 std::string& S) const {
5086 // Collect information from the property implementation decl(s).
5087 bool Dynamic = false;
5088 ObjCPropertyImplDecl *SynthesizePID = nullptr;
5089
5090 if (ObjCPropertyImplDecl *PropertyImpDecl =
5091 getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
5092 if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
5093 Dynamic = true;
5094 else
5095 SynthesizePID = PropertyImpDecl;
5096 }
5097
5098 // FIXME: This is not very efficient.
5099 S = "T";
5100
5101 // Encode result type.
5102 // GCC has some special rules regarding encoding of properties which
5103 // closely resembles encoding of ivars.
5104 getObjCEncodingForPropertyType(PD->getType(), S);
5105
5106 if (PD->isReadOnly()) {
5107 S += ",R";
5108 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
5109 S += ",C";
5110 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
5111 S += ",&";
5112 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
5113 S += ",W";
5114 } else {
5115 switch (PD->getSetterKind()) {
5116 case ObjCPropertyDecl::Assign: break;
5117 case ObjCPropertyDecl::Copy: S += ",C"; break;
5118 case ObjCPropertyDecl::Retain: S += ",&"; break;
5119 case ObjCPropertyDecl::Weak: S += ",W"; break;
5120 }
5121 }
5122
5123 // It really isn't clear at all what this means, since properties
5124 // are "dynamic by default".
5125 if (Dynamic)
5126 S += ",D";
5127
5128 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
5129 S += ",N";
5130
5131 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
5132 S += ",G";
5133 S += PD->getGetterName().getAsString();
5134 }
5135
5136 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
5137 S += ",S";
5138 S += PD->getSetterName().getAsString();
5139 }
5140
5141 if (SynthesizePID) {
5142 const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
5143 S += ",V";
5144 S += OID->getNameAsString();
5145 }
5146
5147 // FIXME: OBJCGC: weak & strong
5148}
5149
5150/// getLegacyIntegralTypeEncoding -
5151/// Another legacy compatibility encoding: 32-bit longs are encoded as
5152/// 'l' or 'L' , but not always. For typedefs, we need to use
5153/// 'i' or 'I' instead if encoding a struct field, or a pointer!
5154///
5155void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
5156 if (isa<TypedefType>(PointeeTy.getTypePtr())) {
5157 if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
5158 if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
5159 PointeeTy = UnsignedIntTy;
5160 else
5161 if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
5162 PointeeTy = IntTy;
5163 }
5164 }
5165}
5166
5167void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
5168 const FieldDecl *Field,
5169 QualType *NotEncodedT) const {
5170 // We follow the behavior of gcc, expanding structures which are
5171 // directly pointed to, and expanding embedded structures. Note that
5172 // these rules are sufficient to prevent recursive encoding of the
5173 // same type.
5174 getObjCEncodingForTypeImpl(T, S, true, true, Field,
5175 true /* outermost type */, false, false,
5176 false, false, false, NotEncodedT);
5177}
5178
5179void ASTContext::getObjCEncodingForPropertyType(QualType T,
5180 std::string& S) const {
5181 // Encode result type.
5182 // GCC has some special rules regarding encoding of properties which
5183 // closely resembles encoding of ivars.
5184 getObjCEncodingForTypeImpl(T, S, true, true, nullptr,
5185 true /* outermost type */,
5186 true /* encoding property */);
5187}
5188
5189static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
5190 BuiltinType::Kind kind) {
5191 switch (kind) {
5192 case BuiltinType::Void: return 'v';
5193 case BuiltinType::Bool: return 'B';
5194 case BuiltinType::Char_U:
5195 case BuiltinType::UChar: return 'C';
5196 case BuiltinType::Char16:
5197 case BuiltinType::UShort: return 'S';
5198 case BuiltinType::Char32:
5199 case BuiltinType::UInt: return 'I';
5200 case BuiltinType::ULong:
5201 return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
5202 case BuiltinType::UInt128: return 'T';
5203 case BuiltinType::ULongLong: return 'Q';
5204 case BuiltinType::Char_S:
5205 case BuiltinType::SChar: return 'c';
5206 case BuiltinType::Short: return 's';
5207 case BuiltinType::WChar_S:
5208 case BuiltinType::WChar_U:
5209 case BuiltinType::Int: return 'i';
5210 case BuiltinType::Long:
5211 return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
5212 case BuiltinType::LongLong: return 'q';
5213 case BuiltinType::Int128: return 't';
5214 case BuiltinType::Float: return 'f';
5215 case BuiltinType::Double: return 'd';
5216 case BuiltinType::LongDouble: return 'D';
5217 case BuiltinType::NullPtr: return '*'; // like char*
5218
5219 case BuiltinType::Half:
5220 // FIXME: potentially need @encodes for these!
5221 return ' ';
5222
5223 case BuiltinType::ObjCId:
5224 case BuiltinType::ObjCClass:
5225 case BuiltinType::ObjCSel:
5226 llvm_unreachable("@encoding ObjC primitive type");
5227
5228 // OpenCL and placeholder types don't need @encodings.
5229 case BuiltinType::OCLImage1d:
5230 case BuiltinType::OCLImage1dArray:
5231 case BuiltinType::OCLImage1dBuffer:
5232 case BuiltinType::OCLImage2d:
5233 case BuiltinType::OCLImage2dArray:
5234 case BuiltinType::OCLImage3d:
5235 case BuiltinType::OCLEvent:
5236 case BuiltinType::OCLSampler:
5237 case BuiltinType::Dependent:
5238#define BUILTIN_TYPE(KIND, ID)
5239#define PLACEHOLDER_TYPE(KIND, ID) \
5240 case BuiltinType::KIND:
5241#include "clang/AST/BuiltinTypes.def"
5242 llvm_unreachable("invalid builtin type for @encode");
5243 }
5244 llvm_unreachable("invalid BuiltinType::Kind value");
5245}
5246
5247static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
5248 EnumDecl *Enum = ET->getDecl();
5249
5250 // The encoding of an non-fixed enum type is always 'i', regardless of size.
5251 if (!Enum->isFixed())
5252 return 'i';
5253
5254 // The encoding of a fixed enum type matches its fixed underlying type.
5255 const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
5256 return getObjCEncodingForPrimitiveKind(C, BT->getKind());
5257}
5258
5259static void EncodeBitField(const ASTContext *Ctx, std::string& S,
5260 QualType T, const FieldDecl *FD) {
5261 assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
5262 S += 'b';
5263 // The NeXT runtime encodes bit fields as b followed by the number of bits.
5264 // The GNU runtime requires more information; bitfields are encoded as b,
5265 // then the offset (in bits) of the first element, then the type of the
5266 // bitfield, then the size in bits. For example, in this structure:
5267 //
5268 // struct
5269 // {
5270 // int integer;
5271 // int flags:2;
5272 // };
5273 // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5274 // runtime, but b32i2 for the GNU runtime. The reason for this extra
5275 // information is not especially sensible, but we're stuck with it for
5276 // compatibility with GCC, although providing it breaks anything that
5277 // actually uses runtime introspection and wants to work on both runtimes...
5278 if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5279 const RecordDecl *RD = FD->getParent();
5280 const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5281 S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5282 if (const EnumType *ET = T->getAs<EnumType>())
5283 S += ObjCEncodingForEnumType(Ctx, ET);
5284 else {
5285 const BuiltinType *BT = T->castAs<BuiltinType>();
5286 S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5287 }
5288 }
5289 S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5290}
5291
5292// FIXME: Use SmallString for accumulating string.
5293void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5294 bool ExpandPointedToStructures,
5295 bool ExpandStructures,
5296 const FieldDecl *FD,
5297 bool OutermostType,
5298 bool EncodingProperty,
5299 bool StructField,
5300 bool EncodeBlockParameters,
5301 bool EncodeClassNames,
5302 bool EncodePointerToObjCTypedef,
5303 QualType *NotEncodedT) const {
5304 CanQualType CT = getCanonicalType(T);
5305 switch (CT->getTypeClass()) {
5306 case Type::Builtin:
5307 case Type::Enum:
5308 if (FD && FD->isBitField())
5309 return EncodeBitField(this, S, T, FD);
5310 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5311 S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5312 else
5313 S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5314 return;
5315
5316 case Type::Complex: {
5317 const ComplexType *CT = T->castAs<ComplexType>();
5318 S += 'j';
5319 getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr);
5320 return;
5321 }
5322
5323 case Type::Atomic: {
5324 const AtomicType *AT = T->castAs<AtomicType>();
5325 S += 'A';
5326 getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr);
5327 return;
5328 }
5329
5330 // encoding for pointer or reference types.
5331 case Type::Pointer:
5332 case Type::LValueReference:
5333 case Type::RValueReference: {
5334 QualType PointeeTy;
5335 if (isa<PointerType>(CT)) {
5336 const PointerType *PT = T->castAs<PointerType>();
5337 if (PT->isObjCSelType()) {
5338 S += ':';
5339 return;
5340 }
5341 PointeeTy = PT->getPointeeType();
5342 } else {
5343 PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5344 }
5345
5346 bool isReadOnly = false;
5347 // For historical/compatibility reasons, the read-only qualifier of the
5348 // pointee gets emitted _before_ the '^'. The read-only qualifier of
5349 // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5350 // Also, do not emit the 'r' for anything but the outermost type!
5351 if (isa<TypedefType>(T.getTypePtr())) {
5352 if (OutermostType && T.isConstQualified()) {
5353 isReadOnly = true;
5354 S += 'r';
5355 }
5356 } else if (OutermostType) {
5357 QualType P = PointeeTy;
5358 while (P->getAs<PointerType>())
5359 P = P->getAs<PointerType>()->getPointeeType();
5360 if (P.isConstQualified()) {
5361 isReadOnly = true;
5362 S += 'r';
5363 }
5364 }
5365 if (isReadOnly) {
5366 // Another legacy compatibility encoding. Some ObjC qualifier and type
5367 // combinations need to be rearranged.
5368 // Rewrite "in const" from "nr" to "rn"
5369 if (StringRef(S).endswith("nr"))
5370 S.replace(S.end()-2, S.end(), "rn");
5371 }
5372
5373 if (PointeeTy->isCharType()) {
5374 // char pointer types should be encoded as '*' unless it is a
5375 // type that has been typedef'd to 'BOOL'.
5376 if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5377 S += '*';
5378 return;
5379 }
5380 } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5381 // GCC binary compat: Need to convert "struct objc_class *" to "#".
5382 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5383 S += '#';
5384 return;
5385 }
5386 // GCC binary compat: Need to convert "struct objc_object *" to "@".
5387 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5388 S += '@';
5389 return;
5390 }
5391 // fall through...
5392 }
5393 S += '^';
5394 getLegacyIntegralTypeEncoding(PointeeTy);
5395
5396 getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5397 nullptr, false, false, false, false, false, false,
5398 NotEncodedT);
5399 return;
5400 }
5401
5402 case Type::ConstantArray:
5403 case Type::IncompleteArray:
5404 case Type::VariableArray: {
5405 const ArrayType *AT = cast<ArrayType>(CT);
5406
5407 if (isa<IncompleteArrayType>(AT) && !StructField) {
5408 // Incomplete arrays are encoded as a pointer to the array element.
5409 S += '^';
5410
5411 getObjCEncodingForTypeImpl(AT->getElementType(), S,
5412 false, ExpandStructures, FD);
5413 } else {
5414 S += '[';
5415
5416 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
5417 S += llvm::utostr(CAT->getSize().getZExtValue());
5418 else {
5419 //Variable length arrays are encoded as a regular array with 0 elements.
5420 assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5421 "Unknown array type!");
5422 S += '0';
5423 }
5424
5425 getObjCEncodingForTypeImpl(AT->getElementType(), S,
5426 false, ExpandStructures, FD,
5427 false, false, false, false, false, false,
5428 NotEncodedT);
5429 S += ']';
5430 }
5431 return;
5432 }
5433
5434 case Type::FunctionNoProto:
5435 case Type::FunctionProto:
5436 S += '?';
5437 return;
5438
5439 case Type::Record: {
5440 RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5441 S += RDecl->isUnion() ? '(' : '{';
5442 // Anonymous structures print as '?'
5443 if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5444 S += II->getName();
5445 if (ClassTemplateSpecializationDecl *Spec
5446 = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5447 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5448 llvm::raw_string_ostream OS(S);
5449 TemplateSpecializationType::PrintTemplateArgumentList(OS,
5450 TemplateArgs.data(),
5451 TemplateArgs.size(),
5452 (*this).getPrintingPolicy());
5453 }
5454 } else {
5455 S += '?';
5456 }
5457 if (ExpandStructures) {
5458 S += '=';
5459 if (!RDecl->isUnion()) {
5460 getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
5461 } else {
5462 for (const auto *Field : RDecl->fields()) {
5463 if (FD) {
5464 S += '"';
5465 S += Field->getNameAsString();
5466 S += '"';
5467 }
5468
5469 // Special case bit-fields.
5470 if (Field->isBitField()) {
5471 getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5472 Field);
5473 } else {
5474 QualType qt = Field->getType();
5475 getLegacyIntegralTypeEncoding(qt);
5476 getObjCEncodingForTypeImpl(qt, S, false, true,
5477 FD, /*OutermostType*/false,
5478 /*EncodingProperty*/false,
5479 /*StructField*/true,
5480 false, false, false, NotEncodedT);
5481 }
5482 }
5483 }
5484 }
5485 S += RDecl->isUnion() ? ')' : '}';
5486 return;
5487 }
5488
5489 case Type::BlockPointer: {
5490 const BlockPointerType *BT = T->castAs<BlockPointerType>();
5491 S += "@?"; // Unlike a pointer-to-function, which is "^?".
5492 if (EncodeBlockParameters) {
5493 const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5494
5495 S += '<';
5496 // Block return type
5497 getObjCEncodingForTypeImpl(
5498 FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures,
5499 FD, false /* OutermostType */, EncodingProperty,
5500 false /* StructField */, EncodeBlockParameters, EncodeClassNames, false,
5501 NotEncodedT);
5502 // Block self
5503 S += "@?";
5504 // Block parameters
5505 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5506 for (const auto &I : FPT->param_types())
5507 getObjCEncodingForTypeImpl(
5508 I, S, ExpandPointedToStructures, ExpandStructures, FD,
5509 false /* OutermostType */, EncodingProperty,
5510 false /* StructField */, EncodeBlockParameters, EncodeClassNames,
5511 false, NotEncodedT);
5512 }
5513 S += '>';
5514 }
5515 return;
5516 }
5517
5518 case Type::ObjCObject: {
5519 // hack to match legacy encoding of *id and *Class
5520 QualType Ty = getObjCObjectPointerType(CT);
5521 if (Ty->isObjCIdType()) {
5522 S += "{objc_object=}";
5523 return;
5524 }
5525 else if (Ty->isObjCClassType()) {
5526 S += "{objc_class=}";
5527 return;
5528 }
5529 }
5530
5531 case Type::ObjCInterface: {
5532 // Ignore protocol qualifiers when mangling at this level.
5533 T = T->castAs<ObjCObjectType>()->getBaseType();
5534
5535 // The assumption seems to be that this assert will succeed
5536 // because nested levels will have filtered out 'id' and 'Class'.
5537 const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5538 // @encode(class_name)
5539 ObjCInterfaceDecl *OI = OIT->getDecl();
5540 S += '{';
5541 const IdentifierInfo *II = OI->getIdentifier();
5542 S += II->getName();
5543 S += '=';
5544 SmallVector<const ObjCIvarDecl*, 32> Ivars;
5545 DeepCollectObjCIvars(OI, true, Ivars);
5546 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5547 const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5548 if (Field->isBitField())
5549 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5550 else
5551 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5552 false, false, false, false, false,
5553 EncodePointerToObjCTypedef,
5554 NotEncodedT);
5555 }
5556 S += '}';
5557 return;
5558 }
5559
5560 case Type::ObjCObjectPointer: {
5561 const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5562 if (OPT->isObjCIdType()) {
5563 S += '@';
5564 return;
5565 }
5566
5567 if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5568 // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5569 // Since this is a binary compatibility issue, need to consult with runtime
5570 // folks. Fortunately, this is a *very* obsure construct.
5571 S += '#';
5572 return;
5573 }
5574
5575 if (OPT->isObjCQualifiedIdType()) {
5576 getObjCEncodingForTypeImpl(getObjCIdType(), S,
5577 ExpandPointedToStructures,
5578 ExpandStructures, FD);
5579 if (FD || EncodingProperty || EncodeClassNames) {
5580 // Note that we do extended encoding of protocol qualifer list
5581 // Only when doing ivar or property encoding.
5582 S += '"';
5583 for (const auto *I : OPT->quals()) {
5584 S += '<';
5585 S += I->getNameAsString();
5586 S += '>';
5587 }
5588 S += '"';
5589 }
5590 return;
5591 }
5592
5593 QualType PointeeTy = OPT->getPointeeType();
5594 if (!EncodingProperty &&
5595 isa<TypedefType>(PointeeTy.getTypePtr()) &&
5596 !EncodePointerToObjCTypedef) {
5597 // Another historical/compatibility reason.
5598 // We encode the underlying type which comes out as
5599 // {...};
5600 S += '^';
5601 if (FD && OPT->getInterfaceDecl()) {
5602 // Prevent recursive encoding of fields in some rare cases.
5603 ObjCInterfaceDecl *OI = OPT->getInterfaceDecl();
5604 SmallVector<const ObjCIvarDecl*, 32> Ivars;
5605 DeepCollectObjCIvars(OI, true, Ivars);
5606 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5607 if (cast<FieldDecl>(Ivars[i]) == FD) {
5608 S += '{';
5609 S += OI->getIdentifier()->getName();
5610 S += '}';
5611 return;
5612 }
5613 }
5614 }
5615 getObjCEncodingForTypeImpl(PointeeTy, S,
5616 false, ExpandPointedToStructures,
5617 nullptr,
5618 false, false, false, false, false,
5619 /*EncodePointerToObjCTypedef*/true);
5620 return;
5621 }
5622
5623 S += '@';
5624 if (OPT->getInterfaceDecl() &&
5625 (FD || EncodingProperty || EncodeClassNames)) {
5626 S += '"';
5627 S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5628 for (const auto *I : OPT->quals()) {
5629 S += '<';
5630 S += I->getNameAsString();
5631 S += '>';
5632 }
5633 S += '"';
5634 }
5635 return;
5636 }
5637
5638 // gcc just blithely ignores member pointers.
5639 // FIXME: we shoul do better than that. 'M' is available.
5640 case Type::MemberPointer:
5641 // This matches gcc's encoding, even though technically it is insufficient.
5642 //FIXME. We should do a better job than gcc.
5643 case Type::Vector:
5644 case Type::ExtVector:
5645 // Until we have a coherent encoding of these three types, issue warning.
5646 { if (NotEncodedT)
5647 *NotEncodedT = T;
5648 return;
5649 }
5650
5651 // We could see an undeduced auto type here during error recovery.
5652 // Just ignore it.
5653 case Type::Auto:
5654 return;
5655
5656
5657#define ABSTRACT_TYPE(KIND, BASE)
5658#define TYPE(KIND, BASE)
5659#define DEPENDENT_TYPE(KIND, BASE) \
5660 case Type::KIND:
5661#define NON_CANONICAL_TYPE(KIND, BASE) \
5662 case Type::KIND:
5663#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5664 case Type::KIND:
5665#include "clang/AST/TypeNodes.def"
5666 llvm_unreachable("@encode for dependent type!");
5667 }
5668 llvm_unreachable("bad type kind!");
5669}
5670
5671void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5672 std::string &S,
5673 const FieldDecl *FD,
5674 bool includeVBases,
5675 QualType *NotEncodedT) const {
5676 assert(RDecl && "Expected non-null RecordDecl");
5677 assert(!RDecl->isUnion() && "Should not be called for unions");
5678 if (!RDecl->getDefinition())
5679 return;
5680
5681 CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5682 std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5683 const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5684
5685 if (CXXRec) {
5686 for (const auto &BI : CXXRec->bases()) {
5687 if (!BI.isVirtual()) {
5688 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5689 if (base->isEmpty())
5690 continue;
5691 uint64_t offs = toBits(layout.getBaseClassOffset(base));
5692 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5693 std::make_pair(offs, base));
5694 }
5695 }
5696 }
5697
5698 unsigned i = 0;
5699 for (auto *Field : RDecl->fields()) {
5700 uint64_t offs = layout.getFieldOffset(i);
5701 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5702 std::make_pair(offs, Field));
5703 ++i;
5704 }
5705
5706 if (CXXRec && includeVBases) {
5707 for (const auto &BI : CXXRec->vbases()) {
5708 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
5709 if (base->isEmpty())
5710 continue;
5711 uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5712 if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
5713 FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5714 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5715 std::make_pair(offs, base));
5716 }
5717 }
5718
5719 CharUnits size;
5720 if (CXXRec) {
5721 size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5722 } else {
5723 size = layout.getSize();
5724 }
5725
5726#ifndef NDEBUG
5727 uint64_t CurOffs = 0;
5728#endif
5729 std::multimap<uint64_t, NamedDecl *>::iterator
5730 CurLayObj = FieldOrBaseOffsets.begin();
5731
5732 if (CXXRec && CXXRec->isDynamicClass() &&
5733 (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5734 if (FD) {
5735 S += "\"_vptr$";
5736 std::string recname = CXXRec->getNameAsString();
5737 if (recname.empty()) recname = "?";
5738 S += recname;
5739 S += '"';
5740 }
5741 S += "^^?";
5742#ifndef NDEBUG
5743 CurOffs += getTypeSize(VoidPtrTy);
5744#endif
5745 }
5746
5747 if (!RDecl->hasFlexibleArrayMember()) {
5748 // Mark the end of the structure.
5749 uint64_t offs = toBits(size);
5750 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5751 std::make_pair(offs, nullptr));
5752 }
5753
5754 for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5755#ifndef NDEBUG
5756 assert(CurOffs <= CurLayObj->first);
5757 if (CurOffs < CurLayObj->first) {
5758 uint64_t padding = CurLayObj->first - CurOffs;
5759 // FIXME: There doesn't seem to be a way to indicate in the encoding that
5760 // packing/alignment of members is different that normal, in which case
5761 // the encoding will be out-of-sync with the real layout.
5762 // If the runtime switches to just consider the size of types without
5763 // taking into account alignment, we could make padding explicit in the
5764 // encoding (e.g. using arrays of chars). The encoding strings would be
5765 // longer then though.
5766 CurOffs += padding;
5767 }
5768#endif
5769
5770 NamedDecl *dcl = CurLayObj->second;
5771 if (!dcl)
5772 break; // reached end of structure.
5773
5774 if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5775 // We expand the bases without their virtual bases since those are going
5776 // in the initial structure. Note that this differs from gcc which
5777 // expands virtual bases each time one is encountered in the hierarchy,
5778 // making the encoding type bigger than it really is.
5779 getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
5780 NotEncodedT);
5781 assert(!base->isEmpty());
5782#ifndef NDEBUG
5783 CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5784#endif
5785 } else {
5786 FieldDecl *field = cast<FieldDecl>(dcl);
5787 if (FD) {
5788 S += '"';
5789 S += field->getNameAsString();
5790 S += '"';
5791 }
5792
5793 if (field->isBitField()) {
5794 EncodeBitField(this, S, field->getType(), field);
5795#ifndef NDEBUG
5796 CurOffs += field->getBitWidthValue(*this);
5797#endif
5798 } else {
5799 QualType qt = field->getType();
5800 getLegacyIntegralTypeEncoding(qt);
5801 getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5802 /*OutermostType*/false,
5803 /*EncodingProperty*/false,
5804 /*StructField*/true,
5805 false, false, false, NotEncodedT);
5806#ifndef NDEBUG
5807 CurOffs += getTypeSize(field->getType());
5808#endif
5809 }
5810 }
5811 }
5812}
5813
5814void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5815 std::string& S) const {
5816 if (QT & Decl::OBJC_TQ_In)
5817 S += 'n';
5818 if (QT & Decl::OBJC_TQ_Inout)
5819 S += 'N';
5820 if (QT & Decl::OBJC_TQ_Out)
5821 S += 'o';
5822 if (QT & Decl::OBJC_TQ_Bycopy)
5823 S += 'O';
5824 if (QT & Decl::OBJC_TQ_Byref)
5825 S += 'R';
5826 if (QT & Decl::OBJC_TQ_Oneway)
5827 S += 'V';
5828}
5829
5830TypedefDecl *ASTContext::getObjCIdDecl() const {
5831 if (!ObjCIdDecl) {
5832 QualType T = getObjCObjectType(ObjCBuiltinIdTy, nullptr, 0);
5833 T = getObjCObjectPointerType(T);
5834 ObjCIdDecl = buildImplicitTypedef(T, "id");
5835 }
5836 return ObjCIdDecl;
5837}
5838
5839TypedefDecl *ASTContext::getObjCSelDecl() const {
5840 if (!ObjCSelDecl) {
5841 QualType T = getPointerType(ObjCBuiltinSelTy);
5842 ObjCSelDecl = buildImplicitTypedef(T, "SEL");
5843 }
5844 return ObjCSelDecl;
5845}
5846
5847TypedefDecl *ASTContext::getObjCClassDecl() const {
5848 if (!ObjCClassDecl) {
5849 QualType T = getObjCObjectType(ObjCBuiltinClassTy, nullptr, 0);
5850 T = getObjCObjectPointerType(T);
5851 ObjCClassDecl = buildImplicitTypedef(T, "Class");
5852 }
5853 return ObjCClassDecl;
5854}
5855
5856ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5857 if (!ObjCProtocolClassDecl) {
5858 ObjCProtocolClassDecl
5859 = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5860 SourceLocation(),
5861 &Idents.get("Protocol"),
5862 /*PrevDecl=*/nullptr,
5863 SourceLocation(), true);
5864 }
5865
5866 return ObjCProtocolClassDecl;
5867}
5868
5869//===----------------------------------------------------------------------===//
5870// __builtin_va_list Construction Functions
5871//===----------------------------------------------------------------------===//
5872
5873static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5874 // typedef char* __builtin_va_list;
5875 QualType T = Context->getPointerType(Context->CharTy);
5876 return Context->buildImplicitTypedef(T, "__builtin_va_list");
5877}
5878
5879static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5880 // typedef void* __builtin_va_list;
5881 QualType T = Context->getPointerType(Context->VoidTy);
5882 return Context->buildImplicitTypedef(T, "__builtin_va_list");
5883}
5884
5885static TypedefDecl *
5886CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5887 // struct __va_list
5888 RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
5889 if (Context->getLangOpts().CPlusPlus) {
5890 // namespace std { struct __va_list {
5891 NamespaceDecl *NS;
5892 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5893 Context->getTranslationUnitDecl(),
5894 /*Inline*/ false, SourceLocation(),
5895 SourceLocation(), &Context->Idents.get("std"),
5896 /*PrevDecl*/ nullptr);
5897 NS->setImplicit();
5898 VaListTagDecl->setDeclContext(NS);
5899 }
5900
5901 VaListTagDecl->startDefinition();
5902
5903 const size_t NumFields = 5;
5904 QualType FieldTypes[NumFields];
5905 const char *FieldNames[NumFields];
5906
5907 // void *__stack;
5908 FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5909 FieldNames[0] = "__stack";
5910
5911 // void *__gr_top;
5912 FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5913 FieldNames[1] = "__gr_top";
5914
5915 // void *__vr_top;
5916 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5917 FieldNames[2] = "__vr_top";
5918
5919 // int __gr_offs;
5920 FieldTypes[3] = Context->IntTy;
5921 FieldNames[3] = "__gr_offs";
5922
5923 // int __vr_offs;
5924 FieldTypes[4] = Context->IntTy;
5925 FieldNames[4] = "__vr_offs";
5926
5927 // Create fields
5928 for (unsigned i = 0; i < NumFields; ++i) {
5929 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5930 VaListTagDecl,
5931 SourceLocation(),
5932 SourceLocation(),
5933 &Context->Idents.get(FieldNames[i]),
5934 FieldTypes[i], /*TInfo=*/nullptr,
5935 /*BitWidth=*/nullptr,
5936 /*Mutable=*/false,
5937 ICIS_NoInit);
5938 Field->setAccess(AS_public);
5939 VaListTagDecl->addDecl(Field);
5940 }
5941 VaListTagDecl->completeDefinition();
5942 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5943 Context->VaListTagTy = VaListTagType;
5944
5945 // } __builtin_va_list;
5946 return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
5947}
5948
5949static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5950 // typedef struct __va_list_tag {
5951 RecordDecl *VaListTagDecl;
5952
5953 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
5954 VaListTagDecl->startDefinition();
5955
5956 const size_t NumFields = 5;
5957 QualType FieldTypes[NumFields];
5958 const char *FieldNames[NumFields];
5959
5960 // unsigned char gpr;
5961 FieldTypes[0] = Context->UnsignedCharTy;
5962 FieldNames[0] = "gpr";
5963
5964 // unsigned char fpr;
5965 FieldTypes[1] = Context->UnsignedCharTy;
5966 FieldNames[1] = "fpr";
5967
5968 // unsigned short reserved;
5969 FieldTypes[2] = Context->UnsignedShortTy;
5970 FieldNames[2] = "reserved";
5971
5972 // void* overflow_arg_area;
5973 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5974 FieldNames[3] = "overflow_arg_area";
5975
5976 // void* reg_save_area;
5977 FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5978 FieldNames[4] = "reg_save_area";
5979
5980 // Create fields
5981 for (unsigned i = 0; i < NumFields; ++i) {
5982 FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5983 SourceLocation(),
5984 SourceLocation(),
5985 &Context->Idents.get(FieldNames[i]),
5986 FieldTypes[i], /*TInfo=*/nullptr,
5987 /*BitWidth=*/nullptr,
5988 /*Mutable=*/false,
5989 ICIS_NoInit);
5990 Field->setAccess(AS_public);
5991 VaListTagDecl->addDecl(Field);
5992 }
5993 VaListTagDecl->completeDefinition();
5994 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5995 Context->VaListTagTy = VaListTagType;
5996
5997 // } __va_list_tag;
5998 TypedefDecl *VaListTagTypedefDecl =
5999 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6000
6001 QualType VaListTagTypedefType =
6002 Context->getTypedefType(VaListTagTypedefDecl);
6003
6004 // typedef __va_list_tag __builtin_va_list[1];
6005 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6006 QualType VaListTagArrayType
6007 = Context->getConstantArrayType(VaListTagTypedefType,
6008 Size, ArrayType::Normal, 0);
6009 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6010}
6011
6012static TypedefDecl *
6013CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
6014 // typedef struct __va_list_tag {
6015 RecordDecl *VaListTagDecl;
6016 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6017 VaListTagDecl->startDefinition();
6018
6019 const size_t NumFields = 4;
6020 QualType FieldTypes[NumFields];
6021 const char *FieldNames[NumFields];
6022
6023 // unsigned gp_offset;
6024 FieldTypes[0] = Context->UnsignedIntTy;
6025 FieldNames[0] = "gp_offset";
6026
6027 // unsigned fp_offset;
6028 FieldTypes[1] = Context->UnsignedIntTy;
6029 FieldNames[1] = "fp_offset";
6030
6031 // void* overflow_arg_area;
6032 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6033 FieldNames[2] = "overflow_arg_area";
6034
6035 // void* reg_save_area;
6036 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6037 FieldNames[3] = "reg_save_area";
6038
6039 // Create fields
6040 for (unsigned i = 0; i < NumFields; ++i) {
6041 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6042 VaListTagDecl,
6043 SourceLocation(),
6044 SourceLocation(),
6045 &Context->Idents.get(FieldNames[i]),
6046 FieldTypes[i], /*TInfo=*/nullptr,
6047 /*BitWidth=*/nullptr,
6048 /*Mutable=*/false,
6049 ICIS_NoInit);
6050 Field->setAccess(AS_public);
6051 VaListTagDecl->addDecl(Field);
6052 }
6053 VaListTagDecl->completeDefinition();
6054 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6055 Context->VaListTagTy = VaListTagType;
6056
6057 // } __va_list_tag;
6058 TypedefDecl *VaListTagTypedefDecl =
6059 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6060
6061 QualType VaListTagTypedefType =
6062 Context->getTypedefType(VaListTagTypedefDecl);
6063
6064 // typedef __va_list_tag __builtin_va_list[1];
6065 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6066 QualType VaListTagArrayType
6067 = Context->getConstantArrayType(VaListTagTypedefType,
6068 Size, ArrayType::Normal,0);
6069 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6070}
6071
6072static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
6073 // typedef int __builtin_va_list[4];
6074 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
6075 QualType IntArrayType
6076 = Context->getConstantArrayType(Context->IntTy,
6077 Size, ArrayType::Normal, 0);
6078 return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
6079}
6080
6081static TypedefDecl *
6082CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
6083 // struct __va_list
6084 RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
6085 if (Context->getLangOpts().CPlusPlus) {
6086 // namespace std { struct __va_list {
6087 NamespaceDecl *NS;
6088 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
6089 Context->getTranslationUnitDecl(),
6090 /*Inline*/false, SourceLocation(),
6091 SourceLocation(), &Context->Idents.get("std"),
6092 /*PrevDecl*/ nullptr);
6093 NS->setImplicit();
6094 VaListDecl->setDeclContext(NS);
6095 }
6096
6097 VaListDecl->startDefinition();
6098
6099 // void * __ap;
6100 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6101 VaListDecl,
6102 SourceLocation(),
6103 SourceLocation(),
6104 &Context->Idents.get("__ap"),
6105 Context->getPointerType(Context->VoidTy),
6106 /*TInfo=*/nullptr,
6107 /*BitWidth=*/nullptr,
6108 /*Mutable=*/false,
6109 ICIS_NoInit);
6110 Field->setAccess(AS_public);
6111 VaListDecl->addDecl(Field);
6112
6113 // };
6114 VaListDecl->completeDefinition();
6115
6116 // typedef struct __va_list __builtin_va_list;
6117 QualType T = Context->getRecordType(VaListDecl);
6118 return Context->buildImplicitTypedef(T, "__builtin_va_list");
6119}
6120
6121static TypedefDecl *
6122CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
6123 // typedef struct __va_list_tag {
6124 RecordDecl *VaListTagDecl;
6125 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
6126 VaListTagDecl->startDefinition();
6127
6128 const size_t NumFields = 4;
6129 QualType FieldTypes[NumFields];
6130 const char *FieldNames[NumFields];
6131
6132 // long __gpr;
6133 FieldTypes[0] = Context->LongTy;
6134 FieldNames[0] = "__gpr";
6135
6136 // long __fpr;
6137 FieldTypes[1] = Context->LongTy;
6138 FieldNames[1] = "__fpr";
6139
6140 // void *__overflow_arg_area;
6141 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6142 FieldNames[2] = "__overflow_arg_area";
6143
6144 // void *__reg_save_area;
6145 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6146 FieldNames[3] = "__reg_save_area";
6147
6148 // Create fields
6149 for (unsigned i = 0; i < NumFields; ++i) {
6150 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6151 VaListTagDecl,
6152 SourceLocation(),
6153 SourceLocation(),
6154 &Context->Idents.get(FieldNames[i]),
6155 FieldTypes[i], /*TInfo=*/nullptr,
6156 /*BitWidth=*/nullptr,
6157 /*Mutable=*/false,
6158 ICIS_NoInit);
6159 Field->setAccess(AS_public);
6160 VaListTagDecl->addDecl(Field);
6161 }
6162 VaListTagDecl->completeDefinition();
6163 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6164 Context->VaListTagTy = VaListTagType;
6165
6166 // } __va_list_tag;
6167 TypedefDecl *VaListTagTypedefDecl =
6168 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
6169 QualType VaListTagTypedefType =
6170 Context->getTypedefType(VaListTagTypedefDecl);
6171
6172 // typedef __va_list_tag __builtin_va_list[1];
6173 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6174 QualType VaListTagArrayType
6175 = Context->getConstantArrayType(VaListTagTypedefType,
6176 Size, ArrayType::Normal,0);
6177
6178 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
6179}
6180
6181static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6182 TargetInfo::BuiltinVaListKind Kind) {
6183 switch (Kind) {
6184 case TargetInfo::CharPtrBuiltinVaList:
6185 return CreateCharPtrBuiltinVaListDecl(Context);
6186 case TargetInfo::VoidPtrBuiltinVaList:
6187 return CreateVoidPtrBuiltinVaListDecl(Context);
6188 case TargetInfo::AArch64ABIBuiltinVaList:
6189 return CreateAArch64ABIBuiltinVaListDecl(Context);
6190 case TargetInfo::PowerABIBuiltinVaList:
6191 return CreatePowerABIBuiltinVaListDecl(Context);
6192 case TargetInfo::X86_64ABIBuiltinVaList:
6193 return CreateX86_64ABIBuiltinVaListDecl(Context);
6194 case TargetInfo::PNaClABIBuiltinVaList:
6195 return CreatePNaClABIBuiltinVaListDecl(Context);
6196 case TargetInfo::AAPCSABIBuiltinVaList:
6197 return CreateAAPCSABIBuiltinVaListDecl(Context);
6198 case TargetInfo::SystemZBuiltinVaList:
6199 return CreateSystemZBuiltinVaListDecl(Context);
6200 }
6201
6202 llvm_unreachable("Unhandled __builtin_va_list type kind");
6203}
6204
6205TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
6206 if (!BuiltinVaListDecl) {
6207 BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
6208 assert(BuiltinVaListDecl->isImplicit());
6209 }
6210
6211 return BuiltinVaListDecl;
6212}
6213
6214QualType ASTContext::getVaListTagType() const {
6215 // Force the creation of VaListTagTy by building the __builtin_va_list
6216 // declaration.
6217 if (VaListTagTy.isNull())
6218 (void) getBuiltinVaListDecl();
6219
6220 return VaListTagTy;
6221}
6222
6223void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
6224 assert(ObjCConstantStringType.isNull() &&
6225 "'NSConstantString' type already set!");
6226
6227 ObjCConstantStringType = getObjCInterfaceType(Decl);
6228}
6229
6230/// \brief Retrieve the template name that corresponds to a non-empty
6231/// lookup.
6232TemplateName
6233ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
6234 UnresolvedSetIterator End) const {
6235 unsigned size = End - Begin;
6236 assert(size > 1 && "set is not overloaded!");
6237
6238 void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
6239 size * sizeof(FunctionTemplateDecl*));
6240 OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
6241
6242 NamedDecl **Storage = OT->getStorage();
6243 for (UnresolvedSetIterator I = Begin; I != End; ++I) {
6244 NamedDecl *D = *I;
6245 assert(isa<FunctionTemplateDecl>(D) ||
6246 (isa<UsingShadowDecl>(D) &&
6247 isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
6248 *Storage++ = D;
6249 }
6250
6251 return TemplateName(OT);
6252}
6253
6254/// \brief Retrieve the template name that represents a qualified
6255/// template name such as \c std::vector.
6256TemplateName
6257ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
6258 bool TemplateKeyword,
6259 TemplateDecl *Template) const {
6260 assert(NNS && "Missing nested-name-specifier in qualified template name");
6261
6262 // FIXME: Canonicalization?
6263 llvm::FoldingSetNodeID ID;
6264 QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6265
6266 void *InsertPos = nullptr;
6267 QualifiedTemplateName *QTN =
6268 QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6269 if (!QTN) {
6270 QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6271 QualifiedTemplateName(NNS, TemplateKeyword, Template);
6272 QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6273 }
6274
6275 return TemplateName(QTN);
6276}
6277
6278/// \brief Retrieve the template name that represents a dependent
6279/// template name such as \c MetaFun::template apply.
6280TemplateName
6281ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6282 const IdentifierInfo *Name) const {
6283 assert((!NNS || NNS->isDependent()) &&
6284 "Nested name specifier must be dependent");
6285
6286 llvm::FoldingSetNodeID ID;
6287 DependentTemplateName::Profile(ID, NNS, Name);
6288
6289 void *InsertPos = nullptr;
6290 DependentTemplateName *QTN =
6291 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6292
6293 if (QTN)
6294 return TemplateName(QTN);
6295
6296 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6297 if (CanonNNS == NNS) {
6298 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6299 DependentTemplateName(NNS, Name);
6300 } else {
6301 TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6302 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6303 DependentTemplateName(NNS, Name, Canon);
6304 DependentTemplateName *CheckQTN =
6305 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6306 assert(!CheckQTN && "Dependent type name canonicalization broken");
6307 (void)CheckQTN;
6308 }
6309
6310 DependentTemplateNames.InsertNode(QTN, InsertPos);
6311 return TemplateName(QTN);
6312}
6313
6314/// \brief Retrieve the template name that represents a dependent
6315/// template name such as \c MetaFun::template operator+.
6316TemplateName
6317ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6318 OverloadedOperatorKind Operator) const {
6319 assert((!NNS || NNS->isDependent()) &&
6320 "Nested name specifier must be dependent");
6321
6322 llvm::FoldingSetNodeID ID;
6323 DependentTemplateName::Profile(ID, NNS, Operator);
6324
6325 void *InsertPos = nullptr;
6326 DependentTemplateName *QTN
6327 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6328
6329 if (QTN)
6330 return TemplateName(QTN);
6331
6332 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6333 if (CanonNNS == NNS) {
6334 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6335 DependentTemplateName(NNS, Operator);
6336 } else {
6337 TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6338 QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6339 DependentTemplateName(NNS, Operator, Canon);
6340
6341 DependentTemplateName *CheckQTN
6342 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6343 assert(!CheckQTN && "Dependent template name canonicalization broken");
6344 (void)CheckQTN;
6345 }
6346
6347 DependentTemplateNames.InsertNode(QTN, InsertPos);
6348 return TemplateName(QTN);
6349}
6350
6351TemplateName
6352ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6353 TemplateName replacement) const {
6354 llvm::FoldingSetNodeID ID;
6355 SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6356
6357 void *insertPos = nullptr;
6358 SubstTemplateTemplateParmStorage *subst
6359 = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6360
6361 if (!subst) {
6362 subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6363 SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6364 }
6365
6366 return TemplateName(subst);
6367}
6368
6369TemplateName
6370ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6371 const TemplateArgument &ArgPack) const {
6372 ASTContext &Self = const_cast<ASTContext &>(*this);
6373 llvm::FoldingSetNodeID ID;
6374 SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6375
6376 void *InsertPos = nullptr;
6377 SubstTemplateTemplateParmPackStorage *Subst
6378 = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6379
6380 if (!Subst) {
6381 Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6382 ArgPack.pack_size(),
6383 ArgPack.pack_begin());
6384 SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6385 }
6386
6387 return TemplateName(Subst);
6388}
6389
6390/// getFromTargetType - Given one of the integer types provided by
6391/// TargetInfo, produce the corresponding type. The unsigned @p Type
6392/// is actually a value of type @c TargetInfo::IntType.
6393CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6394 switch (Type) {
6395 case TargetInfo::NoInt: return CanQualType();
6396 case TargetInfo::SignedChar: return SignedCharTy;
6397 case TargetInfo::UnsignedChar: return UnsignedCharTy;
6398 case TargetInfo::SignedShort: return ShortTy;
6399 case TargetInfo::UnsignedShort: return UnsignedShortTy;
6400 case TargetInfo::SignedInt: return IntTy;
6401 case TargetInfo::UnsignedInt: return UnsignedIntTy;
6402 case TargetInfo::SignedLong: return LongTy;
6403 case TargetInfo::UnsignedLong: return UnsignedLongTy;
6404 case TargetInfo::SignedLongLong: return LongLongTy;
6405 case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6406 }
6407
6408 llvm_unreachable("Unhandled TargetInfo::IntType value");
6409}
6410
6411//===----------------------------------------------------------------------===//
6412// Type Predicates.
6413//===----------------------------------------------------------------------===//
6414
6415/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6416/// garbage collection attribute.
6417///
6418Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6419 if (getLangOpts().getGC() == LangOptions::NonGC)
6420 return Qualifiers::GCNone;
6421
6422 assert(getLangOpts().ObjC1);
6423 Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6424
6425 // Default behaviour under objective-C's gc is for ObjC pointers
6426 // (or pointers to them) be treated as though they were declared
6427 // as __strong.
6428 if (GCAttrs == Qualifiers::GCNone) {
6429 if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6430 return Qualifiers::Strong;
6431 else if (Ty->isPointerType())
6432 return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6433 } else {
6434 // It's not valid to set GC attributes on anything that isn't a
6435 // pointer.
6436#ifndef NDEBUG
6437 QualType CT = Ty->getCanonicalTypeInternal();
6438 while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6439 CT = AT->getElementType();
6440 assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6441#endif
6442 }
6443 return GCAttrs;
6444}
6445
6446//===----------------------------------------------------------------------===//
6447// Type Compatibility Testing
6448//===----------------------------------------------------------------------===//
6449
6450/// areCompatVectorTypes - Return true if the two specified vector types are
6451/// compatible.
6452static bool areCompatVectorTypes(const VectorType *LHS,
6453 const VectorType *RHS) {
6454 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6455 return LHS->getElementType() == RHS->getElementType() &&
6456 LHS->getNumElements() == RHS->getNumElements();
6457}
6458
6459bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6460 QualType SecondVec) {
6461 assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6462 assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6463
6464 if (hasSameUnqualifiedType(FirstVec, SecondVec))
6465 return true;
6466
6467 // Treat Neon vector types and most AltiVec vector types as if they are the
6468 // equivalent GCC vector types.
6469 const VectorType *First = FirstVec->getAs<VectorType>();
6470 const VectorType *Second = SecondVec->getAs<VectorType>();
6471 if (First->getNumElements() == Second->getNumElements() &&
6472 hasSameType(First->getElementType(), Second->getElementType()) &&
6473 First->getVectorKind() != VectorType::AltiVecPixel &&
6474 First->getVectorKind() != VectorType::AltiVecBool &&
6475 Second->getVectorKind() != VectorType::AltiVecPixel &&
6476 Second->getVectorKind() != VectorType::AltiVecBool)
6477 return true;
6478
6479 return false;
6480}
6481
6482//===----------------------------------------------------------------------===//
6483// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6484//===----------------------------------------------------------------------===//
6485
6486/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6487/// inheritance hierarchy of 'rProto'.
6488bool
6489ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6490 ObjCProtocolDecl *rProto) const {
6491 if (declaresSameEntity(lProto, rProto))
6492 return true;
6493 for (auto *PI : rProto->protocols())
6494 if (ProtocolCompatibleWithProtocol(lProto, PI))
6495 return true;
6496 return false;
6497}
6498
6499/// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and
6500/// Class<pr1, ...>.
6501bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6502 QualType rhs) {
6503 const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6504 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6505 assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6506
6507 for (auto *lhsProto : lhsQID->quals()) {
6508 bool match = false;
6509 for (auto *rhsProto : rhsOPT->quals()) {
6510 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6511 match = true;
6512 break;
6513 }
6514 }
6515 if (!match)
6516 return false;
6517 }
6518 return true;
6519}
6520
6521/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6522/// ObjCQualifiedIDType.
6523bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6524 bool compare) {
6525 // Allow id<P..> and an 'id' or void* type in all cases.
6526 if (lhs->isVoidPointerType() ||
6527 lhs->isObjCIdType() || lhs->isObjCClassType())
6528 return true;
6529 else if (rhs->isVoidPointerType() ||
6530 rhs->isObjCIdType() || rhs->isObjCClassType())
6531 return true;
6532
6533 if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6534 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6535
6536 if (!rhsOPT) return false;
6537
6538 if (rhsOPT->qual_empty()) {
6539 // If the RHS is a unqualified interface pointer "NSString*",
6540 // make sure we check the class hierarchy.
6541 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6542 for (auto *I : lhsQID->quals()) {
6543 // when comparing an id<P> on lhs with a static type on rhs,
6544 // see if static class implements all of id's protocols, directly or
6545 // through its super class and categories.
6546 if (!rhsID->ClassImplementsProtocol(I, true))
6547 return false;
6548 }
6549 }
6550 // If there are no qualifiers and no interface, we have an 'id'.
6551 return true;
6552 }
6553 // Both the right and left sides have qualifiers.
6554 for (auto *lhsProto : lhsQID->quals()) {
6555 bool match = false;
6556
6557 // when comparing an id<P> on lhs with a static type on rhs,
6558 // see if static class implements all of id's protocols, directly or
6559 // through its super class and categories.
6560 for (auto *rhsProto : rhsOPT->quals()) {
6561 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6562 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6563 match = true;
6564 break;
6565 }
6566 }
6567 // If the RHS is a qualified interface pointer "NSString<P>*",
6568 // make sure we check the class hierarchy.
6569 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6570 for (auto *I : lhsQID->quals()) {
6571 // when comparing an id<P> on lhs with a static type on rhs,
6572 // see if static class implements all of id's protocols, directly or
6573 // through its super class and categories.
6574 if (rhsID->ClassImplementsProtocol(I, true)) {
6575 match = true;
6576 break;
6577 }
6578 }
6579 }
6580 if (!match)
6581 return false;
6582 }
6583
6584 return true;
6585 }
6586
6587 const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6588 assert(rhsQID && "One of the LHS/RHS should be id<x>");
6589
6590 if (const ObjCObjectPointerType *lhsOPT =
6591 lhs->getAsObjCInterfacePointerType()) {
6592 // If both the right and left sides have qualifiers.
6593 for (auto *lhsProto : lhsOPT->quals()) {
6594 bool match = false;
6595
6596 // when comparing an id<P> on rhs with a static type on lhs,
6597 // see if static class implements all of id's protocols, directly or
6598 // through its super class and categories.
6599 // First, lhs protocols in the qualifier list must be found, direct
6600 // or indirect in rhs's qualifier list or it is a mismatch.
6601 for (auto *rhsProto : rhsQID->quals()) {
6602 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6603 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6604 match = true;
6605 break;
6606 }
6607 }
6608 if (!match)
6609 return false;
6610 }
6611
6612 // Static class's protocols, or its super class or category protocols
6613 // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6614 if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6615 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6616 CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6617 // This is rather dubious but matches gcc's behavior. If lhs has
6618 // no type qualifier and its class has no static protocol(s)
6619 // assume that it is mismatch.
6620 if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6621 return false;
6622 for (auto *lhsProto : LHSInheritedProtocols) {
6623 bool match = false;
6624 for (auto *rhsProto : rhsQID->quals()) {
6625 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6626 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6627 match = true;
6628 break;
6629 }
6630 }
6631 if (!match)
6632 return false;
6633 }
6634 }
6635 return true;
6636 }
6637 return false;
6638}
6639
6640/// canAssignObjCInterfaces - Return true if the two interface types are
6641/// compatible for assignment from RHS to LHS. This handles validation of any
6642/// protocol qualifiers on the LHS or RHS.
6643///
6644bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6645 const ObjCObjectPointerType *RHSOPT) {
6646 const ObjCObjectType* LHS = LHSOPT->getObjectType();
6647 const ObjCObjectType* RHS = RHSOPT->getObjectType();
6648
6649 // If either type represents the built-in 'id' or 'Class' types, return true.
6650 if (LHS->isObjCUnqualifiedIdOrClass() ||
6651 RHS->isObjCUnqualifiedIdOrClass())
6652 return true;
6653
6654 if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6655 return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6656 QualType(RHSOPT,0),
6657 false);
6658
6659 if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6660 return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6661 QualType(RHSOPT,0));
6662
6663 // If we have 2 user-defined types, fall into that path.
6664 if (LHS->getInterface() && RHS->getInterface())
6665 return canAssignObjCInterfaces(LHS, RHS);
6666
6667 return false;
6668}
6669
6670/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6671/// for providing type-safety for objective-c pointers used to pass/return
6672/// arguments in block literals. When passed as arguments, passing 'A*' where
6673/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6674/// not OK. For the return type, the opposite is not OK.
6675bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6676 const ObjCObjectPointerType *LHSOPT,
6677 const ObjCObjectPointerType *RHSOPT,
6678 bool BlockReturnType) {
6679 if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6680 return true;
6681
6682 if (LHSOPT->isObjCBuiltinType()) {
6683 return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6684 }
6685
6686 if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6687 return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6688 QualType(RHSOPT,0),
6689 false);
6690
6691 const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6692 const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6693 if (LHS && RHS) { // We have 2 user-defined types.
6694 if (LHS != RHS) {
6695 if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6696 return BlockReturnType;
6697 if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6698 return !BlockReturnType;
6699 }
6700 else
6701 return true;
6702 }
6703 return false;
6704}
6705
6706/// getIntersectionOfProtocols - This routine finds the intersection of set
6707/// of protocols inherited from two distinct objective-c pointer objects.
6708/// It is used to build composite qualifier list of the composite type of
6709/// the conditional expression involving two objective-c pointer objects.
6710static
6711void getIntersectionOfProtocols(ASTContext &Context,
6712 const ObjCObjectPointerType *LHSOPT,
6713 const ObjCObjectPointerType *RHSOPT,
6714 SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6715
6716 const ObjCObjectType* LHS = LHSOPT->getObjectType();
6717 const ObjCObjectType* RHS = RHSOPT->getObjectType();
6718 assert(LHS->getInterface() && "LHS must have an interface base");
6719 assert(RHS->getInterface() && "RHS must have an interface base");
6720
6721 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6722 unsigned LHSNumProtocols = LHS->getNumProtocols();
6723 if (LHSNumProtocols > 0)
6724 InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6725 else {
6726 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6727 Context.CollectInheritedProtocols(LHS->getInterface(),
6728 LHSInheritedProtocols);
6729 InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6730 LHSInheritedProtocols.end());
6731 }
6732
6733 unsigned RHSNumProtocols = RHS->getNumProtocols();
6734 if (RHSNumProtocols > 0) {
6735 ObjCProtocolDecl **RHSProtocols =
6736 const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6737 for (unsigned i = 0; i < RHSNumProtocols; ++i)
6738 if (InheritedProtocolSet.count(RHSProtocols[i]))
6739 IntersectionOfProtocols.push_back(RHSProtocols[i]);
6740 } else {
6741 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6742 Context.CollectInheritedProtocols(RHS->getInterface(),
6743 RHSInheritedProtocols);
6744 for (ObjCProtocolDecl *ProtDecl : RHSInheritedProtocols)
6745 if (InheritedProtocolSet.count(ProtDecl))
6746 IntersectionOfProtocols.push_back(ProtDecl);
6747 }
6748}
6749
6750/// areCommonBaseCompatible - Returns common base class of the two classes if
6751/// one found. Note that this is O'2 algorithm. But it will be called as the
6752/// last type comparison in a ?-exp of ObjC pointer types before a
6753/// warning is issued. So, its invokation is extremely rare.
6754QualType ASTContext::areCommonBaseCompatible(
6755 const ObjCObjectPointerType *Lptr,
6756 const ObjCObjectPointerType *Rptr) {
6757 const ObjCObjectType *LHS = Lptr->getObjectType();
6758 const ObjCObjectType *RHS = Rptr->getObjectType();
6759 const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6760 const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6761 if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6762 return QualType();
6763
6764 do {
6765 LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6766 if (canAssignObjCInterfaces(LHS, RHS)) {
6767 SmallVector<ObjCProtocolDecl *, 8> Protocols;
6768 getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6769
6770 QualType Result = QualType(LHS, 0);
6771 if (!Protocols.empty())
6772 Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6773 Result = getObjCObjectPointerType(Result);
6774 return Result;
6775 }
6776 } while ((LDecl = LDecl->getSuperClass()));
6777
6778 return QualType();
6779}
6780
6781bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6782 const ObjCObjectType *RHS) {
6783 assert(LHS->getInterface() && "LHS is not an interface type");
6784 assert(RHS->getInterface() && "RHS is not an interface type");
6785
6786 // Verify that the base decls are compatible: the RHS must be a subclass of
6787 // the LHS.
6788 if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6789 return false;
6790
6791 // RHS must have a superset of the protocols in the LHS. If the LHS is not
6792 // protocol qualified at all, then we are good.
6793 if (LHS->getNumProtocols() == 0)
6794 return true;
6795
6796 // Okay, we know the LHS has protocol qualifiers. But RHS may or may not.
6797 // More detailed analysis is required.
6798 // OK, if LHS is same or a superclass of RHS *and*
6799 // this LHS, or as RHS's super class is assignment compatible with LHS.
6800 bool IsSuperClass =
6801 LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6802 if (IsSuperClass) {
6803 // OK if conversion of LHS to SuperClass results in narrowing of types
6804 // ; i.e., SuperClass may implement at least one of the protocols
6805 // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6806 // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6807 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6808 CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6809 // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
6810 // qualifiers.
6811 for (auto *RHSPI : RHS->quals())
6812 SuperClassInheritedProtocols.insert(RHSPI->getCanonicalDecl());
6813 // If there is no protocols associated with RHS, it is not a match.
6814 if (SuperClassInheritedProtocols.empty())
6815 return false;
6816
6817 for (const auto *LHSProto : LHS->quals()) {
6818 bool SuperImplementsProtocol = false;
6819 for (auto *SuperClassProto : SuperClassInheritedProtocols)
6820 if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6821 SuperImplementsProtocol = true;
6822 break;
6823 }
6824 if (!SuperImplementsProtocol)
6825 return false;
6826 }
6827 return true;
6828 }
6829 return false;
6830}
6831
6832bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6833 // get the "pointed to" types
6834 const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6835 const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6836
6837 if (!LHSOPT || !RHSOPT)
6838 return false;
6839
6840 return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6841 canAssignObjCInterfaces(RHSOPT, LHSOPT);
6842}
6843
6844bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6845 return canAssignObjCInterfaces(
6846 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6847 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6848}
6849
6850/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6851/// both shall have the identically qualified version of a compatible type.
6852/// C99 6.2.7p1: Two types have compatible types if their types are the
6853/// same. See 6.7.[2,3,5] for additional rules.
6854bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6855 bool CompareUnqualified) {
6856 if (getLangOpts().CPlusPlus)
6857 return hasSameType(LHS, RHS);
6858
6859 return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6860}
6861
6862bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6863 return typesAreCompatible(LHS, RHS);
6864}
6865
6866bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6867 return !mergeTypes(LHS, RHS, true).isNull();
6868}
6869
6870/// mergeTransparentUnionType - if T is a transparent union type and a member
6871/// of T is compatible with SubType, return the merged type, else return
6872/// QualType()
6873QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6874 bool OfBlockPointer,
6875 bool Unqualified) {
6876 if (const RecordType *UT = T->getAsUnionType()) {
6877 RecordDecl *UD = UT->getDecl();
6878 if (UD->hasAttr<TransparentUnionAttr>()) {
6879 for (const auto *I : UD->fields()) {
6880 QualType ET = I->getType().getUnqualifiedType();
6881 QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6882 if (!MT.isNull())
6883 return MT;
6884 }
6885 }
6886 }
6887
6888 return QualType();
6889}
6890
6891/// mergeFunctionParameterTypes - merge two types which appear as function
6892/// parameter types
6893QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
6894 bool OfBlockPointer,
6895 bool Unqualified) {
6896 // GNU extension: two types are compatible if they appear as a function
6897 // argument, one of the types is a transparent union type and the other
6898 // type is compatible with a union member
6899 QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6900 Unqualified);
6901 if (!lmerge.isNull())
6902 return lmerge;
6903
6904 QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6905 Unqualified);
6906 if (!rmerge.isNull())
6907 return rmerge;
6908
6909 return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6910}
6911
6912QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6913 bool OfBlockPointer,
6914 bool Unqualified) {
6915 const FunctionType *lbase = lhs->getAs<FunctionType>();
6916 const FunctionType *rbase = rhs->getAs<FunctionType>();
6917 const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6918 const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6919 bool allLTypes = true;
6920 bool allRTypes = true;
6921
6922 // Check return type
6923 QualType retType;
6924 if (OfBlockPointer) {
6925 QualType RHS = rbase->getReturnType();
6926 QualType LHS = lbase->getReturnType();
6927 bool UnqualifiedResult = Unqualified;
6928 if (!UnqualifiedResult)
6929 UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6930 retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6931 }
6932 else
6933 retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
6934 Unqualified);
6935 if (retType.isNull()) return QualType();
6936
6937 if (Unqualified)
6938 retType = retType.getUnqualifiedType();
6939
6940 CanQualType LRetType = getCanonicalType(lbase->getReturnType());
6941 CanQualType RRetType = getCanonicalType(rbase->getReturnType());
6942 if (Unqualified) {
6943 LRetType = LRetType.getUnqualifiedType();
6944 RRetType = RRetType.getUnqualifiedType();
6945 }
6946
6947 if (getCanonicalType(retType) != LRetType)
6948 allLTypes = false;
6949 if (getCanonicalType(retType) != RRetType)
6950 allRTypes = false;
6951
6952 // FIXME: double check this
6953 // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6954 // rbase->getRegParmAttr() != 0 &&
6955 // lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6956 FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6957 FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6958
6959 // Compatible functions must have compatible calling conventions
6960 if (lbaseInfo.getCC() != rbaseInfo.getCC())
6961 return QualType();
6962
6963 // Regparm is part of the calling convention.
6964 if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6965 return QualType();
6966 if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6967 return QualType();
6968
6969 if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6970 return QualType();
6971
6972 // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6973 bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6974
6975 if (lbaseInfo.getNoReturn() != NoReturn)
6976 allLTypes = false;
6977 if (rbaseInfo.getNoReturn() != NoReturn)
6978 allRTypes = false;
6979
6980 FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6981
6982 if (lproto && rproto) { // two C99 style function prototypes
6983 assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6984 "C++ shouldn't be here");
6985 // Compatible functions must have the same number of parameters
6986 if (lproto->getNumParams() != rproto->getNumParams())
6987 return QualType();
6988
6989 // Variadic and non-variadic functions aren't compatible
6990 if (lproto->isVariadic() != rproto->isVariadic())
6991 return QualType();
6992
6993 if (lproto->getTypeQuals() != rproto->getTypeQuals())
6994 return QualType();
6995
6996 if (LangOpts.ObjCAutoRefCount &&
6997 !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6998 return QualType();
6999
7000 // Check parameter type compatibility
7001 SmallVector<QualType, 10> types;
7002 for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
7003 QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
7004 QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
7005 QualType paramType = mergeFunctionParameterTypes(
7006 lParamType, rParamType, OfBlockPointer, Unqualified);
7007 if (paramType.isNull())
7008 return QualType();
7009
7010 if (Unqualified)
7011 paramType = paramType.getUnqualifiedType();
7012
7013 types.push_back(paramType);
7014 if (Unqualified) {
7015 lParamType = lParamType.getUnqualifiedType();
7016 rParamType = rParamType.getUnqualifiedType();
7017 }
7018
7019 if (getCanonicalType(paramType) != getCanonicalType(lParamType))
7020 allLTypes = false;
7021 if (getCanonicalType(paramType) != getCanonicalType(rParamType))
7022 allRTypes = false;
7023 }
7024
7025 if (allLTypes) return lhs;
7026 if (allRTypes) return rhs;
7027
7028 FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
7029 EPI.ExtInfo = einfo;
7030 return getFunctionType(retType, types, EPI);
7031 }
7032
7033 if (lproto) allRTypes = false;
7034 if (rproto) allLTypes = false;
7035
7036 const FunctionProtoType *proto = lproto ? lproto : rproto;
7037 if (proto) {
7038 assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
7039 if (proto->isVariadic()) return QualType();
7040 // Check that the types are compatible with the types that
7041 // would result from default argument promotions (C99 6.7.5.3p15).
7042 // The only types actually affected are promotable integer
7043 // types and floats, which would be passed as a different
7044 // type depending on whether the prototype is visible.
7045 for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
7046 QualType paramTy = proto->getParamType(i);
7047
7048 // Look at the converted type of enum types, since that is the type used
7049 // to pass enum values.
7050 if (const EnumType *Enum = paramTy->getAs<EnumType>()) {
7051 paramTy = Enum->getDecl()->getIntegerType();
7052 if (paramTy.isNull())
7053 return QualType();
7054 }
7055
7056 if (paramTy->isPromotableIntegerType() ||
7057 getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
7058 return QualType();
7059 }
7060
7061 if (allLTypes) return lhs;
7062 if (allRTypes) return rhs;
7063
7064 FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
7065 EPI.ExtInfo = einfo;
7066 return getFunctionType(retType, proto->getParamTypes(), EPI);
7067 }
7068
7069 if (allLTypes) return lhs;
7070 if (allRTypes) return rhs;
7071 return getFunctionNoProtoType(retType, einfo);
7072}
7073
7074/// Given that we have an enum type and a non-enum type, try to merge them.
7075static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
7076 QualType other, bool isBlockReturnType) {
7077 // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
7078 // a signed integer type, or an unsigned integer type.
7079 // Compatibility is based on the underlying type, not the promotion
7080 // type.
7081 QualType underlyingType = ET->getDecl()->getIntegerType();
7082 if (underlyingType.isNull()) return QualType();
7083 if (Context.hasSameType(underlyingType, other))
7084 return other;
7085
7086 // In block return types, we're more permissive and accept any
7087 // integral type of the same size.
7088 if (isBlockReturnType && other->isIntegerType() &&
7089 Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
7090 return other;
7091
7092 return QualType();
7093}
7094
7095QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
7096 bool OfBlockPointer,
7097 bool Unqualified, bool BlockReturnType) {
7098 // C++ [expr]: If an expression initially has the type "reference to T", the
7099 // type is adjusted to "T" prior to any further analysis, the expression
7100 // designates the object or function denoted by the reference, and the
7101 // expression is an lvalue unless the reference is an rvalue reference and
7102 // the expression is a function call (possibly inside parentheses).
7103 assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
7104 assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
7105
7106 if (Unqualified) {
7107 LHS = LHS.getUnqualifiedType();
7108 RHS = RHS.getUnqualifiedType();
7109 }
7110
7111 QualType LHSCan = getCanonicalType(LHS),
7112 RHSCan = getCanonicalType(RHS);
7113
7114 // If two types are identical, they are compatible.
7115 if (LHSCan == RHSCan)
7116 return LHS;
7117
7118 // If the qualifiers are different, the types aren't compatible... mostly.
7119 Qualifiers LQuals = LHSCan.getLocalQualifiers();
7120 Qualifiers RQuals = RHSCan.getLocalQualifiers();
7121 if (LQuals != RQuals) {
7122 // If any of these qualifiers are different, we have a type
7123 // mismatch.
7124 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7125 LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
7126 LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
7127 return QualType();
7128
7129 // Exactly one GC qualifier difference is allowed: __strong is
7130 // okay if the other type has no GC qualifier but is an Objective
7131 // C object pointer (i.e. implicitly strong by default). We fix
7132 // this by pretending that the unqualified type was actually
7133 // qualified __strong.
7134 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7135 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7136 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7137
7138 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7139 return QualType();
7140
7141 if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
7142 return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
7143 }
7144 if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
7145 return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
7146 }
7147 return QualType();
7148 }
7149
7150 // Okay, qualifiers are equal.
7151
7152 Type::TypeClass LHSClass = LHSCan->getTypeClass();
7153 Type::TypeClass RHSClass = RHSCan->getTypeClass();
7154
7155 // We want to consider the two function types to be the same for these
7156 // comparisons, just force one to the other.
7157 if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
7158 if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
7159
7160 // Same as above for arrays
7161 if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
7162 LHSClass = Type::ConstantArray;
7163 if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
7164 RHSClass = Type::ConstantArray;
7165
7166 // ObjCInterfaces are just specialized ObjCObjects.
7167 if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
7168 if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
7169
7170 // Canonicalize ExtVector -> Vector.
7171 if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
7172 if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
7173
7174 // If the canonical type classes don't match.
7175 if (LHSClass != RHSClass) {
7176 // Note that we only have special rules for turning block enum
7177 // returns into block int returns, not vice-versa.
7178 if (const EnumType* ETy = LHS->getAs<EnumType>()) {
7179 return mergeEnumWithInteger(*this, ETy, RHS, false);
7180 }
7181 if (const EnumType* ETy = RHS->getAs<EnumType>()) {
7182 return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
7183 }
7184 // allow block pointer type to match an 'id' type.
7185 if (OfBlockPointer && !BlockReturnType) {
7186 if (LHS->isObjCIdType() && RHS->isBlockPointerType())
7187 return LHS;
7188 if (RHS->isObjCIdType() && LHS->isBlockPointerType())
7189 return RHS;
7190 }
7191
7192 return QualType();
7193 }
7194
7195 // The canonical type classes match.
7196 switch (LHSClass) {
7197#define TYPE(Class, Base)
7198#define ABSTRACT_TYPE(Class, Base)
7199#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7200#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7201#define DEPENDENT_TYPE(Class, Base) case Type::Class:
7202#include "clang/AST/TypeNodes.def"
7203 llvm_unreachable("Non-canonical and dependent types shouldn't get here");
7204
7205 case Type::Auto:
7206 case Type::LValueReference:
7207 case Type::RValueReference:
7208 case Type::MemberPointer:
7209 llvm_unreachable("C++ should never be in mergeTypes");
7210
7211 case Type::ObjCInterface:
7212 case Type::IncompleteArray:
7213 case Type::VariableArray:
7214 case Type::FunctionProto:
7215 case Type::ExtVector:
7216 llvm_unreachable("Types are eliminated above");
7217
7218 case Type::Pointer:
7219 {
7220 // Merge two pointer types, while trying to preserve typedef info
7221 QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7222 QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7223 if (Unqualified) {
7224 LHSPointee = LHSPointee.getUnqualifiedType();
7225 RHSPointee = RHSPointee.getUnqualifiedType();
7226 }
7227 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7228 Unqualified);
7229 if (ResultType.isNull()) return QualType();
7230 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7231 return LHS;
7232 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7233 return RHS;
7234 return getPointerType(ResultType);
7235 }
7236 case Type::BlockPointer:
7237 {
7238 // Merge two block pointer types, while trying to preserve typedef info
7239 QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7240 QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7241 if (Unqualified) {
7242 LHSPointee = LHSPointee.getUnqualifiedType();
7243 RHSPointee = RHSPointee.getUnqualifiedType();
7244 }
7245 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7246 Unqualified);
7247 if (ResultType.isNull()) return QualType();
7248 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7249 return LHS;
7250 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7251 return RHS;
7252 return getBlockPointerType(ResultType);
7253 }
7254 case Type::Atomic:
7255 {
7256 // Merge two pointer types, while trying to preserve typedef info
7257 QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7258 QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7259 if (Unqualified) {
7260 LHSValue = LHSValue.getUnqualifiedType();
7261 RHSValue = RHSValue.getUnqualifiedType();
7262 }
7263 QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7264 Unqualified);
7265 if (ResultType.isNull()) return QualType();
7266 if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7267 return LHS;
7268 if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7269 return RHS;
7270 return getAtomicType(ResultType);
7271 }
7272 case Type::ConstantArray:
7273 {
7274 const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7275 const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7276 if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7277 return QualType();
7278
7279 QualType LHSElem = getAsArrayType(LHS)->getElementType();
7280 QualType RHSElem = getAsArrayType(RHS)->getElementType();
7281 if (Unqualified) {
7282 LHSElem = LHSElem.getUnqualifiedType();
7283 RHSElem = RHSElem.getUnqualifiedType();
7284 }
7285
7286 QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7287 if (ResultType.isNull()) return QualType();
7288 if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7289 return LHS;
7290 if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7291 return RHS;
7292 if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7293 ArrayType::ArraySizeModifier(), 0);
7294 if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7295 ArrayType::ArraySizeModifier(), 0);
7296 const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7297 const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7298 if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7299 return LHS;
7300 if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7301 return RHS;
7302 if (LVAT) {
7303 // FIXME: This isn't correct! But tricky to implement because
7304 // the array's size has to be the size of LHS, but the type
7305 // has to be different.
7306 return LHS;
7307 }
7308 if (RVAT) {
7309 // FIXME: This isn't correct! But tricky to implement because
7310 // the array's size has to be the size of RHS, but the type
7311 // has to be different.
7312 return RHS;
7313 }
7314 if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7315 if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7316 return getIncompleteArrayType(ResultType,
7317 ArrayType::ArraySizeModifier(), 0);
7318 }
7319 case Type::FunctionNoProto:
7320 return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7321 case Type::Record:
7322 case Type::Enum:
7323 return QualType();
7324 case Type::Builtin:
7325 // Only exactly equal builtin types are compatible, which is tested above.
7326 return QualType();
7327 case Type::Complex:
7328 // Distinct complex types are incompatible.
7329 return QualType();
7330 case Type::Vector:
7331 // FIXME: The merged type should be an ExtVector!
7332 if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7333 RHSCan->getAs<VectorType>()))
7334 return LHS;
7335 return QualType();
7336 case Type::ObjCObject: {
7337 // Check if the types are assignment compatible.
7338 // FIXME: This should be type compatibility, e.g. whether
7339 // "LHS x; RHS x;" at global scope is legal.
7340 const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7341 const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7342 if (canAssignObjCInterfaces(LHSIface, RHSIface))
7343 return LHS;
7344
7345 return QualType();
7346 }
7347 case Type::ObjCObjectPointer: {
7348 if (OfBlockPointer) {
7349 if (canAssignObjCInterfacesInBlockPointer(
7350 LHS->getAs<ObjCObjectPointerType>(),
7351 RHS->getAs<ObjCObjectPointerType>(),
7352 BlockReturnType))
7353 return LHS;
7354 return QualType();
7355 }
7356 if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7357 RHS->getAs<ObjCObjectPointerType>()))
7358 return LHS;
7359
7360 return QualType();
7361 }
7362 }
7363
7364 llvm_unreachable("Invalid Type::Class!");
7365}
7366
7367bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7368 const FunctionProtoType *FromFunctionType,
7369 const FunctionProtoType *ToFunctionType) {
7370 if (FromFunctionType->hasAnyConsumedParams() !=
7371 ToFunctionType->hasAnyConsumedParams())
7372 return false;
7373 FunctionProtoType::ExtProtoInfo FromEPI =
7374 FromFunctionType->getExtProtoInfo();
7375 FunctionProtoType::ExtProtoInfo ToEPI =
7376 ToFunctionType->getExtProtoInfo();
7377 if (FromEPI.ConsumedParameters && ToEPI.ConsumedParameters)
7378 for (unsigned i = 0, n = FromFunctionType->getNumParams(); i != n; ++i) {
7379 if (FromEPI.ConsumedParameters[i] != ToEPI.ConsumedParameters[i])
7380 return false;
7381 }
7382 return true;
7383}
7384
7385/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7386/// 'RHS' attributes and returns the merged version; including for function
7387/// return types.
7388QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7389 QualType LHSCan = getCanonicalType(LHS),
7390 RHSCan = getCanonicalType(RHS);
7391 // If two types are identical, they are compatible.
7392 if (LHSCan == RHSCan)
7393 return LHS;
7394 if (RHSCan->isFunctionType()) {
7395 if (!LHSCan->isFunctionType())
7396 return QualType();
7397 QualType OldReturnType =
7398 cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
7399 QualType NewReturnType =
7400 cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
7401 QualType ResReturnType =
7402 mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7403 if (ResReturnType.isNull())
7404 return QualType();
7405 if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7406 // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7407 // In either case, use OldReturnType to build the new function type.
7408 const FunctionType *F = LHS->getAs<FunctionType>();
7409 if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7410 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7411 EPI.ExtInfo = getFunctionExtInfo(LHS);
7412 QualType ResultType =
7413 getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
7414 return ResultType;
7415 }
7416 }
7417 return QualType();
7418 }
7419
7420 // If the qualifiers are different, the types can still be merged.
7421 Qualifiers LQuals = LHSCan.getLocalQualifiers();
7422 Qualifiers RQuals = RHSCan.getLocalQualifiers();
7423 if (LQuals != RQuals) {
7424 // If any of these qualifiers are different, we have a type mismatch.
7425 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7426 LQuals.getAddressSpace() != RQuals.getAddressSpace())
7427 return QualType();
7428
7429 // Exactly one GC qualifier difference is allowed: __strong is
7430 // okay if the other type has no GC qualifier but is an Objective
7431 // C object pointer (i.e. implicitly strong by default). We fix
7432 // this by pretending that the unqualified type was actually
7433 // qualified __strong.
7434 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7435 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7436 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7437
7438 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7439 return QualType();
7440
7441 if (GC_L == Qualifiers::Strong)
7442 return LHS;
7443 if (GC_R == Qualifiers::Strong)
7444 return RHS;
7445 return QualType();
7446 }
7447
7448 if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7449 QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7450 QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7451 QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7452 if (ResQT == LHSBaseQT)
7453 return LHS;
7454 if (ResQT == RHSBaseQT)
7455 return RHS;
7456 }
7457 return QualType();
7458}
7459
7460//===----------------------------------------------------------------------===//
7461// Integer Predicates
7462//===----------------------------------------------------------------------===//
7463
7464unsigned ASTContext::getIntWidth(QualType T) const {
7465 if (const EnumType *ET = T->getAs<EnumType>())
7466 T = ET->getDecl()->getIntegerType();
7467 if (T->isBooleanType())
7468 return 1;
7469 // For builtin types, just use the standard type sizing method
7470 return (unsigned)getTypeSize(T);
7471}
7472
7473QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7474 assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7475
7476 // Turn <4 x signed int> -> <4 x unsigned int>
7477 if (const VectorType *VTy = T->getAs<VectorType>())
7478 return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7479 VTy->getNumElements(), VTy->getVectorKind());
7480
7481 // For enums, we return the unsigned version of the base type.
7482 if (const EnumType *ETy = T->getAs<EnumType>())
7483 T = ETy->getDecl()->getIntegerType();
7484
7485 const BuiltinType *BTy = T->getAs<BuiltinType>();
7486 assert(BTy && "Unexpected signed integer type");
7487 switch (BTy->getKind()) {
7488 case BuiltinType::Char_S:
7489 case BuiltinType::SChar:
7490 return UnsignedCharTy;
7491 case BuiltinType::Short:
7492 return UnsignedShortTy;
7493 case BuiltinType::Int:
7494 return UnsignedIntTy;
7495 case BuiltinType::Long:
7496 return UnsignedLongTy;
7497 case BuiltinType::LongLong:
7498 return UnsignedLongLongTy;
7499 case BuiltinType::Int128:
7500 return UnsignedInt128Ty;
7501 default:
7502 llvm_unreachable("Unexpected signed integer type");
7503 }
7504}
7505
7506ASTMutationListener::~ASTMutationListener() { }
7507
7508void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
7509 QualType ReturnType) {}
7510
7511//===----------------------------------------------------------------------===//
7512// Builtin Type Computation
7513//===----------------------------------------------------------------------===//
7514
7515/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7516/// pointer over the consumed characters. This returns the resultant type. If
7517/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7518/// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of
7519/// a vector of "i*".
7520///
7521/// RequiresICE is filled in on return to indicate whether the value is required
7522/// to be an Integer Constant Expression.
7523static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7524 ASTContext::GetBuiltinTypeError &Error,
7525 bool &RequiresICE,
7526 bool AllowTypeModifiers) {
7527 // Modifiers.
7528 int HowLong = 0;
7529 bool Signed = false, Unsigned = false;
7530 RequiresICE = false;
7531
7532 // Read the prefixed modifiers first.
7533 bool Done = false;
7534 while (!Done) {
7535 switch (*Str++) {
7536 default: Done = true; --Str; break;
7537 case 'I':
7538 RequiresICE = true;
7539 break;
7540 case 'S':
7541 assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7542 assert(!Signed && "Can't use 'S' modifier multiple times!");
7543 Signed = true;
7544 break;
7545 case 'U':
7546 assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7547 assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7548 Unsigned = true;
7549 break;
7550 case 'L':
7551 assert(HowLong <= 2 && "Can't have LLLL modifier");
7552 ++HowLong;
7553 break;
7554 case 'W':
7555 // This modifier represents int64 type.
7556 assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
7557 switch (Context.getTargetInfo().getInt64Type()) {
7558 default:
7559 llvm_unreachable("Unexpected integer type");
7560 case TargetInfo::SignedLong:
7561 HowLong = 1;
7562 break;
7563 case TargetInfo::SignedLongLong:
7564 HowLong = 2;
7565 break;
7566 }
7567 }
7568 }
7569
7570 QualType Type;
7571
7572 // Read the base type.
7573 switch (*Str++) {
7574 default: llvm_unreachable("Unknown builtin type letter!");
7575 case 'v':
7576 assert(HowLong == 0 && !Signed && !Unsigned &&
7577 "Bad modifiers used with 'v'!");
7578 Type = Context.VoidTy;
7579 break;
7580 case 'h':
7581 assert(HowLong == 0 && !Signed && !Unsigned &&
7582 "Bad modifiers used with 'f'!");
7583 Type = Context.HalfTy;
7584 break;
7585 case 'f':
7586 assert(HowLong == 0 && !Signed && !Unsigned &&
7587 "Bad modifiers used with 'f'!");
7588 Type = Context.FloatTy;
7589 break;
7590 case 'd':
7591 assert(HowLong < 2 && !Signed && !Unsigned &&
7592 "Bad modifiers used with 'd'!");
7593 if (HowLong)
7594 Type = Context.LongDoubleTy;
7595 else
7596 Type = Context.DoubleTy;
7597 break;
7598 case 's':
7599 assert(HowLong == 0 && "Bad modifiers used with 's'!");
7600 if (Unsigned)
7601 Type = Context.UnsignedShortTy;
7602 else
7603 Type = Context.ShortTy;
7604 break;
7605 case 'i':
7606 if (HowLong == 3)
7607 Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7608 else if (HowLong == 2)
7609 Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7610 else if (HowLong == 1)
7611 Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7612 else
7613 Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7614 break;
7615 case 'c':
7616 assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7617 if (Signed)
7618 Type = Context.SignedCharTy;
7619 else if (Unsigned)
7620 Type = Context.UnsignedCharTy;
7621 else
7622 Type = Context.CharTy;
7623 break;
7624 case 'b': // boolean
7625 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7626 Type = Context.BoolTy;
7627 break;
7628 case 'z': // size_t.
7629 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7630 Type = Context.getSizeType();
7631 break;
7632 case 'F':
7633 Type = Context.getCFConstantStringType();
7634 break;
7635 case 'G':
7636 Type = Context.getObjCIdType();
7637 break;
7638 case 'H':
7639 Type = Context.getObjCSelType();
7640 break;
7641 case 'M':
7642 Type = Context.getObjCSuperType();
7643 break;
7644 case 'a':
7645 Type = Context.getBuiltinVaListType();
7646 assert(!Type.isNull() && "builtin va list type not initialized!");
7647 break;
7648 case 'A':
7649 // This is a "reference" to a va_list; however, what exactly
7650 // this means depends on how va_list is defined. There are two
7651 // different kinds of va_list: ones passed by value, and ones
7652 // passed by reference. An example of a by-value va_list is
7653 // x86, where va_list is a char*. An example of by-ref va_list
7654 // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7655 // we want this argument to be a char*&; for x86-64, we want
7656 // it to be a __va_list_tag*.
7657 Type = Context.getBuiltinVaListType();
7658 assert(!Type.isNull() && "builtin va list type not initialized!");
7659 if (Type->isArrayType())
7660 Type = Context.getArrayDecayedType(Type);
7661 else
7662 Type = Context.getLValueReferenceType(Type);
7663 break;
7664 case 'V': {
7665 char *End;
7666 unsigned NumElements = strtoul(Str, &End, 10);
7667 assert(End != Str && "Missing vector size");
7668 Str = End;
7669
7670 QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7671 RequiresICE, false);
7672 assert(!RequiresICE && "Can't require vector ICE");
7673
7674 // TODO: No way to make AltiVec vectors in builtins yet.
7675 Type = Context.getVectorType(ElementType, NumElements,
7676 VectorType::GenericVector);
7677 break;
7678 }
7679 case 'E': {
7680 char *End;
7681
7682 unsigned NumElements = strtoul(Str, &End, 10);
7683 assert(End != Str && "Missing vector size");
7684
7685 Str = End;
7686
7687 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7688 false);
7689 Type = Context.getExtVectorType(ElementType, NumElements);
7690 break;
7691 }
7692 case 'X': {
7693 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7694 false);
7695 assert(!RequiresICE && "Can't require complex ICE");
7696 Type = Context.getComplexType(ElementType);
7697 break;
7698 }
7699 case 'Y' : {
7700 Type = Context.getPointerDiffType();
7701 break;
7702 }
7703 case 'P':
7704 Type = Context.getFILEType();
7705 if (Type.isNull()) {
7706 Error = ASTContext::GE_Missing_stdio;
7707 return QualType();
7708 }
7709 break;
7710 case 'J':
7711 if (Signed)
7712 Type = Context.getsigjmp_bufType();
7713 else
7714 Type = Context.getjmp_bufType();
7715
7716 if (Type.isNull()) {
7717 Error = ASTContext::GE_Missing_setjmp;
7718 return QualType();
7719 }
7720 break;
7721 case 'K':
7722 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7723 Type = Context.getucontext_tType();
7724
7725 if (Type.isNull()) {
7726 Error = ASTContext::GE_Missing_ucontext;
7727 return QualType();
7728 }
7729 break;
7730 case 'p':
7731 Type = Context.getProcessIDType();
7732 break;
7733 }
7734
7735 // If there are modifiers and if we're allowed to parse them, go for it.
7736 Done = !AllowTypeModifiers;
7737 while (!Done) {
7738 switch (char c = *Str++) {
7739 default: Done = true; --Str; break;
7740 case '*':
7741 case '&': {
7742 // Both pointers and references can have their pointee types
7743 // qualified with an address space.
7744 char *End;
7745 unsigned AddrSpace = strtoul(Str, &End, 10);
7746 if (End != Str && AddrSpace != 0) {
7747 Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7748 Str = End;
7749 }
7750 if (c == '*')
7751 Type = Context.getPointerType(Type);
7752 else
7753 Type = Context.getLValueReferenceType(Type);
7754 break;
7755 }
7756 // FIXME: There's no way to have a built-in with an rvalue ref arg.
7757 case 'C':
7758 Type = Type.withConst();
7759 break;
7760 case 'D':
7761 Type = Context.getVolatileType(Type);
7762 break;
7763 case 'R':
7764 Type = Type.withRestrict();
7765 break;
7766 }
7767 }
7768
7769 assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7770 "Integer constant 'I' type must be an integer");
7771
7772 return Type;
7773}
7774
7775/// GetBuiltinType - Return the type for the specified builtin.
7776QualType ASTContext::GetBuiltinType(unsigned Id,
7777 GetBuiltinTypeError &Error,
7778 unsigned *IntegerConstantArgs) const {
7779 const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7780
7781 SmallVector<QualType, 8> ArgTypes;
7782
7783 bool RequiresICE = false;
7784 Error = GE_None;
7785 QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7786 RequiresICE, true);
7787 if (Error != GE_None)
7788 return QualType();
7789
7790 assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7791
7792 while (TypeStr[0] && TypeStr[0] != '.') {
7793 QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7794 if (Error != GE_None)
7795 return QualType();
7796
7797 // If this argument is required to be an IntegerConstantExpression and the
7798 // caller cares, fill in the bitmask we return.
7799 if (RequiresICE && IntegerConstantArgs)
7800 *IntegerConstantArgs |= 1 << ArgTypes.size();
7801
7802 // Do array -> pointer decay. The builtin should use the decayed type.
7803 if (Ty->isArrayType())
7804 Ty = getArrayDecayedType(Ty);
7805
7806 ArgTypes.push_back(Ty);
7807 }
7808
7809 assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7810 "'.' should only occur at end of builtin type list!");
7811
7812 FunctionType::ExtInfo EI(CC_C);
7813 if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7814
7815 bool Variadic = (TypeStr[0] == '.');
7816
7817 // We really shouldn't be making a no-proto type here, especially in C++.
7818 if (ArgTypes.empty() && Variadic)
7819 return getFunctionNoProtoType(ResType, EI);
7820
7821 FunctionProtoType::ExtProtoInfo EPI;
7822 EPI.ExtInfo = EI;
7823 EPI.Variadic = Variadic;
7824
7825 return getFunctionType(ResType, ArgTypes, EPI);
7826}
7827
7828static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
7829 const FunctionDecl *FD) {
7830 if (!FD->isExternallyVisible())
7831 return GVA_Internal;
7832
7833 GVALinkage External = GVA_StrongExternal;
7834 switch (FD->getTemplateSpecializationKind()) {
7835 case TSK_Undeclared:
7836 case TSK_ExplicitSpecialization:
7837 External = GVA_StrongExternal;
7838 break;
7839
7840 case TSK_ExplicitInstantiationDefinition:
7841 return GVA_StrongODR;
7842
7843 // C++11 [temp.explicit]p10:
7844 // [ Note: The intent is that an inline function that is the subject of
7845 // an explicit instantiation declaration will still be implicitly
7846 // instantiated when used so that the body can be considered for
7847 // inlining, but that no out-of-line copy of the inline function would be
7848 // generated in the translation unit. -- end note ]
7849 case TSK_ExplicitInstantiationDeclaration:
7850 return GVA_AvailableExternally;
7851
7852 case TSK_ImplicitInstantiation:
7853 External = GVA_DiscardableODR;
7854 break;
7855 }
7856
7857 if (!FD->isInlined())
7858 return External;
7859
7860 if ((!Context.getLangOpts().CPlusPlus && !Context.getLangOpts().MSVCCompat &&
7861 !FD->hasAttr<DLLExportAttr>()) ||
7862 FD->hasAttr<GNUInlineAttr>()) {
7863 // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
7864
7865 // GNU or C99 inline semantics. Determine whether this symbol should be
7866 // externally visible.
7867 if (FD->isInlineDefinitionExternallyVisible())
7868 return External;
7869
7870 // C99 inline semantics, where the symbol is not externally visible.
7871 return GVA_AvailableExternally;
7872 }
7873
7874 // Functions specified with extern and inline in -fms-compatibility mode
7875 // forcibly get emitted. While the body of the function cannot be later
7876 // replaced, the function definition cannot be discarded.
7876 if (FD->getMostRecentDecl()->isMSExternInline())
7877 if (FD->isMSExternInline())
7877 return GVA_StrongODR;
7878
7879 return GVA_DiscardableODR;
7880}
7881
7882static GVALinkage adjustGVALinkageForDLLAttribute(GVALinkage L, const Decl *D) {
7883 // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
7884 // dllexport/dllimport on inline functions.
7885 if (D->hasAttr<DLLImportAttr>()) {
7886 if (L == GVA_DiscardableODR || L == GVA_StrongODR)
7887 return GVA_AvailableExternally;
7888 } else if (D->hasAttr<DLLExportAttr>()) {
7889 if (L == GVA_DiscardableODR)
7890 return GVA_StrongODR;
7891 }
7892 return L;
7893}
7894
7895GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
7896 return adjustGVALinkageForDLLAttribute(basicGVALinkageForFunction(*this, FD),
7897 FD);
7898}
7899
7900static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
7901 const VarDecl *VD) {
7902 if (!VD->isExternallyVisible())
7903 return GVA_Internal;
7904
7905 if (VD->isStaticLocal()) {
7906 GVALinkage StaticLocalLinkage = GVA_DiscardableODR;
7907 const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
7908 while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
7909 LexicalContext = LexicalContext->getLexicalParent();
7910
7911 // Let the static local variable inherit it's linkage from the nearest
7912 // enclosing function.
7913 if (LexicalContext)
7914 StaticLocalLinkage =
7915 Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
7916
7917 // GVA_StrongODR function linkage is stronger than what we need,
7918 // downgrade to GVA_DiscardableODR.
7919 // This allows us to discard the variable if we never end up needing it.
7920 return StaticLocalLinkage == GVA_StrongODR ? GVA_DiscardableODR
7921 : StaticLocalLinkage;
7922 }
7923
7924 // MSVC treats in-class initialized static data members as definitions.
7925 // By giving them non-strong linkage, out-of-line definitions won't
7926 // cause link errors.
7927 if (Context.isMSStaticDataMemberInlineDefinition(VD))
7928 return GVA_DiscardableODR;
7929
7930 switch (VD->getTemplateSpecializationKind()) {
7931 case TSK_Undeclared:
7932 case TSK_ExplicitSpecialization:
7933 return GVA_StrongExternal;
7934
7935 case TSK_ExplicitInstantiationDefinition:
7936 return GVA_StrongODR;
7937
7938 case TSK_ExplicitInstantiationDeclaration:
7939 return GVA_AvailableExternally;
7940
7941 case TSK_ImplicitInstantiation:
7942 return GVA_DiscardableODR;
7943 }
7944
7945 llvm_unreachable("Invalid Linkage!");
7946}
7947
7948GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7949 return adjustGVALinkageForDLLAttribute(basicGVALinkageForVariable(*this, VD),
7950 VD);
7951}
7952
7953bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7954 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7955 if (!VD->isFileVarDecl())
7956 return false;
7957 // Global named register variables (GNU extension) are never emitted.
7958 if (VD->getStorageClass() == SC_Register)
7959 return false;
7960 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7961 // We never need to emit an uninstantiated function template.
7962 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
7963 return false;
7964 } else if (isa<OMPThreadPrivateDecl>(D))
7965 return true;
7966 else
7967 return false;
7968
7969 // If this is a member of a class template, we do not need to emit it.
7970 if (D->getDeclContext()->isDependentContext())
7971 return false;
7972
7973 // Weak references don't produce any output by themselves.
7974 if (D->hasAttr<WeakRefAttr>())
7975 return false;
7976
7977 // Aliases and used decls are required.
7978 if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7979 return true;
7980
7981 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7982 // Forward declarations aren't required.
7983 if (!FD->doesThisDeclarationHaveABody())
7984 return FD->doesDeclarationForceExternallyVisibleDefinition();
7985
7986 // Constructors and destructors are required.
7987 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7988 return true;
7989
7990 // The key function for a class is required. This rule only comes
7991 // into play when inline functions can be key functions, though.
7992 if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7993 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7994 const CXXRecordDecl *RD = MD->getParent();
7995 if (MD->isOutOfLine() && RD->isDynamicClass()) {
7996 const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7997 if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7998 return true;
7999 }
8000 }
8001 }
8002
8003 GVALinkage Linkage = GetGVALinkageForFunction(FD);
8004
8005 // static, static inline, always_inline, and extern inline functions can
8006 // always be deferred. Normal inline functions can be deferred in C99/C++.
8007 // Implicit template instantiations can also be deferred in C++.
8008 if (Linkage == GVA_Internal || Linkage == GVA_AvailableExternally ||
8009 Linkage == GVA_DiscardableODR)
8010 return false;
8011 return true;
8012 }
8013
8014 const VarDecl *VD = cast<VarDecl>(D);
8015 assert(VD->isFileVarDecl() && "Expected file scoped var");
8016
8017 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
8018 !isMSStaticDataMemberInlineDefinition(VD))
8019 return false;
8020
8021 // Variables that can be needed in other TUs are required.
8022 GVALinkage L = GetGVALinkageForVariable(VD);
8023 if (L != GVA_Internal && L != GVA_AvailableExternally &&
8024 L != GVA_DiscardableODR)
8025 return true;
8026
8027 // Variables that have destruction with side-effects are required.
8028 if (VD->getType().isDestructedType())
8029 return true;
8030
8031 // Variables that have initialization with side-effects are required.
8032 if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
8033 return true;
8034
8035 return false;
8036}
8037
8038CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
8039 bool IsCXXMethod) const {
8040 // Pass through to the C++ ABI object
8041 if (IsCXXMethod)
8042 return ABI->getDefaultMethodCallConv(IsVariadic);
8043
8044 return (LangOpts.MRTD && !IsVariadic) ? CC_X86StdCall : CC_C;
8045}
8046
8047bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
8048 // Pass through to the C++ ABI object
8049 return ABI->isNearlyEmpty(RD);
8050}
8051
8052VTableContextBase *ASTContext::getVTableContext() {
8053 if (!VTContext.get()) {
8054 if (Target->getCXXABI().isMicrosoft())
8055 VTContext.reset(new MicrosoftVTableContext(*this));
8056 else
8057 VTContext.reset(new ItaniumVTableContext(*this));
8058 }
8059 return VTContext.get();
8060}
8061
8062MangleContext *ASTContext::createMangleContext() {
8063 switch (Target->getCXXABI().getKind()) {
8064 case TargetCXXABI::GenericAArch64:
8065 case TargetCXXABI::GenericItanium:
8066 case TargetCXXABI::GenericARM:
7878 return GVA_StrongODR;
7879
7880 return GVA_DiscardableODR;
7881}
7882
7883static GVALinkage adjustGVALinkageForDLLAttribute(GVALinkage L, const Decl *D) {
7884 // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
7885 // dllexport/dllimport on inline functions.
7886 if (D->hasAttr<DLLImportAttr>()) {
7887 if (L == GVA_DiscardableODR || L == GVA_StrongODR)
7888 return GVA_AvailableExternally;
7889 } else if (D->hasAttr<DLLExportAttr>()) {
7890 if (L == GVA_DiscardableODR)
7891 return GVA_StrongODR;
7892 }
7893 return L;
7894}
7895
7896GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
7897 return adjustGVALinkageForDLLAttribute(basicGVALinkageForFunction(*this, FD),
7898 FD);
7899}
7900
7901static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
7902 const VarDecl *VD) {
7903 if (!VD->isExternallyVisible())
7904 return GVA_Internal;
7905
7906 if (VD->isStaticLocal()) {
7907 GVALinkage StaticLocalLinkage = GVA_DiscardableODR;
7908 const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
7909 while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
7910 LexicalContext = LexicalContext->getLexicalParent();
7911
7912 // Let the static local variable inherit it's linkage from the nearest
7913 // enclosing function.
7914 if (LexicalContext)
7915 StaticLocalLinkage =
7916 Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
7917
7918 // GVA_StrongODR function linkage is stronger than what we need,
7919 // downgrade to GVA_DiscardableODR.
7920 // This allows us to discard the variable if we never end up needing it.
7921 return StaticLocalLinkage == GVA_StrongODR ? GVA_DiscardableODR
7922 : StaticLocalLinkage;
7923 }
7924
7925 // MSVC treats in-class initialized static data members as definitions.
7926 // By giving them non-strong linkage, out-of-line definitions won't
7927 // cause link errors.
7928 if (Context.isMSStaticDataMemberInlineDefinition(VD))
7929 return GVA_DiscardableODR;
7930
7931 switch (VD->getTemplateSpecializationKind()) {
7932 case TSK_Undeclared:
7933 case TSK_ExplicitSpecialization:
7934 return GVA_StrongExternal;
7935
7936 case TSK_ExplicitInstantiationDefinition:
7937 return GVA_StrongODR;
7938
7939 case TSK_ExplicitInstantiationDeclaration:
7940 return GVA_AvailableExternally;
7941
7942 case TSK_ImplicitInstantiation:
7943 return GVA_DiscardableODR;
7944 }
7945
7946 llvm_unreachable("Invalid Linkage!");
7947}
7948
7949GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7950 return adjustGVALinkageForDLLAttribute(basicGVALinkageForVariable(*this, VD),
7951 VD);
7952}
7953
7954bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7955 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7956 if (!VD->isFileVarDecl())
7957 return false;
7958 // Global named register variables (GNU extension) are never emitted.
7959 if (VD->getStorageClass() == SC_Register)
7960 return false;
7961 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7962 // We never need to emit an uninstantiated function template.
7963 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
7964 return false;
7965 } else if (isa<OMPThreadPrivateDecl>(D))
7966 return true;
7967 else
7968 return false;
7969
7970 // If this is a member of a class template, we do not need to emit it.
7971 if (D->getDeclContext()->isDependentContext())
7972 return false;
7973
7974 // Weak references don't produce any output by themselves.
7975 if (D->hasAttr<WeakRefAttr>())
7976 return false;
7977
7978 // Aliases and used decls are required.
7979 if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7980 return true;
7981
7982 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7983 // Forward declarations aren't required.
7984 if (!FD->doesThisDeclarationHaveABody())
7985 return FD->doesDeclarationForceExternallyVisibleDefinition();
7986
7987 // Constructors and destructors are required.
7988 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7989 return true;
7990
7991 // The key function for a class is required. This rule only comes
7992 // into play when inline functions can be key functions, though.
7993 if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7994 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7995 const CXXRecordDecl *RD = MD->getParent();
7996 if (MD->isOutOfLine() && RD->isDynamicClass()) {
7997 const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7998 if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7999 return true;
8000 }
8001 }
8002 }
8003
8004 GVALinkage Linkage = GetGVALinkageForFunction(FD);
8005
8006 // static, static inline, always_inline, and extern inline functions can
8007 // always be deferred. Normal inline functions can be deferred in C99/C++.
8008 // Implicit template instantiations can also be deferred in C++.
8009 if (Linkage == GVA_Internal || Linkage == GVA_AvailableExternally ||
8010 Linkage == GVA_DiscardableODR)
8011 return false;
8012 return true;
8013 }
8014
8015 const VarDecl *VD = cast<VarDecl>(D);
8016 assert(VD->isFileVarDecl() && "Expected file scoped var");
8017
8018 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
8019 !isMSStaticDataMemberInlineDefinition(VD))
8020 return false;
8021
8022 // Variables that can be needed in other TUs are required.
8023 GVALinkage L = GetGVALinkageForVariable(VD);
8024 if (L != GVA_Internal && L != GVA_AvailableExternally &&
8025 L != GVA_DiscardableODR)
8026 return true;
8027
8028 // Variables that have destruction with side-effects are required.
8029 if (VD->getType().isDestructedType())
8030 return true;
8031
8032 // Variables that have initialization with side-effects are required.
8033 if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
8034 return true;
8035
8036 return false;
8037}
8038
8039CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
8040 bool IsCXXMethod) const {
8041 // Pass through to the C++ ABI object
8042 if (IsCXXMethod)
8043 return ABI->getDefaultMethodCallConv(IsVariadic);
8044
8045 return (LangOpts.MRTD && !IsVariadic) ? CC_X86StdCall : CC_C;
8046}
8047
8048bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
8049 // Pass through to the C++ ABI object
8050 return ABI->isNearlyEmpty(RD);
8051}
8052
8053VTableContextBase *ASTContext::getVTableContext() {
8054 if (!VTContext.get()) {
8055 if (Target->getCXXABI().isMicrosoft())
8056 VTContext.reset(new MicrosoftVTableContext(*this));
8057 else
8058 VTContext.reset(new ItaniumVTableContext(*this));
8059 }
8060 return VTContext.get();
8061}
8062
8063MangleContext *ASTContext::createMangleContext() {
8064 switch (Target->getCXXABI().getKind()) {
8065 case TargetCXXABI::GenericAArch64:
8066 case TargetCXXABI::GenericItanium:
8067 case TargetCXXABI::GenericARM:
8068 case TargetCXXABI::GenericMIPS:
8067 case TargetCXXABI::iOS:
8068 case TargetCXXABI::iOS64:
8069 return ItaniumMangleContext::create(*this, getDiagnostics());
8070 case TargetCXXABI::Microsoft:
8071 return MicrosoftMangleContext::create(*this, getDiagnostics());
8072 }
8073 llvm_unreachable("Unsupported ABI");
8074}
8075
8076CXXABI::~CXXABI() {}
8077
8078size_t ASTContext::getSideTableAllocatedMemory() const {
8079 return ASTRecordLayouts.getMemorySize() +
8080 llvm::capacity_in_bytes(ObjCLayouts) +
8081 llvm::capacity_in_bytes(KeyFunctions) +
8082 llvm::capacity_in_bytes(ObjCImpls) +
8083 llvm::capacity_in_bytes(BlockVarCopyInits) +
8084 llvm::capacity_in_bytes(DeclAttrs) +
8085 llvm::capacity_in_bytes(TemplateOrInstantiation) +
8086 llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
8087 llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
8088 llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
8089 llvm::capacity_in_bytes(OverriddenMethods) +
8090 llvm::capacity_in_bytes(Types) +
8091 llvm::capacity_in_bytes(VariableArrayTypes) +
8092 llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
8093}
8094
8095/// getIntTypeForBitwidth -
8096/// sets integer QualTy according to specified details:
8097/// bitwidth, signed/unsigned.
8098/// Returns empty type if there is no appropriate target types.
8099QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
8100 unsigned Signed) const {
8101 TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
8102 CanQualType QualTy = getFromTargetType(Ty);
8103 if (!QualTy && DestWidth == 128)
8104 return Signed ? Int128Ty : UnsignedInt128Ty;
8105 return QualTy;
8106}
8107
8108/// getRealTypeForBitwidth -
8109/// sets floating point QualTy according to specified bitwidth.
8110/// Returns empty type if there is no appropriate target types.
8111QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
8112 TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
8113 switch (Ty) {
8114 case TargetInfo::Float:
8115 return FloatTy;
8116 case TargetInfo::Double:
8117 return DoubleTy;
8118 case TargetInfo::LongDouble:
8119 return LongDoubleTy;
8120 case TargetInfo::NoFloat:
8121 return QualType();
8122 }
8123
8124 llvm_unreachable("Unhandled TargetInfo::RealType value");
8125}
8126
8127void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
8128 if (Number > 1)
8129 MangleNumbers[ND] = Number;
8130}
8131
8132unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
8133 llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I =
8134 MangleNumbers.find(ND);
8135 return I != MangleNumbers.end() ? I->second : 1;
8136}
8137
8138void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
8139 if (Number > 1)
8140 StaticLocalNumbers[VD] = Number;
8141}
8142
8143unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
8144 llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I =
8145 StaticLocalNumbers.find(VD);
8146 return I != StaticLocalNumbers.end() ? I->second : 1;
8147}
8148
8149MangleNumberingContext &
8150ASTContext::getManglingNumberContext(const DeclContext *DC) {
8151 assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
8152 MangleNumberingContext *&MCtx = MangleNumberingContexts[DC];
8153 if (!MCtx)
8154 MCtx = createMangleNumberingContext();
8155 return *MCtx;
8156}
8157
8158MangleNumberingContext *ASTContext::createMangleNumberingContext() const {
8159 return ABI->createMangleNumberingContext();
8160}
8161
8162void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
8163 ParamIndices[D] = index;
8164}
8165
8166unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
8167 ParameterIndexTable::const_iterator I = ParamIndices.find(D);
8168 assert(I != ParamIndices.end() &&
8169 "ParmIndices lacks entry set by ParmVarDecl");
8170 return I->second;
8171}
8172
8173APValue *
8174ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
8175 bool MayCreate) {
8176 assert(E && E->getStorageDuration() == SD_Static &&
8177 "don't need to cache the computed value for this temporary");
8178 if (MayCreate)
8179 return &MaterializedTemporaryValues[E];
8180
8181 llvm::DenseMap<const MaterializeTemporaryExpr *, APValue>::iterator I =
8182 MaterializedTemporaryValues.find(E);
8183 return I == MaterializedTemporaryValues.end() ? nullptr : &I->second;
8184}
8185
8186bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
8187 const llvm::Triple &T = getTargetInfo().getTriple();
8188 if (!T.isOSDarwin())
8189 return false;
8190
8191 if (!(T.isiOS() && T.isOSVersionLT(7)) &&
8192 !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
8193 return false;
8194
8195 QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
8196 CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
8197 uint64_t Size = sizeChars.getQuantity();
8198 CharUnits alignChars = getTypeAlignInChars(AtomicTy);
8199 unsigned Align = alignChars.getQuantity();
8200 unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
8201 return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
8202}
8203
8204namespace {
8205
8206 /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
8207 /// parents as defined by the \c RecursiveASTVisitor.
8208 ///
8209 /// Note that the relationship described here is purely in terms of AST
8210 /// traversal - there are other relationships (for example declaration context)
8211 /// in the AST that are better modeled by special matchers.
8212 ///
8213 /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
8214 class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
8215
8216 public:
8217 /// \brief Builds and returns the translation unit's parent map.
8218 ///
8219 /// The caller takes ownership of the returned \c ParentMap.
8220 static ASTContext::ParentMap *buildMap(TranslationUnitDecl &TU) {
8221 ParentMapASTVisitor Visitor(new ASTContext::ParentMap);
8222 Visitor.TraverseDecl(&TU);
8223 return Visitor.Parents;
8224 }
8225
8226 private:
8227 typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
8228
8229 ParentMapASTVisitor(ASTContext::ParentMap *Parents) : Parents(Parents) {
8230 }
8231
8232 bool shouldVisitTemplateInstantiations() const {
8233 return true;
8234 }
8235 bool shouldVisitImplicitCode() const {
8236 return true;
8237 }
8238 // Disables data recursion. We intercept Traverse* methods in the RAV, which
8239 // are not triggered during data recursion.
8240 bool shouldUseDataRecursionFor(clang::Stmt *S) const {
8241 return false;
8242 }
8243
8244 template <typename T>
8245 bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) {
8246 if (!Node)
8247 return true;
8248 if (ParentStack.size() > 0) {
8249 // FIXME: Currently we add the same parent multiple times, but only
8250 // when no memoization data is available for the type.
8251 // For example when we visit all subexpressions of template
8252 // instantiations; this is suboptimal, but benign: the only way to
8253 // visit those is with hasAncestor / hasParent, and those do not create
8254 // new matches.
8255 // The plan is to enable DynTypedNode to be storable in a map or hash
8256 // map. The main problem there is to implement hash functions /
8257 // comparison operators for all types that DynTypedNode supports that
8258 // do not have pointer identity.
8259 auto &NodeOrVector = (*Parents)[Node];
8260 if (NodeOrVector.isNull()) {
8261 NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back());
8262 } else {
8263 if (NodeOrVector.template is<ast_type_traits::DynTypedNode *>()) {
8264 auto *Node =
8265 NodeOrVector.template get<ast_type_traits::DynTypedNode *>();
8266 auto *Vector = new ASTContext::ParentVector(1, *Node);
8267 NodeOrVector = Vector;
8268 delete Node;
8269 }
8270 assert(NodeOrVector.template is<ASTContext::ParentVector *>());
8271
8272 auto *Vector =
8273 NodeOrVector.template get<ASTContext::ParentVector *>();
8274 // Skip duplicates for types that have memoization data.
8275 // We must check that the type has memoization data before calling
8276 // std::find() because DynTypedNode::operator== can't compare all
8277 // types.
8278 bool Found = ParentStack.back().getMemoizationData() &&
8279 std::find(Vector->begin(), Vector->end(),
8280 ParentStack.back()) != Vector->end();
8281 if (!Found)
8282 Vector->push_back(ParentStack.back());
8283 }
8284 }
8285 ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node));
8286 bool Result = (this ->* traverse) (Node);
8287 ParentStack.pop_back();
8288 return Result;
8289 }
8290
8291 bool TraverseDecl(Decl *DeclNode) {
8292 return TraverseNode(DeclNode, &VisitorBase::TraverseDecl);
8293 }
8294
8295 bool TraverseStmt(Stmt *StmtNode) {
8296 return TraverseNode(StmtNode, &VisitorBase::TraverseStmt);
8297 }
8298
8299 ASTContext::ParentMap *Parents;
8300 llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
8301
8302 friend class RecursiveASTVisitor<ParentMapASTVisitor>;
8303 };
8304
8305} // end namespace
8306
8307ArrayRef<ast_type_traits::DynTypedNode>
8308ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
8309 assert(Node.getMemoizationData() &&
8310 "Invariant broken: only nodes that support memoization may be "
8311 "used in the parent map.");
8312 if (!AllParents) {
8313 // We always need to run over the whole translation unit, as
8314 // hasAncestor can escape any subtree.
8315 AllParents.reset(
8316 ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()));
8317 }
8318 ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData());
8319 if (I == AllParents->end()) {
8320 return None;
8321 }
8322 if (auto *N = I->second.dyn_cast<ast_type_traits::DynTypedNode *>()) {
8323 return llvm::makeArrayRef(N, 1);
8324 }
8325 return *I->second.get<ParentVector *>();
8326}
8327
8328bool
8329ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
8330 const ObjCMethodDecl *MethodImpl) {
8331 // No point trying to match an unavailable/deprecated mothod.
8332 if (MethodDecl->hasAttr<UnavailableAttr>()
8333 || MethodDecl->hasAttr<DeprecatedAttr>())
8334 return false;
8335 if (MethodDecl->getObjCDeclQualifier() !=
8336 MethodImpl->getObjCDeclQualifier())
8337 return false;
8338 if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
8339 return false;
8340
8341 if (MethodDecl->param_size() != MethodImpl->param_size())
8342 return false;
8343
8344 for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
8345 IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
8346 EF = MethodDecl->param_end();
8347 IM != EM && IF != EF; ++IM, ++IF) {
8348 const ParmVarDecl *DeclVar = (*IF);
8349 const ParmVarDecl *ImplVar = (*IM);
8350 if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
8351 return false;
8352 if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
8353 return false;
8354 }
8355 return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
8356
8357}
8358
8359// Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
8360// doesn't include ASTContext.h
8361template
8362clang::LazyGenerationalUpdatePtr<
8363 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
8364clang::LazyGenerationalUpdatePtr<
8365 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
8366 const clang::ASTContext &Ctx, Decl *Value);
8069 case TargetCXXABI::iOS:
8070 case TargetCXXABI::iOS64:
8071 return ItaniumMangleContext::create(*this, getDiagnostics());
8072 case TargetCXXABI::Microsoft:
8073 return MicrosoftMangleContext::create(*this, getDiagnostics());
8074 }
8075 llvm_unreachable("Unsupported ABI");
8076}
8077
8078CXXABI::~CXXABI() {}
8079
8080size_t ASTContext::getSideTableAllocatedMemory() const {
8081 return ASTRecordLayouts.getMemorySize() +
8082 llvm::capacity_in_bytes(ObjCLayouts) +
8083 llvm::capacity_in_bytes(KeyFunctions) +
8084 llvm::capacity_in_bytes(ObjCImpls) +
8085 llvm::capacity_in_bytes(BlockVarCopyInits) +
8086 llvm::capacity_in_bytes(DeclAttrs) +
8087 llvm::capacity_in_bytes(TemplateOrInstantiation) +
8088 llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
8089 llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
8090 llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
8091 llvm::capacity_in_bytes(OverriddenMethods) +
8092 llvm::capacity_in_bytes(Types) +
8093 llvm::capacity_in_bytes(VariableArrayTypes) +
8094 llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
8095}
8096
8097/// getIntTypeForBitwidth -
8098/// sets integer QualTy according to specified details:
8099/// bitwidth, signed/unsigned.
8100/// Returns empty type if there is no appropriate target types.
8101QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
8102 unsigned Signed) const {
8103 TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
8104 CanQualType QualTy = getFromTargetType(Ty);
8105 if (!QualTy && DestWidth == 128)
8106 return Signed ? Int128Ty : UnsignedInt128Ty;
8107 return QualTy;
8108}
8109
8110/// getRealTypeForBitwidth -
8111/// sets floating point QualTy according to specified bitwidth.
8112/// Returns empty type if there is no appropriate target types.
8113QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
8114 TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
8115 switch (Ty) {
8116 case TargetInfo::Float:
8117 return FloatTy;
8118 case TargetInfo::Double:
8119 return DoubleTy;
8120 case TargetInfo::LongDouble:
8121 return LongDoubleTy;
8122 case TargetInfo::NoFloat:
8123 return QualType();
8124 }
8125
8126 llvm_unreachable("Unhandled TargetInfo::RealType value");
8127}
8128
8129void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
8130 if (Number > 1)
8131 MangleNumbers[ND] = Number;
8132}
8133
8134unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
8135 llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I =
8136 MangleNumbers.find(ND);
8137 return I != MangleNumbers.end() ? I->second : 1;
8138}
8139
8140void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
8141 if (Number > 1)
8142 StaticLocalNumbers[VD] = Number;
8143}
8144
8145unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
8146 llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I =
8147 StaticLocalNumbers.find(VD);
8148 return I != StaticLocalNumbers.end() ? I->second : 1;
8149}
8150
8151MangleNumberingContext &
8152ASTContext::getManglingNumberContext(const DeclContext *DC) {
8153 assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
8154 MangleNumberingContext *&MCtx = MangleNumberingContexts[DC];
8155 if (!MCtx)
8156 MCtx = createMangleNumberingContext();
8157 return *MCtx;
8158}
8159
8160MangleNumberingContext *ASTContext::createMangleNumberingContext() const {
8161 return ABI->createMangleNumberingContext();
8162}
8163
8164void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
8165 ParamIndices[D] = index;
8166}
8167
8168unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
8169 ParameterIndexTable::const_iterator I = ParamIndices.find(D);
8170 assert(I != ParamIndices.end() &&
8171 "ParmIndices lacks entry set by ParmVarDecl");
8172 return I->second;
8173}
8174
8175APValue *
8176ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
8177 bool MayCreate) {
8178 assert(E && E->getStorageDuration() == SD_Static &&
8179 "don't need to cache the computed value for this temporary");
8180 if (MayCreate)
8181 return &MaterializedTemporaryValues[E];
8182
8183 llvm::DenseMap<const MaterializeTemporaryExpr *, APValue>::iterator I =
8184 MaterializedTemporaryValues.find(E);
8185 return I == MaterializedTemporaryValues.end() ? nullptr : &I->second;
8186}
8187
8188bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
8189 const llvm::Triple &T = getTargetInfo().getTriple();
8190 if (!T.isOSDarwin())
8191 return false;
8192
8193 if (!(T.isiOS() && T.isOSVersionLT(7)) &&
8194 !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
8195 return false;
8196
8197 QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
8198 CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
8199 uint64_t Size = sizeChars.getQuantity();
8200 CharUnits alignChars = getTypeAlignInChars(AtomicTy);
8201 unsigned Align = alignChars.getQuantity();
8202 unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
8203 return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
8204}
8205
8206namespace {
8207
8208 /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
8209 /// parents as defined by the \c RecursiveASTVisitor.
8210 ///
8211 /// Note that the relationship described here is purely in terms of AST
8212 /// traversal - there are other relationships (for example declaration context)
8213 /// in the AST that are better modeled by special matchers.
8214 ///
8215 /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
8216 class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
8217
8218 public:
8219 /// \brief Builds and returns the translation unit's parent map.
8220 ///
8221 /// The caller takes ownership of the returned \c ParentMap.
8222 static ASTContext::ParentMap *buildMap(TranslationUnitDecl &TU) {
8223 ParentMapASTVisitor Visitor(new ASTContext::ParentMap);
8224 Visitor.TraverseDecl(&TU);
8225 return Visitor.Parents;
8226 }
8227
8228 private:
8229 typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
8230
8231 ParentMapASTVisitor(ASTContext::ParentMap *Parents) : Parents(Parents) {
8232 }
8233
8234 bool shouldVisitTemplateInstantiations() const {
8235 return true;
8236 }
8237 bool shouldVisitImplicitCode() const {
8238 return true;
8239 }
8240 // Disables data recursion. We intercept Traverse* methods in the RAV, which
8241 // are not triggered during data recursion.
8242 bool shouldUseDataRecursionFor(clang::Stmt *S) const {
8243 return false;
8244 }
8245
8246 template <typename T>
8247 bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) {
8248 if (!Node)
8249 return true;
8250 if (ParentStack.size() > 0) {
8251 // FIXME: Currently we add the same parent multiple times, but only
8252 // when no memoization data is available for the type.
8253 // For example when we visit all subexpressions of template
8254 // instantiations; this is suboptimal, but benign: the only way to
8255 // visit those is with hasAncestor / hasParent, and those do not create
8256 // new matches.
8257 // The plan is to enable DynTypedNode to be storable in a map or hash
8258 // map. The main problem there is to implement hash functions /
8259 // comparison operators for all types that DynTypedNode supports that
8260 // do not have pointer identity.
8261 auto &NodeOrVector = (*Parents)[Node];
8262 if (NodeOrVector.isNull()) {
8263 NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back());
8264 } else {
8265 if (NodeOrVector.template is<ast_type_traits::DynTypedNode *>()) {
8266 auto *Node =
8267 NodeOrVector.template get<ast_type_traits::DynTypedNode *>();
8268 auto *Vector = new ASTContext::ParentVector(1, *Node);
8269 NodeOrVector = Vector;
8270 delete Node;
8271 }
8272 assert(NodeOrVector.template is<ASTContext::ParentVector *>());
8273
8274 auto *Vector =
8275 NodeOrVector.template get<ASTContext::ParentVector *>();
8276 // Skip duplicates for types that have memoization data.
8277 // We must check that the type has memoization data before calling
8278 // std::find() because DynTypedNode::operator== can't compare all
8279 // types.
8280 bool Found = ParentStack.back().getMemoizationData() &&
8281 std::find(Vector->begin(), Vector->end(),
8282 ParentStack.back()) != Vector->end();
8283 if (!Found)
8284 Vector->push_back(ParentStack.back());
8285 }
8286 }
8287 ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node));
8288 bool Result = (this ->* traverse) (Node);
8289 ParentStack.pop_back();
8290 return Result;
8291 }
8292
8293 bool TraverseDecl(Decl *DeclNode) {
8294 return TraverseNode(DeclNode, &VisitorBase::TraverseDecl);
8295 }
8296
8297 bool TraverseStmt(Stmt *StmtNode) {
8298 return TraverseNode(StmtNode, &VisitorBase::TraverseStmt);
8299 }
8300
8301 ASTContext::ParentMap *Parents;
8302 llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
8303
8304 friend class RecursiveASTVisitor<ParentMapASTVisitor>;
8305 };
8306
8307} // end namespace
8308
8309ArrayRef<ast_type_traits::DynTypedNode>
8310ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
8311 assert(Node.getMemoizationData() &&
8312 "Invariant broken: only nodes that support memoization may be "
8313 "used in the parent map.");
8314 if (!AllParents) {
8315 // We always need to run over the whole translation unit, as
8316 // hasAncestor can escape any subtree.
8317 AllParents.reset(
8318 ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()));
8319 }
8320 ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData());
8321 if (I == AllParents->end()) {
8322 return None;
8323 }
8324 if (auto *N = I->second.dyn_cast<ast_type_traits::DynTypedNode *>()) {
8325 return llvm::makeArrayRef(N, 1);
8326 }
8327 return *I->second.get<ParentVector *>();
8328}
8329
8330bool
8331ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
8332 const ObjCMethodDecl *MethodImpl) {
8333 // No point trying to match an unavailable/deprecated mothod.
8334 if (MethodDecl->hasAttr<UnavailableAttr>()
8335 || MethodDecl->hasAttr<DeprecatedAttr>())
8336 return false;
8337 if (MethodDecl->getObjCDeclQualifier() !=
8338 MethodImpl->getObjCDeclQualifier())
8339 return false;
8340 if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
8341 return false;
8342
8343 if (MethodDecl->param_size() != MethodImpl->param_size())
8344 return false;
8345
8346 for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
8347 IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
8348 EF = MethodDecl->param_end();
8349 IM != EM && IF != EF; ++IM, ++IF) {
8350 const ParmVarDecl *DeclVar = (*IF);
8351 const ParmVarDecl *ImplVar = (*IM);
8352 if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
8353 return false;
8354 if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
8355 return false;
8356 }
8357 return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
8358
8359}
8360
8361// Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
8362// doesn't include ASTContext.h
8363template
8364clang::LazyGenerationalUpdatePtr<
8365 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
8366clang::LazyGenerationalUpdatePtr<
8367 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
8368 const clang::ASTContext &Ctx, Decl *Value);